
The Bug Hunter’s Methodology Live

DAY 2 - APPLICATION ANALYSIS

INTENDED
USAGE

Many people can teach:

';alert('xss');//

Less people teach where to look for web bugs.

This course is a collection of my favorite tips, tools, and tricks.

If you want a holistic course...

THERE ARE MANY LIKE IT, BUT THIS IS MINE

PRINT RESOURCES

TBHM will attempt to
give you tips, tricks, and
tools related testing but
there are many great
wholistic texts available
to supplement your app
hacking journey.

Web Security Academy is by far the
best training ground for an
introduction to web application
security.

It is completely free and provides
text-based instructions on how to
approach its labs.

If you want supplemental guidance
to this resource, check out Rana
Khalil's free YouTube channel and
then her very cheap course.

HOLISTIC COURSES

https://www.youtube.com/@RanaKhalil101/videos
https://academy.ranakhalil.com/p/web-security-academy-video-series

Ben aka Nahamsec also
has an excellent course for
introduction to web
hacking and bug bounty
hunting.

It is also relatively cheap.

HOLISTIC COURSES

https://twitter.com/NahamSec
https://www.udemy.com/course/intro-to-bug-bounty-by-nahamsec/

If you want additional labs to hack
there exists several great resources
on the web. Some are free and some
are paid, but relatively cheap.

The first two PentesterLab and
HackTheBox offer accompanying
training to the topics whereas
VulnHUB is a community of hackers
uploading crackme challenges and
hosting them for other people to
download and solve.

PRACTICE TARGETS

https://pentesterlab.com/
https://www.hackthebox.com/
https://www.vulnhub.com/

In addition, OWASP hosts a
project called the Vulnerable
Web Applications Directory
which tries to keep up with
all the practice applications
that people make end up on
GitHub.

These are mostly self hosted
labs that you can run through
at your own pace.

PRACTICE TARGETS (OVWAD)

ANALYSIS
CONCEPTS

I like to kick off the analysis course
and talks discussing how I view
applications holistically.

I usually end up approaching an
application by breaking it down
into its layers, profiling it, and then
asking myself questions about its
functionality.

I then prioritize different layers.

ANALYSIS CONCEPTS
Analysis Layers

Application Layers as
related to success.

Tech Profiling

The Big Questions

In general, when looking at an
application that I am destined to
hack I break it up into these
layers.

While not quite the most
scientific breakout, it helps me
compartmentalize the different
areas I might be targeting to
hack.

We'll jump into even more
sections when we get into heat
mapping in the later sections of
the course but let's talk a little
bit about them each here…

ANALYSIS CONCEPTS (LAYERS)

In general, most of your
hacking success when it
comes to web applications
will come at the custom code
layer and the integrations
layer.

Also unseen here is if there
are stand alone APIs which
are a very still vulnerable part
of applications these days.

ANALYSIS CONCEPTS (SUCCESS)

One of the first tasks we need
to do when dealing with a
application is to understand
what web server it's running,
on what programming
language it's written in, and
what frameworks it's using.

Browser extensions like
Whatruns, Wappalyzer, and
BuiltWith can give this
information to us very quickly
without spending too much
time digging around and the
HTML source.

ANALYSIS CONCEPTS (TECH PROFILING)

https://chrome.google.com/webstore/detail/whatruns/cmkdbmfndkfgebldhnkbfhlneefdaaip
https://chrome.google.com/webstore/detail/wappalyzer-technology-pro/gppongmhjkpfnbhagpmjfkannfbllamg
https://chrome.google.com/webstore/detail/builtwith-technology-prof/dapjbgnjinbpoindlpdmhochffioedbn

If you don't want to use a browser
extension you can automate
Wappalyzer by using a tool called
Webanalyze which will give you
technologies of your application
on the command line.

This is mostly useful if you're
building your own Recon
framework and you want to
enrich your existing data by
adding tech stacks two known
websites in your data-set.

ANALYSIS CONCEPTS (TECH PROFILING)

https://github.com/rverton/webanalyze

When analyzing a web application,
in addition to understanding its
tech stack, it's also important to
ask yourself pointed questions
about how the application
operates.

Here are six-ish questions that I
use to lead me to better
understanding of the application
and how I will approach hacking it.

We will explore these in more
depth later…

ANALYSIS CONCEPTS
(THE BIG QUESTIONS) How does the app

pass data?
How/where does the
app talk about users?

Does the app have
multi-tenancy or user

levels?

Does the app have a
unique threat model?

Has there been past
security research &

vulns?

How does the
app/framework

handle specific vuln
classes?

VULNERABILTY
DISCOVERY

AUTOMATION

A contentious topic among bug bounty hunters (but usually not red teamers) is
the idea of scanning for known vulnerabilities.

We'll discuss this contention a little bit later in the course but automated
vulnerability discovery using tools is a tremendous advantage in several ways.

First, using automated tools as a first pass can find you vulnerabilities on scope
that you found during Recon that no one else has seen yet.

Second, these tools outlined in the next section are good for more than just
scanning for CVE’s. They also help you identify what is running on a web
application, find login panels, test for default credentials, and more.

Lastly, if you are doing your own vulnerability of research and you find something
that could be present in many sites across a scope or campaign you can use these
tools to automate and scan your original research over many websites and hosts.

AUTOMATED VULN DISCOVERY

Nuclei Scanner is a tool by the
Project Discovery team.

• 1000+ CVE’s
• 100+ Informational detections
• 500+ admin panel detectors
• 1500+ other checks

• creds/keys
• 67 subdomain takeover
• Http form brute force
• 3428 total templates

AUTOMATED VULN DISCOVERY (NUCLEI)

https://github.com/projectdiscovery/nuclei

Nuclei can be extended with a
couple additional projects that add a
ton of templates.

AllForOne and CENT.

It's important to understand that
while you can extend your number
of templates many of them might be
duplicates of the core set.
Additionally, many of them will not
be useful at all.

With keeping that in mind, you can
find some gems in these collections
of templates…

AUTOMATED VULN DISCOVERY (NUCLEI)

https://github.com/projectdiscovery/nuclei
https://github.com/AggressiveUser/AllForOne
https://github.com/xm1k3/cent

Corben is right, but in a certain context.

If you are testing a main site or highly
known target, then yes, scanning has
probably been done already.

However, if you are testing targets that
are “fresh” or found via recon and you
have a feeling not many testers have
seen them before, it can absolutely find
great things.

In addition, making templates for new
vulns or content discovery techniques
in Nuclei is SUPER easy.

AUTOMATED VULN DISCOVERY

One other way to utilize these
automated vulnerability discovery
tools is to quickly port security
research that's been done into a
template that you write yourself
and then scan targets for.

So how does one keep up to date
on the most current security
research to port it into a
template?

Here is the workflow I've used for a
long time but as currently in
trouble because of Twitter API
limits and changes to tweet deck


AUTOMATED VULN DISCOVERY (CREATING)

Secrets of automation-kings in bug bounty -
https://bit.ly/3cIYgdt

• IDOR OR "insecure direct object reference" OR "broken access control“

• "SQLi" OR "SQL injection“ OR “injection flaw” OR “injection vulnerability”

• “local file include” OR “LFI” OR “directory traversal” OR “remote file
include”

• “RCE” OR “command injection”

• “XSS” OR “Cross-site Scripting” OR “cross site scripting”

• “SSRF” OR “server side request forgery”

• “XXE” OR “XML External Entity attack”

• “CSRF” OR “Cross site request forgery”
• “insecure deserialization” OR “Mass assignment vulnerability”

AUTOMATED VULN DISCOVERY (CREATING)

Another place vulnerabilities can be introduced
is in web libraries.

You can automatically scan for vulns in
JavaScript libraries used by applications.

Luckily we've been privileged to have many
open source projects that will scan for outdated
libraries based on their version numbers that
are usually in HTML source code.

One such tool is retireJS which on top of being a
standalone tool also has a burp extension and
can be instrumented in many other tools.

A word of warning, even though a version of a
library might be present on a website it does
not automatically mean that they haven't
patched out a specific security vulnerability
related to that library.

You will always have to prove out the
vulnerability that any of these scanners finds for
you.

AUTOMATED VULN DISCOVERY (retirejs)

https://github.com/retirejs/retire.js/
https://github.com/PortSwigger/retire-js

CONTENT
DISCOVERY

START WITH WALKING THE APP

Content Discovery is the part of web
application testing where you are
trying to discover all the routes,
paths, parameters, functions, and
files of an application.

Sometimes content discovery can
also be known as directory brute
forcing but it is much wider topic
than that.

I usually break down content
discovery into six sections.

CONTENT DISCOVERY TYPES
Based on Tech

Using known pathing
(Install, DEMO, Leaked)

Custom

Historical

Spidering

Mobile

CONTENT DISCOVERY (SPIDERING)
Of course, a common way of understanding the structure of the
application you're testing is just to spider it which finds all the known
knowns. Most of you in this class will have spider to site before using
burp suite or ZAP so we won't spend a ton of time on that. We also
mentioned some of the command line crawlers that you can use in
the Recon session yesterday!

CONTENT DISCOVERY (TOOLS)

One way to approach content discovery is to use lists based on
the type of technology the application uses.

This could be at its framework level, its web server level, or
generically on what part of the application you are doing content
discovery on (APIs).

We will use several different word lists for content discovery. The
next slide outlines the lists I use based on technologies.

Many of them are found at wordlists.assetnote.io and in the
repository Seclists.

CONTENT DISCOVERY (TECH)

https://wordlists.assetnote.io/
https://github.com/danielmiessler/SecLists

CONTENT DISCOVERY (TECH)

CONTENT DISCOVERY (TECH)

CONTENT DISCOVERY (KNOWN PATHING)

In our quest to understand every nook and
cranny of our application we might come
to realize that the app we are testing is
based on open-source software or paid
software that you can purchase (COTS /
Commercial Off The Shelf Software).

We can potentially install both types of
software ourself and understand the
pathing and underlying non-custom code
for the application.

There are several ways to do this.

Local Install

Demos

Installed and Leaked
(Github or Dockerhub)

CONTENT DISCOVERY (LOCAL INSTALL)

If you can do a local install of
the software because it's
completely open source, then
you can use Daniel Miessler‘s
Source2URL tool to map the
applications routes and
endpoints and then proxy them
through Burp back at your
target domain.

CONTENT DISCOVERY (DEMOS)

If you identify the application is a
piece of paid software or COTS
there is a chance that the vendor
selling that software has a demo
instance or a process to request a
demo.

Getting access to a demo instance
will allow you to route the
application through burp suite and
grab the pathing for that software.

When doing this it's especially
important to make sure that you
have access to the admin
functionality of the software and
you grab all those paths, routes, or
parameters when proxying.

CONTENT DISCOVERY (INSTALLED AND LEAKED)
Lastly, you might identify a piece of
software is paid or cots, but there
is no demo available.

Many times, when installing
applications like this, developers
do it through dockerhub and
accidentally end up posting the
source code somewhere.

Searching through dockerhub can
find you an installed instances of
the software and because of the
nature of docker hub many times
you can get access to the complete
source code.

Other times you can gain snippets
of a piece of paid software through
developers posting modifications
or sections of it on GitHub.

https://hub.docker.com/

CONTENT DISCOVERY (CUSTOM)
Sometimes using custom word lists to discover paths
and routes can be beneficial.

This process we'll take contextual words related to our
application and try to build a word list so that you can
brute force paths and parameters based on that context.

For example if you're testing a bank application and you
build one of these word lists, it may include the word
“invest” or “transaction” or “deposit”.

There are a few tools to do this in the industry, the first
of which was CEWL.

After much experimentation I have actually gone back to
CEWL when I do this sort of content discovery.

You can also use another workflow that feeds GAU into a
tool called wordlistgen.

 echo bugcrowd.com | gau | wordlistgen | sort -u

https://github.com/digininja/CeWL
https://github.com/lc/gau
https://github.com/ameenmaali/wordlistgen

CONTENT DISCOVERY (HISTORICAL)
Another method for content discovery is to try and search sources that archive URL data.

There exist several of these sources such as the wayback machine, alien vault, common crawl, and URL scan.

In the previous slide we used gau to do this. Last year one of our esteemed class members wrote a tool that utilize
this technique but goes much deeper.

Grabbing these URL's from these sources is where many of the tools stop. WayMore by Xnl-h4ck3r will also
download the archived responses and search through them for more links and extra information.

https://github.com/xnl-h4ck3r/waymore

CONTENT DISCOVERY (TIP – RECURSION)

CONTENT DISCOVERY (TIP – MOBILE)

Often mobile application
binaries can contain
pathing for the same
website we might be
testing!

Usually this is an API
hanging off our main
domain.

You can use APKleaks to
parse out paths from an
APK file to get additional
routes and API endpoints
and parameters.

https://github.com/dwisiswant0/apkleaks

JAVASCRIPT
ANALYSIS

Wide vs. Narrow ReconWHAT ARE WE AFTER?

Endpoints, parameters, routes, secrets, domains.

JAVASCRIPT ANALYSIS

One of the most important parts of
assessing a web application, that
ties into content discovery, is
analyzing the sites JavaScript.

If the application is a heavy
JavaScript framework than many of
the routes or parameters will be
defined in the JavaScript.

Many times API references will also
be housed in JavaScript files.

Additionally, in the worst case
scenarios, developers can also
store secrets in JavaScript thinking
that no one will find them.

JAVASCRIPT ANALYSIS (PATHS VIA GAP)

Again one of our
esteemed class members,
XNL, has also created a
tool that helps us parse
paths and routes out of
JavaScript files.

Gap is a burp extension
where you can right click
on your entire scope and it
will grab links , endpoints,
and parameters from not
only the JavaScript files
but also inline JavaScript.

https://github.com/xnl-h4ck3r/GAP-Burp-Extension

JAVASCRIPT ANALYSIS (BEAUTIFYING++)

If you run into heavily packed or
obfuscated JS code, give
https://deobfuscate.io a try.

http://deobfuscate.io:

🧩 Unpacks arrays
🧩 Simplifies expressions
🧩 Beatifies the code
🧩 and more

JAVASCRIPT ANALYSIS (MINING)

You should be looking for verbatim, hard-coded secrets in JS files.

JS Miner (Burp extension) adds passive scanning checks to alert you of
these.

https://portswigger.net/bappstore/0ab7a94d8e11449daaf0fb387431225
b

🔥 Not just regex either, it uses a (Shannon) entropy function for things
that might be interesting.

https://portswigger.net/bappstore/0ab7a94d8e11449daaf0fb387431225b
https://portswigger.net/bappstore/0ab7a94d8e11449daaf0fb387431225b

JAVASCRIPT
ANALYSIS
(MINING)

JAVASCRIPT ANALYSIS (SCANNING)

@LewisArdern made
Metasec.js a while back
which can be used on a
downloaded JS file.

It uses the static source
code security analysis
engines of:

🔍 npm-audit
🔍 yarn-audit
🔍 semgrep for secrets
and JS sec issues

https://github.com/LewisArdern/metasecjs

JAVASCRIPT ANALYSIS (WEBPACKED)

Another resource for unpacking Webpacked JS files is
Webpack Exploder by @spaceraccoonsec

https://blog.assetnote.io/bug-bounty/2020/02/02/expanding-attack-surface-react-native/

https://spaceraccoon.github.io/webpack-exploder/
https://twitter.com/spaceraccoonsec

THE BIG
QUESTIONS

BIG QUESTIONS (PASSING DATA)

The first question I asked myself when looking at an application is how does this app
pass data?

Does it use a resource, parameter, value, format?

https://app.com/resource?parameter=value¶m2=value

Or does it use a RESTful format?

https://app.com/route/resource/sub-resource/...

Understanding this will be the cornerstone of how you test for vast categories of bugs.
The bugs will be there, but if you’re not familiar with where to inject your payloads, you
will fail.

BIG QUESTIONS (USERS)

Next, I ask myself how/where does
the app talk about users?

Understanding how users (yourself
and other users) are referenced
and where in the application is
pivotal to finding several bug
classes, most specifically Access,
Authorization, Logic, and
Information Disclosure bugs.

BIG QUESTIONS (USER LEVELS)

Does the site have multi-tenancy
or different user levels?

This will also dictate how we test
for authorization and access
bugs.

BIG QUESTIONS (THREAT MODEL)
Does the site have a unique threat model?

If the application houses more than the standard PII data, it’s easy to forget to
target that data in your testing.

Examples: API keys, application data for doxing.

BIG QUESTIONS (SECURITY RESEARCH)
Has there been past security research & vulns?

BIG QUESTIONS
(HANDLING VULNS)

Next, a question I find
myself asking when I'm
looking at an application is
how does its web application
framework protect against a
common type of
vulnerability and have there
been any bypasses?

XSS, CSRF, Input validation,
Output Encoding.

BIG QUESTIONS (DATA STORAGE)

Lastly a question I find
myself asking when I'm
looking at an application
is how does it store
data?

Where are image and file
uploads going?

What kind of database
do I think they are using?

HEAT
MAPPING

HEAT MAPPING

This section called heat mapping is a relatively small one where I
describe, based on my personal experience, where I see most
vulnerabilities inside of enterprise applications.

Many of you will already know these things from your time in
bounty or offsec testing but newer testers gain value from this
context.

HEAT MAPPING (UPLOADS)

One of the more common places you
can see vulnerability is in on an
enterprise level site is wherever
they allow you to upload files. This
includes uploading any format such
as images or documents.

One important note is to remember
that if a document upload exists
that data when it comes down to it
it's just XML data. So it can be
subject to XML based vulnerabilities
like XXE.

HEAT MAPPING (CONTENT TYPES)

While this is not explicitly a “place
to look” in it is an alert to be aware
of when you're looking at your
proxy data.

Anytime a request a response
includes a multipart-form, or it
returns or sends XML, or sends or
returns JSON Data, I am
interested in it.

HEAT MAPPING (APIs)

In the last section some of those triggers will
cause us to fall down the rabbit hole of API
testing.

Since many application nowadays are just
front end for routes or now host verbatim
APIs, API testing is a paramount skill set to
develop especially and newer technology is
like graphQL.

Mainly when I see API bugs they are more
inclined to be that the API itself did not
enforce authentication to pull down sensitive
data. Less and less are we seeing actual
injection in APIs.

HEAT MAPPING (ACCOUNT SECTION)

When testing an application most of the time
your authenticated view will give you access to
your personal account area.

In many cases this is where a lot of data ends up
being stored or persisted. This means it is prime
for stored cross-site scripting.

In addition, the account section is usually where
you can set up additional integrations.

These integrations that allow applications to
connect to each other can be subject to various
types of vulnerabilities.

Additionally, not visualized, is the opportunity to
add blind XSS payloads in your profile or account
section!

HEAT MAPPING (ERRORS)

Again, this is less of an area and more of
a trigger for application security testers.
When you see in your interception proxy
many errors coming back you have the
ability through logger in burp to
understand what triggered that error.

If it was a certain meta character, or
injection attempt, you now have the
opportunity to play with that request an
intruder and find out if you can exploit a
real injection or cause an application
level denial of service.

HEAT MAPPING (PASSING PATHS)

Lastly a common area to investigate is
anytime you see an application passing a
path or URL as part of a value of a
parameter or in a route.

If the web application is taking a path or
a URL it needs to parse that in some
way.

URL and path parsers are notoriously
known for being subject to redirect
vulnerabilities and server-side request
forgery.

HEAT MAPPING (HELP CHATBOTS)

Anytime you see a chat bot that is
designed to help you connect with the
customer service of the application it
should be tested for blind cross site
scripting.

Many companies either misconfigured
common integrations with these chat
bots that they buy or they try to code
these chat bots themselves and end up
being subject to blind vulnerabilities.

HEAT MAPPING (AI CHATBOTS)

Many companies will begin to roll out
helpful chat bots like the one listed in
the previous slide but that are AI and
enabled.

A new skill set for offensive security
people will be to use prompt injection
to try and smuggle out data from the
company through a helpful AI chat
bot.

https://gandalf.lakera.ai/

WEB FUZZING

WEB FUZZING

In the previous automation section we discussed
scanning for CVE’s. CVE's are known
vulnerabilities that tools look for. They check an
existing web paths that they know to be subject
to some vulnerability.

A more in-depth sort of scanning is dynamic
scanning where we take one parameter or value
and try to inject payloads into it to see if we can
trigger a vulnerability type.

Dynamic scanning is more in-depth than general
CVE scanning.

This process can also be called web fuzzing.

This is the type of scanning that burp does on
every parameter when you do an active scan.

So what are the best practices when web fuzzing?

WEB FUZZING (BURP POLICIES)

LAB

WEB FUZZING (BACKSLASH POWERED)

Even after making the separation of looking for
CVEs and doing dynamic scanning there is also a
further split of the types of fuzzing you can do in
dynamic scanning.

Burp attempts to inject many payloads into
parameter values and routes.

Even more in-depth dynamic scanning can be
done by just trying to elicit errors from the
application.

You can use James kettle’s tool backslash
powered scanner to fuzz routes and parameters
and elicit these errors.

If you do indeed elicit an error then you must
spend the time to understand what you can do by
causing that error with that injection character.

https://portswigger.net/research/backslash-powered-scanning-hunting-unknown-vulnerability-classes
https://portswigger.net/research/backslash-powered-scanning-hunting-unknown-vulnerability-classes

WEB FUZZING (DEFINED INSERTIONS POINTS)

One small tip for burp
users is when you feel
like a parameter
might be subject to a
vulnerability and you
want to specifically
sacn it you can send
the request to
intruder, mark the
place with payload
markers, and then
right click and choose
scan defined
insertion points.

WEB FUZZING (SSWLR – INTERPRETING RESULTS)

SENSITIVE = Status Code
SECRETS = Size
WERE = Word Count
LEAKED = Lines
RECENTLY = Response Time

VULNERABILTY
TYPES

VULN TYPES

Reminder: not intro or comprehensive. Just my
experience, tips, and valuable resources.

XSS

XSS (METHODOLOGY)

The best methodology I've ever seen or taken
as a training for XSS has been by Ashar
Javed. In a dissertation about XSS!

At this point eight years old.

Ashar routinely owns Microsoft and several
other enterprise level applications with cross
site scripting. He breaks down a methodology
on how to know if you can exploit XSS based
on the context you land in and a series of
payload tries.

Even after taking a training of his sometimes
I still struggle to replicate the exact
methodology but it breaks down
understanding that in each context where
XSS can appear we need certain characters
to be present in order to exploit.

Check out: https://www.blackhat.com/docs/eu-14/materials/eu-14-Javed-Revisiting-XSS-Sanitization.pdf

https://hss-opus.ub.ruhr-uni-bochum.de/opus4/frontdoor/deliver/index/docId/4522/file/diss.pdf
https://www.blackhat.com/docs/eu-14/materials/eu-14-Javed-Revisiting-XSS-Sanitization.pdf

XSS (BLIND)

After many years of enjoying XSSHUNTER by
Iammandatory the service was depreciated.

In the scramble many tools to self host your
blind XSS “catch” framework were born.

While many of them are excellent, the
search still continues for a hosted solution
that is easy-peasy.

The closest I've seen so far is BXSSHunter

https://bxsshunter.com/

XSS (PARAMS)

From the HUNT data project I did years ago,
these parameters or resource names are the
most likely to have cross site scripting present
in them.

Take this specific lists with a grain of salt XSS
can be anywhere ☺

q
s
search
id
lang
keyword
query
page
keywords
year
view
email
type
name
p
month
image
list_type
url
terms
categoryid
key
login
begindate
enddate

XSS (AUTOMATION)

Many command line scanners and browser
plugins have attempted to do a good job at
scanning for XSS but they all have individual
issues based on how they parse and
interpret returned HTML.

This is why burp suite remains the best
standalone cross site scripting scanner in
the industry today.

While I usually don't kick off a large scale
scan with burp I will always craft a scanner
profile to just check for certain classes of
cross site scripting.

IDOR

IDOR (Autorize)

InsiderPHD did
probably one of
the best visual
overviews of this
plugin for people
to learn from. To
this day authorize
remains one of the
best plugins to
find access
control issues and
IDORS.

https://www.youtube.com/watch?v=2WzqH6N-Gbc

IDOR (PARAMS)

From the HUNT data project, I did
years ago, these parameters or
resource names are the most
likely to be subject to simple
IDORs.

id

user

account

number

order

no

doc

key

email

group

profile

edit

REST numeric paths

SSRF

SSRF (SPRAY AND PRAY)

Sometimes SSRF can be as simple as embedding an image tag with your Burb collaborator
URL as the source but other times you
just want to shove that EVERYWERE (similar to bxss).

You can grab all URLs from your target, from GAU or Waymore, pass them to qsreplace adding
your collaborator URL:

1: cat allUrls.txt | grep "=" | qsreplace http://troupga5ke78yjdu4hv12s1v2m8dw3ks.oastify.com > ssrf.txt

2: cat ssrf.txt | httpx -fr

https://iamaakashrathee.medium.com/ssrf-methodology-by-aakash-rathee-f175665e2ea

SSRF
(METADATA
URLS)
While some of these are
imminently changing,
there still exists some
time to use a SSRF to
grab API keys from cloud
metadata internal sites.

More and more of these
services have
implemented additional
header requirements to
access these keys but
not all of them (I think as
of this moment)

https://gist.github.com/j
haddix/78cece26c91c626
3653f31ba453e273b

https://gist.github.com/jhaddix/78cece26c91c6263653f31ba453e273b
https://gist.github.com/jhaddix/78cece26c91c6263653f31ba453e273b
https://gist.github.com/jhaddix/78cece26c91c6263653f31ba453e273b

SSRF
(ENCODINGS)

The best resource in SSRF for
alternate encodings of IP
addresses once you FIND
SSRF remains the payload all
the things repository…

https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Server Side Request Forgery/README.md
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Server Side Request Forgery/README.md

SSRF (PARAMS)

From the HUNT data project I did
years ago, these parameters or
resource names are the most
likely to be subject to simple
SSRF.

In addition: webhooks, XML and
DOC Uploads, Headers.

dest
redirect
uri
path
continue
url
window
next
data
reference
site
html
val
validate
domain
callback
return
page
feed
host
port
to
out
view
dir
show
navigation
open

XXE

XXE (PAYLOADS)

The best resource for XXE
payloads is the payload box
repository on GitHub.

It goes through each type of
XXE and gives you a sample
exploit for each and is a handy
reference for when you want
to look at exploiting a XXE.

Additionally the previous repo
of awesome payloads also has
an XXE section

https://github.com/payloadbox/xxe-injection-payload-list
https://github.com/payloadbox/xxe-injection-payload-list

XXE (COMMON PLACES)
Again as referenced
earlier in the heat
mapping section, XXE is
most common and places
where you think that an
XML file will be processed
or an XML portion of the
app is sending and
receiving data.

These days this mostly
happens in document
parsers because at the
root of them documents
are XML.

In older enterprise apps,
sometimes you have
verbatim uploads of XML
data that you can use to
exploit XXE.

UPLOADS

UPLOADS
(RESOURCES)

Much like the XSS section,
some of the best research I've
ever seen done on file upload
vulnerabilities was done many
many years ago.

The presentation was by
Soroush Dalili and gave visual
examples of different types of
upload exploits.

Most of this, but without the
visuals, has been uploaded to
the OWASP CHEAT SHEET on
file upload security. I
reference that often.

https://soroush.me/blog/2012/11/file-in-the-hole/
https://twitter.com/irsdl
https://cheatsheetseries.owasp.org/cheatsheets/File_Upload_Cheat_Sheet.html

SQL
INJECTION

SQLI (AUTOMATION)

Beyond using SQLmap and
common tamper scripts there
hasn't been a lot of advents to
testing for SQL injection for a
long time.

Until ghauri

While they look the same bug
bounty threads on Twitter
reference that this new tool
handles blind and time
exploitation and waf evasion
slightly better than SQLmap.

https://infosecwriteups.com/how-i-got-owned-a-multi-billion-dollar-retailers-mysql-databases-using-

simple-sql-injection-30f8b0dfd9ce

https://github.com/r0oth3x49/ghauri

SQLI (AUTOMATION BLIND)
Beyond using SQL map
and common tamper
scripts there hasn't
been a lot of advents to
testing for SQL injection
for a long time.

Recently a tool called
HBSQLI was released to
perform blind SQL
injection in headers.

It handles time based
responses much better
than sqlmap in most
cases

SQLi (PARAMS)

From the HUNT data project I did
years ago, these parameters or
resource names are the most
likely to be subject to simple
SQLi.

id
select
report
role
update
query
user
name
sort
where
search
params
process
row
view
table
from
sel
results
sleep
fetch
order
keyword
column
field
delete
string
number
filter

COTS &
FRAMEWORK

SCANNIG

COTS (WORDPRESS)
There are some instances
where you end up testing a full-
featured application like a CMS
or CRM.

The most common of these is
WordPress.

WPscan still remains the best
tool to scan WordPress sites
because of its impressive ability
to keep up it's vulnerability
database related to WordPress
plugins.

The biggest problem is that the
product has gone paid and you
only get 25 scans per week.

I'm still looking for a viable
alternative.

	Slide 1: The Bug Hunter’s Methodology Live
	Slide 2: DAY 2 - APPLICATION ANALYSIS
	Slide 3: INTENDED USAGE
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: ANALYSIS CONCEPTS
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: VULNERABILTY DISCOVERY AUTOMATION
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: CONTENT DISCOVERY
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42: JAVASCRIPT ANALYSIS
	Slide 43: Wide vs. Narrow Recon
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51: THE BIG QUESTIONS
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59: HEAT MAPPING
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69: WEB FUZZING
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75: VULNERABILTY TYPES
	Slide 76
	Slide 77: XSS
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84: IDOR
	Slide 85
	Slide 86
	Slide 87: SSRF
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92: XXE
	Slide 93
	Slide 94
	Slide 95: UPLOADS
	Slide 96
	Slide 97: SQL INJECTION
	Slide 98
	Slide 99
	Slide 100
	Slide 101: COTS & FRAMEWORK SCANNIG
	Slide 102

