

Hands-on Bug Hunting
Active and Passive Reconnaissance and

Dark Web Research

DAY 1 LAB GUIDE

https://darknetrecon.com

Instructors:
Omar Santos (@santosomar)
Joseph Mlodzianowski (@cedoxx)

https://darknetrecon.com/

Hands-on Bug Hunting: Active and Passive Reconnaissance and Dark Web Research ​ 2

Active and Passive Reconnaissance and
Dark Web Research 1

Introduction 4
Learning Path: Additional Cybersecurity Training (Free with your O’Reilly Subscription) 4
Training Summary 4
Helpful Resources Prior to Taking the Live Training: 4

Lab Setup 5

Exercise 1: Recon-NG 5

Exercise 2: SpiderFoot 16

Exercise3: Sublist3r 18

Exercise 4: Maltego 19
Minimum: 19
Recommended: 20

Maltego Concepts 20
Maltego Desktop Client / Desktop Client / Client 20

Entity 20
Transform 20
Machine 21
Hub Item 21

The Transform Hub 21

Exercise 5: TheHarvester 23

Exercise 6: Finding Usernames 25
WhatsMyName 25
Targeting Nerds Like Us 26
Examples of Public Financial Transactions 27

Exercise 7: Finding Emails and Breach Information 28

Exercise 8: Nmap 29

Exercise 9: Directory Enumeration with Gobuster 31

Exercise 10: More Web Fuzzing with ffuf 32
A Basic Example 32
Saving the Results to a File and also Sending the Directories Found to Burp 33

Exercise 11: OWASP ZAP 34
(Optional) Automating your workflow with the OWASP ZAP API 35

Hands-on Bug Hunting: Active and Passive Reconnaissance and Dark Web Research ​ 3

Exercise 11: Enumerating Users in Linux 36
Additional Tips for Account Discovery 40

Hands-on Bug Hunting: Active and Passive Reconnaissance and Dark Web Research ​ 4

Introduction
This guide is a collection of exercises for the O’Reilly Live Training Hands-on Bug Hunting:
Active and Passive Reconnaissance and Dark Web Research” authored and delivered by​ Omar
Santos​ and Joseph Mlodzianowski.
For more information about the training visit ​https://darknetrecon.com

Learning Path: Additional Cybersecurity Training (Free with your
O’Reilly Subscription)
This training is ​part of a learning path​ of numerous live training sessions and video courses that
are available with your O’Reilly subscription. To access the learning path go to:
https://h4cker.org/learning-path

Training Summary
This live and interactive training is designed to help you perform passive and active
reconnaissance in ethical hacking and bug bounty hunting engagements. You will learn
intermediate-to-advanced recon methodologies using open source intelligence (OSINT). In this
training you will also learn how to perform dark web research and reconnaissance. You will
learn how to use Tor, proxies and proxychains, and even how to create your own VPN servers
in cloud environments.

Helpful Resources Prior to Taking the Live Training:
● Security Penetration Testing The Art of Hacking Series LiveLessons​ (video)
● Wireless Networks, IoT, and Mobile Devices Hacking​ (video)
● Enterprise Penetration Testing and Continuous Monitoring​ (video)
● Hacking Web Applications The Art of Hacking Series LiveLessons: Security Penetration

Testing for Today's DevOps and Cloud Environments​Web (video)
● Security Fundamentals​ (video)

https://omarsantos.io/
https://omarsantos.io/
https://darknetrecon.com/
https://h4cker.org/learning-path/
https://h4cker.org/learning-path
https://learning.oreilly.com/library/view/security-penetration-testing/9780134833989/
https://learning.oreilly.com/library/view/wireless-networks-iot/9780134854632/
https://learning.oreilly.com/library/view/enterprise-penetration-testing/9780134854779/
https://learning.oreilly.com/library/view/hacking-web-applications/9780135261422/
https://learning.oreilly.com/library/view/hacking-web-applications/9780135261422/
https://www.safaribooksonline.com/library/view/ccna-cyber-ops/9780134646794/

Hands-on Bug Hunting: Active and Passive Reconnaissance and Dark Web Research ​ 5

Lab Setup
Setup WebSploit Labs (​https://websploit.org​).
WebSploit Labs is a learning environment created by ​Omar Santos​ for different ​Cybersecurity
Ethical Hacking (Web Penetration Testing) training sessions​. WebSploit includes several
intentionally vulnerable applications running in Docker containers on top of ​Kali Linux​ or ​Parrot
Security OS​, several additional tools, and over 8,000 cybersecurity resources. WebSploit comes
with over 400 distinct exercises!

● Step 1: Download Kali or Parrot and install it on a VM
● Step 2: After you have installed Kali Linux, run the following command from a terminal

window to setup your environment:

This command will install all the tools, Docker, the intentionally vulnerable containers,
and numerous cybersecurity resources.

A quick demo can be accessed at: ​https://websploit.org/install.gif​ or at websploit.org
main website (landing page).

Exercise 1: Recon-NG
1. Start ​Recon-NG​ with by just typing ​recon-ng​ in a terminal Window:

curl -sSL https://websploit.org/install.sh | sudo bash

https://websploit.org/
https://omarsantos.io/
https://h4cker.org/
https://h4cker.org/
https://www.kali.org/
https://www.parrotsec.org/
https://www.parrotsec.org/
https://websploit.org/install.gif

Hands-on Bug Hunting: Active and Passive Reconnaissance and Dark Web Research ​ 6

2. Recon-NG has numerous modules that can be installed and activated from the “market
place”. You can search all the modules by using the “​marketplace search​” command,
as shown below:

The​ D​ and the ​K​ in the last two columns of the table shown above indicate that the
module has dependencies or that it requires an ​API key​. The screenshot below shows
the legend:

Hands-on Bug Hunting: Active and Passive Reconnaissance and Dark Web Research ​ 7

3. You can search the market place by using keywords. In the example below, we are
searching for modules related to “​whois​”.

The following is an example of modules related to the “​dns​” keyword. However, there
are many other modules that can be used to perform DNS recon which are not listed
below. This is because the “​marketplace search​” command is just using a keyword.

For instance, the ​Netcraft​ module is used to search domains and subdomains using
DNS records in the ​Netcraft database​.

4. Install the Netcraft module by using the following command:

https://searchdns.netcraft.com/
https://searchdns.netcraft.com/

Hands-on Bug Hunting: Active and Passive Reconnaissance and Dark Web Research ​ 8

5. You should be able to search for the installed module and “load it” to be able to run and
use it to query its database, as demonstrated below:

6. Set the SOURCE to any domain you would like to identify subdomains. H4cker.org is

used in the following example. However, be creative and use any other domain you
would like to get subdomains and additional information.

NOTE​: You are NOT hacking anyone here, the tool is just using public DNS records to
perform these actions.

Hands-on Bug Hunting: Active and Passive Reconnaissance and Dark Web Research ​ 9

7. Install the ​bing_domain_web​ module, as shown below:

8. Load the module and show the options:

9. Set the SOURCE to the domain(s) you entered before (when you were running the

Netcraft module).

Hands-on Bug Hunting: Active and Passive Reconnaissance and Dark Web Research ​ 10

10. Did you find more information and subdomains like I did below?

11. Install and load the brute_hosts module:

12. This module uses wordlists. You can use any wordlist of your choosing. WebSploit

comes with dozens of wordlists (the ones that come with Kali/Parrot and several under

Hands-on Bug Hunting: Active and Passive Reconnaissance and Dark Web Research ​ 11

/root/SecLists​ directory. In the exa

13. Set the SOURCE to the target domain (h4cker.org is used in the following example:

Hands-on Bug Hunting: Active and Passive Reconnaissance and Dark Web Research ​ 12

14. You should be able to see the tool going through the wordlist to enumerate additional
hosts. Look at the summary in the example below:

Hands-on Bug Hunting: Active and Passive Reconnaissance and Dark Web Research ​ 13

15. Enter the ​dashboard​ command to obtain a summary of all the findings (all modules), as
demonstrated below:

Hands-on Bug Hunting: Active and Passive Reconnaissance and Dark Web Research ​ 14

16. Use the ​show hosts​ command to list all the enumerated hosts and respective
information:

17. Now let’s look for interesting files. Search the marketplace for the word “interesting” and

you will see the “interesting_files” module. Install it as demonstrated below:

18. Load the module:

Hands-on Bug Hunting: Active and Passive Reconnaissance and Dark Web Research ​ 15

19. Type ​info​ to show all the options. The following are the options after you entered the
info​ command:

20. Set the PORT, SOURCE, and PROTOCOL:

21. Run the module. What information were you able to see?

Hands-on Bug Hunting: Active and Passive Reconnaissance and Dark Web Research ​ 16

Exercise 2: SpiderFoot
Description from SpiderFoot’s ​GitHub Repo​: “​SpiderFoot​ is an open source intelligence (OSINT)
automation tool. It integrates with just about every data source available and utilises a range of
methods for data analysis, making that data easy to navigate.
SpiderFoot has an embedded web-server for providing a clean and intuitive web-based
interface but can also be used completely via the command-line. It's written in Python 3 and
GPL-licensed.”

● Download SpiderFoot by cloning the GitHub repository at:
https://github.com/smicallef/spiderfoot

● Then make sure that all the necessary Python 3 modules are installed by using the
command below and demonstrated in the following figures:

● Start SpiderFoot by using the python3 sf.py -l 127.0.0.1:5001 command as shown
below:

● Open the browser and go to ​http://127.0.0.1:5001​ to access the SpiderFoot GUI.
● When you run SpiderFoot for the first time, there is no historical data, so you should be

presented with a screen like the following:

git clone https://github.com/smicallef/spiderfoot.git

python3 -m pip3 install -r requirements.txt

https://github.com/smicallef/spiderfoot
https://github.com/smicallef/spiderfoot
https://github.com/smicallef/spiderfoot
http://127.0.0.1:5001/

Hands-on Bug Hunting: Active and Passive Reconnaissance and Dark Web Research ​ 17

● Click on the ‘New Scan’ button in the top menu bar. You will then need to define a name
for your scan (these are non-unique) and a target (also non-unique):

● You can then define how you would like to run the scan - either by use case (the tab

selected by default), by data required or by module.
● Module-based scanning is for more advanced users who are familiar with the behavior

and data provided by different modules, and want more control over the scan:

Hands-on Bug Hunting: Active and Passive Reconnaissance and Dark Web Research ​ 18

Tip: If you select a module that depends on event types only provided by other modules, but
those modules are not selected, you will get no results.

● Run your scan. Choose any arbitrary victim (your own website, your own name, etc.)

Exercise3: Sublist3r
As it reads in their GitHub repository “Sublist3r is a python tool designed to enumerate
subdomains of websites using OSINT. It helps penetration testers and bug hunters collect and
gather subdomains for the domain they are targeting. Sublist3r enumerates subdomains using
many search engines such as Google, Yahoo, Bing, Baidu, and Ask. Sublist3r also enumerates
subdomains using Netcraft, Virustotal, ThreatCrowd, DNSdumpster, and ReverseDNS.
subbrute​ was integrated with Sublist3r to increase the possibility of finding more subdomains
using bruteforce with an improved wordlist. The credit goes to TheRook who is the author of
subbrute.”

1. Download Sublist3r:

2. Install the dependencies/requirements by using pip:

3. Run Sublist3r to your own domain; or against h4cker.org or theartofhacking.com.

git clone https://github.com/aboul3la/Sublist3r.git

cd Sublist3r
pip3 install -r requirements.txt

python3 sublist3r.py -v -d your-domain.com -b -p 80,443

https://github.com/TheRook/subbrute

Hands-on Bug Hunting: Active and Passive Reconnaissance and Dark Web Research ​ 19

The following example is against the ​h4cker.org​ domain.

Exercise 4: Maltego
This is an optional exercise. Omar will provide a demo and walkthrough of Maltego. Maltego
requires you to register a free account at ​https://www.maltego.com/ce-registration/​ in order to
use the Maltego Community Edition. You will not be able to complete this exercise if you do not
register. This is why this exercise is optional.

Maltego comes installed by default in Kali and Parrot. However, you can install it in any
Windows, macOS, or Linux system. The following are the hardware requirements:

Minimum:
● 4GB RAM,
● Intel i3

https://h4cker.org/
https://www.maltego.com/ce-registration/

Hands-on Bug Hunting: Active and Passive Reconnaissance and Dark Web Research ​ 20

● 10Mbps Internet access speed
● 720p display

Recommended:
● 16GB RAM
● Intel i7
● 20Mbps or more Internet access speed
● 1080p display

When working with large graphs, it's best to have as much memory and CPU as possible.
Adding new results to a large graph, as well as calculating new graph layouts require a lot of
computing power.

Maltego Concepts
There are a few important concepts in Maltego that need to be understood before using the tool.
The following definitions are directly from their ​documentation​:

Maltego Desktop Client / Desktop Client / Client
References to Maltego software used on the desktop is referred to as the Desktop Client, the
Client or the Maltego Desktop Client. The Desktop Client editions available are Community,
Classic, XL and One.

Entity
An Entity is a piece of information shown as a node on the graph. Different Entity types are used
to differentiate between the different pieces of information that can be represented in Maltego.

Entities can be anything from a DNS name, Person name, Phone number, etc. The Maltego
Client comes with about 20 Entities targeted for use in online investigations, however, you can
create your own custom Entities.

Transform
A Transform is a piece of code that searches for information related to an Entity on the graph.
Transforms allow you to query an API or database to show related info on the graph.

The idea is that we are "transforming" one type of information into another type. For example we
could have the website "www.maltego.com" and transform it into the IP address
"104.248.60.43".

By default Maltego has Transforms that can query information from data sources like DNS
servers, search engines, social networks, WHOIS information, etc.

https://docs.maltego.com/support/solutions/articles/15000008829-glossary-of-terms#entity-0-1

Hands-on Bug Hunting: Active and Passive Reconnaissance and Dark Web Research ​ 21

Machine
Machines are the Maltego equivalent of macros. Machines allow you to chain together multiple
Transforms, filters and actions in order to automate common and tedious tasks.

Hub Item
Transforms and the Entity types that they query need to be stored on a server that can be
accessed by the Maltego Client.
Hub items allow Maltego users to install combinations of Transforms, Entities and Machines
from a server. By default, Maltego installs the Hub item called Standard Transforms which
contains the Transforms, Entities and Machines that are developed and maintained by the
developers of Maltego.
Additional Hub items can be installed to get 3rd party functionality built by the community.

The Transform Hub

Wizards like the Company Stalker allow you to automate the search of information about a
given company.

Hands-on Bug Hunting: Active and Passive Reconnaissance and Dark Web Research ​ 22

In the following example, I am using secretcorp.org (a domain owned by Omar). Feel free to use
any other domain that you would like to get more information about.

In the results you see different subdomains (e.g., mail.secretcorp,org, internal.secretcorp.org,
etc.) that were discovered using DNS and other information.

Hands-on Bug Hunting: Active and Passive Reconnaissance and Dark Web Research ​ 23

Try to find information about yourself. You can install and take advantage of the
“HaveIBeenPwned” transform to see if your email or information has been exposed in a breach.
You can use a “Pearson” search or an email search, as demonstrated in the example below:

Exercise 5: TheHarvester
Use TheHarvester to find information about a domain of your choosing. We are only searching
public information, so you can pick any domain.

In the following example, I am querying information about the h4cker.org domain using all the
supported sources.

Hands-on Bug Hunting: Active and Passive Reconnaissance and Dark Web Research ​ 24

You can limit top query only one source byu using the -b argument with any of the options
shown below:

● What subdomains did you find?
● Did you find any emails?

Hands-on Bug Hunting: Active and Passive Reconnaissance and Dark Web Research ​ 25

Exercise 6: Finding Usernames
Finding available usernames in numerous platforms:

● https://namechk.com/
● https://knowem.com/
● https://usersearch.org/

That information is useful to try to figure out the target’s social footprint and other associations.

WhatsMyName
You can also use tools such as WhatsMyName to find specific usernames in numerous sites
and platforms.
First clone the GitHub repo github.com/WebBreacher/WhatsMyName, as shown below:

Install the required packages using pip, as demonstrated below:

https://namechk.com/
https://knowem.com/
https://usersearch.org/

Hands-on Bug Hunting: Active and Passive Reconnaissance and Dark Web Research ​ 26

Use the web_accounts_list_checker.py Python script to find out if such username exists in
numerous sites and platforms:

Targeting Nerds Like Us
You can take advantage of public APIs like the GitHub API to obtain detailed information about
the activities of their users: https://api.github.com/users/<user_name>/events/public

Hands-on Bug Hunting: Active and Passive Reconnaissance and Dark Web Research ​ 27

Examples of Public Financial Transactions

You can use publicly available information in sites like venmo to see how people send money to
their friends and family. You can also learn different habits, etc.

Hands-on Bug Hunting: Active and Passive Reconnaissance and Dark Web Research ​ 28

Exercise 7: Finding Emails and Breach Information
You can use many tools (including TheHarvester, Infoga and others to find emails related to a
domain and see if the person’s information may be in dumps from different breaches.

To install the tool clone the repository and do a basic Python setup, as demonstrated below:

The following is the tool (Infoga) usage:

$ git clone https://github.com/m4ll0k/Infoga.git

$ cd Infoga

$ python setup.py install

$ python infoga.py

Usage: infoga.py [OPTIONS]

 -d --domain Target URL/Name

 -s --source Source data, default ​"all"​:

 all Use all search engine

 google Use google search engine

 bing Use bing search engine

 yahoo Use yahoo search engine
 ask Use ask search engine

 baidu Use baidu search engine

 dogpile Use dogpile search engine

 exalead Use exalead search engine
 pgp Use pgp search engine

 -b --breach Check ​if​ email breached
 -i --info Get email informations
 -r --report Simple file text report

 -v --verbose Verbosity level (1,2 or 3)

 -H --help Show this help and exit

Example:

 infoga.py --domain site.gov -v 3

 infoga.py --info admin@site.gov -v 3

 infoga.py --domain site.gov --source pgp --breach -v 1
 infoga.py --domain site.gov --source google --breach --report

site_gov.txt -v 3

Hands-on Bug Hunting: Active and Passive Reconnaissance and Dark Web Research ​ 29

The following is an example of a query using infoga:

Exercise 8: Nmap
WebSploit is running several intentionally vulnerable applications in Docker containers.

1. Use Nmap to perform a basic TCP SYN scan.

2. Why are you not able to see all the ports running on WebSploit? What about all the ports

shown by using the ​containers.sh​ script under /root can be used to show the containers
that are running in your system:

Hands-on Bug Hunting: Active and Passive Reconnaissance and Dark Web Research ​ 30

3. Modify your Nmap TCP SYN Scan to find all ports (hint: leverage the ​cheatsheet at the

GitHub repository​).
4. Now try to find out what is the version of the underlying operating system.
5. Can you enumerate other information using the Nmap Scripting Engine (NSE)?

https://github.com/The-Art-of-Hacking/h4cker/blob/master/cheat_sheets/NMAP_cheat_sheet.md
https://github.com/The-Art-of-Hacking/h4cker/blob/master/cheat_sheets/NMAP_cheat_sheet.md

Hands-on Bug Hunting: Active and Passive Reconnaissance and Dark Web Research ​ 31

Exercise 9: Directory Enumeration with Gobuster
Let’s try to enumerate directories/folders and files in the web applications running in WebSploit’s
Docker containers based on the information you revealed using Nmap. You can use tools like
Gobuster (​https://github.com/OJ/gobuster​). Gobuster is a very fast ​tool written in GoLang
used to brute-force:

● URIs (directories and files) in web sites.
● DNS subdomains (with wildcard support).
● Virtual Host names on target web servers.
● Open Amazon S3 buckets

Use Gobuster to find the web directory on at least three (3) of the web applications that
are running in the containers.

I will give you one hint:

1. Did you find the admin folder?
2. What other folders/directories did you enumerate in the other web applications

running in WebSploit?
3. Can you enumerate files?
4. Try using other wordlists. There are many awesome wordlists under

/root/SecLists​:

5. Did you find anything different with your new wordlist?

https://github.com/OJ/gobuster

Hands-on Bug Hunting: Active and Passive Reconnaissance and Dark Web Research ​ 32

Exercise 10: More Web Fuzzing with ffuf
ffuf​ and ​Burp Suite​ are two of my favorite tools for web application penetration testing and bug
hunting. ffuf is a very fast web application fuzzer written in Go that is pretty popular among pen
testers and bug bounty hunters. Not only it is fast, but it also has tons of great functionality that
can help to integrate it with other tools like Burp Suite.
If you are reading this article, you may have a passion for hacking web applications or bug
bounties. You may already know what Burp (or Burp Suite) is; however, here is a quick
2-second introduction. Burp is a very popular web application proxy, scanner, and overall
awesome web penetration testing tool with tons of plugins. There are three versions of Burp:
community edition (free), professional, and enterprise. I am using the community edition in the
following examples.
I am using the learning environment that I created called ​WebSploit Labs​ for the next
demonstrations. WebSploit is basically Kali Linux + several additional tools and tons of Docker
containers running intentionally vulnerable applications. WebSploit also has over 8,000
cybersecurity resources (a clone of my pretty popular ​GitHub repository​).

A Basic Example
The following is a very basic example of running ffuf to enumerate and discover different
directories in one of the intentionally vulnerable web applications (running on port 8888). The
following is the explanation of the command syntax. I am using the wordlist that comes with
dirbuster in Kali (directory-list-2.3-medium.txt).

HINT: ​This GIF​ has a good demo..

https://github.com/ffuf/ffuf
https://portswigger.net/burp
https://websploit.org/
https://github.com/The-Art-of-Hacking/h4cker
https://miro.medium.com/max/1728/1*L8dB5dPp0WDQ7UueqZxagA.gif

Hands-on Bug Hunting: Active and Passive Reconnaissance and Dark Web Research ​ 33

Saving the Results to a File and also Sending the Directories Found to
Burp
The ​-o​ option allows you to send the output to a JSON file (omar-out.json in the example
below). The ​-replay-proxy ​is the cool option that allows you to send the paths of the directories
found into Burp. Why is this useful? Well, the free version of Burp does not come with an
automated scanner, spider, or fuzzer. This method, at least, allows you to send all the
successful results right into Burp for further analysis.

Hands-on Bug Hunting: Active and Passive Reconnaissance and Dark Web Research ​ 34

The following is the first few lines of the contents of the output file (omar-out.json):

You can find additional details of all the different supported options at the ffuf man page (​man
ffuf​). I just wanted to introduce the concept of “integrating” both tools (ffuf and Burp) to perform
reconnaissance and further analysis.

An additional cool trick to pull off with ​-replay-proxy

It works well with a reverse SSH tunnel as well, so you can run your ffuf on VPS while proxying
the matches to Burp running on your local desktop.

Your Turn!​ Now try to do this to at least three (3) of the web applications running in WebSploit.

Exercise 11: OWASP ZAP
The easiest way to start using ZAP is via the Quick Start tab. To run a Quick Start Automated
Scan :

1. Start ZAP (you can use the ​zaproxy​ command in the Linux terminal).
2. Select all the default options.
3. Click the ​Quick Start​ tab of the ​Workspace Window​.
4. Click the large ​Automated Scan​ button.

Hands-on Bug Hunting: Active and Passive Reconnaissance and Dark Web Research ​ 35

5. In the ​URL​ to attack text box, enter the full URL of the web application you want to
attack. Enter ​http://127.0.0.1​:port ​ (​port​ = the port of any of the web applications
running in the different WebSploit containers).

6. Click the ​Attack​ button.
As ZAP spiders your web application, it constructs a map of your web applications’ pages and
the resources used to render those pages. Then it records the requests and responses sent to
each page and creates alerts if there is something potentially wrong with a request or response.

(Optional) Automating your workflow with the OWASP ZAP API
This document​ provides example guides & API definitions for ZAP APIs. You can view code
examples in the dark area to the right; switch the programming language of the examples with
the tabs on the top right.
The following are some of the features provided by ZAP:

● Intercepting Proxy
● Active and Passive Scanners
● Traditional and Ajax Spiders
● Brute Force Scanner
● Port Scanner
● Web Sockets

This is an optional exercise. If you are a web developer, feel free to familiarize yourself with the
ZAP API: ​https://www.zaproxy.org/docs/api/?python#introduction

The following is an example using Python (zapv2).
#!/usr/bin/env python

import​ time
from​ zapv2 ​import​ ZAPv2

The URL of the application to be tested

target = ​'https://public-firing-range.appspot.com'
Change to match the API key set in ZAP, or use None if the API key is disabled

apiKey = ​'changeMe'

By default ZAP API client will connect to port 8080

zap = ZAPv2(apikey=apiKey)

Use the line below if ZAP is not listening on port 8080, for example, if listening on port

8090

zap = ZAPv2(apikey=apiKey, proxies={'http': 'http://127.0.0.1:8090', 'https':

'http://127.0.0.1:8090'})

print(​'Spidering target {}'​.format(target))
The scan returns a scan id to support concurrent scanning

scanID = zap.spider.scan(target)

while​ int(zap.spider.status(scanID)) < ​100​:
 ​# Poll the status until it completes

http://127.0.0.1/
https://www.zaproxy.org/docs/api/?python#introduction
https://www.zaproxy.org/docs/api/?python#introduction

Hands-on Bug Hunting: Active and Passive Reconnaissance and Dark Web Research ​ 36

Exercise 12: Enumerating Users in Linux
After you compromise a system (post exploitation), you typically try to obtain information about
what other users have access to such systems. Let’s do a quick exploration of the different
ways that you can enumerate users in a Linux system.
To make this exercise a little more interesting. Create a couple of users in your WebSploit
system using the useradd command, as shown below:

**Of course, this is a very basic tutorial and if you already have root access to the system, you
won’t need to enumerate much ;-)

1. Get a List of All Users using the ​cat​ ​/etc/passwd​ file… Local user information is stored
in the /​etc/passwd​ file. Each line in this file represents login information for one user. To
open the file you can either use ​cat​ or ​less​ :

 print(​'Spider progress %: {}'​.format(zap.spider.status(scanID)))
 time.sleep(​1​)

print(​'Spider has completed!'​)
Prints the URLs the spider has crawled

print(​'\n'​.join(map(str, zap.spider.results(scanID))))
If required post process the spider results

Hands-on Bug Hunting: Active and Passive Reconnaissance and Dark Web Research ​ 37

Each line in the file has seven fields delimited by colons that contain the following information:

● User name.
● Encrypted password (x means that the password is stored in the /etc/shadow file).
● User ID number (UID).
● User’s group ID number (GID).
● Full name of the user (GECOS).
● User home directory.
● Login shell (defaults to /bin/bash).

If you want to display only the username you can use either ​awk​ or ​cut​ commands to print only
the first field containing the username:

awk -F: '{ print $1}' /etc/passwd

Hands-on Bug Hunting: Active and Passive Reconnaissance and Dark Web Research ​ 38

The following is an example using the ​cut​ command:
cut -d: -f1 /etc/passwd

2. You can also use the ​getent​ command. The ​getent​ command displays entries from

databases configured in ​/etc/nsswitch.conf​ file, including the passwd database, which
can be used to query a list of all users.

As you can see, the output is the same as when displaying the content of the ​/etc/passwd​ file.
If you are using LDAP for user authentication, the getent will display all Linux users from both
/etc/passwd​ file and LDAP database.

You can also use ​awk​ or ​cut​ to print only the first field containing the username:

● getent passwd | awk -F: '{ print $1}'
● getent passwd | cut -d: -f1

If you want to find out how many users accounts you have on your system, pipe the getent
passwd output to the ​wc​ command:

As you can see from the output above, my Linux system has 33 user accounts.
System and Normal Users

Hands-on Bug Hunting: Active and Passive Reconnaissance and Dark Web Research ​ 39

There is no real technical difference between the system and regular (normal) users. Typically
system users are created when installing the OS and new packages. In some cases, you can
create a system user that will be used by some applications.

Normal users are the users created by the root or another user with sudo privileges. Usually, a
normal user has a real login shell and a home directory.

Each user has a numeric user ID called UID. If not specified when creating a new user with the
useradd command, the UID will be automatically selected from the /etc/login.defs file depending
on the UID_MIN and UID_MIN values.

To check the UID_MIN and UID_MIN values on your system, you can use the following
command:

From the output above, we can see that all normal users should have a UID between 1000 and
60000. Knowing the minimal and maximal value allow us to query a list of all normal users in our
system.
Your system UID_MIN and UID_MIN values may be different so the more generic version of the
command above would be:

For example:

In my system, there was also a user called “omar”.

If you want to print only the usernames just pipe the output to the cut command:

eval getent passwd {$(awk ​'/^UID_MIN/ {print $2}'​ /etc/login.defs)..$(awk
'/^UID_MAX/ {print $2}'​ /etc/login.defs)}

eval getent passwd {$(awk ​'/^UID_MIN/ {print $2}'​ /etc/login.defs)..$(awk
'/^UID_MAX/ {print $2}'​ /etc/login.defs)} | cut -d: -f1

Hands-on Bug Hunting: Active and Passive Reconnaissance and Dark Web Research ​ 40

You can also use the ​lastlog ​command to find out the last time that a user has logged in to the
system:

You may see ​**Never logged in**​ in your output, since you have not logged in to the system
with the “superman” user.

Additional Tips for Account Discovery
● Local Accounts​: ​https://attack.mitre.org/techniques/T1087/001/

In Windows, commands such as ​net user​ and ​net​ localgroup of the ​Net​ utility. Alsoyou
can use ​id​ and ​groupson​ in macOS and Linux to list local users and groups.

● Domain Accounts​: ​https://attack.mitre.org/techniques/T1087/002/
Commands such as ​net user /domain​ and ​net group /domain​ of the ​Net​ utility,
dscacheutil -q groupon​ macOS, and ​ldapsearch​ on Linux can list domain users and
groups.

● Email Accounts​: ​https://attack.mitre.org/techniques/T1087/003/
In on-premises Exchange and Exchange Online, the ​Get-GlobalAddressList
PowerShell cmdlet can be used to obtain email addresses and accounts from a domain
using an authenticated session

● Cloud Accounts​: ​https://attack.mitre.org/techniques/T1087/004/
○ Adversaries may attempt to get a listing of cloud accounts. Cloud accounts are

those created and configured by an organization for use by users, remote
support, services, or for administration of resources within a cloud service
provider or SaaS application.

○ With authenticated access there are several tools that can be used to find
accounts. The ​Get-MsolRoleMember​ PowerShell cmdlet can be used to obtain
account names given a role or permissions group in Office 365. The Azure CLI
(AZ CLI) also provides an interface to obtain user accounts with authenticated
access to a domain. The command az ad user list will list all users within a
domain.

○ The AWS command ​aws iam list-users​ may be used to obtain a list of users in
the current account while​ aws iam list-roles​ can obtain IAM roles that have a
specified path prefix.

○ In GCP, ​gcloud iam service-accounts​ list and ​gcloud projects get-iam-policy
may be used to obtain a listing of service accounts and users in a project.

Congratulations! You have completed DAY 1.

Tomorrow you will learn a LOT about how to perform Dark Web reconnaissance.
See you tomorrow!

https://attack.mitre.org/techniques/T1087/001/
https://attack.mitre.org/software/S0039
https://attack.mitre.org/techniques/T1087/002/
https://attack.mitre.org/software/S0039
https://attack.mitre.org/techniques/T1087/003/
https://attack.mitre.org/techniques/T1087/004/

