
9/23/20

1

Modern Webapp Penetration Testing

Hands-on Doing.

Brian (BB) King - @BBhacKing

1

1

Day Three
● 3

2

2

Day 2 Recap

• Perils of “hidden” content
• Weaknesses of client-side controls
• Common errors in filtering
• Insecure Direct Object References
• Identifiers in user-controllable places

3

3

9/23/20

2

Lab Reviews

• Bypassing the redirect filter (two ways)
• Forging a product review

4

4

Encoding Information

There is no communication without encoding.

5

5

Information
must be

ENCODED
in order to be

COMMUNICATED
6

6

9/23/20

3

Encodings

● Sound
○ Laughter, applause, a yell: humans understand

● Spoken words (in a language)
○ Some will understand, others think they do, others know they don't.

● Written words (in a language)
○ Same.

● Poetry (in a language)
○ Same. But far more room for interpretation.

7

7

Encoding for Computers

● It's all ones and zeros.
● Interpretation is what gives meaning.
● Encoding determines interpretation.

Encoding Determines Meaning

8

8

Equivocation

Letters:
'A' = 01000001 = 101(octal) = 65 (decimal) = 41 (hexadecimal)

'A' = 11000001 = 301(octal) = 193 (decimal) = C1 (hexadecimal)

Top: ASCII

Bottom: EBCIDIC

9

9

9/23/20

4

How Many People?

There are 10 kinds of people in the world:

Those who understand binary...

and

Those who don't.

10

10

Context Determines "Correct"

ASCII: 7 bits. 2^7 possibilities = 128 characters symbols code points

UTF-8: First 128 UTF-8 code points are the same as ASCII

UTF-8: Up to three more bytes for other symbols - 1,112,064 symbols
defined.

11

11

UTF-8 Is The Encoding for the Web

ASCII and UTF-8 and ISO-8859-1 (Latin-1)

...are identical for the first 128 characters.

https://en.wikipedia.org/wiki/UTF-8#/media/File:Utf8webgrowth.svg 12

12

9/23/20

5

One Step Further: Characters Mean Things

● Can't have a slash in a filename
○ Because those are directory separators

● Can't have a space in a URL
○ Because that indicates the end of the URL

● Can't have CR/LF in an HTTP header
○ Because that indicates "end of this header"

● Can't have angle brackets in HTML
○ Because those define HTML tags

● Can't have a semi-colon in a Javascript variable
○ Because those indicate "end of statement"

● Can't have a null in the middle of a C-style string
○ Because null means "end of string"

13

13

URL-Encoding

Sometimes called "Percent Encoding" (but don't do that)

Replace any "special character" with...

a percent symbol

followed by the character's 2-digit hex code.

14

14

URL-Encoding

Space becomes %20 (or +)

becomes %23

% becomes %25

& becomes %26

/ becomes %2f

: becomes %3a

= becomes %3d

. MAY become %2e

@ MAY become %40

null becomes %00

CR becomes %0d

LF becomes %0a

tab becomes %09

B MAY become %42

15

15

9/23/20

6

Cheat Sheet Sticker

16

16

HTML-Encoding
(“Character Entity” Encoding)
< becomes <

> becomes >

" becomes "

' becomes '

& becomes &

&gt; is ... what, then?

...same in XML: There are only 5 “special characters”
17

17

HTML-Encoding
(Numeric Character Reference)

Replace the character with its ASCII UTF-8 code point

...using decimal, 'A' becomes A

...using hexadecimal, 'A' becomes A

18

18

9/23/20

7

CyberChef for Encoding and Decoding

19

19

All This Encoding Gets Complicated Fast

• Comma-Separated Values seems simple. Just add commas!
• What if a value has a comma in it?
• Put quotes around the value!

• What if a value has quotes in it?
• Put an extra quote in front of each one!

First, Last, Nickname
William, “Brooks, Sr”, ““Buffalo Bill””

20

20

Totally Solve-able

• But the successful solution is not the obvious solution.

21

21

9/23/20

8

Character Encoding and Filters

● Different systems and different protocols: different rules.
○ Remember: & could be %26 in a URL but & or & in HTML

● Information passes from one system to another.
○ Encoded or decoded along the way

● Pass a URL as a parameter in a URL (as in a redirect)?
○ That parameter should be URL-encoded

○ ?image_url=http%3A%2F%2Fexample%2Ecom%2Fimage%2Egif

22

22

Now You Can Answer This Question

23

23

Example: Lexer/Parser and Encoding
<!DOCTYPE HTML><HTML lang="en-us">

<HEAD>
<TITLE>Example</TITLE>
<STYLE>h1 {color: #0000ff}</STYLE>

</HEAD><BODY>
<H1>Example</H1>
<script>alert("Example!");</script>

parser lexer

</BODY></HTML>
https://validator.w3.org/nu/#textarea

24

24

9/23/20

9

Passing Values and Trusted Systems

A "Trusted System" is not the same as a "trustworthy" system.

A "Trusted System" is one you've chosen not to defend yourself against.

Should the back end "trust" what comes from the web server?

25

25

Lab #9:
Bypass Filters to
Download Forbidden Files

26

26

Lab #9 Hint

Start at /ftp/ and try to download package.json.bak or eastere.gg

Determine what the filter looks for.

Consider multiple systems may be processing the filename string.

27

27

9/23/20

10

Lab #9 Complete:
Bypass Filters to
Download Forbidden Files

28

28

What's Your
Takeaway from
the Lab?

29

29

SQL Injection

As a kind of command injection

30

30

9/23/20

11

Can't Not Cover SQL Injection.
Can't Not Show This Comic.

Exploits of a Mom: https://xkcd.com/327/

31

31

Why Does That Work?

32

32

SQL Queries: Intended Behavior

Input:

Query:

Result:

$name = "Bob";

SELECT * FROM Students
WHERE (grade=11 and name='$name')

SELECT * FROM Students
WHERE (grade=11 and name='Bob');

33

33

https://xkcd.com/327/

9/23/20

12

SQL Injection: Unintended Behavior

Input:

Query:

Result:

$name = "Robert');DROP TABLE Students; -- ";

SELECT * FROM Students
WHERE (grade=11 and name='$name');

SELECT * FROM Students
WHERE (grade=11 and name='Robert');DROP TABLE
Students; -- ;')

34

34

Detecting SQL Injection Candidates

● Submit a string that contains "SQL Special Characters"
○ Double Quotes
○ Single Quotes (apostrophes)
○ Backticks

● Maybe an error
● More likely, a different response

35

35

Confirming SQL Injection Candidates

● Hypothesize what the query might look like
● Type that out where you can refer to it
● Submit strings that would change the behavior if they worked

...repeat.

36

36

9/23/20

13

Tools To Help

● Any webapp vulnerability scanner
● sqlmap

37

37

Possible Query for Login

SELECT *
FROM users
WHERE user='$user'
and password='$password';

38

38

Lab #10:
Login Bypass by SQLi

39

39

9/23/20

14

Hints

Start simple: how might you cause a syntax error in ANY query that

handles input unsafely?

What's your guess at what the query looks like in the code?

What does the Network tab (or Burp) show you?

What's the easiest way to make the query return "true"?

40

40

Lab #10 Complete:
Login Bypass by SQLi

41

41

What's Your
Takeaway from
the Lab?

42

42

9/23/20

15

Credential Attacks

Gaining unauthorized access

43

43

Passwords Are Awful

● People need too many
● They're hard to keep track of without re-using
● Default credentials are still used
● Usernames are often not secrets
● Know the username? You know half of what you need...

44

44

Password Guessing

● Find a username, start guessing passwords
● But only a couple per account.
● Too many failed attempts may...

○ cause lockout
○ trigger alerts
○ get your IP address blocked

45

45

9/23/20

16

Password Spraying

● Try a likely password across all accounts you know.
● One failed logon attempt won't be suspicious.
● Given enough users, somebody's using Autumn2020!

46

46

Default Credentials

● Find a well-known account, try well-known passwords.
● admin and blank
● root and blank
● admin and password
● manager and manager
● guest and guest
● anyUsername and anyUsername1
● Any User and SeasonYear (e.g. Fall2020)

47

47

Lab #11:
Log In As the Administrator

48

48

9/23/20

17

Lab 11 Hints

Look at the reviews: find a username that might be an administrator.

Try to log in as that user. Guess at passwords.

What do you know about the password policy?

Don’t waste guesses on invalid passwords.

49

49

Lab #11 Complete:
Log In As the Administrator

50

50

Lame Attack?

51

51

9/23/20

18

What's Your
Takeaway from
the Lab?

52

52

NoSQL Injection

Another kind of injection

53

53

NoSQL Doesn't Mean No Injection

54

54

9/23/20

19

NoSQL is Not a Language

● NoSQL databases are alike only in only two ways:
○ They're not relational
○ They don't use SQL

● MongoDB
● Redis
● Neo4J

55

55

So ... "NoSQL Injection" is A Thing…
It’s just not A Thing
● ...Not the way SQL Injection or Command Injection

are, anyhow
● Each database is different
● MongoDB

○ Because it’s common in webapps
■ Because it's Javascript

● And who doesn't love more Javascript?

56

56

Javascript Outside the Browser

● Node.js: Server-side Javascript
● MongoDB: A Javascript database
● Entire applications in Javascript

57

57

9/23/20

20

Sample MongoDB Statements: Insert

db.inventory.insertMany([

{ item: "journal", qty: 25, status: "A",

size: { h: 14, w: 21, uom: "cm" },

tags: ["blank", "red"]

}, . . .])

Similar SQL:

INSERT INTO inventory (item, qty, status…) VALUES (“journal”, 25, “A”…)

58

58

MongoDB vs SQL

MongoDB
db.inventory.find({});

SQL
SELECT * FROM inventory;

59

59

MongoDB vs SQL

MongoDB
db.inventory.find({});

db.inventory.find({ status: ‘D’ });

SQL
SELECT * FROM inventory;

SELECT * FROM inventory
WHERE status = ‘D’;

60

60

9/23/20

21

MongoDB vs SQL

MongoDB
db.inventory.find({});

db.inventory.find({ status: ‘D’ });

db.inventory.find(
{ status: {“$ne”: ‘D’ } }

);

SQL
SELECT * FROM inventory;

SELECT * FROM inventory
WHERE status = ‘D’;

SELECT * FROM inventory
WHERE status != ‘D’;

61

61

MongoDB vs SQL

MongoDB
db.inventory.find(
{ status: {“$ne”: ‘D’ } }

);

db.inventory.find(
{ status: {“$nin”: “” } }

);

SQL
SELECT * FROM inventory
WHERE status != ‘D’;

SELECT * FROM inventory
WHERE status NOT NULL;

62

62

Triggering Errors

For MongoDB, any of these six "special characters" may trigger an
error.

' " \ ; { }

A bigger list:
https://github.com/danielmiessler/SecLists/blob/master/Fuzzing/Databases/NoSQL.txt

MongoDB injection reference:
https://medium.com/@fiddlycookie/nosql-injection-8732c2140576

63

63

9/23/20

22

In-Browser Server-Side Javascript Database
(??)
Learning MongoDB from MongoDB, together.

Do steps 0 - 4 here:

https://docs.mongodb.com/manual/tutorial/getting-started/

64

64

65

65

Lab #12:
Mess Up The Database
With NoSQL Injection

66

66

9/23/20

23

Lab #12 Complete:
Mess Up The Database
With NoSQL Injection

67

67

What's Your
Takeaway from
the Lab?

68

68

Day 3 Recap

• Encoding information: context matters
• SQL Injection: less common, still a great example of injection
• Credential attacks: more about policy than web dev, but still
• NoSQL doesn’t mean No Injection

69

69

