
Practical demonstration - Main application hacking 1

👹
Practical demonstration - Main application 
hacking

Introduction
When we hunt, it's important to look at every target in it's own right. We are going to look at the OWASP juice shop. In this 
demonstration you will be show all the topic we went over and which parameters we will be using to test. Not all of our 
tests will lead to existing issues but still we Have to do all these tests. We are no longer practicing right now, this is bug 
bounties. 

Owasp Juice Shop

Installation
Before we can hack on the OWASP juice shop, we ofcourse need to install it first. I chose to use herokuapp for this as it's 
free but you can also pick the docker image. 

First navigate to https://dashboard.heroku.com/apps if you need to create an account, do that first. You will now see the 
option to create a new app, select this and pick the option to create a new app.

Next navigate to https://elements.heroku.com/buttons/bkimminich/juice-shop and click the "Deploy to heroku" button. 

Introduction
Owasp Juice Shop

Installation
Judging our target
Exploring the application

Setting up burp suite
Manually walking the application
SQLi
Testing for IDORs
Testing for vertical priviledge escalation
The login section
CSRF
Exploring the requests
LFI/RFI
OS Command injection

https://dashboard.heroku.com/apps
https://elements.heroku.com/buttons/bkimminich/juice-shop


Practical demonstration - Main application hacking 2

Pick a unique name for you app, it doesn't matter which it is but it has to be unique.



Practical demonstration - Main application hacking 3

Click the "Deploy app" button , the app will now start deploying. It will take a while before the app is deployed so give it 
some take, sit back and make yourself a good coffee or tea with a nice piece of cheese.



Practical demonstration - Main application hacking 4

We can now view our app 😉

Judging our target
We recognize this is a webshop so to hack this target properly we will have to make a small investment. Since this is a 
webshop we want to test for at least the following functions:

Registration

Login

Buying an item

Possibly returning an item

Our wallet functionality if exists

Logic flaws

XSS

Stored

Reflected



Practical demonstration - Main application hacking 5

Basket functionality

Adresses

IDORs

CSRF

Broken access control if we can get to admin functions

This is an initial judgement and we might add to this as we explore the website and find more functionality.

Exploring the application
First of all we need to know what functionality exists before we can start attacking our target properly. We need to fill up 
our site map in burp and we need to be able to epxlore the paramatirised requests. To do this, we need to set up burp 
properly first. This includes setting up our scope and setting the options that we need. In this course we will use burp suite 
but feel free to use any other MiTM proxy with the same functionality.

Setting up burp suite
It really helps to have burp suite pro, you don't have to but the fact that you can save a project is a major plus for me. I can 
only hunt in bursts of 1 to 3 hours so i have to revisit my target often. This means two things.

I have to take very dilligent notes so i don't retest things 10 times needlesly and so that i make sure i do test all of my 
functionality. Part of this documentation is the "Judging our target" section.

If u can set up my project settings in burp suite, save them and reload them whenever you want, that is a major plus. 
The biggest part of any activity is getting yourself to do it and if you can skip part of the setup, that will help you get 
started. If you are doing something time seems to fly but if you are sitting in your sofa it takes tremendous power to get 
yourself up and go hunting. Anything you can do to make this easier is a major win.



Practical demonstration - Main application hacking 6

First i like to setup my scope, make sure you add the propper URLs that are in scope. 

Hackerone has configuration files for burp you can download.



Practical demonstration - Main application hacking 7

You can then import this file via the project options import functionality under "Project > Project options > Load Project 
options"



Practical demonstration - Main application hacking 8

After setting up our scope we will move on to setting up our proxy options. I always configure several options to make it 
easier for myself to see things like hidden fields and to remove any javascript validation from my responses.

This will make any hidden fields easier to see as it will unhide them and draw a big red square around them. If you see this 
big red square you know you are looking at a hidden field.

Now that we have burp suite set up in the background we can start exploring our application.

Manually walking the application
Just because we are manually walking the application does not mean we should not be hacking. This is the most important 
phase in bug bounties and most of you will know it as the recon phase.



Practical demonstration - Main application hacking 9

In this phase we want to get to know our application. We want to start by exploring the functionality and as we do that we 
want to take note of our prvilidge levels. Even though it might not seem like it, since we don't have access to the admin 
functionality (yet), but there are different levels of priviledges. 

Unauthenticated accounts (not logged in)

Authenticated accounts

As we hack our application, there might be more levels we can add to this such as administrators.

I myself use excel to make a quick mindmap but you can use whatever tool suits you best.

When i register my account, I register using an attack vector that automatically tests for JS XSS, HTML injection and HTML 
tag attribute injection. 

'"><u>THE XSS RAT WAS HERE

I use this attack vector wherever possible when attacking my target. 

This way, whenever the application uses my username anywhere, i am automatically testing for all of the described attack 
vectors. If my username is reflected in the JS context anywhere, the "' will try to break out of the context it is being 
reflected into. If the username is reflected in a tag, like it is in the picture above. In this picture, when we save the 
username, we can see that we have broken out of the VALUE attribute of the input tag. From here, we can try to insert our 
own javascript. 

I will try this WHEREVER i can, this includes adresses, nicknames, ... 

On the profile page however i can still see some more things i can test for. I see a profile picture so i can test for XXE via 
SVG here. 



Practical demonstration - Main application hacking 10

I also see a link option here. This link will resolve to a picture which gives the option for SSRF. To test for this, i start my 
burp collaborator and grab a URL that i can insert into this field. Running a public burp collaborator server is a premium 
option and only available in the paid version of burp. If you don't have the paid version of burp you can use:

Your own webserver

If you don't configure this properly, you can only capture HTTP requests

A public burp collaborator

This may suffer from availability issues as it's shared between all users

Whichever option we go for, we need to copy our payload to the clipboard and paste it in our URL field that the 
server tries to resolve.

We might need to put HTTP// in front of our URL if the server checks for syntax.

http://s5yf4ljmn9wgf95dcykd4iu7zy5otd.burpcollaborator.net

http://s5yf4ljmn9wgf95dcykd4iu7zy5otd.burpcollaborator.net/


Practical demonstration - Main application hacking 11

If you a lot of DNS requests coming into your burp collaborator but no HTTP requests, than there probably is no way to pull 
off SSRF is there is a possible egress filter in place. Egress filters can stop certain types of outgoing traffic. As of this 
writing OWASP juice shop does not have any SSRF vulnerabilities but if we'd find one here, we would continue on our SSRF 
path. 



Practical demonstration - Main application hacking 12

I will try the same XSS technique for adress any stored or reflected fields i can find. If i suspect a server side template 
engine is being used, i will add an SSTI attack vector. 

'"><u>THE XSS RAT WAS HERE${7'*7'}

if this resolves to 7777777 or 49 i will investigate further into SSTI or CSTI attack techniques.

SQLi
The previous attack vector also automically tests for SQLi as well

'"

These special characters will also test for SQLi since these are special characters also used in SQL statements. If we get a 
SQL error, i usually run a tool like SQLmap to better investigate what SQLi i have on my hands if any. See SQLi section.

Testing for IDORs
To test for IDOR's i will have to create a second account. In this case i can test for IDORs in several ways. First of all i really 
need that second account. I am going to copy his session cookie or authorisation header. This may seem confusing as you 
can't copy your victims cookie or headers in production but this is not our goal. We just need that cookie or header to 
automate our IDOR search. How to do this has been demonstrated in the tools section.

Testing for vertical priviledge escalation
When we want to test for vertical priviledge escalation we do need accounts of different priviledge levels. Since we don't 
have any admin accounts yet, we can't test for this yet. If we did have different priviledge levels, we would create accounts 
of all different priviledge levels and test for BAC. Example:

Administrator

Content editor

Customers

Again, how to test for this specifically has been illustrated in the tools section.

The login section
In the login section we can play around with the requests a little bit. For example if we request a password reset link, and 
append our own email adress to the request, the server might send the password reset link of the victim to the email adress 
of the attacker.

POST /api/resetPassword HTTP/1.1 
Host: ferretshop.herokuapp.com 
Connection: close 
sec-ch-ua: ";Not A Brand";v="99", "Chromium";v="88" 
Accept: application/json, text/plain, */* 
Authorization: Bearer eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJzdGF0dXMiOiJzdWNjZXNzIiwiZGF0YSI6eyJpZCI6MTcsInVzZXJuYW1lIjoiIiwiZW1haWwiOiJ0Z
sec-ch-ua-mobile: ?0 
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.150 Safari/537.36 
Sec-Fetch-Site: same-origin 
Sec-Fetch-Mode: cors 
Sec-Fetch-Dest: empty 
Referer: https://ferretshop.herokuapp.com/ 
Accept-Encoding: gzip, deflate 
Accept-Language: nl-NL,nl;q=0.9,en-US;q=0.8,en;q=0.7 
Cookie: language=en; welcomebanner_status=dismiss; token=eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJzdGF0dXMiOiJzdWNjZXNzIiwiZGF0YSI6eyJpZCI6MT
Content-Length: 24 
 
{email:"victim@gmail.com"}

Might turn into



Practical demonstration - Main application hacking 13

POST /api/resetPassword HTTP/1.1 
Host: ferretshop.herokuapp.com 
Connection: close 
sec-ch-ua: ";Not A Brand";v="99", "Chromium";v="88" 
Accept: application/json, text/plain, */* 
Authorization: Bearer eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJzdGF0dXMiOiJzdWNjZXNzIiwiZGF0YSI6eyJpZCI6MTcsInVzZXJuYW1lIjoiIiwiZW1haWwiOiJ0Z
sec-ch-ua-mobile: ?0 
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.150 Safari/537.36 
Sec-Fetch-Site: same-origin 
Sec-Fetch-Mode: cors 
Sec-Fetch-Dest: empty 
Referer: https://ferretshop.herokuapp.com/ 
Accept-Encoding: gzip, deflate 
Accept-Language: nl-NL,nl;q=0.9,en-US;q=0.8,en;q=0.7 
Cookie: language=en; welcomebanner_status=dismiss; token=eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJzdGF0dXMiOiJzdWNjZXNzIiwiZGF0YSI6eyJpZCI6MT
Content-Length: 24 
 
{email:"victim@gmail.com", 
email:"attacker@gmail.com"}

This might prompt the "GenerateLink" server to generate a password reset link for the first email address but the 
"SendLink" server might send the link to the attacker.

CSRF
Whenever i see a CSRF token, i will try to replace it:

with an empty parameter CSRF

with a parameter of the same restrictions (like same length and alphanumeric) CSRF2475455dfs1

CSRF1

A CSRF token that does not belong to that account

I can use the tools "Match and replace" or "Autorepeater" for this although the "Autorepeater" extensions seems to have 
broken with the latets burp update though this might get fixed later on.

See the tools section.

Exploring the requests
Now comes the fun part, we are going to look at all the requests and parameters in their own right. To do this we need to 
go back to burp suite and look at our site map. This has been filling up in the background while we click around.



Practical demonstration - Main application hacking 14

Now we can see the parameterised requests, we don't really care about the static requests.

I am going to look at all of these requests and see if i can find some parameters i can manipulate that i should not be able to 
manipulate such as:

{userType:"User"} > {userType:"Admin"}

{accountType:"Basic"} > {accountType:"Advanced"} (might be more expensive)

{rating:5 > {rating:-5000 (might be able to negatively affect the rating of a video on youtube)

... Use your imagination



Practical demonstration - Main application hacking 15

In this case for example, we can change the author of a review which should not be possible.

LFI/RFI
Whenever a parameters shows that it is grabbing a file from the local file system or whenever it seems to be from a remote 
location, i will try either LFI or RFI respectively. See those sections to learn more about them.

GET /avatar.php?file=image1.png

GET /avatar.php?file=s3.bucket.org/image1.png

LFI/RFI in and off- itself is usually not that impactful. If we find this issue we should try to find files on the system that we 
should not be able to access like private pictures of other users or we should try to include a file which executes remote 
code execution. This can cause use to create a reverse shell allowing us access on the server. If you ever achieve this, you 
should stop and report, don't explore a production server with the risk of seeing data you should not or crashing the 
production server.

OS Command injection
This is the last vulnerability type i check for. The only way to check for this issue type is to fuzz all of those parameters with 
your fuzzing list that you created in the OS command injection section. To do this I use the intruder tool that's built into 
burp.



Practical demonstration - Main application hacking 16


