
Fingerprinting a webserver + finding new web applications 1

👇
Fingerprinting a webserver +
finding new web applications

Tools
Nmap

Nikto

Netcraft online tool

Wappalyzer browser plugin

Curl/wget to send malformed requests

Test for
nmap -sV ip_adr

-sV is the flag for banner grabbing

Tools
Test for
Enumerating different webapps
Looking for information on the webpage
Tools

General
WhatWeb
Wappalyzer

Interesting cookies indicating frameworks
HTML Source Code
General Markers
Specific Markers
Remediation

Fingerprinting a webserver + finding new web applications 2

Nikto —host ip_addr

Nikto will automatically try banner grabbing

Wapplyzer browser plugin

Will auto analyse if possible

curl http://ip_addr/BAD_REQUEST

Some servers will respond differently to bad requests

Enumerating different webapps
Different baseURLs may refer to different applications, often we can only find these
by directory brute forcing, for example https://google.com might go to the search
engine but https://google.com/mail might point to a totally different webapp

Besides port 80 and 443 we should investigate anything that looks like a webserver.
Use tools like nmap to enumerate all the open ports, -p- for all ports instead of top
1000 and -sU for UDP ports included

vHosts are different hosts on the same webserver, for example mail.google.com
and www.google.com might point to the same webserver but they might return a
different application based on the routing of the URL. We can use vHost brute
forcing tools.

Looking for information on the webpage
Investigate comments made by developers

Investigate metadata

Review JS files

Identify if any debug features exists that we might be able to use

Map the application flows in xmind

Tools

https://google.com/
https://google.com/mail
http://mail.google.com/
http://www.google.com/

Fingerprinting a webserver + finding new web applications 3

General
Linkfinder (https://github.com/GerbenJavado/LinkFinder)

SecretFinder (https://github.com/m4ll0k/SecretFinder)

Burp suite, right click a target > engagement tools > extract comments (Only in pro)

ZAP proxy

Wget to download JS files

Google maps API scanner https://github.com/ozguralp/gmapsapiscanner/

httprint – http://net-square.com/httprint.html

httprecon – http://www.computec.ch/projekte/httprecon/

Netcraft – http://www.netcraft.com

Nmap – https://nmap.org/

Netcat – https://sectools.org/tool/netcat/

WhatWeb
Website: https://github.com/urbanadventurer/WhatWeb

Currently one of the best fingerprinting tools on the market. Included in a default Kali
Linux build. Language: Ruby Matches for fingerprinting are made with:

Text strings (case sensitive)

Regular expressions

Google Hack Database queries (limited set of keywords)

MD5 hashes

URL recognition

HTML tag patterns

Custom ruby code for passive and aggressive operations

Sample output is presented on a screenshot below:

https://github.com/GerbenJavado/LinkFinder
https://github.com/m4ll0k/SecretFinder
https://github.com/ozguralp/gmapsapiscanner/
http://net-square.com/httprint.html
http://www.computec.ch/projekte/httprecon/
http://www.netcraft.com/
https://nmap.org/
https://sectools.org/tool/netcat/
https://github.com/urbanadventurer/WhatWeb
https://www.kali.org/

Fingerprinting a webserver + finding new web applications 4

Figure 4.1.8-8: Whatweb Output sample

Wappalyzer
Website: https://www.wappalyzer.com/

Wapplyzer is available in multiple usage models, the most popular of which is likely the
Firefox/Chrome extensions. They work only on regular expression matching and doesn’t
need anything other than the page to be loaded in browser. It works completely at the
browser level and gives results in the form of icons. Although sometimes it has false
positives, this is very handy to have notion of what technologies were used to construct
a target website immediately after browsing a page.

Sample output of a plug-in is presented on a screenshot below.

https://www.wappalyzer.com/

Fingerprinting a webserver + finding new web applications 5

Figure 4.1.8-9: Wappalyzer Output for OWASP Website

Interesting cookies indicating frameworks
Common cookies

Framework Cookie name

Zope zope3

CakePHP cakephp

Kohana kohanasession

Laravel laravel_session

phpBB phpbb3_

WordPress wp-settings

1C-Bitrix BITRIX_

AMPcms AMP

Django CMS django

DotNetNuke DotNetNukeAnonymous

e107 e107_tz

EPiServer EPiTrace, EPiServer

Graffiti CMS graffitibot

Hotaru CMS hotaru_mobile

ImpressCMS ICMSession

Fingerprinting a webserver + finding new web applications 6

Framework Cookie name

Indico MAKACSESSION

InstantCMS InstantCMS[logdate]

Kentico CMS CMSPreferredCulture

MODx SN4[12symb]

TYPO3 fe_typo_user

Dynamicweb Dynamicweb

LEPTON lep[some_numeric_value]+sessionid

Wix Domain=.wix.com

VIVVO VivvoSessionId

HTML Source Code

Application Keyword

WordPress <meta name="generator" content="WordPress 3.9.2" />

phpBB <body id="phpbb"

Mediawiki <meta name="generator" content="MediaWiki 1.21.9" />

Joomla <meta name="generator" content="Joomla! - Open Source Content Management" />

Drupal <meta name="Generator" content="Drupal 7 (http://drupal.org)" />

DotNetNuke DNN Platform - http://www.dnnsoftware.com

General Markers
%framework_name%

powered by

built upon

running

Specific Markers

Framework Keyword

Fingerprinting a webserver + finding new web applications 7

Framework Keyword

Adobe ColdFusion <!-- START headerTags.cfm

Microsoft ASP.NET __VIEWSTATE

ZK <!-- ZK

Business Catalyst <!-- BC_OBNW -->

Indexhibit ndxz-studio

Remediation
While efforts can be made to use different cookie names (through changing configs),
hiding or changing file/directory paths (through rewriting or source code changes),
removing known headers, etc. such efforts boil down to “security through obscurity”.
System owners/admins should recognize that those efforts only slow down the most
basic of adversaries. The time/effort may be better used on stakeholder awareness and
solution maintenance activities.

