

PowerShell Logging

There are two types of logging enabled by default with PowerShell as shown below.

1) Engine and Provider Lifecycle Events
2) Suspicious Script Block Logging

In addition to the very limited default logging, you can choose to enable 3 additional log types as follows.

1) Script Block Logging
2) Module Logging
3) Transcription Logging

Default Logging

First, we will look at the Engine and Provider Lifecycle events that are written to the “Application and Services Logs Windows PowerShell” log. Open Event Viewer to this location to view these logs.

To open Event Viewer, do a search for “event viewer” in the search bar.

[image: Graphical user interface, application

Description automatically generated]
[image: Table

Description automatically generated]
This log does not auto-update, so if you see the “New events available” message you will need to click the refresh button to load them (or press F5).
[image: Graphical user interface

Description automatically generated with medium confidence]
When you start PowerShell, an “Engine Lifecycle” event will be generated (event ID 400). This event will show the PowerShell version being used and can be used to identify a PowerShell downgrade attack. A PowerShell downgrade attack is when an older version of PowerShell is used in order to avoid the security mechanisms in place with later versions, like additional logging options.
[image:]
The second type of logging that is enabled by default is suspicious script block logging. A script block is considered suspicious if it contains certain keywords like Add-Type, GetField, or NonPublic. Try running the SuspiciousScript.ps1 file provided on your lab VM. You’ll see event ID 800 which logs the details of that script appear in the default PowerShell log.
[image: Graphical user interface, text, application, email

Description automatically generated]
The SuspiciousScript uses the Add-Type command, which is considered suspicious. You can see the entire list of words considered suspicious by executing the following PowerShell command.

[ScriptBlock].GetField('signatures','NonPublic,Static').GetValue($null) | sort

We haven’t enabled any of the optional logging yet, but if we look at the Microsoft\Windows\PowerShell\Operational log we will see that these suspicious scripts are being logged there as well. I’ve included a tool on the desktop called TailPSopLog on the desktop of the lab VM that shows these events without having to refresh the view. Double click the TailPSopLog application and then run the Suspicious script again and watch for the suspicious events to show in the log.
[image:]
[image: Text

Description automatically generated]
Note: You will only see the Dark Yellow script block log the first time it is run in each PowerShell session. You can start a new PowerShell window and then execute the suspicious script again to ensure that you see that log.

Try running one of the other sample scripts provided like, AddNumbers.ps1. Do you see anything about its execution in any of the logs?

Optional Logging

Now let’s enable some of the optional logging and see what effect it has. The logging options can be set by modifying specific registry keys or by using Group Policy. I’ve included a tool for the class to be able to easily turn logging on and off. To run the tool, double click on the LogMenu shortcut from File Explorer and accept the UAC prompt by clicking Yes.

[image: Graphical user interface, application, table

Description automatically generated]
You now have an administrative PowerShell prompt where you can easily set the logging options. If you want to see the details of what the script does, review the Set-PSLogging.ps1 file in the Tools directory.
[image: Graphical user interface, text

Description automatically generated]
Choose option 1 to Enable-AllReasonableLogging.

[image: Text

Description automatically generated]
This will turn on script block, module, and transcription logging. It doesn’t turn on Script Block Invocation Logging because it is very noisy and not helpful. If you want to experiment with it to see, choose the Enable-AllLogging option and watch for the red and green colored events.

Note: Logging options are set at the time the PowerShell window opens so you must start a new PowerShell session to see the effects from the logging changes you make.

Now start a new PowerShell session and execute some commands and sample scripts. The color coding in the TailPSopLog tool will help clarify which events are module logs (blue) or script block logs (yellow). If you see a dark yellow log, that is a script block log with a level of warning that gets generated from suspicious commands.

Note: If you ever see the word select in the title bar of the TailPSopLog or the PowerShell window it means that output is paused. You won’t see any additional output in a window with select in the title bar until you click in the window and press the space bar. This will cause the output to continue to flow to the screen.
[image: A screenshot of a computer

Description automatically generated with medium confidence]
When you feel comfortable with what and how things are logged, use the LogMenu to experiment with different settings. Remember, you need to start a new PowerShell session for any logging settings to be reflected.

Note: Visual Studio code executes PowerShell commands in the background even when you aren’t activity using it. It is best to have VS Code closed when watching the logs to avoid unnecessary confusion.

Transcription logging is a different type of log than script block and module logging. Transcription logging doesn’t show up in a Windows event log and instead is written out to files. The directory for these files is configurable and the LogMenu tool sets it to the C:\Users\IEUser\PSTranscripts directory.
[image: Graphical user interface, application, Word

Description automatically generated]
In the transcripts folder you will see a folder for each day and within each folder you will find a text file for each PowerShell session that is created. A transcript is an “over the shoulder” version of logging where you see everything that the user entering commands sees, including the output to the screen.
[image: Text, letter

Description automatically generated]
In the example transcript above, you can see the effect of having double-clicked the LogMenu shortcut (the Show-LoggingMenu.ps1 script was executed). You can also see the menu that was output to the screen.

Look at the transcripts for your sessions to get familiar with the type of information available to you from these logs.

This completes the introduction to PowerShell logging. In class we talked about ways that attackers can bypass logging. You’ll get a chance to do that in a later lab.

© 2022 DC8 LLC	Page 1
image1.png
All Apps Documents Web More = Q'j "' X

Best match

i+ Event Viewer
R

Search the web .
Event Viewer

L event viewer - See web results > App
L event viewer windows >
event viewer logs > = Open
i et [
/O event viewer app > T Run as administrator
] E Open file location
L event viewer emd > P
.) 3 Pin to Start
L2 event viewer windows 10 >
<= Pin to taskbar
L event viewer windows 11 >
L event viewer reboot id >

£ event viewer]

image2.png
{2] Event Viewer

File Action View Help
LN
@ Event Viewer (Local) Windows PowerShell _ Number of events: 4,18
5 Custom Views

& Windows Logs

~ [& Applications and Services Logs
Hardware Events

Date and Time

@ Information 800 9/10/2022 11:16:26 PM PowerShell (PowerShell) Pipelin.

Interet Explorer ® Information 800 9/10/2022 11:16:26 PM PowerShell (PowerShell) Pipelin...

Key Management Senvice || @ Information 800 9/10/2022 11:16:28 PM PowerShell (PowerShell) Pipelin...

> [Microsoft @ Information 600 9/10/2022 11:16:30 PM PowerShell (PowerShell) Provid...

> [OpensSH ® Information 600 9/10/2022 11:16:30 PM PowerShell (PowerShell) Provid...
ThinPrint Diagnostics @ Information 600 9/10/2022 11: PowerShell (PowerShell) Provid...
Windows PowerShell @ Information 600 9/10/2022 PowerShell (PowerShell) Provid...

> [Saved Logs @ Information 800 9/10/2022 1 PowerShell (PowerShell) Pipelin..

15} Subscriptions

NS AR OITAIAAAA 11t E A DA A Do b 11 e e 11 D

image3.png
Windows PowerShell

Level
@ Information
@ Information
@ Information
@ Information
@ Information
@ Information
@ Information
@ Information

Date and Time

10/14/2022 440:57...
10/14/2022 4:40:57...
10/14/2022 4:40:57...
10/14/2022 4:40:57...
10/14/2022 4:40:57...
10/14/2022 4:40:57...
10/14/2022 4:40:57...
10/14/2022 3:18225...

Task Category
Engine Lifecycle

Provider Lifecycle
Provider Lifecycle
Provider Lifecycle
Provider Lifecycle
Provider Lifecycle
Provider Lifecycle
Engine Lifecycle

Actions.
T FIIET CUITent L0y,

Properties
Find...

DE® O

Save All Events As..
Attach a Task To t...

View

Refresh

B

Help

image4.png
[Event 400JPowerShell (PowerShell)

General Details

Engine state is changed from None to Available.

Details:
NewEngineState=Available
PreviousEngineState=None

SequenceNumber=13

HostName=ConsoleHost

HostVersion=5.1.17763.1852

26801283-b26a-4869-2248-73a992b724c
tem32\WindowsPowerShell\v1.0\powershell.exe

8df1-eee19c9d7893

image5.png
EX PowerShell

@ Event Viewer (Local)
5 Custom Views
& Windows Logs
~ [Applications and Services Logs
[l Hardware Events
] Internet Explorer
] Key Management Service
1 Microsoft
1 OpensSH
[PowerShellCore
& ThinPrint Diagnostics
] Windows PowerShell
[4 Subscriptions.

Level Date and Time. Source Event,. Task Category
@ Information 10/14/2022 5:27:01PM PowerShell.. 800 Pipeline Execution Details

Event 800, PowerShell (PowerShell)

General Details

Details:

|Commandinvocation(Add-Type): "Add-Type"

ParameterBinding(Add-Type): name="TypeDefinition"; value="public class BasicTest(
public static int Add(int a, int b)

{return a + b}}"

image6.png
- Automatic Script Block Log
EventId: 4104 Time: 10/14/2022 5:41:35 PM Level: 3
Creating Scriptblock text (1 of 1):
$source = @"
public class BasicTest{
public static int Add(int a, int b)
{return a + b;}}
'@
Add-Type -TypeDefinition $source
Add-Type causes script block logging event 4103

ScriptBlock ID: 84b8a70d-ba32-4e30-b8bf-47d74e2e0445
Path: C:\Users\IEUser\PowerShellForInfoSec\Samples\SuspiciousScript.psl

image7.png
~ Module Log

EventId: 4103 Time 10/14/2022 5 36 PM Level: 4

CommandInvocation(Add-Type): "Add-Type!

ParameterBinding(Add-Type): name="TypeDefinition
public static int Add(int a, int b)

{return a + b;}}"

"public class BasicTest{

Context:
Severity = Informational
Host Name = ConsoleHost
Host Version = 5.1.17763.1852
Host ID = £2423ca5-9aed-4e81-a2cd-03eaBbc6bagl
Host Application = C:\Windows\System32\WindowsPowerShell\v1.@\powershell.exe
Engine Version = 5.1.17763.1852
Runspace ID = b8bfc31c-9a32-4b14-89ed-17b02228e626
pipeline ID = 6
Command Name
Command Type
Script Name
Command Path
Sequence Number = 16
User = PSAI\IEUser
Connected User =
Shell ID = Microsoft.PowerShell

Add-Type
Cmdlet
:\Users\IEUser\PowerShellForInfoSec\Samples\SuspiciousScript.ps1

image8.png
Manage Manage PowerShellForinfoSec

bome S view | shocToos | ppicaon ol

= © 4 0> IEUser > PowerShellForinfoSec >
~ Name Date modified
5t Quick access
B Eser 1 AttackTools 10/11/2022 304 PM
1 samples 10/14/2022 8:20 A.

B Desktop 7

Tools 10/10/2022 129 PM
¥ Downloads # &) LogMend| 10/4/2022 320 PM
Documents T outot 10/12/2022 657 PM

image9.png
Select your option:

1) Enable-AllReasonableLogging
2) Disable-AllLogging

3) show-AllLogging

4) Enable-AllLogging

5) ExplicitlyDisable-AllLogging

Select your option (or gq to quit) :

image10.png
Select your option (or g to quit) : 1
Script Block Logging: Enabled
Module Logging: Enab1ed

--> Module Names:
Transcription Loggin Enabled

--> Include Invocation Headers: Enabled

--> Transcript Path: C:\Users\IEUser\PSTranscripts
Script Block Invocation Logging: Not Configured

image11.png
paused if you see the
elect” in the title b:

Function New-MaskingSet
Context: . Function New-MpPerformanceRe
Severity = Informational N
Host Name = ConsoleHost Function New-NetAdapterAdvan
(o sty Bgls: - 1552 Function New-NetEventSessior

Host ID = 9b324ac5-dd48-453c-94ee-e6i_

image12.png
1 = | PSTranscripts

«
~ Name
Quick access
 leuser * 720221010
20221011

image13.png
R AR KRR KRR KKK KKK

Command start time: 2022101408202

e ————————
PS>CommandInvocation(Show-LoggingMenu.ps1): "Show-LoggingMenu.ps1”
Note: Logging changes only affect new Powershell Sessions.
script Block Logging:

Enabled

P

select your option:

1) Enable-AllREasonableLogging

2) Disable-AllLogging

3) show-AllLogging

4) Enable-Alllogging

5) ExplicitlyDisable-AllLogging

T T

