
\

Nethemba s.r.o.

ASTERISK
Security Hardening Guide v1.0

Author: Boris Pisarčík

Security consultants: Pavol Lupták

Sponsored by: T-Mobile Czech Republic a.s.

 Creation date: 10.10.2011

Version: 1.0

Last change: 15.01.2012

Asterisk Hardening Guide by Nethemba s.r.o. is licensed under a Creative Commons Attribution 3.0 Unported License.

http://creativecommons.org/licenses/by/3.0/
https://www.nethemba.com/voip-secure-solutions
http://www.t-mobile.cz/

\

Contents
1 Foreword..3
2 Securing Asterisk..4

2.1 Encrypt signaling – use TLS as SIP transport..4
2.2 Encrypt voice – deploy SRTP...8
2.3 Restrict SIP clients on IP addresses..11
2.4 Protect your asterisk box with firewall...12
2.5 Do not let bad guys enter in – deploy IPS in front of your Asterisk................................13
2.6 Monitor critical files for changes..19
2.7 Hide your identity ..20
2.8 Harden valid SIP extension discovery ...22
2.9 Use strong passwords, really ...23
2.10 Know how to failover ..23
2.11 Protect your dialplans..25
2.12 Log to remote servers..27
2.13 Put asterisk on diet – disable unnecessary functionality...29
2.14 Other common security related advices...33

3 References...35

Asterisk Hardening Guide by Nethemba s.r.o. is licensed under a Creative Commons Attribution 3.0 Unported License.

http://creativecommons.org/licenses/by/3.0/
https://www.nethemba.com/voip-secure-solutions

\

1 Foreword

Asterisk is a great piece of software and with proper use and configuration, its
versatility and customizability make it one of best options for creating good stable long
serving VoIP PBX guaranteeing customer satisfaction. However, as any other software on this
planet, it can fail and it does fail, it has security issues, with security vulnerabilities being part
of its several years long history and it can also be configured insecurely by us, humans.

In the following few chapters we will try to explain several options and ways how to
make it stronger, safer, stealthier and durable SIP PBX.

We hope that after implementing at least some of our advices about Asterisk, where
couple of them can be done almost instantly and with really little effort, we can help you
make your PBX servers and your VoIP clients safer.

If you have any questions, opinions, suggestions or would like more information about
the subject, please contact at our e-mail info@nethemba.com.

Asterisk Hardening Guide by Nethemba s.r.o. is licensed under a Creative Commons Attribution 3.0 Unported License.

http://creativecommons.org/licenses/by/3.0/
https://www.nethemba.com/voip-secure-solutions
mailto:info@nethemba.com

\

2 Securing Asterisk

2.1 Encrypt signaling – use TLS as SIP transport

The first half of cryptographic protection of every SIP call consists of protecting the
signaling part of the protocol pair used to make SIP calls – SIP protocol itself. Since SIP
protocol is in fact text based protocol similar to HTTP protocol, it provides itself no
protection to information gathering or data manipulation. By standard, SIP is transferred
over 5060 port over TCP or UDP protocol. SIP protocol itself provides no means of
encryption. To address lack of security of core SIP protocol, SIPS or SIP/TLS protocol wraps
up the unencrypted SIP channel within SSL or TLS encryption and uses TCP port 5061 by
default.

Support for SIP TLS encryption comes with asterisk since version 1.6. There are few
basic steps that need to be done in order to get it working:

1. Obtain or generate SSL private key with signed certificate and corresponding
signing certificate authority's root certificate or certificate chain – these MUST
be in PEM format

2. Set a few SSL/TLS related options in SIP configuration file sip.conf

3. Configure client to use SIP over SSL/TLS transport

Once you have all the encryption keys and certificates, place them in asterisk keys
subdirectory , by default /var/lib/asterisk/keys. The contents of this directory may
look like following after storing keys in place:

ca­bundle.pem

voip.somedomain.com.crt

voip.somedomain.com.key

To enable SSL/TLS protocol support, set the following options in sip.conf
configuration file:

tlsenable=yes

Asterisk Hardening Guide by Nethemba s.r.o. is licensed under a Creative Commons Attribution 3.0 Unported License.

http://creativecommons.org/licenses/by/3.0/
https://www.nethemba.com/voip-secure-solutions

\

tlsbindaddr=0.0.0.0 - or whatever IP address we would like bind TCP socket and
accept connections (0.0.0.0 means listen on all system network interfaces)

tlscafile=/var/lib/asterisk/keys/ca­bundle.pem

or if you need to support more certification authorities, use directory version of the
previous option (or you can use both of them, when certificates are looked up first against
tlscafile file):

tlscapath=/var/lib/asterisk/keys/ca/

However, there are few requirements in order to support directory based CA certificate
loading, every file must contain one and only CA certificate and it must be named according
to the CA subject name hash value, which can be extracted from the CA certificate using
openssl command line tool, like in the following example:

#openssl x509 ­in voip.somedomain.com.crt ­hash

8d694709

­­­­­BEGIN CERTIFICATE­­­­­

MIIIJTCCBw2gAwIBAgIDBIwwMA0GCSqGSIb3DQEBBQUAMIGMMQswCQYDVQQGEwJJ

TDEWMBQGA1UEChMNU3RhcnRDb20gTHRkLjErMCkGA1UECxMiU2VjdXJlIERpZ2l0

YWwgQ2VydGlmaWNhdGUgU2lnbmluZzE4MDYGA1UEAxMvU3RhcnRDb20gQ2xhc3Mg

…

In this case, the name of the file would be “8d694709”. In case more CA certificates
end up with equal hash, they must be appended with numerical extension, like 8d694709.0 ,
8d694709.1, 8d694709.2 and so on.

tlscertfile=/var/lib/asterisk/keys/voip.somedomain.com.crt – this option
specifies a certificate file signed by CA for this asterisk server

tlsprivatekey=/asterisk/var/lib/asterisk/keys/voip.somedomain.com.ke
y – and this option specifies a private key for this server.

If the “tlsprivatekey” option is not specified, “tlscertfile” is used to look up both private
key and certificate merged in a single file.

tlsclientmethod=tlsv1 – this option, an addon for asterisk 1.8, configures protocol

Asterisk Hardening Guide by Nethemba s.r.o. is licensed under a Creative Commons Attribution 3.0 Unported License.

http://creativecommons.org/licenses/by/3.0/
https://www.nethemba.com/voip-secure-solutions

\

version used for outgoing SIP connections, and can be set to one of tlsv1, sslv3 or sslv2
values. We strongly suggest using tlsv1 and discourage use of sslv2 due to the known
security issues of this obsolete version of SSL protocol.

tlscipher=”particularciphers” - string with ciphers enabled for connections can be
specified as a string list of supported cipher names, examples are “DES-CBC3-SHA” or
“ALL”.

tlsdontverifyserver=[yes|no] – specifies if asterisk should verify other servers'
certificate when acting as a SIP client. By default, it is set to no.

Summarized all in one piece of text, the whole SIP/TLS configuration would look like
this:

tlsenable=yes

tlsbindaddr=0.0.0.0

tlscafile=/var/lib/asterisk/keys/ca­bundle.pem

tlscertfile=/var/lib/asterisk/keys/voip.somedomain.com.crt

tlsprivatekey=/asterisk/var/lib/asterisk/keys/voip.somedomain.com.ke
y

tlsclientmethod=tlsv1

tlscipher=ALL

tlsdontverifyserver=no

After successful configuration of SIP/TLS support and restarting asterisk, or reloading
SIP configuration, asterisk should listen on new TCP port dedicated for TLS connections,
5061 by default, as shown by using netstat command:

Active Internet connections (only servers)

Proto Recv­Q Send­Q Local Address Foreign Address
State PID/Program name

Asterisk Hardening Guide by Nethemba s.r.o. is licensed under a Creative Commons Attribution 3.0 Unported License.

http://creativecommons.org/licenses/by/3.0/
https://www.nethemba.com/voip-secure-solutions

\

tcp 0 0 0.0.0.0:5060 0.0.0.0:*
LISTEN 888/asterisk

tcp 0 0 0.0.0.0:5061 0.0.0.0:* LISTEN
888/asterisk

udp 0 0 0.0.0.0:5060 0.0.0.0:*
888/asterisk

To verify manually if the correct certificate is used for TLS connections, openssl
command may be used too:

#openssl s_client ­host localhost ­port 5061

CONNECTED(00000003)

depth=2 /C=IL/O=StartCom Ltd./OU=Secure Digital Certificate
Signing/CN=StartCom Certification Authority

verify error:num=19:self signed certificate in certificate chain

verify return:0

­­­

Certificate chain

 0 s:/description=547373­
V08STSphH1Dv407L/CN=voip.somedomain.com/emailAddress=postmaster@some
domain.com

 i:/C=IL/O=StartCom Ltd./OU=Secure Digital Certificate
Signing/CN=StartCom Class 1 Primary Intermediate Server CA

 1 s:/C=IL/O=StartCom Ltd./OU=Secure Digital Certificate
Signing/CN=StartCom Class 1 Primary Intermediate Server CA

 i:/C=IL/O=StartCom Ltd./OU=Secure Digital Certificate
Signing/CN=StartCom Certification Authority

 2 s:/C=IL/O=StartCom Ltd./OU=Secure Digital Certificate
Signing/CN=StartCom Certification Authority

 i:/C=IL/O=StartCom Ltd./OU=Secure Digital Certificate
Signing/CN=StartCom Certification Authority

­­­

Server certificate

Asterisk Hardening Guide by Nethemba s.r.o. is licensed under a Creative Commons Attribution 3.0 Unported License.

http://creativecommons.org/licenses/by/3.0/
https://www.nethemba.com/voip-secure-solutions

\

…

After global server configuration for SIP/TSL, individual accounts need to be modified
in per-peer sections to define the account will be using TLS as SIP transport using the
“transport” option in sip.conf, like in the following example:

[voipuser12]

type=friend

context=some_context

host=dynamic

secret=thisisntreallysecretpwd

nat=yes

transport=tls

IMPORTANT: SIP, however, is only a signaling protocol whose responsibility is only
to maintain call state and call related actions, not the voice data itself, so it does not protect
voice part of communication between SIP clients.

2.2 Encrypt voice – deploy SRTP

In order to prevent eavesdropping of the voice call data made by SIP enabled
technology, cryptography plays a primary role of defense. SRTP protocol (or rather a special
profile of RTP protocol) is the answer to the encryption of voice data and protection against
threats to voice confidentiality and integrity.

Since asterisk version 1.8, SRTP is supported natively. For asterisk to support SRTP
voice encryption, libsrtp library with development headers has to be installed. For Debian
and Ubuntu Linux, it can be installed with the following command:

#aptitude install libsrtp0 libsrtp0­dev

For other distributions or operating systems, the source code may be necessary to
download and compile, it can be downloaded here.

In order to compile the SRTP support, the corresponding option has to be enabled

Asterisk Hardening Guide by Nethemba s.r.o. is licensed under a Creative Commons Attribution 3.0 Unported License.

http://creativecommons.org/licenses/by/3.0/
https://www.nethemba.com/voip-secure-solutions
http://srtp.sourceforge.net/srtp.html

\

before asterisk compilation in “Resource Modules” top level menu of “make menuselect”.

After SRTP support is finally compiled in asterisk, the whole configuration itself is in
the SIP configuration – there's only one option related to SRTP configuration, the
“encryption” option.

Setting this option to “yes”, either in the global section or per-per section, enforces asterisk to
offer SRTP only encrypted media on outgoing calls to this peer. If the peer does not support
SRTP, the call will fail with result HANGUPCAUSE = 58.

The sample peer section with enforced SRTP :

[voipuser12]

type=friend

context=some_context

host=dynamic

Asterisk Hardening Guide by Nethemba s.r.o. is licensed under a Creative Commons Attribution 3.0 Unported License.

http://creativecommons.org/licenses/by/3.0/
https://www.nethemba.com/voip-secure-solutions

\

secret=thisisntreallysecretpwd

nat=yes

transport=tls

encryption=yes

WARNING ! Keys used for SRTP encryption are exchanged in cleartext form and
they can be easily captured by adversary. In the future, ZRTP key exchange management may
solve this problem. Thus if the encryption of voice data should make sense, SIP signaling
must use TLS transport protocol (also marked bold in previous sample).

IMPORTANT: during our practical deployment of SRTP we have experienced
frequent crashing of asterisk (segmentation faults). Even the latest version of libsrtp (1.4.4)
contains bug related to rtcp protocol handling during SRTP call. In this case it's necessary to
download libsrtp from CVS repository:

cvs ­d:pserver:anonymous@srtp.cvs.sourceforge.net:/cvsroot/srtp
login

cvs ­z3 ­d:pserver:anonymous@srtp.cvs.sourceforge.net:/cvsroot/srtp
co ­P srtp

The difference according to the stable version of libsrtp contains single line only:

http://srtp.cvs.sourceforge.net/viewvc/srtp/srtp/crypto/replay/rdb.c
?r1=1.4&r2=1.5

2.3 Restrict SIP clients on IP addresses

In asterisk it is possible to permit or deny access to a peer or user based on their IP
address, so that a particular peer can connect and register only from the predefined IP
address(es). Access can also be explicitly denied for some IP addresses or address ranges in
case the IP is suspected of some abusing activity.

Asterisk Hardening Guide by Nethemba s.r.o. is licensed under a Creative Commons Attribution 3.0 Unported License.

http://creativecommons.org/licenses/by/3.0/
https://www.nethemba.com/voip-secure-solutions
http://srtp.cvs.sourceforge.net/viewvc/srtp/srtp/crypto/replay/rdb.c?r1=1.4&r2=1.5
http://srtp.cvs.sourceforge.net/viewvc/srtp/srtp/crypto/replay/rdb.c?r1=1.4&r2=1.5

\

Two configuration directives define filtering of client connections based on their IP
address:

• deny

• permit

Format of these options is following:

deny=ip/mask

permit=ip/mask

Both directives can be specified multiple times for each peer definition in sip.conf and
combining of these directives is allowed for the required result. The order of directives is
important and EVERY deny or permit clause is consulted in the specified order, where the
last matching block makes final decision.

If no deny or permit block matches, access is permitted by default !

Here are some permit/deny examples with the explanation :

1. Permit access only from IP address 1.2.3.4:

deny=0.0.0.0/0.0.0.0

permit=1.2.3.4/255.255.255.255

2. Deny connections from specific network subnet 10.0.1.0/24:

deny=10.0.1.0/255.255.255.0

3. Permit access from single subnet, but exclude 2 untrusted hosts:

deny=0.0.0.0/0.0.0.0

permit=192.168.0.0/255.255.255.0

deny=192.168.1.100/255.255.255.255

deny=192.168.1.100/255.255.255.255

Asterisk Hardening Guide by Nethemba s.r.o. is licensed under a Creative Commons Attribution 3.0 Unported License.

http://creativecommons.org/licenses/by/3.0/
https://www.nethemba.com/voip-secure-solutions

\

2.4 Protect your asterisk box with firewall

The worst possible situation of protecting machine running production asterisk PBX
would be the case when attacker can exploit some forgotten, badly configured or unprotected
service running on the same box.

Hence it is crucial to allow only selected ports / services to be reachable from the
outside or untrusted network.

If iptables is used for the firewall configuration, it would be reasonable to allow access
to SIP ports and RTP ports only.

By default, SIP uses UDP port 5060, additionally, if TCP is enabled, TCP port 5060
and if TLS connections are configured for asterisk, also TCP port number 5061 is used.

We show a typical sample iptables firewall configuration where UDP, TCP and TLS
connections are allowed to the asterisk box from everywhere and SSH management is
permitted from secure locations:

IPTABLES=/sbin/iptables # set proper location for the iptables
binary

$IPTABLES ­t filter ­P INPUT DROP # change policy to drop every
incoming traffic by default, that is not explicitly allowed later

enable icmp

$IPTABLES ­t filter ­A INPUT ­p icmp ­j ACCEPT

enable localhost commms

$IPTABLES ­t filter ­A INPUT ­i lo ­j ACCEPT

enable tracked returning data for existing connections

$IPTABLES ­t filter ­A INPUT ­m state ­­state ESTABLISHED,RELATED ­j
ACCEPT

enable DNS replies

Asterisk Hardening Guide by Nethemba s.r.o. is licensed under a Creative Commons Attribution 3.0 Unported License.

http://creativecommons.org/licenses/by/3.0/
https://www.nethemba.com/voip-secure-solutions

\

$IPTABLES ­t filter ­A INPUT ­p udp ­­dport 53 ­j ACCEPT

enable RTP traffic, must correspond with rtpstart and rtpend in
asterisk's rtp.conf

$IPTABLES ­t filter ­A INPUT ­p udp ­­dport 10000:20000 ­j ACCEPT

enable SIP/TLS

$IPTABLES ­t filter ­A INPUT ­p tcp ­­dport 5061 ­j ACCEPT

enable SIP udp + tcp

$IPTABLES ­t filter ­A INPUT ­p udp ­­dport 5060 ­j ACCEPT

$IPTABLES ­t filter ­A INPUT ­p tcp ­­dport 5060 ­j ACCEPT

ssh from trusted client 1

$IPTABLES ­t filter ­A INPUT ­p tcp ­s 1.2.3.4/32 ­­dport 22 ­j
ACCEPT

ssh from trusted client 2

$IPTABLES ­t filter ­A INPUT ­p tcp ­s 2.3.4.5/32 ­­dport 22 ­j
ACCEPT

2.5 Do not let bad guys enter in – deploy IPS in front of your Asterisk

Most common SIP targeted attacks against asterisk have few things in common and
can be simply abstracted and described by certain pattern - signature. There are quite many
vendors of signature based intrusion detection systems and intrusion prevention systems, but
why not to use an open source sibling to open source asterisk. For this purpose you can select
either well known SNORT or it's younger brother SURICATA, both of them understand the
same signature description language.

Typical IDS software just captures live packet stream and recognizes malicious
attempts, then it logs important data like time of occurrence, source and destination IP of
attack, payload data, description of recognized pattern and the appropriate reference to
vulnerability or security database. This passive mode of protection does not impact the traffic
flow, it just monitors traffic and signals when something goes wrong.

Further protection for VoIP (and other) services comes with IPS systems. When IPS
detects an attack, in addition to what IDS already does, it actively stops delivery of malicious

Asterisk Hardening Guide by Nethemba s.r.o. is licensed under a Creative Commons Attribution 3.0 Unported License.

http://creativecommons.org/licenses/by/3.0/
https://www.nethemba.com/voip-secure-solutions
http://en.wikipedia.org/wiki/Intrusion_prevention_system
http://en.wikipedia.org/wiki/Intrusion_detection_system
http://www.openinfosecfoundation.org/index.php/download-suricata
http://www.snort.org/start/download

\

data to target systems and can also do additional reactive actions like blocking attacker's IP
address in firewall etc.

IDS/IPS can be deployed directly on a local machine with asterisk or when you are
trying to protect multiple hosts at once, in a standalone system placed in front of VoIP
servers. In this case IDS/IPS is placed in the middle between attackers and VoIP systems that
should be protected.

Snort comes equipped with many standardized and useful SIP rules, some of them
being generic in terms they recognize generic attack patterns like packets not conforming to
RFC with wrong length of some field or format if some header data, others rules are
describing exact targeted attack on certain versions of SIP platforms and software. Also it's
not very difficult to develop new rules with Snort's flexible and versatile rule language based
on regular expressions.

Let's analyze one of SIP rules included in voip.rules snort rule file from the default
rules distribution.

Snort SIP rules look very similar to this:

alert udp $EXTERNAL_NET any ­> $HOME_NET 5060 (msg:"VOIP­SIP CSeq
header format string attempt"; content:"CSeq|3A|"; nocase;
content:"%"; distance:0; pcre:"/^CSeq\x3A\s*[^\r\n%]*%/smi";
reference:url,www.ee.oulu.fi/research/ouspg/protos/testing/c07/sip/;
reference:url,www.ietf.org/rfc/rfc3261.txt; classtype:attempted­dos;
sid:11991; rev:3;)

where “alert” keyword means snort should log only every SIP packet matching this
rule. If we also want to stop packet not to reach its destination, “alert” must be replaced with
“drop” and snort must be switched in so called “inline” mode. The “udp” word represents
transport protocol (can be changed to “tcp” if TCP is protocol used for SIP transport).

The following five fields are source ip/network and source port, direction of packet
travel and destination ip/network and destination port. $EXTERNAL_NET and
$HOME_NET are variable references configured earlier in the snort configuration file.
Usually , EXTERNAL_NET you set to everything, HOME_NET to addresses or subnets you
are trying to protect. Destination port is for SIP, obviously 5060.

Asterisk Hardening Guide by Nethemba s.r.o. is licensed under a Creative Commons Attribution 3.0 Unported License.

http://creativecommons.org/licenses/by/3.0/
https://www.nethemba.com/voip-secure-solutions
http://www.snort.org/snort-rules/

\

Finally, in parentheses, keywords describing what to match, where to match and what
security problem the rule is referencing and similar options are specified. The most
interesting expression what is matched and considered malicious is the
pcre:"/^CSeq\x3A\s*[^\r\n%]*%/smi"

In this case, it matches packet containing word CSeq at the beginning of a line, then “:” colon,
one or more space separator characters, then whatever except newline and “%” character
followed with %character. It is an example of classical string formatting overflow attempt,
where “%s” or “%d” placeholders are substituted with parameters following C string library
function call like “sprintf”.

Currently snort's voip.rules rule file contains over 100 rules related to SIP attacks and
cousin SDP protocols, which is fairly good place to start with IPS/IDS protection of SIP
equipment. Moreover, alerts and detections can be logged in a database like MySQL,
PostgreSQL or others and can further be analyzed with either custom built software or one of
a dozen web interfaces developed for this very purpose.

In case of suspicion that your snort does something odd with your SIP traffic, it is very
easy to switch it to the passive mode or switch it off completely using a configuration settings
or command line options.

IMPORTANT: if you try to use snort as an active IPS system, it is most likely that you
have to build snort from source code on your own, because in standard distribution build,
only 4 DAQ modules are present. Among them, AFPACKET DAQ mode supports inline mode
and should serve for IPS functionality, we have experienced troubles with doing so, especially
if you are trying to use snort in a more complicated failover system with interface bonding or
bridging. The DAQ modes well suited for purpose of IPS are “nfq” or “ipq”, the former being
superior to the latter. After successful compilation, just verify snort supports “nfq” or “ipq”
inline modes with the following command:

#snort –daq­list

Available DAQ modules:

pcap(v3): readback live multi unpriv

nfq(v6): live inline multi

ipfw(v2): live inline multi unpriv

dump(v1): readback live inline multi unpriv

Asterisk Hardening Guide by Nethemba s.r.o. is licensed under a Creative Commons Attribution 3.0 Unported License.

http://creativecommons.org/licenses/by/3.0/
https://www.nethemba.com/voip-secure-solutions

\

afpacket(v4): live inline multi unpriv

After compiling your Snort with IPS/NFQ support for inline mode, you can redirect
your monitored and filtered traffic with iptables rule, like in the following sample:

/sbin/iptables ­t filter ­A FORWARD ­p udp ­­dport 5060 ­d
subnet/mask ­j NFQUEUE ­­queue­num 1

With this rule, for example, you are redirecting SIP UDP traffic to protected network
(subnet/mask) into a user-land queue, where snort is waiting for further traffic analysis.
(Choose whatever queue number, but it must match snort's configured one).

When snort detects any attack or malicious SIP packet, the corresponding alert log will
look like this:

Nov 11 01:20:35 ips1 snort[5716]: [1:11975:4] VOIP­SIP Via header
missing SIP field [Classification: Misc activity] [Priority: 3]
{UDP} 191.3.23.3:32339 ­> 112.71.123.12:5060

See few screenshots made from our real deployment of snort in IPS role protecting
multiple asterisk hosts, with Snorby web user interface used for analysis where you can see
overall statistics of detected attacks and detailed detection severity and packet details:

Asterisk Hardening Guide by Nethemba s.r.o. is licensed under a Creative Commons Attribution 3.0 Unported License.

http://creativecommons.org/licenses/by/3.0/
https://www.nethemba.com/voip-secure-solutions
http://snorby.org/

\

Asterisk Hardening Guide by Nethemba s.r.o. is licensed under a Creative Commons Attribution 3.0 Unported License.

http://creativecommons.org/licenses/by/3.0/
https://www.nethemba.com/voip-secure-solutions

\

Asterisk Hardening Guide by Nethemba s.r.o. is licensed under a Creative Commons Attribution 3.0 Unported License.

http://creativecommons.org/licenses/by/3.0/
https://www.nethemba.com/voip-secure-solutions

\

2.6 Monitor critical files for changes

One of the crucial tasks of administration of production servers is keeping eye on
integrity of critical system files so that it is possible to detect intrusions into the system. On
hacked servers, often genuine system binaries are replaced with backdoored versions, or
trojan horses. To get informed about these situations, typically these system files and binaries
are processed to produce fingerprints – cryptographic hashes, usually with MD5, SHA1,

Asterisk Hardening Guide by Nethemba s.r.o. is licensed under a Creative Commons Attribution 3.0 Unported License.

http://creativecommons.org/licenses/by/3.0/
https://www.nethemba.com/voip-secure-solutions

\

SHA256 or SHA512 algorithm. These fingerprints MUST be stored externally out of
monitored server so that the regular comparison of current system fingerprints with stored
ones can produce trustworthy results.

Also, it is necessary to maintain the externally stored hash database after each system
upgrade in order to have current and stored fingerprints. One typical tool used for file
integrity protection is tripwire, but many more opensource and commercial exist.

It is necessary to emphasize that filesystem integrity checking does not represent a
suitable protection against LKM rootkits where kernel syscalls open(), read(), exec() are
hooked.

2.7 Hide your identity

During communication with other SIP clients, peer or proxies, asterisk inserts own
identification in user agent and similar headers and SDP session name. By default, these
headers contain the word “Asterisk” with exact running version appended. Most of the times
this is not the best option from the security point of view, because asterisk is advertising exact
running version publicly to everyone. Potential attacker can simply guess that PBX is running
on asterisk, obtain asterisk's version number and focus on existing known vulnerabilities
against the specific asterisk installation.

Here comes sample snippet of SIP communication captured during session with
asterisk with Asterisk name and version information marked bold:

SIP/2.0 200 OK

Via: SIP/2.0/TLS 192.168.1.2:29541;branch=z9hG4bK­d8754z­
33540d66b8658c25­1­­­d8754z­;received=1.2.3.4;rport=46849

From: "voipuser12"<sip:voipuser50@somedomain.com>;tag=51a9264c

To: <sip:200@somedomain.com>;tag=as435bba3a

Call­ID: NzE4Y2VmZjZhODkyY2Y2NjExNjI0YzY0OGZmN2Q4MTk.

CSeq: 2 INVITE

Server: Asterisk PBX 1.8.7.1

Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, SUBSCRIBE, NOTIFY,
INFO, PUBLISH

Supported: replaces, timer

Contact: <sip:200@8.7.6.5:5061;transport=TLS>
Asterisk Hardening Guide by Nethemba s.r.o. is licensed under a Creative Commons Attribution 3.0 Unported License.

http://creativecommons.org/licenses/by/3.0/
https://www.nethemba.com/voip-secure-solutions
http://www.tripwire.com/

\

Content­Type: application/sdp

Content­Length: 375

v=0

o=root 868599863 868599863 IN IP4 8.7.6.5

s=Asterisk PBX 1.8.7.1

c=IN IP4 8.7.6.5

t=0 0

m=audio 14350 RTP/SAVP 18 3 97 101

a=rtpmap:18 G729/8000

a=fmtp:18 annexb=no

a=rtpmap:3 GSM/8000

a=rtpmap:97 speex/8000

a=rtpmap:101 telephone­event/8000

a=fmtp:101 0­16

a=ptime:20

a=sendrecv

a=crypto:1 AES_CM_128_HMAC_SHA1_80
inline:YvLbgvR7LLLEtAMVPEMF+jJzBnxEoSH66P6VBFQZ

Changing this information is easy, only two options need to be changed in sip.conf:

useragent=AnotherVoIP

sdpsession=AnotherVoIP

Other thing worth of changing with not of such in importance is the “sdpowner” option
in sip.conf, that would change user name in the SDP protocol, the word “root” by default.

sdpowner=Chuck­Norris

Asterisk Hardening Guide by Nethemba s.r.o. is licensed under a Creative Commons Attribution 3.0 Unported License.

http://creativecommons.org/licenses/by/3.0/
https://www.nethemba.com/voip-secure-solutions

\

By changing it according to the previous example, the message capture would look
like:

…

v=0

o=Chuck­Norris 365808949 365808949 IN IP4 9.8.7.6

s=PBX

c=IN IP4 9.8.7.6

t=0 0

m=audio 13256 RTP/SAVP 18 3 97 101

…

Now it is not so easy to recognize this PBX runs on unix-like system.

2.8 Harden valid SIP extension discovery

Most common attacks involved with SIP infrastructure are related to valid extensions /
usernames scanning and bruteforcing. The potential attacker tries to obtain the list of SIP
logins or extensions served by the attacked SIP server by various forms of scanning, like
REGISTER scan, INVITE scan or OPTIONS scan.

All of these can be simulated or performed using commonly accessible software, like
sipvicious or sipsak.

For example, REGISTER method flood for extensions between 200 and 10000 can be
performed using single command:

#./svwar.py ­­force ­e 200­10000 10.0.0.10 ­m REGISTER

In order not to allow attacker to guess valid extensions in REGISTER or INVITE
attempts, asterisk should always return the same error code and message in case extension
does not exist or in case attacker has tried invalid password. Enable “alwaysauthreject” SIP
option in asterisk's sip.conf configuration file, see the following sample:

alwaysauthreject = yes

Asterisk Hardening Guide by Nethemba s.r.o. is licensed under a Creative Commons Attribution 3.0 Unported License.

http://creativecommons.org/licenses/by/3.0/
https://www.nethemba.com/voip-secure-solutions

\

2.9 Use strong passwords, really

This old and well known formula of IT security applies also to asterisk server and
VoIP. Most VoIP abuses are still made using dictionary brute-force attacks against accounts
that were set up with simple guessable password. A typical example of such weak passwords
is the situation, where SIP login and password matches, passwords are based on dictionary
words or too short passwords (<8 characters) are used that can be brute-force attacked. We
suggest to use at least 16 characters long passwords randomly generated and use whole range
of characters, including numbers, uppercase and lowercase characters, symbols.

Examples of weak passwords: jane23, 062012355, 00001111

Examples of strong passwords: Chee8muo6iephade, iex5sae7phu4Ahk2

Having weak passwords can sometimes cause significant financial loss, if hackers
obtain SIP account by means of guessing its password, he can generate bills within scale of
thousands euros if he makes long international calls or calls extra-tolled lines.

2.10 Know how to failover

One of the very important and underestimated aspect of IT security is service
availability, in our case, availability of the asterisk SIP service, so that users can make call any
time they want. No asterisk installation can be considered secure enough if it fails along with
broken hard drive, power supply, damaged Digium card or erased configuration.

Quite common production scenario to overcome the risk of crashed server is to use
multiple servers in a so called failover cluster. In the Linux world, two solutions offering
failover functionality exist and are used most often:

1. Heartbeat – part of Linux-HA projects

2. Redhat cluster suite

Both provide necessary functionality and intelligence for failover behaviour like
resource or service definition and abstraction (in our case virtual moving IP address for

Asterisk Hardening Guide by Nethemba s.r.o. is licensed under a Creative Commons Attribution 3.0 Unported License.

http://creativecommons.org/licenses/by/3.0/
https://www.nethemba.com/voip-secure-solutions

\

accessing SIP server and the asterisk application) and their movement between machines,
either manually or, yet better, automatically in a case of a detected failure (machine goes
down, machine looses connection, ...).

In this simple demonstrative scenario, virtual IP address transferable between 2
servers would be IP 192.168.0.1, on which asterisk would be configured for client access, and
the asterisk itself would be started on currently active node and listening on the IP address
192.168.0.1 accepting incoming connections.

2.11 Protect your dialplans

A proper separation of extensions in dialplan contexts is one of most important things

Asterisk Hardening Guide by Nethemba s.r.o. is licensed under a Creative Commons Attribution 3.0 Unported License.

http://creativecommons.org/licenses/by/3.0/
https://www.nethemba.com/voip-secure-solutions

\

to keep your eyes on during asterisk configuration.

WARNING ! Use separate dialplan contexts for incoming and outgoing extensions,
especially if outgoing ones provide toll services. Anonymous incoming calls should never
reach contexts that can reach tolled extensions, otherwise you are exposed to risk of high
financial loss.

During context creation, keep in mind, that once given channel can enter particular
dialplan context, it can potentially access every extension configured within that same
context.

For example, in the following sample context, user can by dialing any 4 or more digit
number call outside numbers and make toll fees rise up very quickly:

100 => Dial(SIP/user1, 30, tT);

101 => Dial(SIP/user2, 30, tT);

_XXX. => Dial(ZAP/g1/${EXTEN});

It is also very important to define proper contexts for SIP clients / phones definition. If
group of SIP users should access for example only Czech extensions and only via given SIP
external line, you should create separate context, that might look like following one:

context myczechsipprovider {

 includes {

 local­extensions;

 };

 _00421XXXXXXXXX! => {

 Dial(SIP/${EXTEN}@12345678,${RINGTIME},tT);

 Congestion;

 }

Afterwards, you assign this context for every user you plan to access Czech and local
Asterisk Hardening Guide by Nethemba s.r.o. is licensed under a Creative Commons Attribution 3.0 Unported License.

http://creativecommons.org/licenses/by/3.0/
https://www.nethemba.com/voip-secure-solutions

\

numbers only:

[loginxxx]

type=friend

secret=anothersecretpassword

context= myczechsipprovider

Extensions like

 _00421XXXXXXXXX! => {

 Dial(SIP/${EXTEN}@12345678,${RINGTIME},tT);

 Congestion;

 }

from the previous sample should never be accessible by anonymous users !

Special care should be taken also with use of pattern matching extensions. Asterisk by
default waits for another digit input if it has more than one extension matching number
dialed so far. In case there are no more digits coming for a preconfigured time, it will run first
dialplan matching dialed number, which is NOT the first one defined in the dialplan
configuration, because the order of extensions considered by asterisk may be different that
you define.

Be sure to take into account various other serious security problems arising from use
various dialplan applications, like “System”, “Record” and similar, accessing your filesystem
or operating system directly. If various variables are used insecurely, they can provide simple
gateway straight into your system by running shell commands of attacker's choice or
rewriting critical system files. In the dialplan configuration same rules apply as in other
information security areas – never trust user input and provided data, it may be tainted and
contain malicious content resulting in command injection etc.

Following diaplan could have really disastrous consequences for your system once
exploited, because malicious user can in many cases set his CALLERID to whatever he wants
(name; shutdown -h now for example):

Asterisk Hardening Guide by Nethemba s.r.o. is licensed under a Creative Commons Attribution 3.0 Unported License.

http://creativecommons.org/licenses/by/3.0/
https://www.nethemba.com/voip-secure-solutions

\

 666 => {

 System(echo huhu ${CALLERID} >> /tmp/calllog);

 Playback(bye);

 };

2.12 Log to remote servers

By default asterisk logs its activity, including failed logins, into local file, most
often /var/log/asterisk/messages. For the purposes of eventual abuse or post-crime
investigation, it is necessary to have access to all log records with the assurance no-one could
manipulate these (when asterisk machine is hacked).

Asterisk logging can be extended to standard unix “syslog” logging, which can be
redirected to remote or multiple remote locations. Logging in asterisk is configured in
logger.conf and syslog logging can be turned on like in the following example:

syslog.local0 => notice,warning,error

or

syslog.local0 => *

In the first sample, only messages with notice, warning and error priority are logged to
syslog facility local0, in the second sample, all messages go to the same syslog facility.

Redirecting logs with facility configured previously in asterisk's logger.conf to remote
host via UDP in rsyslog logger daemon, for example, is done with the following directive in
rsyslog.conf:

local0.* @10.0.0.133

And via TCP:

Asterisk Hardening Guide by Nethemba s.r.o. is licensed under a Creative Commons Attribution 3.0 Unported License.

http://creativecommons.org/licenses/by/3.0/
https://www.nethemba.com/voip-secure-solutions

\

local0.* @@10.0.0.134

The best option for remote syslog logging provides new RELP protocol supported by
rsyslog. In this case, rsyslog is able to provide reliable syslog message delivery to destination
and in case it becomes unreachable for a time, it spools all messages into preconfigured spool
file. Messages are then delivered later, when remote logger daemon becomes reachable again.

In order to achieve reliable syslog delivery, add following options in rsyslog.conf:

$ModLoad imrelp

$ModLoad omrelp

$InputRELPServerRun 2514

The first 2 options load necessary modules (rsyslog is modular), last creates RELP
listener on TCP port 2514. Next, append:

$WorkDirectory /var/spool/rsyslog # where to place spool files

$ActionQueueFileName centralsyslog # spool file prefix for this
destination

$ActionQueueMaxDiskSpace 1g # 1gb space limit

$ActionQueueSaveOnShutdown on # save messages to disk on shutdown

$ActionQueueType LinkedList # run asynchronously

$ActionResumeRetryCount ­1 # infinite retries if host is down

local0.*
:omrelp:10.0.0.10:2514;RSYSLOG_ForwardFormat

If SELinux MAC security is enabled, choose spool directory with proper security labels,
otherwise logging would not work (rsyslog will not use RELP – check your security audit
logs).

2.13 Put asterisk on diet – disable unnecessary functionality

Asterisk Hardening Guide by Nethemba s.r.o. is licensed under a Creative Commons Attribution 3.0 Unported License.

http://creativecommons.org/licenses/by/3.0/
https://www.nethemba.com/voip-secure-solutions

\

Default installation of asterisk includes wide range of functionality, in loaded modules
and configuration files, much of them never will be used in your deployment scenario. For
example, if you do not use or plan to use H323 as your voice communication channel, it's
better not to compile, load or configure H323 support at all.

The first step available for minimizing asterisk functionality profile is compilation
process. Select only necessary channel providers, applications or dialplan functions. This
detailed upfront selection may be a bit daunting process and may take considerable time to
check every item in each selection menu, but pays off at the end. You get asterisk with
minimal necessary functionality, you risk less code bugs and crashes compiled in, you are
exposed to much narrower attacking surface and, finally, you may save some computing
resources as well.

Asterisk Hardening Guide by Nethemba s.r.o. is licensed under a Creative Commons Attribution 3.0 Unported License.

http://creativecommons.org/licenses/by/3.0/
https://www.nethemba.com/voip-secure-solutions

\

The second way of lowering asterisk's functionality footprint is to disable loading of
selected modules when autoloading of modules is enabled. This is done with “noload”
directive in modules.conf configuration file. For example, if your asterisk deployment does
not use IAX2 protocol and voicemail, fax or similar functionality, you would disable loading
corresponding modules as in the following sample:

noload = chan_iax2.so

noload = app_voicemail.so

noload = app_minivm.so

Asterisk Hardening Guide by Nethemba s.r.o. is licensed under a Creative Commons Attribution 3.0 Unported License.

http://creativecommons.org/licenses/by/3.0/
https://www.nethemba.com/voip-secure-solutions

\

noload = res_fax.so

noload = pbx_dundi.so

…

The list of modules loaded in running instance of asterisk can be obtained from asterisk's
console using “module show” command. The output will look similar to following sample:

res_calendar.so Asterisk Calendar integration
1

res_ael_share.so share­able code for AEL
0

res_crypto.so Cryptographic Digital Signatures
0

res_smdi.so Simplified Message Desk
Interface (SMDI) 0

res_adsi.so ADSI Resource
0

res_srtp.so Secure RTP (SRTP)
0

res_monitor.so Call Monitoring Resource
0

res_stun_monitor.so STUN Network Monitor
0

res_speech.so Generic Speech Recognition API
0

res_agi.so Asterisk Gateway Interface
(AGI) 1

…

…

The third column from the previous output represents how many times the given module is
used, zero means it is not currently used (however, it may be user just a few seconds after you
get this output, in case there's a new ongoing call that will utilize few codec modules, function
modules, channel module etc).

Asterisk Hardening Guide by Nethemba s.r.o. is licensed under a Creative Commons Attribution 3.0 Unported License.

http://creativecommons.org/licenses/by/3.0/
https://www.nethemba.com/voip-secure-solutions

\

You can also unload currently unused module with “module unload modulename.so”
command from console or via asterisk AGI.

Here is short list of possible modules for eventual consideration of “noloading”:

• chan_agent.so: Used for the ACD see more information in
Asterisk Agents docs

• chan_h323.so: H.323 VoIP driver. See Asterisk H323 Channels.

• chan_iax.so: IAX version 1, see Asterisk IAX channels

• chan_iax2.so: IAX version 2.

• chan_local.so: Local Proxy Channel. See Asterisk local channels

• chan_mgcp.so: MGCP VoIP protocol. See Asterisk MGCP channels

• chan_modem.so: Base driver for modems. See Asterisk modem
channels

• chan_modem_aopen.so chan_modem_bestdata.so: Old attempts to
make voice modems work.

• chan_modem_i4l.so: ISDN modem driver, alternative to the CAPI
driver.

• chan_oss.so: OSS sound driver, turns sound card into phone
channel.

• chan_phone.so: Linejack cards driver.

• chan_sip.so: SIP VoIP driver. See Asterisk SIP Channels

• chan_skinny.so: Skinny VoIP driver. Used by Cisco call manager.
See Asterisk skinny channels

• chan_zap.so: Zapata channel driver. See Asterisk ZAP Channels

• codec_a_mu.so: A­law and Mulaw direct Coder/Decoder. G711

• codec_adpcm.so: Adaptive Differential PCM Coder/Decoder.

• codec_alaw.so: A­law Coder/Decoder.

• codec_gsm.so: GSM/PCM16 (signed linear) Codec Translator.

• codec_ilbc.so: iLBC/PCM16 (signed linear) Codec Translator.

• codec_lpc10.so: LPC10 2.4kbps (signed linear) Voice Coder.

• codec_ulaw.so: Mu­law Coder/Decoder.

Asterisk Hardening Guide by Nethemba s.r.o. is licensed under a Creative Commons Attribution 3.0 Unported License.

http://creativecommons.org/licenses/by/3.0/
https://www.nethemba.com/voip-secure-solutions

\

• format_g729.so: Raw G729 data. Requires license

• format_gsm.so: Raw GSM data.

• format_h263.so: Raw h263 data.

• format_jpeg.so: JPEG (Joint Picture Experts Group) Image
Format.

• format_pcm.so: Raw uLaw 8khz Audio support (PCM).

• format_pcm_alaw.so: Raw aLaw 8khz PCM Audio support.

• format_vox.so: Dialogic VOX (ADPCM) File Format.

• format_wav.so: Microsoft WAV format (8000hz Signed Linear).

• format_wav_gsm.so: Microsoft WAV format (Proprietary GSM).

• pbx_config.so: Text Extension Configuration.

• pbx_spool.so: Outgoing Spool Support Asterisk auto­dial out.

• pbx_wilcalu.so: Wil Cal U Auto Dialer.

• res_adsi.so: Resource for ADSI applications.

• res_agi.so: Asterisk Gateway Interface. See Asterisk AGI

• res_crypto.so: Resource for cryptographic applications.

• res_indications.so: Resource for
indications(ring,busy,congestion,dialtone). See Asterisk config
indications.conf

• res_monitor.so: Resource for recording channels.

• res_musiconhold.so: resource for music on hold. See Asterisk
cmd musiconhold

• res_features.so: resource for parking calls (using
features.conf).

2.14 Other common security related advices

• Keep previous versions / binaries of asterisk. In case you are using compiled
versions of asterisk, it can be handy and life-saver to have previous, functional
and tested version by hand, if newer version manifest itself problematic and
asterisk service can be quickly reversed back to the previous functioning state.
One of possible means of achieving this is to use

Asterisk Hardening Guide by Nethemba s.r.o. is licensed under a Creative Commons Attribution 3.0 Unported License.

http://creativecommons.org/licenses/by/3.0/
https://www.nethemba.com/voip-secure-solutions

\

“configure –prefix=/usr/local/asterisk-x.y.z” schema for having each version
of asterisk in it's own directory (eg. /usr/local/asterisk-1.6.2,
/usr/local/asterisk-1.8.7.2, etc).

• Use stable asterisk versions – this rule applies to almost every kind of software.
Trying experimental, testing and patched code may result in stability and
security problems as well.

• Use hardware echo cancelers – the more you offload your CPU , the more
channels can be served with asterisk and thus you are more compliant with
“service availability” security paradigm.

• Regularly update your Zaptel hardware cards with latest fixes and firmware,
especially if you are experiencing stability problems using these devices.

Asterisk Hardening Guide by Nethemba s.r.o. is licensed under a Creative Commons Attribution 3.0 Unported License.

http://creativecommons.org/licenses/by/3.0/
https://www.nethemba.com/voip-secure-solutions

\

3 References

• http://www.ietf.org/rfc/rfc3261.txt

• http://www.voip-info.org/

• http://www.asterisk.org/

• http://www.voipsa.org/

• http://www.hackingvoip.com/

• http://www.wikipedia.org/

Asterisk Hardening Guide by Nethemba s.r.o. is licensed under a Creative Commons Attribution 3.0 Unported License.

http://www.wikipedia.org/
http://creativecommons.org/licenses/by/3.0/
https://www.nethemba.com/voip-secure-solutions
http://www.hackingvoip.com/
http://www.voipsa.org/
http://www.asterisk.org/
http://www.voip-info.org/
http://www.ietf.org/rfc/rfc3261.txt

	1 Foreword
	2 Securing Asterisk
	2.1 Encrypt signaling – use TLS as SIP transport
	2.2 Encrypt voice – deploy SRTP
	2.3 Restrict SIP clients on IP addresses
	2.4 Protect your asterisk box with firewall
	2.5 Do not let bad guys enter in – deploy IPS in front of your Asterisk
	2.6 Monitor critical files for changes
	2.7 Hide your identity
	2.8 Harden valid SIP extension discovery
	2.9 Use strong passwords, really
	2.10 Know how to failover
	2.11 Protect your dialplans
	2.12 Log to remote servers
	2.13 Put asterisk on diet – disable unnecessary functionality
	2.14 Other common security related advices

	3 References

