
APPLICATION

SECURITY

INTRODUCTION

- OVERVIEW

Joas Antnio

Details

This pdf brings some concepts and study

materials for those who want to get

started in the field of application security.

https://www.linkedin.com/in/joas-

antonio-dos-santos

https://www.linkedin.com/in/joas-antonio-dos-santos

ATTACKS AND

VULNERABILITIES
https://www.linkedin.com/in/joas-

antonio-dos-santos

https://www.linkedin.com/in/joas-antonio-dos-santos

Most

Commons

Application

Attacks -

XSS

A recent s tudy by Precise Secur i ty found that the XSS at tack

is the most common cyberat tack making up approximately

40% of al l at tacks . Even though i t ’s the most f requent one,

most of these at tacks aren’ t very sophist icated and are

executed by amateur cyber cr iminals us ing scr ipts that

o thers have created.

Cross-s i te scr ipt ing targets the users of a s i te ins tead of the

web appl icat ion i tse l f . The mal ic ious hacker inserts a p iece

of code in to a vu lnerable webs i te, which is then executed by

the webs i te ’s v is i tor. The code can compromise the user ’s

accounts, ac t ivate Tro jan horses or modi fy the webs i te ’s

content to t r ick the user in to g iv ing out pr ivate in format ion.

You can protect your webs i te against XSS at tacks by set t ing

up a web appl icat ion f i rewal l (WAF). WAF acts as a f i l ter that

ident i f ies and b locks any mal ic ious requests to your webs i te.

Usual ly, web host ing companies a l ready have WAF in p lace

when you purchase the ir service, but you can a lso set i t up

yoursel f .

https://www.tripwire.com/state-of-
security/featured/most-common-website-security-
attacks-and-how-to-protect-yourself/

https://www.precisesecurity.com/articles/cross-site-scripting-xss-makes-nearly-40-of-all-cyber-attacks-in-2019/
https://www.tripwire.com/state-of-security/featured/most-common-website-security-attacks-and-how-to-protect-yourself/

XSS (Cross

Site

Scripting) -

Types

S t o r e d X S S (A K A P e r s i s t e n t o r T y p e I)

S t o r e d X S S g e n e r a l l y o c c u r s w h e n u s e r i n p u t i s s t o r e d o n t h e t a r g e t s e r v e r ,

s u c h a s i n a d a t a b a s e , i n a m e s s a g e f o r u m , v i s i t o r l o g , c o m m e n t f i e l d , e t c . A n d

t h e n a v i c t i m i s a b l e t o r e t r i e v e t h e s t o r e d d a t a f r o m t h e w e b a p p l i c a t i o n

w i t h o u t t h a t d a t a b e i n g m a d e s a f e t o r e n d e r i n t h e b r o w s e r . W i t h t h e a d v e n t o f

H T M L 5 , a n d o t h e r b r o w s e r t e c h n o l o g i e s , w e c a n e n v i s i o n t h e a t t a c k p a y l o a d

b e i n g p e r m a n e n t l y s t o r e d i n t h e v i c t i m ’ s b r o w s e r , s u c h a s a n H T M L 5 d a t a b a s e ,

a n d n e v e r b e i n g s e n t t o t h e s e r v e r a t a l l .

R e f l e c t e d X S S (A K A N o n - P e r s i s t e n t o r T y p e I I)

R e f l e c t e d X S S o c c u r s w h e n u s e r i n p u t i s i m m e d i a t e l y r e t u r n e d b y a w e b

a p p l i c a t i o n i n a n e r r o r m e s s a g e , s e a r c h r e s u l t , o r a n y o t h e r r e s p o n s e t h a t

i n c l u d e s s o m e o r a l l o f t h e i n p u t p r o v i d e d b y t h e u s e r a s p a r t o f t h e r e q u e s t ,

w i t h o u t t h a t d a t a b e i n g m a d e s a f e t o r e n d e r i n t h e b r o w s e r , a n d w i t h o u t

p e r m a n e n t l y s t o r i n g t h e u s e r p r o v i d e d d a t a . I n s o m e c a s e s , t h e u s e r p r o v i d e d

d a t a m a y n e v e r e v e n l e a v e t h e b r o w s e r (s e e D O M B a s e d X S S n e x t) .

D O M B a s e d X S S (A K A T y p e - 0)

A s d e f i n e d b y A m i t K l e i n , w h o p u b l i s h e d t h e f i r s t a r t i c l e a b o u t t h i s i s s u e [1] ,

D O M B a s e d X S S i s a f o r m o f X S S w h e r e t h e e n t i r e t a i n t e d d a t a f l o w f r o m

s o u r c e t o s i n k t a k e s p l a c e i n t h e b r o w s e r , i . e . , t h e s o u r c e o f t h e d a t a i s i n t h e

D O M , t h e s i n k i s a l s o i n t h e D O M , a n d t h e d a t a f l o w n e v e r l e a v e s t h e b r o w s e r .

F o r e x a m p l e , t h e s o u r c e (w h e r e m a l i c i o u s d a t a i s r e a d) c o u l d b e t h e U R L o f t h e

p a g e (e . g . , d o c u m e n t . l o c a t i o n . h r e f) , o r i t c o u l d b e a n e l e m e n t o f t h e H T M L , a n d

t h e s i n k i s a s e n s i t i v e m e t h o d c a l l t h a t c a u s e s t h e e x e c u t i o n o f t h e m a l i c i o u s

d a t a (e . g . , d o c u m e n t . w r i t e) .

https://owasp.org/www-
community/Types_of_Cross-Site_Scripting

https://owasp.org/www-community/attacks/xss/#stored-xss-attacks
https://owasp.org/www-community/attacks/xss/#reflected-xss-attacks
https://owasp.org/www-community/attacks/DOM_Based_XSS
https://owasp.org/www-community/Types_of_Cross-Site_Scripting

Most

Commons

Application

Attacks -

Injection

The Open Web Appl icat ion Secur i ty Pro ject (OWASP) in

the ir la test Top Ten research named in ject ion f laws as the

highest r isk factor for websites . The SQL in ject ion method

is the most popular pract ice used by cyber cr iminals in th is

category.

The in ject ion at tack methods target the webs i te and the

server ’s database d i rect ly. When executed, the at tacker

inserts a p iece of code that reveals h idden data and user

inputs, enables data modi f icat ion and genera l ly compromises

the appl icat ion.

Protect ing your webs i te against in ject ion -based at tacks

mainly comes down to how wel l you’ve bui l t your codebase.

For example, the number one way to mi t igate a SQL in ject ion

r isk is to a lways use parameter ized s tatements where

avai lable, among other methods . Fur thermore, you can

consider us ing a th i rd -party authent icat ion work f low to out -

source your database protect ion.

https://www.tripwire.com/state-of-
security/featured/most-common-website-security-
attacks-and-how-to-protect-yourself/

https://owasp.org/www-project-top-ten/2017/
https://www.hacksplaining.com/prevention/sql-injection
https://www.tripwire.com/state-of-security/featured/most-common-website-security-attacks-and-how-to-protect-yourself/

Most

Commons

Application

Attacks –

Unvalidated

Redirects and

Forwards

This category of vulnerabil it ies is used in phishing

attacks in which the victim is tricked into navigating

to a malicious site. Attackers can manipulate the

URLs of a trusted site to redirect to an unwanted

location.

https://securityintelligence.com/the-10-most-
common-application-attacks-in-action/

https://securityintelligence.com/the-10-most-common-application-attacks-in-action/

Most

Commons

Application

Attacks –

SQL

Injection

An SQL in ject ion attack i s when attackers in ject mal ic ious SQL

scr ipts 1 into a web appl icat ion to ga in access to the database

stored in the ser ver. A common way for hackers to do that i s

by in ject ing h idden SQL quer ies 2 in web forms (e . g . log in

form). Usual ly, when a user inputs thei r informat ion in the

form and h i ts the “ log in” button, an SQL query would be sent

to the database to request that user ’s information. However,

when hackers in ject a mal ic ious SQL quer y, they could

request a l l k inds of data f rom the database. By then, the

hacker would be ab le to eas i ly v iew, change, or delete data

and potentia l ly para lyze the ent i re system from funct ioning.

Since most web appl icat ions have databases stored in thei r

ser vers , these appl icat ions become attract ive targets for SQL

in ject ion, leading to breaches of sens i t ive information.

https://www.pentasecurity.com/blog/top-7-
common-types-cyberattacks-web-applications/

https://www.pentasecurity.com/blog/top-7-common-types-cyberattacks-web-applications/

SQL

Injection -

Types

In -band SQLi

The attacker uses the same channel o f communicat ion to launch

the i r attacks and to gather the i r resu l ts . In -band SQLi ’s s impl i c i ty

and ef f i c iency make i t one o f the most common types o f SQL i

attack . There are two sub -var iat ions o f th i s method:

•Er ror -based SQLi — the attacker per forms act ions that cause the

database to produce er ror messages . The attacker can potent ia l l y

use the data prov ided by these er ror messages to gather

informat ion about the st ructure o f the database.

•Union-based SQLi — th i s technique takes advantage o f the UN ION

SQL operator, which fuses mul t ip le se lect s tatements generated

by the database to get a s ing le HT TP response. Th i s response

may conta in data that can be leveraged by the attacker.

https://www.imperva.com/learn/application-
security/sql-injection-sqli/

https://www.imperva.com/learn/application-security/sql-injection-sqli/

SQL

Injection –

Types 2

I n f e r e n t i a l (B l i n d) S Q L i

T h e a t t a c k e r s e n d s d a t a p a y l o a d s t o t h e s e r v e r a n d o b s e r v e s t h e r e s p o n s e a n d

b e h a v i o r o f t h e s e r v e r t o l e a r n m o r e a b o u t i t s s t r u c t u r e . T h i s m e t h o d i s c a l l e d b l i n d

S Q L i b e c a u s e t h e d a t a i s n o t t r a n s f e r r e d f r o m t h e w e b s i t e d a t a b a s e t o t h e a t t a c k e r ,

t h u s t h e a t t a c k e r c a n n o t s e e i n f o r m a t i o n a b o u t t h e a t t a c k i n - b a n d .

B l i n d S Q L i n j e c t i o n s r e l y o n t h e r e s p o n s e a n d b e h a v i o r a l p a t t e r n s o f t h e s e r v e r s o

t h e y a r e t y p i c a l l y s l o w e r t o e x e c u t e b u t m a y b e j u s t a s h a r m f u l . B l i n d S Q L i n j e c t i o n s

c a n b e c l a s s i f i e d a s f o l l o w s :

•B o o l e a n — t h a t a t t a c k e r s e n d s a S Q L q u e r y t o t h e d a t a b a s e p r o m p t i n g t h e

a p p l i c a t i o n t o r e t u r n a r e s u l t . T h e r e s u l t w i l l v a r y d e p e n d i n g o n w h e t h e r t h e q u e r y

i s t r u e o r f a l s e . B a s e d o n t h e r e s u l t , t h e i n f o r m a t i o n w i t h i n t h e H T T P r e s p o n s e w i l l

m o d i f y o r s t a y u n c h a n g e d . T h e a t t a c k e r c a n t h e n w o r k o u t i f t h e m e s s a g e g e n e r a t e d

a t r u e o r f a l s e r e s u l t .

•T i m e - b a s e d — a t t a c k e r s e n d s a S Q L q u e r y t o t h e d a t a b a s e , w h i c h m a k e s t h e

d a t a b a s e w a i t (f o r a p e r i o d i n s e c o n d s) b e f o r e i t c a n r e a c t . T h e a t t a c k e r c a n s e e

f r o m t h e t i m e t h e d a t a b a s e t a k e s t o r e s p o n d , w h e t h e r a q u e r y i s t r u e o r f a l s e .

B a s e d o n t h e r e s u l t , a n H T T P r e s p o n s e w i l l b e g e n e r a t e d i n s t a n t l y o r a f t e r a w a i t i n g

p e r i o d . T h e a t t a c k e r c a n t h u s w o r k o u t i f t h e m e s s a g e t h e y u s e d r e t u r n e d t r u e o r

f a l s e , w i t h o u t r e l y i n g o n d a t a f r o m t h e d a t a b a s e .

https://www.imperva.com/learn/application-
security/sql-injection-sqli/

https://www.imperva.com/learn/application-security/sql-injection-sqli/

SQL

Injection –

Types 3

Out-of-band SQLi

The attacker can only carry out this form of attack when

certain features are enabled on the database server used

by the web application. This form of attack is primari ly

used as an alternative to the in -band and inferential SQLi

techniques.

Out-of-band SQLi is performed when the attacker can’t use

the same channel to launch the attack and gather

information, or when a server is too s low or unstable for

these act ions to be performed. These techniques count on

the capacity of the server to create DNS or HTTP requests

to transfer data to an attacker.

https://www.imperva.com/learn/application-
security/sql-injection-sqli/

https://www.imperva.com/learn/application-security/sql-injection-sqli/

Most

Commons

Application

Attacks –

Path

Traversal

A path traversal (or directory traversal) attack is an

appl ication attack that targets the root directory of

an appl ication. Normally a result of a manipulated

dot-slash sequence, path traversal attacks tr ick

appl ications into al lowing access into server f i les

where al l of the information within a system rests.

Accessed data can include user credentials, access

tokens, and even entire system backups that hold

everything from sensit ive data to system access

controls.

https://www.contrastsecurity.com/knowledge-
hub/glossary/application-attacks

https://www.contrastsecurity.com/knowledge-hub/glossary/path-traversal-or-directory-traversal?hsLang=en
https://www.contrastsecurity.com/knowledge-hub/glossary/application-attacks

Most

Commons

Application

Attacks –

Session

Hijacking

A session hi jacking attack tampers with session

IDs. This unique ID is used to label a user ’s t ime

onl ine, keeping track of al l activity for faster and

more eff icient future logins. Depending on the

strength of the session ID, attackers could capture

and manipulate the session ID, launching a session

hi jacking attack. If successful, attackers wi l l have

access to al l information passed through the server

for that part icular session, gett ing ahold of user

credentials to access personal accounts.

https://www.contrastsecurity.com/knowledge-
hub/glossary/application-attacks

https://www.contrastsecurity.com/knowledge-hub/glossary/session-hijacking?hsLang=en
https://www.contrastsecurity.com/knowledge-hub/glossary/application-attacks

Most

Commons

Application

Attacks –

CSRF

Cross-Site Request Forgery (CSRF) is an attack that

forces an end user to execute unwanted act ions on a web

appl ication in which they’ re current ly authenticated. With

a l i t t le help of social engineering (such as sending a l ink

v ia emai l or chat) , an attacker may tr ick the users of a

web appl ication into execut ing act ions of the attacker ’s

choosing. I f the v ict im is a normal user , a successful

CSRF attack can force the user to perform state changing

requests l ike t ransferr ing funds, changing their emai l

address, and so forth. I f the v ict im is an administrat ive

account, CSRF can compromise the ent ire web

appl ication.

https://owasp.org/www-community/attacks/csrf

https://owasp.org/www-community/attacks/csrf

Most

Commons

Application

Attacks –

DDoS

T he DDoS a t t ack a l one does n ’ t a l l ow t he m a l i c i ous hac k e r t o b r each t he

s ec u r i t y bu t w i l l t empora r i l y o r pe r manen t l y r ende r t he s i t e

o f f l i ne . Kas pe r sk y Lab ’ s I T Sec u r i t y R i s k s Su r vey i n 2017 c onc luded t ha t

a s i ng le DDoS a t t ack c os t s s m a l l bus ines ses $123K and l a r g e en t e rp r i ses

$2 . 3M on ave r age .

T he DDoS a t t ack a im s t o ove r whe lm t he t a rge t ’ s web s e r ve r w i t h

r eq ues ts , m ak ing t he s i t e unava i l ab le f o r o t he r v i s i t o r s . A bo t ne t us ua l l y

c r ea tes a vas t num be r o f r eq ues ts , wh i c h i s d i s t r i bu ted am ong p r ev ious l y

i n f ec ted c om pute rs . A l s o , DDoS a t t acks a r e o f t en us ed t oge the r w i t h

o t he r m e t hods ; t he f o rme r ’ s g oa l i s t o d i s t rac t t he s ec u r i t y s ys t ems wh i l e

exp lo i t i ng a vu lne r ab i l i t y .

P r o t ec t i ng you r s i t e ag a ins t a DDoS a t t ack i s g ene ra l l y m u l t i - f ac e ted .

F i r s t , you need t o m i t i ga te t he peak ed t r a f f i c by us ing a Con t en t De l i ve r y

Ne t wo r k (CDN) , a l oad ba lanc e r and s c a lab le r es ources . Sec ond l y , you

a l s o need t o dep loy a W eb App l i c a t i on F i r ewa l l i n c as e t he DDoS a t t ack

i s c onc ea l i ng ano t he r c ybe r a t t ack m e t hod , s uc h as an i n j ec t i on o r X SS .

https://www.tripwire.com/state-of-
security/featured/most-common-website-security-
attacks-and-how-to-protect-yourself/

https://usa.kaspersky.com/about/press-releases/2018_ddos-breach-costs-rise-to-over-2m-for-enterprises-finds-kaspersky-lab-report
https://aws.amazon.com/shield/ddos-attack-protection/
https://www.tripwire.com/state-of-security/featured/most-common-website-security-attacks-and-how-to-protect-yourself/

Most

Commons

Application

Attacks –

IDOR

Insecure D i rect Object Reference (cal led IDOR from

here) occurs when a application exposes a

reference to an internal implementation object.

Using this way, i t reveals the real identifier and

format/pattern used of the element in the storage

backend side. The most common example of i t

(although is not l imited to this one) is a record

identifier in a storage system (database, f i lesystem

and so on).

https://cheatsheetseries.owasp.org/cheatsheets/Ins
ecure_Direct_Object_Reference_Prevention_Cheat_
Sheet.html

https://cheatsheetseries.owasp.org/cheatsheets/Insecure_Direct_Object_Reference_Prevention_Cheat_Sheet.html

Most

Commons

Application

Attacks –

CRLF

The term CRLF refers to Carr iage Return (ASCII 13, \r)

L ine Feed (ASCII 10, \n). They’re used to note the

termination of a l ine, however, dealt with differently in

today’s popular Operating Systems. For example: in

Windows both a CR and LF are required to note the end

of a l ine, whereas in Linux/UNIX a LF is only required. In

the HTTP protocol , the CR -LF sequence is always used

to terminate a l ine.

A CRLF Injection attack occurs when a user manages to

submit a CRLF into an appl ication. This is most

commonly done by modifying an HTTP parameter or URL.

https://owasp.org/www-
community/vulnerabilities/CRLF_Injection

https://owasp.org/www-community/vulnerabilities/CRLF_Injection

Most

Commons

Application

Attacks –

Race

Condition

I n a n y c o m p u t i n g s y s t e m , t h e r e a r e s o m e t a s k s t h a t n e e d t o b e c o m p l e t e d i n a

s p e c i f i c o r d e r . F o r e x a m p l e , b e f o r e a l l o w i n g s o m e o n e t o l o g i n , a s e c u r i t y

s y s t e m f i r s t r e c e i v e s t h e i r u s e r n a m e a n d p a s s w o r d a n d t h e n c h e c k s i t a g a i n s t a

d a t a b a s e b e f o r e a l l o w i n g a c c e s s . A t t a c k e r s c a n e x p l o i t t h i s f a c t b y i n t e r f e r i n g

w i t h p r o c e s s e s t o a c c e s s s e c u r e a r e a s a n d c o n t e n t i n w h a t ' s k n o w n a s a r a c e

c o n d i t i o n a t t a c k .

R a c e c o n d i t i o n a t t a c k s (a l s o c a l l e d T i m e o f C h e c k t o T i m e o f U s e , o r T O C T T O U

a t t a c k s) t a k e a d v a n t a g e o f t h e n e e d t h a t c o m p u t i n g s y s t e m s m u s t e x e c u t e

s o m e t a s k s i n a s p e c i f i c s e q u e n c e . I n a n y s u c h s e q u e n c e , t h e r e i s a s m a l l

p e r i o d o f t i m e w h e n t h e s y s t e m h a s c a r r i e d o u t t h e f i r s t t a s k b u t n o t s t a r t e d

o n t h e s e c o n d . I f t h i s p e r i o d i s l o n g e n o u g h o r t h e a t t a c k e r i s l u c k y a n d

k n o w l e d g e a b l e , a r a c e c o n d i t i o n v u l n e r a b i l i t y e x i s t s w h e r e a n a t t a c k e r c a n

t r i c k t h e s y s t e m i n t o c a r r y i n g o u t u n a u t h o r i z e d a c t i o n s i n a d d i t i o n t o i t s

n o r m a l p r o c e s s e s .

https://www.veracode.com/security/race-condition

https://www.veracode.com/security/race-condition

Most Commons

Application

Attacks –

Insecure

Deserialization

I n s ecure des e r i a l i za t i on i s when us e r - c on t ro l l ab le da t a i s des e r i a l i zed by

a webs i t e . T h i s po t en t i a l l y enab les an a t t acker t o m an ipu la te s e r i a l i zed

ob j ec t s i n o r de r t o pas s ha r mfu l da t a i n t o t he app l i c a t i on c ode .

I t i s even pos s ib l e t o r ep lac e a s e r i a l i zed ob j ec t w i t h an ob j ec t o f an

en t i r e l y d i f f e ren t c l as s . A la r m ing l y , ob j ec t s o f any c l as s t ha t i s ava i l ab le

t o t he webs i t e w i l l be des e r i a l i zed and i ns t an t i a ted , r eg ard less o f wh i c h

c l as s was expec t ed . Fo r t h i s r eas on , i n s ec u re des e r i a l i za t i on i s

s om et imes k nown as an " ob j ec t i n j ec t i on " vu lne r ab i l i t y .

An ob j ec t o f an unexpec ted c l as s m ig h t c aus e an exc ep t i on . By t h i s t im e ,

howeve r , t he dam age m ay a l r eady be done . Many des e r i a l i za t i on -bas ed

a t t ack s a r e c om p le ted be f ore des e r i a l i za t i on i s f i n i s hed . T h i s m eans t ha t

t he des e r i a l i za t i on p r oc es s i t s e l f c an i n i t i a t e an a t t ack , even i f t he

webs i t e ' s own f unc t i ona l i t y does no t d i r ec t l y i n t e rac t w i t h t he m a l i c i ous

ob j ec t . Fo r t h i s r eas on , webs i t es whos e l og i c i s bas ed on s t r ong l y t yped

l ang uages c an a l s o be vu lne r ab le t o t hes e t ec hn iques .

https://portswigger.net/web-security/deserialization

https://portswigger.net/web-security/deserialization

Common

Reasons for

Existence of

Application

Vulnerabilities

Common

Reasons for

Existence of

Application

Vulnerabilities

An application vulnerability is a system flaw or weakness in an
application that could be exploited to compromise the security
of the application. Once an attacker has found a flaw, or
application vulnerability, and determined how to access it, the
attacker has the potential to exploit the application
vulnerability to facilitate a cyber crime. These crimes target the
confidentiality, integrity, or availability (known as the “CIA
triad”) of resources possessed by an application, its creators,
and its users. Attackers typically rely on specific tools or
methods to perform application vulnerability discovery and
compromise. According to Gartner Security, the application
layer currently contains 90% of all vulnerabilities.

https://www.toptal.com/security/10-most-
common-web-security-vulnerabilities

https://www.veracode.com/security/application-
security-vulnerability-code-flaws-insecure-code

https://www.toptal.com/security/10-most-common-web-security-vulnerabilities
https://www.veracode.com/security/application-security-vulnerability-code-flaws-insecure-code

Most

Commons

Application

Attacks –

Failure to

Restrict URL

I f y o u r a p p l i c a t i o n f a i l s t o a p p r o p r i a t e l y r e s t r i c t U R L a c c e s s , s e c u r i t y c a n b e

c o m p r o m i s e d t h r o u g h a t e c h n i q u e c a l l e d f o r c e d b r o w s i n g . F o r c e d b r o w s i n g c a n

b e a v e r y s e r i o u s p r o b l e m i f a n a t t a c k e r t r i e s t o g a t h e r s e n s i t i v e d a t a t h r o u g h

a w e b b r o w s e r b y r e q u e s t i n g s p e c i f i c p a g e s , o r d a t a f i l e s .

U s i n g t h i s t e c h n i q u e , a n a t t a c k e r c a n b y p a s s w e b s i t e s e c u r i t y b y a c c e s s i n g

f i l e s d i r e c t l y i n s t e a d o f f o l l o w i n g l i n k s . T h i s e n a b l e s t h e a t t a c k e r t o a c c e s s

d a t a s o u r c e f i l e s d i r e c t l y i n s t e a d o f u s i n g t h e w e b a p p l i c a t i o n . T h e a t t a c k e r

c a n t h e n g u e s s t h e n a m e s o f b a c k u p f i l e s t h a t c o n t a i n s e n s i t i v e i n f o r m a t i o n ,

l o c a t e a n d r e a d s o u r c e c o d e , o r o t h e r i n f o r m a t i o n l e f t o n t h e s e r v e r , a n d

b y p a s s t h e " o r d e r " o f w e b p a g e s .

S i m p l y p u t , F a i l u r e t o R e s t r i c t U R L A c c e s s o c c u r s w h e n a n e r r o r i n a c c e s s -

c o n t r o l s e t t i n g s r e s u l t s i n u s e r s b e i n g a b l e t o a c c e s s p a g e s t h a t a r e m e a n t t o

b e r e s t r i c t e d o r h i d d e n . T h i s p r e s e n t s a s e c u r i t y c o n c e r n a s t h e s e p a g e s

f r e q u e n t l y a r e l e s s p r o t e c t e d t h a n p a g e s t h a t a r e m e a n t f o r p u b l i c a c c e s s , a n d

u n a u t h o r i z e d u s e r s a r e a b l e t o r e a c h t h e p a g e s a n o n y m o u s l y . I n m a n y c a s e s ,

t h e o n l y p r o t e c t i o n u s e d f o r h i d d e n o r r e s t r i c t e d p a g e s i s n o t l i n k i n g t o t h e

p a g e s o r n o t p u b l i c l y s h o w i n g l i n k s t o t h e m .

https://www.veracode.com/security/failure-restrict-
url-access

https://www.veracode.com/security/failure-restrict-url-access

3W’s

Application

Security

Most

Commons

Application

Attacks –

XXE

XML external ent i ty in ject ion (a lso known as XXE) is a web

secur i ty vu lnerabi l i ty that a l lows an at tacker to in ter fere wi th

an appl icat ion's processing of XML data. I t o f ten a l lows an

at tacker to view f i les on the appl icat ion server f i lesystem,

and to in teract wi th any back -end or external sys tems that

the appl icat ion i tse l f can access.

In some s i tuat ions, an at tacker can escalate an XXE at tack

to compromise the under ly ing server or o ther back -end

in f rastructure, by leveraging the XXE vulnerabi l i ty to

per form server-s ide request forgery (SSRF) at tacks.

https://portswigger.net/web-security/xxe

https://portswigger.net/web-security/ssrf
https://portswigger.net/web-security/xxe

Most

Commons

Application

Attacks –

SSRF

Server -s ide request forgery (a lso known as SSRF) is a web

secur i ty vu lnerabi l i ty that a l lows an at tacker to induce the

server-s ide appl icat ion to make HTTP requests to an

arb i t rary domain of the at tacker 's choosing.

In a typ ical SSRF at tack, the at tacker might cause the server

to make a connect ion to in ternal -only services wi th in the

organizat ion's in f rastructure. In o ther cases, they may be

able to force the server to connect to arb i t rary external

systems, potent ia l ly leak ing sensi t ive data such as

author izat ion credent ia ls .

https://portswigger.net/web-security/ssrf

https://portswigger.net/web-security/ssrf

Most

Commons

Application

Attacks –

Command

Injection

C o m m a n d i n j e c t i o n i s a n a t t a c k i n w h i c h t h e g o a l i s e x e c u t i o n o f a r b i t r a r y

c o m m a n d s o n t h e h o s t o p e r a t i n g s y s t e m v i a a v u l n e r a b l e a p p l i c a t i o n .

C o m m a n d i n j e c t i o n a t t a c k s a r e p o s s i b l e w h e n a n a p p l i c a t i on p a s s e s

u n s a f e u s e r s u p p l i e d d a t a (f o r m s , c o o k i e s , H T T P h e a d e r s e t c .) t o a

s y s t e m s h e l l . I n t h i s a t t a c k , t h e a t t a c k e r - su p p l i e d o p e r a t i n g s y s t e m

c o m m a n d s a r e u s u a l l y e x e c u t e d w i t h t h e p r i v i l e g e s o f t h e v u l n e r a b l e

a p p l i c a t i o n . C o m m a n d i n j e c t i o n a t t a c k s a r e p o s s i b l e l a r g e l y d u e t o

i n s u f f i c i e n t i n p u t v a l i d a t i o n .

T h i s a t t a c k d i f f e r s f r o m C o d e I n j e c t i o n , i n t h a t c o d e i n j e c t i on a l l o w s t h e

a t t a c k e r t o a d d t h e i r o w n c o d e t h a t i s t h e n e x e c u t e d b y t h e a p p l i c a t i o n .

I n C o m m a n d I n j e c t i o n , t h e a t t a c k e r e x t e n d s t h e d e f a u l t f u n c t i o n a l i t y o f

t h e a p p l i c a t i o n , w h i c h e x e c u t e s y s t e m c o m m a n d s , w i t h o u t t h e n e c e s s i t y

o f i n j e c t i n g c o d e .

https://owasp.org/www-
community/attacks/Command_Injection

https://owasp.org/www-community/attacks/Code_Injection
https://owasp.org/www-community/attacks/Command_Injection

APPLICATION

SECURITY
https://www.linkedin.com/in/joas-

antonio-dos-santos

https://www.linkedin.com/in/joas-antonio-dos-santos

Security

Software

Development

Process

SDLC

OWASP TOP

10

https://www.synopsys.com/glossary/what-is-
owasp-top-10.html

https://www.synopsys.com/glossary/what-is-owasp-top-10.html

WASC Threat

SAMM

https://owasp.org/www-project-samm/

Software Assurance Maturity Model
Our mission is to provide an effective and
measurable way for you to analyze and improve
your secure development lifecycle. SAMM supports the
complete software lifecycle and is technology and
process agnostic. We built SAMM to be evolutive and
risk-driven in nature, as there is no single recipe that
works for all organizations.

https://owasp.org/www-project-samm/

BSIMM

https://www.bsimm.com/about.html

The Building Security In Maturity Model (BSIMM,
pronounced “bee simm”) is a study of existing software
security initiatives. By quantifying the practices of many
different organizations, we can describe the common
ground shared by many as well as the variations that
make each unique.
BSIMM is not a how-to guide, nor is it a one-size-fits-all
prescription. Instead, it is a reflection of software
security.

https://www.bsimm.com/about.html

BSIMM vs

SAMM

BSIMM vs

SAMM

Security

Requeriment

Have you ever heard the old saying “You get what you get
and you don’t get upset”? While that may apply to after-
school snacks and birthday presents, it shouldn’t be the
case for software security. Software owners don’t just
accept any new software features that are deployed;
features must go through a strategic process of critique,
justification, and analysis before being deployed. Your
teams should treat security with the same attention to
detail. After all, secure software doesn’t just happen out of
nowhere—it has to be a requirement of the strategic
development process. To deploy secure software
effectively, you need clear, consistent, testable, and
measurable software security requirements.

https://www.synopsys.com/blogs/software-
security/software-security-requirements/

https://www.synopsys.com/blogs/software-security/software-security/
https://www.synopsys.com/blogs/software-security/software-security-requirements/

Good

Requeriment

Security

Types

Security

Requeriment

If you’re entrenched in the requirements or contracting
world, you’re already aware of the basic kinds of
requirements: functional, nonfunctional, and derived.
Software security requirements fall into the same
categories. Just like performance requirements define
what a system has to do and be to perform according to
specifications, security requirements define what a
system has to do and be to perform securely.
When defining functional nonsecurity requirements, you
see statements such as “If the scan button is pressed, the
lasers shall activate and scan for a barcode.” This is what
a barcode scanner needs to do. Likewise, a security
requirement describes something a system has to do to
enforce security. For example: “The cashier must log in
with a magnetic stripe card and PIN before the cash
register is ready to process sales.”

https://www.synopsys.com/blogs/software-
security/software-security-requirements/

https://www.synopsys.com/blogs/software-security/software-security-requirements/

Types

Security

Requeriment

Functional requirements describe what a system has to
do. So functional security requirements describe
functional behavior that enforces security. Functional
requirements can be directly tested and observed.
Requirements related to access control, data integrity,
authentication, and wrong password lockouts fall under
functional requirements.
Nonfunctional requirements describe what a system has
to be. These are statements that support auditability and
uptime. Nonfunctional security requirements are
statements such as “Audit logs shall be verbose enough
to support forensics.” Supporting auditability is not a
direct functionality requirement, but it supports
auditability requirements from regulations that might
apply.

https://www.synopsys.com/blogs/software-
security/software-security-requirements/

https://www.synopsys.com/blogs/software-security/software-security-requirements/

SRE Phases

https://www.softscheck.com/en/security-
consultancy/security-requirements-engineering/

https://www.softscheck.com/en/security-consultancy/security-requirements-engineering/

SRE Phases,

Analysis and

Priorization

https://www.softscheck.com/en/security-
consultancy/security-requirements-engineering/

https://www.researchgate.net/publication/2762849
84_Security_Requirements_Engineering_Analysis_a
nd_Prioritization

https://www.softscheck.com/en/security-consultancy/security-requirements-engineering/
https://www.researchgate.net/publication/276284984_Security_Requirements_Engineering_Analysis_and_Prioritization

SRE Phases,

Analysis and

Priorization

https://www.softscheck.com/en/security-
consultancy/security-requirements-engineering/

https://www.researchgate.net/publication/2762849
84_Security_Requirements_Engineering_Analysis_a
nd_Prioritization

https://www.softscheck.com/en/security-consultancy/security-requirements-engineering/
https://www.researchgate.net/publication/276284984_Security_Requirements_Engineering_Analysis_and_Prioritization

SRE Phases 2

https://www.softscheck.com/en/security-
consultancy/security-requirements-engineering/

https://www.researchgate.net/publication/2762849
84_Security_Requirements_Engineering_Analysis_a
nd_Prioritization

https://www.softscheck.com/en/security-consultancy/security-requirements-engineering/
https://www.researchgate.net/publication/276284984_Security_Requirements_Engineering_Analysis_and_Prioritization

Abuse Cases

Application

Security

https://cheatsheetseries.owas

p.org /cheatsheets /Abuse_Cas

e_Cheat_Sheet.html

https://www.synopsys.com/bl

ogs /software-security/abuse-

cases-can-drive-security-

requirements /

https://cheatsheetseries.owasp.org/cheatsheets/Abuse_Case_Cheat_Sheet.html
https://www.synopsys.com/blogs/software-security/abuse-cases-can-drive-security-requirements/

SQUARE

(System

Quality

Requeriments

Enginering)
https://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=484884

Requirements problems are the primary reason that projects are
significantly over budget and past schedule, have significantly
reduced scope, and deliver poor-quality applications that are little
used once delivered, or are cancelled altogether.
One source of these problems is poorly expressed or analyzed
quality requirements, such as security and privacy. Requirements
engineering defects cost 10 to 200 times more to correct during
implementation than if they are detected during requirements
development. Moreover, it is difficult and expensive to significantly
improve the security of an application after it is in its operational
environment.
Security Quality Requirements Engineering (SQUARE) is a nine-step
process that helps organizations build security, including privacy,
into the early stages of the production lifecycle. Instructional
materials are available for download that can be used to teach the
SQUARE method.

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=484884

SQUARE

(System

Quality

Requeriments

Enginering) -

Process

OCTAVE

OCTAVE is a flexible and self-directed risk assessment

methodology. A small team of people from the

operational (or business) units and the IT department

work together to address the security needs of the

organization. The team draws on the knowledge of many

employees to define the current state of security,

identify risks to critical assets, and set a security

strategy. It can be tailored for most organizations.

Unlike most other risk assessment methods the OCTAVE

approach is driven by operational risk and security

practices and not technology. It is designed to allow an

organization to:

• Direct and manage information security risk

assessments for themselves

• Make the best decisions based on their unique risks

• Focus on protecting key information assets

• Effectively communicate key security information

https://technology.ku.edu/octave-method-security-
assessment

https://technology.ku.edu/octave-method-security-assessment

OCTAVE

The OCTAVE method is based on eight processes that are

broken into three phases. In the higher education

organizations, it is usually preceded by an exploratory
phase (known as Phase Zero) to determine the criteria

that will be used during the application of the Octave

method.

The three phases of OCTAVE are:
• Phase 1: Develop initial security strategies

• Phase 2: Technological view — Identify infrastructure

vulnerabilities
• Phase 3: Risk analysis — Develop security strategy and

plans

https://technology.ku.edu/octave-method-security-
assessment

https://technology.ku.edu/octave-method-security-assessment

APPLICATION

SECURITY -

DESIGN

https://www.linkedin.com/in/joas-

antonio-dos-santos

https://www.linkedin.com/in/joas-antonio-dos-santos

Security

Design

https://www.researchgat

e.net /figure /10-Logical-

security-framework-of-

an-application-security-

provider_fig2_284509993

https://www.researchgate.net/figure/10-Logical-security-framework-of-an-application-security-provider_fig2_284509993

Security

Design -

OWASP

The OWASP Security Design Principles have been created to
help developers build highly secure web applications.

The OWASP security design principles are as follows:

Asset clarification
Before developing any security strategies, it is essential to
identify and classify the data that the application will handle.
OWASP suggests that programmers create security controls
that are appropriate for the value of the data being managed.
For example, an application processing financial information
must have much tighter restrictions than a blog or web forum.

Understanding attackers

OWASP recommends that all security controls should be
designed with the core pillars of information security in mind:
•Confidentiality – only allow access to data for which the user is
permitted
•Integrity – ensure data is not tampered or altered by
unauthorised users
•Availability – ensure systems and data are available to
authorised users when they need it

https://patchstack.com/security-
design-principles-owasp/

https://patchstack.com/security-design-principles-owasp/

Security

Principles

http://www.csun.edu/~je

ffw/Courses /COMP424/Le

ctures /Lecture11/HTML/i

mg39.html

http://www.csun.edu/~jeffw/Courses/COMP424/Lectures/Lecture11/HTML/img39.html

Security

Principles

https://searchsecurity.tec

htarget.com/feature /Secu

rity-for-applications-

What-tools-and-

principles-work

https://searchsecurity.techtarget.com/feature/Security-for-applications-What-tools-and-principles-work

Fundamental

Security

Design

Principles

The security design principles are considered while

designing any security mechanism for a system. These

principles are review to develop a secure system which

prevents the security flaws and also prevents unwanted

access to the system.

Below is the list of fundamental security design principles

provided by the National Centres of Academic Excellence

in Information Assurance/Cyber Defence, along with the

U.S. National Security Agency and the U.S. Department of

Homeland Security.

https://binaryterms.com/fundamenta
l-security-design-principles.html

https://binaryterms.com/fundamental-security-design-principles.html

Fundamental

Security

Design

Principles

1.Economy of Mechanism

2.Fail-safe Defaults

3.Complete Mediation

4.Open Design

5.Separation of Privilege

6.Least Privilege

7.Least Common Mechanism

8.Psychological Acceptability

9.Isolation

10.Encapsulation

11.Modularity

12.Layering

13.Least Astonishment

https://binaryterms.com/fundamenta
l-security-design-principles.html

https://binaryterms.com/fundamental-security-design-principles.html#EconomyofMechanism
https://binaryterms.com/fundamental-security-design-principles.html#Fail-safeDefaults
https://binaryterms.com/fundamental-security-design-principles.html#CompleteMediation
https://binaryterms.com/fundamental-security-design-principles.html#OpenDesign
https://binaryterms.com/fundamental-security-design-principles.html#SeparationofPrivilege
https://binaryterms.com/fundamental-security-design-principles.html#LeastPrivilege
https://binaryterms.com/fundamental-security-design-principles.html#LeastCommonMechanism
https://binaryterms.com/fundamental-security-design-principles.html#PsychologicalAcceptability
https://binaryterms.com/fundamental-security-design-principles.html#Isolation
https://binaryterms.com/fundamental-security-design-principles.html#Encapsulation
https://binaryterms.com/fundamental-security-design-principles.html#Modularity
https://binaryterms.com/fundamental-security-design-principles.html#Layering
https://binaryterms.com/fundamental-security-design-principles.html#LeastAstonishment
https://binaryterms.com/fundamental-security-design-principles.html

Security Design

Principles

Fundamental

Security

Design

Principles

1.Economy of Mechanism

2.Fail-safe Defaults

3.Complete Mediation

4.Open Design

5.Separation of Privilege

6.Least Privilege

7.Least Common Mechanism

8.Psychological Acceptability

9.Isolation

10.Encapsulation

11.Modularity

12.Layering

13.Least Astonishment

https://binaryterms.com/fundamenta
l-security-design-principles.html

https://binaryterms.com/fundamental-security-design-principles.html#EconomyofMechanism
https://binaryterms.com/fundamental-security-design-principles.html#Fail-safeDefaults
https://binaryterms.com/fundamental-security-design-principles.html#CompleteMediation
https://binaryterms.com/fundamental-security-design-principles.html#OpenDesign
https://binaryterms.com/fundamental-security-design-principles.html#SeparationofPrivilege
https://binaryterms.com/fundamental-security-design-principles.html#LeastPrivilege
https://binaryterms.com/fundamental-security-design-principles.html#LeastCommonMechanism
https://binaryterms.com/fundamental-security-design-principles.html#PsychologicalAcceptability
https://binaryterms.com/fundamental-security-design-principles.html#Isolation
https://binaryterms.com/fundamental-security-design-principles.html#Encapsulation
https://binaryterms.com/fundamental-security-design-principles.html#Modularity
https://binaryterms.com/fundamental-security-design-principles.html#Layering
https://binaryterms.com/fundamental-security-design-principles.html#LeastAstonishment
https://binaryterms.com/fundamental-security-design-principles.html

Security

Design

Principles

Threat Model

Application

Security

Mechanism

https://www.researchgate.net/figure/
Applicable-Security-
Mechanisms_tbl4_221095013

https://www.researchgate.net/figure/Applicable-Security-Mechanisms_tbl4_221095013

Application

Security DFD

https://threatmodeler.com/data-flow-
diagrams-process-flow-diagrams/

https://threatmodeler.com/data-flow-diagrams-process-flow-diagrams/

Application

Security DFD

https://threatmodeler.com/data-flow-
diagrams-process-flow-diagrams/

System engineers developed data flow diagrams to

provide a high-level visualization of how an application

works within a system to move, store and manipulate data.

The intended use of DFDs was to provide engineers a way

of efficiently communicating their structured system

analysis. Security professionals added the concept of trust

boundaries to DFDs in the early 2000s to make them more

applicable for threat modeling.

Since then many attempts have been put forward by

various groups to create a more mature DFD-based

process, especially for development environments

employing an Agile methodology. Despite the valiant and

prolonged effort, DFDs fundamentally remain a means of

communicating analysis of a structured system. Hence they

have limited capacity to adequately address applications

which are created for platform independence and

deployed in a highly interconnected environment.

https://threatmodeler.com/data-flow-diagrams-process-flow-diagrams/

Application

Security DFD

https://threatmodeler.com/data-flow-
diagrams-process-flow-diagrams/

Furthermore, with DFDs, high volumes of documentation

were the expected norm. This, of course, makes them

unwieldy for Agile sprinting developers who minimize

documentation and any other activity they deem non-

productive. Without developer acceptance, organizations

will find significant challenge scaling threat modeling

processes enterprise-wide.

DFD-based threat modeling fundamentally looks at how

data is designed to move through a system. The approach

cannot, therefore, provide a means to inherently analyze

how an application appears to a potential attacker. Since a

DFD cannot analyze an application from the perspective of

an attacker, any predictive capacity regarding possible

attack vectors, entry points, or exfiltration points, requires

significant speculation on the part of the user.

As applied to threat modeling, DFDs are typically used to

identify broad categories – usually based on the STRIDE

threat classification scheme – of potential threats such as

elevation of privilege or Distributed Denial of Service. The

list of threats identifiable through such methods is rather

limited and provides a poor starting point for producing

actionable outputs.

https://threatmodeler.com/data-flow-diagrams-process-flow-diagrams/

Application

Security DFD

https://threatmodeler.com/data-flow-
diagrams-process-flow-diagrams/

DFD-based threat modeling leaves a threat modeling

practice with fundamental weaknesses:

•DFDs do not accurately represent the design and flow of

an application

•They analyze the operational component and how the

data is flowing, rather than on how users interact and

move through the application features;

•Data flow diagrams are hard to understand because they

require security expertise. The developer community does

not embrace DVD-based threat models because they are

vague, and complex

•DFD-based threat modeling has no standard approach –

different people tend to create different threat models

with entirely different outputs

•The DFD process is fundamentally focused on very high-

level system issues. It cannot, therefore, to help developers

understand the relevant threats and their mitigating

controls

https://threatmodeler.com/data-flow-diagrams-process-flow-diagrams/

Application

Security DFD –

Process Flow

https://threatmodeler.co

m/data-flow-diagrams-

process-flow-diagrams/

https://threatmodeler.com/data-flow-diagrams-process-flow-diagrams/

The advantages

of utilizing

process, or

application flow

diagrams

•Creating threat models with developer-level application details of

communication protocols and employed coding elements intrinsically

included allowing more efficiency identifying potential threats;

•Creation of a “process map,” showing how individuals move through an

application. Security professionals and developers can then view the

application from the attacker’s vantage, resulting in more efficiently

prioritizing potential threats;

•An easy to understand threat model that promotes collaboration

across all organizational stakeholders, regardless of an individual’s level

of security expertise;

•Standardization of the threat modeling process resulting in consistent,

actionable output regardless of who created the threat model.

Process flow diagrams are the result of a maturing threat modeling

discipline. They genuinely allow incorporation of developers in the

threat modeling process during the application design phase. This helps

developers working within an Agile development methodology initially

write secure code. The threat modeling initiative then becomes a means

of enhancing the developer’s ability to sprint to production. This will

significantly help the organization in scaling threat modeling processes.

CREATE A

SECURITY

PROFILE

STRIDE

MODEL

DREAD

MODEL

DESIGN

SECURITY

APPLICATION

ARCHITECTURE

SECURITY

DESIGN &

TESTING

DATA

INTEGRITY

https://www.varonis.com/blog/data-integrity/

https://www.varonis.com/blog/data-integrity/

Certifications

and Courses

https://www.eccouncil.org/programs/appli

cation-security-training/

https://shehackspurple.ca/

https://www.pluralsight.com/

https://application.security/

https://www.securityinnovation.com/traini

ng/software-application-security-courses/

https://www.isc2.org/Certifications/CSSLP

http://elearnsecurity.com/

https://www.offensive-security.com/awae-

oswe/

https://www.eccouncil.org/programs/application-security-training/
https://shehackspurple.ca/
https://www.pluralsight.com/
https://application.security/
https://www.securityinnovation.com/training/software-application-security-courses/
https://www.isc2.org/Certifications/CSSLP
http://elearnsecurity.com/
https://www.offensive-security.com/awae-oswe/

