
 Web PenTesting
 Checklist by Joas

 Cookie Settings

 Header Vulnerability

 TLS Vulnerability

 Insecure transmission: Ensure cookies are
 sent only over HTTPS connections, to
 prevent interception by attackers. Set the "
 Secure" attribute for all cookies.

 Missing HttpOnly attribute: Set the "
 HttpOnly" attribute to ensure cookies are
 inaccessible to client-side scripts,
 reducing the risk of cross-site scripting (
 XSS) attacks.

 Missing SameSite attribute: Set the "
 SameSite" attribute to "Strict" or "Lax" to
 prevent cross-site request forgery (CSRF)
 attacks by ensuring cookies are only sent
 with requests originating from the same
 domain.

 Excessive cookie lifetime: Limit the
 duration of cookie validity by setting the "
 Expires" or "Max-Age" attribute. Long-
 lived cookies pose a greater risk if they are
 compromised.

 Weak encryption: Use strong encryption
 algorithms and up-to-date cryptographic
 libraries to protect sensitive information
 stored in cookies.

 Insufficiently random session IDs: Ensure
 session IDs are generated using a strong
 source of randomness, to prevent session
 hijacking and guessing attacks.

 Overly permissive cookie domain and
 path: Limit the scope of cookies by setting
 the "Domain" and "Path" attributes to
 specific subdomains or directories,
 reducing the risk of unauthorized access.

 Storing sensitive information in cookies:
 Avoid storing sensitive information, such
 as passwords, API keys, or personally
 identifiable information (PII) in cookies.
 Instead, store them server-side and use
 session IDs to reference the data.

 Unprotected cookie values: Ensure that
 cookie values are hashed, encrypted, or
 signed to protect them from being
 tampered with by attackers.

 Inadequate monitoring and logging:
 Implement a proper monitoring and
 logging system to track cookie usage, to
 help detect and respond to potential
 security incidents.

 Missing Strict-Transport-Security (HSTS)
 header: Enables HTTPS-only
 communication, preventing man-in-the-
 middle attacks.

 Missing X-Content-Type-Options header:
 Disables MIME type sniffing, reducing the
 risk of attacks using MIME confusion.

 Missing X-Frame-Options header:
 Prevents clickjacking attacks by
 disallowing or limiting the site from being
 embedded within frames.

 Missing Content-Security-Policy (CSP)
 header: Defines allowed sources of
 content, reducing the risk of cross-site
 scripting (XSS) and content injection
 attacks.

 Missing X-XSS-Protection header:
 Activates built-in browser protection
 against cross-site scripting (XSS) attacks.

 Missing Referrer-Policy header: Controls
 the information sent in the Referer
 header, protecting user privacy and
 reducing the risk of information leakage.

 Missing Feature-Policy header: Restricts
 the use of certain browser features and
 APIs, improving security and privacy.

 Insecure CORS (Cross-Origin Resource
 Sharing) settings: Allows unauthorized
 domains to access resources, increasing
 the risk of cross-site request forgery (
 CSRF) and data leakage.

 Missing Expect-CT header: Enforces
 Certificate Transparency, reducing the risk
 of misissued SSL/TLS certificates.

 Missing Permissions-Policy header:
 Defines which browser features are
 allowed or denied, enhancing user privacy
 and security.

 Weak or missing Public-Key-Pins (HPKP)
 header: Ensures the use of specific
 cryptographic public keys, reducing the
 risk of man-in-the-middle attacks using
 rogue certificates.

 Missing X-Download-Options header:
 Prevents file download prompts from
 being displayed, reducing the risk of drive-
 by download attacks.

 Missing X-Permitted-Cross-Domain-
 Policies header: Restricts the loading of
 content from other domains, reducing the
 risk of data theft.

 Missing X-DNS-Prefetch-Control header:
 Controls DNS prefetching, potentially
 improving user privacy.

 Inadequate Cache-Control settings:
 Insecure caching settings can expose
 sensitive information or allow
 unauthorized access to content.

 Missing X-Content-Duration header: Helps
 prevent unauthorized media access by
 specifying the duration of media files.

 Missing Access-Control-Allow-Origin
 header: Improper configuration can result
 in unauthorized cross-origin resource
 sharing.

 Missing X-WebKit-CSP header: This older
 header is used by some legacy browsers
 for content security policy enforcement.

 Missing X-Content-Security-Policy header:
 Similar to X-WebKit-CSP, this older
 header is used by some legacy browsers
 for content security policy enforcement.

 Missing X-XContent-Type-Options header:
 Disables MIME sniffing on older browsers,
 reducing the risk of MIME confusion
 attacks.

 Insecure ETag settings: Weak ETag
 settings can cause caching issues,
 potentially exposing sensitive information.

 Missing or weak Content-Encoding
 header: Properly configuring this header
 helps protect against attacks that rely on
 manipulating content encoding.

 Missing or weak Content-Language
 header: Properly configuring this header
 helps protect against attacks that rely on
 manipulating content language.

 Missing or weak Last-Modified header:
 Properly configuring this header helps
 protect against attacks that rely on
 manipulating content modification
 timestamps.

 Insecure or missing Cookie headers: As
 mentioned in the previous answer,
 insecure cookie settings can lead to
 various security vulnerabilities.

 Weak or outdated SSL/TLS protocols:
 Ensure your site only supports secure and
 up-to-date protocols like TLS 1.2 and TLS 1.
 3, and disable insecure ones like SSL 2.0,
 SSL 3.0, and TLS 1.0.

 Insecure cipher suites: Disable weak
 cipher suites and use strong ones, such as
 those based on AES-GCM, ChaCha20-
 Poly1305, or ECDHE (Elliptic Curve Diffie-
 Hellman).

 Vulnerability to known attacks: Protect
 your site from known TLS attacks, such as
 POODLE, BEAST, CRIME, BREACH, or
 Heartbleed, by applying security patches
 and following best practices.

 Inadequate certificate management: Use
 a valid, trusted, and up-to-date SSL/TLS
 certificate from a reputable Certificate
 Authority (CA). Regularly check for
 certificate expiration and renewals.

 Insufficient certificate chain validation:
 Ensure proper validation of the certificate
 chain to prevent man-in-the-middle
 attacks using rogue or misissued
 certificates.

 Weak or missing public key pinning:
 Implement HTTP Public Key Pinning (
 HPKP) or Certificate Transparency to
 enforce the use of specific public keys and
 reduce the risk of man-in-the-middle
 attacks.

 Mixed content: Ensure that all content,
 including images, stylesheets, and scripts,
 are served over HTTPS to prevent mixed
 content warnings and potential attacks.

 Insecure renegotiation: Disable insecure
 client-initiated renegotiation to protect
 your site from man-in-the-middle attacks
 exploiting this vulnerability.

 Insufficient forward secrecy: Use cipher
 suites that support forward secrecy, such
 as ECDHE or DHE, to protect past
 communications from being decrypted
 even if the server's private key is
 compromised.

 Lack of OCSP stapling: Implement OCSP (
 Online Certificate Status Protocol)
 stapling to reduce the latency of SSL/TLS
 handshakes and provide real-time
 certificate revocation information.

 File Upload

 File size limit: Verify that there is an
 appropriate file size limit in place to
 prevent large file uploads that could
 potentially exhaust server resources.

 File type restrictions: Ensure that only
 allowed file types can be uploaded, and
 test with disallowed file types to confirm
 the restrictions are working.

 MIME type validation: Check that the
 MIME type of uploaded files is being
 validated and that the system rejects files
 with incorrect MIME types.

 Filename validation: Test that the system
 filters and sanitizes filenames to avoid
 malicious filenames (e.g., "../", ".htaccess")
 that could lead to security vulnerabilities.

 Malware scanning: Scan uploaded files for
 malware or viruses using an up-to-date
 antivirus solution.

 Duplicate file names: Test how the system
 handles duplicate file names, ensuring
 that it doesn't overwrite existing files or
 create security vulnerabilities.

 Upload directory: Verify that the upload
 directory is secured and not accessible for
 unauthorized users.

 Permissions: Ensure that proper file and
 folder permissions are set to prevent
 unauthorized access, modification, or
 deletion of uploaded files.

 User authentication: Test if file uploads
 require proper user authentication and
 that unauthorized users cannot upload
 files.

 Image validation: If uploading images,
 test for potential vulnerabilities related to
 image processing libraries (e.g., buffer
 overflows, code injection).

 File content validation: Ensure that the
 content of the files is validated and doesn'
 t contain malicious code or scripts.

 Maximum file uploads: Test the maximum
 number of simultaneous file uploads to
 ensure the system can handle the load
 without crashing or compromising
 security.

 Timeouts: Test the system for handling
 long uploads and confirm that it has
 appropriate timeouts in place.

 Rate limiting: Verify that the system has
 rate limiting in place to prevent abuse
 and denial of service (DoS) attacks.

 Error handling: Test the system's error
 handling capabilities to ensure that it
 doesn't leak sensitive information or
 create security vulnerabilities.

 Cross-site scripting (XSS): Test for
 potential XSS vulnerabilities related to file
 uploads, such as the inclusion of
 malicious scripts within file metadata.

 Path traversal: Test for path traversal
 vulnerabilities by attempting to upload
 files with directory traversal characters (e.
 g., "../") in the file name.

 SQL injection: Test for potential SQL
 injection vulnerabilities related to file
 uploads, such as manipulating metadata
 to include malicious SQL queries.

 Access control: Verify that proper access
 controls are in place for viewing, editing,
 or deleting uploaded files.

 Logging and monitoring: Ensure that the
 system logs and monitors all file upload
 activities for potential security threats and
 suspicious behavior.

 XSS

 Basic payload injection: Inject simple
 script tags or HTML tags with JavaScript
 event handlers into input fields or query
 parameters. Example: <script>alert(1)</
 script> or .

 URL encoding: Use URL-encoded payloads
 to bypass input filters that may block
 certain characters. Example: %3Cscript%
 3Ealert(1)%3C%2Fscript%3E.

 Hex encoding: Test with hex-encoded
 payloads to bypass filters that block
 specific characters. Example: <scr\x69pt>
 alert(1)</scr\x69pt>.

 Case variation: Try different letter casing
 to bypass case-sensitive filters. Example: <
 ScRiPt>alert(1)</ScRiPt>.

 HTML entity encoding: Inject payloads
 with HTML entities to evade filters that
 remove or escape specific characters.
 Example: <script>alert(1)</script&
 gt;.

 Null byte injection: Use null bytes to break
 out of input restrictions or bypass filters.
 Example: <scr%00ipt>alert(1)</scr%00ipt>.

 Double encoding: Test with double-
 encoded payloads to bypass filters that
 only decode input once. Example: %
 253Cscript%253Ealert(1)%253C%
 252Fscript%253E.

 Attribute injection: Attempt to inject
 payloads within existing HTML tags by
 closing the current attribute and adding a
 new one with malicious JavaScript.
 Example: ">.

 JavaScript event handlers: Inject
 JavaScript event handlers, such as
 onmouseover, onfocus, or onclick, into
 various HTML elements to trigger the
 payload.

 Malformed tags: Test with malformed
 tags to bypass filters that look for well-
 formed HTML. Example: <scrip<script>t>
 alert(1)</scrip</script>t>.

 Using different contexts: Test payloads in
 various contexts, such as HTML
 comments, inline JavaScript, or CSS, to
 bypass context-specific filters.

 Data URI: Inject data URI payloads to
 bypass certain input filters. Example: <
 iframe src="data:text/html;base64,
 PHNjcmlwdD5hbGVydCgxKTwvc2NyaXB0
 Pg=="></iframe>.

 SVG payloads: Use Scalable Vector
 Graphics (SVG) payloads to execute
 JavaScript in a different context.
 Example: <svg onload="alert(1)"></svg>.

 Breaking out of JavaScript: Inject payloads
 that break out of existing JavaScript code
 and execute malicious scripts.

 Testing error pages: Check if error pages,
 such as 404 or 500, reflect user input
 without proper encoding, as these can be
 used for reflected XSS attacks.

 XXE

 IDOR

 SQL Injection

 Basic external entity: Inject a basic
 external entity reference to test if the
 parser resolves it

 External parameter entity: Inject an
 external parameter entity to bypass input
 filters.

 Blind XXE (OOB technique): Use Out-of-
 Band (OOB) techniques to exfiltrate data
 if the response doesn't display the
 content of the external entity.

 File inclusion: Attempt to include local or
 remote files using the SYSTEM identifier
 to test for arbitrary file inclusion.

 Internal entity expansion: Inject an
 internal entity with a large number of
 nested entities to test for a Billion Laughs
 attack (a type of denial-of-service attack).

 Recursive entity references: Test for
 recursive entity expansion to identify
 potential denial-of-service (DoS)
 vulnerabilities.

 XML bomb: Inject a large XML file with
 deeply nested elements to test for XML
 bomb vulnerabilities, which can lead to
 DoS attacks.

 Error-based XXE: Inject malformed XML
 with external entity references to trigger
 errors that reveal sensitive information.

 XML encoding: Try different XML
 encodings (e.g., UTF-16, UTF-32) to bypass
 input filters that block specific characters.

 Use CDATA sections: Inject external entity
 references inside CDATA sections to
 bypass input filters that remove or escape
 specific characters.

 Custom entities: Create custom entities
 with external references to test if the XML
 parser resolves them.

 Test various content types: Test for XXE
 vulnerabilities in different content types
 that support XML, such as SOAP, XHTML,
 SVG, or RSS.

 Test XML-based file formats: Test for XXE
 vulnerabilities in XML-based file formats,
 such as Office Open XML (.docx, .pptx, .
 xlsx) or OpenDocument (.odt, .ods, .odp).

 Test different HTTP methods: Test for XXE
 vulnerabilities using different HTTP
 methods, such as POST, PUT, or PATCH,
 with XML payloads.

 Test XML-based APIs: Test for XXE
 vulnerabilities in XML-based APIs, such as
 XML-RPC or SOAP-based web services.

 Sequential IDs: Analyze sequential
 numeric IDs or predictable identifiers in
 URLs, API endpoints, or hidden form
 fields, and try modifying them to access
 unauthorized resources.

 User-specific data: Ensure proper
 authorization checks are in place for user-
 specific data, such as profiles, orders, or
 messages, by attempting to access
 another user's data using your
 authenticated session.

 Enumerate identifiers: Create multiple
 accounts with different roles (e.g., admin,
 user) and compare the object identifiers
 to identify patterns or correlations.

 Test file uploads: Test file upload
 functionality and attempt to access
 uploaded files by guessing or modifying
 their filenames.

 Test API endpoints: Analyze API endpoints
 for exposed object references and
 attempt to access unauthorized resources
 by modifying request parameters.

 Test hidden form fields: Examine hidden
 form fields for object references and
 modify their values to access
 unauthorized resources.

 Test JSON or XML responses: Analyze
 JSON or XML responses for exposed
 object references and attempt to access
 unauthorized resources by modifying
 request parameters.

 Test related features: Test related features
 or modules, such as password reset or
 email validation, for IDOR vulnerabilities
 by modifying request parameters.

 Test with different roles: Create accounts
 with different roles (e.g., admin, user,
 guest) and attempt to access
 unauthorized resources using different
 user sessions.

 Test with unauthenticated sessions: Test if
 unauthenticated users can access
 resources by modifying object references
 in URLs or API endpoints.

 Use web application scanners: Use
 automated web application scanners,
 such as Burp Suite or OWASP ZAP, to
 identify potential IDOR vulnerabilities.

 Analyze access logs: Review server access
 logs for patterns indicating unauthorized
 access attempts.

 Manipulate cookies: Manipulate cookies
 or session tokens to impersonate other
 users and attempt to access unauthorized
 resources.

 Test request methods: Test for IDOR
 vulnerabilities using different HTTP
 request methods, such as GET, POST, PUT,
 DELETE, or PATCH.

 Test with URL-encoded or base64-
 encoded parameters: Try URL-encoded or
 base64-encoded parameters to bypass
 input validation or access control checks.

 Single quote test: Inject a single quote '
 into input fields and observe if it
 generates an error or unexpected
 behavior, which might indicate a
 potential SQLi vulnerability.

 Tautologies: Inject tautologies like 1=1 or a=
 a into input fields or URL parameters to
 test for boolean-based SQLi.

 Union-based SQLi: Use the UNION
 operator to combine the results of two or
 more SELECT statements and extract data
 from other tables.

 Error-based SQLi: Inject incorrect syntax
 or invalid input to trigger error messages
 that reveal database structure or sensitive
 information.

 Time-based SQLi: Inject time-delaying
 functions like SLEEP() or WAITFOR DELAY
 to test for time-based SQLi vulnerabilities.

 Out-of-band (OOB) SQLi: Test for OOB
 SQLi by injecting payloads that cause the
 database to make external requests, such
 as DNS lookups or HTTP requests, to
 exfiltrate data.

 Double encoding: Test with double-
 encoded payloads to bypass filters that
 only decode input once. Example: %
 253Cscript%253Ealert(1)%253C%
 252Fscript%253E.

 Use SQL comment characters: Inject SQL
 comment characters (--, /*, */) to bypass
 input filters or terminate SQL statements.

 Manipulate query logic: Inject logical
 operators such as AND or OR to
 manipulate the query's logic and bypass
 access controls.

 Test with different SQL dialects: Use
 payloads specific to different SQL
 dialects (e.g., MySQL, PostgreSQL, Oracle,
 or MSSQL) to identify database-specific
 vulnerabilities.

 Test various HTTP methods: Test for SQLi
 vulnerabilities using different HTTP
 methods, such as POST, PUT, or PATCH,
 with SQLi payloads.

 Test with URL-encoded or base64-
 encoded parameters: Try URL-encoded or
 base64-encoded parameters to bypass
 input validation or access control checks.

 Test various content types: Test for SQLi
 vulnerabilities in different content types
 that support user input, such as JSON,
 XML, or URL-encoded form data.

 Manipulate cookies: Inject SQL payloads
 into cookies to test if the application
 processes them in an unsafe manner.

 Use web application scanners: Use
 automated web application scanners,
 such as Burp Suite or OWASP ZAP, to
 identify potential SQLi vulnerabilities.

 Subdomain Takeover

 Enumerate subdomains: Use tools like
 Sublist3r, Amass, or dnsrecon to discover
 subdomains associated with your main
 domain.

 Analyze DNS records: Check DNS records (
 e.g., CNAME, A, AAAA, MX) for subdomains
 pointing to external services or expired
 domains.

 Check HTTP responses: Examine HTTP
 responses for error messages or status
 codes that may indicate an unclaimed or
 expired external service.

 Use online services: Utilize online services
 such as crt.sh or Censys to gather
 subdomain and certificate data for your
 main domain.

 Test common third-party services: Check
 if subdomains are pointing to common
 third-party services, such as AWS S3,
 GitHub Pages, or Heroku, that are
 susceptible to subdomain takeover
 attacks.

 Test for dangling CNAME records: Look for
 dangling CNAME records that point to
 external services that have been deleted
 or expired.

 Monitor domain registration: Monitor
 domain registration information for
 expired domains that can be taken over.

 Use subdomain takeover tools: Utilize
 tools like SubOver, Subjack, or tko-subs to
 automatically identify subdomain
 takeover vulnerabilities.

 Check for misconfigured DNS settings:
 Examine DNS settings for
 misconfigurations that might lead to
 subdomain takeover vulnerabilities.

 Test for wildcard DNS records: Check for
 wildcard DNS records that might expose
 subdomains to takeover attacks.

 Check for abandoned subdomains: Look
 for abandoned subdomains that still point
 to unused external services.

 Test for improper redirects: Check if
 subdomains are improperly redirecting
 traffic to external services that can be
 taken over.

 Monitor domain ownership changes:
 Monitor domain ownership changes for
 potential takeover opportunities.

 Collaborate with third-party service
 providers: Work with third-party service
 providers to ensure proper domain
 configuration and prevent subdomain
 takeover.

 Regularly audit subdomain
 configurations: Periodically review your
 subdomain configurations to identify and
 mitigate potential subdomain takeover
 risks.

 WAF Testing

 Test with OWASP Top Ten attacks: Test for
 the most common web application
 vulnerabilities, such as SQLi, XSS, CSRF,
 and RCE.

 Use WAF testing tools: Utilize tools like
 Wafw00f, Nmap, or WAPT to identify and
 test your WAF's capabilities.

 Test for HTTP methods: Test different
 HTTP methods (GET, POST, PUT, DELETE,
 etc.) to check if your WAF is properly
 filtering and blocking malicious requests.

 Test for HTTP protocol violations: Send
 requests that violate the HTTP protocol to
 see if your WAF can detect and block
 them.

 Test with malformed requests: Send
 malformed requests with invalid or
 unexpected characters, encoding, or
 headers to test if your WAF can detect
 and block them.

 Test for evasion techniques: Test various
 evasion techniques, such as URL
 encoding, double encoding, or using
 mixed case, to bypass input filters and
 WAF rules.

 Test for IP and user agent blocking: Test if
 your WAF can block specific IPs or user
 agents, and check for bypass techniques
 using proxies or fake user agents.

 Test for rate limiting: Test if your WAF can
 enforce rate limiting and block requests
 that exceed the allowed rate.

 Test for cookie security: Test if your WAF
 can detect and block cookie
 manipulation, such as injecting malicious
 code or altering session cookies.

 Test for file upload vulnerabilities: Test if
 your WAF can detect and block malicious
 file uploads, such as uploading web shells
 or malware.

 Test for known attack signatures: Test
 your WAF's ability to detect and block
 known attack signatures using tools like
 Burp Suite or OWASP ZAP.

 Test custom WAF rules: Test custom WAF
 rules and configurations to ensure they
 properly block malicious requests.

 Test for false positives: Ensure your WAF
 doesn't block legitimate traffic by testing
 with common requests and inputs that
 may trigger false positives.

 Test for false negatives: Ensure your WAF
 doesn't allow malicious traffic by testing
 with known attack vectors that should
 trigger blocking.

 Test for SSL/TLS vulnerabilities: Test if your
 WAF can detect and block SSL/TLS
 vulnerabilities, such as POODLE or
 Heartbleed.

 Test for XML vulnerabilities: Test if your
 WAF can detect and block XML-based
 attacks, such as XXE or XEE.

 Test for header injection: Test if your WAF
 can detect and block header injection
 attacks, such as CRLF injection or
 response splitting.

 Test for path traversal attacks: Test if your
 WAF can detect and block path traversal
 attacks, such as directory traversal or file
 inclusion.

 Test for application-layer DDoS attacks:
 Test if your WAF can detect and block
 application-layer DDoS attacks, such as
 Slowloris or RUDY.

 Perform continuous testing and
 monitoring: Regularly test your WAF's
 effectiveness and monitor its logs to
 detect and block new attack vectors and
 emerging threats.

 Wordpress CMS

 Keep WordPress updated: Regularly
 update the WordPress core, plugins, and
 themes to protect against known
 vulnerabilities.

 Test for weak passwords: Ensure strong
 passwords are used for all user accounts,
 especially for administrator accounts.

 Check for user enumeration: Test if
 usernames can be enumerated through
 the WordPress author archives or other
 means, and disable user enumeration if
 possible.

 Test for default admin username: Ensure
 the default "admin" username is not used,
 and replace it with a custom username.

 Limit login attempts: Test if login
 attempts are limited to prevent brute-
 force attacks, and install a plugin like
 Login LockDown or Wordfence to enable
 this functionality if necessary.

 Test for insecure file permissions: Check
 the permissions of your WordPress files
 and folders to ensure they are secure and
 cannot be accessed by unauthorized
 users.

 Test for XML-RPC vulnerabilities: Test for
 vulnerabilities related to the XML-RPC
 feature, such as DDoS or brute-force
 attacks, and disable it if not needed.

 Test for SQL injection vulnerabilities: Test
 your WordPress site for SQL injection
 vulnerabilities by injecting SQL payloads
 into input fields or URL parameters.

 Test for Cross-Site Scripting (XSS)
 vulnerabilities: Test your WordPress site
 for XSS vulnerabilities by injecting
 JavaScript payloads into input fields or
 URL parameters.

 Test for Cross-Site Request Forgery (CSRF)
 vulnerabilities: Test your WordPress site
 for CSRF vulnerabilities by attempting to
 perform actions without a valid CSRF
 token or by using another user's
 authenticated session.

 Test for vulnerable plugins: Check for
 known vulnerabilities in your installed
 plugins using tools like WPScan or by
 regularly monitoring vulnerability
 databases.

 Test for vulnerable themes: Check for
 known vulnerabilities in your installed
 themes using tools like WPScan or by
 regularly monitoring vulnerability
 databases.

 Test for insecure configurations: Check
 your WordPress configuration (wp-config.
 php) for insecure settings, such as
 displaying errors, and secure it by
 disabling features like error reporting or
 file editing.

 Check for security best practices: Ensure
 your site follows WordPress security best
 practices, such as using HTTPS, disabling
 directory browsing, or setting secure HTTP
 headers.

 Use a security plugin: Install a
 comprehensive security plugin like
 Wordfence, iThemes Security, or Sucuri to
 monitor and protect your site from
 various threats.

 SSRF

 Test user-controlled URLs: Identify user-
 controlled URL inputs and test them with
 external URLs to see if the server fetches
 or processes them.

 Test internal IP addresses: Attempt to
 access internal IP addresses (e.g., 127.0.0.1
 or 10.0.0.0/8) or services through user-
 controlled inputs to check if the server
 processes them.

 Use URL schemas: Test various URL
 schemas, such as file://, ftp://, or gopher://,
 to bypass input validation or access
 internal resources.

 Test domain resolution: Test if your server
 resolves domain names to internal IP
 addresses by using a domain that points
 to an internal IP address.

 Test URL redirection: Test if the server
 follows redirects by supplying a URL that
 redirects to an internal or external
 resource.

 Test with different HTTP methods: Test
 SSRF vulnerabilities with various HTTP
 methods, such as GET, POST, PUT, DELETE,
 or HEAD.

 Test with malformed URLs: Test with
 malformed URLs that may bypass input
 validation, such as using @ to separate
 credentials or adding extra slashes.

 Test for open ports: Attempt to access
 open ports on the server or internal
 network by specifying the target IP and
 port in the URL.

 Test for Out-of-Band (OOB) data
 exfiltration: Test if the server can send
 data to an external domain you control,
 which may indicate an SSRF vulnerability.

 Test for cloud service metadata: If your
 site is hosted on a cloud provider, test if
 the server can access cloud service
 metadata endpoints, which may expose
 sensitive information.

 Test with time-based techniques: Use
 time-based techniques, such as delays or
 timeouts, to confirm SSRF vulnerabilities
 when the server response doesn't reveal
 the fetched content.

 Test for protocol smuggling: Test for
 protocol smuggling, such as using http://
 within an https:// URL, to bypass input
 validation or access internal resources.

 Test for bypassing URL filtering: Attempt
 to bypass URL filtering using techniques
 like URL encoding, double encoding, or
 mixed case encoding.

 Use web application scanners: Use
 automated web application scanners,
 such as Burp Suite or OWASP ZAP, to
 identify potential SSRF vulnerabilities.

 Test with IPv6 addresses: Test for SSRF
 vulnerabilities using IPv6 addresses to
 bypass input validation or access internal
 resources.

 https://www.linkedin.com/in/joas-
 antonio-dos-santos

