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Abstract—Information about calls to the operating system (or kernel libraries) made by a binary executable may be used to determine

whether the binary is malicious. Being aware of this approach, malicious programmers hide this information by making such calls

without using the call instruction. For instance, the call addr instruction may be replaced by two push instructions and a ret instruction,

the first push pushes the address of instruction after the ret instruction, and the second push pushes the address addr. The code may

be further obfuscated by spreading the three instructions and by splitting each instruction into multiple instructions. This work presents

a method to statically detect obfuscated calls in binary code. The idea is to use abstract interpretation to detect where the normal call-

ret convention is violated. These violations can be detected by what is called an abstract stack graph. An abstract stack graph is a

concise representation of all potential abstract stacks at every point in a program. An abstract stack is used to associate each element

in the stack to the instruction that pushes the element. An algorithm for constructing the abstract stack graph is also presented.

Methods for using the abstract stack graph are shown to detect eight different obfuscations. The technique is demonstrated by

implementing a prototype tool called DOC (Detector for Obfuscated Calls).

Index Terms—Invasive software (viruses, worms), program analysis, validation, obfuscation, abstract stack.
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1 INTRODUCTION

PROGRAMMERS obfuscate their code with the intent of
making it difficult to discern information from the code.

Programs may be obfuscated to protect intellectual property
and to increase security of code (by making it difficult for
others to identify vulnerabilities) [11], [19], [27]. Programs
may also be obfuscated to hide malicious behavior and to
evade detection by antivirus scanners [8], [17], [24].

The primary goal of obfuscation is to increase the effort

involved in manually or automatically analyzing a pro-

gram. In the context of antivirus scanning, the context of our

study, automated analysis may be performed at the desk-

top, at quarantine servers in an enterprise, or on back-end

machines of an antivirus company’s laboratory [23]. In

contrast, manual analysis is performed by engineers in

Emergency Response Teams of antivirus companies and

research laboratories. The goal of obfuscation in malicious

programs—viruses, worms, trojans, spywares, backdoors

—is to escape detection by automated analysis and

significantly delay detection by manual analysis.
One of the first steps in determining whether a program

is malicious is to identify the system calls it makes. If the

program performs certain collections of file operations,

registry operations, or network operations, it may be

considered potentially malicious. The set (sometimes, the

sequence) of system calls a program makes is referred to as

its behavior. The behavior of a program may be determined
by either static analysis or by dynamic analysis. In static
analysis, a program is analyzed (by humans and/or tools)
without running or simulating it. In dynamic analysis, a
program’s behavior is observed, often by trapping the
system calls or sniffing network activity.

Malware writers have developed obfuscation techniques
that make it difficult to statically identify the calls made by
their programs. These programs effectively make a call
without actually using the call instruction [24]. For instance,
the call addr instruction may be replaced by two push
instructions and a ret instruction, the first push pushing the
address of instruction after the ret instruction, the second
push pushing the address addr. The code may be further
obfuscated by spreading the three instructions and by
further splitting each instruction into multiple instructions.

Obfuscation of call instructions breaks most static
analysis based methods for detecting a virus since these
methods depend on recognizing call instructions to
1) identify the kernel functions used by a program and
2) to delineate code into procedures. The obfuscation also
takes away important cues that are used during manual
analysis. We are then left only with dynamic analysis, i.e.,
running a suspect program in an emulator and observing
the kernel calls it makes. While dynamic analysis is helpful
and often necessary, they are often cumbersome, time-
consuming, and fallible. Malware authors already know
many methods for circumventing detection by a dynamic
analyzer, including detecting the dynamic analysis method,
introducing delay loops to bypass stopping heuristics, and
executing the malicious behavior in only particular circum-
stances. Therefore, static analysis is a necessary component
of antivirus (AV) analysis.

This paper presents a method to statically detect
obfuscated calls when the obfuscation is performed by
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using other stack (-related) instructions, such as push, pop,
ret, or instructions that can statically be mapped to such
stack operations. The method uses abstract interpretation
[14] wherein the stack instructions are interpreted to
operate on an abstract stack. Instead of keeping actual data
elements, an abstract stack keeps the address of the
instruction that pushes an element on the stack. The infinite
set of abstract stacks resulting from all possible executions
of a program, via, static analysis, is concisely represented by
an abstract stack graph. Obfuscated calls are detected by
analyzing the abstract stack graph.

Our method may be used to improve manual and
automated analysis tools, thereby raising the level of
difficulty for a virus writer. Our method can help by
removing some common obfuscation techniques from the
toolkit of a virus writer. However, we do not claim that the
method can detect all stack related obfuscations. Indeed,
writing a program that detects all obfuscations is not
achievable for the general problem maps to detecting
program equivalence, which is undecidable [10].

The method presented is a partial solution. It addresses
only the evaluation of operations that can be mapped to
stack push and pop instructions, where each is performed as
a unit operation. It does not model situations where the push
and pop instructions themselves may be decomposed into
multiple instructions, such as one to move the stack pointer
and one to move data in/out of the stack. Further, our
solution does not model other memory areas, the content of
the stack, and the content of registers. Ongoing work in this
area by Venable et al. [25] aims to overcome these
deficiencies by combining our stack model with the
Balakrishnan and Reps’ method for analyzing the content
of memory locations [3].

Section 2 presents related work in this area. Section 3
presents the notion of an abstract stack and the abstract
stack graph. Section 4 presents our algorithm to construct
the abstract stack graph. Section 5 describes how the
abstract stack graph may be used to detect various
obfuscations. Section 6 describes implementation of a
prototype tool and results on applying it on a virus called
W32.Evol. Section 7 outlines future work to develop a
complete solution for detecting obfuscations and as well
concludes this paper.

2 BACKGROUND AND RELATED WORK

Most of the significant problems related to the detection of
viruses are undecidable [10], [5]. As a result, AV technol-
ogies utilize heuristics and tricks designed to catch specific
viruses [20]. The process of providing a solution to identify
a virus consists of two parts. In the first part, a virus sample
is analysed in the laboratory of an AV company. This
analysis, which is often performed manually, leads to
identifying special characteristics of the virus which may be
used to identify the virus. In the second part, these special
characteristics are then encoded in a “signature” and
transmitted to the AV engine running on a user’s desktop
or an enterprise server. A signature is a unique sequence of
bytes that identifies the virus. The AV engine uses the
signature to identify the specific virus.

To extract meaningful information from a binary it is first

disassembled, i.e., translated to assembly instructions [6],

[15], [22]. The disassembled code is usually analyzed

further, often following steps similar to those performed

for decompilation [9]. Vinciguerra et al. have compiled a

survey of disassembly and decompilation techniques [26].

Lakhotia and Singh [18] discuss how a virus writer could

attack the various stages in the decompilation of binaries by

taking advantage of the limitation of static analysis. Indeed,

Linn et al. [19] present code obfuscation techniques for

disrupting the disassembly phase, making it difficult for

static analysis to even get started.

The art of obfuscation is very advanced. Collberg et al.

[12] present “a taxonomy of obfuscating transformations”

and a detailed theoretical description of such transforma-

tions. There exist obfuscation engines that may be linked to

a program to create a metamorphic virus, a virus that creates

a transformed copy of itself before propagation. The

transformations are such that they change the byte sequence

of the executable but do not disrupt the functionality of the

program. Two such engines are Mistfall (by z0mbie), which

is a library for binary obfuscation [2], and Burneye (by

TESO), which is a Linux binary encapsulation tool [1].

Metamorphic viruses are particularly insidious because

two copies of the virus do not have the same signature.

Hence, they escape signature-based AV scanners [8]. Such

viruses can sometimes be detected if the operating system

calls made by the program can be determined. For example,

Symantec’s Bloodhound technology executes a program in

a sandbox (or an emulator), traps the calls made by the

program, and then determines whether it is malicious by

using classification algorithms to compare the set against a

database of calls made by known viruses and clean

programs [23]. The challenge, however, is in detecting the

operating system calls made by a program. The PE and

ELF format for binaries include mechanism to inform the

linker about the libraries used by a program. But, there is no

requirement that this information be included in the file

headers. In Windows, the entry point address of various

system functions may be computed by a program at

runtime using a Kernel32 function called GetProcAddress.

W32.Evol virus uses precisely this method for getting

addresses of kernel functions and further obfuscates the

method it uses to call these functions.
There is hope, however. A recent result by Barak et al. [4]

proves that, in general, program obfuscation is impossible,
i.e., there are certain program properties that cannot be
obfuscated. This is likely to have an effect on the pace at
which new metamorphic transformations are introduced.
Lakhotia and Singh [18] observe that, though metamorphic
viruses pose a serious challenge to antivirus technologies,
the virus writers too are confronted with the same
theoretical limits and have to address some of the same
challenges that the antivirus technologies face.

Indeed research results in detecting obfuscated viruses
are beginning to emerge. Christodorescu and Jha use
abstract patterns to detect malicious patterns in executables
[8]. Lakhotia and Mohammed have developed a technique
to undo certain obfuscation transformations, such as
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statement reordering, variable renaming, and expression
reshaping [17]. In a more recent work, Christodorescu et al.
have developed a semantic directed method to find variants
of a virus [7]. Their method, which requires creating
templates of code fragments to be searched, works well
for variants created by hand-modifying or recompiling a
virus. Lakhotia et al. also find similar virus variants by
cluster analysis of the code using maximal-pi patterns [16].
This approach is completely automated and, unlike
Christodorescu’s approach, does not require templates.

3 THE ABSTRACT STACK

An abstract stack is an abstraction of the concrete stack. The
concrete stack of a program keeps actual data values that
are pushed and popped in a LIFO (Last In First Out)
sequence. The abstract stack instead stores the addresses of
the instructions that push and pop values in a LIFO
sequence. For example, consider Fig. 1. Each instruction in
the sample program is marked with its address from L1
through L4. The concrete stack and the abstract stack, after
execution of the instruction at address L4, are as shown in
Fig. 1. Initially, the addresses L1 and L2 are pushed onto the
abstract stack, but due to the pop instruction at L3, the
address L2 is popped and next L4 is pushed.

The following example highlights some issues in creating
abstract stacks for each point in the program. Fig. 2 shows a

sample program; its control flow graph appears in Fig. 3.

Each block in the control flow graph may contain only a

single push, pop, or call instruction or may additionally

contain a control transfer instruction. The program points

are numbered. Fig. 4 shows a few abstract stacks that are

possible at four program points. For instance, the third

abstract stack at program point 2 is the result of the

following execution trace:

1! 2! 3! 4! 3! 4! 5! 2:
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Fig. 1. Concrete and abstract stacks.

Fig. 2. Sample program.

Fig. 3. Control flow graph for sample program.

Fig. 4. Possible abstract stacks at some program points.



The abstract stack shown at program point 4 results from
the trace

1! 2! 3! 4! 3! 4! 5! 2! 3! 4:

The execution trace

1! 2! 3! 4! 5! 2! 3! 4! 3! 5! 2! 7! 8

yields the abstract stack at program point 8.
Our interest is in finding all possible abstract stacks at

each program point for all execution traces. Since there may
be multiple execution traces from the entry node to any
program point, there may be multiple abstract stacks at
each program point. This is enumerated in the example by
the multiple traces for program points 2 and 6 in Fig. 4. In
fact, program points 3 and 4 may have infinite number of
abstract stacks because of loops. A more efficient way to
handle all possible abstract stacks at each program point is
required.

3.1 The Abstract Stack Graph

An abstract stack graph is a concise representation of all,
potentially an infinite number of, abstract stacks at all
points in the program. Fig. 5 shows the abstract stack graph
for the example program in Fig. 2. A path (sequence of
nodes beginning from the abstract stack top toward the
bottom) in the graph represents a specific abstract stack.

3.2 Defining the Domain

Let ADDR denote a set of addresses. An abstract stack
graph is a directed graph represented by the 3-tuple < N;

AE;ASPR > defined as follows:

. N � ADDR is a set of nodes. An address n 2 N
implies the instruction at address n performs a push
operation. Our convention is to show nodes as
rectangular boxes in diagrams.

. AE � ADDR�ADDR is a set of edges. An edge
< n;m >2 AE denotes that there is possible execu-
tion trace in which the instruction at address n may
push a value on top of a value pushed by the
instruction at address m.

. ASPR � ADDR�ADDR captures the set of ab-
stract stack pointers (stack tops) for each statement.

A pair < x; n >2 ASPR means that program point x
receives the abstract stack resulting from the value
pushed by instruction n at the top. We show this
diagrammatically by annotating each node n with
the address x in circle, such that < x; n >2 AE. This
relation may be read as: n is the top of stack at
program point x. It is also stated as: the top of stack
n is associated with the program point x.

The domain INST is the abstract syntax domain,
representing the set of instructions. Each instruction is
annotated with its address in the program. Thus, ½m :
call addr� is the abstract interpretation of the concrete
instruction “call addr” at address m.

The domain ASG is the domain of abstract stack graphs.
An element of ASG is a three-tuple < N;AE;ASP > ,
where N and AE have the same meaning as in the
definition of abstract stack graph. However, the set ASP
is not the same as ASPR. ASP � ADDR is the set of stack
tops. ASP is a projection of ASPR.

A path in ASG beginning at some stack top, say t, and
ending at the entry point E is associated with every abstract
stack that can occur at the program points associated with t.
A path p in ASG is represented as n1jn2jn3j::jnj such that
< ni ! niþ1 > 2 AE. p is mapped by a function � to an
abstract stack with the last-in element n1 and the first-in
element nj.

To be concise in Fig. 3, the number of each block in the
CFG and not the address of instructions in the block are
used to annotate the CFG nodes. Here, an instruction
performing the push operation is always the first instruc-
tion in the block, and a block contains either an instruction
that performs a push operation or an instruction that
performs a pop operation, but not both. Thus, in Fig. 3, all
points in a block receive the same top of stack. In Fig. 5, B3
is an abstract node which is the address of the instruction
push ebx and is associated with the set of program points
P ¼ f3; 5; 7g. Program points in P receive abstract stacks
with top B3, i.e., the abstract stack pointer asp ¼ B3. Two
possible abstract stacks when traversed from asp ¼ B3 are
B3|B0|E and B3|B4|B3|B0|E.

4 CONSTRUCTING AN ABSTRACT STACK GRAPH

Constructing an abstract stack graph involves defining an
evaluation function that provides the interpretation of each
assembly instruction in abstract terms. A set of abstract
operations over the ASG domain needs to be defined first.
The following sections explain the evaluation function built
from these abstract operations.

4.1 Evaluation Function

Fig. 6 presents an evaluation function E0 for constructing an
abstract stack graph. It is defined piecewise as a set of
rewrite rules or equations. The evaluation function and the
abstract operations depend on the following primitive
operators:

. next: ADDR! ADDR, returns the address of the
next instruction to be interpreted.

. inst: ADDR! INST , returns the instruction at a
given address.
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The evaluation function E0 takes in two parameters of
type INST and ASG and outputs an element of ASG. This
is denoted by E0: INST ! ASG! ASG. For example,
E0½ m : inst � asg ¼ ðN;AE;ASP Þ, denotes the evaluation of
the instruction inst 2 INST with address m 2 ADDR being
the execution address and asg 2 ASG being the execution
context.

Now, we can, loosely speaking, say that ASP and ASPR

are related as follows: Let E0½ m : inst � asg ¼ ðN;AE;ASP Þ,
then ðm; aÞ 2 ASPR, where a 2 ASP . The evaluation func-
tion determines the next instruction to be interpreted using
the primitive operators and also determines the appropriate
abstract operation used to interpret the current instruction.
The next section defines these abstract operations.

4.2 Abstract Operations

Fig. 7 defines the effects of the abstract operations. Note that
the operations and evaluation function are recursively
defined in terms of each other. The operations are abspush,
abspop, absret, reset, and i that operate on the domain ASG.

Operation abspush pushes a new address on the abstract
stack. It is used in the evaluation of the call and push
instructions. These two instructions are representative of
instructions that perform the push operation. Other instruc-
tions may be modeled similar to these instructions. For

example, the INT (software interrupt) instruction may be
modelled like the call instruction. Instructions that increase
the content of stack by directly manipulating the stack
pointer, such as sub esp, 8h, are modeled using the push
instruction.

Operation abspop pops an element from the abstract stack
resulting in a new set of top of stack. The operator is used in
the evaluation of ret and pop instructions.

Operation absret supports the evaluation of the ret
instruction. It uses the function is callðÞ to check whether
the address at the top of stack represents the address of a
call instruction. If so, it returns the address of instruction
after the call. Since the abstract stack does not maintain
actual return address, the address to return to when a call is
made by obfuscation is not known. This operation identifies
such obfuscations using the is pushðÞ function. Details of
detecting obfuscations are explained in subsequent sections.

Operation reset is for all those instructions that explicitly
modify the stack pointer with value not known to the
analysis. For example instructions such as move esp, eax.
Instructions such as add esp, 8h, and sub esp, 8h whose effect
on the stack pointer is known may be modeled as pop and
push, respectively.

Operation i is the identity operator. It is used for
evaluation of any operation that does not modify the stack.
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4.3 Algorithm

The naı̈ve algorithm constructs an abstract stack graph of a
section of code by applying the evaluation function to the
entry address of the program on an initial abstract stack
graph < ;; ;; ; > and then continuing until a termination
condition is reached. The termination condition may be due
to reaching some specific memory address, or reaching an
invalid instruction, or when an empty stack is popped.
Details of the termination condition of the evaluation
function are not shown in Fig. 6. A sketch of the algorithm
follows:Assume that the disassembled code and an entry
point in the code are available. The current abstract stack
graph is initialized to < ;; ;; ; > . The assembly instructions
are then interpreted one by one using E0. A work list W is
maintained such that each element in W is a tuple
< ip; asp; succ > . Here, ip (instruction pointer) is the
address of the next instruction to be executed, asp (abstract
stack pointer) is the address of an instruction denoting top
of the abstract stack graph, succ is the number of successor
abstract nodes of asp. Initially, W is the singleton set
f< Entry; 0; 0 >g.

A visited list V is also maintained which keeps track of
the instructions previously interpreted for a given state of
the abstract stack graph. This is necessary to avoid getting
trapped in a loop because of a backward control transfer or
jump. The visited list V maintains a list of already
interpreted work list elements for a given state of the
abstract stack graph. Each w 2W carries the abstract stack
graphs’ state information in succ. This is important because,
whenever a conditional branch instruction is encountered
from within a loop, information about the updated state of
the abstract stack graph has to pass along the two possible
branch paths. This is accomplished by including succ in the
tuple for w. The pseudocode for this is as shown below:

W ¼ f< E ! nextInst; E; 0 >g // Initial work list

V ¼ f;g // Initial visited list is empty

while (W 6¼ NULL) {

for w 2W, retrieve w from W

if (w =2 V) {

add w to V;
List ¼ abstract interpretðwÞ;
W ¼W [ List; }

}

Here, w is the tuple <ip, asp, succ>. The function
abstract interpretðwÞ interprets the instruction specified
by ip according to the evaluation function E0, modifies the
ASG accordingly and either returns null (if the ASG is not
modified), or a list of work list elements.

The algorithm generates a correct abstract stack graph
even for programs with loops with unbalanced push or pop

instructions. This means that, if there are individual loops
within which push or pop occur and within these loops the
push or pop are not balanced (i.e., there are more push than
pop, or more pop than push), the algorithm can still generate
the correct abstract stack graph that encompasses all the
possible abstract stacks at each program point, including
the stack representing the balancing of push and pop after
the two loops.

Each node in the abstract stack graph is created only
when a push or a call instruction is encountered. Since a
program is finite, the abstract stack graph will have a finite
set of nodes. This implies that the abstract stack graph is
finite since each node in the graph may contain only a finite
number of edges, no more than the number of nodes. This
property ensures the state will reach a stable condition
where further interpretation will no longer result in state
modifications because only a limited number of edges may
be added. Thus, we are assured termination. This also
means that, in the worst case, each node may contain
n edges, resulting in Oðn2Þ performance, where n is the
number of instructions to be interpreted.

Since the ASG domain is a finite, powerset lattice, no
specific widening operator [13] is needed for termination. If
the Oðn2Þ computational cost is an issue, one could use a
widening operator that rapidly converges to the top
element. However, the resulting approximation will defy
the purpose of the analysis.

4.4 Proof of Correctness

The previous section shows that the algorithm is guaran-
teed to terminate. This section proves the correctness of its
computation. To prove that our abstract semantics is a
sound approximation of the concrete semantics, it is
sufficient to define the homomorphisms needed to form
Galois connections between the abstract and concrete
domains [21]. This involves first defining the concrete and
abstract domains and then defining the homomorphisms.

The concrete domain consists of memory and a set of
registers. Each location in memory contains a value, as does
each register. Formally, this is defined as

CSTORE¼ðADDR!VALUEÞ�ðREGISTER! VALUEÞ;

where REGISTER is the set of registers and VALUE is the
set of possible values that can be placed in a register and
memory. We define an extended semantics that subsumes
the aforementioned concrete semantics. In the extended
semantics, the memory locations and registers contain
value-address pairs, as opposed to containing only values.
This is represented by the extended store

ESTORE ¼ ðADDR! ðVALUE �ADDRÞÞ
� ðREGISTER! ðVALUE�ADDRÞÞ:

The address that is paired to the value is the address of the
instruction responsible for creating that value. More
specifically, if an instruction pushes a value onto the stack,
the top of the stack will contain the value being pushed and
the address of the push instruction.

The extended semantics preserves the concrete semantics
because the values computed by the latter are also
computed by the former. The extended semantics however
also makes explicit the relation between a value and the
instruction creating it, which then sets the stage for defining
the homomorphism.

For the abstract semantics, we define the abstract store

ASTORE ¼ ðADDR! }ðADDRÞÞ
� ðREGISTER! }ðADDRÞÞ:
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The domain ASG defined in Section 3 maps to the
abstract store ASTORE as follows: the map ADDR!
}ðADDRÞ of ASTORE is equivalent to the binary relation
ADDR�ADDR, the set of edges of ASG. The map
REGISTER! }ðADDRÞ> is equivalent to ASPR, the
third element of ASG, if it maps all registers, except the
stack pointer (esp), to >. Then, ASPR is the value
associated to register esp.

With the concrete and abstract domains defined, the final
step is to define the homomorphisms between the abstract
values and the concrete values. To reiterate, the concrete
and abstract domains are, respectively,

ESTORE ¼ ðADDR! ðVALUE�ADDRÞÞ
� ðREGISTER! ðVALUE�ADDRÞÞ and

ASTORE ¼ ðADDR! }ðADDRÞÞ
� ðREGISTER! }ðADDRÞÞ:

The only difference between the two is that the concrete
domain contains VALUE�ADDR, where the abstract
domain contains }ðADDRÞ. Given a value-address pair
from the concrete domain, one can easily find the
corresponding set of addresses in the abstract domain. This
operation can be expressed as

� : }ðVALUE�ADDRÞ ! }ðADDRÞ
� : }ðADDRÞ ! }ðVALUE�ADDRÞ
�ðCÞ ¼ fajðv; aÞ 2 Cg
�ðAÞ ¼ [fcj�ðcÞ � Ag;

where � translates elements from the concrete domain to
the abstract domain and � translates from the abstract to the
concrete.

5 DETECTING OBFUSCATIONS

We now discuss how an abstract stack graph may be used
to detect stack related obfuscations. The obfuscations we
study are:

. Call obfuscation.

. Parameter passing obfuscation.

. Return obfuscation.

Example programs are used to illustrate the use of the
abstract stack graph to detect these obfuscations. In these
examples, each instruction is annotated with an address
label, such as E, L0, L1, etc. The instructions are also
annotated with an arrow followed by a number, such as
“! 4.” The number is the symbolic program point
associated with the instruction. The number is an alias
for the instruction’s label: The different symbols are used
to simplify the discussion. In the examples, each program
point of interest is associated with a single abstract stack.
Hence, the discussion focuses on the specific stack. This
should not be construed to imply that the methods are
restricted to a single stack. Rather, the method discussed
may be applied to every abstract stack associated with a
program point. Throughout the following, obfuscation is
detected when the contents of the abstract stack graph at
control points is not what would be expected if the call
was not obfuscated.

5.1 Detecting Obfuscated Calls

The semantics of a call addr instruction may be defined
operationally as follows:

1. Push the address of the next instruction on the stack.
2. Assign the address addr to the instruction pointer

(eip).

Fig. 8 contains several examples of obfuscated calls. Each
example achieves the semantics of a call using a different
sequence of instructions. From Fig. 8a, in case of normal
call-ret the top of stack points to the return address L1 on
reaching address L8. It is evident from the abstract stack
graph of Fig. 8a that when program point 3 is reached, the
ret instruction is returning from a node L1 which is the
address of a call instruction. Hence, L1 and L3 constitute a
valid call-ret site.

As shown in Fig. 8b, the call can be obfuscated by
substituting it with three other instructions. The first
instruction push L3 pushes the return address, the second
instruction push L8 pushes the target address and the ret
transfers control to address L8 as well as pops it from the
stack. Hence, on reaching L8 the top of stack points to the
return address L3 which is equivalent in semantics to
normal call-ret. The abstract stack graph in Fig. 8b can be
used to detect this obfuscation. When program point 4 is
reached, the ret instruction is returning from node L1 which
is the address of a push instruction and not a call instruction,
hence detecting the obfuscation.

Fig. 8c shows a program that performs the semantics of
a call using a combination of push and jmp instructions. The
target address L8 is loaded in register eax and a jmp
indirect transfers control to L8. From the abstract stack
graph in Fig. 8c, when program point 5 is reached, the ret
instruction is returning from the node L0 which is the
address of a push instruction hence disclosing the obfusca-
tion due to push/jmp.

Fig. 8d shows a program that performs the semantics of a
call using a combination of push and pop instructions. The
instruction pop ebx at program point 4 retrieves the target
address L8 from the stack and a jmp indirect transfers
control to L8. The abstract stack graph in Fig. 8d can be used
to detect this obfuscation. When program point 6 is reached,
the ret instruction is returning from node L0 which is the
address of a push instruction and not a call instruction,
hence detecting the obfuscation.

The fragment of evaluation function E1, created by
modifying corresponding fragment of E0, captures the logic
for detecting obfuscated calls.

E1 : INST ! ASG! ASG� }ðADDR�ADDRÞ
E1½m: ret�ðN;AE;ASP Þ¼
ð[ fE1 n ðabspop m ðN;AE;ASP ÞÞgÞ
[ ð;; fða;mÞja2ASP; is pushðaÞgÞ
where n2absretm ðN;AE;ASP Þ:

The evaluation returns a 2-tuple consisting of the
modified ASG and a set of pair of addresses. Each pair of
addresses represent a procedure boundary, addresses of call
and ret instructions. The union operator [ is overloaded to
do pointwise union of tuples. Hence, a union with ; returns
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the modified ASG. This fragment provides a modified
evaluation of the ret instruction. The evaluation of other
instructions remains the same, except for providing an
empty set for the second element of the tuple.

Obfuscation of call is detected when the top of stack is
identified as a push instruction. The function is pushðÞ
checks if the address at the top of the stack is the address of
a push instruction. The address pair (a, m) is identified as an
obfuscated call. Assuming this to be an obfuscation of a
system call, the next instruction to be interpreted is from the
set of addresses returned by the abstract operator absret.

5.2 Detecting Obfuscated Parameters

When analyzing a program for malicious behavior, it is
often useful to know the parameters being passed to a
function. A program may be deemed malicious depending
on the parameters. For instance, calling a file-open with
parameters set to read may be considered benign, but the
same call with parameters set for writing may indicate
malicious intent.

Parameters to a function are ordinarily passed via the
stack or through registers. An abstract stack graph can aid
in determining the parameters that are passed on the stack.
If a call takes n instructions, the top n elements on the
abstract stacks at a program point before the call instruction
represent the locations where those parameters were
pushed. The ith parameter corresponds to the ith element
on the stack (starting from the top). This is assuming the
first parameter is pushed last. If the last parameter is
pushed first, the order is changed to match. At the entry
point, the parameter addresses are connected by compen-
sating for the pushed return address.

Fig. 9 presents example programs that obfuscate where
parameters are pushed. Fig. 9a contains a sample normal
code. In this program, the arguments to the function are
pushed immediately before the call instruction.

Fig. 9b contains an example of out-of turn push. In this

program, the instructions at L0 and L1 push the parameters

in registers eax and ebx onto the stack. These are parameters

intended to be parameters to call L5, but they are pushed

before the instruction call L4. This gives the incorrect

appearance that the parameters are being passed to the

function at L4. Thus, a push instruction need not pass

parameters to the first call instruction. The abstract stack

graph for the program can be used to detect where the

parameters to a function are assembled. At program point 5,

immediately after a call L6, the state of the abstract stack is

L3|L1|L0|E. The top of stack, L3, represents the return

address. The two elements on the abstract stack, L1 and L0,

represent the instructions that push the parameters for the

function.
The abstract stack graph can also be used to detect non-

contiguous procedures, that is, when all the instructions of a

procedure are not in a contiguous sequence of memory.

Such type of control transfers are usually absent in compiler

generated code that adhere to conventional procedure entry

and exit, but occur in malicious code or hand coded

assembly. Noncontiguous procedures can be identified by

computing call-return instruction pairs, and analyzing these

pairs to determine whether 1) return address is before (less

than) the address of a call instruction and 2) there is another

entry point between the entry point of a procedure and any

of its return instructions.
The evaluation function E0 may be modified to collect

call and ret instruction pairs. The following fragment of

function E2 summarizes the modification needed to the ret

instruction:
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E2 : INST ! ASG! ASG� }ðADDR�ADDRÞ
E2½m: ret�ðN;AE;ASP Þ ¼ ð[fE2 n ðabspopmðN;AE;ASP ÞÞgÞ
[ ð;; fða;mÞja 2 ASP; is callðaÞgÞ
where n 2 absret mðN;AE;ASP Þ:

The addresses of call and ret instructions that form
procedure boundaries are returned as the pair (a, m) when
the top of stack is identified as a call instruction.

The example also shows how the abstract stack graph
may be used to match call and ret instructions. At program
point 4, where the call to L4 is made, the abstract interpreter
actually simulates a control transfer to the target of the call
site to interpret the next instruction at L4. The abstract stack
state passed is L2|L1|L0|E with L2 as the abstract stack
top. At program point 6, which is a ret instruction; the top of
the abstract stack contains L2. Thus, the ret instruction will
be seen to return from a call made at address label L2. At
program point 7, the abstract stack state is L3|L1|L0|E and
does not include L2 since at a call site updated information
is only passed down the taken branch. Hence, at program
point 7, the ret instruction will be seen to return from the call
made at address label L3.

Introducing redundant push and pop instructions can
obfuscate the parameters. Consider the program in Fig. 9c.
The value pushed at instruction L1 is popped at L2. They
are thus redundant. The abstract stack at program point 5,
before the call instruction is L3|L0|E, indicating that the
parameters to the call are pushed at L3 and L0. The effect of
the redundant push and pop instructions is visible at prior
statements, but not at program point 5.

5.3 Detecting Obfuscated Return

A ret statement typically pops the top of the stack and
returns control to address it pops, essentially reverses a call.

It pops the old eip value from the stack into eip and
increments esp by a word. The conventional way of using
call and ret is as shown in Fig. 10a. After ret is executed,
control transfers to the instruction immediately after the
call. The return may be obfuscated by simulating it using
non-return instructions or by having it transfer control to a
location other than the instruction after the call instruction.

Fig. 10 presents some examples of obfuscating the ret
instruction. In the example of Fig. 10b, the effect of a ret
instruction is achieved by popping the address into a
register and jumping to that address. The abstract stack
immediately before the address is popped is L0|E. Thus, it
can be determined that the pop instruction is popping the
return address from the call at L0, thereby indicating that
the ret address is obfuscated.

The ret instruction can also be obfuscated by returning
elsewhere. Instead of the conventional way of returning to
the instruction immediately following the call instruction,
the return address is modified in the called function and
control transferred to some other instruction. In Fig. 10c, the
instruction at L0 makes the call to L3. Immediately after the
call instruction, two junk bytes are inserted to locate a
specific return address (L3 in this case). The instruction at
L4, the contents of the stack pointer, are modified by adding
two bytes to the return address to generate a new return
address so that the ret instruction transfers control to two
bytes after the original return address. This is obfuscating
ret to return elsewhere.

The abstract stack graph may be augmented to detect
this obfuscation. Along with each location in the stack an
additional tag, modified, may be maintained. When a value
is pushed on the stack, modified is set to false. If an
instruction may change the contents of the stack and we
can determine the stack offset that is being changed, then
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we can change the tag of that location to modified. If the
value at the top of the stack at a ret instruction is modified, it
implies that ret is returning elsewhere.

The call instruction can also be “abused” to jump to a
particular instruction. In Fig. 10d, at instruction L0 a call is
made to L2. At L2, the return address is popped off the
stack. A new return address is computed and pushed onto
the stack (instruction at L4). The ret instruction at L5
transfers control to the new address location. The abstract
stack graph shown here can be used to detect such abuse.
At program point 5, immediately before the ret instruction
the abstract stack state is L4|E. This indicates that the ret
instruction is obfuscated, since it will transfer control to the
address pushed by a push instruction, and not after a call.

The evaluation function E3 that identifies obfuscated ret
is applied on the pop instruction and is defined as:

E3 : INST ! ASG! ASG� }ðADDR�ADDRÞ
E3 ½m : pop�ðN;AE;ASP Þ ¼
E3 nextðmÞðabspop m ðN;AE;ASP ÞÞ
[ ð;; fða;mÞja 2 ASP; is callðaÞgÞ:

Obfuscated ret is detected when the top of stack is
identified as a call instruction. The function is_call( ) checks
if the address at the top of the stack is the address of a call
instruction. The address pair (a, m) is identified as an
obfuscated ret. Since the return address was popped using
the pop instruction, interpretation continues at the instruc-
tion following the pop instruction.

6 IMPLEMENTATION AND RESULTS

The obfuscations described in the previous section can take
away important cues that are used during both automated
and manual analysis of suspicious binaries. While a

determined, experienced programmer can discover the
obfuscations, the time spent in making the discovery can
be precious when the malware is actively spreading. Hence,
it becomes important to have a tool that can automate their
analysis and detection.

We have implemented a tool called DOC (Detector of
Obfuscated Calls) which is a prototype to demonstrate our
method for detecting obfuscated calls and returns in
binaries. DOC statically identifies several types of obfusca-
tions related to the call and ret instructions, promising to
speed up the process of determining whether a program is
malicious. In the following sections we present the results of
using DOC to analyze W32.Evol virus.

6.1 About DOC

DOC is implemented in Java as a plug-in to the Eclipse
Platform (www.eclipse.org). Fig. 11 shows a screenshot of
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DOC when opening an assembly file (.asm extension). DOC
provides the ability to open any number of projects at the
same time. The navigator view is used to browse and open
files in a project. The files are displayed in the file view.

DOC takes as input an assembly file or a disassembled

binary obtained from a disassembler such as IDAPro. The

abstract stack graph for a given assembly program is

constructed by interpreting each instruction of the program.

The operations performed by the instruction on a real stack

are instead performed on the abstract stack graph. Once the

abstract interpretation terminates, the abstract stack graph

contains an abstraction of all possible stacks at each

statement. DOC analyzes the abstract stack graph to:

. Match call-ret instructions.

. Detect obfuscated calls.

. Detect obfuscated returns.

DOC returns its results by highlighting and annotating the
assembly. The annotations contain links to related code
when there are multiple occurrences of the same type of
obfuscation.

6.2 Call Obfuscation in W32.Evol

W32.Evol is a virus that hides constant data as code and

modifies it from generation to generation. It builds the

constant data on the stack from variable data before it

passes them to the actual function or API that needs them.

An antivirus tool that looks at the address of the target of

the call instruction to determine if a system library function

is being called will fail in this case. Instead of using the call

instruction, the virus first pushes the address of the function

to be called on the stack, and then later uses the ret

instruction to make the call. Analyzers looking for the

explicit call will miss it.
The common sequence of instructions to make a system

call, say GetTickcount, on a Windows environment is as
follows:

Push add1 ; “kernel32.dll”

Push add2 ; “GetTickCount”

call GetProcAddress

call [eax] ; “call GetTickCount”

Here, addr1 and addr2, respectively, are pointers to strings
“kernel32.dll” and “GetTickCount” located in the data
segment. The addresses of these strings are pushed on the

stack. The kernel32.dll function GetProcAddress is called,
which returns the address of the function “GetTickCount”
in the eax register. The program then does an indirect call to
the address in eax, effectively making a call to GetTickCount.
Disassemblers, such as IDA Pro, can detect such patterns of
call and aid in detecting system calls.

Fig. 12 shows a code fragment from W32.Evol for calling
the function GetTickCount. This code has multiple obfusca-
tions, none of which are detected by IDA Pro. The reasons
for this are instructive. IDAPro assumes that the retn
instruction at address 0040156A actually returns from the
procedure. Thus, it deems this statement as ending the
procedure that has entry at address 00401530. IDA Pro
indicates the end of a procedure by introducing the dummy
directive endp. Thus, it deduces that the retn statement
matches “call 00401530” instructions.

The retn instruction, it turns out, is performing a call. The
value returned from GetProcAddress is moved to the stack,
and the stack pointer modified such that when the retn
instruction is executed, it transfers control to GetTickCount.
This can be verified by manually analyzing the virus in a
debugger such as OllyDbg.

Fig. 13 presents the code of Fig. 12 with annotations
created by such a manual analysis. The address of the API
functions is looked up form the entry points or addresses
within kernel32.dll using another Win32 API function

LAKHOTIA ET AL.: A METHOD FOR DETECTING OBFUSCATED CALLS IN MALICIOUS BINARIES 965

Fig. 12. W32.Evol code with Multiple Obfuscations.

Fig. 13. Annotated code of Fig. 12.



called GetProcAddress( ). This function requires as para-
meters the name of the Win32 API function to be called and
the kernel32 module handle which is the kernel32.dll base
address. These are passed in an obfuscated way as
parameters to GetProcAddress( ).

The name of the string of the function being called is
passed in a piece meal fashion by pushing several two byte
values on the stack. The kernel32 module handle is placed
above a string marker “eVOL” that it previously pushed on
the stack. As shown in Fig. 13, instructions labeled 0040153F
through 0040155D are instrumental in doing this.

The obfuscation lies in the call to GetProcAddress( ) as well
as in the call to each of the other kernel functions. The virus
searches for the GetProcAddress( ) API entry-point using an
8-byte string. This string is calculated as the virus generates
new mutations. The actual string is placed on the stack only.
Therefore, the virus cannot be detected using any search
strings with wildcards once the virus mutates itself to a few
generations. To detect this call, the stack data must be
analyzed. The instruction at 0040155E calls a routine that
searches through the stack for a special string marker,
“eVOL.” The address of the function GetProcAddress( ) is
placed at some constant distance from this string marker. It
retrieves this address, pushes it on the stack and then
executes a ret instruction which transfers control to
GetProcAddress( ). GetProcAddress( ) returns the address of
the kernel function that needs to be called in the register eax
(instruction at 00401563). This value is pushed on the stack
and control is transferred to this kernel function by
executing a ret instruction (instruction at 0040156A).

6.3 Using DOC to Detect call Obfuscations

Fig. 14 shows a portion of the code where DOC detects
the obfuscated call to the kernel function GetTickCount().
The push instruction at address 00401557 and the retn
instruction at address 0040156A are instrumental in
obfuscating the call to GetTickCount(). This is indicated
by highlighting these instructions in red. The annotation
“(0)” at the end of these instructions indicates that the two
belong to the same call obfuscation. W32.Evol uses similar
code to make system calls in 25 locations. IDA Pro misses
all of these calls, where as DOC highlights every such retn
instruction as making a call.

6.4 Using DOC to Match call-ret Sites

Fig. 15 shows the same code as Fig. 12, but it also shows of
the results of running DOC’s analysis for matching call-retn

instructions. The two call instructions at addresses 00401558
and 0040155E are highlighted and are annotated “(2)” and
“(3),” respectively. These numbers are arc labels in the
effective call graph.

Fig. 16 shows return sites corresponding to these
statements. These statements are annotated with the
numbers “(2)” and “(3),” which are matched to the call
sites so labeled. This figure also shows retn statements
matching call sites annotated as “(0)” and “(1).” As is
expected, one retn statement may match multiple call sites.
DOC correctly found matching retn statements for all 33 call
statements of W32.Evol. In several instances, the procedure
code was not contiguous.

7 CONCLUDING REMARKS

A method for modeling stack use of assembly programs has
been presented. The set of all possible stacks due to all
possible executions of a program is represented as an
abstract stack graph. The graph is a 3-tuple with nodes,
edges, and annotation on nodes. Each instruction that
pushes a value on the stack is represented as a node in the
graph. An edge represents a push operation, from an
instruction pushing a value to an instruction that pushed
the value on the top of the stack. A path in the graph
represents a specific abstract stack. A node is annotated
with the statements that receive an abstract stack with that
node at the top. The abstract stack graph was defined in
abstract interpretation form. An algorithm for constructing
it was also defined.

An abstract stack graph may be used to support
disassembly of obfuscated code and to detect obfuscations
related to stack operations. Eight different obfuscations
were shown to be detectable, and the methods for doing so
outlined. These are obfuscations in common use by virus
writers. The obfuscation detection technique presented is
efficient and is demonstrably effective in finding the sort of
call/retn obfuscations found inW32.Evol. We believe its
techniques can be an important part of an AV researcher’s
toolkit, and can significantly speed up analysis of obfus-
cated binaries.

The abstract stack graph and the algorithm for con-
structing an abstract stack graph are partial solutions for
detecting obfuscations in binaries. It is partial in the sense
that the obfuscation detection is confined or rather
narrowed down to those done using stack related instruc-
tions such as push, pop, call, and ret. Also, only those
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instructions that perform unit push and pop operations are

handled. Instructions such as pusha and popa that increment

and decrement the stack by more than one unit (usually

4 bytes) are not handled.
Also, the abstract stack graph does not model the contents

of memory locations and registers. Thus, modifications made

to the stack pointer by moving data through other registers

and memory locations cannot be identified. Ongoing work in

this area by Venable et al. [25] attempts to overcome this

limitation by combining the abstract stack graph model with

a “value-set analysis” model of memory locations and

registers developed by Balakrishnan and Reps [3].
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