CLOUDBURST

Last Updated June, 2™ 2009

© Immunity, Inc., 2008-2009

IMMUNITY 8@

Table of Contents

1 INETOAUCTION. c..evvvveeiiee e e e ettt e ettt e e e eeetta e e e e eeeeeaatbeeeeeeeeeeeeeeeeeessrrsbannenes 3
2 VIMWAIE SV GA TL....oeeeeeieieiieietee ettt saaaaasaaessseassasesssesnnnneeeseenan 3
2.1 Memory Mapped I/O........cooviiiiiiiieieeceee e 3
2.2 SVGA FIFO....ccooiiiiiieeee ettt ettt e e eee s 5
2.3 SVGA COMIMANGS....uvviiiieeieiiiiiirieeiieeeeeeeiccireeee e e eeeeeeirreeeeeeeeeeeserrrreeeeeeeeessineeees 6
2.3.1 2D COMIMANGS........coiiiiniiiiiiiiee et eee e e e e e e e e ree e e e e e e e enssaaes 6

2.3.2 3D COMIMANGS......oooviiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeee et e e eeeeeeeeeeeeeeeereeeees 8

3 CLOUDBURSTS. ..vttttiiee ettt eee e e e e e e e e eetaaereeeeeeeeaaeeeeeeessrasaaanaas 9
B RECT _COPY ...ttt e e e e e e e e e e e e e e 9
3.1.1 Memory Leak (FIgUure 4).......cccovviiiiiiiieeieeeiee et 11

3.1.2 Memory Write (FIUIE 5)....ccccueviiiiiiiiiieiiie et 11

4 POSt-EXPlOTLALION. ..cc.utieiiiiiiiiieeiite ettt et e e e et e e e e e 12
4.1 MOSDEF 0Ver DIreCt3D......ccoooviiiiiiiiiiieieee e 13
411 GUESE SIAC....evvieeieiieeeeeeieeeee et e e e e e e e e e s 13

A1.2 HOSE SIAC......coiieeiireeeeie et e e eeeeeeatareeeseeeeneeas 14

PAN IS D T:17: 10 20}y 0 1 1 S0 14

R0 5 Te] 11153 T) 4 FER OO 14

1 Introduction

This report presents the results of an auditing work carried out against
VMware virtualization products in an attempt to find a way to execute code on the
host from the guest.

The following is mostly focusing on the virtualized video device “VMware SVGA II”
which happened to offer all the “features” needed to reliably execute code even on
hosts with address space randomization and non-executable pages.

2 VMware SVGA Il

The “VMware SVGA II” device is a virtualized PCI Display Adapter
encountered in virtual machines run within any of the VMware products: VMware
Workstation, VMware Server, VMware ESX and so on.

This device has a PCI Vendor ID of 0x15ad and a PCI Product ID of 0x0405. It
replaced a while ago an older device “VMware SVGA” that had a PCI Product ID of
0x0710.

This SVGA compatible controller is emulated on the host, and carries the graphical
operations requested by the guest.

2.1 Memory Mapped I/O

Memory-mapped I/O (MMIO) and port I/O (also called port-mapped 1/O or
PMIO) are two complementary methods of performing input/output between the CPU
and peripheral devices in a computer :

e Each I/O device monitors the CPU's address bus and responds to any CPU's
access of device-assigned address space

e Port-mapped I/O uses a special class of CPU instructions specifically for
performing I/O (IN and OUT x86 instructions)

In the case of the VMware SVGA 1I device, we will mostly be dealing with one set of
I/O ports (15 ports) and two MMIO address spaces. Under Windows, those can be
found in the Advanced Properties of the Display Adapter, as shown in the Figure 1.

The later memory ranges are “shared” between the host and the guest. The Virtual
Machine will write and read information there, while the graphic card emulated on
the host will read and write in them to try and render the graphics.

The two memory regions have specific purposes:

e The bigger one (although sizes can be configured) is the frame buffer. It is the
memory region where the pixels are stored. Usually a pixel is stored on 4

bytes.
e The smaller one is the SVGA FIFO. The guest can store video commands in
the FIFO that will be sequentially read and interpreted by the host.

This is basically represented in Figure 2.

The I/O ports are mostly used to read and write to 4 byte registers containing various
information about the display.

File Action Wiew Help
=) ¥ VMware SVGA Il Properties

B KOSTYA-13FDC24E General | Driver Detai\sl Resources

+ tg Batteries

- i Camputer % Wdware SYGA Il

+|-<ge Disk drives

= g Display adapters
g WMware SYGA IT Besource settings:

L DYD/CD-ROM drives Resource bype Setting

+ @ Floppy disk contrallers 10 Fangs 1080 - 10BF

- Floppy disk crives M emory Range FODOO00D - F7FFFFFF

i Humen Interface Devites Wb emory Range E8000000 - EE7FFFFF
-4 IDE ATA/ATAPT cortrollers

+-z= Keyboards

+ "j Mice and other pointing devices
+- B8 Network adapters

- 5 Ports (COM & LPT)

=% Processors

+ @é 5CS1 and RAID contrallers 5 5
+-%, Sound, video and game contralg Conflicting devica list
#- g System devices No conflicts.

+ % Universal Serial Bus controllers

Figure 1: I/O range and memory ranges for the VMware SVGA 1I controller

Host Guest
vmware—vmx Process Virtual Machine

SVGA FIFO

1/0 Ports
1/0 Memory Mappings

Frame Buffer - |

Virtual Video Card

Figure 2: Representation of the shared memory regions

2.2 SVGAFIFO

Obviously nothing much can be done with the frame buffer since it will only
be containing a bunch of pixels at any time. Yet the SVGA FIFO is a lot more
interesting to have look at, since it can be written to by the guest and will be read
from and parsed by the host. Parsing means potential bugs.

The way the SVGA FIFO works is undocumented. It is only supposed to be used by
VMware video drivers, and the only few public references we could find to those are
within the XF86 video drivers, written by VMware and open source.

The SVGA FIFO is mostly controlled by 4 4 byte integers (DWORD), located at the
very beginning of the memory region that is the FIFO:

SVGA_FIFO_MIN (0)
SVGA_FIFO_MAX (1)
SVGA_FIFO_NEXT_CMD (2)
SVGA_FIFO_STOP (3)

Those are offsets indicated where the FIFO begins, ends, and where is the next
command located. SVGA_FIFO_MIN and SVGA_FIFO_MAX tend not to be
modified once the FIFO has be allocated and initialized in the host, but the guest can
freely modify SVGA_FIFO_NEXT_CMD and SVGA_FIFO_STOP to indicate that
new commands should be parsed.

The next piece of code illustrates how to add a DWORD in the FIFO:

void
vmwareWriteWordToFIFO(VMWAREPtr pVMWARE, CARD32 value)

CARD32* vmwareFIFO = pVMWARE->vmwareFIFO;
/* Need to sync? */

if ((vmwareFIFO[SVGA FIFO NEXT CMD] + sizeof(CARD32) ==
vmwareFIFO[SVGA FIFQO STOP])

|| (vmwareFIFO[SVGA FIFO NEXT CMD] == vmwareFIFO[SVGA FIFO MAX] -
sizeof (CARD32) &&
vmwareFIFO[SVGA FIFO STOP] == vmwareFIFO[SVGA FIFO MIN])) {

VmwareLog(("Syncing because of full fifo\n"));
vmwareWaitForFB (pVMWARE) ;

}
vmwareFIFO[vmwareFIFO[SVGA FIFO NEXT CMD] / sizeof(CARD32)] = value;
if(vmwareFIFO[SVGA FIFO NEXT CMD] == vmwareFIFO[SVGA FIFO MAX] -

sizeof (CARD32)) {

vmwareFIFO[SVGA FIFO NEXT CMD] = vmwareFIFO[SVGA FIFO MIN];
} else {

vmwareFIFO[SVGA FIFO NEXT CMD] += sizeof(CARD32);
)

}

When the guest wants a new video operation to be done, it will add to the FIFO the
various DWORDs forming the command and let the host know that the FIFO needs to
be parsed.

A command is usually constituted of a number that identifies this command, and
some parameters. Those parameters can be of fixed length, or of variable length
depending on the command prototype. If of variable length, they are usually
constituted of a length followed by some more DWORD:s.

2.3 SVGA Commands

VMware implements a lot of video commands. They can be subdivided in two
groups: the 2D Commands and the 3D Commands.

2D Commands appear to have been there since the very beginning of VMware
products, 3D Commands have been added as non-default features quite recently and
are now fully accessible in the latest version of VMware products: VMware
Workstation 6.5 and above, VMware ESX Server 4.0 and above, etc.

Unfortunately, all the commands cannot be accessed by default. If a capability is
present, then the command can be executed. Capabilities can be checked from the
guest through a port I/O. Some capabilities are set as default, others must be activated
through options in the VMX configuration file of the virtual machine.

2.3.1 2D Commands

ID Command String Parameters | Capabilities FIFO
Number Capabilities
0 |INVALID_CMD 0 0 0
1 |UPDATE 4 0 0
2 |RECT_FILL 5 1 0
3 |RECT_COPY 6 2 0
4 | DEFINE_BITMAP 3 (var) 0 0
5 |DEFINE_BITMAP_SCANLINE |4 (var) 0 0
6 |DEFINE_PIXMAP 4 (var) 0 0
7 |DEFINE_PIXMAP_SCANLINE |5 (var) 0 0
8 |RECT_BITMAP_FILL 7 0 0
9 |RECT_PIXMAP_FILL 5 0 0

Oah | RECT_BITMAP_COPY 9 0 0
Obh | RECT_PIXMAP_COPY 7 0 0
Och |FREE_OBJECT 1 0 0
Odh | RECT_ROP_FILL 6 1 0
Oeh | RECT_ROP_COPY 7 2 0
Ofh |RECT_ROP_BITMAP_FILL 8 0 0
10h | RECT_ROP_PIXMAP_FILL 6 0 0
11h | RECT_ROP_BITMAP_COPY Oah 0 0
12h RECT_ROP_PIXMAP_COPY 8 0 0
13h | DEFINE_CURSOR 7 (var) 20h 0
14h | DISPLAY_CURSOR 2 20h 0
15h MOVE_CURSOR 2 20h 0
16h | DEFINE_ALPHA_CURSOR 5 (var) 200h 0
17h | DRAW_GLYPH 5 (var) 400h 0
18h | DRAW_GLYPH_CLIPPED Oah (var) 400h 0
19h UPDATE_VERBOSE 5 0 0
lah | SURFACE_FILL 7 1000h 0
1bh | SURFACE_COPY & 1000h 0
Ich | SURFACE_ALPHA_BLEND Och 3000h 0
1dh | FRONT_ROP_FILL 6 8000h 0
leh FENCE 1 8000h 0
1th | VIDEO_PLAY_OBSOLETE O0dh 0 0
20h | VIDEO_END_OBSOLETE 1 0 0
21h |[ESCAPE 2 (var) 8000h 20h

Commands in

Commands in

are (usually) not default.

(var) indicates that one of the parameters is of variable length.

Most of the commands are rather self explanatory. RECT_COPY for example takes 6
parameters: a source X and Y, a destination X and Y, a width, a height, and copies the

source to the destination.

are deprecated (empty function of deprecated error).

FIFO capabilities can be enabled in a rogue way from the guest.

2.3.2 3D Commands

ID Command String Parameters
Number

410h | SURFACE_DEFINE 9
411h |SURFACE_DESTROY 1
412h |SURFACE_COPY 6
413h |SURFACE_STRETCHBLT 13h
414h |SURFACE_DMA 7
415h |CONTEXT_DEFINE 1
416h | CONTEXT_DESTROY 1
417h |SETTRANSFORM 12h
418h |SETZRANGE 3
419h |SETRENDERSTATE 1
41ah |SETRENDERTARGET 5
41bh |SETTEXTURESTATE 1
41ch |SETMATERIAL 13h
41dh |SETLIGHTDATA 1fh
41eh |SETLIGHTENABLED 3
41fh |SETVIEWPORT 5
420h | SETCLIPPLANE 6
421h |CLEAR 5
422h |PRESENT 1
423h |SHADER_DEFINE 3
424h |SHADER_DESTROY 3
425h |SET_SHADER 3
426h |SET_SHADER_CONST 8
427h | DRAW_PRIMITIVES 3
428h | SETSCISSORRECT 5
429h | BEGIN_QUERY 2

42ah |[END_QUERY

42bh | WAIT_FOR_QUERY
42ch |PRESENT_READBACK
42dh |SVGA_3D_CMD_MAX

— o |~ &

For 3D Commands, the deal is a bit different. Parameters are all of variable length.
There is no capability check, all the 3D Commands are there.

Any 3D Command that has an ID between 3e8h and 40fh is a Legacy 3D Command.
Those were removed from the current trees of VMware products.

3 CLOUDBURSTs

Only one of the vulnerabilities is described in this
document!

3.1 RECT_COPY

Described in the xf86-video-vmware vmware.h file, the prototype of this
function is:
#define SVGA CMD RECT COPY 3

/* FIFO layout:
Source X, Source Y, Dest X, Dest Y, Width, Height */

It is available by default on all the tested VMware versions.

As expected, it will copy a source rectangle in the frame buffer to a given destination.
A bunch of checks are carried out to ensure that some basic boundary conditions are
respected. For example if Dest X + Width falls out the screen, the operation is said to
“clip” and is aborted.

Yet the comparisons done on the DWORD and the results of the additions are signed.
This opens the door to some malicious usage of the command. A quick graphic
representation of what can happen is given in Figures 3 to Figure 5.

Frame Buffer

Figure 3: Normal behavior of the SVGA_RECT_COPY operation

Frame Buffer

Figure 4: Source rectangle is out of the frame buffer (leak memory)

10

Frame Buffer

Figure 5: Destination rectangle is out of the frame buffer (overwrite memory)

There are two obvious ways to abuse the command, either misplace the source
rectangle or the destination rectangle, leading to two different types of bugs.

3.1.1 Memory Leak (Figure 4)

If the source rectangle is located out of the frame buffer, the RECT_COPY
operation will copy the content of the memory range in the host process memory
defined as the source into the frame buffer. Since the frame buffer is shared between
the host and the guest, the guest can then read the content of the frame buffer and
thus leak the host process memory.

Debug versions (and Beta/RC) of VMware products include additional ASSERTS
lowering the extent of the memory one can leak, even though the bug is still there. In
retail versions, this bug can be used to leak pretty much any part of the memory.

The leak is relative to the base address of the frame buffer in the host process
memory. In order to leak any address content, you will HAVE to know or leak this
address.

3.1.2 Memory Write (Figure 5)

If the destination rectangle is abused in the RECT_COPY operation, it is
possible for someone to overwrite part of the memory of the host process. Since the

11

frame buffer is shared, a user can write some data into the frame buffer in the guest,
then order the host to use this data as the source rectangle of the malicious copy. The
result being a controlled overwrite, relatively to the base address of the frame buffer
in the host process memory.

Much to our disappointment, it appears that the checks done on the destination are
stricter than the ones being done on the source, which lowers the impact of the bug.
We can only overwrite data in a few kilobytes of memory preceding our frame buffer.

Exploitability of this bug is highly dependent on the content of the memory pages
right in front of the frame buffer in the host process memory. Practically it is most
likely not exploitable under any platform.

Here is an idea on what to do:

VMwareWriteReg(&/MWARE, SVGA REG WIDTH, Ox7fffffff);
Width = VMwareReadReg(&WMWARE, SVGA REG WIDTH);

DbgPrint("\nWidth: 0x%08x (%d)\n", Width, Width);
VMwareWriteReg(&/MWARE, SVGA REG CONFIG DONE, 0);

memset(VMWARE.FrameBuffer, 0x42, Width);
VMwareWriteWordToFIFO(&VMWARE, 0x03);
VMwareWriteWordToFIFO(&/MWARE, 0Ox0);
VMwareWriteWordToFIFO(&VMWARE, 0x0);
VMwareWriteWordToFIFO(&VMWARE, 0x80000000 - Width);
VMwareWriteWordToFIFO(&VMWARE, 0x0);
VMwareWriteWordToFIFO(&VMWARE, Width);
VMwareWriteWordToFIFO(&/MWARE, Ox1); // * BytesPerLine bytes
VMwareWriteReg(&/MWARE, SVGA REG CONFIG DONE, 1);

One can also play with the Y component to increase the offset where you overwrite
the data. SVGA_REG_WIDTH is the limiting factor, and should be increased to get
the most of this bug.

4 Post-Exploitation

Once code execution achieved on the Host, a communication problem still
exists. We can't be sure that networking is enabled on the Host, or if it is that the Host
is reachable from the Guest. We also cannot rely on features that might have been
disabled by an administrator: VMRPC, VMCI (not enabled by default anyway), etc.

The shared memory regions between Host and Guest are a good starting
ground to establish a canal between the two. And since we have been working all this
time with the graphic features offered by VMware, we will continue in this way by
using the Frame Buffer.

When trying to use the shared memory regions, we are facing some issues.
They usually only are accessible through physical addressing, and thus in Ring0,
which usually doesn't fit extremely well with Windows Sockets. And we probably

12

also want something that doesn't require administrative privileges each time it is run.

While an I/0 aware driver would also have worked, we decided to look in the
direction of DirectX and Direct3D. The API set offered by Direct3D allows an
unprivileged user to access the Frame Buffer off-screen areas through 3D surfaces
and textures. The goal is then to proxy TCP/IP data (MOSDEF packets) from the
Guest to the Host by using Direct3D APIs in the Guest (and simple memory
read/right in the Host). The result can be defined as MOSDEF over Direct3D.

4.1 MOSDEF over Direct3D

411 Guest Side

On the Guest, we will be using Direct3D APIs to allocate some off-screen
areas in the video card memory, write to them and read from them. In fact, only one
of those areas is necessary to keep the communication canal working.

We need to work with the off-screen part of the video card memory and not the actual
2D Framebuffer (pixels on the screen) so that a user or screensaver won't corrupt our
data.

The APIs we are using are:

e CreateOffscreenPlainSurface: creates an off-screen surface. This is a memory
region in the video card memory, and thus shared between the Guest and the
Host. As the format parameter, we use D3DFMT_A8R8G8BS8 to use 32 bits

per pixel.

e D3DXlLoadSurfaceFromMemory: loads a surface from a memory buffer, ie:
writes a buffer in the shared memory area from userland. Once again we use
D3DFMT_A8R8G8BS as format to make sure our entire buffer is copied (and
not 3 bytes out of 4). D3DX_FILTER_NONE as the filter is also important to
make sure that the data is not modified when being copied.

e D3DXSaveSurfaceToFileInMemory: closest counterpart we can get to the
previous API. The surface will be saved from the video card memory to a
buffer, unfortunately there is no such thing as a raw format, so we picked
D3DXIFF_BMP, the easiest to parse and it doesn't involve compression.

All the APIs allow to specify a rectangle, so you can read or write only part of the
surface, which will save some time and memory area later.

The process followed on the Guest is the following:

1. Create an off-screen surface

2. Connect-back to the MOSDEEF listener (or Bind works too)

3. If there is some data to receive, receive it and load it into the surface
4. Else read the surface, if there is some Host data, send it to the listener

13

http://msdn.microsoft.com/en-us/library/bb174358(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb205432(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb172902(VS.85).aspx

5. Loop to 3.

Since MOSDEEF is designed to be sequential, there is no risk to have some data
available in the surface when we are receiving some from the network socket.

41.2 Host Side

On the host side it is less complex since the frame buffer memory area is a
regular memory region in regard of the vmware-vmx process.

A MOSDEEF listener will be spawned and bind itself on localhost, waiting for data
from the parent thread. The parent thread will scan the framebuffer memory area
looking for new data from the Guest. Once such data has been found, it will be sent to
the MOSDEEF listener. It will then receive the reply and stored it into the frame buffer
for the Guest to fetch.

41.3 Data Format

We chose to format the data in a simple way to allow Host and Guest to
communicate easily. The data blocks are composed of a Signature (used to locate the
Guest data in the framebuffer memory are from the Host side), a Flag (4 bytes), the
length of the data (4 bytes) and the data.

The role of the Flag is the one of a semaphore, signaling data availability in the
framebuffer. Flag can be either:

e NOOP (0), signaling that no data is available;

e GUEST_DATA (1), signaling to the Host that some data from the Guest is
available to read;

e HOST_DATA(2), signaling to the Guest that some data from the Host is
available to read;

e QUIT (3), signaling both ends should terminate the connection.

No data should be written to the framebuffer from either end if the Flag is not 0. The
Flag should only be switched to O when all the data is read by the other end. The
sequentiality of MOSDEF will ensure that no concurrent access is done on the
communication canal.

5 Conclusion

With the results presented in this report, we were able to reliably execute code
from the guest into the host on the following platforms:

o VMware Workstation 6.5.0 build-118166 on a Ubuntu Linux 8.04
e VMware Workstation 6.5.1 build-126130 on a Ubuntu Linux 8.04

14

o VMware Workstation 6.5.0 build-118166 on a Windows Vista SP1
o VMware Workstation 6.5.1 build-126130 on a Windows Vista SP1
o VMware ESX Server 4.0.0 build-133495

Workstation exploits obviously work flawlessly against VMware Players of the same
build number.

15

	 1 Introduction
	 2 VMware SVGA II
	 2.1 Memory Mapped I/O
	 2.2 SVGA FIFO
	 2.3 SVGA Commands
	 2.3.1 2D Commands
	 2.3.2 3D Commands

	 3 CLOUDBURSTs
	 3.1 RECT_COPY
	 3.1.1 Memory Leak (Figure 4)
	 3.1.2 Memory Write (Figure 5)

	 4 Post-Exploitation
	 4.1 MOSDEF over Direct3D
	 4.1.1 Guest Side
	 4.1.2 Host Side
	 4.1.3 Data Format

	 5 Conclusion

