
SoftWindows 11/23/05

Distributed Objects 1

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Reversing Malware
[based on material from the textbook]

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

What is Malware?
• Malware (malicious software) is any program that

works against the interest of the system’s user or
owner.

• Question: Is a program that spies on the web
browsing habits of the employees of a company
considered malware?

• What if the CEO authorized the installation of the
spying program?

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Reversing Malware

• Revering is the strongest weapon we have
against the creators of malware.

• Antivirus researchers engage in reversing
in order to:
– analyze the latest malware,
– determine how dangerous the malware is,
– learn the weaknesses of malware so that

effective antivirus programs can be developed.

SoftWindows 11/23/05

Distributed Objects 2

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Uses of Malware

• Why do people develop and deploy
malware?
– Financial gain
– Psychological urges and childish desires to

“beat the system”.
– Access private data
– …

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Typical Purposes of Malware
• Backdoor access:

– Attacker gains unlimited access to the machine.
• Denial-of-service (DoS) attacks:

– Infect a huge number of machines to try simultaneously to
connect to a target server in hope of overwhelming it and making
it crash.

• Vandalism:
– E.g., defacing a web site.

• Resource Theft:
– E.g., stealing other user’s computing and network resources, such

as using your neighbors’ Wireless Network.
• Information Theft:

– E.g., stealing other user’s credit card numbers.

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Types of Malware

• Viruses
• Worms
• Trojan Horses
• Backdoors
• Mobile code
• Adware
• Sticky software

SoftWindows 11/23/05

Distributed Objects 3

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Viruses

• Viruses are self-replicating programs that
usually have a malicious intent.

• Old fashioned type of malware that has
become less popular since the widespread
use of the Internet.

• The unique aspect of computer viruses is
their ability to self-replicate.

• However, someone (e.g., user) must
execute them in order for them to propagate.

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Viruses (Cont’d)

• Some viruses are harmful (e.g.,):
– delete valuable information from a computer’s

disk,
– freeze the computer.

• Other viruses are harmless (e.g.,):
– display annoying messages to attract user

attention,
– just replicate themselves.

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Viruses: Operation

• Viruses typically attach themselves to
executable program files
– e.g., .exe files in MS Windows

• Then the virus slowly duplicates itself into
many executable files on the infected
system.

• Viruses require human intervention to
replicate.

SoftWindows 11/23/05

Distributed Objects 4

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Origin of the term
Computer Virus

• The term computer virus was first used in an
academic publication by Fred Cohen in his 1984
paper Experiments with Computer Viruses.

• However, a mid-1970s science fiction novel by
David Gerrold, When H.A.R.L.I.E. was One,
includes a description of a fictional computer
program called VIRUS.

• John Brunner's 1975 novel The Shockwave Rider
describes programs known as tapeworms which
spread through a network for deleting data.

• The term computer virus also appears in the
comic book Uncanny X-Men in 1982.

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

The first Computer Viruses

• A program called Elk Cloner is credited with
being the first computer virus to appear "in the
wild". Written in 1982 by Rich Skrenta, it
attached itself to the Apple DOS 3.3 operating
system and spread by floppy disk.

• The first PC virus was a boot sector virus called
(c)Brain, created in 1986 by two brothers, Basit
and Amjad Farooq Alvi, operating out of Lahore,
Pakistan.

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Worms
• Worms are malicious programs that use the

Internet to spread.
• Similar to a virus, a worm self-replicates.
• Unlike a virus, a worm does not need human

intervention to replicate.
• Worms have the ability to spread uncontrollably

in a very brief period of time.
– Almost every computer system in the world is attached

to the same network.

SoftWindows 11/23/05

Distributed Objects 5

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Worms: Operation

• A worm may spread because of a software
vulnerability exploit:
– Takes advantage of the OS or an application program

with program vulnerabilities that allow it to hide in a
seemingly innocent data packet.

• A worm may also spread via e-mail.
– Mass mailing worms scan the user’s contact list and

mail themselves to every contact on such a list.
– In most cases the user must open an attachment to

trigger the spreading of the worm (more like a virus).

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Trojan Horses

• A Trojan Horse is a seemingly innocent
application that contains malicious code
that is hidden somewhere inside it.

• Trojans are often useful programs that have
unnoticeable, yet harmful, side effects.

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Trojan Horses: Operation (1)

• Embed a malicious element inside an
otherwise benign program.

• The victim:
1. receives the infected program,
2. launches it,
3. remains oblivious of the fact that the system

has been infected.
– The application continues to operate

normally to eliminate any suspicion.

SoftWindows 11/23/05

Distributed Objects 6

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Trojan Horses: Operation (2)
• Fool users into believing that a file containing a

malicious program is really an innocent file such
as a video clip or an image.

• This is easy to do on MS Windows because file
types are determined by their extension as
opposed to examining the file headers.

• E.g.,
– “A Great Picture.jpg .exe”
– The .exe might not be visible in the browser.
– The Trojan author can create a picture icon that is the

default icon of MS Windows for .jpg files.

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Backdoors

• A backdoor is malware that creates a covert
access channel that the attacker can use for:
– connecting,
– controlling,
– spying,
– or otherwise interacting with the victim’s

system.

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Backdoors: Operation

• Backdoors can be embedded in actual
programs that, when executed, enable the
attacker to connect to and to use the system
remotely.

• Backdoors may be planted into the source
code by rogue software developers before
the product is released.
– This is more difficult to get away with if the

program is open source.

SoftWindows 11/23/05

Distributed Objects 7

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Mobile Code

• Mobile code is a class of benign programs that
are:
– meant to be mobile,
– meant to be executed on a large number of systems,
– not meant to be installed explicitly by end users.

• Most mobile code is designed to create a more
active web browsing experience.
– E.g., Java applets, ActiveX controls.

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Mobile Code (Cont’d)

• Java scripts are distributed in source code
form making them easy to analyze.

• ActiveX components are conventional
executables that contain native IA-32
machine code.

• Java applets are in bytecode form, which
makes them easy to decompile.

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Mobile Code: Operation

• Web sites quickly download and launch a
program on the end user’s system.

• User might see a message that warns about a
program that is about to be installed and launched.
– Most users click OK to allow the program to run.
– They may not consider the possibility that malicious

code is about to be downloaded and executed on their
system.

SoftWindows 11/23/05

Distributed Objects 8

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Adware

• Adware is a program that forces unsolicited
advertising on end users.

• Adware is a new category of malicious
programs that has become very popular.

• Adware is usually bundled with free
software that is funded by the
advertisements displayed by the Adware
program.

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Adware: Operation (1)

• The program gathers statistics about the
end user’s browsing and shopping habits.
– The data might be transferred to a remote

server.
• Then the Adware uses the information to

display targeted advertisements to the end
user.

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Adware: Operation (2)

• Adware can be buggy and can limit the
performance of the infected machine.
– E.g., MS IE can freeze for a long time because

an Adware DLL is poorly implemented and
does not use multithreading properly.

• Ironically, buggy Adware defeats the
purpose of the Adware itself.

SoftWindows 11/23/05

Distributed Objects 9

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Sticky Software
• Sticky software implements methods that prevent

or deter users from uninstalling it manually.
• One simple solution is not to offer an uninstall

program.
• Another solution in Windows involves:

– installing registry keys that instruct Windows to
always launch the malware as soon as the system is
booted.

– The malware monitors changes to the registry and
replace the keys of they are deleted by the user.

– The malware uses two mutually monitoring processes
to ensure that the user does not terminate the malware
before deleting the keys.

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Future Malware

• Today’s malware is just the tip of the
iceberg.

• The next generation of malware may take
control of the low levels of the computer
system (e.g., BIOS, Firmware).
– The antidote software will be in the control of

the malware …
• Also the theft of valuable information can

result in holding it for ransom.

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Information-stealing Worms

• Present-day malware does not take
advantage of cryptography much.

• Asymmetric encryption creates new
possibilities for the creation of information-
stealing worms.

• A worm encrypts valuable data on the
infected system using an asymmetric cipher
and hold the data as ransom.

SoftWindows 11/23/05

Distributed Objects 10

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Information-stealing
Worms:Operation

1. The Kleptographic worm embeds a public
encryption key in its body.

2. It starts encrypting every bit of valuable data on
the host using the public key.

3. Decryption of the data is impossible without the
private key.

4. Attacker blackmails the victim demanding
ransom.

5. Attacker exchanges the private key for the
ransom while maintaining anonymity.

– Theoretically possible using zero-knowledge proofs
– Attacker proves that he has the private key without exposing it.

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

BIOS/Firmware Malware
• Antivirus programs assume that there is always

some trusted layer of the system.
• Naïve antivirus programs scan the hard drive for

infected files using the high-level file-system
service.

• A clever virus can intercept file system calls and
present to the virus with fake versions
(original/uninfected) of the files on disk.

• Sophisticated antivirus programs reside at a low
enough level (in OS kernel) so that malware
cannot distort their view of the system.

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

BIOS/Firmware Malware:
Operations (1)

• What is the malware altered an extremely low
level layer of the system?

• Most CPUs/hardware devices run very low-level
code that implements each assembly language
instruction using low level instructions (micro-
ops).

• The micro-ops code that runs inside the processor
is called firmware.

• Firmware can be updated using a firmware-
updating program.

SoftWindows 11/23/05

Distributed Objects 11

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

BIOS/Firmware Malware:
Operations (2)

• Malicious firmware can (in theory) be
included in malware that defeats antivirus
programs.

• The hardware will be compromised by the
malicious firmware.

• Not easy to do in practice because firmware
update files are encrypted (private key
inside the processor).

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Reversing Malware
• Malware is vulnerable to reversing.
• Even encryption-based protection can be reversed.

– E.g., examine the unencrypted version of the code
being executed in memory.

• One approach is to hide the malware from the
user by embedding it into benign code.
– E.g., file name changes, embedding code in OS code.

• Another approach is using anti-reversing:
– Anti-reversing techniques attempt to scramble or

complicate the code to prolong the reversing process.

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Reversing Malware (3):
Static Analysis of Malware

• BinText:
– Extracts strings from executables, revealing registry keys

used, and various commands stored in string format.
• IDA Pro:

– Disassembler (executable to assembly code).
• UPX:

– UPX compression and decompression, the most common
executable packer used by virus and malware writers.

• Proc Dump:
– Dumps code from memory.

• OllyDbg:
– A debugger that enables the user to attach to a process and

insert breakpoints.

SoftWindows 11/23/05

Distributed Objects 12

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Reversing Malware (3):
Dynamic Analysis of Malware

• Process Explorer:
– Tells what processes are currently running.

• FileMon:
– Monitors files for operations.

• RegMon:
– Monitors registry for operations.

• RegShot:
– Takes a snapshot of the registry and associated files .

• TCPView:
– Displays all TCP and UDP open connections and the process that

opened and is using the port.
• TDIMon:

– Logs network connectivity, but does not log packet contents.
• Ethereal:

– Packet Scanner that captures packets and supports the viewing of
contents/payload.

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Antivirus Programs
• Antivirus programs identify malware by looking

for unique signatures in the code of each program
(i.e., potential virus) on a computer.
– A signature is a unique sequence of code found in a

part of the malicious program.
• The antivirus program maintains a frequently

updated database of virus signatures.
– The goal is for the database to contain a signature for

every known malware program.
• Well known antivirus software includes:

– Symantec (http://www.symantec.com)
– McAfee (http://www.mcafee.com)

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Polymorphic Viruses

• Polymorphism is a technique that thwarts
signature-based identification programs.

• Polymorphic viruses randomly encode or
encrypt the program code in a semantics-
preserving way.

• The idea is to encrypt the code with a
random key and decrypt it at runtime.
– Each copy of the code is different because of

the use of a random key.

SoftWindows 11/23/05

Distributed Objects 13

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Polymorphic Viruses:
Decryption technique

• A decryption technique that polymorphic
viruses employ involves “XORing” each
byte with a randomized key that was saved
by the parent virus.

• The use of XOR-operations has the
additional advantage that the encryption
and decryption routine are the same:
– a xor b = c
– c xor b = a

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Polymorphic Viruses:
Weaknesses

• Many antivirus programs scan for virus signatures
in memory.
– I.e., after the polymorphic virus has been decrypted.

• If the virus code that does the decryption is static,
then the decryption code can be used as a
signature.

• This limitation can be addressed (somewhat) if
the decryption code is scrambled (superficially):
– randomize the use of registers,
– add no-ops in the code, …

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Metamorphic Viruses

• Instead of encrypting the program’s body and
making slight alterations in the decryption engine,
alter the entire program each time it is replicated.

• This makes it extremely difficult for antivirus
writers to use signature-matching techniques to
identify malware.

• Metamorphism requires a powerful code analysis
engine that needs to be embedded into the
malware.

SoftWindows 11/23/05

Distributed Objects 14

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Metamorphic Viruses: Operation
• Metamorphic engine scans the code and generates

a different version of it every time the program is
duplicated.

• The metamorphic engine performs a wide variety
of transformations on the malware and on the
engine itself.
– Instruction and register randomization.
– Instruction ordering
– Reversing (negating) conditions
– Insertion of “garbage” instructions
– Reordering of the storage location of functions

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Case Study:
Backdoor.Hackarmy.D

• In Chapter 8 of the book there is an
interesting case study on reversing malware.

• It involves reversing the
Backdoor.Hackarmy.D malware.

• The next few slides outline some of the
salient results from the analysis.

• You are encouraged to read through the
analysis in detail and, perhaps, try to re-
create the analysis yourselves.

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Backdoor.Hackarmy.D:
Overview

• Backdoor.Hackarmy.D is a Trojan that
lacks any automated self-replication
mechanisms.

• It is distributed as an innocent picture file
and has a .scr (screensaver) extension.

• The Trojans temps the unsuspecting user to
open the picture and, thus, activate the
backdoor.

SoftWindows 11/23/05

Distributed Objects 15

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Backdoor.Hackarmy.D:
Unpacking the Executable

• An executable packer is a program that
compresses or encrypts an executable program.

• The program is automatically restored to original
state in memory once the program is launched.

• Some packers are designed as anti-reversing tools
that encrypt the program and try to fend off
debuggers and disassemblers.

• Some packers simply compress the program to
decrease its size.

• Backdoor.Hackarmy.D uses the UPX packer to
simply decrease its size.

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Backdoor.Hackarmy.D:
Initialization

• When the backdoor is launched, nothing happens
from the user’s perspective.

• If the backdoor was more clever, it would launch
an application and display a picture.

• However, if you check the processes on the Task
Manager you will see a process called
ZoneLockup.exe.

• The name is supposed to fool the use into
thinking that the process is a security component.

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Backdoor.Hackarmy.D:
A Chat Program

• The assembly code reveals that port number 6667
is being used.

• This port number is in the range 6665-6669,
which is usually reserved for Internet Relay Chat
(IRC) services.

• Looks like the Trojan is looking to chat with
someone … the attacker most likely.

• The USER string is embedded in the assembly:
– NICK vsorpy USER vsorpy “X.COM” “X”:X

• This registers a new user called vsorpy onto the
IRC server.

SoftWindows 11/23/05

Distributed Objects 16

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Backdoor.Hackarmy.D:
Communicating

• The attacker communicates with the backdoor
through the use of private-message packets
(PRIVMSG).

1. Find the code for parsing the backdoor
commands by searching for the part of the code
that processes the PRIVMSG commands sent
from the server.

2. Reverse the command strings (this is easy).
3. Reverse the commands by analyzing the code

that follows the parsing of the command strings.

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Backdoor.Hackarmy.D:
Summary of Commands (1)

• !?dontuseme:
– Self destruct the program by removing its Autorun registry

entry and deleting the executable.
• !socks4:

– Turns the infected system into a proxy servers.
• !threads:

– Lists currently active server threads.
• !info:

– Lists general information about the infected host (e.g., name, IP
address, CPU model).

• !?quit:
– Closes the backdoor process without uninstalling the program.

• !?disconnect:
– Causes the program to disconnect from the IRC server, wait, and

then reconnect.

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Backdoor.Hackarmy.D:
Summary of Commands (2)

• !execute:
– Executes a local binary on the host.

• !delete:
– Deletes a file from the infected host.

• !webfind64:
– Instructs the infected host to download a file from a

remote server using http or ftp.
• !killprocesses !listprocesses :

– Unreachable code, perhaps a future feature.
– Names suggest what these features will do …

SoftWindows 11/23/05

Distributed Objects 17

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Backdoor.Hackarmy.D:
More on !?dontuseme

• The !?dontuseme command uninstalls the
program from the registry and deletes the
executable.

• This is difficult because an executable program
file cannot be deleted while the program is
running.

• A self-destruct batch file is generated, which
deletes the executable after the program exists.

• The code for the batch file explains how this is
done …

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Backdoor.Hackarmy.D:
More on !?dontuseme (rm.bat)

@echo off

:start

if not exist “c:\WINNT\SYSTEM32\ZoneLockup.exe”
goto done

del “c:\WINNT\SYSTEM32\ZoneLockup.exe”

goto start

:done

del rm.bat

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Backdoor.Hackarmy.D:
More on !socks4

• The Backdoor.Hackarmy.D socks4 command
establishes a thread that waits for connections that
use the SOCKS4 protocol.

• SOCKS4 is a proxy communications protocol that
can be used for indirectly accessing a network.

• Using SOCKS4 one can route all traffic through a
single server.

• Allows attackers to connect “anonymously” (i.e.,
with the userid of the victim on the host) to
servers on the Internet.

• Difficult to trace back to the system from which
traffic is originating.

SoftWindows 11/23/05

Distributed Objects 18

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Timeline of famous malware
(1982-1988) [wikipedia]

• 1982
– Elk Cloner, written for Apple II systems, is credited

with being the first computer virus.
• 1987

– (c)Brain, the first virus written for PCs.
– SCA, a boot sector virus for Amiga appears,

immediately creating a pandemic virus-writer storm. A
short time later, SCA releases another, considerably
more destructive virus, the Byte Bandit.

• 1988
– Morris worm infects DEC VAX machines connected

to the Internet, and becomes the first worm to spread
extensively.

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Timeline of famous malware
(1998-2000) [wikipedia]

• 1998
– CIH virus version 1.

• 1999
– Melissa worm is released, targeting Microsoft Word

and Outlook-based systems, and creating considerable
network traffic.

• 2000
– The VBS/Loveletter worm, also known as the "I love

you" virus appeared. As of 2004, this was the most
costly virus to business, causing upwards of 10 billion
dollars in damage.

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Timeline of famous malware
(2001) [wikipedia]

• Klez worm.
• Nimda worm.
• Code Red II worm (spreads in China, attacks

Microsoft's Internet Information Services.
• Sircam worm (spreads through e-mails and

unprotected network shares).
• Sadmind worm (spreads by exploiting holes in

both Sun Microsystem's Solaris and MS IIS).
• Raman worm (similar to the Morris worm

infected only Red Hat Linux machines running
version 6.2 and 7.0, using three vulnerabilities in
wu-ftpd,rpc-statd and lpd.

SoftWindows 11/23/05

Distributed Objects 19

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Timeline of famous malware
(2003) [wikipedia]

• Sober worm is first seen and maintains its
presence until 2005 with many new variants.

• Sobig worm (technically the Sobig.F worm)
spread rapidly via mail and network shares.

• Blaster worm also know as the Lovesan worm
spread rapidly by exploiting MS computers.

• SQL slammer worm also known as the
Sapphire worm, attacked vulnerabilities in
Microsoft SQL Server and MSDE, causes
widespread problems on the Internet.

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Timeline of famous malware
(2004) [wikipedia]

• Sasser worm emerges by exploiting a
vulnerability in LSASS, causes problems in
networks.

• Witty worm is a record breaking worm in many
regards.

– It exploited holes in several Internet Security Systems
(ISS) products.

– it was the first internet worm to carry a destructive
payload and it spread rapidly using a pre-populated
list of ground-zero hosts.

• MyDoom emerges, and currently holds the
record for the fastest-spreading mass mailer
worm.

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Timeline of famous malware
(2005) [wikipedia]

• Zotob worm, the effect was overblown
because several United States media
outlets were infected.

SoftWindows 11/23/05

Distributed Objects 20

Reverse Engineering (Reversing Malware)Reverse Engineering (Reversing Malware) © SERG

Conclusions
• Educating users on how malware works is

important, but not enough.
• Software developers must exercise caution to

make their programs more secure from
vulnerabilities such as buffer overflow attacks.

• You learned about:
– the different types of malware
– how malware works
– how malware hides from antivirus scanners

• Hands on experience on reversing the BeagleJ
virus is a good introduction to reversing and
understanding malware.

