

Understanding the PEB Loader

Data Structure

The PEB_LDR_DATA structure is a Windows Operating System structure that contains

information about all of the loaded modules in the current process.

The OS links to it in the Process Envirnoment Block at offset 0x0C.

Shellcode will typically walk the PEB_LDR_DATA structure and the linked

LDR_MODULE structures in order to find the base address of loaded dlls.

When you look at these structures for the first time, it can be allot to try to digest
especially if you are not familiar with the further embedded types such as

UNICODE_STRING and LIST_ENTRY.

The following graphic depicts teh core of what you need to know. (note I changed the
name of the LIST_ENTRY here to mLIST so it didnt conflict with my header files)

http://undocumented.ntinternals.net/UserMode/Undocumented%20Functions/NT%20Objects/Process/PEB.html
http://undocumented.ntinternals.net/UserMode/Structures/PEB_LDR_DATA.html
http://undocumented.ntinternals.net/UserMode/Structures/LDR_MODULE.html

Trying to follow code which makes use of these structures can be equally confusing
until you figure out how the lists are interconnected as well.

First, lets start with some high level concepts.

1. Peb loader data is the head of the list. It contains both forward and backward
links to the other elements.

2. Each dll gets its own Loader Module structure. It is these structures which are

linked to the other entries.
3. Windows organizes the loaded dll list in 3 ways. According to the order the dlls

1. were loaded by the windows loader

2. are found in the memory layout
3. were initilized

4. On windows XP, certain core dlls are always found at specific offsets in the list.
Shellcode often takes advantage of this when they are locating dlls. The

important bits are:

5. inloadorder = process, ntdll, kernel32, ...
6. inmemorder = process, ntdll,kernel32, ...
7. ininitorder = ntdll, kernel32, ... (no process entry)

The way the actual structures work, makes sense once you understand their layout.

Consider the following which represents a complete PEB Loader Data and Loader
Module list for a simple process.

PEB Loader Data

00241EA0 00000028

00241EA4 BAADF001

00241EA8 00000000

00241EAC 00241EE0 inloadorder.flink

00241EB0 00242010 .blink

00241EB4 00241EE8 inmemorder.flink

00241EB8 00242018

00241EBC 00241F58 ininitorder.flink

00241EC0 00242020

loader module entry 1

00241EE0 00241F48

00241EE4 00241EAC

00241EE8 00241F50

00241EEC 00241EB4

00241EF0 00000000

00241EF4 00000000

00241EF8 00400000 shellcod.00400000

00241EFC 00401000 shellcod.

00241F00 00006000

00241F04 006E006C

00241F08 00020780 UNICODE "C:\shellcode.exe_"

00241F0C 001E001C

00241F10 000207D0 UNICODE "shellcode.exe_"

loader module entry 2

00241F48 00242010

00241F4C 00241EE0

00241F50 00242018

00241F54 00241EE8

00241F58 00242020

00241F5C 00241EBC

00241F60 7C900000 ntdll.7C900000

00241F64 7C9120F8 ntdll.

00241F68 000B2000

00241F6C 0208003A

00241F70 7C980048 UNICODE "C:\WINDOWS\system32\ntdll.dll"

00241F74 00140012

00241F78 7C92040C UNICODE "ntdll.dll"

loader module entry 3

00242010 00241EAC ;flink points back to peb.inloadorder.flink

00242014 00241F48 ;points back to entry 2 inloadorder.flink

00242018 00241EB4

0024201C 00241F50

00242020 00241EBC

00242024 00241F58

00242028 7C800000 kernel32.7C800000

0024202C 7C80B64E kernel32.

00242030 000F6000

00242034 00420040

00242038 00241FB0 UNICODE "C:\WINDOWS\system32\kernel32.dll"

0024203C 001A0018

00242040 00241FD8 UNICODE "kernel32.dll"

Perhaps the easiest way to become familiar with the layout of these lists is to open up
a simple executable in Olly, click the dump window to make it active, and press

control+G to goto expression. Type in fs:[30] Which will bring you to the parent PEB
structure. Right click and view the data as Long->Address.

You can even double click on the first entry in the address column to have it display

the offsets relative to the offset you clicked. From here you can right click on entry

0x0C and choose follow in dump which will take you to the PEB_LDR_DATA structure.

In this manner you can interactively follow the lists and see how the data changes.

Now lets explore the listing given above.

You can easily now see that each LIST_ENTRY field links to the next by following the
offsets. (The hex number on the left is the memory address, the next hex number is

the data value at that address. If there is any data in the 3rd column, it is either a
comment or a data dereference by olly)

If you look closley you will notice a couple things.

 Each list.flink points to the next dlls corrosponding list.flink. (IE The
InLoadOrder list links to the next items InLoadOrder list)

 At the end of the list, the last items forward link, points back to the Peb loader
data list head.

 The process entry (for the .exe) is not linked into the .InInitilizationOrder list
 Each entries back link, points to the last items forward link.

One other thing that makes sense in hindsight, but was confusing at the time is how

the offset for the basedll name, or module base address changes depending on which

list you are walking.

If we were walking the InInitilizationOrder List, you would see something like this

PEB Loader

00241EA0 00000028

00241EA4 BAADF001

00241EA8 00000000

00241EAC 00241EE0 inloadorder.flink

00241EB0 00242010

00241EB4 00241EE8 inmemorder.flink

00241EB8 00242018

00241EBC 00241F58 ininitorder.flink

00241EC0 00242020

in init order entry 1

00241F58 00242020

00241F5C 00241EBC

00241F60 7C900000 ntdll.7C900000

00241F64 7C9120F8 ntdll.

00241F68 000B2000

00241F6C 0208003A

00241F70 7C980048 UNICODE "C:\WINDOWS\system32\ntdll.dll"

00241F74 00140012

00241F78 7C92040C UNICODE "ntdll.dll"

See how the module base address is now at flink+0x8 ?

This is because the list you are walking is already 0x10 bytes into the loader module

list structure by the time you get there. If you had been walking the InLoadOrder list,
then the dll base would be at offset 0x18

$ ==> >00242010 ;start of ldr_module structure, InLoadOrderList.flink

$+4 >00241EE0

$+8 >00242018

$+C >00241EE8

$+10 >00242020

$+14 >00241EBC

$+18 >7C900000 ntdll.7C900000

$+1C >7C9120F8 ntdll.

$+20 >000B2000

$+24 >0208003A

$+28 >7C980048 UNICODE "C:\WINDOWS\system32\ntdll.dll"

$+2C >00140012

$+30 >7C92040C UNICODE "ntdll.dll"

$ ==> >00242020 ;0x10 bytes into ldr_module, InInitOrder.flink

$+4 >00241EBC

$+8 >7C900000 ntdll.7C900000

$+C >7C9120F8 ntdll.

$+10 >000B2000

$+14 >0208003A

$+18 >7C980048 UNICODE "C:\WINDOWS\system32\ntdll.dll"

$+1C >00140012

$+20 >7C92040C UNICODE "ntdll.dll"

Initially this can be a source of confusion, but once you see it in action, it makes

sense.

i guess those are the main things I wanted to show about working with the loader

data lists. Looking at just the structures and blobs of hex data is not always a very

friendly exercise. I googled a bit and couldnt find any documents like this so figured I

would put this out there to help others along.

-dzzie

