
Thoughts about Cross-View based Rootkit Detection

Joanna Rutkowska
http://invisiblethings.org

June 2005

Recently, cross-view based approach to
rootkit detection, especially in regards to
hidden files and registry keys, became very
popular. This is mostly because of the
recent release of the tools like Rootkit
Revealer and Black Light as well as
Microsoft research project, with a friendly
name GhostBuster. Many people started to
think that it is going to be the ultimate way
for detecting all rootkits and system
compromises in general...

Cross-view based detectors, like Rootkit
Revealer, compare a “low level” system
view with a “high level” view. Let’s focus
here on hidden files detection on Windows
systems. How to obtain a low level view of
the file system? Of course by reading a raw
disk sectors and parsing them according to
NTFS layout. But how the detectors read
disk sectors? Well they use CreateFile
(“\\.\C”) to get the handle to a
volume and then use well-known
ReadFile() function to read the sectors.
Alternatively, detectors may try to open
“\\.\PHYSICALDRIVE0” pseudo-file,
and then use the same ReadFile()
function to get the sectors of the physical
drive.

Both of these methods can be easily
cheated by the rootkit. It is only necessary
to hook ReadFile() API and cheat
about the contents of the disk sectors. It is
not really true that such scenario “would
require a level of sophistication not seen in
rootkits to date”. Officially undocumented,
NTFS structure is in fact known well
enough (as some open source projects
show) to allow for implementing of such
behavior.

To achieve better true estimation, hidden
files detectors need to go deeper. Next
level would require having an agent in the
kernel, which would bypass the Windows
userland API and may use native
ZwCreateFile()/ZwReadFile()
from within kernel mode. This can be, of
course, bypassed by very old technique of
System Service Table hooking or IAT
hooking.

Detector’s agent can go deeper and
manually build appropriate I/O Request
Packet (IRP) and use IoCallDriver()
to send it to the disk driver directly
(bypassing all the API functions) asking it
to read some sectors from the disk. This
technique can vary as we may choose to
speak with a class disk driver, port driver
or even miniport driver. The latter
provides, of course, the deepest level
among the above methods.

Not surprisingly this can also by relatively
easy intercepted by the technique known as
IRP hooking (which *can* be seen in the,
even publicly available, open source
rootkits today).

Can the detector go even deeper then? Yes,
but it seems that the deepest possible level
it can achieve is the use of in and out
machine instructions to actually speak with
the HDD controller. Can this be cheated?
Probably not. But this might be very hard
to implement, so that all the hardware
HDD controller were supported. In fact
such detector would just double the
standard operating system disk drivers’
stack code. Wouldn’t it be simpler to just
copy the atapi.sys file to
myatapi.sys and use it instead
(together with the whole stack above those

1

miniport drivers)? Yes, we would have to
also change the naming of the kernel
objects too.

We may start to think that, although the
agent would be getting the real sectors, the
rootkit might decide to hook the
communication between the rootkit
detector and the agent in a very similar way
as it did when the detector was using the
system disk driver… We face here the very
inelegant subject of implementation
specific attacks. In fact every rootkit
detector can be beaten with this approach
(unless we exploit some hardware
support). It is not fair then to count this
attack against Rootkit Revealer or any
other detector, since it applies to all others
detectors as well.

Let’s assume then, that we have such
sophisticated rootkit detector, which
doubles OS disk drivers’ stack
functionality. Can this be cheated in a more
general way? It seems that the only way for
achieving this would be to first detect that
the detector is running a file system scan
and temporarily unhide all its hidden files
against this process. This way the hidden
files will not be reported. This approach
can also be used to cheat so called outside-
the-box analysis, which gets the necessary
information when the system is booted
from the clean CDROM.

The above idea is actually widely exploited
by the present rootkits which decided to
hide from Rootkit Reveler or Black Light
detectors.

One may ask a simple question now: why
bother to hide files at all? Isn’t the idea of
“hide in the crowed” equally stealth? The
answer, fortunately, is no (in other case it
would turn out that the whole effort to
create stealth technology was just a waste
of time and we will get back to the less
interesting world of traditional malware).

The answer is no, because the current
antivirus technology is able to find all

(unhidden) executable files and then
perform some kind of analysis if the given
PE file looks like a potential
rootkit/malware installer (for e.g. check if
it uses functions like OpenProcess(),
OpenSCManager(),
ZwSetSystemInformation() and
similar). When designing such scanner we
need to remember that rootkit executable
can comprises of two parts, one being an
actual malware loader and the other being a
(polymorphic) decoder. But this is
(hopefully) not beyond the advanced AV
scanners today.

So, to get back to the main thread, we
concluded that:
 Cross-view based detectors, to be

effective, need to implement extremely
deep method for getting system
information. The disadvantage here is
the complexity to support all hardware.
Besides it is not very elegant, since we
actually duplicate parts of the operating
system.

 Even if the detector implements such
deep method, it is still possible (and
even simpler) to cheat it by temporarily
un-hiding hidden files to the detector
process.

 It is bad idea not to hide files at all,
since some kind of heuristics, similar to
used by advanced AV scanners, can be
used to find malware executables.

Of course we can now connect our
heuristic based scanner with a cross-view
based hidden file detector. Similar
approach was described by the Microsoft
researchers, were GhostBuster DLL was
injected into traditional AV program and
signature based solution was exploited to
catch the rootkits which decided to unhide
their files to cheat hidden files detectors.

And how this can be cheated (i.e. heuristic
scanner cooperating together with cross-
view based hidden files detector)? This
will be left as an exercise for the reader and

2

we will get back to this problem when
appropriate detectors appear.

And last but not least, we should stop
thinking that every rootkit will always be
interested in actually surviving the system
restart. When considering rootkits installed
on a corporate servers by an reliable 0day
exploit, the attacker might decide the she
doesn’t want to leave any traces on disk for
the forensic investigators. This is
understandable when we take into account
fact, that such servers are not restarted
every day, but much more rarely and the
attacker may, rightly, think the if she
succeeded once with her 0day exploit, she
will probably succeed next time, that is
after the system reboot.

When we focus on Windows desktop
machines, we should also consider,
somewhat similar, idea of worm-based
rootkit. The worm component takes care
about infecting desktop computers. When
it succeeds to exploit one of the 0day bugs
it has in its database, it downloads its
rootkit component, which then takes care
about “protecting” (read: hide) other
potential malicious modules installed in
such compromised desktop system, like
password sniffers, backdoors, etc… Now,
because thousands of computers are
infected, the rootkit may not care about
surviving the reboot on a single desktop,
because it will be automatically infected
next time it will become online (this
assumes very aggressive warm propagation
algorithm, in practice it would probably be

infected after some number of reboots).
We have then a number of compromised
computers, collaboratively taking care of
infecting each other. All of them takes also
care about being as stealthy as possible,
thus not creating any hidden files on disk
(nor registry keys).

The last two scenarios requires, of course,
very stealthy and reliable way of exploiting
bugs, which is capable of delivering and
installing rootkit/backdoor/sniffer/etc... to
the host without giveaway that something
wrong is happening. Such technology is
accessible today. Obviously different
methods of detection are need to fight with
such malware.

Is having a cross-view based rootkit
detector a bad idea then? Definitely not.
Author only wanted to remind, that system
compromise detection is a complex field
and we should not expect a single idea to
revolutionize it. It is always good if we
raise a bar a little bit higher which will
result, hopefully, in more interesting
rootkits to appear in the future, making our
world more interesting. I wrote ‘hopefully’,
because, the real plague these days are
implementation specific attacks, which
include intercepting communication
between detector client program and their
agent in kernel, or even, in the very
extreme forms, intercepting the GUI
functions responsible for presenting the
results. These attacks are not elegant not
even to say ugly. How to deal with them is
another story though...

3

