

ReversingLabs Corporation Revision 1.1

2 Undocumented PECOFF

Contents

Overview ... 3

Introduction .. 4

Malformations .. 4

DOS & PE Header .. 4

Self-destructing PE header .. 5

Dual PE header .. 5

Writable PE header ... 6

Section number limits ... 6

SizeOfOptionalHeaders ... 7

FileAlignment .. 7

SectionAlignment .. 8

AddressOfEntryPoint ... 8

Optional header data directories .. 9

Import table .. 9

Import name table .. 10

Import name hint .. 11

Import directory layout ... 11

Complex file malformations .. 12

Section-less PE file .. 12

File encryption via relocations .. 13

Document revision history .. 15

References .. 16

Copyright and legal notices ... 17

ReversingLabs Corporation Revision 1.1

3 Undocumented PECOFF

Overview

The Portable Executable (PE) format is a file format for executables, object code and
DLLs. It is used in 32-bit and 64-bit versions of Windows operating systems. The term
"portable" refers to format's versatility within numerous environments of operating system
software architecture. The PE format is a data structure that encapsulates necessary
information so that Windows OS loader can manage wrapped executable code. This includes
dynamic library references for linking, API export and import tables, resource management data
and thread-local storage (TLS) data. On NT operating systems, the PE format is used for EXE,
DLL, SYS (device driver), and other file types. The Extensible Firmware Interface (EFI)
specification states that PE is the standard executable format in EFI environments.

PE is a modified version of the Unix COFF file format. PE/COFF is an alternative term in
Windows development.

On Windows NT operating systems, PE currently supports the IA-32, IA-64, and x86-64
(AMD64/Intel64) instruction set architectures (ISAs). Prior to Windows 2000, Windows NT (and
thus PE) supported the MIPS, Alpha, and PowerPC ISAs. Because PE is used on Windows CE, it
continues to support several variants of the MIPS, ARM (including Thumb), and SuperH ISAs.

One constant challenge of modern security will always be the difference between
published and implemented specifications. Evolving projects, by their very nature, open up a
host of exploit areas and implementation ambiguities that cannot be fixed. As such, complex
documentation such as that for PECOFF opens up a window of opportunity for
misinterpretation and mistakes in parsing implementation.

This document will focus on all aspects of PE file format parsing that leads to undesired
behavior or prevents security and reverse engineering tools from inspecting malformated files
due to incorrect parsing. Special attention will be given to differences between PECOFF
documentation and the actual implementation done by the operating system loader. With
respect to these differences it will describe the existence of files that can't possibly be
considered valid from a documentation standpoint but which are still correctly processed and
loaded by the operating system. These differences and numerous design logic flaws can lead to
PE processing errors that have serious and hardly detectable security implications. Effects of
these PE file format malformations will be compared against several reverse engineering tools,
security applications and unpacking systems.

Due to the nature of this document it is recommended that it’s read in parallel with the
official Microsoft PECOFF documentation.

ReversingLabs Corporation Revision 1.1

4 Undocumented PECOFF

Introduction

General Portable Executable (PE) format file layout can be described with the following
graphical representation.

This is the traditional way of representing PECOFF files, as a

union of multiple structure types that are interlinked by defined rules.
File starts with the DOS header at file offset zero which is also
considered to be a valid executable image in DOS mode. This header is
identified by the “MZ” signature. The default DOS header for the PE32
and PE32+ files only displays the message that the file cannot be
executed in DOS mode. Present in the DOS header structure at offset
0x3C is the field named e_lfanew which holds a 32 bit pointer to the PE
header offset.
 PE header is identified with the signature “PE\0x00\0x00”. This
header describes the file properties and it is parsed by the operating
system loader during the file load process. This table starts with COFF
header and is followed by the optional header and the section table
data.
 More details about the specific fields and the structure layout
can be found in the Microsoft PECOFF documentation.

Malformations

File format malformations represent special case conditions that are introduced to the
file layout and specific fields in order to achieve undesired behavior by the programs that are
parsing it.

DOS & PE Header

Every PE file starts with the DOS header. Along with the header signature the only other
field that is used by the operating system loader is the value e_lfanew located at the offset
0x3C from the beginning of the file. That value indicates the offset of the PE header relative to
the file start. The field itself is a 32 bit number which indicates that the starting offset can be
anywhere in the first 4 GB of the file, provided that the address is aligned to a 4 byte boundary.

While the PE header usually follows the DOS header it might not be the case as that isn’t
defined by the specification as a strict rule in respect to the file layout. Moving the location of
the PE header leads to several specific malformation cases which have the potential of affecting
security and reverse engineering tools.

ReversingLabs Corporation Revision 1.1

5 Undocumented PECOFF

Self-destructing PE header

Since PE header’s location is indicated by the e_lfanew
field it can be found at an arbitrary 4 byte aligned address in
the file. One of the possible locations for the PE header is
outside the memory mapped by the system loader. This is
possible because during the loading process PE header is read
from the disk and it is only committed to memory if it is
physically located in the part of the file that needs to be
available in memory. Therefore if the PE header is located in
what is considered the overlay of the file it will not be
committed in memory. This is possible for PE fields that are
present in the PE header and physically located after
FileAlignment field. Requirement for this is that those fields
are outside the memory reserved by NtSizeOfHeaders.

This kind of malformation has the potential of breaking
security and reverse engineering tools that parse the PE
header from memory.

Dual PE header

Because of the way PE file format is designed its
sections have two arbitrary positions, one on disk and one in
memory. Those locations are aligned to file and section
alignment respectively. Since the location of the PE header is
defined by the e_lfanew field it is possible to overlap the
physical and virtual location so that they become two separate
entities. One read from the disk during the file loading process
and the second available in memory and parsed by the
operating system loader on request by API calls.

To achieve this effect assume that the physical location
of the PE header is at the address 0xF80. That way header
continues over into memory region that starts at 0x1000. Since
the value to which NtSizeOfImage is set is 0x1000 only the part
of the header will be committed in memory. The remaining
part of the header will be read from the first section which
virtually starts at 0x1000. This way the header is patched
together from two entries making is seamless in memory even
though that isn’t the case on disk.

Because of the effect achieved by overlapping memory regions it is possible to have two
PE headers, one on disk which is never used in its full and one in memory which is actually
processed by the operating system loader.

This kind of malformation has the potential of breaking security and reverse engineering
tools that parse the PE header from memory.

ReversingLabs Corporation Revision 1.1

6 Undocumented PECOFF

Writable PE header

By default the PE header has the read and execute attribute
and if the DEP has been enabled the header becomes read only.
Making the PE header writable is in some cases necessary for a specific
PE header malformation to work. To achieve this one of the following
two options are available:

a) If there’s a file with a normal single PE header, file values of

fields FileAlignment and SectionAlignment can be set to the
same value which must be lesser or equal to 0x200 but non
zero. This will make the operating system loader apply the full
access to the header.

b) If the PE header has been placed in its own section via the
double PE header method, then that section can have write
attributes enabled.

Section number limits

PE files have arbitrary section numbers; however it is assumed
that the number of possible sections that a file can consist of is within a
range from one to 96 as stated by the PECOFF documentation. Due to
difference between the documentation and the implementation the
actual limit on the number of sections varies depending on the
operating system loader version. Most notably the latest
implementations allow for this limit to be expanded to the range from
zero sections to the maximum value allowed by the 16 bit field
SectionNumber which is 0xFFFF. This change has been introduced in
Windows Vista and has propagated to later versions.

These limits can prove to be problematic for security and
reverse engineering tools. If the SectionNumber is zero file addresses
might not be properly converted as the entire file has been placed
inside headers. In the other case tools might require too much memory
allocated to handle all of the section data or they might have imposed
lower limits for maximum section number which would prevent the file from being parsed
correctly.

ReversingLabs Corporation Revision 1.1

7 Undocumented PECOFF

SizeOfOptionalHeaders

In the case of self destructing PE header e_lfanew has been
used to position the header inside the overlay. The same logic can be
applied to make only the section table nonexistent in memory.
However this time it isn’t e_lfanew that is moving the entire PE header
to an arbitrary position in overlay, it is the SizeOfOptionalHeader which
only moves the section table while keeping the rest of the header at
the usual location at the start of the file. Since the field that allows us
to move the section table is a 16 bit field the maximum distance that
we can move the table is just 0xFFFF. This doesn’t limit the maximum
size of the file as the section table doesn’t need to be moved to the
overlay for this to work, just the region of physical space which isn’t
mapped in memory.

This kind of malformation has the potential of breaking security
and reverse engineering tools that parse the PE header from memory
as the section table might not be present in memory. Suggested
workaround is to always parse the PE header from disk.

FileAlignment

FileAlignment is the alignment factor (in bytes) that is used to
align the raw data of sections in the image file. The value should be a
power of 2 between 512 and 64 K, inclusive. The default is 512 or
0x200. If the SectionAlignment is less than the architecture’s page size,
then FileAlignment must match SectionAlignment.

Because of the conditions set by the PECOFF documentation
whose excerpt is stated above we can safely assume that the value of
FileAlignment can be hardcoded to 0x200. Because if the value is less
than that, it is rounded up to it and if it’s greater than that, then it is its
own multiplier.

The usage of FileAlignment is demonstrated by the following
figure. If the section physically starts at the offset 0x10 then the
following formula is used to calculate its real start: (file_offset / 0x200)
* 0x200 which in this case results to 0x00. Therefore the real start for
first section of this file is at the beginning of the file which overlaps
with the first section and the DOS/PE header in this case.

ReversingLabs Corporation Revision 1.1

8 Undocumented PECOFF

SectionAlignment

SectionAlignment is the alignment (in bytes) of sections when
they are loaded into memory. It must be greater than or equal to
FileAlignment. The default is the page size for the architecture or a
greater value which is the multiplier of the default page size.

While every section must start at the SectionAlignment the first
section doesn’t always start at the address which is equal to the value
of SectionAlignment. Virtual start of the first section is calculated as the
rounded up SizeOfHeaders value. That way header and all subsequent
sections are committed to memory continuously with no gaps in
between them.

Total size needed to commit all sections is set in the
NtSizeOfImage variable. That value is also rounded up.

AddressOfEntryPoint

The address of the entry point is relative to the image base
when the executable file is loaded into memory. For program images,
this is the starting address. For device drivers, this is the address of the
initialization function. An entry point is optional for DLLs. When no
entry point is present, this field must be zero.

This excerpt from the PECOFF documentation implies that the
entry point is only zero for DLLs with no entry point and that the entry
point must reside inside the image. Neither of these two statements is
true.

Entry point can be zero for any file and if that is the case the file
execution starts in the DOS header executing the first two bytes which
always translate to DEC EBP and POP EDX instructions. However this
can be prevented by DEP if the header isn’t made writable.

Additionally entry point can reside outside the file. Since the
value of AddressOfEntryPoint is a relative virtual address any address
can be put in its place. For example to have the file start its execution
inside kernel32.ExitProcess one would need to enter that APIs address
minus the ImageBase into the AddressOfEntryPoint field. For this malformation to work the
module, in which the execution will take place, must be loaded on the static address. This can
be achieved with a DLL that doesn’t get rebased.

ReversingLabs Corporation Revision 1.1

9 Undocumented PECOFF

Optional header data directories

In addition to the DOS/PE header fields specific data directories can be a part of a
malformation that has an impact on security solutions. Data in these directories can be invalid
but the file still could be considered as valid from the operating system loaders perspective.
Furthermore these data directories could also carry code payload.

Import table

Every PE file that imports symbols has an import table, however not every PE file
imports symbols therefore not every PE file has an import table. Those files that do have it use
it to load all DLL files necessary for the application to function correctly.

Import table consists of three parts, the import directory table, import address table
and the import lookup table. They are linked together to provide the structure needed to link
the application code with the appropriate DLL functions. Relationship between these tables can
be presented with the following graph.

Here the import lookup table is a read only copy of the import address table and
because of that its existence is optional. The import address table which will hold all the
function pointers once the DLL has been loaded and because of that its existence is not
optional. Both of those tables are a zero terminated array of API function name pointers or
ordinal numbers.

Operating system loader will parse this table, load the necessary DLL files and fill the
import address table with the function pointers. This happens for every entry inside the import
directory table. However, if the import address table is empty or consists only of a single zero
entry then that import directory will be skipped without loading the DLL associated with that
import directory. Since the DLL file won’t be loaded the DLL name is irrelevant and may in fact
be a file that doesn’t exist on the system. This can be used to omit dynamic analysis solutions
such as emulators and sandboxes which could parse this information and decide to skip the file.

ReversingLabs Corporation Revision 1.1

10 Undocumented PECOFF

Import name table

Both import address and import lookup table entries point to import name table which
consists of two values, hint and a zero terminated ASCII function name. It is implied by the
PECOFF documentation that the import name should consist only of printable ASCII characters
while that isn’t the case. In fact any byte stream can be considered a valid import name as long
as the stream is zero terminated. Furthermore these strings aren’t limited in size and can be
extremely long. This can be used by the files that import functions from their own export tables
to cloak the name of such functions, and depending on the nature of string parsing in security
and reverse engineering tools that could lead to undesirable effects.

Quite similar to this but even more dangerous is the possibility of imports being
forwarded through the same file’s export table. The following graph explains that concept.

The file is importing functions from its own export table and those functions are just

forwarders to the real API. Since the forwarder mechanism has been designed in a way that the
forwarder string consists of both DLL name and the function name or the ordinal number of the
necessary function no import information is lost. Because of that the operating system loader
can take that information to load the necessary DLL and locate the appropriate function inside
it. This is an effective way of cloaking imports and circumventing security solutions which don’t
store the original name of the application on which the file using this method to hide imports
becomes depended on.

Additionally it is possible to create an infinite parsing loop if the forwarder is pointing
back to itself.

ReversingLabs Corporation Revision 1.1

11 Undocumented PECOFF

Import name hint

 Both import address and import lookup table entries point to import name table which
consists of two values, hint and a zero terminated ASCII function name. Hint is an index into the
export name pointer table. A match is attempted first with this value. If it fails, a binary search
is performed on the DLL's export name pointer table.

This behavior model enables even better import clocking because since there’s no need
for binary search and since the hint is used to check the export name first all exports can have
the same name. This can additionally confuse security and reverse engineer tools as it might
not be obvious on the first look which function is being used where. Couple with the fact that
function names might not be printable ASCII characters this makes this PECOFF feature even
more important from the analysis standpoint.

Import directory layout

 The import information begins with the import directory table, which describes the
remainder of the import information. The import directory table contains address information
that is used to resolve fixup references to the entry points within a DLL image. The import
directory table consists of an array of import directory entries, one entry for each DLL to which
the image refers. The last directory entry is empty (filled with null values), which indicates the
end of the directory table. Because of that it is possible that the last entry isn’t present in the
file but the file is still considered as valid with the correct import table. This can only occur if the
last valid import directory is located at the physical but not the virtual end of the file. Achieving
this is easy because the sections are virtually rounded up to multiplier of SectionAlignment but
physically can have any size.

This kind of malformation has the potential of breaking security and reverse engineering
tools that parse the PE import table from disk as it can be incomplete.

ReversingLabs Corporation Revision 1.1

12 Undocumented PECOFF

Complex file malformations

Complex file malformations involve modifications of multiple code and data directory
fields in order to make the malformation work correctly.

Zero section PE file

Carefully manually crafted file is able to omit security and reverse engineering tools
from parsing it correctly. However modifications done for this malformation still reside in the
boundaries permitted by the operating system image loader, but not the PECOFF
documentation. Following Portable executable fields are affected by malformation:

 PE32.FileAlignment

 PE32.SectionAlignment

 PE32.NumberOfSections

 PE32.SizeOfHeaders

Neither of fields by itself is responsible for malformation, it’s the combination of them

all that make the effect work across all Windows NT systems.

Issue comes from the ability to move certain parts of PE header and data so that they

overlap with other features of the file format. Several possible combinations of different values

for selected fields leads to different possible implementations that result in the same or similar

effect.

Effect produced by modifications introduced to the file is a section-less file that contains

all code and data inside the PE header. Making such file involves solving numerous problems

related to the file layout and enabling the actual execution of the code stored inside the read

only header. As sections themselves are used as a base for address conversion calculations any

program that relies on number of sections not being null in order to get the correct data

location will not be able to resolve the file content. However file can’t simply be merged to

fulfill all the requirements and still be considered as a valid PE image.

This must be performed by the following steps:

a) File must be expanded so that the relative virtual addresses and physical ones match each

other. At this point file still has sections but their raw offset is equal to the virtual ones. This

implies that the file size is equal to the value of NtSizeOfImage filed. This kind of file has the

simplest address conversion possible as the relative virtual addresses are equal to physical

ones. Having a file layout made like this is a very important step as the operating systems

must be able to locate the correct data and execute code at the right location.

ReversingLabs Corporation Revision 1.1

13 Undocumented PECOFF

b) Once the section layout is linear sections can be “merged” by setting the section number to

zero and erasing the section table from the PE header.

c) After section merging following PE fields must be corrected:

a. SizeOfHeaders should be set to be a value equal or greater than NtSizeOfImage. This

modification is necessary to force the operating system to load the entire file content

in the memory reserved for PE file format headers.

b. FileAligment set to value lesser or equal to 0x200 (excluding zero).

c. SectionAlignment set to the same value as FileAlignment. To circumvent DEP we have

to set these fields to the same value as that will make the PE header writable and

able to execute the file normally.

Combination of all actions listed above leads to creation of files with no sections. That

kind of file would contain all data and code inside the header. As a result of bad address

conversion calculation it is possible that security and reverse engineering might be affected and

not display all features of the malformated file.

File encryption via relocations

Carefully manually crafted file is able to achieve detection evasion is all cases because it

is declared as damaged or not processed correctly by most affected products. However

modifications done for this malformation still reside in the boundaries permitted by the

operating system image loader, but not the PECOFF documentation. Following Portable

executable fields are affected by malformation:

 PE32. OriginalEntryPoint

 PE32. ImageBase

 PE32.RelocationTable

Neither of fields by itself is responsible for evasion, it’s the combination of them all that

make the vulnerability work across all Windows NT systems.

Starting from the AddressOfEntryPoint modification evasion is achieved. This field is set

to NULL which makes the operating system loader execute the file from the first DOS header

byte. When disassembled that code looks like this:

/*10000*/ DEC EBP

/*10001*/ POP EDX

/*10002*/ NOP

/*10003*/ JMP 00011000

ReversingLabs Corporation Revision 1.1

14 Undocumented PECOFF

This serves as a redirection to the original entry point and it is just a part of the

malformation. As the jump itself is relative it doesn’t matter on which base address the

program is loaded, correct EP will always be called. Stack is corrupted by the POP EDX

instruction but it is irrelevant for purpose of the small testing program. It is also noteworthy

that DEP would prevent execution of this kind of executable at this first step but entry point

redirection is optional with little to no effect on the vulnerability itself.

Second part of the malformation is relocation of the file to base address 0x00010000.

This base address has been chosen carefully because it is very important on which base address

the program will be loaded. Since Windows uses ASLR to randomize image base loading we

want to have it behave in the predictable fashion in order trigger the decryption process

correctly. By having the file relocated to specific base address we can insure that it is always

loaded there even thought it should be relocated by the system. To make sure that the image

must be (but isn’t effectively) relocated on each start we set the ImageBase value in the header

to NULL or an address which resides in the kernel space (for example 0x80000000). This doesn’t

break the file even though it should by the PECOFF standard, and instead it comes with

surprising side effects. And they are:

 PE32.ImageBase can only be set to NULL if the file has a relocation table, valid or

not but present. This is surprising as NULL isn’t the multiplier of 65k as stated in

the PECOFF documentation requirements.

 Files are always allocated at the same place in memory, on base address

0x00010000. ASLR behaves predictably for such cases and always performs the

same way by assigning the same base address to the image.

Third and final part of the vulnerability is the use of the relocation table to obfuscate

data. Normally loader uses this data to relocate the file to new base address and since we are

forcing the system to always relocate the data we can use the relocation table to have the

system modify any part of portable executable file each time it starts. Therefore we can use the

relocation table to effectively decrypt data and have it reliable enough to perform each time in

predictable fashion. Most notably we can encrypt the import table of the file and have the

loader decrypt it just before it needs to use it. That is how a simple encrypted

“URLCownloadFileA” becomes “URLDownloadFileA” at the right time, just before the system

uses it. It is only the complexity of the relocation table that indicates encryption / obfuscation

severity.

Argumentatively relocation table can always be used to obfuscate code and data but

one must insure that the file is always relocated in a predictable fashion for obfuscations to

work correctly. Simple relocations cannot achieve this if the code and data are being randomly

relocated in memory. It is only in this kind of described scenario in which the relocation table

can be used to encrypt / obfuscate data.

ReversingLabs Corporation Revision 1.1

15 Undocumented PECOFF

Document revision history

Latest version: http://pecoff.reversinglabs.com

Revision 1.0 – Initial draft

Revision 1.1 – Changes based on input from Peter Ferrie

http://pecoff.reversinglabs.com/

ReversingLabs Corporation Revision 1.1

16 Undocumented PECOFF

References

Microsoft Portable Executable and Common Object File Format Specification – version 8.2

"PE format as source of vulnerabilities" - Ivan Teblin [presentation from Caro 2009 or SAS 2010]

Doin' The Eagle Rock - Peter Ferrie, Virus Bulletin, March 2010, page 4-6

Fun With Thread Local Storage (part 3) - Peter Ferrie, July 2008

Fun With Thread Local Storage (part 2) - Peter Ferrie, June 2008

Fun With Thread Local Storage (part 1) - Peter Ferrie, June 2008

http://msdn.microsoft.com/en-us/windows/hardware/gg463119
http://www.kaspersky.com/sas2010
http://pferrie2.tripod.com/papers/lerock.pdf
http://pferrie.tripod.com/papers/tls3.ppt
http://pferrie.tripod.com/papers/tls2.ppt
http://pferrie.tripod.com/papers/tls1.ppt

ReversingLabs Corporation Revision 1.1

17 Undocumented PECOFF

Copyright and legal notices

Copyright © 2009 - 2011 ReversingLabs Corporation.

Permission is granted for the redistribution of this alert electronically. It may not be
edited in any way without the express written consent of ReversingLabs. If you wish to reprint
all or any part of this alert in any non-electronic medium, please email
support@reversinglabs.com for permission.

Disclaimer: The information in the document is believed to be accurate at the time of

publishing based on currently available information. Use of the information constitutes
acceptance for use in an AS IS condition. There are no warranties with regard to this
information. Neither the author nor the publisher accepts any liability for any direct, indirect, or
consequential loss or damage arising from use of, or reliance on, this information.

	Overview
	Introduction
	Malformations
	DOS & PE Header
	Self-destructing PE header
	Dual PE header
	Writable PE header
	Section number limits
	SizeOfOptionalHeaders
	FileAlignment
	SectionAlignment
	AddressOfEntryPoint

	Optional header data directories
	Import table
	Import name table
	Import name hint
	Import directory layout

	Complex file malformations
	Zero section PE file
	File encryption via relocations

	Document revision history
	References
	Copyright and legal notices

