
ARTeam
eZine

0F B7 0C 07 8D 34 48 66 83 3E 00 0F 85 AC 34 FF FF 8B 85 54 FD FF FF 8B 40 04 8B 8D 48 FD FF FF
0F B7 DISCOVERY 0C 08 8D 34 48 E9 91 34 FF FF 8B 85 40 FB FF FF 8B 40 04 0F B7 48 32 E9 75 9F FE FF
E9 11 3B FF FF 8B 7D 10 85 FF 0F 84 5D FF FF REVERSING FF 8B 75 08 8B 46 58 85 C0 0F 85 41 FF FF FF 8B
4C 85 D2 74 0B 8B 4E 50 85 C9 0F 85 EB 6A 00 00 8B 45 14 C7 07 A4 14 81 7C C7 00 02 00 00 00 E9
C8 C7 FE FF HTTP://CRACKING.ACCESSROOT.COM

0F 85 AC 34 FF FF 8B 85 54
FD FF FF 8B KNOWLEDGE 40
04 8B 8D 48 FD FF FF 0F B7
0C 08 8D 3F

#1

�

TABLE OF CONTENTS

OpENiNg ThOughTS...3
iNTErviEwEd: NiLrEm OF ArTEAm..4
uNpACkiNg ASprOTECT v2.1 SkE wiTh AdvANCEd impOrT prOTECTiON....................8
dEmySTiFyiNg TLS CALLBACk..13
iNTErviEw wiTh ArmAdiLLO dEvELOpErS.......................................17
imprOviNg STrACENT: AddiNg ANTi-dEBuggiNg FuNCTiONALiTy.........................25
rEvErSiNg SwiTChES...34
QuiCk NAg rEmOvAL...34
dEvELOpiNg A riNg0 LOAdEr..38
BrEAkiNg prOTOCOL: rEvErSiNg ANd ExpLOiTiNg CLiENT SidE COmmuNiCATiONS..............52
CALL FOr pApErS...63

�

Opening Thoughts
The idea for this project was to provide a means of publication for interesting articles. Not everyone likes to write
tutorials, and not everyone feels that the information they have is enough to constitute a publication of any sort.
We all run across interesting protections, new methods of debugger detection, and inventive coding techniques.
We just wanted to provide the community with somewhere to distribute interesting, sometimes random, reversing
information.

While the title of this ezine says ARTeam, we prefer to think that we are acting as a conduit. We really hope that
you find this project interesting, and we really want this to be a community project. So if you have an idea for an
article, or just something fascinating you want to share, let us know and hopefully we will see a ezine #�.
It soon became apparent that the scope of this project went well beyond what we had predicted. A big thanks
goes out to all the contributors. Without you this would be a blank page. We also need to thank everyone who
has viewed, refined and commented on the production of this ezine. Hopefully we have been able to provide the
reversing community something interesting.

The reversing community has been very dynamic in the past few years. We’ve seen a ring� GUI debugger grow
in startling popularity. We’ve seen protection authors dig deeper into the OS in an effort to deter crackers. Unique
protections have provided months of analysis for reversers. New inventive tools have been developed in the re-
versing community in an effort to effectively analyze and understand software protection. And ironically we see
some of these tools move back to ring0.

None of these changes and achievements would have been possible without the amazing and talented reversers
that take the time to share their knowledge and teach others. No matter what team you belong to, what level you
reverse at, what language you speak, you all make up the same community. A group of people who constantly
strive for discovery. None of us are content with accepting things “as they are” we need to know why. We are the
scientists of software. We dig deeper than the average user, we see code where everyone else see flashy presenta-
tion. We learn this code so well that we can rewrite it, manipulate it, and even improve on it.

Since these are my thoughts, I just want to thank every single member of the reversing community. I couldn’t even
begin to name every single person who has provided a contribution. We are all spread out among many boards,
many teams, even many countries. But I like to think that we all share a certain camaraderie.

Please enjoy the information included among these pages, we had some talented people give us some great sub-
missions.

Gabri�l[ARTeam]

�

What first started your interest in Reverse Engineering?

Oh my! What a tricky question, there are numerous factors, however these other factors are actually the reasoning
that kept my interested ignited but wasn’t the initial fuel for the fire. If I’m been honest, I’d been using cracks/
serial/keygens since I’d gotten the internet (1998), it was only when there was no crack out there for a certain
program that I hit a brick wall. Do I wait a couple of days/weeks/months for a fairly obscure piece of software to
be cracked? No of course not, I need it and I need it now, aha! I better go learn how to crack. That’s what started
my interest - my neediness.

How long have you been active in reverse engineering?

Since the question is how long I have been active in reverse engineering and not when did I initially start. The
most accurate date I can give you for that question is when I wrote my first tutorial (obviously I would have
been active before this because, of course, I had to learn how to crack before I could start tutorial writing). My
first tutorial ever written was “Finding a hardcoded serial and patching the program to except any serial 01”,and
this was written on the 11th of August 2003. So take 11th of August 2003 as the answer the question.

What made you decide to form ARTeam?

A girl, a girl named Kyrstie, we had split up so I decided to start writing tutorials because of all the free time I
now had.
When I first started writing tutorials I was publishing them on exetools. Which at the time was recieving little to
no tutorial submissions as a result of this I started recieving a fair bit of attention. One of the people interested
in me and what I was doing was PompeyFan (who subsequently became the Co-Founder heh). He sent me pms
saying I had helped him on the road to Reverse Engineering and had asked me something along the lines of:
“Hi, Nilrem, your tutorials are great. When I am good enough can I join your team please?”
I’m guessing you can imagine my reaction, team...TEAM?! I don’t have no team.. uhh, hang on a minute, brain-
storm!!
That’s how it happened, that is how ARTeam was born, someone liked my tutorials wanted to join my team so I
started ARTeam so he could join, and the rest as they say, is history.

How did you end up with the original founders/members?

Well since my memory isn’t the best, and I’m probably going to annoy a few staff members here by forgetting
the order in which they joined. If I remember correctly the next addition to the family (no I’m not doing my Don

 Nilrem of ARTeam

�

Corleone impression), was Ferrari. Who was actually reluctant to join because he didn’t deem himself at an ac-
ceptable level of Reverse Engineering to join the team (damn what is it with these people heh).
So I had to wait for him to finish his ‘training’ from el-kiwi before he would join.
Now this is where it get’s really hazy (Davy and Killer Joe?), the next few members to join where, MaDMAn_
H3rCuL3s, Kruger, EJ12N, Enforcer, and Shub Nigurrath, these members became the initial core of ARTeam.
Now how did they actually start with ARTeam? That is a very tricky question, so I’ll avoid it. I do however know
where I met them all (except Shub, we met on the ARTeam board through word of mouth), which is Exetools, so
praise be to (Yevon?) Exetools.

What is your opinion on the ethical aspect of cracking / reversing?

Well I’ll try not to write an essay alone on this question, not because I don’t want to, but because there are numer-
ous (to say the least) debates on this specific question.
You see you have put a slash between ‘cracking’ and ‘reversing’, whereas I see them as two different (similar but
different) things. They differ because cracking to me implies everything that ARTeam is (no longer) not about,
and ‘reversing’ is exactly what ARTeam is about (one facet of our ideoligies anyways). You see cracking (and
label me hypocritical if you wish) is wrong and Reverse Engineering is right! That is if you see only in black and
white which thankfully I don’t (and even then RE would probably be deemed wrong, if so virii anaylzers please
stop reverse engineering those virii).
First allow me to define cracking and Reverse Engineering.
Cracking (to me) just means releasing cracks (even by stealing other peoples work) to gain notoriety for oneself
and ones group without giving (accept from the cracks) anything back to the community of which they learnt there
appropriate skills.
Now Reverse Engineering entails the same process, we Reverse Engineer various softwares and their correspond-
ing protection schemes and we then compile them into tutorials for people to learn. We actually give back to the
community that gave us so much. Isn’t this changing the question? No it is allowing me to start to answer (you
like to ramble don’t you? Yes, and coincidentally talk to myself) the question properly. Now you know my views
on cracking and Reverse Engineering, you can now see (hopefully) why things aren’t as black and white as the
media, authorities, and software companies like to make out.
I personally do believe it is wrong to release cracks, then on the otherhand I don’t believe it is wrong for a poor
student to crack thousands of pounds worth of software so he can learn for free (Visual Studio for example). I
certainly do not deem Reverse Engineering wrong, in fact what we are doing is helping people, and there is ab-
solutely nothing wrong with that. We at ARTeam teach people to share their knowledge and to help others in a
friendly and polite manner. What is wrong with that? Absolutely nothing! Once people understand that we are
similar to anti-virus companies, in that we both Reverse Engineer to help people (our help isn’t as obvious that’s
all), and that we aren’t out to hurt anyone or their livelihood, then one day we might actually be praised by people
outside of our communities (don’t hold your breath though).

What do you find most interesting about the web scene right now?

If I understand your question correctly then you are referring to the cracking scene’s websites.
What do I find most interesting, well I’ll just pick one thing since it gives me an ego boost, and that is many dif-
ferent groups with forums are following suit with ARTeam. By this I mean they have turned into a tutorials only
group. Actually that isn’t an ego boost is it? No of course it isn’t, we changed our policies for a different reason
to the other groups I’m referring to. In fact it is quite saddening, they have changed their policies because their
communities were starting to turn into war zones (exaggeration yes, but only because they changed their policies

�

just in time before things could escalate uncontrollably).
So you see it’s interesting to see how the scene is changing, no longer is it “ahh thankyou for giving me that re-
lease”, it is more like “You haven’t cracked it within 35 seconds, you suck! I hate you!!”, of course this is a obvi-
ous re-enactment because I used correct grammar. 8-)

Has anything you’ve learning during RE become useful in real life?

Yes and no. No not in any obvious ways, yes in obscure ways as a result of studying Reverse Engineering.
I have learnt how to program in assembly, which I never would have done without learning Reverse Engineering
(because I needed it).
I have learnt how to communicate and express my ideas to others as a result of numerous discussions on ARTeam
and tutorial writing.
I become more logic minded in the way I approach different problems which will no doubt help me with my
games development studies.
I have met (virtually) lots and lots of talented people, but how does that help you Merlin?? Well if we meet in
person one day hopefully they have a nice looking sister who will become my bride?
Ok ok so it’s getting a bit far-fetched now, but as you can see it has helped me, just not in any blatant way until
you start looking at it more in-depth.

What do you see the future of software protection being?

Longer sentences? Perhaps even the death penalty? I just really can’t see how they will stop the ‘crackers’, even
the death penalty wouldn’t stop everybody. I believe they’ll start using more hardware protection actually, but the
question was software protection so I’ll try to address that accordingly. Maybe they’ll employ Reverse Engineers
from certain teams (hint hint). All jokes aside, I believe software protection will get harder but that will only add
more fuel to the fire of the Reverse Engineers out there. Basically I really have no idea on what the next step will
be, but before Arma and Aspr no-one said. “Ahh yes this new protection will be [insert Arma and Aspr character-
istics here].”
Hopefully that answers the question.

We’ve seen people all across the scene come and go, have you ever thought of “getting out”?

Yes you’re right we have, some of those people were ARTeam members too, so the reality of people quitting or
‘retiring’ is very prominent. Have I ever thought of “getting out”? Yes, I have, and I did. It was last Summer, I
was having personal issues and wanted to address them, and with a second life there I decided it would be easier
to manage just one life.
As a result I did one of the hardest things I have ever had to do, not only say goodbye to the dream I started, but
say goodbye to my new family, a very close-knit family at that as well.
But we never heard anything????!!! Ahh you see I did it quietly and privately with no public announcements.
It also was a good thing my departue from ARTeam because it put to the test one of my theories. You see when
ARTeam started I have always said that it was to be run as a true Democracy were every major change had to go
through a majority vote wins scenario. So when I left the team carried on as normal and even went from strength
to strength without me. Of course this made me sad and happy at the same time, my baby was no longer a baby
and I wasn’t needed, at the other end of the spectrum I had created something that could live and survive without

�

me. Not many other groups can make that claim when the founder leaves.
But you’re here now? Yes I came back, I couldn’t leave my family, not for long anyways. 8-)

Are there any comments you would like to add?

Yes, can’t believe I’ve come to the end of the interview! Ha! It’s been a pleasure it really has, I’m a lot more hun-
gry then I was when I started the interview so I’m going to have to go eat. 8-P
I just want to say a big thankyou to everyone that has contributed to, and, helped in some way this very first issue
of the Ezine. You have all worked incredibly hard (accept from me 8-P) and it shows.
Readers, thanks for, well, erm, reading. Look out for the next issue!

-Merlin

8

UNPACKING ASPROTECT V2.1 SKE
WITH ADVANCED IMPORT PROTECTION

MaDMAn_H3rCuL3s[ARTeam]

Todays target will deal with DVDCopy Machine v2.0.2.220

Hopefully this is a worth while adventure as most people have trouble unpacking this protection. The first step
we must accomplish is find the OEP. We start up inside the EP of the protections code, like usual in aspr we are
at the PUSH, CALL startup code.

The usual stuff….

Then in order to get as close as we can to the OEP, we will use this breakpoint:

Then we will break on it twice then return to user code.

We are here..

Now we must get to the point where aspr has decrypted the code section and we can enter it. So we search our
string ref’s for the following:

9

Then hit “Enter” on this string and then scroll a bit below it.

Now scroll down a bit.

This code is obfuscated.. so you must use the jmps above this in order to see it..

Once you find it you can set a BP (F2) on the “OR EAX, FFFFFFFF” instruction.

And now we have broken on it.

Set a BP on the Code section and viola!!!

We made it!

Now we must see exactly what our protection options are here. Since this is just a quick article on the subject I
will skip the finding, and searching.. and go straight to the good stuff.

10

Use CTRL+G and go here:

OUCH!

We see what our option is. Advanced Import Protection. Try and use IMPREC and you might on a good day
get �0-�0 API’s. We are missing a ton of them. Well the gist of this article is to show you how to recover
the API’s without restarting over and over again. I like to do things by hand, and I hate scripts. So you wont
get one from me. All you get is how to fix them. So… Since our Table is totally screwed, lets start with the
Kernel32 API’s. So go to the line:
005CDEB4 $ E8 47211100 CALL 006E0000

then what you will do is right click on it and set new origin here:

Then you see we are now set at this line.

Now we need to trace aspr out a bit, but only one time

11

So hit F7 on the CALL and lets enter aspr land.

Now use F8 until you get to code like this at the end of this function.

Enter the CALL EAX.

Then use F8 for most of this part as well… until you get to this.. you need to pay attention or else you miss it.

Okay. We are almost there now

Use again F8 until you get to here. You will know when its right
Believe me.

And theres our API for this particular call. BE SURE TO SET A HWBP on the instruction, so all we gotta do is
hit F9 each time from now on, then just fix the pointers.

Now we must fix the CALL 00XX0000 to one that looks like this:
JMP DWORD PTR DS:[POINTER]

Since we are only dealing with the JMP table here, everyone will only be a JMP DWORD, and not a CALL.
So lets go back to our original caller, then alter him a bit.

12

Now we see that the 2 prior JMP’s are in a certain order.. the Order of 4. I really hope you understand this. If
not, then it might be better off you leave this alone.
Our first JMP is:
005CDEA8 $- FF25 58035F00 JMP DWORD PTR DS:[5F0358]

Followed by:
005CDEAE $- FF25 5C035F00 JMP DWORD PTR DS:[5F035C]

So lets use a brain here.
The JMP should be:
JMP DWORD PTR DS:[5F0360]

This would follow in sequence the other �.

So make it read that.

But now we must fix the pointer. Since it still uses the aspr crap code.

So use your CommandBar and type in the API.

Like so:

Now in the pointers position edit it to be the API.

And now your API is resolved, and IMPREC can pick it up

This trick works the same for the CALL DWORD’s also. Hopefully this cleared up a bit of confusion about
aspr and the Import Protection.

13

Oki, I’ve planned to write small tutorial about ExeCryptor where I would
show muping of ExeCryptor manually w/o need to use my oepfinder vX.Y.Z
introduced in my tut about muping ExeCryptor, but since it would take
too much time to show this little trick I decided to write small txt for
ezine :D

 S verom u Boga, deroko/ARTeam

ExeCryptor developers think that storing unpacking code in TLS callback is
good thing to do? Well I don’t think so.

In this short document I will show you how to gain advantage over TLS and
other callbacks(DllEntry for example).

What is callback? [1]

“A callback is a means of passing a procedure(or function) as a parameter
into another procedure, so that when a certain event occurs in the procedure
that you called, the callback function is called (being passed any parameters
that you need) when the callback procedure has completed, control is passed
back to the original procedure.”

Oki this tells us that callback is procedure that is called when certain
event occurs, and after execution callback returns to it’s caller.

The easiest example is Structured Exception Handling:

1. install Exception Handler
�. Exception occurs
�. KiUserExceptionDispatcher gains control after exception is processed
 in _KiTrapXX procedures stored in ntoskrnl.exe
4. KiUserExceptionDispatcher calls installed Exception Handler
�. our handler returns to KiUserExceptionDispatcher which is responsible
 for calling NtContinue or NtRaiseException if our handler didn’t handle
 exception.

Same thing happens to TLS callback, during process initialization, prior to
primary thread creation TLS callback will be called, no meteer how it looks
obsfucated and hard to trace it must return to code that actually called it:

Let have simple snippet from sice and ExeCryptor crackme, (to break at TLS
callback we will use tlsbande loader [2]):

demystifying TLS CALLBACK

DEROKO [ARTEAM]

14

First we break at TLS callback of ExeCryptor:

001B:00526918 CALL 00526808
001B:0052691D ADD EAX,00005EE5
001B:00526922 JMP EAX
001B:00526924 CALL 0052692D
001B:00526929 INVALID
001B:0052692B INVALID
001B:0052692D POP ESI
001B:0052692E RET

then exmine stack:

:dd esp
0010:0013F9B0 7C9011A7 00400000 00000001 00000000 §.�|..@.........
 ^^^^^^^^ ^^^^^^^^ ^^^^^^^^ ^^^^^^^^
 | | | |
 | | | |
return address --+ | | |
imagebase -------------+ | |
reason -----------------------+ |
reserved ---------------------------------+

Now we know where TLS callback will return once it has finished with
it’s execution, so we examine : 7C9011A7h :

:u *(esp)
001B:7C9011A7 MOV ESP,ESI
001B:7C9011A9 POP EBX
001B:7C9011AA POP EDI
001B:7C9011AB POP ESI
001B:7C9011AC POP EBP
001B:7C9011AD RET 0010

snippet from IDA:

.text:7C901193 ; __stdcall LdrpCallInitRoutine(x,x,x,x)

.text:7C901193 _LdrpCallInitRoutine@16 proc near ; CODE XREF: LdrpInitializeThread(
x)+C6 p
.text:7C901193 ; LdrShutdownThread()+E8� p
...
.text:7C901193
.text:7C901193 arg_0 = dword ptr 8�
.text:7C901193 arg_4 = dword ptr 0Ch
.text:7C901193 arg_8� = dword ptr 10h
.text:7C901193 arg_C = dword ptr 14h
.text:7C901193
.text:7C901193 push ebp
.text:7C901194 mov ebp, esp
.text:7C901196 push esi
.text:7C901197 push edi
.text:7C901198� push ebx
.text:7C901199 mov esi, esp
.text:7C90119B push dword ptr [ebp+14h] reserved
.text:7C90119E push dword ptr [ebp+10h] reason
.text:7C9011A1 push dword ptr [ebp+0Ch] imagebase
.text:7C9011A4 call dword ptr [ebp+8�] call TLS callback

15

.text:7C9011A7 mov esp, esi

.text:7C9011A9 pop ebx

.text:7C9011AA pop edi

.text:7C9011AB pop esi

.text:7C9011AC pop ebp

.text:7C9011AD retn 10h

.text:7C9011AD _LdrpCallInitRoutine@16 endp

.text:7C9011AD

Also you may see that this proc is called from � places in ntdll.dll:
LdrpInitializeThread
LdrShutdownThread

so that’s how TLS callback is baing executed prior to starting thread, and
is also called when thread exit.

So we can easily step over TLS callback withut even knowing what the hell is
going on in it:

tlsbande will give us this output if we run it:

stolen byte from TLS callback : E8
TLS callback : 0x00526918
entry point : 0x0052690C

Ok, type bpint � or i�here on in sice and you are ready:
once you break at entry of TLS callback just type:
:bpx *esp (setting BPX at 7C9011A7)

and run code

Break due to BP 01: BPX ntdll!LdrInitializeThunk+0029 (ET=96.58� milliseconds)
001B:7C9011A7 MOV ESP,ESI
001B:7C9011A9 POP EBX
001B:7C9011AA POP EDI
001B:7C9011AB POP ESI
001B:7C9011AC POP EBP
001B:7C9011AD RET 0010
001B:7C9011B0 NOP
001B:7C9011B1 NOP

now set BPX at entrypoint of packer:

:bpx 52690c
Break due to BP 00: BPX 001B:0052690C (ET=27.13 milliseconds)
001B:0052690C CALL 1500526808
001B:00526911 ADD EAX,0000668B
001B:00526916 JMP EAX
001B:00526918 CALL 1500526808
001B:0052691D ADD EAX,00005EE5
001B:00526922 JMP EAX
001B:00526924 CALL 0052692D
001B:00526929 INVALID

16

voila, you are at EntryPoint of ExeCryptor packer withtout even knowing
what the hell did they put in TLS callback and yours worst nightmare is
over.

Same thing might be applied to find OEP of packed DLLs. Last time I’ve
checked one aspr 2.11 packed dll oep was maybe 20 instructions from
packers entry.

DLL entry is called several times:
1. process_attach
2. thread_attach
3. thread_detach
4. process_detach

so packer starts working on process_attach and it is pointless for you
to trace at this point because it might take a while, simpler solution
is to set BP at entry of packer and once we hit it (probably thread_attach)
then simple trace till OEP, because packer will not unpack/decrypt/resolve
imports at this point, it’s task is to call oep of dll, and as I’ve mentioned
in aspr 2.11 it was 20-30 instructions from packers code...

That’s all in this small article for ARTeam eZine...

 S verom u Boga, deroko/ARTeam

Greetingz: ARTeam, 29a vx, and all great coders

References:
[1] Implementing Callback procedures - http://www.programmersheaven.com/search/LinkDetail.
asp?Typ=2&ID=12600
[�] tlsbande - http://omega.intechhosting.com/~access/forums/index.php?act=Attach&type=post&id=149�

 http://www.programmersheaven.com/search/LinkDetail.asp?Typ=2&ID=12600
 http://www.programmersheaven.com/search/LinkDetail.asp?Typ=2&ID=12600
http://omega.intechhosting.com/~access/forums/index.php?act=Attach&type=post&id=1496

17

Interviewers Note: (please include)This was originally conducted for a senior thesis. The original topic had to be changed because it
was too broad to cover. Because of that, this interview never saw the light of day. It was conducted about a year ago but I still think
that the protection and reversing communities may find it interesting. This was answered by two members of the Armadillo team that
is why you will often see � responses. I really want to thank these guys for the time they spent answering my questions, and I feel bad
that I was unable to use much of the information in my thesis. Hopefully their responses will cause some discussion among the revers-
ing communities.

1.What advantage does licensing out security to a third party offer
over developing software security in-house?

Developing a good security system in house takes a lot of knowledge
and constant monitoring of the latest cracker tactics. The advantage is
that we devote 100% of our time perfecting the security and licensing
and those that use a third party can devote all of their time on what
they do well instead of creating a half baked protection scheme./

Software Security isn’t something you learn in a few days.
It takes a lot of years of experience in the field to be able
to create something solid, and you have to dedicate a lot of time
on it, especially to stay up to date, with latest cracking techniques
and cracking tools. Something you can’t do when you are already
spending all your time on your new incoming product.
The advantage is, they don’t have to waste their time on their
own protection, which will most likely get cracked anyway because
its not their area of expertise, and can concentrate on their job.

2. Do you plan to progress to a point where your software becomes the
only security needed? Or do you feel more effective as one step in the
security cycle among cripple-ware, online key validations, etc...

Actually, we believe that with our current software and the coding
suggestions we give to our customers that we are a single point of
security. We provide customers with key validation software if they
want to host that on a web site. Or, for the small shops (or low volume
sales) it is built in to Armadillo.

The security is only as strong as its implementation.
We provide a full sets of techniques and features to protect a
software from beeing cracked, but it will never be crackproof.
Most of the time, because of miss implementation, the security is
a lot weaker than it should be. I personally think, the programmer
should add a few hidden / subtle checks above the use of our product.

Interview with Armadillo Developers

18

If well done, it can be quite challenging.

The best security is the demo version of a software, where the code
is actually _missing_ from the application. And of course, the missing
code shouldn’t be obvious, like a simple “Save to File” feature,
or something like that. Missing code that should be using a proprietary
and/or complex algo is more suitable in that case.

3. Companies such as yourself and Safedisc released an SDK to allow
developers integrate security into their programs at development time.
Do you feel like that this is an advantage for you?

The advantage of that is that it gets the developer in the mindset of
protection. Doing the subtle things he can do to enhance the protection
and licensing. An example would be variable licensing scheme where he
could have one exe file and depending upon what license his user pays
for that license key will unlock certain section in his code.

3.1 Or is it easier
to be the final step in software security?

Yes, it is easier to be the final step, but not always the best
solution for a popular program. That is why we offer things the
developers can do during the development phase, such as Nanomites and
Secured Sections..

The advantage is that the customer can choose where to add special protections, special checks, and can opti-
mize the usage of the protection. Some features can slow down an application, so its
a lot more useful, if the programmer can protect his application
without too much performance decrease.

SDK allows very targeted protection and it allows a better merge
of the protection and the software beeing protected. The more
the application is dependant of the protection, the better it is.

4. Outside of security, you need to worry about file size, speed of
execution, compatibility, and ease of use. How do you handle these
issues? Do they end up restricting your creativity?

File size:
Nowadays, every computers have really big hard drives, so size isn’t
as important as it used to be in the past.However we try to optimize our
code in order to keep it as small and compact as possible.
Speed of execution:

As micro processors become faster and faster this becomes less of an issue. I personally, have been in the busi-

19

ness long enough to where we’d tweak our ASM code to make it run faster and be smaller. Memory and disk
space was a premium, where now it is rather cheap.

Nowadays, computers are very fast, and CPU aren’t going to stop their speed grow.However, we always try our
protection on old systems, to
make sure it is useable even if you don’t have a recent computer.
speed of execution is an important issue, and we do our best to
have something as quick as possible. We sometimes use Assembly
programming to optimize our routines.

Compatibility:

We have every Windows OS and we test our product on all of them
to make sure its 100% compatible with old versions.

Ease of use:

As far as restricting creativity.... not really, you just have to find
other ways to use creativity.

The most restricting issue so far, is the compatibility one.
We sometimes find nice protection tricks, but they aren’t
compatible on all OS, or aren’t working inside Virtual Machines.
We end up not using those features, or checking the OS version
before testing them.. It makes things weaker, but we have to do
that to keep a 100% compatibility level.*

5. With the proliferation of internet access, online key validation
has become more popular. Do you think that this is where security is
going to eventually move or do you feel there is something else that
will prove more effective?

Not sure if I completely understand... because security is already
there. We do that, and Digital River (our mother company) sells a lot
of protected software via the internet. Protection will have to keep up
with technology until the technology can protect itself... or is so
prevalent that protection is not needed.

I personally think Server Based checks are the future, only if they
are well implemented. The only problem with those is that with
the proliferation of internet worms, spywares and other malwares,
customers aren’t ready to accept that an application phones home
in order to check the license. Online key validation has to
be well implemented, and shouldn’t just be a validation process.
The internet server should be used as a token to decrypt parts of
code on the fly only and should be part of a strong wrapping scheme.
I think the future is a combination of various techniques, which
aren’t yet very well accepted by the public or because the technology

�0

involved isn’t yet available everywhere. Eg: People needs internet
to check their license, but not everyone has internet those days.

6. People and communities, many of them quiet intelligent,
continuously work to understand, and sometimes defeat, the protection
you create. Logically, without them, there would not be a strong a
demand for your product. What is your view on the reverse engineering
community?

If it wasn’t for them there would be no need for our product. A
simple key could be used to keep honest people honest. One has to
admire the knowledge of some of the better crackers. Though what they
do is illegal and it is hard to admire someone for breaking the law.

In my opinion, the Reverse Engineering community is important.
Reverse Engineering isn’t only used to crack softwares, as most
people tend to think. RE is used by anti virus compagnies to analyse
viruses and other malwares, and such community allows developpment
of tools, techniques etc that can be used for good purpose.
RE is also used to find holes in Closed source softwares, which
at the end will lead to more secure softwares.

My point of view is, we should diffentiate the Reverse Engineering
community from the Cracking Community. A lot of the people in the RE
community does it for fun and learning purpose without ever harming
anyone. Yet, they will share their knowledge on boards. I think
Software protectionist have a lot to learn from “underground” research
and shouldn’t see them as pirates. (most of the times anyway)

7. Outside of legality how do you react when you find your protection
has been defeated? Do you hold any respect for a person who creatively
removes your protection?

Yes, there is an amount of respect that must be shown I suppose, my
colleagues may dis-agree. But I believe they’d get more respect from
this side of the fence if they wouldn’t publish methods, stolen keys,
etc. But of course that is not what they are after.

I personaly have respect for people breaking our protection, as long
as its smart and not a thief act, such as stealing credit cards
to obtain a software. I have respect for people spending days
disassembling and debugging our code in order to find a way to bypass
it , because its a lot of work. I have no respect for the egocentric
kids that brag about their work, and insult us. They tend to forget
we were doing this before they even started to use a computer, and
that there are a lot more things to consider when you are protecting,
than when you are deprotecting.

21

8. What do you think is your greatest security option? Example:
Address Table destruction, anti-debugging techniques, child processes.

Our highest level key system. As well as our Strategic Code splicing
and Memory patching protections

I think Nanomites are our greatest security option. It has weaknesses
(what doesn’t?), but its really effective against the majority of
crackers. The Import Table Eliminitation is very nice too.

As for Licensing, the Level 10 of our key system will keep crackers
away from making a keygen for your application.

9. Which part of your security do you plan to improve on to increase
protection for the future?

We are always improving our security methods and key strength. �� Bit
windows application protection is next on our plate.

We constantly improve our security features, and we watch with great
attention the cracking boards, and update our protection as soon
as something bad has been found to attack us. We are constantly
trying to make the protection hard to remove, that’s the hardest
challenge.

10. Is there anything you would like to ask or tell the reversing communities?

I assume some of the newbie crackers are pretty young. Do they realize
what they are doing is breaking federal law? Not that they’d care but
some that are just trying to be cool may not realize this. And, there
are becoming much easier ways to pin-point who they are (the old Big
Brother syndrome).

Nothing particular. I wish some of them could be more respectful and
stop the rebel (and retarded) attitude of bashing protection authors
with no real reasons. It also funny to read them bragging on boards
saying we stole their ideas, or that we learned things from them,
while we have been doing this kind of things for a lot longer than them.

11. Outside of your product, what do you think is one of the most
effective ways to ensure software security. A few examples: Personal
builds, watermarking, refusal of technical support and/or updates.

Those are all good examples. The best way to do it on your own is to
get into the mindset of protection. Maybe only turn on certain parts of
your program if a checksum of some previous code is valid. Many
programs require a CD to be present in order to run the program. The

��

companies check for a CD in the drive one time and then allow the
application to operate. This is one of the easiest defeated
protections. If those companies added to that, even just to make it
difficult by trying to access the CD numerous times in various places
during execution it would discourage several but the most diligent of
the crackers.

Virtual Machines are very good ways to ensure software security.
Its a lot longer and harder to analyse Pcode, than analysing
Assembly code. Its a new trend in software protection nowadays,
to use Virtual Machine as a protection mean.

Hidden/delayed checks are a very good way to ensure software
security too. You will see half cracked software released on
the internet, and product working very badly because of that.
They can be very hard to track down, and crackers missing checks
look stupid in front of their community.

Watermarking doesn’t ensure software security, but it allows you
to track leaks and find the culprit, if one of your customers
have given his license to someone else. Its something worth
having.

12. Physical security, such as dongles, have not become popular in the
average consumer market. It seems that security that makes itself
intrusive to the consumer is unpopular. Do you think that security
needs to be intrusive? Example: installation of drivers, registration
requirements, dongles. Or should security be more transparent?
Example: hardware fingerprinting, online key validation.

Yes, I know that dongles have not caught on. They are very intrusive
and I believe that things that have to be phyiscally plugged in cause
stress for some users. Dongles have advanced a bit in that they now can
utilize USB ports which are almost a no-brainer to attach. The older
parallel port ones were a pain.... and then for each protected program
you might have to add another etc. then physical room becomes a challange.

I don’t think that security needs to be intrusive. We can set up a
project in Armadillo that can auto-inject a key for registration and
provides little or no hassle for the end user. I would think that
should be preferable to most people.

I think online key validation is intrusive. It requires Internet Access
and the customer will see it as intrusive. Who knows what kind of
date is beeing transfered to the web server? a lot of people will
think you are some kind of spyware.

Security doesn’t need to be intrusive, but intrusive security offers
more possibility in my opinion. Time will tell us, if the customers
are ready for it.

��

13. Do you think that companies are still uneducated about software
security, holding it as an afterthought?

Absolutely. Just take a look at M*cro$oft *the* giant in the
industry. Think of how many copies of an O/S install CD you have seen?
And, in my opinion their security is not bad. Many of the other bigger
companies have never thought about it or just write it off as a cost of
doing business. the shareware community is what has really pushed
security. In that their life blood so to speak is on the line if they
loose sales they could be out of business. Bigger companies are
starting to get smart about it. Digital River (my employer) is trying
its best to promote Digital Rights Management in which security is the
first and major part.

14. Do you think developers need to understand how their software is
being protected to improve the integration between software
development and security? Should they know what happens to their
resources, how their API calls are redirected, why a child process is
created?

Need? Probably not. But as a developer yes I want to understand what
is going on the best I can understand it. It just helps when trying to
uncover a subtle bug or flaw.

15. In your own opinion what programming language do you prefer? Do
you believe that it creates the most secure code?

The programming language that I prefer is C. Only because I have used
it for many years. Secure.... no not by itself. There are lots of
tools on the market that can disassemble that code and pretty much any
other. Some of the tricks in ASM or any lower level code can make it
much easier to trick a would be cracker. So, I would have to say its
the most secure. Again... unless the programmer is thinking of
protection the language makes no difference.

I personally prefer Assembly Programming. I like to control
everything i write. Beside, you can write very hard to follow routines,
with fancy code flow. What is “Secure Code” ?
The code is as secure as the programmer’s skills in software security.
A code can be secure in pretty much any language as long as its well
written.

16. Do you think profits for popular software are reinforced by good
protection? Or will their popularity ultimately force the defeat of
the protection, making protection more important for smaller software
companies.

��

Yes, I do. If there was a scenario of a popular program that was
never in need of an upgrade and the protection was defeated... that
would be bad. But luckily that is very rare. Even though (for example)
protection may have been defeated for a popular program at version 1.0,
the protection software as well as the popular programs’ developer have
likely been improved upon for revision �.0.

It is true that its kind of a sign that your program is popular if a
cracker spends time on it to defeat the protection.

And, Yes it seems very important for small companies to utilize a
protection scheme if they do have a program that will be widely
distributed. The loss of income and theft of technology could destroy
some very small shops.

17. Are there any comments you would like to add?

Note that I can think of.

��

1.	 AbstrAct	... 26
2.	 ExtEnding	thE	FunctionAlity	oF	A	progrAm	.. 27

2.1.	 point	1:	Find	whErE	to	insErt	our	modiFicAtions	.. 27
2.2.	 point	2:	Find	A	propEr	cAnvAs.. 28
2.3.	 point	3:	codE	A	propEr	plugin	dll	.. 28
2.4.	 point	4:	insErt	thE	plugin	dll	into	strAcEnt	... 29
2.5.	 point	5:	Fill	thE	cAnvAs	with	thE	nEw	codE	.. 30
2.6.	 point	6:	tEsting	thE	nEw	codE	... 31

3.	 rEFErEncEs	.. 32
4.	 conclusions	.. 32
5.	 history	... 33
6.	 grEEtings	.. 33

Keywords
anti-debugging, tracing

Improving StraceNT:
Adding Anti-Debugging Functionality

Shub-Nigurrath[ARTeam]

��

1.	 Abstract

This time we are going to improve the functionalities of an existing program. StraceNT [1] is a System Call Tracer
for Windows. It provides similar functionality as of strace on Linux. It can trace all the calls made by a process to
the imported functions from a DLL. StraceNT can be very useful in debugging and analyzing the internal working
of a program.
StraceNT uses IAT patching technique to trace function calls, which is quite reliable and very efficient way for
tracing. It also supports filtering based on DLL name and function name and gives you a lot of control on which
calls to trace and helps you to easily isolate a problem.

It is indeed a good program (see also [2] to understand how it works), but has a flaw, saw with reverser and not
with bug-solver eyes.

For example Figure 1 is what we get if we try to use original StraceNT with an asprotected program.Figure 1 is what we get if we try to use original StraceNT with an asprotected program. is what we get if we try to use original StraceNT with an asprotected program.

Figure 1 - StraceNT has been detected by AsProtect

What we want to do is then add our own anti-debugging support to this tool, we want to do it generic enough to
allow also extensibility through plugins.

Have phun,
Shub-Nigurrath

As usual I will provide sample code with this tutorial, and non-commercial sample victims. All the
sources have been tested with Win2000/XP and Visual Studio 6.0.
The techniques described here are general and not specific to any commercial applications. The whole
document must be intended as a document on programming advanced techniques, how you will use
these information will be totally up to your responsibility.

As usual I will provide sample code with this tutorial, and non-commercial sample victims. All the
sources have been tested with Win2000/XP and Visual Studio 6.0.
The techniques described here are general and not specific to any commercial applications. The whole
document must be intended as a document on programming advanced techniques, how you will use
these information will be totally up to your responsibility.

��

2.	 Extending	the	Functionality	of	a	program
As explained above we want to improve StraceNT adding the possibility to hide itself to the anti-debugging
checks of the victim program.
StraceNT indeed uses a technique (see [2]) which involves the debugging API, so the victim program is debugged,
this makes impossible to use it with protected programs.

Fortunately we already learnt (see [3]) how to hide debugger loaders to target code and then we will apply here
that knowledge. The only thing we still do not know is how to add the required code into StrateNT.

This is our roadmap:
1. Find where to insert our modifications
2. Find a proper canvas (free space) where to divert the program’s execution and add some code
3. Code a proper plugin Dll
4. Insert the plugin dll into StraceNT and let it be able to call it.
�. Fill the canvas with the new code
�. Testing the new code

2.1.	Point	1:	find	where	to	insert	our	modifications
We learnt in [3] that all the modifications to the debugged process must be done after a successful call to
CreateProcess. In [3] we were calling our own written HideDebugger function just after the CreateProcess call.
We have then to find where StraceNT calls the CreateProcess API and see if there’s space to add our code�.

Figure 2 - Original call to CreateProcessW

Figure 2 reports the original call to CreateProcessW. As you can see there’s no space for adding even a single bit
here, everything is filled of working code. So the solution is to find a canvas into the program and then move there
the call to CreateProcessW and add also our code.

2 We will report code snippet of the StraceNT windows GUI version, by this point of view the DOS ver- We will report code snippet of the StraceNT windows GUI version, by this point of view the DOS ver-We will report code snippet of the StraceNT windows GUI version, by this point of view the DOS ver-
sion looks almost the same.

28

2.2.	Point	2:	find	a	proper	canvas
We are using for our purpose a tool called ToPo [�], pretty simple to use and fast. Figure � reports the initial
settings: we want to search space only in the executable sections, to backup the original file and to not add space
to the existing program: we want to find if there’s an existing canvas, rather than creating a new one.

Figure 3 - ToPo initial settings

We will choose to find a canvas large around 1000 bytes. Figure 4 reports how the canvas will look like, just after
the creation.

Figure 4 - New empty canvas

2.3.	Point	3:	code	a	proper	plugin	Dll
At this stage we have a version of StraceNT which is still unchanged but we have space to write some code.

At this point it’s better to stop and think how you want to implement the anti-debugging functionality. You have
two options indeed:

1. directly write it inside StrateNT into the canvas
2. write it externally and let StraceNT call it, for example from an additional Dll.

The canvas space is limited so it’s easier to follow the second method: external dll. This moverover will allow us
to modify StraceNT only once and then write external Dlls how we want: we gain upgradeability of the code.

Generally speaking what an external Dll needs in order to apply anti anti-debugging patches to a program, is the
PROCESS_INFORMATION structure or a pointer to it.

The Dll we want to code then has an unique export called HavePhun which will receive a pointer to the PROCESS_
INFORMATION.

29

The code of our Dll is pretty simple then:

<---------------------- Start Code Snippet ---------------------->

extern “C” int HavePhun(PROCESS_INFORMATION *pPI);

BOOL HideDebugger(HANDLE hThread, HANDLE hProc)
{
 CONTEXT victimContext;
 victimContext.ContextFlags = CONTEXT_SEGMENTS;

// char b[1024];
// sprintf(b, «hThread=%X, hProc=%X», hThread, hProc);
// ::MessageBox(NULL,b, «Shub-Nigurrath», MB_OK);

 if (!GetThreadContext(hThread, &victimContext))
 return FALSE;
 LDT_ENTRY sel;
 if (!GetThreadSelectorEntry(hThread, victimContext.SegFs, &sel))
 return FALSE;

 DWORD fsbase = (sel.HighWord.Bytes.BaseHi << 8| sel.HighWord.Bytes.BaseMid) << 16 | sel.BaseLow;
 DWORD RVApeb;

 SIZE_T numread;
 if (!ReadProcessMemory(hProc, (LPVOID)(fsbase + 0x30), &RVApeb, 4, &numread) || numread != 4)
 return FALSE;

 WORD beingDebugged;
 if (!ReadProcessMemory(hProc, (LPVOID)(RVApeb + 2), &beingDebugged, 2, &numread) || numread != 2)
 return FALSE;
 beingDebugged = 0;

 if (!WriteProcessMemory(hProc, (LPVOID)(RVApeb + 2), &beingDebugged, 2, &numread) || numread != 2)
 return FALSE;
 return TRUE;
}

extern “C” int HavePhun(PROCESS_INFORMATION *pPI) {
 char coded[256];
 sprintf(coded,”Coded by SHub-Nigurrath of ARTeam.”);

 return HideDebugger(pPI->hThread, pPI->hProcess);
}
<---------------------- End Code Snippet ---------------------->

The HideDebugger function is that already used in [3].

The function modified StraceNT will have to call is the following one:

int HavePhun(PROCESS_INFORMATION *pPI);

The dll is called “plugin.dll”

2.4.	Point	4:	Insert	the	plugin	dll	into	StraceNT
First of all we have to modify StraceNT to be aware of the existence of our new dll. What we have to do is to add
the Dll to the StraceNT IAT. To do this there’s an extremely useful tool called IIDKing [5].
You can on the other hand use the approach described in [6] which does not alter the IAT of the program just
because it loads dynamically the external Dll. It’s by my point of view a more elegant approach, but requires a lot
of additional ASM code. IIDKing simplify the work.

Figure � reports how I used it, pretty simple.

What this program does is to add one or more entries into the target program IAT and write out on a text file how
to call from assembler the entries just added.

�0

Below are the calls you can make to access your added functions...
Format style is: DLL Name::API Name->Call to API

plugin.dll::HavePhun->call dword ptr [10300e4]

Figure 5 - IIDKing initial settings

2.5.	Point	5:	fill	the	canvas	with	the	new	code
Now it’s time to fill the canvas we created at Point 2.

First of all it’s better to move to the new destination the whole CreateProcessW call so as to have all the required
things in the destination space.

Looking at Figure 6 we cut away the whole call to CreateProcessW and substituted it with a JMP to the beginning
of the new canvas. The following NOPs being a code that is never executed can be left there, I simply removed
it to help you reading.
The new routine starting at 0x010100E3 will return to the original program’s path at 0x01010100.

I chose to use a direct JMP to the new code and not a CALL because this help to not worry of the activation frame
each CALL pushes on the stack: the stack integrity is easier.

Figure 6 - CreateProcessW moved to the canvas

31

Figure � reports how the new canvas looks like.

Figure 7 - Filled Canvas

The canvas contains the original call to CreateProcessW and the new code I added which gets the pointer to
PROCESS_INFORMATION from the registers and give it to the HavePhun plugin function.
Before the call there is a new PUSH EAX at address 0x01011B77 which will come handy.
After the call to the HavePhun function I will manage to fix registers and stack as the program had before my
modifications. The rule is that before returning on the original path the program must find registers and stack
untouched, as nothing happened.

2.6.	Point	6:	testing	the	new	code
We wrote all the code above and we are then ready to test in on a target. Take any asprotected program you
have in hands and try to launch it from StraceNT, but before place a Breakpoint at the CreateProcessW call at
0x01011B90.

Figure 8 reports how the Data Stack looks like. Please note the address of the last parameter pProcessInfo. This is
what we need to give to the function HavePhun.

Figure 8 - Data Stack just before calling CreateProcessW

The stack also contains the EAX value we pushed on the stack at 0x01011B77.
Figure 9 shows how that pProcessInfo address looks like just after the call to CreateProcessW.

Figure 9 - PROCESS_INFORMATION structure

��

Figure 10 instead shows how the Data Stack looks just after the CreateProcessW: the first value on the stack is
the address of the PROCESS_INFORMATION structure (we pushed on the stack at 0x01011B77), exactly what
we need to call HavePhun.

Figure 10 - Stack just after call to CreateProcessW

For this example we were lucky because the required information was easy to recover, otherwise you would have
had to code a little more ASM here.

If you follow the new call you will land at the entrypoint of the Dll export. The corresponding data stack is
reported in Figure 11.

Figure 11 - data stack at the beginning of HavePhun

If you did all correctly the code works and you are no more bugged with anti-debugging nags.

The advantage of having written the external dll with an higher level language is that the only thing you have
to worry inside StraceNT is to keep the stack integrity, to give to the new function the correct parameters and to
handle return values. All the following details are left to the compiler which compiles the Dll.

NOTE
Remember that your addresses might be different, depending on the system status.our addresses might be different, depending on the system status.

3.	 References

[1] “StraceNT”, http://www.intellectualheaven.com
[2] “StraceNT – System Call Tracer for Windows NT”, Pankaj Garg, http://www.intellectualheaven.com/

Articles/StraceNT.pdf
[3] “Cracking with Loaders: Theory, General Approach and a Framework, Version 1.2”, Shub-Nigurrath,

ThunderPwr, http://tutorials.accessroot.com or on Code-Breakers Journal Vol.1 No.1 (2006)
[4] ToPo 1.2 by MrCrimson, version modified by RicNar
[5] IIDKing 2.01 by SantaMat, http://www.reteam.org/tools.html
[6] “Adding functions to any program using a DLL”, Dracon, CodeBreakers Journal, Vol.1 No.3 (2003)

4.	 Conclusions
Well, this is the end of this story,I explained a possible way to improve and extending existing applications using
existing tools and writing a mixture of assembler.

http://www.intellectualheaven.com
http://www.intellectualheaven.com/Articles/StraceNT.pdf
http://www.intellectualheaven.com/Articles/StraceNT.pdf
http://tutorials.accessroot.com
http://www.reteam.org/tools.html

��

5.	 History
	Version 1.0 – First public release!

6.	 Greetings
I wish to tank all the ARTeam members of course and who read the beta versions of this tutorial and contributed,..
and of course you, who are still alive at the end of this quite long and complex document!

http://cracking.accessroot.com

All the code provided with this tutorial is free for public use, just
make a greetz to the authors and the ARTeam if you find it useful to

use. Don’t use these concepts for making illegal operation, all the info
here reported are only meant for studying and to help having a better

knowledge of application code security techniques.

http://cracking.accessroot.com

��

Reversing tutorials often cover how to change a conditional jump to affect the result of a program.
This works well when the software compares a variable to determine a registered or unregistered result.
But what happens if the program compares a variable against multiple results, many of the results leading to
legitimate ends? A window’s message handler is a good example, comparing what type of action the program
should take dependent on what event just took place.
There are different ways to compare a variable against many constants. Most often times the author will use a
switch for the comparison routine.
In this article we are going to examine how a switch functions, and how to effectively reverse it.

Switches work as such.

You have a variable, lets call is X
Now lets say when X is 1 you want to call Function A
And if X is 2 you want to call Function B
And if X is 3 then you want to call Function C.
And if X is anything else you want to call Function D

So you could do a bunch of nested if then statements:

If x==1
 Call FunctionA
Else
 If x==2
 Call Function B
 Else
 If x ==3
 Call Function C
 Else
 Call Function D
 EndIF
 EndIf
Endif

OR you can use a Switch.
A Switch statement (often called Switch Case statement)
evaluates the variable and tests it against constant values
(called Cases). The Cases can be any constant expression.
So in this example our cases are the constants 1,2,3.
We can also have a default case in the event that the
variable does not equal any of the constants.

I pulled this trick a long time ago against Armadillo.

Let’s this time focus on ACProtect.
Want to use the demo to protect your recent release
but hate getting that “Trial” nag?
Just open up your newly protected EXE and look
for the first occurence of “MessageBoxA”.
Change it to “GetMessageA” and save it.
Poof! Nag is forever gone.
(Note: if you are unsure which MessageBoxA to
change then check out the import table with a PE
Editor to see where the string is)

Why does it work? Well that’s simple,
Both MessageBoxA and GetMessageA take the
same amount of arguments. During the function
execution, it will remove the same amount of vari-
ables from the stack as MessageBoxA would. So on
return on the program your stack is not corrupted.

Now you know a quick and easy way to remove a
nag that uses the MessageBoxA function. You can
apply this to programs other than just Acprotect.
Personally, stay away from this protector ‘cause it
has many bugs. But if you wish to use it well now
you can.

For more detailed information on removing Pro-
gram Nags such as ACProtect see:
Acprotect Nagremover Tutorial By Shub-nigurrath
at http://tutorials.accessroot.com

eversing_Switches
gabri3l[ARTeam]

Quickly Remove a Nag - Lunar Dust[ARTeam]

��

Switch(X)
 {
 case 1:
 Call Function A
 case 2:
 Call Function B
 case 3:
 Call Function C
 default:
 Call Function D
 }

So what does this mean when Reversing??
Well it means that we cannot simply change a JNZ to a JMP.
Here is an example of a Switch in Olly:
(Depending on what language the program was written in the way a Switch functions can be different)

0045358�0 /$ 8�B4424 14 MOV EAX, DWORD PTR SS:[ESP+14]
00453584 48 DEC EAX ; SWITCH (EAX) {
0045358�5 |. 8�3F8� 04 CMP EAX, 4 ; OUR VARIABLE IN
EAX IS COMPARED AGAINST 4
0045358�8� |. 0F8�7 94000000 JA Cerberus.00453622 ; JUMP IF X IS
GREATER THAN 4
0045358�E |. FF248�5 28�3645>JMP NEAR DWORD PTR DS:[EAX*4+453628�] ; HERE IS WHERE THE
CASE IS COMPARED
00453595 |> 8�B4424 08� MOV EAX, DWORD PTR SS:[ESP+8�] ; Case 2 of switch
00453584
00453599 |. 8�B4C24 10 MOV ECX, DWORD PTR SS:[ESP+10]
0045359D |. 8�B5424 0C MOV EDX, DWORD PTR SS:[ESP+C]
004535A1 |. 6A 02 PUSH 2
004535A3 |. 68� 342A4700 PUSH Cerberus.00472A34 ; ASCII “xsd:byte”
004535A8� |. 50 PUSH EAX
004535A9 |. 8�B4424 10 MOV EAX, DWORD PTR SS:[ESP+10]
004535AD |. 51 PUSH ECX
004535AE |. 52 PUSH EDX
004535AF |. 50 PUSH EAX
004535B0 |. E8� EB25FFFF CALL Cerberus.00445BA0
004535B5 |. 8�3C4 18� ADD ESP, 18�
004535B8� |. C3 RETN
004535B9 |> 8�B4C24 08� MOV ECX, DWORD PTR SS:[ESP+8�] ; Case 1 of switch
00453584
004535BD |. 8�B5424 10 MOV EDX, DWORD PTR SS:[ESP+10]
004535C1 |. 8�B4424 0C MOV EAX, DWORD PTR SS:[ESP+C]
004535C5 |. 6A 01 PUSH 1
004535C7 |. 68� C0264700 PUSH Cerberus.004726C0 ; ASCII “xsd:int”
004535CC |. 51 PUSH ECX
004535CD |. 8�B4C24 10 MOV ECX, DWORD PTR SS:[ESP+10]
004535D1 |. 52 PUSH EDX
004535D2 |. 50 PUSH EAX
004535D3 |. 51 PUSH ECX
004535D4 |. E8� 8�72BFFFF CALL Cerberus.00446160
004535D9 |. 8�3C4 18� ADD ESP, 18�
004535DC |. C3 RETN
004535DD |> 8�B4424 10 MOV EAX, DWORD PTR SS:[ESP+10] ; Case 5 of switch
00453584
004535E1 |. 8�B4C24 04 MOV ECX, DWORD PTR SS:[ESP+4]
004535E5 |. 6A 03 PUSH 3

��

004535E7 |. 6A 00 PUSH 0
004535E9 |. 8�D5424 10 LEA EDX, DWORD PTR SS:[ESP+10]
004535ED |. 52 PUSH EDX
004535EE |. 50 PUSH EAX
004535EF |. 68� 90274700 PUSH Cerberus.00472790 ; ASCII “QName”
004535F4 |. 51 PUSH ECX
004535F5 |. E8� 1627FFFF CALL Cerberus.00445D10
004535FA |. 8�3C4 18� ADD ESP, 18�
004535FD |. C3 RETN
004535FE |> 8�B4424 10 MOV EAX, DWORD PTR SS:[ESP+10] ; Case 3 of switch
00453584
00453602 |. 8�B4C24 0C MOV ECX, DWORD PTR SS:[ESP+C]
00453606 |. 6A 03 PUSH 3
00453608� |. 68� E0264700 PUSH Cerberus.004726E0 ; ASCII “xsd:string”
0045360D |. 8�D5424 10 LEA EDX, DWORD PTR SS:[ESP+10]
00453611 |. 52 PUSH EDX
00453612 |. 8�B5424 10 MOV EDX, DWORD PTR SS:[ESP+10]
00453616 |. 50 PUSH EAX
00453617 |. 51 PUSH ECX
00453618� |. 52 PUSH EDX
00453619 |. E8� F226FFFF CALL Cerberus.00445D10
0045361E |. 8�3C4 18� ADD ESP, 18�
00453621 |. C3 RETN
00453622 |> 33C0 XOR EAX, EAX ; Default case of
switch 0045358�4
00453624 \. C3 RETN

Now lets just Pretend that Case 3 is goodboy message, Case 2 is BadBoy message, and Case 5 is an About Box.
This means that you cannot just patch the Switch to always jump to Case 3 because then the About Box would
never be shown.
We need to patch within the case to get the result we desire.
To solve the problem and always show the GOOD BOY message we can add a JMP within Case 2 to jump to
Case 3.

00453584 48 DEC EAX ; SWITCH (EAX) {
0045358�5 |. 8�3F8� 04 CMP EAX, 4 ; OUR VARIABLE IN
EAX IS COMPARED AGAINST 4
0045358�8� |. 0F8�7 94000000 JA Cerberus.00453622 ; JUMP IF X IS
GREATER THAN 4
0045358�E |. FF248�5 28�3645>JMP NEAR DWORD PTR DS:[EAX*4+453628�] ; HERE IS WHERE THE
CASE IS COMPARED
00453595 EB 63 JMP SHORT Cerberus.004535FA ; ***REDIRECTED CASE
2 TO CASE 3***
00453597 90 NOP
00453598 90 NOP
00453599 |. 8�B4C24 10 MOV ECX, DWORD PTR SS:[ESP+10]
0045359D |. 8�B5424 0C MOV EDX, DWORD PTR SS:[ESP+C]
004535A1 |. 6A 02 PUSH 2
004535A3 |. 68� 342A4700 PUSH Cerberus.00472A34 ; ASCII “xsd:byte”
004535A8� |. 50 PUSH EAX
004535A9 |. 8�B4424 10 MOV EAX, DWORD PTR SS:[ESP+10]
004535AD |. 51 PUSH ECX
004535AE |. 52 PUSH EDX
004535AF |. 50 PUSH EAX
004535B0 |. E8� EB25FFFF CALL Cerberus.00445BA0
004535B5 |. 8�3C4 18� ADD ESP, 18�
004535B8� |. C3 RETN

��

004535B9 |> 8�B4C24 08� MOV ECX, DWORD PTR SS:[ESP+8�] ; Case 1 of switch
00453584
004535BD |. 8�B5424 10 MOV EDX, DWORD PTR SS:[ESP+10]
004535C1 |. 8�B4424 0C MOV EAX, DWORD PTR SS:[ESP+C]
004535C5 |. 6A 01 PUSH 1
004535C7 |. 68� C0264700 PUSH Cerberus.004726C0 ; ASCII “xsd:int”
004535CC |. 51 PUSH ECX
004535CD |. 8�B4C24 10 MOV ECX, DWORD PTR SS:[ESP+10]
004535D1 |. 52 PUSH EDX
004535D2 |. 50 PUSH EAX
004535D3 |. 51 PUSH ECX
004535D4 |. E8� 8�72BFFFF CALL Cerberus.00446160
004535D9 |. 8�3C4 18� ADD ESP, 18�
004535DC |. C3 RETN
004535DD |> 8�B4424 10 MOV EAX, DWORD PTR SS:[ESP+10] ; Case 5 of switch
00453584
004535E1 |. 8�B4C24 04 MOV ECX, DWORD PTR SS:[ESP+4]
004535E5 |. 6A 03 PUSH 3
004535E7 |. 6A 00 PUSH 0
004535E9 |. 8�D5424 10 LEA EDX, DWORD PTR SS:[ESP+10]
004535ED |. 52 PUSH EDX
004535EE |. 50 PUSH EAX
004535EF |. 68� 90274700 PUSH Cerberus.00472790 ; ASCII “QName”
004535F4 |. 51 PUSH ECX
004535F5 |. E8� 1627FFFF CALL Cerberus.00445D10
004535FA |. 8�3C4 18� ADD ESP, 18�
004535FD |. C3 RETN
004535FE |> 8�B4424 10 MOV EAX, DWORD PTR SS:[ESP+10] ; Case 3 of switch
00453584
00453602 |. 8�B4C24 0C MOV ECX, DWORD PTR SS:[ESP+C]
00453606 |. 6A 03 PUSH 3
00453608� |. 68� E0264700 PUSH Cerberus.004726E0 ; ASCII “xsd:string”

Now when Case 2 is Called you will get Case 3, Case 5 remains untouched so the About Box will work prop-
erly.
Redirection is the simplest way to manage a switch.

Hope you enjoyed this small article and that it helps give you a better grasp on how to effectively reverse.

38

1. Introduction
�. Required knowledge
�. Practice
4. Conclusion
�. References
�. Appendix

1. Introduction

Why should we write ring0 loader? For fun, of course. Advantage
of ring0 loader is speed. Also ring0 loader may work only as Debug Loader,
because we have to singal ring0 code somehow that we want something to
be patched on certain address. Crackme that I will use is simple ASPack
crackme with NAG screen. The reason why I chose ASPack is because ASPack
is simple to unpack, and we are dealing here with ring0 loader...

2. Required Knowledge

First we have to know how debugger works, but from ring0 point
of view.
Whenever some exception occurs in debugged process ring0 code
receives control via various IDT entries:

:idt
Int Type Sel:Offset Attributes Symbol/Owner
IDTbase=8003F400 Limit=07FF
0000 IntG32 0008:804D8BFF DPL=0 P _KiTrap00
0001 IntG32 0008�:F03FA760 DPL=0 P icextension!.text+62E0
0002 TaskG 0058�:00000000 DPL=0 P _KiTrap02
0003 IntG32 0008�:F03F9FB0 DPL=3 P icextension!.text+5B30
0004 IntG32 0008:804D92E0 DPL=3 P _KiTrap04
0005 IntG32 0008:804D9441 DPL=0 P _KiTrap05
0006 IntG32 0008:804D95BF DPL=0 P _KiTrap06
0007 IntG32 0008:804D9C33 DPL=0 P _KiTrap07
0008� TaskG 0050:00000000 DPL=0 P _KiTrap08�
0009 IntG32 0008:804DA060 DPL=0 P _KiTrap09
000A IntG32 0008:804DA185 DPL=0 P _KiTrap0A
000B IntG32 0008:804DA2CA DPL=0 P _KiTrap0B
000C IntG32 0008:804DA530 DPL=0 P _KiTrap0C
000D IntG32 0008:804DA827 DPL=0 P _KiTrap0D
000E IntG32 0008:804DAF25 DPL=0 P _KiTrap0E
000F IntG32 0008:804DB25A DPL=0 P _KiTrap0F
0010 IntG32 0008:804DB37F DPL=0 P _KiTrap10

Deroko[ARTeam]

Developing a Ring0 Loader

39

Of course, SoftICE is hiding from our eyes that some entries in IDT
are hooked by SoftICE itselfs:

:!idt
0000 IntG32 0008�:F05B6A2E DPL=0 P NTice!.text+0008�A6AE
0001 IntG32 0008�:F03FA760 DPL=0 P icextension!.text+62E0
0002 IntG32 0008�:F060AF97 DPL=0 P NTice!.data+9297
0003 IntG32 0008�:F03F9FB0 DPL=3 P icextension!.text+5B30
0004 IntG32 0008:804D92E0 DPL=3 P _KiTrap04
0005 IntG32 0008:804D9441 DPL=0 P _KiTrap05
0006 IntG32 0008�:F060AFA6 DPL=0 P NTice!.data+92A6
0007 IntG32 0008:804D9C33 DPL=0 P _KiTrap07
0008� TaskG 0050:00001178� DPL=0 P
0009 IntG32 0008:804DA060 DPL=0 P _KiTrap09
000A IntG32 0008:804DA185 DPL=0 P _KiTrap0A
000B IntG32 0008:804DA2CA DPL=0 P _KiTrap0B
000C IntG32 0008�:F060AFB5 DPL=0 P NTice!.data+92B5
000D IntG32 0008�:F060AFC4 DPL=0 P NTice!.data+92C4
000E IntG32 0008�:F060AFD3 DPL=0 P NTice!.data+92D3
000F IntG32 0008:804DB25A DPL=0 P _KiTrap0F
0010 IntG32 0008:804DB37F DPL=0 P _KiTrap10

If you look at output of Ice-Ext !idt command you may see that
IDT entries are hooked by SoftICE. Why?

Simple, debugger MUST catch exception and process it, when Fault
or Trap occurs SoftICE gains control over his hooks in IDT and
decides what to do.

Well we are going to do same thing. We are going to hook some
entries in IDT (Interupt Descriptor Table) and decide if exception
occured under our conditions, if not, pass exception to default
handler.

To hook IDT entries, first we have to know how to get them,
Address of IDT we receive with sidt instruction.

<++>
.data
idttable dq ?

.code
 sidt fword ptr[idttable]
 mov eax, dword ptr[idttable+2]

<++>

sidt needs 6 bytes to store data. in low word it stores limit field, and
address of IDT is stored in high � bytes:
 +---------+---------------------+
 | LIMIT | Virtuelna Adresa |
 +---------+---------------------+
 0 15 16 47

�0

Here is sample of obsfucated code in themida protector to get IDT base
without usage of any variable:

Note: this is garbage code due to 2 push/pop combo

push edi ;save edi
push edi ;ESP - 4
sidt fword ptr[esp-2] ;don’t care about limit
pop edi ;EDI will hold IDT base
pop edi ;restore edi

Well this is junk code, but it is nice example on how to get IDT base,
and GDT base with minimum effort =)

Ok, once we obtain IDT address we may hook some entries. IDT is nothing
more than table of 8 byte long entries.
Each entry looks like this:

31 16 15 13 12 8 7 5 4 0
+----------------+---+-----+-----------+------+---------+
| Offset 31..16 | P | DPL | 0 D 1 1 1 | 0 0 0| |
+----------------+---+-----+-----------+------+---------+

31 16 15 0
+--------------------------+----------------------------+
| Segment Selector | Offset 15..0 |
+--------------------------+----------------------------+

To hook entry, frist we have to know which one to hook, in our small
loader, we are going to hook int � or IDT entry number �.

.data
idttable dq ?

.code
 sidt fword ptr[idttable]
 mov ebx, dowrd ptr[idttable+2]

 lea eax, [ebx+3*8�] ;offset to 3rd entry

 mov cx, [eax+6] ;we are taking High Word
 rol ecx, 16
 mov cx, [eax] ;and we are taking Low Word

After this code we will have in ECX address of current int3h handle. We have
to save this address because we have to call default handler if exception
doesn’t meat our conditions.

After we have saved oldhandle, we have to hook int0� handle:

 mov ecx, offset __mynewint3h
 mov [eax], cx
 rol ecx, 16
 mov [eax+6], cx

41

and that’s all about IDT hooking.

Next thing is to disable Write Protection in cr0 register so we can write
wherever we want w/o causing PageFault. Note that IDT is writable from ring0,
so we don’t have to disable WP prior to hooking IDT (don’t know about w2k3)

Disabling/Enabling Write Protection is very simple on IA32 CPUs and consist of
clearing and setting bit 16 in cr0:

Disable WriteProtection:
 mov eax, cr0
 and eax, 0FFFEFFFFh
 mov cr0, eax

After we are done with writing we may set Write Protection on:

 mov eax, cr0
 or eax, 10000h
 mov cr0, eax

Simple, isn’t it?

One more condition is left to go over. We have to know when exception occured
in our process. We have two choices:

1. PsGetCurrentProcessId
�. use cr� to identify our process

Disassembly of PsGetCurrentProcessId:

.text:8�04DE245 _PsGetCurrentProcessId@0 proc near

.text:8�04DE245 mov eax, large fs:124h

.text:8�04DE24B mov eax, [eax+1ECh]

.text:804DE251 retn

.text:8�04DE251 _PsGetCurrentProcessId@0 endp

in ring0, fs should point to KPCR:

kd> dt nt!_KPCR
 +0x000 NtTib : _NT_TIB
 +0x01c SelfPcr : Ptr32 _KPCR
 +0x020 Prcb : Ptr32 _KPRCB
 +0x024 Irql : UChar
 +0x028� IRR : Uint4B
 +0x02c IrrActive : Uint4B
 +0x030 IDR : Uint4B
 +0x034 KdVersionBlock : Ptr32 Void
 +0x038 IDT : Ptr32 _KIDTENTRY
 +0x03c GDT : Ptr32 _KGDTENTRY
 +0x040 TSS : Ptr32 _KTSS
 +0x044 MajorVersion : Uint2B
 +0x046 MinorVersion : Uint2B
 +0x048� SetMember : Uint4B

��

 +0x04c StallScaleFactor : Uint4B
 +0x050 DebugActive : UChar
 +0x051 Number : UChar
 +0x052 Spare0 : UChar
 +0x053 SecondLevelCacheAssociativity : UChar
 +0x054 VdmAlert : Uint4B
 +0x058� KernelReserved : [14] Uint4B
 +0x090 SecondLevelCacheSize : Uint4B
 +0x094 HalReserved : [16] Uint4B
 +0x0d4 InterruptMode : Uint4B
 +0x0d8� Spare1 : UChar
 +0x0dc KernelReserved2 : [17] Uint4B
 +0x120 PrcbData : _KPRCB
kd>

offset +124 is :

kd> dt nt!_KPRCB
 +0x000 MinorVersion : Uint2B
 +0x002 MajorVersion : Uint2B
 +0x004 CurrentThread : Ptr32 _KTHREAD <---- fs:[124h]

and offset 1ECh in KTHRED is(to be more accurate ETHREAD):

 +0x1e0 ActiveTimerListLock : Uint4B
 +0x1e4 ActiveTimerListHead : _LIST_ENTRY
 +0x1ec Cid : _CLIENT_ID

0x1ec is nothing more then PID.

But to make this work we have to load fs with �0h, because fs should
point to KPCR.

The secong and the simplest way to accomplish this is to use cr� as process ID.
Since all processes in Windows NT family have their own address space we are
sure that each process will have unique content of cr�. cr� register hold
Physical Address of PDE (Page Directory Entries) and is mapped at 0C0300000h.
There are some nice articles and books that explain paging on IA32 CPUs, so
I won’t go in detail here. [1,4]

To accomplish this task we are going to use � DDIs exported from ntoskrnl.exe

PsLookupProcessByProcessId
ObDereferenceObject
KeStackAttachProcess
KeUnstackDetachProcess

prototype:

PsLookupProcessByProcessId (PID, ptr EPROCESS)
ObDereferenceObject (IN POBJECT_BODY)
KeStackAttachProcess(PEPROCESS, PTR KAPC_STATE)
KeUnstackDetachProcess(PTR KAPC_STATE)

��

note that we may use KeAttachProcess and KeDetachProcess instead of
KeStackAttachProcess nad KeUnstackDetachProcess but we are advised to
use KeStackAttachProcess with simple explanation :

“The KeAttachProcess routine is obsolete and is exported to support
existing driver binaries only.”

Since 10 or more lines of code will show more than 1000 words I will
show code snippets immidiately:

.data
eprocess dd ?
.code:
...
 push offset eprocess
 push pid
 call PsLookupProcessByProcessId

If PsLookupProcessByProcessId fail, then eax != 0, if eax == 0 then
eveything went fine and we got our ptr to EPROCESS. Also note that we
must call ObDereferenceObject, since PsLookupProcessByProcessId will
increment reference count in object header. Yep, everyhing is object
on winNT family. If you don’t use ObDereferenceObject, you can terminate
it but still, when you type ADDR in softice to display all tasks, you
will see your process. Why? Simple, windows will not delete object as
long as it’s ReferenceCount isn’t zero.

For this little experiment I’ll be using driver w/o ObDereferenceObject.
Process is “terminated” at this point(not visible in task manager nor
Process Explorer).

:addr
 CR3 LDT Base:Limit KPEB Addr PID Name
 ...
 130FA000 8�1CCEDA0 0490 kd
 0482F000 81CD93A0 0C8C CMD
 07DD1000 8�1CA8�BF8� 0398� crackme
*00039000 80552580 0000 Idle

Now let see what livekd has to say about this:

kd> !process 398�
Searching for Process with Cid == 398�
PROCESS 81ca8bf8 SessionId: 0 Cid: 0398 Peb: 7ffda000 ParentCid: 0f84
...
kd> dt nt!_OBJECT_HEADER 8�1ca8�bf8�-18�
 +0x000 PointerCount : 1 <--- Here is reference count
 +0x004 HandleCount : 0
 +0x004 NextToFree : (null)
 +0x008� Type : 0x8�1fcaca0
...

��

For detailed dump plese refer to Appendix.
For more detailed information on Object Manager please reffer to [2,3].

So our code till now will look like like this:

<++>
 push offset eprocess
 push pid
 call PsLookupProcessByProcessId
 test eax, eax
 jnz __sh_fail

 push eprocess
 call ObDereferenceObject

Next thing that we have to do is to attach to process and force PDE/PTE
swithing (cr3 reloading with new value). We accomplish this by using
KeStackAttachProcess:

KeStackAttachProcess takes 2 args and those are ptr to EPROCESS struct,
and ptr to KAPC_STATE. We are not interested in KAPC_STATE at all but
here it is anyway:

kd> dt nt!_KAPC_STATE
 +0x000 ApcListHead : [2] _LIST_ENTRY
 +0x010 Process : Ptr32 _KPROCESS
 +0x014 KernelApcInProgress : UChar
 +0x015 KernelApcPending : UChar
 +0x016 UserApcPending : UChar
kd>

Since we are not going to use this struct, we may simply allocate buffer
large enough (size of struct = 18h) to hold data:

<++>
.data
apcstate db 20h dup(0)
eprocess dd ?

.code

...
 push offset eprocess
 push pid
 call PsLookupProcessByProcessId
 test eax, eax
 jnz __error
 push eprocess
 call ObDereferenceObject
 push offset apcstate
 push eprocess
 call KeStackAttachProcess
 mov eax, cr3
 mov c_cr3, eax
 <inserting first int3h at this point>
 push offset apcstate
 call KeUnstackDetachProcess
<++>

��

One more trick that is very very importan, PDE/PTE won’t be reloaded
by simple changing value of cr� to point to new PDE. I’ve examined
values of PDE/PTE right after cr3 switching and those were filled with
0.
 switch context
 mov eax, 401000h
 shr eax, 22
 mov eax, [eax*4+0C0300000h] ;PDE

 and

 mov eax, 401000h
 shr eax, 12
 mov eax, [eax*4+0C0000000h] ;PTE

resulted in eax == 0!?!?

So little shortcut had to be taken to force reloading (refreshing?),
by simple reading one byte from our process, at this point I had
PTE of requested page in data window of SoftICE and I was supprised
how by reading one byte from target process forced PTE reloading.
I don’t have explanation for this, so I wrapped my code in SEH:

 init_ring0_seh __safe

 mov eax, insertint3h
 mov ebx, [eax]
 mov byte ptr[eax], 0cch

__safe: remove_ring0_seh

init_ring0_seh and remove_ring0_seh are just 2 simple macros definied
in ring0.inc to set seh with one line in source file.

Also we may use MmProbeAndLockPages to lock pages in Physical Memory
prior to storing our int 3h, and MmUnlockPages once we are done with
writing.

Ok, now we know all we need to write loader, now is time to code our
driver:

3. Practice

Load our crackme.exe in your favorite debugger, of course, SoftICE =):

001B:00406001 PUSHAD
001B:00406002 CALL 0040600A
001B:00406007 JMP 459D64F7
001B:0040600C PUSH EBP
001B:0040600D RET
001B:0040600E CALL 00406014
001B:00406013 JMP 00406072
001B:00406015 MOV EBX,FFFFFFED

��

Finding OEP in ASPack is not very hard so let’s find magic addresses:

001B:004063B0 JNZ 004063BA
001B:004063B2 MOV EAX,00000001
001B:004063B7 RET 000C
001B:004063BA PUSH 00401000
001B:004063BF RET <--- we are gona set int 3h here (ret oep)
001B:004063C0 MOV EAX,[EBP+00000426]
001B:004063C6 LEA ECX,[EBP+0000043B]
001B:004063CC PUSH ECX

and crackme:

001B:00401000 PUSH 00
001B:00401002 CALL KERNEL32!GetModuleHandleA
001B:00401007 PUSH 00
001B:00401009 PUSH 00401022
001B:0040100E PUSH 00
001B:00401010 PUSH 000003E7
001B:00401015 PUSH EAX
001B:00401016 CALL USER32!DialogBoxParamA
001B:0040101B PUSH 00
001B:0040101D CALL KERNEL32!ExitProcess
001B:00401022 ENTER 0000,00
001B:00401026 PUSHAD
001B:00401027 XOR EAX,EAX
001B:00401029 CMP DWORD PTR [EBP+0C],00000110
001B:00401030 JZ 00401049
001B:00401032 CMP DWORD PTR [EBP+0C],10
001B:00401036 JNZ 00401062
001B:00401038� PUSH 00
001B:0040103A PUSH DWORD PTR [EBP+08�]
001B:0040103D CALL USER32!EndDialog
001B:00401042 MOV EAX,00000001
001B:00401047 JMP 00401062
001B:00401049 PUSH 00
001B:0040104B PUSH 00402004 ; “nag”
001B:00401050 PUSH 00402000 ; “NAG”
001B:00401055 PUSH DWORD PTR [EBP+08�]
001B:00401058� CALL USER32!MessageBoxA <-- NAG
001B:0040105D MOV EAX,00000001
001B:00401062 MOV [ESP+1C],EAX
001B:00401066 POPAD
001B:00401067 LEAVE
001B:00401068 RET 0010
001B:0040106B JMP [KERNEL32!ExitProcess]
001B:00401071 JMP [KERNEL32!GetModuleHandleA]
001B:00401077 JMP [USER32!DialogBoxParamA]
001B:0040107D JMP [USER32!MessageBoxA]
001B:0040108�3 JMP [USER32!EndDialog]

We are gona kill our NAG by simple passing 0xFF as �th argument to
MessageBoxA.

��

Great we have � addresses:

1. 004063BFh where we will store our int3h prior to resuming primary thread
2. 0040104Ah where we will store our patch (0FFh)

I’ve shown you how to store 1st int 3h in target process using PDE/PTE reloading.
Now is time for my simple int �h handler:

Don’t be confused by it’s size, there is some prolog and epilog code and it is
very simple:

initint and restoreint are just macros to make code smaller, all they do is
save all registers on stack, and load fs with 30h so it will point to KPCR.

<++>
myint3h: initint

 mov eax, cr3
 cmp eax, c_cr3 ;first we check if this is
 jne __passdown ;our process
 mov eax, [esp.int_eip] ;then we take saved EIP from
 dec eax ;stack and compare it with our
 cmp eax, insertint3h ;int3h
 jne __passdown
 mov eax, patchme ;now we are checking if page
 shr eax, 22 ;is present in physical memory
 test dword ptr[eax*4+0C0300000h], 1 ;is PTE present?
 jz __passdown
 mov eax, patchme
 shr eax, 12
 test dword ptr[eax*4+0C0000000h], 1 ;is page present
 jz __passdown
 mov eax, cr0
 and eax, 0FFFEFFFFh
 mov cr0, eax
 mov eax, patchme
 mov byte ptr[eax], 0ffh ;write our patch
 mov eax, cr0
 or eax, 10000h
 mov cr0, eax
 mov [esp.int_eip], 401000h ;and simple redirect eip
 ;to oep
 restoreint ;restore registers
 iretd ;return from interrupt

__passdown: restoreint
 jmp cs:[oldint3h]

insertint3h equ 004063BFh
patchme equ 0040104Ah

<++>

48

If you run loader.exe you will see that NAG is killed, but if you run crackme.exe
w/o loader then it will crash:

001B:004063B0 JNZ 004063BA
001B:004063B2 MOV EAX,00000001
001B:004063B7 RET 000C
001B:004063BA PUSH 00401000
001B:004063BF INT 3
001B:004063C0 MOV EAX,[EBP+00000426]
001B:004063C6 LEA ECX,[EBP+0000043B]
001B:004063CC PUSH ECX

If you take a look at 00�0��BFh, you will see that int �h is still there!?
Why? simple, to speedup loading of process from disc, process is being
loaded from cache, so to eliminate this int �h simpply recompile your
code, flush cache or edit instruction manually :D

Well that’s it...

4. Conclusion

Hmmm Conclusion? Can you write faster debug loader? I don’t think so :D

Greetzing: to all my mates in ARTeam, 29a for great e-zine, havok, Papillion
and all great coders out there...

 S verom u Boga, deroko/ARTeam

5. References

[1] Microsoft® Windows® Internals - Mark E. Russinovich, David A. Solomon
[2] Undocumented Windows 2000 Secrets - Sven B. Schreiber
[3] Playing with Windows /dev/(k)mem - crazylord, Phrack 59
[4] Raising The Bar For Windows Rootkit Detection - Sherri Sparks,
 Jamie Butler
 Phrack ��

This article includes supplemental sources and files. They have been included with the ezine
archive and can be found in the Supplements folder. Within the Supplements folder you will find
a folder for each article that contains sources and files.

49

6. Appendix

kd> !process 398�
Searching for Process with Cid == 398�
PROCESS 81ca8bf8 SessionId: 0 Cid: 0398 Peb: 7ffda000 ParentCid: 0f84
 DirBase: 07dd1000 ObjectTable: 00000000 HandleCount: <Data Not Accessible>

 Image: crackme.EXE
 VadRoot 00000000 Vads 0 Clone 0 Private 0. Modified 10. Locked 0.
 DeviceMap e26c3c40
 Token e2d9d900
 ElapsedTime 0:04:21.0046
 UserTime 0:00:00.0031
 KernelTime 0:00:00.0000
 QuotaPoolUsage[PagedPool] 0
 QuotaPoolUsage[NonPagedPool] 0
 Working Set Sizes (now,min,max) (4, 50, 345) (16KB, 200KB, 138�0KB)
 PeakWorkingSetSize 528�
 VirtualSize 13 Mb
 PeakVirtualSize 17 Mb
 PageFaultCount 613
 MemoryPriority BACKGROUND
 BasePriority 8�
 CommitCharge 0

kd> dt nt!_EPROCESS 8�1ca8�bf8�
 +0x000 Pcb : _KPROCESS
 +0x06c ProcessLock : _EX_PUSH_LOCK
 +0x070 CreateTime : _LARGE_INTEGER 0x1c6512f`7ff0ca7c
 +0x078 ExitTime : _LARGE_INTEGER 0x1c6512f`82093b96
 +0x08�0 RundownProtect : _EX_RUNDOWN_REF
 +0x08�4 UniqueProcessId : 0x00000398�
 +0x08�8� ActiveProcessLinks : _LIST_ENTRY [0x8�1ccee28� - 0x8�1cd9428�]
 +0x090 QuotaUsage : [3] 0
 +0x09c QuotaPeak : [3] 0x6b8�
 +0x0a8� CommitCharge : 0
 +0x0ac PeakVirtualSize : 0x114e000
 +0x0b0 VirtualSize : 0xd18�000
 +0x0b4 SessionProcessLinks : _LIST_ENTRY [0xf8�a55014 - 0x8�1cd9454]
 +0x0bc DebugPort : (null)
 +0x0c0 ExceptionPort : 0xe15c51e0
 +0x0c4 ObjectTable : (null)
 +0x0c8� Token : _EX_FAST_REF
 +0x0cc WorkingSetLock : _FAST_MUTEX
 +0x0ec WorkingSetPage : 0x1fd36
 +0x0f0 AddressCreationLock : _FAST_MUTEX
 +0x110 HyperSpaceLock : 0
 +0x114 ForkInProgress : (null)
 +0x118� HardwareTrigger : 0
 +0x11c VadRoot : (null)
 +0x120 VadHint : (null)
 +0x124 CloneRoot : (null)
 +0x128 NumberOfPrivatePages : 0
 +0x12c NumberOfLockedPages : 0
 +0x130 Win32Process : (null)
 +0x134 Job : (null)
 +0x134 Job : (null)
 +0x138 SectionObject : (null)
 +0x13c SectionBaseAddress : 0x00400000
 +0x140 QuotaBlock : 0x8�1ba07b8�

�0

 +0x144 WorkingSetWatch : (null)
 +0x148� Win32WindowStation : 0x00000028�
 +0x14c InheritedFromUniqueProcessId : 0x00000f8�4
 +0x150 LdtInformation : (null)
 +0x154 VadFreeHint : (null)
 +0x158 VdmObjects : (null)
 +0x15c DeviceMap : 0xe26c3c40
 +0x160 PhysicalVadList : _LIST_ENTRY [0x8�1ca8�d58� - 0x8�1ca8�d58�]
 +0x168� PageDirectoryPte : _HARDWARE_PTE
 +0x168 Filler : 0
 +0x170 Session : 0xf8a55000
 +0x174 ImageFileName : [16] “crackme.exe”
 +0x18�4 JobLinks : _LIST_ENTRY [0x0 - 0x0]
 +0x18�c LockedPagesList : (null)
 +0x190 ThreadListHead : _LIST_ENTRY [0x8�1ca8�d8�8� - 0x8�1ca8�d8�8�]
 +0x198� SecurityPort : (null)
 +0x19c PaeTop : (null)
 +0x1a0 ActiveThreads : 0
 +0x1a4 GrantedAccess : 0x1f0fff
 +0x1a8 DefaultHardErrorProcessing : 1
 +0x1ac LastThreadExitStatus : 0
 +0x1b0 Peb : 0x7ffda000
 +0x1b4 PrefetchTrace : _EX_FAST_REF
 +0x1b8 ReadOperationCount : _LARGE_INTEGER 0x0
 +0x1c0 WriteOperationCount : _LARGE_INTEGER 0x0
 +0x1c8� OtherOperationCount : _LARGE_INTEGER 0x3c
 +0x1d0 ReadTransferCount : _LARGE_INTEGER 0x0
 +0x1d8 WriteTransferCount : _LARGE_INTEGER 0x0
 +0x1e0 OtherTransferCount : _LARGE_INTEGER 0x54
 +0x1e8� CommitChargeLimit : 0
 +0x1ec CommitChargePeak : 0x5f
 +0x1f0 AweInfo : (null)
 +0x1f4 SeAuditProcessCreationInfo : _SE_AUDIT_PROCESS_CREATION_INFO
 +0x1f8� Vm : _MMSUPPORT
 +0x238 LastFaultCount : 0
 +0x23c ModifiedPageCount : 0xa
 +0x240 NumberOfVads : 0
 +0x244 JobStatus : 0
 +0x248 Flags : 0xc082c
 +0x248� CreateReported : 0y0
 +0x248� NoDebugInherit : 0y0
 +0x248� ProcessExiting : 0y1
 +0x248� ProcessDelete : 0y1
 +0x248� Wow64SplitPages : 0y0
 +0x248� VmDeleted : 0y1
 +0x248� OutswapEnabled : 0y0
 +0x248� Outswapped : 0y0
 +0x248� ForkFailed : 0y0
 +0x248� HasPhysicalVad : 0y0
 +0x248� AddressSpaceInitialized : 0y10
 +0x248� SetTimerResolution : 0y0
 +0x248� BreakOnTermination : 0y0
 +0x248� SessionCreationUnderway : 0y0
 +0x248� WriteWatch : 0y0
 +0x248� ProcessInSession : 0y0
 +0x248� OverrideAddressSpace : 0y0
 +0x248� HasAddressSpace : 0y1
 +0x248� LaunchPrefetched : 0y1
 +0x248� InjectInpageErrors : 0y0
 +0x248� VmTopDown : 0y0

51

 +0x248� Unused3 : 0y0
 +0x248� Unused4 : 0y0
 +0x248� VdmAllowed : 0y0
 +0x248� Unused : 0y00000 (0)
 +0x248� Unused1 : 0y0
 +0x248� Unused2 : 0y0
 +0x24c ExitStatus : 0
 +0x250 NextPageColor : 0x81d9
 +0x252 SubSystemMinorVersion : 0xa ‘’
 +0x253 SubSystemMajorVersion : 0x3 ‘’
 +0x252 SubSystemVersion : 0x30a
 +0x254 PriorityClass : 0x2 ‘’
 +0x255 WorkingSetAcquiredUnsafe : 0 ‘’
 +0x258� Cookie : 0x5dcad19b
kd> dt nt!_OBJECT_HEADER 8�1ca8�bf8�-18�
 +0x000 PointerCount : 1
 +0x004 HandleCount : 0
 +0x004 NextToFree : (null)
 +0x008� Type : 0x8�1fcaca0
 +0x00c NameInfoOffset : 0 ‘’
 +0x00d HandleInfoOffset : 0 ‘’
 +0x00e QuotaInfoOffset : 0 ‘’
 +0x00f Flags : 0x20 ‘ ‘
 +0x010 ObjectCreateInfo : 0x81ba07b8
 +0x010 QuotaBlockCharged : 0x8�1ba07b8�
 +0x014 SecurityDescriptor : 0xe1dfe65d
 +0x018� Body : _QUAD
kd> dt nt!_OBJECT_TYPE 8�1fcaca0
 +0x000 Mutex : _ERESOURCE
 +0x038� TypeList : _LIST_ENTRY [0x8�1fcacd8� - 0x8�1fcacd8�]
 +0x040 Name : _UNICODE_STRING “Process”
 +0x048 DefaultObject : (null)
 +0x04c Index : 5
 +0x050 TotalNumberOfObjects : 0x2c
 +0x054 TotalNumberOfHandles : 0x98
 +0x058� HighWaterNumberOfObjects : 0x2e
 +0x05c HighWaterNumberOfHandles : 0x9e
 +0x060 TypeInfo : _OBJECT_TYPE_INITIALIZER
 +0x0ac Key : 0x636f7250
 +0x0b0 ObjectLocks : [4] _ERESOURCE
kd>

��

1. Tools You Need to Begin
�. Introduction
�. Examining the Target
4. Analyzing the Communication
5. Reversing the CRC
6. Exploiting TeamSpeak Protocol
7. Conclusion

1. Tools You Need to Begin:

Target and Tools for Analyzing the Protocol:
TeamSpeak Client
http://goteamspeak.com/index.php?page=downloads
PeiD
http://www.secretashell.com/codomain/peid/download.html
Ollydbg
http://www.ollydbg.de/download.htm
WPE Pro
http://pimpsofpain.com/wpe.zip (some anti-virus detect this as a “hack-tool”)

Resources for Building an Application to Exploit Protocol:
C# Express 2005 Edition
http://go.microsoft.com/fwlink/?LinkId=51411&clcid=0x409
.NET Framework �.0
http://www.microsoft.com/downloads/details.aspx?FamilyID=0856EACB-4362-4B0D-8EDD-AAB15C5E04F
�&displaylang=en

2. Introduction:

In this article I am going to cover how to capture and reverse-engineer a closed-source protocol. I will then show
you how to exploit that protocol in the form of a brute forcing program. The analysis of a protocol is becoming
more and more important as software becomes more “online” aware. There are more key checks that occur
over the internet and there is often communication between client software with the owners server. As reverse-
engineers we need to be able to understand what is happening when our software accesses the Internet. We can
then figure out how to modify or exploit such communications.

Our target in this article is TeamSpeak. TeamSpeak is a closed-source voice-chat client/server combo that uses
the UDP protocol for transfer of data between the server and client. We will capture and analyze the UDP packets
so we can figure out how this program communicates with a server. We can then build a program to mimic the
TeamSpeak protocol.

Breaking PRotocol
Reversing and Exploiting Client Side Communications

-jAgx

http://goteamspeak.com/index.php?page=downloads
http://www.secretashell.com/codomain/peid/download.html
http://www.ollydbg.de/download.htm
http://pimpsofpain.com/wpe.zip
http://go.microsoft.com/fwlink/?LinkId=51411&clcid=0x409
http://www.microsoft.com/downloads/details.aspx?FamilyID=0856EACB-4362-4B0D-8EDD-AAB15C5E04F5&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=0856EACB-4362-4B0D-8EDD-AAB15C5E04F5&displaylang=en

��

3. Examining the Target:

Firstly, we examine the target using PEiD. (Portable Executable Identifier)

A very good feature of PEiD is its Krypto Analyzer plugin, KANAL.
This plugin can shed some light on if TeamSpeak’s protocol is encrypted.

PEiD detects no encryptions - just BASE64 and CRC32 routines, lucky for us

Base64 is used to convert binary data to an ASCII string, usually with characters only in the range of A-Z, a-z, and
0-9. The resulting string is usually about 33% bigger than the binary input so base64 is rarely used on any good
protocols. Some email programs use it to encode their attachments though.

CRC stands for cyclic redundancy check. It’s a type of hash function that is used for, guess what? Internet Traffic!
The CRC32 hash function takes binary input and returns a hash of 32 bits or 4 bytes. It’s used on internet traffic
to verify the integrity of data.
A simple example is a program sending a packet out consisting of a 4 byte CRC hash followed by the data that
was hashed. When the server receives the packet, it can hash the data (5th byte to the end) and compare it to the
hash (1st - �th bytes of the packet) which reveals whether the data was received only partially or became corrupted
on the way. The TCP protocol already is very reliable so crc32 is rarely used for it…but the UDP protocol isn’t,
and guess what? TeamSpeak uses the UDP protocol for data transfer between the client and server.

��

If we didn’t have KANAL, we would have to search for signature byte patterns of common encryption and hash
functions.
For example, the crc�� hash function uses a lookup array that starts off with these elements:
0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA

To find the crc32 routines in an application, we would start it up with olly, and then search (Search For- Constant)
for one of the signature constants (0x77073096 perhaps).
After we find the address of the signature constant, we backtrack (minus some bytes) to get the address of the start
of the lookup table.
Then, we can use Olly’s constant search again to search for references to our lookup table.
Those references would be located within the crc�� procedures.

4. Analyzing the Communication

��

Our packet sniffer comes into use now. We open up TeamSpeak and add a random server to our address book
- make sure the server isn’t password protected and make sure it has some people in it.

After adding it to our address book, we need to go to the address book and select the server. We will need a
nickname, you can just enter something like “Testing123”. The rest of the information can be left alone.

Now we will attach WPE Pro to TeamSpeak

Start sniffing , and connect to the server with TeamSpeak.

��

After connecting to the server, we can stop sniffing with wpe, , and view the captured login packet.

Clearly, this packet isn’t encrypted (as foreshadowed earlier by using KANAL)
By using some common sense (well I’d like to think it is) , we can map almost every important part of this packet
down to what it represents.

- Maybe with the 4th byte (0x00) is a CRC?
- Maybe is a CRC?
- This is an easy one - the first part is the length of the client string (TeamSpeak), and the 2nd part is the actual
client string.
- Our operating system - structured in the same way as the previous.
- This one took a bit more thinking. It’s the version of the client (2.0.32.60). Each integer of the version string
is a short stored in little-endian (least-significant bit first.)
- The nickname we chose - structured the same way the client string and OS were.

We login again while sniffing - this time with the nick of “Testing124.” We then might be able to figure out what
the yellow and orange bytes are for.

��

The only thing that has now changed is the orange bytes. We can conclude the orange bytes must be the CRC, and
the yellow bytes are the identifier for a command (LOGIN perhaps?) You may want to run a few more tests like
I did to be sure.

Now, we will login again while sniffing, but this time WITH a test username and pw.
We shade in the bytes that have changed for easy comparison.

- The CRC bytes that changed as they should have.
- We cannot immediately narrow this down, but the fact that it is right before the username and password,
and that it changed from 1 to 2 indicates it might be a byte that tells whether we are logging in registered or
unregistered.
- The username structure.
- The password structure.

Just a note:
We can notice that each string field (Client, OS, Username, Password, and Nick) has 30 bytes for its data:
1 for the length of the sting
29 for the string

If we continue to login unregistered and registered we will see that the byte stays 0x01 for unregistered and 0x02
for registered. So, we were right
0x01 == LOGIN_UNREGISTERED and 0x02 == LOGIN_REGISTERED!

We got almost everything documented. The only thing to do? Figure out what is being inputted for CRC32.

The most common way to CRC a packet (also known as a datagram for UDP) is as follows:
The place where the CRC would be is first written in with something static - for example: 0x00 0x00 0x00 0x00,
or the string “JAGX.” Then the CRC is calculated and the resulting hash is written in, over-writing the static
string.
The server must also know the static string the client used in order to calculate the CRC.

5. Reversing the CRC:

Olly comes into play now. Fire up Olly and debug TeamSpeak from it.
We know TeamSpeak isn’t packed from earlier examination of PEiD; no unpacking is required.
There will be some exceptions; we can just pass those to TeamSpeak’s exception handler by using Shift + F9.
From KANAL, we know the address in TeamSpeak.exe that referenced a crc32 lookup table was 0048A931.

58

At 0048A931 we are in the middle of the procedure…the crc32 procedure in C# would look like this

readonly static uint[] crcLookup = new uint[] {
 0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA,
 0x076DC419, 0x706AF48F, 0xE963A535, 0x9E6495A3,
 0x0EDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988,
 0x09B64C2B, 0x7EB17CBD, 0xE7B82D07, 0x90BF1D91,
 0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE,
 0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7,
 0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC,
 0x14015C4F, 0x63066CD9, 0xFA0F3D63, 0x8D080DF5,
 0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172,
 0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B,
 0x35B5A8FA, 0x42B2986C, 0xDBBBC9D6, 0xACBCF940,
 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59,
 0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116,
 0x21B4F4B5, 0x56B3C423, 0xCFBA9599, 0xB8BDA50F,
 0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924,
 0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D,
 0x76DC4190, 0x01DB7106, 0x98D220BC, 0xEFD5102A,
 0x71B18589, 0x06B6B51F, 0x9FBFE4A5, 0xE8B8D433,
 0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818,
 0x7F6A0DBB, 0x086D3D2D, 0x91646C97, 0xE6635C01,
 0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E,
 0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457,
 0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA, 0xFCB9887C,
 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65,
 0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2,
 0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB,
 0x4369E96A, 0x346ED9FC, 0xAD678846, 0xDA60B8D0,
 0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9,
 0x5005713C, 0x270241AA, 0xBE0B1010, 0xC90C2086,
 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F,
 0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4,
 0x59B33D17, 0x2EB40D81, 0xB7BD5C3B, 0xC0BA6CAD,
 0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A,
 0xEAD54739, 0x9DD277AF, 0x04DB2615, 0x73DC1683,
 0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8,
 0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1,
 0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE,
 0xF762575D, 0x806567CB, 0x196C3671, 0x6E6B06E7,
 0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC,
 0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5,
 0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4, 0x4FDFF252,
 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B,
 0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60,
 0xDF60EFC3, 0xA867DF55, 0x316E8EEF, 0x4669BE79,
 0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236,
 0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F,
 0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04,
 0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D,
 0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A,
 0x9C0906A9, 0xEB0E363F, 0x72076785, 0x05005713,
 0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38,
 0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21,
 0x86D3D2D4, 0xF1D4E242, 0x68DDB3F8, 0x1FDA836E,
 0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777,
 0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C,
 0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45,
 0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2,
 0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB,
 0xAED16A4A, 0xD9D65ADC, 0x40DF0B66, 0x37D83BF0,
 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9,
 0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6,
 0xBAD03605, 0xCDD70693, 0x54DE5729, 0x23D967BF,
 0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94,
 0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D
 };
 public static uint crc32(byte[] by)
 { uint ulCRC = poly;
 for (uint i = 0; i < by.Length; i++)
 {ulCRC = (ulCRC >> 8�) ^ crcLookup[(ulCRC & 0xFF) ^ by[i]]; We are here}
 return (ulCRC ^ poly);
 }

59

As seen from Olly, the procedure begins at 48A904. Let’s set a breakpoint there.

The CRC32 Procedure

Now if we connect, Olly should break and the EAX register should hold the address of the binary input parameter
passed to the CRC32 procedure.

Sure enough, Olly breaks, and if we follow EAX in the dump we see:

Aye, so the place where the crc hash would be is left as � 0x00’s.

Our work is almost done.

We must figure out what kind of responses the server gives back. What is the “BAD LOGIN” response, and what
is the “CORRECT PW” response?

You’ll have to obtain an account at a server to get the sample packets for a correct login.

By doing a couple trials and sniffing the responses the server sends back, it’s easy to see that the 19th byte (byte
right after the CRC - server does a CRC to its own packets too) of the server’s response equals 0x00 when the
password is not correct, and contains the length of the server’s name when the password IS correct.

�0

Bad Login response:

Good Login response:

Alternatively, rather than sniffing, you could use Olly to find references to the “Bad Login (name and/or
password wrong)” string then go from there - see what TeamSpeak looks at in the server’s response to tell if the
login was accepted.

With all this information we received about how the login packet is constructed and how the server responds, we
can build a damned good brute-forcer.

6. Exploiting TeamSpeak Protocol:
The first step in building a brute-forcer is to decide whether the brute-forcer will use systematic bruting, or
dictionary bruting.
Systematic (this involves all POSSIBLE combinations of a type)

example: all 8 character alphanumeric (a-z 0-9) passwords

Dictionary:

example: a list of all words from webster’s abridged dictionary

61

It’s not hard to realize that systematic bruting is only realistic if you are bruting something with tremendous speed
(server on your lan, or a hashed pw on your own computer).

So, our bruter will use dictionary bruting, it will take the path to the dictionary file as one of its command line
parameters.

Next, we will want to write the code to build the “base packet.”
A base packet is necessary for fast bruting - in our case the base packet should have the static data already in it
- the only thing that should be left out is the crc and the password since those will change every time on a new
attempt. Some bad bruters will make a new array every attempt which is slow and inefficient - allocating memory
is time-consuming. Other bad bruters will have a “base packet” but rewrite the static content (command identifier,
os, nick, etc) over and over again though it doesn’t need to be.

If we are making a multi-threaded bruter, each thread should get its own base packet.

Here’s the snippet of code from the src files used to make the base packet with comments about each line:
 packet = new byte[18�0]; Our packet size is 18�0 bytes
 MemoryStream stream = new MemoryStream(packet);
 BinaryWriter writer = new BinaryWriter(stream);
 //C# has no pointers - we use MemoryStream & BinaryWriter to write larger-than-
byte data to the packet
 writer.Write(new byte[]{
 0xF4, 0xBE, 0x03 We write the LOGIN command identifier
 });
 stream.Seek(8�0, SeekOrigin.Begin); goto offset 80
 writer.Write((ulong)0x3C00020000002000); write version
 stream.Seek(90, SeekOrigin.Begin);
 stream.WriteByte(0x02); write registered flag
 stream.WriteByte((byte)user.Length); write user length
 writer.Write(user.ToCharArray()); write user string bytes
 stream.Seek(150, SeekOrigin.Begin); goto offset 150
 stream.WriteByte((byte)nick.Length); write nick length
 writer.Write(nick.ToCharArray()); write nick string bytes

In addition, when we were reversing the login packet we discovered that a string structure had 30 bytes - 1 for its
length - 29 for its data.
This means any passwords from the password list with length greater than 29 should be dismissed.

The code for the TeamSpeak bruter I made in C# .NET (I used C# Express 2005 - it’s free) is in the src folder that
you should have received with this article
On some servers I get over 500 tries per second - UDP is fast! (http://en.wikipedia.org/wiki/User_Datagram_
Protocol)

7. Conclusion:
Knowing how to reverse a protocol can be very useful whether you want to patch an online check or get the
password of someone’s X account. It can also provide an alternate way of cracking a prog: Instead of patching a
program that implements an online check, you can write a loader that hooks onto the winsock api to modify the
data the program receives from the server. This may result in a bad serial being accepted as a good serial.

You should now know:
- A protocol usually has an identifier for every type of action.
- The identifier is almost always the first few bytes of the packet.

http://en.wikipedia.org/wiki/User_Datagram_Protocol
http://en.wikipedia.org/wiki/User_Datagram_Protocol

��

- If the lower-level protocol used is UDP, the protocol most likely implements a checksum of sorts such as the
CRC32.
- A secure protocol should have flood protection and SHOULD be encrypted by server-client key exchange.
- TeamSpeak’s protocol is shit - reason being: we can write a bruter that is extremely fast and never gets banned
for sending too many requests.

Be sure to checkout my AIM/AOL screenname bruter:
http://pop.pimpsofpain.com/showthread.php?t=5603&page=1&pp=10
and the included C# Project, UnTeamSpeak, a TeamSpeak bot that supports a variety of functions.

*Stay tuned for my next article in the ARTeam ezine which will feature an article on Reversing Gunbound’s login
protocol. Gunbound is a closed-source game that uses an encrypted protocol.

This article includes supplemental sources and files. They have been included with the ezine
archive and can be found in the Supplements folder. Within the Supplements folder you will find
a folder for each article that contains sources and files.

http://pop.pimpsofpain.com/showthread.php?t=5603&page=1&pp=10

��

ArtEAm	EZinE	#2	cAll	For	pApErs

ARTeam members are asking for your article submissions on subjects related Reverse-Engineering.

We wanted to provide the community with somewhere to distribute interesting, sometimes random, reversing
information. Not everyone likes to write tutorials, and not everyone feels that the information they have is enough
to constitute a publication of any sort. I’m sure all of us have hit upon something interesting while coding/revers-
ing and have wanted to share it but didn’t know exactly how. Or if you have cracked some interesting protection
but didn’t feel like writing a whole step by step tutorial, you can share the basic steps and theory here. If you have
an idea for an article, or just something fascinating you want to share, let us know.

Examples of articles are a new way to detect a debugger, or a new way to defeat a debugger detection. Or how to
defeat an interesting crackme. The ezine is more about sharing knowledge, as opposed to teaching. So the articles
can be more generic in nature. You don’t have to walk a user through step by step. Instead you can share informa-
tion from simple theory all the way to “sources included”

What we are looking for in an article submission:
1. Clear thought out article. We are asking you to take pride in what you submit.
2. It doesn’t have to be very long. A few paragraphs is fine, but it needs to make sense.
3. Any format is fine.
4. If you include pictures please center them in the article. If possible please add a number and label below each
image.
5. If you include code snippets inside a document other than .txt please use a monospace font to allow for better
formatting
6. Anonymous articles are fine. But you must have written it. No plagiarism!
7. Any other questions you may have feel free to ask

We are accepting articles from anyone wanting to contribute. That means you. We want to make the ezine more
of a community project than a team release. If your article is not used, its not because we don’t like it. It may just
need some work. We will work with you to help develop your article if it needs it.

Questions or Comments please visit http://forum.accessroot.com

http://forum.accessroot.com

	ARTeam eZine #1
	Table of Contents
	Opening Thoughts
	Interview
	Unpacking Asprotect v2.1 SKE with Advanced Import Protection
	Demystifying TLS Callback
	Armadillo Developer's Interview
	Improving StraceNT: Adding Anti-Debugging Functionality
	Reversing Switches
	Quickly Remove a Nag
	Developing a Ring0 Loader
	Breaking Protocol: Reversing and Exploiting Client Side Communications

