CrapKey…oops!…Crypkey …easy way to trash 1000$

“The story begins in the early days of Earth when a fragile balance of peace exists between all ancient races. The introduction of Humans into this utopian world marks the beginning of violent and bloody times…”

I’m not crazy…I’m just playing a marvellous strategic game, ‘ Age of Wonders’, meanwhile I write this tut. I suggest at crypkey coders to buy this game…realy cool piece of software…nice graphic…great AI…superb animation…and COST ONLY 29$ ((
After few words for our Crypkey friends, better if we see some code…unfortunately crappy code but we can’t ask always all from the life (. Well find something to reverse in this protection is quite hard because how we’ll see 5 minutes are enough to remove all. BUT and I repeat BUT…we are reverser and not stupid crackers (I think () and for this we use a program protected with this software protection to reverse the main encryption algorithm, and show how easy is coding a decrypter for all poor exe wrapped with this shit!

How always …dear reader…if you are only interested to change a jump in the code without learn something…well…this tut is not for you…and you can click on the ‘X’ in the upper right corner of this windows.

OK…the first target…direction… http://hsquare.com/ program… Engrave98 …for details read the web page!

Tools used: Sice 4.xx

 Hiew6.xx

 Procdump 1.xx

First as always a quick look with Hiew…to see in which way crypkey ‘shakes’ the PE file.

Vsize

Vaddress
Rsize

Raddress
Flag

.text 0007E5EB 00001000 0007F000 00001000 E0000020

.rdata 000198B2 00080000 0001A200 00080000 C0000040

.data 0000B5E8 0009A000 00005000 0009A000 C0000040

.rsrc 0003DA88 000A6000 0003E000 0009F000 40000040

Hi, mom! 00003000 000E4000 00003000 000DD000 E0000020

EntryPoint 000E683E

Import 00096E88 size 118

IAT 00080000 size 7F4

Humm…a part the funny name of the last section….we know that crypkey append a new section at the end …to perform all dirty work…of decription…

The interesting thing is the IAT…how we can see the Import Address Table is in the .rdata section and if we give a quick look at this section we see all FirstTHUNK_DATA array clean….the .rdata section is not crypted…he! He! The IAT is saved.

A second interesting thing (for us () is the array of IMAGE_IMPORT_DESCRIPTOR structures…how we can see it’s in the original place (.rdata section) but the original array is been replaced with the crypkey IMAGE_IMPORT_DESCRIPTOR, for Kernel32.dll and just after with a mini IAT to import GetModuleHandle and GetProcAddress from this dll. We can see here in details with the help of Hview :

00496E80 FFFF FFFF D8F5 4700 B06E 0900 0000 0000 G..n......

00496E90 0000 0000 C86E 0900 BC6E 0900 0000 0000 n...n......

00096EA0 0000 0000 0000 0000 0000 0000 0000 0000

00096EB0 D66E 0900 E86E 0900 0000 0000 D66E 0900 .n...n.......n..

00096EC0 E86E 0900 0000 0000 4B45 524E 454C 3332 .n......KERNEL32

00096ED0 2E64 6C6C 0000 0000 4765 7450 726F 6341 .dll....GetProcA

00096EE0 6464 7265 7373 0000 0000 4765 744D 6F64 ddress....GetMod

00096EF0 756C 6548 616E 646C 6541 0000 0000 0000 uleHandleA......

00096F00 0000 0000 0000 0000 0000 0000 0000 0000

00096F10 0000 0000 0000 0000 0000 0000 0000 0000

00096F20 0000 0000 0000 0000 0000 0000 0000 0000

00096F30 0000 0000 0000 0000 0000 0000 0000 0000

00096F40 0000 0000 0000 0000 0000 0000 0000 0000

00096F50 0000 0000 0000 0000 0000 0000 0000 0000

00096F60 0000 0000 0000 0000 0000 0000 0000 0000

00096F70 0000 0000 0000 0000 0000 0000 0000 0000

00096F80 0000 0000 0000 0000 2C04 0800 0000 0000 ,.......

00096F90 0000 0000 0000 0000 0000 0000 0000 0000

 Place of the Original IMAGE_IMPORT_DESCRIPTOR structure replaced

 New little IMAGE_IMPORT_DESCRIPTOR structure, imports only 2 func from Kernel32

 New little IAT for GetProcAddress and GetModuleHandle

After this in the file we have our original FirstTHUNK_DATA array …untouched.

OK…now give a quick look at the loader with Hview…what we have is….a little part at the start of the section to store unique infos for this program…after we have very few line of code….and same strings that says to us…that the core of the protection is stored in:

Crypt95d.dll

Cki32f.dll

The loader loads in memory the two dll, and then calls the functions to check license and to decrypt the program. Well enough to see some code with Sice…lets go!

The loader start to calculates the famous Delta offset (the address where it starts …) then decrypts a part of iteself with a simple xoring operation…at this point the real code is revealed (


‘…the Humans declared war upon the Northen Kingdom, and together with their allies, they stroke against many of the Kingdom’s most precioius holdings, including Inioch’s Court…’



The first important thing now for the loader is retrieve the address of the LoadLibraryA api function…to load in memory the two dll….and in fact with GetModuleHandle retrieve the Imagebase of the kernel32.dll and then with GetProcAddress, the address of LoadLibraryA….in the same way retrieves the address for the GetVersion function…and for Win9x finally loads in memory the first dll (crypt95d.dll)

:004E68C1
push dword ptr [ebx]

call kernel32!GetProcAddress

call eax

call GetVersion api

test eax, 80000000

test the windows version

jz 004E68EB

win9x don’t jump

pop ebx

push ebx

sub ebx, 00000BC9

push ebx

pointer to cryp95d.dll name

add ebx, 00000B8D

call [ebx]

call LoadLibrary api to load cryp95d.dll

… … …

OK…we can go over now…same situation for the second dll…with some GetmoduleHandle like intermezzo to give at the dll an idea where the exe to decrypt is mapped (crapkey protects dll too…they are mapped with different Imagebase) (

jz 004E69C4

pop ebx

push ebx

sub ebx, 56

push ebx

pointer to cki32f.dll name

add ebx, 1A

call [ebx]

call LoadLibrary api to load cki32f.dll

Now again with GetProcAddress function, the loader retrieves the address of one function inside crypt95d.dll and one inside cki32f.dll…and then calls the first….

:004E6957
push ebx

mov edx, ebx

sub ebx, 0000283E

mov ecx, [ebx]

sub edx, ecx

push edx

sub ebx, FFFFD890

push dword ptr [ebx]

sub ebx, 00002770

push ebx

add ebx, 000027CF

push dword ptr [ebx]

call eax

call a function inside crypt95d.dll to check the license

For now we don’t step in this call…but we take this like a ‘closedbox’ , the function shows the nag with the days left in our trial period….

Now after the call return if we check the IAT in memory, with a d 00480000, we see that it isn’t patched yet….and probably the code is still crypted…but for this we aren’t sure…why ?? well read on and you understand (
Step until the call inside the cki32f.dll, like before…for now we take this function like a closedbox, after the call we have the IAT patched and the exe decrypted….This time we are sure because after few lines we encounter the end of the loader:

:004E69A9 call ecx ; call inside cki32f.dll to decrypt the exe

 pop ebx ; delta offset

 mov eax, ebx

 sub ebx, 0000283E ; ebx = offset in the loader with a Magic value

 mov ecx, [ebx] ; ecx = Magic value

 sub eax, ecx ; delta offset – Magic value = Original EntryPoint

 jmp eax ; jmp in to paradise

Well just like always in these cases….replace the jmp eax with a jmp $ to put in a loop the proggie and fireup procdump….and we dump all process…then we replace the EntryPoint with the Original…job done! Bye Bye CrypKey….stop the cronometre…5 mins and 10 secs….10secs because I’ve lost my shortcut at procdump (

‘…Humans began to conquer the lands surrounding the Valley of Wonders. Each race braces for inexorable Human expansion, while eyeing each other’s holdings with the hope of gaining some advantage…’


Now with the Eng98.exe original and unprotected…we have two choices…one….say thanks at friends and bye at the parents and close here this tutorial….second….try to see if there is something of more interesting under this shit….humm…..

Well if you’ve choosen the second option…go head reading this paper…..

With Hview we compare now the two version of the exe…protected and dumped, to find more details.

The first thing that we can see is the Original IMAGE_IMPORT_DESCRIPTOR structure in the original position…second things is the encryption of the code section, it begins at the original entrypoint and encrypts a WORD yes and a WORD no… funny (… later we’ll see the reason…

No encryption in data section and resource section…. I suppose this: sometimes in the code sec…there are some others informations not stored in a single section….like tls , iat , etc….the cryptkey coders…to make their life easy…encrypt the code section at real start of the code (original Entrypoint)…but not the entire code section…this avoid the problem to write code in the loader or in the dlls to take care at the startup of the eventualy infos inside the code section….I suggest at the crypkey coders to learn something more from Pietriek ‘Guru’ (.

Anyway….now It’s time to reverse…and I’m really curious to see this 1000$ encryption alghoritm.

First…we can set a bpm on the Original entrypoint

Bpm 0044072E now we can know where and when the protection starts the decryption process

…Yuppi!!….after the nag (that check our license…and the number of days left) Sice breaks here in the cki32f.dll (obvious () :

:000D68478 mov ecx, [00D86E6C] ecx = OEP addr where to start the decryption

 mov eax, [esp+2C] [esp+2C] = eax = counter

 mov edx, [eax+ecx] edx = 4byte of the program to decrypt

 mov [esp+30], edx move 4 byte to decrypt on the stack [esp+30]

 mov cx, [esp+28] [esp+28] = cx = Seed (we’ll see where this is calculated)

 push ecx

 call 00D67AB4 from the seed, the call calculates 4byte key

 pop ecx

 xor [esp+30], eax eax (4byte key) XOR [esp+30] (4byte of crypted prog)

 mov eax, [00D86E6C] eax = OEP = addr where to start the decryption

 add eax, [esp+2C] add the counter

 mov edx, [esp+30] edx = 4byte of the prog decrypted

 mov [esp+38], edx save on the stack the 4byte decrypted [esp+38]

 mov ecx, [esp+34] ecx = addr in prog where to replace with 4byte decrypted

 mov eax, [esp+38] eax = 4byte decrypted

 mov [ecx], eax replace 4byte crypted the 4 byte decrypted in the prog

 add dword ptr [esp+2C],4 inc the counter of 4, next 4byte to decrpt

 mov edx, [00D86968] edx = 00EC25F8

 mov ecx, [edx+00000295] ecx = 004E4000 start addr of ‘Hi,mom’ section in exe

 mov eax, [ecx+0000173A] eax = 000003E8 = size to decrypt

 cmp eax, [esp+2c]

 jg 00D68478 Decrypted all byte ? if no restart the loop


‘…the Humans expanded their influence, pushing the Azracs from the southern and eastern sides of the Valley. After a great battle, they captured the Ashen Steppe…’


The main decryption alghoritm is revealed…nothing of interesting….nothing of new….and no funny…humm…but I’m a curious guy and I want to know exactly why CryKey encrypts 2 bytes yes and 2 byte no of the exe…he! he!.

OK…we have seen that the encryption algo uses a seed…to calculate a 4byte key to decrypt 4byte of the program…everytime that 4 byte are decrypted, the seed is updated. In this way every 4 byte to decrypt are decrypted with a 4byte key generated from the previous seed…

To calculate a 4byte key from the seed and updated the seed itself….there is the call 00D67AB4…

Let’s go to see the code inside this call:

:00D67AB4 push ebp

 mov ebp, esp

 add esp, -08

 mov eax, [00D86E68] eax = Seed2

 xor edx, edx

 push ebx

 mov [ebp-08], eax [ebp-08] = Seed2

 mov [ebp-04], edx [ebp-04] = counter

 movzx eax, dword ptr [ebp+8] eax = Seed

 imul dword ptr [ebp+08] eax = Magic = Seed * Seed2

 add eax, 0000DDAB Magic = Magic + 0000DDAB

 xor edx, edx

 mov ecx, 00003FFD ecx = 00003FFD

 mov ebx, 00003FF1 ebx = 00003FF1

 div ecx eax = Magic = Magic / 00003FFD (edx = remainder1)

 imul eax, [ebp-8],03C78CDE eax = Magic = Magic * Seed2 * 03C78CDE

 mov ecx, edx ecx = remainder1

 xor edx, edx

 add eax, 004136AA eax = Magic = Magic + 004136AA

 div ebx eax = Magic = Magic / 00003FF1 (edx = remainder2)

 add ecx, edx ecx = remainder1 + remainder2 = MagicRemainder

 mov [ebp-08], ecx [ebp-08] = MagicRemainder

 inc dword ptr [ebp-04] inc counter

 cmp dword ptr [ebp-04], 0B counter = 0B ? if no repeat the loop

 jl 00D67AC8

 mov eax, [ebp-08] eax = MagicRemainder

 mov [00D86E68], eax update Seed2

 mov eax, [ebp-08] eax = MagicRemainder (optmized code! ()

 pop ebx

 pop ecx

 pop ecx

 pop ebp

 ret after that the function return, eax = MagicRemainder = 4byte key…used to decrypt the 4byte of the program…

HAAA!! Now we know why crypkey encrypts 2 byte yes and 2 byte no….he he…how we can see the 4byte key is the MagicRemainder….and is always 0000xxxx with the 2 high bytes 0…in the Xor operation the 2 bytes xored with 0000 remain untouched….

Well…now remain only two questions….where the original Seed is stored ?….and where the original Seed2 is stored ?….well wait….one question for time (
Where the original Seed is stored….hummm….we know that the decryption algo retrieves this from the stack [esp-28]….we can set a bpm on this location to see when the dll write the seed on the stack…but if we look some lines before the main decryption algo….we find this….

:00D68410 push 28

 lea ecx, [esp+000000C8]

 push ecx

 mov eax, [esp+1C]

 push eax

 call kernel32!_hread read 28h bytes from a file

 mov edx, [esp+000000D8]

 mov [esp+20], edx

 mov ecx, [esp+000000D4]

 mov [esp+24], ecx

 mov eax, [esp+24]

 push eax

 push 00

 mov edx, [esp+28]

 push edx

 mov ecx, [esp+20]

 push ecx

 call 00D679F4 this call calculates Seed and Seed2

 add esp, 10

 mov [esp+28], ax ax = Seed , saved in [esp+28]

 movzx eax, word ptr [esp+10] ax = Seed2

 mov [00D86E68], eax Seed2 saved in [00D86E68]

 … … …

Before to explain in details what happen here….I want to suggest at the crypkey coder that has decided to rename the last section (loader) appended at the exe in ‘Hi, mom!’ , that better is if the next time he gives a call at his mom to say ‘Hi!’….he! he! why ??? read on…

With a quick look at the code above we see that the Seed is the result of a calculation on some data read from a file…which file ??

Well the first thing that I have though was been…_hread reads the 28 byte…with the handle 00000020h (this could be different from yours) …good!….a conditional bpx on _lopen is the right way to find the name of the file…

After few seconds I had the name in my hands (…jsm51161.tbl …in windows\system…..a quick check on the size….and…shit!!…only 2bytes!!! …the code reads 28h byte….what is it mean ??? …a dynamic file ??….Uhmm….to complex for these guys….

After about 40 mins….of playing with tbl , key , rst etc files… I have realized that I was tired…my brain wasn’t able to understand the difference between a PC and a toaster (…..It was time to go to sleep!

…8 hours later…. (
OK…wrong approch…he! he! happen (…the good way here is to look at the 28h byte read…because the answer is hidden here…

000002A0 4869 2C20 6D6F 6D21 0030 0000 0040 0E00 Hi, mom!.0...@..

000002B0 0030 0000 00D0 0D00 2CFE 6501 38FB 6501 .0......,.e.8.e.

000002C0 1C1F 4100 2000 00E0 ..A. ...

Well…to be honest my brain was very saturated….because 28h = 40d …and probably means nothing at someone but for a reverser like me that like play with the PE file….this value means….size of the section header in the Pe header. To confirm this we have the ‘Hi, mom!’ section name…

The program opens itself….reads the last header section (Loader) to retrieve the Rawoffset and the Rawsize of the section…then with _llseek api it can go directly at the start of the loader section.

Yeahh!!!…now we can trace some code with more informations…and how we’ll see this code is not difficult to understand….ok don’t waste time…GO!

:00D683DD push 02

read 2 byte in the PE header (number of sections)

lea eax, [esp+000000C8]

buffer to store the byte read

push eax

mov edx, [esp+1C]

file handle (Eng98.exe)

push edx

call kernel32! _hread

read

movzx ecx, word ptr [esp+000000C4] cx = 2byte read = 0005 = Num sections

dec ecx

ecx = 4

mov [esp+1C], ecx

save in [esp+1C]

push 00

mov eax, [esp+20]

eax = Num sec – 1 = 4

shl eax, 03

lea eax, [eax*4+eax]

calculate the num of bytes to move the pointer

add eax, [esp+1C]

at the start of the section header for last section

add eax, 000000F8

push eax

mov edx, [esp+1C]

push edx

call kernel32! _llseek

move the pointer in the file

push 28

read 28h bytes

lea ecx, [esp+000000C8]

buffer to store the byte read

push ecx

mov eax, [esp+1C]

file handle

push eax

call kernel32!_hread
read 28h bytes

mov edx, [esp+000000D8]

edx = Rawoffset last section (loader)

mov [esp+20], edx

save in [esp+20]

mov ecx, [esp+000000D4]

ecx = Rawsize last section (loader)

mov [esp+24], ecx

save in [esp+24]

mov eax, [esp+24]

eax = Rawsize …optmized code! (

push eax

pushed like parametre for the next call

push 00

mov edx, [esp+28]

edx = Rawoffset

push edx

pushed like parametre for the next call

mov ecx, [esp+20]

file handle (Eng98.exe)

push ecx

pushed like parametre for the next call

call 00D679F4
this call calculates Seed and Seed2

add esp, 10

mov [esp+28], ax
ax = Seed , saved in [esp+28]

movzx eax, word ptr [esp+10]
ax = Seed2

mov [00D86E68], eax
Seed2 saved in [00D86E68]

… … …

The reason to use the loader to generate the Seed is obviously…the necessity to have a Seed different for each exe protected…and this is guaranteed by the informations specificated by the user in the protection phase…and stored in the first part of the loader…


‘…After a year in which the Valley teetered on the brink of oblivion, the High Men arrived in glory and power. Within a month, they stopped the Undead advance. Together with the Alliance and the Humans, the High Men began to win battles…’


What we have seen is….crypkey opens the exe…retrieves informations from the PE header…Rawoffset where start the last section (loader) and the Rawsize of this section….then it passes these two values at the call 00D679F4 to generate the Seed and Seed2….this call receives a third parametre…the file handle at the exe opened…just because the code inside reads again some data from the exe…Lets go to check in detail…

:00D679F4
push ebp

mov ebp, esp

add esp, FFFFFDE8
Set stack frame

xor edx, edx

mov ax, [ebp+10]

[ebp+10] = 4 parametre = RawSize exe = SubMagic

lea ecx, [ebp-0216]
[ebp-0216] = buffer

mov [ebp-02], ax

[ebp-02] = SubMagic

mov [ebp-0C], edx
[ebp-0C] = counter

mov [ebp-14], ecx
[ebp-14] = buffer

push 00

mov eax, [ebp+0C]

push eax

mov edx, [ebp+08]
[ebp+08] = 2 parametre = file handle exe

push edx

call kernel32!_llseek
move the filepointer at the start of last section (loader)



add dword ptr [ebp-0C], 200
inc the counter of 200h

cmp dword ptr [ebp+14],00
size of the last section = 0

jz 00D67A49

yes jump

mov ecx, [ebp-0C]
ecx = counter

cmp ecx, [ebp+14]
counter = Rwasize last section ??

jbe 00D67A49

no it’s minor…jump 

mov eax, [ebp-0C]
eax = counter

sub eax, 200

subtract 200 from the counter

mov edx, [ebp+14]
edx = Rawsize last section

sub edx, eax

edx = Rawsize – counter = 0

mov [ebp-10], edx
[ebp-10] = num bytes to read from the exe

jmp 00D67A50

jmp to read 0 bytes…all finished 



mov dword ptr [ebp-10], 200
[ebp-10] num byte to read from the exe



mov ecx, [ebp-10]

push ecx

mov eax, [ebp-14]
[ebp-14] = buffer

push eax

mov edx, [ebp+08]
[ebp+08] = filehandle exe

push edx

call kernel32!_hread
read 200h byte

mov [ebp-08], eax
[ebp-08] = num bytes just read

cmp dword ptr [ebp-08],00
read 0 bytes ??

jz 00d67A9C

yes jmp to exit 

movzx ecx, word ptr [ebp-02]
cx = SubMagic

sar ecx, 8

cx = Low byte only of SubMagic

mov [ebp-0218], cl
mov Lbyte in [buffer-2]

mov al, [ebp-02]

al = High byte only of SubMagic

and al, FF

make sure that is not 0

mov [ebp-0217], al
mov Hbyte in [buffer-2]

mov edx, [ebp-08]
edx = [ebp-08] = num byte just read

add edx, 2

push edx

lea ecx, [ebp-0218]
ecx = buffer with 200h bytes just read

push ecx

call 00D67950

Calculate the new SubMagic

add esp, 08

mov [ebp-02], ax

[ebp-02] = ax = new SubMagic


cmp dword ptr [ebp-08],200
read 200h bytes ??

jz 00D67A22

yes…go for next 200h bytes 

mov ax, [ebp-02]

ok finished…ax = SubMagic = Seed

mov esp, ebp

pop ebp

ret

Well…Well…and Well…the code is quite clear…in few words…this function….at the start sets a counter at 0, then uses the RawSize of the last section like SubMagic value….then moves the file pointer in the exe file at the start of the last section (loader) …and then starts a loop.

In this loop it reads each time 200h byte….until the counter (everytime inc of 200h) is equal at the Rawsize of the loader…the loader is 3000h bytes and the loop is executed 24 times…jump 

In the loop, after it has read 200h bytes…the code moves the Lowbyte of SubMagic in [buffer-2] and the Highbyte of SubMagic in [buffer-1]….here how the buffer is after….

D6 5E 10 61 0A 00 61 45 6E 67 72 61 76 65 39 38 00 00 … … … …

 Buffer in memory with 200h bytes read from the loader each time

 High byte of SubMagic word

 Low byte of SubMagic word

When the buffer is setted in this way in fig above …the code in loop calls the function at 00D67950 (call 00D67950)….this call receives two parametres…the number of bytes just read +2 (202h) and the pointer at the buffer above…..the purpouse of this call is simple….use the buffer above to calculate a new SubMagic (word) for the next cycle in the loop….

After the loop has read the entire loader (200h = 512d read each cycle and 3000h = 12288d total size of the loader….24 cycles necessary to read the entire loader) it reads the last time 0 byte just to exit from this loop   …and to go to set in ax the last SubMagic …this is the Seed !

…well…now we have to see which type of marvellous calculation is performed on the buffer….inside the call 00D67950 at each cycle of this loop….we don’t forget that a new SubMagic is returned from this call each time….he! he! I hope I haven’t lost someone on this last part of code….(
Anyway….see what happen….

:00D67950
push ebp

mov ebp, esp

add esp, -0C

xor eax, eax

mov [ebp-04], eax
[ebp-04] = SubSubMagic = at the start 0

mov edx, [ebp+08]
[ebp+08] = start of the buffer (see pic above)

xor ecx, ecx

mov cl, [edx]

cl = 1th byte of the buffer (ex. In pic above D6)

add [ebp-04], ecx

SubSubMagic = SubSubMagic + 1st byte

inc dword ptr [ebp+08]
inc pointer at the buffer for next byte

shl dword ptr [ebp-04],08
shift the 4 byte of SubSubMagic on the left of a byte

mov eax, [ebp+08]
eax = pointer at the buffer

xor edx, edx

mov dl, [eax]

dl = 2nd byte of the buffer

add [ebp-04], edx

SubSubMagic = SubSubMagic + 2nd byte

inc dword ptr [ebp+08]
inc pointer at the buffer for next byte

shl dword ptr [ebp-04],08
shift the 4 byte of SubSubMagic on the left of a byte

mov ecx, [ebp+08]
ecx = pointer at the buffer

xor eax, eax

mov al, [ecx]

al = 3rd byte of the buffer

add [ebp-04], eax

SubSubMagic = SubSubMagic + 3rd byte

inc dword ptr [ebp+08]
inc pointer at the buffer for next byte

shl dword ptr [ebp-04],08
shift the 4 byte of SubSubMagic on the left of a byte

mov edx, [ebp+08]
edx = pointer at the buffer

xor ecx, ecx

mov cl, [edx]

al = 4th byte of the buffer

add [ebp-04], ecx

SubSubMagic = SubSubMagic + 4th byte

inc dword ptr [ebp+08]
inc pointer at the buffer for next byte

mov eax, [ebp+0C]
eax = 202h (num byte read + 2 byte SubMagic)

add eax, -2

eax = 200h num byte read

mov [ebp-0C], eax
[ebp-0C] = counter = 200h byte to process

cmp dword ptr [ebp-0C],00
counter = 0 ?? all byte in buffer processed ??

jz 00D679E9

yes jump

xor edx, edx

mov [ebp-08], edx
[ebp-08] = counter2 = 0 at the start

test byte ptr [ebp-01],80

jz 00D679C1

shl dword ptr [ebp-04],1
shift 1 SubSubMagic

xor dword ptr [ebp-8],80050000

jmp 00d679C4

shl dword ptr [ebp-04],1

inc dword ptr [ebp-08]
inc counter2

cmp dword ptr [ebp-08],7
processed the SubMagicMagic 7 times ??

jbe 00D679AF

no yet jmp

cmp dword ptr [ebp-0C],02
processed all 200h byte in buffer ??

jbe 00D679E0

yes jump

mov ecx, [ebp+08]
ecx = pointer at the buffer

xor eax, eax

mov al, [ecx]

al = n byte in the buffer

add [ebp-04], eax

SubSubMagic = SubSubMagic + n byte

inc dword ptr [ebp+08]
inc pointer at the buffer for next n byte

dec dword ptr [ebp-0C]
dec counter num byte in buffer to process

cmp dword ptr [ebp-0C],00
counter = 0 ?? all byte in buffer processed ??

jnz 00D679AA

no yet jump

mov eax, [ebp-04]
eax = SubSubMagic = SubMagic

shr eax, 10

mov esp, ebp

pop ebp

ret

The first part of this function defines the SubSubMagic value (4 byte). It simple takes the first 4 bytes in the buffer and copy in [ebp-04]…the shl istruction…permits to concatenates the 4 bytes …the funny thing is that the same work of this piece of code is possibile to do in 4 lines !!…probably these coder have never coded viruses…they don’t know what means optimized code (
We don’t forget that the first two byte of the buffer are the SubMagic of the previous call….anyway here how the SubSubMagic is after this first part at the first 200h byte read:

 00 00 10 61 0A 00 61 45 6E 67 72 61 76 65 39 38 00 00 … … … …

SubMagic

Buffer 200h bytes read

 61 10 00 00
 SubSubMagic

ebp-4 ebp-3 ebp-2 ebp-1

After that the SubSubMagic value is setted in memory [ebp-4]…this second part of code performs a small loop to process the 4bytes of the SubSubMagic 7 times. See exactly what happen….first the code set a counter2 [ebp-8] , then AND the byte [ebp-1] of the SubSubMagic with 80h…if the logical operation is Zeroflag then it shl the 4 bytes of 1. Then it incs the counter and repeats the loop 7 times.

This last part is a loop that store the little loop explained above. This loop , after that the 4bytes of SubSubMagic value are been processed 7 times, takes the next byte (in the buffer of 200h bytes read) and adds this at the SubSubMagic. Then it restart the little loop explained above….and so on for the 200h bytes read….

That’s all…easy, quick, and funny reversing …we have seen how the crypkey protection takes the 3000h bytes of the loader appended at the exe protected, to generate a Seed and a Seed2…and how it uses both to decrypts the exe….mission executed (
Well…two words again about the 2 mysteriouses threads ‘attached’ at the ass of the exe protected….he! he!….nothing else that Check on the integrity of the code in memory, CRC in few words…one thread starts in cryp95d.dll and the other in the cki32f.dll….but they haven’t disturbed our work…isn’t it ?? (We can kill both in a easy and elegant way, thanks at the stupidy of the crypkey coders…that have put both createthread functions in the dllmain function of their dlls….but we give a lesson on this and other marvellous then they’ll release the new version , probably for 2000$ (

‘…The “Decade of Silence” began. Ten years of uncertain peace, and no serious battles was fought during this time period. But instead of enjoying prosperity, there was a vast expansion in arms…’


…OK…we are arrived at the end…at this point coding a decrypter for exe protected with Crypkey is very very easy and I don’t want annoying further with common code…I leave only two questions on the table, if someone want answer can send me a mail :

· (for all people that have spend 1000$ for this shit) Why ??

· (for the crypkey coders) Which part of this software protection worth 1000$?? because I have a lot of problems to find it ((((
…like always…a big thanks to…

Xasx …….….Hei man …knowledge is our power…thanks to keep all up (
SirdReAm…..Don’t forget that my offer is always valid! …hope to speak to you on IRC soon (
MrTT………..I know is a bad moment for you…but all starts from these fucked moments

Lucky………..Where are you ??

All TNT members …


‘…The Star appeared over the Valley of Wonders…Meandor was seen creeping about the central Court Ruins, sifting through the bones of the dead. The Silence ended. ‘



[image: image1.png]CrypKey.

…I’m waiting the new version…take care (

MaV3RiCk

maverickluke@hotmail.com
