

Newbie reversing: Issue #1 - Simple registration checks in unpacked applications

Version 1.0 �� Page 1 of 18

Simple registration checks in unpacked applications
potassium of ARTeam

Version 1.0 – 13
th

 December 2005

1. Abstract ..2

2. Where to begin, what and how to find, what to do ..3

3. References ..18

4. Conclusions..18

5. Greetings ..18

Keywords

Reverse code engineering (RCE), cracking, registration checks.

Newbie reversing: Issue #1 - Simple registration checks in unpacked applications

Version 1.0 �� Page 2 of 18

1. Abstract

When constructing commercial software with the intent to make money from it, it becomes crucial

to incorporate some kind of protection scheme into the product. Thus, controlling who is able to run

the application and who is not. Since programmers are just as human as you and me, they often

make it as simple as possible for themselves. It is very common that they use one specially

designated pointer that holds the information regarding registration, eg registered = 1 (you have

purchased the application) or register = 0 (you have not..). Debugging the code of a certain

application and look how it flows (interactive) depending on the value of the designated pointer and

conditional jumps often gives you information of what value to put into the designated pointer. In

some cases, disassembly of the target exe into a static text file (deadlist) will do the trick.

The purpose with this document is simply to give some very important information to the crowd of

newbies on the scene. Since most of the software available on the internet today is packed or/and

encrypted, unpacking becomes a more and more important skill. However, if you lack the

knowledge of the basic reversing you are guaranteed to fail in your quest.

Note:

This document is ONLY for educational purposes, if you intend to use your newly acquired

knowledge for criminal acts that is your decision. ViceVersa Pro Build 2.0.0.9 herein called “the

target” is simply an example and the theory of this document works on many other targets. Do not

use this tutorial to crack this application if you intend to use it. As always, if you like an application

and find it useful, you should buy it!

Newbie reversing: Issue #1 - Simple registration checks in unpacked applications

Version 1.0 �� Page 3 of 18

2. Where to begin, what and how to find, what to do

First of all, to get started, you need some basic knowledge of the assembler language and some

terminology. This you can (if not acquired earlier) get by reading previous materials written by

various authors. The Lazy Beginning Reverser's Guide to Windows Assembly by Vortex168 (2002)1

is highly recommended since it is short, easily understood and very informative. Due to lack of time

I will not provide a terminology list, the search engines on the net can provide you with that

information.

Then, as any craftsman of any kind, you will need TOOLS. The more you got, the better.

Recommended must-haves are: Ollydbg & Imprec with a bunch of plug-ins and of course, Lord PE,

PEiD and Soft-ICE. Classics like these also comes in handy from time to time: W32Dasm, APIS32

and Hiew.

Some download links :

http://www.ollydbg.de/odbg110.zip

http://www.exetools.com/ - Here you can find some candy

http://www.tgrmn.com/web/downloads/vvpro.exe - ViceVersa Pro

Now you have to acquire a target to practice on, that preferable isn’t packed. You can verify this (at

least in most cases) using the tool PEiD. Take note of the contents in figure 2.1, PEid reports that

this application is written in M$ Visual C++ 7.0 and in this particular case, not packed.

 Figure 2.1 Checking with PEiD

Newbie reversing: Issue #1 - Simple registration checks in unpacked applications

Version 1.0 �� Page 4 of 18

Next, we start the target application and look for certain clues that might be useful to us.

 Figure 2.2 Mainwindow of the target application

Okay, here we have a nice lead, the string “- (Unregistered)”. It sound reasonable that the string

could alternatively be “- (Registered)”, which is what we want to accomplish, right?

Close the target. From here we can take two alternative routes:

1. Disassemble the exe into a deadlist

2. Use an interactive debugger like Ollydbg (or others like SoftIce, IDA etc.)

Since this tutorial is at the newbie level I will present you both methods. There are some

tutorials about the usage of Olly available on http://tutorials.accessroot.com. I recommend you

to read them first and/or consult the help file included with Olly.

Newbie reversing: Issue #1 - Simple registration checks in unpacked applications

Version 1.0 �� Page 5 of 18

Method 1 – Deadlist disassembly using W32Dasm 8.93

First, make a copy of the target exe and open the copy in W32Dasm.

 Figure 2.3 W32Dasm

Press the search button and enter the text “Unregistered” and search for it.

 Figure 2.4 Searching for strings with W32Dasm.

Hmmm.. Nothing found?! That’s odd. Or is it?

No, not really. Strings are usually stored as ASCII or Unicode. And W32Dasm do not always

reference to strings. The string “Hey Man!” would look like this in ASCII: 48 65 79 20 4D 61 6E 21.

But if it was Unicode things it would look like this: 00 48 00 65 00 79 00 20 00 4D 00 61 00 6E 00 21.

This difference is crucial when searching for strings, in this case the string is stored as ASCII.

Newbie reversing: Issue #1 - Simple registration checks in unpacked applications

Version 1.0 �� Page 6 of 18

Any hexeditor will do the job here. I will use Hiew.

 Figure 2.5 Searching for strings with Hiew.

Open the target exe in Hiew and search for the text “Unregistered” and you will end up here.

 Figure 2.6 Found it!

Do you recognize the string from the application mainwindow? (fig 2.2) Well, there it is, starting at
offset 00598f58. This is what we will search for in W32Dasm.

Newbie reversing: Issue #1 - Simple registration checks in unpacked applications

Version 1.0 �� Page 7 of 18

So, switch back to W32Dasm. Search for the text “00598f58” and will land here :

 Figure 2.7 Searching for text pointer”00598f58”

This is also the one and ONLY occurrence of the instruction push 00598f58 and therefore this place

is the place of interest. See the rows a little bit up ? A call to 0044CAC0, test al, al and then jne

0045AFD2.

This code tells me that (probably) the value maintained in al (the low byte of eax) controls whether

the text “- (Unregistered)” or “- (Registered)” should be displayed in the window caption. Check

your Hiew 16 ($10) bytes before the string “- (Unregistered)” and you will see the string

“- (Registered)”. The OP code 75 does not mean ‘jump if not equal’ as W32Dasm says, in fact it

means ‘jump if not zero’2. So, if al is non zero the cpu jumps to 0045AFD2! Lets assume that the

preceding call to 0044CAC0 stores or returns something interesting in the al register.

Mark the row at 0045AFB4 and press the “Call” button located in the toolbar.

Newbie reversing: Issue #1 - Simple registration checks in unpacked applications

Version 1.0 �� Page 8 of 18

Then you will end up here:

 Figure 2.8 Finding the pointer [005EFBD4]

Ahaa! The byte value stored in the pointer [005EFBD4] is moved into al. This is it!!

Now we have to find the location in the code where the registration info is verified and the non zero

value is put into [005EFBD4]. Since this is probably accomplished by moving a value into the

pointer we will now search for “[005EFBD4],” Also this one occurs only once in this particular

target. But one should always keep an open mind; programmers are sometime sneaky and puts in

several registration checks. ;-)

Newbie reversing: Issue #1 - Simple registration checks in unpacked applications

Version 1.0 �� Page 9 of 18

This is what you will find:

 Figure 2.9 Locating the registered check call

There you are! Follow the call at 0044F304 (call 0044F090). Now scroll down a bit. A call can

return to the caller or jump on to another subroutine, in this case the call is ended by a RET without

a preceding push and thus returning to the caller.

Newbie reversing: Issue #1 - Simple registration checks in unpacked applications

Version 1.0 �� Page 10 of 18

See that line at 0044F132 (xor al, al) ? An eXclusive OR (XOR) is made with al on al.

If a value is XOR:ed with it self it is always zero. Hence, this is leaving al = 0! Changing this

to ‘mov al, 01’ is a suitable solution since it also is 2 OP codes long (B0 01).

 Figure 2.10 Browsing the registered check call

Newbie reversing: Issue #1 - Simple registration checks in unpacked applications

Version 1.0 �� Page 11 of 18

 Figure 2.11 Locating the registered check call in Hiew

Lets find this place in Hiew. Open the original target exe press F5 and enter the location 0044F132.

 Figure 2.12 Patching the application in Hiew

Then press F3 to edit, B0 01. Press F9 to save the changes. F10 to quit.

Run the target application, and…. Look! It´s registered!

 Figure 2.13 Task complete!

Newbie reversing: Issue #1 - Simple registration checks in unpacked applications

Version 1.0 �� Page 12 of 18

Method 2 – Interactive debugger (Ollydbg)

Launch Olly and open the target application.

 Figure 2.14 Locating strings in Olly

Start with a ‘Search for .. All referenced text strings’

Move the marking to the top of the line and right click and choose ‘Search for text’.
Enter the text “- (Unregistered)”, if not sure of upper/lower case untick the Case sensitive box.

Newbie reversing: Issue #1 - Simple registration checks in unpacked applications

Version 1.0 �� Page 13 of 18

 Figure 2.15 Locating strings in Olly

Press OK and you land here:

 Figure 2.16 Following strings into code in Olly

When you have found the string right-click and chose ‘Follow in Disassembler’.

Newbie reversing: Issue #1 - Simple registration checks in unpacked applications

Version 1.0 �� Page 14 of 18

Recognize this from earlier?

 Figure 2.17 Finding the call to the pointer in Olly

Put a breakpoint (red) on the call to 0044CAC0 by marking the line and pressing F2, run the

application by pressing F9. Press ‘Ok, Evaluate’ and Olly will break on the breakpoint, here:

 Figure 2.18 Pointer Found

Newbie reversing: Issue #1 - Simple registration checks in unpacked applications

Version 1.0 �� Page 15 of 18

 Figure 2.19 Locating the pointer in memory

Right click on the line 0044CAC0 and chose ‘Follow in dump.. Memory address’.

Newbie reversing: Issue #1 - Simple registration checks in unpacked applications

Version 1.0 �� Page 16 of 18

 Figure 2.20 Setting a hardware breakpoint on pointer

And set a hardware breakpoint on access, byte. press ctrl+F2 to restart the application. Then F9
to run again.

 Figure 2.21 Finding the registered check call

Olly then breaks here (0044F312) scroll up a little and you will recognize the call to 0044F090!
Set a breakpoint on that line (0044F304) and restart (ctrl-F2) and run again (F9).

Newbie reversing: Issue #1 - Simple registration checks in unpacked applications

Version 1.0 �� Page 17 of 18

When Olly breaks this time you should press F7 (step into the call) and you end up on 0044F304.
Continue to execute the code step by step for a while by pressing F8.

 Figure 2.22 Tracing in the registered check call

Here is where al is set to 0! Press space to assemble.

 Figure 2.23 Patching with Olly

Apply the change by pressing Assemble and then cancel. Right-click and choose ‘Copy to
executable.. All modifications’. And then ‘Copy All’. Then a new window appear, right-click on
that window and then choose ‘Save file’.

Newbie reversing: Issue #1 - Simple registration checks in unpacked applications

Version 1.0 �� Page 18 of 18

 Figure 2.24 Saving the modified exe

Name the file to whatever you want, close Olly and you’re done!

3. References

[1] Vortex168, The Lazy Beginning Reverser's Guide to Windows Assembly, 2002

[2] Intel® Architecture Software Developer’s Manual, Volume 2A, page 3-486, 2005

4. Conclusions

Using a single pointer dedicated for registration check is vulnerable indeed and should, if possible,
be avoided. The use of an interactive debugger gives you the benefit of actually seeing the real
values of pointers and registers as you go along, but is often more complex to handle and demands a
great deal of knowledge to be used efficiently. The deadlist method is pretty straight forward but
can sometimes be hard to follow due to the fact that you do not know the current state of registers
and pointers.

5. Greetings

Fly out to all members of the victorious ARTeam and to all other whom in some way contribute to
the scene.

Best regards, merry Christmas and happy reversing… potassium / ARTeam

http://cracking.accessroot.com

