
Reversing Xilisoft

Introduction:
 In this tutorial I will discuss the encryption routine used by Xilisoft, this tutorial will not in any

way show you how to crack/keygen Xilisoft products. But will show you how to retrieve the serial

number you have already registered your program with.

 When you register your program, the app stores this serial number in the registry, but first it

encrypts it with the name you registered with. So let’s get started.

Target:
 Xilisoft Products

 Tools Used:

 RegEdit

 OllyDbg

Key in the Registry:
 Open up the Registry Editor by clicking Start->Run and then typing ‘regedit’ without the quotes.

 Next navigate to HKCU\Software\Xilisoft\<Product Name>\RegInfo, you should see keys like

this:

 The Code value seems to contain encrypted data (the serial number).

 The Name value contains the Name you registered with (Decryption Key)

 The Serial Value is ALWAYS empty

Find the Loading of Encrypted Data:

 Open up <Product’s exe>.exe (Xilisoft <Product Name> main EXE) in OllyDbg.

 Now, if you have followed my Keygenning MD5 tutorial, you will know that all registration stuff

is handled in the UILib DLL. So for Sound Recorder they use UILib8_MFCDLL.dll. Open up the Executable

Modules window and select UILib8_MFCDLL and press [ENTER].

 Once you have the UILib’s code in the CPU window search for all referenced text strings by right

clicking and selecting Search For->All referenced text strings.

 Next, search for the word ‘code’ to find where it reads the encrypted data from the registry.

 You will find the first one at 0038C3B8 set a BP here, press Ctrl+L to search for others, place a BP

on every reference to ‘code’. (Should be a total of 3 references). Now run the application.

 OllyDbg should pause at 0038D1B6 on the push statement we BPd earlier. Go ahead and step up

to the CALL ESI statement:

 You can see here that it’s going to get the encrypted data from the registry. So we have found

where the app loads the encrypted data. Next is to find a point at which it’s been decrypted. Then we

will search in-between to find the Encrypt/Decrypt routine.

Find Decrypted Data
 From the CALL ESI Statement, step with F8 until you see the decrypted data on the stack

(Decrypted data will be the key you registered with). You should see this at 0038D238:

Now look at your stack:

(Note: I blacked out parts of mine, as to not give a serial away, due to legality issues)

 So now that we have found a point that the data has been decrypted, let’s make a note of all

CALL statements we stepped over that are NOT system APIs.

 CALL 0038C000

 CALL 003BC290

 CALL 003BC6D0

Next, we need to dig into these routines and find out what role each one plays in the decryption

of the data.

The Fist CALL (0038C000):
 By taking a quick look at this routine, we see that they call wcslen:

 According to the MSDN

Each of these functions returns the number of characters in string, not including the

terminating null character. wcslen is a wide-character version of strlen; the argument of

wcslen is a wide-character string. wcslen and strlen behave identically otherwise.

 So, we need to find what string it’s passing, go ahead and set a BP on the call to wcslen. You will

see that the encrypted data is what’s being passed.

 Later on down the routine we see a loop with a call to swscanf with the format string being

“%2X” which means to convert a hex string to it’s numeric value. Set a BP after the loop at the MOV ESI,

[ESP+8] statement.

Continue running the routine, until you get to the BP set on the MOV ESI statement, step once

with F8. You should now be on a LEA ECX, [ESP+C] statement, go ahead and step this statement and

then follow the address loaded into ECX in the dump.

(Note: Some bytes have been blacked out because of the possibility to obtain a valid serial number from it)

 So we can see that this routine takes the encrypted data loaded from the registry and converts

the unicode string into the hexadecimal equivalent.

The Second CALL (003BC290)
 This routine is not of much value to us, although it would seems so, this routine appears to be

setting some constants prior to the encryption, but I assure you we don’t need these constants right

now:

The Third CALL (003BC6D0):
 For this final call before everything is decrypted, we should probably note what parameters are

pushed to it. Set a BP on this call statement and then run until the BP.

 Once you hit the BP look at the stack, there are 2 values passed to it, follow each in the dump

and you will notice that one of them contains the Encrypted data that was converted from String to Hex

by first call, and the other contains the decryption key (in the case the Name we registered with)

(This is the entire routine, we will now dissect it as small as we need to understand what’s going on)

 The first part of interest in this routine is the PUSH EAX statement followed by the CALL [EDX+8],

set a BP on the CALL *EDX+8+, so we can see what’s passed to it with the PUSH EAX statement. After

getting to the CALL [EDX+8] statement, look at EAX, it contains our decryption key (Nieylana in my case).

 Let’s step into the CALL *EDX+8+:

CALL [EDX+8]

 This routine is quite long so I won’t go and explain every single line, but only the lines that need

special mention. The first line to mention is the call to wcslen which returns the length of the decryption

key. (so mine will return 8).

(It then compares the key length to 12d)

After this CMP is a JNB, meaning if the key length is NOT BELOW 12, jump, otherwise continue on.

If it didn’t jump (your key is less than 12 chars long), you will enter some loops that will pad the key to

12 characters, so my “Nieylana” becomes “NieylanaNiey”

After the key has been padded to 12 characters long, it then continues with the rest of the

routine.

The main work of this function is done at 003BC461, the way they coded it makes it quite hard

to understand so what I recommend is to go to the highlighted line:

 Follow the address in [EAX+8] in dump, and then set a BP on the line after the loop which should

be MOV EAX, [EBP-14]. Press F9 and run to BP.

 The dump pane for my Key now looks like this:

 It appears they have set 3 DWORDS to values based on the Key… the pattern for such is

o DWORD1 = First 4 bytes of Key

o DWORD2 = Middle 4 bytes of Key

o DWORD3 = Last 4 bytes of Key

These DWORD (from now on referred to as Key1, Key2, and Key3) will be used later on. Just

remember how they set these.

The Third CALL (003BC6D0) Again:

 After these 3 values have been set, the following lines are executed:

 This moves the address of the Encrypted Data to EAX, and the calls wcslen on that string which

returns the length of it, should be 0x27 (or 39 decimal)

 Next, we move the length of the string into [EBP-4] (this serves as the counter so we know when

we’ve looped for the whole encrypted string). And then we zero out whatever is in [EBP-8]

 The next part of this routine is where the magic happens:

As you can see from the comments in OllyDbg, this loop goes through every byte in the encrypted data,

and call [EDX+10] for each byte

Before we dig into *EDX+10+, let’s put what we’ve learned so far into perspective.

 The First Call we investigated converted the Unicode Hex string, into the hexadecimal

equivalent.

 The Second Call initialized some constants that we don’t really need to worry about

 The Third Call is effectively a call to DecryptString() which is passed the encrypted string, and the

decryption key.

 This DecryptString() then calls [EDX+8] which is basically the Init routine for the Decryption,

which sets 3 DWORDS to certain values based on the Key which was padded to 12 bytes.

 The DecryptString() then gets the length of the Encrypted String, and loops, each time PUSHing

EAX to the stack, which contains the address holding the next byte to be decrypted, and CALLing

[EDX+10] to decrypt the current byte

Byte Decryption:
Now that we have summed up what we’ve learned thus far, we are going to look into the CALL

[EDX+10], which is the call that decrypts the individual bytes

Here is the beginning of the routine, remember this part is executed for every encrypted byte:

 Other than doing some stack set-up for the operation this part sets 2 initial values, one at [EBP-

C] and [EBP-8]. [EBP-C] contains a 1 or 0 depending on the result of Key2 AND 1, same goes for [EBP-8]

except Key3 was tested. This part also sets a ZERO to the loop counter at [EBP-10]. And finally the JMP

statement jumps us into the loop.

 The loop can seem quite intimidating, after all there’s approx 114 lines of code in this whole

routine, most of which is the loop. But relax, just step back a little and try to see a big picture. This loop

contains a single decision, which will then branch us 1 of 2 ways. And once we branch we’re faced with a

single decision which again will branch us 1 of 2 ways.

 So we need to find what determines these branches, and then once we find all possible paths,

then start interpreting the code.

 The First decision is made here:

 If Key1 was Even the next decision is here:

 If Key1 was odd, and we didn’t jump the next decision is located here:

Laying out the Loop
 There are 4 possible paths from what we saw above:

o Key1 is Even – Key3 is Even

o Key1 is Even – Key3 is Odd

o Key1 is Odd – Key2 is Even

o Key1 is Odd – Key2 is Odd

The programming challenge we face here can be defeated by simply using nested If statements.

So now we will look at code that is executed for each of the 4 pathways.

Please note that all constants found in the comments can be found simply by stepping through

the code.

These are the constants that were set in the 2nd call we looked at and I told you wasn’t

important, that because we’ll see them here.

Key1 Is Even

 This code is executed when Key1 is Even, regardless of the state of Key3:

 This code can be summarized with the following bullets:

 Right Shift Key1 by 1 bit

 AND result of RightShift with 7FFFFFFF

 Save result over top of Key1

 Test State of Key 3

Key1 is Even – Key3 is Even

 After the execution of Key1 is Even Code, this is the code executed.

 Notice that I stopped the Key3 is Even code at 003BC670, because at line 003BC677 all other

pathways start executing as well so that’s general code as well.

 Key3 is Even code can be summarized with the following bullets:

 Right Shift Key3 by 1 bit

 AND result of RightShift with 0FFFFFFF

 Save result over top of Key3

 Move a 0 to [EBP-8]

 ([EBP-8] is used to hold the result of the branch taken if Key1 was even)

 Continue executing Common Code (Code executed by all branches)

Key1 is Even – Key3 is Odd

 After the execution of Key1 is Even Code, this is the code executed.

 This code can be summarized with the following bullets:

 XOR Key3 by 10000002

 OR the result by F0000000

 Move a 1 to [EBP-8]

 ([EBP-8] is used to hold the result of the branch taken if Key1 was even)

 JMP to Common Code (Code executed by all branches)

Key1 is Odd

 This is code that will be executed in the event that Key1 is Odd, regardless of the state of Key2

 This code can be summarized with the following bullets:

 XOR Key1 with 80000062

 Shift Result Right 1 bit

 OR Result by 80000000

 Save result to Key1

 Test state of Key2 (Odd/Even)

 Jump accordingly

Key1 is Odd – Key2 is Even

 This code is executed after Key1 is Odd code.

 This code can be summarized with the following bullets:

 Shift Key2 right 1 bit

 AND result with 3FFFFFFF

 Save result to Key2

 Store a 0 in [EBP-C]

 ([EBP-C] is used to store result of branch taken in Key1 Is Odd branch)

 Jump to Common Code (Code executed by all branches)

Key1 is Odd – Key2 is Odd

 This code is executed after Key1 is Odd code.

 This code can be summarized with the following bullets:

 XOR Key2 with 40000020

 Shift Result Right by 1 bit

 OR Result with C0000000

 Store Result over Key2

 Move a 1 to [EBP-C]

 ([EBP-C] is used to store result of branches taken in Key1 Is Odd branch)

 Jump Common Code (Code executed by all branches)

Common Code

 This code is executed regardless of branch taken, but is executed after branches have been

taken.

 This is a more complicated piece of code, but I will summarize with bullets:

 Take current DecryptionKey and multiply by 2 (Left Shift by 1 bit)

 BranchResult = [EBP-C] XOR [EBP-8]

 OR DecryptionKey by BranchResult

 Store low word of math as NEW Decryption Key

 Loop up to the top

After it jumps to the top of the loop we see it execute this code:

 This simply increments the loop counter [EBP-10] by 1, and then compares it to 8, if we’ve

looped 8 times, jump out of the loop and continue Byte Decryption Routine.

Back to Byte Decryption Routine:
 After jumping out of the loop, the following code is executed:

 The code can be summarized with the following bullets:

 XOR Encrypted Byte with DecryptionKey (Figured out by loop described Above)

 Store Decrypted Byte in place of Encrypted Byte

 Jump, if Decrypted Byte is NOT Zero, to Return Statement

Pseudo-Code for DecryptByte Routine:
 Now that we’ve discussed in depth, the Byte Decryption routine, we should be able to make a

pseudo-code outline of the function

There were 3 parts to the Decrypt Byte Routine:

 Code before Loop

 Loop

 Code after Loop

~Function DecryptByte

//Function is passed the EncryptedByte as it’s ASCII value

//Key1,Key2, and Key3 are Global Variables that have been set by InitCrypt()

//Key1IsEven,Key1IsOdd as variables declared locally

//DecryptionKey, LoopCounter are Declared Locally

~Init Variables

Key1IsOdd = Key2 AND 1

Key1IsEven = Key3 AND 1

LoopCounter = 0

~Begin Loop

 Do Until LoopCounter = 8

 If Key1 Is Even

o Key1 = (SHR(Key1,1) AND 0x7FFFFFFF)

 If Key3 Is Even

 Key3 = (SHR(Key3,1) AND 0x0FFFFFFFF)

 Else

 Key3 = (Key3 XOR 0x10000002) OR 0xF0000000

 End If

o Key1IsEven = Key3 AND 1

 Else

o Key1 = (Key1 XOR 0x80000062)

o Key1 = SHR(Key1,1)

o Key1 = Key1 OR 0x80000000

If Key2 Is Even

 Key2 = (SHR(Key2,1) AND 0x3FFFFFFF)

Else

 Key2 = (Key2 XOR 0x40000020)

 Key2 = SHR(Key2,1)

 Key2 = Key2 OR 0xC0000000

End If

o Key1IsOdd = Key2 AND 1

 End If

 LoopCounter = LoopCounter + 1

 DecryptionKey = DecryptionKey * 2

 BranchResult = Key1IsEven XOR Key1IsOdd

 DecryptionKey = DecryptionKey OR BranchResult

 DecryptionKey = DecryptionKey AND 0xFFFF

Loop

EncryptedByte = EncryptedByte XOR DecryptionKey

Return Value of Encrypted Byte

Pseudo-Code for DecryptString
~ Function DecryptString()

 // Function is Passed the EncryptedData as String, and the Key as a String

 // EncryptedData is must be converted from string to an Array of Bytes, this is needed if the

EncryptedData was a HexString

 InitCrypt(Key)

 LoopCounter = 1

 Do until LoopCounter = Length of EncryptedData (be mindful of Hex Strings)

 NextChar = Next byte to Decrypt

 NextChar = DecryptByte(NextChar)

 DecryptedString = Concatenate newest Decrypted Byte to end of DecryptedString

 Loop

 Return DecryptedString

Summary:
 In this tutorial we have covered many things some of them include:

 Locating Encrypted Data in Registry

 Catching Application in act of Loading Encrypted Data

 Stepping over until we found Decrypted Data

 Investigating each call made in-between

o Call1 Simply converted the EncryptedString back into an Array of Bytes

o Call2 Set up some constants, we didn’t need to worry about this call

o Call3 Did all the dirty work of decrypting the string

 Call3 (DecryptString) called a function we’ll call InitCrypt

 InitCrypt() took the key we passed it and padded to 12 bytes

 InitCrypt() also set 3 global variables Key1,Key2, and Key3 to their initial

values

 Call3 then looped for each character and passed the encrypted byte to

DecryptByte()

 DecryptByte went through some semi-complicated loops, and ultimately

decrypts the byte

 DecryptString then takes the returned (Decrypted) Byte and appeneds it to the

rest of the DecryptedBytes

Conclusion:
 In conclusion, We have successfully found, reversed, and written Pseudo-Code for routines to

decrypt serial numbers that have been stored by Xilisoft Products. Where this would be applicable is if

you have legally purchased a Xilisoft Product and registered your program. Then later if you have to

format/reload, and you no longer have the Serial they gave you, you can obtain it from the encrypted

data.

 I hope you all had as much fun reading and learning about this as I did learning and writing

about it. It is always my goal to make sure my tutorials are as easy to read and follow as possible. It is my

sincerest hope that you walk away from this paper knowing a little be more about finding the crypt

routines, and ways of analyzing them.

 I have included Full Sources (and exe) for my Xilisoft Cryptor (Written in VB), as well as sources

made for C/C++ programmers coded by Ghandi. All Sources are in the Zip File that came with this

tutorial.

 Also on the last page of this tutorial is a FlowChart of the Byte Cryption routine produced by IDA,

this is provided to help visualize the layout of the function. I have overwritten the parameters and given

more descriptive names in order to further aid in this.

