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9.1 Introduction

Cryptographic hash functions play a fundamental role in modern cryptography. While re-
lated to conventional hash functions commonly used in non-cryptographic computer appli-
cations—in both cases, larger domains are mapped to smaller ranges—they differ in several
important aspects. Our focusisrestricted to cryptographic hash functions (hereafter, simply
hash functions), and in particular to their use for dataintegrity and message authentication.

Hash functions take a message as input and produce an output referred to as a hash-
code, hash-result, hash-value, or smply hash. More precisely, a hash function 2 maps bit-
strings of arbitrary finite length to strings of fixed length, say n bits. For adomain D and
range R withh : D—Rand|D| > |R|, thefunction is many-to-one, implying that theexis-
tence of collisions (pairs of inputswith identical output) is unavoidable. Indeed, restricting
h to adomain of t-bitinputs (¢t > n), if h were“random” in the sense that all outputs were
essentially equiprobable, then about 2t~ inputs would map to each output, and two ran-
domly chosen inputs would yield the same output with probability 2~ (independent of t).
Thebasicideaof cryptographic hash functionsisthat a hash-value serves asacompact rep-
resentative image (sometimes called an imprint, digital fingerprint, or message digest) of
an input string, and can be used asiif it were uniquely identifiable with that string.

Hash functions are used for data integrity in conjunction with digital signature sch-
emes, wherefor several reasonsamessageistypically hashedfirst, and then the hash-val ue,
as a representative of the message, is signed in place of the original message (see Chap-
ter 11). A distinct class of hash functions, called message authentication codes (MACs),
allows message authentication by symmetric techniques. MAC algorithms may be viewed
as hash functions which take two functionally distinct inputs, a message and a secret key,
and produce a fixed-size (say n-bit) output, with the design intent that it be infeasible in
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practice to produce the same output without knowledge of the key. MACs can be used to
provide dataintegrity and symmetric data origin authentication, aswell asidentificationin
symmetric-key schemes (see Chapter 10).

A typical usage of (unkeyed) hash functionsfor dataintegrity is asfollows. The hash-
value corresponding to a particular message x is computed at timeT7;. Theintegrity of this
hash-value (but not the message itself) is protected in some manner. At a subsequent time
T, thefollowingtest is carried out to determine whether the message has been altered, i.e.,
whether amessage =’ isthe same asthe original message. Thehash-valueof =’ iscomputed
and compared to the protected hash-value; if they are equal, one acceptsthat the inputs are
also egual, and thus that the message has not been altered. The problem of preserving the
integrity of a potentially large message is thus reduced to that of a small fixed-size hash-
value. Sincethe existence of collisionsis guaranteed in many-to-one mappings, the unique
association between inputs and hash-values can, at best, be in the computational sense. A
hash-value should be uniquely identifiable with a single input in practice, and collisions
should be computationally difficult to find (essentially never occurring in practice).

Chapter outline

Theremainder of this chapter isorganized asfollows. §9.2 providesaframework including
standard definitions, a discussion of the desirable properties of hash functionsand MACs,
and consideration of one-way functions. §9.3 presents a general model for iterated hash
functions, some general construction techniques, and a discussion of security objectives
and basic attacks (i.e., strategies an adversary may pursue to defeat the objectives of ahash
function). §9.4 considers hash functions based on block ciphers, and afamily of functions
based on the M D4 algorithm. §9.5 considersMACs, including those based on block ciphers
and customized MACs. §9.6 examines various methods of using hash functionsto provide
data integrity. §9.7 presents advanced attack methods. §9.8 provides chapter notes with
references.

9.2 Classification and framework

9.2.1 General classification

At the highest level, hash functions may be split into two classes: unkeyed hash functions,
whose specification dictatesa singleinput parameter (amessage); and keyed hash functions,
whose specification dictates two distinct inputs, a message and a secret key. To facilitate
discussion, a hash function isinformally defined as follows.

9.1 Definition A hash function (in the unrestricted sense) isafunction h which has, asamin-

imum, the following two properties:

1. compression — h maps an input z of arbitrary finite bitlength, to an output A (x) of
fixed bitlength .
2. ease of computation— given h and an input x, h(z) is easy to compute.
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As defined here, hash function implies an unkeyed hash function. On occasion when
discussion is at a generic level, thisterm is abused somewhat to mean both unkeyed and
keyed hash functions; hopefully ambiguity is limited by context.

For actual use, amore goal-oriented classification of hash functions (beyond keyed vs.
unkeyed) is necessary, based on further propertiesthey provide and reflecting requirements
of specific applications. Of the numerous categoriesin such afunctional classification, two
types of hash functions are considered in detail in this chapter:

1. modification detection codes (MDCs)
Also known as mani pul ation detection codes, and less commonly as messageintegri-
ty codes (MICs), the purpose of an MDC is (informally) to provide a representative
image or hash of a message, satisfying additional properties as refined below. The
end goal isto facilitate, in conjunction with additional mechanisms (see §9.6.4), data
integrity assurances as required by specific applications. MDCs are a subclass of un-
keyed hash functions, and themselves may be further classified; the specific classes
of MDCs of primary focusin this chapter are (cf. Definitions 9.3 and 9.4):
(i) one-way hash functions (OWHFs): for these, finding an input which hashesto
a pre-specified hash-value is difficult;
(ii) collision resistant hash functions (CRHFs): for these, finding any two inputs
having the same hash-value is difficult.

2. message authentication codes (MACs)
The purpose of aMAC is (informally) to facilitate, without the use of any additional
mechanisms, assurances regarding both the source of amessage and itsintegrity (see
§9.6.3). MACs have two functionally distinct parameters, a message input and a se-
cret key; they are a subclass of keyed hash functions (cf. Definition 9.7).

Figure 9.1 illustrates this simplified classification. Additional applications of unkeyed
hash functions are noted in §9.2.6. Additional applications of keyed hash functions in-
clude usein challenge-responseidentification protocol sfor computing responseswhich are
afunction of both a secret key and a challenge message; and for key confirmation (Defini-
tion 12.7). Distinction should be made between aMAC agorithm, and the use of an MDC
with a secret key included as part of its message input (see §9.5.2).

It is generally assumed that the algorithmic specification of a hash function is public
knowledge. Thusin the case of MDCs, given amessage asinput, anyone may computethe
hash-result; and in the case of MACs, given amessage as input, anyone with knowledge of
the key may compute the hash-resullt.

9.2.2 Basic properties and definitions

To facilitate further definitions, three potential properties are listed (in addition to ease of
computation and compression as per Definition 9.1), for an unkeyed hash function A with
inputs z, ' and outputsy, y'.

1. preimage resistance — for essentially all pre-specified outputs, it is computationally
infeasible to find any input which hashes to that output, i.e., to find any preimage =’
suchthat h(z'") = y when givenany y for which acorrespondinginput isnot known.*

2. 2nd-preimageresistance — it is computationally infeasible to find any second input
which hasthe same output as any specified input, i.e., given z, to find a2nd-preimage
x’ # x suchthat h(z) = h(z').

1This acknowledges that an adversary may easily precompute outputs for any small set of inputs, and thereby
invert the hash function trivially for such outputs (cf. Remark 9.35).
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Figure 9.1: Smplified classification of cryptographic hash functions and applications.

3. collision resistance — it is computationally infeasible to find any two distinct inputs
z, =’ which hash to the same output, i.e., such that h(z) = h(z'). (Note that here
thereisfree choice of both inputs.)

Here and elsewhere, theterms*“ easy” and “ computationally infeasible” (or “hard”) are
intentionally left without formal definition; it is intended they be interpreted relative to an
understood frame of reference. “Easy” might mean polynomial time and space; or more
practically, within a certain number of machine operations or time units— perhaps seconds
or milliseconds. A more specific definition of “computationally infeasible” might involve
super-polynomial effort; require effort far exceeding understood resources; specify alower
bound on the number of operations or memory required in terms of a specified security pa-
rameter; or specify the probability that a property is violated be exponentially small. The
properties as defined above, however, suffice to allow practical definitions such as Defini-
tions 9.3 and 9.4 below.

Note (alternateterminology) Alternate terms used in the literature are as follows:. preim-
age resistant = one-way (cf. Definition 9.9); 2nd-preimageresistance = weak collision re-
sistance; collision resistance = strong collision resistance.

For context, one motivation for each of the three major properties aboveis now given.
Consider adigital signature scheme wherein the signatureisapplied to the hash-value h(x)
rather than the message . Here h should be an MDC with 2nd-preimage resistance, oth-
erwise, an adversary C' may observe the signature of some party A on h(z), then find an
z’ suchthat h(z) = h(z'), and claim that A hassigned z’. If C is able to actually choose
the message which A signs, then C' need only find a collision pair (z, z’) rather than the
harder task of finding a second preimage of «; in this case, collision resistance is also nec-
essary (cf. Remark 9.93). Less obviousisthe requirement of preimage resistance for some
public-key signature schemes; consider RSA (Chapter 11), where party A has public key
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9.3

9.4

9.5

9.6

9.7

9.8

(e,n). C may choose arandom value y, compute z = y° mod n, and (depending on the
particular RSA signature verification process used) claimthat y is A’ssignatureon z. This
(existential) forgery may be of concernif C' can find a preimage  such that h(x) = z, and
for which x is of practical use.

Definition A one-way hash function (OWHF) is a hash function h as per Definition 9.1
(i.e., offering ease of computation and compression) with the following additional proper-
ties, as defined above: preimage resistance, 2nd-preimage resistance.

Definition A collision resistant hash function (CRHF) is ahash function h as per Defini-
tion 9.1 (i.e., offering ease of computation and compression) with the following additional
properties, as defined above: 2nd-preimage resistance, collision resistance (cf. Fact 9.18).

Althoughin practicea CRHF almost alwayshastheadditional property of preimagere-
sistance, for technical reasons(cf. Note 9.20) this property isnot mandated in Definition 9.4.

Note (alternateterminology for OWHF, CRHF) Alternate terms used in the literature are
as follows: OWHF = weak one-way hash function (but here preimage resistance is often
not explicitly considered); CRHF = strong one-way hash function.

Example (hash function properties)

(i) A simple modulo-32 checksum (32-bit sum of all 32-hit words of a datastring) isan
easily computed function which offers compression, but is not preimage resistant.
(ii) Thefunction g(x) of Example 9.11 is preimage resistant but provides neither com-
pression nor 2nd-preimage resi stance.
(iii) Example 9.13 presents a function with preimage resistance and 2nd-preimageresis-
tance (but not compression). O

Definition A message authentication code (MAC) algorithm is a family of functions hy,
parameterized by a secret key k, with the following properties:

1. ease of computation — for a known function h, given avalue k£ and an input z,
hi(z) is easy to compute. Thisresult is called the MAC-value or MAC.

2. compression — h, mapsan input x of arbitrary finite bitlength to an output iy, () of
fixed bitlength n.
Furthermore, given a description of the function family A, for every fixed allowable
value of k£ (unknown to an adversary), the following property holds:

3. computation-resistance— given zero or moretext-MAC pairs (z;, hi(x;)), itiscom-
putationally infeasible to compute any text-MAC pair (x, hi(x)) for any new input
x # z; (including possibly for hy(x) = hy(z;) for somes).

If computation-resistancedoesnot hold, aM A C algorithmissubject to MAC forgery. While
computation-resistance implies the property of key non-recovery (it must be computation-
aly infeasibleto recover k, given one or moretext-MAC pairs (z;, hi(z;)) for that k), key
non-recovery does not imply computation-resistance (akey need not always actually bere-
covered to forge new MACs).

Remark (MAC resistancewhen key known) Definition 9.7 does not dictate whether MACs

need be preimage- and collision resistant for partiesknowing thekey & (asFact 9.21implies
for parties without &).
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(i) Objectives of adversaries vs. MDCs
The objective of an adversary who wishesto “attack” an MDC is as follows:

(8) to attack a OWHF: given a hash-value y, find apreimage « such that y = h(z); or
given onesuch pair (z, h(z)), find asecond preimage =’ such that h(z') = h(z).
(b) to attack a CRHF: find any two inputs z, 2, such that h(z’) = h(x).
A CRHF must be designed to withstand standard birthday attacks (see Fact 9.33).

(ii) Objectives of adversaries vs. MACs
The corresponding objective of an adversary for aMAC algorithmis asfollows:

(c) toattack aMAC: without prior knowledge of akey k, compute anew text-MAC pair
(z, hi(z)) for sometext x # x;, given one or more pairs (z;, hi(x;)).
Computation-resistance here should hold whether the texts x; for which matching MACs
are available are given to the adversary, or may be freely chosen by the adversary. Similar
to the situation for signature schemes, the following attack scenarios thus exist for MACs,
for adversarieswith increasing advantages:

1. known-text attack. One or more text-MAC pairs (z;, hi(x;)) are available.

2. chosen-text attack. One or more text-MAC pairs (z;, h(z;)) are available for x;
chosen by the adversary.

3. adaptive chosen-text attack. The x; may be chosen by the adversary as above, now
alowing successive choices to be based on the results of prior queries.

Asacertificational checkpoint, MACs should withstand adaptive chosen-text attack regard-
less of whether such an attack may actually be mounted in a particular environment. Some
practical applications may limit the number of interactions allowed over a fixed period of
time, or may be designed so as to compute MACs only for inputs created within the appli-
cation itself; others may allow access to an unlimited number of text-MAC pairs, or allow
MAC verification of an unlimited number of messages and accept any with a correct MAC
for further processing.

(iii) Types of forgery (selective, existential)

When MAC forgery is possible (implying the MAC algorithm has been technically de-
feated), the severity of the practical consequences may differ depending on the degree of
control an adversary has over the value x for whichaMAC may be forged. This degreeis
differentiated by the following classification of forgeries:

1. selective forgery — attacks whereby an adversary is able to produce anew text-MAC
pair for atext of hischoice (or perhapspartially under his control). Note that herethe
selected valueisthe text for which aMAC isforged, whereasin a chosen-text attack
the chosen value is the text of atext-MAC pair used for analytical purposes (e.g., to
forgeaMAC on adistinct text).

2. existential forgery —attackswhereby an adversary isableto produceanew text-MAC
pair, but with no control over the value of that text.

Key recovery of the MAC key itself is the most damaging attack, and trivially allows se-
lectiveforgery. MAC forgery allows an adversary to have aforged text accepted as authen-
tic. The consequences may be severe even in the existential case. A classic exampleisthe
replacement of a monetary amount known to be small by a number randomly distributed
between 0 and 232 — 1. For this reason, messages whose integrity or authenticity is to be
verified are often constrained to have pre-determined structure or ahigh degree of verifiable
redundancy, in an attempt to preclude meaningful attacks.

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.
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Analogously to MACs, attacks on MDC schemes (primarily 2nd-preimage and colli-
sion attacks) may be classified as selective or existential. If the message can be partially
controlled, then the attack may be classified as partially selective (e.g., see §9.7.1(iii)).

9.2.3 Hash properties required for specific applications

Because there may be costs associated with specific properties— e.g., CRHFs are in gen-
eral harder to construct than OWHFs and have hash-values roughly twice the bitlength — it
should be understood which propertiesare actually required for particular applications, and
why. Selected techniques whereby hash functions are used for data integrity, and the cor-
responding properties required thereof by these applications, are summarized in Table 9.1.

In general, an MDC should be a CRHF if an untrusted party has control over the exact
content of hash function inputs (see Remark 9.93); a OWHF suffices otherwise, including
the case where thereis only asingle party involved (e.g., a store-and-retrieve application).
Control over precise format of inputs may be eliminated by introducing into the message
randomization that is uncontrollable by one or both parties. Note, however, that datain-
tegrity techniques based on a shared secret key typically involve mutual trust and do not
address non-repudiation; in this case, collision resistance may or may not be arequirement.

Hash properties required — Preimage 2nd- Collision | Details
Integrity application | resistant | preimage | resistant

MDC + asymmetric signature yes yes yest page 324
MDC + authentic channel yes yest page 364
MDC + symmetric encryption page 365
hash for one-way password file yes page 389
MAC (key unknown to attacker) yes yes yest page 326
MAC (key known to attacker) yest page 325

Table 9.1: Resistance properties required for specified data integrity applications.
tResistance required if attacker is able to mount a chosen message attack.
tResistance required in rare case of multi-cast authentication (see page 378).

9.2.4 One-way functions and compression functions

9.9

9.10

Related to Definition 9.3 of a OWHF is the following, which is unrestrictive with respect
to a compression property.

Definition A one-way function (OWF) isafunction f suchthat for each x inthe domain of
f,itiseasy to compute f(z); but for essentialy all y intherangeof £, itiscomputationally
infeasibleto find any « such that y = f(z).

Remark (OWF vs. domain-restricted OWHF) A OWF as defined here differs from a
OWHF with domain restricted to fixed-size inputs in that Definition 9.9 does not require
2nd-preimageresistance. Many one-way functionsare, in fact, non-compressing, in which
case most image elements have unique preimages, and for these 2nd-preimage resistance
holds vacuously — making the difference minor (but see Example 9.11).

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.
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9.11

9.12

9.13

9.14

Example (one-way functions and modular squaring) The squaring of integers modulo a
primep, 4., f(x) = 2 — 1 mod p, behavesin many ways like arandom mapping. How-
ever, f(z) isnotaOWF becausefinding squarerootsmodulo primesiseasy (§3.5.1). Onthe
other hand, g(x) = 22 mod n is a OWF (Definition 9.9) for appropriate randomly chosen
primes p and ¢ wheren = pq and the factorization of n is unknown, as finding a preimage
(i.e., computing asquareroot mod n) is computationally equivalent to factoring (Fact 3.46)
and thusintractable. Nonetheless, finding a2nd-preimage, and, therefore, collisions, istriv-
ia (given x, —z yieldsacollision), and thus g fits neither the definition of a OWHF nor a
CRHF with domain restricted to fixed-size inputs. O

Remark (candidateone-way functions) Thereare, infact, no knowninstancesof functions
which are provably one-way (with no assumptions); indeed, despite known hash function
constructions which are provably as secure as NP-complete problems, there is no assur-
ance the latter are difficult. All instances of “one-way functions’ to date should thus more
properly be qualified as* conjectured” or “candidate” one-way functions. (It thus remains
possible, although widely believed most unlikely, that one-way functions do not exist.) A
proof of existence would establish P £ NP, while non-existence would have devastating
cryptographic consequences (see page 377), although not directly implying P = NP.

Hash functions are often used in applications (cf. §9.2.6) which require the one-way
property, but not compression. It is, therefore, useful to distinguish three classes of func-
tions (based on the relative size of inputs and outputs):

1. (general) hash functions. Thesearefunctionsasper Definition 9.1, typically with ad-
ditional one-way properties, which compress arbitrary-length inputsto n-bit outputs.

2. compression functions (fixed-size hash functions). These are functions as per Defi-
nition 9.1, typically with additional one-way properties, but with domain restricted
to fixed-size inputs —i.e., compressing m-bit inputs to n-bit outputs, m > n.

3. non-compressing one-way functions. These are fixed-size hash functions as above,
except that n = m. Theseinclude one-way permutations, and can be more explicitly
described as computationally non-invertible functions.

Example (DESbased OWF) A one-way function can be constructed from DES or any
block cipher E which behaves essentially as a random function (see Remark 9.14), asfol-
lows: f(z) = Ex(z)®z, for any fixed known key k. The one-way nature of this construc-
tion can be proven under the assumption that F is arandom permutation. An intuitive ar-
gument follows. For any choice of y, finding any z (and key k) such that Ey(z)®z = y is
difficult because for any chosen x, Ej(x) will be essentialy random (for any key k) and
thus so will Ej(x)®z; hence, this will equal y with no better than random chance. By
similar reasoning, if one attempts to use decryption and chooses an «, the probability that
E; Y (z®y) = z isno better than random chance. Thus f(z) appearsto be a OWF. While
f(x) isnot a OWHF (it handles only fixed-length inputs), it can be extended to yield one
(see Algorithm 9.41). O

Remark (block ciphers and random functions) Regarding random functions and their
properties, see §2.1.6. If ablock cipher behaved as arandom function, then encryption and
decryption would be equivalent to looking up values in a large table of random numbers;
for afixed input, the mapping from akey to an output would behave as arandom mapping.
However, block ciphers such as DES are bijections, and thus at best exhibit behavior more
like random permutations than random functions.

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.
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9.15

9.16

9.17

Example (one-wayness w.r.t. two inputs) Consider f(z,k) = Ei(z), where E repre-
sents DES. Thisis not aone-way function of thejoint input (x, k), because given any func-
tionvauey = f(, k), one can choose any key k' and compute =’ = E,,"(y) yielding
apreimage (z',k"). Similarly, f(z, k) is not a one-way function of z if k is known, as
giveny = f(z, k) and k, decryption of y using k yields z. (However, a“black-box” which
computes f(x, k) for fixed, externally-unknown k is aone-way function of z.) In contrast,
f(z, k) isaone-way function of k; giveny = f(x, k) and z, it is not known how to find
apreimage k in less than about 25° operations. (This latter concept is utilized in one-time
digital signature schemes —see §11.6.2.) O

Example (OWF - multiplication of large primes) For appropriate choices of primesp and
q, f(p, q¢) = pgisaone-way function: given p and ¢, computingn = pq is easy, but given
n, findingp and g, i.e., integer factorization, isdifficult. RSA and many other cryptographic
systems rely on this property (see Chapter 3, Chapter 8). Note that contrary to many one-
way functions, thisfunction f does not have propertiesresembling a“random” function. (J

Example (OWF - exponentiation in finite fields) For most choices of appropriately large
primes p and any element o € Z, of sufficiently large multiplicative order (e.g., a gen-
erator), f(z) = o® mod p isaone-way function. (For example, p must not be such that
all the primedivisors of p — 1 are small, otherwise the discrete log problem is feasible by
the Pohlig-Hellman algorithm of §3.6.4.) f(z) iseasily computed given «, z, and p using
the square-and-multiply technique (Algorithm 2.143), but for most choicesp it isdifficult,
given (y, p, o), tofind an z in therange 0 < = < p — 2 such that &® mod p = y, dueto
the apparent intractability of the discrete logarithm problem (§3.6). Of course, for specific
valuesof f(z) thefunctioncan beinvertedtrivialy. For example, the respective preimages
of 1 and —1 areknownto be 0 and (p — 1)/2, and by computing f(x) for any small set of
vauesfor z (eg.,x = 1,2,...,10), these are aso known. However, for essentially all y
in the range, the preimage of y is difficult to find. O

9.2.5 Relationships between properties

9.18

9.19

In this section severa relationships between the hash function properties stated in the pre-
ceding section are examined.

Fact Collision resistance implies 2nd-preimage resistance of hash functions.

Justification. Suppose h has collision resistance. Fix an input z;. If A does not have 2nd-
preimage resistance, then it is feasible to find a distinct input ; such that h(x;) = h(z;),
in which case (x;, z;) isapair of distinct inputs hashing to the same output, contradicting
collision resistance.

Remark (one-way vs. preimage and 2nd-preimage resistant) While the term “one-way”
is generally taken to mean preimage resistant, in the hash function literature it is some-
times also used to imply that a function is 2nd-preimage resistant or computationally non-
invertible. (Computationally non-invertibleisamore explicit term for preimage resistance
when preimages are unique, e.g., for one-way permutations. In the case that two or more
preimages exist, a function fails to be computationally non-invertible if any one can be
found.) This causes ambiguity as 2nd-preimage resistance does not guarantee preimage-
resistance (Note 9.20), nor does preimage resistance guarantee 2nd-preimage resistance
(Example9.11); see also Remark 9.10. An attempt is thus made to avoid unqualified use of
the term “one-way”.
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9.20

9.21

Note (collision resistance does not guarantee preimage resistance) Let g be a hash func-
tion whichiscollision resistant and maps arbitrary-length inputsto n-bit outputs. Consider
the function h defined as (here and elsewhere, || denotes concatenation):

h(z) = 1 | = if « has bitlength n
T 10 || g(x), otherwise.

Then h isan (n + 1)-bit hash function which is collision resistant but not preimage resis-
tant. Asasimpler example, theidentity function on fixed-lengthinputsiscollision and 2nd-
preimageresistant (preimagesare unique) but not preimageresistant. While such pathol og-
ical examplesillustrate that collision resistance does not guarantee the difficulty of finding
preimages of specific (or even most) hash outputs, for most CRHFs arising in practice it
nonethel essappears reasonabl e to assumethat collision resistance doesindeed imply preim-
age resistance.

Fact (implications of MAC properties) Let h; be a keyed hash function whichisaMAC
algorithm per Definition 9.7 (and thus has the property of computation-resistance). Then
hy is, against chosen-text attack by an adversary without knowledge of the key k, (i) both
2nd-preimage resistant and collision resistant; and (ii) preimage resistant (with respect to
the hash-input).

Justification. For (i), note that computation-resistanceimplies hash-results should not even
be computable by those without secret key k. For (ii), by way of contradiction, assume
h were not preimage resistant. Then recovery of the preimage x for a randomly selected
hash-output y violates computation-resistance.

9.2.6 Other hash function properties and applications

Most unkeyed hash functions commonly found in practice were originally designed for the
purpose of providing data integrity (see §9.6), including digital fingerprinting of messages
in conjunction with digital signatures (§9.6.4). The magjority of these are, in fact, MDCs
designed to have preimage, 2nd-preimage, or collision resistance properties. Because one-
way functionsare afundamental cryptographic primitive, many of these MDCs, which typ-
ically exhibit behavior informally equated with one-wayness and randomness, have been
proposed for usein variousapplicationsdistinct from dataintegrity, including, as discussed
below:

1. confirmation of knowledge

2. key derivation

3. pseudorandom number generation

Hash functions used for confirmation of knowledge facilitate commitment to data values,
or demonstrate possession of data, without revealing such dataitself (until possibly alater
point in time); verification is possible by partiesin possession of the data. This resembles
the use of MACs where one also essentially demonstrates knowledge of a secret (but with
the demonstration bound to a specific message). The property of hash functions required
is preimage resistance (see also partial-preimage resistance below). Specific examplesin-
clude use in password verification using unencrypted password-image files (Chapter 10);
symmetric-key digital signatures (Chapter 11); key confirmation in authenticated key es-
tablishment protocols (Chapter 12); and document-dating or timestamping by hash-code
registration (Chapter 13).

In general, use of hash functionsfor purposes other than which they were originally de-
signed requires caution, as such applications may require additional properties (see below)
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9.22

these functions were not designed to provide; see Remark 9.22. Unkeyed hash functions
having properties associated with one-way functions have nonethel ess been proposed for a
wide range of applications, including as noted above:

o key derivation —to compute sequences of new keysfrom prior keys (Chapter 13). A
primary example is key derivation in point-of-sale (POS) terminals; here an impor-
tant requirement isthat the compromiseof currently activekeysmust not compromise
the security of previous transaction keys. A second exampleis in the generation of
one-time password sequences based on one-way functions (Chapter 10).

e pseudorandom number generation — to generate sequences of numbers which have
variouspropertiesof randomness. (A pseudorandom number generator can be used to
construct asymmetric-key block cipher, among other things.) Dueto the difficulty of
producing cryptographically strong pseudorandom numbers (see Chapter 5), MDCs
should not be used for this purpose unless the randomness requirements are clearly
understood, and the MDC is verified to satisfy these.

For the applicationsimmediately above, rather than hash functions, the cryptographicprim-
itivewhich is needed may be a pseudorandom function (or keyed pseudorandom function).

Remark (use of MDCs) Many MDCs used in practice may appear to satisfy additional
requirements beyond those for which they were originally designed. Nonetheless, the use
of arbitrary hash functions cannot be recommended for any applications without careful
analysis precisely identifying both the critical properties required by the application and
those provided by the function in question (cf. §9.5.2).

Additional properties of one-way hash functions

Additional properties of one-way hash functions called for by the above-mentioned appli-
cations include the following.

1. non-correlation. Input bits and output bits should not be correlated. Related to this,
an avalancheproperty similar to that of good block ciphersisdesirablewhereby every
input bit affects every output bit. (This rules out hash functions for which preimage
resistance fails to imply 2nd-preimage resistance simply due to the function effec-
tively ignoring a subset of input bits.)

2. near-collisionresistance. It should behard tofind any two inputsz, =’ such that h(z)
and h(z") differ in only a small number of bits.

3. partial-preimageresistance or local one-wayness. It should be as difficult to recover
any substring as to recover the entire input. Moreover, even if part of the input is
known, it should be difficult to find the remainder (e.g., if ¢ input bits remain un-
known, it should take on average 2!~ hash operationsto find these bits.)

Partial preimage resistanceis an implicit requirement in some of the proposed applications
of §9.5.2. One example where near-collision resistance is necessary is when only half of
the output bits of a hash function are used.

Many of these properties can be summarized as requirements that there be neither lo-
cal nor global statistical weaknesses; the hash function should not be weaker with respect
to some parts of its input or output than others, and all bits should be equally hard. Some
of these may be called certificational properties— properties which intuitively appear de-
sirable, although they cannot be shown to be directly necessary.
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9.3 Basic constructions and general results

9.3.1 General model for iterated hash functions

Most unkeyed hash functions h are designed as iterative processes which hash arbitrary-
length inputs by processing successive fixed-size blocks of theinput, asillustrated in Fig-
ure9.2.

(a) high-level view (b) detailed view

original input z

arbitrary length input hash function h

preprocessing

v
append padding bits

v
append length block

iterated
compression
function

fixed length
output

formatted
' inputz = z1x2 -+ - x4
optional output iterated processing
transformation .
compression
function f
v
output H;, .
= f
Hi Ho =1V
A4
H;
4
g

Y
output h(z) = g(Hz)

Figure 9.2: General model for an iterated hash function.

A hash input z of arbitrary finite length is divided into fixed-length r-bit blocks ;. This
preprocessing typically involves appending extra bits (padding) as necessary to attain an
overall bitlength which is a multiple of the blocklength r, and often includes (for security
reasons — e.g., see Algorithm 9.26) a block or partial block indicating the bitlength of the
unpadded input. Each block z; then serves asinput to an internal fixed-size hash function
£, the compression function of h, which computes anew intermediate result of bitlength n
for somefixed n, as afunction of the previous n-bit intermediate result and the next input
block x;. Letting H; denotethe partial result after stagei, the general processfor aniterated
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hash function with input z = z1z5 . . . ; can be modeled as follows:

H;_, serves as the n-bit chaining variable between stage: — 1 and stage 4, and Hy isa
pre-defined starting value or initializing value (1V). An optional output transformation g
(see Figure 9.2) isused in afinal step to map the n-bit chaining variable to an m-bit result
g(Hy); g isoften theidentity mapping g(H:) = H;.

Particular hash functions are distinguished by the nature of the preprocessing, com-
pression function, and output transformation.

9.3.2 General constructions and extensions

To begin, an example demonstrating an insecure constructionis given. Several secure gen-
eral constructions are then discussed.

9.23 Example (insecure trivial extension of OWHF to CRHF) In the case that an iterated
OWHF h yielding n-bit hash-values is not collision resistant (e.g., when a 2™/ birthday
collision attack is feasible — see §9.7.1) one might propose constructing from h a CRHF
using as output the concatenation of the last two n-bit chaining variables, so that a ¢-block
message has hash-value H;_ ||H; rather than H;. Thisis insecure as the final message
block z; can be held fixed along with H;, reducing the problem to finding a collision on
H,;_ for h. O

Extending compression functions to hash functions

Fact 9.24 states an important rel ationship between collision resi stant compression functions
and collision resistant hash functions. Not only can the former be extended to the latter, but
this can be done efficiently using Merkle's meta-method of Algorithm 9.25 (also called the
Merkle-Damgard construction). This reduces the problem of finding such a hash function
to that of finding such a compression function.

9.24 Fact (extending compression functions) Any compression function f which is collision
resistant can be extended to a collision resistant hash function  (taking arbitrary length
inputs).

9.25 Algorithm Merkle’s meta-method for hashing

INPUT: compression function f which is collision resistant.
OUTPUT: unkeyed hash function h which is collision resistant.

1. Suppose f maps (n + r)-bit inputsto n-bit outputs (for concreteness, consider n =
128 and r = 512). Construct a hash function h from f, yielding n-bit hash-values,
asfollows.

2. Break aninput z of bitlength b into blocks z; 25 . . . z; each of bitlength r, padding
out the last block z; with O-bitsif necessary.

3. Define an extrafinal block x:. 1, the length-block, to hold the right-justified binary
representation of b (presumethat b < 27).

4. Letting 07 represent the bitstring of j O's, define the n-bit hash-value of z to be
h(l‘) = Ht+1 = f(Ht || 1‘t+1) Computed from:

Hy=0m H,=f(Hi—1||z;), 1<i<t+1
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9.26

9.27

The proof that the resulting function 4 is collision resistant follows by a smple argu-
ment that a collision for h would imply a collision for f for some stage :. Theinclusion of
the length-block, which effectively encodes all messages such that no encoded input is the
tail end of any other encoded input, is necessary for this reasoning. Adding such alength-
block is sometimes called Merkle-Damgard strengthening (MD-strengthening), which is
now stated separately for future reference.

Algorithm MD-strengthening

Before hashing amessage © = z12- . .. x4 (Where x; isablock of bitlength » appropriate
for the relevant compression function) of bitlength b, append a final length-block, x4 1,
containing the (say) right-justified binary representation of . (Thispresumesb < 27.)

Cascading hash functions

Fact (cascading hash functions) If either hy or hs is a collision resistant hash function,
then h(z) = h1(z) || he(x) isacollision resistant hash function.

If both h; and hs in Fact 9.27 are n-bit hash functions, then h produces 2n-bit out-
puts; mapping this back down to an n-bit output by an n-bit collision-resistant hash func-
tion (hy and ho are candidates) would leave the overall mapping collision-resistant. If iy
and h» are independent, then finding a collision for A requires finding a collision for both
simultaneoudly (i.e., on the sameinput), which one could hopewould requirethe product of
the effortsto attack them individually. This provides a simple yet powerful way to (almost
surely) increase strength using only available components.

9.3.3 Formatting and initialization details

9.28

9.29

Note (datarepresentation) As hash-values depend on exact bitstrings, different data rep-
resentations(e.g., ASCII vs. EBCDIC) must be converted to acommon format before com-
puting hash-values.

() Padding and length-blocks

For block-by-block hashing methods, extra bits are usually appended to a hash input string
before hashing, to pad it out to a number of bits which make it a multiple of the relevant
block size. The padding bits need not betransmitted/stored themselves, provided the sender
and recipient agree on a convention.

Algorithm Padding Method 1

INPUT: data z; bitlength n giving blocksize of datainput to processing stage.
OUTPUT: padded data z’, with bitlength a multiple of n.

1. Append to z as few (possibly zero) 0-bits as necessary to obtain a string =’ whose
bitlength is amultiple of n.

9.30 Algorithm Padding Method 2

INPUT: data x; bitlength n giving blocksize of datainput to processing stage.
OUTPUT: padded data z’, with bitlength a multiple of n.

1. Append to z asingle 1-bit.
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9.31

9.32

2. Then append as few (possibly zero) 0-bits as necessary to obtain a string =’ whose
bitlength is a multiple of n.

Remark (ambiguous padding) Padding Method 1 is ambiguous — trailing O-bits of the
original data cannot be distinguished from those added during padding. Such methods are
acceptable if the length of the data (before padding) is known by the recipient by other
means. Padding Method 2 is not ambiguous— each padded string =’ correspondsto aunique
unpadded string . When the bitlength of the origina data = is aready a multiple of n,
Padding Method 2 resultsin the creation of an extra block.

Remark (appended length blocks) Appending a logical length-block prior to hashing
prevents collision and pseudo-collision attacks which find second messages of different
length, including trivial collisions for random IVs (Example 9.96), long-message attacks
(Fact 9.37), and fixed-point attacks (page 374). This further justifies the use of MD-
strengthening (Algorithm 9.26).

Trailing length-blocks and padding are often combined. For Padding Method 2, alen-
gthfield of pre-specified bitlength w may replacethefinal w 0-bits paddedif padding would
otherwise cause w or more redundant such bits. By pre-agreed convention, the length field
typically specifiesthe bitlength of the original message. (If used instead to specify the num-
ber of padding bits appended, deletion of leading blocks cannot be detected.)

(i) Vs

Whether the |V isfixed, israndomly chosen per hash function computation, or isafunction
of thedatainput, the same |V must be used to generateand verify ahash-value. If not known
apriori by theverifier, it must betransferred along with the message. Inthelatter case, this
generally should be done with guaranteed integrity (to cut down on the degree of freedom

afforded to adversaries, in linewith the principlethat hash functions should be defined with
afixed or asmall set of alowable IVs).

9.3.4 Security objectives and basic attacks

Asaframework for evaluating the computational security of hash functions, the objectives
of both the hash function designer and an adversary should be understood. Based on Defi-
nitions 9.3, 9.4, and 9.7, these are summarized in Table 9.2, and discussed below.

| Hashtype | Design goal | Ideal strength | Adversary’sgoal |
OWHF preimage resistance; 2" produce preimage;
2nd-preimage resistance 2" find 2nd input, same image
CRHF collision resistance on/2 produce any collision
MAC key non-recovery; 2t deduce MAC key;
computation resistance | Py = max(2~%,27") | produce new (msg, MAC)

Table 9.2: Design objectives for n-bit hash functions (¢-bit MAC key). P; denotes the probability
of forgery by correctly guessing a MAC.

Given a specific hash function, it is desirableto be ableto prove alower bound on the com-
plexity of attacking it under specified scenarios, with asfew or weak aset of assumptionsas
possible. However, such resultsare scarce. Typically the best guidance available regarding
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9.33

9.34

the security of a particular hash function isthe complexity of the (most efficient) applicable
known attack, which gives an upper bound on security. An attack of complexity 2t is one
which requires approximately 2¢ operations, each being an appropriate unit of work (e.g.,
one execution of the compression function or one encryption of an underlying cipher). The
storage complexity of an attack (i.e., storage required) should also be considered.

(i) Attacks on the bitsize of an MDC

Given afixed message x with n-bit hash h(z), anaive method for finding an input colliding
with z isto pick arandom bitstring 2’ (of bounded bitlength) and check if h(z') = h(z).
The cost may be as little as one compression function evaluation, and memory is negligi-
ble. Assuming the hash-code approximates a uniform random variable, the probability of a
matchis2~™. Theimplication of thisis Fact 9.33, which also indicates the effort required
to find collisions if x may itself be chosen freely. Definition 9.34 is motivated by the de-
sign goa that the best possible attack should require no less than such levels of effort, i.e.,
essentially brute force.

Fact (basic hash attacks) For an n-bit hash function &, one may expect a guessing attack
to find apreimage or second preimage within 2" hashing operations. For an adversary able
to choose messages, a birthday attack (see §9.7.1) allows colliding pairs of messages x, z’
with h(z) = h(z') to befound in about 2"/2 operations, and negligible memory.

Definition An n-bit unkeyed hash function has ideal security if both: (1) given a hash
output, producing each of a preimage and a 2nd-preimage requires approximately 2™ oper-
ations; and (2) producing a collision requires approximately 2™/2 operations.

(ii) Attacks on the MAC key space

An attempt may be made to determine a MAC key using exhaustive search. With a sin-
gle known text-MAC pair, an attacker may compute the n-bit MAC on that text under all
possible keys, and then check which of the computed MA C-values agrees with that of the
known pair. For at-bit key spacethisrequires2! MAC operations, after which one expects
1+ 2t~ candidate keys remain. Assuming the MAC behaves as arandom mapping, it can
be shown that one can expect to reducethisto auniquekey by testing the candidate keysus-
ingjust over t/n text-MAC pairs. Ideally, aMAC key (or information of cryptographically
equivalent value) would not be recoverablein fewer than 2t operations.

As a probabilistic attack on the MAC key space distinct from key recovery, note that
for at-hit key and afixed input, a randomly guessed key will yield a correct (n-bit) MAC
with probability ~ 27t for t < n.

(iii) Attacks on the bitsize of a MAC

MAC forgery involves producing any input  and the corresponding correct MA C without
having obtained the latter from anyone with knowledge of the key. For an n-bit MAC al-
gorithm, either guessingaMAC for agiven input, or guessing apreimagefor agiven MAC
output, has probability of success about 2~™, asfor an MDC. A difference here, however,
is that guessed MAC-values cannot be verified off-line without known text-MAC pairs —
either knowledge of the key, or a“black-box” which providesMACsfor given inputs (i.e.,
achosen-text scenario) isrequired. Sincerecoveringthe MAC key trivialy allowsforgery,
an attack on the ¢-bit key space (see above) must be also be considered here. Ideally, an ad-
versary would be unable to produce new (correct) text-MAC pairs (z, y) with probability
significantly better than max(2~*,27™), i.e,, the better of guessing akey or aMAC-value.
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9.35

9.36

9.37

9.38

(iv) Attacks using precomputations, multiple targets, and long messages

Remark (precomputation of hash values) For both preimage and second preimage attacks,
an opponent who precomputesalarge number of hash function input-output pairsmay trade
off precomputation plus storage for subsequent attack time. For example, for a 64-bit hash
value, if onerandomly selects 240 inputs, then computestheir hash val ues and stores (hash
value, input) pairs indexed by hash value, this precomputation of O(2°) time and space
allows an adversary to increase the probability of finding a preimage (per one subsequent
hash function computation) from 254 to 224, Similarly, the probability of finding a sec-
ond preimage increases to r times its original value (when no stored pairs are known) if r
input-output pairs of a OWHF are precomputed and tabul ated.

Remark (effect of parallel targetsfor OWHFs) In abasic attack, an adversary seeks a sec-
ond preimagefor onefixed target (theimage computed from afirst preimage). If therearer
targetsand the goal isto find a second preimagefor any one of these r, then the probability
of successincreasesto r timesthe original probability. Oneimplication isthat when using
hash functionsin conjunction with keyed primitives such asdigital signatures, repeated use
of the keyed primitive may weaken the security of the combined mechanism in the follow-
ing sense. If r signed messages are available, the probability of a hash collision increases
r-fold (cf. Remark 9.35), and colliding messages yield equivalent signatures, which an op-
ponent could not itself compute off-line.

Fact 9.37 reflectsarelated attack strategy of potential concern when using iterated hash
functions on long messages.

Fact (long-messageattack for 2nd-preimage) Let h be aniterated n-bit hash function with
compression function f (asin equation (9.1), without MD-strengthening). Let = be ames-
sage consisting of ¢ blocks. Then a2nd-preimagefor h(x) can befoundintime (27 /s) + s
operationsof f, andin spacen(s+lg(s)) bits, forany s intherange1 < s < min(t, 2"/?).

Justification. Theideaisto use abirthday attack on the intermediate hash-results; a sketch
for the choice s = ¢ follows. Compute h(z), storing (H;, ¢) for each of the ¢ intermediate
hash-results H; correspondingto thet input blocks z; in atable such that they may be later
indexed by value. Compute h(z) for random choices z, checking for a collision involving
h(z) in thetable, until oneis found; approximately 2™ /s values z will be required, by the
birthday paradox. Identify theindex j from thetable responsiblefor the collision; theinput
2xj41T542 - - - T+ then collides with z.

Note (implication of long messages) Fact 9.37 implies that for “long” messages, a 2nd-
preimageis generally easier to find than a preimage (the | atter takes at most 2™ operations),
becoming moreso with the length of z. For ¢ > 2"/2, computation is minimized by choos-
ing s = 2"/2 in which case a 2nd-preimage costs about 2"/ executions of f (comparable
to the difficulty of finding a collision).

9.3.5 Bitsizes required for practical security

Supposethat a hash function producesn-bit hash-values, and asarepresentative benchmark
assumethat 28° (but not fewer) operationsis acceptably beyond computational feasibility.?
Then the following statements may be made regarding .

2Circa 1996, 240 simple operations is quite feasible, and 256 is considered quite reachable by those with suf-
ficient motivation (possibly using parallelization or customized machines).
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1. For aOWHF, n > 80 isrequired. Exhaustive off-line attacks require at most 2"
operations; this may be reduced with precomputation (Remark 9.35).

2. For aCRHF, n > 160 isrequired. Birthday attacks are applicable (Fact 9.33).

3. For aMAC, n > 64 along with aMAC key of 64-80 bitsis sufficient for most ap-
plications and environments (cf. Table 9.1). If asingle MAC key remains in use,
off-line attacks may be possible given one or more text-MAC pairs; but for a proper
MAC algorithm, preimage and 2nd-preimage resistance (as well as collision resis-
tance) should follow directly from lack of knowledge of the key, and thus security
with respect to such attacks should depend on the keysize rather than n. For attacks
requiring on-line queries, additional controlsmay be used to limit the number of such
queries, constrain the format of MAC inputs, or prevent disclosure of MAC outputs
for random (chosen-text) inputs. Given special controls, valuesassmall asn = 32 or
40 may be acceptable; but caution is advised, since even with one-time MAC keys,
the chance any randomly guessed MAC being correctis2~", and therelevant factors
are the total number of trials a system is subject to over its lifetime, and the conse-
guences of asingle successful forgery.

These guidelines may be relaxed somewhat if alower threshold of computational infeasi-
bility isassumed (e.g., 264 instead of 28°). However, an additional considerationto betaken
into account is that for both a CRHF and a OWHF, not only can off-line attacks be carried
out, but these can typically be parallelized. Key search attacks against MACs may also be
parallelized.

9.4 Unkeyed hash functions (MDCs)

A move from general properties and constructions to specific hash functionsis now made,
and in this section the subclass of unkeyed hash functions known as modification detection
codes (MDCs) is considered. From astructural viewpoint, these may be categorized based
on the nature of the operations comprising their internal compression functions. From this
viewpoint, the three broadest categories of iterated hash functions studied to date are hash
functions based on block ciphers, customized hash functions, and hash functions based on
modular arithmetic. Customized hash functionsarethose designed specifically for hashing,
with speed in mind and independent of other system subcomponents (e.g., block cipher or
modular multiplication subcomponentswhich may already be present for non-hashing pur-
pOSes).

Table 9.3 summarizes the conjectured security of a subset of the MDCs subsequently
discussed in this section. Similar to the case of block ciphersfor encryption (e.g. 8- or 12-
round DES vs. 16-round DES), security of MDCs often comes at the expense of speed, and
tradeoffsaretypically made. Inthe particular case of block-cipher-based MDCs, aprovably
secure scheme of Merkle (see page 378) with rate 0.276 (see Definition 9.40) is known but
little-used, while MDC-2 iswidely believed to be (but not provably) secure, hasrate = 0.5,
and receives much greater attention in practice.

9.4.1 Hash functions based on block ciphers

A practical motivation for constructing hash functionsfrom block ciphersisthat if an effi-
cient implementation of ablock cipher is already available within a system (either in hard-
ware or software), then using it as the central component for a hash function may provide
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9.39

| {Hash function | n | m | Preimage | Collison | Comments |
Matyas-Meyer-Oseas® | n | n on 2n/2 | for keylength = n
MDC-2 (withDES)® | 64 | 128 | 2-282 2.2% | rae0.5
MDC-4 (with DES) 64 | 128 2109 4-.2%% | rate0.25
Merkle (with DES) 106 | 128 | 212 256 rate 0.276
MD4 512 | 128 2128 220 Remark 9.50
MD5 512 | 128 2128 264 Remark 9.52
RIPEMD-128 512 | 128 2128 264 -
SHA-1, RIPEMD-160 | 512 | 160 2160 280 -

“The same strength is conjectured for Davies-Meyer and Miyaguchi-Preneel hash functions.
bStrength could be increased using a cipher with keylength equal to cipher blocklength.

Table 9.3: Upper bounds on strength of selected hash functions. n-bit message blocks are processed
to produce m-hit hash-values. Number of cipher or compression function operations currently be-
lieved necessary to find preimages and collisions are specified, assuming no underlying weaknesses
for block ciphers (figures for MDC-2 and MDC-4 account for DES complementation and weak key
properties). Regarding rate, see Definition 9.40.

the latter functionality at little additional cost. The (not always well-founded) hope is that
agood block cipher may serve as a building block for the creation of a hash function with
properties suitable for various applications.

Constructionsfor hash functions have been given which are “ provably secure” assum-
ing certain ideal properties of the underlying block cipher. However, block ciphers do
not possess the properties of random functions (for example, they are invertible — see Re-
mark 9.14). Moreover, in practice block ciphers typically exhibit additional regularities
or weaknesses (see §9.7.4). For example, for a block cipher E, double encryption using
an encrypt-decrypt (E-D) cascade with keys K, K resultsin the identity mapping when
K, = K. In summary, while various necessary conditions are known, it is unclear ex-
actly what requirements of ablock cipher are sufficient to construct a secure hash function,
and properties adequate for a block cipher (e.g., resistance to chosen-text attack) may not
guarantee a good hash function.

In the constructions which follow, Definition 9.39 is used.

Definition An (n,r) block cipher is a block cipher defining an invertible function from
n-bit plaintexts to n-bit ciphertexts using an r-bit key. If E is such acipher, then E (z)
denotes the encryption of z under key k.

Discussion of hash functions constructed from n-bit block ciphersis divided between
those producing single-length (n-bit) and double-length (2n-bit) hash-values, where single
and double are relative to the size of the block cipher output. Under the assumption that
computationsof 264 operationsareinfeasible,® the objective of single-length hash functions
is to provide a OWHF for ciphers of blocklength near n = 64, or to provide CRHFs for
cipher blocklengthsnear n = 128. The motivation for double-length hash functionsis that
many n-bit block ciphersexist of size approximately n = 64, and single-length hash-codes
of thissize are not collision resistant. For such ciphers, the goal is to obtain hash-codes of
bitlength 2n which are CRHFs.

In the simplest case, the size of the key used in such hash functions is approximately
the same as the blocklength of the cipher (i.e., n bits). In other cases, hash functions use

3The discussion here is easily atered for a more conservative bound, e.g., 28° operations as used in §9.3.5.
Here 264 is more convenient for discussion, due to the omnipresence of 64-bit block ciphers.
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larger (e.g., double-length) keys. Another characteristic to be noted in such hash functions
is the number of block cipher operations required to produce a hash output of blocklength
equal to that of the cipher, motivating the following definition.

9.40 Definition Let h be an iterated hash function constructed from a block cipher, with com-

pression function f which performs s block encryptions to process each successive n-hit
message block. Thentherateof his1/s.

The hash functionsdiscussed in this section are summarized in Table 9.4. The Matyas-
Meyer-Oseas and MDC-2 agorithms are the basis, respectively, of the two generic hash
functionsin 1SO standard 10118-2, each allowing use of any n-bit block cipher £ and pro-
viding hash-codes of bitlength m < n and m < 2n, respectively.

| Hash function | (n,k,m) | Rate]
Matyas-Meyer-Oseas (n,k,n) 1
Davies-Meyer (n,k,n) k/n
Miyaguchi-Preneel (n,k,n) 1
MDC-2 (with DES) | (64,56,128) | 1/2
MDC-4 (with DES) | (64,56,128) | 1/4

Table 9.4: Summary of selected hash functions based on n-bit block ciphers. & = key bitsize (ap-
proximate); function yields m-bit hash-values.

(i) Single-length MDCs of rate 1

The first three schemes described below, and illustrated in Figure 9.3, are closely related
single-length hash functions based on block ciphers. These make use of the following pre-
defined components:

1. ageneric n-bit block cipher Ex parametrized by a symmetric key K;

2. afunction g which maps n-bit inputsto keys K suitablefor E (if keysfor E arealso
of length n, g might be the identity function); and

3. afixed (usually n-bit) initial value I'V, suitable for use with .

Matyas-Meyer-Oseas Davies-Meyer Miyaguchi-Preneel

T; H; T;

=
|
.

H; 4 Z;
—»E—Ni E —>e F

) 4 ) 4 ) 4
M DN » N
2 L %

A\ A\ A\
H; H; H;

Figure 9.3: Three single-length, rate-one MDCs based on block ciphers.
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9.41

9.42

9.43

9.44

9.45

Algorithm Matyas-Meyer-Oseas hash

INPUT: bitstring x.
OUTPUT: n-bit hash-code of .

1. Input z isdivided into n-bit blocks and padded, if necessary, to complete last block.
Denote the padded message consisting of ¢ n-bit blocks: zix5 . .. z;. A constant n-
bit initial value IV must be pre-specified.

2. Theoutputis H; defined by: Ho = IV; H; = Egp, (%)@, 1 <i <t

Algorithm Davies-Meyer hash

INPUT: bitstring z.
OUTPUT: n-bit hash-code of .

1. Input z isdivided into k-bit blocks where k isthe keysize, and padded, if necessary,
to completelast block. Denotethe padded message consisting of ¢ k-bit blocks: x1x2
. x+. A constant n-bit initial value IV must be pre-specified.
2. Theoutput iSHt defined by Hy=1V;, H; = Eﬁfi (Hi—l)@H'i—la 1< <t

Algorithm Miyaguchi-Preneel hash

Thisschemeisidentical to that of Algorithm 9.41, except the output H; _, fromtheprevious
stage is also XORed to that of the current stage. More precisely, H; isredefinedas: Hy =
IV: H; = Eg(Hi,l)(xi)@xi@Hi—la 1< <t.

Remark (dual schemes) The Davies-Meyer hash may be viewed asthe *dual’ of the Mat-
yas-Meyer-Oseas hash, in the sense that «; and H;_; play reversed roles. When DES is
used as the block cipher in Davies-Meyer, the input is processed in 56-bit blocks (yield-
ing rate 56/64 < 1), whereas Matyas-Meyer-Oseas and Miyaguchi-Preneel process 64-bit
blocks.

Remark (black-box security) Aside from heuristic arguments as given in Example 9.13,
it appearsthat al three of Algorithms 9.41, 9.42, and 9.43 yield hash functions which are
provably secure under an appropriate” black-box” model (e.g., assuming E hastherequired
randomness properties, and that attacks may not make use of any special propertiesor in-
ternal details of E). “Secure” here means that finding preimages and collisions (in fact,
pseudo-preimages and pseudo-collisions — see §9.7.2) require on the order of 2" and 27/2
n-bit block cipher operations, respectively. Dueto their single-length nature, none of these
threeiscollision resistant for underlying ciphersof relatively small blocklength (e.g., DES,
which yields 64-bit hash-codes).

Several double-length hash functions based on block ciphers are considered next.

(i) Double-length MDCs: MDC-2 and MDC-4

MDC-2 and M DC-4 are mani pul ation detection codesrequiring 2 and 4, respectively, block
cipher operationsper block of hash input. They employ acombination of either 2 or 4 itera-
tions of the Matyas-Meyer-Oseas (single-length) scheme to produce a double-length hash.
When used as originally specified, using DES as the underlying block cipher, they produce
128-bit hash-codes. The genera construction, however, can be used with other block ci-
phers. MDC-2 and MDC-4 make use of the following pre-specified components:
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1. DESastheblock cipher Ex of bitlength n = 64 parameterized by a 56-bit key K;
2. two functions g and g which map 64-bit values U to suitable 56-bit DES keys asfol-
lows. For U = ujus ... ugs, delete every eighth bit starting with ug, and set the 2nd
and 3rd bitsto ‘10’ for g, and ‘01’ for g:
g(U) = Uz 10 UgU5UsUTUIULQ - - - UGS -
g(U) = Uz 01 UgU5UsUTUIUTLQ - - - UGS -
(The resulting values are guaranteed not to be weak or semi-weak DES keys, as all
such keyshavehit 2 = plvt 3; see page 375. Also, this guaranteesthe security require-
ment that g(IV') # g(IV).)
MDC-2 is specified in Algorithm 9.46 and illustrated in Figure 9.4.

X;
inl i in2
in3 Y \ ina
H; 1 » g —>+ E E +<— g = I/{:
Y Y
M e a)
o= LN
Y \
A|B C| D
‘ l
Y v ¥ i
A|D C| B
outl out2
Y \
H; H;

Figure 9.4: Compression function of MDC-2 hash function. E = DES

9.46 Algorithm MDC-2 hash function (DES-based)

INPUT: string = of bitlength » = 64¢ for ¢t > 2.
OUTPUT: 128-hit hash-code of x.

1. Partition x into 64-bit blocks z;: = z12> . . . zs.

2. Choose the 64-bit non-secret constants IV, IV (the same constants must be used for
MDC verification) from a set of recommended prescribed values. A default set of
prescribed values is (in hexadecimal): IV = 0x5252525252525252, [V =
0x2525252525252525.

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.



§9.4 Unkeyed hash functions (MDCs) 343

3. Let || denote concatenation, and CF, CF the left and right 32-bit halves of C;. The
outputis h(x) = H; || H: defined asfollows (for 1 < i < ¢):

R
H() = IV; kl = g(Hi—l); Cz = Ek,; (J?Z)@J?“ Hi = C,LL || Cl
~ ~ ~ — — ~  —~L
Hy=1V; k; = ng(Hifl); C; = El:, (a:i)@mi; H;, =C; || CiR .

In Algorithm 9.46, padding may be necessary to meet the bitlength constraint on the
input . In this case, an unambiguous padding method may be used (see Remark 9.31),
possibly including M D-strengthening (see Remark 9.32).

MDC-4 (see Algorithm 9.47 and Figure 9.5) is constructed using the MDC-2 compres-
sion function. Oneiteration of the M DC-4 compression function consists of two sequential
executions of the MDC-2 compression function, where:

1. the two 64-bit data inputs to the firss MDC-2 compression are both the same next
64-bit message block;

2. thekeysfor thefirst MDC-2 compression are derived from the outputs (chaining vari-
ables) of the previousMDC-4 compression;

3. the keysfor the second MDC-2 compression are derived from the outputs (chaining
variables) of the first MDC-2 compression; and

4. thetwo 64-hit datainputsfor the second MDC-2 compression are the outputs (chain-
ing variables) from the opposite sides of the previous MDC-4 compression.

9.47 Algorithm MDC-4 hash function (DES-based)

INPUT: string x of bitlength » = 64¢ for ¢ > 2. (See MDC-2 above regarding padding.)
OUTPUT: 128-hit hash-code of z.
1. Asinstep 1 of MDC-2 above.
2. Asin step 2 of MDC-2 above.
3. With notation asin MDC-2, the output is h(z) = G || G, defined as follows (for
1<i<t):

Go=1V; a?) = ﬁ/;
ki =g(Gi—1);  Ci= Ey,(z:)®z;; Hy=C} || G
F=3Ga);  C=Eg@es; H=0C | G~
ji=g(H); Di=FE; (G 1)&G1; Gi=DF| Di
Ji=g(H;); D= E7 (Gi-1)®Gi-1; Gi= EL | D"

9.4.2 Customized hash functions based on MD4

Customized hash functions are those which are specifically designed “from scratch” for the
explicit purpose of hashing, with optimized performancein mind, and without being con-
strained to reusing existing system componentssuch asblock ciphersor modular arithmetic.
Thosehaving received the greatest attention in practice are based onthe M D4 hash function.

Number 4 in a series of hash functions (Message Digest algorithms), MD4 was de-
signed specifically for softwareimplementation on 32-bit machines. Security concernsmo-
tivated the design of MD5 shortly thereafter, as a more conservative variation of MDA4.
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9.48

Ii
in1¥ Yin2
Gi1 in3 in4 Git
- = MDC-2 compression function —
outl |H, H, |out2
G Gl
inly Yy in2
in3 in4
= MDC-2 compression function [
outl out2
Y Y
Gi G;

Figure 9.5: Compression function of MDC-4 hash function

Other important subsequent variantsinclude the Secure Hash Algorithm (SHA-1), the hash
function RIPEMD, and its strengthened variants RIPEM D-128 and RIPEMD-160. Param-
eters for these hash functions are summarized in Table 9.5. “Rounds x Steps per round”
refersto operationsperformed on input blocks within the corresponding compression func-
tion. Table 9.6 specifies test vectors for a subset of these hash functions.

Notation for description of MD4-family algorithms

Table 9.7 defines the notation for the description of MD4-family algorithms described be-
low. Note 9.48 addresses the implementation issue of converting strings of bytesto words
in an unambiguous manner.

Note (little-endian vs. big-endian) For interoperable implementations involving byte-to-
word conversionson different processors(e.g., converting between 32-bit wordsand groups
of four 8-bit bytes), an unambiguous convention must be specified. Consider a stream of
bytes B; with increasing memory addresses ¢, to be interpreted as a 32-bit word with nu-
merical value W. In little-endian architectures, the byte with the lowest memory address
(B,) is the least significant byte: W = 224B, + 26B3 + 28B, + B;. In big-endian
architectures, the byte with the lowest address (B;) is the most significant byte: W =
22431 + 21632 + 2833 + By.

(i) MD4
MD4 (Algorithm 9.49) is a 128-hit hash function. The original MD4 design goals were

that breaking it should require roughly brute-force effort: finding distinct messages with
the same hash-value should take about 264 operations, and finding a message yielding a
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| Name | Bitlength | Rounds x Steps per round | Relative speed |
MD4 128 3x16 1.00
MD5 128 4x 16 0.68
RIPEMD-128 128 4 % 16 twice (in paralle) 0.39
SHA-1 160 4 x 20 0.28
RIPEMD-160 160 5 x 16 twice (in paralld) 0.24
Table 9.5: Summary of selected hash functions based on MDA4.
| Name | String | Hash value (as ahex byte string)
MD4 o 31d6¢fe0d16ae931b73c59d7e0c089c0
“a bde52ch31de33e46245e05fbdbd6fb24
“abc” 44801 7aaf 21d8525fc10ae87aa6729d
“abcdefghijklmnopgrstuvwxyz” | d79elc308aabbbedecaled63df412da9
MD5 o d41d8cd98f00b204€9800998ecf8427e
‘a’ 0ccl75b9c0f 1b6a831¢399e269772661
“abc” 900150983cd24fb0d6963f 7028617 72
“abcdefghijklmnopgrstuvwxyz” | ¢3fcd3d76192e4007dfb496ccab7el3b
SHA-1 dal39a3ee5e6b4b0d3255bf ef 95601890af 80709
‘a’ 86f 7e437faabarfcel5d1ddch9eacaca377667b8
“abc” a9993e364706816aba3e25717850c26¢9cd0d89d
“abcdefghijkimnopgrstuvwxyz” | 32d10c7b8cf96570cal4ce37f2a19d84240d3a39
RIPEMD-160 | “” 9c1185a5¢5e9fc54612808977ee8f54802258d31
“a Obdc9d2d256b3ec9daae347he6f4dc835a467ffe
“abc” 8eb208f 7e05d987a9b044a8e98c60b087f 15a0bfc
“abcdefghijklmnopgrstuvwxyz” | £71c27109¢692c1b56bbdceb5h9d2865b3708dbe
Table 9.6: Test vectors for selected hash functions.
| Notation | Meaning
Uy U, W variables representing 32-bit quantities
0x67452301 hexadecimal 32-hit integer (least significant byte: 01)
+ addition modulo 232
u bitwise complement
U< 8 result of rotating « |eft through s positions
uv bitwise AND
uV v bitwise inclusive-OR
udv bitwise exclusive-OR
flu,v,w) uv V Tw
g(u, v, w) uv V uw V ow
h(u, v, w) udvdw
(X1,...,X;) « | smultaneousassignments (X; < Y;),
(Y1,...,Y)) where (Y7, ... ,Y;) isevaluated prior to any assignments
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pre-specified hash-val ue about 2128 operations. It isnow known that M D4 failsto meet this
goal (Remark 9.50). Nonetheless, afull description of MD4 isincluded as Algorithm 9.49
for historical and cryptanalytic reference. It also serves as a convenient reference for de-
scribing, and allowing comparisons between, other hash functionsin this family.

9.49 Algorithm MD4 hash function

INPUT: bitstring « of arbitrary bitlength b > 0. (For notation see Table 9.7.)
OUTPUT: 128-hit hash-code of z. (See Table 9.6 for test vectors.)

1. Définition of constants. Define four 32-bit initial chaining values (1Vs):
hi = 0x67452301, h, = Oxefcdab89, h; = 0x98badcfe, hy = 0x10325476.
Define additive 32-bit constants:
yl[j] =0,0 < j <15
y[7] = 0x5a827999, 16 < j < 31; (constant = square-root of 2)

y[j] = Ox6ed9ebal, 32 < j < 47; (constant = square-root of 3)

Define order for accessing source words (each list contains O through 15):
2[0..15] = [0,1,2,3,4,5,6,7,8,9,10,11,12,13, 14, 15],

2[16..31] = [0,4,8,12,1,5,9,13,2,6, 10, 14,3, 7,11, 15],

2[32..47] = [0,8,4,12,2,10,6,14,1,9,5,13,3,11,7, 15].

Finally define the number of bit positions for left shifts (rotates):

s[0..15] = [3,7,11,19,3,7,11,19,3,7,11,19,3,7,11,19),

s[16..31] = [3,5,9,13,3,5,9,13,3,5,9,13,3,5,9,13],

s[32..47] = [3,9,11,15,3,9,11,15,3,9,11,15,3,9,11, 15].

2. Preprocessing. Pad x such that its bitlength isamultiple of 512, asfollows. Append
asingle 1-bit, then append r — 1 (> 0) 0-bitsfor the smallest r resulting in abitlength
64 lessthan amultiple of 512. Finally append the 64-bit representation of b mod 24,
astwo 32-hit wordswith least significant word first. (Regarding converting between
streams of bytesand 32-bit words, the conventionislittle-endian; see Note 9.48.) Let
m be the number of 512-bit blocks in the resulting string (b + r + 64 = 512m =
32 -16m). Theformatted input consists of 16m 32-bit words. zgx; .. . T16m—1. INi-
tialize: (Hl, HQ, H3, H4) < (hl, hg, h3, h4)

3. Processing. For each i from 0 to m — 1, copy the i*® block of 16 32-bit words into
temporary storage: X[j] < z16i+j, 0 < j < 15, then process these as below in
three 16-step rounds before updating the chaining variables:

(initializeworking variables) (A, B, C, D) < (Hy, Ho, Hs, Hy).

(Round 1) For j from 0 to 15 do the following:

t < (A+ f(B,C, D)+ X[z[§]] + v[5]), (4, B,C, D) < (D,t < s[j], B, C).
(Round 2) For j from 16 to 31 do the following:

t < (A+g(B,C,D)+ X[z[5]] + ylJ]), (4, B,C, D) + (D,t < s[j]), B, C).
(Round 3) For j from 32 to 47 do the following:

t « (A+h(B,C,D)+ X[z[j]] + ylj]). (4, B,C, D) « (D,t < s[j]), B,C).
(update chaining values) (Hy, Ho, Hs, Hy) + (H1+ A, Ho+ B, H3+C, Hy+ D).

4. Completion. Thefinal hash-valueis the concatenation: H. || Hx||Hs||Hy
(with first and last bytesthe low- and high-order bytes of Hy, H,, respectively).

9.50 Remark (MDA4 collisions) Collisions have been found for MD4 in 22° compression func-
tion computations (cf. Table 9.3). For thisreason, MD4 is no longer recommended for use
as a collision-resistant hash function. While its utility as a one-way function has not been
studied in light of this result, it is prudent to expect a preimage attack on MD4 requiring
fewer than 2128 operationswill be found.
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(i) MD5
MD5 (Algorithm 9.51) wasdesigned as astrengthened version of MD4, prior to actual MD4
collisions being found. It has enjoyed widespread use in practice. It has also now been
found to have weaknesses (Remark 9.52).

The changes made to obtain MD5 from MD4 are as follows:

ok wDNPE

IS

addition of afourth round of 16 steps, and a Round 4 function

replacement of the Round 2 function by anew function

maodification of the access order for message wordsin Rounds 2 and 3

maodification of the shift amounts (such that shifts differ in distinct rounds)

use of unique additive constantsin each of the4 x 16 steps, based on the integer part
of 232 . sin(4) for step j (requiring overall, 256 bytes of storage)

addition of output from the previous step into each of the 64 steps.

9.51 Algorithm MD5 hash function

INPUT: bitstring « of arbitrary bitlength b > 0. (For notation, see Table 9.7.)
OUTPUT: 128-hit hash-code of z. (See Table 9.6 for test vectors.)

w

MD?5 is obtained from MD4 by making the following changes.
1

Notation. Replace the Round 2 function by: g(u, v, w) ©f v .

Define a Round 4 function: &(u, v, w) L (u V w).

Definition of constants. Redefine unique additive constants:

y[4] = first 32 bits of binary valueabs(sin(j+ 1)), 0 < j < 63, wherej isin radians
and “abs’ denotes absolute value. Redefine access order for wordsin Rounds 2 and
3, and define for Round 4:

2[16..31] = [1,6,11,0,5,10,15,4,9, 14,3, 8,13,2,7,12],

2[32..47) = [5,8,11,14,1,4,7,10,13,0,3,6,9,12, 15, 2],

2[48..63] = [0,7,14,5,12,3,10,1,8,15,6,13,4,11,2,9].

Redefine number of bit positions for left shifts (rotates):

s[0..15] = [7,12,17,22,7,12,17,22,7,12,17,22,7,12,17, 22],

s[16..31] = [5,9,14,20, 5,9, 14,20,5,9, 14,20, 5,9, 14, 20],

5[32..47] = [4,11,16,23,4,11,16, 23,4, 11,16, 23,4, 11, 16, 23],

s[48..63] = [6,10, 15,21, 6,10, 15,21, 6,10, 15,21, 6,10, 15, 21].

Preprocessing. Asin MD4.

Processing. In each of Rounds 1, 2, and 3, replace“B « (¢t + s[j])" by “B «+
B + (t + s[j])". Also, immediately following Round 3 add:

(Round 4) For j from 48 to 63 do the following:

t < (A+k(B,C,D)+X[2[j]]+ylj)). (A, B,C, D) « (D, B+(t + s[j]), B, C).

5. Completion. Asin MD4.

9.52 Remark (MD5 compression function collisions) While no collisions for MD5 have yet
been found (cf. Table 9.3), collisions have been found for the MD5 compression function.
More specifically, these are called collisions for random IV. (See §9.7.2, and in particular
Definition 9.97 and Note 9.98.)
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(iii) SHA-1
The Secure Hash Algorithm (SHA-1), based on MD4, was proposed by the U.S. National

Ingtitute for Standards and Technology (NIST) for certain U.S. federal government appli-
cations. The main differences of SHA-1 from MD4 are as follows:

1. The hash-valueis 160 hits, and five (vs. four) 32-bit chaining variables are used.

2. The compression function hasfour roundsinstead of three, using the MD4 step func-
tions f, g, and h asfollows: f inthefirst, g inthethird, and 4 in both the second and
fourth rounds. Each round has 20 steps instead of 16.

3. Within the compression function, each 16-word message block is expanded to an 80-
word block, by a process whereby each of the last 64 of the 80 wordsis the XOR of
4 wordsfrom earlier positionsin the expanded block. These 80 words are then input
one-word-per-step to the 80 steps.

4. The core step is modified as follows: the only rotate used is a constant 5-bit rotate;
the fifth working variable is added into each step result; message words from the ex-
panded message block are accessed sequentialy; and C' is updated as B rotated left
30 hits, rather than simply B.

5. SHA-1 uses four non-zero additive constants, whereas MD4 used three constants
only two of which were non-zero.

Thebyte ordering used for converting between streams of bytesand 32-bit wordsinthe
official SHA-1 specification is big-endian (see Note 9.48); this differsfrom MD4 which is
little-endian.

9.53 Algorithm Secure Hash Algorithm — revised (SHA-1)

INPUT: bitstring « of bitlength b > 0. (For notation, see Table 9.7.)
OUTPUT: 160-bit hash-code of z. (See Table 9.6 for test vectors.)
SHA-1 is defined (with reference to MD4) by making the following changes.

1. Notation. Asin MDA4.

2. Definition of constants. Define afifth IV to match thosein MD4: hs = 0xc3d2elf0.
Define per-round integer additive constants: y; = 0x5a827999, y, = 0x6ed9ebal,
ys = Ox8f1bbcdc, vy, = Oxcab2c1d6. (No order for accessing source words, or spec-
ification of bit positionsfor left shiftsisrequired.)

3. Overall preprocessing. Pad asin MD4, except the final two 32-bit words specifying
the bitlength b is appended with most significant word preceding least significant.
Asin MD4, the formatted input is 16m 32-bit words. zoz; ...Z16m_1. Initidize
chaining variables: (Hl, HQ, H3, H4, H5) — (hl, hQ, h3, h4, h5)

4. Processing. For each i from 0 tom — 1, copy the i*" block of sixteen 32-bit words
into temporary storage: X [j] <— z16i45, 0 < j < 15, and process these as below in
four 20-step rounds before updating the chaining variables:

(expand 16-word block into 80-word block; let X ; denote X [4])

for j from16t0 79, X; < (( X;30X;_8PX;_14PX;_16 )+ 1).
(initializeworking variables) (A, B,C, D, E) « (Hy, Ho, Hs, Hy, Hs).
(Round 1) For j from 0 to 19 do the following:

t < ((A+5)+ f(B,C,D)+ E+ X; +y1),

(A,B,C,D,E) + (t,A, B < 30,C, D).

(Round 2) For j from 20 to 39 do the following:

t < ((A<«5)+h(B,C,D)+ E + X; + y2),

(A,B,C,D,E) < (t,A,B <+ 30,C, D).
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(Round 3) For j from 40 to 59 do the following:
t < (A< 5)+g(B,C,D)+ E + X; +ys),
(A,B,C,D,E) + (t,A,B < 30,C, D).
(Round 4) For j from 60 to 79 do the following:
t < ((A<«5)+h(B,C,D)+ E + X; + ya),
(A,B,C,D,E) < (t,A,B <+ 30,C, D).
(update chaining values)
(Hy,Hy, Hs, Hy, Hs) < (H, + A, Hy + B, Hs + C, Hy + D, Hs + E).
5. Completion. The hash-valueis: H.||H||Hs||H4||Hs
(with first and last bytes the high- and low-order bytes of Hy, Hs, respectively).

9.54 Remark (security of SHA-1) Compared to 128-hit hash functions, the 160-bit hash-value
of SHA-1 provides increased security against brute-force attacks. SHA-1 and RIPEMD-
160 (see §9.4.2(iv)) presently appear to be of comparable strength; both are considered
stronger than MD5 (Remark 9.52). In SHA-1, a significant effect of the expansion of 16-
word message blocks to 80 words in the compression function is that any two distinct 16-
word blocks yield 80-word values which differ in alarger number of bit positions, signif-
icantly expanding the number of bit differences among message words input to the com-
pression function. The redundancy added by this preprocessing evidently adds strength.

(iv) RIPEMD-160

RIPEMD-160 (Algorithm 9.55) is a hash function based on MD4, taking into account
knowledge gained in the analysis of MD4, MD5, and RIPEMD. The overall RIPEMD-160
compression function maps 21-word inputs (5-word chaining variable plus 16-word mes-
sage block, with 32-bit words) to 5-word outputs. Each input block is processed in parallel
by distinct versions (the left line and right line) of the compression function. The 160-bit
outputs of the separate lines are combined to give a single 160-hit output.

| Notation | Definition |

flu,v,w) | uBVPwW
g(u,v,w) | uvVaw
h(u,v,w) | (uV7)dw
k(u,v,w) | vwVow
l(u,v,w) | ud(vVw)

Table 9.8: RIPEMD-160 round function definitions.

The RIPEMD-160 compression function differsfrom MD4 in the number of words of
chaining variable, the number of rounds, the round functions themselves (Table 9.8), the
order in which the input words are accessed, and the amounts by which results are rotated.
The left and and right computation lines differ from each other in these last two items, in
their additive constants, and in the order in which the round functionsare applied. Thisde-
signisintended to improve resistance against known attack strategies. Each of the parallel
lines usesthe same |V as SHA-1. When writing the |V as abitstring, little-endian ordering
is used for RIPEMD-160 asin MD4 (vs. big-endian in SHA-1; see Note 9.48).
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9.55 Algorithm RIPEMD-160 hash function

INPUT: bitstring x of bitlength b > 0.
OUTPUT: 160-bit hash-code of z. (See Table 9.6 for test vectors.)
RIPEMD-160 is defined (with reference to MD4) by making the following changes.
1. Notation. See Table 9.7, with MD4 round functions f, g, h redefined per Table 9.8
(which also defines the new round functions &, 1).
2. Definition of constants. Define afifth 1V: ks = 0xc3d2elf0. In addition:

(8 Usethe MD4 additive constants for theleft line, renamed: y,[j] =0,0 < j <
15; y1 [j] = Ox5a827999, 16 < j < 31; y.[j] = Ox6ed9ebal, 32 < j < 47.
Define two further constants (square roots of 5,7): yr.[j] = Ox8f1bbcdc, 48 <
J < 63; yL[j] = 0xa953fdde, 64 < j < 79.

(b) Definefive new additive constantsfor the right line (cube roots of 2,3,5,7):
yr[j] = 0x50a28be6, 0 < j < 15; yg[j] = 0x5c4dd124,16 < j < 31;
yrlj] = 0x6d703ef3, 32 < j < 47; ygrlj] = Ox7a6d76€9, 48 < j < 63;
yrlj] =0,64 < j < 79.

(c) SeeTable9.9for constantsfor step j of the compression function: zy[4], zr[J]
specify the access order for sourcewordsin theleft and rightlines; sz, [5], sr[j]
the number of bit positionsfor rotates (see below).

3. Preprocessing. Asin MD4, with addition of afifth chaining variable: Hy < hs.
4. Processing. For each i from 0 to m — 1, copy the i*" block of sixteen 32-bit words
into temporary storage: X [j] < x16i+5, 0 < j < 15. Then:

(a) Executefive 16-step rounds of the left line as follows:

(AL, BL, CL, _DL, EL) — (Hl, HQ, H3, H4, H5)

(left Round 1) For 5 from 0 to 15 do the following:

t < (AL + f(Br,Cr, D) + X[z [5]] + y[5]),
(AL,BL,CL,DL,EL) (EL EL+(t(—’$L[ ]) Bp,Cr + 10, DL).
(left Round 2) For j from 16 to 31 do the following:

t < (AL +9(Br,Cr, Dr) + X[z[4]] + yrli]),
(AL,BL,CL,DL,EL) (EL,EL + (t <~ SL[ ]) BL,CL 10, DL)
(left Round 3) For 5 from 32 to 47 do the following:

t < (AL + h(Br,CL, Dr) + X[z[j]] + yLl5]),
(AL,BL,CL,DL,EL) (EL EL+(t(—’$L[ ]) Bp,Cr + 10, DL).
(left Round 4) For j from 48 to 63 do the following:

t < (AL +k(Br,Cr,Dr) + X[z[5] +yr[5]),
(AL,BL,CL,DL,EL) (EL,EL + (t <~ SL[ ]) BL,CL <10, DL)
(left Round 5) For j from 64 to 79 do the following:

t « (AL +U(BL,CL, D) + X[z.[j]] + yrls]),
(AL,BL,CL,DL,EL) (EL EL+(t(—’$L[ ]) Bp,Cr + 10, DL)

(b) Executein parallel with the above five rounds an analogousright line with
(Ar, Br, Cr, Dr, Er), yrlj, zrlj], srlj] replacing the corresponding quan-
titieswith subscript L; and the order of theround functionsreversed so that their
orderis: I, k, h, g, and f. Start by initializing the right line working variables:
(AR, Brp, CR, Drp, ER) — (Hl, Hy, Hs, Hy, H5).

(c) After executing both the left and right lines above, update the chaining values
asfollows. t «+ Hy, Hy + Hy+ Cp + Dg, Hy + Hs+ Dp + Eg, Hs +
H,+FE;,+ Agr,Hy + Hs+ A + Bg, H; + t+ B, + Cg.

5. Completion. Thefinal hash-valueis the concatenation: Hy || Hs||Hs||Hy||Hs
(with first and last bytes the low- and high-order bytes of Hy, Hs, respectively).
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| Variable | Value |
zr[ 0..15] [ O, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11, 12,13, 14, 15]
zr[ 16. . 31] 7, 4,13, 1,10, 6,15, 3,12, 0, 9, 5, 2,14,11, 8]
zr[ 32. . 47] [ 3,10,14, 4, 9,15, 8, 1, 2, 7, 0, 6,13,11, 5,12]
2[48..63] | [ 1, 9,11,10, O, 8,12, 4,13, 3, 7,15, 14, 5 6, 2]
zr[ 64. . 79] [ 4 0, 5 9, 7,12, 2,10,14, 1, 3, 8,11, 6,15, 13]
zrl 0..15] | [ 5,14, 7, 0, 9, 2,11, 4,13, 6,15, 8, 1,10, 3,12]
zr[ 16. . 31] [ 6,11, 3, 7, 0,13, 5,10,14,15, 8,12, 4, 9, 1, 2]
zr[ 32. . 47] [15, 5, 1, 3, 7,14, 6, 9,11, 8,12, 2,10, 0, 4,13]
*r[48..63] | [ 8, 6, 4, 1, 3,11,15, 0, 5,12, 2,13, 9, 7,10, 14]
zr[ 64..79] [12, 15,10, 4, 1, 5, 8, 7, 6, 2,13,14, 0, 3, 9,11]
sz[ 0..15] | [14, 14, 15,12, 5, 8, 7, 911,13, 14,15, 6, 7, 9, 8]
sr[ 16. . 31] [ 7, 6, 8,13,11, 9, 7,15, 7,12,15, 9,11, 7,13, 12]
si[ 32..47] [112,13, 6, 7,14, 9,13,15,14, 8,13, 6, 5,12, 7, 5]
s.[48..63] | [11,12,14,15,614,15, 9, 8, 9,14, 5 6, 8, 6, 5,12]
si[ 64..79] [ 9,15, 5,11, 6, 8,13,12, 5,12,13,14,11, 8, 5, 6]
sr[ 0..15] [ 8 9, 9,11,13,15,15, 5, 7, 7, 8,11,14,14,12, 6]
sr[16. . 31] [ 9,613,15, 7,12, 8, 9,11, 7, 7,12, 7, 6,15,13, 11]
sr[ 32..47] [ 9, 7,15,11, 8, 6, 6,14,12,13, 5,14,13,13, 7, 5]
sr[ 48. . 63] [15, 5, 8,11,14,14, 6,14, 6, 9,12, 9,12, 5,15, 8]
sr[ 64..79] [ 8, 5,12, 9,12, 5,14, 6, 8,13, 6, b5,15,13,11, 11]

Table 9.9: RIPEMD-160 word-access orders and rotate counts (cf. Algorithm 9.55).

9.4.3 Hash functions based on modular arithmetic

The basic idea of hash functions based on modular arithmetic is to construct an iterated
hash function using mod M arithmetic as the basis of a compression function. Two moti-
vating factors are re-use of existing software or hardware (in public-key systems) for mod-
ular arithmetic, and scal ability to match required security levels. Significant disadvantages,
however, include speed (e.g., relative to the customized hash functions of §9.4.2), and an
embarrassing history of insecure proposals.

MASH

MASH-1 (Modular Arithmetic Secure Hash, algorithm 1) is a hash function based on mod-
ular arithmetic. It has been proposed for inclusion in a draft ISO/IEC standard. MASH-1
involves use of an RSA-like modulus M, whose bitlength affects the security. M should
be difficult to factor, and for M of unknown factorization, the security is based in part on
the difficulty of extracting modular roots (§3.5.2). The bitlength of M also determinesthe
blocksizefor processing messages, and the size of the hash-result (e.g., a1025-bit modulus
yields a 1024-bit hash-result). Asarecent proposal, its security remains open to question
(page 381). Techniques for reducing the size of the final hash-result have also been pro-
posed, but their security is again undetermined as yet.
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9.56 Algorithm MASH-1 (version of Nov. 1995)

INPUT: data z of bitlength 0 < b < 2"/2.
OUTPUT: n-bit hash of x (n is approximately the bitlength of the modulus M).

1. Systemsetup and constant definitions. Fix an RSA-likemodulus M = pq of bitlength
m, where p and ¢ are randomly chosen secret primes such that the factorization of
M isintractable. Define the bitlength n of the hash-result to be the largest multiple
of 16 lessthan m (i.e, n = 16n’ < m). Hy = 0 isdefined asan IV, and an n-
bit integer constant A = 0xf0...0. “V” denotes bitwise inclusive-OR; “&®” denotes
bitwise exclusive-OR.

2. Padding, blocking, and MD-strengthening. Pad x with 0-bits, if necessary, to obtain
astring of bitlength ¢-n/2 for thesmallest possiblet > 1. Dividethe padded text into
(n/2)-bit blocks z1, . .. , z:, and append afinal block x4, containing the (n/2)-bit
representation of b.

3. Expansion. Expand each z; to an n-bit block y; by partitioningit into (4-bit) nibbles
and inserting four 1-bits preceding each, except for ;41 wherein the inserted nibble
is1010 (not 1111).

4. Compression functionprocessing. For1 < ¢ < t+1, maptwon-bitinputs(H;_1, ;)
to one n-bit output as follows: H; <+ ((((H;—1®y;) V A)? mod M) - n)®H,_;.
Here - n denotes keeping the rightmost n bits of the m-bit result to its | eft.

5. Completion. The hash isthe n-bit block H;, 1.

MASH-2 is defined as per MASH-1 with the exponent e = 2 used for squaring in the
compression function processing stage (step 4) replaced with e = 28 + 1.

9.5 Keyed hash functions (MACs)

9.57

K eyed hash functionswhose specific purposeis message authentication are called message
authentication code (MAC) algorithms. Compared to thelarge number of MDC algorithms,
prior to 1995 relatively few MAC algorithms had been proposed, presumably because the
original proposals, which were widely adopted in practice, were adequate. Many of these
are for historical reasons block-cipher based. Those with relatively short MAC bitlengths
(e.g., 32-bitsfor MAA) or short keys (e.g., 56 bitsfor MACs based on DES-CBC) may till
offer adequate security, depending on the computational resources availableto adversaries,
and the particular environment of application.

Many iterated MACs can be described as iterated hash functions (see Figure 9.2, and
equation (9.1) on page 333). Inthiscase, the MAC key isgenerally part of the output trans-
formation g; it may aso be an input to the compression function in the first iteration, and
beinvolved in the compression function f at every stage.

Fact 9.57 isageneral result giving an upper bound on the security of MACs.

Fact (birthday attack on MACs) Let h be a MAC algorithm based on an iterated com-
pression function, which hasn bits of internal chaining variable, and is deterministic (i.e.,
the m-bit result is fully determined by the message). Then MAC forgery is possible using
O(2™/?) known text-MAC pairs plusanumber v of chosen text-M AC pairswhich (depend-
ing on h) is between 1 and about 2™,
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9.5.1 MACs based on block ciphers

CBC-based MACs

The most commonly used MAC algorithm based on a block cipher makes use of cipher-
block-chaining (§7.2.2(ii)). When DES is used as the block cipher E, n = 64 in what fol-
lows, and the MAC key is a56-bit DES key.

9.58 Algorithm CBC-MAC

INPUT: data x; specification of block cipher F; secret MAC key k for E.
OUTPUT: n-bit MAC on z (n isthe blocklength of E).

1. Padding and blocking. Pad z if necessary (e.g., using Algorithm 9.30). Divide the
padded text into n-bit blocksdenoted x4, . . . , 2.

2. CBC processing. Letting E), denote encryption using E with key k, compute the
block H; asfollows: Hy < Ey(z1); H; < Ep(Hi—1®z;),2 < i < t. (Thisis
standard cipher-block-chaining, IV = 0, discarding ciphertext blocks C; = H;.)

3. Optional process to increase strength of MAC. Using a second secret key k' # k,
optionally compute: H; < E,,'(H,), H; + Ej(H}). (Thisamountsto using two-
key triple-encryption on the last block; see Remark 9.59.)

4. Completion. The MAC isthe n-bit block H;.

xr1 T2 T3 Tt
9 S S S

0 - - — -
9 H, N> H, N> Hs H, . %

o H,
| Y
| k’++E'1
optional !
P | Y
Lk E
H

Figure 9.6: CBC-based MAC algorithm.

For CBC-MAC withn = 64 = m, Fact 9.57 applieswithv = 1.
9.59 Remark (CBC-MAC strengthening) The optional process reduces the threat of exhaus-
tive key search, and prevents chosen-text existential forgery (Example 9.62), without im-
pacting the efficiency of the intermediate stages as would using two-key triple-encryption
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throughout. Alternativesto combat such forgery include prepending theinput with alength
block beforethe MAC computation; or using key K to encrypt thelength m yielding K’ =
Ex(m), beforeusing K’ asthe key to MAC the message.

9.60 Remark (truncated MAC outputs) Exhaustive attack may, depending on the unicity dis-
tance of the MAC, be precluded (information-theoretically) by using less than n bits of the
final output as the m-bit MAC. (This must be traded off against an increase in the proba-
bility of randomly guessing the MAC: 2=™.) For m = 32 and E = DES, an exhaustive
attack reducesthe key space to about 224 possibilities. However, evenfor m < n, asecond
text-MAC pair almost certainly determinesa unique MAC key.

9.61 Remark (CBC-MAC IV)Whilearandom IV in CBC encryption servesto prevent acode-
book attack on the first ciphertext block, thisis not aconcernin aMAC agorithm.

9.62 Example (existential forgery of CBC-MAC) While CBC-MAC is secure for messages of
a fixed number ¢ of blocks, additional measures (beyond simply adding a trailing length-
block) are required if variable length messages are allowed, otherwise (adaptive chosen-
text) existential forgery is possible as follows. Assume z; is an n-bit block, and let 1b
denote the n-bit binary representation of b. Let (x4, M;) be aknown text-MAC pair, and
request the MAC M, for the one-block message 2 = Mj; then My = Ei(Eg(x1))
is also the MAC for the 2-block message (x1||L0). Asalesstrivial example, given two
known text-MAC pairs (z1, H1), (z2, Ha) for one-block messages x1, z2, and request-
ing the MAC M on a chosen 2-block third message (x1||z) for a third text-MAC pair
((z1]|z), M), then H; = Ey(z;), M = Ey(H1®z), and the MAC for the new 2-block
message X = xq||(H1®z®H>) is known —it is M also. Moreover, MD-strengthening
(Algorithm 9.26) does not address the problem: assume padding by Algorithm 9.29, re-
place the third message above by the 3-block message (|| L64/|z), note

H! = E(Ej(z:)®L164), Ms = Ey(Ex(Ex(Ex(z1)®L64)®2)3L1192),
and Ms isaso the MAC for the new 3-block message X = (z»|| L64||H @ Hy®z). O

9.63 Example (RIPE-MAC) RIPE-MAC is a variant of CBC-MAC. Two versions RIPE-
MAC1 and RIPE-MACS3, both producing 64-bit MACs, differ in their internal encryption
function E being either single DES or two-key triple-DES, respectively, requiring a 56-
or 112-bit key k (cf. Remark 9.59). Differencesfrom Algorithm 9.58 are as follows: the
compression function uses anon-invertible chaining best described as CBC with datafeed-
forward: H; < Ey(H;—1®z;)®dz;; after padding using Algorithm 9.30, a final 64-bit
length-block (giving bitlength of original input) is appended; the optional process of Al-
gorithm 9.58 is mandatory with final output block encrypted using key &’ derived by com-
plementing alternating nibbles of k: for k = kg ... kg3 a 56-bit DES key with parity bits
krkis ... ke, K = k @ OxfOfOfOfOfOf Of OfO. [l

9.5.2 Constructing MACs from MDCs

A common suggestionisto construct aMAC algorithm from an MDC algorithm, by simply
including a secret key k as part of the MDC input. A concern with this approach is that
implicit but unverified assumptions are often made about the properties that MDCs have;
inparticular, while most MDCsare designed to provide one-waynessor collisionresistance,
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9.64

9.65

9.66

9.67

the requirements of a MAC algorithm differ (Definition 9.7). Even in the case that a one-
way hash function precludes recovery of a secret key used as a partial message input (cf.
partial-preimageresistance, page 331), thisdoesnot guaranteetheinfeasibility of producing
MACs for new inputs. The following examples suggest that construction of a MAC from
ahash function requires careful analysis.

Example (secret prefixmethod) Consider amessagex = z1z- . . . x; andaniterated MDC
h with compression function f, with definition: Hy = IV, H; = f(H;—1,;); h(z) =
H;. (1) Suppose one attemptsto use h asa MAC agorithm by prepending a secret key &,
so that the proposed MAC on z is M = h(k||z). Then, extending the message = by an
arbitrary single block y, one may deduce M’ = h(k||z||y) as f(M,y) without knowing
the secret key k (the original MAC M serves as chaining variable). Thisis true even for
hash functionswhose preprocessing padsinputs with length indicators (e.g., MD5); in this
case, the padding/length-block z for the original message x would appear as part of the
extended message, z||z||y, but aforged MAC on thelatter may nonethel essbe deduced. (2)
For similar reasons, it isinsecureto use an MDC to construct aMAC algorithm by using the
secret MAC key k as V. If k& comprisesthe entirefirst block, then for efficiency f(IV, k)
may be precomputed, illustrating that an adversary need only find a £’ (not necessarily k)
suchthat f(IV, k) = f(IV,k'); thisis equivalent to using a secret I V. O

Example (secret suffix method) An alternative proposal isto use a secret key as a suffix,
i.e, then-bit MAConzis M = h(z||k). Inthiscase, abirthday attack applies (§9.7.1).
An adversary freeto choose the message z (or aprefix thereof) may, in O(2"/2) operations,
find apair of messages z, ' for which h(x) = h(z'). (This can be done off-line, and does
not require knowledge of k; the assumption here is that n is the size of both the chaining
variable and the final output.) ObtainingaMAC M on z by legitimate means then allows
an adversary to produce a correct text-MAC pair (z', M) for anew message z’. Note that
this method essentially hashes and then encryptsthe hash-valuein thefinal iteration; in this
weak form of MAC, the MAC-value depends only on the last chaining value, and the key
is used in only one step. d

The above examples suggest that a MAC key should be involved at both the start and
the end of MAC computations, leading to Example 9.66.

Example (envelope method with padding) For a key & and MDC h, compute the MAC
onamessage z as: hi(x) = h(k||p|| z|| k). Herepisastring used to pad k to the length
of one block, to ensure that the internal computation involves at least two iterations. For
example, if h isMD5 and & is 128 bits, p is a 384-bit pad string. d

Dueto both a certificational attack against the MAC construction of Example 9.66 and
theoretical support for that of Example 9.67 (see page 382), the latter construction is fa-
vored.

Example (hash-based MAC) For akey k and MDC h, compute the MAC on a message
x aHMAC(x) = h(k||p1 || h(k]||p2]| x)), where p;, po are distinct strings of sufficient
length to pad k out to afull block for the compression function. The overall constructionis
quite efficient despite two calls to h, since the outer execution processes only (e.g., if h is
MDD5) a two-block input, independent of the length of z. O

Additional suggestionsfor achieving MAC-likefunctionality by combiningMDCsand
encryption are discussed in §9.6.5.
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9.5.3 Customized MACs

9.68

Two algorithms designed for the specific purpose of message authentication are discussed
in this section: MAA and MD5-MAC.

Message Authenticator Algorithm (MAA)

The Message Authenticator Algorithm (MAA), dating from 1983, is a customized MAC
algorithm for 32-bit machines, involving 32-bit operations throughout. It is specified as
Algorithm 9.68 and illustrated in Figure 9.7. The main loop consists of two parallel inter-
dependent streams of computation. Messages are processed in 4-byte blocks using 8 bytes
of chaining variable. The execution time (excluding key expansion) is proportional to mes-
sage length; as arough guideline, MAA istwice as Slow as MD4.

Algorithm Message Authenticator Algorithm (MAA)

INPUT: dataz of bitlength 32;, 1 < j < 10; secret 64-hit MAC key Z = Z[1]..Z]8].
OUTPUT: 32-bit MAC on z.

1. Message-independent key expansion. Expand key Z to six 32-bit quantities X, Y, V,
W, S, T (X,Y areinitia values; V, W are main loop variables; S, T are appended
to the message) as follows.

1.1 First replace any bytes 0x00 or Oxff in Z asfollows. P < 0; forifrom1to 8
(P + 2P;if Z[i] = Ox00 or Oxff then (P + P + 1; Z[i] + Z[i] OR P)).

1.2 Let J and K bethefirst 4 bytes and last 4 bytes of Z, and compute:*

X < J*(mod 23?2 — 1)@J* (mod 232 — 2)

Y « [K® (mod 232 — 1)@ K® (mod 232 — 2)](1 + P)? (mod 232 — 2)
V + J6 (mod 232 — 1)@ J°¢ (mod 232 — 2)

W « K7 (mod 232 — 1)@ K" (mod 232 — 2)

S« J® (mod 232 — 1)@ J® (mod 232 — 2)

T «+ K9 (mod2%? — 1)@K? (mod 232 — 2)

1.3 Processthe3resulting pairs (X,Y), (V, W), (S, T') to removeany bytes 0x00,
Oxff asfor Z earlier. Define the AND-OR constants: A = 0x02040801, B =
0x00804021, C' = Oxbfef7fdf, D = Ox7dfefbff.

2. Initialization and preprocessing. Initializetherotating vector: v <+ V, and thechain-
ing variables: H; + X, Ho <+ Y. Append the key-derived blocks S, T' to x, and
let z; ...z, denote the resulting augmented segment of 32-hit blocks. (The final 2
blocks of the segment thus involve key-derived secrets.)

3. Block processing. Process each 32-bit block x; (for ¢ from 1 to ¢) asfollows.

v (v 1), U<+ (vaW)

t1 < (H1®z;) X1 (((H2®z;) + U) OR A) AND C)

to < (Ha®x;) X2 (Hi®x;) +U) OR B) AND D)

Hy + t1,Hy <+ to

where x ; denotes special multiplication mod 232 — i as noted above (; = 1 or 2);
“+” is addition mod 232; and “<— 1” denotes rotation left one bit. (Each combined
AND-OR operation on a 32-bit quantity sets 4 bits to 1, and 4 to O, precluding O-
multipliers.)

4. Completion. Theresulting MACis. H = H{®Hs.

41n 1SO 8731-2, awell-defined but unconventional definition of multiplication mod 232 — 2 is specified, pro-
ducing 32-bit results which in some cases are 232 — 1 or 232 — 2; for this reason, specifying e.g., J% here may
be ambiguous; the standard should be consulted for exact details.
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message x key (J,K)
[from message z]

key expansion

T4

delay | i<—i+1 i<—1i+1 | delay
A A

v D = AND AND Y

* (mod 232 —2)

H, Hy —————

Figure 9.7: The Message Authenticator Algorithm (MAA).

Sincetherelatively complex key expansion stageisindependent of the message, aone-
time computation sufficesfor afixed key. Themixing of variousoperations (arithmetic mod
232 4, fori = 0,1 and 2; XOR; and nonlinear AND-OR computations) is intended to
strengthen the algorithm against arithmetic cryptanalytic attacks.

MD5-MAC

A more conservative approach (cf. Example 9.66) to building a MAC from an MDC isto
arrange that the MAC compression function itself depend on k, implying the secret key be
involved in all intervening iterations; this provides additional protection in the case that
weaknesses of the underlying hash function become known. Algorithm 9.69 is such atech-
nique, constructed using MD5. It provides performancecloseto that of MD5 (5-20% slower
in software).
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9.69 Algorithm MD5-MAC

INPUT: bitstring « of arbitrary bitlength b > 0; key £ of bitlength < 128.
OUTPUT: 64-bit MAC-value of x.
MD5-MAC is obtained from MD5 (Algorithm 9.51) by the following changes.

1. Congtants. The constants U; and T; are as defined in Example 9.70.
2. Key expansion.
(a) If kisshorter than 128 hits, concatenate k to itself a sufficient number of times,
and redefine k to be the leftmost 128 hits.
(b) Let MD5 denote M D5 with both padding and appended length omitted. Expand
k into three 16-byte subkeys K, K1, and K> as follows: for ¢ from 0 to 2,
K; « MD5(k || U; || k).
(c) Partition each of K, and K into four 32-bit substrings K;[i], 0 < ¢ < 3.
K replacesthe four 32-bit IV’s of MD5 (i.e., h; = Kyli]).
K, [i] isadded mod 232 to each constant y[;] used in Round i of MD5.
5. K, isused to construct the following 512-hit block, which is appended to the padded
input = subsequent to the regular padding and length block as defined by MD5:
K) | Ko ®To || Ko T || Ko @ To.
6. TheMAC-vaueistheleftmost 64 bits of the 128-bit output from hashing this padded
and extended input string using MD5 with the above modifications.

> w

9.70 Example (MD5-MAC constants/test vectors) The 16-byte constants 7; and threetest vec-
tors (z, MD5-MAC(x)) for key £ = 00112233445566778899aabbccddeef f are
given below. (The T; themselves are derived using MD5 on pre-defined constants.) With
subscriptsin T; taken mod 3, the 96-byte constants Uy, U1, U, are defined:

U T | Tz+1 H Tip2 | T; || Tiq1 || Tita-
ef 45 ac 29 0Of 43 cd 45 7e 1b 55 1c 80 11 34
T1. bl 77 ce 96 2e 72 8e 7c 5f 5a ab Oa 36 43 be 18
T2: 9d 21 b4 21 bc 87 b9 4d a2 9d 27 bd c7 5b d7 c3
", 1f 1ef 2375cc0e0844f 98e7e811a34da8)
("abc", e8013c11f 7209d1328c0caal4f d012a6)
(" abcdef ghi j kl mopgr st uvwxyz", 9172867eb60017884c6f a8c088ebe7c9)D

9.5.4 MACs for stream ciphers

Providing data origin authentication and dataintegrity guaranteesfor stream ciphersis par-
ticularly important due to the fact that bit manipulationsin additive stream-ciphers may di-
rectly result in predictable modifications of the underlying plaintext (e.g., Example 9.83).
While iterated hash functions process message data a block at a time (§9.3.1), MACs de-
signed for use with stream ciphers process messages either one bit or one symbol (block) at
atime, and those which may be implemented using linear feedback shift registers (LFSRS)
are desirablefor reasons of efficiency.

One such MAC technique, Algorithm 9.72 below, is based on cyclic redundancy codes
(cf. Example 9.80). In this case, the polynomial division may be implemented using an
LFSR. The following definition is of use in what follows.
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Definition A (b, m) hash-family  is a collection of hash functions mapping b-bit mes-
sages to m-bit hash-values. A (b, m) hash-family is e-balanced if for all messages B # 0
and all m-hit hash-values ¢, prob, (h(B) = c)) < e, where the probability is over al ran-
domly selected functions h € H.

Algorithm CRC-based MAC

INPUT: b-hit message B; shared key (see below) between MAC source and verifier.
OUTPUT: m-bit MAC-valueon B (e.g., m = 64).

1. Notation. Associate B = By .. . By By with the polynomial B(xz) = Y-} Bja'.
2. Section of MAC key.
(8) Select arandom binary irreducible polynomia p(x) of degreem. (Thisrepre-
sents randomly drawing afunction i from a (b, m) hash-family.)
(b) Select arandom m-bit one-timekey & (to be used as a one-time pad).
The secret MAC key consists of p(z) and k, both of which must be shared a priori
between the MAC originator and verifier.
3. Compute h(B) = coef (B(z) - ™ mod p(z)), the m-bit string of coefficients from
the degreem — 1 remainder polynomial after dividing B(x) - ™ by p(x).
4. Them-bit MAC-valuefor B is: h(B)®k.

Fact (security of CRC-based MAC) For any valuesb andm > 1, the hash-family resulting
from Algorithm 9.72 is e-balanced for e = (b + m)/(2™ 1), and the probability of MAC
forgery isat most e.

Remark (polynomial reuse) The hash function h in Algorithm 9.72 is determined by the
irreducible polynomial p(z). In practice, p(x) may be re-used for different messages (e.g.,
within a session), but for each message a new random key & should be used.

9.6 Data integrity and message authentication

This section considers the use of hash functions for data integrity and message authenti-
cation. Following preliminary subsections, respectively, providing background definitions
and distinguishing non-maliciousfrom malicious threats to dataintegrity, three subsequent
subsections consider three basic approaches to providing data integrity using hash func-
tions, as summarized in Figure 9.8.

9.6.1 Background and definitions

This subsection discusses data integrity, data origin authentication (message authentica-
tion), and transaction authentication.

Assurances are typically required both that data actually came from its reputed source
(dataorigin authentication), and that its state is unaltered (dataintegrity). Theseissues can-
not be separated — data which has been altered effectively has anew source; and if asource
cannot be determined, then the question of alteration cannot be settled (without reference
to asource). Integrity mechanisms thus implicitly provide data origin authentication, and
vice versa.
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(a) MAC only

(b) MDC
& encipherment

(c) MDC & authentic
channel

ii secret key

MAC
message algorithm
Y Y
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Y Y _
message | MDC |—» encryption
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message |MDCf----------- = unsecured channel
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Figure 9.8: Three methods for providing data integrity using hash functions. The second method provides

encipherment simultaneoudly.
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() Data integrity

Definition Dataintegrity isthe property whereby datahasnot been altered in an unautho-
rized manner since the time it was created, transmitted, or stored by an authorized source.

Verification of dataintegrity requiresthat only a subset of all candidate dataitems sat-
isfies particular criteria distinguishing the acceptable from the unacceptable. Criteria al-
lowing recognizability of dataintegrity include appropriateredundancy or expectationwith
respect to format. Cryptographictechniquesfor dataintegrity rely on either secret informa-
tion or authentic channels (§9.6.4).

The specific focus of data integrity is on the bitwise composition of data (cf. transac-
tion authentication below). Operationswhich invalidate integrity include: insertion of bits,
including entirely new dataitemsfrom fraudul ent sources; deletion of bits(short of deleting
entire dataitems); re-ordering of bits or groupsof bits; inversion or substitution of bits; and
any combination of these, such as message splicing (re-use of proper substringsto construct
new or altered dataitems). Data integrity includes the notion that data items are compl ete.
For items split into multiple blocks, the above aterations apply analogously with blocks
envisioned as substrings of a contiguous data string.

(i) Data origin authentication (message authentication)

Definition Data origin authentication is atype of authentication whereby aparty is cor-
roborated as the (original) source of specified data created at some (typically unspecified)
timein the past.

By definition, data origin authentication includes data integrity.

Definition Message authentication is aterm used analogously with data origin authenti-
cation. It provides data origin authentication with respect to the original message source
(and dataintegrity, but no uniqueness and timeliness guarantees).

Methods for providing data origin authentication include the following:

1. message authentication codes (MACs)
2. digital signature schemes
3. appending (prior to encryption) a secret authenticator value to encrypted text.?

Data origin authentication mechanisms based on shared secret keys (e.g., MACs) do not
allow a digtinction to be made between the parties sharing the key, and thus (as opposed to
digital signatures) do not provide non-repudiation of data origin — either party can equally
originate a message using the shared key. If resolution of subsequent disputesis apotential
requirement, either an on-linetrusted third party in anotary role, or asymmetric techniques
(see Chapter 11) may be used.

While MACsand digital signatures may be used to establish that datawas generated by
aspecified party at sometimein the past, they provide no inherent uniquenessor timeliness
guarantees. These techniques alone thus cannot detect message re-use or replay, which is
necessary in environments where messages may have renewed effect on second or subse-
guent use. Such message authenticationtechniquesmay, however, beaugmentedto provide
these guarantees, as next discussed.

5Such a sealed authenticator (cf. aMAC, sometimes called an appended authenticator) is used along with an
encryption method which provides error extension. While this resembles the technique of using encryption and
an MDC (§9.6.5), whereas the MDC is a (known) function of the plaintext, a sealed authenticator isitself secret.
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(il) Transaction authentication

Definition Transaction authentication denotes message authentication augmented to ad-
ditionally provide uniqueness and timeliness guarantees on data (thus preventing unde-

tectable message replay).

The uniqueness and timeliness guarantees of Definition 9.78 are typically provided
by appropriate use of time-variant parameters (TVPs). These include random numbersin
challenge-response protocols, sequence numbers, and timestamps as discussed in §10.3.1.
This may be viewed as a combination of message authentication and entity authentication
(Definition 10.1). Loosely speaking,

message authentication + TV P = transaction authentication.

Asasimple example, sequence numbersincluded within the data of messages authen-
ticated by aMAC or digital signature algorithm allow replay detection (see Remark 9.79),
and thus provide transaction authentication.

As asecond example, for exchanges between two parties involving two or more mes-
sages, transaction authentication on each of the second and subsequent messages may be
provided by including in the message data covered by aMAC arandom number sent by the
other party in the previous message. This chaining of messages through random numbers
prevents message replay, since any MAC values in replayed messages would be incorrect
(due to disagreement between the random number in the replayed message, and the most
recent random number of the verifier).

Table 9.10 summarizes the properties of these and other types of authentication. Au-
thentication in the broadest sense encompasses not only data integrity and data origin au-
thentication, but also protection from all active attacks including fraudulent representation
and message replay. In contrast, encryption provides protection only from passive attacks.

— Property identification data timelinessor | defined
J Type of authentication of source integrity | uniqueness in

message authentication yes yes — §9.6.1
transaction authentication yes yes yes §9.6.1
entity authentication yes — yes §10.1.1
key authentication yes yes desirable §12.2.1

Table 9.10: Properties of various types of authentication.

Remark (sequence numbersand authentication) Sequence numbers may provide unique-
ness, but not (real-time) timeliness, and thus are more appropriate to detect message replay
than for entity authentication. Sequence numbers may also be used to detect the del etion of
entire messages; they thus alow dataintegrity to be checked over an ongoing sequence of
messages, in addition to individual messages.

9.6.2 Non-malicious vs. malicious threats to data integrity

Thetechniquesrequiredto providedataintegrity on noisy channelsdiffer substantially from
those required on channels subject to manipulation by adversaries.

Checksums provide protection against accidental or non-malicious errors on channels
which are subject to transmission errors. The protection is non-cryptographic, in the sense
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that neither secret keys nor secured channels are used. Checksums generalize the idea of
aparity bit by appending a (small) constant amount of message-specific redundancy. Both
the dataand the checksum are transmitted to areceiver, at which point the same redundancy
computation is carried out on the received data and compared to the received checksum.
Checksums can be used either for error detection or in association with higher-level error-
recovery strategies (e.g., protocols involving acknowledgements and retransmission upon
failure). Trivial examplesinclude an arithmetic checksum (computethe running 32-bit sum
of al 32-bit data words, discarding high-order carries), and a simple XOR (XOR all 32-
bit wordsin a data string). Error-correcting codes go one step further than error-detecting
codes, offering the capability to actually correct alimited number of errorswithout retrans-
mission; this is sometimes called forward error correction.

Example (CRCs) Cyclic redundancy codes or CRCs are commonly used checksums. A
k-bit CRC agorithm maps arbitrary length inputsinto k-bit imprints, and provides signif-
icantly better error-detection capability than k-bit arithmetic checksums. The algorithm
is based on a carefully chosen (k + 1)-bit vector represented as a binary polynomial; for
k = 16, acommonly used polynomial (CRC-16) isg(x) = 1+ 2+ 25+ 2. A t-bit data
input is represented as a binary polynomial d(z) of degreet — 1, and the CRC-value cor-
responding to d(x) isthe 16-bit string represented by the polynomial remainder ¢(x) when
216 . d(x) isdivided by g(x);® polynomial remaindering is analogousto computing integer
remainders by long division. For al messages d(z) with ¢ < 32 768, CRC-16 can detect
all errorsthat consist of only asingle bit, two bits, three bits, or any odd number of bits, all
burst errors of bitlength 16 or less, 99.997% (1 — 2~ %) of 17-bit burst errors, and 99.998%
(1—2716) of all bursts 18 bitsor longer. (A burst error of bitlength b isany bitstring of ex-
actly b bitsbeginning and ending witha1.) Analogousto theinteger case, other datastrings
d'(z) yielding the same remainder as d(x) can betrivially found by adding multiples of the
divisor g(x) to d(x), or inserting extra blocks representing a multiple of g(x). CRCs thus
do not provide one-waynessas required for MDCs; infact, CRCsareaclassof linear (error
correcting) codes, with one-wayness comparable to an XOR-sum. O

While of use for detection of random errors, k-bit checksums are not of cryptographic
use, because typically adatastring checksumming to any target value can be easily created.
One method is to simply insert or append to any data string of choice a k-bit correcting-
block ¢ which has the effect of correcting the overall checksum to the desired value. For
example, for the trivial XOR checksum, if the target checksumiis ¢/, insert as block ¢ the
XOR of ¢/ and the XOR of all other blocks.

In contrast to checksums, data integrity mechanisms based on (cryptographic) hash
functions are specifically designed to preclude undetectable intentional modification. The
hash-values resulting are sometimes called integrity check values (ICV), or cryptographic
check valuesin the case of keyed hash functions. Semantically, it should not be possiblefor
an adversary to take advantage of the willingness of usersto associate a given hash output
with asingle, specific input, despite the fact that each such output typically correspondsto
alarge set of inputs. Hash functions should exhibit no predictable relationships or correla-
tions between inputs and outputs, asthese may allow adversariesto orchestrate unintended
associations.

6 A modification istypically used in practice (e.g., complementing c(z)) to address the combination of an input
d(z) = 0 and a“stuck-at-zero” communications fault yielding a successful CRC check.
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9.6.3 Data integrity using a MAC alone

Message Authentication Codes (MACS) as discussed earlier are designed specifically for
applications where data integrity (but not necessarily privacy) is required. The originator
of amessage z computesaMAC hy, () over the message using asecret MAC key k shared
with the intended recipient, and sends both (effectively = || hi(z)). The recipient deter-
mines by some means (e.g., a plaintext identifier field) the claimed source identity, sepa-
rates the received MAC from the received data, independently computes a MAC over this
data using the shared MAC key, and compares the computed MAC to the received MAC.
The recipient interprets the agreement of these valuesto mean the datais authentic and has
integrity — that is, it originated from the other party which knows the shared key, and has
not been altered in transit. This correspondsto Figure 9.8(a).

9.6.4 Data integrity using an MDC and an authentic channel

Theuseof asecret key isnot essential in order to providedataintegrity. It may beeliminated
by hashing a message and protecting the authenticity of the hash via an authentic (but not
necessarily private) channel. The originator computes a hash-code using an MDC over the
message data, transmitsthe datato arecipient over an unsecured channel, and transmitsthe
hash-code over an independent channel known to provide data origin authentication. Such
authentic channel smay includetel ephone (authenticity through voi cerecognition), any data
medium (e.g., floppy disk, piece of paper) stored in atrusted place (e.g., locked safe), or
publication over any difficult-to-forgepublic medium (e.g., daily newspaper). Therecipient
independently hashes the received data, and compares the hash-code to that received. If
these values agree, the recipient accepts the data as having integrity. This corresponds to
Figure 9.8(c).

Exampleapplicationsincludevirus protection of software, and distribution of software
or public keys via untrusted networks. For virus checking of computer source or object
code, this technique is preferable to one resulting in encrypted text. A common example
of combining an MDC with an authentic channel to provide data integrity is digital signa-
ture schemes such as RSA, which typically involve the use of MDCs, with the asymmetric
signature providing the authentic channel.

9.6.5 Data integrity combined with encryption

Whereas digital signatures provide assurances regarding both integrity and authentication,
in general, encryption alone provides neither. This issue is first examined, and then the
question of how hash functions may be employed in conjunction with encryption to pro-
vide data integrity.

(i) Encryption alone does not guarantee data integrity

A common misconception is that encryption provides data origin authentication and data
integrity, under the argument that if a message is decrypted with a key shared only with
party A, and if the decrypted message is meaningful, then it must have originated from A.
Here“ meaningful” means the message contains sufficient redundancy or meets some other
a priori expectation. While the intuition is that an attacker must know the secret key in
order to manipulate messages, this is not always true. In some cases he may be able to
choose the plaintext message, whilein other cases he may be able to effectively manipul ate
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plaintext despite not being ableto control its specific content. Theextent to which encrypted
messages can be manipulated undetectably depends on many factors, asillustrated by the
following examples.

Example (re-ordering ECB blocks) The ciphertext blocks of any block cipher used only
in ECB mode are subject to re-ordering. O

Example (encryption of random data) If the plaintext corresponding to a given cipher-
text containsno redundancy (e.g., arandomkey), then al attempted decryptionsthereof are
meaningful, and dataintegrity cannot beverified. Thus, someform of redundancy isalways
requiredto allow verification of integrity; moreover, to facilitate verification in practice, ex-
plicit redundancy verifiable by automated meansis required. O

Example (bit manipulationsin additive stream ciphers) Despite the fact that the one-time
pad offersunconditional secrecy, an attacker can change any single bit of plaintext by mod-
ifying the corresponding bit of ciphertext. For known-plaintext attacks, this allows an at-
tacker to substitute selected segments of plaintext by plaintext of his own choosing. An
exampletarget bit isthe high-order bit in anumeric field known to represent adollar value.
Similar comments apply to any additive stream cipher, including the OFB mode of any
block cipher. O

Example (bit manipulationin DES ciphertext blocks) Several standard modes of opera-
tionfor any block cipher are subject to sel ective bit manipul ation. Modifyingthelast cipher-
text block in a CFB chain is undetectable. A ciphertext block in CFB mode which yields
random noise upon decryption is an indication of possible selective bit-manipulation of the
preceding ciphertext block. A ciphertext block in CBC mode which yields random noise
upon decryptionis an indication of possible selective bit-manipulation of the following ci-
phertext block. For further discussion regarding error extension in standard modes of op-
eration, see §7.2.2. O

(i) Data integrity using encryption and an MDC

If both confidentiality and integrity are required, then thefollowing dataintegrity technique
employing an m-bit MDC h may be used. The originator of a message x computes a hash
value H = h(z) over the message, appends it to the data, and encrypts the augmented
message using asymmetric encryption algorithm E with shared key &, producing ciphertext

C = Ei(z || h(z)) (92

(Note that this differs subtlely from enciphering the message and the hash separately as
(Ex(z), Ex(h(x))), whiche.g. using CBC requirestwo |Vs.) Thisistransmitted to arecip-
ient, who determines (e.g., by a plaintext identifier field) which key to use for decryption,
and separatestherecovered datax’ fromtherecovered hash H’. Therecipient thenindepen-
dently computesthe hash h(z’) of thereceived data z’, and compares thisto the recovered
hash H'. If these agree, the recovered data is accepted as both being authentic and having
integrity. This correspondsto Figure 9.8(b).

The intention is that the encryption protects the appended hash, and that it be infeasi-
ble for an attacker without the encryption key to alter the message without disrupting the
correspondence between the decrypted plaintext and the recovered MDC. The properties
required of the MDC here may be notably weaker, in general, than for an MDC used in con-
junction with, say, digital signatures. Here the requirement, effectively ajoint condition on
the MDC and encryption algorithm, isthat it not be feasible for an adversary to manipulate
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or create new ciphertext blocks so as to produce a new ciphertext C’ which upon decryp-
tion will yield plaintext blocks having the same MDC as that recovered, with probability
significantly greater than 1in 2™,

Remark (separationof integrity and privacy) Whilethis approach appearsto separate pri-
vacy and data integrity from a functional viewpoint, the two are not independent with re-
spect to security. The security of the integrity mechanismis, at most, that of the encryption
algorithm regardless of the strength of the MDC (consider exhaustive search of the encryp-
tion key). Thought should, therefore, be given to the relative strengths of the components.

Remark (vulnerability to known-plaintext attack) In environments where known-plain-
text attacks are possible, the technique of equation (9.2) should not be used in conjunction
with additive stream ciphers unless additional integrity techniques are used. In this sce-
nario, an attacker can recover the key stream, then make plaintext changes, recompute a
new MDC, and re-encrypt the modified message. Note this attack compromises the man-
ner in which the MDC is used, rather than the MDC or encryption algorithm directly.

If confidentiality is not essential other than to support the requirement of integrity, an
apparent option isto encrypt only either the message « or the MDC h(z). Neither approach
iscommon, for reasonsincluding Remark 9.85, and the general undesirability to utilize en-
cryption primitivesin systems requiring only integrity or authentication services. Thefol-
lowing further comments apply:

1. encrypting the hash-code only: (z, Ej(h(z)))
Applyingthekey to the hash-valueonly (cf. Example9.65) resultsin aproperty (typi-
cal for public-key signaturesbut) atypical for MACs: pairsof inputsz, ' with collid-
ing outputs (MAC-values here) can be verifiably pre-determined without knowledge
of k. Thus h must be collision-resistant. Other issuesinclude: pairs of inputs having
the same MAC-value under one key also do under other keys; if the blocklength of
the cipher E}, islessthan the bitlength m of the hash-value, splitting the latter across
encryption blocks may weaken security; k£ must be reserved exclusively for thisin-
tegrity function (otherwise chosen-text attacks on encryption allow selective MAC
forgery); and Ej, must not be an additive stream cipher (see Remark 9.86).

2. encrypting the plaintext only: (Ej(z), h(x))
This offerslittle computational savings over encrypting both message and hash (ex-
cept for very short messages) and, asabove, k() must be collision-resistant and thus
twicethetypical MAC bitlength. Correct guesses of the plaintext  may be confirmed
(candidate values =’ for z can be checked by comparing i (z') to h(x)).

(iii) Data integrity using encryption and a MAC

It is sometimes suggested to use a MAC rather than the MDC in the mechanism of equa-
tion (9.2) on page 365. In this case, aMAC agorithm h; replacesthe MDC A, and rather
than C' = Ej(z || h(x)), the message sent is

C" = Eg(x || he () (93)

The use of aMAC here offersthe advantage (over an MDC) that should the encryption al-
gorithm be defeated, the MAC till providesintegrity. A drawback is the requirement of
managing both an encryption key and aMAC key. Care must be exercised to ensure that
dependencies between the MAC and encryption algorithms do not lead to security weak-
nesses, and as a general recommendation these algorithms should be independent (see Ex-
ample 9.88).
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Remark (precluding exhaustive MAC search) Encryption of the MAC-value in equation
(9.3) precludes an exhaustive key search attack on the MAC key.

Two aternatives hereinclude encrypting the plaintext first and then computingaMAC
over the ciphertext, and encrypting the message and MAC separately. These are discussed
inturn.

1. computing a MAC over the ciphertext: (Ej(z), hi (Ex(z))).
This allows message authentication without knowledge of the plaintext « (or cipher-
text key). However, asthe message authentication is on the ciphertext rather than the
plaintext directly, there are no guarantees that the party creating the MAC knew the
plaintext . The recipient, therefore, must be careful about conclusions drawn — for
example, if Ey, is public-key encryption, the originator of = may be independent of
the party sharing the key &’ with the recipient.

2. separate encryption and MAC: (Ex(z), hi(x)).
Thisaternativerequiresthat neither the encryption nor the MAC algorithm compro-
mises the objectives of the other. In particular, in this case an additional requirement
on the agorithm is that the MAC on = must not compromise the confidentiality of
x (cf. Definition 9.7). Keys (k, k) should also be independent here, e.g., to pre-
clude exhaustive search on the weaker algorithm compromising the other (cf. Ex-
ample 9.88). If k and k&’ are not independent, exhaustive key search is theoretically
possible even without known plaintext.

(iv) Data integrity using encryption — examples

Example (improper combination of CBC-MAC and CBC encryption) Consider using the
data integrity mechanism of equation (9.3) with Ej, being CBC-encryption with key k and
initialization vector IV, hy (z) being CBC-MACwithk’ and IV, andk = k', IV = IV".
Thedatax = x5 . . . 2; canthen be processed in asingle CBC pass, sincethe CBC-MAC
isequal tothelast ciphertextblock ¢; = Ej(c:—1®x:), andthelast datablock isz: 1 = ¢,
yieldingfinal ciphertextblock ¢;11 = Ej(c:®x:+1) = Ex(0). Theencrypted MAC isthus
independent of both plaintext and ciphertext, rendering the integrity mechanism completely
insecure. Care should thus be taken in combining a MAC with an encryption scheme. In
general, it is recommended that distinct (and ideally, independent) keys be used. In some
cases, one key may be derived from the other by a simple technique; a common sugges-
tion for DES keysis complementation of every other nibble. However, argumentsfavoring
independent keys include the danger of encryption algorithm weaknesses compromising
authentication (or vice-versa), and differences between authentication and encryption keys
with respect to key management life cycle. See a'so Remark 13.32. O

Anefficiency drawback in using distinct keysfor secrecy and integrity isthe cost of two
separate passesover thedata. Example9.89illustrates a proposed dataintegrity mechanism
(which appeared in apreliminary draft of U.S. Federal Standard 1026) which attemptsthis
by using an essentially zero-cost linear checksum; it is, however, insecure.

Example (CBC encryption with XOR checksum— CBCC) Consider using the data integ-
rity mechanism of equation (9.2) with £}, being CBC-encryptionwithkey k, z = z125 . . .
x; amessage of ¢ blocks, and as MDC function the simple XOR of all plaintext blocks,
h(z) = @Ej x;. The quantity M = h(z) which serves as MDC then becomes plain-
text block ;1. The resulting ciphertext blocks using CBC encryption with ¢g = IV are
¢i = Ex(z;®c;i—1), 1 < i < t+ 1. Inthe absence of manipulation, the recovered plain-
textisx; = ¢;—1®Dx(c;). To see that this schemeis insecure as an integrity mechanism,
let ¢, denote the actual ciphertext blocks received by a recipient, resulting from possibly

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.



368

Ch. 9 Hash Functions and Data Integrity

9.90

9.91

manipulated blocks ¢;, and let 2 denote the plaintext recovered by the recipient by CBC
decryption with the proper 1V. The MDC computed over the recovered plaintext blocksis
then

1=t i=t i=t—1 i=t
M =h(a) = P = P_10Du(d) = IVa( P &)@ Di())
=1 =1

i=1 i=1

M’ is compared for equality with =, (= ¢;®Dy(c;,)) asacheck for data integrity, or
equivalently, that S = M’'®a;,, = 0. By construction, S = 0 if there is no manipula-
tion (i.e., if ¢; = ¢;, whichimpliesz}, = x;). Moreover, the sum S isinvariant under any
permutation of the values ¢, 1 < ¢ < t (since Dy(c:+1) appearsasatermin S, but ¢, 4
doesnot, c; 1 must be excluded from the permutable set). Thus, any of thefirst ¢ ciphertext
blocks can be permuted without affecting the successful verification of the MDC. Further-
more, insertion into the ciphertext stream of any random block c; twice, or any set of such
pairs, will cancel itself out in the sum S, and thus also cannot be detected. O

Example (CBC encryptionwith mod 2™ — 1 checksum) Consider as an alternative to Ex-
ample9.89thesimple MDC function h(z) = Zﬁzl x;, thesum of plaintext blocks asn-bit
integerswith wrap-around carry (add overflow bitsback into unitshit), i.e., the sum modulo
2™ — 1; consider n = 64 for ciphers of blocklength 64. The sum S from Example 9.89in
this case involves both XOR and addition modulo 2™ — 1; both permutations of ciphertext
blocksand insertions of pairs of identical random blocksare now detected. (Thistechnique

should not, however, be used in environments subject to chosen-plaintext attack.) O

Example (PCBC encryptionwith mod 2™ checksum) A non-standard, non-self-synchron-
izing mode of DES known as plaintext-ciphertext block chaining (PCBC) is defined asfol -
lows, for i > 0 and plaintext z = z122... 2 ciy1 = Ex(zit1®PG;) where Gy = IV,
G; = g(zi,c;) fori > 1, and g a simple function such as g(z;,¢;) = (z; + ¢;) mod
264, A one-passtechnique providing both encryption and integrity, which exploitsthe error-
propagation property of this mode, is as follows. Append an additional plaintext block to
provide redundancy, e.g., z:+1 = IV (adternatively: afixed constant or z1). Encrypt all
blocks of the augmented plaintext using PCBC encryption as defined above. The quantity
ct+1 =Ex(xi41®Dg(xt, ct)) serves as MAC. Upon decipherment of ¢, 1, the receiver ac-
ceptsthe message ashaving integrity if the expected redundancy isevident in the recovered
block z:+1. (To avoid a known-plaintext attack, the function g in PCBC should not be a
simple XOR for thisintegrity application.) O

9.7 Advanced attacks on hash functions

A deeper understanding of hash function security can be obtained through consideration of
variousgeneral attack strategies. Theresistanceof aparticular hash function to known gen-
era attacks providesa (partial) measure of security. A selection of prominent attack strate-
giesis presented in this section, with theintention of providing an introduction sufficient to
establish that designing (good) cryptographic hash functionsis not an easily mastered art.
Many other attack methods and variations exist; some are general methods, while others
rely on peculiar properties of the internal workings of specific hash functions.
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9.7.1 Birthday attacks

9.92

9.93

Algorithmrindependent attacks are those which can be applied to any hash function, treat-
ing it as a black-box whose only significant characteristics are the output bitlength » (and
MAC key hitlength for MACs), and the running time for one hash operation. It is typi-
cally assumed the hash output approximates a uniform random variable. Attacks falling
under this category include those based on hash-result hitsize (page 336); exhaustive MAC
key search (page 336); and birthday attacks on hash functions (including memorylessvari-
ations) as discussed below.

(i) Yuval’s birthday attack on hash functions

Yuval's birthday attack was one of the first (and perhaps the most well-known) of many
cryptographic applications of the birthday paradox arising from the classical occupancy
distribution (§2.1.5): when drawing elements randomly, with replacement, from a set of
N elements, with high probability a repeated element will be encountered after O(v/N)
selections. Such attacks are among those called square-root attacks.

Therelevanceto hash functionsisthat it iseasier to find collisionsfor a one-way hash
function than to find pre-images or second preimages of specific hash-values. As aresult,
signature schemes which employ one-way hash functions may be vulnerableto Yuval's at-
tack outlined below. The attack is applicableto all unkeyed hash functions (cf. Fact 9.33),
with running time O(2™/2) varying with the bitlength m of the hash-value.

Algorithm Yuval's birthday attack

INPUT: legitimate message 1 ; fraudulent message x-; m-bit one-way hash function h.
OUTPUT: z, x4 resulting from minor modifications of x4, xo with h(z}) = h(z})
(thusasignature on z| servesasavalid signature on x5).

1. Generatet = 2™/2 minor modifications z of z;.

2. Hash each such modified message, and store the hash-values (grouped with corre-
sponding message) such that they can be subsequently searched on hash-value. (This
can donein O(t) total time using conventional hashing.)

3. Generate minor modifications x4, of =5, computing h(z5) for each and checking for
matcheswith any =} above; continue until amatch isfound. (Each tablelookup will
require constant time; a match can be expected after about ¢ candidates x%,.)

Remark (application of birthday attack) The idea of this attack can be used by a dishon-
est signer who provides to an unsuspecting party his signature on z; and later repudiates
signing that message, claiming instead that the message signed was x%; or by a dishonest
verifier, who is able to convince an unsuspecting party to sign a prepared message z , and
later claim that party’ssignature on z,. Thisremark generalizesto other schemesin which
the hash of amessage is taken to represent the message itself.

Regarding practicality, the collisions produced by the birthday attack are “real” (vs.
pseudo-collisionsor compression function collisions), and moreover of direct practical con-
seguence when messages are constructed to be meaningful. Thelatter may often be doneas
follows: alter inputsviaindividual minor modificationswhich create semantically equiva-
lent messages (e.g., substituting tab charactersin text filesfor spaces, unprintable characters
for each other, etc.). For 128-hit hash functions, 64 such potential modification points are
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required to allow 2%* variations. The attack then requires O(24) time (feasible with ex-
treme parallelization); and while it requires space for O(2%4) messages (which isimpracti-
cal), the memory requirement can be addressed as discussed bel ow.

(i) Memoryless variation of birthday attack

To remove the memory requirement of Algorithm 9.92, a deterministic mapping may be
used which approximates a random walk through the hash-value space. By the birthday
paradox, in a random walk through a space of 2™ points, one expects to encounter some
point asecond time (i.e., obtain a collision) after O(2™/2) steps, after which the walk will
repeat its previouspath (and begin to cycle). General memoryless cycle-finding techniques
may then be used to find this collision. (Here memoryless meansrequiring negligible mem-
ory, rather than in the stochastic sense.) These include Floyd's cycle-finding algorithm
(8§3.2.2) and improvementsto it.

Following Algorithm 9.92, let g be a function such that g(x;, H) = ) isaminor
modification, determined by the hash-value H, of message z; (each bit of H might define
whether or not to modify z; at a pre-determined modification point). If z; isfixed, then
g essentially maps a hash-result to a message and it is convenient to write g,., (H) = .
Moreover, let g beinjective so that distinct hashes H result in distinct 2. Then, with fixed
messages 1, 2, and using some easily distinguishable property (e.g., parity) which splits
the space of hash-valuesinto two roughly equal-sized subsets, define afunction » mapping
hash-results to hash-results by:

h(g, (H)) if Hiseven

r(H) = { h(g, (H)) i H isodd (9.4)
The memoryless collision search technique (see above) is then used to find two inputsto r
which map to the same output (i.e., collide). If h behaves statistically as arandom mapping
then, with probability 0.5, the parity will differ in H and H’ for the colliding inputs, in
which case without loss of generality h(g.,(H)) = h(g.,(H')). Thisyields a colliding
pair of variations =, = g, (H), 75 = g.,(H') of distinct messages x1, w2, respectively,
such that h(z}) = h(z}), as per the output of Algorithm 9.92.

(iii) lllustrative application to MD5

Actual application of the above generic attack to a specific hash function raises additional
technicalities. Toillustrate how these may be addressed, such applicationis now examined,
with assumptions and choices made for exposition only. Let h be an iterated hash function
processing messagesin 512-hit blocksand producing 128-bit hashes (e.g., MD5, RIPEMD-
128). To minimize computational expense, restrict r (effectively g and k) in equation (9.4)
to single 512-hit blocks of x;, such that each iteration of r involves only the compression
function f oninputs one message block and the current chaining variable.

Let the legitimate message input z; consist of s 512-bit blocks (s > 1, prior to MD-
strengthening). Create afraudulent message z, of equal bitlength. Allow x5 to differ from
x1 upto and including the j** block, for any fixed j < s — 1. Usethe (j + 1)* block of z;,
denoted B; (i = 1, 2), asamatching/replacement block, to bereplaced by the 512-bit blocks
resulting from the collision search. Set all blocksin x, subsequent to B; identically equal
to thosein z1; «} will then differ from z; only in the single block (5 + 1). For maximum
freedom in the construction of x5, choose ; = s — 1. Let ¢, co be the respective 128-bit
intermediateresults (chaining variabl es) after theiterated hash operateson thefirst j blocks
of x1, z2. Compression function f maps (128 + 512 =) 640-bit inputsto 128-bit outputs.
Since the chaining variables depend on z;, g.,,(= ¢g) may be defined independent of x;
here (cf. equation (9.4)); assume both entire blocks B; may be replaced without practical
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implication. Let g(H) = B denote an injective mapping from the space of 128-bit hash-
values to the space of 512-hit potential replacement blocks, defined as follows: map each
two-bit segment of H to one of four 8-hit valuesin the replacement block B. (A practical
motivation for thisisthat if z; isan ASCII message to be printed, and the four 8-bit values
are selected to represent non-printable characters, then upon printing, the resulting blocks
B are all indistinguishable, leaving no evidence of adversarial manipulation.)

Thecollision-finding functionr for this specific example (corresponding to the generic
equation (9.4)) isthen:

[ flei, g(H)) if Hiseven
r(H) = { flez, g(H)) if H isodd

Collisions for MD5 (and similar hash functions) can thus be found in O(24) operations
and without significant storage requirements.

9.7.2 Pseudo-collisions and compression function attacks

9.94

9.95

The exhaustive or brute force methods discussed in §9.3.4, producing preimages, 2nd-pre-
images, and collisions for hash functions, are aways theoretically possible. They are not
considered true“ attacks” unlessthe number of operationsrequiredis significantly lessthan
both the strength conjectured by the hash function designer and that of hash functions of
similar parameterswith ideal strength. An attack requiring such areduced number of oper-
ationsisinformally said to break the hash function, whether or not this computational effort
isfeasiblein practice. Any attack method which demonstrates that conjectured properties
do not hold must be taken seriously; when this occurs, one must admit the possibility of
additional weaknesses.

In addition to considering the complexity of finding (ordinary) preimages and colli-
sions, it is common to examine the feasibility of attacks on slightly modified versions of
the hash function in question, for reasons explained below. The most common caseis ex-
amination of the difficulty of finding preimages or collisions if one allows free choice of
IVs. Attackson hash functionswith unconstrained | Vs dictate upper boundson the security
of the actual algorithms. Vulnerabilities found, while not direct weaknesses in the overall
hash function, are nonethel ess considered certificational weaknesses and cast suspicion on
overall security. In some cases, restricted attacks can be extended to full attacks by standard
techniques.

Table 9.11 lists the most commonly examined variations, including pseudo-collisions
— collisions alowing different Vs for the different message inputs. In contrast to preim-
ages and collisions, pseudo-preimages and pseudo-collisionsare of limited direct practical
significance.

Note (alternate names for collision and preimage attacks) Alternate names for those in
Table 9.11 are as follows. preimage or 2nd-preimage = target attack; pseudo-preimage
= free-start target attack; collision (fixed 1) = collision attack; collision (random V) =
semi-free-start collision attack; pseudo-collision = free-start collision attack.

Note (relativedifficulty of attacks) Finding acollision can be no harder than finding a2nd-

preimage. Similarly, finding a pseudo-collision can be no harder than finding (two distinct)
pseudo-preimages.
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9.96

9.97

9.98

| | Type of attack VIV ]z]d] y | Find. .. |
preimage Vol|l—1|* |— Y0 x: h(Vo,z) = yo
pseudo-preimage Fl—* | = Yo z, Vi h(V,z) = yo
2nd-preimage Vo |Volzo| * | R(Vo,zo) | 2" R(Vh,x0) = h(Vo,2')
collision (fixed IV) Vo |lVol*|* — x, '
h(Vo, x) = h(Vo, 2')
collison (randomIV) || * |V | * | * — x,z’,V:
h(V,x) = h(V,2')
pseudo-collision f I I — z,x',V,V":
h(V,z) = h(V',2')

Table 9.11: Définition of preimage and collision attacks. V and V' denote (potentially different)
IVs used for MDC h applied to inputs = and =, respectively; V; denotes the IV pre-specified in the
definition of h, zo a pre-specified target input, and y = yo a pre-specified target output. * Denotes
IVs or inputs which may be freely chosen by an attacker; h(Vo, zo) denotes the hash-code resulting
fromapplying h with fixed IVV = V4 toinput z = x¢. — Means not applicable.

Example (trivial collisions for random IVs) If free choice of IV is allowed, then trivial
pseudo-collisionscan befound by del eting leading blocksfrom atarget message. For exam-
ple, for an iterated hash (cf. equation (9.1) on page 333), h(IV, z122) = f(f(IV, 1), z2).
Thus, for IV’ = f(IV,z1), h(IV',x2) = h(IV, z122) yields a pseudo-collision of A, in-
dependent of the strength of f. (MD-strengthening as per Algorithm 9.26 precludesthis.)

O

Another common analysistechniqueisto consider the strength of weakened variants of
an agorithm, or attack specific subcomponents, akin to cryptanalyzing an 8-round version
of DESin place of the full 16 rounds.

Definition Anattack onthecompressionfunction of aniterated hash functionisany attack
asper Table9.11with f(H,_1, z;) replacing h(Vy, =) —thecompression function f in place
of hashfunction h, chainingvariable H; _; inplaceof initializingvalue V', and asingleinput
block z; in place of the arbitrary-length message z.

An attack on a compression function focuses on one fixed step 4 of the iterative func-
tion of equation (9.1). The entire message consists of a single block z; = =z (without
MD-strengthening), and the hash output is taken to be the compression function output so
h(x) = H;. Theimportance of such attacks arises from the following.

Note (compression functionvs. hash function attacks) Any of the six attacks of Table 9.11
whichisfoundfor the compression function of an iterated hash can be extended to asimilar
attack of roughly equal complexity on the overall hash. An iterated hash function is thus
in this regard at most as strong as its compression function. (However note, for example,
an overall pseudo-collision is not always of practical concern, since most hash functions
specify afixed 1V.)

For example, consider amessagex = x1 s . . . z;. SUpposeasuccessful 2nd-preimage
attack on compression function f yields a 2nd-preimage «; # x; such that f(IV,z}) =
fUIV,z1). Then, '’ = z{xzo ...z isapreimageof h(z).

More positively, if MD-strengthening is used, the strength of an iterated hash with
respect to the attacks of Table 9.11 is the same as that of its compression function (cf.
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9.99

Fact 9.24). However, an iterated hash may certainly be weaker than its compression func-
tion (e.g., Example 9.96; Fact 9.37).

In summary, a compression function secure against preimage, 2nd-preimage, and col-
lision (fixed 1V) attacks is necessary and sometimes, but not always, sufficient for a secure
iterated hash; and security against the other (i.e., free-start) attacks of Table 9.11 is desir-
able, but not always necessary for a secure hash function in practice. For thisreason, com-
pression functions are analyzed in isolation, and attacks on compression functions as per
Definition 9.97 are considered. A further result motivating the study of pseudo-preimages
isthe following.

Fact (pseudo-preimages yielding preimages) If the compression function f of an n-bit
iterated hash function /& does not have ideal computational security (2™) against pseudo-
preimage attacks, then preimagesfor h can befound in fewer than 2™ operations(cf. §9.3.4,
Table 9.2). Thisresult istrue even if h has MD-strengthening.

Justification. The attack requires messages of 3 or more blocks, with 2 or more uncon-
strained to allow ameet-in-the-middleattack (page 374). If pseudo-preimagescan befound
in 2¢ operations, then 2("*)/2 forward points and 2("—#)/2 backward points are employed
(fewer backward points are used since they are more costly). Preimages can thus be found
in2 . 2("+s)/2 gperations.

9.7.3 Chaining attacks

9.100

Chaining attacks are those which are based on the iterative nature of hash functionsand, in
particular, the use of chaining variables. These focus on the compression function f rather
than the overall hash function h, and may be further classified as below. An example for
context isfirst given.

Example (chaining attack) Consider a (candidate) collision resistant iterative hash func-
tion h producing a 128-hit hash-result, with a compression function f taking as inputs a
512-bit message block x; and 128-bit chaining variable H; (Hy, = IV) and producing out-
put H; 11 = f(H;,x;). For afixed 10-block message = (640 bytes), consider H = h(x).
Suppose one picks any one of the 10 blocks, and wishes to replace it with another block
without affecting the hash H. If h behaves like a random mapping, the number of such
512-bit blocks is approximately 2512 /2128 — 2384 Any efficient method for finding any
one of these 2384 blocksdistinct from the original congtitutes an attack on k. The challenge
is that such blocks are a sparse subset of all possible blocks, about 1 in 2128, O

(i) Correcting-block chaining attacks

Using the example above for context, one could attempt to (totally) replace a message «
with anew message z’, such that h(z) = h(z'), by using a single unconstrained “ correct-
ing” block in z’, designated ahead of time, to be determined later such that it produces a
chaining valuewhich resultsin the overall hash being equal totarget value h(z). Suchacor-
recting block attack can be used to find both preimagesand collisions. If the unconstrained
block is the first (last) block in the message, it is called a correcting first (last) block at-
tack. These attacks may be precluded by requiring per-block redundancy, but thisresultsin
an undesirable bandwidth penalty. Example 9.101 illustrates acorrecting first block attack.
The extension of Yuval’s birthday attack (page 369), with message alterations restricted to
thelast block of candidate messages, resemblesacorrectinglast block attack applied simul-
taneoudly to two messages, seeking a (birthday) collision rather than afixed overal target
hash-value.
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9.101

9.102

Example (correcting block attack on CBC cipher mode) The CBC mode of encryption
with non-secret key (Hy = IV'; H; = Ex(H;_1®z;)) isunsuitable asan MDC agorithm,
becauseit failsto be one-way — the compression function is reversible when the encryption
key is known. A message x’, of unconstrained length (say ¢ blocks) can be constructed to
have any specified target hash-value H asfollows. Let ), ... z; bet — 1 blocks chosen
freely. Set H, < H,thenforifrom¢tolcompute H , < Dy (H})®z}. Finaly, compute
x} < Dy(H{)®IV. Then, for 2’ = x5z, ...z}, h(z') = H and al but block 3 (which
will appear random) can be freely chosen by an adversary; even this minor drawback can
be partially addressed by a meet-in-the-middle strategy (see below). Analogous remarks
apply to the CFB mode. O

(ii) Meet-in-the-middle chaining attacks

These are birthday attacks similar to Yuval’'s (and which can be made essentially memory-
less) but which seek collisions on intermediate results (i.e., chaining variables) rather than
the overall hash-result. When applicable, they alow (unlike Yuval's attack) one to find a
message with a pre-specified hash-result, for either a 2nd-preimage or a collision. An at-
tack point is identified between blocks of a candidate (fraudulent) message. Variations of
the blocks preceding and succeeding this point are generated. The variations are hashed
forward from the algorithm-specified IV (computing H; = f(H;_1, ;) asusual) and back-
ward from the target final hash-result (computing H; = f~'(H;;1,z;.1) for some H;. 1,
xi11, idedly for z; 1 chosen by the adversary), seeking a collision in the chaining vari-
able H; at the attack point. For the attack to work, the attacker must be able to efficiently
go backwards through the chain (certainly moreso than by brute force — e.g., see Exam-
ple 9.102), i.e., invert the compression function in the following manner: given a value
Hi+1, find apair (H,L, J,‘H_l) such that f(HZ, J,‘H_l) = H1'+1.

Example (meet-in-the-middle attack on invertible key chaining modes) Chaining modes
which alow easily derived stage keysresult in reversible compression functionsunsuitable
for use in MDCs due to lack of one-wayness (cf. Example 9.101). An example of such
invertible key chaining methods is Bitzer's scheme: Hy = IV, H; = f(H;—1,2;) =
Ey,(H;—1)wherek; = z;®s(H;_1) and s(H;_1) isafunction mapping chaining variables
to the key space. For exposition, let s be the identity function. This compression function
is unsuitable because it falls to a meet-in-the-middle attack as outlined above. The ability
to move backwards through chaining variables, as required by such an attack, is possible
here with the chaining variable H; computed from H,, asfollows. Choose afixed value
kit1 < k, compute H; < Dy (H;41), then choose as message block ;11 <+ k®H;. O

(iii) Fixed-point chaining attacks

A fixed point of acompression functionisapair (H;_1, ;) suchthat f(H;_1,2;) = H;_1.
For such a pair of message block and chaining value, the overall hash on a messageis un-
changed upon insertion of an arbitrary number of identical blocks z; at the chain point at
which that chaining value arises. Such attacks are thus of concerniif it can be arranged that
the chaining variable has a value for which a fixed point is known. This includes the fol-
lowing cases: if fixed points can be found and it can be easily arranged that the chaining
variable take on a specific value; or if for arbitrary chaining values H;_1, blocks x; can
be found which result in fixed-points. Fixed points allow 2nd-preimages and collisions to
be produced; their effect can be countered by inclusion of a trailing length-block (Algo-
rithm 9.26).
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(iv) Differential chaining attacks

Differential cryptanalysishas proven to be a powerful tool for the cryptanalysis of not only
block ciphers but also of hash functions (including MACs). For multi-round block ciphers
this attack method examines input differences (XORs) to round functions and the corre-
sponding output differences, searching for statistical anomalies. For hash functions, the
examination is of input differencesto compression functions and the corresponding output
differences; a collision correspondsto an output difference of zero.

9.7.4 Attacks based on properties of underlying cipher

9.103

Theimplications of certain properties of block ciphers, which may be of no practical con-
cern when used for encryption, must be carefully examined when such ciphers are used
to construct iterated hash functions. The general danger is that such properties may facil-
itate adversarial manipulation of compression function inputs so as to allow prediction or
greater control of outputs or relations between outputs of successive iterations. Included
among block cipher properties of possible concern are the following (cf. Chapter 7):

1. complementation property: y = Ei(x) <= 7 = E3(T), where T denotes bitwise
complement. This makesiit trivial to find key-message pairs of block cipher inputs
whose outputs differ in a pre-determined manner. For example, for such ablock ci-
pher E, the compression function f(H; 1, ;) = Ey, | @, (z:)®z; (alinear trans-
formation of the Matyas-Meyer-Oseas function) producesthe same output for x; and
its bitwise complement ;.

2. weak keys: Ei(E(x)) = « (for dl z). This property of involution of the block
cipher may allow an adversary to easily create atwo-step fixed point of the compres-
sion function f in the case that message blocks z; have direct influence on the block
cipher key input (e.g., if f = E,,(H;—1), insert 2 blocks z; containing aweak key).
Thethreat is similar for semi-weak keys, where Ey (Ex(z)) = x.

3. fixed points: Ej(x) = z. Block cipher fixed points may facilitate fixed-point attacks
if an adversary can control the block cipher key input. For example, for the Davies-
Meyer compression function f(H;_1,x;) = Ey,(H;—1)®H;_1, if H;_; isafixed
point of the block cipher for key z; (i.e., E.,(H;—1) = H;_1), then thisyields a
predictable compression function output f(H;_1,z;) = 0.

4. key collisions: Ey(z) = Ey (x). These may allow compression function collisions.

Although they may serve as distinguishing metrics, attacks which appear purely certi-
ficational in nature should be noted separately from others; for example, fixed point attacks
appear to be of limited practical consequence.

Example (DES-based hash functions) Consider DES as the block cipher in question (see
§7.4). DES has the complementation property; has 4 weak keys and 6 pairs of semi-weak
keys (each with bit 2 equal to bit 3); each weak key has 232 fixed points (thus a random
plaintext is a fixed point of some weak key with probability 273°), as do 4 of the semi-
weak keys; and key collisions can befound in 232 operations. The security implications of
these properties must be taken into account in the design of any DES-based hash function.
Concerns regarding both weak keys and the complementation property can be eliminated
by forcing key hits 2 and 3 to be 10 or 01 within the compression function. O
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9.8 Notes and further references

§9.1

§9.2

The definitive reference for cryptographic hash functions, and an invaluable source for the
material in this chapter (including many otherwise unattributed results), is the comprehen-
sive treatment of Preneel [1003, 1004]; see a so the surveys of Preneel [1002] and Prenedl,
Govaerts, and Vandewalle [1006]. Davies and Price [308] also provide a solid treatment
of message authentication and dataintegrity. An extensivetreatment of conventional hash-
ing, including historical discussion tracing originsback to IBM in 1953, is given by Knuth
[693, p.506-549]. Independent of cryptographic application, universal classes of hash func-
tionswere introduced by Carter and Wegman [234] in the late 1970s, the ideabeing to find
aclass of hash functions such that for every pair of inputs, the probability was low that a
randomly chosen function from the class resulted in that pair colliding. Shortly thereafter,
Wegman and Carter [1234] noted the cryptographic utility of these hash functions, when
combined with secret keys, for (unconditionally secure) message authentication tag sys-
tems; they formalized this concept, earlier considered by Gilbert, MacWilliams, and Sloane
[454] (predating the concept of digital signatures) who attribute the problem to Simmons.
Simmons ([1138],[1144)]; see also Chapter 10 of Stinson [1178]) independently developed
ageneral theory of unconditionally secure message authentication schemes and the subject
of authentication codes (see also §9.5 below).

Rabin [1022, 1023] first suggested employing a one-way hash function (constructed by us-
ing successive message blocks to key an iterated block encryption) in conjunction with a
one-time signature scheme and later in a public-key signature scheme; Rabin essentially
noted the requirements of 2nd-preimage resistance and collision resistance. Merkle [850]
explored further uses of one-way hash functions for authentication, including the idea of
tree authentication [852] for both one-time signatures and authentication of public files.

Merkle[850] (partially published as[853]) wasthefirst to giveasubstantial (informal) def-
inition of one-way hash functionsin 1979, specifying the properties of preimage and 2nd-
preimage resistance. Foreshadowing UOWHFs (see below), he suggested countering the
effect of Remark 9.36 by using slightly different hash functions i over time; Merkle 850,
p.16-18] also proposed a public key distribution method based on a one-way hash function
(effectively used as aone-way pseudo-permutation) and the birthday paradox, in a precur-
sor to his“puzzle system” (see page 537). Thefirst formal definition of a CRHF was given
in 1988 by Damgard [295] (an informal definition was later given by Merkle [855, 854];
see also [853]), who wasfirst to explore collision resistant hash functionsin a complexity-
theoretic setting. Working from the idea of claw-resistant pairs of trapdoor permutations
due to Goldwasser, Micali, and Rivest [484], Damgard defined claw-resistant families of
permutations (without the trapdoor property). The term claw-resistant (originally: claw-
free) originatesfrom the pictorial representation of a functional mapping showing two dis-
tinct domain el ements being mapped to the same range el ement under distinct functions f (%)
and f9) (collidingat z = () = £\ (y)), thereby tracing out a claw.

Goldwasser et al. [484] established that the intractability of factoring suffices for the exis-
tence of claw-resistant pairsof permutations. Damgard showed that theintractability of the
discrete logarithm problem likewise suffices. Using several reasonably efficient number-
theoretic constructions for families of claw-resistant permutations, he gave the first prov-
ably collision resistant hash functions, under such intractability assumptions (for discrete
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logarithms, the assumption required is that taking specific discrete logarithms be difficult).
Russell [1088] subsequently established that a collection of collision resistant hash func-
tionsexistsif and only if there exists acollection of claw-resistant pairs of pseudo-permu-
tations; a pseudo-permutation on a set isafunction computationally indistinguishablefrom
apermutation (pairs of elements demonstrating non-injectivity are hard to find). It remains
open whether the existence of one-way functions suffices for the existence of collision re-
sistant hash functions.

The definition of a one-way function (Definition 9.9) was given in the seminal paper of
Diffie and Hellman [345], along with the use of the discrete exponential function modulo
a prime as a candidate OWF, which they credit to Gill. The idea of providing the hash-
value of some data, to indicate prior commitment to (or knowledge of) that data, was uti-
lized in Lamport’s one-time signature scheme (circa 1976); see page 485. The OWF of
Example 9.13 was known to Matyasand Meyer circa1979. As noted by Massey [786], the
ideaof one-waynesswas published in 1873 by J.S. Jevons, who noted (preceding RSA by a
century) that multiplying two primesis easy whereas factoring the result is not. Published
work dated 1968 records the use of ciphers essentially as one-way functions (decryption
was not required) in atechnique to avoid storing cleartext computer account passwordsin
time-shared systems. These were referred to as one-way ciphers by Wilkes [1244] (p.91-
93 in 1968 or 1972 editions; p.147 in 1975 edition), who credits Needham with the idea
and an implementation thereof. Thefirst proposal of anon-invertiblefunction for the same
purpose appearsto be that of Evans, Kantrowitz, and Weiss[375], while Purdy [1012] pro-
posed extremely high-degree, sparse polynomialsover aprimefield as a class of functions
which were computationally difficult to invert. Foreshadowing later research into collision
resistance, Purdy also defined the degeneracy of such afunction to be the maximum number
of preimages than any image could have, noting that “if the degeneracy is catastrophically
large there may be no security at all”.

Naor and Yung [920] introduced the cryptographi ¢ primitive known as auniversal one-way
hash function (UOWHF) family, and giveaprovably secure constructionfor aone-way hash
function from a one-way hash function which compresses by a single bit (¢ + 1 to ¢ bits);
the main property of aUOWHF family is 2nd-preimageresistance asfor aOWHF, but here
an instance of the function is picked at random from afamily of hash functions after fixing
an input, as might be modeled in practice by using arandom IV with a OWHF. Naor and
Yung [920] also prove by construction that UOWHFs exist if and only if one-way permu-
tations do, and show how to use UOWHFs to construct provably secure digital signature
schemes assuming the existence of any one-way permutation. Building on this, Rompel
[1068] showed how to construct a UOWHF family from any one-way function, and based
signature schemes on such hash functions; combining thiswith thefact that aone-way func-
tion can be constructed from any secure signature scheme, the result is that the existence of
one-way functionsis necessary and sufficient for the existence of secure digital signature
schemes. De Santis and Yung [318] proceed with more efficient reductions from one-way
functionsto UOWHFs, and show the equivalence of anumber of complexity-theoretic def-
initions regarding collision resistance. Impagliazzo and Naor [569] give an efficient con-
struction for a UOWHF and prove security equivalent to the subset-sum problem (an NP-
hard problem whose corresponding decision problem is NP-complete); for parameters for
which arandom instance of subset-sum is hard, they argue that this UOWHF is secure (cf.
Remark 9.12). Impagliazzo, Levin, and Luby [568] prove the existence of one-way func-
tionsis necessary and sufficient for that of secure pseudorandom generators.

Application-specific (often unprovable) hash function properties beyond collision resist-
ance (but short of preimage resistance) may often be identified as necessary, e.g., for or-
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dinary RSA signatures computed directly after hashing, the multiplicative RSA property
dictates that for the hash function h used it be infeasible to find messages z, =1, 22 such
that h(x) = h(zx1) - h(z2). Anderson [27] discusses such additional requirementson hash
functions. For a summary of requirements on a MAC in the special case of multi-cast au-
thentication, see Preneel [1003]. Bellare and Rogaway [93] include discussion of issues
related to the random nature of practical hash functions, and cryptographic uses thereof.
Damgard [295] showed that the security of adigital signature scheme which is not existen-
tially forgeable under an adaptive chosen-message attack will not be decreased if used in
conjunction with a collision-resistant hash function.

Bellare, Goldreich, and Goldwasser [88] (see also [89]) introduce the idea of incremental
hashing, involving computing a hash value over dataand then updating the hash-value after
changing the data; the objectiveis that the computation required for the update be propor-
tional to the amount of change.

Merkle'smeta-method [854] (Algorithm 9.25) was based on ideasfrom his 1979 Ph.D. the-
sis [850]. An equivalent construction was given by Damgard [296], which Gibson [450]
remarks on again yielding Merkle's method. Naor and Yung [920] give arelated construc-
tion for aUOWHF. See Preneel [1003] for fundamental results (cf. Remarks 9.35 and 9.36,
and Fact 9.27 on cascading hash functions which follow similar results on stream ciphers
by Maurer and Massey [822]). The padding method of Algorithms9.29 and 9.30 originated
from 1SO/IEC 10118-4[608]. The basic ideaof thelong-message attack (Fact 9.37) isfrom
Winternitz [1250].

The hash function of Algorithm 9.42 and referred to as Davies-Meyer (as cited per Quis-
quater and Girault [1019]) has been attributed by Davies to Meyer; apparently known to
Meyer and Matyas circa 1979, it was published along with Algorithm 9.41 by Matyas,
Meyer, and Oseas [805]. The Miyaguchi-Preneel scheme (Algorithm 9.43) was proposed
circa1989 by Preneel [1003], and independently by Miyaguchi, Ohta, and Iwata[886]. The
three single-length rate-one schemes discussed (Remark 9.44) are among 12 compression
functions employing non-invertible chaining found through systematic analysis by Preneel
et al. [1007] to be provably secure under black-box analysis, 8 being certificationally vul-
nerable to fixed-point attack nonetheless. These 12 are linear transformations on the mes-
sage block and chaining variable (i.e., [z, H'] = A[z, H] for any of the 6 invertible 2 x 2
binary matrices A) of the Matyas-Meyer-Oseas (Algorithm 9.41) and Miyaguchi-Preneel
schemes; these latter two themselves are among the 4 recommended when the underlying
cipher is resistant to differential cryptanalysis (e.g., DES), while Davies-Meyer is among
the remaining 8 recommended otherwise (e.g., for FEAL). MDC-2 and MDC-4 are of IBM
origin, proposed by Brachtl et al. [184], and reported by Meyer and Schilling [860]; details
of MDC-2 are also reported by Matyas [803]. For a description of MDC-4, see Bosselaers
and Preneel [178].

The DES-based hash function of Merkle [855] which is mentioned uses the meta-method
and employs a compression function f mapping 119-bit input to 112-bit output in 2 DES
operations, allowing 7-bit message blocksto be processed (with rate 0.055). An optimized
version maps 234 hits to 128 bitsin 6 DES operations, processing 106-bit message blocks
(with rate 0.276); unfortunately, overheads related to “bit chopping” and the inconvenient
block size are substantial in practice. This construction is provably as secure as the under-
lying block cipher assuming an unflawed cipher (cf. Table 9.3; Preneel [1003] shows that
accounting for DESweak keysand complementation dropsthe rate dightly to 0.266). Win-
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ternitz[1250] considersthe security of the Davies-Meyer hash under ablack-box model (cf.
Remark 9.45).

The search for secure double-length hash functions of rate 1 is ongoing, the goal being
security better than single-length Matyas-Meyer-Oseas and approaching that of MDC-2.
Quisguater and Girault [1019] proposed two functions, one (QG-original) appearing in the
Abstracts of Eurocrypt’89 and a second (QG-revised) in the final proceedings altered to
counter an attack of Coppersmith [276] on the first. The attack, restricted to the case of
DES as underlying block cipher, uses fixed points resulting from weak keys to find colli-
sionsin 236 DES operations. A general attack of Knudsen and Lai [688], which (unfortu-
nately) applies to alarge class of double-length (i.e., 2n-bit) rate-one block-cipher-based
hashesincluding QG-original, finds preimagesin about 2™ operationsplus 2™ storage. The
systematic method used to establish thisresult was earlier used by Hohl et al. [560] to prove
that pseudo-preimage and pseudo-collision attacks on a large class of double-length hash
functionsof rate 1/2 and 1, including MDC-2, are no more difficult than on the single-length
rate-one Davies-Meyer hash; related results are summarized by Lai and Knudsen [727].
A second attack due to Coppersmith [276], not restricted to DES, employs 88 correcting
blocksto find collisionsfor QG-revised in 24° steps. Another modification of QG-original,
the LOKI Double Hash Function (LOKI-DBH) of Brown, Pieprzyk, and Seberry [215], ap-
pears as a general construction to offer the same security as QG-revised (provided the un-
derlying block cipher is not LOKI).

The speeds in Table 9.5 are normalized from the timings reported by Dobbertin, Bosse-
laers, and Preneel [355], relative to an assembly code M D4 implementation optimized for
the Pentium processor, with a throughput (90 MHz clock) of 165.7 Mbit/s (optimized C
code was roughly a factor of 2 dower). See Bosselaers, Govaerts, and Vandewalle [177]
for a detailed MD5 implementation discussion.

MD4 and MD5 (Algorithms 9.49, 9.51) were designed by Rivest [1055, 1035]. An Aus-
tralian extension of MD5 known as HAVAL has also been proposed by Zheng, Pieprzyk,
and Seberry [1268]. Thefirst published partia attack on M D4 was by den Boer and Bosse-
laers [324], who demonstrated collisions could be found when Round 1 (of the three) was
omitted from the compression function, and confirmed unpublished work of Merkle show-
ing that collisions could be found (for input pairs differing in only 3 bits) in under a mil-
lisecond on a personal computer if Round 3 was omitted. More devastating was the partial
attack by Vaudenay [1215] on the full MD4, which provided only near-collisions, but al-
lowed sets of inputs to be found for which, of the corresponding four 32-bit output words,
three are constant while the remaining word takes on al possible 32-bit values. Thisre-
vealed the word access-order in MD4 to be an unfortunate choice. Finaly, late in 1995,
using techniques related to those which earlier allowed a partial attack on RIPEMD (see
below), Dobbertin [354] broke MD4 as a CRHF by finding not only collisions as stated in
Remark 9.50 (taking afew seconds on a personal computer), but collisions for meaningful
messages (in under one hour, requiring 20 free bytes at the start of the messages).

A first partial attack on MD5 was published by den Boer and Bosselaers[325], who found
pseudo-collisions for its compression function f, which maps a 128-bit chaining variable
and sixteen 32-bit words down to 128-bits; using 26 operations, they found a 16-word
message X and chaining variables S; # S, (these differing only in 4 bits, the most sig-
nificant of each word), such that f(S1, X) = f(S2, X). Because this specialized internal
pseudo-collision could not be extended to an external collision dueto thefixedinitial chain-
ing values (and dueto the special relation between theinputs), thisattack was considered by
many to havelittle practical significance, although exhibiting a violation of the design goal
to build a CRHF from a collision resistant compression function. But in May of 1996, us-
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ing techniquesrelated to hisattack on M D4 above, Dobbertin (rump session, Eurocrypt’ 96)
found MD5 compression function collisions (Remark 9.52) in 10 hours on a personal com-
puter (about 234 compress function computations).

Anticipating the feasibility of 264 operations, Rivest [1055] proposed a method to extend
MD4 to 256 bits by running two copies of MD4 in parallel over the input, with different
initial chaining values and constants for the second, swapping the values of the variable A
with thefirst after processing each 16-word block and, upon completion, concatenating the
128-hit hash-values from each copy. However, in October of 1995 Dabbertin [352] found
collisions for the compression function of extended MD4 in 226 compress function opera-
tions, and conjectured that a more sophisticated attack could find a collision for extended
MD4 itself in O(24°) operations.

MD2, an earlier and slower hash function, was designed in 1988 by Rivest; see Kaliski
[1033] for adescription. Rogier and Chauvaud [1067] demonstrated that collisions can be
efficiently found for the compression function of MD2, and that the MD2 checksum block
is necessary to preclude overall MD2 collisions.

RIPEMD [178] was designed in 1992 by den Boer and others under the European RACE
Integrity Primitives Evaluation (RIPE) project. A version of MD4 strengthened to counter
known attacks, its compression function has two parallel computation lines of three 16-
step rounds. Nonetheless, early in 1995, Dobbertin [353] demonstrated that if the first or
last (parallel) round of the 3-round RIPEMD compress function is omitted, collisions can
be found in 23! compress function computations (one day on a 66 MHz personal com-
puter). This result coupled with concern about inherent limitations of 128-bit hash results
motivated RIPEMD-160 (Algorithm 9.55) by Dobbertin, Bosselaers, and Preneel [355];
but for corrections, see the directory / pub/ COSI C/ bossel ae/ ri pend/ at ftp site
ftp.esat. kul euven. ac. be. Increased security is provided by five rounds (each
with two lines) and greater independence between the parallel lines, at a performance
penalty of afactor of 2. RIPEMD-128 (with 128-bit result and chaining variable) was si-
multaneoudly proposed as a drop-in upgrade for RIPEMD; it scales RIPEM D-160 back to
four rounds (each with two lines).

SHA-1 (Algorithm 9.53) is a U.S. government standard [404]. It differs from the original
standard SHA [403], which it supersedes, only in the inclusion of the 1-bit rotation in the
block expansion from 16 to 80 words. For discussion of how this expansionin SHA isre-
lated to linear error correcting codes, see Preneel [1004].

Lai and Massey [729] proposed two hash functions of rate 1/2 with 2m-bit hash values,
TandemDavies-Meyer and Abreast Davies-Meyer, based onan m-bit block cipher with 2mm-
bit key (e.g., IDEA), and athird m-bit hash function using asimilar block cipher. Merkle's
public-domain hash function Snefru [854] and the FEAL -based N-Hash proposed by Miya-
guchi, Ohta, and Iwata[886] are other hash functionswhich have attracted considerabl e at-
tention. Snefru, one of the earliest proposals, is based on the idea of Algorithm 9.41, (typi-
cally) using as E thefirst 128 bits of output of a custom-designed symmetric 512-bit block
cipher with fixed key k = 0. Differential cryptanalysishasbeen used by Biham and Shamir
[137] to find collisions for Snefru with 2 passes, and is feasible for Snefru with 4 passes;
Merkle currently recommends 8 passes (impacting performance). Cryptanalysisof the 128-
bit hash N-Hash has been carried out by Biham and Shamir [136], with attackson 3, 6, 9,
and 12 rounds being of respective complexity 28, 224, 249 and 256 for the more secure of
the two proposed variations.

Despite many proposals, few hash functions based on modular arithmetic have withstood
attack, and most that have (including those which are provably secure) tend to berelatively
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inefficient. MASH-1 (Algorithm 9.56), from Committee Draft ISO/IEC 10118-4 [608],
evolved from a long line of related proposals successively broken and repaired, includ-
ing contributions by Jueneman; Daviesand Price; A. Jung; Girault [457] (which includesa
summary); and members of 1SO SC27/WG2 circa 1994-95 (e.g., in response to the crypt-
analysis of the 1994 draft proposal, by Coppersmith and Preneel, in ISO/IEC JTC1/SC27
N1055, Attachment 12, “Comments on MASH-1 and MASH-2 (Feb.21 1995)"). Most
prominent among prior proposals was the sgmodn algorithm (due to Jung) in informative
Annex D of CCITT Recommendation X.509 (1988 version), which despite suffering ig-
nominy at the hands of Coppersmith [275], was resurrected with modifications asthe basis
for MASH-1.

Simmons [1146] notes that techniques for message authentication without secrecy (today
called MACs) were known to Simmons, Stewart, and Stokes already in the early 1970s.
In the open literature, the idea of using DES to provide a MAC was presented already in
Feb. 1977 by Campbell [230], who wrote “. .. Each group of 64 message bits is passed
through the algorithm after being combined with the output of the previous pass. Thefinal
DES output is thus aresidue which is a cryptographic function of the entire message”, and
noted that to detect messagereplay or del etion each message coul d be made unique by using
per-message keys or cryptographically protected sequence numbers. Page 121 of this same
publication describes the use of encryption in conjunction with an appended redundancy
check code for manipulation detection (cf. Figure 9.8(b)).

The term MAC itself evolved in the period 1979-1982 during development of ANS| X9.9
[36], whereit is defined as* an eight-digit number in hexadecimal format which istheresult
of passing afinancial message through the authentication algorithm using a specific key.”
FIPS 81 [398] standardizes MACs based on CBC and CFB modes (CFB-based MACs are
little-used, having some disadvantagesover CBC-MA C and apparently no advantages); see
also FIPS 113[400]. Algorithm 9.58isgeneralized by | SO/IEC 9797 [597] to aCBC-based
MAC for ann-bit block cipher providinganm-bit MAC, m < n, including an alternativeto
the optional strengthening process of Algorithm 9.58: asecond key &’ (possibly dependent
on k) isused to encrypt the final output block. Asdiscussed in Chapter 15, using | SO/IEC
9797 with DES to produce a 32-bit MAC and Algorithm 9.29 for padding is equivalent
to the MAC gpecified in 1SO 8731-1, ANSI X9.9 and required by ANSI X9.17. Regard-
ing RIPE-MAC (Example 9.63) [178], other than the 2~%4 probability of guessing a 64-bit
MAC, and MAC forgery as applicableto all iterated MACs (see below), the best known at-
tacks providing key recovery arelinear cryptanalysisusing 242 known plaintextsfor RIPE-
MACI, and a2''2 exhaustive search for RIPE-MAC3. Bellare, Kilian, and Rogaway [91]
formally examine the security of CBC-based MACs and providejustification, establishing
(via exact rather than asymptotic arguments) that pseudorandom functions are preserved
under cipher block chaining; they also propose solutions to the problem of Example 9.62
(cf. Remark 9.59).

The MAA (Algorithm 9.68) was developed in response to a request by the Bankers Auto-
mated Clearing Services (U.K.), and first appeared as a U.K. National Physical Laboratory
Report (NPL Report DITC 17/83 February 1983). It has been part of an I SO banking stan-
dard [577] since 1987, and is due to Davies and Clayden [306]; comments on its security
(see dso below) are offered by Preneel [1003], Davies [304], and Davies and Price [308§],
who note that its design followsthe general principlesof the Decimal Shift and Add (DSA)
algorithm proposed by Sievi in 1980. As a consequence of the conjecture that MAA may
show weaknesses in the case of very long messages, | SO 8731-2 specifies a special mode
of operation for messages over 1024 bytes. For more recent results on MAA including ex-
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ploration of akey recovery attack, see Preneel and van Oorschot [1010].

Methodsfor constructing aMAC agorithm from an MDC, including the secret prefix, suf-
fix, and envelope methods, are discussed by Tsudik [1196]; Galvin, McCloghrie, and Davin
[438] suggest addressing the message extension problem (Example 9.65) in the secret suf-
fix method by using a prepended length field (this requires two passes over the message
if the length is not known a priori). Preneel and van Oorschot [1009] compare the secu-
rity of these methods; propose MD5-MAC (Algorithm 9.69) and similar constructions for
customized MAC functions based on RIPEMD and SHA; and provide Fact 9.57, which ap-
pliesto MAA (n = 64 = 2m) withu = 232° andv = 2323, while for MD5-MAC
(n = 128 = 2m) both » and v are on the order of 264, Remark 9.60 notwithstanding,
the use of an n-bit internal chaining variable with a MAC-value of bitlength m = n/2 is
supported by these results.

The envelope method with padding (Example 9.66) is discussed by Kaliski and Robshaw
(CryptoBytes vol.1 no.1, Spring 1995). Preneel and van Oorschot [1010] proposed a key
recovery attack on this method, which athough clearly impractical by requiring over 264
known text-MAC pairs (for MD5 with 128-bit key), reveals an architectural flaw. Bellare,
Canetti, and Krawczyk [86] rigorously examined the security of anested MAC construction
(NMAC), and the practical variation HMAC thereof (Example9.67), proving HMAC to be
secure provided the hash function used exhibits certain appropriate characteristics. Prior
to this, the related construction h(ky ||h(kz||z)) was considered in the note of Kaliski and
Robshaw (see above).

Other recent proposalsfor practical MACsinclude the bucket hashing construction of Rog-
away [1065], and the XOR MAC scheme of Bellare, Guérin, and Rogaway [90]. Thelatter
is a provably secure construction for MACs under the assumption of the availability of a
finite pseudorandom function, which in practice is instantiated by a block cipher or hash
function; advantagesincludethat it is parallelizable and incremental.

MA Csintended to provide unconditional security are often called authentication codes (cf.
§9.1 above), with an authentication tag (cf. MAC value) accompanying data to provide
origin authentication (including data integrity). More formally, an authentication code in-
volves finite sets S of source states (plaintext), .A of authentication tags, and K of secret
keys, and a set of rules such that each k € K definesamapping e : S — A. An (authen-
ticated) message, consisting of a source state and atag, can be verified only by theintended
recipient (asfor MACs) possessing apre-shared key. Wegman and Carter [1234] first com-
bined one-time padswith hash functionsfor message authenti cation; this approach was pur-
sued by Brassard [191] trading unconditional security for short keys.

This approach was further refined by Krawczyk [714] (see also [717]), whose CRC-based
scheme (Algorithm 9.72) isaminor modification of aconstruction by Rabin [1026]. A sec-
ond LFSR-based scheme proposed by Krawczyk for producing m-bit hashes (again com-
bined with one-time pads as per Algorithm 9.72) improves on a technique of Wegman and
Carter, and involvesmatrix-vector multiplication by anm x b binary Toeplitzmatrix A (each
left-to-right diagonal isfixed: A; ; = Ax, for k —i = [ — j), itself generated from aran-
dom binary irreducible polynomial of degree m (defining the LFSR), and m bits of initial
state. Krawczyk provesthat the probability of successful MAC forgery herefor ab-bit mes-
sageisat most b/2™ 1, e.g., lessthan 23 even for m = 64 and a 1 Gbyte message (cf.
Fact 9.73). Earlier, Bierbrauer et al. [127] explored the relations between coding theory,
universal hashing, and practical authentication codes with relatively short keys (see aso
Johansson, Kabatianskii, and Smeets [638]; and the survey of van Tilborg [1211]). These
and other MAC constructions suitable for use with stream ciphers are very fast, scalable,
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and information-theoreti cally secure when the short keysthey require are used as one-time
pads; when used with key streams generated by pseudorandom generators, their security is
dependent on the stream and (at best) computationally secure.

Desmedt [335] investigated authenticity in stream ciphers, and proposed both uncondition-
ally secure authentication systems and stream ciphers providing authenticity. Lai, Rueppel,
and Woollven [731] define an efficient MAC for use with stream ciphers (but see Preneel
[1003] regarding a modification to address tampering with ends of messages). Part of an
initial secret key isused to seed akey stream generator, each bit of which selectively routes
message bitsto one of two feedback shift registers (FSRs), theinitial states of which arepart
of the secret key and thefinal states of which comprisetheMAC. The number of pseudoran-
dom bits required equals the number of message bits. Taylor [1189] proposes an alternate
MAC technique for use with stream ciphers.

Simmons [1144] notes the use of sealed authenticators by the U.S. military. An early pre-
sentation of MACsand authenticationis given by Meyer and Matyas[859]; thethird or |ater
printingsare recommended, and include the one-pass PCBC encryption-integrity method of
Example 9.91. Example 9.89 was initially proposed by the U.S. National Bureau of Stan-
dards, and was subsequently found by Jueneman to have deficiencies; thisisincludedin the
extensive discussion by Jueneman, Matyas, and Meyer [645] of using MDCs for integrity,
along with the idea of Example 9.90, which Davies and Price [308, p.124] also consider for
n = 16. Later work by Jueneman [644] considers both MDCs and MACs; see also Meyer
and Schilling[860]. Daviesand Pricealso providean excellent discussion of transaction au-
thentication, noting additional techniques (cf. §9.6.1) addressing message replay including
use of MAC valuesthemselvesfromimmediately preceding messages as chaining valuesin
place of random number chaining. Subtle flawsin variousfielded dataintegrity techniques
are discussed by Stubblebine and Gligor [1179].

The taxonomy of preimages and collisionsis from Preneel [1003]. The alternate terminol-
ogy of Note9.94isfrom Lai and Massey [ 729], who published thefirst systematic treatment
of attacks on iterated hash functions, including relationships between fixed-start and free-
start attacks, considered ideal security, and re-examined M D-strengthening. The idea of
Algorithm 9.92 was published by Yuval [1262], but the implications of the birthday para-
dox were known to others at the time, e.g., see Merkle [850, p.12-13]. The details of the
memorylessversion are from van Oorschot and Wiener [1207], who also show the process
can be perfectly parallelized (i.e., attaining afactor » speedup with r processors) using par-
alel collision search methods; related independent work (unpublished) has been reported
by Quisguater.

Meet-in-the-middle chaining attacks can be extended to handle additional constraints and
otherwise generalized. A “triple birthday” chaining attack, applicable when the compres-
sion function isinvertible, is given by Coppersmith [267] and generalized by Girault, Co-
hen, Campana [460]; see also Jueneman [644]. For additional discussion of differential
cryptanalysis of hash functions based on block ciphers, see Biham and Shamir [138], Pre-
neel, Govaerts, and Vandewalle[1005], and Rijmen and Preneel [1050].
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