
Understanding White Box Cryptography - White Paper 1

WHITE PAPER

Understanding White Box
Cryptography

Introduction
Traditionally, cryptography has offered a means of
communicating sensitive (secret, confidential or private)
information while making it unintelligible to everyone
except for the message recipient. Cryptography, as was
used in ancient biblical times, offered a technique in
which text was manually substituted within a message
as a means of hiding its original content. Many years
later, during the Second World War, cryptography was
extensively used in electro-mechanical machines (such as
the infamous Enigma machine). Nowadays, cryptography
is ever more pervasive heavily relying on computers
supported by solid mathematical basis.

Cryptography, as the name implies, attempts to hide
portions of text from malicious eyes using a variety of
methods. In theory, the concept sounds ideal but real
life experience has proven that a multitude of factors
and environmental aspects come into play which
have a negative impact on the cryptographic key’s
strength. Conventional means are unable to provide
a bulletproof solution to fully address diverse attacks
scenarios attempting to exploit cryptography’s inherent
vulnerabilities.

Professor Peter G. Neumann, a computer systems and
networks trustworthiness and dependability, was quoted
saying “If you think cryptography is the answer to your
problem, you don’t know what your problem is.” 1

This paper discusses traditional techniques while focusing
on the White box cryptography implementation.

A Closer Look at Cryptography
In typical DRM (Digital Rights Management)
implementations cryptographic algorithms are part of the
security solution employing a known, strong algorithm
while relying on the secrecy of the cryptographic key. In
most cases, this is highly inappropriate since the platforms
on which many of these applications execute on are subject
to the control of potentially hostile end-users.

The conventional assumption for cryptography is a Black
box setup that assumes the attacker has no access
to the encryption key, can only control the encryption
input (plaintext) and has access to the resulting output
(ciphertext). For a long time this has been assumed to
be true also for hardware devices like smartcards, but
malicious attacks exploiting the information “leaking”
from a Black box (such as Differential Power Analysis
attacks—also known as DPA) have been developed allowing
hackers to derive the secret keys used inside the Black
box. This method has effectively allowed hackers to
conduct non Black box attacks, and as a result turn these
implementations into a “shade of grey” rather than Black. 2

Popular industry standard ciphers like AES
were not designed to operate in environments
where their execution could be observed. In fact,
standard cryptographic models assume that
endpoints, PC and hardware protection tokens for
example, are to be trusted.

1. Peter G. Neumann, quoted in the New York Times, February 20 2001.

2. Amitabh Saxena, Brecht Wyseur, and Bart Preneel, Towards Security Notions for White-Box Cryptography

Conventional means of cryptography are unable to provide a bulletproof solution that fully addresses diverse
attacks scenarios attempting to exploit their inherent vulnerabilities.

Understanding White Box Cryptography - White Paper 2

The Need for White Box Cryptography
Popular industry standard ciphers like AES were not
designed to operate in environments where their execution
could be observed. In fact, standard cryptographic models
assume that endpoints, PC and hardware protection tokens
for example, are to be trusted. If those endpoints reside in
a potentially hostile environment then the cryptographic
keys may be directly visible to attackers monitoring the
application execution while attempting to extract the keys
either embedded or generated by the application from
memory.

This is a common problem for software based applications
running on PC’s, IPTV set-top boxes and other data
consuming devices attempting to enforce DRM. By actively
monitoring standard cryptographic APIs or memory
dumps, hackers are then able to extract the key(s)
whenever used. One example of a successful memory-
based key extracting attack has enabled the BackupHDDVD
tool to copy the content of a protected DVD and remove the
DRM from Windows protected media content.

The White Box Challenge
The notion of keeping valuable information such as
licensing and other trade secrets hidden while operating in
a fully transparent environment poses various challenges:

 > How to encrypt or decrypt content without directly
revealing any portion of the key and or the data?

 > How to perform strong encryption mechanisms knowing
that hackers can observe and or alter the code during
execution?

The Various Cryptographic Models
Black Box (Traditional) Cryptography
The Black box scenario, being a traditional model,
assumes that the attacker has no physical access to the
Key (algorithm performing the encryption or decryption)
or any internal workings, rather can only observe external
information and behavior. This information consists of
either the plaintext (input) or the ciphertext (output) of the
system while assuming zero visibility on code execution
and dynamic encryption operations.

Plaintext

Black Box

Key

Ciphertext

Plaintext

Gray Box

Key

Ciphertext

Electromagnetic radiation
Current consumption
Timing

Side Channel Information

3. S. Chow, P. Eisen, H. Johnson, P.C. van Oorschot, A White-Box DES Implementation for DRM Applications

Gray Box Cryptography
The Grey box scenario assumes that the attacker has
partial physical access to the Key or that it is “leaking” so
called side channel information. Side Channel Analysis
attacks (SCA) exploit information leaked from the physical
implementation of a cryptographic system. The leakage
is passively observed via timing information, power
consumption, electromagnetic radiations, etc’. Protection
against Side Channel Attacks is important because the
attacks can be implemented quickly and at a low cost.
Publicly available side channel information allows hackers
to effectively reveal parts of the Key and as a result
dramatically reduce its efficacy and demote the overall
protection.3

Grey box cryptography is in fact a by-product of the
traditional Black box implementation. It has been shown
that even smartcards, perceived as being able to provide
strong security, performing internal cryptography are in
reality leaking information to the outside world. It is clear
then that scenarios assumed to be a Black box are in
reality only a shade of grey.

The Concept of White Box Cryptography
White box cryptography went head to head with the
abovementioned traditional security models. As opposed
to previous implementations where the attacker was only
given a Black box, i.e. access to inputs and outputs and to
the cryptographic algorithm under attack and assumed
zero visibility into internal workings, White box provided
full visibility instead.

White box cryptography techniques aim at protecting
software implementations of cryptographic algorithms
against key recovery even if the attacker has full control
over the machine performing the encryption – especially
useful in the DRM arena.

White Box Cryptography
The White box scenario, in contrast with previously
described scenarios, handles far more severe threats
while assuming hackers have full visibility and control
over the whole operation. Hackers can freely observe
dynamic code execution (with instantiated cryptographic
keys) and internal algorithm details are completely visible
and alterable at will. Despite of this fully transparent
methodology, White box cryptography integrates the cipher
in a way that does not reveal the key.

Understanding White Box Cryptography - White Paper 3

It is therefore clear that algorithms built for both Black and
Grey box models are impractical in the face of operating on
non-trusted hosts. Understandably, hackers will not try to
break the cipher by only using the means available inBlack
and Grey box scenarios, instead they will observe the
execution when the unprotected key is used – directly
stealing it.

Traditional cryptography algorithms, as exposed in the
White box scenario, assume the presence of the key as part
of the implementation.

The White box cryptography algorithm is protected in the
White box scenario, as the key is not present in memory
and cannot be extracted—not even dynamically.

Choosing the most appropriate, most secure cryptographic
model is therefore the sole line of defense against
malicious threats—precisely what White box cryptography
attempts to achieve.

The Methodology Behind the White Box Implemen-
tation
How is it then possible to securely “hide” the key within
the executed code assuming that one can fully monitor and
alter each and every instruction?

Abstractly speaking, this is achieved by combining the
effect of the secret key together with some implementation
specific data using a mathematical operation, where it is
made sure that the mathematical operation is virtually
impossible to invert. 4

As an example, the inherent strength of RSA is made
possible through a simple multiplication to large numbers,
although it is a mathematically hard problem to factor the
result into its prime integers.

Additionally, and equally important, an implementation of
a White box cryptography algorithm is solely able to either
encrypt or decrypt.

The implementation is, as previously mentioned, based on
a mathematical operation that is extremely hard to invert.
This fact allows building a system that operates similarly to a
full public/private key scheme, but at a performance level, is
much closer to a standard symmetric cipher.

4. Amitabh Saxena, Brecht Wyseur, and Bart Preneel, Towards Security Notions for White-Box Cryptography

CiphertextPlaintext

White Box

The decryption function can be implemented inside the
distributed application but the key cannot be extracted
and the decryption cannot be reversed as to perform an
encryption operation. The attacker has no means possible
to create the correct encrypted data that would decrypt
back into the desired value.

This specific method is particularly useful for securing a
communication channel protected with a hardware device,
such as a hardware protection token. The attacker cannot
extract the key used for the secure communication channel
and is therefore unable to neither decrypt the data passing
through the channel nor inject data into the channel, as he
has no means of encrypting it correctly.

Solving the Challenge
Although the white box scenario is considered unsuitable
for security-related tasks, White box cryptography
shuffles all the cards and provides a highly secure method
for performing encryption while operating in a fully
transparent environment. Although fully transparent, both
encrypt and decrypt operations allow maintaining sensitive
data without revealing any portions of the key or the data
itself. In addition, White box cryptography permits the
execution of strong encryption mechanisms (in conjunction
with other techniques) whilst knowing that malicious eyes
potentially observe the code during execution.

An integral part of Gemalto’s security measures
The secure communication channel provided by Gemalto’s
Sentinel products ensures that the communication
between the protected application and the hardware
token is encrypted and cannot be replayed. Unlike
the previous implementation which aimed to hide the
encryption key, the new implementation is centered on
White box cryptography, where it is assumed that the
attacker can trace the protected application and the run-
time environment, in search for the encryption key. With
this assumption as part of the design, the algorithm and
encryption keys are replaced with special vendor-specific
API libraries that implement the same encryption, but
embed the encryption key as part of the algorithm, in a
way that ensures that it’s never present in the memory
and therefore cannot be extracted. The generation of the
vendor-specific libraries is performed on Gemalto servers
utilizing several trade secrets. In addition, each application
library is individually generated and obfuscated for a
specific software vendor—making a generic hack virtually
impossible.

A truly ground breaking solution
Gemalto is the first and only vendor to offer White box
cryptography as an integral part of its Sentinel portfolio of
software licensing solutions. This new technology allows
protecting the cryptographic key at all times, rather than
breaking it up and revealing it only a piece at a time. From
a security perspective, this ensures that the protected
key remains hidden from hackers and is therefore not
susceptible to reconstruction during a potential attack
process.

Understanding White Box Cryptography - White Paper 4

GEMALTO.COM

Contact Us: For all office locations and contact information, please visit www.gemalto.com/software-monetization

Follow Us: licensinglive.com

©
G

em
al

to
 2

01
6.

 A
ll

ri
gh

ts
 r

es
er

ve
d.

 G
em

al
to

, t
he

 G
em

al
to

 lo
go

, a
re

 tr
ad

em
ar

ks
 a

nd
 s

er
vi

ce
 m

ar
ks

 o
f G

em
al

to
 a

nd
 a

re
 r

eg
is

te
re

d
in

 c
er

ta
in

 c
ou

nt
ri

es
. W

P
(E

N
)-

Ju
ly

.2
0.

20
15

 -
 D

es
ig

n:
 F

R

Join the Conversation

> Facebook
www.facebook.com/licensinglive

> LinkedIn
bit.ly/LinkedInLicensingLive

> Twitter
twitter.com/LicensingLive

> Google+
plus.google.com/u/2/106533196287944993975/posts

> Sentinel Video Cloud
sentinelvideos.safenet-inc.com/

> Blog
http://www.licensinglive.com/

> Sentinel Customer Community
sentinelcustomer.gemalto.com

White box cryptography is an additional essential
component that enables developers to protect their
applications against reverse engineering, tampering, and
automated attacks. Gemalto’s White box cryptography
methodology integrates into the software design process
allowing embedding the additional layer of protection
directly at the source code level thus providing a highly
effective approach to software protection.

Conclusion
The overall security of a protected application is highly
dependent on the implementation itself i.e. solely taking
a strong cryptographic algorithm does not provide any
security if it is not used in the context it was designed
for—not using White box cryptography in a White box setup
greatly helps hackers reverse engineer the protected
software. Most common attacks have attempted to
exploit software security flaws and not weaknesses in the
cryptographic algorithms – but lately the attackers have
recognized the vulnerability of classical cryptography in
the open PC environment.

It is implicit that software protection must receive specific
attention throughout the design and implementation
stages in addition to being continuously enhance as
part of the product life cycle and the release of new
versions. In addition to White box cryptography, additional
complementary security measures should be used to
further strengthen the overall protection scheme.

Security comes at a certain cost and, as a direct result,
cannot be air tight. It is therefore crucial to properly
evaluate the required security level as dictated by the
application itself i.e. the value of what needs to be
protected in conjunction with the incurred losses assumed
by neglecting potential risks.

Further publications

Additional information and detailed technical publications
can be found in the below links:

1. Towards Security Notions for White box Cryptography
www.cosic.esat.kuleuven.be/publications/article-1260.pdf

2. White box Cryptography: Formal Notions and (Im)
possibility Results eprint.iacr.org/2008/273.pdf

3. White box (software engineering) on Wikipedia
en.wikipedia.org/wiki/White_box_(software_engineering)

4. What is a white-box implementation of a cryptographic
 algorithm? crypto.stackexchange.com/questions/241/
what-is-a-white-box-implementation-of-a-cryptographic-
algorithm

5. Portable Executable Automatic Protection, Wikipedia
https://en.wikipedia.org/wiki/Portable_Executable

About Gemalto’s Sentinel Software Monetization
Solutions

Gemalto, through its acquisition of SafeNet, is the market-
leading provider of software licensing and entitlement
management solutions for on-premises, embedded and
cloud-based software vendors. Gemalto’s Sentinel is the
most trusted brand in the software industry for secure,
flexible, and future-proof software monetization solutions.

Additional Resources on Software Monetization
Visit Gemalto’s on-demand resource library to learn more
about how you can better monetize your software.

http://www.gemalto.com
http://www.gemalto.com
http://www.gemalto.com/software-monetization
http://licensinglive.com
http://www.facebook.com/licensinglive
bit.ly/LinkedInLicensingLive
https://twitter.com/licensinglive
http://plus.google.com/u/2/106533196287944993975/posts
http://sentinelvideos.safenet-inc.com/
http://www.licensinglive.com/
http://sentinelcustomer.safenet-inc.com
http://www.cosic.esat.kuleuven.be/publications/article-1260.pdf
http://eprint.iacr.org/2008/273.pdf
http://en.wikipedia.org/wiki/White_box_(software_engineering)
http://crypto.stackexchange.com/questions/241/what-is-a-white-box-implementation-of-a-cryptographic-algorithm
http://crypto.stackexchange.com/questions/241/what-is-a-white-box-implementation-of-a-cryptographic-algorithm
http://crypto.stackexchange.com/questions/241/what-is-a-white-box-implementation-of-a-cryptographic-algorithm
https://en.wikipedia.org/wiki/Portable_Executable
http://www2.gemalto.com/software-monetization-101/index-apac-en.html

