
1

1

2
Overview

• Ring 3 VS Ring 0

• What can we do in the Kernel?

• Published Vulnerabilities

• Considerations when exploiting firewall drivers

• Understanding the blue screen

• The “clean” return

• Kernel heap overflows
• Kernel payloads

- The kernel “loader”

 - Interrupt hooking keylogger

 - Goodnight Windows

2

3
The Rings – Kernel VS Userland

• User Mode (Ring 3) – Limited access and privileges. May
only access it’s own 2 gigabytes of memory space. User
applications and subsystems execute in this mode.

User Mode code is pageable and may be context-switched.

• Kernel Mode (Ring 0) – Code runs with full system
privileges. Full memory access and the ability to execute
privileged instructions is available. Examples of Ring 0
code: HAL, device drivers, IO, memory management, GDI.

4
Kernel Possibilities

Short answer: Anything we want!

Examples

• Subvert hooking mechanisms used by IDS systems
• Access the memory of any process or module -- in kernel or

user land.
• Patch loaded drivers (ex: TCPIP.SYS)
• Unload any device or driver
• Hide processes and ports by adding our own kernel hooks
• Execute any user-mode code from a kernel-mode loader

3

5
Published Kernel Vulnerabilities

Published Remote Kernel Vulnerabilities

Symantec Multiple Firewall NBNS Response Processing Stack Overflow
http://www.eeye.com/html/research/advisories/AD20040512A.html

Symantec Multiple Firewall Remote DNS Kernel Overflow

http://www.eeye.com/html/research/advisories/AD20040512D.html

Symantec Multiple Firewall NBNS Response Remote Heap Corruption

http://www.eeye.com/html/research/advisories/AD20040512C.html

BlackICE Remote Kernel Overflow

http://www.eeye.com/html/research/advisories/AL20020208.html

Windows SMB Client Transaction Response Handling Vulnerability

http://www.eeye.com/html/research/advisories/AD20050208.htm

Windows IP Options Remote Compromise

http://xforce.iss.net/xforce/alerts/id/192

Vulnerability in Server Message Block

http://www.microsoft.com/technet/security/Bulletin/MS05-027.mspx

6
Mark: Norton Internet Security Suite

• eEye published an advisory detailing a remote stack
overflow in the Symantec product line.

• The vulnerability existed in the code that handles DNS
responses – incorrect length checking was performed on
the CNAME field.

• By specifying a source port of 53 and a destination port of
138, all port filtering could be bypassed.

• The DNS and NetBios code is implemented in a kernel
mode driver.

• Successful exploitation would yield remote access with
Ring 0 privileges.

4

7

8
The Native API

• The Native API is a set of internal kernel functions that
execute within kernel mode.

• To write successful kernel mode shellcode, one must forget
about the user API and use only Native API functions.

• By design, user mode processes cannot switch privilege
levels arbitrarily. This ability would circumvent the entire
NT security model – hats off to Derek Soeder!

• NTDLL exports a number of wrapper functions that allow
user-mode processes a somewhat “safe” way to call certain
kernel-level functions.

5

9
Firewall Considerations

The firewall must process all incoming packets, socket

communication can be rendered inoperable as the shellcode

must halt the exploited thread to prevent a crash.

Possible Solutions
• Unload the driver by calling ZwUnloadDriver or call the drivers unload

routine directly.

• Detach and delete the devices by calling IoDetachDevice and
IoDeleteDevice.

• From user-land, send an IOCTL to the driver disabling the firewall.

• Unregister the NDIS packet handler.

• Return cleanly allowing the firewall to continue to process packets.

10
Sploiting the vuln: blue screen

Understanding the Blue Screen.

• A BSOD occurs when the function KeBugCheckEx has
been called

• A Bugcheck can be issued by the kernel exception
dispatcher, or can be called directly after an error check.

The kernel exception handling chain of events is as follows:

Exception IDT Trap Handler

6

11
Sploiting the vuln: the trap frame

 Retrieving the trap frame.

– WinDbg is the perfect tool for crash dump analysis.

– Trap frames can be retrieved at the time of the crash, as well as register values,
and limited memory dumps.

12
Sploiting the vuln: Execution

Redirecting Execution

• Our user data is located in the ESP register.

• We must choose an address in kernel space that will be
static.

• NTOSKRNL/HAL will always be loaded at the same
imagebase (dependent on OS/Service Pack)

• Use an offset into NTOSKRNL/HAL to return to our data.

7

13
The “clean” return

• The “Clean” return is a technique used to return out of an
executing payload, and continue without disrupting the
current thread or process.

• Payload must send a minimal amount of data – previous
stack frames must be intact.

• Initial payload modifies driver to execute certain incoming
packets

• Technique may be used for any exploit, kernel or otherwise

14
The “clean” return

• Previous frame example – approx 300 bytes of available
space before ret into SYMTDI (Firewall TDI layer)

• [esp+0x130] = SYMTDI frame.

• Within 300 bytes, patch SYMDNS.SYS to execute flagged
packets.

• Retrieve frame at [esp+0x130] and return to TDI layer.

8

15
KERNEL HEAP OVERFLOWS

Brief overview of kernel pool vulnerabilities.

• Buffer allocated with ExAllocatePool.

• Overwrite buffer past next pool header.

• Controlled memory overwrite during ExFreePool.

16
KERNEL HEAP OVERFLOWS

Function pointers to gain control with heap overwrite:

_KiDebugRoutine within KiDispatchException

Not called on all exception types – may go directly to the trap

handler.

9

17
The kernel “loader”

• Maps and executes any user-land code with SYSTEM
privileges.

Advantages:

• No need to deal with the complexities of kernel
development and the usage of the Native API.

• ANY common user shellcode can be plugged into the
loader.

• Small code size – approx 150 bytes.

18

10

19
The kernel “loader”

Retrieving the NTOSKRNL base.

• The NTOSKRNL image base must be acquired to call exported
functions. We should avoid hard coded function addresses.

• Retrieve the IDT base by issuing an SIDT instruction, or
referencing the memory address at 0xffdff038.

• The DWORD at [IDT+4] will always point into NTOSKRNL memory,
simply decrement until finding the “MZ” signature.

20
The kernel “loader”

Retrieving Procedure Addresses

• Create 2 byte hashes of needed function strings –xor/ror hashing).

• Manually parse the PE EXPORT table of the NTOSKRNL process.

• Compare hashes from hash table.

• Create function pointer table with returned addresses.

11

21
The kernel “loader”

Protecting The Stack

Unfortunately the stack will become corrupted when we call certain

functions, particularly when we attempt to lower the IRQL.

To prevent this we allocate a new memory block with ExAllocatePool,

copy the kernel code to the new block, and simply issue a JMP

instruction to the new memory space.

Note: when using the clean return this step is not necessary, as the

driver code is patched to execute certain incoming packets.

22
The kernel “loader”

Dropping the IRQL level.

When our shellcode is executing we are running at DISPATCH (2)

IRQL level.

To successfully call some of the needed functions we need to lower

the IRQL to PASSIVE (0)

We call the HAL exported function KeLowerIrql and pass 0 as a

parameter.

12

23
The kernel “loader”

Accessing EPROCESS

A pointer to an EPROCESS structure is needed to traverse user processes.

Parse EPROCESS+ActiveProcessLinks and find a useable process.

Call PsLookupProcessByProcessId and pass the System PID as the parameter

– then retrieve the next EPROCESS structure from ActiveProcessLinks.

Compare the Module Name parameter to the “LSASS” string

If successful save the LSASS EPROCESS.

24
The kernel “loader”

Mapping the Ring3 shellcode

Originally, I would attach to a user-mode process and map the

shellcode into the processes PEB.

A better idea is to copy the code into Kernel/User-land shared

memory. This memory is mapped at 0xffdf0000 in the kernel, and is

mapped at 0x7ffe0000 in user-land. This memory is accessible to all

user-land processes.

13

25
The kernel “loader”

Contacting User-land – Asynchronous Procedure Calls

• An APC is a function that executes asynchronously in a
chosen thread.

• APC’s may be issued from the Kernel or from User Land.

• Each thread has an APC queue.

• An APC function will be executed if passed to any thread in
an “Alertable Wait State”.

26
The kernel “loader”

Issuing the APC

• Retrieve the ETHREAD structure of the process via the EPROCESS
structure.

• Traverse each of the threads in the process and check the flags to find a
thread in an “alertable wait state”

Initialize and queue the APC to the thread.

• This is accomplished by calling KeInitializeApc and passing the KTHREAD
structure, the address of our shellcode in SharedUserMemory, and a
kernel callback function. We queue the APC by calling KeInsertQueueApc
passing NULL system arguments and the returned APC handle.

14

27
Demo! Kernel loader

28
The KeyLogger

ICMP Patching Interrupt Hooking Key-Logger

• Operates entirely in the Kernel

• Replaces the keyboard IDT entry with our custom keyboard
code.

• Patches the ICMP echo handler to remotely return our
captured keystrokes upon receiving an ICMP echo request

15

29
The Keylogger

Locate the IRQ -> Vector table within the HAL address space.
If Vector table not found, use static 0x31 vector.

First we scan for the DWORD 0x41413d00 within the HAL memory
space. This DWORD marks the beginning of the IRQL->TPR
translation table, which neighbours the Vector->IRQ table.

The interrupt vector offset is then retrieved from IRQ_Table+0x1ch.

We then retrieve the vector that corresponds to IRQ 1 (The keyboard
IRQ)

30
The Keylogger

Remove the memory protection within the kernel.

Disable the WP bit in CR0.

Perform code and memory overwrites.

Re-enable WP bit.

16

31
The Keylogger

• Replace keyboard IDT entry with custom handler.

• We use the SIDT instruction to retrieve the base address of the IDT

• The following formula is used to retrieve a vector entry:

• IDT_BASE+INT_Vector*8

• Next, the address of the previous handler is stored and we overwrite
the IDT entry with our custom keyboard handler code.

32
The Keylogger

We must locate the image base of the TCPIP driver to locate our code

section to patch.

Locate image base of TCPIP.SYS via the PsLoadedModuleList

We locate the image base of the TCPIP driver by accessing the

PsLoadedModuleList. As this is not exported, we locate the offset from

within the function MmGetSystemRoutineAddress.

17

33
The Keylogger

LDR_DATA_TABLE_ENTRY

typedef struct _LDR_DATA_TABLE_ENTRY
{ LIST_ENTRY LoadOrder;
LIST_ENTRY MemoryOrder;
LIST_ENTRY InitializationOrder;
PVOID ModuleBaseAddress;
PVOID EntryPoint;
ULONG ModuleSize;
UNICODE_STRING FullModuleName;
UNICODE_STRING ModuleName;
ULONG Flags;
USHORT LoadCount;
USHORT TlsIndex;
union {

 LIST_ENTRY Hash;
 struct {

PVOID SectionPointer;
ULONG CheckSum;

};
};
ULONG TimeStamp;
} LDR_DATA_TABLE_ENTRY, *PLDR_DATA_TABLE_ENTRY;

34

18

35The KeyLoggeR

Patching the ICMP ECHO handler of TCPIP.SYS.

• The ECHO handler will be used as our remote channel.

• Locate our byte sequence within the TCPIP driver.

• Patch the code to return our captured keystroke buffer upon receiving an
ICMP echo request.

pAtcH!

36
The Keylogger

The Custom Keyboard Handler.

• The custom handler executes before the original keyboard
handler.

• Each scancode is read directly from the keyboard port (0x60)

• The captured scancodes are stored in our allocated buffer, within
the TCPIP driver.

• The buffer circulates every 1024 keypresses.

19

37
DEMO : KERNEL KEY LOGGER

38
Sayonara Windows!

• Attempts to switch from ring 0 protected mode to

“real mode”

• Acquires display, sets up everything needed for a
successful switch to real mode

• Executes nifty 320*200 graphics payload in the boot loader
memory region

• Real world purpose? Ever tried to run Second Reality?

20

39
Sayonara Windows!

Switching from the kernel to real mode.

1. Acquire display ownership
2. Map in physical memory
3. Transfer control to an identity mapped region
4. Clear the PG bit in CR0 and move 0 into CR3 (flush TLB)
5. Jump to a segment with a 64k limit
6. Set up segment registers with a selector for a descriptor that is

appropriate for real mode
7. Load the IDT to point to an interrupt table in the 1mb range
8. Clear the PE flag in CR0
9. Far jump to a real mode address
10. Load other segment registers

40
Sayonara Windows!

Preventing Interruptions.

To prevent interruptions as we attempt the real mode switch,
we raise the IRQL to HIGH_LEVEL by calling KeRaiseIrql

Acquiring the display.

NTOSKRNL exports the following two functions:

• InbvResetDisplay
• InbvAcquireDisplayOwnership

We must call these functions to acquire the VGA display.
We may then use the bios interrupts to change video modes.

21

41
Sayonara Windows!

We will be copying our code into the boot loader memory

region at 0x7c00. To access this memory we simply modify the

“Page Size” bit of the PDE at 0xc0300000 to a 4MB page.

Set bit to 1 for 4MB
page

42
Sayonara Windows!

• Copy the mode switching code into a low memory region
which will execute in 16bit protected mode.

• Copy our “payload” into the boot loader memory region at
0x7c00.

• Execute LIDT to point to a real-address mode interrupt
table within the first 1MB

22

43
Sayonara Windows!

Protected mode code:

Sets up segment registers

Points stack into low memory area

Points IDT into the first page

Jumps to identity mapped address

44
Sayonara Windows!

Mode switch code:

Set up stack segment and point stack to first page

Load segment registers with a 64k selector

Write 0 to CR3 to flush the TLB

Clear the PE bit in CR0

Jump to our payload in 0x7c00 (boot loader region) to
complete the real-mode switch.

23

45
Sayonara Windows!

The PAYLOAD:

Small graphical real-mode intro originally written by loveC.

Old school effects added with permission

46
Demo: Sayonara Windows!

24

47Conclusion!

• I hope this presentation has showed that the obstacles that
can arise when exploiting kernel vulnerabilities can
certainly be overcome.

• Happy kernel hacking!

