
1

General notes about exploiting
Windows x64

Security Research

Sebastian Fernandez
 sebastian@immunityinc.com

mailto:sebastian@immunityinc.com

2

Who am I?
● Security researcher at Immunity Inc.

– Exploit development for CANVAS
– Ported many parts of CANVAS to Windows

x64 (shellcodes, backdoors and other
“things”)

– Researching x64 exploitation techniques

3

x64, what are you talking about?
● x64 (formally x86_64) is an architecture

extending the 32bit x86 arch with more
registers, instructions and memory range

● Most of the PCs sold over the last few years
are based on this arch so most likely your
computer supports x64 OSs

● Most software companies have ported their
operating system to the platform. Microsoft
also did it!

– Windows XP, 2003, Vista, 2008 and 7
have ports for this arch

No, not really

4

Why research x64?

● Kernel works entirely on 64 bits.
● Remote/Local exploitation of services.
● Most likely new bugs have been

introduced while porting the system.

5

Clientside on 64bit age

● IE is not default, but still available to
use.

● When Adobe launches 64bit Flash
version in their next major release, IE
x64 could become default.

6

Windows 64

● Services run in 64bits.
● Most applications still don't do it.
● IE and WMP are ported to x64, but by

default are launched the 32bit ones.

7

Windows Applications

Services
IIS, Locals, etc

Win Clients
IE, WMP

Third-party
Adobe, Firefox

64bit 32bit

8

Windows 64 internals

● Native 64bit with support for 32bit
applications using wow64 subsystem.

● No more Ntvdm, 16 bit applications
are unsupported.

● Fastcall calling convention.

9

Windows 64

ntoskrnl (64bits)

ntdll (64bits)

native 64bit dlls

WOW64 + ntdll(64bits)

64bit applications

32bit applications

32bit dlls

ntdll (32bit)

10

WOW64

● Windows on Windows 64:
– Abstraction layer to run 32 bit

applications on 64bit OS.
– Patch many ntdll functions for sycall

compatibility.
– Redirect registry access.
– Environment variables.
– Switch context to 32bits.

11

WOW64
ProcessInit
….
.text:0000000078BE73C3 call MapNtdll32
….

MapNtdll32:
…..
Loads ntdll from windows/syswow64/
…..
.text:0000000078BE7E7D ; MapNtdll32+200j
.text:0000000078BE7E7D mov cs:NtDll32Base, ebp
.text:0000000078BE7E83 mov [rsp+518h+var_498], rbp
.text:0000000078BE7E8B mov [rsp+518h+var_490], rbp
…..
.text:0000000078BE7FAE
.text:0000000078BE7FAE loc_78BE7FAE: ; CODE XREF: MapNtdll32+334j
.text:0000000078BE7FAE mov eax, dword ptr [rsp+518h+var_498]
.text:0000000078BE7FB5 mov cs:NtDll32Base, eax
.text:0000000078BE7FBB mov eax, ds:7FFE0334h
.text:0000000078BE7FC2 mov cs:Ntdll32LoaderInitRoutine, eax
.text:0000000078BE7FC8 mov eax, ds:7FFE0338h
.text:0000000078BE7FCF mov cs:Ntdll32KiUserExceptionDispatcher, eax
.text:0000000078BE7FD5 mov eax, ds:7FFE033Ch
.text:0000000078BE7FDC mov cs:Ntdll32KiUserApcDispatcher, eax
.text:0000000078BE7FE2 mov eax, ds:7FFE0340h
.text:0000000078BE7FE9 mov cs:Ntdll32KiUserCallbackDispatcher, eax
.text:0000000078BE7FEF mov eax, ds:7FFE0344h
.text:0000000078BE7FF6 mov cs:dword_78C1FD98, eax
….

12

Stdcall calling convention

● Each argument is pushed into the
stack right-to-left.

● Ret value is on eax.
● Stack aligned to 32 bits.
● Calle cleans stack.

13

Fastcall Calling convention

● First 4 arguments are passed in RCX,
RDX, R8 and R9.

● The rest of the arguments are pushed
in the stack.

● Shadow space must be added in the
stack for arguments that have been
passed.

● 128 bit stack alignment.

14

After a call on stdcall

RET ADDRESS

6th arg

5th arg

4th arg

3rd arg

2nd arg

1st arg

int function(arg1,arg2,arg3,arg4,arg5,arg6);
....

push arg6
push arg5
push arg4
push arg3
push arg2
push arg1
call function

....

15

After a call on fastcall

RET ADDRESS

6th arg

5th arg

Shadow Space

128bit alignement

RCX: 1st arg
RDX: 2nd arg
R8 : 3rd arg
R9 : 4th arg

16

Calling convention

● Shellcoding is easier, less usage of the
stack.

● Harder to make ret2libc exploits.

17

Shellcoding

18

Shellcode 32bits on Win64

● Can detect WOW64 environment using
 IsWow64Process function.

● Be aware of not using direct syscalls.
● Other things are basically the same as

wow64 sets a friendly environment for
running almost every 32bit code.

19

Shellcodes 64bits on Win64
● Much cleaner since x64 arch let

reference RIP (instruction pointer).
● Don't need to use stack (usually), but

be aware of 128-bit alignement and
shadow space.

● Smaller size of shellcodes because
arguments are maintained in registers
and half of them are restored by
calling functions.

20

shellcode_init:
jmp get_str

return_str:
pop ebx ;get address from the stack

...

...
get_str:

call return_str
.string “c:\calc.exe”

x86 referencing

21

Ugly code

Everybody writes ugly code

char *str = “string”;
char *new_str = strcpy(malloc(strlen(str)+1), str);

But....

22

x64 referencing
You don't feel as ugly when writing shellcodes for x64.

init_shellcode:
lea rcx, qword ptr[rel the_str] ;reference address

... ;using RIP as base.

...
the_str:

.string “c:\calc.exe”

23

Exploiting

24

Problems when exploiting

● “Classic” security measures: ASLR,
DEP, stack and heap protections.

● All addresses contain at least 2 zero-
bytes.

● Calling convention.

25

ASLR

● Microsoft first implemented it on
Windows Vista

● Application/module needs base-dynamic
flag to be set at compilation time

● Always enabled on system services
● IE has enabled full ASLR since version 8

26

Defeating ASLR
● Search for non address-randomized

modules.
● No common technique.
● We need an info leak per exploit to

defeat data randomization.
● IE8 gives us the opportunity to guess

the base address 2 times before warning
 that someone is hacking us :) .

27

DEP

● No executable data sections (stack,
heap, etc).

● No direct ret2libc because of calling
convention.

● DEP is enabled automatically on all
64bit applications.

28

DEP bypass
● Build stack with addresses and

arguments.
● Use ROP to pop arguments from the

stack:
– POP+RET multiple times
– POP+Trash_Code+RET
– Other ways to assign the data in the

stack

● Ret2libc.

29

DEP bypass: ROP

EIP Prepare
Stack

RET

Prepare
Registers
(Pop+Ret)

Call function

30

Dep bypass: ROP

POP RCX+RET

POP RDX+RET
RDX Value

POP R8+RET
R8 Value

POP R9+RET
R9 Value

Function addr
...
...

Top stack when EIP
pointing to a RET
instruction.

RCX Value

31

2 zero-bytes on addresses
● Typical dll base address:

000007FF:XXXXXXXX
● Implies a NULL unicode char

– Will prevent any wstrcpy/strcpy from
being completed

– On clientside exploits when converting
from BSTR to Cstrings, it will cut
down the string to the first null

32

Overwrite less significant
bytes

XXXXXXXX

000007FF

AAAAAAAA

AAAAAAAA

AAAAAAAA

AAAAAAAA

Offset

Dll Start Address

33

Client side use-after-free

● Very common vulnerability:
– Aurora (ms10_002)
– iepeers_set_attribute (ms10_018)
– CfunctionPointer (ms09_002)

● Exploited replacing freed objects
maintaining references to them.

34

Client side use-after-free

;function referencing from an object

;our object is on rcx

mov rdx,qword ptr [rcx] ;get vtable

call qword ptr [rdx+8] ;call the function

;from the vtable

35

Client side use-after-free

Object
(maintaining
references)

vtable

Freed object

Function1
Function2
Function3
Function4
Function5

36

Client side use-after-free

Object
(maintaining
references)

Fake vtable

Controlled
memory

XXX
XXX
XXX
XXX
XXX

37

Use-after-free (x86)

● Transform javascript strings to
Cstrings for filling vtable.

– UnicodeStr(unescape(“%u0d0d
%u0d0d...”))

– cstring = “\x0d\x0d\x0d\x0d\x..\x..\x00\x00”

● Use heap spray techniques to create
the vtable functions in memory and
align it.

38

Use-after-free(x64)
● There is no way to transform javascript

strings cointaining nulls in Cstrings:
– UnicodeStr(unescape(“%u0d0d%u0d0d

%u0000%u0000...”))

– cstring = “\x0d\x0d\x0d\x0d\x00\x00”

● Need to load binary data in memory
to replace the freed objects.

● Heap spray to create functions in memory
(using conventional heap spray).

39

Tools for Windows x64

● Windbg.
● WinAppDbg.
● MOSDEF x64.
● IDA64 + IDAPython64
● Next... Immunity Debugger.

40

The Future

● Look for more interesting bug classes
in ported applications

● Next Windows version release will run
all the 64bit applications default.

– Those who don’t ramp up now will be
left behind!

41

Questions?

42

Thank you for your time

Contact me at:

sebastian@immunityinc.com

Security Research Team

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

