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Who am I?
● Security researcher at Immunity Inc.

– Exploit development for CANVAS
– Ported many parts of CANVAS to Windows 

x64 (shellcodes, backdoors and other 
“things”)

– Researching x64 exploitation techniques
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x64, what are you talking about?
● x64 (formally x86_64) is an architecture 

extending the 32bit x86 arch with more 
registers, instructions and memory range

● Most of the PCs sold over the last few years 
are based on this arch so most likely your 
computer supports x64 OSs

● Most software companies have ported their 
operating system to the platform. Microsoft 
also did it!

– Windows XP, 2003, Vista, 2008 and 7 
have ports for this arch

No, not really
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Why research x64?

● Kernel works entirely on 64 bits.
● Remote/Local exploitation of services.
● Most likely new bugs have been 

introduced while porting the system.
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Clientside on 64bit age

● IE is not default, but still available to 
use.

● When Adobe launches 64bit Flash 
version in their next major release, IE 
x64 could become default.
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Windows 64

● Services run in 64bits.
● Most applications still don't do it.
● IE and WMP are ported to x64, but by 

default are launched the 32bit ones.
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Windows Applications

Services
IIS, Locals, etc

Win Clients
IE, WMP

Third-party
Adobe, Firefox

64bit 32bit
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Windows 64 internals

● Native 64bit with support for 32bit 
applications using wow64 subsystem.

● No more Ntvdm, 16 bit applications 
are unsupported.

● Fastcall calling convention.
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Windows 64

ntoskrnl (64bits)

ntdll (64bits)

native 64bit dlls

WOW64 + ntdll(64bits)

64bit applications

32bit applications

32bit dlls

ntdll (32bit)
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WOW64

● Windows on Windows 64:
– Abstraction layer to run 32 bit 

applications on 64bit OS.
– Patch many ntdll functions for sycall 

compatibility.
– Redirect registry access.
– Environment variables.
– Switch context to 32bits.
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WOW64
ProcessInit
….
.text:0000000078BE73C3                 call    MapNtdll32
….

MapNtdll32:
…..
Loads ntdll from windows/syswow64/
…..
.text:0000000078BE7E7D                                         ; MapNtdll32+200j
.text:0000000078BE7E7D                 mov     cs:NtDll32Base, ebp
.text:0000000078BE7E83                 mov     [rsp+518h+var_498], rbp
.text:0000000078BE7E8B                 mov     [rsp+518h+var_490], rbp
…..
.text:0000000078BE7FAE
.text:0000000078BE7FAE loc_78BE7FAE:                           ; CODE XREF: MapNtdll32+334j
.text:0000000078BE7FAE                 mov     eax, dword ptr [rsp+518h+var_498]
.text:0000000078BE7FB5                 mov     cs:NtDll32Base, eax
.text:0000000078BE7FBB                 mov     eax, ds:7FFE0334h
.text:0000000078BE7FC2                 mov     cs:Ntdll32LoaderInitRoutine, eax
.text:0000000078BE7FC8                 mov     eax, ds:7FFE0338h
.text:0000000078BE7FCF                 mov     cs:Ntdll32KiUserExceptionDispatcher, eax
.text:0000000078BE7FD5                 mov     eax, ds:7FFE033Ch
.text:0000000078BE7FDC                 mov     cs:Ntdll32KiUserApcDispatcher, eax
.text:0000000078BE7FE2                 mov     eax, ds:7FFE0340h
.text:0000000078BE7FE9                 mov     cs:Ntdll32KiUserCallbackDispatcher, eax
.text:0000000078BE7FEF                 mov     eax, ds:7FFE0344h
.text:0000000078BE7FF6                 mov     cs:dword_78C1FD98, eax
….
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Stdcall calling convention

● Each argument is pushed into the 
stack right-to-left.

● Ret value is on  eax.
● Stack aligned to 32 bits.
● Calle cleans stack.
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Fastcall Calling convention

● First 4 arguments are passed in RCX, 
RDX, R8 and R9.

● The rest of the arguments are pushed 
in the stack.

● Shadow space must be added in the 
stack for arguments that have been 
passed.

● 128 bit stack alignment.
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After a call on stdcall

RET ADDRESS

6th arg

5th arg

4th arg

3rd arg

2nd arg

1st arg

int function(arg1,arg2,arg3,arg4,arg5,arg6);
....

push arg6
push arg5
push arg4
push arg3
push arg2
push arg1
call function

....
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After a call on fastcall

RET ADDRESS

6th arg

5th arg

Shadow Space

128bit alignement

RCX: 1st  arg
RDX: 2nd arg
R8   : 3rd arg
R9   : 4th arg
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Calling convention

● Shellcoding is easier, less usage of the 
stack.

● Harder to make ret2libc exploits.
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Shellcoding
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Shellcode 32bits on Win64

● Can detect WOW64 environment using 
 IsWow64Process function.

● Be aware of not using direct syscalls.
● Other things are basically the same as 

wow64 sets a friendly environment for 
running almost every 32bit code.



19

Shellcodes 64bits on Win64
● Much cleaner since x64 arch let 

reference RIP (instruction pointer).
● Don't need to use stack (usually), but 

be aware of 128-bit alignement and 
shadow space.

● Smaller size of shellcodes because 
arguments are maintained in registers 
and half of them are restored by 
calling functions.
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shellcode_init:
jmp get_str

return_str:
pop ebx ;get address from the stack

...

...
get_str:

call return_str
.string “c:\calc.exe”

x86 referencing
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Ugly code

Everybody writes ugly code

char *str = “string”;
char *new_str = strcpy(malloc(strlen(str)+1), str);

But....
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x64 referencing
You don't feel as ugly when writing shellcodes for x64.

init_shellcode:
lea rcx, qword ptr[rel the_str] ;reference address

... ;using RIP as base.

...
the_str:

.string “c:\calc.exe”
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Exploiting
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Problems when exploiting

● “Classic” security measures: ASLR, 
DEP, stack and heap protections.

● All addresses contain at least 2 zero-
bytes.

● Calling convention.
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ASLR

● Microsoft first implemented it on 
Windows Vista

● Application/module needs base-dynamic 
flag to be set at compilation time

● Always enabled on system services
● IE has enabled full ASLR since version 8
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Defeating ASLR
● Search for non address-randomized 

modules.
● No common technique.
● We need an info leak per exploit to 

defeat data randomization.
● IE8 gives us the opportunity to guess 

the base address 2 times before warning 
 that someone is hacking us :) .
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DEP

● No executable data sections (stack, 
heap, etc).

● No direct ret2libc because of calling 
convention.

● DEP is enabled automatically on all 
64bit applications.
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DEP bypass
● Build stack with addresses and 

arguments.
● Use ROP to pop arguments from the 

stack:
– POP+RET multiple times
– POP+Trash_Code+RET
– Other ways to assign the data in the 

stack

● Ret2libc.
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DEP bypass: ROP

EIP Prepare
Stack

RET

Prepare
Registers
(Pop+Ret)

Call function
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Dep bypass: ROP

POP RCX+RET

POP RDX+RET
RDX Value

POP R8+RET
R8 Value

POP R9+RET
R9 Value

Function addr
...
...

Top stack when EIP
pointing to a RET 
instruction.

RCX Value
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2 zero-bytes on addresses
● Typical dll base address: 

000007FF:XXXXXXXX
● Implies a NULL unicode char

– Will prevent any wstrcpy/strcpy from 
being completed

– On clientside exploits when converting 
from BSTR to Cstrings, it will cut 
down the string to the first null
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Overwrite less significant 
bytes

XXXXXXXX

000007FF

AAAAAAAA

AAAAAAAA

AAAAAAAA

AAAAAAAA

Offset

Dll Start Address
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Client side use-after-free

● Very common vulnerability:
– Aurora (ms10_002)
– iepeers_set_attribute (ms10_018)
– CfunctionPointer (ms09_002)

● Exploited replacing freed objects 
maintaining references to them.
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Client side use-after-free

;function referencing from an object

;our object is on rcx

mov     rdx,qword ptr [rcx] ;get vtable

call    qword ptr [rdx+8] ;call the function

;from the vtable
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Client side use-after-free

Object
(maintaining 
references)

vtable

Freed object

Function1
Function2
Function3
Function4
Function5
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Client side use-after-free

Object
(maintaining 
references)

Fake vtable

Controlled
memory

XXX
XXX
XXX
XXX
XXX
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Use-after-free (x86)

● Transform javascript strings to 
Cstrings for filling vtable.

– UnicodeStr( unescape(“%u0d0d
%u0d0d...”))

– cstring = “\x0d\x0d\x0d\x0d\x..\x..\x00\x00”

● Use heap spray  techniques to create 
the vtable functions in memory and 
align it.
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Use-after-free(x64)
● There is no way to transform javascript 

strings cointaining nulls in Cstrings:
– UnicodeStr( unescape(“%u0d0d%u0d0d

%u0000%u0000...”) )

– cstring = “\x0d\x0d\x0d\x0d\x00\x00”

● Need to load binary data in memory 
to replace the freed objects.

● Heap spray to create functions in memory 
(using conventional heap spray).
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Tools for Windows x64

● Windbg.
● WinAppDbg.
● MOSDEF x64.
● IDA64 + IDAPython64
● Next... Immunity Debugger.
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The Future

● Look for more interesting bug classes 
in ported applications

● Next Windows version release will run 
all the 64bit applications default.

– Those who don’t ramp up now will be 
left behind!
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Questions?
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Thank you for your time

Contact me at:

sebastian@immunityinc.com

Security Research Team
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