
APL as a software design specification language
W. T. Jones* and S. A. Kirkf
Applied Mathematics and Computer Science Department, Speed Scientific School of
Engineering, University of Louisville, Louisville, Kentucky 40208, USA

The purpose of this paper is to present a proposed extension of APL as a software design tool. The
approach of system specification using a programming language is compared to a non-programming
language PROPLAN which has been presented by Pengilly (1975). Illustrative examples given by
Pengilly are translated into the proposed APL extension.
(Received June 1978)

A proposed extension of APL as a software design tool is
presented. The approach of system specification using a
programming language is compared to the non-programming
language system PROPLAN presented by Pengilly (1975).
Illustrative examples given by Pengilly are translated into the
extended APL format.
Advocating the adoption of a programming language in soft-

ware design is not intended to exclude the use of natural
language or other formalisms and documentation aids such as
HIPO which are commonplace in a software engineering
environment. However, the importance and even necessity of
specification languages which, when used in a design, can
enhance the process of verifying correctness is increasing. This
concern is further supported by the reliability that 'no pro-
gramming philosophy will improve software reliability if the
underlying system specifications are erroneous or have been
incorrectly translated' (Belford and Taylor, 1976). Thus the
selection or development of a software design language is
inextricably intertwined with the specification verification
problem. Falkoff (1976) has suggested the following criteria for
the choice of a formal design language:

1. It should be easy to learn its basic use.
2. Formulations in the language should be suggestive and

thought provoking.
3. It should allow meaningful formal manipulation of both

expressions and larger program segments.
4. It should lead to the development of aesthetic criteria for

judging the quality of a design.
5. It should be convenient for documentation.
6. It should be uncommitted to any particular technology or

problem area.
7. It should be applicable in a consistent way to systems of

any foreseeable complexity.
8. It should be executable on a machine.

To this list we would add
9. Lends itself to some form of specification verification

technique.
10. Desirable, although not mandatory, that the design

language be useful in other contexts such as ordinary
programming applications to motivate learning.

The definition of a design specification language from the
standpoint of the information systems analyst is 'a functional
(non-procedural) programming language whose notation
allows for quick, elegant and concise definition of the pro-
cedures used to input, store, process and output information'.
The importance of a clean, rigorous specification to systems

analysis is also becoming increasingly clear (Belford and
Taylor, 1976; Liskov and Zilles, 1975). The clarity of software
design must be well in hand before it can be assessed for
correctness, efficiency, cost and other design constraints
external to the system itself. A uniform, abstract notation is
sorely needed for communication of the essentials of their
design to other analysts independent of any particular imple-
mentation of the design.
In view of the above, APL or an extension thereof as a

specification language has a number of attractive features.
First, APL is in widespread usage and has been implemented to
varying extents on many machines. APL is also mathematically
amenable, highly symbolic and expressions are easy to write
without temporary storage variables as well as without bother-
some loops that index on array variables. Its powerful array
operators lend themselves to functional (as opposed to
procedural) statements. These features provide a recognised
powerful design facility which can be used in the problem
formulation and early design phase of a software project. For
example, the use of APL in the design stage, augmenting
FORTRAN, eliminated errors in the logical formulation stage
(Kolsky, 1969). The primary features contributing to its success
were the mathematical consistency and the inherent explicitness
of APL program statements from a mathematical point of
view.
All of the above listed criteria are met by APL. Objections to

ease of learning with respect to software* design applications
should also take into account the fact that APL is much more
than a design tool. The skills developed in the use of this
facility can be transferred to non-design applications. Criterion
8 relates to the need for machine testing of designs. A formal
language capable of expressing the design of a system at various
levels of detail can be used directly for simulating the system at
any stage in the top-down design process. Appropriate tables
can be substituted for functions not yet detailed. Thus the
opportunity is provided for 'live' catalogues on interactive
systems in which functional units can be displayed and
executed for gaining understanding of their behaviour (Falkoff,
1976). Criterion 9 seems to be particularly important since a
formal definition of the APL operators has been used to pro-
vide a base for a deductive system for informally proving
assertions about APL programs (Gerhart, 1972).
It may also, of course, be argued that APL has features which

cause it to be undesirable as a software design language. An
often mentioned fault is that of users taking advantage of the
power of the language in the form of very complex statements
or even perhaps complex single statement programs.These
objections can be overcome by an extra measure of pro-
gramming discipline which is required in the use of any high

'Now at Department of Computer and Information Sciences, University of Alabama in Birmingham, University Station, Birmingham,
Alabama 35294, USA
fPresent address: Tymshare Corporation, Chicago, Illinois

230 The Computer Journal Volume 23 Number 3

 at Pennsylvania State U
niversity on A

pril 24, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

level language. In addition, however, the language, in its usual
form, lacks the control structures that are known to enhance
program design. The proposed extension of APL includes
these needed features.

Proposed extension of APL
The following added features are proposed for APL to enhance
its attractiveness as a design specification language:
1. Use of' ' (underline stroke) as a break character so the ' A '

(delta) need not be relied upon as the only break character in
APL would improve the readability of APL. The' A' is much
better used in APL variable names of increment (or decre-
ment) variables than as a break character. (The sense of
'increment' here is that of the calculus in mathematics and
not that of loop control in programming).

2. Higher order arrays are also needed. Arrays as they are
defined in present APL implementations are said to be of the
1st order (or level). 0-level arrays are regarded as scalars. A
lst-order array has as its element, 0-order arrays (i.e.
scalars). Likewise, a 2nd-order array may have as its
elements lst-order (i.e. 'ordinary') arrays. A straight-
forward, recursive definition of the /th-level array is simply
one whose elements consist of (/ — £)th-level arrays where k
is an integer and i > k ^ 1. Thus a 5-level array may consist
of 4-, 3-, 2-, or 1-level arrays and scalars. For the purposes of
notation in APL, this distinction can be slight. However,
should a language implementor decide to undertake this
distinction in the extensions of APL proposed herein, this
distinction would further complicate the dope vectors of the
arrays. A revision in the dope vector to allow for a bit which
tells whether or not all the elements of the vector have scalar
elements is therefore desirable. Additional processing in the
APL interpreter would be required to handle this extra bit.

3. Concerning the general usage of the dimensional indicators
mode of the APL operators, AwnM-dimensional indicators
are useful where single-dimensional indicators are presently
used as in scan and reduce. (In this case the result of the
operation is an array of arrays (a higher level array) as
opposed to an array simpliciter (a 1-level array). The
proposed extension also includes dimensional indicators for
the grade-up and grade-down operators to indicate which
dimensions should be used to do the 'sorting'.

4. A further extension of the grade-up and grade-down
operators can be implemented by allowing a Boolean
vector to be written to the left of the operator to denote the
reverse of the grade operator designated, i.e. a zero would
indicate that the grade-up is to be taken when the grade-
down is specified and that the grade-down is to be taken
when the grade-up is specified. A one would have a null
effect and merely serve as padding to allow for the deter-
mination of which dimension(s) each bit in the Boolean
vector applies to via the position of the bit. This Boolean
vector addition to the grade operators is essential in the case
of ordering or sorting with the grade operators when used
with the multi-dimensional specifier proposed above. The
reader is referred to the examples of this notation given in
the last section.

5. The use of the 'A' symbol (lamp) to permit end-of-line
comments with statements is recommended. This may prove
difficult to implement given that APL interprets statements
and lines of statements from right to left.

6. A default to the last dimension for all operators which are
capable of taking dimensional indicators when they are
written withoMf dimensional indicators is also desirable.

7. A follow-up to the proposal to introduce higher order
arrays, assignment (symbols '<-') should be allowed to

operate on an array of arrays.
8. The following structured programming control flow con-

cepts may easily be represented in a symbolic fashion by
allowing for the dyadic usage of the goto operator (symbol
'->') (Kelley, 1972).
IF. . . THEN. . . construction may be represented by
. . . - • . . . in APL.
I F . . . THEN.. . ELSE .. . construction may be
represented b y . . . - » . . . -A . . . in APL.

Likewise:

..".-/*-... may be used to express
IF. . . ELSE. . . which is usually written as
IF NOT(. . .) THEN. . . .

There are further possibilities which would conceivably
require a recursion control stack to implement such as

and . . . A - - - A - - - A - - -
a n d . . . - > . . . - » . . . • / > • • • •
Other proposals for the inclusion of these control structures
have been made by Lim and Lewis (1975).

In the following section the utility of this proposed extended
version of APL is demonstrated by examples which are
translations of examples given by Pengilly (1975) using the
Programming Planning language for software design.

Proposed revisions in Pengilly's notation
1. There should be a sharp distinction drawn in Pengilly's

systems attributes; to wit: the parameters of the system v.
the constants of the systems. In particular,
a, b, c, d, e,f g, h, and i are the system parameters and q
and / are the system constants in his example system.

2. Different input modes for system parameters and constants
are suggested:
file input (symbol «-) for system parameters and
operator input (symbols •-) for system constants

where the above symbols are written to the right of their
respective operands.
It should be noted that the above two symbols are to be

used in place of Pengilly's p (rho) which is a symbol having a
completely different meaning in APL.
For output the following is used:
*- for printing (instead of n (pi))
<- for filing (instead of 0)

The above symbols are written to the left of the respective
operands (as distinguished from their counterpart input
operators.) Again 'pi' means something utterly different in
APL. (The Greek letter n is not available in the APL
character set.)

3. Eliminate the slash (symbol'/') notation as Pengilly uses it.
Uniqueness of a systems parameter within another should be
specified without so noting at each occurrence of a variable
which has the unique parameter.

4. Elimination of the at-sign (symbol '@') as a dummy symbol.
5. The following comparisons should be kept in mind in

adapting Pengilly's approach to design in APL:
ATTRIBUTE: dimension of an array ::

ELEMENT: element of an array
Also,

ATTRIBUTE: aspect of a datum ::
ELEMENT: a datum.

6. From the systems viewpoint, the following analogy to the
two key tef ms of Pengilly's is made:

ATTRIBUTE: system parameter ::
ELEMENT: system variable.

The Computer Journal Volume 23 Number 3 231

 at Pennsylvania State U
niversity on A

pril 24, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

7. For the cataloguing procedure (# 7) the following variable
needs to be defined:

CL,,d/e/f,/,-]
using Pengilly's notation.

Revised procedures
1. V BASICJNPUT

[1] (R, Q,K) G 3 . A R (0); data file input
[2] (Q,L) *- • A R(0) cont.; system constant input

by the operator
V

2.

[1]
[2]
[3]
[4]
[5]

3.

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]

V
(A

s\
z
Y

EE
V

(4
\4—

|<—

/ + •

Y

D

TAKELSTOCK
— H) -*• (fc=\ST \ $.W\STD

^ n
<- / - 5
<- (+/[1,2]Z) x J x E
]Z4[5,2,1]Z]

ZM/Z, y_ STOCK- UPDATE

.L.O) r^n
] +/[l,2,3,4]^
1+/[1,2]L
]O
-/,[6](7 + (+/[6,7]) — (+/[3
^ +/[1,2]L x /

• - y

A
A
A
A
A

]£))

P(l)
R(2)
P(2)
P(2)
O(2)

cont.

AR(3)
A R(3) cont.
AR(3) "
AR(3) "
A P(3)
A P(3) cont.
A P(3) "
A 0(3)

4. V ISSUE_PRICE

[2] (2?A(((((/-B) xJ+(Bx + I)-J)+J)-Q)

[3] • «- J
V

5. V ORDER
[1]
[2](~

[3]D
V

- B)xJ+BxBP) +

(OT <- SC)

V PAY-SUPPLIER

ARf4)

A P(4)
AO(4)

AR(5)

AP(5)
AO(5)

AR(6)
A R(6) cont.

(BP-L)) - +
* (D «- (A,O,B,BPI$[2,3,1-\BP1)
V

7. V VALUE_STORES
[1] K-(+/[l ,2]7)x/ AP(7)
[2] D «- H 4 [1,2,3] K] A 0(7)
[3] D - +/[1,2] /[4 [3,4,5]/] A O(7) cont.
[4] D •- / A O(7) cont.
[5] D«- +/[1,2,3]F AO(7)cont.

V

8. V CATALOGUE
[1] D - C[4(1,2,3]C] AO(8)

Relationship to data base system design
The problem of data base design is related to the problems
addressed by Pengilly and the present authors. However, the
problem context differs wherein these two approaches are seen
as appropriate. In the case of data base design, the problem is
characterised by the need for a conceptual schema for a large
centralised collection of inter-related files which are accessed
by a number of application programs for different purposes.
It is also usually an objective that the conceptual schema
together with the data manipulation language be designed such
that new unforeseen application programs can be quickly
developed requiring the generation of new data relationships
from some specified subschema.
On the other hand, while the software design approach of

Pengilly and this paper can clearly assist in the above type of
problem context, it would appear more directly appropriate
for the functional specification of software systems in a more
general way than the more specific and narrow case described
above requiring the data base management system.

Conclusions
A modified version of APL has been shown by illustrative
examples to be potentially useful as a software specification
tool. The notable advantages of APL in this regard are its
functional orientation for specifying design functions and its
mathematical amenability for proof of correctness techniques.
The most obvious disadvantage, of course, is the fact that the
sheer power of the language, which is a strong advantage from
the standpoint of top-down functional design, is much more
susceptible to abuse. If APL is to realise its potential in the soft-
ware specification domain a more stringent enforcement of
appropriate programming standards at the software design
establishment must be implemented.
It is also noted that APL may be most useful at the very earliest

stages of design and later augmented with other design tools.

A P(6)

References
BELFORD, P. C. and TAYLOR, D. S. (1976). Specification Verification—A Key to Improving Software Reliability, Proceedings of Symposium

on Engineering, Vol. XXIV, pp. 83-96.
FALKOFF, A. D. (1976). Criteria for a System Design Language, in Software Engineering: Concepts and Techniques, Peter Naur et al, (eds.),

Petrocelli/Charter, New York, pp. 226-231.
GERHART, S. K. (1972). Verification of APL Programs, Carnegie Mellon University, AD754856, November 1972.
KELLEY, R. A. (1972). Structured Programming Language for APL, IBM Technical Disclosure Bulletin, Vol. 15, pp. 1397-1398.
KOLSKY, H. G. (1969). Problem Formulation using APL, IBM Systems Journal, Vol. 8 No. 3, pp. 204-217.
LIM, A. L. and LEWIS, G. R. (1975). Structured Programs in APL, The Computer Journal, Vol. 18, pp. 140-142.
LISKOV, B. H. and ZILLES, S. N. (1975). Specification Techniques for Data Abstractions, IEEE Transactions on Software Engineering, Vol.

1, pp. 7-19.
PENGILLY, P. J. (1975). An Approach to Systems Design, The Computer Journal, Vol. 18, pp. 8-12.

232 The Computer Journal Volume 23 Number 3

 at Pennsylvania State U
niversity on A

pril 24, 2014
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

