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Preface

Our principal objective in this book is to describe some basic problems that arise in computer
graphics and computational geometry and to present some practical and relatively simple
methods for solving them. In these pages we will not attempt a comprehensive survey of
these fields. Rather, we will cover a number of core problems and solutions that may serve
as an introduction to these fields and at the same time prove both interesting and accessible
to the reader.

Another goal of this book is to introduce the reader to the design and analysis of
algorithms (an algorithm is a recipe or method for solving a computational problem). This
will provide the framework for studying the algorithms we will cover. Themes discussed
include elementary data structures such as lists and search trees, algorithmic paradigms
such as divide and conquer, and methods for analyzing the performance of algorithms and
data structures.

The problems we will cover are culled from the fields of computer graphics and
computational geometry. Spurred on by pressures from the marketplace and by advances in
computer technology (not least being the introduction of the personal computer), computer
graphics has developed rapidly since its inception in the 1950s. By contrast, computational
geometry is ancient, with roots in the straightedge-and-compass constructions of Euclid.
Yet it too has undergone tremendous growth in the last several decades, encouraged by
(and encouraging) advances in algorithmic science and by growing recognition of its wide
applicability.

Computer graphics encompasses methods for modeling and rendering scenes. Mod-
eling is used to construct a scene description, and the nature of the scene may be varied:
ordinary objects in two or three dimensions, natural phenomena such as clouds or trees,

xiii
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pages of text, oceans of numbers obtained from imaging devices or simulation studies,
and many others. Rendering is used to transform the scene description into a picture or
animation.

The computer graphics problems we will consider in this book involve rendering.
Clipping is used to determine that portion of a geometric object that lies outside a region (or
window) so it can be discarded prior to image formation. Hidden surface removal is used
to identify those objects (and portions of objects) in space which are hidden from view by
other objects that lie even closer to the viewing position, so they too can be discarded prior
to image formation.

Computational geometry encompasses algorithms for solving geometry problems.
The problems we will cover are easy to formulate and involve simple geometric objects:
points, lines, polygons, and circles in the plane; and points, lines, and triangles in space.
Some of the problems we will consider include decomposing polygons into triangles, finding
shapes—polygons, decompositions, and convex hulls—that are “hidden” among finite sets
of points, forming the intersection of various geometric objects, and searching in the plane
for geometric objects satisfying certain conditions.

The connection between computer graphics and computational geometry does not end
with the fact that both involve geometric objects. Although some methods clearly belong
to one field or the other, many methods can be claimed by both. Moreover, certain methods
in computational geometry have been motivated by or fruitfully applied to problems arising
in computer graphics. Hidden surface removal is a case in point. Although central to
computer graphics and solved in numerous ways by researchers in the computer graphics
community, in recent years the problem has been subjected to the more exacting methods
of computational geometry.

Prerequisites

The material we cover assumes only a modest background. Some trigonometry and linear
algebra is used when classes for geometrical objects are defined in Chapter 4. However, what
little mathematics is required will be explained to the extent needed for the nonmathematical
reader to appreciate the material. Prior experience with basic data structures, such as linked
lists and binary trees, is helpful but not necessary. In Chapter 3 we address the role of
data structures and develop from scratch those we will require through the remainder of the
book: lists, stacks, and binary trees.

In this book we provide working C++ programs for every algorithm and data structure
we cover. There are two main advantages in integrating working code into a book about al-
gorithms. First, each implementation complements the prose account of how the underlying
algorithm works, reinforcing the key ideas, providing a formal perspective of the algorithm,
and supplying details that the prose account omits. Second, the reader can execute, modify,
and experiment with a program to understand better how the underlying algorithm behaves
in practice. The program is a launching pad for creativity and exploration.

Those readers familiar with C++ will, of course, benefit most from the programs in
the text. However, readers with experience in the C language will also be in a position to
gain from the programs since C++ is a superset of C; and they will be all the more so if
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willing to study C++ while reading this book. Even those with no programming experience
can skip over the implementations and still enjoy the text.

Outline of Topics

This book consists of two parts. Part I, “Basics” (Chapters 1 to 4), presents background—
the fundamentals of data structures and algorithms and the necessary geometrical concepts
and tools. Part I, “Applications” (Chapters 5 to 9), poses problems and presents solutions.

Chapter 1 provides a broad framework, which includes the definition of such essential
terms as algorithm, data structure, and analysis. The chapter also addresses our use of
the C++ language and the issue of robustness in our implementations. Chapter 2, which
concerns the analysis of algorithms, provides the concepts and methods needed to analyze
the performance of the algorithms and data structures to follow. Chapter 3 presents C++
classes which embody both the abstract data types we will need later and the data structures
for their implementation: linked lists, stacks, and several versions of binary search trees.
Chapter 4 presents classes for representing and manipulating basic geometric objects in the
plane and in space. Among other things, these classes provide functions for computing the
point at which two skew lines in the plane intersect and for classifying a point relative to a
line in the plane or a triangle in space.

Part I is organized by algorithmic paradigm—each of its chapters presents algorithms
conforming to a given paradigm. Chapter 5 covers incremental insertion methods, which
process the input one item at a time without first scanning the input in its entirety. Algorithms
to be covered include an insertion method for finding the convex hull of a finite point set, an

- algorithm for clipping a line to a convex polygon (the Cyrus-Beck method), an algorithm for
clipping an arbitrary polygon to a convex polygon (the Sutherland-Hodgman method), and
an algorithm for decomposing into triangles a special class of polygons known as monotone
polygons.

Chapter 6 covers incremental selection methods, which are incremental methods that
scan the input in its entirety before proceeding. Algorithms to be covered include two more
methods for finding the convex hull of a finite point set (the gift-wrapping method and
the Graham scan), a linear-time algorithm for computing the intersection of two convex
polygons, and an incremental method for triangulating a set of points in the plane.

Chapter 7 covers plane-sweep algorithms, which work by sweeping a line from left to
right across the plane while constructing a solution to the subproblem that lies to the left of
the sweepline. One of the plane-sweep algorithms we cover finds the union of a collection
of rectangles in the plane; another decomposes an arbitrary polygon into monotone pieces.

Chapter 8 covers divide-and-conquer algorithms, which solve a problem by splitting
it into two subproblems each half the size of the original, solving these, and then combining
their solutions into a solution for the original problem. Algorithms to be covered include yet
another method for finding the convex hull of a finite set of points (the merge hull method),
amethod for decomposing an arbitrary polygon into triangles, and a method for partitioning
the plane into polygonal cells known as Voronoi regions.

Chapter 9 presents methods based on spatial subdivisions. We will present three
subdivisions—grids, quadtrees, and 2D trees—for solving the range searching problem in
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the plane: Given a finite set of points in the plane and an axes-parallel rectangle, report
those points which lie in the rectangle. We will also cover the use of binary space partition
trees for performing hidden surface removal in space.
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1

Introduction

In this chapter we present a framework for the study of algorithms, geometrical or otherwise.
We address such questions as, What are algorithms? What are data structures? What does
it mean to analyze an algorithm? Qur concern is to orient the reader, to introduce the basic
concepts and raise the relevant questions. The answers and definitions we supply in this
chapter are intended to be concise and skeletal. They will be fleshed out in later chapters,
where we encounter more detailed explanations and many examples.

We also address this book’s use of the C++ language, as well as how robust its
implementations are.

1.1 Framework

Let us briefly survey the terrain. A computational problem is a problem to be solved
by a method employing an agreed-upon set of instructions. A computational problem is
framed by a problem statement, which both characterizes all legal inputs and expresses
the output as a function of these legal inputs. For example, consider the problem we will
name BOUNDARY-INTERSECTION: Given two polygons in the plane, report whether
their boundaries intersect. A legal input consists of two polygons in some specified format.
Given two legal input polygons, the output is yes if their boundaries intersect, and no
otherwise.

An algorithm is a method for solving a computational problem. Algorithms are
abstract— a given algorithm can be expressed in many ways, implemented as a computer
program in different programming languages, and executed on different computers. Every
computer program embodies an algorithm and, if the program is well written, the underlying
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algorithm can be discerned in the program. As an example of an algorithm, the following
algorithm solves the BOUNDARY-INTERSECTION problem: Given two input polygons,
compare each edge of the first polygon with every edge of the second. Report that the
boundaries intersect if some pair of edges intersect, and report that the boundaries do not
intersect otherwise. Note that another algorithm is needed to decide whether any two edges
intersect. .

An algorithmic paradigm is a design after which an algorithm is patterned. Just
as different programs can be based on the same algorithm, so can different algorithms
be based on the same paradigm. Familiarity with paradigms helps us understand and
explain an algorithm whose form we have encountered before and helps in the design of
new algorithms. The algorithm we have sketched for the BOUNDARY-INTERSECTION
problem iteratively applies the incremental insertion paradigm: In each stage, an edge of
the first polygon is selected and then compared to each edge of the second polygon in turn.
This and other algorithmic paradigms will be explored in this book.

Algorithms employ objects for organizing data called data structures. Algorithms
and data structures go hand in hand: Algorithms motivate the design and study of data
structures, and data structures serve as the building blocks from which algorithms are
constructed. Our algorithm for BOUNDARY-INTERSECTION relies on a data structure
for representing polygons and one for representing edges.

An abstract data type, or ADT, is the public view of a data structure, separate from
its implementation. The ADT comprises the set of operations which the data structure
supports, and it serves as the interface between an algorithm and its data structures: The
algorithm executes the operations supported by the ADT, and the data structure implements
these operations. Viewed differently, each ADT represents a computational problem (a set
of operations), and each data structure that supports the operations represents a solution
to the ADT. Our BOUNDARY-INTERSECTION algorithm requires the use of two ADTs:
A polygon ADT, which includes operations for accessing a polygon’s edges, and an edge
ADT, which includes an operation for deciding whether a given pair of edges intersect.

For most problems, there exist several competing algorithms, and for most abstract
data types, there are several competing data structures. How can we identify the most
efficient solutions? Algorithm analysis encompasses methods for describing and measuring
the performance of algorithms and data structures. Analysis provides a basis for choosing
the best solution to a given problem and for deciding whether a more efficient solution is
possible. Analysis reveals, for instance, that our BOUNDARY-INTERSECTION algorithm
runs in time proportional to the product of the polygons’ sizes (where the size of a polygon
equals the number of edges it contains). The algorithm is not optimal; indeed, in Chapter 6
we will present a solution which runs in time proportional to the sum of the polygons’ sizes.

1.2 Our Use of the C++ Language

In this book we provide working C++ programs for every algorithm and data structure we
cover. There are two main advantages to dovetailing working code and text. First, each
program complements the prose account of how the underlying algorithm works, reinforcing
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the key ideas, providing a formal perspective of the algorithm, and supplying details that
the prose account omits. Second, the reader can execute, modify, and experiment with a
program to understand better how the underlying algorithm behaves in practice.

We will be using a number of features specific to C++, which are not a part of C.
We will employ classes, member functions, access control, constructors and destructors,
operator functions, overloaded functions, and reference types. We will also derive new
classes from other (base) classes, whereby a new class inherits the attributes and behavior
of its base classes. Class templates and function templates will also be used. A template
defines a type-independent class or function from which can be obtained a family of classes
or functions, which operate on different types but which otherwise behave alike.

This book makes no attempt to teach C++. We will occasionally explain our use of
certain Janguage features to account for some design decision or to jog the reader’s memory,
but not to teach the language. Good introductions to C++ are provided by [23, 79], and an
annotated reference manual by [26].

Nor does this book intend to teach object-oriented programming (OOP). The programs
we present are designed to be easily understood and followed. While intelligibility usually
follows from rigorous OOP practices, we will sometimes depart from this practice for the
sake of simplicity or conciseness (without sacrificing intelligibility). In OOP, one typically
spends a great deal of time, effort, and code in the design of classes so time may be
saved later when developing application programs in which the classes are used. However,
many of the classes we will be defining are “throw-away,” intended for use in only one or
two applications. In such cases, it would take us too far afield to define the class for fullest
generality and integrity. Object-oriented programming is treated by the texts [11, 13, 15, 32].

A note concerning efficiency is in order. Our programs are generally efficient. How-
ever, we willingly compromise efficiency in little ways for the sake of clarity, our main
concern. This may entail, for example, adding an unneeded local variable to correspond to
a concept explained in the text, or making a redundant procedure call to avoid saving the
results of a previous call, or calling an already-defined function instead of a more special-
ized function that we do not wish to take the trouble to define. You are, of course, welcome
to fine-tune these programs.

All of the programs in this book were implemented on a Macintosh LCIII using
Symantec C++. This development program implements the C++ language as defined in
The Annotated C++ Reference Manual by Ellis and Stroustrup {26]. The programs were
implemented verbatim, as given in this book, with one exception: The class names Point
and Polygon used in the book were changed to Point2D and Polygon2D in the im-
plementation. This was necessary to avoid name conflicts.

1.3 Robustness

An algorithm is robust if it always works right, even when the input embodies degeneracies
and special cases. Of course, one possible source of failure is that the algorithm simply is
not correct. Yet even if the algorithm is correct, it may fail due to round-off during floating-
point calculations. Round-off error occurs because real numbers are represented using



Sec. 1.3 Robustness 5

only a limited amount of memory, such as the 8 bytes commonly used for type double.
Thus all real numbers, of which there are infinitely many, are represented in only a finite
number of ways. The round-off error equals the difference between the real number and its
floating-point approximation.

Round-off error can be troublesome for geometric algorithms like those covered in
this book, which operate in a continuous space such as the plane or three-dimensional space.
Ideal points can only be approximated because their components are real numbers; ideal line
segments can only be approximated because they are represented by their endpoints; and so
forth. Round-off error is most problematic when the input embodies, or gives rise to, special
cases, for in such borderline cases it may lead the algorithm to make faulty decisions. For
example, given an ideal line and an ideal point through which the line passes, a computer
program may determine that the point lies to the left of the line, to the right of the line, or on
the line, depending on how the program represents both the line and the point. When special
cases arise, the solution produced by a program can be wrong due to round-off error, even
though the underlying algorithm——operating on ideal geometric objects—may be correct.

We have taken two approaches to ensure-—or at least to try to ensure—that the
programs in this book are robust. For some programs, we have restricted input to the
program in order to exclude certain special cases. Although such programs are less general
than they might be, little harm is done. It is the general cases that are handled that usually
prove the most interesting. Moreover, handling special cases often requires extra code,
which obscures the main ideas.

The special cases that are excluded tend to occur only rarely in practice. Nonetheless,
some of the programs we will cover specifically give rise to special cases, which must
be handled by other programs in this book; the latter programs must handle these special
cases correctly if the former programs which depend on them are to work. Our second
approach to robustness allows special cases and attempts to remove them when they arise
by perturbing the problem in small ways: extending the length of a line segment by a slight
amount, shifting a line to the left an infinitesimal distance, moving a point that is very close
to a line onto the line, and so forth. The goal in all cases is to transform a decision that can
go either way into one that is black and white, whose outcome is independent of how we
choose to represent geometric objects.

The problem of ensuring robust computation has gained considerable attention in
recent years. Although the approaches we have adopted in this book are in common use,
they are by no means the final word. Other approaches leading to greater robustness exist,
though they lie beyond the scope of this book.



2

Analysis of Algorithms

To analyze an algorithm is to measure and describe its performance. Understanding how
well an algorithm performs indicates whether the algorithm is practical, given the resources
that are available. Moreover, algorithm analysis provides a basis for comparing different
algorithmic solutions to the same problem, ranking them by performance, and identifying
which are most efficient.

Algorithm analysis generally concentrates on the resources of space (memory cells)
and time required by algorithms. In this chapter we will focus on the time it takes for an
algorithm to execute. Time is often the critical resource. Real-time systems like those used
for flight control or robot vision must execute in the blink of an eye if (often catastrophic)
failure is to be avoided. Even more tolerant systems like text editors are expected to respond
to the user’s commands on the order of seconds, and off-line programs like those for tallying
payrolls or analyzing medical imaging data should execute in no more than a few hours or
at most a few days. It is sometimes imagined that running time will become less critical
as faster computers are developed. This is simply not the case. The problems posed to
computers today are more difficult than ever, and their difficulty seems to outpace the
computer technology on which fast solutions too often depend.

Space is generally less critical than time. Many algorithms encountered in practice, as
well as nearly every algorithm covered in this book, use space proportional to input length;
thus if there is enough memory to pose the problem, there is usually enough memory to
solve it. In any case, much of what follows can be applied in analyses of space requirements.

Space and time are by no means independent resources. It is often possible to conserve
one of the resources by spending more of the other, in what is sometimes referred to as a
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spaceftime tradedff. This is, of course, advantageous when one of the resources is especially
scarce or costly.

In this chapter we will present three established approaches that simplify the task
of analysis without compromising the usefulness of its results. The first approach is to
adopt an abstract model of computation; the second to express running time as a function
of input size; and the third to express running time as a simple growth rate function. In the
last section we will discuss problem complexity, which concerns how much time is both
necessary and sufficient to solve a given problem.

2.1 Models of Computation

To analyze an algorithm, we must first identify the operations it uses and what each one
costs. This is specified by a model of computation. Ideally, we choose a model of com-
putation that abstracts the algorithm’s essential operations. For instance, to analyze an
algorithm involving polygons, we might count the number of times vertices are visited.
Numerical algorithms are typically analyzed by counting arithmetic operations. Sorting
and searching algorithms are usually analyzed by counting the number of times pairs of
items are compared.

The cost of each operation encompassed by a model of computation is given in abstract
units of time called steps. In some models of computation, every operation costs a constant
number of steps; in others, the cost of some operations may depend on the arguments with
which the operation is called. The running time of an algorithm for a given input is the total
number of steps it executes.

Although adopting an abstract model of computation simplifies analysis, the model
must not be so abstract that it ignores significant amounts of work performed by the algo-
rithm. Ideally, the time between successive operations counted by the model of computation
is constant and so can be ignored. Then running time—the total cost of the operations cov-
ered by the model of computation—is proportional to actual execution time.

Since running time depends on the model of computation, it is natural to adopt the
same model of computation for different solutions to the same problem. Then by comparing
their running times, we can identify the most efficient solutions (were models of computation
to vary, we would be comparing apples and oranges). For this reason we generally adopt—
though often only implicitly—a model of computation as part of a problem statement. To
make these ideas more concrete, let us work with the problem of finding a given integer x
in a sorted array of integers. We will call this problem SEARCH:

Given an integer x and a sorted array a of distinct integers, report the index of x
within a; if x does not occur in a, report —1.

Integer x is referred to as the search key.

The model of computation we will adopt for SEARCH includes only the probe op-
eration: comparing the search key x to some integer in the array. Assuming integers of
bounded size, a single probe can be performed in constant time. So we will say that a probe
costs one step.
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The simplest solution to SEARCH is given by sequential search: Step through array a
while probing each integer. If x is found (the search succeeds), then return its index in a;
otherwise return —1, indicating that the search failed. A reasonable implementation is as
follows:

int sequentialSearch(int x, int a[)], int n)
{
for (int i = 0; i < n; i++)
if (a[i] == x)
return i;
return -1;

Where f(x,a,n) denotes the running time of sequentialSearch as a function of
input, we have

k+ 1 if x occurs in position k of a

f&x.a,n) = n otherwise (the search fails) (2.1]

Observe that Equation 2.1 expresses running time-—the total number of probes, or steps—as
a function of all legal inputs. Observe also that, because sequentialSearch spends
only constant time between successive probes, the equation is a good measure of the pro-
gram’s actual performance.

2.2 Complexity Measures

Choice of a sufficiently abstract model of computation simplifies the task of analysis. To
simplify analysis even further, we usually express running time as a function of input size,
rather than as a function of all legal inputs. There are two main reasons for this. First,
the simpler the expression of running time, the easier it is to compare the running times
of different algorithms. Descriptions of running time as a function of all legal inputs can
be awkward and complex. Even Equation 2.1 is a bit unwieldy, and few algorithms are as
simple as sequential search. Second, it can be difficult to analyze running time in terms of
all legal inputs. The behavior of many algorithms is highly sensitive to input, and it can be
all but impossible to trace the myriad paths that computation follows as input varies.

Input size characterizes the space used to store input. How input size is measured
usually depends on the problem in a natural way and can be regarded as an implicit part of
the problem statement. If the input consists of an array, input size is taken to be the length
of the array; if input consists of a polygon, input size is taken to be the number of vertices
the polygon possesses. Any reasonable scheme will do as long as it is applied consistently
to all solutions to a given problem.

Expressing running time as a function of input size reduces all legal inputs of a given
size to a single value. Since this can be done in many ways, it is no longer clear what running
time measures. We pin it down by specifying a complexity measure, which describes what
aspect of performance is to be measured. The complexity measures in most common use
are worst case, average case, and amortized case.
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2.2.1 Worst-Case Running Time

Worst-case running time describes the longest running time for any input of each input
size. It is a useful measure since it captures the program’s running time at its worst. For
example, since sequentialSearch performs » probes in the worst case (when it fails),
its worst-case running time 7' (n) is T'(n) = n.

Calculating the worst-case running time is sometimes relatively easy since it is not
necessary to consider every legal input, but only some worst-case input of each size. More-
over, worst-case running time often represents a tight bound since worst performance is
realized by the input used in the analysis.

2.2.2 Average-Case Running Time

Average-case running time describes running time averaged overall inputs of each input size.
The average-case running time of sequentialSearchis % under the assumptions that
each of the n items is equally likely to be sought and that the search succeeds. If the second
assumption is dropped, the average-case running time lies in the range [ﬂlz‘—', n), depending
on the likelihood of failure.

Average-case analysis is usually more difficult to carry out than worst-case analysis
since it depends on what is meant by typical input. Even if we adopt some relatively simple
assumptions (e.g., that every input of a given size is equally likely to occur), the calculation
often remains difficult; furthermore, if the program runs in a setting in which the assumption
does not hold, the analysis may be a poor predictor of actual performance.

2.2.3 Amortized-Case Running Time

The operations carried out by an algorithm are typically interdependent. The performance
of each operation—its cost, in particular—depends on what was achieved by all previous
operations. In some algorithms, it is not possible for all operations to achieve worst-case
behavior simultaneously. More generaily, the cost of relatively expensive operations may
be offset by numerous inexpensive operations. Amortized analysis attempts to take this
into account: [t measures the average cost of each operation, in the worst case.

Consider an algorithm that executes n operations of a multidelete stack s. (Stacks are
covered more thoroughly in Section 3.4.) This data structure supports these two operations:

e s.push (x)—Push item x onto the top of s.

e s.pop (i)—Pop the i topmost items from s. The operation is not defined if stack s
contains fewer than i items.

As part of our model of computation, let us assume that operation s.push (x) takes
constant time (or one step), and that s. pop (1) takes time proportional to i (or { steps).
Amortized analysis can be carried out in several ways. We will consider an approach
based on an accounting metaphor which assigns “charges” to the different operations. Called
the amortized cost of an operation, each such charge may be greater or less than the actual
cost of the operation. Inexpensive operations are generally assigned amortized costs that
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exceed their actual costs, and expensive operations are assigned amortized costs that are
less than their actual costs. When the amortized cost of an operation exceeds the actual cost
of the operation, the difference represents credit that can be used to help defray the cost
of subsequent expensive operations. The idea is to assign amortized costs to operations
so that the credit accumulated through inexpensive operations offsets the cost of expensive
operations.

With regard to the multidelete stack, the actual cost and amortized cost of each
operation is as follows:

Operation Actual cost  Amortized cost
s.push (x) 1 2
s.pop{i) i 0

The table indicates that the amortized cost of each push operation is two steps and the
amortized cost of each pop operation is zero steps. Whenever an item is pushed onto the
stack, the operation is paid for with one of the two steps, and the second step is held in
reserve. Whenever i items are popped from the stack, the operation is paid for with the i
steps that had been held in reserve, one step for each of the items popped. At all times, the
total credit available in reserve equals the number of items in the stack.

Total amortized cost is maximized by a sequence of # push operations, at a total cost
of 2n steps. Therefore, each operation runs in two steps on average, in the worst case. That
is, each operation runs in constant time in the amortized sense.

The key to this accounting-based approach lies in the choice of amortized costs,
and, notwithstanding the previous example, this is the hard part. Several concerns must
be balanced. First, the total amortized cost of every sequence of operations should be an
upper bound on the total actual cost of the sequence. This ensures that the analysis shows
something meaningful about total actual cost. In our example, total available credit is
initially zero and never drops below zero, so the total amortized cost is never less than the
total actual cost. Second, to ensure that what is shown is as strong as possible, amortized
costs should be chosen so the upper bound is as tight as possible. In our example, total
amortized cost exceeds total actual cost by the number of items in the stack and so is never
more than twice the actual cost. Third, the total credit must be nonnegative at all times, for
otherwise there would exist a sequence of operations that cannot pay for itself.

Amortized analysis is often used to obtain an upper bound on the worst-case running
time of an algorithm: We bound the number of operations the algorithm performs as a
function of input size and then calculate the amortized cost of each operation. If constant
time is spent between successive operations, then the algorithm’s worst-case running time
is bounded above by the total amortized cost. This sort of analysis often produces a tighter
bound for worst-case running time than does a more simplistic analysis. Regarding our
multidelete stack example, we might naively argu'e thus: Since a pop operation takes up
to n steps in the worst case, a sequence of n operations can take as many as n* steps.
However, amortized analysis reveals that no such sequence of operations is possible and
that a sequence of » operations executes in at most 2n steps.
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2.3 Asymptotic Analysis

2.3.1 Growth Rate Functions

So far we have introduced two established approaches for simplifying analysis: adopting
an abstract model of computation and expressing running time as a function of input size. A
third approach focuses on the asymptotic efficiency of algorithms: how running time grows
as input size increases to infinity. If the running time (e.g., worst-case) of an algorithm is
expressed by the function f(n), we are interested in the growth rate of f and capture this
in a simple growth rate function T (n).

For example, suppose that f(n) = an®+bn+-c for some constants a, b, and c. Asinput
size grows large, the lower-order terms become insignificant and so can be ignored—we
can treat f(n) as an®. Moreover, even coefficient a of the leading term becomes relatively
insignificant as input size grows large, so we can replace f(n) by the simple growth rate
function T (n) = nZ.

It is not hard to see why the leading coefficient can be ignored. If we let T'(n) = an?,
every doubling of input size » increases running time by a function that depends on T (n)
but not on a. Indeed we have

T(2n) = a(2n)?
= 4an?
=47 (n)

Thus running time quadruples when input size doubles, regardless of the value of a.

More generally, where T (n) is a growth rate function composed of a leading term
with coefficient a, 7 (2n) is a function of 7' (n) and possibly a lower-order component which
depends on n and a. This is exhibited by the following table, which orders functions by
increasing rate of growth:

T(n) T(2n)
a T(n)
alogn T(n)+a
an 2T (n)
anlogn 2T (n)+2an
an? 4T (n)
an? 8T (n)
2 (T ()2

The various functions 7'(n) are graphed to logarithmic scale in Figure 2.1, for @ = 1 and
log n taken with base 2.

The worst-case running time of most of the algorithms we will cover in this book is
proportional to one of the following simple growth rate functions. The following list also
indicates the most common reason why algorithms of each performance class perform as
they do:
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Figure 2.1: Common growth rate functions (logarithmic scale).

1 (constant time) Such algorithms run in time independent of input size.

log n (logarithmic time) Algorithms in this class often work by repeatedly reducing a prob-
lem to a subproblem a fixed fraction of the size.

n (linear time) Such algorithms generally perform constant-time processing for each input
item.

nlogn (nlogn time) Divide-and-conquer algorithms belong to this class and work by
decomposing the original problem into smaller subproblems, solving these, and then
combining the results.

n? (quadratic time) Most such algorithms spend constant time processing all pairs of input
items.

n3 (cubic time) Most such algorithms spend linear time processing all pairs of input items.

2.3.2 Asymptotic Notation

Asymptotic notation provides a convenient language for discussing the growth rate of func-
tions. Among its many uses, the notation is used to express the running time of algorithms
and the complexity of problems, and it is often employed in proofs designed to bound the
quantity or size of things. We briefly discuss the basic elements of this notation.

O-NOTATION

O-notation (pronounced big-oh notation) is used to describe upper bounds on the
growth rate of functions. Where f(n) is a function, O ( f(n)) denotes the class of functions
that grow no faster than f(r). A function g(n) belongs to O(f(r)) if g(n) is no larger than
some constant times f(xn) as n grows sufficiently large. More formally, g(n) € O( f(n)) if
for some real number ¢ > O there exists an integer ng > 1 such that g(n) < ¢f(n) for all
n = ng.
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For example, an + b € O(n) for all constants a and b. To see why, choose ¢ = a + |
and ng = b. We then have

an+b={(a@+)n+b—n
=cn+ng—n
<cn

for all n > ny.

We often express running time using O-notation without specifying a complexity
measure. When we say, for instance, that an algorithm runs in O( f(n)) time, we mean
that its running time is bounded above by O( f(n)) for all inputs of size n. This implies, of
course, that its worst-case running time is also bounded above by O( f(n)).

0-NOTATION

o-Notation (or little-oh notation) is used to describe strict upper bounds. Given
function f(n), o(f(n)) is the class of functions that grow strictly slower than f(n). More
formally, a function g(n) belongs to o( f(n)) if for every constant ¢ > 0 there exists an
integer ny > 1 such that g(n) < cf(n) for all n > ng. It is easy to see that o( f(n)) C
O(f(n)) for every function f.

o-Notation provides a way to focus on the leading term of a function. For example,
to emphasize the leading term of f(n) = an log, n + bn + ¢, we would rewrite the function
as f(n) = anlog, n + o(nlogn). This indicates that lower-order terms exist but can be
dismissed.

2-NOTATION

2-Notation (pronounced omega notation) is used to describe lower bounds on the
growth rate of functions. Where f(n) is a function, $2( f(n)) denotes the class of functions
that grow no more slowly than f(n). The definition of $2( f(n)) is symmetric to that of
O(f(n)): A function g(n) belongs to 2( f(n)) if for some real number ¢ > 0 there exists
an integer ng > 1 such that g(n) > c¢f(n) for all n > ny.

©-NOTATION

O-Notation and Q2-notation can be used together to define classes of functions whose
growth rate lies between two bounds. For instance, O "% N S2(n) denotes the class of
functions which grow at least as fast as n and no faster than n2. ©-Notation (or theta notation)
is used when the gap between the two bounds collapses and the growth rate can be described
precisely. Where f(n) is a function, ®( f(n)) denotes the class of all functions that grow
at the same rate as f(n). It is defined more formally by ©( f(n)) = O(f(n)) N Q(f(n)).

2.4 Analysis of Recursive Algorithms

Many algorithms solve a large problem by decomposing it into smaller subproblems of the
same kind, solving them, and then combining their solutions into a solution to the original
problem. Since the subproblems are of the same kind as the original problem, they are
solved recursively by the same algorithm. To ensure that the process eventually terminates,
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a subproblem that is small or simple enough is solved directly. This general approach is
known as recursive decomposition.

Algorithms based on this approach can be analyzed using recurrence relations (or
simply recurrences). A recurrence is a function that takes integer arguments and is defined
in terms of itself. Anexample is the familiar factorial functionn! = nx(n—1)x- - -%2* 1 %1,
defined by the recurrence

ol = nxmn—1! ifn>1
T otherwise (n = 0)

To analyze an algorithm based on recursive decomposition, we express its running time
for input size n as a recurrence relation. For example, consider selection sort, which
sorts n integers by first extracting the smallest integer from the set and then applying itself
recursively to the remaining » — 1 integers:

void selectionSort(int all, int n)
{
if (n > 0) {
int i = positionOfSmallest(a, n);
swap(a[0], a[il);
selectionSort (a+l, n-1);

Here the function call positionOfSmallest {a,n) returns the index of the smallest
integer in array a of length n. It works by scanning the array while keeping track of the
position of the smallest integer seen so far, and it runs in @(n) time. Function swap
exchanges two integers in constant time.

The running time of selection sort, a function 7' (n) of input size n, is expressed by
the recurrence

Tn-=1D+an ifn>0

T(n) = { b otherwise (n = 0) 221

where a and b are constants. In Equation 2.2, T(n — 1) corresponds to the cost of the
recursive call, an to the cost of finding the smallest integer and exchanging it with a (0],
and b to the cost of returning if n==0.

For the purpose of comparing selection sort with other sorting algorithms, it is prefer-
able to recast Equation 2.2 in closed form—expressing T (n) in terms of #, a, and b only. We
briefly consider two methods for obtaining closed-form solutions to recurrence relations:
the telescoping sums method and the substitution method.

2.4.1 Telescoping Sums

The idea of the telescoping sums method is to expand the recurrence relation repeatedly
until it is expressed as a summation of terms that depend only on » and the initial conditions.
In practice we expand only a few times, until a pattern becomes apparent. For example,
Equation 2.2 is solved as follows:
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Tn)y=Tn—-1)+an

=Tn—-2)4+an—1)+an

=Tn-3)+an—-2)+arn—1)+an

=T0)+a+2a+---+na

=b+a(l+2+---+n)

=b+aln(n+1)/2]

a , a

=" + 3" +5b
Hence T (n) € O(n?). It follows that selection sort—indeed all algorithms described by
Equation 2.2—runs in O(n?) time.

Note that the preceding derivation uses the fact that Y ;_, i = . Summations
are not always so easy to solve. In some cases we are able to do no better than bound a
summation from above, which leads to an upper bound for T (n).

nin+1)
2

2.4.2 The Substitution Method

An algorithm based on the divide-and-conquer approach employs a special form of recursive
decomposition. In its most simple form, divide and conquer decomposes the original
problem into two subproblems, each about half the size of the original. Let us suppose that
the process of decomposing the original problem of size » into two subproblems, and the
process of combining their solutions to solve the original problem, each take O(n) time.
An example is merge sort. To sort an array of length n, merge sort recursively sorts the left
subarray and the right subarray and then merges the two sorted subarrays:

void mergeSort(int al[], int n)
{
if (n > 1) {
intm=n/ 2;
mergeSort (a, m);
mergeSort (a+m, n-m);
merge(a, m, n);

The merge step is performed by the function call merge (a, m,n), which merges the
two sorted subarrays a[0..m~1] and a[m..n-1] into a[0..n-1]. (Here we use
a[l..u] to denote the subarray a between lower index 1 and upper index u inclusive.)
Function merge works by maintaining a pointer to the smallest item not yet merged, in
each of the two sorted subarrays. The pointers are iteratively moved from left to right until
the merge is complete. The merge step, which takes linear time, works much as one would
merge two sorted stacks of playing cards into a single sorted stack. (Merge sort will be
covered more thoroughly in Chapter 8.)

The running time 7 (n) of merge sort is described by the following recurrence, in
which we assume for simplicity that » is a power of 2:



16

Chap. 2: AnalySis of Algorithms

2T (3) +an ifn>1
Tin) = [2.3]
b otherwise (n = 1)

We use the substitution method to solve Equation 2.3. The idea is to guess a closed-form
solution for the recurrence and then use mathematical induction to show that the solution
holds.! To solve Equation 2.3, we will show by induction that

T(n) <cinlogn+c; (2.4]
for suitably chosen constants ¢; and ¢,. Letting
co=a+b
Cy = b

works fine.
For the inductive step, let us assume as the inductive hypothesis that Equation 2.4
solves Equation 2.3 for all powers of 2 less than n. We then have

T(n) = 2T (%) tan
cin n
52(—2‘10g-2- +Cz) +an
=cn log—’zi +2¢; +an

=cnlogn —cin +2¢, + an
=cnlogn+c;+b—bn
<cnlogn+c;
This establishes the inductive step.
The basis step of the induction also follows from our choice of ¢) and ¢;. The
following shows that Equation 2.4 holds forn = 1:

T(H)=b
= C2
<ci(l-logl)+c
It follows from this discussion that merge sort has worst-case running time O{(n log n).

2.5 Problem Complexity

If we know the performance of an algorithm, we can compare it to other algorithms for
the same problem. But suppose we wish to determine whether an algorithm is optimal—
whether a more efficient solution is possible. One way to decide if an algorithm is optimal

'Mathematical induction is a two-step method for proving true an infinite sequence of statements
P(1), P(2). -+, P(n), ---. The basis step is to prove the first statement P(1). The inductive step is to show
that for any statement P(n), if P(n) is true, then statement P(n + 1) must be true. Here P(n) of the
inductive step is called the inductive hypothesis.
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is to compare it to a second algorithm known (somehow) to be optimal, but this works only
if the latter algorithm can be shown to be optimal. Another approach is needed if we are to
escape this infinite regress. How can we determine whether an algorithm is optimal? More
generally, how can we determine how much time any solution to a given problem is bound
to require?

Problem complexity expresses the amount of time that is both necessary and sufficient
to solve a problem. Knowing how much time is necessary to solve a problemn informs us that
any approach that takes less time is bound to fail. And knowing how much time is sufficient
indicates how efficient a particular solution is and to what extent it can be improved on.

When the complexity of a problem is known exactly, it is expressed in the form
®O(f(n)). The complexity of many problems that arise as a matter of course is in fact
known exactly. However, for some problems the best we can do is establish lower and
upper bounds on complexity and then work toward collapsing the gap—bringing the upper
bound downward and the lower bound upward until the two bounds meet.

2.5.1 Upper Bounds

Any solution to a given problem bounds its complexity from above: If the solution has
worst-case running time O( f(n)), then O( f(n)) time is sufficient to solve the problem. If
no faster solution is possible, implying that the given solution is optimal, then the upper
bound is tight. Alternatively, if the solution is suboptimal, then the upper bound is brought
downward as more efficient solutions are discovered.

Recall problem SEARCH, that of probe-based searching in a sorted array of n distinct
integers. Since sequential search runs in O(n) time in the worst case, O(n) representé an
upper bound for the problem. However, O(n) is not a tight bound since a more efficient
solution exists. Binary search takes advantage of the fact that the array is sorted. Given
subarray a[l. .u], binary search compares the search key x to item a[m] occurring
in position m about halfway between positions 1 and u. If x is no greater than a[m],
binary search is applied recursively to the left subarray a [1. .m]; otherwise (x is greater
than a [m]) binary search is applied recursively to the right subarray a [m+1. .u]. In the
base case (1==u), we solve the problem directly. The following function returns the index
of x in subarray a [1. .u], or —1 if the search fails:

int binarySearch{int x, int a[l, int 1, int u)
{
if (1 == u)
return (x == aful]) ? u : -1;
int m = (1 + u) / 2;
if (x <= a[m])
return binarySearch(x, a, 1, m);
else
return binarySearch(x, a, m+l, u);

To find x in array a of length n, use the top-level call binarySearch(x,a,0,n-1).
The worst-case running time of binary search is expressed by the recurrence
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T(3)+a ifn>1
T(n) = [2.5]
b otherwise (n = 1)

It is not hard to show using either of the methods described earlier that T (n) € O(logn).

It follows from our discussion that O (log n) is an upper bound for problem SEARCH.
Is this bound tight, or does there exist a solution even more efficient than binary search?
The bound is in fact tight—Dbinary search is optimal. To see why, we now turn our attention
to Jower bounds on problem complexity.

2.5.2 Lower Bounds

Finding good lower bounds can be difficult. A lower bound of §2(g(rn)) on the complexity
of some problem implies that at least 2(g(r)) time is needed to solve the problem. How
can we ever be certain that every solution requires at least Q(g(n)) time, that there does not
exist some (perhaps unknown) solution that takes less time?

We will consider two approaches to showing lower bounds: proof by decision tree,
and proof by reduction.

Decision TREES

Consider problem SEARCH. Any algorithm based on its model of computation
(constant-time probes) can be viewed as a decision tree. The decision tree represents
all possible computations for all inputs of a given size (there is a different decision tree for
every input size). Each node of the decision tree corresponds to a probe. The pair of edges
that leaves each node corresponds to a branching instruction—based on the outcome of the
probe, a given computation follows one of the two edges to the next node. The external
nodes of the decision tree—the terminating nodes which no edges exit—correspond to so-
lutions. Figure 2.2 shows the decision tree for program binarySearch when applied to a
sorted array of length three. The decision tree is in fact a binary tree with a probe associated
with each (circular) internal node and a final outcome associated with each (square) external
node. (See Section 3.5 for more about binary trees.)

The decision tree can be used to show a lower bound for problem SEARCH. Each
path from the topmost node (or root) down to some external node represents a possible
computation, and the path’s length equals the number of probes performed by the compu-
tation. (Here the length of a path equals the number of edges it contains.) Hence the length
of the longest such path in the decision tree represents the number of probes performed in
the worst case. What is the shortest this largest path can be?