
COMPUTATIONAL
GEOMETRY

AND

COMPUTER
GRAPHICS IN C++

MICHAEL J. LASZLO

Computational Geometry
and Computer
Graphics in C++

Michael J. Laszlo
School of Computer and Information Sciences
Nova Southeastern University

Prentice Hall
Upper Saddle River, NJ 07458

Library of Congress Cataloging-in-Publication Data

Laszlo, Michael Jay.
Computational geometry and computer graphics in C++ / by Michael

J. Laszlo.
p. cm.

Includes bibliographical references and index.
ISBN 0-13-290842-5
1. C++ (Computer program language) 2. Computer graphics.

1. Title.
QA76.73.C153L38 1996
006.6'6-dc20 95-38141

CIP

Acquisitions editor: Alan Apt
Production editor: Rose Kernan
Copy editor: Patricia Daly
Cover designer: Bruce Kenselaar
Buyer: Donna Sullivan
Editorial assistant: Shirley McGuire

01996 by Prentice-Hall, Inc.
A Pearson Education Company
Upper Saddle River, NJ 07458

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the
development, research, and testing of the theories and programs to determine their effectiveness. The author and
publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation
contained in this book. The author and publisher shall not be liable in any event for incidental or consequential
damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-290842-5

Prentice-Hall International (UK) Lirnited,London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Pearson Education Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

To my parents
Maurice and Phyllis

Contents

Preface, Xiii

Part I BASICS, 1

INTRODUCTION, 2

1.1 Framework, 2

1.2 Our Use of the C++ Language, 3

1.3 Robustness, 4

2 ANALYSIS OF ALGORITHMS, 6

2.1 Models of Computation, 7

2.2 Complexity Measures, 8
2.2.1 Worst-Case Running Time, 9
2.2.2 Average-Case Running Time, 9
2.2.3 Amortized-Case Running Time, 9

2.3 Asymptotic Analysis, 11
2.3.1 Growth Rate Functions, 11
2.3.2 Asymptotic Notation, 12

V

vi Contents

2.4 Analysis of Recursive Algorithms, 13
2.4.1 Telescoping Sums, 14
2.4.2 The Substitution Method, 15

2.5 Problem Complexity, 16
2.5.1 Upper Bounds, 17
2.5.2 Lower Bounds, 18

2.6 Chapter Notes, 21

2.7 Exercises, 21

3 DATA STRUCTURES, 23

3.1 What are Data Structures? 23

3.2 Linked Lists, 25

3.3 Lists, 28
3.3.1 Constructors and Destructors, 30
3.3.2 Modifying Lists, 31
3.3.3 Accessing List Elements, 32
3.3.4 List Examples, 34

3.4 Stacks, 35

3.5 Binary Search Trees, 38
3.5.1 Binary Trees, 38
3.5.2 Binary Search Trees, 40
3.5.3 The SearchTree Class, 41
3.5.4 Constructors and Destructors, 41
3.5.5 Searching, 42
3.5.6 Inorder Traversal, 43
3.5.7 Inserting Items, 44
3.5.8 Removing Items, 45

3.6 Braided Binary Search Trees, 48
3.6.1 The BraidedNode Class, 48
3.6.2 The BraidedSearchTree Class, 49
3.6.3 Constructors and Destructors, 50
3.6.4 Using the Braid, 50
3.6.5 Searching, 52
3.6.6 Inserting Items, 52
3.6.7 Removing Items, 53

3.7 Randomized Search Trees, 55
3.7.1 The RandomizedNode Class, 57
3.7.2 The RandomizedSearchTree Class, 60

Contents vii

3.7.3 Constructors and Destructors, 61
3.7.4 Using the Braid, 61
3.7.5 Searching, 62
3.7.6 Inserting Items, 64
3.7.7 Removing Items, 65
3.7.8 Expected Performance, 66
3.7.9 The Dictionary ADT 67

3.8 Chapter Notes, 67

3.9 Exercises, 68

4 GEOMETRIC DATA STRUCTURES, 69

4.1 Vectors, 69

4.2 Points, 73
4.2.1 The Point Class, 73
4.2.2 Constructors, 73
4.2.3 Vector Arithmetic, 74
4.2.4 Relational Operators, 74
4.2.5 Point-Line Classification, 75
4.2.6 Polar Coordinates, 77

4.3 Polygons, 78
4.3.1 What are Polygons? 78
4.3.2 Convex Polygons, 79
4.3.3 The Vertex Class, 80
4.3.4 The Polygon Class, 82
4.3.5 Point Enclosure in a Convex Polygon, 86
4.3.6 Finding the Least Vertex in a Polygon, 87

4.4 Edges, 88
4.4.1 The Edge Class, 88
4.4.2 Edge Rotations, 89
4.4.3 Finding the Intersection of Two Lines, 90
4.4.4 Distance from a Point to a Line, 94
4.4.5 Additional Utilities, 94

4.5 Geometric Objects in Space, 95
4.5.1 Points, 95
4.5.2 Triangles, 96
4.5.3 Edges, 99

4.6 Finding the Intersection of a Line and a Triangle, 100

4.7 Chapter Notes, 103

4.8 Exercises, 103

viii Contents

Part 11 APPLICATIONS, 105

5 INCREMENTAL INSERTION, 106

5.1 Insertion Sort, 107
5.1.1 Analysis, 108

5.2 Finding Star-Shaped Polygons, 109
5.2.1 What are Star-Shaped Polygons? 109
5.2.2 Finding Star-Shaped Polygonizations, 110

5.3 Finding Convex Hulls: Insertion Hull, 112
5.3.1 What are Convex Hulls? 112
5.3.2 Insertion Hull, 113
5.3.3 Analysis, 115

5.4 Point Enclosure: The Ray-Shooting Method, 116

5.5 Point Enclosure: The Signed Angle Method, 120

5.6 Line Clipping: The Cyrus-Beck Algorithm, 122

5.7 Polygon Clipping: The Sutherland-Hodgman Algorithm, 125

5.8 Triangulating Monotone Polygons, 128
5.8.1 What are Monotone Polygons? 129
5.8.2 The Triangulation Algorithm, 129
5.8.3 Correctness, 134
5.8.4 Analysis, 135

5.9 Chapter Notes, 135

5.10 Exercises, 136

6 INCREMENTAL SELECTION, 137

6.1 Selection Sort, 137
6.1.1 Off-Line and On-Line Programs, 138

6.2 Finding Convex Hulls: Gift- Wrapping, 139
6.2.1 Analysis, 141

6.3 Finding Convex Hulls: Graham Scan, 141

6.4 Removing Hidden Surfaces: The Depth-Sort Algorithm, 145
6.4.1 Preliminaries, 145
6.4.2 The Depth-Sort Algorithm, 146
6.4.3 Comparing Two Triangles, 150
6.4.4 Refining a List of Triangles, 152

Contents ix

6.5 Intersection of Convex Polygons, 154
6.5.1 Analysis and Correctness, 160
6.5.2 Robustness, 161

6.6 Finding Delaunay Triangulations, 162
6.6.1 Finding the Mate of an Edge, 168

6.7 Chapter Notes, 170

6.8 Exercises, 172

7 PLANE-SWEEP ALGORITHMS, 173

7.1 Finding the Intersections of Line Segments, 174
7.1.1 Representing Event-Points, 174
7.1.2 The Top-Level Program, 176
7.1.3 The Sweepline Structure, 177
7.1.4 Transitions, 178
7.1.5 Analysis, 181

7.2 Finding Convex Hulls: Insertion Hull Revisited, 182
7.2.1 Analysis, 183

7.3 Contour of the Union of Rectangles, 183
7.3.1 Representing Rectangles, 184
7.3.2 The Top-Level Program, 186
7.3.3 Transitions, 188
7.3.4 Analysis, 191

7.4 Decomposing Polygons into Monotone Pieces, 191
7.4.1 The Top-Level Program, 192
7.4.2 The Sweepline Structure, 195
7.4.3 Transitions, 198
7.4.4 Analysis, 201

7.5 Chapter Notes, 201

7.6 Exercises, 201

8 DIVIDE-AND CONQUER ALGORITHMS, 203

8.1 Merge Sort, 204

8.2 Computing the Intersection of Half-Planes, 206
8.2.1 Analysis, 208

8.3 Finding the Kernel of a Polygon, 208
8.3.1 Analysis, 209

X Contents

8.4 Finding Voronoi Regions, 209
8.4.1 Voronoi Diagrams, 211
8.4.2 Analysis, 212

8.5 Merge Hull, 212
8.5.1 The Top-Level Program, 213
8.5.2 Merging Two Convex Hulls, 214
8.5.3 Analysis, 216

8.6 Closest Points 216
8.6.1 The Top-Level Program, 217
8.6.2 Processing the Points in the Strip, 219
8.6.3 Analysis, 220

8.7 Polygon Triangulation, 220
8.7.1 The Top-Level Program, 221
8.7.2 Finding an Intruding Vertex, 222
8.7.3 Analysis, 223

8.8 Chapter Notes, 224

8.9 Exercises, 225

9 SPATIAL SUBDIVISION METHODS, 226

9.1 The Range Searching Problem, 227

9.2 The Grid Method, 228
9.2.1 Representation, 228
9.2.2 Constructors and Destructors, 229
9.2.3 Performing Range Queries, 230
9.2.4 Analysis, 231

9.3 Quadtrees, 231
9.3.1 Representation, 233
9.3.2 Constructors and Destructors, 234
9.3.3 Performing Range Queries, 237
9.3.4 Support Functions, 238
9.3.5 Analysis, 239

9.4 Two-Dimensional Search Trees, 242
9.4.1 Representation, 243
9.4.2 Constructors and Destructors, 244
9.4.3 Performing Range Queries, 246
9.4.4 Support Functions, 247
9.4.5 Analysis, 247

Contents xi

9.5 Removing Hidden Surfaces: Binary Space Partition Trees, 248
9.5.1 Representation, 250
9.5.2 Constructors and Destructors, 251
9.5.3 Performing Hidden Surface Removal, 253
9.5.4 Analysis, 253

9.6 Chapter Notes, 254

9.7 Exercises, 254

BIBLIOGRAPHY, 256

INDEX, 261

Preface

Our principal objective in this book is to describe some basic problems that arise in computer
graphics and computational geometry and to present some practical and relatively simple
methods for solving them. In these pages we will not attempt a comprehensive survey of
these fields. Rather, we will cover a number of core problems and solutions that may serve
as an introduction to these fields and at the same time prove both interesting and accessible
to the reader.

Another goal of this book is to introduce the reader to the design and analysis of
algorithms (an algorithm is a recipe or method for solving a computational problem). This
will provide the framework for studying the algorithms we will cover. Themes discussed
include elementary data structures such as lists and search trees, algorithmic paradigms
such as divide and conquer, and methods for analyzing the performance of algorithms and
data structures.

The problems we will cover are culled from the fields of computer graphics and
computational geometry. Spurred on by pressures from the marketplace and by advances in
computer technology (not least being the introduction of the personal computer), computer
graphics has developed rapidly since its inception in the 1950s. By contrast, computational
geometry is ancient, with roots in the straightedge-and-compass constructions of Euclid.
Yet it too has undergone tremendous growth in the last several decades, encouraged by
(and encouraging) advances in algorithmic science and by growing recognition of its wide
applicability.

Computer graphics encompasses methods for modeling and rendering scenes. Mod-
eling is used to construct a scene description, and the nature of the scene may be varied:
ordinary objects in two or three dimensions, natural phenomena such as clouds or trees,

xiii

pages of text, oceans of numbers obtained from imaging devices or simulation studies,
and many others. Rendering is used to transform the scene description into a picture or
animation.

The computer graphics problems we will consider in this book involve rendering.
Clipping is used to determine that portion of a geometric object that lies outside a region (or
window) so it can be discarded prior to image formation. Hidden surface removal is used
to identify those objects (and portions of objects) in space which are hidden from view by
other objects that lie even closer to the viewing position, so they too can be discarded prior
to image formation.

Computational geometry encompasses algorithms for solving geometry problems.
The problems we will cover are easy to formulate and involve simple geometric objects:
points, lines, polygons, and circles in the plane; and points, lines, and triangles in space.
Some of the problems we will consider include decomposing polygons into triangles, finding
shapes-polygons, decompositions, and convex hulls-that are "hidden" among finite sets
of points, forming the intersection of various geometric objects, and searching in the plane
for geometric objects satisfying certain conditions.

The connection between computer graphics and computational geometry does not end
with the fact that both involve geometric objects. Although some methods clearly belong
to one field or the other, many methods can be claimed by both. Moreover, certain methods
in computational geometry have been motivated by or fruitfully applied to problems arising
in computer graphics. Hidden surface removal is a case in point. Although central to
computer graphics and solved in numerous ways by researchers in the computer graphics
community, in recent years the problem has been subjected to the more exacting methods
of computational geometry.

Prerequisites

The material we cover assumes only a modest background. Some trigonometry and linear
algebra is used when classes forgeometrical objects are defined in Chapter4. However, what
little mathematics is required will be explained to the extent needed for the nonmathematical
reader to appreciate the material. Prior experience with basic data structures, such as linked
lists and binary trees, is helpful but not necessary. In Chapter 3 we address the role of
data structures and develop from scratch those we will require through the remainder of the
book: lists, stacks, and binary trees.

In this book we provide working C++ programs for every algorithm and data structure
we cover. There are two main advantages in integrating working code into a book about al-
gorithms. First, each implementation complements the prose account of how the underlying
algorithm works, reinforcing the key ideas, providing a formal perspective of the algorithm,
and supplying details that the prose account omits. Second, the reader can execute, modify,
and experiment with a program to understand better how the underlying algorithm behaves
in practice. The program is a launching pad for creativity and exploration.

Those readers familiar with C++ will, of course, benefit most from the programs in
the text. However, readers with experience in the C language will also be in a position to
gain from the programs since C++ is a superset of C; and they will be all the more so if

xiv Preface

willing to study C++ while reading this book. Even those with no programming experience
can skip over the implementations and still enjoy the text.

Outline of Topics

This book consists of two parts. Part 1, "Basics" (Chapters 1 to 4), presents background-
the fundamentals of data structures and algorithms and the necessary geometrical concepts
and tools. Part II, "Applications" (Chapters 5 to 9), poses problems and presents solutions.

Chapter 1 provides a broad framework, which includes the definition of such essential
terms as algorithm, data structure, and analysis. The chapter also addresses our use of
the C++ language and the issue of robustness in our implementations. Chapter 2, which
concerns the analysis of algorithms, provides the concepts and methods needed to analyze
the performance of the algorithms and data structures to follow. Chapter 3 presents C++
classes which embody both the abstract data types we will need later and the data structures
for their implementation: linked lists, stacks, and several versions of binary search trees.
Chapter 4 presents classes for representing and manipulating basic geometric objects in the
plane and in space. Among other things, these classes provide functions for computing the
point at which two skew lines in the plane intersect and for classifying a point relative to a
line in the plane or a triangle in space.

Part II is organized by algorithmic paradigm-each of its chapters presents algorithms
conforming to a given paradigm. Chapter 5 covers incremental insertion methods, which
process the input one item at a time without first scanning the input in its entirety. Algorithms
to be covered include an insertion method for finding the convex hull of a finite point set, an
algorithm for clipping a line to a convex polygon (the Cyrus-Beck method), an algorithm for
clipping an arbitrary polygon to a convex polygon (the Sutherland-Hodgman method), and
an algorithm for decomposing into triangles a special class of polygons known as monotone
polygons.

Chapter 6 covers incremental selection methods, which are incremental methods that
scan the input in its entirety before proceeding. Algorithms to be covered include two more
methods for finding the convex hull of a finite point set (the gift-wrapping method and
the Graham scan), a linear-time algorithm for computing the intersection of two convex
polygons, and an incremental method for triangulating a set of points in the plane.

Chapter 7 covers plane-sweep algorithms, which work by sweeping a line from left to
right across the plane while constructing a solution to the subproblem that lies to the left of
the sweepline. One of the plane-sweep algorithms we cover finds the union of a collection
of rectangles in the plane; another decomposes an arbitrary polygon into monotone pieces.

Chapter 8 covers divide-and-conquer algorithms, which solve a problem by splitting
it into two subproblems each half the size of the original, solving these, and then combining
their solutions into a solution for the original problem. Algorithms to be covered include yet
another method for finding the convex hull of a finite set of points (the merge hull method),
a method for decomposing an arbitrary polygon into triangles, and a method for partitioning
the plane into polygonal cells known as Voronoi regions.

Chapter 9 presents methods based on spatial subdivisions. We will present three
subdivisions-grids, quadtrees, and 2D trees-for solving the range searching problem in

Preface xv

the plane: Given a finite set of points in the plane and an axes-parallel rectangle, report
those points which lie in the rectangle. We will also cover the use of binary space partition
trees for performing hidden surface removal in space.

Acknowledgments

I would like to thank a number of people who read portions of this text at various stages
and provided useful suggestions: David Dobkin, Erik Brisson, Burt Rosenburg, Deborah
Silver, and Shai Simonson, as well as several anonymous reviewers. I am also thankful to
the Department of Mathematics and Computer Science of the University of Miami (Coral
Gables, Florida) for the time and resources to write this book, and to the School of Computer
and Information Sciences of Nova Southeastern University (Ft. Lauderdale) for its support
during the production phase of this project. For their enthusiasm and encouragement, I
thank Prentice Hall editors Bill Zobrist (during the writing phase of this project), Rose
Kernan and Alan Apt (production phase) and their assistants, Phyllis Morgan and Shirley
McGuire.

I am grateful for the love and encouragement of my wife, Elisa, without whose support
I would not have attempted, much less completed, this book. I also wish to thank our young
daughter, Arianna, whose "terrible twos" are if anything a joy, and my parents, Maurice
and Phyllis.

xvi Preface

Basics

1

1
Introduction

In this chapter we present a framework for the study of algorithms, geometrical or otherwise.
We address such questions as, What are algorithms? What are data structures? What does
it mean to analyze an algorithm? Our concern is to orient the reader, to introduce the basic
concepts and raise the relevant questions. The answers and definitions we supply in this
chapter are intended to be concise and skeletal. They will be fleshed out in later chapters,
where we encounter more detailed explanations and many examples.

We also address this book's use of the C++ language, as well as how robust its
implementations are.

1.1 Framework

Let us briefly survey the terrain. A computational problem is a problem to be solved
by a method employing an agreed-upon set of instructions. A computational problem is
framed by a problem statement, which both characterizes all legal inputs and expresses
the output as a function of these legal inputs. For example, consider the problem we will
name BOUNDARY-INTERSECTION: Given two polygons in the plane, report whether
their boundaries intersect. A legal input consists of two polygons in some specified format.
Given two legal input polygons, the output is yes if their boundaries intersect, and no
otherwise.

An algorithm is a method for solving a computational problem. Algorithms are
abstract- a given algorithm can be expressed in many ways, implemented as a computer
program in different programming languages, and executed on different computers. Every
computer program embodies an algorithm and, if the program is well written, the underlying

2

Sec. 1.2 Our Use of the C++ Language

algorithm can be discerned in the program. As an example of an algorithm, the following
algorithm solves the BOUNDARY-INTERSECTION problem: Given two input polygons,
compare each edge of the first polygon with every edge of the second. Report that the
boundaries intersect if some pair of edges intersect, and report that the boundaries do not
intersect otherwise. Note that another algorithm is needed to decide whether any two edges
intersect.

An algorithmic paradigm is a design after which an algorithm is patterned. Just
as different programs can be based on the same algorithm, so can different algorithms
be based on the same paradigm. Familiarity with paradigms helps us understand and
explain an algorithm whose form we have encountered before and helps in the design of
new algorithms. The algorithm we have sketched for the BOUNDARY-INTERSECTION
problem iteratively applies the incremental insertion paradigm: In each stage, an edge of
the first polygon is selected and then compared to each edge of the second polygon in turn.
This and other algorithmic paradigms will be explored in this book.

Algorithms employ objects for organizing data called data structures. Algorithms
and data structures go hand in hand: Algorithms motivate the design and study of data
structures, and data structures serve as the building blocks from which algorithms are
constructed. Our algorithm for BOUNDARY-INTERSECTION relies on a data structure
for representing polygons and one for representing edges.

An abstract data type, or ADT, is the public view of a data structure, separate from
its implementation. The ADT comprises the set of operations which the data structure
supports, and it serves as the interface between an algorithm and its data structures: The
algorithm executes the operations supported by the ADT, and the data structure implements
these operations. Viewed differently, each ADT represents a computational problem (a set
of operations), and each data structure that supports the operations represents a solution
to the ADT. Our BOUNDARY-INTERSECTION algorithm requires the use of two ADTs:
A polygon ADT, which includes operations for accessing a polygon's edges, and an edge
ADT, which includes an operation for deciding whether a given pair of edges intersect.

For most problems, there exist several competing algorithms, and for most abstract
data types, there are several competing data structures. How can we identify the most
efficient solutions? Algorithm analysis encompasses methods for describing and measuring
the performance of algorithms and data structures. Analysis provides a basis for choosing
the best solution to a given problem and for deciding whether a more efficient solution is
possible. Analysis reveals, for instance, that our BOUNDARY-INTERSECTION algorithm
runs in time proportional to the product of the polygons' sizes (where the size of a polygon
equals the number of edges it contains). The algorithm is not optimal; indeed, in Chapter 6
we will present a solution which runs in time proportional to the sum of the polygons' sizes.

1.2 Our Use of the C++ Language

In this book we provide working C++ programs for every algorithm and data structure we
cover. There are two main advantages to dovetailing working code and text. First, each
program complements the prose account of how the underlying algorithm works, reinforcing

3

the key ideas, providing a formal perspective of the algorithm, and supplying details that
the prose account omits. Second, the reader can execute, modify, and experiment with a
program to understand better how the underlying algorithm behaves in practice.

We will be using a number of features specific to C++, which are not a part of C.
We will employ classes, member functions, access control, constructors and destructors,
operator functions, overloaded functions, and reference types. We will also derive new
classes from other (base) classes, whereby a new class inherits the attributes and behavior
of its base classes. Class templates and function templates will also be used. A template
defines a type-independent class or function from which can be obtained a family of classes
or functions, which operate on different types but which otherwise behave alike.

This book makes no attempt to teach C++. We will occasionally explain our use of
certain language features to account for some design decision or to jog the reader's memory,
but not to teach the language. Good introductions to C++ are provided by [23, 79], and an
annotated reference manual by [26].

Nor does this book intend to teach object-oriented programming (OOP). The programs
we present are designed to be easily understood and followed. While intelligibility usually
follows from rigorous OOP practices, we will sometimes depart from this practice for the
sake of simplicity or conciseness (without sacrificing intelligibility). In OOP, one typically
spends a great deal of time, effort, and code in the design of classes so time may be
saved later when developing application programs in which the classes are used. However,
many of the classes we will be defining are "throw-away," intended for use in only one or
two applications. In such cases, it would take us too far afield to define the class for fullest
generality and integrity. Object-oriented programming is treated by the texts [1 1, 13, 15, 321.

A note concerning efficiency is in order. Our programs are generally efficient. How-
ever, we willingly compromise efficiency in little ways for the sake of clarity, our main
concern. This may entail, for example, adding an unneeded local variable to correspond to
a concept explained in the text, or making a redundant procedure call to avoid saving the
results of a previous call, or calling an already-defined function instead of a more special-
ized function that we do not wish to take the trouble to define. You are, of course, welcome
to fine-tune these programs.

All of the programs in this book were implemented on a Macintosh LCIII using
Symantec C++. This development program implements the C++ language as defined in
The Annotated C++ Reference Manual by Ellis and Stroustrup [261. The programs were
implemented verbatim, as given in this book, with one exception: The class names Point
and Polygon used in the book were changed to Point2D and Polygon2D in the im-
plementation. This was necessary to avoid name conflicts.

1.3 Robustness

An algorithm is robust if it always works right, even when the input embodies degeneracies
and special cases. Of course, one possible source of failure is that the algorithm simply is
not correct. Yet even if the algorithm is correct, it may fail due to round-off during floating-
point calculations. Round-off error occurs because real numbers are represented using

4 Chap. 1: Introduction

only a limited amount of memory, such as the 8 bytes commonly used for type double.
Thus all real numbers, of which there are infinitely many, are represented in only a finite
number of ways. The round-off error equals the difference between the real number and its
floating-point approximation.

Round-off error can be troublesome for geometric algorithms like those covered in
this book, which operate in a continuous space such as the plane or three-dimensional space.
Ideal points can only be approximated because their components are real numbers; ideal line
segments can only be approximated because they are represented by their endpoints; and so
forth. Round-off error is most problematic when the input embodies, or gives rise to, special
cases, for in such borderline cases it may lead the algorithm to make faulty decisions. For
example, given an ideal line and an ideal point through which the line passes, a computer
program may determine that the point lies to the left of the line, to the right of the line, or on
the line, depending on how the program represents both the line and the point. When special
cases arise, the solution produced by a program can be wrong due to round-off error, even
though the underlying algorithm-operating on ideal geometric objects-may be correct.

We have taken two approaches to ensure-or at least to try to ensure-that the
programs in this book are robust. For some programs, we have restricted input to the
program in order to exclude certain special cases. Although such programs are less general
than they might be, little harm is done. It is the general cases that are handled that usually
prove the most interesting. Moreover, handling special cases often requires extra code,
which obscures the main ideas.

The special cases that are excluded tend to occur only rarely in practice. Nonetheless,
some of the programs we will cover specifically give rise to special cases, which must
be handled by other programs in this book; the latter programs must handle these special
cases correctly if the former programs which depend on them are to work. Our second
approach to robustness allows special cases and attempts to remove them when they arise
by perturbing the problem in small ways: extending the length of a line segment by a slight
amount, shifting a line to the left an infinitesimal distance, moving a point that is very close
to a line onto the line, and so forth. The goal in all cases is to transform a decision that can
go either way into one that is black and white, whose outcome is independent of how we
choose to represent geometric objects.

The problem of ensuring robust computation has gained considerable attention in
recent years. Although the approaches we have adopted in this book are in common use,
they are by no means the final word. Other approaches leading to greater robustness exist,
though they lie beyond the scope of this book.

5Sec. 1.3 Robustness

2
Analysis of Algorithms

To analyze an algorithm is to measure and describe its performance. Understanding how
well an algorithm performs indicates whether the algorithm is practical, given the resources
that are available. Moreover, algorithm analysis provides a basis for comparing different
algorithmic solutions to the same problem, ranking them by performance, and identifying
which are most efficient.

Algorithm analysis generally concentrates on the resources of space (memory cells)
and time required by algorithms. In this chapter we will focus on the time it takes for an
algorithm to execute. Time is often the critical resource. Real-time systems like those used
for flight control or robot vision must execute in the blink of an eye if (often catastrophic)
failure is to be avoided. Even more tolerant systems like text editors are expected to respond
to the user's commands on the order of seconds, and off-line programs like those for tallying
payrolls or analyzing medical imaging data should execute in no more than a few hours or
at most a few days. It is sometimes imagined that running time will become less critical
as faster computers are developed. This is simply not the case. The problems posed to
computers today are more difficult than ever, and their difficulty seems to outpace the
computer technology on which fast solutions too often depend.

Space is generally less critical than time. Many algorithms encountered in practice, as
well as nearly every algorithm covered in this book, use space proportional to input length;
thus if there is enough memory to pose the problem, there is usually enough memory to
solve it. In any case, much of what follows can be applied in analyses of space requirements.

Space and time are by no means independent resources. It is often possible to conserve
one of the resources by spending more of the other, in what is sometimes referred to as a

6

Sec. 2.1 Models of Computation

space/time tradeoff. This is, of course, advantageous when one of the resources is especially
scarce or costly.

In this chapter we will present three established approaches that simplify the task
of analysis without compromising the usefulness of its results. The first approach is to
adopt an abstract model of computation; the second to express running time as a function
of input size; and the third to express running time as a simple growth rate function. In the
last section we will discuss problem complexity, which concerns how much time is both
necessary and sufficient to solve a given problem.

2.1 Models of Computation

To analyze an algorithm, we must first identify the operations it uses and what each one
costs. This is specified by a model of computation. Ideally, we choose a model of com-
putation that abstracts the algorithm's essential operations. For instance, to analyze an
algorithm involving polygons, we might count the number of times vertices are visited.
Numerical algorithms are typically analyzed by counting arithmetic operations. Sorting
and searching algorithms are usually analyzed by counting the number of times pairs of
items are compared.

The cost of each operation encompassed by a model of computation is given in abstract
units of time called steps. In some models of computation, every operation costs a constant
number of steps; in others, the cost of some operations may depend on the arguments with
which the operation is called. The running time of an algorithm for a given input is the total
number of steps it executes.

Although adopting an abstract model of computation simplifies analysis, the model
must not be so abstract that it ignores significant amounts of work performed by the algo-
rithm. Ideally, the time between successive operations counted by the model of computation
is constant and so can be ignored. Then running time-the total cost of the operations cov-
ered by the model of computation-is proportional to actual execution time.

Since running time depends on the model of computation, it is natural to adopt the
same model of computation for different solutions to the same problem. Then by comparing
their running times, we can identify the most efficient solutions (were models of computation
to vary, we would be comparing apples and oranges). For this reason we generally adopt-
though often only implicitly-a model of computation as part of a problem statement. To
make these ideas more concrete, let us work with the problem of finding a given integer x
in a sorted array of integers. We will call this problem SEARCH:

Given an integer x and a sorted array a of distinct integers, report the index of x
within a; if x does not occur in a, report -1.

Integer x is referred to as the search key.
The model of computation we will adopt for SEARCH includes only the probe op-

eration: comparing the search key x to some integer in the array. Assuming integers of
bounded size, a single probe can be performed in constant time. So we will say that a probe
costs one step.

7

Chap. 2: Analysis of Algorithms

The simplest solution to SEARCH is given by sequential search: Step through array a
while probing each integer. If x is found (the search succeeds), then return its index in a;
otherwise return -1, indicating that the search failed. A reasonable implementation is as
follows:

int sequentialSearch(int x, int a[], int n)

{
for (int i = 0; i < n; i++)

if (a[i] == x)

return i;

return -1;

}

Where f(x, a, n) denotes the running time of sequentialSearch as a function of
input, we have

a k + I if x occurs in position k of a
, a otherwise (the search fails)

Observe that Equation 2.1 expresses running time-the total number of probes, or steps-as
a function of all legal inputs. Observe also that, because sequentialSearch spends
only constant time between successive probes, the equation is a good measure of the pro-
gram's actual performance.

2.2 Complexity Measures

Choice of a sufficiently abstract model of computation simplifies the task of analysis. To
simplify analysis even further, we usually express running time as a function of input size,
rather than as a function of all legal inputs. There are two main reasons for this. First,
the simpler the expression of running time, the easier it is to compare the running times
of different algorithms. Descriptions of running time as a function of all legal inputs can
be awkward and complex. Even Equation 2.1 is a bit unwieldy, and few algorithms are as
simple as sequential search. Second, it can be difficult to analyze running time in terms of
all legal inputs. The behavior of many algorithms is highly sensitive to input, and it can be
all but impossible to trace the myriad paths that computation follows as input varies.

Input size characterizes the space used to store input. How input size is measured
usually depends on the problem in a natural way and can be regarded as an implicit part of
the problem statement. If the input consists of an array, input size is taken to be the length
of the array; if input consists of a polygon, input size is taken to be the number of vertices
the polygon possesses. Any reasonable scheme will do as long as it is applied consistently
to all solutions to a given problem.

Expressing running time as a function of input size reduces all legal inputs of a given
size to a single value. Since this can be done in many ways, it is no longer clear what running
time measures. We pin it down by specifying a complexity measure, which describes what
aspect of performance is to be measured. The complexity measures in most common use
are worst case, average case, and amortized case.

8

Sec. 2.2 Complexity Measures

2.2.1 Worst-Case Running Time

Worst-case running time describes the longest running time for any input of each input
size. It is a useful measure since it captures the program's running time at its worst. For
example, since sequentialSearch performs n probes in the worst case (when it fails),
its worst-case running time T(n) is T(n) = n.

Calculating the worst-case running time is sometimes relatively easy since it is not
necessary to consider every legal input, but only some worst-case input of each size. More-
over, worst-case running time often represents a tight bound since worst performance is
realized by the input used in the analysis.

2.2.2 Average-Case Running Time

Average-case running time describes running time averaged over all inputs of each input size.
The average-case running time of sequentialSearch is n21 under the assumptions that
each of the n items is equally likely to be sought and that the search succeeds. If the second
assumption is dropped, the average-case running time lies in the range [n2 , n], depending
on the likelihood of failure.

Average-case analysis is usually more difficult to carry out than worst-case analysis
since it depends on what is meant by typical input. Even if we adopt some relatively simple
assumptions (e.g., that every input of a given size is equally likely to occur), the calculation
often remains difficult; furthermore, if the program runs in a setting in which the assumption
does not hold, the analysis may be a poor predictor of actual performance.

2.2.3 Amortized-Case Running Time

The operations carried out by an algorithm are typically interdependent. The performance
of each operation-its cost, in particular-depends on what was achieved by all previous
operations. In some algorithms, it is not possible for all operations to achieve worst-case
behavior simultaneously. More generally, the cost of relatively expensive operations may
be offset by numerous inexpensive operations. Amortized analysis attempts to take this
into account: It measures the average cost of each operation, in the worst case.

Consider an algorithm that executes n operations of a multidelete stack s. (Stacks are
covered more thoroughly in Section 3.4.) This data structure supports these two operations:

* s.push(x)-Push item x onto the top of s.

* s .pop (i) -Pop the i topmost items from s. The operation is not defined if stack s
contains fewer than i items.

As part of our model of computation, let us assume that operation s .push (x) takes
constant time (or one step), and that s .pop (i) takes time proportional to i (or i steps).

Amortized analysis can be carried out in several ways. We will consider an approach
based on an accounting metaphor which assigns "charges" to the different operations. Called
the amortized cost of an operation, each such charge may be greater or less than the actual
cost of the operation. Inexpensive operations are generally assigned amortized costs that

9

Chap. 2: Analysis of Algorithms

exceed their actual costs, and expensive operations are assigned amortized costs that are
less than their actual costs. When the amortized cost of an operation exceeds the actual cost
of the operation, the difference represents credit that can be used to help defray the cost
of subsequent expensive operations. The idea is to assign amortized costs to operations
so that the credit accumulated through inexpensive operations offsets the cost of expensive
operations.

With regard to the multidelete stack, the actual cost and amortized cost of each
operation is as follows:

Operation Actual cost Amortized cost

s.push(x) 1 2
s.pop(i) i 0

The table indicates that the amortized cost of each push operation is two steps and the
amortized cost of each pop operation is zero steps. Whenever an item is pushed onto the
stack, the operation is paid for with one of the two steps, and the second step is held in
reserve. Whenever i items are popped from the stack, the operation is paid for with the i
steps that had been held in reserve, one step for each of the items popped. At all times, the
total credit available in reserve equals the number of items in the stack.

Total amortized cost is maximized by a sequence of n push operations, at a total cost
of 2n steps. Therefore, each operation runs in two steps on average, in the worst case. That
is, each operation runs in constant time in the amortized sense.

The key to this accounting-based approach lies in the choice of amortized costs,
and, notwithstanding the previous example, this is the hard part. Several concerns must
be balanced. First, the total amortized cost of every sequence of operations should be an
upper bound on the total actual cost of the sequence. This ensures that the analysis shows
something meaningful about total actual cost. In our example, total available credit is
initially zero and never drops below zero, so the total amortized cost is never less than the
total actual cost. Second, to ensure that what is shown is as strong as possible, amortized
costs should be chosen so the upper bound is as tight as possible. In our example, total
amortized cost exceeds total actual cost by the number of items in the stack and so is never
more than twice the actual cost. Third, the total credit must be nonnegative at all times, for
otherwise there would exist a sequence of operations that cannot pay for itself.

Amortized analysis is often used to obtain an upper bound on the worst-case running
time of an algorithm: We bound the number of operations the algorithm performs as a
function of input size and then calculate the amortized cost of each operation. If constant
time is spent between successive operations, then the algorithm's worst-case running time
is bounded above by the total amortized cost. This sort of analysis often produces a tighter
bound for worst-case running time than does a more simplistic analysis. Regarding our
multidelete stack example, we might naively argue thus: Since a pop operation takes up
to n steps in the worst case, a sequence of n operations can take as many as n2 steps.
However, amortized analysis reveals that no such sequence of operations is possible and
that a sequence of n operations executes in at most 2n steps.

10

Sec. 2.3 Asymptotic Analysis

2.3 Asymptotic Analysis

2.3.1 Growth Rate Functions

So far we have introduced two established approaches for simplifying analysis: adopting
an abstract model of computation and expressing running time as a function of input size. A
third approach focuses on the asymptotic efficiency of algorithms: how running time grows
as input size increases to infinity. If the running time (e.g., worst-case) of an algorithm is
expressed by the function f (n), we are interested in the growth rate of f and capture this
in a simple growth rate function T(n).

For example, suppose that f (n) = an2 +bn +c for some constants a, b, and c. As input
size grows large, the lower-order terms become insignificant and so can be ignored-we
can treat f (n) as an2 . Moreover, even coefficient a of the leading term becomes relatively
insignificant as input size grows large, so we can replace f(n) by the simple growth rate
function T(n) = n2 .

It is not hard to see why the leading coefficient can be ignored. If we let T(n) = an2 ,
every doubling of input size n increases running time by a function that depends on T(n)
but not on a. Indeed we have

T(2n) = a(2n)2

= 4an2

= 4T(n)

Thus running time quadruples when input size doubles, regardless of the value of a.
More generally, where T(n) is a growth rate function composed of a leading term

with coefficient a, T(2n) is a function of T(n) and possibly a lower-order component which
depends on n and a. This is exhibited by the following table, which orders functions by
increasing rate of growth:

T(n) T(2n)

a T(n)

alogn T(n) + a
an 2T(n)

an log n 2T(n) + 2an

an2 4T(n)

an3 8T(n)

2n [T(n)]
2

The various functions T(n) are graphed to logarithmic scale in Figure 2.1, for a = I and
log n taken with base 2.

The worst-case running time of most of the algorithms we will cover in this book is
proportional to one of the following simple growth rate functions. The following list also
indicates the most common reason why algorithms of each performance class perform as
they do:

11

Chap. 2: Analysis of Algorithms

105

104

1000

100

10

0 10 20 30 40 50

n

Figure 2.1: Common growth rate functions (logarithmic scale).

I (constant time) Such algorithms run in time independent of input size.
log n (logarithmic time) Algorithms in this class often work by repeatedly reducing a prob-

lem to a subproblem a fixed fraction of the size.

n (linear time) Such algorithms generally perform constant-time processing for each input
item.

n log n (n log n time) Divide-and-conquer algorithms belong to this class and work by
decomposing the original problem into smaller subproblems, solving these, and then
combining the results.

n2 (quadratic time) Most such algorithms spend constant time processing all pairs of input
items.

n3 (cubic time) Most such algorithms spend linear time processing all pairs of input items.

2.3.2 Asymptotic Notation

Asymptotic notation provides a convenient language for discussing the growth rate of func-
tions. Among its many uses, the notation is used to express the running time of algorithms
and the complexity of problems, and it is often employed in proofs designed to bound the
quantity or size of things. We briefly discuss the basic elements of this notation.

O-NOTATION

O-notation (pronounced big-oh notation) is used to describe upper bounds on the
growth rate of functions. Where f (n) is a function, O (f (n)) denotes the class of functions
that grow no faster than f (n). A function g(n) belongs to O(f (n)) if g(n) is no larger than
some constant times f (n) as n grows sufficiently large. More formally, g(n) E Off (n)) if
for some real number c > 0 there exists an integer no > I such that g(n) < cf(n) for all
n > no.

12

Sec. 2.4 Analysis of Recursive Algorithms

For example, an + b E O(n) for all constants a and b. To see why, choose c = a + I
and no = b. We then have

an + b = (a + I)n + b - n
= cn + no - n
< cn

for all n > no.
We often express running time using O-notation without specifying a complexity

measure. When we say, for instance, that an algorithm runs in 0 (f (n)) time, we mean
that its running time is bounded above by O(f(n)) for all inputs of size n. This implies, of
course, that its worst-case running time is also bounded above by Off(n)).

o-NOTATION

o-Notation (or little-oh notation) is used to describe strict upper bounds. Given
function f (n), o(f (n)) is the class of functions that grow strictly slower than f (n). More
formally, a function g(n) belongs to o(f(n)) if for every constant c > 0 there exists an
integer no > 1 such that g(n) < cf (n) for all n > no. It is easy to see that off (n)) C
0 (f (n)) for every function f.

o-Notation provides a way to focus on the leading term of a function. For example,
to emphasize the leading term of f(n) = an log2 n + bn + c, we would rewrite the function
as f (n) = an log2 n + o(n log n). This indicates that lower-order terms exist but can be
dismissed.

2-NOTATION

Q-Notation (pronounced omega notation) is used to describe lower bounds on the
growth rate of functions. Where f (n) is a function, Q (f (n)) denotes the class of functions
that grow no more slowly than f (n). The definition of Q (f(n)) is symmetric to that of
O(f(n)): A function g(n) bel6ngs to Q£(f(n)) if for some real number c > 0 there exists
an integer no > I such that g(n) > cf (n) for all n > no.

0-NOTATION

O-Notation and £-notation can be used together to define classes of functions whose
growth rate lies between two bounds. For instance, O(n2) n Q(n) denotes the class of
functions which grow at least as fast as n and no faster than n 2 E-Notation (or theta notation)
is used when the gap between the two bounds collapses and the growth rate can be described
precisely. Where f (n) is a function, 0(f (n)) denotes the class of all functions that grow
at the same rate as f(n). It is defined more formally by () f(n)) = O(f(n)) n Q (f(n)).

2.4 Analysis of Recursive Algorithms

Many algorithms solve a large problem by decomposing it into smaller subproblems of the
same kind, solving them, and then combining their solutions into a solution to the original
problem. Since the subproblems are of the same kind as the original problem, they are
solved recursively by the same algorithm. To ensure that the process eventually terminates,

13

Chap. 2: Analysis of Algorithms

a subproblem that is small or simple enough is solved directly. This general approach is
known as recursive decomposition.

Algorithms based on this approach can be analyzed using recurrence relations (or
simply recurrences). A recurrence is a function that takes integer arguments and is defined
in terms of itself. An example is the familiar factorial function n! = n * (n - 1) * * 2* 1 * 1,
defined by the recurrence

n! n * (n- 1)! if n > I
I I otherwise (n = 0)

To analyze an algorithm based on recursive decomposition, we express its running time
for input size n as a recurrence relation. For example, consider selection sort, which
sorts n integers by first extracting the smallest integer from the set and then applying itself
recursively to the remaining n - I integers:

void selectionSort(int a[], int n)

if (n > 0) {
int i = positionOfSmallest(a, n);

swap(a[0], aui]);

selectionSort(a+l, n-1);

}

Here the function call positionOf Smallest (a, n) returns the index of the smallest
integer in array a of length n. It works by scanning the array while keeping track of the
position of the smallest integer seen so far, and it runs in ((n) time. Function swap
exchanges two integers in constant time.

The running time of selection sort, a function T(n) of input size n, is expressed by
the recurrence

T T(n--) +an if n > 0
b otherwise (n = 0) [2.2]

where a and b are constants. In Equation 2.2, T(n - 1) corresponds to the cost of the
recursive call, an to the cost of finding the smallest integer and exchanging it with a [0 1 ,
and b to the cost of returning if n==-.

For the purpose of comparing selection sort with other sorting algorithms, it is prefer-
able to recast Equation 2.2 in closedform-expressing T(n) in terms of n, a, and b only. We
briefly consider two methods for obtaining closed-form solutions to recurrence relations:
the telescoping sums method and the substitution method.

2.4.1 Telescoping Sums

The idea of the telescoping sums method is to expand the recurrence relation repeatedly
until it is expressed as a summation of terms that depend only on n and the initial conditions.
In practice we expand only a few times, until a pattern becomes apparent. For example,
Equation 2.2 is solved as follows:

14

Sec. 2.4 Analysis of Recursive Algorithms

T(n) = T(n -1) + an
= T(n -2) + a(n -1) + an
= T(n-3) + a(n -2) + a(n- 1) + an
= T(O)+a+2a+ .. +na
=b+a(l+2+-* +n)
= b + a[n(n + 1)/2]

an2 + an b
2 2

Hence T(n) E O(n2). It follows that selection sort-indeed all algorithms described by
Equation 2.2-runs in O(n 2) time.

Note that the preceding derivation uses the fact that Enz = i (n+I) Summations
are not always so easy to solve. In some cases we are able to do no better than bound a
summation from above, which leads to an upper bound for T (n).

2.4.2 The Substitution Method

An algorithm based on the divide-and-conquer approach employs a special form of recursive
decomposition. In its most simple form, divide and conquer decomposes the original
problem into two subproblems, each about half the size of the original. Let us suppose that
the process of decomposing the original problem of size n into two subproblems, and the
process of combining their solutions to solve the original problem, each take O(n) time.
An example is merge sort. To sort an array of length n, merge sort recursively sorts the left
subarray and the right subarray and then merges the two sorted subarrays:

void mergeSort(int a[], int n)

{
if (n > 1) {

int m = n / 2;

mergeSort(a, m);

mergeSort(M+m, n-m);

merge(a, a, n);

The merge step is performed by the function call merge (a, m, n), which merges the
two sorted subarrays a [0. .m-1] and a [m . . n-1] into a [0. . n-1]. (Here we use
a [1 . . u I to denote the subarray a between lower index 1 and upper index u inclusive.)
Function merge works by maintaining a pointer to the smallest item not yet merged, in
each of the two sorted subarrays. The pointers are iteratively moved from left to right until
the merge is complete. The merge step, which takes linear time, works much as one would
merge two sorted stacks of playing cards into a single sorted stack. (Merge sort will be
covered more thoroughly in Chapter 8.)

The running time T(n) of merge sort is described by the following recurrence, in
which we assume for simplicity that n is a power of 2:

15

Chap. 2: Analysis of Algorithms

2T(n2) + an if n > I
T(n) = 2 [2.3]

b otherwise (n = 1)

We use the substitution method to solve Equation 2.3. The idea is to guess a closed-form
solution for the recurrence and then use mathematical induction to show that the solution
holds.' To solve Equation 2.3, we will show by induction that

T(n) c cin log n + c2 [2.4]

for suitably chosen constants cl and c2 . Letting

c a + b
C2= b

works fine.
For the inductive step, let us assume as the inductive hypothesis that Equation 2.4

solves Equation 2.3 for all powers of 2 less than n. We then have

T(n) = 2T (2) +an

< 2 (c2nlog + C2) + an

n
= c1n log - + 2c2 + an

2

= cin logn - cn + 2c2 + an
=cinlogn+c2 +b-bn
< c1n logn + c2

This establishes the inductive step.
The basis step of the induction also follows from our choice of cl and c2 . The

following shows that Equation 2.4 holds for n = 1:

T(l) = b
= C2

< cl(I * log 1) + C2

It follows from this discussion that merge sort has worst-case running time O(n log n).

2.5 Problem Complexity

If we know the performance of an algorithm, we can compare it to other algorithms for
the same problem. But suppose we wish to determine whether an algorithm is optimal-
whether a more efficient solution is possible. One way to decide if an algorithm is optimal

'Mathematical induction is a two-step method for proving true an infinite sequence of statements
P(I), P(2), *., P(n), - * . The basis step is to prove the first statement P(l). The inductive step is to show
that for any statement P(n), if P(n) is true, then statement P(n + I) must be true. Here P(n) of the

inductive step is called the inductive hypothesis.

16

Sec. 2.5 Problem Complexity

is to compare it to a second algorithm known (somehow) to be optimal, but this works only
if the latter algorithm can be shown to be optimal. Another approach is needed if we are to
escape this infinite regress. How can we determine whether an algorithm is optimal? More
generally, how can we determine how much time any solution to a given problem is bound
to require?

Problem complexity expresses the amount of time that is both necessary and sufficient
to solve a problem. Knowing how much time is necessary to solve a problem informs us that
any approach that takes less time is bound to fail. And knowing how much time is sufficient
indicates how efficient a particular solution is and to what extent it can be improved on.

When the complexity of a problem is known exactly, it is expressed in the form
O (f(n)). The complexity of many problems that arise as a matter of course is in fact
known exactly. However, for some problems the best we can do is establish lower and
upper bounds on complexity and then work toward collapsing the gap-bringing the upper
bound downward and the lower bound upward until the two bounds meet.

2.5.1 Upper Bounds

Any solution to a given problem bounds its complexity from above: If the solution has
worst-case running time 0(f (n)), then 0 (f (n)) time is sufficient to solve the problem. If
no faster solution is possible, implying that the given solution is optimal, then the upper
bound is tight. Alternatively, if the solution is suboptimal, then the upper bound is brought
downward as more efficient solutions are discovered.

Recall problem SEARCH, that of probe-based searching in a sorted array of n distinct
integers. Since sequential search runs in O(n) time in the worst case, O(n) represents an
upper bound for the problem. However, O(n) is not a tight bound since a more efficient
solution exists. Binary search takes advantage of the fact that the array is sorted. Given
subarray a [1.. ul, binary search compares the search key x to item a [ml occurring
in position m about halfway between positions 1 and u. If x is no greater than a [ml,
binary search is applied recursively to the left subarray a [1.. m]; otherwise (x is greater
than a [ml) binary search is applied recursively to the right subarray a [m+l . . ul . In the
base case (l==u), we solve the problem directly. The following function returns the index
of x in subarray a [1 . . u], or-I if the search fails:

int binarySearch(int x, int at], int 1, int u)

{
if (1 == u)

return (x - amul) ? u -1;

int m = (1 + U) / 2;

if (x <= a[ml)

return binarySearch(x, a, 1, m);

else

return binarySearch(x, a, m+1, u);

To find x in array a of length n, use the top-level call binarySearch (x, a, 0, n- 1).
The worst-case running time of binary search is expressed by the recurrence

17

Chap. 2: Analysis of Algorithms

T() +a if n > I
T(n) = [2.5]

b otherwise (n = 1)

It is not hard to show using either of the methods described earlier that T(n) E O(logn).
It follows from our discussion that 0 (log n) is an upper bound for problem SEARCH.

Is this bound tight, or does there exist a solution even more efficient than binary search?
The bound is in fact tight-binary search is optimal. To see why, we now turn our attention
to lower bounds on problem complexity.

2.5.2 Lower Bounds

Finding good lower bounds can be difficult. A lower bound of Q (g(n)) on the complexity
of some problem implies that at least Q (g(n)) time is needed to solve the problem. How
can we ever be certain that every solution requires at least Q (g(n)) time, that there does not
exist some (perhaps unknown) solution that takes less time?

We will consider two approaches to showing lower bounds: proof by decision tree,
and proof by reduction.

DECISION TREES
Consider problem SEARCH. Any algorithm based on its model of computation

(constant-time probes) can be viewed as a decision tree. The decision tree represents
all possible computations for all inputs of a given size (there is a different decision tree for
every input size). Each node of the decision tree corresponds to a probe. The pair of edges
that leaves each node corresponds to a branching instruction-based on the outcome of the
probe, a given computation follows one of the two edges to the next node. The external
nodes of the decision tree-the terminating nodes which no edges exit-correspond to so-
lutions. Figure 2.2 shows the decision tree for program binarySearch when applied to a
sorted array of length three. The decision tree is in fact a binary tree with a probe associated
with each (circular) internal node and a final outcome associated with each (square) external
node. (See Section 3.5 for more about binary trees.)

The decision tree can be used to show a lower bound for problem SEARCH. Each
path from the topmost node (or root) down to some external node represents a possible
computation, and the path's length equals the number of probes performed by the compu-
tation. (Here the length of a path equals the number of edges it contains.) Hence the length
of the longest such path in the decision tree represents the number of probes performed in
the worst case. What is the shortest this largest path can be?

For problem SEARCH with array length n, the decision tree must possess at least
n external nodes: Each of the n distinct solutions-n + I if we include failed search-is
associated with at least one unique external node. Let us show that in any binary tree
containing n external nodes, there exists some path with length at least log n. Where the
height of a binary tree is defined as the length of some longest path from root to external
node, we can state what we wish to show as follows:

Theorem 1 A binary tree containing n external nodes has height at least log 2 n.

18

Sec. 2.5 Problem Complexity

Figure 2.2: The decision tree for program binarySearch applied to a sorted array of length three.

We can show Theorem I by induction on n. For the basis of the induction, n = I and
the binary tree consists of a single external node. In this case the length of the only path is
0 = log2 1, so the basis is satisfied.

For the inductive step, assume as the inductive hypothesis that the theorem holds
for all binary trees with fewer than n external nodes. We must show that it holds for every
binary tree T containing n external nodes. The root node of T attaches to two smaller binary
trees T1 and T2 containing n I and n2 external nodes, respectively. Since n I + n2 = n, either
nj or n2 (or both) is greater than or equal to '; assume without loss of generality that
n I > S. Furthermore, since n2 > 0 (why?), we have n I < n, so we can apply the inductive
hypothesis. Where height(T) denotes the length of some longest path in binary tree T, we
have

height(T) = I + max{height(TI), height(T2))
> 1 + height(T1)

> I +log2 n

n
> I + log 2 2

= logn

Let us connect this result to our discussion of lower bounds. Any algorithm for
problem SEARCH corresponds, on input size n, to a decision tree which contains at least n
external nodes. Theorem I informs us that the decision tree has height not less than log 2 n.
Hence the algorithm performs at least log2 n probes for some inputs of size n. Since this
holds for all possible algorithms for SEARCH, Q (log n) is a lower bound for the problem.
Binary search is indeed an optimal solution to the problem.

REDUCTIONS

A second way to establish a lower bound for some problem PB makes use of the
known lower bound for some other problem PA. The idea is to show that PB can be
solved no faster than PA, thereby transfering PA 's lower bound to P2 . To show that the
two problems are related in this way, we exhibit an efficient algorithm A for PA which calls a

19

Chap. 2: Analysis of Algorithms

procedure solving problem P8 no more than a constant number of times. Algorithm A is
called a reduction from PA to PB.

Let us consider an example before formalizing these ideas. Consider the problem
ELEMENT UNIQUENESS:

Given an unordered set of n integers, decide whether any two are equal.

We will construct an efficient reduction from ELEMENT UNIQUENESS to the problem
SORT:

Given an unordered set of n integers, arrange the integers in nondecreasing order.

For both problems we will assume a comparison-based model of computation: The only
operations we count are comparisons, in which we compare two integers in constant time
(one step).

A simple reduction A from ELEMENT UNIQUENESS to SORT works as follows.
To decide whether some integer occurs more than once in a given array of n integers, first
sort the array and then step down the array while comparing all pairs of consecutive integers.
An integer occurs twice in the original array if and only if it occupies consecutive positions
in the now-sorted array.

That such a reduction exists demonstrates that ELEMENT UNIQUENESS's known
lower bound of Q (n log n) transfers to SORT. Suppose there were to exist some algo-
rithm B for SORT with running time o(n log n). Then reduction A would solve ELE-
MENT UNIQUENESS in o(n log n) time if it used algorithm B to sort: Sorting would
take o(n log n) time, and checking consecutive integers in the now-sorted array would take
0(n) C o(n log n) time. But this leads to contradiction, since the lower bound of Q (n log n)
for ELEMENT UNIQUENESS implies that no solution with running time o(n log n) is pos-
sible.

Let us formalize these ideas. An algorithm A for problem PA is a r (n)-time reduction
from PA to PB if

1. A uses some (hypothetical) algorithm B for PB as a function call some constant number
of times, and

2. A runs in O(r(n)) time, where each call to B costs one step.

In effect, we are augmenting the model of computation for problem PA by a constant-
time operation B which solves problem P8 . We are free to assume operation B without
specifying (or even having knowledge of) a particular solution for problem PB. In our
example, problem PA is ELEMENT UNIQUENESS, problem P8 is SORT, A is an n-time
(or linear-time) reduction from ELEMENT UNIQUENESS to SORT, and B is a hypothetical
algorithm for SORT.

Let us suppose that problem PA has known lower bound Q (f (n)) and that we can
devise a r(n)-time reduction A from PA to PB. Then, assuming that r(n) E o(f(n)),
problem PB must also have lower bound Q (f(n)). Were there to exist some algorithm B
for P8 which runs in o(f (n)) time, algorithm A would also run in off (n)) time if it used
algorithm B, and A would then violate the lower bound on problem PA. This argument

20

Upper Bound

Reduction A

Figure 2.3: A r(n)-time reduction from prob-
Lower Bound lem PA to problem PB.

depends on the assumption that r(n) E o(f(n)). Were this assumption not to hold, algo-
rithm A would run in Q (ff(n)) time regardless of algorithm B's performance, and PA 's
known lower bound would not be violated. This is the sense in which the reduction must
be efficient to be useful (see Figure 2.3).

An efficient reduction from problem PA to problem PB can also be used to transfer a
known upper bound for PB to PA. Let us return to our example. SORT has an upper bound
of 0(n log n); merge sort is but one algorithm which solves the problem in 0(n logn)
time. By relying on any 0(n log n)-time sorting algorithm, reduction A solves ELEMENT
UNIQUENESS in 0(n log n) time. Hence ELEMENT UNIQUENESS inherits SORT's
upper bound of 0 (n log n).

More generally, suppose that problem P8 has known upper bound O(g(n)) and we
can exhibit a r(n)-time reduction from problem PA to problem P8 . Then, assuming r(n) E
0(g(n)), problem PA must have the same upper bound 0(g(n)).

2.6 Chapter Notes

The texts [2, 20, 56, 73, 83, 89, 90] discuss algorithm analysis as well as analyze the
algorithms they present. Also recommended is the paper [82], which explores amortized
analysis and presents several examples.

Knuth employed 0-notation and asymptotic analysis of algorithms as early as 1973
[48] and endorsed conscientious use of 0-, Q-, (9-, and o-notations three years later in [49].
Both references discuss the history of asymptotic notation.

Mathematical induction is defined and discussed in [57] and is made the basis for
algorithm design and analysis in [56].

2.7 Exercises

1. Use mathematical induction to show that i = n(n21)

2. Use mathematical induction to show that a binary tree with n internal nodes must have
n + I external nodes (see Section 3.5 for more about binary trees).

3. Discuss the advantages and disadvantages of measuring the running time of a program
by timing it while it executes on a computer. Is this a reliable performance measure?

4. Implement sequentialSearch and binarySearch and graph their execution
times as input grows large. Since both programs realize worst-case performance when
search fails, you will probably want to use search keys that do not occur in the input

Sec. 2.7 Exercises 21

Chap. 2: Analysis of Algorithms

array. Does your graph bear out the worst-case running time of 0(n) for sequential
search and 0 (log n) for binary search?

5. Implement the sorting algorithms insertionSort [which runs in 0(n 2) time],
selectionSort [O(n2) time], and mergeSort [O(nlogn) time], and graph
their execution times as input grows large. Does your graph bear out their running
times? (These programs are discussed at the beginning of Chapters 5, 6, and 8.)

6. Solve the recurrence

T T(n-1) +a if n > 0
b otherwise (n = 0)

for constants a and b.

7. Solve the recurrence

ifnT(2) +a if n > I

b otherwise (n = 1)

for constants a and b.

8. Solve the recurrence

| 2T(n-2) + a if n > I
b otherwise (n = 0 or n = 1)

for constants a and b.

9. Show that fi E 0(g(n)) and f2 E 0(g(n)) imply (fi + f2)(n) E 0(g(n)), where
(Ai + f2)(n) = fi(n) + f2(n).

10. Show that fi E 0(g 1 (n)) and f2 E 0(g2(n)) imply (fi - f2)(n) E 0((gj g2)(n)),
where (fi f2)(n) = fi(n)f2(n).

11. Show that f (n) E 0(g(n)) and g(n) E 0(h(n)) imply f(n) E 0(h(n)).

12. Show that 1lgb n E 9 (log, n) for all b, c > 1.

13. Show that amnm + amninrjn + - - + ao E 0(nm) for any constants aj.

14. Show that logn E Q(nk) for all k > 0.

15. Show that nk E 0(2') for all k > 0.

16. Show that f (n) E 0(g(n)) implies g(n) E Q (f (n)).

17. Use decision trees to show that comparison-based sorting (problem SORT) has lower
bound £2(n logn). [Hint: Use the fact that log(n!) E Q (n log n).]

18. Use decision trees to show a lower bound of Q (log n) for the yes/no version of problem
SEARCH: Given a sorted array a of n distinct integers and a search key x, report
whether or not x occurs in a. (Hint: Although only two outcomes are possible, argue
that the decision tree must nonetheless contain at least n external nodes.)

22

3
Data Structures

Data structures-methods fororganizing data-are the principal building blocks from which
algorithms are pieced together. The data structures an algorithm uses affect the algorithm's
efficiency, as well as the ease with which it can be programmed and understood. This is
what makes the study of data structures so important.

C++ provides a number of predefined data structures. One example is the integers,
together with the operations for manipulating them: arithmetic operators such as addition
and multiplication, relational operators, assignment operators, and so forth. Other examples
include floating-point numbers, characters, pointer types, and reference types. The prede-
fined data structures can be used "as is" in programs, or combined through such devices as
classes and arrays to form data structures of greater complexity.

In this chapter we present and implement the data structures we will use: lists, stacks,
and binary search trees. These data structures are elementary yet powerful, and the imple-
mentations we provide are standard and practical. We will not attempt a comprehensive
treatment of data structures in this chapter; rather, our primary motivation is to provide the
data structures needed for the programs to follow.

3.1 What Are Data Structures?

A data structure consists of a storage structure to hold the data, and methods for creating,
modifying, and accessing the data. More formally, a data structure consists of these three
components:

23

Chap. 3: Data Structures

1. A set of operations for manipulating specific types of abstract objects

2. A storage structure in which the abstract objects are stored

3. An implementation of each of the operations in terms of the storage structure.

Component 1 of the definition-a set of operations on abstract objects-is called an
abstract data type, or ADT. Components 2 and 3 together make up the data structure's
implementation. For example, the array ADT supports the manipulation of a set of values
of the same type, through operations for accessing and modifying values specified by an
index. The implementation employed by C++ stores the array in a contiguous block of
memory (the storage structure) and uses pointer arithmetic to convert an index to an address
within the block (the implementation of the operations).

An abstract data type specifies what a data structure does-what operations it
supports-without revealing how it does it. While crafting a program, the programmer
is thereby free to think in terms of what abstract data types the program requires and can
postpone the work of implementing them. This programming practice of separating an
algorithm from its data structures so they can be considered separately is called data ab-
straction. Data abstraction distinguishes different levels of abstract thought. Thus integer
arithmetic, an abstract data type provided by most programming languages (including C++),
permits us to think at the level of adding, multiplying, and comparing integers, without also
having to consider how integers are represented, added, multiplied, and so forth. The stack
ADT encourages thought at the level of stack operations while postponing the (lower-level)
question of how to implement stacks.

Use of abstract data types also encourages modular programming, the practice of
breaking programs into separate modules with well-defined interfaces. Modularity has
numerous advantages. Modules can be written and debugged apart from the rest of the
program, by another programmer or at another time. Modules are reusable, so they can
often be loaded from a library or copied from another program. In addition, a module can
be replaced by another module that is functionally equivalent to, but more efficient, robust,
or, in some other sense, better than the original.

Despite these advantages, not every data structure should be treated as an abstract
data type. An array ADT provides index-based access and update operations for manipu-
lating sets, but there is often no advantage to formulating arrays this abstractly: Doing so
circumvents the familiar view of an array as a contiguous block of memory and introduces
an often unnecessary level of abstraction. It is also inefficient, since the additional function
calls may incur an overhead cost, and efficient pointer methods that exploit the close tie
between pointers and arrays are forfeited.

Our primary goal in this chapter will be to present the abstract data types used by the
algorithms in this book and to implement them efficiently. Familiarity with these ADTs
will enable us to describe our algorithms at a higher, more abstract level, in terms of abstract
operations. Familiarity with how these ADTs are implemented-besides being of interest
in its own right-will enable us to implement and run the algorithms which employ them.
Moreover, knowing how an ADT is implemented will allow us to tinker with a data structure
when it only approximately meets our needs.

24

3.2 Linked Lists

The linked list, like the array, is used to manipulate lists of items. The items are stored
in the nodes of the linked list, ordered sequentially in list order. Each node possesses a
pointer-often known as a link-to the next node. The last node is distinguished by a
special value in its link field (the null link in Figure 3.1) or by the fact that it links to
itself.

For handling lists, the linked list has two advantages over the array. First, rearranging
the order of items in a linked list is easy and fast, usually accomplished by updating a small
number of links (e.g., to insert a new node b after some node a, link a to b, and link b to
whatever node a had just linked to). Contrast this with insertion of an item into an array a
representing a list of n items. To insert the item into position i, each of the items in a [i]
through a [n- 1] must be shifted one position to the right to make a "hole" for the new
item in position i.

Unlike arrays, linked lists are dynamic-they are able to shrink and grow in size
during their lifetime. With linked lists it is unnecessary to safeguard against running out of
space by preallocating an excessive amount of memory.

There are several kinds of linked lists. Each node of a singly linked list links to the
next node, called its successor. Each node of a doubly linked list links both to the next node
and to the previous node, its predecessor. In a circular linked list, the last node links to
the first node; if the circular linked list is doubly linked, the first node also links to the last
node. For example, Figure 3.1 depicts a (noncircular) singly linked list, and Figure 3.2 a
circular doubly linked list. We will concentrate on circular doubly linked lists since they
are best suited for the algorithms covered in this book; for brevity, we will usually refer to
them simply as linked lists. We will often use them, for instance, to represent polygons,
where each node of the linked list corresponds to a vertex of the polygon, and the nodes are
ordered as the vertices around the polygon.

In a pointer-based implementation of the linked list, a node is an object of class Node:

class Node {
protected:

Node *_next; // link to successor node

Node *_prev; // link to predecessor node

public:

Node(void);

virtual -Node(void);

Node *next(void);

Node *prev(void);

Node *insert(Node*);

Node *remove(void);

void splice(Node*);

};

Class Node's constructor creates a new node which doubly links to itself: The new node
represents a single-node linked list.

Sec. 3.2 Linked Lists 25

Chap. 3: Data Structures

W[i- Figure 3.1: A singly linked list.

Figure 3.2: A circular doubly linked list.

Node::Node(void) :
next(this), _prev(this)

}

Within a member function, the variable this automatically points to the receiver
object, the object whose member function is invoked. In a constructor, this points to
the object being allocated. Accordingly, in discussions about member functions, we will
often refer the receiver object as this object. The destructor -Node is responsible for
deallocating this object. It is declared virtual within the class definition so that derived
objects-objects of classes derived from class Node-are correctly deallocated:

Node: :-Node(void)

)

Member functions next and prev are used to move from this node to its successor or
predecessor:

Node *Node::next (void)
{

return next;

Node *Node: :prev(void)
{

return _prev;

Member function insert inserts node b just after this node (Figure 3.3):

Node *Node::insert(Node *b)
{

Node *c = -next;
b->-next = c;
b->_prev = this;
next = b;

c->-Prev = b;
return b;

26

Sec. 3.2 Linked Lists

Figure 3.3: Inserting a node into a linked list.

Nodes can also be removed from linked lists. Member function remove removes
this node from its linked list (Figure 3.4). It returns a pointer to this node so it can later be
deallocated:

Node *Node::remove(void)
{

_prev->_next = -next;
_next->_prev = _prev;
_next = _prev = this;
return this;

I

Member function splice is used to splice two nodes a and b. Splicing achieves
different results depending on whether a and b belong to the same linked list. If they do, the
linked list is split into two smaller linked lists. Alternatively, if a and b belong to different
linked lists, the two linked lists are joined into one larger linked list.

To splice nodes a and b, we link a to b->-next (node b's successor) and link b to
a- >-next (a's successor). We must also update the appropriate predecessor links: We
link the new successor to a back to a, and the new successor to b back to b. The operation
is depicted in Figure 3.5. The figure indicates that splice is its own inverse: Splicing
nodes a and b in the left diagram yields the right diagram, and splicing a and b once again
(in the right diagram) produces the left diagram.

In the following implementation of member function splice, this node plays the
role of node a, and the function's argument that of node b. We introduce variable a into the

Figure 3.4: Removing a node from its linked list.

a

Splice

b

Figure 3.5: Splicing nodes a and b.

27

Chap. 3: Data Structures

code to reflect the operation's symmetry: Given node pointers a and b, a->splice (b)
and b->splice (a) achieve the same net result.

void Node::splice(Node *b)

{
Node *a = this;

Node *an = a->.next;

Node *bn = b->.Anext;

a->_next = bn;

b->-next = an;

an->__prev = b;

bn->__prev = a;

Observe that if node a precedes node b in the linked list, then splicing them has the
net effect of removing b. Furthermore, splicing a single-node linked list b to node a of
some other linked list effectively inserts b after a. This suggests that inserting a node into a
linked list and removing a node from a linked list are actually special cases of splice. Indeed
this is the case-member functions insert and remove are provided for convenience.

Finally we note that splicing a node to itself, as in the call a->splice (a), has no
net effect. This is easily verified by examining the implementation of splice.

3.3 Lists

In this section we define a new class List for representing lists. A list is an ordered set
of finitely many items. The length of a list equals the number of items it contains; a list of
length zero is called an empty list.

In our view of a list, every item in a list occupies one position-the first item is in the
first position, the second item is in the second position, and so forth. There is in addition
a head position which simultaneously occurs before the first position and after the last
position. A List object provides access to its items through a window, which at any given
time is located over some position in the list. Most list operations refer to either the window
or the item in the window. For instance, we can obtain the item in the window, advance
the window to the next or previous position, or move the window to the first position or
last position in the list. We can also do such things as remove from the list the item in the
window or insert a new item into the list, just after the window. Figure 3.6 depicts our view
of a list.

We will use linked lists to implement class List. Each node corresponds to a
position in the list and contains the item stored at that position (the node corresponding
to the head position is called the header node). A node is represented by an object of
class ListNode, which is derived from class Node. Class ListNode possesses a data
member -val, which points to the actual item.

A list is a collection of items of some given type. Yet there is no need to build a
specific item type into the definitions of classes ListNode or List, for the list operations
behave the same regardless of item type. For this reason we define these classes as class
templates. The item type is made a parameter of the class template. Later, when we need

28

Sec. 3.3 Lists

Figure 3.6: The structure of a list of length seven. The items in the list occur in positions I through 7;
the head position 0 occurs between the first and last positions. The window, indicated by the square,
is currently over position 2.

a list of some specific item type, the class template is invoked with the item type; the class
template is used to construct an actual class for that item type.

Class template ListNode is defined as follows:

template<class T> class ListNode : public Node {
public:

T _val;

ListNode(T val);

friend class List<T>;

Here T is the type parameter. To declare an instance of ListNode, we supply a type for
parameter T. For instance, the declaration

ListNode<int*> a, b;

declares a and b as ListNode objects each containing a pointer-to-int.
The constructor ListNode is defined like this:

template<class T> ListNode::ListNode(T val)

_val(val)

{

The constructor ListNode implicitly invokes the constructor for base class Node, since
the latter constructor takes no arguments.

We will not define a destructor for class ListNode. Whenever a ListNode object
is deleted, the base class's destructor Node: : -Node, which has been declared virtual, is
automatically invoked. Note that the item pointed to by data member Lis tNode: : -val
is not deallocted. It would be safe to deallocate the item only if it were known to have been
allocated with new, and there is no guarantee of this.

Let us turn to the definition of class template List. Class List contains three
data members: header points to the header node corresponding to the head position;
win points to the node that the list's window is currently positioned over; and length
contains the length of the list. The class template is defined as follows:

29

30 Chap. 3: Data Structures

template<class T> class List

private:

ListNode<T> *header;

ListNode<T> *win;
int _length;

public:

List(void);

~List(void);

T insert(T);

T append(T);

List *append(List*);

T prepend(T);

T remove(void);

void val(T);

T val(void);

T next(void);

T prev(void);

T first(void);

T last(void);

int length(void);

bool isFirst(void);

bool isLast(void);

bool isHead(void);

};

To simplify our implementation, we will assume that the items in a list are pointers
to objects of a given type. Thus the declaration

List<Polygon*> p;

declares p to be a list of pointer-to-Polygons, whereas the declaration

List<Polygon> q;

is illegal.

3.3.1 Constructors and Destructors

The constructor List creates and initializes an empty list, represented by a single header
node linked to itself:

template<class T> List<T>::List(void)
-length(O)

{
header = new ListNode<T>(NULL);
win = header;

The class destructor deallocates the linked list's nodes:

template<class T> List<T>::-List(void)

{
while (length() > 0) {

firsto0;

remove;

delete header;

Note that the data items in the list are not deallocated by the destructor.

3.3.2 Modifying Lists

Member functions insert, prepend, and append are used to insert new items into a
list. None of the three functions moves the window. Function insert inserts a new item
after the window and returns the item:

template<class T> T List<T>::insert(T val)

{
win->insert(new ListNode<T>(val));

++length;

return val;

}

Member functions prepend and append insert a new item at the beginning and
end of the list, respectively, and return the new item:

template<class T> T List<T>::prepend(T val)

header->insert(new Listsode<T>(val));

++_length;

return val;

template<class T> T List<T>::append(T val)

header->prev()->insert(new ListNode<T>(val));

++_length;
return val;

The second version of member function append is used to append a list 1 to the end
of this list-the first item of list 1 is placed after the last item of this list. List 1 is made
empty in the process. This list is returned:

Sec. 3.3 Lists 31

Chap. 3: Data Structures

template<class T> List<T>* List<T>::append(List<T> *1)

{
ListNode<T> *a = (ListNode<T>*)header->prevO;

a->splice(l->header);

length += 1->_length;

l->header->removeO;

1->-length = 0;

l->win = header;

return this;

?

Member function remove removes the item in the window, moves the window to
the previous position, and returns the just-removed item. The operation does nothing if the
window is in the head position:

template<class T> T List<T>::remove(void)

{
if (win == header)

return NULL;

void *val = win->_val;

win = (ListNode<T>*)win->prevC);

delete (ListNode<T>*)win->next () ->remove o;

- -length;
return val;

}

When member function val is called with some item v, it replaces the item currently
in the window by v. The function does nothing if the window is in the head position.

void List<T>::val(T v)

{

if (win != header)

win-> val = v;

}

3.3.3 Accessing List Elements

When member function val is called with no arguments, it returns the item in the window,
or NULL if the window is in the head position:

template<class T> T List<T>::val (void)

{
return win-> val;

}

Member functions next. and prev move the window to the next or previous position,
respectively. Each returns the item stored in the window's new position. Note that class

32

List supports "wraparound." For instance, if the window is in the last position, performing
next advances the window to the head position, and then performing next once again
advances the window to the first position.

template<class T> T List<T>::next(void)

{
win = (ListNode<T>*)win->nextO;

return win->_val;

template<class T> T List<T>::prev(void)

I
win = (ListNode<T>*)win->prevO;
return win->-val;

Member functions f irst and last reset the window to the first and last positions,
respectively; they have no effect if the list is empty. Each returns the item stored in the
window's new position:

tenplate<class T> T List<T>::first(void)

win = (ListNode<T>*)header->nextO;

return win->-val;

template<class T> T Liat<T>::last(void)

win = (ListNode<T>*)header->prevO;

return win->-val;

Member function length returns the length of this list:

template<class T> int LiSt<T>::length(void)

return _length;

Member functions i sFirst, isLast, and i sHead return TRUE just if the window
is in the first, last, or head position, respectively:

template<class T> bool List<T>::isFirst(void)
l

return ((win == header->next()) && (-length > 0));

33Sec. 3.3 Lists

Chap. 3: Data Structures

template<class T> bool Liat<T>::isLast(void)

I return ((win == header->prev()) && (_length > 0));

template<class T> bool List<T>::isHead(void)

return (win == header);

3.3.4 List Examples

Two simple examples illustrate the use of lists. The first example, function template
arrayToList, loads the n items in array a into a list, which it then returns:

template<class T> List<T> *arrayToList(T a[], int n)

List<T> *s = new List<T>;

for (int i = 0; i < a; i++)
s->append(ati]);

return a;

For example, if a is an array of strings, the following fragment converts a to a list s of
strings:

char *a(201;

// initialize array a here

List<char*> *s = arrayToList(a, 20);

Function template arrayToList is a utility we will use later in some of the programs.
For the second example, function template leastItem returns the smallest item in

list s. Two elements are compared using the comparison function cmp, which returns -1,
0, or I if its first argument is less than, equal to, or greater than its second argument:

template<class T> T leastItem(List<T> &s, int(*cmp)(T,T))

int i;

if (s.length() == 0)

return NULL;
T v = s.firsto;
for (s.nexto; !s.isHeado; s.nexto)

if (cmp(s.val(), v) < 0)

v = s.val();

return v;

34

To find which of a list of strings occurs first in dictionary order, we would call
leastItem with the comparison function strcmp. This is the standard C++ library
function which, when passed two strings, returns -1, 0, or I depending on whether the
first string is less than, equal to, or greater than the second string in dictionary order. For
instance, the following fragment prints the string ant:

List<char*> a;

s.append("bat");

s.append("ant');

s.append("cat");

cout << leastitec(s, strcmv);

3.4 Stacks

Lists are unrestricted in that any item can be accessed. There are also list-oriented data
structures that restrict access to items, and one of the most important is the pushdown stack,
or simply stack. The stack limits access to that item most recently inserted. For this reason,
stacks are also known as last-in-first-out lists, or LIFO lists.

The two basic stack operations are push and pop. The operation push inserts an
item into the stack, and pop removes from the stack the last item pushed. The words
stack, push, and pop suggest a helpful picture, that of objects stacked one on top of the
next in which only the topmost object is accessible. The push operation pushes (inserts)
a new item onto the top, and the pop operation pops (removes) and returns the top ob-
ject. Other stack operations include empty, which returns TRUE just if the stack is empty,
and operations for peeking at select items on the stack without removing them (see Fig-
ure 3.7).

One simple implementation of a stack uses an array. A stack of n items is stored
in elements s [0] through s [n-1] of some array s, and the number of items (n) is
stored in some integer variable top. Array element s [0) contains the bottom item,
and s [top-1) the top item. The list of items grows toward higher indices as pushes
are performed and shrinks toward lower indices as pops are performed. Specifically, to
push item x we perform s [top++] = x, and to pop we return s [-- top]. The only
problem with this implementation is that it is not dynamic-the length of the array limits
the size of the stack. We will pursue an implementation of stacks based on the List class
template of the previous section. Our stacks will then be dynamic since List objects are
dynamic.

The class template Stack contains aprivate datamembers which points to the List
object representing the stack. The list is ordered from the top of the stack to the bottom; in
particular, the top item of the stack is in the first position of the list, and the bottom item of
the stack is in the last position of the list.

H push(2) 2 push(3) 2 pop() 2 push(5) 2

Figure 3.7: The stack in action.

35Sec. 3.4 Stacks

36 Chap. 3: Data Structures

template<class T> class Stack {
private:

List<T> *s;

public:
Stack(void);
-Stack(void);

void push(T v);

T pop(void);

bool enpty(void);

int size(void);

T top(void);

T nextToTop(void);

T bottom(void);

Implementation of the member functions is straightforward. The constructor Stack
allocates a List object and assigns it to data member s:

template<class T> Stack<T>::Stack(void)

s(new List<T>)

(

The destructor -Stack deallocates the List object pointed to by data member s:

template<class T> Stack<T>::-Stack(void)

delete s;

}

Member function push pushes item v onto this stack, and pop pops the topmost
item from this stack and returns it:

template<class T> void Stack<T>::push(T v)

s->prepend(v);

}

template<class T> T Stack<T>::pop(void)

s->first();

return s->removeo;

Member function empty returns TRUE if and only if this stack is empty, and size
returns the number of items on this stack:

Sec. 3.4 Stacks

template<class T> bool Stack<T>::eWpty(void)

return (a->length() == 0);

template<class T> int Stack<T>::size(void)

return s->lengtho;

Three "peek" operations will prove useful in later chapters: top returns the stack's
top item, nextToTop returns the item just below the top item, and bottom returns the
bottom item. None of the three peek operations changes the state of the stack (nothing is
popped or pushed).

template<class T> T Stack::top(void)

return s->firsto;

template<class T> T Stack::nextToTop(void)

s->firsto0;
return s->nexto;

template<class T> T Stack::botton(void)

return s->lasto;

By way of a simple example involving stacks, the following function uses a stack to
reverse the order of strings in array a:

void reverse(char *at], int n)

Stack<char*> s;
for (int i = 0; i < n; i++)

s.push(a[i]);
for (i = 0; i < n; i++)

a[i] = s.pop(;

Class Stack is a good example of an abstract data type. The class provides a public
interface consisting of accessible operations: push, pop, empty, the class's constructor
and destructor, and peek operations. A stack is manipulated only through this public
interface. The storage structure (the list) is hidden in the private part of the class definition

37

Chap. 3: Data Structures

and cannot be modified or otherwise accessed except through the interface. Programs
using stacks do not need to know anything about how the stacks are implemented; for
example, function reverse works whether its stack is implemented using a list or an
array.

Observe that we have implemented the stack ADT in terms of the list ADT. This
implementation is much simpler than one based directly on lower-level building blocks
such as linked lists or arrays. The danger in implementing an ADT in terms of a second
ADT is that the first ADT inherits the performance characteristics of the second, whose
implementation may be inefficient. But in this case, having implemented the list ADT
ourselves, we understand its performance and can show easily that each of the operations
supported by Stack runs in constant time.

3.5 Binary Search Trees

3.5.1 Binary Trees

Although lists are efficient for inserting and removing items and for rearranging their order,
they are not efficient for searching. Searching for a particular item x requires stepping down
the list while deciding at each item whether it matches x. A search may require visiting
many items or, if the list does not contain x, every item to determine that this is the case.
Even if the list is sorted, a search must visit every item preceding the position where x
belongs.

Binary trees provide a more efficient way to search. A binary tree is a structured
collection of nodes. The collection can be empty, in which case we have an empty binary
tree. If the collection is not empty, it is partitioned into three disjoint sets of nodes: a
root node n, a binary tree called the left subtree of n, and a binary tree called right subtree
of n. In Figure 3.8a, the node labeled A is the root; node B, called the left child of A,
is the root of A's left subtree; and node C, the right child of A, is the root of A's right
subtree.

The binary tree of Figure 3.8a consists of four internal nodes (the labeled circular
nodes in the figure) and five external nodes (the square nodes). The size of a binary tree is
the number of internal nodes it contains. The external nodes correspond to empty binary

(a) (b)

Figure 3.8: A binary tree with external nodes (a) shown and (b) not shown.

38

Sec. 3.5 Binary Search Trees

trees; for instance, the left child of node B is nonempty (node D), whereas the right child
of B is empty. In some contexts the external nodes are labeled, and in others they are not
referred to at all and are thought of as empty binary trees (in Figure 3.8b the external nodes
are not drawn).

A metaphor based on genealogy provides a convenient way to refer to specific nodes
within a binary tree. Node p is the parent of node n just if n is a child of p. Two nodes are
siblings if they share the same parent. Given two nodes nI and nk such that n k belongs to
the subtree rooted at n1, node nk is said to be a descendant of n I, and nX an ancestor of nk-

There exists a unique path from n1 down to each of its descendants nk: a sequence of nodes
n 1, n2 , .. ., nk such that ni is the parent of ni+1 for i = 1, 2, .. ., k-1. The length of the
path is the number of edges it contains (k - 1). For example, in Figure 3.8a the unique path
from node A to node D consists of the sequence A, B, D and has length 2.

The depth of a node n is defined recursively:

0 O if n is the root node
depth(n) = 1 + depth(parent(n)) otherwise

The depth of a node equals the length of the unique path from the root to the node. In
Figure 3.8a, node A has depth 0 and node D has depth 2.

The height of a node n is also defined recursively:

f 0 if n is an external node
heighten) = I + max(height(lchild(n)),height(rchild(n))) otherwise

where lchild(n) denotes the left child of node n, and rchild(n) the right child of n. The height
of node n equals the length of some longest path from n down to an external node in n's
subtree. The height of a binary tree is defined as the height of its root node. For example,
the binary tree of Figure 3.8 has height 3, and node D has height 1.

In a pointer-based implementation of binary trees, nodes are objects of class
TreeNode:

template<class T> class TreeNode {

protected:

TreeNode childil;

TreeNode *_rchild;

T val;
public:

TreeNode(T);

virtual -TreeNode(void);

friend class SearchTree<T>;

friend class BraidedSearchTree<T>;

};

Data members childd and _rchild link to this node's left child and right child,
respectively, and data member val contains the item.

The class constructor creates a binary tree of size one-the sole internal node has two
empty children, each represented by NULL:

39

Chap. 3: Data Structures

template<class T> TreeNode<T>::TreeNode(T v)

val(v), -lchild(NULL), -rchild(NULL)

)

The destructor -TreeNode recursively deletes this node's left and right children (if they
exist) before deallocating this node itself:

template<class T> TreeNode<T>::-TreeNode(void)

{

if childil) delete childl;

if (-rchild) delete _rchild;

3.5.2 Binary Search Trees

One of the primary uses of binary trees is for efficient searching. Searching encompasses
such operations as finding a given item in a set of distinct items, locating the smallest or
largest item in the set, and deciding whether the set contains a given item. To search within
a binary tree efficiently, its items must be arranged in a particular way. Specifically, a binary
tree is called a binary search tree if its items are organized as follows: For each item n, all
the items in the left subtree of n are less than n, and all the items in the right subtree of n are
greater than n. Figure 3.9 depicts three binary search trees, each containing the same set of
integer items. In general, there exist numerous binary search trees (of different shape) for
any given set of items.

It is implicit that items belong to a linear order and, consequently, that any two can
be compared. Examples of linear orders include the integers and the real numbers under <,
and words and character strings under lexicographic (dictionary) ordering. Searching is
accomplished by means of a comparison function for comparing any two items with respect
to the linear order. (Recall from Section 3.3 that a comparison function is passed two items
and returns -1, 0, or I depending on whether the first item is less than, equal to, or greater
than the second item.) In our version of search trees, a comparison function is bound to a
search tree object when the object is defined.

A function for "visiting" or operating on the items in a search tree is also useful. Such
a visitfunction may be used to print, update, or access an item, or operate on it in some

Figure 3.9: Three binary search trees over the same set of items.

40

Sec. 3.5 Binary Search Trees 41

other way. Visit functions are not bound to search trees; different visit functions can be
applied to the items in the same search tree.

3.5.3 The SearchTree Class

Let us define a new class template SearchTree for representing binary search trees. The
class contains data member root, which points to the root of the binary search tree (a
TreeNode object), and data member cmp, which points to a comparison function:

template<class T> class SearchTree

private:

TreeNode<T> *root;

int (*)(T,T) cmp;

TreeNode<T> *-find~in(TreeNode<T>*);

void _remove(T, TreeNode<T>* &);

void -inorder(TreeNode<T>*, void (*)(T));

public:

SearchTree(int(*)(T,T));

-SearchTree(void);

int isEmpty(void);

T find(T);

T findMin(void);

void inorder(void(*)(T));

void insert(T);

void remove(T);

T removeMin(void);

};

To simplify the implementation, we will assume that the items in a search tree are pointers
to objects of a given type; when class template SearchTree is used to construct an actual
class, type parameter T is passed a pointer type.

3.5.4 Constructors and Destructors

The constructor SearchTree initializes the data member cmp to a comparison function,
and root to the empty search tree:

template<class T> SearchTree<T>::SearchTree(int(*c)(T,T))

cmp(c), root(NULL)

{

A search tree is empty just if data member root contains NULL instead of a valid pointer:

template<class T> int SearchTree<T>::isEmpty(void)

{
return (root ==NULL);

)

Chap. 3: Data Structures

The class destructor deletes the entire tree by invoking the root's destructor:

template<class T> SearchTree<T>::-SearchTree(void)

{
if (root) delete root;

}

3.5.5 Searching

To find a given item val, we start at the root and then zigzag along the unique path down
to the node containing val. At each node n along the way, we use the tree's comparison
function to compare val to the item n->val stored in n. If val is less than n->val,
we continue searching from n's left child; if val is greater than n->val, we continue
searching from n's right child; otherwise we return n->val (we are done). The path from
the root node down to val is called the search path for val.

Member function f ind implements this search algorithm, returning a pointer to the
item that is sought, or NULL if no such item exists in the search tree:

template<class T> T SearchTree::find(T val)
{

TreeNode<T> *n = root;
while (n) {

int result = (*cmp)(val, n->val);

if (result < 0)
n = n->_lchild;

else if (result > 0)
n = n->_rchild;

else

return n->val;

return NULL;
}

This search algorithm can be likened to a tournament involving a field of candidates.
Initially, when we start at the root, the field includes every item in the search tree. In
general, when at node n, the field consists of the descendants of n. At each stage, we
compare val to n->val. If val is less than n->val, the field is narrowed to the items in
n's left subtree; the items in n's right subtree, as well as n->val itself, are eliminated from
contention. Similarly, if val is greater than n->val, the field is narrowed to the items in
n's right subtree. The process continues until either val is located or no candidates remain,
implying that val does not occur in the search tree.

To find the smallest item in a search tree, we start at the root and repeatedly follow
left-child links until reaching a node n whose left child is empty-node n contains the
smallest item. We can also view this process as a tournament. When at node n, the field of
candidates consists of the descendants of n. In each stage, those items greater than or equal
to n- >val are eliminated from the field, and n's left child serves as the new n. The process
continues until some node n with empty left child is reached, implying that no remaining
candidate is smaller than n->val; we return n->val.

42

Sec. 3.5 Binary Search Trees 43

Member function f indMin returns the smallest item in this search tree. It invokes
private member function _f indMin, which implements the search algorithm described
earlier, starting at node n:

template<class T> T SearchTree<T>::findMin(void)

{
TreeNode<T> *n = -findlin(root);

return (n ? n->val : NULL);

}

template<class T>

TreeNode<T> *SearchTree<T>::_findMin(TreeNode<T> *n)

I
if (n == NULL)

return NULL;

while (n->_lchild)

n = n->_lchild;

return n;

}

The largest item in a search tree can be found analogously, where right-child links
are followed instead of left-child links.

3.5.6 Inorder Traversal

A traversal of a binary tree is a process that visits every node exactly once. Member function
inorder performs a special kind of traversal known as an inorder traversal. The strategy
is to first inorder traverse the left subtree, then visit the root, and finally inorder traverse
the right subtree. We visit a node by applying a visit function to the item stored in the
node.

Member function inorder serves as the driver function. It invokes private member
function -inorder, which performs an inorder traversal from node n and applies function
visit to each item reached.

template<class T> void SearchTree<T>::inorder(void(*visit)(T))

{
iinorder(root, visit);

template<class T>

void SearchTree::-inorder(TreeNode<T> *n, void(*visit)(T))

{
if (n) {

-inorder(n->-lchild, visit);

(*visit)(n->val);

-inorder(n->-rchild, visit);

}

Chap. 3: Data Structures

Inorder traversal of each of the binary search trees of Figure 3.9 visits the nodes in
increasing order: 2, 3, 5, 7, 8. Indeed, inorder traversal of any binary search tree visits its
items in increasing order. To see why, observe that when we perform inorder traversal at
some node n, the items smaller than n->val are visited before n since they belong to n's
left subtree, and the items larger than n->val are visited after n since they belong to n's
right subtree. Therefore, n is visited in the correct position. Since n is an arbitrary node,
the same holds for every node.

Member function inorder provides a way to list the items stored in a binary search
tree in sorted order. For example, if a is a SearchTree of strings, we can print the strings
in lexicographic order with the instruction a. inorder (printString). Here the visit
function printString might be defined like this:

void printString(char *s)

{
cout << s << "\n";

Under inorder traversal of a binary tree, the node visited just after some node n
is called the successor of n, and the node visited just before n is the predecessor of n.
Neither the predecessor of the first node visited nor the successor of the last node visited
are defined (in a binary search tree, these nodes hold the smallest and largest items in the
tree, respectively).

3.5.7 Inserting Items

To insert a new item into a binary search tree, we first locate its proper position-the external
node it is to replace-by zigzagging down the item's search path from the root. In addition
to maintaining a pointer n to the current node, we maintain a pointer p to n's parent. Thus
when n reaches some external node, p points to the node that is to become the new item's
parent. To perform the insertion, we allocate a new node to hold the new item and then link
parent p to this new node (Figure 3.10).

Member function insert inserts item val into this binary search tree:

template<class T> void SearchTree<T>::insert(T val)

{
if (root == NULL) {

root = new TreeNode<T>(val);

return;

I else {
int result;

TreeNode<T> *p, *n = root;

while (n)

p = n;

result = (*cmp)(val, p->val);

if (result < 0)

n = p->_lchild;

else if (result > 0)

n = p->_rchild;

44

Sec. 3.5 Binary Search Trees

insert(4)

Figure 3.10: Inserting an item into a binary search tree.

else

return;

}
if (result < 0)

p->-lchild = new TreeNode<T>(val);

else

p->-rchild = new TreeNode<T>(val);

}
}

3.5.8 Removing Items

Removing an item from a binary search tree is trickier than inserting one because the tree can
change shape in more complicated ways. Removing a node that has at most one nonempty
child is easy: We link the node's parent to this child. However, things are more difficult
if the node to be removed has two nonempty children: The node's parent can link to one
of the children, but what do we do with the other child? The solution is not to remove the
node from the tree; rather, we replace the item it contains by the item's successor and then
remove the node containing this successor.

To remove an item from a search tree, we first zigzag along the item's search path,
from the root down to the node n that contains the item. At this point, three cases (illustrated
in Figure 3.1 1) can occur:

1. Node n has an empty left child. In this case replace the link down to n (stored in n's
parent, if any) by a link to n's right child.

2. Node n has a nonempty left child but an empty right child Replace the link down to
n by a link to n's left child.

3. Node n has two nonempty children. Find the successor to n (call it m), copy the data
item stored in m into node n, and then recursively remove node m from the search tree.

It is important to observe that a binary search tree results in each case. Consider
case 1. If node n (to be removed) is a left child, the items stored in n's right subtree are
less than the item in n's parent p. When n is removed and its right subtree is linked to p,
the items stored in p's new left subtree are, of course, still less than the item in p. Since no
other links are changed, the tree remains a binary search tree. The argument is symmetric if
node n is a right child, and trivial if n is the root. Case 2 is argued similarly. In case 3, the
item v stored in node n is overwritten by the next-larger item stored in node mn (call it w),
and then w is removed from the tree. In the binary tree that results, the values in n's left

45

Chap. 3: Data Structures

I
Case 1 Case 2

Case 3

Figure 3.11: The three cases that can arise when removing an item from a binary search tree.

subtree are less than w since they are less than v. Moreover, the items in n's right subtree
are greater than w since (1) they are greater than v, (2) no item in the binary search tree lies
between v and w, and (3) w was removed from among them.

Observe that in case 3, node in must exist since n's right subtree is nonempty. Fur-
thermore, the recursive call to remove m cannot lead to a regress of recursive calls-since
node m has no left child, case I applies when it gets removed.

Figure 3.12 illustrates a sequence of remove operations in which each of the three
cases occurs. Observe that inorder traversal of each successive binary tree visits the nodes
in increasing order, verifying that each is in fact a binary search tree.

Member function remove is the public member function for removing the node con-
taining a given item. It calls private member function -remove, which does the actual
work:

template<class T> void SearchTree<T>::remove(T val);

{
remove(val, root);

)

template<class T>

void SearchTree<T>::_remove(T val, TreeNode<T>* &n)

if (n == NULL)
return;

int result = (*cmp)(val, n->val);

(a) (b) (c) (

Figure 3.12: A sequence of item removals. (a) and (b) Case 1: Remove 8 from the binary tree. (b)
and (c) Case 2: Remove 5. (c) and (d) Case 3: Remove 3.

46

-0-

)

Sec. 3.5 Binary Search Trees

if (result < 0)
-remove(val, n->-lchild);

else if (result > 0)
.remove(val, n->-rchild);

else i // case 1

if (n->-lchild == NULL)

TreeNode<T> *old = ;

n = old->_rchild;

delete old;

?
else if (n->-rchild == NULL) { // case 2

TreeNode<T> *old = a;

n = old->-lchild;
delete old;

}
else { // case 3

TreeNode<T> *m = _find~in(n->_rchild);

n->val = m->val;
_remove(m->val,.n->_rchild);

}
}

Parameter n, a reference type, serves as an alias for the link field that contains the
link down to the current node. When the node to be deleted (old) is reached, n names the
link field (in old's parent) which contains the link down to old. Hence the instruction
n=old->_rchild replaces the link to old by a link to old's right child.

Member function removeMin removes the smallest item from this search tree and
returns it:

template<class T> T SearchTree<T>::removeMin(void)

T v = findMino;
remove(v);

return v;

)

Heap sort, a method for sorting an array of items, is a simple program which employs
search trees. The idea is to insert all the items into a search tree and then iteratively remove
the smallest item until all items have been removed. Program heapSort sorts an array s
of n items using comparison function cmp:

template<class T> void heapSort(T s[], int n, int(*cmp)(T,T))

{
SearchTree<T> t(cmp);

for (int i = 0; i < n; i++)

t.insert(s[i]);

for (i = 0; i < n; i++)

s[i] = t.removexino;

}

47

Chap. 3: Data Structures

3.6 Braided Binary Search Trees

One problem with binary search trees is that they do not efficiently support these operations:
Given an item in a binary search tree, report the next larger or next smaller item. Although
inorder traversal yields all the items in increasing order, it does not help us move efficiently
from an arbitrary item to its successor or predecessor. In this section we cover braided
binary search trees, which are binary search trees with a linked list threaded through the
nodes in increasing order. For brevity, we will refer to a braided binary search tree as a
braided search tree, and the linked list that threads through it as a braid.

We will implement braided search trees with the class BraidedSearchTree.
This class differs from class SearchTree of the previous section in three significant
ways. First, a BraidedSearchTree object possesses a linked list-the braid-which
links each node to its successor and predecessor. Second, a BraidedSearchTree object
maintains a window which is at all times positioned over some item in the tree. The window
serves the same purpose as it does in class List: Many operations refer to the window or
to the item in the window. Third, member root of a BraidedSearchTree points to a
header node, a "pseudoroot node" whose right child is the actual root of the braided search
tree. Along the braid, the node containing the smallest item in the tree follows the header
node, and the node containing the largest item precedes the header node. Hence the header
node corresponds to a head position which simultaneously occurs before the first position
and after the last position (Figure 3.13).

3.6.1 The BraidedNode Class

The nodes of a braided search tree are BraidedNode objects. Since nodes behave both
like tree nodes and list nodes, we derive class template BraidedNode from the base
classes TreeNode and Node:

template<class T>

class BraidedNode : public Node, public TreeNode<T> {
public:

BraidedNode(T);

BraidedNode<T> *rchild(void);

BraidedNode<T> *lchild(void);

BraidedNode<T> *next(void);

BraidedNode<T> *prev(void);

friend class BraidedSearchTree<T>;

};

Figure 3.13: A braided search tree with header
node. The braid is represented by the lighter curved
lines.

48

Sec. 3.6 Braided Binary Search Trees

Class BraidedNode's constructor explicitly initializes base class TreeNode in its
initialization list; base class Node gets initialized implicitly since its constructor takes no
arguments:

template<classT> BraidedNode<T>::BraidedNode(T val) :

TreeNode<T>(val)

?

Member functions rchild, child, next, and prev yield this node's four
links-the first two within the search tree, the last two within the braid:

template<class T>

BraidedNode<T> *BraidedNode<T>::rchild(void)

{
return (BraidedNode<T>*)_rchild;

}

template<class T>

Braided~ode<T> *BraidedNode<T>::lchild(void)

{
return (BraidedNode<T>*)_lchild;

}

template<class T>

Braidednode<T> *BraidedNode<T>::next(void)

{
return (BraidedNode<T>*)_next;

template<class T>

Braidednode<T> *BraidedNode<T>::prev(void)

{
return (BraidedNode<T>*)_prev;

}

3.6.2 The BraidedSearchTree Class

Class template BraidedSearchTree is defined as follows:

template<class T> class BraidedSearchTree

private:

BraidedNode<T> *root; / header node

BraidedNode<T> *win; // current window

int (*cmp)(T,T); // comparison function

void remove(T, TreeNode<T>* &);

public:

BraidedSearchTree(int(*)(T,T));

-BraidedSearchTree(void);

49

Chap. 3: Data Structures

T next(void);

T prev(void);

void inorder(void(*)(T));

T val(void);

bool isFirst(void);

bool isLast(void);

bool isHead(void);

bool isEmpty(void);

T find(T);

T findMin(void);
T insert(T);

void remove(void);

T removeMin(void);

I;

3.6.3 Constructors and Destructors

The class constructor BraidedSearchTree initializes data member cmp to a compari-
son function and root to the empty tree, represented by an isolated header node:

template<class T>

BraidedSearchTree<T>::BraidedSearchTree(int(*c)(T,T)) :

cmp(c)

{
win = root = new BraidedNode<T>(NULL);

)

The class destructor deletes the entire tree by invoking the header node's destructor:

template<class T>

BraidedSearchTree<T>::-BraidedSearchTree(void)

delete root;

}

3.6.4 Using the Braid

Data member win represents the tree's window-win points to the node over which the
window is positioned. Member functions next and prev advance the window to the
next or previous position. If the window is in the head position, next moves it to the
first position and prev moves it to the last position. Both functions return the item in the
window's new position:

template<class T> T BraidedSearchTree<T>::next(void)

{
win = win->next();

return win->val;

50

51Sec. 3.6 Braided Binary Search Trees

template<class T> T BraidedSearchTree<T>::prev(void)

{
win = win->prevo;

return win->val;

Member function val returns the item in the window. NULL is returned if the window
is in the head position:

template<class T> T EraidedSearchTree<T>::val(void)

return win->val;

Inorder traversal is performed by following the braid from the first position to the last
while applying function visit to each item along the way:

template<class T>

void BraidedSearchTree<T>::inorder(void (*visit)(T))

BraidedNode<T> *n = root->nexto;
while (n != root) (

(*visit)(n->val);

n = n->nexto;

Member functions isFirst, isLast, and isHead return TRUE if the window is
in the first position, last position, and head position, respectively:

template<class

return (win

template<class

return (win

template<class

return (win

I

T> bool BraidedSearchTree<T>::isFirst(void)

== root->nexto) && (root l= root->nexto);

T> bool BraidedSearch~ree<T>::isLast(void)

== root->prev()) && (root != root->nexto);

T> bool BraidedSearchTree<T>::isHead(void)

== root);

Function isEmpty returns TRUE only if this search tree is empty and consists only
of an isolated header node:

Chap. 3: Data Structures

template<class T> bool BraidedSearchTree<T>::isMMpty()

return (root == root->nexto);

?

3.6.5 Searching

Member function f ind is used to search for an item. The function is similar to function
SearchTree:: find except that it begins its search at root->rchild(), the real
root. The window is moved over the item found, if any:

template<class T> T BraidedSearchTree<T>::find(T val)

{
BraidedNode<T> *n = root->rchildo;
while (n) (

int result = (*cmp)(val, n->val);

if (result < 0)
n - n->lchildo;

else if (result > 0)
n n->rchildo;

else {

win = n;
return n->val;

}

return NULL;

The smallest item in a braided search tree occurs in the first position along the braid.
Member function findMin moves the window over the smallest item and returns the item.
If the search tree is empty, NULL is returned:

tewplate<class T> T BraidedSearchTree<T>::findMin(void)

win = root->nexto;
return win->val;

3.6.6 Inserting Items

A new item must be inserted into its proper position within both the search tree and the
braid. If the new item becomes a left child, it also becomes its parent's predecessor in the
braid; if the item becomes a right child, it also becomes its parent's successor in the braid.
Other than inserting the new node into the braid, the following implementation of insert
parallels that of function SearchTree: : insert. However, note that insert does not
need to check for insertion into an empty tree since the header node is always present. The

52

Sec. 3.6 Braided Binary Search Trees 53

function places the window over the just-inserted item and returns the item if the insertion
succeeds:

template<class T> T BraidedSearchTree<T>::insert(T val)

{
int result = 1;
BraidedNode<T> *p = root;
BraidedNode<T> *n = root->rchildo;
while (n) (

p = n;
result = (*cmp)(val, p->val);

if (result < 0)
n = p->lchildo;

else if (result > 0)
n = p->rchildo;

else

return NULL;

win = new BraidedNode<T>(val);
if (result < 0) {

p->_lchild = win;
p->prevO->Node::insert(win);

)
else {

p->.rchild = win;
p->Node::insert(win);

}
return val;

}

3.6.7 Removing Items

Member function remove removes the item in the window and moves the window to the
previous position:

template<class T> void BraidedSearchTree<T>::remove(void)

if (win != root)
-renove(win->val, root->_rchild);

Private member function -remove is passed the item val to be removed and a
pointer n to the root of the search tree in which the item occurs. The function works much
like its counterpart of the same name in class SearchTree. However, to remove an item
from a braided search tree, the item must, of course, be removed from both the search tree
and the braid:

Chap. 3: Data Structures

template<class T>

void BraidedSearchTree<T>::_remove(T val, TreeNode<T>* &n)

C
int result = (*cmp)(val, n->val);

if (result < 0)

.remove(val, n->_lchild);

else if (result > 0)

-remove(val, n->_rchild);

else { // case 1

if (n->_lchild == NULL) {
BraidedNode<T> *old = (BraidedNode<T>*)n;

if (win == old)

win = old->prevo;

n = old->rchildo;

old->Node::remove();

delete old;

else if (n->_rchild == NULL) { // case 2

BraidedNode<T> *old = (BraidedNode<T>*)n;

if (win == old)

win = old->prevo;

n = old->lchildo;

old->Node::renoveO;

delete old;

}
else { // case 3

BraidedNode<T> *m = ((BraidedNode<T>*)n)->next();

n->val = =->val;

-remove(m->val, n->-rchild);

}
}

Note that _remove uses the braid to find node n's successor in case 3, when the node
to be removed has two nonempty children. Note also that the parameter n is a reference
to type TreeNode* rather than type BraidedNode*. This is because n references the
link stored in the parent of the node to be removed, and this link has type TreeNode*.
Had parameter n instead been made type BraidedNode*, it would mistakenly reference
an anonomous object; the link field in the parent node would be inaccessible.

Member function removeMin removes the smallest item from the tree and returns
it; the function returns NULL if the tree is empty. If the window had contained the smallest
item, the window is moved to the head position; otherwise it is not moved:

template<class T> T BraidedSearchTree<T>::removeNin(void)

T val = root->next(->val;

if (root != root->next()

-remove(val, root->-rchild);

return val;

54

Sec. 3.7 Randomized Search Trees

3.7 Randomized Search Trees

Searching is fastest when the item being sought is close to the root. Ideally, the binary
search tree is balanced, shaped such that every item is relatively close to the root. A
balanced binary search tree of size n has height O(log n), implying that the path from the
root to each node has length no greater than O(log n). Yet a very out-of-balance search tree
has height Q (n); searching in such a tree is little more efficient than searching in a linked
list (Figure 3.9c).

The binary search trees produced by the joint use of functions insert, remove, and
removeMin have height Q (n) in the worst case. However, if we assume that of the three
operations only insert is used, and if we also assume that the n items to be inserted arrive
in random order-that all n! permutations of the items are equally likely-then the binary
search tree will have O(log n) height on average. Although this is an important result, the
assumptions it relies on are restrictive, suggesting that binary search trees are not always
efficient in practice. First, in many applications, the input order is unlikely to be random
(in an extreme case, the items are inserted in increasing or decreasing order, and the binary
search tree that results is most out of balance). Second, the order of search operations-
interspersed with insert operations-may be biased (searching for recently inserted items is
especially expensive since such items tend to occur in the lowest levels of the binary search
tree). Third, the expected properties of search trees that result when remove operations
are also permitted are not well understood.

In this section we discuss randomized search trees. The idea is to make the search
tree's behavior depend on the values produced by a random number generator, rather than
on input order. When an item is inserted into a randomized search tree, the item is assigned
a priority, a real number from the uniform distribution on the interval [0, I] (every number
in the interval is equally likely to be chosen). The priorities of the items in the randomized
search tree determine its shape according to this rule: The priority of each item is no greater
than the priority of every one of its descendants. The binary search tree rule also remains
in effect: For every item x, the items in x's left subtree are less than x, and those in its
right subtree are greater than x. Figure 3.14 gives an example of a randomized search
tree.

How do we insert some item x into a randomized search tree? There are two stages.
In the first stage, we disregard priorities and insert x by the method with which we are
already familiar: We follow the search path for x from the root down to the external node
where x belongs, and then replace the external node by a new internal node containing x. In
the second stage, we change the shape of the tree in accordance with the priorities of items.
We first randomly choose a priority for x. In the simplest case, the priority of x is greater
than or equal to the priority of its parent, so we are done. Alternatively, if the priority of x
is less than that of its parent y, the priority rule is violated at y. Suppose that x is the left

1161 1782 Figure 3.14: A randomized search tree. The prior-
ity of each item is written as a subscript.

55

Chap. 3: Data Structures

child of y. In this case we apply a right rotation to y, thereby moving x one level higher
in the tree (Figure 3.15). Now the priority rule may be violated at x's new parent. If so,
we apply a rotation to the parent-a right rotation if x is a left child, a left rotation if x is
a right child-thereby moving x up yet another level higher. We continue to bubble x up
until either it is the root or its priority is no less than that of its parent.

Figure 3.16 illustrates item insertion. In this figure, item 6 replaces the proper external
node and then is bubbled up according to its priority (.10) and the priorities of its successive
parents.

Let us now define the relevant classes. We will consider how to remove items from
a randomized search tree a bit later.

Rotate Right

Rotate Left

Figure 3.15: Rotations.

(a) (b)

(c) (d)

Figure 3.16: Inserting item 6 into a randomized search tree. (a) and (b) A left rotation at item 5. (b)
and (c) A right rotation at item 7. (c) and (d) A left rotation at item 4.

56

Sec. 3.7 Randomized Search Trees 57

3.7.1 The RandomizedNode Class

The nodes of a randomized search tree are objects of class template RandomizedNode:

template<class T>
class RandomizedNode : public BraidedNode<T>

protected:

RandomizedNode *_parent;

double priority;

void rotateRight(void);

void rotateLeft(void);

void bubbleUp(void);

void bubbleDown(void);

public:

RandomizedNode(T v, int seed = -1);

RandomizedNode *lchild(void);

RandomizedNode *rchild(void);

RandomizedNode *next(void);

RandomizedNode *prev(void);
RandomizedNode *parent(void);

double priority(void);

friend class RandomizedSearchTree<T>;

Class RandomizedNode inherits five data members from its base class: val-lchild,
-rchild, _prev, and -next. The class introduces two additional data members:
_parent, which points to this node's parent node, and _priority, this node's priority.

The constructor assigns a new RandomizedNode a random priority using the stan-
dard C++ function rand, which generates a random integer between 0 and RAND-MAX:

template<class T>

RandomizedNode<T>::RandomizedNode(T v, int seed)

BraidedNode<T>(v)

{
if (seed != -1) srand(seed);

priority = (rand() % 32767) / 32767.0;

_parent = NULL;

It is the private member functions of class RandomizedNode that are most inter-
esting. The first two perform the two kinds of rotations: right rotations and left rotations.
A right rotation is a local operation which changes the shape of a search tree while preserv-
ing the ordering of items-both before and after the operation, each node's successor and
predecessor are the same. A right rotation on node y pivots the subtree rooted at y around
the link from y to its left child x (Figure 3.15). The operation is performed by updating a
small number of links: The left-child link of y is set to subtree T2, the right-child link of x
is set to y, and the link to y (in y's parent) is set to x.

Chap. 3: Data Structures

Member function rotateRight performs a right rotation on this node, which plays
the role of y. Node x is y's left child. The function assumes that y's parent exists,
a safe assumption because the header node will be assigned a minimum priority-since
no node can ascend to the level of the header node, every remaining node must have a
parent.

template<class T> void RandomizedNode<T>::rotateRight(void)

{
RandomizedNode<T> *y = this;
RandonizedNode<T> *x = y->lchildo;
RandomizedNode<T> *p = y->parento;
y->_lchild = x->rchildo;
if (y->lchild() 1= NULL)

y->lchildO->_parent = y;
if (p->rchild() == y)

p->_rchild = x;

else

p->_lchild =x;

x->_parent = p;

x->_rchild = y;
y->_parent = x;

Member function rotateLeft, also depicted in Figure 3.15, is defined symmetri-
cally:

template<class T> void RandomizedNode<T>::rotateLeft(void)

{
RandomizedNode<T> *x = this;
RandomizedNode<T> *y = x->rchildo;
RandomizedNode<T> *p = x->parent();
x->-rchild = y->lchildo;
if (x->rchild() != NULL)

x->rchildO->-parent = x;
if (p->lchild() == x)

p->-lchild = y;

else
p->-rchild = y;

y->-parent = p;
y->-lchild = x:
x->-pareut = y;

?

Member function bubbleUp bubbles this node up toward the root through repeated
rotations, until this node's priority is greater than or equal to that of its parent. The function
is used when an item is lower in the randomized search tree than its priority warrants,
which is what holds generally when the second stage of insertion commences. Note that
the rotation is applied to this node's parent.

58

Sec. 3.7 Randomized Search Trees 59

template<Class T> void RandomizedNode<T>::bubbleUp(void)

RandomizedNode<T> *p = parents;

if (priority() < p->priorityo) I

if (p->lchild() == this)

p->rotateRighto0;

else

p->rotateLefto0;

bubbleUpo;

}

Member function bubbleDown moves this node down toward the external nodes
of the tree through repeated rotations, until this node's priority is less than or equal to that
of both its children. Whenever a rotation is performed, its sense (left or right) depends
on which of the two children has smaller priority; if the left child has smaller priority, for
instance, a right rotation moves the left child up one level while moving this node down one
level. Every external node is assigned priority 2.0, large enough to prevent it from being
mistakenly bubbled up. Function bubbleDown is used when an item is higher in the tree
than its priority warrants. We will use this function later to remove items from the search
tree.

template<class T> void RandomizedNode<T>::bubbleDown(void)

float lcPriority = lchildo ? lchildo->priorityo : 2.0;

float rcPriority = childd) ? rchildo->priority() : 2.0;

float minPriority = (laPriority<rcPriority) ?

lcPriority : rcPriority;

if (priority() <= minPriority)

return;

if (lcPriority < rcPriority)

rotateRight();

else

rotateLeft();

bubbleDown()

)

The public member functions rchild, child, next, prev, and parent yield
this node's links to its right child, left child, successor, predecessor, and parent:

template<class T>

RandomizedNode<T> *RandowizedNode<T>::rchild(void)

{

return (Randoadzed~ode<'1>*)rchild;

)

template<class T>

RandomizedNode<T> *RandomizedNode<T>::lchild(void)

Chap. 3: Data Structures

return (RandomizedNode<T>*)_lchild;

template<class T>

RandomizedNode<T> *RandomizedNode<T>::next(void)

return (RandomizedNode<T>*)_next;

template<class T>
RandomizedNode<T> *RandoahzedNode<T>::prev(void)

return (RandomizedNode<T>*)-prev;

template<class T>

RandomizedNode<T> *Rand diz-dNcde<T>: :parent(void)

return (RandomizedNode<T>*)_parent;

Member function priority returns this node's priority:

tomplate<class T>

double RandomizedNode<T>::priority(void)

return priority;

3.7.2 The RandomizedSearchTree Class

Randomized search trees are represented by objects of class RandomizedSearchTree.
The class template resembles class BraidedSearchTree in many respects: Data mem-
ber root points to a header node, win represents a window, and cmp points to the tree's
comparison function.

template<class T> class RandomizedSearchTree (

private:

RandomizedNode<T> *root; // header node

RandomizedNode<T> *win; // window

int (*cmp)(T,T); // comparison function

void _remove(RandomizedNode<T>*);

public:

RandomizedSearchTree(int(*)(T,T), int = -1);
-RandomizedSearchTree(void);

T next(void);
T prev(void);

60

Sec. 3.7 Randomized Search Trees

void inorder(void(*) (T));
T val (void);
bool isFirst(void);
bool isLast (void);
bool is}ead(void);
bool isZmpty(void);
T find(T);
T findMin(void);
T locate(T);
T insert(T);
void remove(void);
T remove(T);
T removemin(void);

3.7.3 Constructors and Destructors

The constructor RandomizedSearchTree initializes a new randomized search tree,
represented by an isolated header node with minimum priority -1.0:

template<class T>
Randomi zedSearchTree<T>: :RandomizedSearchTree(int (*c) (T,T),

int seed)
cmp (c)

{
win = root = new RandomizedNode<T>(NULL, seed);
root->-Priority = -1.0;

}

The destructor deletes the search tree:

temiplate<class T>

RandomizedSearchTree<T>:: RandomizedSearchTree (void)

{
delete root;

}

3.7.4 Using the Braid

Member functions next, prev, val, inorder, isFirst, isLast, isHead, and
isEmpty are defined like their counterparts in class BraidedSearchTree:

template<class T> T RandomizedSearchTree<T>::next (void)

win = win->nexto;

return win->val;
}

61

Chap. 3: Data Structures

template<class T> T RandonizedSearchTree<T>::prev(void)

win = win->prev();

return win->val;

template<class T> T RandcmizedSearchTree<T>::val(void)

return win->val;

template<class T>

void RandomizedSearchTree<T>::inorder(void (*visit)(T))

RandomizedNode<T> *n = root->nexto;
while (n != root) (

(*visit)(n->val);

n = n->nexto;

template<class T>

bool RandomizedSearchTree<T>::isFirst(void)

return (win == root->nexto) && (root != root->next());

template<class T>

bool RandomizedSearchTree<T>::isLast(void)

return (win == root->prevo) && (root != root->nexto);

template<class T>

bool RandomizedSearchTree<T>::isHead(void)

return (win == root);

I

template<class T>

bool RandomizedSearchTree<T>::isEmpty(void)

return (root == root->next());

3.7.5 Searching

Member functions find and findMin are also implemented like their counterparts in
class BraidedSearchTree:

62

Sec. 3.7 Randomized Search Trees 63

tenplate<class T> T RandomizedSearchTree<T>::find(T val)

{
RandomizedNode<T> *n = root->rchildo;

while (n) {

int result = (*cmp)(val, n->val);

if (result < 0)

n = n->lchildo;

else if (result > 0)

n = n->rchildo;

else {

win = n;

return n->val;

}
return NULL;

template<class T> T RandomizedSearchTree<T>::findMin(void)

{
win = root->nexto;

return win->val;

We now introduce locate, a new search operation. When applied to argument val,
function locate returns the largest item in the tree that is not greater than val. If val
occurs in the tree, val is returned. If val does not occur in the tree, the largest item smaller
than val is returned; if no such item exists in the tree, NULL is returned.

To perform the operation, we zigzag down the search path for val. As we proceed
down the search path, we keep track of the last (lowest) node b at which we branched to the
right-node b is the lowest node encountered along the search path whose right child also
lies along the search path. If we find val in the tree, we simply return it. Alternatively, if
we do not find val in the tree-the search path terminates at an external node-we return
the item stored in node b.

The operation is implemented by member function locate, which moves the win-
dow over the located item and returns the item:

template<class T> T RandomizedSearchTree<T>::locate(T val)

{

Randomizedliode<T> *b =root;

RandomizedNode<T> *n = root->rchildo;

while (n) {

int result = (*cmp)(val, n->val);

if (result < 0)
n = n->lchildo;

else if (result > 0) {
b = n;

n = n->rchildo;

I else {

Chap. 3: Data Structures

win = n;
return win->val;

}

win =b;

return win->val;

}

Why does this work? This approach clearly works when val occurs in the tree, so
let us suppose that val does not occur in the tree, that val's search path terminates at an
external node. As the pointer n descends the search path, b points to the largest item less
than every item in the subtree rooted at node n. It is easy to see that this condition holds
initially. Whenever we branch left at n, the condition continues to hold since every item in
n's left subtree is less than the item stored in n. Whenever we branch right at n, setting b
equal to n restores the condition because (1) every item in n's right subtree is greater than
the item stored in n and (2) the item stored in n is greater than the item b had pointed to
before being updated. Finally, when n points to an external node, b is the largest item in
the tree that is less than any item which might legally replace the external node, of which
val is one.

3.7.6 Inserting Items

To insert a new item into a randomized search tree, we find the external node where it
belongs (stage 1) and then bubble the item up toward the root according to its priority
(stage 2). Member function insert inserts item val into this randomized search tree and
then moves the window over the item and returns the item:

template<class T> T RandomizedSearchTree<T>::insert(T val)

{
// stage 1

int result = 1;
RandomizedNode<T> *p = root;

RandomizedNode<T> *n = root->rchildo;

while (n) {

p = n;
result = (*cmp)(val, p->val);

if (result < 0)
n = p->lchildo;

else if (result > 0)
n = p->rchild();

else

return NULL;

}
win = new RandomizedNode<T>(val);
win->_parent =;

if (result < 0) {
p->-lchild = win;

64

Sec. 3.7 Randomized Search Trees

p->prev()->Node::insert(win);

else (

p->_rchild = win;
p->Node: :insert(win);

}
// stage 2
win->bubbleTpO;
return val;

}

3.7.7 Removing Items

Member function remove removes the item in the window and then moves the window
to the predecessor position. Member function removeMin removes the smallest item and
returns it; if the window is positioned over this item, the window is moved to the head
position:

template<class T> void RandomizedSearchTree<T>: :remove(void)

{
if (win != root)

-remove (win);

template<class T> T RandomizedSearchTree<T>::removeMin(void)

T val = root->nextO->val;
if (root 1= root->nexto)

-remove (root->next o);
return val;

Both of these functions rely on private member function -remove. To remove
node n, function -remove increases the priority of n to 1.5 and then bubbles it down until
it becomes an external node. Priority 1.5 exceeds the priority of every item in the tree but
is less than the priority (2.0) of the external nodes. Finally, the function removes n from
the randomized search tree. If the window is over the node to be removed, the window is
moved to the predecessor position. The algorithm is implemented by function -remove,
which removes node n from this search tree:

template<class T> void
RandomizedSearchTree<T>: _remove(RandomizedNode<T> *n)

{
n->_priority = 1.5;

n->bubbleDowno;
RandomizedNode<T> *p = n->parent (o;
if (p->lchild() == n)

65

Chap. 3: Data Structures

p->_ichild = NULL;

else

p->_rchild = NULL;

if (win == a)

win = n->prevo;

n->Node::remove0;

delete n;

I

Figure 3.16, viewed from (d) to (a), illustrates the removal of item 6 from the rightmost
search tree, where the priority of the node containing 6 has been increased to 1.5. The process
is reverse that of the insertion of item 6 into tree (a), because right rotation and left rotation
are inverse to each other.

For convenience we introduce a second member function remove, which, when
passed an item, removes the item from the randomized search tree. If the window is over
the item to be removed, the window is moved to the previous position; otherwise the window
is not moved:

template<class T> T RandomizedSearchTree<T>::remove(T val)

{
T v = find(val);

if (v) (

remove(;

return v;

return NULL;

3.7.8 Expected Performance

In a randomized search tree of size n, the average depth of a node is O(logn). This is
true regardless of biases in input order and where it is assumed that items may be inserted
and removed. Since the operations insert, remove, and removemin, as well as the
search operations f ind and f indMin, each take time proportional to the depth of the item
involved, these operations run in O(log n) time on average.

Why does the average search path have length O(log n)? To answer this, we consider
the expected depth of an item in a randomized search tree T. Let us relabel the items in T by
increasing priority as xi, x2 , .. ., x. To determine the expected depth of item Xk, imagine
building T from scratch by inserting the items in the order xI, x2, .. . xn into an initially
empty randomized search tree T'. As each xi is inserted, we determine the likelihood that
it lies along the search path for Xk in T.

Observe three things before continuing. First, the process results in T since a random-
ized search tree is completely determined by its items and their priorities (if some priority
values occur more than once, the items can still be ordered such that T results). Second,
because of our insertion order, no rotations will be necessary. Third, our analysis requires

66

Sec. 3.8 Chapter Notes

that we insert only xi, . . , Xk-1, since Xk necessarily lies at the end of its own search path,
and inserting Xk+x, ., cannot increase the depth of Xk since none of these items can be
an ancestor of xk.

We start out with an empty binary tree T', represented by a single external node.
To insert xi into T', we replace the external node by xi. As the root of T', xl will be an
ancestor of Xk, so the probability that xi will lie along Xk 's search path is one. Next insert x2
into T'. Item x2 is equally likely to replace either one of the two external nodes that descend
from xi, yet in only one of the two positions will x2 lie along Xk's search path. Thus the
probability that x2 will lie along this search path is 2. In general, when we insert xi into T'
for i from 1 to k, xi is equally likely to replace any one of i external nodes. Since in only
one of these positions will xi lie along Xk'S search path, there is probability I that xi will

lie along xk's search path. It follows that the expected depth of item xk equals I + Sk=, 7,
which is O(logn) for k < n.

3.7.9 The Dictionary ADT

The dictionary ADT is used to manipulate sets of items drawn from a linear order. It
supports dynamic updating of sets (creation, insertion, and deletion) and various forms of
searching within a set (e.g., searching for a specific item, for the smallest or largest item,
for an item's successor or predecessor). The particular search operations, and the specifics
of how they behave, tend to vary slightly from one version to the next. For the purposes of
this book, we will let the randomized search tree serve as our dictionary.

Using the preprocessor directive #define, we identify RandomizedSearchTree
as a dictionary:

#def ine Dictionary RandomizedSearchTree

Use of the identifier Dictionary in our programs is more suggestive of the type's
behavior than use of the identifier RandomizedSearchTree. Moreover, it allows us to
replace one implementation of a dictionary by another by simply changing the #define
statement accordingly.

3.8 Chapter Notes

Good introductions to data structures are provided by [2, 20, 73, 78, 83, 89, 90]. Robert
Tarjan's monograph [83], though somewhat more advanced than the others, captures the
interplay between data structures and algorithms in an especially elegant and succinct man-
ner.

Taken together, the aforementioned books present several kinds of balanced search
trees guaranteed to have height E)(logn), where n is the size of the tree. Randomized
search trees are discussed in [58]. The rotations they rely on are also used by older bal-
anced search tree schemes-most notably by AVL trees, which date to 1962 [1]-and by
red-black trees [6, 35].

67

Chap. 3: Data Structures

3.9 Exercises

1. Prove that a binary tree of size n contains n + I external nodes.

2. Prove that a binary tree of height h has size at most 2h - 1. (Hint: Induction on h.)

3. Prove that a binary tree of size n has height at least [log(n + 1)1. (Hint: Use the
previous exercise.)

4. Write a member function that computes the height of a SearchTree object.

5. Define the copy constructor for class SearchTree.

6. Modify the definitions of RandomizedNode and RandomizedSearchTree so
that every RandomizedSearchTree object maintains its own random number
generator, which gets seeded once when the object is initialized.

7. Show that a set of items with distinct priorities completely determines a randomized
search tree.

8. Show that rotation preserves the order of nodes in a binary tree.

9. Given two binary trees T and T' of size n, show that there exists a sequence of left
and right rotations that transforms T into T'.

10. Suppose we define a binary search tree whose nodes are connected only by right-child
links, left-child links, and parent links. Write the function next, which locates the
successor to a given node n. (Hint: If n has no right child, its successor is an ancestor.)

11. Show that >I1 1. = 0(log n).

12. It is claimed that the height of randomized search trees of size n averages about
2.99 10g 2 n + 0 (log log n). Experiment with randomized search trees of different
sizes to see if you can verify this experimentally. What constant factor is hidden in
the term 0(1og 2 lg 2 n)?

13. In arguing that the expected length of a search path in a randomized search tree of
size n is O(log n), we use the fact that when an item xi is inserted it is equally likely
to replace each of i external nodes of T'. Why is this the case?

68

4
Geometric Data Structures

In this chapter we define the classes we will need for working with geometric objects in two
and three dimensions. In two dimensions, the operations supported by these classes include
splitting a polygon along a chord into two smaller polygons, computing the intersection
point of two skew lines, and classifying a point relative to a line. In three dimensions they
include classifying a point relative to a plane and finding the intersection of a line and a
triangle. This chapter also provides what little linear algebra we will need.

4.1 Vectors

A coordinate system provides a frame of reference for specifying positions in the plane.
Under the Cartesian coordinate system, the plane is endowed with two coordinate axes with
the same origin (their point of intersection) and same unit length; the axes are perpendicular
to each other and oriented as in Figure 4. la. This establishes a one-to-one correspon-
dence between ordered pairs of numbers (x, y) and points in the plane. The point's first
coordinate x indicates its displacement along the horizontal axis, and the point's second
coordinate y its displacement along the vertical axis.

An ordered pair (x, y) can also be thought of as a vector, as shown in Figure 4. lb.
Geometrically, vector (x, y) is a directed line segment beginning at the origin (0, 0) and
ending at point (x, y). The origin (0, 0)-sometimes denoted 0-is called the zero vector.

Vector addition and scalar multiplication are two fundamental operations for working
with vectors (Figure 4.2). Given two vectors a = (Xa, ya) and b = (Xb, yb), vector addition

69

Chap. 4: Geometric Data Structures

S

i -1-----

(a) (b)

Figure 4.1: Interpreting the ordered pair (2, 1) as (a) a point and (b) a vector.

is defined by a + b = (Xa + Xb, Ya + yb). Geometrically, vectors a and b determine the
parallelogram with vertices 0, a, b, and a + b.

Scalar multiplication involves the multiplication of a vector by a real number, the
scalar (Figure 4.2). Given scalar t and vector b = (Xb, yb), scalar multiplication is defined
by tb = (txb, tyb). The operation scales the length of vector b by factor t. The direction of
the vector is unchanged if t > 0 and reversed if t < 0.

Since a vector begins at the origin, it is fully described by the point at which it
terminates. Alternatively, a vector can be characterized by its length and direction. The
length of vector a = (xa, ya), denoted Ilal, is defined by Iala = X +. This equals
the distance between point a and the origin 0. A unit vector is a vector with length one.
Scaling a nonzero vector a by the reciprocal of its length yields a unit vector - with the
same direction, an operation known as normalization.

The direction of vector a is described by its polar angle ea, the angle the vector makes
with the positive x-axis. Polar angles are measured in counterclockwise rotation starting
at the positive x-axis and lie in the range 0 < 6a < 360 (we will always measure angles in
degrees). Figure 4.3 gives some examples.

Vector subtraction is defined in terms of vector addition and scalar multiplication:
Given vectors a and b, we have b - a = b + (- 1)a. In practice, the operation is carried out
with coordinate-wise subtraction: b - a = (Xb - Xa, Yb - ya). Geometrically, the operation
identifies the directed line segment a, beginning at point a and ending at point b, with the
vector b - a (Figure 4.4).

Figure 4.2: Vector addition and scalar multiplica-
tion.

70

i b.

+ b

Sec. 4.1 Vectors

(1.5,200)

(1,O)

Figure 4.3: Various vectors, given in polar coordinates a = (Ila I. 9a).

Figure 4.4: Vector subtraction.

A directed line segment al is a vector fixed in the plane. Endpoint a is called the
origin of al, and endpoint b the destination. Two directed line segments al and c that
have the same length and direction are translates of each other and can be identified with
the same canonical directed line segment, the vector b - a = d - c. Vector arithmetic
provides the machinery for solving problems involving directed line segments that remain
unchanged by translation. We illustrate this fact with the following example.

Given three non-collinear points po, Pl, p2, the triangle Apop, P2 they determine is
positively oriented if p2 lies to the left of POPI, and negatively oriented if p2 lies to the right
of poVI (Figure 4.5). The problem is to describe a procedure for deciding orientation. It is
reasonable to solve this problem using vectors since the orientation of a triangle does not
change under translation. Letting a = pi - po and b = p2- po, the problem reduces to one
involving the angle 0

ab between the vectors, measured counterclockwise starting at vector a.
If 0 < 6ab < 180, then Apoplp2 has positive orientation; otherwise (180 < Oab < 360)
the triangle has negative orientation.

Vectors a and b assume one of four possible configurations (Figure 4.6). In cases I
and 3 we have 0 < Oab < 180, and in cases 2 and 4 we have 180 < 0ab < 360; in cases I
and 2 the positive x-axis pierces the angle 0ab, and in cases 3 and 4 it does not. The four

71

Chap. 4: Geometric Data Structures

(a) (b)

Figure 4.5: Triangle is (a) positively oriented and (b) negatively oriented.

a
Zb

4a
b K

2 3

a
a

'\ b

4

Figure 4.6: The four configurations relevant for deciding a triangle's orientation.

possible configurations correspond to four possible ranges in which the value Q = Ob- a
lies:

To decide the orientation of the triangle, we could compute Q = Ob- a and then
answer based on which of the four ranges Q lies in. A better way makes use of the
observation that sin(Q) has the same sign as the triangle's orientation. Since

sin(Ob - Oa) = sinfOb cOsOa - cOSOb sin Oa

cos Oa = -X
jaill

sin Oa = Ya
11aill

cos b = b'

we have

sin(Ob - 0a) = I (x AYb - XbYa)
ca tll It a i

Because the lengths 11all and Ijb Il are positive constants, it follows that

sign(sin(Ob - Oa)) = sign(xayb - XbYa)

Case Range of Q = Ob - 0. Orientation of ApopI p2 sin Q I

1 -360< Q<-180 + +

2 -180<Q<O0 - -

3 O<Q<180 + +

4 180<Q<360 1 - -

and
sin Ob= Yb

[jbjj

72

A

1

Sec. 4.2 Points 73

Hence xayb- Xbya has the same sign as the triangle's orientation. In the next section we will
formulate this as a C++ function which reports the orientation of a triangle. It is noteworthy
that the expression xayb - xbya has a simple geometric interpretation: It equals the signed
area of the parallelogram with vertices 0, a, b, and a + b.

4.2 Points

4.2.1 The Point Class

The class Point contains data members x and y to store a point's coordinates. Its member
functions support such operations as classifying this point relative to a given line segment
and computing the point's distance from a given line. Additional member functions treat
this point as a vector: operator functions for performing vector arithmetic, and functions
which return polar angle and length.

class Point {

public:

double x;

double y;

Point(double -x = 0.0, double _y = 0.0);

Point operator+(Point&);

Point operator-(Point&);

friend Point operator*(double, Point&);

double operator[](int);

int operator==(Point&);

int operator!=(Point&);

int operator<(Point&);

int operator>(Point&);

int classify(Point&, Point&);

int classify(Edge&);

double polarAngle(void);

double length(void);

double distance(Edge&);

};

4.2.2 Constructors

The constructor initializes a new point with x and y coordinates:

Point::Point(double -x, double _y)

x(-x), y(Y)

If arguments are not provided, default arguments initialize the point to (0, 0).
A point can also be initialized with a second point. For example, the declaration

Point p (q) initializes a new point p with the same coordinates as point q. In this case,

74 Chap. 4: Geometric Data Structures

initialization is performed by the default copy constructor (supplied by the C++ compiler),
which performs a member-wise copy.

4.2.3 Vector Arithmetic

Vector addition and vector subtraction are invoked by the operators + and -:

Point Point::operator+(Point &p)

return Point(x + p.x, y + p.y);

Point Point::operator-(Point &p)

return Point(x - p.x, y - p.y);

The scalar multiplication operator is made a friend of class Point, rather than a
member of the class, because its first operand is not of type Point. The operator is defined
as follows:

Point operator*(double a, Point &p)

return Point(s * p.x, s * p.y);

The operator[I memberreturns this point'sx-coordinate if called with coordinate
index 0, or its y-coordinate if called with 1:

double Point::operator[](int i)

return (i == 0) ? x : y;

4.2.4 Relational Operators

The relational operators = = and = are used to determine whether two points are equivalent:

int Point::operator==(Point &p)

return (x == p.x) && (y == p.y);

int Point::operator!=(Point &p)

return !(*this == p);

Operators < and > implement the lexicographic order relation in which point a is less
than point b if either (1) a.x < b.x or (2) a.x = b.x and a.y < b.y. Given two points, we
first compare their x-coordinates; if their x-coordinates are equal, we then compare their
y-coordinates. This is sometimes called the dictionary order relation because the same rule
orders two-letter words in a dictionary.

int Point::operator<(Point &p)

{
return ((x < p.x) 1 ((x == p.x) && (y < p.y)));

int Point::operator>(Point &p)

(
return ((x > p.x) | ((X == p.x) && (y > p.y)));

}

Infinitely many other orderings of the points in the plane are possible. Nonetheless,
it is convenient to use operators < and > to establish a canonical ordering since we will
often be storing points in dictionaries, and these operators can be used to help define the
necessary comparison functions.

Before turning to the remaining member functions of class Point, let us consider
the following simple example, which illustrates the use of Point objects. The function
orientation returns I if the three points it is handed are positively oriented, -I if they
are negatively oriented, or 0 if they are collinear. The function implements the method
explained at the end of the previous section.

int orientation(Point &pO, Point &pl, Point &p2)

{
Point a = p2 - pO;

Point b = p2 - p0;

double sa = a.x * b.y - b.x * a.y;

if (Sa > 0.0)
return 1;

if (sa < 0.0)
return -1;

return 0;

4.2.5 Point-Line Classification

One important operation is that of classifying a point relative to a directed line segment. The
operation reports whether the point lies to the left or right of the directed line segment; and
if neither, whether the point lies beyond the directed line segment's destination or behind
its origin; and if neither of these, whether it coincides with the origin, coincides with the
destination, or lies between them. The directed line segment effectively partitions the plane
into seven non-overlapping regions, and the operation reports in which region the point lies
(Figure 4.7).

Sec. 4.2 Points 75

Chap. 4: Geometric Data Structures

Beyond -

Left -'

Between Destination

Behind, Origin Right

Figure 4.7: Partition of the plane into seven regions by a directed line segment.

Member function classify is used to classify this point relative to the directed

line segment PoPI from p0 to pi. It returns an enumeration value indicating the point's
classification:

enum { LEFT, RIGHT, BEYOND, BEHIND, BETWEEN, ORIGIN, DESTINATION 1;

int Point::classify(Point &pO, Point &pl)

Point p2 = *this;

Point a = pl - p0;

Point b = p2 - p0;
double sa = a.x * b.y - b.x * a.y;
if (sa > 0.0)

return LEFT;

if (sa < 0.0)
return RIGHT;

if ((a.x * b.x < 0.0) (a.y * b.y < 0.0))

return BEHIND;

if (a.length() < b.lengtho)
return BEYOND;

if (p0 == p2)
return ORIGIN;

if (pl == p2)
return DESTINATION

return BETWEEN;

}

The orientation of points p0, p1, and p2 is first used to decide whether point p2 lies to

the left of, to the right of, or collinear with p In the last case, additional calculations are
needed. If vectors aspl -p0 and b=p2 -pO point in opposite directions, then point p2 lies

behind directed segment p If vector a is shorter than vector b, then p2 lies beyond .
Otherwise p2 is compared to p0 and pl to decide whether it coincides with one of these
two endpoints or lies between them.

A second version of member function classify, which is passed an edge rather
than a pair of points, is provided for convenience:

int Point::classify(Edge &e)

{
return classify(e.org, e.dest);

I

76

Point-line classification will be used frequently throughout this book. In some appli-
cations a more coarse classification suffices (such as deciding whether a point lies to the left
of a given directed line segment). Other applications will make full use of this classification
scheme.

4.2.6 Polar Coordinates

The polar coordinate system provides a second frame of reference for fixing positions in
the plane. Originating from the origin 0 is a polar axis, a rightward-pointing horizontal ray
as in Figure 4.8. A point a is represented by the pair (ra, 6a). Regarding point a as a vector
originating at the origin, ra is its length and 0a its polar angle (the angle that a makes with
the polar axis, measured in counterclockwise rotation).

The correspondence between pairs (ra, Ga) and points is not one to one; many pairs
can represent the same point. The pair (0, 0) corresponds to the origin for every value of S.
Moreover, (r, 0 + 360k) corresponds to the same point as k ranges over the integers.

Points can be represented in Cartesian coordinates or in polar coordinates, and it is
sometimes necessary to switch from one coordinate system to the other. As evident in
Figure 4.8, the two equations

x = rcosG, y = rsinG

transform a point from polar coordinates (r, 0) into Cartesian coordinates (x, y).
To transform back, the distance coordinate r is given by

r= y

To express polar angle 0 as a function of x and y, observe that the relation tan 0 = Y holds,
from which it follows that

Iy
0 =tan- -, x =A0 [4.1]

x
To use Equation 4.1 in function polarAngle, it is necessary to distinguish between the
quadrants of the plane and to handle the case in which x equals zero:

double Point: :polarAngle (void)

{
if ((x == 0.0) && (y == 0.0))

return -1.0;

if (x == 0.0)

return ((y > 0.0) ? 90 : 270);

Figure 4.8: Point p is described by polar coordi-
nates (r. 6) and Cartesian coordinates (x, y).

Sec. 4.2 Points 77

X

Chap. 4: Geometric Data Structures

double theta = atan(y / x); // in radians

theta *= 360 / (2 * 3.1415926); // convert to degrees

if (x > 0.0) // quadrants 1 and 4

return ((y >= 0.0) ? theta : 360 + theta);

else // quadrants 2 and 3

return (180 + theta);

}

Note that function polarAngle returns -1.0 if this vector is the zero vector (it
returns a nonnegative value otherwise). This will be used later to simplify the definition of
comparison functions based on polar angle.

Member function length returns the length of this vector:

double Point::length(void)

{
return sqrt(x*x + y*y);

Member function distance returns the signed distance from this point to an edge. We
will define the function in subsection 4.5.3.

4.3 Polygons

Polygons are fascinating-surprisingly so, given how simple they are in concept. In this
section we present basic definitions and concepts for talking about polygons and tools for
handling them.

4.3.1 What Are Polygons?

A polygon is a closed curve in the plane composed of straight line segments. The segments
are called the edges or sides of the polygon, and the endpoints where two segments meet are
called its vertices. The number of vertices (or, equivalently, sides) that a polygon possesses
is its size. For brevity, we will often use n-gon to mean a polygon of size n, and IPi to
denote the size of some polygon P.

A polygon is simple if it does not cross itself. A simple polygon encloses a connected
region of the plane, referred to as its interior. The unbounded region surrounding a simple
polygon forms its exterior, and the set of points lying on the polygon itself forms its
boundary. In this book we will take polygon to mean simple filled polygon: the union of
the boundary and interior of a simple polygon. To say, for instance, that a point lies in a
polygon means that the point belongs either to the (simple) polygon's boundary or interior.

Vertices are ordered cyclically around a polygon boundary. Two vertices that are the
endpoints of a common edge are neighbors and are said to be adjacent to one another. A
vertex's clockwise neighbor is called its successor, and its counterclockwise neighbor its
predecessor. A vertex chain, or simply chain, is a section of a polygon boundary. Polygon
traversal involves moving along a chain from vertex to adjacent vertex, in either clockwise

78

Sec. 4.3 Polygons

or counterclockwise rotation. Traversal often proceeds full circle around the entire polygon
boundary, such as when it is necessary to visit every vertex.

The vertices of a polygon are classified as convex or reflex. A vertex is convex
if the interior angle at the vertex-through the polygon interior-measures less than or
equal to 180 degrees. A vertex is reflex otherwise (its interior angle measures greater than
180 degrees).

A line segment between any two nonadjacent vertices is called a diagonal. A diagonal
is called a chord or internal diagonal if it lies in the polygon, not crossing the polygon's
exterior. Adding a chord to a polygon splits it into smaller subpolygons. Figure 4.9
illustrates some of the notions we have covered relating to polygons.

It is sometimes convenient to regard a point or a line segment as a degenerate polygon.
A 1-gon consists of a single vertex and a single zero-length edge that connects the vertex
to itself. A 2-gon consists of two vertices and two coincident edges that connect the two
vertices. Among other benefits, the use of degenerate polygons often simplifies polygon
construction: Starting with a 1-gon, we insert a second vertex to form a 2-gon, followed by
additional vertices to form conventional polygons of size 3 or greater. By regarding points
and line segments as polygons, the initial stages of the process are no different in kind from
later stages: Every stage involves the manipulation of polygons.

4.3.2 Convex Polygons

A region in the plane is convex if for any two points in the region, the line segment between
the two points lies in the region. In Figure 4.9, polygon (a) is convex whereas polygon (b)
is not (since the line segment Tq leaves the polygon). Note that the boundary of a convex
polygon is not convex, but the interior of a convex polygon is.

Convexity has a number of properties that make convex polygons easier to work with
than arbitrary polygons. For example, every diagonal of a convex polygon is a chord. In
addition, every vertex of a convex polygon is convex. (In a nonconvex polygon, at least one
vertex is reflex.) From this it follows that a clockwise traversal of a convex polygon either
continues straight or turns right at every vertex.

Vertices
(a) (b)

Figure 4.9: Basic concepts involving polygons.

79

Chap. 4: Geometric Data Structures

Another property is that the intersection A n B of any two convex regions A and B is
convex. (To see why, suppose that p and q are any two points in A n B. Since both p and q
lie in A and A is convex, line segment pq lies in A. Similarly, Tq lies in B. Hence Tq lies in
A n B. so A n B must be convex.) It follows that the intersection of two convex polygons is
convex-in fact, a (possibly degenerate) convex polygon. Moreover, since a line is convex,
the intersection of a line and a convex polygon must be convex: a line segment, or a single
point if the line merely grazes the polygon at some vertex. For these and other properties,
we will often work with convex polygons in this book.

4.3.3 The Vertex Class

We will represent a polygon by its cycle of vertices, stored in a circular doubly linked
list. Each node corresponds to a vertex and links to its two neighbors. By following links
we can traverse the polygon boundary in either sense of rotation, and by inserting and
removing nodes-and updating links generally-we can create and dynamically modify
the polygon.

The classes Vertex and Polygon support this scheme. The polygon is stored in
a circular doubly linked list of Vertex objects. Since a vertex of a polygon behaves both
like a point in the plane and like a node in a linked list, class Vertex is derived from both
class Point and class Node. The Polygon class contains a data member which points
to some vertex of the linked list representing the polygon. Class Polygon serves as the
public interface for polygons.

Class Vertex inherits data members -next and _prev from base class Node, and
x and y from base class Point. By convention, - next points to this vertex's successor
(its clockwise neighbor), and _prev to this vertex's predecessor (its counterclockwise
neighbor).

class Vertex: public Node, public Point {
public:

Vertex(double x, double y);
Vertex(Point&);
Vertex *cw(void);
Vertex *ccw(void);
Vertex *neighbor(int rotation);
Point point(void);
Vertex *insert(Vertex*);
Vertex *remove(void);
void splice (Vertex*);
Vertex *split (Vertex*);
friend class Polygon;

A Vertex object can be initialized from a point or from x- and y-coordinates:

Vertex: :Vertex(double x, double y)
Point(x,y)

}

80

Sec. 4.3 Polygons 81

Vertex::Vertex(Point &p)

Point (p)

Member functions cw and ccw yield this vertex's successor and predecessor, respec-
tively:

Vertex *Vertex::cw(void)

return (Vertex*)_next;

Vertex *Vertex::ccw(void)

return (Vertex*)_prev;

Member function neighbor returns whichever neighbor is specified by parameter
rotation, one of the enumeration values CLOCKWISE or COUNTER-CLOCKWISE:

Vertex *Vertex::neighbor(int rotation)

return ((rotation == CLOCKWISE) ? cw() : ccwo);

Member function point returns the point in the plane where this vertex lies:

Point Vertex::point(void)

return *((Point*)this);

Member functions insert, remove, and splice correspond to their counterparts
defined in base class Node:

Vertex *Vertex::insert(Vertex *v)

return (Vertex *)(Node::insert(v));

Vertex *Vertex::remove(void)

return (Vertex *)(Node::removeo);

void Vertex::splice(Vertex *b)

Node::splice(b);

Chap. 4: Geometric Data Structures

Note that remove and insert cast their return values to type pointer-to-Vertex
before returning. Explicit type coersion is needed here because C++ will not automatically
convert a pointer to the base class to point to a derived class object. The reason is that the
C++ compiler cannot be sure that there is a derived class object present to be pointed to,
since the base class object need not be part of a derived class object. (C++ will, on the other
hand, automatically convert a pointer to the derived class to point to a base class object
since every derived class object includes within itself a base class object.)

The last member function, Vertex: : split, will be defined shortly.

4.3.4 The Polygon Class

A polygon is represented by a Polygon object. The class contains two data members.
The first, _v, points to some vertex of the polygon, the current position of the polygon's
window. Most operations on polygons refer either to this window or to the vertex in the
window. We will sometimes refer to the vertex in the window as the current vertex. The
second data member, _size, holds the size of the polygon:

class Polygon
private:

Vertex *-v;
int -size;
void resize(void);

public:

Polygon (void);
Polygon (Polygon&);
Polygon (Vertex*);
-Polygon(void);
Vertex *v(void);
int size(void);
Point point (void);
Edge edge(void);
Vertex *cw(void);
Vertex *ccw(void);
Vertex *neighbor(int rotation);
Vertex *advance(int rotation);
Vertex *setV(Vertex*);
Vertex *insert(Point&);
void remove(void);
Polygon *split (Vertex*);

CONSTRUCTORS AND DESTRUCTORS
There are several constructors for class Polygon. The constructor that takes no

arguments initializes an empty polygon:

Polygon :Polygon(void)
_v(NULL), -size(O)

82

The copy constructor takes some polygon p and initializes a new polygon with p. It
performs a deep copy, duplicating the linked list in which p is stored. The new polygon's
window is placed over the vertex corresponding to p's current vertex:

Polygon::Polygon(Polygon &p)

{
size = p.-size;

if Size == 0)
v = NULL;

else {
-v = new Vertex(p.point());
for (int i = 1; i < -size; i++) {

p.advance(CLOCKWISE);

_v = _v->insert(new Vertex(p.point(o));

}
p.advance(CLOCKWISE);

v = _v->cwO;

}

The third constructor initializes a polygon with a circular doubly linked list of vertices:

Polygon::Polygon(Vertex *v)
_v(v)

{
resize 0;

}

The constuctor calls private member function resize to update member -si z e.
In general, resize must be called whenever a vertex chain of unknown length is added to
or removed from a polygon. Function resize is defined as follows:

void Polygon::resize(void)

{
if (-v == NULL)

size = 0;
else (

Vertex *v = -v->cw();

for (_size = 1; v != -v; ++size, v = v->cw())

The destructor Polygon deallocates this polygon's vertices before deleting the
Polygon object itself:

Polygon::-Polygon(void)

{
if (-v) {

Vertex *w = -v->cwO;

Sec. 4.3 Polygons 83

Chap. 4: Geometric Data Structures

while (_ !- w) (
delete w->removeo;

V = y--cw);

I
delete __;

ACCESS FUNCTIONS
The next several member functions access data about this polygon. Function v returns

this polygon's current vertex, and function size this polygon's size:

Vertex *Polygon::v(void)

return v;

int Polygon::size(void)

return size;

The pointer returned by member function v can be used as an additional window into the
polygon, to supplement the polygon's implicit window. Some applications will require the
simultaneous use of several windows into the same polygon-the sole window maintained
implicitly by the class does not always suffice.

Member function point returns the point in the plane where the current vertex lies.
Member function edge returns the current edge. The current edge originates at the current
vertex and terminates at the current vertex's successor:

Point Polygon::point(void)

{
return y->pointo;

Edge Polygon::edge(void)

return Edge(pointo, v->cw()->point0);

We will define the Edge class in the next section.
Member functions cw and ccw return the current vertex's successor and predeces-

sor without moving the window, and neighbor returns the current vertex's successor
or predecessor, depending on the argument it is called with (CLOCKWISE or
COUNTER-CLOCKWISE):

Vertex *Polygon::cw(void)

{

return v->cw();

84

Sec. 4.3 Polygons 85

Vertex *Polygon::ccw(void)

I
return -v->ccw();

}

Vertex *Polygon::neighbor(int rotation)

{
return _v->neighbor(rotation);

UPDATE FUNCTIONS

Member functions advance and setV move the window over a different vertex;
advance moves it to the current vertex's successor or predecessor, as specified by the
argument:

Vertex *Polygon::advance(int rotation)

return _v = _v->neighbor(rotation);

}

Member function setV moves the window over the vertex v supplied as an argument:

Vertex *Polygon::setV(Vertex *v)

return -v = v;

It is the application's responsibility to ensure that v is a vertex of this polygon.
Member function insert inserts a new vertex after the current vertex and then

moves the window over the new vertex:

Vertex *Polygon::insert(Point &p)

{
if (-size++ == 0)

-v = new Vertex(p);

else

_v = _v->insert(new Vertex(p));

return _v;

Member function remove removes the current vertex. The window is moved over
the predecessor, or is undefined if the polygon is now empty:

void Polygon::remove(void)

{
Vertex *v = -V;

_v = (--_size == 0) ? NULL : -v->ccwCI;

delete v->removeo;

Chap. 4: Geometric Data Structures

SPLITTING POLYGONS
Polygon splitting involves subdividing a polygon into two smaller subpolygons. The

cut is made along some chord. To split along chord al, we first insert a duplicate of vertex a
after a and a duplicate of vertex b before b (call the duplicates ap and bp). Then we splice a
and bp. The process is illustrated in Figure 4.10.

Member function Polygon: :split is defined in terms of Vertex: :split.
The latter function partitions a polygon along the chord connecting this vertex (which plays
the role of a) to vertex b. It returns a pointer to vertex bp, the duplicate of b:

Vertex *Vertex::split(Vertex *b)

{ // insert bp before vertex b

Vertex *bp = b->ccw0->insert(new Vertex(b->pointo));

insert(new Vertex(pointo)); // insert ap after this vertex

splice(bp);

return bp;

}

Function Po lygon: : split splits this polygon along the chord connecting its cur-
rent vertex to vertex b. It returns a pointer to the new polygon, whose window is placed
over bp, the duplicate of b. This polygon's window is not moved:

Polygon *Polygon::split(Vertex *b)

{
Vertex *bp = _v->split(b);

resizeo;
return new Polygon(bp);

}

Function Polygon: : split must be used with some care. If vertex b is the suc-
cessor to the current vertex -v, the operation leaves this polygon unchanged. If the cut
occurs along a diagonal that is not a chord, one or both of the resulting "polygons" may
self-cross. If vertices b and _v belong to different polygons, the split operation joins the
two polygons by two coincident edges that connect the two vertices.

4.3.5 Point Enclosure in a Convex Polygon

In this and the following subsection, we present two simple programs involving polygons.
Program pointInConvexPolygon is handed a point s and convex polygon p, and

ap bp
a b

Figure 4.10: Splitting a polygon along chord ab. The current vertices (in each polygon's window) are circled.

86

Sec. 4.3 Polygons 87

returns TRUE just if the point lies in (the interior or boundary of) polygon p:

bool pointInConvexPolygon(Point &s, Polygon &p)

(
if (p.size() == 1)

return (a == p.point(o);

if (p.size() == 2) 1

int c = s.classify(p.edge());

return ((c==BETWEEN) || (c==ORIGIN) | (c==DESTINATION));

}
Vertex *org =p.v();

for (int i = 0; i < p.sizeo; i++, p.advance(CLOCKWISE))

if (s.classify(p.edgefl) == LEFT)

p.setV(org);

return FALSE;

}
return TRUE;

}

The preceding function first handles the special cases in which polygon p is a 1-gon or a 2-
gon. In the general case, the algorithm traverses the polygon boundary-moves the window
from vertex to adjecent vertex-while comparing point s to each edge in turn. Since p is
assumed to be convex, point s lies outside the polygon only if s lies to the left of some
edge. Note that the program restores the initial position of p's window upon returning.

4.3.6 Finding the Least Vertex in a Polygon

The following function is passed a polygon p and a comparison function cmp, and then
finds the least vertex in p. Here least vertex means whichever vertex is less than the others
under the linear ordering of points given by cmp. Function leastVertex moves p's
window over the least vertex and returns the vertex:

Vertex *leastvertex(Polygon &p, int (*cmp)(Point*,Point*))
(

Vertex *bestV = p.vo;

p.advance(CLOCKWISE);

for (int i = 1; i < p.sizeo; p.advance(CLOCKWISE), i+t)

if ((*cmp)(p.vo, bestV) < 0)

bestV = p.vo;

p.setV(bestV);

return bestV;

}

For instance, to find the leftmost vertex in a polygon, we call leastVertex with the
following comparison function:

int leftToRightCmp(Point *a, Point *b)

{
if (*a < *b) return -1;

if (*a > *b) return 1;

return 0;

)

Chap. 4: Geometric Data Structures

We use the following comparison function to find the rightmost vertex:

int rightToLeftCmp(Point *a, Point *b)

return leftToRightCmp(b, a);

}

We will use functions pointInConvexPolygon and leastVertex often in
this book. We will also use the two comparison functions defined here, as well as others to
be defined later as the need arises.

4.4 Edges

Most every algorithm we will cover involves lines in one form or another. The line seg-
ment popi consists of the endpoints po and pi together with the points that lie between
them. When the order of po and pi is important, we speak of the directed line segment popjI.
Endpoint pa is the origin of the directed line segment, and pi the destination. We will usu-
ally refer to a directed line segment as an edge when it is the side of some polygon; the
edge is directed so that the polygon's interior lies to its right. An infinite (directed) line
is determined by two points and is directed from the first point to the second. A ray is a
semi-infinite line starting at the origin and passing through the destination.

4.4.1 The Edge Class

The Edge class will be used to represent all forms of lines. The class is defined as follows:

class Edge {

public:
Point org;

Point dest;

Edge(Point &_org, Point &_dest);

Edge(void);

Edge &rot(void);

Edge &flip(void);

Point point(double);

int intersect(Edge&, double&);

int cross(Edge&, double&);

bool isVertical(void);

double slope(void);

double y(double);

I;

An edge's origin and destination endpoints are stored in data members org and dest,
respectively. The Edge constructor initializes these data members:

Edge::Edge(Point &-org, Point &-dest)

org(_org), dest(_dest)

}

88

Sec. 4.4 Edges 89

It is also useful to have a constructor for class Edge which takes no arguments:

Edge::Edge(void) :

org(Point(O,O)), org(Point(1,0))

)

4.4.2 Edge Rotations

An edge rotation pivots an edge 90 degrees clockwise around its midpoint. Two suc-
cessive edge rotations are called an edge flip since they reverse the direction of an edge.
Three successive rotations effectively pivot an edge 90 degrees counterclockwise around
its midpoint. Four successive edge rotations leave an edge unchanged. This is illustrated
in Figure 4.11.

Figure 4.12 shows how we rotate edge al into edge cd. Where vector b - a = (x, y),
the vectorn, perpendicularto vectorb-a, is given by n = (y, -x). The midpointm between
endpoints a and b is given by m = 2 (a + b). Points c and d are then given by c = m-2 n
and d = m + n. Rotation is implemented by member function rot as follows:

Edge &Edge::rot(void)

Point m = 0.5 * (org + dest);
Point v = dest - org;
Point n(v.y, -v.x);
org = m - 0.5 * n;

dest = a + 0.5 *n;

return *this;

?

Observe that function rot is destructive: It changes the current edge instead of
creating a new edge. The function returns a reference to this edge so calls to rot can be
readily employed in more complex expressions. This permits, for example, the following
concise definition of member function f lip, for flipping the direction of this edge:

Edge &Edge::flip(void)

{
return rot().rottl;

I

e3
C -

e,

Figure 4.11: Edge ei is the result of applying i suc-
a cessive edge rotations to edge eo.sS iS v

Chap. 4: Geometric Data Structures

d

Figure 4.12: Vectors involved in rotating edge ab.
The rotated edge cd has endpoints c = m - n and

d = m + 2 n.
2

Within the definition of member function flip, the first call to rot (to the left of the
member-access operator) rotates this edge; the second call to rot then rotates this edge
once again.

4.4.3 Finding the Intersection of Two Lines

The infinite line ab through points a and b can be written in parametric form as

P(t) = a + t(b-a) [4.2]

where the value of parameter t ranges over the real numbers. (If the value of t is restricted
to the range 0 < t < 1, Equation 4.2 represents the line segment ab.) The parametric
form of a line establishes a correspondence between the real numbers and the points on the
line. Figure 4.13 shows the points on an infinite line corresponding to various values of
parameter t.

Member functions Edge: : intersect and Edge: :point are designed to work
together to find the intersection point of two infinite lines e and f . Where e and f are Edge
objects, the code fragment

double t;

Point p;
if (e.intersect(f, t) == SKEW)

p = e.point(t);

assigns t the parametric value (along line e) of the point at which lines e and f intersect, and
then sets p to this point. Function intersect returns the enumeration value SKEW if the
infinite lines cross at a point, COLLINEAR if the lines are collinear, or PARALLEL if they
are parallel. Function point is handed a parametric value t and returns the corresponding
point. The task is performed by two coordinated functions, rather than by a single function,

P(0.5)- P(2)

P(-O.5) b= P(1)
~a =P(O)

Figure 4.13: Various points on the line through points a and b.

90

c

because we are sometimes interested only in the parametric value of an intersection point
rather than in the intersection point itself.

The implementation of member function point is simple-the parametric value t
is substituted into the parametric equation for this line:

Point Edge: :point(double t)

return Point(org + t * (dest - org));

The implementation of member function intersect relies on the notion of the
dot product a - b of two vectors a = (xa, ya) and b = (Xb, Yb), which is defined by
a b = XaXb + YaYb. The dot product has a number of important properties, including the
following basic ones:

1. Where a, b, and c are vectors, we have a b = b a and

2. a (b+c) =a-b+a-c= (b+c)-a.

3. Where s is a scalar, (sa) . b = s(a - b) and a . (sb) = s(a b).

4. If a is the zero vector, then a . a = 0; otherwise a . a > O.

5. IlaI12 = a -a.

Using these basic properties, we can show the following property on which our line-
intersection technique depends: Two vectors a and b are perpendicular if and only if a b = 0.
To see why this is true, observe that a and b are perpendicular if and only if

Ila -bli = Ila + bll

This is illustrated in Figure 4.14a. Squaring both sides yields

(a - b) - (a - b) = (a + b) . (a + b)

Using the aforementioned properties 1 through 3, this expands to

a a - 2a . b + b -b = a a + 2a . b + b b

Making cancellations yields
4a b =0

or
a -b=0

Hence a - b = 0 if and only if vectors a and b are perpendicular.
We can say even more. If the angle between vectors a and b measures less than

90 degrees, then Ia - bll < Ia + bli (Figure 4.14b). The same sort of argument can be
used to show that this is equivalent to the condition a b > 0. It can be shown similarly
that the angle between a and b measures greater than 90 degrees if and only if a b < 0
(Figure 4.14c). These results are summarized by the following theorem:

Sec. 4.4 Edges 91

Chap. 4: Geometric Data Structures

b
Ila - bil

a

1//

-D
(a) (b) (c)

Figure 4.14: The angle between vectors a and b measures (a) 90 degrees if ha-bll = ha + bhl, (b)
less than 90 if ha - bil < Ia + bhh, and (c) greater than 90 if Ia - bhl > Ia + bil.

Theorem 2 (Dot Product Theorem) Let a and b be vectors, and let 0 be the angle between
them. Then

a * b } Oif and only if { | } 90 degrees.

The dot product theorem can be used to find the intersection point of two lines ab

and d. Where b is described by P(t) = a + t(b - a), we seek the value of t such
that lines ab and cd cross at point P(t). Since vector P(t) - c is to coincide with

line cd , both P(t) - c and ed must be perpendicular to the same vector n. Therefore,
using the dot product theorem, we wish to solve for t in the equation

n (P(t)-c) = 0 [4.3]

Since P(t) = a + t (b - a), we can rewrite Equation 4.3 as

n * ((a +t(b-a)) -c) =0

Using the basic properties of dot product yields

n (a - c) + n * (t(b - a)) = 0

Then distributing out t gives us

n (a-c)+t[n-(b-a)] =0

From this it follows that

t = An . (a c) (b-a) 0 0 [4.41
n-(b-a)'

Equation 4.4 holds if and only if infinite lines ab and cd are skew, implying
that they intersect in a single point. If the two lines are parallel or coincident, the fact is
indicated by the condition that n . (b - a) = 0, since vectors b - a and d - c are then both
perpendicular to the same vector n. The following implementation of member function
intersect results:

Ila -

92

Sec. 4.4 Edges 93

enum (COLLINZAR, PARALLEL, SKEW, SKZWCROSS, SKEWNOCROSS);

int Edge::intersect(Edge &e, double &t)

{
Point a = org;

Point b = dest;

Point c = e.org;

Point d = e.dest;

Point n = Point((d-c).y, (c-d).x);

double denom = dotProduct(n, b-a);

if (denom == 0.0) {

int aclass = org.classify(e);

if ((aclass==LEFT) || (aclass==RIGHT))

return PARALLEL;

else

return COLLINEAR;

)
double num = dotProduct(n, a-c);

t = -nun / denom;

return SKEW;

The implementation of function dotProduct is straightforward:

double dotProduct(Point &p, Point &q)

return (p.x * q.x + p.y * q.y);

}

Member function Edge: :cross returns SKEW-CROSS if and only if this line seg-
ment intersects line segment e. If the line segments do intersect, the parametric value
along this line segment corresponding to the point of intersection is returned through
reference parameter t. Otherwise the function returns COLLINEAR, PARALLEL, or
SKEW-NO-CROSS, as appropriate:

int Edge::cross(Edge &e, double &t)

{
double s;

int crossType = e.intersect(*this, s);

if ((crossType==COLLINEJR) I1 (crossType==PARALLEL))

return crossType;

if ((s < 0.0) 11 (a > 1.0))

return SKEW-NO-CROSS;

intersect(e, t);

if ((0.0 <= t) && (t <= 1.0))

return SKEWCROSS;

else

return SKEWNOCROSS;

Chap. 4: Geometric Data Structures

4.4.4 Distance from a Point to a Line

The definition of function Point:: distance illustrates some of the ideas we have just
covered. This member function of class Point is passed an edge e, and it returns the
signed distance from this point to edge e. Here the distance from point p to edge e equals
the minimum distance from p to any point along the infinite line determined by e. The
signed distance is positive if p lies to the right of e, negative if p lies to the left of e, and
zero if p is collinear with e.

Member function distance is defined as follows:

double Point::distance(Edge &e)

{
Edge ab = e;

ab.flip().roto; I/ rotate

Point n(ab.dest - ab.org);

n = (1.0 / n.lengtho) * n;

Edge f(*this, *this + n);

double t;

f.intersect(e, t);

ab 90 degrees counter-clockwise

// n = vector perpendicular to e
// normalize n

// f = n, positioned at this point

// t = signed distance along f

// at which f crosses edge e

The function first obtains the unit-length vector n, such that n is perpendicular to
edge e and n points to the left of e. It then translates n such that n's origin coincides with
this point, yielding edge f . Finally, the function computes the parametric value of edge f 's
intersection with edge e. Since f is perpendicular to e, is of unit length, and originates at
this point, parametric value t equals the signed distance from this point to edge e.

4.4.5 Additional Utilities

The last three member functions of class .Edge are provided for convenience. Member
function isVertical returns TRUE only if this edge is vertical:

bool Edge::isVertical(void)

{
return (org.x == dest.x);

Member function slope returns the slope of this edge, or DBL-MAX if this edge is
vertical:

double Edge::slope(void)

{

if (org.x != dest.x)

return (dest.y - org.y) / (dest.x - org.x);

return DBL-MAX;

}

return t;

)

94

Sec. 4.5 Geometric Objects in Space 95

Member function y is passed a value x and returns the value y such that (x, y) is a
point on this infinite line. The function is defined only if this edge is not vertical:

double Edge::y(double x)

return slope() * (x - org.x) + org.Y;

4.5 Geometric Objects in Space

Although we will work mainly in the plane, a few sections of this book will involve geometric
objects in three-dimensional space. In this section we will present the classes Point3D,
Triangle3D, and Edge3D for manipulating points, triangles, and edges lying in space.
The class definitions will be bare bones, providing little more than the functionality we will
need. Moreover, for the sake of conciseness, many of the member functions will be defined
within the definition of their classes and will be described tersely. This should not hinder
clarity since most of the relevant concepts have already been explained in the setting of the
two-dimensional plane; new concepts will be discussed in more detail.

4.5.1 Points

Under the Cartesian coordinate system, a point in space is represented by an ordered triple
(x, y, z) of real numbers. The Point3D class contains data members x, y, and z to hold
a point's coordinates, a constructor, operator functions for the basic vector operations, the
operator function [] for coordinate access, a member function for computing dot product,
and one for classifying a point relative to a plane:

class Point3D {

public:

double x;
double y;

double z;

Point3D(double -x, double _y, double -z)

X(-x), y(-y), z(-z) {}
Point3D(void)

{}
Point3D operator+(Point3D &p)

{ return Point3D(x + p.x, y + p.y, z + p.z); }
Point3D operator-(Point3D &p)

I return Point3D(x - p.x, y - p.y, z - p.z); }
friend Point3D operator*(double, Point3D &);

int operator==(Point3D &p)
C return ((x == p.x) && (y == p.y) && (z == p.z)); I

int operator!=(Point3D &p)

{ return !(*this == p); ?
double operator~l(int i)

{ return ((i == 0) ? x : ((i == 1) ? y : z)); }

Chap. 4: Geometric Data Structures

double dotProduct(Point3D &p)

{ return (x*p.x + y*p.y + z*p.z); }

int classify(Triangle3D &t);

};

Scalar multiplication is implemented like this:

Point3D operator*(double s, Point3D &p)

{
return Point3D(s * p.x, S * p.y, s * p.z);

}

Member function classif y reports which side of the plane determined by triangle t
this point lies in. Its definition will be given in the following subsection.

4.5.2 Triangles

A triangle is determined by its three vertices. For working with triangles in space, it is useful
to keep track of each triangle's bounding box and normal vector, as well as its vertices. The
bounding box of a geometric object is the smallest box that contains the object, where the
edges of the box are parallel to the major axes. Figure 4.15 gives some examples.

A vector perpendicular to a given plane P is called a normal to P. Given any three
non-collinear points po, pl, and p2 lying in plane P, a normal to P is given by the cross
product vector a x b, where vectors a = pi -po and b = p,-po. Letting a = (Xa, Ya, Za)
and b = (Xb, yb, zb), the cross product vector is defined by

a x b = (Yazb - ZaYb, ZaXb -XaZb, XaYb - YaXb) [4.5]

The cross product of vectors a and b is returned by the following function:

Point3D crossProduct(Point3D &a, Point3D &b)
{

return Point3D(a.y * b.z - a.z * b.y,
a.z * b.x - a.x * b.z,
a.x * b.y - a.y * b.x);

}

/
(a) (b) (c)

Figure 4.15: Bounding box of(a) a blob in the plane, (b) a triangle in the plane, and (c) a triangle in space.

96

k

11

Sec. 4.5 Geometric Objects in Space

To show that the cross product vector a x b is perpendicular to the plane spanned by
vectors a and b, we need only show that a . (a x b) = 0 and b. (a x b) = 0. We have

a (a x b) = (Xa, Ya., Za) * (YaZb - ZaYb, ZaXb - XaZb, XaYb - YaXb)

=0

since all terms cancel. That b- (a x b) = 0 is shown similarly.
The direction of the cross product vector is shown in Figure 4.16. When viewed from

point a x b in space, triangle Arab is positively oriented. The normal vector having the
same length but opposite direction is given by -a x b = b x a.

Observe that if vectors a and b lie in the xy-plane, then the length of their cross
product is Ia x bli = IXaYb - YaXbl, the area of the parallelogram with vertices 0, a, b,
and a + b.

Having discussed bounding boxes and normal vectors, wecan define the Triangle3D
class:

class Triangle3D (
private:

Point3D -v[3J;

Edge3D _boundingBox;

Point3D -n;

public:

int id;

int mark;

Triangle3D(Point3D &vO, Point3D &vl, Point3D &v2, int id);

Triangle3D(void)

Point3D operatort](int i)

(return -v[iI; 1

Edge3D boundingBox()
{ return _boundingBox; }

Point3D n(void)

{ return -n;

double length(void)
{ return sqrt(x*x + y*y + z*z);

};

ax

LAa =-a xu andb.
Figure 4.16: The cross product a x b of vectors a

97

Chap. 4: Geometric Data Structures

This triangle's vertices are stored in array _v. Its bounding box is represented by the edge
_boundingBox extending from the bounding box's minimum-coordinate corner to its
maximum-coordinate corner. The unit normal to the triangle, stored in data member _n,
equals the cross product vector (_-v [1] -v [0]) x (-v [2] -- v [0]), divided by its
length. Data member id is an identifier for this triangle.

The first constructor Triangle3 makes use of the macro functions max3 and min3
for finding the largest and smallest of three numbers:

#define min3(A,B,C) \\

((A)<(B) ? ((A)<(C)?(A):(C)) : ((B)<(C)?(B):(C)))

#define max3MA,BC) \

((A)>(B) ? ((A)>(C)?(A):(C)) : ((B)>(C)?(B):(CM)

Triangie3D::Triangle3D(Point3D &vO, Point3D &vl, Point3D &v2,

int _id)

id = _id;

mark = 0;

-vCO] = vO;

v1]0= vi;

v121 = v2;

-boundingBox.org.x = min3(vO.x, vl.x, v2.x);

-boundingBox.org.y = min3(vO.y, vl.y, v2.y);

-boundingBox.org.z = min3(vO.z, vl.z, v2.z);

_boundingBox.dest.x = max3(vO.x, vl.x, v2.x);

_boundingBox.dest.y = max3(vO.y, vl.y, v2.y);

boundingBox.dest.z = -ax3(vO.z, vl.z, v2.z);

-n = crossProduct(vl - vO, v2 - v0);

-n = (1.0 / _n.lengtho) * -n;

The vertices of a Triangle3D object are accessed through operator [], which
is passed the index of the vertex (0, 1, or 2). For instance, where t is a Triangle3D
object, t [0) yields t's first vertex. The bounding box and the unit normal vector are
accessed through member functions boundingBox and n, respectively. The geometric
data members are declared private so the class can ensure self-consistency.

The plane determined by a triangle subdivides space into two half-spaces. The
half-space into which the triangle's normal vector points is called the triangle's positive
half-space since the triangle appears to be positively oriented when viewed from this half-
space. The other half-space is called the triangle's negative half-space.

With the definition of class Triangl e3 D in hand, we are in a position to define mem-
ber function Point3D: : classify. Recall that the function reports the half-space-
relative to a given triangle p-in which this point lies. The function returns POSITIVE
or NEGATIVE if this point lies in p's positive or negative half-space; it returns ON if this
point lies on the plane determined by p:

#define EPSILON1 1E-12

enum { POSITIVE, NEGATIVE, ON };

98

Sec. 4.5 Geometric Objects in Space 99

int Point3::classify(Triangle3 &p)

{
Point3 v = *this - pE0];

double len = v.lengtho;

if (len == 0.0)

return ON;

v = (1.0 / len) * v;

double d = v.dotProduct(p.no);

if (d > EPSILON1)

return POSITIVE;

else if (d < -EPSILONI)

return NEGATIVE;

else

return ON;

Vectorv represents a directed line segment which originates at some point on the plane
(p [O]) and terminates at the point to be classified (*this). The dot product theorem is
used to decide whether the angle between v and the plane's normal vector n is less than,
equal to, or greater than 90 degrees.

The function centers the plane of triangle tri within a slab of width 2 *EPSILON1.

A point which lies within this slab is considered to lie on the plane. This is intended to
avoid faulty decisions attributable to round-off, such as when a point on the plane appears
to lie off the plane due to limitations of representation.

4.5.3 Edges

The Edge3D class is defined as follows:

class Edge3D (

public:

Point3D org;

Point3D dest;

Edge3D(Point3D &_org, Point3D &_dest)

org(_org), dest(_dest) C)

Edge3D(void)

0)

int intersect(Triangle3D &p, double &t);

Point3D point(double t);

};

The first constructor initializes an edge with origin and destination endpoints, which are
stored in data members org and dest. Member functions intersect and point
play the same role as their counterparts in class Edge. Function intersect finds the
parametric value of the infinite line determined by this edge, at the point where the line
crosses the plane of triangle p. If the line and plane intersect at a point, the function
passes back the parametric value via reference parameter t and returns the enumeration

Chap. 4: Geometric Data Structures

value SKEW; otherwise it returns either PARALLEL or COLLINEAR. Like its counterpart
Edge: : intersect, member function intersect is implemented using Equation 4.4:

int Edge3D::intersect(Triangle3D &p, double &t)

{
Point3D a = org;
Point3D b = dest;
Point3D c = p[O]; // some point on the plane

Point3 n = p.no;
double denom = n.dotProduct(b - a);

if (denom == 0.0) {
int aclass = org.classify(p);
if (aclass!=ON)

return PARALLEL;

else
return COLLINEAR;

}
double num = n.dotProduct(a - c);

t = -nun I denom;

return SKEW;

Member function po int returns the point along this line corresponding to parametric
value t:

Point3D Edge3D::point(double t)

{
return org 4 t * (dest - org);

4.6 Finding the Intersection of a Line and a Triangle

In this section we solve a problem using some of the tools presented in this chapter. Our
solution to the problem-that of deciding whether a line pierces a triangle in space-will
prove useful later in this book.

A projection is a mapping from a higher-dimensional space into a lower-dimensional
space. One of its uses is to transform a problem from a higher-dimensional setting to an
equivalent problem in a lower-dimensional setting, where there are techniques to solve it.
Consider the problem of deciding whether a given infinite line intersects a given triangle p
in space. Figure 4.17a depicts one approach to this problem. First compute the point q
where the infinite line pierces the plane of triangle p. Then perpendicularly project both p
and q into the xy-plane, yielding triangle p' and point q'. The resulting problem in two
dimensions-that of deciding whether p' contains q'-is equivalent to the original problem:
The answer to the two-dimensional problem is yes if and only if the answer to the original
three-dimensional problem is yes. The advantage in applying this transformation is that the
two-dimensional problem is easier to solve than the original three-dimensional problem.

100

Sec. 4.6 Finding the Intersection of a Line and a Triangle

y

(a) (b)

Figure 4.17: (a) Deciding whether a line pierces triangle p. (b) Both triangles project degenerately
to the same line segment.

Projection is a many-to-one mapping, and difficulties can arise when too much infor-
mation is lost. In Figure 4.1 7b, both triangles project (degenerately) to the same line segment
in the xy-plane. It is not hard to see why this two-dimensional problem is not equivalent to
the original problem. Given two triangles pi and p2 that project to the same line segment
and an infinite line e in space, the two three-dimensional problems that result-one involv-
ing e and pi, the other involving e and p2-transform to the same two-dimensional problem
in the xy-plane. Yet if e pierces (say) triangle pi but not triangle p2, the two-dimensional
problem must report a wrong answer in one of the two cases.

To save the algorithm, we test for degeneracy before projecting. A triangle p projects
to a line segment in the xy-plane if the triangle's normal vector n is perpendicular to the z-
axis. Before projecting, we perform this test; if n is perpendicular to the z-axis, we consider
projecting into the yz-plane instead; and if this too would be degenerate, we finally project
into the zx-plane. Since vector n cannot be perpendicular to all three axes, at least one of
the three projections proves non-degenerate.

The algorithm is implemented by the following function, whose return value-
PARALLEL, COLLINEAR, SKEW-CROSS, or SKEW-NO-CROSS-indicates the relation-
ship between infinite line e and triangle p. If the function returns either SKEW -CROSS,
indicating that the line pierces the triangle, or SKEW-NO -CROSS, indicating that the line
crosses the plane of the triangle without piercing the triangle itself, then the parametric
value of the intersection point along e is passed back through reference parameter t:

int lineTriangleintersect(Edge3D &e, Triangle3D &p, double &t)

{
Point3D q;

int aclass = e.intersect(p, t);
if ((aclass==PARALLEL) || (aclass==COLLINEAR))

return aclass;

q = e.point(t);

int h, v;

101

Chap. 4: Geometric Data Structures

if (p.n().dotProduct(Point3D(0,0,1)) !- 0.0) {

h = 0;

v = 1;

} else if (p.n().dotProduct(Point3D(1,0,0)) != 0.0) (

h = 1;

v = 2;

} else {

h = 2;

v = 0;

Polygon *pp = project(p, h, v);

Point qp = Point(q[h], qlv]);

int answer = pointlnConvexPolygon(qp, *pp);

delete pp;

return (answer ? SKEW-CROSS : SKEWNOCROSS);

)

The function call proj ec t (p, h, v) returns a polygon representing the projec-
tion of triangle p into the hv-plane. Arguments h and v are axis indices; for instance,
project (p, 0, 1) projects p into the xy-plane. Function project assumes that the
projection of triangle p is non-degenerate, so its projection is a triangle. The function is
defined as follows:

Polygon *project(Triangle3D &p, int h, int v)

{
// project vertices of triangle p

Point3D a;

Point pts[31;

for (nt i = 0; i < 3; i++) {
a = p.v(i);

pts[i] = Point(aEh], aEvl);

}

// insert first two projected vertices into polygon

Polygon *pp = new Polygon;

for (i = 0; i < 2; i++)

pp->insert(pts[iJ);

// insert third projected vertex into polygon

if (pts[2J.classify(pts[0], ptstl]) == LEFT)

pp->advance (CLOCKWISE);

pp->insert(pts[2]);

return pp;

The only tricky part of function proj ect involves insertion of the last of the three
projected vertices (pts [2) into the polygon under construction. If the three projected
vertices are negatively oriented, then pt s [2] belongs after pt s [1]; if positively oriented,
pts [2] belongs after pts [0] . This ensures that the interior of the resulting polygon pp
lies to the right of each of its edges-that successive calls to pp - >advance (CLOCKWISE)

102

corresponds to clockwise traversal. Advancing pp's window if the projected vertices are
positively oriented does the trick.

4.7 Chapter Notes

Most of the mathematics in this chapter comes from vector algebra, also known as linear
algebra. Vectors are the elements of an algebraic structure known as a vector space. Al-
though most aspects of linear algebra admit a geometric interpretation (and our presentation
has concentrated on such an interpretation), all the results of linear algebra can be derived
using algebra, without appealing to geometry. Introductions to linear algebra are provided
by [41, 441.

A number of other books present geometric tools at the level of working code and put
them to work in geometric algorithms [3, 20, 61, 66, 73]. Some of the ideas of this chapter
can be found in these sources.

4.8 Exercises

1. Show that xayb - Xbya equals the signed area of the parallelogram determined by
vectors a = (Xa, ya) and b = (Xb, Yb).

2. Given nonzero vectors a and b, show that a * b = Ila 11 Ilb 11 cos 6, where 6 is the angle
between a and b.

3. Show that sin(a -)=sina cosfi - cosa sing.

4. Show that the convex polygon with vertices v1, Vk consists of the set of points of
the form p = a I v I +- + akVk, where al +* + ak = I and each ai > 0. (This
expression is known as the convex combination of points v1, v . ., Vk.)

5. Show that the dot product theorem remains valid for vectors in three-dimensional
space.

6. Why does the copy constructor Po lygon: :Polygon (Polygon&) perform a deep
copy? (Hint: If two polygon objects referred to the same linked list of vertices, what
could go wrong?)

7. What are the advantages and disadvantages of representing the various kinds of lines
(infinite lines, line segments, rays, etc.) using a single Edge class?

8. Write a version of Polygon: : split that performs error checking.

9. Using the splice operation forcircular doubly linked lists, write a (destructive) function
join(Polygon &p, Polygon &q) which merges polygons p and q into a single
polygon and returns a pointer to the new polygon.

10. Write a function that decides whether a polygon is convex.

11(. Devise a data structure for representing a convex n-gon that permits us to decide in
O(logn) time whether a given point belongs to the polygon.

12. Write a function to determine whether a given diagonal of a given polygon is a chord.

Sec. 4.8 Exercises 103

104 Chap. 4: Geometric Data Structures

13. Write a function to determine whether a given Polygon object represents an illegal
n-gon, one that crosses itself. [The obvious approach, that of comparing all pairs of
edges, takes 0(n 2) time. Can you think of an algorithm that takes O(n logn) time?]

14. Devise an algorithm to decide whether a point belongs to an arbitrary (i.e., convex or
nonconvex) n-gon that runs in 0(n) time.

15. Devise an 0(n log n) time algorithm to decide whether two polygons intersect, where
n equals the sum of their sizes.

16. Devise an O(n) time algorithm to decide whether two convex polygons intersect,
where n equals the sum of their sizes.

17. Write a function to find the intersection point of a line and a triangle in space which
does not rely on projection into a plane.

18. Write a function to determine whether two triangles in space intersect.

l i
Applications

105

5
Incremental Insertion

The algorithmic design approach of incremental insertion examines the input to a problem
one item at a time while maintaining a current solution for those items seen so far. At
each increment, the next input item is examined and processed, and the current solution is
updated to accommodate the new item. When all the input has been processed, the problem
as a whole has been solved.

One reads a mystery novel in much the same manner. The reader maintains a working
hypothesis concerning who committed the murder and how and why it took place. Each
new clue either confirms the hypothesis or requires that it be revised, or even abandoned
and formulated anew. By the book's end when all the clues are in, the reader will have
solved the crime, assuming he or she is clever enough and the writer has been fair.

In some cases, the algorithm is capable of maintaining only a current state as opposed
to a current solution, since the portion of the input seen so far is too incomplete to represent
a coherent situation. This often happens, for instance, when solving problems involving
polygons: If the polygon boundary is processed a vertex at a time, we may not even have
our hands on a simple polygon until all the input has been processed. Returning to our
mystery novel analogy, we see this is similar to the way the reader's outlook develops even
before any murder has taken place-although there is not yet a problem to solve, early clues
and insights are organized and readied for use at the first sign of trouble.

The most obvious approach to finding the smallest integer in an array-stepping
down the array while keeping track of the smallest integer seen so far-is a computational
example of incremental insertion. Insertion involves a conditional assignment to the variable
holding the current minimum. At each stage, this variable holds the answer to the problem
involving those integers processed so far. Incremental insertion is not usually so simple.

106

Sec. 5.1 Insertion Sort

In this chapter we will study a number of (more interesting) algorithms that employ this
strategy. The first, insertion sort, is a well-known sorting method most useful for sorting a
relatively short list of items. The remaining algorithms solve geometric problems: finding
a star-shaped polygon in a finite set of points, finding the convex hull of a set of points,
deciding whether a given point lies in a polygon, clipping geometric objects (lines and
polygons) to a convex polygon, and triangulating a monotone polygon.

5.1 Insertion Sort

Insertion sort works the way a card player keeps a hand of cards. With the deck face down
on the table, the card player draws a number of cards; as the player draws each card, he or
she inserts it into the proper position in the hand. When each new card is about to be drawn,
the hand is sorted over all the cards that have been drawn so far.

Let us consider how to use insertion sort to arrange array items a [0],...,a [n-i]
in increasing order. (For brevity, we will refer to this range of items as a [0. . n-i J.) For
each i from I through n - 1, at the start of iteration i the subarray a [0 . . i -1] is sorted.
Our task in iteration i is to sort a [0. . iI by putting item a [iI in its proper position.
To do this, we save a [i] in some variable v and then move items a [i -1], a[i-2 1...
in turn one position to the right until reaching the first item a[j -1] not greater than v.
Finally, we copy v into the "hole" that has been created in position j. Figure 5.1 shows
how the algorithm sorts a short array of integers.

The algorithm is implemented by function template insertionSort, which sorts
the array a [0. . n-I]. Argument cmp is a comparison function that returns -1, 0, or I if
its first argument is less than, equal to, or greater than its second argument:

template<class T>
void insertionSort(T at]. int n, int (*cmp)(T,T))

{
for (int i = 1; i < n; i++) {

T v = a[il;

int j = i;
while ((j > 0) && ((*cmp)(v, atj-11) < 0)) {

at;] = a[j-l];

jo--;
}
a~j] v;

In each iteration i from I to n - 1, the while loop inserts item a iI into the sorted
subarray a [0.. i - ii. The test j > 0 of the while loop ensures that the program does
not fall off the left end of array a during insertion.

For the sorting programs presented in this book, we will assume that the template type
parameter T represents a pointer type. Nonetheless, function template insertionSort
can be used to sort objects of any type that defines both the assignment operator = and a copy

107

Chap. 5: Incremental Insertion

3 2 5 9 4

3 6 (5 9 4

2 3 6 (9 4

2 3 5 6 (D 4

2 3 5 6 9 (

2 3 4 5 6 9

Figure 5.1: Insertion sorting an array of six integers. The next number to be inserted at each step is circled.

constructor. For example, the following code fragment reads 100 strings into array s and
then sorts them using the standard C++ library function strcnp to compare two strings
by dictionary order:

char buffer[80];
char *s[100];
for (int i = 0; i < 100; i++) {

cin >> buffer;
svi] = new char[strlen(buffer)+1];
strcpy(s[i], buffer);

}
insertionSort(s, 100, strcmp);

Note that this code fragment sorts an array of pointer-to-strings (array s), rather than the
strings themselves. It is often more efficient to sort pointers instead of the objects pointed
to. Unless the objects are small (4 bytes or less), a sorting program can move pointers
around faster than the objects to which they point.

5.1.1 Analysis

To analyze insertion sort, it suffices to count the number of times the comparison function is
called (assuming acomparison takes constanttime). The running timeof insertionSort
is T(n) = Zn-1 1(i), where l(i) time is needed to insert the ith item. Since l(i) costs at
most i comparisons, insertion sort requires T(n) = En- = i ('! ±) comparisons, orabout
n2 /2 comparisons in the worst case. This worst-case behavior in fact occurs whenever the
input array is initially sorted in reverse (decreasing) order.

On average, the ith item is compared to about i/2 items before its insertion position is
found. Thus insertion sort performs about n2 /4 comparisons on average, twice as good as
the worst case. If the input array is initially almost sorted, the program's expected running
time is linear since the ith item is compared to only a constant number of items before
reaching its position, on average. Hence insertion sort is a good way to sort an input array
known to be almost sorted.

108

Sec. 5.2 Finding Star-Shaped Polygons

5.2 Finding Star-Shaped Polygons

A finite set of points in the plane can be connected by edges to form a polygon in different
ways. Each such polygon is called a polygonization of the point set. In this section we
devise a method for constructing star-shaped polygonizations. More simply, our method
"connects the dots" (or points) to form star-shaped polygons.

5.2.1 What Are Star-Shaped Polygons?

Suppose points p and q lie in some polygon. We say that p sees q if the line segment Tq
lies in the polygon. Here we are imagining the boundary of polygon P to be composed
of opaque walls, and its interior some transparent medium such as air. One point can see
another only if no wall stands between them. Seeing is symmetric (if p sees q, then q
sees p) but not transitive (if p sees q and q sees point r, it does not follow that p sees r)
(Figure 5.2).

The set of those points in a polygon that see every point is called the kernel of
the polygon. A polygon is said to be star shaped (Figure 5.3) if its kernel is nonempty.
A polygon is fan shaped if its nonempty kernel contains one or more vertices (each such
vertex is called an apex of the polygon). Every convex polygon is fan shaped since the kernel
contains some vertex (in fact, every vertex). Every fan-shaped polygon is star shaped since
its kernel is nonempty.

Figure 5.2: Points p and q see one another as do points q and r, yet points p and r do not see each other.

(a) (b) (c) (d)

Figure 53: Polygons with darkened kernels: (a) a convex polygon; (b) a fan-shaped polygon that is
not convex; (c) a star-shaped polygon that is not fan shaped; and (d) a polygon that is not star shaped.

109

110

S1

S5 S*4

S2 - S,

1S3

(a)

SI

Si

S 4
0

S2

S 3

(b)

S1

(d) (e)

Figure 5.4: Finding a star-shaped polygon in a point set.

Si

S2

(c)

Si

(f)

Chap. 5: Incremental Insertion

5.2.2 Finding Star-Shaped Polygonizations

Given a set S of points so, si.... s,_ in the plane, the problem is to construct a star-shaped
polygonization of set S. It is not difficult to see that there may exist more than one such
polygon. We will specifically seek one whose kernel contains the first point so.

The algorithm works by iteratively constructing a current polygon over the points
of S. Initially, the current polygon is the 1-gon so. In each iteration i from 1 to n - 1, the
next point si is inserted into the current polygon. At completion, the current polygon is the
star-shaped polygon we seek.

To insert each new point si into the current polygon, we perform a clockwise traversal
of the current polygon starting from vertex so. The traversal proceeds clockwise around
the polygon boundary until arriving at the vertex which is to become six's successor; si is
then inserted before this vertex. If the traversal proceeds full circle, returning to so, then si
is inserted before so. Here so serves as a sentinel which ensures that the traversal does not
proceed too far. Figure 5.4 shows snapshots of the algorithm running on a small problem.

Function starPolygon is handed an array s of n points and returns a star-shaped
polygon whose kernel contains point s [)]:

Point originPt; // global: originPt = s[O]

Polygon *starPolygon(Point s[], int n)

Polygon *p = new Polygon;

p->insert(s[OJ);

S2l

Sec. 5.2 Finding Star-Shaped Polygons 111

Vertex *origin = p->vo;

originPt = origin->pointo;

for (int i = 1; i < a; i++) {

p->setV(origin);

p->advance(CLOCKWISE);

while (polarCmp(&8[i], p->v(-) < 0)

p->advance(CLOCKWISE);

p->advance(COUNTER-CLOCKWISE);

p->insert(s i]);
}
return p;

)

In each iteration i, how do we determine where to insert point si along the boundary
of the current polygon? We use the fact that the vertices of a star-shaped polygon are
ordered radially around each point in its kernel. Since point so is to lie in the kernel, we
define a comparison function polarCmp based on the polar coordinates of points relative
to point so (i.e., where so is regarded as the origin). Under this relation, point p = (rp, Op)
is considered less than point q = (rq, Oq) if (1) Op < Oq or (2) Op = Oq and rp < r,. With
respect to this ordering, clockwise traversal of the current polygon proceeds from greater
points to lesser points.

Comparison function polarCmp is passed two-points p and q and compares them
with respect to their radial ordering about point originPt, a global variable. It returns
-1, 0, or 1 depending on whether its first argument p is less than, equal to, or greater than
its second argument q:

int polarCmp(Point *p, Point *q)

{

Point VP = *p - originPt;

Point vq = v - origianPt;

double pPolar = vp.polarAngleo;

double qPolar < vq.polarAnglen;

if (pPolar < qPolar) return -1;

if (pPolar > qPolar) return 1;

if (vp.length() < vq.length()) return -1;

if (vp.length() > vq.length()) return 1;

return 0;

Under function polarCmp, originPt is less than every other point in the plane.
This is because function Point: :polarAngle returns -1.0 if this point equals
originPt, and returns a value in the range [0, 360) otherwise. This fact allows point
s [] (=originPt) to serve as a sentinel. Function starPolygon runs in O(n2

)

time. Iteration i requires as many as i comparisons, and there are n - 1 iterations (the
analysis parallels that of insertion sort).

The algorithm for finding star-shaped polygons closely parallels insertion sort. Both
algorithms incrementally grow a current solution, represented by an ordering of items, into

Chap. 5: Incremental Insertion

a complete solution. To insert each new item into the current ordering, both algorithms
sequentially traverse the ordering from greatest to least until the item's proper position is
reached. Furthermore, both algorithms run in quadratic time in the worst case.

5.3 Finding Convex Hulls: Insertion Hull

The algorithm we consider in this section-for finding the convex hull of a set of points-is
more complicated than both insertion sort and our star-shaped polygonization algorithm.
First, finding the proper position of each new item is more involved. Second, it is sometimes
necessary to remove items from the current solution, so the current solution grows and
shrinks as the algorithm proceeds.

5.3.1 What Are Convex Hulls?

Let S be a finite set of points in the plane. The convex hull of set S. denoted CN(S),
equals the intersection of all convex polygons which contain S. Equivalently, C7-i(S) is the
convex polygon of minimum area which contains all the points of S. Yet another equivalent
definition states that C-t(S) equals the union of all triangles determined by points of S.

Imagine the plane to be a sheet of wood with a nail protruding from every point in S.
Now stretch a rubber band around all the nails and then release it, allowing it to snap taut
against the nails. The taut rubber band conforms to the convex hull boundary. Figure 5.5
gives some examples.

Because they provide a way to approximate a point set or other nonconvex set by
a convex region, convex hulls prove useful in a wide range of geometric applications.
In pattern recognition, an unknown shape may be represented by its convex hull or by a
hierarchy of convex hulls, which is then matched to a database of known shapes. As another
example, motion planning, required when a moving robot must negotiate a landscape of
obstacles, becomes much easier if the robot is approximated by its convex hull.

A useful scheme for classifying the points of a point set S refers to the convex
hull C/t(S). A point is a boundary point if it lies in the convex hull boundary, and an
interior point if it lies in the convex hull interior. Those boundary points which form the

Extreme

Points

Nonextreme Boundary Points

Figure 5.5: A finite set of points and its convex hull.

112

Sec. 5.3 Finding Convex Hulls: Insertion Hull

"corner" vertices of the convex hull are known as extreme points. Equivalently, a boundary
point is extreme if it does not lie between any two other points of S. Figure 5.5 illustrates
these notions. Note that this scheme for classifying points applies even if we are not
interested in finding their convex hull per se.

5.3.2 Insertion Hull

Insertion hull, an incremental insertion approach to finding the convex hull of a finite set S
of points, inserts a point at a time while maintaining the convex hull of those points inserted
so far. We will refer to the convex hull built along the way as the current hull. Initially,
the current hull consists of a single point of S; at completion, when all points have been
inserted, the current hull equals CN(S) and we are done.

When a new point s is inserted into the current hull, one of two cases occurs. In the
first case, s may lie in (the boundary or interior of) the current hull, in which case the current
hull does not need to be updated.

In the second case, s lies outside the current hull, requiring that the current hull be
modified as in Figure 5.6. Through point s can be drawn two supporting lines, each tangent
to the current hull. (A line is a supporting line of a convex polygon P if the line passes
through a vertex of P and the interior of P lies entirely to one side of the line.) The left
(right) supporting line Tr passes through some vertex e (r) of the current hull and lies to
the left (right) of the current hull. If you were positioned at point s facing the convex hull,
the left supporting line would appear to your left and the right supporting line to your right.

The two supporting vertices e and r split the current hull boundary into two vertex
chains: a near chain that is nearer point s and afar chain that is farther from s. (The near
chain lies on the same side of line Tr as s, and the far chain lies on the other side of fr.) To
update the current hull, we first find the two vertices e and r which terminate the near and
far chains. Then we remove the vertices of the near chain (except for vertices e and r) and
insert point s in their place.

The following program insertionHull returns the convex hull of the n points of
array s:

Figure 5.6: Inserting point s into the current hull,

113

Chap. 5: Incremental Insertion

Point somePoint; // global

Polygon *insertionHull(Point al], int n)

{
Polygon *p = new Polygon;

p->insert(s01°);

for (int i = 1; i < n; i++) {

if (pointInConvexPolygon(s[i], *p))

continue;

somePoint = s[i];

leastVertex(*p, closestToPolygonChV);

supportingLine(s[i], p, LEFT);

Vertex *l = p->vo;

supportingLine(s[i], p, RIGHT);

delete p->split(l);

p->insert(sti]);

}
return p;

}

In iteration i, point s [i I is inserted into the current hull p. The call to function
leastVertex moves p's window over the vertex that is closest to point s [i] . This
prepares for the subsequent call to support ingLine (s : i , p, LEFT) , which moves
the window over the vertex e through which the left supporting line passes. The second
call to supportingLine then moves the window over vertex r. The split operation
is used to subdivide polygon p along the diagonal Tr, thereby separating the near chain
from the far chain. The subpolygon consisting of the near chain is returned by split and
deleted. Finally, point s [i I is inserted into polygon p, which, after split is performed,
consists of the far chain.

Let us consider function supportingLine. To find the vertex e through which
the left supporting line passes, we start at some vertex of the near chain and then traverse
clockwise around the current hull until arriving at the first vertex v whose successor is
neither to the left of nor beyond directed line segment -so. Vertex v is e, the vertex we seek.
Note why the process continues if the successor to v (i.e., vertex w) is beyond sV: v cannot
be an extreme point if it lies between s and w, so we must search further.

Function supportingLine is called with a polygon p, a point s outside p, and
one of the enumeration values LEFT or RIGHT indicating which vertex (E or r) is being
sought. It assumes that the vertex in p's window belongs to the near chain, which is why
function leastVertex is called first. The function moves polygon p's window over the
vertex it finds (E or r):

void supportingLine(Point &s, Polygon *p, int side)

{
int rotation = (side == LEFT) ? CLOCKWISE : COUNTER-CLOCKWISE;

Vertex *a = p->vo;
Vertex *b = p->neighbor(rotation);

int c = b->classify(s, *a);

114

Sec. 5.3 Finding Convex Hulls: Insertion Hull

while ((c == side) || (c == BEYOND) || (c == BETWEEN)) {

p->advance(rotation);

a = p->vo;

b = p->neighbor(rotation);

c = b->classify(s, *a);

)

Function leastVertex, which was defined in subsection 4.3.6, is used by program
insertionHull to find the vertex of polygonp that is closest to the point stored in global
variable somePoint. Comparison function closestToPolygonCmp, with which
leastvertex is called, compares two points to decide which is closest to somePoint:

int c1osestToPolygonQmp(Point *a, Point *b)

{
double distA = (somePoint - a).lengtho;

double distB = (somePoint - *b).length1;

ief (distA < distB) return -1;

else if (dictA > distB) return 1;

return 0;

}

5.3.3 Analysis

As it proceeds, program insertionHull may build large current hulls which are disas-
sembled by the time the program finishes. Consider the situation shown in Figure 5.7a, in
which all the points except p, q, and r have been inserted. Each of the last three insertions
removes a chain of vertices until only a triangular hull remains (Figures 5.7b - d). Clearly,
had p, q, and r been inserted first, before the other points, the triangular hull would be
constructed early and insertion of each remaining point would be faster, involving only the
determination that the point lies in the triangle. Thus the order in which points are inserted
affects efficiency.

Nonetheless, the cost of building the convex hull is in fact not dominated by the
operations insert and split used to assemble and disassemble the current hulls. After
all, every point can be inserted at most once and removed at most once. It follows that
the total cost for all insert and split operations over the course of the algorithm is
bounded above by 0(n).

Likewise, the calls to supportingLine are relatively inexpensive: The two calls
to supportingLine performed in an iteration together take time proportional to the
length of the near chain, and this work can be charged to the vertices of the near chain,
which are then removed in the same iteration. Since a vertex can be removed at most once,
the cost for all calls to supportingLine over the course of the algorithm is bounded
above by 0(n).

It turns out that insertionHull spends most of its time executing
pointInConvexPolygon and leastVertex. To process the ith point s,, the call
to each of the two functions takes time proportional to i in the worst case (when the convex

115

116 Chap. 5: Incremental Insertion

(a) (b) (c) (d)

Figure 5.7: Points p, q, and r are inserted last.

hull possesses i vertices). This case occursfor every point s, if they are all extreme points be-
cause the current hull will then grow by one vertex per insertion. Hence insertionHul 1
runs in O(n

2) time in the worst case.
Later in this book we will cover two algorithms-Graham scan and merge hull-that

compute the convex hull of n points in optimal 0 (n log n) time.

5.4 Point Enclosure: The Ray-Shooting Method

In Chapter 4 we devised a simple algorithm for solving the point enclosure problem for
convex polygons: The algorithm decides whether a given point a lies inside, outside, or on
the boundary of a convex polygon p. It works by testing point a against each edge of p in
turn; if point a lies on the wrong side of some edge, the point has been shown to lie outside
polygon p; otherwise a has been shown to belong to p. The algorithm takes advantage of
the fact that the interior of a convex polygon lies entirely to one side of every edge-thus
a point which lies on the wrong side of some edge cannot lie in the polygon interior. The
algorithm, however, does not correctly solve the more general point enclosure problem,
which allows arbitrary (convex or nonconvex) polygons. In Figure 5.8, for example, the
interior of the polygon straddles both sides of the edge labeled e; since point a lies on the
"wrong" side of e, the algorithm mistakenly reports that a lies outside polygon.

Figure 5.8: How does one determine whether point a lies in the polygon?

116 Chap. 5: incremental Insertion

qO

op

Sec. 5.4 Point Enclosure: The Ray-Shooting Method

The problem of point enclosure relative to a convex polygon is like deciding whether
an unsorted list of numbers contains only numbers greater than or equal to zero. To solve
the problem, we step through the list until reaching some negative number, at which time we
report "no"; if none of the numbers turns out to be negative, we report "yes." The answer
is yes only if every one of a set of distinct conditions holds true.

Point enclosure relative to an arbitrary polygon, on the other hand, is more like the
problem of deciding whether the sum of an unsorted list of numbers is greater than or equal
to zero. The problem cannot be decided until all the numbers have been added together.
Adding just some of the numbers, or even all but one of them, cannot solve the problem since
the remaining number may change everything. In the same manner, partial examination
of a polygon may suggest that it does not contain some distant point, yet it may happen
that the last several edges to be examined form a "finger" that protrudes far from the rest
of the polygon, capturing the point. Deciding whether a point lies in an arbitrary polygon
involves a single condition encompassing the polygon as a whole.

In this section we present the ray-shooting method for solving the point enclosure
problem for arbitrary polygons. Imagine doing this to decide point enclosure for point a and
polygon p: Starting from some point far from the polygon, move in a straight line toward a.
Along the way we cross the polygon boundary zero or more times: the first time crossing
into the polygon, the second time crossing back out, the third time crossing back in once
again, and so forth, until arriving at a. In general, every odd-numbered crossing carries us
into polygon p, and every even-numbered crossing carries us back out of p. If we arrive
at a having undergone an odd number of crossings, a lies inside p; and if an even number
of crossings, a lies outside p. For example, in Figure 5.9, ray ray crosses the boundary
once; since one is odd, a lies inside the polygon. We can conclude that point b lies outside
the polygon since ray rb crosses the boundary an even number of times (twice).

Transforming this idea into an algorithm turns on two key observations. First, any
ray that originates at the point a to be classified will do (Figure 5.9). Being free to work
with any ray originating at a, we can, for simplicity, work with the right horizontal ray ra
originating at a (the unique ray starting at a and directed parallel to the positive x-axis).

The second key observation is that the order of boundary crossings along ray ra
is irrelevant; all that matters is the parity (oddness or evenness) of their total number.
Therefore, rather than simulate moving along ray 3ra, it is enough for the algorithm to

Figure 5.9: Every ray originating at a crosses the boundary an odd number of times, and every ray
originating at b crosses an even number of times.

117

Chap. 5: Incremental Insertion

detect all edge crossings in any order, updating parity along the way. The easiest way to
do this is to traverse the polygon boundary, toggling a parity bit whenever we visit an edge
which ray ra crosses.

Relative to the right horizontal ray r+, we distinguish three types of polygon edges:
touching edges, which contain point a; crossing edges, which do not contain point a but
which ray ra crosses; and inessential edges, which ray r. does not meet at all. For
example, in Figure 5.10, edge c is a crossing edge, edge d is a touching edge, and edge e is
an inessential edge.

Function pointInPolygon solves the point enclosure problem for point a and
polygon p. The algorithm traverses the boundary of the polygon while toggling variable
parity for each crossing edge it encounters. It returns the enumeration value INSIDE

if the final value of parity is I (indicating odd), and OUTSIDE if its final value is 0
(indicating even). If a touching edge is discovered, the algorithm immediately returns the
enumeration value BOUNDARY.

enum { INSIDE, OUTSIDE, BOUNDARY }; // point classifications

enum { TOUCHING, CROSSING, INESSENTIAL }:// edge classifications

int pointInPolygon(Point &a, Polygon &p)

{
int parity = 0;
for (int i = 0; i < p.size(); i++, p.advance(CLOCKWISE)) {

Edge e = p.edgeo;
switch (edgeType(a, e))

case TOUCHING:

return BOUNDARY;

case CROSSING:

parity = 1 - parity;

}

return (parity ? INSIDE: OUTSIDE);

Function call edgeType (a, e) classifies edge e with respect to right horizontal ray
ra, returning one of the enumeration values TOUCHING, CROSSING, or INESSENTIAL.
Definition of edgeType is somewhat tricky because function pointInPolygon must
correctly handle the special cases that arise when ray ra pierces vertices. Consider Fig-
ure 5.1 1. In case (a) the parity should be toggled-the ray crosses the boundary only once

Figure 5.10: Edge c is a crossing edge. edged a touching edge. and edge e an inessential edge.

118

Sec. 5.4 Point Enclosure: The Ray-Shooting Method

(a) (b) (c) (d) (e) (f)

Figure 5.11: Special cases: parity is toggled one time in cases (a) and (d). zero times in cases (b)
and (e), and two times in cases (c) and (f).

even though, in doing so, it crosses two edges. In cases (b) and (c) the parity should not be
changed. This can be achieved by polishing our scheme for classifying edges as follows:

* Edge e is a touching edge if e contains point a.

* Edge e is a crossing edge if (1) e is not horizontal and (2) ray ra crosses e at some point
other than e's lower endpoint.

* Edge e is an inessential edge if e is neither a crossing nor a touching edge.

Referring to Figure 5.11, we see that in case (a), variable parity is toggled once;
in case (b), parity is not changed; and in case (c), parity is toggled twice with the
net effect of remaining unchanged. Note that horizontal edges not containing point a are
considered inessential and so are ignored by function pointInPolygon. Therefore,
cases (d), (e), and (f) are handled the same as cases (a), (b), and (c), respectively.

Function edgeType classifies edge e as CROSSING, TOUCHING, or
INESSENTIAL with respect to point a:

int edgeType(Point &a, Edge &e)

{
Point v = e.org;

Point w = e.dest;
switch (a.classify(e)) {

case LEFT:

return ((v.y<a.y) && (a.y<=w.x)) ? CROSSING INESSENTIAL;

case RIGHT:

return ((w.y<a.y) && (a.y<=v.y)) ? CROSSING INESSENTIAL;

case BETWEEN:

case ORIGIN:

case DESTINATION:

return TOUCHING;

default:

return INESSENTIAL;

}

}

119

Chap. 5: Incremental Insertion

Note how function edgeType detects crossing edges. If point a lies to the left of edge e,
the edge is a crossing edge only if v (=e. org) lies below ray r. and w (=e. dest) lies
on or above the ray. For then the edge cannot be horizontal, and ray ra must cross the edge
at some point other than its lower endpoint. Alternatively, if a lies to the right of edge e,
the roles of v and w are interchanged.

Program pointInPolygon runs in time proportional to the size of the polygon in
the worst case (when point a does not lie on the polygon boundary).

5.5 Point Enclosure: The Signed Angle Method

Let us consider another approach to the point enclosure problem. This approach requires

the notion of a signed angle. Given directed segment bc and some point a, suppose that the

angle between vectors al and arc measures 0. The signed angle at point a relative to bc

then measures 0 if c lies to the left of or is collinear with la, and -0 if c lies to the right

of a. Note that the signed angle and the orientation of triangle Aabc have the same sign.
We can extend the definition of signed angle to vertex chains. The signed angle at

point a relative to a vertex chain is the sum of the signed angles at a relative to the chain's
edges. Figure 5.12 gives some examples.

Function s ignedAngle computes and returns the signed angle at point a relative to
edge e. After first treating the cases in which a is collinear with e, the function distinguishes
between the configurations shown in Figure 4.6:

double signedAngle(Point &a, Edge &e)
I

Point v = e.org - a;

Point w = e.dest - a;

double va = v.polarAngleo;

double wa = w.polarAngleo;

if ((va == -1.0) (wa == -1.0))

return 180.0;

double x = wa - va;

if ((x == 180.0) II (x == -180.0))

a b c

Figure 5.12: (a) The signed angle at point a is 20, (b) the signed angle at b is-90: and (c) the signed
angle at c is 20 - 90 + 40 = -30.

120

4

Sec. 5.5 Point Enclosure: The Signed Angle Method

return 180.0;

else if (x < -180.0)
return (x + 360.0);

else if (x > 180.0)
return (x - 360.0);

else

return x;

?

Let us consider how signed angles are used to classify a given point a with respect
to a given polygon p. Assume that a does not lie in the boundary of p. Let A denote the
signed angle at a relative to the boundary of p, where p has clockwise sense of rotation.
A is useful for classifying the point: A = -360 degrees if a is inside the polygon, and
A = 0 if a is outside the polygon. It is easy to see why this is true in the case of convex
polygons. If a is inside convex polygon p, the boundary of p encircles a a full 360 degrees.
Alternatively, if a is outside p, the boundary of p can be split into a near chain and a far
chain, relative to point a. (Near and far chains were defined in Section 5.3.) Where An
denotes the signed angle at p relative to the near chain and A f the signed angle relative to
the far chain, we have A, = -A f, from which it follows that A = A, + Af = 0.

That this also holds for nonconvex polygons is less obvious. Suppose first that a lies
outside the polygon. Imagine casting a ray from point a through every vertex of the poly-
gon, thereby partitioning the polygon into a number of triangles and convex quadrilaterals
PI, P2, Pk (Figure 5.1 3a). Since a lies outside each pi and each pi is convex, the signed
angle Ai at a relative to the boundary of pi is zero (i.e., Ai = 0). But A = AI + * + Ak
since the summation counts every edge of the original polygon p exactly once. Observe
that new edges introduced by the rays contribute zero to A. It follows that A = 0 if point a
is outside the polygon.

Figure 5.13b illustrates why A =-360 if a is inside polygon p. As before, imag-
ine partitioning the polygon by rays originating from a, but this time preserve a small
convex polygonal neighborhood around a (denoted P0 in the figure). Since pO is convex
and contains a, we know that AO =-360. Furthermore, since a lies outside the remaining

a

(a) (b)

Figure 5.13: (a) Point a is outside the polygon, so A = A I + A2 + A3 = 0 + 0 + 0 = 0; and (b)
point b is inside the polygon, so A = Ao + A 1 + A, + A3 + A4 = -360 + 0 + 0 + 0 + 0 = -360.

121

Chap. 5: Incremental Insertion

(convex) polygons pi, we have Ai = 0 for each i = 1, 2, ... , k. It follows that A =

Ao+Ai+---+Ak=-360+0+* +0=-360.
Function pointInPolygon2 solves the point enclosure problem for point a and

polygon p. The signed angle at a relative to the polygon is accumulated in total as
each edge is visited in turn. If a is found to lie on some edge (the signed angle relative to
the edge equals 180), the function immediately returns the enumeration value BOUNDARY.
Otherwise, when all polygon edges have been processed, it returns INSIDE or OUTSIDE
depending on the final value of total.

int pointinPolygon2(Point &a, Polygon &p)

{
double total = 0.0;

for (int i = 0; i < p.sizeo; i++o V.advance(CLOCKWISE)) (

Edge e 5 p.edge();

double x = signedAngle(a, e);

if (x == 180.0)

return BOUNDARY;

total += x;

}
return ((total < -180.0) ? INSIDE: OUTSIDE);

}

Program pointInPolygon2 runs in time linear in the size of the polygon in the
worst case.

5.6 Line Clipping: The Cyrus-Beck Algorithm

The process of discarding that portion of a geometric object that lies outside a given region is
called clipping. Clipping is used for many purposes in computer graphics. In a windowing
system, a window may serve as a small aperture into a panorama that extends far beyond.
When drawing into the panorama, it is necessary to clip away those portions of objects
that do not fall under the purview of the window. In some text editors, it is necessary to
clip characters that do not fit on a line. In three-dimensional graphics, objects in space
are clipped to a volume before being projected into the image plane, to avoid wasting time
projecting things that will not be seen anyway.

In this section we present the Cyrus-Beck algorithm for clipping a line segment
to a convex polygon. In the subsequent section we will cover the Sutherland-Hodgman
algorithm for clipping an arbitrary polygon to a convex polygon.

Let s be a line segment and let p be a convex n-gon to which s is to be clipped. Here p
is called a clip polygon and s the subject. We seek s n p, that portion of s which lies inp.

Let s denote one of the two directed infinite lines determined by s. Suppose we
extend each of the n edges of polygon p to infinity, in both directions. Line s crosses all
these extended edges of p in no more than n distinct intersection points. (If s is parallel
to or collinear with some edge of p, the edge does not contribute an intersection point;
moreover, if s passes through a vertex of polygon p, two intersection points coincide.)

122

Sec. 5.6 Line Clipping: The Cyrus-Beck Algorithm

The Cyrus-Beck clipping algorithm finds these intersection points and classifies each
as either potentially entering (PE) or potentially leaving (PL). Suppose s crosses an
extended edge e at intersection point i. Then point i is PE if s passes from the left of e
to the right of e. Given our convention that the polygon interior lies to the right of each of
its edges, s "potentially enters" the polygon at intersection point i. That is, if s n p is
nonempty, s n p must lie beyond point i (see Figure 5.14). An intersection point i is PL
if s passes from the right of e to the left of e. In this case, line s "potentially leaves"
polygon p-if s n p is nonempty, s n p must lie behind point i.

Intersection points are easily classified as PE or PL. Let vector n be perpendicular to
some edge e of the clip polygon, pointing to the right of e. Let vector v = b - a, where

s = a. Then intersection point i (at which s crosses e) is PE if the angle between n
and v measures less than 90 degrees, and PL if this angle measures greater than 90 degrees.
(If the angle measures 90 degrees, the intersection point does not exist since s must then
be parallel to or collinear with edge e.) In terms of the dot product, point i is PE if n v > 0
andPLifn . v <0.

How is classification of the intersection points used? Suppose we order the inter-
section points along s . Then line s intersects clip polygon p only if the intersection
points comprise a sequence of PE intersection points followed by a sequence of PL inter-
section points. Moreover, the clipped line segment s n p we seek extends from the last PE
intersection point to the first PL intersection point (segments st and s2 of Figure 5.14).

On the other hand, if the PE and PL intersection points are interspersed along s,
clipped line segment sf np is empty (s3 of Figure 5.14). For in this case there must exist some
point a along s such that some PL point lies behind a and some PE point lies beyond a.
But since s n p lies behind the PL point, s n p must lie behind a; and since s n p lies beyond
the PE point, s n p must lie beyond a. This is possible only if s n p is empty.

Rather than work with intersection points directly, the Cyrus-Beck algorithm works
with the parametric values (along s1) of these intersection points. The algorithm maintains

Figure 5.14: Clipping line segments si, S2. and S3 to a square clip polygon. Intersection points are
labeled according to their order along each s,. and the labels of potentially entering (PE) intersection
points are encircled; the remaining intersection points are potentially leaving (PL).

123

.

Chap. 5: Incremental Insertion

a range [to, ta t of parametric values corresponding to the current line segment, which con-
verges to the clipped segment s n p we seek as the algorithm proceeds. Initially, the current
line segment is line segment s, represented by the range [0, 11. As the algorithm processes
each edge e of the clip polygon, the current range either remains unchanged or shrinks (its
lower limit increases or its upper limit decreases). Specifically, whenever a PE intersection
point with parametric value t is discovered, the lower limit to of the current range is updated:
to = max(to, t). Similarly, finding a PL intersection point with parametric value t requires
that we update the upper limit of the current range: t1 = min(t1 , t). When all edges have
been processed (and consequently all intersection points found), the current range [to, t,]
represents the clipped segment s n p we seek. If to < t1, this clipped segment is nonempty;
otherwise (to > ti) it is empty.

The following function clips subject line segment s to clip polygon p and returns
TRUE if the result is nonempty and FALSE otherwise. If nonempty, the clipped line segment
is passed back through reference parameter result:

bool clipLineSegment(Edge &s, Polygon &p. Edge &result)

{

double tO = 0.0;

double ti = 1.0;

double t;

Point v = s.dest - s.org;

for (int i = 0; i < p.sizeo; i++, p.advance(CLOCKWISE)) {

Edge e = p.edge();

if (s.intersect(e, t)==SKEW) { // s and e cross at a point

Edge f = e;
f.roto0;

Point n = f.dest - f.org;

if (dotProduct(n, v) > 0.0) {
if (t > to)

to = t;

) else {
if (t < t1)

tl =t;

?
} else { // s and e are parallel or collinear

if (s.org.classify(e) == LEFT)

return FALSE;

if (to <= t1) {

result = Edge(s.point(tO), s.point(tl));

return TRUE;

}
return FALSE;

Observe how function clipLineSegment handles the case where s is parallel to
some edge e of the clip polygon. If s lies to the left of e, the function immediately returns

124

Sec. 5.7 Polygon Clipping: The Sutherland-Hodgman Algorithm

FALSE and exits. Otherwise the function ignores e and goes on to the next edge. The
algorithm clearly runs in time proportional to the size of the clip polygon.

5.7 Polygon Clipping: The Sutherland-Hodgman Algorithm

Polygon clipping, the process of clipping a subject polygon to a clip polygon, is more
interesting than line clipping, for what results from the process is not just a collection of
line segments, but a collection of polygons. Moreover, the problem of polygon clipping
challenges us to exploit the structure inherent in the subject polygon, to treat it as more than a
mere collection of line segments. In this section we cover the Sutherland-Hodgman polygon
clipping algorithm. Given a convex clip polygon p and an arbitrary subject polygon s, the
algorithm constructs the region s n p, a collection of zero or more polygons.

The Sutherland-Hodgman algorithm clips the subject polygon to each edge of the
convex clip polygon in turn. The subject polygon is first clipped to one edge of the clip
polygon, then the polygon that results is clipped to the next edge, and so on: The polygon
that results from each clip operation is "piped" into the next clip operation. We are done
when the subject polygon has been clipped to every edge of the clip polygon. The algorithm
is illustrated in Figure 5.15, where the clip polygon is a square.

The algorithm is implemented by function c 1 ipPo lygon, which is passed a subject
polygon s and a convex clip polygon p. The result is passed back through reference
parameter result. The function returns TRUE only if the result is nonempty:

bool clipPolygon(Polygon &s, Polygon ap, Polygon* &result)

{
Polygon *q = new Polygon(s);

Polygon *r;

int flag = TRUE;

(a) (b) (c)

(d) (e) (f)

Figure 5.15: The Sutherland-Hodgman clipping algorithm.

125

I---- <I

Chap. 5: Incremental Insertion

for (int i = 0; i < p.sizeo; i++, p.advance(CLOCKWISE)) {

Edge e 5 p.edgeo;

if (clipPolygonToEdge(*q, e, r)) (

delete q;

q = r;

} else {

delete q;

flag = FALSE;

break;

}

if (flag) {
result =q;

return TRUE;

}
return FALSE;

}

In each iteration of clipPolygon, variable q points to the current subject polygon
and variable r to the polygon that results from clipping q to edge e of the clip polygon.
Initially, q is made to point to a copy of subject polygon s (it points to a copy of s
so s is not destroyed). Clipping q to edge e is accomplished by the call to function
clipPolygonToEdge, which returns TRUE if the polygon r which results is nonempty.
If r turns out to be nonempty, it is piped into the next clip operation by the assignment
instruction q=r; otherwise function clipPolygon exits, returning FALSE.

Function cl ipPolygonToEdge clips subject polygon s to the right side of an
edge e of the clip polygon. An output polygon is grown incrementally into the clipped
polygon we seek. The idea is to compare each edge of s to edge e in turn. Depending on the
result of each comparison, zero, one, or two vertices are inserted into the output polygon
under construction.

The four possible relationships between e and an edge of s are shown in Figure 5.16.

Where ab is the current edge of s, the contribution to the output polygon resulting in each
case is as follows:

Ou

Ins

Case 1 Case 2 Case 3 Case 4
Output b Output i No Output Output i, b

Figure 5.16: Possible relationships between an edge and the clip half-plane: (Case 1) output b; (Case
2) output i; (Case 3) no output; (Case 4) output i, then b.

126

Sec. 5.7 Polygon Clipping: The Sutherland-Hodgman Algorithm

1. Edge ab lies to the right of e. Output vertex b.

2. Edge ab crosses from the right of e to the left of e. Output the point i where ab
crosses e.

3. Edge ab lies to the left of e. No output.

4. Edge ab crosses from the left of e to the right of e. Output i, then b, where ab crosses
edge e at point i.

Function clipPolygonToEdge clips subject polygon s to edge e. It returns the
resulting polygon through reference parameter result, and returns TRUE only if polygon
result is nonempty:

bool clipPolygonToEdge(Polygon &s, Edge &e, Polygon* &result)

{
Polygon *p = new Polygon;
Point crossingPt;

for (int i = 0; i < s.size(); s.advance(CLOCKWISE), i++)

Point org = s.pointo;

Point dest = s.cw0->pointfl;

int orgIsinside = (org.classify(e) 1= LEFT);

int destIsInside = (dest.classify(e) != LEFT);

if (orgIsinside != destIsinside) t

double t;

e.intersect(s.edge(), t);

crossingPt = e.point(t);

}
if (orglslnside && destIsInside) // case 1

p->insert(dest);

else if (orgIsInside && !destlslnside) { // case 2

if (org != crossingPt)

V->insert(crossingPt);

}
else if (!orgIsInside && !destIslnside) // case 3

else { // case 4

p->insert(crossingPt);

if (dest != crossingPt)

p->insert(dest);

}

result = p;
return (p->size() > 0);

What happens if clipPolygonToEdge is handed a problem whose solution con-
sists of multiple polygons? In this case, clipPolygonToEdge produces a single poly-
gon that contains degenerate boundary edges. The situation is depicted in Figure 5.17.

127

Chap. 5: Incremental Insertion

(a) (b) (c)

Figure 5.17: (a) A clipping problem; (b) the resulting polygon with three degenerate edges (displaced
horizontally in the figure); and (c) the collection of two polygons it represents.

To partition the polygon into non-degenerate pieces, we first sort the endpoints of the
degenerate edges along the common line with which they are all collinear. We then
apply Vertex: :splice repeatedly to excise the degenerate edges. Since this refine-
ment will not be needed for the applications in Chapter 8 that makes use of function
clipPolygonToEdge, we will not pursue it further.

Let us analyze program ci ipPolygon in terms of the size Is5 of subject polygon s
and the size JpJ of clip polygon p. Function clipPolygonToEdge runs in 0(1s5) time
and is called at most once per edge of the clip polygon, or at most I pi times. Hence program
clipPolygon runs in °(1s5 IPI) time in the worst case.

5.8 Triangulating Monotone Polygons

A triangulation of a polygon is a decomposition of the polygon into a set of triangles.
Triangulations are often used to reduce problems involving complicated regions to problems
involving triangles, which, because triangles are among the simplest of regions, are generally
easier to solve. For instance. to determine whether a given point lies in a nonconvex polygon,
we can triangulate the polygon and then answer yes only if the point belongs to at least one
of the triangles. Or to render a higher-order surface embedded in space, we can approximate
the surface by a mesh of triangles, which can be rendered more easily.

In this section we present a linear-time algorithm to triangulate polygons of a special
type, known as monotone polygons. With this algorithm's appearance in 1978, researchers
achieved the first method for triangulating arbritary n-gons in 0(n log n) time:

1. Decompose the polygon into monotone pieces in O(n logn) time.

2. Triangulate the monotone pieces in total 0(n) time.

In Chapter7 we will present an O(n logn)-time algorithm for decomposing apolygon into
monotone pieces.

An important question, which has been settled only recently, is whether a general
triangulation algorithm faster than 0(n logn) is possible. Faster triangulation algorithms
have been developed, but some solve only special cases in which the input polygon is
constrained, and the improved performance of others depends on additional properties of
the polygon (such as the number of reflex vertices it possesses). Yet in recent years several
general triangulation algorithms which run in o(n log n) time have been developed. In 1991
Bernard Chazelle devised an optimal 0(n)-time algorithm.

128

Sec. 5.8 Triangulating Monotone Polygons

5.8.1 What Are Monotone Polygons?

A vertex chain is said to be monotone if every vertical line crosses it in at most one point.
When a monotone chain is traversed beginning from its leftmost vertex, its vertices are
visited by increasing x-coordinates.

A polygon is monotone if its boundary is composed of two monotone chains: the
polygon's upper chain and lower chain. Each chain terminates at the polygon's leftmost
vertex and rightmost vertex and contains zero or more vertices in between. Figure 5.18
gives some examples. Observe that the (nonempty) intersection of a vertical line and a
monotone polygon consists of either a vertical line segment or a point.

5.8.2 The Triangulation Algorithm

Let p be a monotone polygon, and let us relabel its vertices as VI, V2 ... v, by increasing
x-coordinates since our algorithm will examine the vertices in this order. The algorithm
produces a succession of monotone polygons p = po, p,. , p, = 0. Polygon pi, the
result of examining vertex vi, is obtained by splitting zero or more triangles from the previous
polygon pi-,. The algorithm is finished when we are left with pn, the empty polygon-the
collection of triangles accumulated along the way represents the triangulation of the original
polygon p.

The algorithm maintains a stack s of vertices that have been examined but not yet
fully processed (some as yet undiscovered triangles may meet these vertices). As vertex vi
is about to be examined, the stack contains some of the vertices of polygon pi-,. Certain
stack invariants are maintained as the algorithm proceeds.' Specifically, where the vertices
on the stack are labeled sl, 52, s, from the bottom of the stack to the top, the following
conditions are maintained:

1I. s2, .. S., St are ordered by increasing x-coordinates and includes every vertex of pi- I
that lies both to the right of s, and to the left of st,

2. sl, s2 , .. ., s, are consecutive vertices in either pi- I's upper chain or its lower chain,

3. vertices s2, s3, . . , st-I are reflex vertices in pi-, (the measure of each of their interior
angles exceeds 180 degrees), and

(a) (b)

Figure 5.18: Two monotone polygons. The upper chain of polygon (b) consists of a single edge only.

'An invariant is a condition that holds true at specific points of the algorithm, such as at the start
of every iteration of a given loop.

129

Chap. 5: Incremental Insertion

4. in polygon Pi-i, the next vertex v; to be examined stands in one of these relations to
vertices St and SI:

(a) vi is adjacent to st but not to s1, or

(b) vi is adjacent to s1 but not to s,, or

(c) vi is adjacent to both s1 and s,.

The three cases of condition 4 are shown in Figure 5.19.
The action taken when vertex vi is examined depends on which one of stack condi-

tions 4a, 4b, or 4c currently holds. The actions, illustrated in Figure 5.19, are as follows:

Case 4a Vertex vs is adjacent to st but not to sI: While t > I and internal angle ZViStSt-I
measures less than 180 degrees, split off triangle Av istst-, then pop st from the stack.
Finally, push vi. The algorithm uses the fact that vistst-I < 180 only if either (1) St-,
lies to the left of A if vi belongs to polygon Pi-i's upper chain or (2) St-I lies to the right
of viT7 if vi belongs to the lower chain.

Case 4b Vertex vi is adjacent to si but not to st: Split off the polygon determined by vertices
Vi, SI, 52, .- , St, then empty the stack, then push St followed by vi. The polygon defined by
the vertices vi, SI, s2- . . , St is in fact fan shaped with apex vi (i.e., vi belongs to its kernel).
The algorithm then triangulates this polygon.

Case 4c Vertex vi is adjacent to both SI and st: In this case vi = Vn and polygon pi- i, deter-
mined by vertices vi, SI, 52, . ., St, is fan shaped with apex v,. The algorithm triangulates
this polygon directly, and exits.

Figure 5.20 runs the algorithm on a small problem (the stages are ordered top to
bottom, left to right). In each stage, the vertex being examined is circled, and the vertices
on the stack are labeled sI, . . ., st.

The following program, triangulateMonotonePolygon, is passed a mono-
tone polygon p and returns a list of triangles representing a triangulation of the polygon.
The program assumes that polygon p's window is positioned over its leftmost vertex:

enum (UPPER, LOWER);

List<Polygon*> *triangulateEonotonePolygon(Polygon &p)

S4 \

Si S2 S3 \\ \

- - - \ -
V

1
VI

(a) (b) (c)

Figure 5.19: The three cases that occur while triangulating a monotone polygon: Vertex v is (a)
adjacent to st but not to si, (b) adjacent to s, but not to s,, or (c) adjacent to both s, and s,.

130

-1

131Sec. 5.8 Triangulating Monotone Polygons

Figure 5.20: Triangulating a small monotone polygon. The triangles discovered at each stage are
highlighted. The stages proceed from top to bottom, left to right.

Stack<Vertex*> s;

List<Polygon*> *triangles = new List<Polygon*>;

Vertex *v, *VU, *v;

leastVertex(p, leftToRightCmp);

Chap. 5: Incremental Insertion

v = vu = vl = v

s.push(v);

int chain = advancePtr(vl, vu, v);

s.push(v);

while (1) { /* outer while loop */

chain = advancePtr(vl, vu, v);

if (adjacent(v, s.topo) &&

!adjacent(v, s.bottom())) t // case 4a

int side = (chain == UPPER) ? LEFT : RIGHT;

Vertex *a = s.top();

Vertex *b = s.nextToTopo;

while ((s.size() > 1) &&

(b->classify(v->pointo),a->pointo) == side)) {

if (chain == UPPER) {

p.setV(b);

triangles->append(p.split(v));

} else {
p.setv(v);

triangles->append(p.split(b));

}
s.poPO;

a = b;

b = s.nextToTopo;

}
s.push(v);

} else if (!adjacent(v, s.top()) { // case 4b

Polygon *q;

Vertex *t = s.pop(;

if (chain == UPPER) {

p.setV(t);

q = p.split(v);

} else (
p.setV(v);

q = p.split(t);

q->advance(CLOCKWISE);

triangulateFanPolygon(*q, triangles);

while (!s.empty())

5 .POPM0

s.push(t);

s.push(v);

I else { // case 4c

p.setV(v);

triangulateFanPolygon(p, triangles);

return triangles;

I
} /* end of outer while */

}

132

Sec. 5.8 Triangulating Monotone Polygons

Function adjacent returns TRUE just if the two vertices it is passed are adjacent:

bool adjacent(Vertex *v, Vertex *w)

{
return ((v == v->cw()) 11 (w == v->ccw()));

)

Program triangulateMonotonePolygon merges the upper and lower chains
of polygon p as it proceeds, thereby taking advantage of the fact that the vertices in each
chain are already ordered by increasing x-coordinates [otherwise an O(n log n) time sort
would be necessary]. In each iteration, variable v points to the vertex to be examined. The
program maintains two variables, vu and vl, which point to the last vertex examined in p's
upper and lower chains, respectively. As the program proceeds, these pointers are marched
left to right by function advancePtr. Each time advancePtr is called, it advances
either vu or vl and updates v to point to whichever is advanced:

int advancePtr(Vertex* &vu, Vertex* &vl, Vertex* &v)

{
Vertex *vun = vu->cwo;
Vertex *vln = vl->ccw0;
if (vun->point() < vln->pointo)) {

v = vu = vun;
return UPPER;

} else {
v = vl = vln;
return LOWER;

}

Function advancePtr returns UPPER or LOWER, indicating which of the two
chains v belongs to. Program triangulateMonotonePolygon uses this value to
ensure that its subsequent call to split returns the piece detached from the main polygon,
rather than the main polygon from which the piece was detached.

To triangulate a fan shaped polygon, we iteratively find the triangles which fan out
from some common apex v. To do this, we traverse the polygon starting from v, and at
each vertex w that is not adjacent to v, we split along the chord connecting v to w. This
is performed by function triangulateFanPolygon, which destructively decomposes
the n-gon p into n - 2 triangles and appends these to list triangles. The function
assumes that polygon p is fan shaped, and its window is positioned over some apex:

void triangulateFanPolygon(Polygon &p, List<Polygon*> *triangles)

{
Vertex *w = p.v0->cwv)->cw0;
int size = p.sizeo;

for (int i = 3; i < size; i++)

133

Chap. 5: Incremental Insertion

triangles->append(p.split(w));

w = v->cw();

triangles->append(&p);

Figure 5.21 depicts a triangulation produced by the algorithm. The monotone polygon
contains 35 vertices.

5.8.3 Correctness

We must show two things: (1) that every diagonal the algorithm finds in iteration i is (a
chord) internal to polygon pi-,; (2) that the algorithm restores the four stack conditions
from one iteration to the next. (That the chords which are found decompose the original
polygon into triangles is apparent from Figure 5.19.)

First consider diagonal VTsjt- 1 of Figure 5.19a (here t = 5). Letting triangle T =

Lst-istvj, observe that no vertex of polygon pi-l can lie in T: The vertices so, * *, St-2
lie to the left of T's leftmost vertex St-,, and vertices vj for j > i lie to the right of T's
rightmost vertex vi. Hence any edge that crosses diagonal vis1t. 1 must leave triangle T by
one of the edges sol St or St, which is impossible since these are boundary edges of pi- l.
Thus diagonal)j is a chord. Now split triangle T from pi.- * The same argument shows
that the remaining diagonals introduced in Case 4a are also chords.

Next consider Case 4b, depicted in Figure 5.19b. By stack conditions 2 and 3,
polygon T, determined by vertices vi, sI, .. ., st, is fan shaped with apex vi. Observe that
no vertex of Pi-, can lie in the interior of T-were one or more vertices to do so, the
rightmost such vertex would currently be on the stack, and hence on the boundary of pi- l
Since the interior of T is free of vertices, any edge which crosses V-t must also cross one
of the edges Visl, SI.02, .St-St, which is impossible since these are boundary edges of
pi-. It is shown similarly that, in Case 4c (Figure 5.19c), Pi-, is fan shaped with apex vi
and interior free of vertices.

Next we argue that the stack conditions are maintained from one iteration to the next.
At most vi and st are pushed on the stack, and when they are both pushed, they are pushed
in the correct horizontal order. Thus stack condition I is maintained. The vertices comprise
a vertex chain in Pi - by induction (in Case 4a) or by the fact that the stack is reset to two
adjacent vertices (in Case 4b), so condition 2 is satisfied. The stack's vertices are reflex
(except for top and bottom vertices) because vi is pushed only when the vertex on the top

Figure 5.21: Triangulation of a monotone 35-gon.

134

of the stack (onto which it gets pushed) would become a reflex angle. Hence condition 3 is
met (it is vacuously satisfied in Case 4b since the stack contains only two items.) Finally,
vi must be adjacent to at least one of s, or s, because the monotonicity of Pi- I guarantees
that v; has a neighbor to its left, and all the stack's vertices except s1 and s, already have
both neighbors accounted for. Hence stack condition 4 is satisfied.

5.8.4 Analysis

Program triangulateMonotonePolygon runs in 0(n) time, where the input mono-
tone polygon contains n vertices. To see the upper bound 0(n), observe that each iteration
of the two inner while loops (in Cases 4a and 4b) pops a vertex from the stack. Yet every
vertex is pushed onto the stack at most once (when it is first examined) and hence can be
popped from the stack at most once. Since the algorithm (1) performs 0(n) constant-time
stack operations and (2) spends constant time between successive stack operations, it runs
in 0(n) time. The lower bound follows from the fact that each of the n vertices must be
examined.

5.9 Chapter Notes

The need to sort arises in many settings and is ancient, predating computers and possibly
even written language. Not surprisingly, many of the algorithms we cover in this book rely
on sorting. During the course of this book, we present three sorting methods that belong to
every computer scientist's repertoire-insertion sort, selection sort, and merge sort. These
methods are so fundamental that they are all but unattributable. Yet despite their seeming
simplicity, research continues to this day into the complexity of these and other basic sorting
algorithms.

The number of polygonizations of a set of n points is exponential in n; however, the
number of star-shaped polygonizations is bounded above by 0(n 4). If no three points in
the point set are collinear, the kernels of the different star-shaped polygonizations partition
the point set's convex hull. An algorithm for constructing this partition in 0(n 4

) time
is presented in [22], which leads to an 0(n5)-time algorithm for finding all star-shaped
polygons. An algorithm for finding the kernel of any n-sided polygon in 0(n) time is
presented in [531; we present a simpler but less efficient 0(n log n) algorithm in Chapter
8. The superb book Art Gallery Theorems and Algorithms by Joseph O'Rourke explores
problems related to visibility inside a polygon [601.

The notion of convex hull makes sense for sets of points in d-dimensional space for
any d > 1: The convex hull is the intersection of all convex polytopes that contain the
points. Some methods for finding the convex hull of planar point sets are framed in terms
of d-dimensional space. Insertion hull, for example, is a special case of the beneath-beyond
method for finding the convex hull of points in d-dimensional space [45].

The line clipping method of section 5.6 is known as the Cyrus-Beck clipping algo-
rithm, and the polygon clipping method of section 5.7 as the Sutherland-Hodgman algorithm
[75]. Other well-known clipping methods include the Cohen-Sutherland and the midpoint
subdivision [77] line clipping algorithms, and the Weiler-Atherton [88] polygon clipping
algorithm. This last algorithm is general, allowing both subject and clip polygons to be non-

Sec. 5.9 Chapter Notes 135

Chap. 5: Incremental Insertion

convex and to possess holes. This generality permits its use in an algorithm for performing
hidden surface removal, also presented in [88].

The algorithm for triangulating monotone polygons is given in [31], which gives a
more general definition of monotone than we have assumed: A vertex chain c is monotone
relative to some line e if every line perpendicular to e intersects c in at most one point. A
polygon is monotone if its boundary is composed of two vertex chains that are monotone
relative to the same line. Our monotone polygons are actually polygons that are monotone
relative to the horizontal axis. The article [67] presents a linear-time algorithm for deciding
whether there exists a line relative to which a polygon is monotone.

Chazelle's [19] triangulation algorithm runs in optimal 0(n) time. A survey of
polygon partitioning techniques is presented in [60, 61].

5.10 Exercises

1. Program starPolygon finds only fan-shaped polygons. Generalize the program
so, when passed any point s lying in the convex hull of the set of points, it finds a
star-shaped polygon containing s in its kernel.

2. Devise an 0(n log n)-time algorithm for finding a star-shaped polygon in a point set.

3. Prove that the kernel of a polygon is convex.

4. Write a version of insertion hull that runs in 0(n log n) time. (Hint: Presort the points
so the calls to pointInConvexPolygon and closestVertex are unnecessary.)

5. Show that Q (n log n) time is necessary to solve the convex hull finding problem. [Hint:
Devise an efficient reduction from sorting to convex hull finding. Use the fact that
Q (n log n) is a lower bound for sorting.]

6. Show that point p belongs to convex hull C7l (S) if and only if there exist three points
of S such that the triangle they determine contains p.

7. This question involves the Cyrus-Beck line clipping algorithm. Show that a line s
intersects a convex polygon p only if the intersection points, when ordered along 3-,
consist of a subsequence of PE intersection points followed by a subsequence of PL
intersection points.

8. Modify program clipLineSegment so it clips an infinite line, rather than a line
segment, to a convex polygon.

9. Devise an algorithm to remove the degenerate edges which are sometimes produced
by clipPolygonToEdge.

10. Given a polygon p and some point a inside p, devise a method for finding some ray
that originates at a and crosses the minimum number of p's edges. (Hint: Consider
sorting the vertices of p radially around a.)

11. Show that any triangulation of an n-gon uses n - 3 chords to decompose the polygon
into n - 2 triangles.

136

6
Incremental Selection

Incremental selection methods solve problems incrementally, a little at a time. These
methods, however, process the input in an order of their own making, rather than in the
order in which the input is presented. Incremental selection involves scanning the input to
"select" the best item to process next.

In some applications of incremental selection, the order in which items are to be
processed can be determined in advance. In such cases the input can be presorted. In other
applications the order cannot be anticipated, and each decision concerning which item to
process next depends on what has been achieved so far.

In this chapter we will look at both kinds of applications. We will start with selection
sort, an exemplar for incremental selection. We will then consider two more methods for
constructing the convex hull of a finite point set: the gift-wrapping method and the Graham
scan. The third geometric algorithm we will cover is the depth-sort method for performing
hidden surface removal given a collection of triangles in space. Our next algorithm computes
the intersection of two convex polygons in the plane. Our last algorithm constructs a special
triangulation of a finite point set in the plane, known as the Delaunay triangulation.

6.1 Selection Sort

Selection sort, another sorting algorithm, repeatedly extracts the smallest item from a set
until the set is empty. For sorting an array of items, it works as follows: Find the smallest
item and exchange it with the item in the array's first position. Then find the smallest of

137

Chap. 6: Incremental Selection

the remaining items (to the right of the first position) and exchange it with the item in the
second position. Continue in this manner until the array is sorted.

The function template selectionSort sorts the items in array a [0 . . n- 1 i . For
each i from 0 through n -1, iteration i selects the smallest item from among a [i. n- I1
and then exchanges this item with a [i I:

template<class T>

void selectionSort(T a[], int n, int (*cmp)(T,T))

{
for (int i = 0; i < n-1; i+n) {

int min = i;

for (int j = i+l; j < n; j++)

if ((*cmp)(a[j], almin]) < 0)

min = j

swap(aui], amin]);

The body of the inner for loop performs the selection for each increment of i.
Variable min holds the index of the smallest item examined in the current scan. We
maintain the index of the item, rather than the item itself, so the subsequent exchange can
be performed.

Function swap exchanges its two arguments:

template <class T> void swap(T &a, T &b)

T t = a;

a =b

b =t

The running time of selection sort is T(n) = Z7 1(i), where I(i) time is needed to
select the ith smallest item. Since selecting this item takes n - i comparisons, the program
performs T(n) = (n - 1) + (n - 2) + - - + 1 = n(n - 1)/2, or about n2 /2, comparisons
in total. Although this running time is comparable to that of insertion sort, selection sort
is generally preferable: Selection sort performs only n exchanges, whereas insertion sort
performs about n2 /2 half-exchanges in the worst case (where shifting an item one position
to the right counts as a half-exchange).

6.1.1 Off-Line and On-Line Programs

Selection sort is an example of an off-line method. This means that all its input data must be
available from the start. It is easy to see why: If the smallest item were to arrive only after
some other (larger) item were already selected, the opportunity to put the smallest item in
the first position of the array would be lost. All incremental selection methods are in fact
off-line since selection of the correct item at each stage cannot be guaranteed if all items
are not accessible.

138

Sec. 6.2 Finding Convex Hulls: Gift Wrapping

Insertion sort, like all incremental insertion methods, is an example of an on-line
method. An on-line program does not look ahead at its input. This means that its input can
arrive as a stream over time and does not have to be available in its entirety from the start.
Although insertionSort happens to have access to the entire input array, it does not
scan the array prior to inserting items; rather, it peels off one item at a time without looking
ahead.

On-line programs are most useful in real-time settings, where the input data are
generated on the fly. Text editors and flight simulators are on-line, since input to these
programs is generated in real time by a user whose decisions cannot be anticipated. On
the down side, on-line programs may do work which, on the basis of input data that arrives
only later (too late), turns out to have been wasted effort. An example is the convex hull
program insertionHull of the previous chapter, which sometimes assembles large
current hulls only to disassemble them later. We now turn to a method for constructing
convex hulls which avoids this sort of wasted work because it is based on the incremental
selection approach.

6.2 Finding Convex Hulls: Gift Wrapping

One way to construct the convex hull of a finite point set S in the plane mimics how one
would go about drawing it with straightedge and pencil. First select some point a E S that
clearly belongs to the convex hull boundary-the leftmost vertex suffices. Then pivot a
vertical ray clockwise around a until it first hits some other point b in S; segment ab is an
edge of the convex hull. To find the next edge, continue pivoting the ray clockwise, this
time around b, until the ray encounters some other point c; segment bc is the next edge of
the convex hull. Continue in this fashion until returning to point a. Figure 6.1 depicts the
process, which is known as the gift-wrapping method.

The process of pivoting the ray around each point is the "selection" part of the algo-
rithm. To select the point that follows point a on the convex hull boundary, we seek point b

such that no point lies to the left of ray ab. The points are examined in turn, while the
algorithm keeps track of the leftmost candidate encountered so far. Only those points not
yet known to lie on the convex hull boundary need be examined.

The following program gi f twrapHul 1 returns a polygon representing the convex
hull of the n points in array s. The array s should have length n + 1 since the program
places a sentinel point in s [n]:

Polygon *giftwrapHull(Point s[], int n)

int a, i;

for (a = 0, i = 1; i < n; i++)

if (sBi] < s[a])

a = i;

sin] = s[a];

Polygon *p = new Polygon;

for (int m = 0; m < n; m++)

swap(s[a], s~m]);

139

Chap. 6: Incremental Selection

p->insert(s[mJ);

a = 2 + 1;

for (int i = m + 2; i <= n; i++) {
int c = sti].classify(s[in], spa]);

if (c == LEFT || c == BEYOND)

a =i;

}
if (a == n)

return p;

}
return NULL;

}

Pivoting the ray around some point s [m] is simulated by the inner for loop. Point
s [a] is the leftmost point the ray has encountered so far. If a new point s [i] lies to the
left of the ray that originates at s [im] and passes through s [a], then the pivoting ray would
hit s [i] before s [a], so a is updated. Variable a is also updated if s [i] lies beyond
s [a] -point s [a] cannot be a vertex of the convex hull if it lies between points s [nm]
and s [i] .

Observe that function gi ftwrapHul 1 rearranges the points in array s. At the
end of iteration m, subarray s [0 . . mi] contains the known vertices of the convex hull in
clockwise rotation, and s [m+1 . . n- 1] contains the remaining points, which may or may
not prove to be vertices of the convex hull. It is these latter points which must be examined
in subsequent iterations.

a
0

0

C
b

a -

*0

(a) (b) (c)

aQ<

(d) (e) (f)

Figure 6.1: Gift wrapping a set of points in the plane.

140

I

Sec. 6.3 Finding Convex Hulls: Graham Scan

6.2.1 Analysis

To analyze the gift-wrapping method, note that pivoting around the mth point requires
n - m - 2 (constant-time) point-line classifications. Since only h pivots are performed
[where h is the number of vertices in convex hull CHX(S)], the total running time is O (hn).
If every one of the n points is a vertex of C/t(S) (i.e., if h = n), the running time is 0(n 2),
comparable to that of insertionHull. On the otherhand, whenever h is small compared
to n, the gift-wrapping method is faster than the insertion hull method.

A running time like O(hn) is said to be output sensitive since it includes a factor h
that depends on the size of the output. For analyzing programs which run more quickly
the less output they produce (not all programs behave like this), output-sensitive bounds
provide a tighter estimate of behavior than do bounds not sensitive to output size. In the
case of gift wrapping, the 0(hn) running time indicates that the program is efficient when
the convex hull is small; this fact is not captured by the 0(n2) estimate of running time,
which is sensitive only to input size but not to output size.

6.3 Finding Convex Hulls: Graham Scan

In this section we cover the Graham scan, a convex-hull finding method named for its
inventor, R. L. Graham. The Graham scan finds the convex hull of a finite point set S in
two phases. In the presorting phase, the algorithm selects an extreme point P0 E S and
sorts the remaining points of S radially around Po. In the hull finding phase, the algorithm
iteratively processes the sorted points, thereby producing a sequence of current hulls which
converges to convex hull CH(S). Presorting simplifies the hull finding phase: Each point
processed during the hull finding phase gets inserted into the current hull, no questions asked;
moreover, the vertices to be removed from the current hull are easy to find. This compares
favorably with the way that the insertion hull method of the previous chapter processes each
point: It must decide whether to insert the point into the current hull and, if so, traverse the
current hull boundary full circle to determine which vertices are to be removed.

Given point set S, Graham scan first finds some extreme point P0 E S. We will take Po
to be the point of S with minimum y-coordinate, or the rightmost such point in the case of
a tie. The remaining points are then sorted by polar angle around Po. If two points have the
same polar angle, the point closer to P0 is considered less than the more distant point. This
is the dictionary order relation for points based on their polar coordinates relative to po.

realized by comparison function polarCmp of section 5.2. Let us relabel the remaining
points PI, P2 . Pn-l according to this ordering, as in Figure 6.2.

Po

Figure 6.2: Labeling of points based on their polar
coordinates relative to pt.

141

Chap. 6: Incremental Selection

During the hull finding phase, Graham scan maintains a current hull over those points
that have already been inserted. Figure 6.3 illustrates the algorithm in action. Consider the
insertion of point pa (Figure 6.3f). Because the points are ordered radially around po, it is

P70 P3

0P5 P4

. P6 P20 Pi

P8

Pa

(a)

(c)

P70 P3

* P6 P2. u p 1

P8

(e)

(g)

P7* P3

P5 P4
S

. *P6 P2a Pi

P8P

Po

(b)

P7 . P3

P5 P4
0

* P6 P20 Pi
P8

P0

(d)

(f)

(h)

Figure 6.3: The Graham scan in action.

142

P7.

PB

I. I

F p7 ---- P3

-- P5 / P4
O'I" I

"�P6

PS11 Pi

PO

Sec. 6.3 Finding Convex Hulls: Graham Scan

clear that p7 is to be inserted and that po is to become its predecessor. But which point is
to become p7'S successor? To answer this, we make use of the fact that every vertex must
represent a left turn in a counterclockwise traversal of the convex hull boundary. Consider
point P6. our first candidate. Since the angle LP5P6 P7 represents a non-left turn (p7 lies to
the right of edge P5A), we remove P6 from the current hull. Next we consider p5. Since
angle Zp4p5 p7 also represents a non-left turn, we similarly remove p5 from the current
hull. Similarly, we remove p4 as well since angle Zp3p4p7 is also not a left turn. When we
consider point p3, things are different: Angle Z p p3 p7 does in fact represent a left turn, so
we have found P7'S successor in the updated current hull (p3).

Program grahamScan is passed an array pts of n points and returns a polygon
representing pts's convex hull. The program works in five stages-the first two comprise
the presorting phase, and the remaining three the hull finding phase:

1. Find extreme point po.

2. Sort the remaining sites by their polar coordinates relative to p(.

3. Initialize the current hull.

4. Grow the current hull until it equals the convex hull of all n sites.

5. Convert the current hull to a Polygon object and return it.

The program is defined as follows:

Point originPt;

Polygon *grahamscan(Point pts l, int n)

{
// stage 1

int m = 0;
for (nt i = 1; i < n; i++)

if ((pts[i].y < ptstml-y)

((pts[i].y == ptstmj.y) && (ptsti].x < pts[m].x)))

m = i;
swap(ptstO], pts[mJ);

originPt = ptsaO];

// stage 2

Point **p = new (Point*)[n];

for (i = 0; i < n; i++)

phi] = &ptsti];

selectionSort(&pl], n-1, polarcmp); // or any sorting method

// stage 3
for (i = 1; p[i+1]->classify(*p[O], *p[i]) == BEYOND; i++)

Stack<Point*> s;

s.push(p1O]);

s.push(ptil);

// stage 4

for (i = i+l; i < n; i++) {

while (p(i]->c1assify(*s.nextToTop(), *s.topo) != LEFT)

s pop();

143

Chap. 6: Incremental Selection

s.push(pli]);

stage 5
Polygon *q = new Polygon;
while (!s.empty())

q->insert(*s.POP());
delete p;

return q;

?

Stage 1 is straightforward. In stage 2 we allocate array p and initialize its elements to
point to the Points in array pts. We require an array of pointers so we can employ one
of our generalized sorting routines. Then we sort array p based on comparison function
polarCmp, which was defined in section 5.2 in the context of finding star polygons in
point sets. Recall that the global variable originPt is used to communicate the origin
point-in this case point po-to function polarCmp.

Stages 3 and 4 maintain the current hull in a stack s. Letting set Si = {po, p, . p, i},
the stack represents the current hull CH(Si) as follows. Where the points in the stack are
labeled s1, s2, ... , st from the bottom of the stack to the top, the stack satisfies these two
stack conditions:

1. P= sI, s2 , . s = Pi are the vertices of current hull C-(Si) in counterclockwise
rotation, and

2. edge SI S2is an edge of the final convex hull CH(S).

Stage 3 establishes these conditions initially. The for loop steps along ray _p*p until
arriving at the last (most distant) pi along the ray; then it pushes pO and pi onto the stack.
Stack condition 1 is satisfied because line segment pope is the convex hull of Si since points
Pl, *.*, pi-, lie between po and pi. Stack condition 2 is satisfied because pTopi is an edge
of C-(S).

In stage 4, illustrated in Figure 6.4, point pi is processed to produce current hull
Ct(S,). Program grahamScanpopsst, st-1,..., sk+I from the stack until reaching Sk, the
topmost point of the stack such that angle Zsk- I sk pi represents a left turn. Since these points
that are popped lie in the interior of triangle Apo pi sk or along one of the edges po pi or pisk,
none ofthem can be a vertex of C7(S,). Since only these points and none others are removed
from the stack, the points that remain, together with pi, are the vertices of CH-(Si). Because
stack condition I ensures that Sj, . . ., Sk are ordered correctly within the stack and pi follows
these in the polar angle ordering, the new stack contents (si, . . ., Sk, pi) are correctly ordered
in counterclockwise rotation. It follows that stack condition I is maintained.

The purpose of stack condition 2 is to guarantee that Sk exists. Since edge SS12 is an

edge of CK(S), every pi that gets processed lies to the left of S152. Since angle Zsls2pi

represents a left turn, it follows that Sk exists for some k > 2. Moreover, since the original sI
and S2 are never popped from the stack, stack condition 2 is maintained.

Stage 5 of grahamScan grows a Polygon object q by iteratively popping a point
from the stack and inserting it into q. By stack condition 1, the points are popped in
clockwise order.

144

Sec. 6.4 Removing Hidden Surfaces: The Depth-Sort Algorithm

Figure 6.4: Inserting point pi to produce current
I.. red w -I

- 1 = Po null L, rki).

With regard to running time, it is easy to see that stages 1, 3, and 5 each take O(n)
time. In stage 4, the body of the while loop is performed at most once per point (once
popped from the stack, a point never returns to the stack a second time). Hence stage 4 also
takes O(n) time. Therefore, total running time is dominated by the initial sort (stage 2),
so Graham scan runs in O(n logn) time if an appropriate sorting method is used. It is
noteworthy that Graham scan runs in linear time if the point set is known to be sorted
initially.

6.4 Removing Hidden Surfaces: The Depth-Sort Algorithm

6.4.1 Preliminaries

Three-dimensional computer graphics typically involves modeling a scene in space and
then forming an image of the scene in a process known as rendering. To render, we select
a position in space from which to view the scene and, based on this viewing position and
several additional viewing parameters, project the scene into a plane, where the image is
formed.

What makes rendering challenging is that some of the objects in the scene, and portions
of other objects, are hidden from view and so should not appear in the final image. Some
of the objects may lie outside the field of view (identifying these objects is the problem
of clipping). In addition, some objects (and portions of objects) may be hidden by other
opaque objects that lie between them and the viewing position. The problem of identifying
these hidden objects is known as the hidden surface removal problem.

In this section we solve the hidden surface removal problem through depth sorting.
The scene will be represented by a collection of triangles in space. This model is in wide
use, in large part because it accommodates a wide range of scenes. For instance, any surface
can be approximated by a mesh of triangles which, by making the mesh sufficiently fine,
can be made to resemble the surface as closely as desired. Even relatively coarse meshes
are useful in practice since shading methods applied during rendering can greatly enhance
the impression of the surface's curvature.

The projection we will employ maps points in space along lines parallel to the z-axis:
Point (x,y,z) projects to point (x,y,O). This projection, known as orthographic parallel
projection, can be assumed without loss of generality: Given the set of viewing parame-
ters describing some desired view, a sequence of transformations can be performed which
reduces the original rendering problem to one involving orthographic parallel projection.

145

Pi

Chap. 6: Incremental Selection

By convention, we will assume that the viewing position is in the -z-half-space (behind
the xy-plane), that the scene lies in the +z-half-space (beyond the xy-plane), and that depth
increases-objects are farther away-as z increases.

We will further assume that the triangles in the scene are oriented such that they are
viewed from their negative half-spaces-their normal vectors point away from the viewing
position (Figure 6.5). This assumption is less limiting than might first appear. When using
a mesh of triangles to model the surface of a solid, the triangles are oriented consistently,
relative to the solid's interior: for example, the normals all point toward the interior of
the solid. In a prerendering step known as backface culling, we discard those triangles
whose normals point toward the viewing position since they cannot be seen-the solid's
interior lies between each such triangle and the viewing position. We are left with only
those triangles whose normals point away from the viewing position. Even when a mesh
of triangles is used to represent a "free-floating" surface that is not the boundary of a solid
(so there exists no solid to occlude triangles), the triangles can be reoriented to ensure that
their normals point away from the viewing position.

6.4.2 The Depth-Sort Algorithm

Hidden surface removal is most easily performed on a set of triangles which do not overlap
in z-coordinate. First sort the triangles by decreasing z (from far to near), and then paint
them in this order. If a triangle is visible, it will paint over whatever it hides, and nothing
will be painted over it. This approach is sometimes called the painter's algorithm since
it is how a painter might first paint the background, then the scene at intermediate depth,
and finally the foreground. Each layer is painted on top of the previous, more distant
layer.

The painter's algorithm exploits the fact that it is safe to paint something if it does
not hide anything to be painted later. We will say that a list of triangles is visibility ordered
if it is safe to paint each one in the given order-that is, no triangle hides any that follow.
More formally, a list of triangles P1 -< P2 -< -*-- *< Pn is visibility ordered with respect to
viewpoint p if and only if this holds: If Pi -< Pj, then Pi does not obscure Pj when viewed
from p. Depth sorting is the process of arranging a set of triangles into visibility order.

Some sets of triangles admit more than one visibility ordering. A simple example
is that of two triangles, neither of which obscures the other. Other sets admit a unique
visibility ordering, and others, as we shall see shortly, admit none at all.

Y.

x

Figure 6.5: The setting for hidden surface removal.

146

Sec. 6.4 Removing Hidden Surfaces: The Depth-Sort Algorithm

Hidden surface removal is more difficult to perform on a set of triangles which overlap
in z-coordinate. Based on the painter's algorithm, we would like to determine which of
two given triangles obscures the other by comparing canonical values selected from each
triangle's z-extent. (A triangle's z-extent is the range of z-coordinates it spans; equivalently,
it is the perpendicular projection of the triangle's bounding box into the z-axis.) However,
this does not work. If, for example, we use zm, the maximum value in each triangle's
z-extent, the triangles in Figure 6.6 would be ordered A -< B since zA > zu. But this
is not a visibility ordering since A obscures B and so cannot be safely painted first (their
actual visibility ordering is B -< A). This example illustrates that depth sorting generally
requires that a given list of triangles be rearranged, even if the original list is tentatively
ordered from far to near. The algorithm we will present rearranges the order of a tentatively
ordered list by performing a sequence of shuffle operations.

Some sets of triangles admit no visibility ordering at all. If two triangles in the
set interpenetrate each other as in Figure 6.7a, no visibility ordering is possible-neither
triangle can precede the other in any legal visibility ordering since each obscures the other. A
visibility ordering may be impossible even if the triangles are assumed not to interpenetrate
each other. None of the triangles of Figure 6.7b can precede the other two in any legal
visibility ordering since each obscures one of the remaining two.

The way out of this impasse involves refining the original set of triangles: splitting
certain triangles into triangular pieces so the set of triangles which results can be depth
sorted. If triangle A of Figure 6.7a is split by the plane of triangle B into pieces Al,
A2, and A3 (as in Figure 6.8a), the set of triangles that results is visibility ordered by
AI -< B -< A2 -< A3. If triangle C of Figure 6.7b is split by the plane of D into Cl, C2,
and C3 (Figure 6.8b), we have the visibility ordering Cl -< D -< E -< C2 -< C3 . The set of

I Figure 6.6: The visibility ordering of these trian-
XY gles is B -< A even though zM > z'

IL

Figure 6.7: No collection of triangles containing either of these configurations can be visibility ordered.

147

z ,

1__�

IF

. s -

Chap. 6: Incremental Selection

Figure 6.8: Refinements of Figure 6.7 are visibility ordered by (a) AI -< B -< A2 -< A3 and (b)
Cl -< D -< E -< C2 -< C3 .

triangles that results from splitting a set of triangles into pieces is known as a refinement of
the original set.

The aforementioned ideas form the basis of our algorithm for depth sorting a set of
triangles. First, we sort the triangles according to their maximum depths zM from far to
near. The resulting list represents a first approximation (or tentative) visibility ordering.
Then we transform this into a true visibility ordering by incrementally shuffling the list and,
whenever necessary, refining the list.

The algorithm works like this. Let S be the tentatively visibility ordered list, and let p
be the first triangle in S. We wish to decide whether it is safe to paint p-that is, whether
p does not obscure q for every q E S. To do so, we compare p to each triangle q in list S
whose z-extent overlaps that of p. For each triangle q, we ask whether it is possible for p
to hide q. If it turns out that p obscures none of the triangles q, it is safe to paint p; hence
we remove p from S and paint it, and then resume the algorithm using the first element in
list S as the new p.

Alternatively, if it happens that p obscures some triangle q, we check whether q also
obscures p or whether q has already been shuffled once. If either condition holds, we split q
into pieces by the plane of p and then, within list S, replace q by its pieces (the refinement
operation). (It is necessary to check whether q has already been shuffled in order to prevent
an infinite loop to which configurations like those of Figure 6.7 would otherwise lead.) If
neither condition holds, then the positions of p and q are interchanged in list S (the shuffle
operation), and the algorithm resumes with q, now the first element of list S. serving as the
new p.

Program depthSort depth sorts an array tri of n pointer-to-triangles and returns
a visibility-ordered list of triangles. The tentatively ordered list of triangles is pointed to by
local variable s, and the final depth-ordered list by variable result:

List<Triangle3D*> *depthSort(Triangle3D trite] , int n)

{
List<Triangle3D*> *result = new List<Triangle3D*>;

Triangle3D **t = new (Triangle3D*)[n];

for Uint i = 0; i < n; i++)

t[i] = new Triangle3D(*tri[i]);

insertionSort(t, n, trianglecmp);

List<Triangle3D*> *s = arrayToList(t, n);

while (s->length() > 0) { /* while */

148

I

.0

Sec. 6.4 Removing Hidden Surfaces: The Depth-Sort Algorithm 149

Triangle3D *p = s->firsto;

Triangle3D *q = s->nexto;

int hasShuffled = FALSE;

for (; !s->isHeado)&&overlappingExtent(pq,2); qps->nextO)

if (mayObscure(p, q)) {

if (q->mark II mayobscure(q, p))

refineList(s, p);

else {

shuffleList(s, p);

hasShuffled = TRUE;

break;

}
}

if (!hasShuffled) (
s->firsto0;

s->removeo0;

result->append(p);

)
} /* while */
return result;

}

Sorting is used to construct the initial tentatively ordered list. The comparison function
triangleCmp compares two Triangle3Ds according to their maximum depth:

int triangleCmp(Triangle3D *a, Triangle3D *b)

{
if (a->boundingBox().dest.z > b->boundingBox().dest.z)

return -1;

else if (a->boundingBoxO.dest.z < b->boundingBoxO.dest.z)

return 1;

else

return 0;

}

Function arrayToList, which was defined in Chapter 3, is then used to transform the
sorted array of pointers into a list.

Function call overlappingExtent (p, q, 2) returns TRUE if triangles p and q
overlap in z-coordinate (the third argument specifies the coordinate via one of the indices 0,
1, or 2). The implementation of function overlappingExtent uses the fact that two
intervals in the real number line intersect if and only if the left endpoint of one of the
intervals is contained in the other interval:

bool overlappingExtent(Triangle3D *p, Triangle3D *q, int i)

{
Edge3D pbox = p->boundingBoxO;

Edge3D qbox = q->boundingBox();

return (((pbox.org[i] <= qbox.org[i]) &&

Chap. 6: Incremental Selection

(qbox.org[i] <= pbox.dest[i])) ||

((qbox.org[i] <= pbox.org[i]) &&

(pbox.org[i] <= qbox.dest[i])));

We shuffle list s with function shuf f leList, which exchanges the first item p in
the list with the item q occurring in the list's window:

void shuffleList(List<Triangle3D*> *s, Triangle3D *p)

{
Triangle3D *q = s->val();

q->mark = TRUE;

s->val(p);

s->firstoU;

s->val(q);

6.4.3 Comparing Two Triangles

The depthSort program uses the function callmayObscure (p, q) todetermine whether
triangle p potentially hides triangle q. Function mayObs cure performs five tests in order
of increasing complexity. As soon as one of these tests succeeds, p has been shown not to
obscure q. Alternatively, if none of the five tests succeeds, then p potentially obscures q.
The five tests are as follows:

I. Do the x-extents of p and q not overlap?
2. Do the y-extents of p and q not overlap?

3. Is p entirely behind or on the plane of q?

4. Is q entirely in front of or on the plane of p?

5. Do the projections of p and q not overlap?

Tests 3 and 4 are shown in Figure 6.9.
Most of the machinery for performing the tests is already in place. Tests I and 2

make use of the triangles' bounding boxes to compare x-extents and y-extents, respectively.

z,

kp

/S
,.-xy

Test 3 Test 4

Figure 6.9: Two of the tests checked by mayObscure: (Test 3) p is behind the plane of q; (test 4)
q is in front of the plane of p.

150

Sec. 6.4 Removing Hidden Surfaces: The Depth-Sort Algorithm 151

Test 3 classifies the three vertices of p with respect to the plane of q, and it succeeds if
none of the vertices lies in front of the plane (in q's negative half-space). Similarly, test 4
succeeds if none of q's vertices lies behind the plane of p (in p's positive half-space).
Test 5 is performed using function projectionsOverlap, which returns TRUE if the
two triangles it is passed overlap in their projection.

Function mayObscure applies the tests to triangles p and q until one of the tests
succeeds. If none succeeds, the function returns TRUE, indicating that it is possible for p
to obscure q.

bool mayObscure(Triangle3D *p, Triangle3D *q)

int i;

// case 1
if (IoverlappingExtent(p, q, 0))

return FALSE;

// case 2
if (!overlappingExtent(p, q, 1))

return FALSE;

// case 3

for (i = 0; i < 3; i++)

if ((*p)[i].classify(*q) == NEGATIVE)

break;

if (i == 3) return FALSE;

// case 4

for (i = 0; i < 3; i++)

if ((q)[iJ.classify(*p) == POSITIVE)

break;

if (i == 3) return FALSE;

// case 5

if (!projectionsOverlap(p, q))

return FALSE;

return TRUE;

Let us focus on test 5. To decide whether the projections of triangles p and q overlap,
we first project the triangles into the xy-plane, producing the plane triangles P and Q. We
then apply three tests to P and Q to see if they overlap. If any of the tests succeed, the
projections of p and q overlap; otherwise they do not. The three tests are as follows:

1. Does some vertex of P lie in Q?

2. Does some vertex of Q lie in P?

3. Does some edge of P intersect some edge of Q?

The first test detects the case that P is contained in the interior of Q, and the second
test detects the case that Q is contained in the interior of P. Overlap due to any remaining
configuration is detected by the third test (although some of these configurations will first
be picked up by the first or second test).

Chap. 6: Incremental Selection

Function proj ectionsOverlap is passed triangles p and q and returns TRUE if
and only if their projections overlap. It uses function proj ect (defined in section 4.6) to
obtain the projections of p and q:

bool projectionsOverlap(Triangle3D *p, Triangle3D *q)

int answer = TRVE;

Polygon *P = project(*p, 0, 1);

Polygon *Q = project(*q, 0, 1);

for (int i = 0; i < 3; i++, P->advance(CLOCKWISE))

if (pointInConvexPolygon(P->pointo0, *Q))

goto finish;

for (i = 0; i < 3; i++, Q->advance(CLOCKWISE))

if (pointInConvexPolygon(Q->pointo, *P))

goto finish;

for (i = 0; i < 3; i++, P->advance(CLOCKWISE)) {

double t;

Edge ep = P->edgeo);

for (int j = 0; j < 3; j++, Q->advance(CLOCKWISE))

Edge eq = Q->edgeo;

if (ep.cross(eq, t) == SKEW-CROSS)

goto finish;

?
?
answer = FALSE;

finish:

delete P;

delete Q;

return answer;

}

6.4.4 Refining a List of Triangles

In the depth-sort algorithm, refining list s involves splitting triangle q by the plane of
candidate polygon p and then replacing q (within list s) by the two or three pieces into
which it has been split. This is accomplished by function refineList, which is passed
the current list s and the candidate triangle p. Triangle q is assumed to be the current item
of list s:

void refineList(List<Triangle3D*> *s, Triangle3D *p)

{
Triangle3D q = s->val();

Triangle3D *ql, *q2, *q3;

int nbrPieces = splitTriangleByPlane(*q, *p, ql, q2, q3);

if (nbrPieces > 1) {

delete s->removeo;

s->insert(ql);

s->insert(q2);

152

Sec. 6.4 Removing Hidden Surfaces: The Depth-Sort Algorithm 153

if (nbrPieces == 3)

s->insert(q3);

}
}

Triangle splitting is performed by function splitTriangleByPlane, defined

next. Input parameters consist of triangle q to be split and splitter triangle p. The pieces of
q produced by the function are passed back through the reference parameters ql, q2, and
q3. (Parameter q3 is not used if q is split into only two pieces.) The function returns the
number of pieces it yields:

int splitTriangleByPlane(Triangle3D &q, Triangle3D &p,

Triangle3D* &ql, Triangle3D* &q2, Triangle3D* &q3)

{
Point3D crossingPts[2];

int edgelds[2], cl[3];

double t;

int nbrPts = 0;
for (int i = 0; i < 3; i++)

clri] = qti].classify(p);
for (i = 0; i < 3; i++)

if (((cl[i]==POSITIVE) && (cl[(i+l)%3]==NEGATIVE))

((cl[i]==NEGATIVE) && (cl[(i+l)%3J==POSITIVE))) {
Edge3D e(q~i], qE(i+l)%3]);

e.intersect(p, t);

crossingPtstnbrPts] = e.point(t);

edgeldsrnbrPts++] = i;

}
if (nbrPts == 0)

return 1;

Point3D a = q[edgelds[0]1;
Point3D b = q[(edgeIds[0]+l) % 3];

Point3D c = q[(edgelds[0]+2) % 3];
if (nbrPts == 1) {

Point3D d = crossingPts[O];

ql = new Triangle3D(d, b, c, q.id);
q2 = new Triangle3D(a, d, c, q.id);

} else {

Point3D d = crossingPts[0];

Point3D e = crossingPtstl];

if (edgeldsal] == (edgeldst0]+l)%3) {
ql = new Triangle3D(d, b, e, q.id);

q2 = new Triangle3D(a, d, e, q.id);

q3 = new Triangle3D(a, e, c, q.id);
} else {

ql = new Triangle3D(a, d, e, q.id);
q2 = new Triangle3D(b, e, d, q.id);
q3 = new Triangle3D(c, e, b, q.id);

}

Chap. 6: Incremental Selection

return (nbrPts + 1);

In the first of two phases, function spl itTriangleByPlane computes the points
at which the plane of p crosses the edges of q. These crossing points are stored in array
crossingPts, and the edges of q which contain the crossing points are stored in array
edgeIds. Here an edge is identified by the identifier of its origin vertex (0, 1, or 2) within
triangle q.

In its second phase, splitTriangleByPlane computes the pieces of q. The
vertices of triangle q are labeled a, b, and c relative to the first crossing point d, as in
Figure 6.10. Under this labeling scheme, triangle q is then split according to diagram (a)
of Figure 6.10 if there is one crossing point d, and according to diagram (b) or (c) if there
are two crossing points d and e.

With regard to performance of depth sorting, some configurations of n triangles in
space require the algorithm to split the list into as many as 8(n 2) pieces. Since the list s
can become as long as 0(n 2) and processing each candidate triangle p can take time
proportional to the length of the list, depth sorting runs in 0(n 4) time at worst. However,
such configurations are rare, and the algorithm performs well in practice. Furthermore,
the list of polygons produced by depth sorting can be piped into any graphics system for
display; the same cannot be said of all hidden surface removal methods, for some methods
depend on the resolution of the display device.

6.5 Intersection of Convex Polygons

In this section we consider the problem of forming the intersection polygon P n Q of two
convex polygons P and Q. Except where noted, we will assume that the two polygons
intersect non-degenerately: When two edges intersect, they do so at a single point which
is not a vertex of either polygon. Given this assumption of non-degeneracy, intersection
polygon P n Q consists of alternating chains of P and Q. Each pair of consecutive chains
is joined at an intersection point, at which the boundaries of P and Q cross (Figure 6.11).

There are several solutions to this problem that run in time linear in the total number of
vertices. The algorithm we present here is especially clever and easy to implement. Given
two convex polygons P and Q as input, the algorithm maintains a window over an edge
of P and one over an edge of Q. The idea is to advance these windows around the polygon
boundaries while growing the intersection polygon P n Q: The windows chase each other

b b b

dd d

a a a

(a) (b) (c)

Figure 6.10: Splitting a triangle into (a) two pieces and (b and c) three pieces,

154

Sec. 6.5 Intersection of Convex Polygons

Point

Figure 6.11: Structure of the intersection polygon P n Q.

clockwise around their respective polygons in search of intersection points. Since intersec-
tion points are discovered in the order they occur around P n Q, the intersection polygon is
complete when some intersection point is discovered for the second time. Alternatively, if
not a single intersection point is found after so many iterations, then the polygon boundaries
do not intersect. In this case, simple tests are used to determine whether one of the polygons
contains the other in its interior or if they do not intersect at all.

The notion of a sickle is handy for explaining the algorithm. In Figure 6.12, the
sickles are the six shaded regions. Each is bounded by a chain from P and a chain from Q,
and each terminates in two consecutive intersection points. The inner chain of a sickle
is that chain which lies along the boundary of the intersection polygon. Observe that an
intersection polygon is encircled by an even number of sickles whose inner chains alternate
between P and Q.

In terms of sickles, the algorithm for finding the intersection polygon proceeds in
two phases. In phase 1, P's window p and Q's window q are advanced clockwise until
positioned over edges that belong to the same sickle. Each window starts off in arbitrary
position. (For brevity, we will use p to denote both P's window as well as the edge in the
window. Thus "the origin of p" refers to the origin of the edge in P's window, and the
instruction "advance p" means we are to advance P's window to the next edge. Similarly,
q denotes both Q's window as well as the edge in the window. We will also sometimes
refer to edges p and q as current edges.)

In phase 2, p and q continue to be advanced clockwise, but this time moving in
unison from sickle to adjacent sickle. Before either window leaves the current sickle
for the next, edges p and q cross at the intersection point where the two sickles meet.

Figure 6.12: The sickles encircling the intersection polygon.

155

Chap. 6: Incremental Selection

The intersection polygon is grown during this second phase. Whenever p is about to be
advanced, edge p's destination endpoint is inserted into the intersection polygon if edge p
belongs to the current sickle's inner chain. Similarly, when q is to be advanced, edge q's
destination endpoint is inserted if q belongs to the current sickle's inner chain. Whenever
p and q cross, the intersection point at which they cross is inserted into the intersection
polygon.

The algorithm employs advance rules to decide which window to advance in each
iteration. The advance rules depend on the following notion: An edge a is said to aim at
edge b if the infinite line determined by b lies in front of a (Figure 6.13). Edge a aims at b
if either of these conditions hold:

* a x b> 0 and point a.dest does not lie to the right of b, or

* d x b 0 and point a.dest does not lie to the left of b.

Note that a x b > 0 corresponds to the case in which the counterclockwise angle from
vector a to 1 measures less than 180 degrees.

Function aimsAt returns TRUE if and only if edge a aims at edge b. The param-
eter ac lass indicates the classification of endpoint a. des t relative to edge b. The
parameter crossType equals COLLINEAR if and only if edges a and b are collinear:

bool aimsAt(Edge &a, Edge &b, int aclass, int crossType)

{
Point2 va = a.dest - a.org;
Point2 vb = b.dest - b.org;

if (crosaType != COLLINZAR) {
if ((va.x * vb.y) >= (vb.x * va.y))

return (aclass 1= RIGHT);

else

return (aclass != LEFT);
) else {

return (aclass != BEYOND);

)

If edges a and b are collinear, a aims at b if endpoint a. dest does not lie beyond b. This
is used to ensure that a is advanced, rather than b, when the two edges intersect degenerately

q - - - -

Figure 6.13: Only the thickened edges aim at edge q; the other edges do not.

156

Sec. 6.5 Intersection of Convex Polygons

in more than one point. By allowing a to "catch up" with b, we ensure that no intersection
points are skipped over.

Let us return to our discussion of the advance rules. The advance rules are designed so
that the intersection point which should be found next is not skipped over. They distinguish
between the current edge which may contain the next intersection point and the current edge
which cannot possibly contain the next intersection point; the window over the latter edge
is then (safely) advanced. The advance rules distinguish between the following four cases,
illustrated in Figure 6.14. In this account, edge a is considered outside edge b if endpoint
a.dest lies to the left of b.

1. p and q aim at each other: Advance the window over whichever edge, p or q, is outside
the other. In Figure 6.14a, we advance the window over p. The next intersection point
cannot lie on edge p since p is outside the intersection polygon.

2. p aims at q but q does not aim at p: Insert p's destination endpoint into the intersection
polygon if p is not outside q, and then advance window p. In Figure 6.14b, p cannot
contain the next intersection point (although it may contain some intersection point if
p is not outside q). The figure shows the situation in which edge p, whose window is
to be advanced, is not outside edge q.

3. q aims at p but p does not aim at q: Insert q 's destination endpoint into the intersection
polygon if q is not outside p, and then advance window q (Figure 6.14c). This case
is symmetric to the previous case. The figure shows the situation in which edge q,
whose window is to be advanced, is outside edge p.

4. p and q do not aim at each other: Advance the window over whichever current edge
is outside the other. In Figure 6.14d we advance window p since edge p is outside
edge q.

Figure 6.15 illustrates the algorithm at work. Each edge bears label i if reached in
iteration i (some edges bear two labels since they are reached twice). The two initial edges
are labeled 0. In this figure, phase 2-when the two current edges belong to the same
sickle-begins after three iterations.

Program convexPolygonIntersect implements the algorithm. The program
is passed polygons P and Q and returns a pointer to the resulting intersection polygon R.

The call to function advance is used to advance one of the two current edges and to insert

Case 1 Case 2 Case 3 Case 4

Figure 6.14: The four advance rules: (Case I) Advance p, (Case 2) advance p. (Case 3) advance q.
and (Case 4) advance p.

157

Chap. 6: Incremental Selection

11

Figure 6.15: Finding the intersection polygon. An edge bears label i if it is reached in iteration i.
The two initial edges are labeled 0.

conditionally the edge's destination endpoint into polygon R. The windows built into class
Polygon are used.

enm { UNKNOWN, P-IS-INSIDE, QISINSIDE };

Polygon *convexPolygonIntersect(Polygon &P, Polygon &Q)

Polygon *R;

Point iPnt, startPnt;

int inflag = UNKNOWN;

int phase = 1;

int maxItns = 2 * (P.size() + Q.sizeo);

for (int i = 1; (i<=maxltns) || (phase==2); i++) { // for
Edge p = P.edge(;

Edge q = Q.edge(;

int pclass = p.dest.classify(q);

int qclass = q.dest.classify(p);

int crossType = crossingPoint(p, q, iPnt);

if (crossType == SKEW-CROSS)

if (phase == 1) {

phase = 2;

R = new Polygon;

R->insert(iPnt);

startPnt = iPnt;

? else if (iPnt != R->point() {
if (iPnt != startPnt)

R->insert(iPnt);

else

return R;

i

if (pclass==RIGHT) inflag = P-IS-INSIDE;

else if (qclass==RIGHtT) inf lag = Q-IS-INSIDE;

else inflag = UNKNOWN;

} else if ((crossType==COLLINEAR) &&

(pclass!=BEHIND) &&

(qclass!=BEEIND))

158

Sec. 6.5 Intersection of Convex Polygons 159

inf lag = UNKNOWN;
bool pAIMSq = aimsAt(p, q, pclass, crossType);

bool qAIMSp = aimsAt(q, p, qclass, crossType);

if (pAIMSq && qAIMSp) {

if ((inflag==QZIS-INSIDE) ||

((inflag==UNKNOWN) && (pclass==LEFT)))

advance(P, *R, FALSE);

else

advance(Q, *R, FALSE);

) else if (pAINSq) {

advance(P, *R, inflag==PISINSIDE);

} else if (qAIMSp) {

advance(Q, *R, inflag==Q_1S_INSIDE);

} else (
if ((inflag==Q-ISINSIDE) ||

((inflag==ONKNOWN) && (pclass==LEFT)))

advance(P, *R, FALSE);

else

advance(Q, *R, FALSE);

I II for

if (pointInConvexPolygon(P.point(), Q))

return new Polygon(P);

else if (pointInConvexPolygon(Q.pointo, P))

return new Polygon(Q);

return new Polygon;

}

If 2(1 PI + I QI) iterations are performed without some intersection point being found,
the main loop is exited since the polygon boundaries are then known not to cross. The
subsequent calls to pointInConvexPolygon are used to determine whether P C Q,
Q C P, or P n Q = 0. Alternatively, if some intersection point iPnt is found, then
the algorithm proceeds to grow the intersection polygon R, stopping only when iPnt is

reached for the second time.
Variable inflag indicates which of the two input polygons is currently inside

the other-that is, the polygon whose current edge lies in the inner chain of the current
sickle. Moreover, inf lag is set to UNKNOWN during phase 1, and whenever the two cur-
rent edges are collinear and overlap. It is updated whenever a new intersection point is
discovered.

Procedure advance advances the current edge of polygon A, representing either P
or Q. The procedure also inserts the edge's destination endpoint x into intersection poly-
gon R, if A is inside the other polygon and x was not the last point inserted into R:

void advance(Polygon2 &A, Polygon2 &R, int inside)

{
A.advance(CLOCKWISE);

if (inside && (R.point() != A.pointo))

R.insert(A.point());

Chap. 6: Incremental Selection

6.5.1 Analysis and Correctness

The correctness proof bears out what is most remarkable about this algorithm: that the same
set of advance rules works for both phases. The advance rules get p and q into the same
sickle, and then they advance p and q in unison from sickle to sickle.

Correctness of the algorithm follows from two assertions:

1. If current edges p and q belong to the same sickle, then the next intersection point-at
which the sickle terminates-will be found, and it will be found next.

2. If the boundaries of P and Q intersect, current edges p and q will cross at some
intersection point after no more than 2(1 PI + I QI) iterations.

Assertion 2 ensures that the algorithm will find some intersection point, if one exists. Since
edges p and q belong to the same sickle if they cross, assertion I then ensures that the
remaining intersection points will be found in order.

Let us show assertion I first. Suppose that p and q belong to the same sickle and
that q reaches the next intersection point first, before p. We will show that q then remains
stationary while p catches up to the intersection point via a sequence of advances. Two cases
can occur. First, assume that p is outside q (Figure 6.16a). In this case, q remains fixed
while p is advanced by zero or more applications of rule 4, then by zero or more applications
of rule 1, and then by zero or more applications of rule 2. In the second case, assume that p
is not outside q (Figure 6.1 6b). In this case, q remains fixed while p is advanced by zero or
more applications of rule 2. In the symmetric situation, where p reaches the next intersection
point before q, edge q remains stationary while p catches up. This is shown as before, where
the roles of p and q are swapped, and rule 3 replaces rule 2. Assertion I follows.

To show assertion 2, let us assume that the boundaries of P and Q intersect. After
I PI + I QI iterations, either p or q must have traversed full circle around its polygon. Let
us assume that p has. At some time, p must have been positioned such that it contains an
intersection point at which polygon Q passes from the outside of P to its inside. This is
the case because there are at least two intersection points and they alternate in direction of
crossing. Let q be the edge in Q's window when p was so positioned.

In Figure 6.17, the boundary of Q is partitioned into two chains C, and C,. The first
chain, C,, terminates in edge qr, the edge of Q that enters P through edge p. The other
chain, Cs, terminates in edge q,, whose destination vertex both lies to the right of, and

(a) (b)

Figure 6.16: Advancing to the next intersection point.

160

Sec. 6.5 Intersection of Convex Polygons

Figure 6.17: Illustrations for the proof that an in-
tersection point is found if the boundaries of P and Q
intPrsect

is farthest from, the infinite line determined by edge p. There are two cases to consider,
depending on which of the two chains edge q belongs to:

Case 1 [q E Cr] In this case, p remains fixed while q advances by zero or more applications
of rule 3, then rule 4, then rule 1, and finally rule 3, at which time the intersection point is
found.
case 2 [qj E C,] In this case, q remains fixed while p advances by zero or more applications
of rule 2, then rule 4, then rule 1, and finally rule 2, at which time p will be inside q. At
this point, p and q may both be advanced a number of times-however, q cannot advance
beyond its next intersection point until p first reaches q's previous intersection point (if
p has not done so already). Since p and q end up in the same sickle, assertion I guarantees
that after some number of additional advances, they will cross at the intersection point at
which this sickle terminates.

To see why 2(I PI + I Qi) iterations are enough to find some intersection point, observe
that the initial positions of p and q used to show assertion 2-the boundary of Q entering P
through p, and q situated anywhere-were arrived at after no more than I P I + I QI iterations.
(Actually, either this situation or the symmetric situation, in which the roles of p and q are
swapped, is achieved after this many iterations.) Since neither p nor q then advances full
circle around its polygon before reaching the first intersection point, no more than I PI + I QI
additional iterations are needed.

6.5.2 Robustness

Our algorithm for finding the intersection of two convex polygons is most susceptible to
round-off error when the two polygons intersect at a point that is a vertex of one or both
polygons. One problem is that intersection points may be missed. In Figure 6.13, edges p
and q intersect at point x, the destination endpoint of p. Using exact arithmetic, the
parametric value of x along edge p equals one. However, using floating-point arithmetic,
the parametric value actually calculated might exceed one by a slight amount, locating x
beyond edge p. The intersection point would go undetected.

Function crossingPoint, used by program convexPolygonIntersect to
compute the intersection point of two edges, attempts to resolve these sort of difficulties.
Given two edges e and f, the function first computes the point at which infinite lines e and f
intersect. If this point lies in the vicinity of one of the edges' four endpoints, the endpoint is

161

Chap. 6: Incremental Selection

taken to be the point of intersection. As implemented, the function works with parametric
values rather than points. By extending the range of parametric values along edge f, the
edge is lengthened by distance EPSILON2 in both directions. If the intersection point
which would be computed lies within EPSILON2 of one of f's endpoints, the intersection
point is "snapped back" to the endpoint. Otherwise the same is done for edge e.

Function crossingPoint returns one of the values COLLINEAR, PARALLEL,
SKEWNOCROSS, or SKEW-CROSS to indicate the relationship between edges e and f.
If SKEW-CROSS is returned, indicating that the edges intersect at a point, their point of
intersection is passed back through reference paramter p:

#define EPSILON2 lE-10

int crossingPoint(Edge &e, Edge &f, Point &p)

double s,t;

int classe= e.intersect(f, S);

if ((classe==COLLINEAR) || (classe==PARALLEL))

return classes;

double lene - (e.dest-e.org).lengtho;

if ((s < -EPSILON2*lene) || (s > 1.0+EPSILON2*lene))

return SKEWNOCROSS;

f.intersect(e, t);

double lenf = (fiorg-f.dest).length();

if ((-EPSILON2*lenf <= t) && (t <= 1.0+EPSILON2*lenf)) {

if (t <= EPSILON2*lenf) p = f.org;

else if (t >= 1.0-EPSILON2*lenf) p = f.dest;

else if (a <= EPSILON2*lene) p = e.org;

else if (a >= 1.0-PSILON2*lene) p = e.dest;

else p = f.point(t);

return SKEWCROSS;

} else

return SKEW-NO-CROSS;

If it relies on function crossingPoint to calculate points of intersection, our
program for finding the intersection of convex polygons works even when the polygons
intersect at vertices. This is important to us, for in Chapter 8 we will use the program
in applications which unavoidably give rise to this special case. However, note that our
program can fail if a vertex of one polygon lies very close-within EPSILON2-to the
boundary of the other polygon, without actually touching the boundary.

6.6 Finding Delaunay Triangulations

A triangulation of a finite point set S is a triangulation of the convex hull C'H(S) that uses
all the points of S. The line segments of the triangulation may not cross-they may meet
only at shared endpoints, points of S. Since the line segments enclose triangles, we usually

162

Sec. 6.6 Finding Delaunay Triangulations

refer to them as edges. Figure 6.18 depicts two triangulations of the same set of points
(ignore the circles in the figure for the moment).

Given a point set S, we have seen that the points of S can be partitioned into boundary
points-those points of S which lie on the boundary of the convex hull CI -(S)-and interior
points-those points which lie in the interior of C-(S). The edges of a triangulation of S
can be classified similarly, as hull edges and interior edges. The hull edges are those
edges that lie along the boundary of the convex hull CH-(S), and the interior edges are
the remaining edges, those that pierce the convex hull interior. Note that every hull edge
connects two boundary points, whereas an interior edge can connect two points of either
type; in particular, if an interior edge connects two boundary points, it is a chord of CH(S).
Observe also that every edge of the triangulation is met by two faces: each interior edge by
two triangles, and each hull edge by one triangle and the unbounded plane.

All point sets except the most trivial ones admit more than one triangulation. Re-
markably, every triangulation of a given point set contains the same number of triangles, as
the following theorem indicates:

Theorem 3 (Point-Set Triangulation Theorem) Suppose point set S contains n > 3
points, not all collinear. Suppose further that i of the points are interior [lying in the
interior of Cl-(S)]. Then every triangulation of S contains exactly n + i - 2 triangles.

To see why this theorem is true, first consider triangulating the n - i boundary points.
Since they are the vertices of a convex polygon, any such triangulation contains (n - i) - 2
triangles. (This is not hard to see; in Chapter 8 we will show that every triangulation of
any mr-sided polygon-convex or nonconvex-consists of m -2 triangles.) Now consider
incorporating the remaining i interior points into the triangulation, one at a time. We
claim that adding each such point increases the number of triangles by two. The two cases
illustrated in Figure 6.19 can occur. First, if the point falls in the interior of some triangle,
the triangle is replaced by three new triangles. Second, if the point falls on some edge of the
triangulation, each of the two triangles that meet the edge is replaced by two new triangles.
It follows that after all i points are inserted, the total number of triangles is (n-i -2) + (2i),
or simply n + i - 2.

In this section we present an algorithm to construct a special kind of triangulation
known as a Delaunay triangulation. Such triangulations are well balanced in the sense that
the triangles tend toward equiangularity. In Figure 6.18, for example, triangulation (a) is

(a) (b)

Figure 6.18: Two triangulations of the same set of points.

163

Chap. 6: Incremental Selection

Figure 6.19: The two ways in which an interior site can be incorporated into a triangulation.

Delaunay whereas triangulation (b), which contains some long "slivers," is not Delaunay.
Figure 6.20 shows the Delaunay triangulation of a large point set.

To define Delaunay triangulation, we need some new definitions. A set of points is
cocircular if there exists some circle on whose boundary all the points lie. If the circle is
unique, it is called the circumcircle of the points. The circumcircle of a triangle is simply
the circumcircle of its three (non-collinear) vertices. A circle is said to be point free with
respect to a given point set S if none of the points of S lies in the circle's interior. Points
of S may, however, lie along the boundary of a point-free circle.

A triangulation of point set S is a Delaunay triangulation if the circumcircle of every
triangle is point free. In triangulation (a) of Figure 6.18, the two circumcircles which have
been drawn are clearly point free (you might want to draw the remaining circumcircles to
verify that they are also point free). Since the circumcircle shown in triangulation (b) is not
point free, the triangulation is not Delaunay.

We will make two assumptions about point set S to simplify the triangulation algo-
rithm. First, to ensure that some triangulation exists, we will assume that S contains at least
three points, not all collinear. Second, to ensure that the Delaunay triangulation is unique,
we will assume that no four points of S are cocircular. It is easy to see that without this
latter assumption, the Delaunay triangulation need not be unique: Four cocircular points
admit two different Delaunay triangulations.

Our algorithm works by growing a current triangulation, triangle by triangle. Initially
the current triangulation consists of a single hull edge, and at completion the current tri-
angulation equals the Delaunay triangulation. In each iteration, the algorithm seeks a new
triangle which attaches to the frontier of the current triangulation.

The definition of frontier depends on the following scheme, which classifies the
edges of the Delaunay triangulation relative to the current triangulation. Every edge is
either dormant, live, or dead:

* Dormant edges: An edge of the Delaunay triangulation is dormant if it has not yet been
discovered by the algorithm.

* Live edges: An edge is live if it has been discovered but only one of its faces is known.

* Dead edges: An edge is dead if it has been discovered and both of its faces are known.

Initially only a single hull edge is live-the unbounded plane is known to meet it-and
all the remaining edges are dormant. As the algorithm proceeds, edges transition from dor-
mant to live, then from live to dead. The frontier at each stage consists of the set of live edges.

In each iteration, we select any edge e of the frontier and process it, which consists
of seeking edge e's unknown face. If this face turns out to be some triangle t determined

164

Sec. 6.6 Finding Delaunay Triangulations

Figure 6.20: A Delaunay triangulation of 250 points chosen at random within a rectangle. The
triangulation contains 484 triangles.

by the endpoints of e and some third vertex v, edge e dies since both of its faces are now
known. Moreover, each of the other two edges of triangle t transition to the next state:
from dormant to live, or from live to dead. Here vertex v is called the mate of edge e.
Alternatively, if the unknown face turns out to be the unbounded plane, edge e simply dies.
In this case e has no mate.

Figure 6.21 illustrates the algorithm. In the figure, the action proceeds top to bottom,
then left to right. The frontier in each stage is darkened.

The following program, delaunayTriangulate, implements the algorithm. The
program is handed an array s of n points and returns a list of triangles representing its
Delaunay triangulation:

List<Polygon*> *delaunayTriangulate(Point s[], int n)

Point p;
List<Polygon*> *triangles = new List<Polygon*>;
Dictionary<Edge*> frontier(edgeCmp);

Edge *e = hullzdge(s, n);
frontier.insert(e);

while (!frontier.isEmptym) {
e = frontier.removexin();
if (mate(*e, s, n, p)) {

updateFrontier(frontier, p, e->org);

updaterrontier(frontier, e->dest, p);

triangles->insert(triangle(e->org, e->dest, p));

delete e;

return triangles;

The triangles which make up the triangulation are maintained in the list triangles.
The frontier is represented by the dictionary frontier of live edges. Each edge is directed
such that its unknown face (yet to be sought) lies to the right of the edge. The comparison

165

Chap. 6: Incremental Selection

\ ' 0
0

0

0

0

I

Figure 6.21: Growing a Delaunay triangulation. The edges of the frontier are highlighted.

function edgeCmp is used to perform look-up in the dictionary. It compares two edges'
origins and, if these are the same, then compares their destinations:

int edgeCmp(Edge *a, Edge *b)

{

if (a->org < b->org) return -1;

if (a->org > b->org) return 1;

if (a->dest < b->dest) return -1;

166

.4

-4�`

Sec. 6.6 Finding Delaunay Triangulations

if (a->dest > b->dest) return 1;

return 0;

}

How does the frontier change from one iteration to the next, and how does function
updateFrontier update the dictionary to reflect these changes? When a new triangle t
attaches to the frontier, the state of the triangle's three edges changes. The edge of t
which attaches to the frontier changes from live to dead. Function updateFrontier
can ignore this edge since it will already have been removed from the dictionary by the
call to removeMin. Each of the two remaining edges of t changes state from dormant to
live if the edge is not already in the dictionary, or from live to dead if the edge is already
in the dictionary. Figure 6.22 illustrates both cases. In the figure, we process the live

edge af and, upon discovering that point b is its mate, add triangle Aafb to the current

triangulation. Then we look up edge fb in the dictionary-since it is not present, it has
just been discovered for the first time, so its state changes from dormant to live. To update

the dictionary, we flip fb so its unknown face lies to its right and then insert the edge into

the dictionary. Next we look up edge Z in the dictionary-since it is present, it is already
live (its known face is triangle Labc). Since its unknown face, triangle hafb, has just been
discovered, we then remove the edge from the dictionary.

Function updateFrontier updates dictionary f rontier, where the edge from
point a to point b changes state:

void updateFrontier(Dictionary<Zdge*> &frontier,
Point &a, Point &b)

Edge *e = new Edge(a, b);

if (frontier.find(e))

frontier.remove(e);

else (

e->flip();
frontier.insert(e);

}

Figure 6.22: Attaching triangle Aafb to live edge af.

167

l

Chap. 6: Incremental Selection

Function hullEdge returns a hull edge from among the n points of array s. The
function essentially implements the initialization and first iteration of the gift-wrapping
method:

Edge *hullEdge(Point s[], int n)

(
int m = 0;
for (int i = 1; i < n; i++)

if (Oti] < scm])
m = i;

swap(sCO], swm]);

for (m = 1, i = 2; i < n; i++) {

int c = scil.classify(slO], sWm]);
if ((c == LEFT) || (c == BETWEEN))

mD = i;

return new Edge(s[O], s[m]);

Function triangle simply constructs and returns a polygon over the three points
it is passed:

Polygon *triangle(Point &a, Point &b, Point &c)

(
Polygon *t = new Polygon;
t->insert(a);

t->insert(b);

t->insert(c);

return t;

6.6.1 Finding the Mate of an Edge

Let us turn our attention to the problem solved by function mate, that of determining

whether a given live edge has a mate and, if so, finding it. Consider this: Any edge ab
determines the infinite family of circles whose boundaries contain both endpoints a and b.
Let C(a,b) denote this family of circles (Figure 6.23).

The centers of the circles in C(a,b) lie along edge ab's perpendicular bisector and
can be put into one-to-one correspondence with the points of this bisector. To specify
circles of the family, we parameterize the perpendicular bisector and identify each circle
by the parametric value of the circle's center. The machinery of Chapter 4 provides a

natural parameterization: Rotate edge ab 90 degrees into its perpendicular bisector and
then use the parameterization along this edge. In Figure 6.23, we use Cr to denote the circle
corresponding to parametric value r.

How do we find the mate of some live edge ab from among the points of S? Suppose

that Cr is the circumcircle of ab's known face (in Figure 6.24, triangle Aabc is the known

168

Sec. 6.6 Finding Delaunay Triangulations

a

Figure 6.23: Four circles of the family C(a,b) determined by edge ab, and their parametric values.

C

Figure 6.24: Finding the mate (d) of edge ab.

face). If ab's known face is unbounded, then r = -co and Cr is the half-plane to the

left of ab. We seek the smallest value t > r such that some point of S (other than a

or b) lies in the boundary of C,. If no such value t exists, then edge ab has no mate.

More picturesquely, this is like blowing a two-dimensional bubble through edge ab. If the
bubble eventually reaches some point of S, this point is the mate of edge ab (point d of
Figure 6.24). Alternatively, if no point of S is reached and the bubble expands to fill the

half-plane to the right of edge ab, then ab has no mate.
Why does this work? Let C, denote the circumcircle of edge ab's known face, and

C, the circumcircle of edge ab's unknown face. Here t > r, and t = co if ab has no mate.

Is circle C, point free, as desired? To the left of ab, C, must be point free since Cr is point

free and the portion of C, which lies to the left of ab is contained in Cr. To the right of

edge ab, C, must also be point free because, were some point q to lie in its interior, q would
lie in the boundary of some circle C, E C(a,b), where r < s < t, contradicting our choice
of t. In our bubble analogy, the expanding bubble would reach point q before reaching the

mate of edge ab.

To find the mate of edge ab, we consider only those points p E S that lie to the
right of ab. The center of the circle circumscribing any three points a, b, and p lies

at the intersection of the perpendicular bisectors of ab and bp. (Here we use the fact
that the perpendicular bisectors of a triangle's edges intersect at the center of the triangle's
circumcircle.) Rather than compute the center point of the circle, we compute its parametric

169

Chap. 6: Incremental Selection

value along the perpendicular bisector of edge ab. This way we can keep track of the
smallest parametric value found so far.

This method is implemented by function mate, which returns TRUE if edge e has
a mate and FALSE if it does not. If the mate exists, it is passed back through reference
parameter p:

bool mate(Edge &e, Point sJ, int n, Point &p)

{
Point *bestp = NULL;
double t, bestt = FLTMAX;
Edge f = e;

f.roto); // f is the perpendicular bisector of e

for (int i = 0; i < n; i++)

if (sli].classify(e) == RIGHT) {

Edge g(e.dest, sli]);

g.roto;
f.intersect(g, t);

if (t < bestt) (

bestp = &s[i];

bestt = t;

}

}
if (bestp) {

p = *bestp;

return TRUE;

}
return FALSE;

In function mate, variable bestp points to the best point examined so far, and bestt
holds the parametric value of the circle whose boundary contains the point. Note that only
those points to the right of edge e are considered.

This algorithm for computing the Delaunay triangulation of a set of n points runs in
O(n2) time because one edge leaves the frontier in each iteration. Since every edge leaves
the frontier exactly once-every edge enters the frontier once and later leaves it, never to
return-the number of iterations equals the number of edges in the Delaunay triangulation.
Now the point-set triangulation theorem implies that any triangulation contains no more
than O(n) edges, so the algorithm performs O(n) iterations. Because it spends O(n) time
per iteration, the algorithm runs in O(n2) time.

6.7 Chapter Notes

The gift-wrapping method, also known as Jarvis's march after the manner in which it
marches around the convex hull boundary, is presented in [43]. The same basic idea can be

170

Sec. 6.7 Chapter Notes

used to find the convex hull of points in higher dimensions [17]; in three dimensions, the
method reminds us of how we would go about wrapping a gift. Graham scan is presented
in [33].

There are numerous algorithms for finding convex hulls, and this book covers several:
insertion hull, which runs in 0(n 2) time, where n is the number of points; plane sweep in
O(n logn) time; Graham scan in 0(n logn) time; gift wrapping in 0(nh) time, where the
convex hull contains h < n vertices; and merge hull in 0(n logn) time. One interesting
algorithm we will not cover is called quick hull. Like the quicksort algorithm after which
it is modeled, quick hull takes 0(n 2) time in the worst case but 0(n log n) time in the
expected case [14, 25, 34]. An optimal convex hull finding algorithm was developed by
Kirkpatrick and Seidel [461. Where the convex hull it produces contains h vertices, the
algorithm runs in 0(n log h) time in the worst case.

Because hidden surface removal is usually indispensable for realistic three-dimen-
sional graphics, the problem has been the focus of much research, leading to numerous
solutions. Solutions vary with regard to the types of scene models they accommodate,
efficiency, degree of realism, and other factors. The depth-sorting method presented in
this chapter is from [591. Other well-known methods include z-buffering [16], Warnock's
area subdivision method [86], the Weiler-Atherton "cookie-cutter" method [88], scanline
methods [50, 87], and ray tracing. (The computer graphics texts [28, 39, 68] also provide
accounts of these algorithms.) In z-buffering, the depth of the object displayed by each
pixel is maintained in a buffer of depth values (the z-buffer). When a new object is to be
painted, pixels are selectively updated-only those pixels displaying a more distant object
are overwritten by the new object. The z-buffer is also updated with the new (closer) depth
values. Because it is both simple and general (in the sense of accommodating a wide range
of scene models), z-buffering has been implemented in hardware in several recent graphics
systems. In ray tracing, another hidden surface removal method, simulated rays of light are
cast into the scene. Ray tracing can be used to create images which include such features
as transparency, reflection, specular highlights, and shadows.

The algorithm for finding the intersection of two convex polygons P and Q is pre-
sented in [62,61], although our presentation more closely follows [66]. An earlier algorithm
for the same problem is given in [75]. In this method, a vertical line is drawn through every
vertex, thereby partitioning the plane into vertical slabs and each polygon into triangles
and trapezoids. The intersection problem is then solved within each slab in turn, and the
resulting polygonal pieces assembled. Since the intersection of two polygons of bounded
size can be computed in constant time and there are no more than JP1 + IQI slabs, this
algorithm, like the one we have presented, runs in 0(1 Pl + l QI) time.

The Delaunay triangulation is dual to the Voronoi diagram, a polygonal decomposition
of the plane which assumes a central role in computational geometry. The connection
will be explored in Chapter 8, where an algorithm for constructing Voronoi diagrams will
be presented. The Delaunay triangulation algorithm presented in this chapter is based
on [5, 55]. The algorithm is lifted to three-dimensional space in [24], and a data structure
appropriate for lifting it to d-dimensional space is given in [12]. An 0(n logn)-time
algorithm for constructing Delaunay triangulations in the plane using divide and conquer is
presented in [36]. A survey of Voronoi diagrams and Delaunay triangulations is provided
by [4].

171

Chap. 6: Incremental Selection

6.8 Exercises

1. Modify program giftwrapHull so the vertices of the convex hull C7-L(S) it pro-
duces consist of all boundary points of set S. not just the extreme points.

2. Modify grahamScan to do as described in the previous question.

3. The depth of a point p in finite point set S is the number of convex hulls that must be
removed until p becomes a boundary point. For instance, the boundary points of S
are at depth zero, and those points that become boundary points when the boundary
points of S are removed are at depth one. The brute-force approach to determine the
depth of all points repeatedly finds the convex hull of the point set and removes the
boundary points from the set, until the set is empty. Modify giftwrapHull so it
computes the depth of every point in 0(n 2) time.

4. The diameter of a point set is the maximum distance between any pair of points.

(a) Show that the diameter is realized by a pair of extreme points.

(b) Give an O(n log n)-time algorithm forcomputing the diameterofa set of n points
in the plane.

5. Describe a configuration of n triangles in space which depthSort splits into n (n2)
pieces.

6. In the program depthSort, the function call mayObscure (p, q) returns TRUE if
it is possible for triangle p to obscure triangle q. What is the effect on depthSort of
making mayObscure stronger, such that it returns TRUE if and only if p obscures q?
What are the advantages and disadvantages of making mayObscure stronger?

7. In the program depthSort, note that the second call to function mayObscure is
inefficient, since tests 1, 2, and 5 are repeated unnecessarily. Rewrite the program to
remove this inefficiency.

8. Consider this claim concerning the algorithm for finding the intersection polygon of
two convex polygons P and Q: If the boundaries of P and Q intersect, then the algo-
rithm finds all their intersection points in no more than 2(1 PI + I QI) iterations. Either
prove this claim and modify program convexPolygonIntersect accordingly,
or disprove the claim by giving a counterexample.

9. Characterize the inputs for which program convexPolygonIntersect fails, in
terms of EPSILON2.

10. Show how the correctness proof for convexPolygonIntersect uses the assump-
tion that input polygons P and Q are convex.

11. Show that if no four points of point set S are cocircular (I SI > 3), then the Delaunay
triangulation of S is unique.

12. Show that any triangulation of a finite point set S contains 3151-3-h edges, where the
boundary of CN(S) contains h edges. [From this it follows that a triangulation contains
O(ISI) edges, a fact used in our proof that the Delaunay triangulation algorithm runs
in O(n2) time.]

13. Show that, over all triangulations of finite point set S, the Delaunay triangulation
maximizes the minimum measure of the internal angles.

172

7
Plane-Sweep Algorithms

Plane sweep is a powerful approach for solving problems involving geometric objects in
the plane. An imaginary vertical sweepline moves from left to right across the objects. As
the sweepline proceeds, the problem restricted to the left of the sweepline is solved. A
sweepline structure, which represents the state of the algorithm for each position of the
sweepline, captures whatever information about the problem to the left of the sweepline
is needed to extend the solution to the right of the sweepline. When the sweepline has
advanced far enough, usually beyond all the objects, the original problem is solved in its
entirety.

The sweepline advances in increments, halting at positions known as event points.
Event points are points in the plane which, when reached by the advancing sweepline,
cause the state of the algorithm to change. They may, for instance, be vertices of polygons,
endpoints of line segments, orpoints of intersection, depending on the problem being solved.
Event points are maintained in an event-point schedule, which is ordered by increasing x-
coordinates and is used to decide which event point the sweepline will encounter next. In
some applications the event-point schedule is static since all event points can be anticipated
prior to sweeping; in others it is dynamic since future event points detected only as the
sweep proceeds must be scheduled.

The algorithm undergoes a transition at each event point. Transitions encompass
three kinds of actions:

1. Update the event-point schedule: Insert just-detected event points, and remove the
current event point as well as any others that have become obsolete.

173

Chap. 7: Plane-Sweep Algorithms

2. Update the sweepline structure to represent state changes in the algorithm due to the
new position of the sweepline.

3. Solve more of the problem.

Plane sweep reduces a problem in two dimensions (the plane) to a series of sim-
ilar problems in one dimension (the sweepline). The approach is powerful because the
one-dimensional problems which result are generally easier to solve than the original two-
dimensional problem. Moreover, since the one-dimensional problems change incremen-
tally, in only small, predictable ways from one position of the sweepline to the next, the
one-dimensional problems can be treated as a series of related problems amenable to solu-
tion by (often standard) abstract data types.

In this chapter we present several applications of plane sweep. The first application
finds all pairs of line segments that intersect, given a collection of line segments in the plane.
The second application finds the convex hull of a planar point set using a method similar
to, but more efficient than, insertion hull of section 5.3. The third application computes the
boundary of the union of a set of rectangles whose sides are parallel to the two axes. The
fourth and final application decomposes an arbitrary polygon into monotone subpolygons.
If this last application is used together with the algorithm of section 5.8 for triangulating
monotone polygons, an efficient method for triangulating arbitary polygons results.

7.1 Finding the Intersections of Line Segments

In this section we will tackle the following problem: Given a collection of n line segments
in the plane, report all pairs of line segments that intersect. The brute-force solution tests
all pairs of line segments for intersection. This takes 0(n 2) time, since there are n(21)

pairs and each intersection test can be performed in constant time. In this section we will
use plane sweep to solve the problem in O ((r + n) log n) time, where r equals the number
of pairs reported. Plane sweep outperforms the brute-force approach (when r is small) by
performing fewer intersection tests: It avoids testing pairs of line segments that lie so far
apart that they cannot possibly intersect.

We will make these assumptions to simplify the discussion: First, no line segment is
vertical (any problem instance can be made to satisfy this assumption by rotating the plane).
Second, any two line segments which intersect do so at a single point. Third, no three line
segments intersect at the same point.

7.1.1 Representing Event Points

Under plane sweep, the sweepline advances from left to right across the n line segments,
halting at event points. There are three kinds of event points: left endpoints, right endpoints,
and crossings (or points of intersection). We will represent event points by three classes
derived from a common base class, the abstract class EventPoint:

class EventPoint

public:

Point p;

174

Sec. 7.1 Finding the Intersections of Line Segments

virtual void handleTransition(Dictionary<Edge*>&,
Dictionary<EventPoint*>&,
List<EventPoint*>*) = 0;

Data member p contains the event point. Abstract member function handleTransition
will be overridden in the classes derived from EventPoint.

Class LeftEndpoint stores the left endpoint of a line segment in data member p
inherited from the base class. The line segment itself is stored in data member e:

class LeftEndpoint : public EventPoint {
public:

Edge e;
LeftEndpoint(Edge*);
void handleTransition(Dictionary<Edge*>&,

Dictionary<EventPoint*>&,
List<EventPoint*>*);

The constructor LeftEndpoint initializes the data members:

LeftEndpoint::LeftEndpoint(Edge *-e)

e(*-e)

{
p = (e.org < e.dest) ? e.org : e.dest;

}

Class RightEndpoint is defined analogously:

class RightEndpoint : public EventPoint (
public:

Edge e;

RightEndpoint(Edge*);
void handleTransition(Dictionary<Edge*>&,

Dictionary<EventPoint*>&,
List<EventPoint*>*);

I;

RightEndpoint::RightEndpoint(Edge *_e)

e(*-e)

p = (e.org < e.dest) ? e.dest : e.org;

Class Crossing stores in data members el and e2 the two line segments that cross,
and in data member p their point of intersection:

class Crossing : public EventPoint

public:
Edge el, e2;

175

Chap. 7: Plane-Sweep Algorithms

Crossing(Edge*, Edge*, Point&);

void handleTransition(Dictionary<Edge*>&,

Dictionary<EventPoint*>&,

List<EventPoint*>*);

Its constructor initializes the data members:

Crossing::Crossing(Edge *_el, Edge *0e2, Point &_p)

el(*_el), e2(*_e2)

{
P = _P;

}

7.1.2 The Top-Level Program

The problem as a whole is solved by program intersectSegments. The program is
passed an array s of n line segments and returns a list of Crossing objects representing
the intersection points it discovers. The program uses the global variable curx to hold the
current x-coordinate of the sweepline:

double curx; // current x-coordinate of the sweepline

List<EventPoint*> *intersectSegments(Edge s[], int n)

{
Dictionary<EventPoint*> schedule = buildSchedule(s, n);

Dictionary<Edge*> sweepline(edgeCmp2);

List<EventPoint*> *result = new List<EventPoint*>;

while (Ischedule.isEmptyo) (
EventPoint *ev = schedule.removexino;

curx = ev->p.x;
ev->handleTransition(sweepline, schedule, result);

return result;

Program intersectSegments initializes the event-point schedule and sweepline
structure and then iteratively performs transitions. Since function handleTransition
was declared virtual, the version of handleTransition invoked in each iteration of the
while loop depends on the type of event ev.

We represent the event-point schedule by a dictionary because the schedule changes
dynamically: Intersection points must be inserted into and removed from the event-point
schedule as the sweepline advances. However, the n left endpoints and n right endpoints
can be anticipated prior to sweeping. Function buildSchedule inserts these 2n event
points into the event-point schedule, which it then retums:

Dictionary<EventPoint*> &buildSchedule(Edge s[], int n)

176

Sec. 7.1 Finding the Intersections of Line Segments 177

Dictionary<EventPoint*> *schedule =

new Dictionary<Eventpoint*>(eventCnp),

for (int i = 0; i < n; i++) {
schedule.insert(new LeftEndpoint(&s i]));

schedule.insert(new RightEndpoint(&s i]));

}
return *schedule;

}

Comparison function eventCmp, used by function buildSchedule to initialize
the event-point schedule, orders event points by increasing x-coordinates and, in the case
of ties, by increasing y-coordinates:

int eventcmp(EventPoint *a, EventPoint *b)

(

if (a->p < b->p) return -1;

else if (a->p > b->p) return 1;

return 0;

7.1.3 The Sweepline Structure

The set of all line segments can be classified relative to any given position of the sweepline:
Dormant segments have both endpoints to the right of the sweepline; active segments have
one endpoint on either side of the sweepline; and dead segments have both endpoints to
the left of the sweepline. The sweepline structure sweepline is a dictionary containing
the active line segments-those that the sweepline currently crosses-ordered by the y-
coordinates of their intersections with the sweepline. For example, in Figure 7.1 the active
segments are ordered a < b < c when the sweepline is in position xl (since line segment d
is not active, it is ignored for now).

Dictionary sweepline is initialized with the comparison function edgeCmp2,
which implements this vertical ordering. As noted, the global variable curx holds the
current x-coordinate of the sweepline:

#define EPSILON3 IE-10

int edgeCnp2(Edge *a, Edge *b)

{

double ya = a->y(curx - EPSILON3);

double yb = b->y(curx - EPSILON3);

if (ya < yb) return -1;

else if (ya > yb) return 1;

double ma = a->slope(;

double mb = b->slope();

if (ma > mb) return -1;

else if (ma < mb) return 1;

return 0;

Chap. 7: Plane-Sweep Algorithms

Figure 7.1: The vertical ordering of the active seg-
ments is a < b < c when the sweepline is in posi-

X1 X2 tion xl, and b < a < c when it is in position x2.

Comparison function edgeCmp2 is unexpectedly complicated because it is capable
of comparing all pairs of line segments, even those that happen to cross the sweepline at the
same point. When this occurs, the function compares the slopes of the line segments and
considers the line segment whose slope is greater to be below the other line segment. This
simulates shifting the sweepline an infinitesimal distance to the left. EPSILON3 is used to
avoid errors due to round-off.

7.1.4 Transitions

The following observation is the crux of our algorithm: Suppose that line segments a
and b cross at point p, where p lies to the right of the sweepline. Then if no endpoint or
intersection point lies between p and the sweepline-that is, if p is the next event point
that the sweepline will reach-then line segments a and b must be vertically adjacent in the
sweepline structure.

Why is this true? It is easy to see that both a and b must be active segments. To see why
a and b must be vertically adjacent in the sweepline structure, suppose to the contrary that
the sweepline will encounter their intersection point p next, yet a and b are not vertically
adjacent. In this case some active line segment c must cross the sweepline between a
and b. Either the right endpoint of c occurs between p and the sweepline (Figure 7.2a), or c
crosses a or b at some point which lies between p and the sweepline (Figure 7.2b). In either
case, the sweepline will reach an endpoint or a crossing before reaching p, contradicting
our assumption.

The algorithm employs this observation in the form of an invariant involving the
event-point schedule: For every pair of vertically adjacent edges which cross to the right of
the sweepline, the event-point schedule contains their point of intersection. This ensures
that when the sweepline is about to reach an intersection point, the point will be present

b

a_ <7p

(a) (b)

Figure 7.2: (a) The right endpoint of line segment lies between the sweepline and point p, and (b)
line segment c crosses line segment a between the sweepline and point p.

178

b

a I'-

Sec. 7.1 Finding the Intersections of Line Segments 179

in the event-point schedule. No intersection point will be skipped over. Most of the work
involved in transitions is aimed at maintaining this invariant.

Let us consider the three kinds of transitions, starting with left endpoint transitions
(Figure 7.3a). When the sweepline reaches the left endpoint of line segment b, active
segments a and c (below and above b, respectively) cease to be vertically adjacent along the
sweepline. If a and c both exist (they may not) and they cross to the right of the sweepline,
we remove their intersection point from the event-point schedule. Moreover, since a and b
have now become vertically adjacent, we check whether they cross-if they do, we insert
their intersection point into the event-point schedule (note that their intersection point must
lie to the right of the sweepline). Similarly, if b and c cross, we insert their intersection
point into the event-point schedule. Function LeftEndpoint: : handleTransition
results:

void LeftEndpoint::handleTransition(Dictionary<Edge*> &sweepline,

Dictionary<EventPoint*> &schedule,

List<EventPoint*> *result)

{
Edge *b = sweepline.insert(&e);

Edge *c = sweepline.nexto;

sweepline.prevo;

Edge *a = sweepline.prevo;

double t;

if (a && c && (a->cross(*c, t)==SREWCROSS)) {

Point p = a->point(t);

if (curx < p.x) (

Crossing cev(a, c, p);

delete schedule.remove(&cev);

}
if (c && (b->cross(*c, t)==SKEW CROSS))

schedule.insert(new Crossing(b, c, b->point(t)));

if (a && (b->cross(*a, t)==SKEW CROSS))

schedule.insert(new Crossing(a, b, b->point(t)));

Let us turn our attention to crossing transitions. When the sweepline reaches the
intersection point of line segments b and c, the two line segments must be transposed
within the vertical ordering (Figure 7.3b). Since b crosses above c, we check whether b and

(a) (b) (c)

Figure 7.3: Configurations for (a) left endpoint events, (b) crossing events, and (c) right endpoint events.

Hi

Chap. 7: Plane-Sweep Algorithms

active segment d (now above b) cross to the right of the sweepline and, if so, we schedule
their point of intersection. Similarly, if c and active segment a (now below c) cross to
the right of the sweepline, we schedule their point of intersection as well. In addition, we
remove from the event-point schedule the intersection points of a and b and of c and d, if
they are present. This leads to the following function definition:

void Crossing::handleTransition(Dictionary<Edge*> &sweepline,

Dictionary<EventPoint*> &schedule,

List<EventPoint*> *result)

{
Edge *b = sweepline.find(&el);
Edge *a = sweepline.prevo;

Edge *c = sweepline.find(&e2);
Edge *d = sweepline.nexto;
double t;

if (a && (a->cross(*c, t)==SREWLCROSS)) {

Point p = a->point(t);

if (curx < p.x)

schedule.insert(new Crossing(a, c, p));

}
if (d && (d->cross(*b, t)==SKEW CROSS)) {

Point p = d->point(t);
if (curx < p.x)

schedule.insert(new Crossing(b, d, p));

}
if (a && (a->cross(*b, t)==SKEWLCROSS)) (

Point p = a->point(t);
if (curx < p.x) (

Crossing cev(a, b, p);
delete schedule.remove(&cev);

}

if (d && (d->cross(*c, t)==SKEW CROSS)) {

Point p = d->point(t);

if (curx < p.x) {

Crossing cev(c, d, p);

delete schedule.remove(&cev);

}

sweepline.remove(b);

curx += 2*EPSILON3;

sweepline.insert(b);

curx -= 2*EPSILON3;

result->append(this);

}

The last several lines of the function swap the positions of edges b and c within the
sweepline structure. This is done by removing b and then reinserting b after first shifting
the sweepline an infinitesimal distance to the right.

180

Sec. 7.1 Finding the Intersections of Line Segments

Finally, we consider right endpoint transitions. When the sweepline reaches the
right endpoint of line segment b, active segments a and c (below and above b, respec-
tively) become vertically adjacent along the sweepline (Figure 7.3c). If a and c exist
and cross to the right of the sweepline, their intersection point is scheduled. Function
RightEndpoint: :handleTransition takes care of this:

void RightEndpoint::handleTransition(Dictionary<zdge*> &sweepline,

Dictionary<EventPoint*> &schedule,

List<EventPoint*> *result)

Edge *b = sweepline.find(&e);
Edge *c = sweepline.nextC);
sweepline.prevo;

Edge *a = sweepline.prevo;
double t;

if (a && c && (a->cross(*c, t)==SKEWCROSS)) {
Point p = a->point(t);
if (curx < p.x)

schedule.insert(new Crossing(a, c, p));

}

7.1.5 Analysis

Where r equals the total number of intersection points among the n line segments, a total
of r + 2n transitions are performed. Each transition involves a (small) constant number of
operations involving the sweepline structure and the event-point schedule. The sweepline
structure operations each take O(log n) time since at most n line segments can be active at
a time. The event-point schedule operations each run in O (log n) time as well. To see why,
observe that the event-point schedule contains at most n - I crossing event points at any
given time, since there are no more than n - I pairs of vertically adjacent active segments.
The event-point schedule may also contain up to 2n endpoints. Hence the event-point
schedule contains O(n) items, so its operations run in 0(logn) time. Since each of the
r +2n transitions takes 0 (log n) time, the algorithm as a whole runs in 0 ((r +n) log n) time.

This algorithm's performance reflects its broad strategy: to spend extra time avoiding
pairs of line segments which cannot possibly cross, in order to save the time of testing
them. Pairs that are distant horizontally-whose x-extents fail to overlap-are not tested
because they are never active at the same time. Pairs that are distant vertically-in the
sense that one or more line segments are interposed between them-are not tested because
they are never adjacent within the sweepline structure. But the penalty for avoiding un-
promising pairs of line segments is a factor of log n slowdown. The strategy pays off when
r is sufficiently small: If r E o(- '), the algorithm runs in o(n2) time, outperforming
the brute-force approach to the problem. However, when many line segments do in fact
cross [e.g., r E Q(n 2))], the algorithm is less efficient than the brute-force approach be-
cause the cost of avoiding unpromising pairs of line segments proves too expensive and
unproductive.

181

Chap. 7: Plane-Sweep Algorithms

7.2 Finding Convex Hulls: Insertion Hull Revisited

In section 5.3 we presented program insertionHull, which finds the convex hull of a
set of n points in the plane by incorporating them one at a time into a current hull. Our
analysis of the program revealed that its performance is dominated by two operations: (1)
deciding whether each point p to be inserted lies inside-is "absorbed" by-the current
hull, and (2) finding some vertex of the current hull's near chain, whenever p lies outside
the current hull. Since each of the two operations takes time proportional to the size of the
current hull and, in the worst case, the current hull grows by one vertex per iteration, we
concluded that insertionHull runs in 0(n2) time. In this section we briefly consider an
off-line version of the insertion hull algorithm which does not require these two operations
and which, as a result, is more efficient, taking O(n log n) time.

The idea is to presort the points from left to right and then insert them into the current
hull in this order. This obviates the need to test whether each point p to be inserted lies
in the current hull: Since p lies to the right of all previously inserted points (or at least
above the previously inserted point), p necessarily lies outside the current hull. Having
determined that p lies outside the current hull, we must then insert p into the current hull,
which requires that we locate some vertex of the current hull's near chain. But due to the
order in which points are inserted, such a vertex is already at hand: The last point inserted
into current hull is just such a vertex.

Program insertionHull2 returns the convex hull of the n points of array pts.
It is worthwhile to compare this program to program insertionHull of section 5.3.

Polygon *insertionHull2(Point pts[], int n)

Point **s = new (Point*)(n);

for (int i = 0; i < n; i++)

s[i] = &ptsli];
selectionSort(s, n, leftToRightCmp);

Polygon *p = new Polygon;
p->insert(new Vertex(*s[0]));
for (i = 1; i < n; i++) {

if (*s[i] == *sci-.l)

continue;

supportingLine(*s[i], p, LEFT);

Vertex *1 = p->v();
supportingLine(*s[i], p, RIGHT);
delete p->split(l);

p->insert(new Vertex(*s[i]));

}
return p;

}

Observe that this new version of insertion hull is an example of plane sweep, although
we explained it without recourse to plane-sweep terminology. To spell out the connection,
the sorted array of points serves as the (static) event-point schedule and the current hull
serves as the sweepline structure. As each point gets processed, the current hull is updated;
thus both the sweepline structure and the solution to the problem to the left of the sweepline
are implicitly updated.

182

Sec. 7.3 Contour of the Union of Rectangles

7.2.1 Analysis

Let us analyze insertionHull2. Within a single iteration of the for loop, only the
two calls to supportingLine take more than constant time-together they take time
proportional to the length of the current hull's near chain. Let us charge one unit of work
to each of the near chain's vertices to pay for the two calls to supportingLine. Since
these vertices are removed by the split operation that follows, every point accrues at most
one such charge-once removed from the current hull, a point is never reinserted. Because
there are only n points, the total cost for all calls to supportingLine, over all n -I

iterations, is 0(n) time.
Hence insertionHul 12 is dominated by the initial sort. If we use an optimal sort-

ing method such as mergeSort (to be described in the next chapter), insert ionHul 12
runs in O(n logn) time.

7.3 Contour of the Union of Rectangles

An axes-parallel rectangle is a rectangle whose sides are aligned with the axes of the plane-
two sides are vertical and two are horizontal. In this section we will use plane sweep to solve
the contourfinding problem: Compute the boundary (or contour) of the region formed by
the union of a collection of axes-parallel rectangles. This problem arises in the design of
integrated circuits (IC) using axes-parallel rectangles known as IC masks. Algorithms are
used in the layout of IC masks to ensure certain constraints, such as economic (minimizing
total area of the circuit) and electrical (insulation and contact) constraints.

A contour is made up of one or more loops, each composed of alternating horizontal
and vertical contour segments. The loops do not cross one another and may be nested to
any depth. Figure 7.4 depicts six rectangles and the contour of their union. The contour
consists of four loops: One encloses a second, which in turn encloses a third; the fourth loop
lies outside the others. Figure 7.5 shows the contour of 120 rectangles positioned randomly
within a rectangular region of the plane.

To solve the contour finding problem using plane sweep, we advance the sweepline
from left to right across the n rectangles while maintaining the following invariant: At each
position of the sweepline, all contour segments lying entirely to the left of the sweepline
will have been discovered. (A horizontal contour segment that crosses the sweepline is not
discovered until the sweepline reaches its right endpoint.) The invariant must be restored
whenever the sweepline reaches each of the 2n vertical edges, meaning that we must find

7-

DL D

Figure 7.4: The contour of the union of six axes-parallel rectangles.

183

___1

I

F]

Chap. 7: Plane-Sweep Algorithms

Figure 7.5: The contour of the union of 120 rectangles.

those contour segments which now for the first time lie to the left of the sweepline. Thus
the left and right edges of the rectangles serve as event points. Figure 7.6, which depicts
a problem involving two rectangles, highlights the contour segments discovered at succes-
sive positions of the sweepline. The sweepline is offset to the right in each diagram for
clarity.

7.3.1 Representing Rectangles

We will represent a rectangle by the following class:

class Rectangle {
public:

Point sw; // south-west (lower left) corner
Point ne; // north-east (upper right) corner

int id; // identifier

Rectangle(Point &_sw, Point &-ne, int _id = -1);
Rectangle(void) (}

A rectangle is determined by two opposing corners sw and ne and is assigned an
identifier id. The class constructor is defined thus:

Figure 7.6: The contour segments discovered at each position of the sweepline are darkened.

184

M
E:.'�=

0

l

Sec. 7.3 Contour of the Union of Rectangles 185

Rectangle::Rectangle(Point &_sw, Point &_ne, int _id)

sw(-sw), ne(-ne), id(_id)

}

We will represent the sides of a rectangle using class AxisParallelEdge:

enum { LEFT-SIDE, RIGHT-SIDE, BOTTOM-SIDE, TOPSIDE };

class AxisParallelEdge (
public:

Rectangle *r; // rectangle that owns the edge

int count;
double m;

int type; // LEFTSIDE, RIGHT-SIDE, BOTTOM-SIDE, TOPSIDE

AxisParallelEdge(Rectangle*, int);

double pos(void);

double min(void);

double max(void);

void setxin(double);

void handleLeftEdge(Dictionary<AxisParallelEdge*>&, List<Edge*>*);

void handleRightEdge(Dictionary<AxisParallelEdge*>&, List<Edge*>*);

};

The class constructor is defined like this:

AxisParallelEdge::AxisParallelEdge(Rectangle *_r, int _type)

r(-r), count(O), m(-DBL-MAX), type(_type)

}

Member function pos returns the position of this edge along the axis to which it
is perpendicular, and functions min and max return the minimum and maximum extents
of the edge along the axis to which it is parallel. For example, for the vertical edge with
endpoints (1,2) and (1,4), pos returns 1, min returns 2, and max returns 4. The functions
are defined as follows:

double AxisParallelEdge::pos(void)

{
switch (type) {

case LEFT-SIDE:

return r->sw.x; break;

case RIGHT-SIDE:

return r->ne.x; break;

case TOP-SIDE:

return r->ne.y; break;

case BOTTOM-SIDE:

default:

return r->sw.y; break;

I

Chap. 7: Plane-Sweep Algorithms

double AxisParallelEdge::min(void)

{
if (m > -DBL-MAX)

return m;

switch (type) {

case LEFT-SIDE:

case RIGHT-SIDE:

return r->sw.y; break;

case TOP-SIDE:

case BOTTOMSIDE:

default:

return r->sw.x; break;

}
}

double AxisParallelEdge::max(void)

{
switch (type) {

case LEFT-SIDE:

case RIGHT_SIDE:

return r->ne.y; break;

case TOP-SIDE:

case BOTTOMSIDE:

default:

return r->ne.x; break;

}

When a top or bottom edge is initialized, it coincides with the top or bottom side of
the rectangle which owns the edge. However, our algorithm must sometimes reposition
the left endpoints of horizontal edges. Member function setMin accommodates this. It
is used to update the value returned by subsequent calls to member function min. The
member function is defined thus:

void AxisParallelEdge::setMin(double f)

{
m = f;

7.3.2 The Top-Level Program

Program findContour solves the contour finding problem for array r of n rectangles.
The function accumulates the contour segments it discovers in list segments, which it
returns upon completion:

List<Edge*> *findContour(Rectangle r[l, int n)

{
AxisParallelEdge **schedule = buildSchedule(r, n);

List<Edge*> *segments = new List<Edge*>;

Dictionary<AxisParallelEdge*> sweepline(axisParallelEdgeCmp);

186

Sec. 7.3 Contour of the Union of Rectangles 187

Rectangle *sentinel = new Rectangle(Point(-DBL-MAX,-DBL-IAX),

Point(DBLJIAX,DBLJ(AX), -1);

sweepline.insert(new AxisParallelEdge(sentinel, BOTTOM-SIDE));

for (int i = 0; i < 2*n; i++)

switch (schedule[iJ->type) {

case LEFT-SIDE:

scheduleli]->handleLeftEdgeTransition(sweepline, segments);

break;

case RIGHT -SIDE:

schedule[i]->handleRightEdgeTransition(sweepline, segments);

break;

}
return segments;

Function bu i ldSchedule creates the event-point schedule, an array of 2n vertical
edges sorted by increasing x-coordinates. The function is passed array r of n rectangles
and returns the event-point schedule:

AxisParallelEdge **buildSchedule(Rectangle r[j, int n)

{
AxisParallelEdge **schedule = new AxisParallelEdgePtr[2*n];

for (int i = 0; i < n; i++) {
schedulet2*i] = new AxisParallelEdge(&r[i], LEFTSIDE);

scheduleE2*i+1l = new AxisParallelEdge(&r[i], RIGHT-SIDE);

}
insertionSort(schedule, 2*n, axisParallelEdgeCmp);

return schedule;

}

Function buildSchedule sorts the event-point schedule using the comparison
function axisParallelEdgeCmp:

int axisParallelEdgeCmp(AxisParallelEdge *a, AxisParallelEdge *b)

{
if (a->pos() < b->pos()) return -1;

else if (a->pos() > b->pos()) return 1;

else if (a->type < b->type) return -1;

else if (a->type > b->type) return 1;

else if (a->r->id < b->r->id) return -1;

else if (a->r->id > b->r->id) return 1;

return 0;

Comparison function axisParallelEdgeCmp compares two vertical edges with
respect to their x-coordinates, and if these are the same, it then compares the edges with
respect to their types (left edges are considered less than right edges). Finally, if their
types are the same, the edges are compared with respect to the identifiers of their respective
rectangles. Horizontal edges are compared analogously, where y-coordinates play the role

Chap. 7: Plane-Sweep Algorithms

of x-coordinates, and bottom edges are considered less than top edges. (The algorithm
never compares a vertical edge with a horizontal edge.)

If the left edge el of some rectangle RI and the right edge e2 of rectangle R2 have the
same x-coordinate, why is edge el is considered less than edge e2? The reason is to ensure
that el gets scheduled before e2, so the sweepline enters rectangle RI before leaving R2.
Were we not to do this, the algorithm would mistakenly report as a contour segment the
vertical edge along which the two rectangles meet.

The sweepline structure is a dictionary containing active horizontal edges, those
horizontal edges that cross the sweepline in its current position. Comparison function
axisParallelEdgeCmp is used not only to create the event-point schedule, but also to
create and maintain the sweepline structure.

7.3.3 Transitions

Transitions, which occur whenever the sweepline encounters a vertical edge, are handled
differently for left edges and right edges. In both cases, however, we must make use of
the count field of the active horizontal edges. The count of an edge equals the number
of rectangles which cover the interval of the sweepline extending from the edge to the next
edge just above. Counts are indicated in Figures 7.7 and 7.8.

Let us first consider left edge events, when the sweepline enters some rectangle R.
We will refer to Figure 7.7a to explain what takes place. To begin, we insert the two
horizontal edges a and h of rectangle R into the sweepline structure. Next we use the
sweepline structure to visit the sequence of active horizontal edges extending from a up
to h. Three kinds of contour segments may be discovered along the way. First, we find a
horizontal contour segment along each bottom edge whose count equals 1 (edges b and d
in the figure). Second, we find a horizontal contour segment along each top edge whose
count equals 0 (edges c and g). Since both types of contour segments our now hidden by R,
the sweepline has reached their right endpoints. Third, we may find vertical contour seg-
ments which terminate in a bottom horizontal edge with count I (between edges a and b),
or which terminate in a top edge with count 0 (between edges g and h), or which terminate

I i n

g 10
Ii

f-h1
e T2

Ii
d I

10

b -i---

-~hl

gi

f
e

d

b

I

12
!3

1

; 2 1
1 1

!Ii
I-t

a (

(a) (b)

Processing a left edge event, with counts indicated. The contour segments that are foundFigure 7.7:
are darkened.

188

LIV

Sec. 7.3 Contour of the Union of Rectangles

h

f

e

d

b

(a) (b)

Figure 7.8: Processing a right edge event, with counts indicated. The contour segments are darkened.

in both (between edges c and d). Such edges lie along the left edge of R. Figure 7.7b
results.

In addition to finding contour segments, we must update the counts associated with
the active horizontal edges. We increment the counts of all active horizontal edges lying
between a and h, to account for the arrival of rectangle R. We initialize the counts of a
and h based on the count of the active horizontal edge that lies just below each.

Left edge events are processed by member function handleLef tEdge. The func-
tion is passed the sweepline structure and the list of already known contour segments, to
which it appends the new contour segments it discovers:

void AxisParallelEdge::handleLeftfdge(
Dictionary<AxisParallelEdge*> &sweepline,

List<gdge*> *segx)

{
sweepline.insert(new AxisParallelEdge(r, TOPSIDE));

AxisParallelEdge *u = sweepline.val();
sweepline.insert(new AxisParallelEdge(r, BOTTOMSIDE));

AxisParallelEdge *1 = sweepline.valo;
AxisParallelEdge *p = sweepline.prevo;
float curx = poso();
l->count = p->count + 1;
p = sweepline.nexto;
1 = sweepline.nexti9;
for (; 1 != u; p = 1, 1 = sweepline.nexto) (

if ((l->type == BOTTOMSIDE) && (l->count+e == 1)) {

segs->append(new Edge(Point(curx, p-.pos()),
Point(curx, l->pos())));

sega->append(new Edge(Point(l->mino, l->posol),
Point(curx, l->pos())));

} else if ((l->type == TOP-SIDE) && (l->count++ == 0))
segs->append(new Edge(Point(l->min(), l->pos(l,

Point(curx, l->pos())));

189

Chap. 7: Plane-Sweep Algorithms

if ((l->count = p->count - 1) == 0)

segs->append(new Edge(Point(curx, p->poso0),

Point(curx, l->pos())));

Next we consider how to process right edge events, when the sweepline exits some

rectangle R (Figure 7.8). First we look up R's horizontal edges in the sweepline structure

(a and g in the figure). Next we visit the sequence of active horizontal edges from a up

to g while looking out for two kinds of contour segments. First, the horizontal edges of R

may contain contour segments-R's bottom edge if its count is 1, and R's top edge if its

count is 0 (a is a contour segment, but g is not). Second, we find a vertical contour segment

connecting each top horizontal edge whose count equals I to a bottom horizontal edge

whose count equals 2 (between edges a and b, and edges c and d). The count of each

edge visited (between a and g) is decremented along the way to account for rectangle R's

departure.

We perform an additional task while traversing the list from a up to g: For top horizon-

tal edges with (decremented) count 0 and for bottom horizontal edges with (decremented)

count 1, we use function setMin to shift the left endpoint rightward to the sweepline. In

Figure 7.8, the left endpoints of horizontal edges b, c, and d are updated in this way. To see

why this is necessary, observe that b, c and d each contains a contour segment that is yet to

be discovered, and that each of these contour segments has its left endpoint along the right

edge of rectangle R, the current position of the sweepline.

To finish processing the right edge event, we remove the horizontal edges of rectan-

gle R (a and g) from the sweepline structure to account for rectangle R's departure.

Member function handleRightEdge processes right edge events. The contour

segments it finds are appended to list segs:

void AxisParallelEdge::handleRightEdge(

Dictionary<AxisParallelEdge*> &sweepline,

List<Edge*> *segs)

{
AxisParallelEdge uedge(r, TOP-SIDE);

AxisParallelEdge ledge(r, BOTTOM-SIDE);

AxisParallelEdge *u = sweepline.find(&uedge);

AxisParallelEdge *1 = sweepline.find(&ledge);

float curx = poso;

if (1->count == 1)

segs->append(new Edge(Point(l->mino, 1->poso)),

Point(curx, l->pos())));

if (u->count == 0)

segs->append(new Edge(Point(u->mini), u->poso0),

Point(curx, u->poso)));

AxisParallelEdge *initl = 1;

AxisParallelEdge *p = 1;

1 = sweepline.nexto;

for (; 1 != u; p = 1, 1 = sweepline.nexto) {

if ((l->type == BOTTOM-SIDE) && (--l->count == 1))

segs->append(new Edge(Point(curx, p->poso0),

Point(curx, l->pos0)));

190

Sec. 7.4 Decomposing Polygons into Monotone Pieces

l->setiin(curx);

} else if ((l->type == TOP-SIDE) && (--l->count == 0))

l->setMin(curX);

if (l->count == 0)

segs->arpend(new Edge(Point(curx, D->joso0),

Point(curx, l->pos())));

sweepline.remove(u);

sweepline.remove(initl);

}

7.3.4 Analysis

Given n rectangles, consider the cost of performing a transition involving some rectangle R.
A transition of either type requires a (small) constant number of operations involving the
sweepline structure, taking at most O(log n) time, plus time proportional to the number of
active horizontal edges that lie between rectangle R's lower and upper edges. Since there
may be as many as Q2 (n) such edges, visiting these active horizontal edges dominates total
cost in the worst case. Hence each transition takes up to 0(n) time. Since there are 2n
transitions, the algorithm as a whole runs in 0(n 2) time in the worst case.

In one worst-case scenario, 2 tall rectangles and 2 wide rectangles form a mesh-
every tall rectangle intersects every wide rectangle. Since the contour of this mesh con-
tains Q (n2) contour segments, 2 (n2) time is required if only to report every contour seg-
ment.

We might attempt to express running time as an output-sensitive function of both n
and the size of the contour that is produced. However, even contours composed of very few
contour segments may require Q (n2) time. Consider running f indContour on this input:
the mesh of n rectangles described in the previous paragraph, plus a large rectangle R which
encloses the mesh. Although the contour of the union of these n + I rectangles consists
only of the four edges of R, the algorithm requires Q (n2) time to discover this. As the
sweepline advances from left to right, the algorithm must update the sweepline structure
in response to the mesh even though the mesh is covered by R. For were the sweepline to
reach the right edge of R abruptly before passing entirely beyond the mesh, the state of the
algorithm with respect to the mesh would become critical. Although in this example the
sweepline in fact passes beyond the mesh before leaving R, the algorithm does not know
this to be the case in advance.

7.4 Decomposing Polygons into Monotone Pieces

In this section we present an algorithm to decompose an arbitrary polygon into monotone
subpolygons, a process known as regularization. (Recall from section 5.8 that a polygon
is monotone if its boundary is composed of a monotone upper chain and a monotone lower
chain.) The algorithm employs plane sweep to regularize an n-gon in 0(n logn) time.
Using this algorithm together with the linear-time method of section 5.8 for triangulating
monotone polygons, we obtain an 0 (n log n)-time algorithm for triangulating an arbitrary
polygon: First, decompose the polygon into monotone subpolygons; then triangulate each
of these in turn.

191

Chap. 7: Plane-Sweep Algorithms

To simplify the presentation, we will assume throughout this section that no two
vertices of a polygon have the same x-coordinate.

Our algorithm hinges on the notion of a cusp. A reflex vertex-a vertex whose interior
angle exceeds 180 degrees-is a cusp if its two neighbors either both lie to the left of v or
both lie to the right of v (Figure 7.9). It is easy to see that a polygon that is monotone cannot
contain any cusps. Yet it is the converse, expressed by the following theorem, which lies at
the heart of the algorithm:

Theorem 4 (Monotone Polygon Theorem) Any polygon that contains no cusps is
monotone.

We prove the theorem by showing the contrapositive: If polygon P is non-monotone,
then P contains a cusp. Assume that P is non-monotone, and suppose that this is due to its
upper chain being non-monotone. Label the vertices along P's upper chain vI, V2, , Uk,

and let vi be the first vertex along the chain such that vi+ I lies to the left of vi (Figure 7.10). If
vi+I lies above edge v7i-_7~, then vi is a cusp, so we will assume that vj+i lies below vi-v'i.
Let vj be the leftmost vertex of the chain from v; to Vk before the chain crosses above
edge VUzbk. Vertex vj is reflex because it is locally leftmost and the polygon interior lies
to its left, and vj is a cusp because it is reflex and both its neighbors lie to its right. The
theorem follows.

7.4.1 The Top-Level Program

Our algorithm works by decomposing P into subpolygons without cusps. In the first of
two phases, the algorithm removes leftward-pointing cusps as it sweeps across P from left
to right, producing a set of subpolygons PI, P2 . Pm, none of which contains leftward-
pointing cusps. In the second phase the algorithm removes rightward-pointing cusps as it
sweeps from right to left across each Pi in turn. The collection of polygons that results
represents a decomposition of the original polygon P into subpolygons which possess
neither leftward- nor rightward-pointing cusps, and hence no cusps at all.

Program regularize is passed a polygon p, and it returns a list of monotone
polygons representing the regularization of p. Polygon p is destroyed in the process:

Figure 7.9: Vertices a, b, and c are leftward-
pointing cusps, and d is a rightward-pointing cusp.

V1

Figure 7.10: Illustration that a non-monotone poly-
gon must possess cusps.

192

Sec. 7.4 Decomposing Polygons into Monotone Pieces 193

enum (LEFT-TO-RIGHT, RIGHT-TO-LEFT);

List<Polygon*. *regularize(Polygon &p)

{
// phase 1

Liat<Polygon*> *p0olys = new List<Polygon*>;
semiregularize(p, LEFT_TO_RIGHT, polysl);

// phase 2
List <Polygon*> *polys2 = new List<Polygon*>;
polysl->lasto0;
while (Ipolysl->isHeadO) {

Polygon *q = polysl->removeo;
semiregularize(*q, RIGHTTOLEFT, polys2);

}
return polys2;

In the program, the polygons produced in the first phase are accumulated in list polysi,
and those produced in the second phase in list polys2.

The goal of function semiregularize is toremoveall cusps thatpoint in the same
direction. For example, the call semiregularize (p, LEFT-TO-RIGHT, polysl)
sweeps from left to right across polygon p to remove leftward-pointing cusps and appends
to list polysi the subpolygons that result. Whenever the sweepline reaches a leftward-
pointing cusp v, we split the polygon along the chord which connects v to some vertex w to
the left of v. To ensure that line segment vw is in fact a chord (i.e., an interior diagonal) of
the polygon, our choice of vertex w is critical. Where vertex v lies between active edges a
and d, we choose as w the rightmost vertex from among those vertices which lie between
edges a and d and to the left of the sweepline (Figure 7.1 la).

Another way to view our choice of vertex w is as follows: Consider the trapezoid
bounded by the sweepline, edge a, edge d, and the line parallel to the sweepline and passing
through point x. Here x is the left endpoint of either a or d, whichever endpoint lies to
the right of the other. Vertex w is the rightmost vertex lying in this trapezoid's interior;
however, if the trapezoid's interior is free of vertices, then w is vertex x. We will refer to w
as the target vertex of edge pair a-d (the vertically adjacent pair of edges a and d).

d d

V v

x ,a
aa

b--1

(a) (b)

Figure 7.11: The action taken when the sweepline reaches leftward-pointing cusp v.

Chap. 7: Plane-Sweep Algorithms

Figure 7.1 lb illustrates the action taken when the sweepline encounters cusp v: The
polygon is split along chord v3w. Vertex v is not a cusp in either of the two polygons that
result-in both polygons, one of v's neighbors lies to the left of v and the other lies to its
right. Indeed, the following invariant is maintained as the sweep proceeds from left to right:
None of the vertices to the left of the sweepline are leftward-pointing cusps.

A transition occurs as the sweepline reaches each polygon vertex. The type of tran-
sition depends on the type of vertex, where a vertex is classified according to the position
of its two neighbors relative to the sweep direction:

* Start vertex: Both neighbors of v lie beyond the sweepline-that is, in the direction in
which the sweepline is moving.

* Bend vertex: One neighbor of v lies behind the sweepline and the other neighbor of v
lies beyond the sweepline.

* End vertex: Both neighbors of v lie behind the sweepline.

The three corresponding transitions-start transitions, bend transitions, and end
transitions-are depicted in Figure 7.12, where we assume that the sweep proceeds from
left to right. The transition types are framed in terms of the sweep direction so function
semiregularize can be used to sweep in either direction.

Function semiregularize is passed an arbitrary polygonp and a sweep direction:
LEFT-TO-RIGHT to resolve leftward-pointing cusps, or RIGHT-TO-LEFT to resolve
rightward-pointing cusps. The subpolygons that result are appended to list polys. The
function relies on three global variables:

int sweepdirection; // current sweep direction
double curx; // current position of sweepline

int curtype; // current transition type

void semiregularize(Polygon &p,
int direction,

List<Polygon*> *polys)

{
sweepdirection = direction;
int (*cmp)(Vertex*, Vertex*);

if (sweepdirection==LEFTTORIGHT) cap = leftToRightCmp;

else cup = rightToLeftCmp;
Vertex **schedule = buildSchedule(p, cup);
Dictionary<ActiveZlement*> sweepline = buildsweepline();

(a) (b) (c)

Figure 7.12: The three types of transitions that occur when the sweepline is moving left to right.

194

Sec. 7.4 Decomposing Polygons into Monotone Pieces 195

for (int i = 0; i < p.sizeo); i++) {
Vertex *v = scheduledi;
curx = V->x;
switch (curtype = typeEvent(v, cmp)) {

case STARTTYPE:

startTransition(v, sweepline);

break;
case BEND-TYPE:

bendTransition(v, sweepline);

break;

case END-TYPE:

endTransition(v, sweepline, polys);

break;

}
}
p.setV(NULL);

?

The event points are the polygon's vertices. Since these are all known in advance,
the event-point schedule is an array of the vertices presorted by increasing x-coordinates
(the dynamic support of a dictionary is not needed). The schedule is created by func-
tion buildSchedule, which is passed one of the point comparison functions
leftToRightCmp or rightToLeftCmp, depending on the sweep direction:

Vertex **buildSchedule(Polygon &p, int(*cmp)(Vertex*, Vertex*))

Vertex **schedule = new (Vertex*)1p.sizeOl3;
for (int i = 0; i < p.sizeo; i++, p.advance(CLOCRWISE))

schedulefil = p.vo;
insertionSort(schedule, p.sizeO, cmp);
return schedule;

Function semiregularize uses function typeEvent to classify vertices, in
order to determine what type of transition to perform. To classify vertex v, function type
tests the position of v's two neighbors relative to the sweep direction:

int typeEvent(Vertex *v, int(*cmp)(Vertex*,Vertex*))

{
int a = (*cmp)(v..>cw(), v);

int b = (*cmp)(v->ccw(), v);

if ((a <= 0) && (b <= 0)) return END-TYPE;

else if ((a > 0) && (b > 0)) return STARTTYPE;

else return BENDTYPE;

}

7.4.2 The Sweepline Structure

The sweepline structure is a dictionary of active edges-those polygon edges which cur-
rently cross the sweepline-ordered by increasing y-coordinates. In addition, the sweepline

Chap. 7: Plane-Sweep Algorithms

structure contains a point with minimal y-coordinates (below all the edges) to serve as sen-
tinel. We will represent the sweepline structure as a dictionary of ActiveElement
objects:

class ActiveElement (

public:

int type; // ACTIVE_EDGE or ACTIVE_POINT

ActiveElement (int type);

virtual double y(void) = 0;

virtual Edge edge(void) { return Edgeo; 1;

virtual double slope(void) { return 0.0; 1;

The constructor ActiveElement initialized data member type, which indicates

whether the element is an edge or a point:

ActiveElement::ActiveElement(int t)

type(t)

{
}

The remaining member functions of class ActiveElement are virtual and will be

discussed shortly, in the context of the two derived classes.

An active edge is represented by an ActiveEdge object:

class ActiveEdge: public ActiveElement {

public:

Vertex *v;

Vertex *w;

int rotation;
ActiveEdge(Vertex *_v, int _r, Vertex *-w);

Edge2 edge(void);

double y(void);

double slope(void);

};

Data member v points to one of this edge's endpoints, and v->cw () points to the

other. Data member w is the target vertex of the edge pair consisting of this edge and the ac-

tive edge just above. Data member rotationis used to traverse from this edge to the edge

that meets it beyond the sweepline: If such an edge exists, v->neighbor (rotation)
is a window over the edge.

The constructor ActiveEdge is straightforward:

ActiveEdge: :ActiveEdge(Vertex *-v, int -r, Vertex *-w)

ActiveElement(ACTIVEEDGE), v(_v), rotation(_r), w(w)

196

Sec. 7.4 Decomposing Polygons into Monotone Pieces

Member function y returns the y-coordinate at which this edge crosses the sweepline.
Member functions edge and s 1 ope return this edge and the slope of this edge, respectively.
The three functions are defined as follows:

double ActiveEdge::y(void)

{
return edge().y(curx);

}

Edge ActiveEdge::edge (void)

return Edge(v->pointo, v->cw()->point(O);

double ActiveEdge::slope(void)

{
return edgeo.slope();

}

The sweepline structure is designed to accommodate points as well as edges, because
it must support point location operations of this form: Given a point on the sweepline, find
the pair of active edges between which the point lies. This is why we have defined class
ActiveElement and derived from it one class to represent edges and a second class to
represent points. For the purpose of searching within the sweepline structure, we represent
a point as an ActivePoint object:

class ActivePoint : public ActiveElement {

public:

Point p;

ActivePoint(Point&);

double y(void);

I;

The class constructor is defined like this:

ActivePoint::ActivePoint(Point &p) :

ActiveElement(ACTIVEPOIMT), p(_p)

Member function y simply returns this point's y-coordinate:

double ActivePoint::y(void)

{
return p.y;

Having defined the necessary classes, we turn our attention to the sweepline structure
itself. The sweepline structure is created with function buildSweepline. The function

197

Chap. 7: Plane-Sweep Algorithms

initializes a new dictionary and inserts an active point to serve as sentinel-the point lies
below any edge to be inserted later into the dictionary:

Dictionary<ActiveElement*> &buildSweepline()

Dictionary<ActiveElement*> *sweepline =

new Dictionary<ActiveElement*>(activeElementCmp);

sweepline->insert(new ActivePoint(Point(0.0, -DBL MAX)));

return *sweepline;

}

The comparison function act iveElementCmp is used to compare two active ele-
ments:

int activeElementCmp(ActiveElement *a, ActiveElement *b)

double ya = a->y();

double yb = b->yo;

if (ya < yb) return -1;

else if (ya > yb) return 1;

if ((a->type == ACTIVE-POINT) && (b->type == ACTIVE.POINT))

return 0;

else if (a->type == ACTIVE_POINT) return -1;

else if (b->type ACTIVEPOINT) return 1;

int rval = 1;

if ((sweepdirection == LEFT_TORIGHT && curtype == START-TYPE)

(sweepdirection == RIGHT_TO_LEFT && curtype == END-TYPE))

rival = -1;

double ma = a->slope(;

double mb = b->slopeo;

if (ma < mb) return rval;

else if (ma > mb) return -rval;

return 0;

}

Function activeElementCmp initially compares active elements a and b based
on the y-coordinates of their respective crossings with the sweepline. If they cross at the
same point, an active point is considered below an active edge. If both a and b are active
edges, their respective slopes are used to decide which is below the other. If we assume the
sweep is left to right, the edge with lesser slope is below the other edge if the event point is
a start vertex, and above the other edge if the event point is an end vertex. If we assume the
sweep is right to left, the roles of start vertex and end vertex are interchanged (e.g., a start
vertex under left-to-right sweep is an end vertex under right-to-left sweep).

7.4.3 Transitions

Let us consider how to process transitions, beginning with start transitions (Figure 7.12a).
When the sweepline reaches a start vertex v, we first look up in the sweepline structure the

198

Sec. 7.4 Decomposing Polygons into Monotone Pieces 199

two active edges a and d between which vertex v lies. Where vertex v is met by edges b
and c, we insert b and c into the sweepline structure and then make v the target vertex for
edge pairs a-b, b-c, and c-d. In addition, if vertex v is reflex (implying v is a cusp), we split
v's polygon along the chord which connects v to w. Function startTrans ition results:

void startTransition(Vertex* v,

Dictionary<ActiveElement*> &sweepline)

{
ActivePoint ve(v->pointo0);

ActiveEdge *a = (ActiveEdge*)sweepline.locate(&ve);

Vertex *v = a->w;

if (!isconvex(v)) (
Vertex *wp = v->split(w);

sweepline.insert(new Activezdge(wp->c()oCLOCRWISE,wp->cw()));

sweepline.insert(new ActiveEdge(v->ccw(),COUNTER-CLOCKWISE,v));

a->w = (sweepdirection == LEFT-TO-RIGHT) ? wp->ccw() : v;

} else {
sweepline.insert(new ActiveEdge(v->ccw(),COUNTER-CLOCKWISE,v));

sweepline.insert(new ActiveEdge(v, CLOCKWISE, v));

a->w = v;

}

Functions tartTrans it ion splits v's polygon using functionVertex: split,
rather than Polygon: split, so it does not need to know which polygon v belongs to.
As the sweepline advances toward v and new polygons are produced by split operations,
vertex v may migrate from polygon to polygon. By working at the level of vertices rather
than polygons, we avoid having to keep track of the polygon to which each vertex belongs.

Function call isConvex (v) returns TRUE if vertex vis a convex vertex, and FALSE
otherwise (v is reflex). The function is defined as follows:

bool isConvex(Vertex *v)

{
Vertex *u = v->ccw();

Vertex *w = v->cw();

int c = w->classify(*u, *v);

return ((c == BEYOND) | (c == RIGHT));

To process a bend transition at bend vertex v, we first locate edges a, b, and c in
the sweepline structure and then make vertex v the target vertex of edge pairs a-b and b-c
(Figure 7.12b). Finally, we replace edge b in the sweepline structure by the edge b', which
meets edge b at vertex v. Thus we have function bendTransition:

void bendTransition(Vertex *v,

Dictionary<ActiveElement*> &sweepline)

ActivePoint ve(v->point());

Chap. 7: Plane-Sweep Algorithms

ActiveEdge *a = (ActiveEdge*)sweepline.locate(&ve);

ActiveEdge *b = (ActiveEdge*)sweepline.nexto;

a->w = v;

b->w = v;

b->v = b->v->neighbor(b->rotation);

}

To process an end transition at end vertex v, we first find active edges a, b, c, and d
in the sweepline structure (Figure 7.12c). On the one hand, if vertex v is convex, then v
must be the rightmost vertex in its polygon. Were it not so, v's polygon would possess
a leftward-pointing cusp to the left of v, contradicting the sweep invariant. Since v is its
polygon's rightmost vertex, we append the polygon to the list polys at this time. On
the other hand, if vertex v is reflex, v is made the target vertex of edge pair a-d. Finally,
we remove edges b and c from the sweepline structure. Function endTransition
results:

void endTransition(Vertex *v,

Dictionary<ActiveElement*> &sweepline,

List<Polygon*> *polys)

{
ActivePoint ve(v->pointo0);

ActiveElement *a = sweepline.locate(&ve);

ActiveEdge *b = (ActiveEdge*)sweepline.nexto;

ActiveEdge *c = (ActiveEdge*)sweepline.nexto0;

if (isConvex(v))

polys->append(new Polygon(v));

else

((ActiveEdge*)a)->w = v;
sweepline.remove(b);

sweepline.remove(c);

}

Figure 7.13 depicts the regularization of a 25-gon. The left-to-right sweep removes
four leftward-pointing cusps and one rightward-pointing cusp (one of the split operations
removes two cusps at once). The subsequent right-to-left sweep removes the two remaining
rightward-pointing cusps. Seven monotone polygons result. Finally, we triangulate each
of these using the algorithm of section 5.8.

Figure 7.13: Regularizing a 25-gon into seven monotone pieces and then triangulating these.

200

7.4.4 Analysis

Let us analyze program regularize for an input polygon of n vertices. As the program
proceeds through successive calls to function semiregularize, the total number of
vertices increases by two for every split that is performed. However, since at most
vertices of the original polygon are cusps, no more than 2(n) = n vertices are added,
making a total of at most 2n vertices. Since each vertex prompts at most two transitions
(one in each sweep direction), no more than 4n transitions are performed in total.

Each type of transition is dominated by a (small) constant number of dictionary
operations taking 0(log n) time. Since 0(n) transitions are performed, the algorithm runs
in O(n log n) time.

7.5 Chapter Notes

The algorithm of section 7.1 for finding the intersection points of n line segments was
presented in [9].

The basic idea behind our algorithm for finding the contour of the union of n axes-
parallel rectangles is from [54]. However, by representing the sweepline with a more
sophisticated search structure (the segment tree), Lipski and Preparata obtain an algorithm
that runs in 0(n log n + r log(n2 /r)) time, where the contour consists of r edges. They use
the segment tree to represent the "gaps" along the sweepline, those intervals not covered
by any rectangles. (In our terminology, a gap is an interval between an active horizontal
edge with count 0 and one with count 1.) The time it takes to search within the sweepline
structure is thus a function of the number of vertical contour edges that are discovered.
Gtiting [37] subsequently devised an optimal algorithm which runs in 0(r + n logn) time.

Our polygon regularization algorithm is from [52], and the statement and proof of the
monotone polygon theorem is from [31]. Hertel and Mehlhorn [40] present a plane-sweep
algorithm for triangulating an arbitrary polygon in 0(n + r log r) time, where r equals
the number of reflex vertices in the polygon. The sweepline proceeds from left to right
in pieces (rather than as a single vertical line) and stops at no more than 0(r) vertices.
Other polygon triangulation methods include Tarjan and van Wyk's [84], which runs in
0(n loglogn) time, and more recently Chazelle's [19], which runs in optimal 0(n) time.
A survey of polygon partitioning techniques is presented in [60, 61].

7.6 Exercises

1. Modify our program for finding the intersection points among a collection of line
segments so it remains correct even if we drop the assumption that no more than two
line segments intersect at a single point.

2. Devise a plane-sweep algorithm for computing the area of the union of a collection of
axes-parallel rectangles.

3. Using Big-Oh notation, express the space complexity of our line-segment intersection
algorithm as a function of the numberof line segments and the numberof intersections
reported. What would the space complexity be if the functions handling transitions

Sec. 7.6 Exercises 201

Chap. 7: Plane-Sweep Algorithms

were modified so an event point is removed from the event-point schedule only when it
is to be processed, and not otherwise? Would the algorithm's time complexity change?

4. Design an algorithm to report all intersection points among a set of n horizontal and
vertical lines segments in the plane. The algorithm should run in O(n log n + r) time,
where r intersections are reported.

5. Given two convex polygons P and Q, devise a plane-sweep algorithm to compute the
intersection of P and Q in time proportional to I PI + I QI. (Hint: Let the boundaries
of P and Q together serve as the event-point schedule. As intersection points are
discovered, they can be used to piece together the boundary of P n Q.)

6. What purpose does member Rectangle: : id serve in the contour finding algo-
rithm?

7. Show that the contour finding problem on n rectangles has lower bound Q (n log n).
[Hint: Reduce SORTING to the problem. Given numbers x1, x2 , . . ., to be sorted,
map xi to the axes-parallel rectangle with corners (0, 0) and (xi, M), where M =

maxj{xj}.I

8. Devise an O(n log n)-time plane-sweep algorithm for triangulating an arbitrary poly-
gon. (Hint: Triangulate the polygon while regularizing it.)

9. Given a polygon P, a triangulation of P's vertex set is a triangulation of the vertices
regarded as points in the plane, subject to the constraint that every edge of P must
belong to the triangulation. Devise an O(n log n)-time plane-sweep algorithm for
triangulating the vertex set of any polygon. (Hint: Modify the algorithm of the previous
exercise.)

10. Given a set of n variable-radius disks in the plane, design a plane-sweep algorithm to
decide in O(n log n) time whether any two disks intersect.

11. A point p = (Px py) is said to dominate point q = (q,, qy) if px > qX and py >
qy. Where p belongs to some point set S, p is called a maximum if no point in S
dominates p. Devise a plane-sweep algorithm to report all maxima among a set of
n points in O(n log n) time.

202

8
Divide-and-Conquer Algorithms

A divide-and-conquer approach divides a problem into several subproblems, solves these
problems recursively, and then combines their solutions into a solution for the original
problem. The subproblems are similar in kind to the original problem, but smaller in size-
indeed, the sum of their sizes equals the size of the original problem. When a problem
is sufficiently small or easy, it is solved directly without being divided further, and this is
the base case which terminates the process. In its most common form, divide and conquer
divides a problem into two subproblems, each half as large as the original.

Consider a divide-and-conquer algorithm for finding the smallest value in an array of
integers. The idea is to divide the array into left and right subarrays, apply the algorithm
recursively to these to obtain the smallest value in each, and then return the smaller of these
two values. The base case occurs when a subarray has length one-the sole value it contains
is returned. The algorithm is implemented by function fMin, which returns the smallest
integer in subarray a [1. . rJ . Function f indMin is a driver function which makes the
top-level call to fmin:

int findMin(int aul, int n)

return fmin(a, 0, n-1);

}

int fI'in(int all, jut 1, jut r)

203

Chap. 8: Divide-and-Conquer Algorithms

if (1 == r)

return atl];

else {

int m = (1 + r) / 2;

int i = fMin(a, 1, m);
int j = fMin(a, m+l, r);

return (i < j) ? i : j;

}
)

With respect to the number of comparisons that are performed, f indMin is as ef-
ficient as scanning the array from left to right while keeping track of the smallest integer
seen so far (both methods perform n - I comparisons). Although the recursive approach
is less efficient in practice due to the overhead for the recursive function calls, it serves as
a good example of divide and conquer.

We begin this chapter with merge sort, a classic divide-and-conquer sorting algorithm.
We then present a method for forming the intersection of a collection of half-planes and
apply this method to the problems of constructing the kernel of a polygon and of constructing
Voronoi polygons (to be defined in due course). In our next application, we return to the
problem of computing the convex hull of a planar point set. Next we will use divide and
conquer in an efficient algorithm for finding a pair of closest points from a set of points in
the plane. Finally, we present a divide-and-conquer method for triangulating an arbitrary
polygon.

8.1 Merge Sort

Merge sort is the only sorting algorithm we will cover with optimal O(n logn) worst-case
running time. Given an array of items to be sorted, merge sort divides the array into left
and right subarrays of roughly equal size, recursively sorts each of the two subarrays, and
then merges the two now-sorted subarrays into a single sorted array (Figure 8.1). Because
the sorted subarrays can be merged in linear time, the running time is expressed by the
recurrence T(n) = 2T(n) + an, which is solved by T(n) E O(n log n).

Function templatemSort merge sorts subarray a [1.. m] using comparison function
cmp. Function template mergeSort is the driver function:

6 1 7 8 1 2 4 1 5 1 3 1

6 7 2 8 4 5 1 3

I 1 2 3 4 5 6 7 8 | Figure 8.1: Merge sort.

| 2 6 7 8 1 1 3 4 5 |

204

Sec. 8.1 Merge Sort 205

template<class T>

void mergeSort(T a[], int n, int (*cmp)(T,T))

{
mSort(a, 0, n-i, cmp);

}

template<class T>

void mSort(T a[l, int 1, int r, int (*cup)(T,T))

if (1 < r) (

int m = (1 + r) / 2;

mSort(a, 1, m, cmp);

mSort(a, m+l, r, cmp);

merge(a, 1, m, r, cup);

The function call merge (a, 1, m, r, cmp) merges sorted subarrays al.. m] and
a[m+l. .r]. Let us consider how to merge two sorted arrays a and b into a third array c
of sufficient length. To do this, we maintain an index aindx, which indexes the smallest
(leftmost) item in array a not yet copied into array c, an index bindx defined similarly
for array b, and an index cindx indexing the next (leftmost) free position in array c. In
each step, we copy the smaller of a[aindx] and b[bindx] into c [cindx] and then
increment cindex, as well as either aindx or bindx (whichever indexes the item just
copied). If aindx advances past the rightmost element of array a, then the remaining items
in array b (starting at bindx) are copied into the remaining positions of array c. Similarly,
if bindx advances beyond the rightmost element of array b, the remaining items in array a
are copied to array c.

Thefollowingtemplatefunctionmergessortedsubarraysx [l. .mn] andx [m+l. .r]
into a separate array c, which is then copied back into x [1 .. r:

template<class T>

void merge(T xI], int 1, int m, int r, int (*cap) (T,T))

{
T *a = x+l;

T *b = x+m+l;

T * = new T[r-l+l];

int aindx = 0, bindx = 0, cindx = 0;

int alim = m-l+l, blim = r-m;

while ((aindx < alim) && (bindx < blim))

if ((*cmp)(a[aindx], b[bindx]) < 0)

c [cindx++] = a [aindx++];

else

c(cindx++] = b[bindx++];

while (aindx < alim) // copy rest of a

c[cindx++] = a[aindx++];

while (bindx < blim) // copy rest of b

c[cindx++] = b[bindx++];

Chap. 8: Divide-and-Conquer Algorithms

for (aindx=cindx=O; aindx <= r-1; a[aindx+.] = ctcindx+"])

// copy back

delete c;

}

Merge sort is efficient because two sorted arrays are merged in time proportional to
the sum of their sizes. Function merge runs in O(r - I) time since each of the r - 1 + I
items to be merged is moved only twice: first into array c, then back into array x. Where
T (n) represents the time to merge sort an array of n items, the program takes time

T(n) = 2T()+an if n > I
b if n= I

for suitable constants a and b. Here 2T(n) represents the time to sort two subarrays
recursively, and an the time to merge them subsequently. Thus we have T(n) E O(n log n).

8.2 Computing the Intersection of Half-Planes

A line subdivides a plane into two half-planes, one to either side of the line. Although
half-planes are among the simplest of convex planar regions, any polygon whatsoever can
be formed by combining suitably chosen half-planes by intersection and union operations.
In this section we will restrict our attention to the problem of forming the intersection of a
collection of half-planes.

Let H be a collection of half-planes, and let I(H) denote their intersection. If
nonempty, I (H) is called a convex polytope. I (H) is indeed convex because the inter-
section of convex regions is convex. Figure 8.2 depicts two convex polytopes formed
by the intersection of half-planes. Figure 8.2a is a convex polygon, whereas Figure 8.2b
is an unbounded convex polytope. A half-plane in H is redundant if its removal does
not change 1(H). In Figure 8.2, only the half-plane determined by line e is redun-
dant.

(a) (b)

Figure 8.2: Two convex polytopes formed by the intersection of half-planes.

206

Sec. 8.2 Computing the Intersection of Half-Planes

One way to form the intersection of n half-planes is to process them one at a time.
The most straightforward implementation of this approach runs in O(n 2) time. Yet the
divide-and-conquer approach is also feasible because set intersection is associative-the
intersection of n half-planes can be obtained by applying pairwise intersections in any
order. Hence for any partition of H into nonempty subsets HI and H2 , we have I (H) =
I (HI) n I(H2). To compute I(H) using divide and conquer, we partition the collection H
of half-planes into two nonempty subsets HI and H2 of approximately equal size, and then
recursively compute I(H1) and I(H2) and combine them to form I(H1) n I(H2). In the
base case (n = 1) we simply return the sole half-plane in H.

Let us turn our attention to implementation. We need a way of representing the
boundaries of the convex polytopes produced as the algorithm proceeds, as well as the final
one I(H). Unfortunately, we cannot use Polygon objects to do this since the boundaries of
the unbounded convex polytopes are not closed. Rather than define a new class, we will clip
I (H) to a convex bounding box B. This ensures that every polytope produced as the algo-
rithm proceeds is bounded: the intersection of some convex polytope and bounding box B.

In program hal fplaneIntersect, we represent a half-plane by an Edge object:
The half-plane lies to the right of the edge. The program is passed an array H of n edges
and a convex bounding box box. It returns the convex polygon equal to the intersection of
box and the n half-planes of H:

Polygon *halfplaneintersect(Edge H(], int n, Polygon &box)

Polygon *c;

if (n == 1)
clipPolygonToEdge(box, H[O], c);

else (
int m = n / 2;
Polygon *a = halfplanelntersect(H, m, box);

Polygon *b = halfplaneIntersect(K+m, n-m, box);

c = convexPolygonlntersect(*a, *b);

delete a;

delete b;

}
return c;

}

The program uses two functions defined earlier. Function clipPolygonToEdge of
section 5.7 is used to clip the bounding box to the right side of an edge (a single half-plane).
Function convexPolygonIntersect of section 6.5 is used to form the intersection of
two convex polygons.

The bounding box passed to program halfplaneIntersect should be large
enough that no information is lost. Ideally, the half-planes determined by the bounding
box's edges are redundant so the solution returned by the program equals l(H). When
this is not possible, such as when I(H) is unbounded, the bounding box should contain
all the vertices of I(H) so only the uninteresting portion of l(H) is clipped away. The
application program that calls function hal fplanelntersect is responsible for setting
up the bounding box.

207

Chap. 8: Divide-and-Conquer Algorithms

8.2.1 Analysis

On input size n, program halfplaneIntersect's running time T(n) is expressed by
the recurrence

T~)-12T(2) + an if n > IT(n) l b otherwise (n = 1)

Here the term an represents the time function convexPolygonIntersect takes to
form the intersection of two convex polygons. Hence halfplaneIntersect runs in
O(n logn) time.

This algorithm is optimal because this problem has lower bound Q (n log n). To show
this, we exhibit a linear-time reduction from sorting to this problem of convex polytope
formation. Given numbers xI, x2, X,, to be sorted, map each xi to the point (xi, x2')
along the parabola y = x2 . Let Hi be the half-plane bounded below by the line tangent to
the parabola at (xi, x2). Then form the convex polytope I (H) equal to the intersection of
the half-planes HI, H2,..., H. Here the edges of I (H) are ordered by slope, and their
points of contact (xi, x2) with the parabola are ordered by abscissa. Finally, report the xis
in edge order around 1(H).

8.3 Finding the Kernel of a Polygon

Recall from section 5.2 that the the kernel of a polygon is defined as the locus of points which
see all the points in a polygon. If nonempty, the kernel of polygon P is a convex polygon
contained in P, and P is said to be star shaped (see Figure 5.3). In this section we will use
function halfplaneIntersect in an O(n log n)-time algorithm for constructing the
kernel of a polygon.

Our algorithm is based on this theorem:

Theorem 5 (Kernel Construction Theorem) Suppose P is an n-gon and H is the set of
n half-planes determined by the edges of P. Then the kernel of P equals the intersection
I (H) of the half-planes.

Here the half-plane determined by an edge is bounded by the edge and lies to its right.
The theorem follows from this chain of equivalent statements: (I) Point q belongs to

the kernel of P, (2) q sees every point of P. (3) no edge of P obstructs q's view, (4) q lies
to the left of no edge, (5) q lies in every half-plane determined by an edge of H, and (6) q
belongs to I(H) (see Figure 8.3).

Based on the theorem, we can construct the kernel of polygon P by applying function
halfplaneIntersect to P's edges. Any bounding box containing P suffices since
the kernel is contained in P. The following function kernel is passed a polygon p. It
returns the polygon representing the kernel of p, or an empty polygon if p is not star shaped:

Polygon *kernel(Polygon &p)

{
Edge *edges = new Edge[p.size()l;

for (int i = 0; i < p.sizeo; ie., p.advance(CLOCKWISE))

edges[i] = p.edge();

208

Sec. 8.4 Finding Voronoi Regions

Figure 8.3: The kernel of polygon P equals the intersection of the half-planes determined by P's edges.

Polygon box;

box.insert(Point(-DBL-NAX, -DBL-MAX));
box.insert(Point(-DBL-MAX, DBL-MAX));
box.insert(Point(DBL-MAX, DBL-MAX));
box.insert(Point (DBLMAX, -DBL-MA.X));
Polygon *r = halfplaneIntersect(edges, p.sizeo, box);

delete edges;

return r;

8.3.1 Analysis

Program kernel computes the kernel of an n-gon in O(n logn) time, its running time
dominated by the call to function halfplaneIntersect. Interestingly, the program
is not optimal-the Chapter Notes cite an optimal kernel-finding algorithm which runs in
0(n) time. One might expect there to be a linear-time reduction from the problem of
intersecting half-planes to that of finding kernels, thereby transferring the former problem's
Q (n log n) lower bound to the latter problem. However, no such reduction exists. The
edges of a polygon are not in arbitary position since they connect at vertices; it turns out
that it is easier to form the intersection of the half-planes determined by polygon edges than
to form the intersection of an arbitrary collection of half-planes.

8.4 Finding Voronoi Regions

Let S be a finite point set in the plane and let p be a point not in S. The Voronoi region
of p relative to S, denoted VWZs(p), consists of the locus of points in the plane that are
closer to p than to any point of S. For each point q E S, the locus of points lying closer
to p than to q equals the half-plane which is bounded by the perpendicular bisector of line
segment pq and which contains p. The Voronoi region VZRs(p) equals the intersection of

209

Chap. 8: Divide-and-Conquer Algorithms

all such half-planes as q ranges over the points of S (see Figure 8.4a). We can express these
facts as a theorem:

Theorem 6 (Voronoi Region Theorem) Given distinct points p and q, ViZ q (p) equals
the half-plane bounded by the perpendicular bisector of a, to the side of the perpendicular
bisector which contains p. Moreover, given disjointpoint sets A and B andpoint p V AU B,
we have V7ZAUB(P) = VJZA(p) n V7ZB(P).

The theorem's first assertion follows from the fact that the perpendicular bisector of pq
consists of all points equidistant from p and q. Regarding the theorem's second assertion, it
is not hard to see that V)ZAUB (P) C V7ZA (p) n V7ZB (p). To see why VZA (p) n VRZB(P) C
V7ZAUB(P), suppose that point s lies in V1ZA(P) n VZB (p). Then s is closer to p than to
every point of A, and closer to p than to every point of B. Hence s must be closer to p than
to every point of A U B-that is, s E V RAUB(P).

In light of this theorem, we can compute V7ZS(p) by forming the intersection of the
half-planes VI1 q() (p) as q ranges over the points of S. The half-plane V71zq (p) is bounded
by the bisector of line segment Tq, which is given by the edge Edge (p, q) .rot(). The
half-plane of interest lies to the right of this edge.

Program voronoiRegi on is passed a point p, an array s of n points, and a bounding
box box. It returns the Voronoi region of p relative to point set s:

Polygon *voronoiRegion(Point &p, Point sC], int n, Polygon &box)

{
Edge *edges = new EdgeCn];
for (int i = 0; i < n; i++) (

edgesli] = Edge(p, sli]);
edges[i].roto;

I
Polygon *r = halfplanelntersect(edges, n, box);
delete edges;

return r;

}

The bounding box may clip away a portion of the Voronoi region-indeed, if the
Voronoi region is unbounded, it does so necessarily. Ideally, the bounding box contains all

0

0 0

0

(a) (b) (c)

Figure 8.4: (a) A Voronoi region, (b) a Voronoi diagram, and (c) the same Voronoi diagram and its dual.

210

Sec. 8.4 Finding Voronoi Regions

vertices of the Voronoi region so only the uninteresting portion is clipped away. However,
given a fixed point p, it is not difficult to devise point sets S such that the vertices of V1Zs(p)
lie arbitrarily far from p.

8.4.1 Voronoi Diagrams

Given point set S, the Voronoi diagram of S. denoted VD(S), is the collection of Voronoi
regions for each point of S relative to the remaining points of S. That is, the Voronoi regions
of VD(S) are of the form V1s-(p (p) as p ranges over S. VD(S) decomposes the plane
into convex polytopes (Figures 8.4b and 8.5).

Crystallography provides a pleasing illustration. Imagine the points of S to be crystal
seeds which grow in all directions at the same constant rate. Assume that the crystal
outgrowths from two or more seeds stop growing wherever they meet. After sufficient time,
each outgrowth represents its seed's Voronoi region (although outgrowths corresponding
to unbounded regions continue to grow forever). Taken together, the outgrowths represent
the Voronoi diagram of S. (It is enjoyable to imagine the process one dimension higher,
in which the seeds are fixed points in space. The three-dimensional Voronoi diagram that
emerges consists of bounded and unbounded polyhedral regions.)

For brevity, we will write VJ?(p) to stand for VI 1Z- (pi (p). For simplicity, we will
assume that no four points of S are cocircular. (Recall from section 6.6 that a set of points
is cocircular if there exists some circle on whose boundary the points lie, and that if such
a circle exists and is unique, it is called the circumcircle of the points.)

An edge of VV(S) shared by Voronoi regions VWZ(p) and VJZ(q) consists of those
points in the plane which are equidistant from p and q, and closer to p and q than to the
remaining points of S. A vertex v of VD(S) is the meeting point of three Voronoi regions
VWZ(p), V7Z(q), and V1Z(r). Being equidistant from p, q, and r, vertex v is the center of the
circumcircle determined by these three points. Moreover, since v is closer to p, q, and r than
to the remaining points of 5, the circumcircle is point free (no points of S lie in its interior).
It follows that the triangle Apqr is a Delaunay triangle of S. (Delaunay triangulations were
discussed in section 6.6.) To every vertex of the Voronoi diagram corresponds a triangle
of the Delaunay triangulation, and to every Voronoi region corresponds a vertex of the
Delaunay triangulation (a point of S). The Voronoi diagram and the Delaunay triangulation

Figure 8.5: The Voronoi diagram for a set of 80 points.

211

Chap. 8: Divide-and-Conquer Algorithms

are said to be dual to each other. This is illustrated in Figure 8.4c, where the two diagrams
are superimposed.

Program voronoiDiagram constructs the Voronoi diagram for array s of n points.
It returns the list of Voronoi regions that comprise the diagram:

Liot<Polygon*> *voronoiDiagram(Point st], int n, Polygon &box)

List<Polygon*> *regions = new List<Polygon*>;
for (int i = 0; i < n; i++) {

Point p = s[i];
s[i] = san-11;

regions->append(voronoiRegion(p, s, n-1, box));

s[i] =

return regions;

8.4.2 Analysis

Program voronoiRegion is dominated by the call to halfplaneIntersect and
so runs in O(n logn) time. Indeed, this is optimal. To see that the problem of finding
Voronoi regions has lower bound Q (n log n), consider the following linear-time reduction
from sorting. Given numbers xI, x2 , .. ., X, to be sorted, map these xi to points p(xi) on
the circumference of a circle such that the points p(x,) are ordered around the circle by
increasing xi. Then construct the Voronoi region of the circle's center point relative to these
n points. This Voronoi region is a convex n-gon, each edge of which separates the circle's
center from one of the points p(xi) on the circle's circumference. Finally, report the points
p(xi) in edge order around the Voronoi region.

Although Q (n log n) time is necessary to compute a Voronoi region relative to a set S
of n points, much more can be accomplished within the same time bound. Indeed, the
Chapter Notes cite an algorithm for finding the entire Voronoi diagram of S in O(n log n)
time. This outperforms program voronoiDiagram by a factor of n.

8.5 Merge Hull

In this section we present a divide-and-conquer algorithm for computing the convex hull
C7H(S) of a point set S. The idea is to partition S by an imaginary vertical line into two
equal-size sets SL and SR, and then recursively construct CH(SL) and CN(SR) and merge
them to form Ch (S). In the base case (ISI = 1), we simply return the 1-gon whose sole
vertex is contained in S: This point is its own convex hull.

The algorithm is asymptotically efficient because convex hulls C1-(SL) and C'l (SR)
can be merged efficiently, in O(jSI) time. To perform the merge, we remove the rightchain
of C7H(SL) and the left chain of CR (SR) and replace them by an upper bridge and a lower
bridge (Figure 8.6). Such bridges exist because CH(SL) and CH1(SR) are disjoint-they lie

212

Sec. 8.5 Merge Hull

Figure 8.6: Merging two disjoint convex hulls.

to either side of the imaginary vertical line. This merge step forms the crux of the algorithm,
and we shall discuss it shortly.

8.5.1 The Top-Level Program

Program mergeHul 1 is passed an array pts of n points and returns a polygon representing
their convex hull:

Polygon *mergeHull(Point pts[], int n)

{
Point **p = new (Point*)(n];

for (int i = 0; i < n; i++)

p[i] = &ptsli];

mergeSort(p, n, leftToRightCmp);

return m~ull(p, n);

Program mergeHull presorts the points from left to right so point sets can later be
partitioned quickly into left and right subsets.

Function mHull implements the recursive part of the algorithm:

Polygon *mHull(Point *pE], int n)

{
if (n == 1) {

Polygon *q = new Polygon;
q->insert(*pL0]);
return q;

} else {

int m = n / 2;
Polygon *L = mHull(p, m);

Polygon *R = mHull(p+m, n-m);

return mnerge(L, R);

)

I

213

Chap. 8: Divide-and-Conquer Algorithms

In the base case (n==1), function mHull returns a 1-gon. In the general case, it
partitions the point set into left and right point sets p [0 . .m-1] and p [m.. n-1] and
then constructs their convex hulls L and R and merges them.

8.5.2 Merging Two Convex Hulls

The function call merge (L, R), which combines the two convex hulls L and R, depends
on the notion of a bridge. Recall from section 5.3 the definition of supporting line: A line e
is a supporting line of convex polygon P if e passes through a vertex of P and the interior
of P lies entirely to one side of e. Line e is a bridge of convex polygons P and Q if e is a
supporting line of both P and Q. Line t is an upper bridge if both polygons lie below e,
and a lower bridge if they both lie above e.

To merge polygons L and R, we find the upper bridge which connects some vertex
11 E L to some vertex rl E R, and the lower bridge which connects vertices 12 E L and
r2 E R. Vertices 11 and 12 divide the boundary of polygon L into a left chain and a right
chain; similarly, vertices r1 and r2 divide the boundary of R into left and right chains. To
merge L and R into CH(S), we replace L's right chain and R's left chain by the upper and
lower bridges.

Function merge combines convex polygons L and R into their convex hull, which
it returns. Polygon L is assumed to lie to the left of polygon R. UPPER and LOWER are
enumeration values:

Polygon *merge(Polygon *L, Polygon *R)

Vertex *11, *rl, *12, *r2;

Vertex *vl = leastVertex(*L, rightToLeftcmp);

Vertex *vr = leastVertex(*R, leftToRightCmp);

bridge(L, R, 11, rl, UPPER);

L->setV(vl);

R->setV(vr);

bridge(L, R, 12, r2, LOWER);

L->setV(ll);

L->split(rl);

R->setV(r2);

delete R->split(12);

return R;

1

The calls to leastVertex find the rightmost vertex of L and the leftmost vertex of R.
Function leastVertex was defined in subsection 4.3.6.

The two split operations in function merge replace the right chain of L and the
left chain of R by the upper and lower bridges. Figure 8.7 illustrates how they do this.

Let us look at how function bridge finds the upper bridge of L and R. The function
finds a supporting line of L, then of R, and alternates in this manneruntil finding a supporting
line of both-that is, the upper bridge (Figure 8.8a). To accomplish this, function bridge
initially positions window vl over the rightmost vertex of L and window yr over the leftmost

214

Sec. 8.5 Merge Hull

Cr
120

'1

'22

Figure 8.7: Merging convex hulls L and R through two split operations.

(a) (b)

Figure 8.8: Finding the upper and lower bridge of two disjoint convex polygons.

vertex of R. Then it iteratively performs this block of instructions until neither vl nor vr
can be advanced:

1. Find the supporting line e lto R such that e, lies above R and passes through vertex vl.

2. Set yr equal to the vertex of R that f touches.

3. Find the supporting line t 2 to L such that e2 lies above L and passes through vertex vr.

4. Set vl equal to the vertex of L that £2 touches.

The lower bridge of polygons L and R is found similarly, where below replaces above.
Figure 8.8 shows the sequence of supporting lines discovered during the course of finding
the upper and lower bridge.

Function bridge finds a bridge between convex polygons L and R. The vertices
where the bridge touches L and R are passed back through reference parameters v1 and vr,
respectively. Parameter type specifies the type of bridge sought (UPPER or LOWER).

The function assumes that polygon L lies to the left of polygon R and that v1 is initially
positioned over some vertex of L's right chain, and vr over some vertex of R's left chain:

void bridge(Polygon *L, Polygon *R,

Vertex* &vl, Vertex* &vr, int type)
{

int sides[2] = { LEFT, RIGHT };
int indx = (type == UPPER) ? 0 : 1;

do (
v1 = L->vo;
vr = R->vo;

f,

r2

215

Chap. 8: Divide-and-Conquer Algorithms

supportingLine(L->pointo), R. sides[indx]);

supportingLine(R->pointo, L, sides[l-indx]);
} while ((vl != L->vo) || (vr != R->vo));

Function support ingLine was defined as part of the insertion hull algorithm of section
5.3.

8.5.3 Analysis

It is not hard to see that polygons L and R are merged in time proportional to I L I + I R I. To
find each bridge, function bridge alternately advances past vertices in L and R. Once a
vertex is passed, it is not visited again. Hence each of the two bridges is found in 0 (I L I + I RI)
time, so function merge's two calls to bridge take linear time. Moreover, merge spends
linear time in its call to leastVertex, and constant time for its other operations. Thus
merge runs in linear time.

It follows that the top-level call mHull (p, n) runs in T(n) time, where

T(n) = I 2T(2)+an if n > I
T b otherwise (n = 1)

This is solved by T(n) E O(n log n).
The algorithm is not dominated by the initial sorting of points since this too takes

0 (n log n) time. Hence merge hull has worst-case running time 0 (n log n).

8.6 Closest Points

In this section we consider the closest pair problem: Given a set S of n points, find two
points in S such that the distance separating them is less than or equal to the distance
separating any other pair of points. We will call the two points a closest pair in S. and the
distance separating them the closest pair distance in S. If n = I, the closest pair distance
in S equals infinity.

The brute-force solution to this problem is to compute the distance for every pair of
points while keeping track of the minimum distance (for brevity, we will use distance to
mean "distance that separates some pair of points"). Since there are "'(n 1) pairs, this runs2
in e(n 2) time. In this section we present a solution based on divide and conquer whose
running time is 0 (n log n).

The general case of our algorithm works as follows. Given point set S of size I SI > 1,
we partition S by an imaginary vertical line e into two sets SL and SR of approximately
equal size, such that the points in SL lie to the left of e and those of SR lie to the right of e.
Then we apply the algorithm recursively to SL and to SR, in order to find a closest pair in
SL and a closest pair in SR. Either one of these two pairs is also a closest pair in S, or else
every closest pair in S must straddle SL and SR (consist of one point in SL and the other
in SR). It is the goal of the merge stage to determine which is the case.

Let AL and 8R denote the closest pair distances in SL and SR, respectively, and let
8 = min(L, AR). If every closest pair in S straddles SL and SR, then the distance separating

216

Sec. 8.6 Closest Points

each such pair of points must be strictly less than S. Thus we can restrict our attention to
the points that lie within the vertical strip of width 26 centered along line e. This is because
any point of SL that lies outside (to the left of) this strip is at least distance a from line £,
hence at least this far from any point of SR. Similarly, any point of SR that lies outside this
strip need not be considered (see Figure 8.9a).

To process the points in the strip, we maintain a current closest pair distance D,
initialized to 6. We update D whenever we discover within the strip a pair of points whose
distance is strictly less than D. Interestingly, it is not necessary to compute the distance for
every pair of points in the strip. For if the vertical distance between two points exceeds D,
the distance between them must also exceed D.

Let us relabel the points in the strip as pi, P2. Pm by increasing y-coordinates.
For each pi, we compute the distance separating pi and each pj for j = i + I, i + I, . . ., k,
until either (1) k = m or (2) the y-coordinates of pi and pk+1 differ by D or greater. In this
manner, only those pairs of points whose vertical distance is less than D are considered.

8.6.1 The Top-Level Program

Program closestPoints is passed an array s of n points. It returns the closest pair
distance of s and passes back some closest pair through reference parameter c:

double closestPoints(Point s[], int n, Edge &c)

Point **x = new (Point*)[n{,

Point **y = new (Point*)[n];

for (int i = 0; i < n; i++)

x[i] = y~i] =&si];

mergeSort(x, n, leftToRightCnp);

mergeSort(y, n, bottomToTopCmp);

return cPoints(x, y, n, c);

}

I l

0

a - 2* -1
* I 18R

l I

I l.

(a) (b)

Figure 8.9: (a) The strip of width 28a where a = min(JL.
3

R). (b) No more than eight points of S lie
in a 28 x 6 band (here two points-one from SL and one from SR-coincide at point a, and two others
at point b).

217

Chap. 8: Divide-and-Conquer Algorithms

Program closestPoints presorts the points by x-coordinates to expedite the
partitioning of point sets, and by y-coordinates to expedite the processing of points within
vertical strips. Sorting by increasing y-coordinates is done using the following comparison
function:

int bottomToTopCmp(Point *a, Point *b)

if ((a->y<b->y) || ((a->y--=b->y) && (a->x<b->x)))

return -1;

else if ((a->y>b->y) || ((a->y==b->y) && (a->x>b->x)))

return 1;

return 0;

Function cPoints is passed array x of n points sorted by x-coordinates, and array y
of the same points sorted by y-coordinates. It returns the closest pair distance for the n
points and passes back some closest pair through reference parameter c:

double cPoints(Point *xt], Point *y[], int n, Edge &c)

{
if (n == 1)

return DBL-MAX;

else (

int m = n / 2;
Point **yL = new (Point*)Cm];

Point **yR = new (Point*)[n-m];

splitY(y, n, xEm], yL, yR);

Edge a, b;

double deltaL = cPoints(x, yL, m, a);
double deltaR = cPoints(x+m, yR, n-m, b);

delete yL;

delete yR;

double delta;

if (deltaL < deltaR) {

delta = deltaL;

c = a;

) else {
delta = deltaR;
c = b;

return checkStrip(y, n, x[m], delta, c);

The vertical dividing line f passes through point x Im, the median of the point set
with respect to x-coordinates. Function splitY partitions the point set with respect to
line e, in preparation for the two recursive calls to function cPoints.

218

Sec. 8.6 Closest Points

8.6.2 Processing the Points in the Strip

Function splitY partitions array y into two arrays yL and yR. Point p is the dividing
point: After the operation, array yL contains those points of y which are less than p-loosely
speaking, they lie to the left of point p-sorted by y-coordinates; and array yR contains
those points of y which are greater than or equal to p, also sorted by y-coordinates. The
function performs the reverse of the merge operation of merge sort:

void splitY(Point *y[], int n, Point *p,
Point *yLE], Point *yRE])

(
int i, lindx, rindx;
i = lindx = rindx = 0;
while (i < n)

if (*yti] < *p)
yL[lindx++] = Hi++];

else
yR[rindx++] = y[i++];

}

Function checkStrip checks those points of array y that lie within the strip of
width 2 *delta centered along the vertical line passing through point p. If the best pair
it finds within the strip is separated by distance less than delta, the function returns this
distance and passes back the pair of points through reference parameter c. Otherwise the
function returns delta without modifying c:

double checkstrip(Point *yE], int n, Point *p,

double delta, Edge &c)

{
int i, striplen;
Point As = new Pointln];
for (i = striplen = 0; i < n; i++)

if ((p->x - delta < yli]->x) && (yEil->x < p->x + delta))

s8striplen++] = *yli];

for (i = 0; i < striplen; i++)
for (nt j = i+l; j < striplen; j++) {

if (s[j].y - s~i].y > delta)
break;

if ((sti] - s[j]).length() < delta)

delta = (sti] - slji.lengtho;
c = Edge(s[i], s~j]);

delete s;
return delta;

}

219

Chap. 8: Divide-and-Conquer Algorithms

8.6.3 Analysis

We will show that function cPoints runs in 0 (n logn) time when called with n points.
Since the presorting performed by program closestPoints also takes O(n log n) time,
it will follow that the program as a whole runs in 0(n logn) time.

The running time T(n) of cPoints is expressed by the familiar recurrence T(n) =

2T() + an, hence T(n) E O(n log n). The term an represents the time required to merge
results, which is dominated by the calls to splitY and checkS trip. Function splitY
clearly runs in linear time.

Consider function checkStrip. The body of this function consists of two succes-
sive outer for loops. The first for loop accumulates in array s the points that lie within
the strip, and clearly runs in 0 (n) time. The second outer for loop performs one iteration
for each point in the strip, for a total of no more than n iterations. How much time is spent
executing the inner for loop? Consider the strip in the vicinity of point s1 -specifically,
the 23 x 3 band extending from s1 .y up to s1 .y + 3 (Figure 8.9b). This band is divided by
line e into a left square BL and a right square BR, each of size 3 x S. Since no two points to
the left of e are closer to each other than 3, BL can contain no more than four points of S.
Similarly, BR also can contain no more than four points of S. Hence the band contains at
most eight points of S, one of which is point s, itself. Since at most seven points in the
strip lie within vertical distance 3 above si, the number of iterations performed by the inner
for loop is bounded above by a constant. It follows that the second outer for loop runs
in linear time, and hence so does function checkStrip.

The algorithm as a whole works its magic in the vicinity of the dividing line e. By
recursing first, before considering pairs of points that straddle e, it obtains an upper bound S
on the closest pair distance. It then uses 3 to bound above by 0(n) the number of pairs that
straddle e, whose distance must be computed.

8.7 Polygon Triangulation

In this section we use divide and conquer to triangulate an arbitrary polygon P. The idea
is first to split P along some chord and then recursively triangulate the two subpolygons
which result. The base case occurs when the polygon to be triangulated is a triangle. The
algorithm is less efficient, but much easier to program, than the method of section 7.4, which
splits the polygon into monotone pieces and triangulates each piece in turn. The algorithm
is based on a straightforward proof of the following theorem:

Theorem 7 (Polygon Triangulation Theorem) An n-gon can be triangulated by n - 3
chords into n - 2 triangles.

You might wish to get a feel for the theorem by triangulating some polygons of your
own design. Convex polygons are the easiestto triangulate: Choose any one of the polygon's
n vertices and then connect the vertex with a chord to each of the n -3 nonadjacent vertices,
thereby producing n - 2 triangles. A second method for triangulating a convex polygon
relies on the fact that every diagonal of a convex polygon is a chord: Split the polygon along
any diagonal and then recursively triangulate the two convex subpolygons that result.

220

Sec. 8.7 Polygon Triangulation

Triangulating nonconvex polygons is not as easy; indeed, the assertion that every
polygon can be triangulated is not so obvious when nonconvex polygons are considered.
We will prove the triangulation theorem both to convince ourselves of the theorem's truth
and to motivate the triangulation algorithm to follow.

The proof of the theorem is by induction on n, the number of polygon sides. The
theorem is trivially true for n = 3, the basis for the induction. So let P be a polygon
with n > 4 sides, and suppose (as the induction hypothesis) that the theorem holds for all
polygons with fewer than n sides. We seek a chord of P.

Let b be any convex vertex, and let a and c be its neighbors. Two cases can occur
(Figure 8.10). In the first case, diagonal ac is a chord of P. Let P' be the n - 1-sided
polygon that results from splitting off triangle Aabc. By the induction hypothesis, there
exists a set of n -4 chords that partitions P' into n -3 triangles. Adding to this chord 2 and
triangle Aabc, we are left with a set of n -3 chords which partition the original polygon P
into n - 2 triangles.

In the second case, diagonal 2? is not a chord of P, implying that the interior of
triangle Aabc must contain at least one vertex of P. Of those vertices inside Aabc, let d
by one furthest from the line ca) . We will call d an intruding vertex. By our choice of
vertex d, the diagonal bd must lie in P-for were some polygon edge to intrude between b

and d, at least one of its endpoints must lie inside Aabc at greater distance from *Tha' than d,
contradicting our choice of d. Hence bd must be a chord. Now chord bd partitions P into
two smaller polygons P, and P2 with n 1 and n2 sides, respectively. Since n X+n2 = n +2 and
n 1, n2 > 3, it follows that n 1 and n2 are each less than n. Thus we can apply the induction
hypothesis to P, and to P2. Counting chords yields a total of (n I-3) + (n2 -3) + I = n -3
chords, and counting triangles a total of (n1 - 2) + (n2 - 2) = n - 2 triangles. The
triangulation theorem is proved.

8.7.1 The Top-Level Program

This proof leads directly to the following program for triangulating a polygon. The program
is passed a polygon p and returns a list of triangles representing its triangulation. The
triangles are accumulated in the list triangles:

List<Polygon*> *triangulate(Polygon &p)

List<Polygon*> *trianzgles = new List<Polygon*i;

if (p.size() == 3)

d

Figure 8.10: The two cases covered in the proof of the triangulation theorem.

221

Chap. 8: Divide-and-Conquer Algorithms

triangles->append(&p);

else {

findConvexVertex(p);

Vertex *d = findIntrudingvertex(p);

if (d =- NULL) { // no intruding vertex exists

Vertex *c = p.neighbor(CLOCKWISE);

p.advance(COUNTERCLOCKWISE);

Polygon *q = p.split(c);

triangles->append(triangulate(p));

triangles->append(q);

} else { // d is the intruding vertex

Polygon *q = p.split(d);

triangles->append(triangulate(*q));

triangles->append(triangulate(p));

}
}
return triangles;

8.7.2 Finding an Intruding Vertex

The program uses the functions findConvexVertex and findIntrudingVertex.
When handed polygon p, function findConvexVertex moves p's window over some
convex vertex. It does this by sliding windows a, b, and c, positioned over three successive
vertices, clockwise around the polygon until detecting a right turn at vertex b:

void findConvexVertex(Polygon &p)

Vertex *a = p.neighbor(COUNTER-CLOCKWISE);

Vertex *b = p.vo;

Vertex *c = p.neighbor(CLOCKWISE);

while (c->classify(*a, *b) != RIGHT) (
a = b;

b = p.advance(CLOCKWISE);

c = p.neighbor(CLOCKWISE);

Function findIntrudingVertex is passed polygon p, whose current vertex is
assumed to be convex. It returns a pointer to an intruding vertex if one exists, and NULL
otherwise:

Vertex *findlntrudingvertex(Polygon &p)

{
Vertex *a = p.neighbor(COUNTERCLOCKWISE);

Vertex *b = p.vo;

Vertex *c = p.advance(CLOCKWISE);

Vertex *d = NULL; // best candidate so far

222

Sec. 8.7 Polygon Triangulation

double bestD = -1.0; // distance to best candidate
Edge ca(c->point0, a->point0);

Vertex *v = p&advanC6(CLOCKWISE);
while (v I = a) {

if (pointInTriangle(*v, *a, *b, *c)) {

double dist = v->distance(ca);

if (dist > best) f

d = v;
bestD = dist;

}

v = p.advance(CLOCKWISE);

}
p. setV (b);

return d;

Function pointInTriangle tests for point-triangle inclusion: The function re-
turns TRUE if point p lies in the triangle with vertices a, b, and c, and it returns FALSE
otherwise:

bool pointInTriangle(Point p, Point a, Point b, Point c)

return ((p.classify(a, b) != LEFT) &&

(p.classify(b, c) != LEFT) &&

(p.classify(c, a) != LEFT));

Observe that the triangulation produced by the program triangulate depends on
both the polygon it is passed as well as that polygon's initial current vertex. Figure 8.11
depicts three different triangulations of the same polygon obtained by varying its initial
current vertex. You might wish to compare these triangulations to that shown in Figure 7.13.

8.7.3 Analysis

When applied to an n-gon, findConvexVertex and findIntrudingVertex each
take 0(n) time. If no intruding vertex is found, a single triangle is extracted from the n-gon

Figure 8.11: Three triangulations produced by program triangulate.

223

Chap. 8: Divide-and-Conquer Algorithms

and the resulting n - I-gon is recursively triangulated. In the worst case, an intruding vertex
is never found as the program proceeds, and the size of the polygon is reduced by one in each
successive stage. This leads to a worst-case running time of T(n) = n + (n - 1) + * * + 1,
which is 0(n 2). This worst-case performance is achieved when triangulating a convex
polygon.

The program is likely to run fastest if intruding vertices are found, since the problem
then reduces to two subproblems potentially of roughly equal size. Since only reflex vertices
can intrude, the program potentially runs fastest if the polygon possesses many reflex
vertices. However, it is not hard to devise a polygon possessing Q (n) reflex vertices whose
triangulation still requires (n2) time-although intruding vertices exist, the algorithm
fails to find them or finds only "bad" ones resulting in subproblems of very different size,
one large and the other small.

8.8 Chapter Notes

An optimal 0(n)-time algorithm for computing the kernel of a polygon was devised by
Lee and Preparata [53]; the algorithm also appears in [67]. While traversing the polygon
boundary, their algorithm incrementally constructs the intersection of the half-planes de-
termined by the polygon's edges. It takes advantage of the polygon's structure to achieve
the linear-time performance.

Divide and conquer can be used to construct the Voronoi diagram of a point set S
in 0(n logn) time, where ISI = n. The idea is to partition S by an imaginary vertical
line into point sets SL and SR and then recursively construct the Voronoi diagrams VD(SL)
and VD(SR) and merge these to form VD(SR). It is the linear-time merge that makes
the algorithm both interesting and efficient [51, 66, 74]. To support the merge, Voronoi
diagrams are represented by a data structure more sophisticated than the simple list of
polygons used by our program voronoiDiagram.

The illustration of Voronoi diagrams based on crystallography is noted in [61], which
in turn cites [72].

Another divide-and-conquer algorithm for constructing the convex hull of a planar
point set S works like this: S is first partitioned into two sets SI and S2 -the partition
is arbitrary, except that SI and 52 are of roughly equal size. Then convex hulls C1H(S1)
and CH(S2) are constructed recursively and merged to form CHi(S) [67]. Since convex
hulls C7R(S 1) and CH(S2) generally intersect, the merge step is quite different from the
one described in this chapter. Yet because this merge step too runs in linear time, the
algorithm-like the one in this chapter-runs in O(n logn) time.

The solution to the closest pair problem presented in this chapter first appeared in
[74]. The solution was extended to d-dimensional space in [10], where it was shown that
the problem can be solved in O (n log n) time, where n equals the number of points. These
solutions also appear in [67].

The proof on which the triangulation algorithm is based is from [60]. Chazelle
[18] presents a linear-time method for finding good chords [it requires 0(n logn) time for
preprocessing]. If polygon P is subdivided by such a chord, the two subpolygons that
result have size at least 1PI. This chapter's triangulation algorithm runs in O(n logn) time
if Chazelle's chord finding method replaces our method for finding intruding vertices.

224

ec8.9 Exercises

1. In proving the polygon triangulation theorem, we assumed that every polygon pos-
sesses at least some convex vertex. Show that this is the case.

2. Show that any polygon can be formed by combining suitably chosen half-planes by
intersection and union operations.

3. Define a new class for representing bounded and unbounded two-dimensional convex
polytopes. What are the advantages of representing convex polytopes using this class
instead of class Polygon, as in this book?

4. The farthest pair problem is defined as follows: Given a point set S in the plane, find
some pair whose distance is greater than or equal to the distance between all other
pairs. Show that the farthest pair distance is realized by two extreme points [vertices
of C7-(S)].

5. Given planar point set S of n points, devise an 0 (n log n) time algorithm to solve
the farthest pair problem in S. [Hint: First construct the convex hull CH(S). Next
maintain two windows over antipodal vertices of S, moving them around the polygon
until all antipodal pairs have been considered. Two vertices of a convex polygon are
antipodal if they admit parallel supporting lines between which the polygon lies.]

6. Devise an n-gon possessing Q (n) reflex vertices, for which the triangulation algorithm
of section 8.7 runs in Q (n2) time.

7. Suppose we had defined intruding vertex like this: Given convex vertex b and neigh-
bors a and c, vertex d intrudes if (1) d lies inside triangle Labc and (2) d lies closer to
vertex b than does any other vertex lying inside Aabc. Under this revised definition,
would the triangulation algorithm be correct? Prove your answer.

8. Devise an O(n log n)-time divide-and-conquer algorithm to report all maxima in a
point set. (The maxima of a point set was defined in section 7.5.)

9. Design a divide-and-conquer algorithm to report all intersection points given a set
of n horizontal and vertical line segments in the plane. The algorithm should run in
0(n log n + r) time, where r intersections are reported.

10. Devise an incremental algorithm for computing the kernel of an n-gon in 0(n) time.

11. Let S be a point set in the plane.

(a) Show that if p E S and q is the closest point in S to p, then V1Z(p) and V1Z(q)
share an edge in Voronoi diagram VD(S).

(b) Given VD(S), design an algorithm to solve the closest pair problem in S. What
is the running time of your algorithm?

12. Design a plane-sweep algorithm that solves the closest pair problem. (Hint: When
the sweepline reaches a point p, determine whether there exists some point to the left
of the sweepline with which p forms a closest pair.)

Sec. 8.9 Exercises 225

9
Spatial Subdivision Methods

A spatial subdivision is a decomposition of some spatial domain into smaller pieces. Known
also as partitions or simply subdivisions, they permit a problem involving the domain, or
geometric objects lying in the domain, to be reduced to simpler or smaller subproblems.
For instance, the area of a triangulated polygon can be computed easily by summing the
areas of its triangles.

Spatial subdivisions vary widely with respect to shape and structure. Hierarchical
subdivisions, which are constructed by recursively partitioning the domain into smaller and
smaller pieces, are among the most powerful since they readily support recursive methods.
A familiar example in one dimension is the binary search tree over a set of real numbers.
Each level of the tree corresponds to a partition of the real number line: the root level to
the unpartitioned real number line, and each remaining level to a refinement of the partition
corresponding to the next-higher level. The tree's lowest level corresponds to the finest
subdivision of all (see Figure 9.1).

In this chapter we will examine three hierarchical subdivisions. Two of them-the
quadtree and the two-dimensional tree-will be applied to the planar range searching
problem. We will also attack this problem using a grid, a nonhierarchical subdivision of
the domain into small squares.

The last hierarchical subdivision we will look at is the binary space partition tree,
which we will use to solve a practical problem in computer graphics: Given a static scene of
triangles in space and a moving viewpoint, compute a visibility ordering for the triangles for
each successive position of the viewpoint. The solution we present can be used to generate
successive images in near real time, even for scenes of considerable complexity.

226

Sec. 9.1 The Range Searching Problem

6

4 6 8
I I I

2 4 5 6 7 8 9
< I I I I i I I I

Figure 9.1: A binary search tree represents a hierarchical subdivision of the real number line.

9.1 The Range Searching Problem

Given a set of points, we sometimes wish to determine which of them lie within a given
region. For instance, we might ask which cities lie between given lines of longitude and
latitude. Or we might ask for the name of every star that lies within some given distance
from some given star or point in space. Such questions are called region queries.

If the points lie in the plane and the region is an axes-parallel rectangle, the region
query is called a two-dimensional range query, and the rectangle is called a range. Figure 9.2
illustrates a range query in the plane. To solve the query, we use the fact that a point is
contained in a range if and only if the point simultaneously lies within the range's x-extent
and its y-extent. In the figure, the points e, f, g, and h lie in the range's x-extent, but of
these only f and h also lie in its y-extent.

The strategy is easy to implement. Function pointInRectangle returns TRUE
if and only if point p lies in rectangle R:

bool pointinRctangle(Point &p, Rectanale &R)

return ((R.sw.x <= p.x) && (p.x <= R.ne.x) &&

(R.Sm.y <= p.y) && (p.y <= R.ne.y));

Range queries frequently arise in settings which are not intrinsically geometrical,
but which can be treated as such. In these cases, the components of the "points" represent

go
a- c

eo

be El]

b-o

Figure 9.2: A planar range query.

227

Chap. 9: Spatial Subdivision Methods

quantifiable attributes. For example, we might ask for the names of all stars whose brightness
and temperature fall within given intervals; the range is an axes-parallel rectangle in the
brightness-temperature plane. Database systems support queries of this sort, in which the
points are records and their components are fields.

So far we have focused on the range query as a "one-shot" problem: Given a point
set S and a range R, report the points of S that lie in R. However, in many situations it is
necessary to perform a series of range queries for some fixed point set S. In such cases it is
generally better first to organize the points of S in a data structure which supports the series
of range queries to follow, rather than answer each query independently. This "multishot"
version is known as the range searching problem. The two-dimensional range searching
problem is specified by a static set S of points in the plane. The problem is to organize the
points of S into a spatial data structure which efficiently supports repeated range queries.
Spatial data structures are typically used to support a series of operations; in other words,
they are typically used to implement geometrical abstract data types (ADTs). Thus the cost
of their construction, which may be considerable, can be amortized over many operations.

The naive approach to range searching is to organize the points S in a list. Then,
to query with range R, we test every point in the list for inclusion in R. This takes time
proportional to I SI, the size of S. which is inefficient when the number of points reported
is small compared to 5I. The problem is that no attempt is made to confine the search to
the vicinity of the range, so even points far from the range are considered.

In the next three sections, we present more efficient solutions which employ spatial
data structures to localize search. To simplify our presentation, we will assume that the
points of S lie in the positive quadrant of the plane, so they can be enclosed by a square
domain D whose southwest (lower-left) corner coincides with the origin. It is actually
domain D which shall be subdivided, rather than the entire plane.

Although we will concentrate on the range searching problem, it is important to realize
that the spatial data structures we will examine can also be used to solve many other kinds
of problems. The exercises at the end of this chapter will address some of these.

9.2 The Grid Method

9.2.1 Representation

The simplest subdivision of square domain D divides it into a grid of small squares or cells.
To initialize the grid for range searching in point set S, we "drop" each point of S into its
appropriate cell-for each cell we build a list of the points that lie in the cell (Figure 9.3).
Then, to query with range R, we consider only those cells which intersect R, and for each
such cell we test each of its points for inclusion in R.

An m x m grid is represented by a class containing an m x m array of lists, one list
per cell. Each list contains those points of S that lie in the corresponding cell:

class Grid {

private:

int m;
double cellSize;

// nbr of cells along side of domain

// length of a cell side

228

Sec. 9.2 The Grid Method 229

*-

* 0

* 0 0
0

0

0
0

0 9

0 4

S.

0

b

-0

0

-

I

U- 0

Figure 9.3: A grid.

List<Point*> ***g; mxm grid

void -Grid(double domainSize, Point s], int n);

public:

Grid(double domainSize, Point sl], int n, int m = 10);

Grid(double domainSize, Point st], int a, double N =

1.0);
-Grid(void);

List<Point*> *rangeQuery(Rectangle &range);

friend class Quadtree;

};

9.2.2 Constructors and Destructors

The first constructor is passed an array s of n points, the length domainSize of a side of
square domain D, and the grid size _m:

Grid::Grid(double domainSize, Point sl], int n, int -m)

m(-m)
((M

-Grid(domainSize, a, n);

}

The constructor's real work is performed by private member function _Grid:

void Grid::-Grid(double domainSize, Point a[], int n)

cellSize = domainSize / m;

g = new (List<Point*>**)[m];
for (int i = 0; i < m; i++)

gli] = new (List<Point*>*)mn];
for (int j = 0; j < m; j++)

gli][j] = new List<Point*>;

for (i = 0; i < n; i+.) t

int a = int(sEi].x / cellSize);
int b = int(s~il.y / cellSize);

.- -

Chap. 9: Spatial Subdivision Methods

g[a] [bJ->append(new Point(sti]));

}

The grid is stored in the m x m array g of pointer-to-lists. We implement g as an
array of arrays so we can use standard indexing notation. Thus g [i I [j] points to the list
at row i, column j of the grid. After initializing a new list for each cell of the grid, the
constructor loops through the n points, appending each to its proper list.

The grid size m affects efficiency. If m is chosen too large, then the cells will be
so small that many will be devoid of points. If m is chosen too small, then the cells will
be so large that many will be overfull, containing an excessive number of points. One
way to control the size of the grid is to specify a cell occupancy target M, a real number
representing the desired average number of points per cell. Where set S contains n points,
we have M = ;. To express m as a function of M, we rewrite this as m = rea/ This
leads us to the second constructor Grid, which, when passed a cell occupancy target M,
uses this formula to derive grid size:

Grid::Grid(double domainSize, Point sti, int n, double M)

m(int(ceil(sqrt(n / M))))

l
_Grid(domainSize, s, n);

}

The destructor -Grid deletes the points in the grid, the lists that contain them, and
the arrays that make up the grid itself:

Grid::Grid(void)

{
for fint i = 0; i < M; i++) (

for (int j = 0; j < m; j++) {

gti3[j]->last0;

while (g[i11j]->length() > 0)

delete gti]Cj]->removeo;

delete gtijtj];

}
delete gti]

}
delete g;

}

9.2.3 Performing Range Queries

To query with range R, member function rangeQuery converts the coordinates of R's
corners into integer grid indices, which it uses to delimit the search along the grid's rows and
columns. Forinstance, thex-extentofRextendsfromcolumn int (R. sw. x/cellSize)
of the grid through column int(R.ne.x/cellSize). For each cell that function
rangeQuery visits, the function tests each point in the cell's list for inclusion in range R.

230

The points to be reported are accumulated in list result:

List<Point*> *Grid::rangeQuery(Rectangle &R)

{
List<Point*> *result - new List<Point*>;
int ilimit = int(R.Ue.x / cellSize);

int jlilit = int(R.ne.y / cellSize);
for (int i * int(R.sw.x/cellSize); i <= limit; i++)

for (int j - int(R.sw.y/cellSize); j <= jlimit; j++) {
List<Point*> *pts = gti)[j];

for (pts->firsto; !pts->isHeado; pts->nexto) C
Point *p = pts->val();

if (pointInRectangle(*p, R))

result->append(p);

}
}

return result;

}

9.2.4 Analysis

The constructors build an m x m grid over n points in 0(m 2 + n) time. Moreover, a single
range query takes O(m 2 + n) time in the worst case. Indeed, it is not difficult to devise a
range query which examines all m2 cells and all n points without reporting a single point.

Nonetheless, range queries are much more efficient than this on average: A range
query which reports r points runs in O(r) time on average when the points are uniformly
distributed. To see why, observe that the average-case running time is proportional to the
expected number of cells examined plus the expected number of points examined. Each
examined cell yields, on average, a small constant number of those points reported; hence
the expected number of cells examined is 0 (r). Furthermore, on average, a fixed fraction of
the points in an examined cell are reported; hence the expected number of points examined
is also O(r).

Grids perform less well if the points of S are nonuniformly distributed. If too many
cells are empty, the expected number of cells examined during a range query is no longer
bounded above by O(r). This is because many empty cells may need to be examined, yet
they will not contribute any reported points. Alternatively, if too many cells are overfull
and the range under consideration happens to be long and thin, slipping as it were between
points of S, then the expected number of points examined is not bounded above by 0(r).
For if cells contain arbitrarily many points of S, it is no longer to be expected that a fixed
fraction of the points in each examined cell are reported.

9.3 Quadtrees

Grids are relatively inefficient when the points of S are distributed nonuniformly, dense in
some regions of domain D and scarce in others. In such cases, no choice of grid size can
guarantee the ideal-that every cell contains a small number of points of S. The quadtree

Sec. 9.3 Quadtrees 231

Chap. 9: Spatial Subdivision Methods

subdivision solves this difficulty by varying cell size in response to the distribution of
points, providing a subdivision that is fine where points are dense and coarse where points
are scarce.

A quadtree subdivision is obtained by recursively subdividing square domain D into
quadrants. A given quadrant is subdivided by two cut lines, one vertical and the other
horizontal, which cross at the quadrant's center, thereby dividing it into four equal-size
square subquadrants. In Figure 9.4a, domain D has been subdivided into northeast, south-
east, southwest, and northwest subquadrants. The northeast and southwest subquadrants,
quadrants in their own right, have been subdivided further.

We represent a quadtree subdivision with a quadtree, a four-way branching tree (Fig-
ure 9.4b). Each node n of the quadtree is associated with a region 14(n), which the node
is said to span: The root node spans the entire square domain D, and each nonroot node
spans one of the four subquadrants of its parent's region. The internal nodes of the quadtree
span quadrants that have been subdivided further, and the external nodes span quadrants
that have not been subdivided further. Accordingly, we refer to a quadrant as internal if it
has been subdivided further, and external if it has not.

In Figure 9.4b, the branches which descend from each internal node of the quadtree
are labeled 0, 1, 2, and 3, corresponding to the node's northeast, southeast, southwest, and
northwest subquadrants, respectively. The branch labels can be used in a simple scheme for
labeling the nodes of the quadtree; hence also the quadrants of the corresponding quadtree
subdivision. The label of the root node is 0. The label of a nonroot node that is entered
by a branch labeled i is obtained by appending i to the label of its parent. Equivalently, to
obtain the label of a node, we start with 0 and then successively append the branch labels
along the unique path which descends from the root down to the node. The labels of some
of the quadrants in Figure 9.4a are shown.

What is the proper depth of a quadtree? More to the point, while building a quadtree,
how do we control the process of subdividing quadrants? The quadtree is based on the
idea of adaptive subdivision-quadrants are subdivided until some criterion is met. For
the range searching problem, we are interested in controlling the number of points of S
which fall in.a quadrant. Specifically, we employ this subdivision criterion: A quadrant is
subdivided further only if it contains more than M points of S. Here integer M, the cell
occupancy target, is supplied when the quadtree is constructed.

If the quadtrees we build are too deep, range queries will be costly. Unfortunately,
our subdivision criterion alone is not enough to guarantee reasonably shallow quadtrees.

3

(a) (b)

Figure 9.4: (a) A quadtree subdivision and (b) its quadtree representation.

232

Sec. 9.3 Quadtrees

For if M + I points of S are clustered arbitrarily close together, the quadtree that results
must be arbitrarily deep in order to separate the points. To limit the depth of the quadtree,
we specify a cutoff depth D below which the quadtree is not permitted to grow.

The cell occupancy target M and the cutoff depth D are used together to produce
quadtrees satisfying the following properties: For each external node n,

1. n lies no deeper than D;

2. if the depth of n is strictly less than D, then n spans no more than M points of S; and

3. if n is not the root, n's parent spans more than M points of S.

These properties jointly determine a unique quadtree for any given point set S contained
in domain D. Informally, they say that we are to continue subdividing quadrants until they
contain no more than M points or depth D is reached. Figure 9.5 is an example.

9.3.1 Representation

Let us implement quadtrees for solving the range searching problem. Class Quadtree is
defined like this:

class Quadtree {

private:

QuadtreeNode *root;

Rectangle domain;

QuadtreeNode *buildQuadtree(Grid &G, int M, int D, int level,

int, int, int, int);

public:

Quadtree(Grid &G, int M, int D);

-Quadtreeo0;

List<Point*> *rangeQuery(Rectangle &range);

The nodes of a quadtree are represented by QuadtreeNode objects:

class QuadtreeNode {

private:

QuadtreeNode *child(4];

0

0 0

0
0

* *. 0

0 0 0

* 0 0

Figure 9.5: (a) A set of 16 points and (b) a quadtree over the points, where M = 2 and D = 3.

233

Chap. 9: Spatial Subdivision Methods

List<Point*> *pts; // points of S if node is external

// NULL if node is internal

int size; // nbr of points of S spanned by node

List<Point*> *rangeQuery(Rectangle &range,
Rectangle &quadrant);

Rectangle quadrant(Rectangle&, int);

int isExternal();

public:

QuadtreeNode(List<Point*>*);

QuadtreeNode(void);

-QuadtreeNode(void);

friend class Quadtree;

If this quadtree node is external, data member pts is the list of points the node spans
(i.e., the points which lie in the quadrant spanned by the node). Alternatively, if this node is
internal, then data member child points to its four children, and pts equals NULL. Note
that there is no need to store points in internal nodes since the same points will be stored in
the node's descendants-every internal node spans the quadrants of its descendants.

9.3.2 Constructors and Destructors

The constructor Quadtree is passed a grid G, a cell occupancy target M, and a cutoff
depth D. It constructs a quadtree over the points of grid G subject to the constraints implied
by M and D, and it removes the points from grid G in the process. We assume that the number
of cells along each side of grid G is a power of 2; that is, G .m = 2k for some integer k.

Quadtree::Quadtree(Grid &G, int N, int D)

{
root = buildQuadtree(G, M, D, 0, 0, G.m-l, 0, G.m-1);
domain = Rectangle(Point(0,0),

Point(G.m*G.cellSize, G.m*G.cellSize));

Member function Quadtree: :buildQuadtree builds a quadtree over grid G
from the bottom up, from the level of individual grid cells up to level zero where domain D
is viewed as a single cell. At the lowest level-level k, where the grid is 2k x 2k-each
cell of the grid is represented by its own one-node quadtree. The node contains a list of
those points of S that lie in the cell. To construct the quadtrees whose roots lie at level e,
we combine groups of four quadtrees whose roots lie at next-lower level e + 1. When we
reach level 0, the topmost level, we will have constructed a single quadtree which spans the
entire domain D. Each of the quadtree's external nodes will contain a list of those points
of S it spans.

Given four quadtree with roots no, nI, n2 , and n3 at level e + 1, we need a way to
combine them into a single quadtree with root n at level e. We do this with one of these
two actions:

234

Sec. 9.3 Quadtrees 235

* Link quadtrees to common parent: Make no, n1, n2, and n3 the children of node n.

• Merge quadtrees into single node: Combine the points of S spanned by no, n1, n2, and
n3 into a single list of points, and associate this list with node n. Then delete nodes no,
n 1, n2 , and n3.

How do we decide which of the two actions to perform? The goal is to build a quadtree
satisfying the three properties noted earlier. To do this, we merge quadtrees no, n 1, n2 , and
n3 into a single node n if either (1) the region spanned by node n contains no more than M
points of S, or (2) node n lies at level D or greater. Otherwise we link no, n 1, n2 , and n3 to
node n.

The process of constructing a quadtree over a grid can be viewed this way: Starting
with the finest possible quadtree subdivision of grid G wherein each grid cell is a separate
quadrant, we proceed, level by level, to merge groups of four quadrants whenever the cell
occupancy target M or the cutoff depth D makes this necessary. Figure 9.6 illustrates the
process. The quadtree in the figure is finest at level 4, when processing begins. Level 3
results from merging all groups of four quadrants-since the cutoff depth is 3, all nodes at
level 4 must be merged. The remaining levels (2, 1, and 0) result from merging only those
groups of four quadrants which, combined, contain no more than M points of S.

Memberfunction Quadtree: :buildQuadtree ispassedgridG, cell occupancy
target M, and cutoff depth D. It constructs a quadtree over the subgrid G [imin. . imax,
jmin. .jmax] and returns its root node. Parameter level indicates the level at which
the root node occurs within the top-level quadtree.

-I

2

i

.S

I . I I

X1 . I I .

I i I I
.. l LL I

.1

-1

7 S

-vW

0
iS

S

T-

0

a

S
-A 7-

: -

.a

-U-

4V

0

1-T]
0 o

0

0

0

S

0

Level 4 Level 3 Level 2

Level 1 Level o

Figure 9.6: Building a quadtree over a grid. Here M = 2 and D = 3.

i

r

- - --

Chap. 9: Spatial Subdivision Methods

QuadtreeNode *Quadtree::buildQuadtree(Grid &G,int K, int D,

int level, int imin, int imax, int imin, int imax)

{
if (imin == imax) I

QuadtreeNode *q = new QuadtreeNode(G.gtimin3EjminD);

G.gtimin][jmin] = new List<Point*>;

return q;

else {

QuadtreeNode *p = new QuadtreeNode;

int imid = (imin + imax) / 2;

int jmid = (jmin + jmax) / 2;

p->child[Ol = // NorthEast
buildQuadtree(G,K,D,level+l,imid+l,;Inx, jmid+l,jmAax);

p->child[l] = // SouthEast

buildQuadtree(G,M,D,level+l,imid+l,imix,jmin,jmid);

p->child[2] = // Southwest

buildQuadtree(G,M,D,level+l,imin,imid,jjmin,jmid);

p->child[3] = // NorthWest

buildQuadtree(G,M,D,level+l,imin,iuid,jmid+l,jmax);

for (int i = 0; i < 4; i+|)

p->size += p->child[i]->size;

if ((p->size <= M) || (level >= D)) { // merge children

p->pts = new List<Point*>;

for (i = 0; i < 4; i++) {

p->pts->append(p->child i]->pts);

delete p->childjil;

p->child~i] = NULL;

}
} // end merge children

return p;

?

In the general case, function bui ldQuadtree recursively constructs root p's four
children and links them to p. If necessary, it then merges the four children into p and deletes
them. Note that in the base case (imin==imax), the function "steals" lists of points from
grid G. leaving the grid empty yet in such a state that it can be safely deleted.

Destructor -Quadtree is trivial:

Quadtree:: Quadtree()

{
delete root;

}

The first constructor QuadtreeNode initializes its class's data members when
passed a list of points:

236

Sec. 9.3 Quadtrees

QuadtreeNode::QuadtreeNode(List<Point*> *-pts)

pts(_pts), size(_pts->length0)

for (int i = 0; i < 4; i.+)

child[i] = NMLL;

The constructor QuadtreeNode, taking no arguments, is used when an internal
node's list of points is constructed within member function bui ldQuadtree:

QuadtreeNode::QuadtreeNode(void)

pts(NULL), size(O)

{
for (int i = 0; i < 4; ij+)

child[i] = NULL;

The destructor -QuadtreeNode deallocates this node's list of points if this node
is external, or recursively deletes this node's children if this node is internal:

QuadtreeNode::-QuadtreeNode()

if (isExternal() { // node is external

pts->lasto0;

while (pts->length() > 0)

delete pts->remove();

delete pts;

} else // node is internal

for (int i = 0; i < 4; i++)

delete childti];

9.3.3 Performing Range Queries

To query with range R, we apply the query to the quadtree's root node:

List<Point*> *Quadtree::rangeQuery(Rectangle &R)

{
return root->rangeQuery(R, domain);

To query with range R starting from node n, we first check whether range R intersects
region 1Z(n). If it does not, we return. If n is an external node, we test each of the points in
its list for inclusion in R. Otherwise (n is an internal node) we recursively apply the range
query to each of n's four children, appending together the reported points into a single list,
which is returned:

237

Chap. 9: Spatial Subdivision Methods

List<Point*> *QuadtreeNode::rangeQuery(Rectangle &R,

Rectangle &span)

(
List<Point*> *result = new List<Point*>;

if (!intersect(R, span))

return result;

else if (isExternal() // node is external

for (pts->first(); !pts->isHeado; pts->nexto) (
Point *p = pts->val();
if (pointInRectangle(*p, R))

result->append(p);

}
else

for (int i = 0; i < 4; i++)
List<Point*> *1 =

childtij->rangeQuery(R,quadrant(span,i));

result->append(l);

}
return result;

?

Parameter span is the quadrant spanned by this node. Rather than store each node's
quadrant explicitly, as a data member of class QuadtreeNode, we compute quadrants
on the fly: when a node queries each of its children, it provides the child with the child's
subquadrant. Subquadrants are computed with member function quadrant, defined in
the next subsection.

9.3.4 Support Functions

Member function QuadtreeNode: :quadrant is used during the course of a range
query to compute the quadrant spanned by each node. The function returns the quadrant
spanned by child i of this node, where we assume that this node spans quadrant s:

Rectangle QuadtreeNode::quadrant(Rectangle &s, int i)
(

Point c = 0.5 * (s.sw + s.ne);

switch (i) (

case 0:

return Rectangle(c, s.ne);

case 1:

return Rectangle(Point(c.x,s.sw.y), Point(s.ne.x, c.y));

case 2:

return Rectangle(s.sw, c);
case 3:

return Rectangle(Point(s.sw.x, c.y), Point(c.x,s.ne.y));

}

238

Function intersect determines whether two rectangles a and b intersect. They
do so only if their x-extents overlap and their y-extents overlap:

bool intersect(Rectangle &a, Rectangle &b)

return (overlappingExtent(a, b, x) &&

overlappingExtent(a, b, Y));

}

Two intervals overlap if and only if the left endpoint of one of the intervals lies in the
other interval. Function overlappingExtent returns TRUE if and only if the extents
of rectangles a and b overlap in coordinate i:

bool overlappingfxtent(Rectangle &a, Rectangle &b, int i)

{
return ((&.swtil <= b.swti]) && (b.swti] <= a.neti])) |

((b swti] <= a.swti]) && (a.sw[il <= b.ne[il));
)

One other support function requiring mention is Quadt reeNode: : is External,
which returns TRUE if this node is an external node:

int Quadtree~ode: isZxternal ()

{
return (pts != NULL);

)

9.3.5 Analysis

Let us consider the running time of constructor Quadtree when passed an m x m grid.
The running time T(m) is expressed by the recurrence

T(m) I 4T(M2) +a ifm > 1
b if m = 1

for constants a and b. It is not hard to show that T(m) E 0(m 2). Note that T(m) is
independent of the size of point set S. This is because function buildQuadtree takes
only constant time, not counting the recursive calls. Whenever the function merges four
nodes into their common parent node, four lists of points are merged in constant time with
function List: : append. Whenever the recursion bottoms out, the function "steals" a
list of points from the grid in constant time.

Let us consider the cost of a range query. A query with range R takes time proportional
to the number of points examined plus the number of nodes visited. In the worst-case query,
all n points of S are examined yet none are reported. This occurs, for instance, when all
the points of S happen to fall in the same external quadrant, and R intersects this quadrant yet

Sec. 9.3 Quadtrees 239

Chap. 9: Spatial Subdivision Methods

does not contain any of its points. Thus a range query takes 0(n) time at worst, which is no
better than the brute-force approach to range searching. However, quadtrees are superior
to the brute-force approach in the average-case sense. We will not consider the expected
performance of the quadtree for range searching; the question is difficult, and its answer
depends largely on what is meant by an expected distribution of points in the plane.

It is, however, worthwhile to question how many quadtree nodes are visited during
the course of a range query. Given range R, each node n of the quadtree falls into one of
three categories, based on the relationship between R and the node's region 1R(n):

* Disjoint nodes are characterized by the relation R n 7Z(n) = 0. Here JZ(n) lies com-
pletely outside range R.

* Surrounded nodes are characterized by R n 14(n) = 14(n). Here 1Z(n) lies completely
inside R.

* Intersecting nodes are characterized by 0 c R n 1Z(n) C RZ(n). Here RZ(n) and R
partially intersect.

It turns out that we can ignore disjoint nodes and surrounded nodes. The search does
not proceed beyond disjoint nodes: When a disjoint node is visited, its descendants are not
visited. On the other hand, when a surrounded node is visited, all its descendants must be
visited. This is because every point of S belonging to a descendant of a surrounded node
necessarily lies in range R. Nonetheless, we can easily modify our quadtree implementation
so the points of S are stored in internal nodes as well as external nodes: We let every
node n-whether internal or external-contain the list of points that lie in region 7?(n).
Then, whenever a surrounded node is visited during a range query, its list of points is
reported directly, making unnecessary a traversal of the node's descendants.

In this way we are free to assume that the search does not proceed to the descendants of
either surrounding nodes or disjoint nodes. We must still count the surrounding or disjoint
node n itself, but this is easy. If node n is the root, then no other node in the quadtree is
visited. Alternatively, if node n is not the root, then the cost of visiting n can be charged
to n's parent, which must be an intersecting node. Since this parent node has only four
children, at most four such charges can be applied to it. Hence the total number of nodes
visited during a range query is proportional to the total number of intersecting nodes visited.

We are left with the problem of counting the number of intersecting nodes visited
during the course of a range query. Figure 9.7 illustrates the five types of intersecting nodes
that occur. Node n's type is based on how range R and region 1Z(n) intersect.

For an intersecting node n of each type (0 through 4), range R can intersect the four
subquadrants of 7Z(n) in only a small number of ways, shown in Figure 9.8. Beneath

Type 0 Type 1 Type 2 Type 3 Type 4

Figure 9.7: Given intersecting node n, the five possible relationships between range R and region 14(n).

240

Type O 0

0 1,1 2,2,2,2

Type 1 yCX

1 1,3 2,2,4,4 2,2

Typee2 X

2 2,4,4 2,4

Type 3

3,3 4,4,4,4

Type 4 [CJ
4,4 4,4

Figure 9.8: For node types 0 through 4, the ways in which range R can intersect.

each diagram is indicated the node types that result from the intersection, one level lower.
Shaded subquadrants are enclosed by the range and so correspond to surrounded nodes.
Whenever a node of type i is visited, the search proceeds to one or more of its children. Yet
in all cases, at most two of the visited children are also of type i, and the remaining visited
children are of type greater than i. If the node is type 4, only two-way branching is possible.
The node type corresponds to the potential for three-way or four-way branching during the
range query. When a three-way or four-way branch occurs, the potential for subsequent
three-way or four-way branches decreases in all but at most two of the children. The search
proceeds down what is essentially a binary tree embedded within the quadtree-the number
of nodes visited is proportional to 2D, where the quadtree has depth D.

This can be shown more formally. Each row of Figure 9.8 gives rise to a recurrence
relation characterizing T, (D), the number of nodes visited in a quadtree of depth D whose

Sec. 9.3 Quadtrees 241

Chap. 9: Spatial Subdivision Methods

root is of type i. For example, we have

T3(D) = I 2T3 (D - 1) if the first case of row 3 occurs
4T4 (D - 1) if the second case of row 3 occurs

Since the recurrence for Ti contains terms Tj for j > i, we solve these recurrences in the
order T4, T3, - , To. Specifically, induction can be used to show that

T4(D) < 2D+I

T3(D) < 2 D+2

T2(D) < 2 D+2

T1 (D) < 2D+3

To(D) < 2D+3

It follows that, regardless of the root node's type, at most 2D+3 = 8(2D) E 0(2D) inter-
secting nodes are visited during the course of a range query.

In light of this analysis, what is a good choice for cutoff depth D? We want D large
enough such that few external quadrants contain more than M points, and small enough
such that the quadtree is not too deep. The finest possible quadtree subdivision of depth D
consists of 4D external quadrants. For each external quadrant to contain an average of M
points would require M quadrants, hence 4D D M Solving for D yields D = rlog4 , 1.

Using this value of D, the number of nodes visited during a range query is proportional to

2 '094 M, which is 0(")j.
We have shown that a range query visits no more than O(,/if) nodes, under the

assumption that every node-whether internal or external-stores a list of those points
it spans. Unfortunately, as we have seen, in the worst case as many as Q(n) points are
examined, and this may happen even if none of the points lie in the given range. The snag
is that the quadtree subdivision is space based: The position and orientation of cut lines
depend on the spatial domain D, but not on the points of S. Although the number of nodes
visited during a region query is bounded above by O(4iT), visiting these nodes may be
costly-they may contain many points of S, few or none of which are reported. In the
next section we will attack the range searching problem with two-dimensional trees, which
are object based: The position and orientation of cut lines are sensitive to point set S as
well as to domain D. Hence we can choose cut lines deliberately to separate points of S.
thereby ensuring that visiting a node is inexpensive-in fact, costing only constant time.
What results is a spatial data structure that supports range queries in O(r + In-) time in the
worst-case sense, where r equals the number of points reported.

9.4 Two-Dimensional Search Trees

A two-dimensional binary search tree, or 2-d tree, is a binary tree which recursively sub-
divides the plane by vertical and horizontal cut lines. The cut lines alternate in direction as
we descend down the tree: Even levels (starting at the root) contain vertical cut lines, and
odd levels contain horizontal cut lines. For the purpose of range searching in point set S,
each node corresponds to a point of S and to a cut line that passes through the point.

242

Sec. 9.4 Two-Dimensional Search Trees

Figure 9.9 shows a planar subdivision and its corresponding 2-d tree. The vertical
cut line through point a, at the the root of the tree, separates point set S into two sets SL
and SR, to the left and right of the cut line, respectively. The horizontal cut line through
point b, the left child of a, partitions SL into two sets, above and below the cut line. The
horizontal cut line through point c, the right child of a, partitions SR similarly. Additional
cut lines refine the subdivision further. Observe that each cut line separates the remaining
points into two sets of approximately the same size.

As with quadtrees, it is helpful to consider the region associated with each node. In
2-d trees, the root spans the entire domain D, and each nonroot node spans the region of its
parent, but restricted to one or the other side of its parent's cut line. In Figure 9.9b, node a
spans the entire domain, node b spans the half-domain to the left of the vertical cut line
through point a, and node d spans that portion of b's region which lies below the horizontal
cut line through b.

Figure 9.10 illustrates the 2-d tree over a set of 200 points. For comparison, the
quadtree over the same set of points is also pictured.

9.4.1 Representation

We will represent a 2-d tree by an object of class TwoDTree:

(a) (b)

Figure 9.9: (a) Subdivision of the plane by cut lines and (b) the corresponding 2-d tree.

.

. , . .:

' '.' *' ' '. "
:,, -:.

. . , .. S.
.

. . s - , , .
.. . .

. ' ', ,, :,
, . ' ,' ' ' ', '

(a) (b)

- S 111~ iI I :H -
- K1 I 1 1 Hi I I

'I i - PM
-~~~ .H-irTX r

f- I 1.1M.
4- - 1: I --TI

H!_ . - t,-
- -- z- I IF 3ig

I~ - I SACE 1 -F '
(c)

Figure 9.10: (a) A set S of 200 points, (b) the 2-d tree over S. and (c) the quadtree over S.

243

Chap. 9: Spatial Subdivision Methods

class TwoDTree {
private:

TwoDTreeNode *root;

TwoDTreeNode *buildTwoOTree(Point *x[], Point *y[],

int n, int cutType);

public:

TwoDTree(Point p[i, int n);

-TwoDTree(void);

List<Point*> *rangeQuery(Rectangle &range);

1;

Nodes are represented by TwoDTreeNode objects:

class TwoDTreeNode (
private:
Point *pnt; // point associated with node

TwoDTreeNode *}child; // left of or below outline
TwoDTreeNode *rchild; // right of or above outline
List<Point*> *rangeQuery(Rectangle &range, int cutType);

public:
TwoDTreeNode(Point*);
-TwoDTreeNode(void);
friend class TwoDTree;

};

If this node's cut line is vertical, the node pointed to by child (rchi 1d) spans the region
to the left (right) of the cut line; if the cut line is horizontal, child (rchild) spans the
region below (above) the cut line. Data member pnt is this node's point.

9.4.2 Constructors and Destructors

The constructor TwoDTree builds a 2-d tree over an array p of n distinct points. The

constructor presorts the points independently by x-coordinates and by y-coordinates and

then calls member function bui ldTwoDTree:

TwoDTree::TwoDTree(Point p(l, int n)

Point **x = new (Point*)[n];
Point **y = new (Point*)[n];
for (int i = 0; i < n; i++)

x[i] = yli] = new Point(pti]);
mergeSort(x, n, leftToRightCmp);

mergeSort(y, n, bottomToTopCmp);

root = buildTwoDTree(x, y, n, VERTICAL);

Comparison functions leftToRightCmp and bottomToTopCmp order points

in the plane by increasing x-coordinates and increasing y-coordinates, respectively. The

former function was defined in subsection 4.3.6, and the latter function in subsection 8.6. 1.

244

Sec. 9.4 Two-Dimensional Search Trees

To assemble a 2-d tree, member function bui ldTwoDTree (defined later) initializes
the tree's root node and then recursively assembles the root's two subtrees, one to either
side of the root's cut line. Where m = n/2, the root node is associated with the point
x[m] and with the vertical cut line through this point. Because array x has been presorted,
point x[m] is the median point by x-coordinate, and the vertical cut line through x[m]
separates the remaining n - I points of S into left and right subsets of roughly equal
size.

Before recursively constructing the root's two subtrees, function buildTwoDTree
partitions both array x and array y into two sorted subarrays, one to either side of the vertical
cut line. Array x partitions into x[O..m - 1] and x [m + L..n - 1]. Array y is partitioned by
function splitPointSet, to be defined shortly. Having partitioned the two arrays, the
function then constructs the root's left (right) subtree by applying itself recursively to the
sorted subarrays of x and y of points to the left (right) of the cut line.

To obtain a horizontal cut line at the next lower level, we swap the roles of arrays x
and y. In general, as we descend the tree by level, we swap the roles of x and y to alternate
between vertical and horizontal cut lines.

Function buildTwoDTree is passed arrays x and y of n points, sorted by x-
coordinates and y-coordinates, respectively. Parameter cutType indicates the type of
cut line with the enumeration value VERTICAL or HORIZONTAL. The function returns a
pointer to the root of the 2-d tree it constructs:

enum { VERTICAL = 0, HORIZONTAL = 1);

TwoDTreeNode *TwoDTree::buildTwoDTree(Point *x[], Point *y[],

int n, int cutType)

if (n == 0)

return NULL;
else if (n == 1)

return new TwoDTreeNode(x[0]);

int m = n / 2;

int (*cmp)(Point*, Point*);

if (cutType - VERTICAL) cmp = leftToRightCmp;

else cmp = bottomToTopCmp;

TwoDTreeNode *p = new TwoDTreeNode(xwm]);

Point **yL = new (Point*)[m];

Point **yR = new (Point*)[n-m3;

splitPointSet(y, n, x[m], yL, yR, cmp);

p->lchild = buildTwoDTree(yL, x, m, 1-cutType);

p->rchild = buildTwoDTree(yR, x+m+l, n-m-1, 1-cutType);

delete yL;

delete yR;

return p;

}

The destructor ~TwoDTree is trivial:

TwoDTree::-TwoDTree(

245

Chap. 9: Spatial Subdivision Methods

delete root;

The constructor TwoDTreeNode initializes a node's data members:

TwoDTreeNode::TwoDTreeNode(Point *_pnt)

pnt(_pnt), lchild(NULL), rchild(NULL)

}

The destructor -TwoDTreeNode recursively deletes this node's two children and
then deletes this node's point:

TwoDTreeNode::-TwoDTreeNode0(

{

if childl) delete child;

if (rchild) delete rchild;

delete pnt;

9.4.3 Performing Range Queries

Let us consider how to query with range R, starting from some node of the 2-d tree. First,
we check whether the point associated with the node lies in R-if so, we report the point.
Second, if part of R lies to the left of (below) the node's vertical (horizontal) cut line, we
recursively query from the node's left child. Symmetrically, if part of R lies to the right
of (above) the vertical (horizontal) cut line, we recursively query from the node's right
child. The objective is to restrict the query to one side of the node's cut line whenever
possible-that is, whenever range R does not straddle the cut line.

The top-level query with range R is applied to the 2-d tree's root:

List<Point*> *TwoDTree::rangeQuery(Rectangle &R)

{
return root->rangeQuery(R, VERTICAL);

)

Function TwoDTreeNode: :rangeQuery performs a query with range R, starting
from this node. The cut line through this node is assumed to be of type cutType, either
VERTICAL or HORIZONTAL. The function returns a list of those points which lie in
range R:

List<Point*> *TwoDTreeNode::rangeQuery(Rectangle &R,

int cutType)

List<Point*> *result = new List<Point*>;

if (pointInRectanqle(*pnt, R))

result->append(pnt);

int (*cmp)(Point*, Point*);

246

Sec. 9.4 Two-Dimensional Search Trees

cap * (cutType==VERTICAL) ? leftToRightCmp : bottomToTopCmp;

if childd && ((*cnp)(&R.sw, pnt) < 0))
result->append(lchild->rangeQuery(R, 1-cutType));

if (rchild && ((*csp)(&R.ne, pnt) > 0))

result->append(rchild->rangeQuery(R, 1-cutType));

return result;

}

The function accumulates the points it finds in list result. Note how the func-
tion uses the corners of range R to determine R's relationship with the cut line. For in-
stance, part of R lies to the left of (below) the vertical (horizontal) cut line only if R's
southwest corner is less than pnt. Here the meaning of less than depends on the cut
line's orientation and is determined by the comparison function leftToRightCmp or
bottomToTopCmp.

9.4.4 Support Functions

Function splitPointSet is used to separate points by a cut line. Suppose that the
cut line is vertical. When passed point p and an array y of points sorted by increasing
y-coordinates, the function produces two arrays: yL contains those points of y that lie to
the left of p, sorted by y-coordinates; and array yR contains those points of y that lie to the
right of p, also sorted by y-coordinates:

void oplitPointSet(Point *y~l, int n, Point *p,

Point *yLCI, Point *yR[],

int (*cmp)(Point*,Point*))

int lindx O 0, rindx a 0;

for (int i = 0; i < n; i++) {

if ((*W-p)(yUj], p) < 0)
yL[lindx++] = yli];

else if ((*cmp)(yEil, p) > 0)

yRtrindx++] = yli];

The function performs the reverse of the merge operation of merge sort and differs
from function spl i tY of section 8.6 in only two ways. First, point p is included in neither
yL nor yR, even if p occurs in array y. Second, function splitPointSet separates
points according to the comparison function cmp it is passed. We pass the comparison
function leftToRightCmp to separate points by a vertical cut line through point p, and
bottomToTopCmp to separate points by a horizontal cut line through p.

9.4.5 Analysis

The recursive function TwoDTree: :buildTwoDTree constructs a 2-d tree over a set
of n points in T(n) time, where T(n) is expressed by the recurrence

247

2T("))+an if n > I
T(n) 2

b if n= I

for suitable constants a and b. Hence T(n) E O(n log n). Since the presorting performed by
constructorTwoDTree also runs in 0(n log n) time, 2-d tree construction takes 0(n log n)
time.

A range query which reports r points runs in 0(r + ,In) time in the worst-case sense.
This can be shown by an argument similar to the one used in the previous section to analyze
quadtrees. Each node of a 2-d tree can be classified as disjoint, surrounded, or intersecting,
based on its relationship to the given range R. It can then be shown that the number of
intersecting nodes visited during the course of the range query is bounded above by 0(,A7),
and the number of surrounded nodes visited is bounded above by 0 (r).

9.5 Removing Hidden Surfaces: Binary Space Partition Trees

In this section we turn to a problem closely related to the hidden surface removal problem
of section 6.4. Our goal is to devise a spatial data structure over a static collection of
triangles in space, to support the following operation: Given any viewpoint p in space,
compute a visibility ordering of the triangles with respect to p. (Recall from section 6.4
the significance of a visibility ordering: If triangle P precedes triangle Q in this ordering,
then P must not obscure Q when viewed from point p-painting the triangles in this order
yields the view from p with hidden surfaces eliminated.) This "multishot" solution to the
hidden surface removal problem is practical for computer graphics since it accommodates
a viewpoint moving around a static scene. For each successive position of the viewpoint,
the data structure supports near real-time image generation, with hidden surfaces removed.

Our data structure is based on a binary partition of space. To visualize what is
going on, we will consider binary partitions one dimension lower, in the plane. No loss of
generality results from focusing on the plane since the ideas involved apply to spaces of any
dimension. Indeed, when we turn to the implementation, we will return to three dimensions
so the code can be used for computer graphics.

The two-dimensional analogue of our problem is as follows: Given a set of line
segments in the plane, organize them in a data structure to compute a visibility ordering of
the line segments with respect to any viewpoint p in the plane. Drawing the line segments
in visibility order yields the one-dimensional view from point p with hidden lines removed.
Here the line segments are considered opaque, and vision is restricted to the plane.

Let us consider the data structure we will use. A two-dimensional binary space
partition tree, or BSP tree, is a binary tree which recursively subdivides the plane by cut
lines. Each node of the BSP tree is associated with both a cut line and a region. As with
the 2-d tree, the root's region is the entire plane, and each nonroot node's region is that of
its parent, but restricted to one or the other side of its parent's cut line. However, unlike the
2-d tree, the cut lines in the BSP tree are of arbitrary orientation and position. Figure 9.1 1
illustrates a binary space partition and its corresponding BSP tree. Note that the cut lines
to the left of a given cut line e lie in E's left subtree, and those to the right of e lie in its right
subtree.

248 Chap. 9: Spatial Subdivision Methods

Sec. 9.5 Removing Hidden Surfaces: Binary Space Partition Trees

(a) (b)

Figure 9.11: (a) A binary space partition and (b) its BSP tree.

Let us consider how to construct a BSP tree to solve our viewing problem in the
plane. Given a set S of line segments, we first select an arbitrary line segment from S and
associate it with the tree's root node. The root's cut line is the line determined by this line
segment, obtained by extending the line segment in both directions. This cut line partitions
the remaining line segments into two groups: SL, to the left of the cut line; and SR, to
the right of the cut line. Any line segment pierced by the cut line is split into two pieces,
and the piece to the left of the cut line is added to SL and the other piece to SR. Finally,
we recursively construct the root's left subtree over SL and its right subtree over SR. In
Figure 9.12b, the cut line through line segment a splits line segment d into d, and d2. Set
SL contains line segments b, c, and dj, and set SR contains d2 , e, and f. Node a's left and
right subtrees, BSP trees in their own right, are constructed over SL and SR respectively.

Given any viewpoint p in the plane, we use a modified inorder traversal of the BSP
tree to arrange the line segments in visibility order. Consider how to traverse the BSP tree
of Figure 9.1 3c, starting from the root. Since viewpoint p lies to the right of line segment a,
none of the line segments to the left of a can obscure a; nor can they obscure any of the line
segments to the right of a. Hence we draw the line segments to the left of a first. Moreover,
since a cannot obscure any of the line segments which lie to its right, we next draw a.
Finally, we draw the line segments which lie to the right of a. Of course, were viewpoint p

1 fae

(a) (b) (c)

Figure 9.12: (a) A set Sofline segments, (b) a binary space partition overS, and (c) the corresponding
BSP tree.

249

Chap. 9: Spatial Subdivision Methods

(b) (C)

Figure 9.13: (a) A binary space partition and a viewpoint p. (b) The portions of segments visible
from p are thicker. (c) The corresponding BSP, where the order in which nodes are visited during
traversal is indicated.

to lie to the left of line segment a rather than to its right, we would draw in reverse order:
first the line segments to the right of a, then a itself, and finally the line segments to the left
of a. This modified inorder traversal of the BST tree, starting at node n, is conveyed by the
following pseudocode:

removeHiddenLines(node n, viewpoint p)

if p lies to the right of node n's line segment then

removeHiddenLines(leftchild(n), p)
drawn)
removeliddenLines(rightChild(n), p)

else

removegiddenLines(rightchild(n), p)
drawn)
removegiddenLines(leftChild(n), p)

Note that the else block is executed if viewpoint p is collinear with line segment a. It
would be equally correct to execute the i f block in this case, since a would be viewed edge
on.

9.5.1 Representation

With these explanations behind us, let us turn to the task of implementing BSP trees. We
will consider the problem of visibility sorting for a static collection of triangles in space
and a moving viewpoint. Lifting the methods described earlier to three dimensions is
straightforward: Line segments become triangles, and cutting lines become cutting planes.

A BSP tree is represented by class BspTree:

class BspTree {

private:

BspTreeNode *root;
BspTreeNode *buildBspTree(List<Triangle3D*>*);

public:

(a)
I.

r

250

Sec. 9.5 Removing Hidden Surfaces: Binary Space Partition Trees 251

BspTree(Triangle3D *t], int n);
-BspTree(void);

List<Triazxgle3D*> *visibilitySort(Point3D p);

};

Nodes are represented by objects of this class:

class BspTreeNode (

private:
BspTreeNode *poschild;
BspTreeNode *negchild;

Triangle3D *tri;
BspTreeNode(Triangle3D*);
-BspTreeNode(void);

List<Triangle3D*> *visibilitySort(Point3D);

friend class BapTree;

1;

This node's triangle-pointed to by data member tri-partitions space into a positive
half-space and a negative half-space, as discussed in section 4.5. Data member poschi id
points to this node's child in tri's positive half-space, and negchi id to its child in tri's
negative half-space.

9.5.2 Constructors and Destructors

The constructor BspTree creates a new BSP tree for an array t of n triangles. It simply
converts t into a list, which it passes to function buildBspTree:

BspTree::BspTree(Triangle3D *t[1, int n)

List<Triangle3D*> triess = new List<Triangle3D*>;
for (nt i = 0; i < x; i++)

tris->append(new Triangle3D(*tti]));

root = buildBspTree(tris);
delete tris;

?

Member function buildBspTree constructs a BSP tree over the list s of triangles
it is passed. The function returns a pointer to the tree's root node:

BspTreeNode *BspTree::buildBspTree(List<Triangle3D*> *s)

{
if (s->length() == 0)

return NULL;

if (s->length() == 1)

return new BspTreeNode(s->first();

List<Triangle3D*> *sP = new List<Triangle3D*>;

252 Chap. 9: Spatial Subdivision Methods

List<Triangle3D*> *sN = new List<Triangle3D*>;
Triangle3D *p 5 s->firsto;

for (s->nexto; !s->isHeado; s->nexto) {

Triangle3D *q = s->val();

int cl(3];

for (int i = 0; i < 3; i++)

cl[i] =(*q)[i].classify(*p);

if ((cl[01 NEGATIVE) &&

(clil] != NEGATIVE) &&

(cl2] != NEGATIVE))

sP->append(q);

else if ((cltO] 1= POSITIVE) &&

(ciii] POSITIVE) &&

(cl2] != POSITIVE))

sN->append(q);
else

refineList(s, p);

}
BspTreeNode *n = new BspfreeNode(p);

n->poschild = buildBspTree(sP);
n->negchild = buildBspTree(sN);
delete sP;

delete sN;
return f;

}

In the general case, when list s contains more than one triangle, the first triangle p
in list s is stored in the root node, and each remaining triangle q is added to either list sP
or list sN, depending on whether q lies in p's positive or negative half-space. If the plane
of p intersects triangle q, the call to function refineList splits q by the plane of p and,
within list s, replaces q by its pieces. Function refineList was defined in section 6.4.

The destructor -BspTree deletes the root of the tree:

BspTree:: BspTree()

delete root;

}

The constructor BspTreeNode initializes data members:

BspTreeNode::BspTreeNode(Triangle3D *-tri) :

tri(_tri), poschild(NUIL), negchild(NULL)

The class destructor recursively deletes this node's two children and then deletes its
triangle:

Sec. 9.5 Removing Hidden Surfaces: Binary Space Partition Trees

BspTreeNode::-BspTreeNode()

if (poschild) delete poschild;

if (negchild) delete negchild;

delete tri;

}

9.5.3 Performing Hidden Surface Removal

Member function BspTree: :visibilitySortis passed aviewpointp, and retums a
visibility-ordered list of triangles:

Liet<Triangle3D*> *BspTree::visibilitySort(Point3D p)

(
return root->visibilitySort(p);

}

Member function BspTreeNode: :visibilitySort implements the modified
inorder traversal described earlier, for the BSP tree rooted at this node and for viewpoint p.
The function returns a visibility-ordered list of triangles:

List<Triangle3D*> *BspTreeNode::visibilitySort(Point3D p)

{
List<Triangle3D*> *s now List<Triangle3D*>;

if (p.classify(*tri) == POSITIVE) (
if (negchild) s->append(negchild->visibilitySort(p));

s->append(tri);

if (poschild) s->append(poschild->visibilitySort(p));

} else {
if (poschild) s->append(poschild->visibilitySort(p));

a->append(tri);

if (negchild) s->append(negchild->visibilitySort(p));

}

return s;

}

9.5.4 Analysis

We will only state some results; the analysis itself is beyond the level of this text. Con-
structing a BSP tree over n non-intersecting line segments in the plane takes O(n2 log n)
time on average. The expected size of the BSP tree is 0(n log n), implying that a visibility
ordering is computed in 0 (n log n) time on average.

For the three-dimensional case, assume that the n triangles in space are non-intersect-
ing. Then the expected size of the BSP tree is O(n2), and the expected time for its con-
struction is O(n3 log n).

253

Chap. 9: Spatial Subdivision Methods

9.6 Chapter Notes

A wide range of spatial data structures, as well as their many variants and uses, is covered
by Hanan Samet in [69, 70, 71]. A survey of data structures for the range searching problem
can be found in [8]. The uses of multidimensional search trees are explored in [7].

The term quadtree is sometimes used to refer to any spatial data structure based on
the recursive decomposition of space. Such data structures may vary with respect to both
the type of data they represent and the principle guiding decomposition. In light of so broad
a definition, quadtrees have been around for a long time. Some of their earliest uses include
hidden surface elimination [86], statistical analysis [47], range searching [27], and image
processing and feature detection [42, 81]. The octree, the three-dimensional analogue of
the quadtree, recursively partitions a cube into eight octants. Octrees are used in computer
graphics to represent solids in space and to speed up rendering [28].

The articles [29, 30] treat the use of BSP trees for removing hidden surfaces, given
a static scene and moving viewpoint. Our randomized algorithm for building BSP trees is
described and analyzed in [58, 63]; the latter reference also explains how to improve the
worst-case performance of BSP trees at the expense of simplicity (the methods are made de-
terministic). BSP trees are also used to represent and manipulate polyhedra in space [64,85].

9.7 Exercises

1. Implement octrees, the three-dimensional analogue of quadtrees, to solve the three-
dimensional range searching problem.

2. Implement 3-d trees, the three-dimensional analogue of 2-d trees, to solve the three-
dimensional range searching problem.

3. The constructor we have defined for quadtrees is passed a grid and builds the quadtree
from the bottom up. Define a new constructor which is passed a list of points in the
plane and builds the quadtree for the points from the top down. The quadtree should
possess the same three properties discussed at the start of section 9.3. What are the
advantages and disadvantages of building a quadtree from the top down?

4. Modify our implementation of grids so initialization of an m x m grid over n points
takes O(m + n) time.

5. Implement a constructor Quadtree like the one defined in this chapter, but which
does not clear the grid it is passed.

6. For range searching a planar point set S, implement quadtrees such that each node-
whether internal or external-contains a list of the points of S spanned by the node.
How much more memory does this data structure require than the quadtree as imple-
mented in this chapter?

7. Complete the proof that no more than 0 (2D) nodes of a quadtree of depth D are visited
during a range query, assuming points are stored in both internal and external nodes.

8. Why does the constructor TwoDTree for 2-d trees fail if passed a list of points
containing duplicates? Modify the constructor to handle this. Do our implementions
of quadtrees and grids work for duplicate points?

254

9. Implement a version of range query in 2-d trees which checks whether a node is a
surrounding node and, if so, avoids testing its descendants for inclusion in the range.

10. The disk searching problem asks us to organize a set S of points in the plane to support
disk queries: Given any point p and positive real number r, report the points of S
whose distance from p does not exceed r. Solve this problem using grids, quadtrees,
and 2-d trees.

11. A quadtree can be used to represent a planar region R as follows. Every external
node n contains a bit indicating whether quadrant 1Z(n) is entirely contained in R or
is disjoint from R. Region R equals the union of all "in" quadrants, those contained
in R.

(a) Implement this scheme.

(b) Write a function for classifying a point with respect to a quadtree-represented
region R: Given point p, determine whether p lies in R.

(c) Write a function for forming the union of regions represented by quadtrees:
Given two quadtrees representing regions A and B, respectively, construct a
third quadtree representing region A U B.

(d) Write a function that, when passed two quadtrees representing regions A and B,
constructs a third quadtree representing their intersection A n B.

12. In our implementation of BSP trees, every cut plane is determined by one of the
triangles in the scene. Implement a version of BSP trees in which cut planes are
determined by some other criterion. What is the advantage of cutting along the planes
determined by the triangles?

13. Given an arbitrary n-gon P. devise a data structure that supports point enclosure
queries: Given a point p in the plane, report whether p lies in P. In Chapter 5 we
explored two techniques for performing this query in O(n) time. Now try to do so in
0(logn) time.

255Sec. 9.7 Exercises

Bibliography

[1] G.M. Adelson-Velskii and E. M. Landis, An algorithm for the organization of information, Soviet
Mathematics Doklady, 3, 1259-1262 (1962).

[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[3] L. Ammeraal, Programming Principles in Computer Graphics, John Wiley and Sons, New York,
1992.

[4] F. Aurenhammer, Voronoi diagrams: A survey of a fundamental geometric data structure, ACM
Computing Surveys, 23(3), 345-405 (1991).

[5] D. Avis and B. K. Bhattacharya, Algorithms for computing d-dimensional Voronoi diagrams and
their duals, in Advances in Computing Research, edited by F. P. Preparata, JAI Press, 159-180
(1983).

[6] R. Bayer, Symmetric binary B-trees: Data structure and maintenance algorithms, Acta Informat-
ica, 1, 290-306 (1972).

[7] J. L. Bentley, Multi-dimensional binary search tree used for associative searching, Communica-
tions of the ACM, 18(9), 509-517 (1975).

[8] J. L. Bentley and J. H. Friedman, Data structures for range searching, ACM Computing Surveys,
11(4), 397-409 (1979).

[9] J. L. Bentley and T. A. Ottmann, Algorithms for reporting and counting geometric intersections,
IEEE Transactions on Computers, 28, 643-647 (1979).

256

Bibliography 257

[10] J. L. Bentley and M. I. Shamos, Divide-and-conquer in multidimensional space, Proceedings of
the Eighth ACM Annual Symposium on Theory of Computation, 220-230 (1976).

[tI] G. Booch, Object-Oriented Design with Applications, Benjamin Cummings, Redwood City,
CA, 1990.

[121 E. Brisson, Representing geometric structures in d dimensions: Topology and order, Proceeding
of the 5th Annual ACM Symposium on Computational Geometry, 218-227 (1989).

[13] T. Budd, An Introduction to Object-Oriented Programming, Addison-Wesley, Reading, MA,
1991.

[14] A. Bykat, Convex hull of a finite set of points in two dimensions, Information Processing Letters,
7, 296-298 (1978).

[15] T. Cargill, C++ Programming Style, Addison-Wesley, Reading, MA, 1992.

[16] E. Catmull, A subdivision algorithm for computer display of curved surfaces, Ph.D. Thesis,
University of Utah Dept. of Computer Science, Technical Report UTEC-CSc-74-133 (1974).

[17] D. R. Chand and S. S. Kapur, An algorithm for convex polytopes, Journal of the ACM, 17(1),
78-86 (1970).

[18] B. Chazelle, A theorem on polygon cutting with applications, in Proceedings of the 23th Annual
Symposium on Foundations of Computer Science, IEEE Computer Society, 339-349 (1982).

[19] B. Chazelle, Triangulating a simple polygon in linear time, Discrete and Computational Geom-
etry, 6, 485-524 (1991).

[20] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, The MIT Press,
Cambridge, MA, 1990.

[21] M. Cyrus and J. Beck, Generalized two- and three-dimensional clipping, Computers and Graph-
ics, 3(1), 23-28 (1978).

[22] L. Deneen and G. Shute, Polygonizations of point sets in the plane, Discrete and Computational
Geometry, 3, 77-87 (1988).

[23] S. C. Dewhurst and K. T. Stark, Programming in C++, Prentice Hall, Englewood Cliffs, NJ,
1989.

[24] D. P. Dobkin and M. J. Laszlo, Primitives for the manipulation of three-dimensional subdivisions,
Algorithmica, 4, 3-32 (1989).

[25] W. Eddy, A new convex hull algorithm for planar sets, ACM Transactions on Mathematical
Software, 3(4), 398-403 (1977).

[26] M. A. Ellis and B. Stroustrup, TheAnnotated C++ ReferenceManual, Addison-Wesley, Reading,
MA, 1990.

[27] R. A. Finkel and J. L. Bentley, Quad trees: A data structure for retrieval on composite keys, Acta
Informatica, 4, 1-9 (1974).

[28] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes, Computer Graphics: Principles and
Practice, Addison-Wesley, Reading, MA, 1990.

[29] H. Fuchs, G. D. Abram, and E. D. Grant, Near real-time shaded display of rigid objects, Computer
Graphics, 17(3), 65-72 (1983).

Bibliography

[30] H. Fuchs, Z. M. Kedem, and B. F. Naylor, On visible surface generation by a priori tree structures,
Computer Graphics, 14(3), 124-133 (1980).

[31] M. R. Garey, D. S. Johnson, F. P. Preparata, and R. E. Tarjan, Triangulating a simple polygon,
Information Processing Letters, 7(4), 175-180 (1978).

[32] K. E. Gorlen, S. M. Orlow, and P. S. Plexico, Data Abstraction and Object-Oriented Program-
ming in C++, Wiley, Chichester, England, 1990.

[33] R L. Graham, An efficient algorithm for determining the convex hull of a finite planar set,
Information Processing Letters, 1, 132-133 (1972).

[34] P. J. Green and B. W. Silverman, Constructing the convex hull of a finite planar set, Information
Processing Letters, 22, 262-266 (1979).

[35] L. J. Guibas and R. Sedgewick, A dichromatic framework for balanced trees, in Proceedings of
the 19th Annual Symposium on Foundations of Computer Science, IEEE Computer Society,
8-21 (1978).

[36] L. Guibas and J. Stolfi, Primitives for the manipulation of general subdivisions and the compu-
tation of Voronoi diagrams, ACM Transactions on Graphics, 4(2), 74-123 (1985).

[371 R. H. Gfiting, An optimal contour algorithm for isooriented rectangles, Journal of Algorithms,
5(3), 303-326 (1984).

[38] D. Harel, Algorithmics: The Spirit of Computing, Addison-Wesley, Reading, MA, 1992.

[39] D. Hearn and M. P. Baker, Computer Graphics, Prentice Hall, Englewood Cliffs, NJ, 1994.

[40] S. Hertel and K. Mehlhorn, Fast triangulation of simple polygons, Proceedings of the Conference
on Foundations of Computing Theory, Springer-Verlag, New York, 207-218 (1983).

[41] J. A. Hummel, Introduction to Vector Functions, Addison-Wesley, Reading, MA, 1967.

[42] G. M. Hunter and K. Steiglitz, Operations on images using quad trees, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 11(2), 125-153 (1979).

[43] R. A. Jarvis, On the identification of the convex hull of a finite set of points in the plane,
Information Processing Letters, 2, 18-21 (1973).

[44] P. J. Kahn, Introduction to Linear Algebra, Harper & Row, New York, 1967.

[45] M. Kallay, Convex hull algorithms in higher dimensions, unpublished manuscript, Dept. of
Mathematics, Univ. of Oklahoma, Norman, Oklahoma, 1981.

[46] D. G. Kirkpatrick and R. Seidel, The ultimate planar convex hull algorithm? Tech. Rep. 83-577,
Dept. of Computer Science, Cornell University, 1983.

[47] A. Klinger, Patterns and search statistics, in Optimizing Methods in Statistics, edited by J. S.
Rustagi, Academic Press, New York, 303-337 (1971).

[48] D. E. Knuth, FundamentalAlgorithms, Vol. I of The Art of ComputerProgramming, 2nd edition,
Addison-Wesley, Reading, MA, 1973.

[49] D. E. Knuth, Big omicron and big omega and big theta, ACM SIGACTNews, 8(2), 18-23 (1976).

[50] J. M. Lane, L. C. Carpenter, T. Whitted, and J. F. Blinn, Scan line methods for displaying
parametrically defined surfaces, Communications of the ACM, 23, 23-34 (1980).

[51] D. T. Lee, Proximity and reachability in the plane, Report R-831, Coordinated Science Labora-
tory, University of Illinois at Urbana, 1978.

258

Bibliography29[52] D. T. Lee and F. P. Preparata, Location of a point in a planar subdivision and its applications,
SIAM Journal of Computing, 6, 594-606 (1977).

[53] D. T. Lee and F. P. Preparata, An optimal algorithm for finding the kernel of a polygon, Journal
of the ACM, 26, 415-421 (1979).

[54] W. Lipski, Jr. and F. R Preparata, Finding the contour of a union of iso-oriented rectangles,
Journal of Algorithms, 1, 235-246 (1980).

[551 D. T. Lee and B. Schachter, Two algorithms for constructing Delaunay triangulations, Interna-
tional Journal of Computers and Information Science, 9(3), 219-242 (1980).

[56] U. Manber, Introduction to Algorithms: A Creative Approach, Addison-Wesley, Reading, MA,
1989.

[57] S. B. Maurer and A. Ralston, Discrete Algorithmic Mathematics, Addison-Wesley, Reading,
MA, 1991.

[58] K. Mulmuley, Computational Geometry: An Introduction Through Randomized Algorithms,
Prentice Hall, Englewood Cliffs, NJ, 1994.

[59] M. E. Newell, R. G. Newell, and T. L. Sancha, A solution to the hidden surface problem, in
Proceedings of the ACM National Conference 1972, 443-450 (1972).

[60] J. O'Rourke, Art Gallery Theorems and Algorithms, Oxford University Press, 1987.

[61] J. O'Rourke, Computational Geometry in C, Cambridge University Press, 1994.

[62] 1. O'Rourke, C.-B Chien, T. Olson, and D. Naddor, A new linear algorithm for intersecting
convex polygons, Computer Graphics and Image Processing, 19; 384-391 (1982).

[63] M. S. Paterson and F. F. Yao, Efficient binary span partitions for hidden surface removal and
solid modelling, Discrete and Computational Geometry, 5, 485-503 (1990).

[64] D. Peterson, Halfspace representations of extrusions, solids of revolution, and pyramids, SAN-
DIA Report 84-0572, Sandia National Laboratory, 1984.

[65] F. P. Preparata and S. J. Hong, Convex hulls of finite sets of points in two and three dimensions,
Communications of the ACM, 2(20), 87-93 (1977).

[66] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction, Springer-Verlag,
New York, 1985.

[67] F. R Preparata and K. J. Supowit, Testing a simple polygon for monotonicity, Information
Processing Letters, 12(4), 161-164 (1981).

[68] D. F. Rogers, Procedural Elements for Computer Graphics, McGraw-Hill, New York, New
York, 1985.

[69] H. Samet, The quadtree and related hierarchical data structures, ACM Computing Surveys, 16(2),
187-260 (1984).

[70] H. Samet, Applications of Spatial Data Structures, Addison-Wesley, MA, 1990.

[711 H. Samet, Design and Analysis of Spatial Data Structures, Addison-Wesley, MA, 1990.

[72] B. Schaudt and R. L. Drysdale, Multiplicatively weighted crystal growth Voronoi diagrams,
Proceedings of the 7thAnnualACMSymposium on Computational Geometry, 214-223 (1991).

[73] R. Sedgewick, Algorithms in C++, Addison-Wesley, Reading, MA, 1992.

Bibliography 259

260 Bibliography

[741 M. 1. Shamos and D. Hoey, Closest-point problems, Sixteenth Annual IEEE Symposium on
Foundations of Computer Science, 151-162 (1975).

[75] M. I. Shamos and D. Hoey, Geometric intersection problems, Seventeenth Annual IEEE Sym-
posium on Foundations of Computer Science, 208-215 (1976).

[76] J. S. Shapiro, A C+ + Toolkit, Prentice Hall, Englewood Cliffs, New Jersey, 1991.

[77] R. F. Sproull and I. E. Sutherland, A clipping divider, AFIPS Fall Joint Computer Conference,
Thompson Books, Washington, DC, 765-775 (1968).

[78] T. A. Standish, Data Structure Techniques, Addison-Wesley, Reading, MA, 1980.

[79] B. Stroustrup, The C+ + Programming Language, Addison-Wesley, Reading, MA, 1991.

[801 I. E. Sutherland and G. W. Hodgman, Reentrant polygon clipping, Communications of the ACM,
17(1), 32-42 (1974).

[81] S. Tanimoto and T. Pavlidis, A hierarchical data structure for picture processing, Computer
Graphics and Image Processing, 4(2), 104-119 (1975).

[82] R. E. Tarjan, Amortized computational complexity, SIAM Journal on Algebraic and Discrete
Methods, 6(2), 306-318 (1985).

[83] R. E. Tarjan, Data Structures and NetworkAlgorithms, Volume 44 of BMS-NSF Regional Confer-
ence Series in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadel-
phia, PA, 1983.

[84] R. E. Tarjan and C. J. van Wyk, An O(n log log n)-time algorithm for triangulating a simple
polygon, SIAM Journal of Computing, 17(1), 143-178 (1988).

[85] W. C. Thibult and B. F. Naylor, Set operations on polyhedra using binary space partitioning
trees, Computer Graphics, 8(7), 153-162.

[86] J. Warnock, A hidden-surface algorithm for computer generated half-tone pictures, University
of Utah Computer Science Dept. Technical Report TR 4-15, NTIS AD 753 671 (1968).

[87] G. S. Watkins, A real-time visible surface algorithm, University of Utah Computer Science Dept.
Technical Report TR UTEC-CSc-70-101, NTIS AD 762 004 (1970).

[88] K. Weiler and P. Atherton, Hidden surface removal using polygon area sorting, Computer Graph-
ics, 11, 214-222 (1977).

[89] M. A. Weiss, Data Structures and Algorithm Analysis, Benjamin Cummings, Redwood City,
CA, 1992.

[90] D. Wood, Data Structures, Algorithms, and Performance, Addison-Wesley, Reading, MA, 1993.

O-Notation (omega notation), 13
0-Notation (theta notation), 13

A
Abstract data types (ADTs), 3. 24, 228

array, 24
dictionary, 67
edge, 3
polygon, 3

Access control, 4
Active segments, 177
Adaptive subdivision, 232
advance procedure, 159-60
advancePtr function, 133
aimsAt function. 156
Algorithm analysis, 3, 6-22

analysis of recursive algorithms, 13-16
asymptotic analysis, 11-13
complexity measures, 8-10
defined, 3, 6
models of computation, 7-8
problem complexity, 16-21

Algorithmic paradigms, 3
Algorithms, 2

asymptotic efficiency of, 11-13
recursive, analysis of, 13-16
running time, 7

Amortized-case running time, 9-10
Annotated C+ +Reference Manual, The (Ellis/Stroustrup), 4
Apex, polygons, 109
Array ADT, 24

Art Gallery Theorems and Algorithms (O'Rourke), 135
Asymptotic analysis, 11-13

growth-rate functions, 11-12
Asymptotic notation, 12
Average-case running time, 9
Axes-parallel rectangle, 183

B
bendTransition function, 199-200
Bend vertex, 194
Beneath-beyond method, 135
binarySearch program, 17-19
Binary search trees, 38-47

binary trees:
defined, 38-40
empty, 38
external nodes. 38-39
internal nodes, 38
size of, 38
traversal of, 43

braided, 48-54
constructors/destructors, 41-42
defined, 40-41
inorder traversal, 43-44
inserting items, 44-45
randomized search trees, 55-67
removing items, 45-47
searching, 42-43
SearchTree class, 41

Binary space partition (BSP) trees, 226, 248-53
analysis, 253

Index

261

Index

Binary space partition (BSP) trees Continued
BspTree: :visibilitySort member function, 253
BspTree class, 250-51
bui ldBspTree member function, 251-52
constructing, 248-50
constructors/destructors, 251-53
defined, 248
performing hidden surface removal, 253
representation. 250-51

Bounding box, 96
Braided binary search trees, 48-54

BraidedNode class, 48-49
BraidedSearchTree class, 49-50
constructorsidestructors, 50
inserting items, 52-53
removing items, 53-54
searching, 52
using the braid, 50-52

BraidedNode class, 48-49
BraidedSearchTree class, 49-50
BspTreet: vvisibilitySort member function, 253
buildBspTree member function, 251-52
buildSchedule function, 176-77

C

C++ language:
data structures, 23-68
use of, 3-4

Cartesian coordinate system, 69
Cells, 228
checkStrip function, 219-20
Chords, 79
Circular linked lists, 25
Circumcircle of points, 164
Classes, 4
clipLineSegment function, 124-25
Clipping, defined, 122
Clip polygon, 122
clipPolygon function, 125-28
clipPolygonToEdge function, 207
Closest pairs problem, 214-20

analysis, 220
checkStrip function, 219-20
closestPoints program, 217-18
cPoints function, 218
processing points in the strip, 219
splitY function, 219
top-level program, 217-18

closestPoints program, 217-18
Cocircular set of points, 164
Complexity measures, 8-10

amortized-case running time, 9-10
average-case running time, 9
worst-case running time, 9

Computation, models of, 7-8
Computational problems, defined, 2
Constructors, 4, 30-31

binary search trees, 41-42
braided, 50

Contour-finding problem, 183-91
Contour segments, 183
Convex hulls:

analysis, 115-16
boundary point, 112
defined, 112-13
finding, 112-16

insertion hull, 113-15
interior point, 112-13

convexPolygonIntersect program, 157-59
Convex polygons, 79-80

intersection of, 154-62
Convex polytope, 206
Coordinate system, 69
cPoints function, 218
Crossing class, 175-76
Current edges. 155
Cyrus-Beck algorithm, 122-25, 135

D
Data abstraction, 24
Data structures, 3, 23-68

binary search trees, 38-47
components of, 23-24
defined, 23-24
geometric, 69-104
linked lists, 25-28
lists, 28-35
stacks, 35-38

Dead edges. 164
Dead segments, 177
Decision trees, 18-19
Degenerate polygons, 79
Delaunay triangulations, 162-70

delaunayTriangulate program. 165
hullEdge function, 168
point-set triangulation theorem, 163
triangle function, 168
updateFrontier function, 167

Depth-sort algorithm, 146-54
preliminaries, 145-46

Depth sorting, defined, 146
depthSort program, 148-50

list of triangles, refining, 152-54
mayObscure (p, q) function call. 150-51
overlappingExtent (p, q, 2) function, 149-50
projectionsoverlap function, 151-52
refineList function, 152-53
shuffleList function, 150
splitTriangleByPlane function, 153-54
triangleCmp comparison function, 149
two triangles, comparing, 150-52

Destructors, 4. 30-31
binary search trees, 41-42

braided, 50
Diagonals, 79
Dictonary order relation, 75
Disjoint nodes, 240
Divide-and-conquer algorithms, 15, 203-25

closest pairs problem, 214-20
analysis, 220
checkStrip function, 219-20
closestPoints program, 217-18
cPoints function, 218
processing points in the strip, 219
splitY function, 219
top-level program, 217-18

findMin function, 203-4
intersection of half-planes, computing, 206-8
kernel, finding. 208-9
merge hull, 212-16

analysis, 216
bridge function, 214-16
merge function. 214

262

Index

mergeHull program. 213
merging two convex hulls. 214-16
hull function. 213-14
supporting line function, 216
top-level program, 213-14

merge sort, 20X6
polygon triangulation. 220-24

analysis. 223-24
findConvexVertex function, 222,223
finding an intruding vertex, 222-23
findIntrudingVertex function. 222, 223
theorem, 220
top-level program, 221-22

Voronoi regions:
analysis, 212
finding, 209-11
Voronoi diagrams, 211-12
voronoiRegion program, 210

Dormant edges, 164
Dormant segments, 177
Doubly linked lists, 25

E
Edge3D class, 99-100
Edge ADTs, 3
Edges. 88-95

Edge class, 88-89
isVertical member function, 94
slope member function. 94
y member function, 95

edge rotations, 89-90
finding the intersection of two lines, 90-94
polygons, 78

edgeType (a, e). 118
Empty binary trees, 38
Empty lists, 28
endTransition function, 200
End vertex. 194
Event points, 173

F
FindContour program, 186-87, 191
Frontier. triangulation, 164

G
Geometric data structures, 69-104

edges, 88-95
finding the intersection of a line and triangle. 100-103
geometric objects in space. 95-100
points, 73-78
polygons, 78-88
vectors, 69-73

Geometric objects in space, 95-100
edges, 99-100
points, 95-96
triangles, 96-99

giftwrapHull program, 139-40
Gift wrapping method. 139-41

analysis, 141
Graham scan, 116, 141-45

grahamScan program, 143-44
Grid method:

spatial subdivision, 228-31
analysis, 231

constructors/destructors, 229-30
performing range queries, 230-31
representation, 228-29

H
halfplanelntersect program, 207-8
Half-planes:

computing intersection of, 206-8
analysis, 208

redundant, 206
Header node, 28
Head position, lists, 28
Heap sort, 47
Hidden surface removal problem, 145-54

depth-sort algorithm, 146-54
preliminaries, 145-46

Hierarchical subdivisions, 226
hullEdge function, 168
Hull finding phase, Graham scan, 141

IC masks, 183
Incremental insertion, 105-36

convex hulls, finding, 112-16
defined, 106
insertion sort, 107-8

analysis, 108
line clipping, 122-25
point enclosure:

ray-shooting method, 116-20
signed angle method, 120-22

polygon clipping, 125-28
star-shaped polygons, finding, 109-12
triangulating monotone polygons, 128-35

Incremental insertion paradigms. 3
Incremental selection, 137-72

Delaunay triangulations:
defined, 163-64
delaunayTriangulate program, 165
finding, 162-70
hullEdge function, 168
mate function, 168-70
point-set triangulation theorem, 163
triangle function, 168
updateFrontier function, 167

finding convex hulls:
gift wrapping, 139-41
Graham scan, 141-45

intersection of convex polygons, 154-62
analysis and correctness, 160-61
robustness, 161-62

removing hidden surfaces, 145-54
depth-sort algorithm, 146-54
preliminaries, 145-46

selection sort, 137-38
off-line/on-line programs, 138-39

Inductive hypothesis, 16
Inner chain, sickles, 155
Insertionliull program, 139,183
InsertionHull2 program, 182-83
Insertion sort, 139
Internal diagonals, 79
Intersecting nodes, 240
Intersection point, 154
Intruding vertex, 221

finding, 222-23

263

Index

Invariant, defined, 129n
isConvex (v) function call, 199
isVertical member function, 94

K
Kernel:

finding, 208-9
analysis, 209

polygons. 109
Kernel construction theorem, 208
kernel function, 208

L
Last-in-first out (LIFO) lists, See Stacks
LeftEndpoint class. 175
Linked lists, 25-28

removal of nodes from, 27
types of, 25

List class:
arraytoList function template, 34
append member function, 31-32
first member function, 33
insert member function, 31
isFirst/ isLast/isHead member functions, 33-34
last member function, 33
leastltem function template, 34-35
length member function, 33
ListNode class template, 29-30
next member function, 32-33
prepend member function, 31
prev member function, 32-33
remove member function, 32
val member function, 32

Lists, 28-35
constructorsldestructors, 30-31
elements of, accessing, 32-35
last-in-first out (LIFO), See Stacks
length of, 28
modifying, 3 1-32
positions in, 28
types of, 28

Live edges, 164
Lower bounds, 18-21

decision trees, 18-19
reductions, 19-21

M
mayObscure (p, q) function call, 150-51
Member functions, 4
Merge hull, 116, 212-16

analysis, 216
bridge function, 214-16
merge function, 214
mergeHull program, 213
merging two convex hulls, 214-16
mhull function, 213-14
supporting line function, 216
top-level program, 213-14

Merge sort, 15-16, 204-6
Models of computation, 7-8
Modular programming, 24
Monotone polygons, defined, 128
Monotone polygon theorem. 192
Multidelete stacks. 9-10

N
Negative half-space, triangles, 98
Node: class, 25-27

splice member function, 27-28

0

Object-oriented programming (OOP), 4
Octree, 254
Off-line methods, 138-39
On-line methods, 139
0-notation (big-oh notation), 12-13
o-notation (little-oh notation), 13
overlappingExtent (p, q, 2) function, 149-50

P

Painter's algorithm, 146
Plane-sweep algorithms, 173-202

convex hulls, finding, 182-83
event points:

buildSchedule function, 176-77
Crossing class, 175-76
definition of, 173
kinds of, 174
LeftEndpoint class, 175
representing, 174-76
RightEndpoint class, 175

insertionHull program, analysis, 183
insertionHull2 program, 182-83
intersectSegments program, 176-77
line segments, find the intersections of, 174-81

analysis, 181
sweepline structure, 177-78
transitions, 173-74, 178-81

rectangles:
analysis, 191
AxisParallelEdge class, 185-86
buildSchedule function, 187-88
contour of the union of, 183-91
findContour program, 186-87, 191
representing, 184-86
top-level program, 186-88
transitions, 188-91

regularization, 191-201
analysis, 201
semiregularize function, 193-95
sweepline structure, 195-98
top-level program, 192-95
transitions, 198-200

Point3D class, 95-96
Point enclosure:

ray-shooting method, 116-20
relative to arbitrary polygons, 117
relative to convex polygons, 117
signed angle method, 120-22

pointInPolygon function, 118, 120-22
pointInRectangle function, 227
Points, 73-78

constructors, 73-74
Point class, 73
point-line classification, 75-77
polar coordinates, 77-78
relational operators, 74-75
vector arithmetic. 74

Point-set triangulation theorem, 163

264

Index

Polygon ADTs, 3
Polygon class, 82-86

access functions, 84-85
constructors/destructors, 82-84
polygon splitting, 86
update functions, 85

Polygonization, 109-12
Polygons, 78-88

apex, 109
convex, 79-80

point enclosure in, 86-87
decomposing into monotone pieces, 191-201
defined, 78-79
degenerate, 79
edges, 78
kernel of, 109
least vertex, finding in, 87-88
Polygon class, 82-86
sides, 78
traversal, 78-79
Vertex class, 80-82

Polygon splitting, 86
Polygon triangulation, 220-24

analysis, 223-24
finding an intruding vertex, 222-23
theorem, 220
top-level program, 221-22

Positive half-space, triangles, 98
Presorting phase, Graham scan, 141
Problem complexity, 16-21

lower bounds, 18-21
upper bounds, 17-18

Projection, 100-103
proj ectionsoverlap function, 151-52
Pushdown stacks, See Stacks

a
Quadtrees, 226, 231-38

analysis, 238-42
constructors/destructors, 234-37
performing range queries, 237-38
QuadtreeNode:: quandrant member function, 238
representation, 233-34
support functions, 238-42

R
Randomized search trees, 55-67

constructors/destructors, 61
defined, 55
dictionary ADT, 67
expected performance, 66-67
inserting items, 64-65
RandomizedNode class, 57-60
RandorizedSearchTree class, 60-61
removing items, 65-66
searching, 62-64
using the braid, 61-62

Range searching problem. 227-28
Ray-shooting method, 116-20
Rectangles:

analysis, 191
axes-parallel, 183
AxisParallelEdge class, 185-86
buildSchedule function, 187-88
contour of the union of, 183-91

265

findContour program, 186-87, 191
representing, 184-86
top-level program, 186-88
transitions, 188-91

Recurrences (recurrence relations), 14
Recursive algorithms:

analysis of, 13-16
substitution method, 14-16
telescoping sums method, 14-15

Recursive decomposition, 14
Reductions, 19-21
refineList function, 152-53
Region queries, 227
Regularization, 191-201

analysis, 201
semirregularize function, 193-95
sweepline structure, 195-98

ActiveEdge constructor, 196-97
ActiveElement class, 197-98
activeElementCmp function, 198
ActivePoint class, 197

top-level program, 192-95
transitions, 198-200

bendTransition function, 199-200
endTransition function, 200
isConvex (v) function call, 199
startTransition function, 199

Rendering process. 145
RightEndpoint class, 175
Robustness, 4-5
Round-off errors, 5
Running time, algorithms, 7

S

Scalar multiplication, 69-70
Search key, 7
Search path, 42
SearchTree class, 41
Selection sort, 14, 137-38

as off-line program, 138-39
selectionSort function template, 138

selectionSort, 14, 138
semiregularize function, 193-95
seqtuentialSearch. 8-9

average case running time of, 9
shuffleList function, 150
Sickles, 155-56
Sides, polygons, 78
Signed angle method, 120-22
Singly linked lists, 25
slope member function, 94
Space/time tradeoff. 6-7
Spatial subdivision:

binary space partition (BSP) trees, 248-53
analysis, 253
BspTree: :visibilitySort member function, 253
BspTree class, 250-51
buildBspTree member function, 251-52
constructing, 248-50
constructors/destructors, 251-53
defined, 248
performing hidden surface removal, 253
representation, 250-51

definition of, 226
grid method, 228-31

analysis, 231
constructors/destructors, 229-30

Index

Spatial subdivision Continued
performing range queries, 230-31
representation. 228-29

hidden surfaces, removing, 248-53
methods, 225-55
pointInRectangle function, 227
quadtrees, 231-38

analysis, 238-42
constructors/destructors, 234-37
performing range queries, 237-38
QuadtreeNode:: quandrant member function, 238
representation, 233-34
support functions, 238-42

range searching problem, 227-28
two-dimensional search trees, 242-48

analysis, 247-48
buildTwoDTree function, 244-45
constructors and destructors, 244-46
performing range queries, 246-47
representation, 243-44
splitPointSet function, 245, 247
support functions, 247
TwoDTree:: bui ldTwoDTree, 247-48
TwoDTreeNode:: rangeQuery function, 246-47

Sp1 i tTriangleByPlane function, 153-54
splitY function, 219
S.pop (i),9,10
s.push (x),9, 10
Stacks, 35-38
Star-shaped polygons, 135

defined, 109-10
finding, 109-12

startTransition function, 199
Start vertex, 194
Subquadrants, 232
Substitution method, 14-16
Surrounded nodes, 240
Sutherland-Hodgman algorithm, 125-28,135
Sweepline structures, 173, 177-78, 195-98

ActiveEdge constructor, 196-97
ActiveElement class, 197-98
activeElementCmp function, 198
ActivePoint class, 197

T
Telescoping sums method, 14-15
Traversal, polygons, 78-79
Triangle3D class, 96-98
triangleCrip comparison function, 149
triangle function, 168
Triangles, 96-99

finding the intersection of a line and, 100-103
negative half-space, 98
positive half-space, 98
z-extent, 147

triangulateFanPolygon program, 133-34

triangulatemonotonePolygon program, 130-33, 135
Triangulating monotone polygons, 128-35

triangulation algorithm, 129-34
analysis, 135
correctness, 134-35

Triangulation:
defined, 128
Delaunay triangulations, 162-70
frontier, 164
polygon, 220-24

Two-dimensional range query, 227-28
Two-dimensional search trees, 242-48

analysis, 247-48
buildTwoDTree function, 244-45
constructors and destructors, 244-46
performing range queries, 246-47
representation, 243-44
splitPointSet function, 245, 247
support functions, 247
TwoDTree:: buildTwoDTree, 247-48
TwoDTreeNode:: rangeQuery function, 246-47

Two-dimensional tree, 226

U

updateFrontier function, 167
Upper bounds, 17-18

V
Vectors, 69-73

addition, 69-70
scalar multiplication, 69-70
subtraction, 70-71

Vertex, 194
Vertex chain, 78
Visit function, 40-41
Voronoi regions:

finding, 209-1 1
analysis, 212

Voronoi diagrams, 211-12
voronoiRegion program, 210

Voronoi region theorem, 210

W
Windows, list, 28
Worst-case running time, 9

y
y member function, 95

z
Zero vector, 69
z-extent, triangles, 147

266

COMPUTATIONAL
GEOMETRY

AND

COMPUTER
GRAPHICS IN C++

MICHAEL J. LASZLO

This book provides students and programmers with practical and relatively simple methods for
solving basic problems from the fields of computational geometry and computer graphics. By covering
a number of key problems and solutions, Laszlo provides an introduction to these fields that is both
interesting and accessible to the reader.

COMPUTATIONAL GEOMETRY AND COMPUTER GRAPHICS IN C++ includes:

* fully functioning, object-oriented C++ implementations ofpractical data structures and algorithms
* coverage of the fundamentals of the design and analysis of algorithms, data structures, and geo-

metric data structures as they relate to computational geometry and computer graphics methods
* intuitive discussions, complemented by numerous examples and figures

ABOUT THE AuT ruotR:

Michael J. Laszlo received his Ph.D. in Computer Science from Princeton University in 1987, special-
izing in computer graphics and computational geometry. He was an assistant professor at the
University of Illinois at Chicago and at the University of Miami before becomfi-g an associate professor
at Nova Southeastern University in 1994. Dr. Laszlo enjoys programming in a variety of languages,
creating computer graphics imagery, teaching, swimming, hiking, and spending time with his family
(though not in that order).

PRENTICE HALL
UPPER SADDLE RIVER, NEW JERSEY 07458 ISBN -I13B-E29084E -5

9 78032 908429

