THE EXPERT’S VOICE® IN.NET

Visual C++ 2005
for G# Developers

Featuring C++/CLI

Dean C. Wills

Foreword by Jason Shirk, Microsoft Visual C++ Team

Apress:

Pro Visual C++ 2005
for Developers:
Featuring C++/CLI

Dean C. Wills

Apress-

Pro Visual C++ 2005 for Developers: Featuring G++/CLI
Copyright © 2006 by Dean C. Wills

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-59059-608-1
ISBN-10: 1-59059-608-0
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Ewan Buckingham

Technical Reviewer: Alvin Chardén

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,
Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Project Manager: Elizabeth Seymour

Copy Edit Manager: Nicole Flores

Copy Editor: Heather Lang

Assistant Production Director: Kari Brooks-Copony

Senior Production Editor: Laura Cheu

Compositor: Dina Quan and Kinetic Publishing Services, LLC

Proofreader: Elizabeth Berry

Indexer: Brenda Miller

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Source Code/Download
section.

For Ariel and Anna

Contents at a Glance

FOrewWOrd.
Aboutthe Authoro
About the Technical Reviewer i,
Acknowledgments
Preface . ..o
INtrodUCtiono

PART 1 Fast Track to C++/CLI

CHAPTER1 HellooWorld ..
CHAPTER 2 There’s No Place LikeHome
CHAPTER 3 Syntax i,
CHAPTER4 C#toC++/CLI........
CHAPTERS Tools...............
CHAPTER 6 DataTypescciiiiiiiiiiiii.
CHAPTER 7 Arrays................oiiii i,
CHAPTER 8 Polymorphism and Protection.......................

PART 2 Details

CHAPTER 9 Pointers and Unsafe Code...........................
CHAPTER 10 PropertiesandEvents
CHAPTER 11 Expressions and Operators..........................
CHAPTER 12 The End of the Beginning
CHAPTER 13 Fun,Fun,and MoreFun.............................

Vi

PART 3

CHAPTER 14
CHAPTER 15
CHAPTER 16
CHAPTER 17
CHAPTER 18
CHAPTER 19
CHAPTER 20

Advanced Concepts

GENBIICS 233
IntroductiontoTemplates..................................... 259
Advanced Generics & Casts................................... 281
The Preprocessor.o 297
Native C++......... 315
Multiple Language Support 335
Final Thoughts................... 351
.. 371

Contents

FOrBWOI. . .. Xvii
Aboutthe AUTNOT ... o Xix
About the Technical Reviewer XXi
ACKNOWIBdgMENtS Xxiii
PrElaCE . .. XXV
Introduction XXVii

PART 1 Fast Track to C++/CLI

CHAPTER1 Hello,World.. 3
Starting the Visual Studio 2005 Console............................. 4

Retrieving the Source Files o i 4

Executing HEllOCPP.CPP . ..o v oo 5

A Quick Tour ofthe Visual C++ IDE 5

Understanding Projects and Solutions 6

Understanding the Differences 7

Window Layout............. ... 10

Building, Executing, and Debugging........................... 12

SUMMArY ... 14

CHAPTER 2 There’s No Place LikeHome................................ 15
Developingthe Program.............. ... i 15

DealMeln. 15

The Completed C# Program....................ccoiviiiinnn.. 18

A Quick Look atthe Code....................... il 19

Projects and Solutions ... 19

AQUiCkLOOK. 20

Building and Executing the Project............................ 21

Binding C++.......oo 22

vii

viii CONTENTS

Doing the Shuffle Withoutthe IDE.................................. 26
Basic Command-Line Compilation............................ 26
UsingaModule i 26

SUMMANY ... 27

CHAPTER 3 Syntax 29
C# class (Reference Type)ccooviiiii e 31
C#struct (Value TYpe) 31
Caveat...... 31
Lackof Locality o 32
The C++Approach 33
Types of Member Access Operators........................... 34
Keyword Differences. il 34
Arraysand Functions. 36
The Conversion Operators ..., 37
Memory Allocation. 38
Accessibility and Visibility.l 38
Properties, Events, and Delegates 39
GENENICS ... 39
BUI-iNTypes 40

SUMMANY ... 40

CHAPTER4 C#toC++/CLI.......... 41
Add the Keyword namespace Afterusing 43
Add the Punctuator ~ to the Reference Type Declarations. 43
Modify the Built-inTypes 44
Change the Array Declarations and Type Parameters............ 45
Change the Enumeration Declarations. 45
Change the Object Allocations and Instantiations 46
Change the Pass by Reference Parameters 46
Change the Class Member Access Operators for Handles. 47
Change the Separators for Namespaces and Static Accesses 47
Change the Class Declarations 48
Add the Functionmain() L. 48

SUMMArY 50

CHAPTER 5

CHAPTER 6

CHAPTER 7

CONTENTS

Tools 51
Lutz Roeder’s .NET Reflector.................. i, 51
What Is Reflection? i i 51
Lutz Roeder’s NET Reflector................................. 52
Installing and Loading .NET Reflector and the
C++/CLIAdd-in. ... 54
Executing .NET Reflector il 56
Instant C++ 57
Tools Shipped with Visual Studio 58
Microsoft .NET Framework IL Disassembler (ILDasm) 58
Dependency Walker (Depends)ccoviiiiiiinn. 58
More Visual Studio Tools.oo i 59
SUMMArY 60
DataTypes..l 61
CHTYPES VS, CH+ TYPES. .. oot 61
The C++ structKeywordt 62
Native Classes ...t 62
Value Types and Reference Types.t 62
Dynamic Memory Poolsl 63
Garbage Collection ... 64
Initialization. 64
BoXiNg 73
Constructor Forwarding ... 77
C#Partial Classescoooviiii i 78
Reference Typesonthe Stack...................... 79
BasiC TYPeS. . .ot 79
Basic Type Differences ...t 79
Missing Keywords 80
Marshaling Required.oo i 80
SUMMANY ... e 82
ArraYS. ... o 83
Native Arrays 83

Managed Arrays.t 84

ix

CONTENTS

CHAPTER 8

PART 2

CHAPTER 9

Managed Array Details 84
ASimple Example 84
Arrays as Parameters and ReturnValues. 86
Sophisticated Example 91
Higher Dimensional Arrays. ...t 93

Native Arrays 97

SUMMANY ... 97

Polymorphism and Protection.............................. 99

Polymorphism 99
Inheritance ... 100
Interfacesc 102
Abstract Classes ... 105
Sealed Classes.t 106
Static Classes. ... 106

Methods 107
VirtualMethods i 107
Working with Methods 109
Virtual Methods Summary 115
Accessing Base Class Fields and Methods 115

Protection Mechanisms i, 117
Visibility 117
Accessibility 119
Inheritance 119
Declaring ref structand refclass 122
Overload Resolution. ..., 123
Hide by Name and Hide by Signature......................... 124

SUMMArY ... 126
Details

Pointers and Unsafe Code 129

The C# View: ABlessingandaCurse.oovn... 129
Pointers: A Definitionanda Caveat........................... 130
Valid Targetsand Syntax. 131
Common Pointer Operatorsccoiiiiii it 132
Example of PointerUsage.l 132

Verifiable Code and Pointer Usagein CG#...................... 132

CONTENTS

Side Effects of Writing Unsafe Code.......................... 133
PointerUsage inC++ ..., 134
Verifiable Code inC++............... i 134
CH+Handles ... 137
C++/CLIAddress Operators.cooat. 138
Complex Examples ... 139
Nightmares 140
SUMMArY 140
CHAPTER 10 PropertiesandEvents 141
A Basic Example Using PropertiesinG# 141

A Basic Example Using Properties in C++/CLI................. 143
ALook Insidethe Grammar................................. 144
Trivial Properties 145
Indexed Properties.c i 146
CHProperties ... 149
Advanced Properties of Properties 151
Property Caveats 158
Miscellaneous Property Details.............................. 159
Eventsand Delegates.............. ... i 159
Delegates ... 160
Multicast Delegates. ... 166
Instance Delegateso, 167
Events 168
SUMMArY ... 170
CHAPTER 11 Expressions and Operators................................ 171
Operator Overloading ..ot 173
Complex Numbers, a Basic Example 174

A Mathematical Diversion: Numbers Modulo Primes 179
Implicit and Explicit Conversions of Built-in Types.............. 182
User-Defined Conversions 188
CLS-Compliant Operators. ..., 190
SUMMANY ... 194
CHAPTER 12 The End of the Beginning.................................. 195
Include Files 195
Forward Declarationsccooiiiiiiin.. 195

The Problem 196

Xi

Xii

CONTENTS

CHAPTER 13

TheSolution 196
Include File Caveats. 196
Types of Declarationscoiiiiiintt. 197
Scope Resolution Operator ...ttt 199
Nullable Types 201
Examplesin C#and C++/CLI 201
The 2?2 Operatorin C#.co i, 203
UndertheHood il 204
Checked EXpressions ... 205
Anonymous Methods 206
Context-Sensitive Keywords, 206
Method Group Conversion ...ttt 207
Constructor-Initialized Variables 208
Expression Statements with No Effect. 209
Exceplions 210
Basic Exception Handling......................... ..., 210
Function-Try Blocks. 213
SUMMArY ... 215
Fun,Fun,and More Fun.................................... 217
Dropping Light Bulbs 217
Initial Thoughts. ... 217
A Rough Approximation 218
AlittleAlgebra.............. 218
Discovering a Recursive Algorithm........................... 219
Implementation 221
FirstDrop. ... 222
Bridge Crossingcovvii 222
Background. 222
Algorithm and Implementation 223
The Code.o 224
Taking the Algorithm foraSpin.............................. 226
Dealing with Cannibals................., 226
ASSUMPLIONS. 227
The Code. ... 227

SUMMANY ... 229

PART 3

CHAPTER 14

CHAPTER 15

CHAPTER 16

CONTENTS

Advanced Concepts

GENEIiCSco i 233
AQueueofTasks. ... 233
C# Implementation Under NET1.0 233
Moving to GENeriCSt 239
Creating Generic Classesin C++/CLI......................... 252
SUMMArY ... 257
Introductionto Templates................................. 259
Comparison with Generics. ...t 259
Syntactic Differencesl 260
SUMMANY. 260
Compilation Process ..., 261
Templates Don’'tReally Exist 263
Constraining FreedomIsa Good Thing 264
The Template Paradigm 264
Specialization. 265
Partial Specialization................... 266
Partial Ordering of Function Templates 268
Nontype Template Parameters. 270
Complex Numbers. ... 273
OVBIVIBW . . o 273
Mathematical Formulas 274
Generic Implementation........................ ... 274
Templatestothe Rescue ...l 275
Core Differences: Templates and Generics......................... 279
SUMMANY ... 279
Advanced Genericsand Casts 281
ConstraintS 281
Kindsof Constraints 281
TypeConstraints i 282
Satisfying Type Constraints 284
The gecnew Constraint. 285
The value class Constraint.................................. 285
Therefclass Constraint 286

SUMMANY. 287

Xiii

Xiv CONTENTS

Cast Operators. 288
Runtime Type Identification 288
const_cast<>() 289
static_cast<>()co i 290
dynamic_cast<>()............ooiii i 290
reinterpret_cast<>()........... ... i 292
safe_cast<>(). ... 292
AnAdder ... 293
GenericDelegates..................o i 295

SUMMANY ... 296

CHAPTER 17 The Preprocessorcooveen... 297

C# Preprocessor Commands.c.oiiiiiiin... 297
Code RegiONSo 297
Conditional Code Compilation 298

C++ Preprocessor Commands, 298
Full Text Substitution Language 299
Debugging Support ... 299
FunctionSyntax L. 299
Concatenation Operator ...t 300
String Operator. 301
Macros on Macros.o i 301
Special Preprocessor Predefined Macros 303
#define. 304
#undef 305
Conditional Directives. ..., 305
#include. ... 305
BUSING ..o 306
1110 S 306
BPragma 306
Some Useful Pragmas. ...t 307

SUMMANY ... 314

CHAPTER 18 Native C++ 315

Theiostream Library................. .. L 315
PointerstoMembers..............l 316
Operatorsnewanddeletecoiiiiit. 319

J2COrSCope . ..o 321

CHAPTER 19

CHAPTER 20

CONTENTS

fZcwehar L. ..o 322
Default Parameters 322
C++ Runtime Library Functions.................................. 323
stdio.h ... 323
stdlib.h. ... 324
OtheriInclude Files................ .. il 325
ST 326
VeClor. ... 326
0T 327
ISt . 333
auto_ptr.... .. 333
SUMMANY .. 333
Multiple Language Support 335
NET Language Integration, 335
Gathering Metadata........................l 336
Tracking StudentsExample, 336
SUMMANY. ... 343
NET Interoperability 343
WaitfortheBeep...........o i 344
C#Platforminvoke L. 344
C++ Built-in Support. 346
Using C++forCé#InterOp. ol 347
SUMMANY ... 349
Final Thoughts .. 351
Standard Dispose Patternl 351
Destructors and Finalizersooinl. 352
ImplementationinG# 352
Implementation in C++/CLI................................. 354
For FurtherStudy.............. .. i 355
Function Objects ... 355
Special Pointers. 357
Interior Pointers ... 357
Pinning Pointers. 358
Templates Revisitedc i 359
Class Hierarchy Pitfalls. it 361

Type Aliases (typedef). ... 364

Xv

XVi

CONTENTS

Friends. 366
VolatileData............ 366
Constantand MutableData...................................... 367
Attributes. 368
More on IntelliSense and Source Browsing 369
SUMMANY .. 369
.. 371

Foreword

C++/ CLI was originally envisioned as a high-level assembler for the .NET runtime, much like
C is often considered a high-level assembler for native code generation. That original vision
even included the ability to directly mix in IL with C++ code, mostly eliminating the need for
the IL assembler ilasm.

As the design of C++/CLI evolved, this vision was scaled back. We, the Microsoft C++
team, still wanted C++/CLI to be a systems programming language for .NET, but we decided
that exposing the full capabilities of the CLR to other languages wasn't a good idea. After all,
language interoperability is a significant factor in the success of .NET.

We knew C++ programmers would expect powerful features unavailable in other lan-
guages, like C#, so we decided exposing common C++ constructs in a familiar manner when
using C++/CLI was critical. For example, the RAII idiom frequently used in ISO standard C++
programs needed to work in a similar syntactic manner when using a reference type. Likewise,
programmers expected templates to work seamlessly with reference types, value types, and
interfaces.

We were a bit surprised that programmers found C++/CLI’s predecessor Managed C++
unacceptably ugly. We thought new keywords should have leading double underscores,
because that was the way to add such extensions while conforming to standard C++. Early
in the C++/CLI design process, we looked for ways to make the language look nice and still
contain strictly conforming extensions. While contextual and whitespace keywords are a little
unconventional (and a bit of a pain to implement), they certainly make C++/CLI look much
nicer and give it that first-class feel we were looking for.

In the end, I think we found the right balance between C++ power and familiarity and a
clean syntax to enable access to the .NET runtime. Hopefully, you'll enjoy using C++/CLI as
much as we enjoyed creating it. After working with Dean on the Visual C++ compiler front end,
I know you'll find his insights and explanations valuable as you learn, and eventually master,
C++/CLL

Jason Shirk

Software Development Engineer
Visual C++ Front End

Microsoft Corporation

Xvii

About the Author

DEAN C. WILLS is a freelance programmer with over 20 years’ experience
in system programming areas such as BIOS, assembly language, C, and
C++. He is the owner of Sandpaper Software and has worked for com-
panies like Compucorp, Cyrix, National Semiconductor, and Virtio. He
was a developer on the Visual C++ front end during the Visual Studio 2005
ship cycle.

Xix

About the Technical Reviewer

ALVIN CHARDON grew up in Ponce, Puerto Rico with a passion for academic
competitions, computers, and basketball. He obtained bachelor degrees in
computer engineering and electrical engineering at the University of
Puerto Rico, Mayagiiez Campus (UPRM), where he was valedictorian.

Already in love with C++, Alvin first encountered .NET in 2001 dur-
ing Microsoft internship. Since 2002, he’s been a Microsoft employee.
He’s been a member of the Visual Studio and Visual C++ teams as a
el software design engineer and occasionally plays the role of program
manager or software developer. Alvin has also worked in the front end of Microsoft’s C++
compiler, assisted in the design and testing of C++/CLI, and helped develop the future road
maps for the IntelliSense and Browsing technologies. He now works on the Visual C++ IDE
team, where he contributes to the development of new testing methodologies, including
compiler-abstract syntax-tree-based test generation and engine-level UI testing. Alvin has
published on MSDN and has been featured in publications ranging from the newspaper
El Nuevo Dia and .Code magazine in Latin America to waw.microsoft.comin the United States.

Alvin is still part of the Visual C++ family and loves coming to the office every day. When
he is not thinking C++, he likes to read, write stories, go dancing, play a good game of chess or
basketball, and occasionally bungee jump or paraglide from a cliff.

XXi

Acknowledgments

A work of this magnitude is always greater than the sum of its parts, and I feel likely to carry on

in this fashion by forgetting to acknowledge half of the people who were vital to its production.
Perhaps it’s best to play it safe and thank groups rather than individuals. That said, let me cat-

egorically thank my family and friends, the Microsoft Visual C++ team, and everyone at Apress.
Those of you who deserve special mention, please feel free to add your own names here:

1.

XXxiii

Preface

Ireined my horse to the precipitous brink of a black and lurid tarn that lay in unruffled
lustre by the dwelling, and gazed down—>but with a shudder even more thrilling than
before. ..

—Edgar Allan Poe, “The Fall of the House of Usher”

Why C++?

Shall I begin this book by confessing that many a harried day and restless night have I pon-
dered this exact question? Though that might be a bit melodramatic, stating the exact opposite
(that I've never even considered it) would be an outright lie. Luckily, the answer is clear. No
other high-level language offers you the same degree of control over the system. In C++, you
can specify exactly what you want to occur, make the difficult design choices along the way;,
and customize general-purpose algorithms to fit your application. For this reason, C++ is the
first choice for operating system writers, game developers, and for that matter, writers of large
systems and high-performance applications everywhere. It simply allows you to do whatever
you want to do.

However, sometimes what you really want to do is not worry about all the things you
could do and just get down to producing a simple, modular, secure application. Enter C#, fol-
lowed by Visual C++ 2005 and C++/CLI. C# is a language designed with a .NET mind in a C++
body. It strips out many of the complexities of C++, but it limits what you are able to do at the
same time. C++/CLI aspires to harness the power of the .NET Framework and managed code
without sacrificing any of the power of C++.

What’s in a Name?

C++/CLI is a bit of a misnomer. It is a set of extensions that allow C++ to expose the power of the
Common Language Infrastructure (CLI). Really, it portends the future of C++. There is no reason
that C++/CLI features, such as events and properties, could not be a part of standard C++.

In reality, the CLI is just an abstraction of a different target platform, like Win32. Just
because C++/CLI targets a different platform and supports features endemic to that platform,
like generics, doesn't mean that it’s a different language. It’s still C++.

Mix It Up a Bit

One of the most powerful features of Visual C++ 2005 is the ability to create mixed-platform
code effortlessly. You can begin in native C++, switch to C++/CLI, call C#, and unwind back to
native C++ with ease. I'll cover this in detail in Chapter 19.

XXV

XXVi

PREFACE

The Flow of Progress

If C++/CLI were an animal, that animal would have to be a salmon, because migrating from
C# to C++ seems a lot like swimming upstream. Just remember that when salmon swim
upstream, they are revisiting their roots, and that’s what we’re doing with C++/CLI. There are
still many compelling reasons to choose C#, but there are as many to choose C++. Now,
programmers have more freedom than ever in selecting the language that is best suited to
developing their applications.

Obtaining Updates for This Book

I think being human is a good thing. Acknowledging that to err is human, of course, gives any
author a unique feeling of inadequacy that can only be earned by struggling for months to get
something exactly right and blowing it in the end. Since it would be presumptuous to expect
this book to be the one that came out perfect on the first pass, instead, let me pledge to con-
tinue to strive to get it right. Any errata, as well as contact information for reporting errors, will
be published on the Apress web site. If you would like to contact me directly, you can e-mail
me at dean@sandpapersoftware.com.

Introduction

... for as ten millions of circles can never make a square, so the united voice of myriads
cannot lend the smallest foundation to falsehood.

—Oliver Goldsmith

Apology

This is a book built on a presumption, and that presumption is about you. It presumes that
you have C# experience and that you know your way around the .NET Framework.

Well, I apologize up front. In law school, Ilearned that a presumption may be no more
than an assumption that becomes the foundation of a faulty argument. In this case, we might
be building our foundation on quicksand.

In this Introduction, I will attempt to fortify your knowledge a bit, with the aim of short-
ening the distance between the average reader and the expert, so that all will profit from the
remainder.

The .NET Framework

The .NET Framework is often touted as being merely Microsoft’s answer to Java, but that’s far
too cynical a summary. The reality is that the inadequacies of Java and Win32 opened up busi-
ness opportunities for something big to happen, and .NET was it.

With .NET, Microsoft turned software design upside down. The .NET Framework is built
on open standards in the software industry and answers growing user concerns over interop-
erability, reliability, and security. It is built on Unicode, XML, HTTP, SOAP, and others, and it
does not mandate C++ as a single, correct language choice. The file formats are all public and
standardized, and there are now several .NET-compatible languages.

The Common Language Infrastructure

The Common Language Infrastructure (CLI) is a standard that describes the execution engine
and file formats of .NET. All .NET implementations follow this standard, although they may
implement the various elements in different ways on different platforms.

The .NET Framework on Windows is made up of an execution model, called the Common
Language Runtime (CLR), and a set of libraries that implement the various features of .NET.
Since the CLR complies with the CLI, it is said to be CLI-compliant. In fact, the CLI was written
in tandem with the development of the CLR, selecting a core subset that would be portable
without sacrificing the essence of the CLR.

Xxvii

Xxviii

INTRODUCTION

The CLR has elements that go beyond the specifics of the standard. For example, the
standard specifies that the Virtual Execution System (VES) be able to execute Common
Intermediate Language (CIL) instructions, but it does not mandate how. The implementa-
tion must determine whether CIL instructions are translated to native code at load time or
at runtime. Future hardware architectures may even run CIL natively. Microsoft’s imple-
mentation in the CLR uses a special compiler called a just-in-time (JIT) compiler, which
translates the CIL to native code during execution only as needed. This is a CLR optimiza-
tion that is not specified by the CLI standard.

The CLR is the Microsoft Windows implementation of the execution engine, but .NET was
not designed to run exclusively on Windows. Several non-Windows implementations exist,
and they run on the Mac, Unix, and Linux operating systems. These include Mono, Rotor, and
Portable .NET, and they run under FreeBSD and Mac OS X.

Elements of the CLI

The CLI standard defines the various components that make up the CLI, as well as the CIL and
the comprehensive data format called metadata. The primary components follow:

» The VES, which executes code. There are provisions within the CLI for executing both
CLI-compliant code, called managed code, as well as code compiled by existing com-
pilers, called unmanaged or native code. Managed code that has been translated to
a particular host is called managed native code.

* The CTS, which defines the types available to a CLI-compliant language.

* The CLS, which defines language interoperability rules for items that are exported from
an assembly. It does not apply to internal implementation within an assembly. It affects
a subset of the CTS types as well as methods that pertain to these types.

¢ Assemblies, which are units of deployment for one or more modules. Applications
themselves are not defined by the standard, but the VES defines how to isolate applica-
tions running in the same operating system process using application domains. In
C++/CLI, variables may be per application domain or per process. We will revisit this in
Chapter 20.

¢ Modules, which are building blocks of the assemblies.

* Metadata, which contain the descriptions of the types, methods, and attributes con-
tained within the module, as well as a manifest, which describes how the module is
deployed. Attributes (see Chapter 20) are user-definable types that can extend CLI-
compliant languages. The manifest includes versioning information for the module
and solves the age-old Windows problem of DLL hell. Modules also support reflection,
which is the process of discovering information about a module, and the types con-
tained therein, by examining the metadata.

¢ Portable Executable (PE) File Format.

¢ The CIL, which is the managed instruction set. The Microsoft Windows CLR implemen-
tation of the CIL is called Microsoft Intermediate Language (MSIL).

» Exceptions and exception handling, which are given special mention in Chapters 12
and 20.

INTRODUCTION

Standard Libraries

The CLI defines a standard set of libraries to provide the CLI types and runtime mechanisms.
The libraries are fairly self-explanatory and include the following:

e Runtime Infrastructure Library
¢ Base Class Library

e Network Library

* Reflection Library

e XML Library

* Extended Numerics Library

Extended Array Library

The CTS

The CTS defines various types and accessors. A quick overview of the principal elements fol-
lows, and we will revisit these in context later in this book.

Type Classes

The CTS supports two basic kinds of data types—value types and reference types—each of
which has advantages and disadvantages. Since they each have a long list of characteristics
and instructions to say how they can and cannot be used, it is difficult to describe them suc-
cinctly beyond saying that value types meet all of the listed requirements for classification as
avalue type. Introducing them according to the way they are intended to be used is more
accurate.

Value Types

A value type is a data type that typically contains a small amount of data. It is passed between
methods by value, by copying all of the data. Built-in types including int and float are value
types. Value types are typically allocated on the stack or statically initialized memory, which is
not particular to an instance. Value types may contain other value types. A C# struct or enumis
avalue type. Value types are covered in Chapter 6.

Reference Types

A reference type is a data type that typically contains a large amount of data. It is passed
between methods by reference, by copying just a handle to the data. System.0bject is a refer-
ence type. Reference types are typically allocated on the managed heap. Reference types may
contain either value types or reference types and may also extend other reference types. A C#
class or string is a reference type. Reference types are the houses; value types are the boards
and nails. Reference types are covered in Chapter 6.

XXix

XXX

INTRODUCTION

Boxing and Unboxing

Most .NET methods accept reference types as parameters. Value types may be converted to

a managed-heap-based reference type object by a process known as boxing. The reverse of
this process, extracting the core value type from the interior of a boxed object, is called
unboxing. In general, boxing is done implicitly, but unboxing must be done explicitly because
of information loss. Boxing and unboxing are covered in Chapter 6.

Properties

Types contain fields that are instances of reference or value types. Properties are methods to
get and/or set data that mimic a field. Although properties do not perform as well as direct
data access, they allow controlled and independent access to the act of reading or writing
data objects. Properties are covered in Chapter 10.

Interfaces

An interface is an abstract type that is intended to represent a contract between the class
designer and the class consumer. Interfaces are similar to C++ abstract base classes with pure
virtual functions. Unlike reference types, they support multiple inheritance, so a single class
or interface may be made up of several interfaces. Interfaces are covered in Chapter 6.

C#

C#is a CLI-compliant language. This means that it produces metadata in the correct file for-
mats. C# primarily uses CTS types, and the types are manipulated using CIL instructions.

Managed C++
Managed C++ was an evolutionary step in the development of C++/CLI. It is still supported by
Microsoft Visual C++ 2005 using the /clr:0ldSyntax command-line option. I am not going to
cover it in this book.

Why? Some beautiful quotes from fellow authors follow to answer that:

When I joined Microsoft back in the winter of 2001, it was on the condition that they
accept the fact that I considered their new product, Managed Extensions for C++, an
abomination.

—Stan Lippmann
I'd rather have my teeth drilled than work with managed C++.
—TJesse Liberty

Personally, I don't think the managed extensions for C++ are as bad as all that. (Note to
self: Send Jesse a copy of this book. He’s earned it for that quote.) They just have the feel of
extensions rather than a language, which makes them somewhat counterintuitive. C++/CLI
is a true extension of C++, a language within a language, which looks at .NET differently. For

INTRODUCTION

example, the managed extensions for C++ deal with reference types using a literal pointer to
an item on the managed heap (R _ gc *r), where C++/CLI introduces the concept of a handle
to a type (R*r). In addition to being cleaner, it’s also more intuitive when migrating from C#
and mixing native and managed code.

C++/CLI

C++/CLI, or C++ for the CLI, is also a CLI-compliant language. At the same time, its capabili-
ties go far beyond that. You can write CLI-compliant code, or you can write code that executes
natively on platforms lacking .NET. The choice is yours.

The Common Language Runtime

The CLR is the Microsoft Windows implementation of the CLI. It is CLI-compliant, and it has
a host of features that go beyond the CLI, including the following:

* Security: The CLR allows you to add a digital signature to your assemblies using the
strong name (SN) utility. Strong-named assemblies may be added to the global assem-
bly cache (GAC).

* JIT Complier: As introduced previously, the JIT compiler converts CIL into managed
native code for host execution. Compiling the CIL is significantly faster than interpret-
ing it, and JIT compilation reduces latency by compiling as needed rather than at load
time.

A Note About the C++ Compiler

The C++ compiler has several compilation options, as it is able to produce managed code,
native code, or a combination of the two. I will go over the implications of the various options
in Chapter 9. Here’s a preview to tide you over until then:

e /clr:safe: Produces an IL-only verifiable output file and is used with managed types
and managed code only.

e /clr:pure: Produces an IL-only output file (no native executable code) and is used with
managed and native types and managed code only.

e /clr: Produces a mix of native and IL. Managed and native types and managed code and
native code are allowed.

* <default>: No option specified. The program compiles for native execution.

Summary

When I started programming, you needed to know how to use octal, punched cards, and
teletype machines; a personal computer was a fancy programmable calculator; and raw
intelligence and esoteric knowledge were the elements of power.

XXXi

XXXii INTRODUCTION

The Wild West of computer programming is gone. Today the game is different. Everyone is
just a surfer on a wave of changing technology, and the ability to find, consume, and classify
information quickly is far more important than the ability to memorize it.

.NET, C#, and C++/CLI are all examples of this difference. Hopefully, this text will help you
gain the information you need to catch and hold this wave until the next one comes along.

PART 1

Fast Track to C++/CLI

CHAPTER 1

Hello, World

Consistency is the last refuge of the unimaginative.

—Oscar Wilde

Since time immemorial, which pretty much dates back to the release of the Kernighan and
Richie book on C, there has been a tradition of opening a book on C or its descendants with a
short example of how easy it is to display “Hello, World”. This book is no exception. Let’s exam-
ine the C# and C++ versions of “Hello, World” side by side (see Table 1-1).

Table 1-1. “Hello, World” in C# and C++

C# C++
using System; using namespace System;

class HelloWorld
static void Main() void main()

Console.WritelLine("Hello, World"); Console: :WritelLine("Hello, World");
}

As you can see in Table 1-1, the languages are clearly different. On the other hand, C# and
C++ are like French and Italian; although the C++ syntax may appear foreign, the meaning is
clear.

Here are some things to notice:

¢ In C#,Main() is always a method of a class. In C++/CLI (Common Language Infrastruc-
ture), main() is not a class method; it is a global function. It's easy—just remember that
global functions have no class.

* In the same way that you have a unique static member function named Main() in any
C# program, you have a unique global function named main() in any C++ program.
It is possible to get around this requirement in C# and have multiple Main() methods
by embedding them in different classes. You can then tell the compiler using the
/main:<type> option which class contains the startup method. This trick does not work
in standard C++ since main() must be a global function and any versions of main()
would have the same signature and clash in the global namespace.

CHAPTER 1 " HELLO, WORLD

¢ C++ uses :: (colon-colon) to separate namespaces and class names and a dot (.) to
access class members; C# uses a dot for everything. C++ expects you to be more specific
about what you're doing.

* The C++/CLI using statement requires the additional keyword namespace.

Note In Microsoft Visual C++, the entry point can be any function as long as it follows the valid
list of signatures. It can be a global function or a member function. You do this by specifying the
/entry:<function_name> linker option. Standard C++ requires a unique global function named main
with an integer return value and an optional argument list. See Section 3.61 of the C++ standard, ISO/IEC
14882:2003(E). A PDF version of this standard can be downloaded from http://webstore.ansi.org
for a small fee.

Starting the Visual Studio 2005 Console

I bet you're just itching to give this a try. “Real programmers” use the command line, so let’s
start there. We're now going to construct a console application.

Go to the Start menu, and navigate to the Visual Studio 2005 command prompt, as shown
in Figure 1-1.

@l) Visual Studio Remote Tools
il Visual Studio Tools

i Microsoft Visual Studio 2005

4 @ Dotfuscator Community Edition
#8, MFC-ATL Trace Tool

a Spy++
<~ Visual Studio 2005 Command Prompt
@ Visual Studio 2005 Remote Debugger
<P Visual Studio 2005 Remote Debugger Configuration Wizard

@ Microsoft Visual Studio 2005
@ Microsoft Visual Studio 2005 Documentation

Figure 1-1. Select the Visual Studio 2005 command prompt.

This spawns a new command prompt with the environment variables set to work with
Visual Studio 2005. All of the Visual Studio compilers may be run from the command line,
including Visual C++, Visual C#, and Visual Basic.

Retrieving the Source Files

Either pop up notepad.exe (surely your favorite editor) or fetch the source from the Source
Code section of the Apress website. Go to www.apress.com, and search for this book using the
ISBN, 1-59059-608-0.

CHAPTER 1 ' HELLO, WORLD

Executing HelloCpp.cpp

Navigate to the sample directory for this chapter, and go to the HelloWorld subdirectory. Here
is HelloCpp.cpp:

using namespace System;
void main()

{
Console: :WritelLine("Hello, World");

}
Enter the following command:
cl /nologo /clr HelloCpp.cpp

This command directs the C++ compiler to compile this file targeting the Common Lan-
guage Runtime (CLR) and creates a C++/CLI (Common Language Infrastructure) executable.
The executable is a managed assembly that contains metadata and Common Intermediate
Language (CIL), just like C# executables. CIL is also known as MSIL on the CLR.

Let’s execute this example. First, type

HelloCpp

Next, press Enter. You should see the following:

Hello, World

and that’s a good thing.

A Quick Tour of the Visual C++ IDE

In this section, we go over the steps for making an elementary C++/CLI project using the
Visual Studio 2005 C++ Integrated Development Environment (IDE). This is very similar to
creating a C# project.

1. Load Visual Studio 2005.

2. From the File menu, select New Project. My system is set up with Visual C++ as the
default language, so my New Project dialog box looks like the one shown in Figure 1-2.

Navigate to the CLR project types under Visual C++.
Select CLR Console Application under “Visual Studio installed templates”.

Enter the name HelloWorld in the Name text box.

o o & 0

Click OK.

6

CHAPTER 1 ©" HELLO, WORLD

Mew Project

Project types: Templates:

- Visual C++ Visual Studio installed templates
- ATL
ClR 143 ASP.NET Web Service @ Class Library

- General @ CLR Console Application [E] CLR Empty Project
~MFC ﬁaSQL Server Project @Windows Forms Application
- Smart Device IEwmdw&rs Forms Control Library Ewmdows Service

(- Other Languages

H My Templates
(- Other Project Types —

4 Search Online Templates...

A project for creating a console application |

Mame: | HelloWorld |
Location: | C:\Documents and Settings\dcwills\My Documents\Visual Studio 2005\Projects v | [Browse...]
Solution: |Create new Solution b | Create directory for solution

Solution Name: HelloWaorld | []Add to Source Control

0K] [Cancel

Figure 1-2. Creating a new HelloWorld project and solution

By default, Visual Studio 2005 creates new projects in My Documents\Visual Studio
2005\Projects. Feel free to change the directory and place the project elsewhere if you like.
Click OK.

Understanding Projects and Solutions

The Visual C++ CLR Console Application Wizard creates a new project called HelloWorld in a
solution also called HelloWorld. What is the difference between the project and the solution?

The basic paradigm used in Visual Studio is that you create a solution, which is your main
application. This solution can consist of several projects, which are class libraries or executables.
Each project is language specific, though it is also possible to mix languages within a single
project using custom build rules.

In our case, we want a single Visual C++ project that will generate a single executable
named HelloWorld.exe, so our solution has a single project. By default, the project is created
in a subdirectory, but we can change this behavior by deselecting “Create directory for solu-
tion”. Later in this book, we’ll have more sophisticated solutions that depend on several
projects.

Now you should see two tiled windows: the Solution Explorer and the editor window con-
taining HelloWorld.cpp. It appears that Visual C++ 2005 has gone to all of the trouble of writing
the program for us; now isn’t that nice?

CHAPTER 1 ' HELLO, WORLD 7

Understanding the Differences

There are a few differences between our basic HelloCpp application and the HelloWorld appli-
cation created by the Visual Studio C++ CLR Console Application Wizard, shown in Figure 1-3.
The most obvious difference is that the wizard created several additional supporting files.

Solution Explorer -... » 1 X HelloWorld.cpp| Start Page |

= | (Global Scope)
(=1 Solution "HeloWorld' (1 projl| [// HelloWorld.cpp : main project file.
= 24 Helloworld

- [£5 Header Files #include "stdafx.h"
-~ [n] resource.h
[n] stdafx.h using namespace System;

E| [Resource Files -
i) app.ico [Flint main (array<System::String ~» "args)
(=1 app.rc {

= & Source Fies Console: :WriteLine (L"Hello World"):
! ¢4 AssemblyInfo.cpp return 0;

¢ HellowWorld.cpp }
: ¢ stdafx.cpp
o [Z] ReadMe.txt

Figure 1-3. The HelloWorld application as created by the CLR Console Application Wizard

Let’s have a look at those new files.

Resources

These files outfit your application with a snappy little icon and pave the way for future appli-
cation development. Visual C++ allows you to embed resources in your binary files. They can
be bitmaps, icons, strings, and other types. For more information, consult the Visual C++
documentation.

e resource.h
* app.ico

* app.rc

Precompiled Headers

These files improve compilation speed by avoiding multiple compilations of common code:
e stdafx.h
e stdafx.cpp

One topic that surfaces again and again throughout this book is the distinction between
declarations and definitions in C++. Unlike C#, class prototypes, called declarations, may be
separated from class definitions into distinct files. This improves compilation speed, avoids
circular dependencies, and provides an object-oriented abstraction layer for complex projects.

CHAPTER 1 " HELLO, WORLD

In many C++ projects, it is common that files containing just declarations, called header files
and terminated with the .h extension, are compiled as a unit at the start of every source file. If
the headers are identical across the project, the compiler ends up compiling the same chunk
of code with each source file. One optimization provided by Visual C++ is to compile the head-
ers referenced in the stdafx.h file en masse into a binary PCH (precompiled header) file in
advance of all other compilation. This is called precompiling the headers. As long as the head-
ers are not modified, subsequent compilations of source files are sped up considerably as the
precompiled headers are loaded from disk as a unit rather than being recompiled individually.
Two files, stdafx.h and stdafx.cpp, are generated by Visual C++ to assist in this mechanism.
For more information, again consult the Visual C++ documentation.

It is possible to disable precompiled headers by changing the project properties. To mod-
ify the project settings, right-click the HelloWorld project in the Solution Explorer. Navigate to
Configuration Properties, and click the plus sign to expand the list. Then expand the plus sign
next to C++, and select Precompiled Headers. The Property Pages window, shown in Figure 1-4,
appears on the screen, which allows you to configure precompiled headers within your appli-
cation.

Configuration: |Actwe(Debug) M Platform: |Active(Win32) M Configul

Common Properties Create/Use Precompiled Header Use Precompiled Header (/Yu)
= Configuration Properties Create/Use PCH Through File StdAfx.h
General Precompiled Header File $(IntDir)\$(TargetName).pch
Debugging
= CfC++
General
Optimization
Preprocessor
Code Generation
Language
Precompiled Header
Output Files
Browse Information
Advanced
Command Line

Figure 1-4. Configuration of precompiled headers from the Property Pages window

Assemblylnfo.cpp

The file AssemblyInfo.cpp contains all of the attribute information for the assembly. This is
similar to the C#-produced AssemblyInfo.cs. This includes, but is not limited to, the copy-
right, version, and basic assembly description information. The default values are fine for
development, but you may not want the copyright for Microsoft Corporation in your assembly
when you ship. Figure 1-5 shows an excerpt from a sample AssemblyInfo.cpp.

CHAPTER 1 ' HELLO, WORLD 9

!

// General Information about an assembly is controlled through the following
// set of attributes. Change these attribute values to modify the information
// associated with an assembly.

/

[assembly:AssemblyTitleAttribute ("HelloWorld™)];
[assembly:AssemblyDescriptionfAttribute ("")1;
[assembly:AssemblyConfigurationAttribute ("")1-

[assembly:AssemblyCompanyAttribute ("Microsoft™)]1;
[assembly:AssemblyProductAttribute ("HelloWorld™) 1;
[assembly:AssemblyCopyrightAttribute ("Copyright (c) Microsoft 2005")1;
[assembly:AssemblyTrademarkAttribute ("")]1;
[assembly:AssemblyCultureAttribute ("") 1;

!/

// Version information for an assembly consists of the following four values:

Figure 1-5. An excerpt from AssemblyInfo.cpp

HelloWorld.cpp

The main source file has a few significant differences as well, as Figure 1-6 shows:

* The main function is defined to accept a managed array of System: :String, which is
equivalent to the C#Main(string[] Args). This allows you to access command-line
arguments.

¢ The precompiled header file stdafx.h is included to support the use of precompiled
headers.

* The literal string “Hello World” is prepended with an L to indicate a wide character
string. In native C++, strings are byte arrays by default. When compiling C++/CLI, the
compiler attempts to distinguish between wide character strings and byte arrays by
context. Whether or not you have an L in this context, a wide character System: : String
is created.

AssemblyInfo.cpp ./ HelloWorld.cpp|” Start Page |

(Global Scope)
E// HelloWorld.cpp : main project file.

#include "stdafx.h"

using namespace System;
Elint main(array<System::String "> “~args)
{
Console::WriteLine (L"Hello World"):;
return 0;

Figure 1-6. HelloWorld.cpp

10

CHAPTER 1 " HELLO, WORLD

Window Layout

One of the well-designed features of Visual Studio is the ability to customize the appearance
of the IDE by rearranging windows using simple mouse movements. In this section, we learn
how to dock and position the Quick Find window.

The Problem with the Find and Replace Window

To invoke Visual Studio’s Find and Replace window, press Ctrl-E The window shown in
Figure 1-7 appears.

Find and Replace D
|55 Quick Find |~ | &3 Quick Replace ~

Find what:

|He||0 M »
Look in:

|Current Document M

E] Find options
DMatch case
|:| Match whole word

[]search up
Search hidden text

|:|Usg:

[Find Mext H Bookmark All]

Figure 1-7. Visual Studio’s Find and Replace window

Now if you click and hold the title bar, you can move this window around and find text in
files quite easily. There is only one big problem with this. Suppose you have a very large file
where the same text appears again and again. Then you might find yourself clicking Find Next
repeatedly until you find the instance you're searching for. Unfortunately, sometimes after you
click Find Next, Visual Studio elects to move the Find and Replace window to the left or right
in order to make the text visible, rather than displaying it above or below the dialog box. When
the window moves, your mouse cursor is left hovering over where the Find Next button used
to be, rather than where it is now. You move the cursor, click again, and there goes the window.
One word comes to mind—irritating.

Docking the Window

Luckily, there are a few simple solutions. One nice trick is to use a hotkey to cycle through the
results (F3 has this functionality in the standard Visual C++ key bindings; the C# key bindings
are different). Another way is to dock the Find and Replace window on one of the fixed frames
of the IDE. By default, the Find and Replace window is set to Floating, as shown in Figure 1-8.
Right-click the title bar, and select Dockable. Now this window can be part of a window frame.

CHAPTER 1 ' HELLO, WORLD

Find and Replace el
» + | Foatin
|3 Quick Fna |+ | A% o= ™
Dockable
Find what:
Tabbed Document
| Hellg|
Auto Hide
Look in:
|Current Document iz e
E] Find options
DMatch case
|:| Match whole word
[]search up
Search hidden text
|:|Usg:
[Find Next l I Bookmark All]

Figure 1-8. Right-clicking on the title bar reveals options for displaying the window.

Now when you click and hold the title bar, you see a small compass in the frame that the
cursor is hovering over, as well as reference markers on each of the other window frames. The
compass allows you to direct the placement of the window with respect to the frame you are
hovering over. Move the window over another frame, and the compass hops to that one.

The Center of the Compass

The compass itself has tabs for the directions (north, south, east, and west) as well as a center
box. If you release the mouse over the center box, the window becomes tabbed within the
current frame. Go ahead and drop it over the main frame, where the documents are edited.
You can see now that it shares a frame with the other main windows. Unfortunately, this is a
terrible place for a Find and Replace window, because you have to have the file you're search-
ing in visibly available as well when you search for text, and tabbing does not allow you to do
this. Right-click the title bar, and notice that Tabbed Document is checked (Figure 1-9). Click
Dockable, and the Find and Replace window returns to the center of the screen.

When you hover over one of the compass direction tabs, the corresponding portion of the
target frame is grayed out, so that you can preview the new window arrangement. If you drop
the window in the wrong place, you can always either tear it off or manually set it to Dockable
or Floating, depending on its state.

My preference is to move the mouse cursor over the bottommost frame, where the Output
window is normally located, and then use the compass in order to tab the Find and Replace
window on the bottom frame.

11

12

CHAPTER 1 ©" HELLO, WORLD

|D.3 v A fﬁ&ﬂ

Find and Rt Hollethlarld eon | Ctack Dage |
= - Close
|inunck Fing
Close All But This
Find what: :
Look in: Dockable
@ Tabbed Document
Auto Hide
(=] Find optio e 5
Hide
I:‘Match o s
[| Match w E New Horizontal Tab Group
[]search J 1] New vertical Tab Group
Search hidden text

|:|Usg:

Figure 1-9. Find and Replace as a tabbed document in the main frame

Building, Executing, and Debugging

Let’s take a quick tour of some key Visual C++ IDE commands (Table 1-2) as we build and test
HelloWorld.

Table 1-2. Common IDE Commands Quick Reference

C# C++ Explanation

F3 F3 Find next

F8 F4 Go to the next compilation error in the source
Shift-F8 Shift-F4 Go to the previous compilation error in the source
F5 F5 Execute with debugging

Ctrl-F5 Ctrl-F5 Execute without debugging

F6 F7 Build

F9 F9 Toggle breakpoint

F10 F10 Step over

F11 F11 Step into

Building the Program

Depending on our key bindings, we can use either F6 or F7 to build. If there are any errors,
they appear in the Output window at the bottom of the screen, and you can use either F8 or F4
to cycle through them.

In C++, just as in C#, multiple compilation errors are often spurious; the compiler tries to
compile beyond the first detected problem and may get lost. Often this allows you to see two

CHAPTER 1 © HELLO, WORLD

or three errors and fix them all in a single editing pass. Just as often, the extra errors are an
artifact of the compiler going out to lunch based on incorrect syntax, and fixing the first error
or two may make the remainder disappear. I recommend building often.

Executing HelloWorld

The F5 key is the execute command. Since this is a console application, execution spawns a
command window that displays “Hello, World” and then quickly closes, which is somewhat
unsatisfying. There are several ways around this. One approach is to create another Visual
Studio 2005 command prompt, navigate to the debug directory where the executable was
created, and run the program manually, as we did earlier. Another way is to add the following
call to the end of the main() function:

Console: :ReadlLine()

This method asks for a line of input from the user and keeps the console window open
until the user presses the Enter key.

Another set of solutions presents itself by taking advantage of the built-in Visual C++
debugger. You could either set a breakpoint on the last line of the program using the F9 com-
mand, or you could just step through the program line by line. Either way, you can switch to
the spawned command prompt to see the output as desired.

Let’s try using the debugger.

Using the Visual C++ 2005 Debugger

The debugger is integrated into Visual Studio 2005, so initiating debugging is very simple.
Entering any debugging command launches your application under the debugger. The win-
dow layout is sure to change, as there are several status windows that are only visible while
debugging by default.

Note There are different window configurations for editing and debugging. Each configuration must be
customized separately.

The basic debugging commands are F5 (Execute with Debugging), F9 (Toggle Break-
point), F10 (Step Over Source Line) and F11 (Step Into Source Line).

Stepping Through the Code

A Step command executes a line of code in the program. There are two varieties of the Step
command: F10 (Step Over) and F11 (Step Into). These are similar, yet they differ when applied
to a function call. F10 executes until the line after the function call, whereas F11 stops execu-
tion at the first line of the function body. Of course, using F11 is always dependent on whether
debugging information is available for the binary the function came from. Since debugging
information for Console: :WriteLine() is not distributed with Visual C++ 2005, both F10 and
F11 step over the function.

13

CHAPTER 1 " HELLO, WORLD

Press F10 to begin debugging HelloWorld with Visual C++ 2005. The title bar changes to
show “HelloWorld (Debugging)” to indicate debugging mode. In addition, a command win-
dow is spawned in a separate window. At this point, it is blank since HelloWorld has yet to
display any information.

A small yellow arrow appears on the left edge of the editor window, which indicates the
current line of code that is executing. Figure 1-10 shows that execution has stopped at this
point, and the debugger awaits the next command.

Helloworld.cpp

(Global Scope)
= // HeTloworTd.cpp : main project file.

#include "stdafx.h"
using namespace System;
= int main(array<system::String A> Aargs)

console::writeLine(L"Hello world");
return 0;

}

Figure 1-10. Debugging HelloWorld

The arrow indicates that we are beginning execution of the main() function, and the next
line to be executed contains the Console: :Writeline() statement.

Press F10 again. The Console: :WritelLine() function call executes, and “Hello World”
appears in the separate command window.

If you dare to press F10 a couple more times, you create a nightmare on your screen. The
first time, you execute over the return function. The next time, you return from the HelloWorld
code into the CRT. This module performs important tasks, including initializing your program
in Windows, packaging the command-line arguments for your program, and handling the
program’s exit to Windows. Note that this code calls main() explicitly by name, which explains
why every C++ program requires a global function called main().

Completing Execution

Press F5 once to execute the remainder of the exit code and return to the editor. If
HelloWorld.cpp is not visible, you can click the tab to reveal the source again. At this point,
debugging has completed, and the title bar no longer indicates debugging.

Summary

This chapter provided you with a basic outline of how to create simple C++/CLI applications
from the console and more-sophisticated applications using the IDE. I also showed you how
basic debugging can be performed in Visual C++ 2005 using the integrated debugger.

In the next chapter, we'll see how you can call C# from a simple C++ program.

CHAPTER 2

There’s No Place Like Home

I have not ceased being fearful, but I have ceased to let fear control me. I have accepted
fear as a part of life, specifically the fear of change, the fear of the unknown, and I have
gone ahead despite the pounding in the heart that says: Turn back, turn back; you'll die
if you venture too far.

—Erica Jong

In this chapter, we introduce C++'’s interoperability features and show you a quick way to
combine C# and C++. We begin by developing a card-shuffling class in C#. Next we add a C++
stub that uses the C# class. In Chapter 4, we take it one step further and migrate the entire
application to C++. We will return to language integration and interoperability in greater detail
in Chapter 19.

Developing the Program

Suppose you've got a perfectly good C# class that you'd like to use with your C++ code. It'd be a
shame to have to throw it all away and rewrite it in C++, wouldn't it?

When I was developing the .NET Reflector add-in for C++/CLI, I found myself in this exact
situation. During my development, Lutz Roeder, the author of .NET Reflector, was right in the
middle of improving the Reflector interfaces and ended up removing a class I needed. To help
me out, he sent me a C# file with the deleted code. Rather than being forced to rewrite his code
in C++, I added references to his class in my project and went back to work on the add-in.

Deal Me In

It seems that interview questions are always relevant, no matter how many years you've been
in the industry. They can be thought-provoking and entertaining. One of my favorites, shuf-
fling a deck of cards, should prove instructive.

On the surface this appears to be an easy problem, but there are several ways you can get
into trouble before you even begin coding.

15

16

CHAPTER 2 " THERE’S NO PLACE LIKE HOME

The Process

One of the first times that the interview starts going wrong is when you try to figure out how to
represent the deck before you shuffle it. The nightmare would unfold something like this:

You: What does the deck look like?
INTERVIEWER: It’s random.

You: How can I represent the random input? Are you going to give me a list of the cards in
their input states?

Let me say that at this point the interviewer will retreat to the cave and repeat the ques-
tion in some form:

INTERVIEWER: You are given an arbitrary deck of cards, and you need to produce a shuffled
deck of cards. That’s all I'm going to say.

That’s what he says, but he’s thinking “no hire.” You need to pause a moment here and
think about the goal. The goal is to produce a shuffled deck of cards that is perfectly random.
The order of the cards when you start shouldn’t matter. You can pick any order you like.

Enumerating the Cards

The next hurdle in the interview is getting past the idea of representing the cards as ace
through king in four different suits. There is a simple way: identify each card with a number
from 1 to 52. It’s even easier for programming in C++ and C# if the cards are numbered from
0 to 51 given that arrays are zero indexed in these languages.

Assign an arbitrary order to the suits as well as a number between 0 and 3. Bridge uses
alphabetical order, so why not follow suit?

namespace CSharp

{
class Deck
{
enum Suit
{
Clubs = 0, Diamonds, Hearts, Spades
}
}
}

You can use the same trick for the cards themselves:

namespace CSharp

{

class Deck

{

enum Card

{

CHAPTER 2 © THERE’'S NO PLACE LIKE HOME

Ace=0, Deuce, Trey, Four, Five, Six, Seven,
Eight, Nine, Ten, Jack, Queen, King

We thus have two types of information to represent separately: the Card number between
0 and 12, and the Suit number between 0 and 3. A common solution to this problem is to map
them to a single number using the following formula:

Number = Suit*13+Card

Since Card is less than 13, it is clear that (int)(Card/13) ==0, so dividing both sides by 13
gives the Suit, with the remainder being the Card. Thus we have derived the following equa-
tions for the reverse transformation:

Suit
Card

Number/13
Number%13

Number realizes its minimum when Card and Suit are both 0 and its maximum when
Card=12 and Suit=3.

min(Number) = 0 * 13 + 0 = 0
max(Number) = 3 * 13 + 12 = 51

So, we have mapped an arbitrary card (Suit, Card) to a unique number between 0 and 51.
For all practical purposes, this problem reduces to that of randomizing the numbers between
0 and 51. You would think that this would be an easy thing, but it turns out not to be trivial,
and it’s very easy to get it wrong. This is especially disturbing given the proliferation of online
gambling.

Note Here’s an intuitive algorithm that just doesn’t work. Put the cards in an array, and iterate through
them, swapping each card with a card in a random position. This does, in fact, mix up the cards quite spec-
tacularly, but it favors certain card sequences and produces an uneven distribution. Can you see why?

Each swap has one chance in 52 of swapping with itself—a trivial swap. One thing you might think
about is that if the result of the shuffle is an unshuffled deck, say, {1 2 3 4. . .51}, then there must
have been an even number of nontrivial swaps. Now the deck {2 1 3 4. . .51} requires an odd number
of nontrivial swaps. That should be a red flag, because our algorithm always executes exactly 52 swaps,
which is even, so it seems doubtful that these two decks are generated with equal likelihood.

The Shuffling Algorithm

A sound algorithm mimics what you do when you deal out cards. First, you pick one card at
random from the 52 in the deck, then you pick one from the 51 that remain, and so on. In
this algorithm, you get an even distribution up to the randomness of the random number
generator:

17

18 CHAPTER 2 " THERE’S NO PLACE LIKE HOME

namespace CSharp

{
class Deck
{
void Shuffle()
{
for (uint u = 52; u > 0; --u)
{
Swap(ref Cards[u - 1], ref Cards[RandomCard(u)]);
}
}
}
}

The Completed C# Program

This implementation shuffles a deck of cards and “deals” out the first five cards for viewing.
We can conclude that the name of the game is five-card stud.

using System;
namespace CSharp
{
public class Deck
{
uint[] Cards;
Random randomGenerator;
public enum Suit

{
Clubs = 0, Diamonds, Hearts, Spades
}
public enum Card
{
Ace = 0, Deuce, Trey, Four, Five, Six, Seven,
Eight, Nine, Ten, Jack, Queen, King
}
Deck()
{
randomGenerator = new Random();
Cards = new uint[52];
for (uint u = 0; u < 52; ++u)
{
Cards[u] = u;
}
}
void Swap(ref uint u, ref uint v)
{
uint tmp;

tmp = u;

CHAPTER 2 © THERE’'S NO PLACE LIKE HOME

u=v;
v = tmp;
}
void Shuffle()
{
for (uint u = 52; u > 0; --u)
{
Swap(ref Cards[u - 1], ref Cards[RandomCard(u)]);
}
}
uint RandomCard(uint Max)
{
return (uint)((double)Max * randomGenerator.NextDouble());
}
string CardToString(uint u)
{
Suit s = (Suit)(Cards[u] / 13);
Card c = (Card)(Cards[u] % 13);
return c.ToString() + " of " + s.ToString();
}
public static void Main()
{
Deck deck = new Deck();
deck.Shuffle();
for (uint u = 0; u < 5; ++u)
{
Console.WriteLine(deck.CardToString(u));
}
Console.ReadlLine();
}
}
}
A Quick Look at the Code

As in every C# application, the code begins with static Main(). Once there, we create a new
Deck, call Shuffle() on it, then display the first five cards. Since WriteLine() is not familiar
with how to print cards, we create a function that converts the card to a string and then call
WriteLine() with its results. The function CardToString(uint cardnumber) does the trick.

Projects and Solutions

First let’s create a simple C# shuffle project. There is nothing particularly unique about this C#
project. To create it, select File » New » Project. Navigate through the New Project tree view
to create a Visual C# console application named Shulffle. If your system is set up like mine, the
console application appears as shown in Figure 2-1.

19

20

CHAPTER 2 © THERE’S NO PLACE LIKE HOME

Mew Project

Project types: Templates: ||

- Visual C++ Visual Studio installed templates

L ATL —

. CLR @Windows Application @Class Library

- General @Windows Control Library ,E-'RConsole Application

- MFC ECrystal Reparts Application @Device Application

- Smart Device

- Win32 My Templates
- Other Languages

- Visual Basic earch Online Templates...

- Visual C#

- Visual J#

- Other Project Types

A project for creating a command-line application |

Mame: | Shuffle |
Location: | C:\Documents and Settings\dcwills\My Documents\Visual Studio 2005\Projects v | [Browse...]
Solution Name: | Shuffle | Create directory for solution

|:|Add to Source Control

l 0K] [Cancel

Figure 2-1. The C# Shuyffle console application

Both the C# and C++ compilers package metadata into modules and assemblies. Modules
are building blocks of assemblies. Assemblies are made up of one or more modules and are
units of deployment. Assemblies are deployed as executable files or class libraries. In this first
version, the Shuffle project is a standalone executable. Later in this chapter, we will change
this executable into a class library without changing a single line of C# code.

A Quick Look

Select Edit » Outlining » Collapse to Definitions. This gives you a bird’s-eye view of the code,
as shown in Figure 2-2.

CHAPTER 2 © THERE’'S NO PLACE LIKE HOME

solution Explorer ... » 1 X Start Page” Program.cs|
=5 FES ‘% Csharp.Deck MLP Cards
[Solution 'Shuffle’ (1 project) using System;
= ([Shuffle [[lnamespace CSharp
- &4 Properties J] {
+- [l References — public class Deck
" & Program.cs {
uint[] Cards;
Random RandomGenerator;
= public enum Suit
{
Clubs = 0, Diamonds, Hearts, Spades
- }
| public enum Card
{
Bce = 0, Deuce, Trey, Four, Five, Six, Seven,
Eight, Nine, Ten, Jack, Queen, King
- }
= Deck (). . |
[+ void sSwap(ref uint u, ref uint V]I:I
Il void shuffle()[..
[+ uint RandomCard(uint Max)
[+ string CardToString(uint 11)
[+ public static wvoid Main[)
- }
-1

Figure 2-2. A bird’s-eye view of the code

Placing the cursor over any of the boxes containing an ellipsis pops up a window that dis-
plays the collapsed section of the code.

Building and Executing the Project

Select Build » Build Solution to build the project. With the Visual C++ key bindings, this is the
F7 key. With the Visual C# key bindings, this is the F6 key. In either case, you can execute it
with the F5 key.

You see output similar to the following—your hand may vary:

Ten of Diamonds
Deuce of Clubs
Trey of Clubs

Jack of Hearts
Deuce of Spades

The Command window now pauses, waiting for you to press Enter because of the
Console.Readline() call.
Hmmm. Pair of deuces—not bad, but not good enough to open.

21

22

CHAPTER 2 © THERE’S NO PLACE LIKE HOME

Binding C++
Now we're going to take this C# class and call it from C++. We'll take advantage of the fact that
C++/CLI programs begin with a global function named main(), whereas C# programs start

with a class with a static function named Main(). Since these names are distinct, they don’t
conflict, and we can bind them together seamlessly.

Creating the C++ Project

First we merge the C# program with C++/CLI. To create a C++ project, select File » New »
Project. Under Templates, select Visual C++, then CLR, then CLR Console Applications. Name
the project CardsCpp, and select Add to Solution from the Solution drop-down list, as shown
in Figure 2-3. Then click OK.

Mew Project

Project types: Templates: ||
= Visual C++ Visual Studio installed templates
- CLR [ZF]windows Application (¥ Class Library
- General @Windows Control Library
- MFC ECrystal Reparts Application [55¥ Device Application
- Smart Device
- Win32 My Templates
- Other Languages
- Visual Basic 4 Search Online Templates...
- Visual C#
- Visual J#

(- Other Project Types

A project for creating a command-line application |

Name: | CardsCpp |
Location: | C:\Documents and Settings\dewills\My Documents\Visual Studio 2005\Projects\Shuffle v | [Browse...]
Solution: |Add to Solution b | Create directory for solution

Salution Mame: | Add to Source Control

l 0K] [Cancel

Figure 2-3. Creating the C++/CLI project

CHAPTER 2 © THERE’'S NO PLACE LIKE HOME

Setting the Startup Project and Project Dependencies

You should have a new project named CardsCpp. Follow these steps in the Solution Explorer:

1. Right-click the CardsCpp project, and select Project Dependencies. Check the box so
that CardsCpp depends on Shuffle. This ensures that the C# project Shuffle is built
before the C++ project CardsCpp. We want a dependency in this direction, because we
will bring in the completed C# project as a class library DLL and the C++ project will be
the master project. See Figure 2-4.

2. Right-click the CardsCpp project again, and select Set as Startup Project.

Solution Explorer - CardsCpp w L CardsCpp.cpp| Cards

EI ‘ \3] (Global Scone) -
—_— — . . —
[5 Solution 'Cards' (2 projects) Project Dependencies ‘_?Jm
@ cards
= 4 CardsCpp Dependencies | Build Order |
=] 5 Header Fies Projects:
[n] resource.h
[stdafi.h [cardscep]
= & Resource Fies Depends on:
- (80 app.ico vl |
‘- & app.rc

= & Source Files

- & AssemblyInfo.cpp
¢ CardsCpp.cpp
¢4 stdafx.cpp

[Z] ReadMe.txt

OK I [Cancel

Figure 2-4. Project Dependencies dialog box

Making the G# Project a Class Library

Now we'll do a bit of magic and modify the C# application, so that it can be referenced as a
class library by the C++ application. Right-click Shuffle in the Solution Explorer, and select
Properties. In the Application tab, change the Output Type to Class Library, as shown in
Figure 2-5.

23

24 CHAPTER 2 © THERE’S NO PLACE LIKE HOME

Shuffle| CardsCpp.cpp |~ Program.cs | Start Page |
Application i
Configuration: | N/A Platform: |N/A
Build
Build Events Assembly name: Default namespace:
|5hufﬂe | ‘Shufﬂe
Debug
Resources Output type:
Console Application % I Assembly Information...
Settings -
Windows Application
Reference Paths Console Appication
Class Library
Signing (NOCSE] i
Security Resources
Publish ®) Igon:
|(Defaut 1con) el) 3
() Resource File:

Figure 2-5. Convert the C# project to a class library.

Adding a Reference to the C# Class Library

Right-click the CardsCpp project, and select References. Then click the Add New Reference
button. Click the Projects tab; the Shuffle project should already be selected, as shown in
Figure 2-6. Click OK to add a reference to Shuffle to the C++ project.

~Shuffle| CardsCpp.cpp | Program.cs | Start Page |

Application)
Configuration: |N/A Platform: |N/A
Build
Buid Events Pre-build event command line:
Debug
Resources
Edit Pre-build ...
Settings
Post-build event command line:
Reference Paths copy shuffle.dll "$(SolutionDir)"
Signing [(I 1l] m

Edit Post-build ...
Run the post-build event:

|On successful build M

Figure 2-6. Add a reference to the C# project.

CHAPTER 2 © THERE’'S NO PLACE LIKE HOME

Creating the C++/CLI Stub

There is one small change to make to the C++ source file, CardsCpp.cpp. Replace the following
line:

Console: :WritelLine(L"Hello World");
with
CSharp: :Deck: :Main();

Note that as you type this, Visual C++ IntelliSense kicks in with a pop-up window and
assists you. Just like C# IntelliSense, it is a context-sensitive code engine that helps you dis-
cover class members and parameter information as you type. As you can see in Figure 2-7,
IntelliSense reveals the methods and fields of the CSharp: :Deck class. What they are and how
they are accessible are determined by the miniature icons to the left of the names. A smaller
box adds more information about the selected item as well as XML document comments
where available.

CardsCpp Property Pages

Configuration: |Act'|\.fe(Debug) M Platform: |Act'|ue(\a'\ﬂn32) v
- Common Properties Additional Include Directories
= Configuration Properties Resolve #using References "$(SolutionDir)"
: Debug Information Format Program Database (/Zi)

Suppress Startup Banner Yes (/nologo)
Warning Level Level 3 (/W3)
Detect 64-bit Portability Issues No
Treat Warnings As Errors No
Use UNICODE Response Files Yes

Figure 2-7. IntelliSense helps you code.

Your code should now look like Figure 2-8, ready to execute with F5.

CardsCpp.cpp| Program.cs | Start Page |
| (Global Scope)
E// CardsCpp.cpp : main project file.

#include "stdafx.h"
#using "Shuffle.dlil"
using namespace System;
Elint main(array<System::String "> ~args)
{
CSharp::Deck::Main();
}

Figure 2-8. The finished C++/CLI stub

25

26

CHAPTER 2 " THERE’S NO PLACE LIKE HOME

Doing the Shuffle Without the IDE

Combining C++ and C# programs is also quite easily done without the IDE, although it doesn’t
scale to large projects as easily. The IDE puts power at your disposal, but it also adds a layer of
complexity. With the IDE, you get the following:

¢ Editing help and code information, with IntelliSense and browsing
* Project management
* Build management

* Integrated debugging

Basic Command-Line Compilation

Since this is a very small and simple project, we don’t need to go through a full IDE setup to
show our demonstration.

Use the following bare-bones C++ program with the precompiled headers removed.
Create a file called cardscpp1.cpp in the same directory as shuffle.cs:

#using "shuffle.d1l"
void main()

{
CSharp: :Deck: :Main();
}

Open aVisual Studio 2005 command prompt and navigate to this directory. Compile and
execute this program as follows:

csc /target:library /out:shuffle.dll program.cs
cl /clr cardscppl.cpp
cardscppl

King of Diamonds
Trey of Clubs
Jack of Hearts
Deuce of Diamonds
Four of Hearts

Looks like we should fold this time!

Using a Module

The results of the previous examples are an executable and a separate library in a DLL. Using a
module, we can combine them into a single executable. This can only be done using a custom
build rule in the IDE; “module” is not a valid output type for a C# project. We'll do it from the
command line.

CHAPTER 2 © THERE’'S NO PLACE LIKE HOME

First, we compile the C# class into a module. Then we gather it into a single executable
assembly using the C++ compiler.
Create a file called cardscpp2.cpp in the same directory as shuffle.cs:

#using "shuffle.netmodule"
void main()

{
CSharp: :Deck: :Main();

}

Compile the C# into a module, make an executable using C++, and run it:

csc /target:module /out:shuffle.netmodule program.cs
cl /clr cardscpp2.cpp
cardscpp2

King of Clubs
Queen of Diamonds
Queen of Spades
Ten of Spades

Ace of Clubs

Now that’s a winning hand!

Summary

In this chapter, we developed a simple C# program. First, we compiled and ran it standalone
from the IDE. Then we changed its output type to a library in order to create a DLL for use by a
C++ executable, both from the IDE and the command line. Finally, we created a module from
the C# program, which we combined with the C++ in order to create a single executable. This
should give you a fairly good introduction to the various ways you can work with C# and C++
under .NET. In Chapter 19, we will revisit these topics and discuss interoperability with native
code. But let’s not get ahead of ourselves; there are a lot of fundamentals to cover first, and
we'll explore syntax differences in the next chapter.

27

CHAPTER 3

Syntax

The pure and simple truth is rarely pure and never simple.
—Oscar Wilde

The previous chapters emphasized the similarities between C# and C++/CLI. Now we touch
on the main areas where they differ and begin to understand why. These include additional or
different keywords, separators, and operators.

For example, in C++, the additional keyword namespace is required when using a
namespace (see Table 3-1).

Table 3-1. Namespaces in C# and C++/CLI

C# C++/CLI

using System.Threading; using namespace System::Threading;
System.Console.WritelLine("H"); System::Console::WriteLine("H");

Moreover, where C# uses dot as a general separator, C++ employs several different separa-
tors depending on the context as well as the meanings of the items being separated. The most
common of these separators are colon-colon (: :) and dot (.). The colon-colon separator, or
scope resolution operator, is used to qualify identifiers with namespaces, classes, properties,
and events and to access static fields and methods. The dot separator, or member access oper-
ator, is used to access members of instances of classes.

The paradigms of C++, different separators in different contexts, and of C#, a single sepa-
rator for all contexts, are consistent with the overall design philosophy of each of the languages.
C# favors simplicity, whereas C++ demands a deeper level of specificity in exchange for greater
flexibility.

Table 3-2 shows separator differences between C# and C++. I cover all of these separators
in detail as the book progresses.

29

30

CHAPTER 3 " SYNTAX

Table 3-2. Separators in C++

Separator Name Meaning

colon-colon Scope resolution operator, used when the expression to the left
of the : : is a namespace, class, property, or event name and the
expression to the right of the : : is a namespace, class name, or
member of a class

dot Class member access operator, used when the expression to the
left of the arrow is a class object

-> arrow Class member access operator, used when the expression to the
left of the arrow is a pointer or handle to a class object

KX dot star Pointer to a member operator, used when the expression to the
left of the arrow is a class object and the expression to the right of
the arrow is a pointer to a member of the same class

=¥ arrow star Pointer to a member operator, used when the expression to the
left of the arrow is a pointer to a class object and the expression
to the right of the arrow is a pointer to a member of the same
class

C# and C++ define classes and structures differently. In addition to one obvious syntactic
difference—C++ requires a trailing semicolon after a type definition—significant semantic dif-
ferences exist. See Table 3-3 for an example comparing classes and structures in C# and C++.

Table 3-3. Classes and Structures in C# and C++/CLI

C# C++/CLI

class R {} ref class R {};
N/A ref struct R {};
struct vV {} value class V {};
N/A value struct V {};
enum E {} enum class E {};
N/A enum struct E {};
N/A class C {};

N/A struct C{};

In C#, classes and structures are vehicles for implementing reference types and value types
as defined by the CLI. In C++, classes and structures define a fype—in general, a related collec-
tion of fields and methods and subtypes.

C++/CLI introduces two class modifiers, ref and value, which provide a way to map the
C++ type specifiers to the CLI types. Together with the class or struct keyword and separated
by whitespace, as in ref class, they form a single new keyword, appropriately called a
whitespace keyword.

Reference types and value types are very important in .NET programming, and it’s a good
idea to review these types a bit before we continue. There are many practical differences
between reference types and value types, but the main differences relate to how they are allo-
cated. A reference type is allocated in two parts. A reference type’s data is allocated on the
managed heap, while a separate handle to this data is allocated on the stack. A value type is
allocated automatically on the stack.

CHAPTER 3 © SYNTAX

A C# class is a reference type; so is a C# string. A C# struct and most C# built-in types,
including int and char, are value types. Value types contained in reference types, either explic-
itly or implicitly via boxing, become elements of the reference type and are allocated on the
managed heap.

C# class (Reference Type)

Suppose you have a C# class named Hello. Allocate an instance using
Hello h = new Hello();

From the syntax, it appears that you have created a single unified entity of type Hello.
Behind the scenes there is much more going on, as data was allocated on the stack as well as
the managed heap. An instance of the Hello object was allocated on the managed heap, and a
handle to this instance was stored on the stack in the variable h.

C# struct (Value Type)

If Hello is defined as a C# struct, then a completely different operation occurs. The entire
instance of Hello is allocated on the stack, and h represents the instance of this object.

Caveat

The fact that reference types are divided between the stack and heap generates some interest-
ing and somewhat unintuitive results when you're assigning values to reference types. When
you assign one value type to another, you copy the data associated with one instance of the
type to another instance. When you assign one reference type to another, you overwrite the
handle to one instance with the handle of another instance. The instances themselves remain
unchanged.

Consider the following code in C#:

class Hello

{

int i;

Hello(int number)

{
i=number;

}

static void Main()

{
Hello h = new Hello(1);
Hello j = new Hello(2);
j=h;
System.Console.WriteLine(j.1);
h.i=3;

System.Console.Writeline(j.1i);

31

32

CHAPTER 3 I SYNTAX

After compiling and running this code, we get

C:\>csc /nologo test.cs
C:\>test

1

3

In this program, we allocate two objects of type Hello on the managed heap. The handles
to these classes, h and j, are allocated on the stack. We overwrite the handle in j with the
handle in h and orphan Hello(2). Hello(2)becomes available for reclamation by the garbage
collector. Both h and j now reference the Hello(1) object, and there is no difference between
accessing the member field i using h or using j.

In other words, since Hello is a reference type, h and j are handles that point to data on
the managed heap. When the assignment j=h occurs, h and j both refer to the same data.
Assigning 3 to h. 1 also affects j.1i, and displaying j.1i results in the number 3.

Contrast

On the other hand, if Hello were a value type, you would see a different result. Change the
declaration of Hello from class to struct:

struct Hello
{ 77/}

After compiling and executing the program, we see

C:\>csc /nologo test.cs
C:\>test

1

1

The results are different this time, since our objects are all allocated on the stack and are
overwriting one another.

Lack of Locality

Alocal inspection of the method Main() is insufficient to determine the results of the program.
You cannot determine what result the WritelLine will generate by just looking at the surround-
ing code. C# requires you to refer to the definition of Hello and discover whether Hello is a
class ora struct.

This lack of locality is dangerous and goes against the C++/CLI design philosophy. In
C++/CLI, the distinction between reference types and value types is much more explicit. The
programmer specifies more precisely what he or she wants to do, which avoids confusion
and ultimately makes the code more maintainable. The cost is that the syntax is slightly more
difficult.

CHAPTER 3 = SYNTAX 33

The C++ Approach

In C++/CLI, handles are typically flagged using the handle punctuator *. It is also called a
tracking handle, because it points to an object that may be moved around during garbage
collection.

Translating the previous code to C++/CLI, we achieve the following:

private ref class Hello

{
private:
int i;
Hello(int number)
{
i=number;
}
public:
static void Main()
{
Hello *h = gcnew Hello(1);
Hello *j = gcnew Hello(2);
j=h
System::Console: :WritelLine(j->1);
h->i = 3;
System::Console::WritelLine(j->1);
}
1
void main()
{
Hello::Main();
}

After compiling and executing, we get

C:\>cl /nologo /clr:pure test.cpp
C:\>test

1

3

There are a few obvious syntactic differences from the C# version. However, I'd like to
start off by pointing out a semantic difference. In C++/CLI, changing Hello from a reference
type to a value type, by changing the whitespace keyword ref class to value class, does not
produce different results on compilation and execution.

Changing the type from a reference type to a value type affected where the type was allo-
cated, but it did not change the fact that in the previous code snippet we are treating the data
as referenced data. If Hello morphs into a value type, then the compiler generates different IL,
so that h and j remain handles to the data on the managed heap, and the result is consistent.
Behind the scenes, the value types are boxed—we’ll revisit that later in Chapter 6.

34

CHAPTER 3 " SYNTAX

Types of Member Access Operators

The other important difference between the C++ snippet and the C# snippet is that C++ han-
dles use a different class member access operator. The syntax is similar to that of pointers in
C++, as handles may be considered a special kind of pointer. If you are working with a handle
or pointer to an object, you use the arrow member access operator (->) to access the object’s
members. If you are working with an instance of the object itself, you use the dot member
access operator (.). Although it may seem more complicated to have two different types of
member access operators, one benefit is that code like our previous example always does
what you expect it to, because you are forced to be mindful of what you're doing as you
write—and that’s a good thing.

Keyword Differences

In this section, we go over the keyword differences between C# and C++. Most of these
differences are because of the evolution of the C++ language and the compatibility and
disambiguation restrictions for adding to the C++ grammar.

Let’s begin with the foreach keyword, shown in Table 3-4.

Table 3-4. foreach in C# and for each in C++/CLI

C# C++/CLI
foreach for each

In C++/CLI, the keyword for each has a space, and the usage differs slightly from foreach
in C#. The converted code appears in Table 3-5.

Table 3-5. Examples of foreach in C# and for each in C++/CLI

C# C++/CLI
using System; using namespace System;
using System.Collections; using namespace System::Collections;
class R ref class R
{ {
public:
static void Main() static void Main()
Arraylist list = new Arraylist(0); Arraylist ~list = gcnew Arraylist(0);
list.Add("hello"); list->Add("hello");
list.Add("world"); list->Add("world");
foreach (Object o in list) for each (Object “o 1in list)
{ {
Console.WriteLine(o); Console::WritelLine(o);
} }
} }
}

void main()

R::Main();
}

CHAPTER 3 © SYNTAX

Review

Let’s review what you've seen so far. Differences between C# and C++/CLI include the following:
* The additional keyword namespace is used.
* Namespaces are separated by colon-colon (::) instead of a dot (.).
e ref classisused instead of class.
* The punctuator * is used to declare handles.
e An arrow (->) is used as a handle member access operator, not a dot (.).
e for each contains a space.
¢ The class definition ends with a semicolon (;).
e C++/CLI begins programs with a global function named main().
Now let’s continue on; you can see that C++/CLI uses the keyword nullptr instead of null

in Table 3-6.

Table 3-6. null and nullptr

C# C++/CLI
null nullptr

These keywords are used as shown in Table 3-7.

Table 3-7. Usage of null and nullptr

C# C++/CLI
class R ref class R
static void Main() static void Main()
{
R 1 = null; R* r = nullptr;
} }
} b

There are significant differences between switch and goto in C# and C++, as introduced in
Table 3-8.

Table 3-8. switch, case, and goto in C# and C++

C# C++

Does not allow case statements to fall through Allows case statements to fall through
goto case_statement N/A

goto Iabel goto Iabel

switch(string s) N/A

35

36

CHAPTER 3 " SYNTAX

In C#, if a break or goto is missing from a nonempty case statement, the compiler issues
an error. In C++, execution is said to fall through from a case to the case below it and continue
with the next case.

Both languages support a goto keyword to a user-defined label. C# allows an explicit goto
to a case statement. There is no C++ equivalent, and the reason is largely historical. In C, a
switch/case/break construct was not so much a formal fork as a macro replacement for goto.
The cases are not distinct blocks, but rather labels that act as switch targets. C switches were
modeled after assembly language jump tables. C++ retains its heritage. C# attempts to employ
a more formal abstraction, where the cases are truly distinct and disconnected entities, so C#
naturally does not support fall through. Both abstractions have their respective advantages
and disadvantages.

The C# construct switch(string) is not supported in C++. In C++, you must expand your
switch statement using if and else. See Table 3-9 for example uses of switch in goto and fall
through cases in C# and C++.

Table 3-9. Usage of switch in C# and C++

C# C++
// switch on a System.String and goto case // equivalent to switch on a System::String
string s="1"; System::String "s="1";
switch(s) if(s=="1")
{
case "1":
goto case "2"; else if(s=="2")
case "2":
break; }
}
// fall through case not available // fall through case
int 1,3j=0;
switch(i)
case 1:
J++;
// no break, so case 1 falls into case 2
case 2:
break;
}

Arrays and Functions
Managed arrays are declared differently in C++/CLI (see Table 3-10).

CHAPTER 3 © SYNTAX

Table 3-10. Managed Arrays in C# and C++/CLI

C# C++/CLI
reftype [] array<reftype”>”"
valuetype [] array<valuetype>”
class R ref class R {};
{
static void Main() void main()
R[] n = new R[5]; array<R™> “n = gcnew array<R*>(5);
int[] m = {1, 2, 3, 4}; array<int> *m = {1, 2, 3, 4};
m[3]=0; m[3]=0;
}
}

Although they both are implemented using System: :Array, C++/CLI uses a pseudo-
template syntax for their declaration. Managed arrays will be explained in further detail in
Chapter 7. Pseudo-template syntax is consistent with the way extensions have been added to
the C++ language in the past, such as for the cast operators (see Chapter 16).

In both C# and C++, you can attach modifiers to function arguments. C# and C++/CLI
pass parameter arrays, reference parameters, and out parameters differently, as shown in
Table 3-11.

Table 3-11. Function Argument Modifiers

C# C++/CLI

params T[] ... array<T> *

ref %

out [System: :Runtime::InteropServices::0ut] %

We will revisit these later.

The Conversion Operators

The operations performed by the C# operators is and as may be performed by the C++
pseudo-template casting operators static_cast<>() and dynamic_cast<>() (see Table 3-12).

Table 3-12. C# and C++/CLI Conversion Operators

C# C++/CLI

as dynamic_cast<>()

as static_cast<>()

is (dynamic_cast<>()!=nullptr)

Conversion operators will be explained in further detail in Chapter 16.

37

38

CHAPTER 3 " SYNTAX

Memory Allocation

The new operator indicates allocation on the native heap in C++. The gcnew operator was added
in C++/CLI to indicate allocation on the managed heap. C# also uses the new operator to allo-
cate value types on the stack. In C++, this is unnecessary, as the C++ syntax for allocating
instances of user-defined value types is identical to the syntax for built-in types such as int.
See Table 3-13 for a list of keywords used in allocation on the managed heap.

Table 3-13. Allocation on the Managed Heap in C# and C++/CLI
C# C++/CLI

new (reference types) gcnew

new (value types) No operator is necessary.

A short example of memory allocation on both the native and managed heaps in C++/CLI
follows:

value struct V {}; //value type
ref struct R {}; //reference type
struct N {}; //native type

void main()

{
N n;
N *pN = new N();
R "t = gcnew R();
V ov;

}

Memory allocation will be discussed in further detail in Chapter 6.

Accessibility and Visibility

The accessibility and visibility keywords are similar, but the syntax is different. The keyword
differences are listed in Table 3-14, and the syntactic differences will be explained in detail in
Chapter 8.

Table 3-14. Basic Protection Mechanisms

Type Attributes C# C++/CLI

Public public public:

NotPublic private private:

Assembly internal internal:

Family protected protected:
FamilyOrAssembly internal protected protected public:
FamilyAndAssembly N/A protected private:

CHAPTER 3 © SYNTAX

Properties, Events, and Delegates

In Chapter 10, we will discuss properties, events, and delegates, but see Table 3-15 for an

introduction.

Table 3-15. Simple Example of a Property in C# and C++/CLI

C# C++/CLI
class R ref class R
private:
private int V; int V;
public:
public int Value property int Value
{ {
get int get()
{ {
return V; return V;
set void set(int newV)
{
V = value; V = newV;
} }
} }
} b
Generics

In Chapters 14 through 16, you will learn about generics and templates, but see Table 3-16 for

an introduction.

Table 3-16. Simple Example of a Generic in C# and C++/CLI

39

C#

G++/CLI

public class R<T>

{

private T m_data;
public R(T data)

m_data = data;

generic <typename T> public ref class R

private:

T m_data;
public:

R(T data)

m_data = data;

System.Console.Writeline(m data); System: :Console: :WriteLine(m data);
};
public class R1
static void Main() int main()
) R<int> 1 = new R<int>(3);) R<int> ~r = gcnew R<int>(3);

40

CHAPTER 3 " SYNTAX

Built-in Types

C# and C++/CLI map to the CLI types with different keywords, and the C++/CLI mappings are
consistent with native C++ to the extent possible. See Table 3-17 for an introduction before we
go into greater detail in Chapter 6.

Table 3-17. Built-in Types

C# C++/CLI

byte char

sbyte signed char

short short

ushort unsigned short

int int, long

uint unsigned int, unsigned long
long long long

ulong unsigned long long
single float

double double

string System::String”"
object System: :Object”
decimal System:Decimal
char wchar_t

bool bool

Summary

Although the sheer volume of differences between C# and C++ may seem daunting at first,
after a while a pattern emerges. Each language is intelligently designed and internally consis-
tent, and C++ syntax will become intuitive quite soon. In the next chapter, we will apply what
we're learning by converting a C# program to C++/CLI line by line.

CHAPTER 4

C# to C++/CLI

This is like déja vu all over again.
—Yogi Berra

In this chapter, I show you how to convert a basic C# application to C++/CLI. I cover more
advanced conversion methods in greater detail in later chapters.

Let me start by taking apart the elements of the C# shuffling program from Chapter 2 and
detailing the necessary changes, one at a time. Rather than pedantically plodding through the
code line by line, I'll draw representative samples from the code and present the finished
product.

The code from Chapter 2 follows, with line numbers inserted, just so you don’t have to flip
back and forth:

01 using System;
02 namespace CSharp

03 {

04 public class Deck

05 {

06 uint[] Cards;

07 Random randomGenerator;

08 enum Suit

09 {

10 Clubs = 0, Diamonds, Hearts, Spades
11 }

12 enum Card

13 {

14 Ace=0, Deuce, Trey, Four, Five, Six, Seven,
15 Eight, Nine, Ten, Jack, Queen, King
16 }

17 Deck()

18 {

19 randomGenerator = new Random();

20 Cards = new uint[52];

21

22 for (uint u = 0; u < 52; ++u)

23 {

4

42

CHAPTER 4

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
M
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63 }
64 }

C# T0 C++/CLI

Cards[u] = u;

}
}
void Swap(ref uint u, ref uint v)
{
uint tmp;
tmp = u;
u=v;
v = tmp;
}
void Shuffle()
{
for (uint u = 52; u > 0; --u)
{
Swap(ref Cards[u - 1], ref Cards[RandomCard(u)]);
}
}
uint RandomCard(uint Max)
{
return (uint)((double)Max * randomGenerator.NextDouble());
}
string CardToString(uint u)
{
Suit s = (Suit)(Cards[u] / 13);
Card c = (Card)(Cards[u] % 13);
return c.ToString() + " of " + s.ToString();
}
public static void Main()
{
Deck deck = new Deck();
deck.Shuffle();
for (uint u = 0; u < 5; ++u)
{
Console.WriteLine(deck.CardToString(u));
}
Console.ReadlLine();
}

We'll begin with the initial declarative blocks and build from there.

CHAPTER 4 " C# TO C++/CLI 43

Add the Keyword namespace After using

On line 1, add the namespace keyword to the using statement by changing the following C#
code:

using System;
to this C++
using namespace System;

The using statement, as applied to a namespace, brings all symbols from that namespace
into the scope of the using statement. In this case, we want to use the Console class to output
data to the screen. Without a using statement, we'd have to tell the compiler explicitly how to
find the Console class by writing System: : Console whenever we wanted to use it. This is called
fully qualifying the name. In C++/CLI, we are required to add the keyword namespace to the
using declaration.

Add the Punctuator * to the Reference Type Declarations

On lines 7 and 55, change the reference type declarations by changing the following C# code:

Random randomGenerator;
Deck deck

to this C++

Random “randomGenerator;
Deck “deck

If you look up the word “Random” in the .NET Framework Class Library reference on
MSDN, you find that Random is a reference type. How can you tell?
In the C# section of the MSDN page, you find that Random is declared as follows:

public class Random
In the C++/CLI section, you find that Random is declared as follows:
public ref class Random

Both of these declarations indicate a reference type. In this case, randomGenerator is actu-
ally a handle for an instance of Random that is allocated on the managed heap. In C++/CLI, the
fact that it is a handle is explicitly indicated using the handle punctuator #, and the type of
randomGenerator is Random”. In many ways, randomGenerator can be thought of as a pointer to
an object of type Random on the managed heap, but don't take this analogy too far. There are
significant differences between handles and pointers in C++, which we discuss in further
detail in Chapter 9.

44

CHAPTER 4 ' C# TO C++/CLI

Modify the Built-in Types
On lines 6, 22, 27, 29, 37, 42, 44, 46, and 57, change the C# aliases:

uint
string

to C++

unsigned int
System: :String”

Since C# and C++ compiled for the CLR both target the CLI, there is always a direct ana-
logue between managed types of one language and managed types of the other language. C++
does not have the abbreviated form uint and requires you to use the expanded unsigned int.

C++ also does not have a built-in type for string, so you need to use System: :String”. In
C#, you can choose between the built-in alias string and System: : String; they are equivalent.
The type string is built in to the language, and System.String is the equivalent, which is typi-
cally brought in via a using System statement.

Note Why doesn’t C++ have standard abbreviated forms for built-in types such as unsigned int? Well,
this was proposed to the ANSI Committee on C in 1987 by me, but it was voted down, because “the addition
of synonyms for existing types would add identifiers to the set of reserved names without adding functional-
ity.” This philosophy is less in vogue today, as evidenced by the fact that C# has a synonym string for
System. String. This does not add any functionality—it’s just convenient.

So what is the practical difference if string and String are the same? Consider the following
C# program, and note the absence of any using statements:

public class Hello

{
static void Main()
{
String s;
}
}

Now try to compile it:

Microsoft (R) Visual C# 2005 Compiler version 8.00.50727.42

for Microsoft (R) Windows (R) 2005 Framework version 2.0.50727
Copyright (C) Microsoft Corporation 2001-2005. All rights reserved.
gl.cs(5,9): error CS0246: The type or namespace name 'String'

could not be found

(are you missing a using directive or an assembly reference?)

CHAPTER 4 " C# TO C++/CLI

As you can see, without the using System statement, the compiler has no idea what
String is. If we fully qualify String by changing it to System.String, it will compile.

Note that, since System. String is a reference type, the handle punctuator is used in
C++/CLI, so the proper conversion to C++/CLI gives us System: : String”. Since we already
have using namespace Systenm, it suffices to use String”.

Change the Array Declarations and Type Parameters

On line 6, change the C# array declaration:
uint[] Cards;

to C++

array<unsigned int>”Cards;

In this case, the declarations look so different it’s difficult to imagine that they indicate the
same thing. The goal here is to instruct the compiler that we would like Cards to be a managed
array of unsigned integers of unknown length. In Table 4-1, you can see how managed array
syntax maps between C# and C++/CLI.

Table 4-1. Managed Array Declaration in C# and C++/CLI

C# Array Syntax G++/CLI Array Syntax

type[] variable-name; array< type >" variable-name;

The first change is the actual syntax used in array declaration. The C++/CLI language uses
a syntax that is called pseudo-template format, in reference to the fact that it feels like a C++
template but does not exhibit all the characteristics of one. It uses the < and > characters, as in
the case of template declaration, instantiation, and usage. In addition, a managed array is
stored on the managed heap, so variable-name is a handle, and it requires the * punctuator.

The second change is the use of the typename unsigned int instead of uint, as explained
previously.

Change the Enumeration Declarations

On lines 8 and 12, change the following enumeration declarations from C#:

public enum Suit {};
public enum Card {};

to C++

public:
enum class Suit {};
enum class Card {};

To get the syntax correct for this enumeration declaration, we have to make three small
changes. Note that to make things more interesting, I added accessibility to our translation
problem. First of all, in C++/CLI, accessibility indicators for nested types, class fields, and
methods, like public, are not item specific; they are context specific. In the C# version, the

45

46

CHAPTER 4 = C# TO C++/CLI

keyword public indicates that the specific enum Suit has public accessibility. In the C++/CLI
version, the keyword public: within a class indicates that all types, methods, and fields from
that point forward have public accessibility. If we neglected to add the keyword public to the
next enum declared after Suit, it would gain the default accessibility of a C# class, which is
private. On the other hand, in the C++/CLI version, absent an accessibility keyword, the suc-
ceeding enum declaration would gain the contextual accessibility level, which in this case is
public because of the explicit use of public: before enum. When dealing with accessibility at a
global scope, the C++ language also has a public keyword that is item specific.

The second change is that C++/CLI managed enumerations, which are the analogue of
C# enumerations, require the additional keyword class to distinguish them from native C++
enumerations.

The final change is one we have seen several times before—that C++/CLI type definitions
are terminated by a trailing semicolon after the closing curly brace. Enumerations are types;
namespaces are not. The easy way to remember this is that if you can make one, you need a
trailing semicolon. You can instantiate a type, but not a namespace.

Change the Object Allocations and Instantiations
On lines 19, 20, 22, 37, and 55, change the following C# code:

randomGenerator = new Random();
Cards = new uint[52];
uint u;

to C++

randomGenerator = gcnew Random()
Cards = gcnew array<unsigned int>~(52);
unsigned int u;

These expressions map from C# to C++/CLI fairly easily, and it’s really just a matter of get-
ting used to the differences. The primary difference is that C++ distinguishes allocations on
the native heap from allocations on the managed heap by requiring the keyword gcnew rather
than the keyword new. If you happen to use the wrong one, the compiler is usually polite
enough to issue an error message to remind you.

Change the Pass by Reference Parameters
On lines 27 and 39, change the following C# code:

void Swap(ref uint u, ref uint v)
Swap(ref Cards[u - 1], ref Cards[RandomCard(u)]);

to C++

void Swap(unsigned int %u,unsigned int %v)
Swap(Cards[u - 1], Cards[RandomCard(u)]);

We need to modify both the Swap() function declaration as well as all uses of Swap().
Instead of the C# keyword ref, C++/CLI uses the % punctuator to indicate a tracking reference.
In C++/CLI, the punctuator is only used in the function declaration, not on function usage.

CHAPTER 4 " C# TO C++/CLI 47

In Table 4-2, 1 list the correspondences between C# and C++, including the C++ imple-
mentation of the C# out keyword.

Table 4-2. Parameter Passing in C# and C++/CLI

C# C++/CLI
ErrorCode GetData(ref int data) using namespace System::Runtime::InteropServices;
{ ErrorCode GetData(int %data)

{

} }
ErrorCode GetResult(out int result) ErrorCode GetResult ([Out] int %result)

return GetData(ref result); return GetData(result);

C++ does not have an out keyword, but its behavior can be duplicated using the
[System::Runtime::InteropServices::0ut] attribute.

Change the Class Member Access Operators for Handles

On lines 44, 56, and 59, we modify the class member access operators in C#:

randomGenerator.NextDouble()
deck.Shuffle()
deck.CardToString(u)

to C++

randomGenerator->NextDouble()
deck->Shuffle()
deck->CardToString(u)

Handles and pointers access their members using the -> class member access operator.
As discussed earlier, randomGenerator is a handle, and accessing the data on the managed
heap requires the -> class member access operator.

Change the Separators for Namespaces and Static Accesses

On lines 59 and 61, we change the following separators in C#:

Console.WritelLine()
Console.ReadLine()

to C++

Console: :WriteLine()
Console: :ReadLine()

The . class member access operator is reserved for instantiations, which indicate that you
are accessing the data directly rather than through a handle or pointer indirection. The ::
separator, the scope resolution operator, is used for qualification of namespaces and static
members.

48

CHAPTER 4 = C# TO C++/CLI

Change the Class Declarations

On line 4, we change the class declarations in C#:

class
struct

to C++

ref class
value class

In C++, struct differs from class only in the accessibility and inheritance protection
mechanisms. In addition, neither corresponds to the CLI reference and value types. The
whitespace keywords ref class and value class (as well as ref struct and value struct)
were added to C++ in order to represent these types.

Add the Function main()

C++ programs begin with a global function called main(). C# programs begin with a public
static member function called Main(). Since these functions have different signatures, they
can coexist in a C++ program, and we can add a global main() function that calls the C# Main()
method. This is the simplest way to add the function main() without changing the remainder
of the code:

void main()

{
}

CPP: :Deck: :Main();

The completed program follows:

using namespace System;
namespace CPP

{

public ref class Deck

{
array<unsigned int>"Cards;
Random” randomGenerator;
enum class Suit

{
Clubs = 0, Diamonds, Hearts, Spades

b

enum class Card

{
Ace=0, Deuce, Trey, Four, Five, Six, Seven,
Eight, Nine, Ten, Jack, Queen, King

b

Deck()

{

randomGenerator = gcnew Random();

CHAPTER 4 " C# TO C++/CLI 49

Cards = gcnew array<unsigned int>(52);
for (unsigned int u = 0; u < 52; ++u)

{
Cards[u] = u;
}
}
void Swap(unsigned int %u,unsigned int %v)
{
unsigned int tmp;
tmp = u;
u=v;
v = tmp;
}
void Shuffle()
{
for (unsigned int u = 52; u > 0; --u)
{
Swap(Cards[u - 1],Cards[RandomCard(u)]);
}
}
unsigned int RandomCard(unsigned int Max)
{
return(unsigned int)((double)Max * randomGenerator->NextDouble());
}
String” CardToString(unsigned int u)
{
Suit s = (Suit)(Cards[u] / 13);
Card ¢ = (Card)(Cards[u] % 13);
return c.ToString() + " of " + s.ToString();
}
public:
static void Main()
{
Deck” deck = gcnew Deck();
deck->Shuffle();
for (unsigned int u = 0; u < 5; ++u)
{
Console: :Writeline(deck->CardToString(u));
}
Console: :ReadlLine();
}
};
}
void main()
{

CPP: :Deck: :Main();
}

CHAPTER 4 ' C# TO C++/CLI

Place this code in a file called cardsconverted. cpp, compile, and run:

C:\>cl /nologo /clr:pure cardsconverted.cpp
cardsconverted

C:\>cardsconverted

Four of Diamonds

Ten of Spades

Ace of Spades

Ace of Hearts

Trey of Spades

That’s openers and more. Time to bet; I'm not bluffing.

Summary

In this chapter, we went through the simple shuffling program of Chapter 2, took it apart line
by line, and converted it to C#. Since it is so easy to combine different languages in .NET, you
won't need to do this often. You'll be able to create modules and class libraries in C# and
C++/CL], or even Visual Basic, and bind them all together without changing the individual
source files. Still, the lesson of actually going through the steps of a conversion is quite
valuable.

In the next chapter, we'll explore some tools that will help you program more effectively in
C#, C++, and .NET.

CHAPTER 5

Tools

When all else fails, clean your tools.
—Robert Pirsig

In this chapter, we’ll acquaint ourselves with a few of the tools that make .NET development
easier in both C# and C++.

Lutz Roeder’s .NET Reflector

One of the most powerful tools for .NET development available today is Lutz Roeder’s .NET
Reflector.! This program is an invaluable tool for understanding .NET assemblies. It allows you
to decompile .NET executables as well as libraries into IL, C#, C++/CLI, and other languages.
It is currently freely available at waw.aisto.com.

What Is Reflection?

A NET assembly is far more than just a sequence of instructions for execution. It contains
descriptions and attributes about the contents of the assembly, collectively called the
metadata. In NET parlance, reflection is the ability for the program to read and analyze the
metadata of another assembly at runtime. When a program reads its own metadata, it is a

bit like looking in the mirror, so the term “reflection” seems appropriate. The namespace
System: :Reflection is devoted to the .NET’s class library, which implements the primary
reflection mechanisms. There are two others: CCI, which allows you to access information
that System: :Reflection cannot, and the IMetadata API. All of these mechanisms complement
each other.

1. .NET Reflector is copyrighted by Lutz Roeder. All images and references are used with permission.

51

52 CHAPTER 5 " TOOLS

Reflection allows you to discover all metadata information about a type without needing
to instantiate it. This includes but is not limited to the following items:

¢ Name

¢ Fields

e Methods
* Visibility
* Attributes

Reflection enables you to discover all sorts of characteristics of these items. These include
field modifiers (initonly, literal, etc.), method types (generic or not), properties, and events.
Reflection even allows you to create types on the fly using Reflection: :Emit.

Lutz Roeder’s .NET Reflector

Lutz Roeder’s .NET Reflector implements a reflection mechanism independent of the mecha-
nism implemented in the .NET framework. It is designed to churn the metadata and CIL into
a higher level of abstraction through decompilation. This paradigm is slightly different, as it
is not called from within the program itself, so it is not technically a mirror;