

Boost C++ Application
Development
Cookbook

Over 80 practical, task-based recipes to create
applications using Boost libraries

Antony Polukhin

 BIRMINGHAM - MUMBAI

Boost C++ Application Development
Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: August 2013

Production Reference: 1210813

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-488-0

www.packtpub.com

Cover Image by Suresh Mogre (suresh.mogre.99@gmail.com)

Credits

Author
Antony Polukhin

Reviewers
Béla Tibor Bartha

Paul A. Bristow

Acquisition Editor
Akram Hussain

Lead Technical Editor
Arun Nadar

Technical Editors
Sampreshita Maheshwari

Vivek Pillai

Hardik B. Soni

Copy Editors
Adithi Shetty

Laxmi Subramanian

Gladson Monterio

Brandt D'Mello

Sayanee Mukherjee

Alfida Paiva

Aditya Nair

Project Coordinator
Anugya Khurana

Proofreader
Stephen Silk

Indexer
Monica Ajmera Mehta

Graphics
Abhinash Sahu

Ronak Druv

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

About the Author

Antony Polukhin was born in Russia. As a child, he could speak the Russian and Hungarian
languages and learned English at school. Since his school days, he was participating in different
mathematics, physics, and chemistry competitions and winning them.

He was accepted into University twice: once for taking part in a city mathematics competition
and again for gaining high score in an internal Universities mathematics and physics
challenge. In his university life, there was not a year when he did not participate in an exam:
he gained 'A's in all disciplines by writing highly difficult programs for each teacher. He met
his future wife in university and graduated with honors.

For more than three years, he worked in a VoIP company developing business logic for a
commercial alternative to Asterisc. During those days he started contributing to Boost and
became a maintainer of the Boost.LexicalCast library. He also started making translations
to Russian for Ubuntu Linux at that time.

Today, he develops a query engine for graph-oriented databases and continues to contribute
to the open source. You may find his code in Boost libraries such as Any, LexicalCast,
TypeTraits, Variant, and others.

He has been happily married for a year now.

I would like to thank my family, especially my wife, Irina Polukhina, for
drawing sketches of pictures and diagrams all through the book. Great
thanks to Paul Anthony Bristow for reviewing this book and getting through
the insane number of commas that I used in the first drafts. I would also like
to thank all of the people from the Boost community for writing those great
libraries and for opening an amazing word of C++ for me.

About the Reviewers

Béla Tibor Bartha is a professional software engineer working on various technologies
and languages. Although in the last four years he's been working on iOS and OS X
applications, C++ is his old passion along with game development as personal projects.

Paul A. Bristow is a long-time member of the Boost community (and contributor to Boost.
Math) who has watched with amusement and amazement at how C++ has been made to
do so many wonderful things that it was never designed to do (many of which are nicely
demonstrated in this book).

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your
book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface 1
Chapter 1: Starting to Write Your Application 7

Introduction 7
Getting configuration options 8
Storing any value in a container/variable 13
Storing multiple chosen types in a variable/container 16
Using a safer way to work with a container that stores multiple chosen types 18
Returning a value or flag where there is no value 22
Returning an array from a function 25
Combining multiple values into one 28
Reordering the parameters of function 30
Binding a value as a function parameter 34
Using the C++11 move emulation 37
Making a noncopyable class 40
Making a noncopyable but movable class 42

Chapter 2: Converting Data 47
Introduction 47
Converting strings to numbers 48
Converting numbers to strings 51
Converting numbers to numbers 53
Converting user-defined types to/from strings 56
Casting polymorphic objects 59
Parsing simple input 61
Parsing input 66

Chapter 3: Managing Resources 71
Introduction 71
Managing pointers to classes that do not leave scope 72

ii

Table of Contents

Reference counting of pointers to classes used across methods 74
Managing pointers to arrays that do not leave scope 77
Reference counting pointers to arrays used across methods 79
Storing any functional objects in a variable 82
Passing a function pointer in a variable 85
Passing C++11 lambda functions in a variable 86
Containers of pointers 88
Doing something at scope exit 91
Initializing the base class by a member of the derived class 93

Chapter 4: Compile-time Tricks 97
Introduction 97
Checking sizes at compile time 98
Enabling the usage of templated functions for integral types 102
Disabling templated functions' usage for real types 106
Creating a type from number 108
Implementing a type trait 111
Selecting an optimal operator for a template parameter 113
Getting a type of expression in C++03 116

Chapter 5: Multithreading 121
Introduction 121
Creating an execution thread 122
Syncing access to a common resource 126
Fast access to common resource using atomics 131
Creating a work_queue class 134
Multiple-readers-single-writer lock 138
Creating variables that are unique per thread 141
Interrupting a thread 144
Manipulating a group of threads 146

Chapter 6: Manipulating Tasks 149
Introduction 149
Registering a task for processing an arbitrary datatype 150
Making timers and processing timer events as tasks 154
Network communication as a task 157
Accepting incoming connections 164
Executing different tasks in parallel 169
Conveyor tasks processing 171
Making a nonblocking barrier 176
Storing an exception and making a task from it 181
Getting and processing system signals as tasks 185

iii

Table of Contents

Chapter 7: Manipulating Strings 189
Introduction 189
Changing cases and case-insensitive comparison 189
Matching strings using regular expressions 192
Searching and replacing strings using regular expressions 196
Formatting strings using safe printf-like functions 199
Replacing and erasing strings 201
Representing a string with two iterators 203
Using a reference to string type 206

Chapter 8: Metaprogramming 211
Introduction 211
Using type "vector of types" 212
Manipulating a vector of types 217
Getting a function's result type at compile time 222
Making a higher-order metafunction 225
Evaluating metafunctions lazily 227
Converting all the tuple elements to strings 230
Splitting tuples 234

Chapter 9: Containers 239
Introduction 239
Comparing strings in an ultra-fast manner 240
Using an unordered set and map 244
Making a map, where value is also a key 248
Using multi-index containers 252
Getting the benefits of single-linked list and memory pool 258
Using flat associative containers 263

Chapter 10: Gathering Platform and Compiler Information 267
Introduction 267
Detecting int128 support 268
Detecting RTTI support 270
Speeding up compilation using C++11 extern templates 272
Writing metafunctions using simpler methods 274
Reducing code size and increasing performance of user-defined
types (UDTs) in C++11 276
The portable way to export and import functions and classes 279
Detecting the Boost version and getting latest features 282

Chapter 11: Working with the System 285
Introduction 285
Listing files in a directory 286

iv

Table of Contents

Erasing and creating files and directories 288
Passing data quickly from one process to another 291
Syncing interprocess communications 294
Using pointers in shared memory 297
The fastest way to read files 300
Coroutines – saving the state and postponing the execution 302

Chapter 12: Scratching the Tip of the Iceberg 307
Introduction 307
Working with graphs 308
Visualizing graphs 312
Using a true random number generator 315
Using portable math functions 317
Writing test cases 319
Combining multiple test cases in one test module 321
Manipulating images 323

Index 329

Preface
A few years ago one of my friends was looking for a book about the Boost libraries. I asked
him "Why don't you read the documentation?". His answer was, "I do not know much and
I do not know where to start. Boost is huge; I have no time to read all about it."

Well, that was a good hint but such a book would be of interest only to beginners.
Professionals would find nothing interesting in it unless I added some C++11 stuff and
compared the existing Boost libraries with the new C++ standard.

I could also add answers to common questions that arise in Boost mailing lists but are hard
to find or not covered by the documentation. Spice it up with performance notes and we'd
get a book that would be interesting to almost everyone.

This book will take you through a number of clear, practical recipes that will help you to take
advantage of some readily available solutions.

Boost C++ Application Development Cookbook starts out teaching the basics of the Boost
libraries that are now mostly part of C++11 and leave no chance for memory leaks. Managing
resources will become a piece of cake. We'll see what kind of work can be done at compile
time and what Boost containers can do. Do you think multithreading is a burden? Not with
Boost. Do you think writing portable and fast servers is impossible? You'll be surprised!
Compilers and operating systems differ too much? Not with Boost. From manipulating images
to graphs, directories, timers, files, and strings – everyone will find an interesting topic.

You will learn everything needed for the development of high-quality, fast, and portable
applications. Write a program once and you can use it on Linux, Windows, Mac OS, and
Android operating systems.

What this book covers
Chapter 1, Starting to Write Your Application, covers some recipes for everyday use. We'll see
how to get configuration options from different sources and what can be cooked up using
some of the datatypes introduced by Boost library authors.

Preface

2

Chapter 2, Converting Data, explains how to convert strings, numbers, and user-defined types
to each other, how to safely cast polymorphic types, and how to write small and large parsers
right in C++ source files.

Chapter 3, Managing Resources, provides guidance to easily managing resources and
how to use a datatype capable of storing any functional objects, functions, and lambda
expressions. After reading this chapter your code will become more reliable and memory
leaks will become history.

Chapter 4, Compile-time Tricks, walks you through some basic examples on how Boost
libraries can be used in compile-time checking, for tuning algorithms and in other
metaprogramming tasks.

Chapter 5, Multithreading, discusses threads and everything connected with them.

Chapter 6, Manipulating Tasks, explains that we can split all of the processing, computations,
and interactions to functors (tasks) and process each of those tasks almost independently.
Moreover, we need not block on some slow operations such as receiving data from socket or
waiting for timeout, but instead provide a callback task and continue processing other tasks.

Chapter 7, Manipulating Strings, covers different aspects of changing, searching, and
representing strings. We'll see how some common string-related tasks can easily be done
using Boost libraries.

Chapter 8, Metaprogramming, is devoted to some cool and hard-to-understand
metaprogramming methods. Those methods are not for everyday use, but they
will be a real help for development of generic libraries.

Chapter 9, Containers, covers Boost containers and everything directly connected to them. This
chapter provides information about Boost classes that can be used in everyday programming
and that will make your code much faster and development of new applications easier.

Chapter 10, Gathering Platform and Compiler Information, provides different helper macros
used to detect compiler, platform, and Boost features. Those macros are widely used across
Boost libraries and are essential for writing portable code that is able to work with any
compiler flags.

Chapter 11, Working with the System, takes a closer look at the filesystem and at creating
and deleting files. We'll see how data can be passed between different system processes,
how to read files with maximum speed, and how to do other tricks.

Chapter 12, Scratching the Tip of the Iceberg, is devoted to some of those big libraries, giving
the basics to start with. Some of the Boost libraries are small and meant for everyday use,
others require a separate book to describe all of their features.

Preface

3

What you need for this book
To run the examples in this book, the following software will be required:

 f C++ compiler: Any modern, popular C++ compiler will be suitable

 f IDE: QtCreator is recommended as an IDE

 f Boost: You should have a full build of Boost 1.53

 f Miscellaneous tools: Graphviz (any version) and libpng (latest version)

Note that if you are using Linux, all of the required software except Boost can be found
in the repository.

Who this book is for
This book is great for developers who are new to Boost, and who are looking to improve their
knowledge of Boost and see some undocumented details or tricks. It's assumed that you will
have some experience in C++ already, as well as being familiar with the basics of STL. A few
chapters will require some previous knowledge of multithreading and networking. You are
expected to have at least one good C++ compiler and compiled version of Boost (1.53.0
or later is recommended), which will be used during the exercises within this book.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds
of information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames,
dummy URLs, user input, and Twitter handles are shown as follows: "It means that you can catch
almost all Boost exceptions using catch (const std::exception& e)."

A block of code is set as follows:

#include <boost/variant.hpp>
#include <iostream>
#include <vector>
#include <string>

int main()
{
 typedef boost::variant<int, const char*, std::string> my_var_t;
 std::vector<my_var_t> some_values;
 some_values.push_back(10);
 some_values.push_back("Hello there!");

Preface

4

 some_values.push_back(std::string("Wow!"));
 std::string& s = boost::get<std::string>(some_values.back());
 s += " That is great!\n";
 std::cout << s;
 return 0;
}

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Preface

5

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded on our website, or added to any list of existing errata, under the Errata section
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Starting to Write
Your Application

In this chapter we will cover:

 f Getting configuration options

 f Storing any value in a container/variable

 f Storing multiple chosen types in a container/variable

 f Using a safer way to work with a container that stores multiple chosen types

 f Returning a value or flag where there is no value

 f Returning an array from a function

 f Combining multiple values into one

 f Reordering the parameters of a function

 f Binding a value as a function parameter

 f Using the C++11 move emulation

 f Making a noncopyable class

 f Making a noncopyable but movable class

Introduction
Boost is a collection of C++ libraries. Each library has been reviewed by many professional
programmers before being accepted to Boost. Libraries are tested on multiple platforms using
many compilers and the C++ standard library implementations. While using Boost, you can be
sure that you are using one of the most portable, fast, and reliable solutions that is distributed
under a license suitable for commercial and open source projects.

Starting to Write Your Application

8

Many parts of Boost have been included in C++11, and even more parts are going to be
included in the next standard of C++. You will find C++11-specific notes in each recipe of
this book.

Without a long introduction, let's get started!

In this chapter we will see some recipes for everyday use. We'll see how to get configuration
options from different sources and what can be cooked up using some of the datatypes
introduced by Boost library authors.

Getting configuration options
Take a look at some of the console programs, such as cp in Linux. They all have a fancy help,
their input parameters do not depend on any position, and have a human readable syntax,
for example:

$ cp --help

Usage: cp [OPTION]... [-T] SOURCE DEST

 -a, --archive same as -dR --preserve=all

 -b like --backup but does not accept an argument

You can implement the same functionality for your program in 10 minutes. And all you need
is the Boost.ProgramOptions library.

Getting ready
Basic knowledge of C++ is all you need for this recipe. Remember that this library is
not a header-only, so your program will need to link against the libboost_program_
options library.

How to do it...
Let's start with a simple program that accepts the number of apples and oranges as input
and counts the total number of fruits. We want to achieve the following result:

$ our_program –apples=10 –oranges=20

Fruits count: 30

Chapter 1

9

Perform the following steps:

1. First of all, we need to include the program_options header and make an alias for
the boost::program_options namespace (it is too long to type it!). We would also
need an <iostream> header:
#include <boost/program_options.hpp>
#include <iostream>
namespace opt = boost::program_options;

2. Now we are ready to describe our options:
// Constructing an options describing variable and giving
// it a textual description "All options" to it.
opt::options_description desc("All options");

// When we are adding options, first parameter is a name
// to be used in command line. Second parameter is a type
// of that option, wrapped in value<> class.
// Third parameter must be a short description of that
// option
desc.add_options()
 ("apples", opt::value<int>(), "how many apples do you have")
 ("oranges", opt::value<int>(), "how many oranges do you have")
;

3. We'll see how to use a third parameter a little bit later, after which we'll deal with
parsing the command line and outputting the result:
// Variable to store our command line arguments
opt::variables_map vm;

// Parsing and storing arguments
opt::store(opt::parse_command_line(argc, argv, desc), vm);
opt::notify(vm);
std::cout << "Fruits count: "
 << vm["apples"].as<int>() + vm["oranges"].as<int>()
 << std::endl;

That was simple, wasn't it?

4. Let's add the --help parameter to our option's description:
 ("help", "produce help message")

Starting to Write Your Application

10

5. Now add the following lines after opt::notify(vm);, and you'll get a fully
functional help for your program:
if (vm.count("help")) {
 std::cout << desc << "\n";
 return 1;
}

Now, if we call our program with the --help parameter, we'll get the following output:
All options:
 --apples arg how many apples do you have
 --oranges arg how many oranges do you have
 --help produce help message

As you can see, we do not provide a type for the option's value, because we do not
expect any values to be passed to it.

6. Once we have got through all the basics, let's add short names for some of the
options, set the default value for apples, add some string input, and get the missing
options from the configuration file:

#include <boost/program_options.hpp>
// 'reading_file' exception class is declared in errors.hpp
#include <boost/program_options/errors.hpp>
#include <iostream>
namespace opt = boost::program_options;

int main(int argc, char *argv[])
{
 opt::options_description desc("All options");
 // 'a' and 'o' are short option names for apples and
 // oranges 'name' option is not marked with
 // 'required()', so user may not support it
 desc.add_options()
 ("apples,a", opt::value<int>()->default_value(10),
 "apples that you have")
 ("oranges,o", opt::value<int>(), "oranges that you have")
 ("name", opt::value<std::string>(), "your name")
 ("help", "produce help message")
 ;
 opt::variables_map vm;
 // Parsing command line options and storing values to 'vm'

Chapter 1

11

 opt::store(opt::parse_command_line(argc, argv, desc), vm);
 // We can also parse environment variables using
 // 'parse_environment' method
 opt::notify(vm);
 if (vm.count("help")) {
 std::cout << desc << "\n";
 return 1;
 }
 // Adding missing options from "aples_oranges.cfg"
 // config file.
 // You can also provide an istreamable object as a
 // first parameter for 'parse_config_file'
 // 'char' template parameter will be passed to
 // underlying std::basic_istream object
 try {
 opt::store(
 opt::parse_config_file<char>("apples_oranges.cfg", desc),
 vm
);
 } catch (const opt::reading_file& e) {
 std::cout
 << "Failed to open file 'apples_oranges.cfg': "
 << e.what();
 }
 opt::notify(vm);
 if (vm.count("name")) {
 std::cout << "Hi," << vm["name"].as<std::string>() << "!\n";
 }

 std::cout << "Fruits count: "
 << vm["apples"].as<int>() + vm["oranges"].as<int>()
 << std::endl;
 return 0;
}

When using a configuration file, we need to remember that its syntax
differs from the command-line syntax. We do not need to place
minuses before the options. So our apples_oranges.cfg option
must look like this:
oranges=20

Starting to Write Your Application

12

How it works...
This example is pretty trivial to understand from code and comments. Much more interesting
is what output we get on execution:

$./our_program --help
All options:
 -a [--apples] arg (=10) how many apples do you have
 -o [--oranges] arg how many oranges do you have
 --name arg your name
 --help produce help message

$./our_program
Fruits count: 30

$./our_program -a 10 -o 10 --name="Reader"
Hi,Reader!
Fruits count: 20

There's more...
The C++11 standard adopted many Boost libraries; however, you won't find Boost.
ProgramOptions in it.

See also
 f Boost's official documentation contains many more examples and shows more

advanced features of Boost.ProgramOptions, such as position-dependent
options, nonconventional syntax, and more. This is available at the following link:

http://www.boost.org/doc/libs/1_53_0/doc/html/program_options.
html

Downloading the example code
You can download the example code files for all Packt books that you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Chapter 1

13

Storing any value in a container/variable
If you have been programming in Java, C#, or Delphi, you will definitely miss the ability to
create containers with the Object value type in C++. The Object class in those languages is
a basic class for almost all types, so you are able to assign (almost) any value to it at any time.
Just imagine how great it would be to have such a feature in C++:

#include <iostream>
#include <vector>
#include <string>
#include <auto_ptr.h>

int main()
{
 typedef std::auto_ptr<Object> object_ptr;
 std::vector<object_ptr> some_values;
 some_values.push_back(new Object(10));
 some_values.push_back(new Object("Hello there"));
 some_values.push_back(new Object(std::string("Wow!")));
 std::string* p =
 dynamic_cast<std::string*>(some_values.back().get());
 assert(p);

 (*p) += " That is great!\n";
 std::cout << *p;
 return 0;
}

Getting ready
We'll be working with the header-only library. Basic knowledge of C++ is all you need
for this recipe.

How to do it...
In such cases, Boost offers a solution, the Boost.Any library, which has an even
better syntax:

#include <boost/any.hpp>
#include <iostream>
#include <vector>
#include <string>

Starting to Write Your Application

14

int main()
{
 std::vector<boost::any> some_values;
 some_values.push_back(10);
 const char* c_str = "Hello there!";
 some_values.push_back(c_str);
 some_values.push_back(std::string("Wow!"));
 std::string& s =
 boost::any_cast<std::string&>(some_values.back());
 s += " That is great!\n";
 std::cout << s;
 return 0;
}

Great, isn't it? By the way, it has an empty state, which could be checked using the empty()
member function (just as in STL containers).

You can get the value from boost::any using two approaches:

 boost::any variable(std::string("Hello world!"));

 //#1: Following method may throw a boost::bad_any_cast exception
 // if actual value in variable is not a std::string
 std::string s1 = boost::any_cast<std::string>(variable);

 //#2: If actual value in variable is not a std::string
 // will return an NULL pointer
 std::string* s2 = boost::any_cast<std::string>(&variable);

How it works...
The boost::any class just stores any value in it. To achieve this it uses the type erasure
technique (close to what Java or C# does with all of its types). To use this library, you do not
really need to know its internal implementation, so let's just have a quick glance at the type
erasure technique. Boost.Any, on assignment of some variable of type T, constructs a
type (let's call it holder<T>) that may store a value of the specified type T, and is derived
from some internal base-type placeholder. A placeholder has virtual functions for getting
std::type_info of a stored type and for cloning a stored type. When any_cast<T>() is
used, boost::any checks that std::type_info of a stored value is equal to typeid(T)
(the overloaded placeholder's function is used for getting std::type_info).

Chapter 1

15

There's more...
Such flexibility never comes without a cost. Copy constructing, value constructing, copy
assigning, and assigning values to instances of boost::any will call a dynamic memory
allocation function; all of the type casts need to get runtime type information (RTTI);
boost::any uses virtual functions a lot. If you are keen on performance, see the next
recipe, which will give you an idea of how to achieve almost the same results without
dynamic allocations and RTTI usage.

Another disadvantage of Boost.Any is that it cannot be used with RTTI disabled.
There is a possibility to make this library usable even with RTTI disabled, but it is
not currently implemented.

Almost all exceptions in Boost derive from the std::exception class
or from its derivatives, for example, boost::bad_any_cast is derived
from std::bad_cast. It means that you can catch almost all Boost
exceptions using catch (const std::exception& e).

See also
 f Boost's official documentation may give you some more examples, and it can be

found at http://www.boost.org/doc/libs/1_53_0/doc/html/any.html

 f The Using a safer way to work with a container that stores multiple chosen types
recipe for more info on the topic

Starting to Write Your Application

16

Storing multiple chosen types in a variable/
container

Are you aware of the concept of unrestricted unions in C++11? Let me tell you about it in
short. C++03 unions can only hold extremely simple types of data called POD (plain old data).
So in C++03, you cannot, for example, store std::string or std::vector in a union.
C++11 relaxes this requirement, but you'll have to manage the construction and destruction
of such types by yourself, call in-place construction/destruction, and remember what type is
stored in a union. A huge amount of work, isn't it?

Getting ready
We'll be working with the header-only library, which is simple to use. Basic knowledge of
C++ is all you need for this recipe.

How to do it...
Let me introduce the Boost.Variant library to you.

1. The Boost.Variant library can store any of the types specified at compile time;
it also manages in-place construction/destruction and doesn't even require the
C++11 standard:
#include <boost/variant.hpp>
#include <iostream>
#include <vector>
#include <string>

int main()
{
 typedef boost::variant<int, const char*, std::string>
 my_var_t;
 std::vector<my_var_t> some_values;
 some_values.push_back(10);
 some_values.push_back("Hello there!");
 some_values.push_back(std::string("Wow!"));
 std::string& s = boost::get<std::string>(some_values.back());
 s += " That is great!\n";
 std::cout << s;
 return 0;
}

Great, isn't it?

Chapter 1

17

2. Boost.Variant has no empty state, but has an empty() function, which always
returns false. If you do need to represent an empty state, just add some trivial
type at the first position of the types supported by the Boost.Variant library.
When Boost.Variant contains that type, interpret it as an empty state. Here is an
example in which we will use a boost::blank type to represent an empty state:
 typedef boost::variant<boost::blank, int, const char*,
 std::string> my_var_t;
 // Default constructor will construct an
 // instance of boost::blank
 my_var_t var;
 // 'which()' method returns an index of a type,
 // currently held by variant.
 assert(var.which() == 0); // Empty state
 var = "Hello, dear reader";
 assert(var.which() != 0);

3. You can get a value from a variant using two approaches:

 boost::variant<int, std::string> variable(0);
 // Following method may throw a boost::bad_get
 // exception if actual value in variable is not an int
 int s1 = boost::get<int>(variable);
 // If actual value in variable is not an int
 // will return an NULL pointer
 int* s2 = boost::get<int>(&variable);

How it works...
The boost::variant class holds an array of characters and stores values in that array. Size
of the array is determined at compile time using sizeof() and functions to get alignment. On
assignment or construction of boost::variant, the previous values are in-place destroyed,
and new values are constructed on top of the character array using the new placement.

There's more...
The Boost.Variant variables usually do not allocate memory in a heap, and they do not
require RTTI to be enabled. Boost.Variant is extremely fast and used widely by other Boost
libraries. To achieve maximum performance, make sure that there is a trivial type in the list of
supported types, and that this type is at the first position.

Boost.Variant is not a part of the C++11 standard.

Starting to Write Your Application

18

See also
 f The Using a safer way to work with a container that stores multiple chosen

types recipe

 f Boost's official documentation contains more examples and descriptions of
some other features of Boost.Variant, and can be found at:

http://www.boost.org/doc/libs/1_53_0/doc/html/variant.html

Using a safer way to work with a container
that stores multiple chosen types

Imagine that you are creating a wrapper around some SQL database interface. You decided
that boost::any will perfectly match the requirements for a single cell of the database
table. Some other programmer will be using your classes, and his task would be to get a
row from the database and count the sum of the arithmetic types in a row.

Here's how the code would look:

#include <boost/any.hpp>
#include <vector>
#include <string>
#include <typeinfo>
#include <algorithm>
#include <iostream>

// This typedefs and methods will be in our header,
// that wraps around native SQL interface
typedef boost::any cell_t;
typedef std::vector<cell_t> db_row_t;

// This is just an example, no actual work with database.
db_row_t get_row(const char* /*query*/) {
 // In real application 'query' parameter shall have a 'const
 // char*' or 'const std::string&' type? See recipe Using a
 // reference to string type in Chapter 7, Manipulating Strings
 // for an answer.
 db_row_t row;
 row.push_back(10);
 row.push_back(10.1f);
 row.push_back(std::string("hello again"));
 return row;
}

Chapter 1

19

// This is how a user will use your classes
struct db_sum: public std::unary_function<boost::any, void> {
private:
 double& sum_;
public:
 explicit db_sum(double& sum)
 : sum_(sum)
 {}

 void operator()(const cell_t& value) {
 const std::type_info& ti = value.type();
 if (ti == typeid(int)) {
 sum_ += boost::any_cast<int>(value);
 } else if (ti == typeid(float)) {
 sum_ += boost::any_cast<float>(value);
 }
 }
};

int main()
{
 db_row_t row = get_row("Query: Give me some row, please.");
 double res = 0.0;
 std::for_each(row.begin(), row.end(), db_sum(res));
 std::cout << "Sum of arithmetic types in database row is: " << res
<< std::endl;
 return 0;
}

If you compile and run this example, it will output a correct answer:

Sum of arithmetic types in database row is: 20.1

Do you remember what your thoughts were when reading the implementation of
operator()? I guess they were, "And what about double, long, short, unsigned, and
other types?". The same thoughts will come to the mind of a programmer who will use your
interface. So you'll need to carefully document values stored by your cell_t, or read the
more elegant solution described in the following sections.

Getting ready
Reading the previous two recipes is highly recommended if you are not already familiar with
the Boost.Variant and Boost.Any libraries.

Starting to Write Your Application

20

How to do it...
The Boost.Variant library implements a visitor programming pattern for accessing the
stored data, which is much safer than getting values via boost::get<>. This pattern forces
the programmer to take care of each variant type, otherwise the code will fail to compile.
You can use this pattern via the boost::apply_visitor function, which takes a visitor
functional object as the first parameter and a variant as the second parameter. Visitor
functional objects must derive from the boost::static_visitor<T> class, where T
is a type being returned by a visitor. A visitor object must have overloads of operator()
for each type stored by a variant.

Let's change the cell_t type to boost::variant<int, float, string> and modify
our example:

#include <boost/variant.hpp>
#include <vector>
#include <string>
#include <iostream>

// This typedefs and methods will be in header,
// that wraps around native SQL interface.
typedef boost::variant<int, float, std::string> cell_t;
typedef std::vector<cell_t> db_row_t;

// This is just an example, no actual work with database.
db_row_t get_row(const char* /*query*/) {
 // See the recipe "Using a reference to string type"
 // in Chapter 7, Manipulating Strings
 // for a better type for 'query' parameter.
 db_row_t row;
 row.push_back(10);
 row.push_back(10.1f);
 row.push_back("hello again");
 return row;
}

// This is how code required to sum values
// We can provide no template parameter
// to boost::static_visitor<> if our visitor returns nothing.
struct db_sum_visitor: public boost::static_visitor<double> {
 double operator()(int value) const {
 return value;
 }

Chapter 1

21

 double operator()(float value) const {
 return value;
 }
 double operator()(const std::string& /*value*/) const {
 return 0.0;
 }
};

int main()
{
 db_row_t row = get_row("Query: Give me some row, please.");
 double res = 0.0;
 db_row_t::const_iterator it = row.begin(), end = row.end();
 for (; it != end; ++it) {
 res += boost::apply_visitor(db_sum_visitor(), *it);
 }
 std::cout << "Sum of arithmetic types in database row is: "
 << res << std::endl;
 return 0;
}

How it works...
The Boost.Variant library will generate a big switch statement at compile time, each
case of which will call a visitor for a single type from the variant's list of types. At runtime,
the index of the stored type can be retrieved using which(), and a jump to the correct case
in the switch will be made. Something like this will be generated for boost::variant<int,
float, std::string>:

switch (which())
{
case 0: return visitor(*reinterpret_cast<int*>(address()));
case 1: return visitor(*reinterpret_cast<float*>(address()));
case 2: return visitor(*reinterpret_cast<std::string*>(address()));
default: assert(false);
}

Here, the address() function returns a pointer to the internal storage of
boost::variant<int, float, std::string>.

Starting to Write Your Application

22

There's more...
If we compare this example with the first example in this recipe, we'll see the following
advantages of boost::variant:

 f We know what types a variable can store

 f If a library writer of the SQL interface adds or modifies a type held by a variant,
we'll get a compile-time error instead of incorrect behavior

See also
 f After reading some recipes from Chapter 4, Compile-time Tricks, you'll be able to

make the visitor object so generic that it will be able to work correctly even if the
underlying types change

 f Boost's official documentation contains more examples and a description of some
other features of Boost.Variant, and is available at the following link:

http://www.boost.org/doc/libs/1_53_0/doc/html/variant.html

Returning a value or flag where there is no
value

Imagine that we have a function that does not throw an exception and returns a value or
indicates that an error has occurred. In Java or C# programming languages, such cases are
handled by comparing a return value from a function value with a null pointer; if it is null then
an error has occurred. In C++, returning a pointer from a function confuses library users and
usually requires dynamic memory allocation (which is slow).

Getting ready
Only basic knowledge of C++ is required for this recipe.

How to do it...
Ladies and gentlemen, let me introduce you to the Boost.Optional library using the
following example:

Chapter 1

23

The try_lock_device() function tries to acquire a lock for a device, and may succeed or not
depending on different conditions (in our example it depends on the rand() function call). The
function returns an optional variable that can be converted to a Boolean variable. If the returned
value is equal to Boolean true, then the lock is acquired, and an instance of a class to work
with the device can be obtained by dereferencing the returned optional variable:

#include <boost/optional.hpp>
#include <iostream>
#include <stdlib.h>

class locked_device {
 explicit locked_device(const char* /*param*/) {
 // We have unique access to device
 std::cout << "Device is locked\n";
 }
public:
 ~locked_device () {
 // Releasing device lock
 }

 void use() {
 std::cout << "Success!\n";
 }
 static boost::optional<locked_device> try_lock_device() {
 if (rand()%2) {
 // Failed to lock device
 return boost::none;
 }
 // Success!
 return locked_device("device name");
 }
};

int main()
{
 // Boost has a library called Random. If you wonder why it was
 // written when stdlib.h has rand() function, see the recipe
 // "Using a true random number generator in Chapter 12,
 // Scratching the Tip of the Iceberg
 srandom(5);

Starting to Write Your Application

24

 for (unsigned i = 0; i < 10; ++i) {
 boost::optional<locked_device> t
 = locked_device::try_lock_device();
 // optional is convertible to bool
 if (t) {
 t->use();
 return 0;
 } else {
 std::cout << "...trying again\n";
 }
 }
 std::cout << "Failure!\n";
 return -1;
}

This program will output the following:

...trying again

...trying again
Device is locked
Success!

The default constructed optional variable is convertible to a Boolean
variable holding false and must not be dereferenced, because it does
not have an underlying type constructed.

How it works...
The Boost.Optional class is very close to the boost::variant class but for only one
type, boost::optional<T> has an array of chars, where the object of type T can be an
in-place constructor. It also has a Boolean variable to remember the state of the object
(is it constructed or not).

There's more...
The Boost.Optional class does not use dynamic allocation, and it does not require a
default constructor for the underlying type. It is fast and considered for inclusion in the next
standard of C++. The current boost::optional implementation cannot work with C++11
rvalue references; however, there are some patches proposed to fix that.

The C++11 standard does not include the Boost.Optional class; however, it is currently
being reviewed for inclusion in the next C++ standard or in C++14.

Chapter 1

25

See also
 f Boost's official documentation contains more examples and describes advanced

features of Boost.Optional (like in-place construction using the factory functions).
The documentation is available at the following link:

http://www.boost.org/doc/libs/1_53_0/libs/optional/doc/html/
index.html

Returning an array from a function
Let's play a guessing game! What can you tell about the following function?

char* vector_advance(char* val);

Should return values be deallocated by the programmer or not? Does the function attempt
to deallocate the input parameter? Should the input parameter be zero-terminated, or should
the function assume that the input parameter has a specified width?

And now, let's make the task harder! Take a look at the following line:

char (&vector_advance(char (&val)[4]))[4];

Please do not worry; I've also been scratching my head for half an hour before getting an idea
of what is happening here. vector_advance is a function that accepts and returns an array
of four elements. Is there a way to write such a function clearly?

Getting ready
Only basic knowledge of C++ is required for this recipe.

How to do it...
We can rewrite the function like this:

#include <boost/array.hpp>
typedef boost::array<char, 4> array4_t;
array4_t& vector_advance(array4_t& val);

Here, boost::array<char, 4> is just a simple wrapper around an array of four
char elements.

This code answers all of the questions from our first example and is much more readable
than the second example.

Starting to Write Your Application

26

How it works...
The first template parameter of boost::array is the element type, and the second one is
the size of an array. boost::array is a fixed-size array; if you need to change the array size
at runtime, use std::vector or boost::container::vector instead.

The Boost.Array library just contains an array in it. That is all. Simple and efficient. The
boost::array<> class has no handwritten constructors and all of its members are public,
so the compiler will think of it as a POD type.

B

Array Tuple

There's more...
Let's see some more examples of the usage of boost::array:

#include <boost/array.hpp>
#include <algorithm>

// Functional object to increment value by one
struct add_1 : public std::unary_function<char, void> {
 void operator()(char& c) const {
 ++ c;
 }
 // If you're not in a mood to write functional objects,
 // but don't know what does 'boost::bind(std::plus<char>(),
 // _1, 1)' do, then read recipe 'Binding a value as a function
 // parameter'.
};

typedef boost::array<char, 4> array4_t;
array4_t& vector_advance(array4_t& val) {
 // boost::array has begin(), cbegin(), end(), cend(),
 // rbegin(), size(), empty() and other functions that are
 // common for STL containers.
 std::for_each(val.begin(), val.end(), add_1());
 return val;
}

Chapter 1

27

int main() {
 // We can initialize boost::array just like an array in C++11:
 // array4_t val = {0, 1, 2, 3};
 // but in C++03 additional pair of curly brackets is required.
 array4_t val = {{0, 1, 2, 3}};

 // boost::array works like a usual array:
 array4_t val_res; // it can be default constructible and
 val_res = vector_advance(val); // assignable
 // if value type supports default construction and assignment

 assert(val.size() == 4);
 assert(val[0] == 1);
 /*val[4];*/ // Will trigger an assert because max index is 3
 // We can make this assert work at compile-time.
 // Interested? See recipe 'Checking sizes at compile time'
 // in Chapter 4, Compile-time Tricks.'
 assert(sizeof(val) == sizeof(char) * array4_t::static_size);
 return 0;
}

One of the biggest advantages of boost::array is that it provides exactly the same
performance as a normal C array. People from the C++ standard committee also liked it, so
it was accepted to the C++11 standard. There is a chance that your STL library already has it
(you may try to include the <array> header and check for the availability of std::array<>).

See also
 f Boost's official documentation gives a complete list of the Boost.Array methods

with a description of the method's complexity and throw behavior, and is available at
the following link:
http://www.boost.org/doc/libs/1_53_0/doc/html/boost/array.html

 f The boost::array function is widely used across recipes; for example, refer to the
Binding a value as a function parameter recipe

Starting to Write Your Application

28

Combining multiple values into one
There is a very nice present for those who like std::pair. Boost has a library called Boost.
Tuple, and it is just like std::pair, but it can also work with triples, quads, and even bigger
collections of types.

Getting ready
Only basic knowledge of C++ and STL is required for this recipe.

How to do it...
Perform the following steps to combine multiple values in to one:

1. To start working with tuples, you need to include a proper header and declare
a variable:
#include <boost/tuple/tuple.hpp>
#include <string>

boost::tuple<int, std::string> almost_a_pair(10, "Hello");
boost::tuple<int, float, double, int> quad(10, 1.0f, 10.0, 1);

2. Getting a specific value is implemented via the boost::get<N>() function,
where N is a zero-based index of a required value:
 int i = boost::get<0>(almost_a_pair);
 const std::string& str = boost::get<1>(almost_a_pair);
 double d = boost::get<2>(quad);

The boost::get<> function has many overloads and is used widely across Boost.
We have already seen how it can be used with other libraries in the Storing multiple
chosen types in a container/variable recipe.

3. You can construct tuples using the boost::make_tuple() function, which is
shorter to write, because you do not need to fully qualify the tuple type:
 using namespace boost;

 // Tuple comparison operators are
 // defined in header "boost/tuple/tuple_comparison.hpp"
 // Don't forget to include it!
 std::set<tuple<int, double, int> > s;
 s.insert(make_tuple(1, 1.0, 2));
 s.insert(make_tuple(2, 10.0, 2));
 s.insert(make_tuple(3, 100.0, 2));

Chapter 1

29

 // Requires C++11
 auto t = make_tuple(0, -1.0, 2);
 assert(2 == get<2>(t));
 // We can make a compile-time assert for type
 // of t. Interested? See chapter 'compile-time tricks'

4. Another function that makes life easy is boost::tie(). It works almost as make_
tuple, but adds a nonconst reference for each of the passed types. Such a tuple can
be used to get values to a variable from another tuple. It can be better understood
from the following example:

 boost::tuple<int, float, double, int> quad(10, 1.0f, 10.0, 1);
 int i;
 float f;
 double d;
 int i2;

 // Passing values from 'quad' variables
 // to variables 'i', 'f', 'd', 'i2'
 boost::tie(i, f, d, i2) = quad;
 assert(i == 10);
 assert(i2 == 1);

How it works...
Some readers may wonder why we need a tuple when we can always write our own structures
with better names, for example, instead of writing boost::tuple<int, std::string>,
we can create a structure:

struct id_name_pair {
 int id;
 std::string name;
};

Well, this structure is definitely more clear than boost::tuple<int, std::string>.
But what if this structure is used only twice in the code?

The main idea behind the tuple's library is to simplify template programming.

B

Array Tuple

Starting to Write Your Application

30

There's more...
A tuple works as fast as std::pair (it does not allocate memory on a heap and has no
virtual functions). The C++ committee found this class to be very useful and it was included
in STL; you can find it in a C++11-compatible STL implementation in the header file <tuple>
(don't forget to replace all the boost:: namespaces with std::).

The current Boost implementation of a tuple does not use variadic templates; it is just a set
of classes generated by a script. There is an experimental version that uses C++11 rvalues
and an emulation of them on C++03 compilers, so there is a chance that Boost 1.54 will be
shipped with faster implementation of tuples.

See also
 f The experimental version of tuples can be found at the following link:

http://svn.boost.org/svn/boost/sandbox/tuple-move/

 f Boost's official documentation contains more examples, information about
performance, and abilities of Boost.Tuple. It is available at the following link:
http://www.boost.org/doc/libs/1_53_0/libs/tuple/doc/tuple_
users_guide.html

 f The Converting all tuple elements to strings recipe in Chapter 8, Metaprogramming,
shows some advanced usages of tuples

Reordering the parameters of function
This recipe and the next one are devoted to a very interesting library, whose functionality at
first glance looks like some kind of magic. This library is called Boost.Bind and it allows
you to easily create new functional objects from functions, member functions, and functional
objects, also allowing the reordering of the initial function's input parameters and binding
some values or references as function parameters.

Getting ready
Knowledge of C++, STL algorithms, and functional objects is required for this recipe.

How to do it...
1. Let's start with an example. You are working with a vector of integral types provided

by some other programmer. That integral type has only one operator, +, but your task
is to multiply a value by two. Without bind this can be achieved with the use of a
functional object:

Chapter 1

31

class Number{};
inline Number operator + (Number, Number);

// Your code starts here
struct mul_2_func_obj: public std::unary_function<Number, Number>
{
 Number operator()(Number n1) const {
 return n1 + n1;
 }
};

void mul_2_impl1(std::vector<Number>& values) {
 std::for_each(values.begin(), values.end(), mul_2_func_obj());
}

With Boost.Bind, it would be as follows:

#include <boost/bind.hpp>
#include <functional>

void mul_2_impl2(std::vector<Number>& values) {
 std::for_each(values.begin(), values.end(),
 boost::bind(std::plus<Number>(), _1, _1));
}

2. By the way, we can easily make this function more generic:

template <class T>
void mul_2_impl3(std::vector<T>& values) {
 std::for_each(values.begin(), values.end(),
 boost::bind(std::plus<T>(), _1, _1));
}

How it works...
Let's take a closer look at the mul_2 function. We provide a vector of values to it, and for each
value it applies a functional object returned by the bind() function. The bind() function
takes in three parameters; the first parameter is an instance of the std::plus<Number>
class (which is a functional object). The second and third parameters are placeholders.
The placeholder _1 substitutes the argument with the first input argument of the resulting
functional object. As you might guess, there are many placeholders; placeholder _2 means
substituting the argument with the second input argument of the resulting functional object,
and the same also applies to placeholder _3. Well, seems you've got the idea.

Starting to Write Your Application

32

There's more...
Just to make sure that you've got the whole idea and know where bind can be used, let's take
a look at another example.

We have two classes, which work with some sensor devices. The devices and classes are from
different vendors, so they provide different APIs. Both classes have only one public method
watch, which accepts a functional object:

class Device1 {
private:
 short temperature();
 short wetness();
 int illumination();
 int atmospheric_pressure();
 void wait_for_data();
public:
 template <class FuncT>
 void watch(const FuncT& f) {
 for(;;) {
 wait_for_data();
 f(
 temperature(),
 wetness(),
 illumination(),
 atmospheric_pressure()
);
 }
 }
};

class Device2 {
private:
 short temperature();
 short wetness();
 int illumination();
 int atmospheric_pressure();
 void wait_for_data();
public:
 template <class FuncT>
 void watch(const FuncT& f) {
 for(;;) {

Chapter 1

33

 wait_for_data();
 f(
 wetness(),
 temperature(),
 atmospheric_pressure(),
 illumination()
);
 }
 }
};

The Device1::watch and Device2::watch functions pass values to a functional object in
a different order.

Some other libraries provide a function, which is used to detect storms, and throws an
exception when the risk of a storm is high enough:

void detect_storm(int wetness, int temperature, int atmospheric_
pressure);

Your task is to provide a storm-detecting function to both of the devices. Here is how it can be
achieved using the bind function:

 Device1 d1;
 // resulting functional object will silently ignore
 // additional parameters passed to function call
 d1.watch(boost::bind(&detect_storm, _2, _1, _4));
 ...
 Device2 d2;
 d2.watch(boost::bind(&detect_storm, _1, _2, _3));

The Boost.Bind library provides good performance because it does not use dynamic
allocations and virtual functions. It is useful even when the C++11 lambda functions
are not usable:

template <class FuncT>
void watch(const FuncT& f) {
 f(10, std::string("String"));
 f(10, "Char array");
 f(10, 10);
}

struct templated_foo {
 template <class T>

Starting to Write Your Application

34

 void operator()(T, int) const {
 // No implementation, just showing that bound
 // functions still can be used as templated
 }
};

void check_templated_bind() {
 // We can directly specify return type of a functional object
 // when bind fails to do so
 watch(boost::bind<void>(templated_foo(), _2, _1));
}

Bind is a part of the C++11 standard. It is defined in the <functional> header and may
slightly differ from the Boost.Bind implementation (however, it will be at least as effective
as Boost's implementation).

See also
 f The Binding a value as a function parameter recipe says more about the features

of Boost.Bind

 f Boost's official documentation contains many more examples and descriptions
of advanced features. It is available at the following link:

http://www.boost.org/doc/libs/1_53_0/libs/bind/bind.html

Binding a value as a function parameter
If you work with the STL library a lot and use the <algorithm> header, you will definitely
write a lot of functional objects. You can construct them using a set of STL adapter functions
such as bind1st, bind2nd, ptr_fun, mem_fun, and mem_fun_ref, or you can write them
by hand (because adapter functions look scary). Here is some good news: Boost.Bind can
be used instead of all of those functions and it provides a more human-readable syntax.

Getting ready
Read the previous recipe to get an idea of placeholders, or just make sure that you are
familiar with C++11 placeholders. Knowledge of STL functions and algorithms is welcomed.

How to do it...
Let's see some examples of the usage of Boost.Bind along with traditional STL classes:

1. Count values greater than or equal to 5 as shown in the following code:

Chapter 1

35

boost::array<int, 12> values
 = {{1, 2, 3, 4, 5, 6, 7, 100, 99, 98, 97, 96}};

std::size_t count0 = std::count_if(values.begin(), values.end(),
 std::bind1st(std::less<int>(), 5));
std::size_t count1 = std::count_if(values.begin(), values.end(),
 boost::bind(std::less<int>(), 5, _1));
assert(count0 == count1);

2. This is how we could count empty strings:
boost::array<std::string, 3> str_values
 = {{"We ", "are", " the champions!"}};
count0 = std::count_if(str_values.begin(), str_values.end(),
 std::mem_fun_ref(&std::string::empty));
count1 = std::count_if(str_values.begin(), str_values.end(),
 boost::bind(&std::string::empty, _1));
assert(count0 == count1);

3. Now let's count strings with a length less than 5:
// That code won't compile! And it is hard to understand
//count0 = std::count_if(str_values.begin(),
//str_values.end(),
//std::bind2nd(
// std::bind1st(
// std::less<std::size_t>(),
// std::mem_fun_ref(&std::string::size)
//)
//, 5
//));
// This will become much more readable,
// when you get used to bind
count1 = std::count_if(str_values.begin(), str_values.end(),
 boost::bind(std::less<std::size_t>(),
 boost::bind(&std::string::size, _1), 5));
assert(2 == count1);

4. Compare the strings:

std::string s("Expensive copy constructor of std::string will be
called when binding");
count0 = std::count_if(str_values.begin(), str_values.end(),
 std::bind2nd(std::less<std::string>(), s));
count1 = std::count_if(str_values.begin(), str_values.end(),
 boost::bind(std::less<std::string>(), _1, s));
assert(count0 == count1);

Starting to Write Your Application

36

How it works...
The boost::bind function returns a functional object that stores a copy of the bound
values and a copy of the original functional object. When the actual call to operator()
is performed, the stored parameters are passed to the original functional object along
with the parameters passed at the time of call.

There's more...
Take a look at the previous examples. When we are binding values, we copy a value
into a functional object. For some classes this operation is expensive. Is there a way
to bypass copying?

Yes, there is! And the Boost.Ref library will help us here! It contains two functions,
boost::ref() and boost::cref(), the first of which allows us to pass a parameter as a
reference, and the second one passes the parameter as a constant reference. The ref() and
cref() functions just construct an object of type reference_wrapper<T> or reference_
wrapper<const T>, which is implicitly convertible to a reference type. Let's change our
previous examples:

#include <boost/ref.hpp>
...
std::string s("Expensive copy constructor of std::string now "
 "won't be called when binding");
count0 = std::count_if(str_values.begin(), str_values.end(),
 std::bind2nd(std::less<std::string>(), boost::cref(s)));
count1 = std::count_if(str_values.begin(), str_values.end(),
 boost::bind(std::less<std::string>(), _1, boost::cref(s)));
assert(count0 == count1);

Just one more example to show you how boost::ref can be used to concatenate strings:

void wierd_appender(std::string& to, const std::string& from) {
 to += from;
};

std::string result;
std::for_each(str_values.cbegin(), str_values.cend(),
boost::bind(&wierd_appender, boost::ref(result), _1));
assert(result == "We are the champions!");

The functions ref and cref (and bind) are accepted to the C++11 standard and defined in
the <functional> header in the std:: namespace. None of these functions dynamically
allocate memory in the heap and they do not use virtual functions. The objects returned by
them are easy to optimize and they do not apply any optimization barriers for good compilers.

Chapter 1

37

STL implementations of those functions may have additional optimizations to reduce
compilation time or just compiler-specific optimizations, but unfortunately, some STL
implementations miss the functionality of Boost versions. You may use the STL version
of those functions with any Boost library, or even mix Boost and STL versions.

See also
 f The Boost.Bind library is used widely across this book; see Chapter 6,

Manipulating Tasks, and Chapter 5, Multithreading, for more examples

 f The official documentation contains many more examples and a description of
advanced features at http://www.boost.org/doc/libs/1_53_0/libs/bind/
bind.html

Using the C++11 move emulation
One of the greatest features of the C++11 standard is rvalue references. This feature allows
us to modify temporary objects, "stealing" resources from them. As you can guess, the C++03
standard has no rvalue references, but using the Boost.Move library you can write some
portable code that uses them, and even more, you actually get started with the emulation of
move semantics.

Getting ready
It is highly recommended to at least know the basics of C++11 rvalue references.

How to do it...
Now, let's take a look at the following examples:

1. Imagine that you have a class with multiple fields, some of which are STL containers.
namespace other {
 // Its default construction is cheap/fast
 class characteristics{};
} // namespace other

struct person_info {
 // Fields declared here
 // ...
 bool is_male_;
 std::string name_;
 std::string second_name_;
 other::characteristics characteristic_;
};

Starting to Write Your Application

38

2. It is time to add the move assignment and move constructors to it! Just remember
that in C++03, STL containers have neither move operators nor move constructors.

3. The correct implementation of the move assignment is the same as swap and clear
(if an empty state is allowed). The correct implementation of the move constructor
is close to the default construct and swap. So, let's start with the swap member
function:
#include <boost/swap.hpp>

 void swap(person_info& rhs) {
 std::swap(is_male_, rhs.is_male_);
 name_.swap(rhs.name_);
 second_name_.swap(rhs.second_name_);
 boost::swap(characteristic_, rhs.characteristic_);
 }

4. Now put the following macro in the private section:
BOOST_COPYABLE_AND_MOVABLE(classname)

5. Write a copy constructor.

6. Write a copy assignment, taking the parameter as BOOST_COPY_ASSIGN_
REF(classname).

7. Write a move constructor and a move assignment, taking the parameter as BOOST_
RV_REF(classname):
struct person_info {
 // Fields declared here
 // ...
private:
 BOOST_COPYABLE_AND_MOVABLE(person_info)
public:
 // For the simplicity of example we will assume that
 // person_info default constructor and swap are very
 // fast/cheap to call
 person_info() {}

 person_info(const person_info& p)
 : is_male_(p.is_male_)
 , name_(p.name_)
 , second_name_(p.second_name_)
 , characteristic_(p.characteristic_)
 {}

 person_info(BOOST_RV_REF(person_info) person) {
 swap(person);
 }

 person_info& operator=(BOOST_COPY_ASSIGN_REF(person_info)
person) {
 if (this != &person) {

Chapter 1

39

 person_info tmp(person);
 swap(tmp);
 }
 return *this;
 }

 person_info& operator=(BOOST_RV_REF(person_info) person) {
 if (this != &person) {
 swap(person);
 person_info tmp;
 tmp.swap(person);
 }
 return *this;
 }

 void swap(person_info& rhs) {
 // …
 }

};

8. Now we have a portable, fast implementation of the move assignment and move
construction operators of the person_info class.

How it works...
Here is an example of how the move assignment can be used:

 person_info vasya;
 vasya.name_ = "Vasya";
 vasya.second_name_ = "Snow";
 vasya.is_male_ = true;

 person_info new_vasya(boost::move(vasya));
 assert(new_vasya.name_ == "Vasya");
 assert(new_vasya.second_name_ == "Snow");
 assert(vasya.name_.empty());
 assert(vasya.second_name_.empty());

 vasya = boost::move(new_vasya);
 assert(vasya.name_ == "Vasya");
 assert(vasya.second_name_ == "Snow");
 assert(new_vasya.name_.empty());
 assert(new_vasya.second_name_.empty());

Starting to Write Your Application

40

The Boost.Move library is implemented in a very efficient way. When the C++11 compiler
is used, all the macros for rvalues emulation will be expanded to C++11-specific features,
otherwise (on C++03 compilers) rvalues will be emulated using specific datatypes and functions
that never copy passed values nor called any dynamic memory allocations or virtual functions.

There's more...
Have you noticed the boost::swap call? It is a really helpful utility function, which will first
search for a swap function in the namespace of a variable (the namespace other::), and if
there is no swap function for the characteristics class, it will use the STL implementation
of swap.

See also
 f More information about emulation implementation can be found on the Boost

website and in the sources of the Boost.Move library at http://www.boost.
org/doc/libs/1_53_0/doc/html/move.html.

 f The Boost.Utility library is the one that contains boost::utility, and it has
many useful functions and classes. Refer to its documentation at http://www.
boost.org/doc/libs/1_53_0/libs/utility/utility.htm.

 f The Initializing the base class by the member of the derived recipe in Chapter 3,
Managing Resources.

 f The Making a noncopyable class recipe.

 f In the Making a noncopyable but movable class recipe, there is more info about
Boost.Move and some examples on how we can use the movable objects in
containers in a portable and efficient way.

Making a noncopyable class
You must have almost certainly encountered situations where providing a copy constructor
and move assignment operator for a class will require too much work, or where a class owns
some resources that must not be copied for technical reasons:

class descriptor_owner {
 void* descriptor_;

public:
 explicit descriptor_owner(const char* params);

 ~descriptor_owner() {
 system_api_free_descriptor(descriptor_);
 }
};

Chapter 1

41

The C++ compiler, in the case of the previous example, will generate a copy constructor and
an assignment operator, so the potential user of the descriptor_owner class will be able
to create the following awful things:

 descriptor_owner d1("O_o");
 descriptor_owner d2("^_^");

 // Descriptor of d2 was not correctly freed
 d2 = d1;

 // destructor of d2 will free the descriptor
 // destructor of d1 will try to free already freed descriptor

Getting ready
Only very basic knowledge of C++ is required for this recipe.

How to do it...
To avoid such situations, the boost::noncopyable class was invented. If you derive your
own class from it, the copy constructor and assignment operator won't be generated by the
C++ compiler:

#include <boost/noncopyable.hpp>

class descriptor_owner_fixed : private boost::noncopyable {
 …

Now the user won't be able to do bad things:

 descriptor_owner_fixed d1("O_o");
 descriptor_owner_fixed d2("^_^");
 // Won't compile
 d2 = d1;
 // Won't compile either
 descriptor_owner_fixed d3(d1);

How it works...
A sophisticated reader will tell me that we can achieve exactly the same result by making a
copy constructor and an assignment operator of descriptor_owning_fixed private, or
just by defining them without actual implementation. Yes, you are correct. Moreover, this is
the current implementation of the boost::noncopyable class. But boost::noncopyable
also serves as good documentation for your class. It never raises questions such as "Is the
copy constructor body defined elsewhere?" or "Does it have a nonstandard copy constructor
(with a nonconst referenced parameter)?".

Starting to Write Your Application

42

See also
 f The Making a noncopyable but movable class recipe will give you ideas on how to

allow unique ownership of a resource in C++03 by moving it

 f You may find a lot of helpful functions and classes in the Boost.Utility library's
official documentation at http://www.boost.org/doc/libs/1_53_0/libs/
utility/utility.htm

 f The Initializing the base class by the member of the derived recipe in Chapter 3,
Managing Resources

 f The Using the C++11 move emulation recipe

Making a noncopyable but movable class
Now imagine the following situation: we have a resource that cannot be copied, which should
be correctly freed in a destructor, and we want to return it from a function:

descriptor_owner construct_descriptor() {
 return descriptor_owner("Construct using this string");
}

Actually, you can work around such situations using the swap method:

void construct_descriptor1(descriptor_owner& ret) {
 descriptor_owner("Construct using this string").swap(ret);
}

But such a workaround won't allow us to use descriptor_owner in STL or Boost containers.
And by the way, it looks awful!

Getting ready
It is highly recommended to know at least the basics of C++11 rvalue references. Reading the
Using the C++11 move emulation recipe is also recommended.

How to do it...
Those readers who use C++11 already know about the move-only classes (like
std::unique_ptr or std::thread). Using such an approach, we can make a move-only
descriptor_owner class:

class descriptor_owner1 {
 void* descriptor_;

Chapter 1

43

public:
 descriptor_owner1()
 : descriptor_(NULL)
 {}

 explicit descriptor_owner1(const char* param)
 : descriptor_(strdup(param))
 {}

 descriptor_owner1(descriptor_owner1&& param)
 : descriptor_(param.descriptor_)
 {
 param.descriptor_ = NULL;
 }

 descriptor_owner1& operator=(descriptor_owner1&& param) {
 clear();
 std::swap(descriptor_, param.descriptor_);
 return *this;
 }

 void clear() {
 free(descriptor_);
 descriptor_ = NULL;
 }

 bool empty() const {
 return !descriptor_;
 }

 ~descriptor_owner1() {
 clear();
 }
};

// GCC compiles the following in with -std=c++0x
descriptor_owner1 construct_descriptor2() {
 return descriptor_owner1("Construct using this string");
}

void foo_rv() {
 std::cout << "C++11\n";
 descriptor_owner1 desc;
 desc = construct_descriptor2();
 assert(!desc.empty());
}

Starting to Write Your Application

44

This will work only on C++11 compatible compilers. That is the right moment for Boost.
Move! Let's modify our example so it can be used on C++03 compilers.

According to the documentation, to write a movable but noncopyable type in portable syntax,
we need to follow these simple steps:

1. Put the BOOST_MOVABLE_BUT_NOT_COPYABLE(classname) macro in the
private section:
class descriptor_owner_movable {
 void* descriptor_;
 BOOST_MOVABLE_BUT_NOT_COPYABLE(descriptor_owner_movable)

2. Write a move constructor and a move assignment, taking the parameter as BOOST_
RV_REF(classname):

#include <boost/move/move.hpp>

public:
 descriptor_owner_movable()
 : descriptor_(NULL)
 {}

 explicit descriptor_owner_movable(const char* param)
 : descriptor_(strdup(param))
 {}

 descriptor_owner_movable(
 BOOST_RV_REF(descriptor_owner_movable) param)
 : descriptor_(param.descriptor_)
 {
 param.descriptor_ = NULL;
 }

 descriptor_owner_movable& operator=(
 BOOST_RV_REF(descriptor_owner_movable) param)
 {
 clear();
 std::swap(descriptor_, param.descriptor_);
 return *this;
 }
 // ...
};

descriptor_owner_movable construct_descriptor3() {
 return descriptor_owner_movable("Construct using this
string");
}

Chapter 1

45

How it works...
Now we have a movable but noncopyable class that can be used even on C++03 compilers
and in Boost.Containers:

#include <boost/container/vector.hpp>
...
 // Following code will work on C++11 and C++03 compilers
 descriptor_owner_movable movable;
 movable = construct_descriptor3();
 boost::container::vector<descriptor_owner_movable> vec;
 vec.resize(10);
 vec.push_back(construct_descriptor3());

 vec.back() = boost::move(vec.front());

But unfortunately, C++03 STL containers still won't be able to use it (that is why we used a
vector from Boost.Containers in the previous example).

There's more...
If you want to use Boost.Containers on C++03 compilers and STL containers, on C++11
compilers you can use the following simple trick. Add the header file to your project with the
following content:

// your_project/vector.hpp
// Copyright and other stuff goes here

// include guards
#ifndef YOUR_PROJECT_VECTOR_HPP
#define YOUR_PROJECT_VECTOR_HPP

#include <boost/config.hpp>

// Those macro declared in boost/config.hpp header
// This is portable and can be used with any version of boost
// libraries
#if !defined(BOOST_NO_RVALUE_REFERENCES) && !defined(BOOST_NO_CXX11_
RVALUE_REFERENCES)
// We do have rvalues
#include <vector>

Starting to Write Your Application

46

namespace your_project_namespace {
 using std::vector;
} // your_project_namespace

#else
// We do NOT have rvalues
#include <boost/container/vector.hpp>

namespace your_project_namespace {
 using boost::container::vector;
} // your_project_namespace

#endif // !defined(BOOST_NO_RVALUE_REFERENCES) && !defined(BOOST_NO_
CXX11_RVALUE_REFERENCES)
#endif // YOUR_PROJECT_VECTOR_HPP

Now you can include <your_project/vector.hpp> and use a vector from the namespace
your_project_namespace:

 your_project_namespace::vector<descriptor_owner_movable> v;
 v.resize(10);
 v.push_back(construct_descriptor3());
 v.back() = boost::move(v.front());

But beware of compiler- and STL-implementation-specific issues! For example, this code will
compile on GCC 4.7 in C++11 mode only if you mark the move constructor, destructor, and
move assignment operators with noexcept.

See also
 f The Reducing code size and increasing performance of user-defined types (UDTs) in

C++11 recipe in Chapter 10, Gathering Platform and Compiler Information, for more
info on noexcept

 f More information about Boost.Move can be found on Boost's website
http://www.boost.org/doc/libs/1_53_0/doc/html/move.html

2
Converting Data

In this chapter we will cover:

 f Converting strings to numbers

 f Converting numbers to strings

 f Converting numbers to numbers

 f Converting user-defined types to/from strings

 f Casting polymorphic objects

 f Parsing simple input

 f Parsing input

Introduction
Now that we know some of the basic Boost types, it is time to get to know some
data-converting functions. In this chapter we'll see how to convert strings, numbers, and
user-defined types to each other, how to safely cast polymorphic types, and how to write
small and large parsers right inside the C++ source files.

Converting Data

48

Converting strings to numbers
Converting strings to numbers in C++ makes a lot of people depressed because of its
inefficiency and user unfriendliness. Let's see how string 100 can be converted to int:

#include <sstream>

 std::istringstream iss("100");
 int i;
 iss >> i;
 // And now, 'iss' variable will get in the way all the time,
 // till end of the scope
 // It is better not to think, how many unnecessary operations,
 // virtual function calls and memory allocations occurred
 // during those operations

C methods are not much better:

#include <cstdlib>
 char * end;
 int i = std::strtol ("100", &end, 10);
 // Did it converted all the value to int, or stopped somewhere
 // in the middle?
 // And now we have 'end' variable will getting in the way
 // By the way, we want an integer, but strtol returns long
 // int... Did the converted value fit in int?

Getting ready
Only basic knowledge of C++ and STL is required for this recipe.

How to do it...
There is a library in Boost which will help you cope with the depressing difficulty of string
to number conversions. It is called Boost.LexicalCast and consists of a boost::bad_
lexical_cast exception class and a few boost::lexical_cast functions:

#include <boost/lexical_cast.hpp>

int i = boost::lexical_cast<int>("100");

Chapter 2

49

It can even be used for non-zero-terminated strings:

 char chars[] = {'1', '0', '0' };
 int i = boost::lexical_cast<int>(chars, 3);
 assert(i == 100);

How it works...
The boost::lexical_cast function accepts string as input and converts it to the type
specified in triangular brackets. The boost::lexical_cast function will even check
bounds for you:

 try {
 // on x86 short usually may not store values greater than 32767
 short s = boost::lexical_cast<short>("1000000");
 assert(false); // Must not reach this
 } catch (const boost::bad_lexical_cast& /*e*/) {}

And also check for the correct syntax of input:

 try {
 int i = boost::lexical_cast<int>("This is not a number!");
 assert(false); // Must not reach this
 (void)i; // Suppressing warning about unused variable
 } catch (const boost::bad_lexical_cast& /*e*/) {}

There's more...
Lexical cast just like all of the std::stringstreams classes uses std::locale and can
convert localized numbers, but also has an impressive set of optimizations for C locale and
for locales without number groupings:

#include <locale>

 std::locale::global(std::locale("ru_RU.UTF8"));
 // In Russia coma sign is used as a decimal separator
 float f = boost::lexical_cast<float>("1,0");
 assert(f < 1.01 && f > 0.99);

And that isn't all! You can even simply create template functions for conversions to numbers.
Let's make a function that converts a container of some string values to a vector of long
int values:

#include <algorithm>
#include <vector>

Converting Data

50

#include <iterator>
#include <boost/lexical_cast.hpp>

template <class ContainerT>
std::vector<long int> container_to_longs(const ContainerT& container)
{
 typedef typename ContainerT::value_type value_type;
 std::vector<long int> ret;
 typedef long int (*func_t)(const value_type&);
 func_t f = &boost::lexical_cast<long int, value_type>;
 std::transform(container.begin(), container.end(),
 std::back_inserter(ret), f);
 return ret;
}

 // Somewhere in source file...
 std::set<std::string> str_set;
 str_set.insert("1");
 assert(container_to_longs(str_set).front() == 1);
 std::deque<const char*> char_deque;
 char_deque.push_front("1");
 char_deque.push_back("2");
 assert(container_to_longs(char_deque).front() == 1);
 assert(container_to_longs(char_deque).back() == 2);

 // Obfuscating people with curly braces is fun!
 typedef boost::array<unsigned char, 2> element_t;
 boost::array<element_t, 2> arrays = {{ {{'1', '0'}}, {{'2', '0'}}
}};
 assert(container_to_longs(arrays).front() == 10);
 assert(container_to_longs(arrays).back() == 20);

See also
 f Refer to the Converting numbers to strings recipe for information about

boost::lexical_cast performance.

 f The official documentation for Boost.LexicalCast contains some examples,
performance measures, and answers to frequently asked questions. It is available
at the following location:

http://www.boost.org/doc/libs/1_53_0/doc/html/boost_lexical_
cast.html

Chapter 2

51

Converting numbers to strings
In this recipe we will continue discussing lexical conversions, but now we will be converting
numbers to strings using Boost.LexicalCast. And as usual, boost::lexical_cast
will provide a very simple way to convert the data.

Getting ready
Only basic knowledge of C++ and STL is required for this recipe.

How to do it...
1. Let's convert integer 100 to std::string using boost::lexical_cast:

#include <boost/lexical_cast.hpp>

 std::string s = boost::lexical_cast<std::string>(100);
 assert(s == "100");

2. Compare this to the traditional C++ conversion method:

#include <sstream>

 // C++ way of converting to strings
 std::stringstream ss;
 ss << 100;
 std::string s;
 ss >> s;
 // Variable 'ss' will dangle all the way, till the end
 // of scope
 // Multiple virtual methods were called during
 // conversion
 assert(s == "100");

And against the C conversion method:

#include <cstdlib>

 // C way of converting to strings
 char buffer[100];
 std::sprintf(buffer, "%i", 100);
 // You will need an unsigned long long int type to
 // count how many times errors were made in 'printf'
 // like functions all around the world. 'printf'
 // functions are a constant security threat!
 // But wait, we still need to construct a std::string
 std::string s(buffer);

Converting Data

52

 // And now we have an buffer variable that won't be
 // used
 assert(s == "100");

How it works...
The boost::lexical_cast function may also accept numbers as input and convert
them to the string type specified in triangular brackets. Pretty close to what we did in the
previous recipe.

There's more...
A careful reader will note that in the case of lexical_cast we have an additional call to
string copy the constructor and that such a call will be a hit on the performance. It is true,
but only for old or bad compilers. Modern compilers implement a named return value
optimization (NRVO), which will eliminate the unnecessary call to copy the constructor and
destructor. Even if the C++11-compatible compilers don't detect NRVO, they will use a move
copy constructor of std::string, which is fast and efficient. The Performance section of the
Boost.LexicalCast documentation shows the conversion speed on different compilers for
different types, and in most cases lexical_cast is faster than the std::stringstream
and printf functions.

If boost::array or std::array is passed to boost::lexical_cast as the output
parameter type, less dynamic memory allocations will occur (or there will be no memory
allocations at all; it depends on the std::locale implementation).

See also
 f Boost's official documentation contains tables that compare the lexical_cast

performance against other conversion approaches. And in most cases it wins.
http://www.boost.org/doc/libs/1_53_0/doc/html/boost_lexical_
cast.html. It also has some more examples and a frequently asked
questions section.

 f The Converting strings to numbers recipe.

 f The Converting user-defined types to/from strings recipe.

Chapter 2

53

Converting numbers to numbers
You might remember situations where you wrote something like the following code:

void some_function(unsigned short param);

int foo();
 // Somewhere in code
 // Some compilers may warn that int is being converted to
 // unsigned short and that there is a possibility of losing
 // data
 some_function(foo());

Usually, programmers just ignore such warnings by implicitly casting to unsigned short
datatype, as demonstrated in the following code snippet:

 // Warning suppressed. Looks like a correct code
 some_function(
 static_cast<unsigned short>(foo())
);

But this may make it extremely hard to detect errors. Such errors may exist in code for years
before they get caught:

// Returns -1 if error occurred
int foo() {
 if (some_extremely_rare_condition()) {
 return -1;
 } else if (another_extremely_rare_condition()) {
 return 1000000;
 }
 return 65535;
}

Getting ready
Only basic knowledge of C++ is required for this recipe.

Converting Data

54

How to do it...
1. The library Boost.NumericConversion provides a solution for such cases. And it

is easy to modify the existing code to use safe casts, just replace static_cast with
boost::numeric_cast. It will throw an exception when the source value cannot
be stored in the target. Let's take a look at the following example:
#include <boost/numeric/conversion/cast.hpp>

void correct_implementation() {
 // 100% correct
 some_function(
 boost::numeric_cast<unsigned short>(foo())
);
}

void test_function() {
 for (unsigned int i = 0; i < 100; ++i) {
 try {
 correct_implementation();
 } catch (const boost::numeric::bad_numeric_cast& e) {
 std::cout << '#' << i << ' ' << e.what() << std::endl;
 }
 }
}

2. Now if we run test_function() it will output the following:
#47 bad numeric conversion: negative overflow
#58 bad numeric conversion: positive overflow

3. We can even detect specific overflow types:

void test_function1() {
 for (unsigned int i = 0; i < 100; ++i) {
 try {
 correct_implementation();
 } catch (const boost::numeric::positive_overflow& e) {
 // Do something specific for positive overflow
 std::cout << "POS OVERFLOW in #" << i << ' ' <<
 e.what() << std::endl;
 } catch (const boost::numeric::negative_overflow& e) {
 // Do something specific for negative overwlow
 std::cout <<"NEG OVERFLOW in #" << i << ' ' << e.what()
 << std::endl;
 }
 }
}

Chapter 2

55

The test_function1()function will output the following:

NEG OVERFLOW in #47 bad numeric conversion: negative overflow
POS OVERFLOW in #59 bad numeric conversion: positive overflow

How it works...
It checks if the value of the input parameter fits into the new type without losing data and
throws an exception if something is lost during conversion.

The Boost.NumericConversion library has a very fast implementation; it can do a lot
of work at compile time. For example, when converting to types of a wider range, the source
will just call the static_cast method.

There's more...
The boost::numeric_cast function is implemented via boost::numeric::converter,
which can be tuned to use different overflow, range checking, and rounding policies. But
usually, numeric_cast is just what you need.

Here is a small example that demonstrates how to make our own mythrow_overflow_
handler overflow handler for boost::numeric::cast:

template <class SourceT, class TargetT>
struct mythrow_overflow_handler {
 void operator() (boost::numeric::range_check_result r) {
 if (r != boost::numeric::cInRange) {
 throw std::logic_error("Not in range!");
 }
 }
};

template <class TargetT, class SourceT>
TargetT my_numeric_cast(const SourceT& in) {
 using namespace boost;
 typedef numeric::conversion_traits<TargetT, SourceT>
 conv_traits;
 typedef numeric::numeric_cast_traits<TargetT, SourceT>
 cast_traits;
 typedef boost::numeric::converter
 <
 TargetT,
 SourceT,
 conv_traits,

Converting Data

56

 mythrow_overflow_handler<SourceT, TargetT> // !!!
 > converter;
 return converter::convert(in);
}

 // Somewhere in code
 try {
 my_numeric_cast<short>(100000);
 } catch (const std::logic_error& e) {
 std::cout << "It works! " << e.what() << std::endl;
 }

And this will output the following:

It works! Not in range!

See also
 f Boost's official documentation contains detailed descriptions of all of the template

parameters of the numeric converter; it is available at the following link:

http://www.boost.org/doc/libs/1_53_0/libs/numeric/conversion/
doc/html/index.html

Converting user-defined types to/from
strings

There is a feature in Boost.LexicalCast that allows users to use their own types in
lexical_cast. This feature just requires the user to write the correct std::ostream
and std::istream operators for their types.

How to do it...
1. All you need is to provide an operator<< and operator>> stream operators.

If your class is already streamable, nothing needs to be done:
#include <iosfwd>
#include <stdexcept>

// Somewhere in header file
// Negative number, that does not store minus sign
class negative_number {
 unsigned short number_;
public:

Chapter 2

57

 explicit negative_number(unsigned short number)
 : number_(number)
 {}
 // operators and functions defined lower
 // ...
 unsigned short value_without_sign() const {
 return number_;
 }
};

std::ostream& operator<<(std::ostream& os,
 const negative_number& num)
{
 os << '-' << num.value_without_sign();
 return os;
}

std::istream& operator>>(std::istream& is, negative_number& num) {
 char ch;
 is >> ch;
 if (ch != '-') {
 throw std::logic_error("negative_number class designed "
 "to store ONLY negative values");
 }
 unsigned short s;
 is >> s;
 num = negative_number(s);
 return os;
}

2. Now we may use boost::lexical_cast for conversions to and from the
negative_number class. Here's an example:

#include <boost/lexical_cast.hpp>
#include <assert.h>
int main() {
 negative_number n
 = boost::lexical_cast<negative_number>("-100");
 assert(n.value_without_sign() == 100);
 int i = boost::lexical_cast<int>(n);
 assert(i == -100);

 typedef boost::array<char, 10> arr_t;
 arr_t arr = boost::lexical_cast<arr_t>(n);
 assert(arr[0] == '-');

Converting Data

58

 assert(arr[1] == '1');
 assert(arr[2] == '0');
 assert(arr[3] == '0');
 assert(arr[4] == '\0');
}

How it works...
The boost::lexical_cast function can detect and use stream operators for converting
user-defined types.

The Boost.LexicalCast library has many optimizations for basic types and they will be
triggered when a user-defined type is being cast to basic type or when a basic type is being
cast to a user-defined type.

There's more...
The boost::lexical_cast function may also convert to wide character strings, but the
correct basic_istream and basic_ostream operator overloads are required for that:

template <class CharT>
std::basic_ostream<CharT>& operator<<(std::basic_ostream<CharT>& os,
 const negative_number& num)
{
 os << static_cast<CharT>('-') << num.value_without_sign();
 return os;
}

template <class CharT>
std::basic_istream<CharT>& operator>>(std::basic_istream<CharT>& is,
negative_number& num) {
 CharT ch;
 is >> ch;
 if (ch != static_cast<CharT>('-')) {
 throw std::logic_error("negative_number class designed to "
 "store ONLY negative values");
 }
 unsigned short s;
 is >> s;
 num = negative_number(s);
 return is;
}

Chapter 2

59

int main() {
 negative_number n = boost::lexical_cast<negative_number>(L"-1");
 assert(n.value_without_sign() == 1);
 typedef boost::array<wchar_t, 10> warr_t;
 warr_t arr = boost::lexical_cast<warr_t>(n);
 assert(arr[0] == L'-');
 assert(arr[1] == L'1');
 assert(arr[4] == L'\0');
}

The Boost.LexicalCast library is not a part of C++11, but there is a proposal to add it to
C++ standard. A lot of Boost libraries use it and I hope that it will make your life easier as well.

See also
 f The Boost.LexicalCast documentation contains some examples, performance

measures, and answers to frequently asked questions; it is available at http://
www.boost.org/doc/libs/1_53_0/doc/html/boost_lexical_cast.html

 f The Converting strings to numbers recipe

 f The Converting numbers to strings recipe

Casting polymorphic objects
Imagine that some programmer designed an awful interface as follows (this is a good example
of how interfaces should not be written):

struct object {
 virtual ~object() {}
};

struct banana: public object {
 void eat() const {}
 virtual ~banana(){}
};

struct pidgin: public object {
 void fly() const {}
 virtual ~pidgin(){}
};

object* try_produce_banana();

Converting Data

60

And our task is to make a function that eats bananas, and throws exceptions if something
instead of banana came along (eating pidgins gross!). If we dereference a value returned
by the try_produce_banana() function, we are getting in danger of dereferencing
a null pointer.

Getting ready
Basic knowledge of C++ is required for this recipe.

How to do it...
So we need to write the following code:

void try_eat_banana_impl1() {
 const object* obj = try_produce_banana();
 if (!obj) {
 throw std::bad_cast();
 }
 dynamic_cast<const banana&>(*obj).eat();
}

Ugly, isn't it? Boost.Conversion provides a slightly better solution:

#include <boost/cast.hpp>
void try_eat_banana_impl2() {
 const object* obj = try_produce_banana();
 boost::polymorphic_cast<const banana*>(obj)->eat();
}

How it works...
The boost::polymorphic_cast function just wraps around code from the first example,
and that is all. It checks input for null and then tries to do a dynamic cast. Any error during
those operations will throw a std::bad_cast exception.

There's more...
The Boost.Conversion library also has a polymorphic_downcast function, which
should be used only for downcasts that will always succeed. In debug mode (when NDEBUG
is not defined) it will check for the correct downcast using dynamic_cast. When NDEBUG is
defined, the polymorphic_downcast function will just do a static_cast operation. It is
a good function to use in performance-critical sections, while still leaving the ability to detect
errors in debug compilations.

Chapter 2

61

See also
 f Initially, the polymorphic_cast idea was proposed in the book The C++

Programming Language, Bjarne Stroustrup. Refer to this book for more information
and some good ideas on different topics.

 f The official documentation may also be helpful; it is available at
http://www.boost.org/doc/libs/1_53_0/libs/conversion/cast.htm.

Parsing simple input
It is a common task to parse a small text. And such situations are always a dilemma: shall we
use some third-party professional tools for parsing such as Bison or ANTLR, or shall we try to
write it by hand using only C++ and STL? The third-party tools are good for handling the parsing
of complex texts and it is easy to write parsers using them, but they require additional tools
for creating C++ or C code from their grammar, and add more dependencies to your project.
Handwritten parsers are usually hard to maintain, but they require nothing except C++ compiler.

<data>
<date>10.09.1988</date>
<city>Moscow</city>
<page>16</page>
<chapter>2</chapter>
<text> This is some

data in the XML format
</text>

</data>

1. Moscow
2. 16
3. 2
4. 10.09.1988

What a typical parser does

Let's start with a very simple task to parse a date in ISO format as follows:

YYYY-MM-DD

The following are the examples of possible input:

2013-03-01
2012-12-31 // (woo-hoo, it almost a new year!)

Converting Data

62

Let's take a look at the parser's grammar from the following link http://www.ietf.org/
rfc/rfc3339.txt:

 date-fullyear = 4DIGIT
 date-month = 2DIGIT ; 01-12
 date-mday = 2DIGIT ; 01-28, 01-29, 01-30, 01-31 based on
 ; month/year
 full-date = date-fullyear "-" date-month "-" date-mday

Getting ready
Make sure that you are familiar with the placeholders concept or read the Reordering the
parameters of function and Binding a value as a function parameter recipes in Chapter 1,
Starting to Write Your Application. Basic knowledge of parsing tools would be good.

How to do it...
Let me introduce you to a Boost.Spirit library. It allows writing parsers (and lexers and
generators) directly in C++ code format, which are immediately executable (that is, do not
require additional tools for C++ code generation). The grammar of Boost.Spirit is very
close to Extended Backus-Naur Form (EBNF), which is used for expressing grammar by many
standards and understood by other popular parsers. The grammar at the beginning of this
chapter is in EBNF.

1. We need to include the following headers:
#include <boost/spirit/include/qi.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <assert.h>

2. Now it's time to make a date structure to hold the parsed data:
struct date {
 unsigned short year;
 unsigned short month;
 unsigned short day;
};

3. Now let's look at the parser (a step-by-step description of how it works can be found
in the next section):
// See recipe "Using a reference to string type" in Chapter 7,
// Manipulating Strings for a better type
// than std::string for parameter 's'
date parse_date_time1(const std::string& s) {
 using boost::spirit::qi::_1;
 using boost::spirit::qi::ushort_;

Chapter 2

63

 using boost::spirit::qi::char_;
 using boost::phoenix::ref;

 date res;
 const char* first = s.data();
 const char* const end = first + s.size();
 bool success = boost::spirit::qi::parse(first, end,
 ushort_[ref(res.year) = 1] >> char('-')
 >> ushort_[ref(res.month) = 1] >> char('-')
 >> ushort_[ref(res.day) = _1]
);

 if (!success || first != end) {
 throw std::logic_error("Parsing failed");
 }
 return res;
}

4. Now we may use this parser wherever we want:

int main() {
 date d = parse_date_time1("2012-12-31");
 assert(d.year == 2012);
 assert(d.month == 12);
 assert(d.day == 31);
}

How it works...
This is a very simple implementation; it does not check the digit count for numbers. Parsing
occurs in the boost::spirit::qi::parse function. Let's simplify it a little bit, removing
the actions on successful parsing:

 bool success = boost::spirit::qi::parse(first, end,
 ushort_ >> char_('-') >> ushort_ >> char_('-') >> ushort_
);

The first argument points to the beginning of the data to parse; it must be a modifiable
(non-constant) variable because the parse function will use it to show the end of the parsed
sequence. The end argument points to the element beyond the last one. first and end
shall be iterators.

The third argument to the function is a parsing rule. And it does exactly what is written in the
EBNF rule:

 date-fullyear "-" date-month "-" date-md

Converting Data

64

We just replaced white spaces with the >> operator.

The parse function returns true on success. If we want to make sure that the whole string
was successfully parsed, we need to check for the parser's return value and equality of the
input iterators.

Now we need to deal with the actions on successful parse and this recipe will be over.
Semantic actions in Boost.Spirit are written inside [] and they can be written using
function pointers, function objects, boost::bind, std::bind (or the other bind()
implementations), or C++11 lambda functions.

So, you could also write a rule for YYYY using C++11 lambda:

 ushort_[[&res](unsigned short s) {res.year = s;}]

Now, let's take a look at the month's semantic action closer:

 ushort_[ref(res.month) = _1]

For those who have read the book from the beginning, this would remind you about
boost::bind and placeholders. ref(res.month) means pass res.month as a
modifiable reference and _1 means the first input parameter, which would be a number
(the result of ushort_ parsing).

There's more...
Now let's modify our parser, so it can take care of the digits count. For that purpose,
we will take the unit_parser template class and just set up the correct parameters:

date parse_date_time2(const std::string& s) {
 using boost::spirit::qi::_1;
 using boost::spirit::qi::uint_parser;
 using boost::spirit::qi::char_;
 using boost::phoenix::ref;

 // Use unsigned short as output type, require Radix 10, and from 2
 // to 2 digits
 uint_parser<unsigned short, 10, 2, 2> u2_;

 // Use unsigned short as output type, require Radix 10, and from 4
 // to 4 digits
 uint_parser<unsigned short, 10, 4, 4> u4_;

 date res;
 const char* first = s.data();
 const char* const end = first + s.size();

Chapter 2

65

 bool success = boost::spirit::qi::parse(first, end,
 u4_ [ref(res.year) = _1] >> char_('-')
 >> u2_ [ref(res.month) = _1] >> char_('-')
 >> u2_ [ref(res.day) = _1]
);

 if (!success || first != end) {
 throw std::logic_error("Parsing failed");
 }
 return res;
}

Don't worry if those examples seem complicated. The first time I was also frightened by
Boost.Spirit, but now it really simplifies my life. You are extremely brave, if this code
does not scare you.

If you want to avoid code bloat, try to write parsers in source files and not in headers.
Also take care of iterator types passed to the boost::spirit::parse function, the fewer
different types of iterators you use, the smaller binary you'll get. Writing parsers in source files
has one more advantage: it does not slow down the project compilation (as you may notice,
the Spirit parsers are slow to compile, so it is better to compile them once in the source file,
than define them in the header files and use this file all around the project).

If you are now thinking that parsing dates was simpler to implement by hand using STL... you
are right! But only for now. Take a look at the next recipe; it will give you more examples on
Boost.Spirit usage and extend this example for a situation when writing the parser by
hand is harder than using Boost.Spirit.

The Boost.Spirit library is not a part of C++11 and as far as I know, it is not proposed
for inclusion in the closest upcoming C++ standard.

See also
 f The Reordering the parameters of function recipe in Chapter 1, Starting to Write

Your Application.

 f The Binding a value as a function parameter recipe.

 f Boost.Spirit is a huge header-only library. A separate book may be written
about it, so feel free to use its documentation http://www.boost.org/doc/
libs/1_53_0/libs/spirit/doc/html/index.html. You may also find
information on how to write lexers and generators directly in C++11 code using Boost.

Converting Data

66

Parsing input
In the previous recipe we were writing a simple parser for dates. Imagine that some time
has passed and the task has changed. Now we need to write a date-time parser that will
support multiple input formats plus zone offsets. So now our parser should understand the
following inputs:

2012-10-20T10:00:00Z // date time with zero zone offset
2012-10-20T10:00:00 // date time with unspecified zone
 offset
2012-10-20T10:00:00+09:15 // date time with zone offset
2012-10-20-09:15 // date time with zone offset
10:00:09+09:15 // time with zone offset

Getting ready
We'll be using the Spirit library, which was described in the Parsing simple input recipe.
Read it before getting hands on with this recipe.

How to do it...
1. Let's start with writing a date-time structure that will hold a parsed result:

struct datetime {
 enum zone_offsets_t {
 OFFSET_NOT_SET,
 OFFSET_Z,
 OFFSET_UTC_PLUS,
 OFFSET_UTC_MINUS
 };

private:
 unsigned short year_;
 unsigned short month_;
 unsigned short day_;
 unsigned short hours_;
 unsigned short minutes_;
 unsigned short seconds_;
 zone_offsets_t zone_offset_type_;
 unsigned int zone_offset_in_min_;

 static void dt_assert(bool v, const char* msg) {
 if (!v) {

Chapter 2

67

 throw std::logic_error("Assertion failed: "
 + std::string(msg));
 }
 }

public:
 datetime()
 : year_(0), month_(0), day_(0)
 , hours_(0), minutes_(0), seconds_(0)
 , zone_offset_type_(OFFSET_NOT_SET), zone_offset_in_min_(0)
 {}
 // Getters: year(), month(), day(), hours(), minutes(),
 // seconds(), zone_offset_type(), zone_offset_in_min()
 // ...

 // Setters
 // void set_*(unsigned short val)
 { /*some assert and setting the *_ to val */ }
 // ...

};

2. Now let's write a function for setting the zone offset:
void set_zone_offset(datetime& dt, char sign, unsigned short
hours, unsigned short minutes) {
 dt.set_zone_offset_type(sign == '+' ?
 datetime::OFFSET_UTC_PLUS : datetime::OFFSET_UTC_MINUS);
 dt.set_zone_offset_in_min(hours * 60 + minutes);
}

3. Writing a parser can be split into writing a few simple parsers, so we start with
writing a zone-offset parser.
//Default includes for Boost.Spirit
#include <boost/spirit/include/qi.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>

// We'll use bind() function from Boost.Spirit,
// because it iterates better with parsers
#include <boost/spirit/include/phoenix_bind.hpp>

datetime parse_datetime(const std::string& s) {
 using boost::spirit::qi::_1;
 using boost::spirit::qi::_2;

Converting Data

68

 using boost::spirit::qi::_3;
 using boost::spirit::qi::uint_parser;
 using boost::spirit::qi::char_;
 using boost::phoenix::bind;
 using boost::phoenix::ref;

 datetime ret;

 // Use unsigned short as output type, require Radix 10, and
 // from 2 to 2 digits
 uint_parser<unsigned short, 10, 2, 2> u2_;

 // Use unsigned short as output type, require Radix 10, and
 // from 4 to 4 digits
 uint_parser<unsigned short, 10, 4, 4> u4_;

 boost::spirit::qi::rule<const char*, void()> timezone_parser
 = -(// unary minus means optional rule
 // Zero offset
 char_('Z')[bind(&datetime::set_zone_offset_type,
 &ret, datetime::OFFSET_Z)]
 | // OR
 // Specific zone offset
 ((char_('+')|char_('-')) >> u2_ >> ':' >> u2_) [
 bind(&set_zone_offset, ref(ret), _1, _2, _3)]
);
 // ...
 return ret;
}

4. Let's finish our example by writing the remaining parsers:

 boost::spirit::qi::rule<const char*, void()> date_parser =
 u4_ [bind(&datetime::set_year, &ret, _1)] >> char_('-')
 >> u2_ [bind(&datetime::set_month, &ret, _1)] >> char_('-')
 >> u2_ [bind(&datetime::set_day, &ret, _1)];

 boost::spirit::qi::rule<const char*, void()> time_parser =
 u2_ [bind(&datetime::set_hours, &ret, _1)] >> char_(':')
 >> u2_ [bind(&datetime::set_minutes, &ret, _1)] >> char_(':')
 >> u2_ [bind(&datetime::set_seconds, &ret, _1)];

 const char* first = s.data();
 const char* const end = first + s.size();

Chapter 2

69

 bool success = boost::spirit::qi::parse(first, end,
 ((date_parser >> char_('T') >> time_parser) | date_parser
 | time_parser)
 >> timezone_parser
);

 if (!success || first != end) {
 throw std::logic_error("Parsing of '" + s + "' failed");
 }
 return ret;
} // end of parse_datetime() function

How it works...
A very interesting method here is boost::spirit::qi::rule<const char*, void()>.
It erases the type and allows you to write parsers in source files and export them to headers.
For example:

// Somewhere in header file
class example_1 {
 boost::spirit::qi::rule<const char*, void()> some_rule_;
public:
 example_1();
};

// In source file
example_1::example_1() {
 some_rule_ = /* ... */;
}

But remember that this class implies an optimization barrier for compilers, so do not use it
when it is not required.

There's more...
We can make our example slightly faster by removing the rule<> objects that do type
erasure. For our example in C++11, we can just replace them with the auto keyword.

The Boost.Spirit library generates very fast parsers; there are some performance
measures at the official site. There are also some recommendations for working with the
Boost.Spirit library; one of them is to generate a parser only once, and then just re-use
it (in our example this is not shown).

Converting Data

70

The rule that parses specific zone offset in timezone_parser uses the
boost::phoenix::bind call, which is not mandatory. However, without it we'll be dealing
with boost::fusion::vector<char, unsigned short, unsigned short>, which
is not as user friendly as bind(&set_zone_offset, ref(ret), _1, _2, _3).

When parsing large files, consider reading the The fastest way to read files recipe in Chapter
11, Working with the System, because incorrect work with files may slow down your program
much more than parsing.

Compiling the code that uses the library Boost.Spirit (or Boost.Fusion) may take a
lot of time, because of a huge number of template instantiations. When experimenting with
the Boost.Spirit library use modern compilers, they provide better compilation times.

See also
 f The Boost.Spirit library is worth writing a separate book on. It's impossible to

describe all of its features in a few recipes, so referring to the documentation will
help you to get more information about it. It is available at http://www.boost.
org/doc/libs/1_53_0/libs/spirit/doc/html/index.html. There you'll
find many more examples, ready parsers, and information on how to write lexers
and generators directly in C++11 code using Boost.

3
Managing Resources

In this chapter we will cover:

 f Managing pointers to classes that do not leave scope

 f Reference counting of pointers to classes used across methods

 f Managing pointers to arrays that do not leave scope

 f Reference counting pointers to arrays used across methods

 f Storing any functional objects in a variable

 f Passing a function pointer in a variable

 f Passing C++11 lambda functions in a variable

 f Containers of pointers

 f Doing something at scope exit

 f Initializing the base class by a member of the derived class

Introduction
In this chapter, we'll continue to deal with datatypes, introduced by the Boost libraries, mostly
focusing on working with pointers. We'll see how to easily manage resources, and how to use
a datatype capable of storing any functional objects, functions, and lambda expressions.
After reading this chapter, your code will become more reliable, and memory leaks will
become history.

Managing Resources

72

Managing pointers to classes that do not
leave scope

There are situations where we are required to dynamically allocate memory and construct a
class in that memory. And, that's where the troubles start. Have a look at the following code:

void foo1() {
 foo_class* p = new foo_class("Some initialization data");
 bool something_else_happened = some_function1(p);

 if (something_else_happened) {
 delete p;
 return false;
 }

 some_function2(p);

 delete p;
 return true;
}

This code looks correct at first glance. But, what if some_function1() or some_
function2() throws an exception? In that case, p won't be deleted. Let's fix it in the
following way:

void foo2() {
 foo_class* p = new foo_class("Some initialization data");
 try {
 bool something_else_happened = some_function1(p);
 if (something_else_happened) {
 delete p;
 return false;
 }
 some_function2(p);
 } catch (...) {
 delete p;
 throw;
 }
 delete p;
 return true;
}

Now the code is ugly and hard to read but is correct. Maybe we can do better than this.

Chapter 3

73

Getting ready
Basic knowledge of C++ and code behavior during exceptions is required.

How to do it...
Let's take a look at the Boost.SmartPtr library. There is a boost::scoped_ptr class that
may help you out:

#include <boost/scoped_ptr.hpp>

bool foo3() {
 boost::scoped_ptr<foo_class> p(new foo_class(
 "Some initialization data"));
 bool something_else_happened = some_function1(p.get());
 if (something_else_happened) {
 return false;
 }
 some_function2(p.get());
 return true;
}

Now, there is no chance that the resource will leak, and the source code is much clearer.

If you have control over some_function1() and some_
function2(), you may wish to rewrite them so they will take a
reference to scoped_ptr<foo_class> (or just a reference) instead
of a pointer to foo_class. Such an interface will be more intuitive.

How it works...
In the destructor, boost::scoped_ptr<T> will call delete for a pointer that it stores.
When an exception is thrown, the stack is unwound, and the destructor of scoped_ptr
is called.

The scoped_ptr<T> class template is not copyable; it stores only a pointer to the class and
does not require T to be of a complete type (it can be forward declared). Some compilers do
not warn when an incomplete type is being deleted, which may lead to errors that are hard
to detect, but scoped_ptr (and all the classes in Boost.SmartPtr) has a specific
compile-time assert for such cases. That makes scoped_ptr perfect for implementing
the Pimpl idiom.

The boost::scoped_ptr<T> function is equal to const std::auto_ptr<T>, but it also
has the reset() function.

Managing Resources

74

There's more...
This class is extremely fast. In most cases, the compiler will optimize the code that uses
scoped_ptr to the machine code, which is close to our handwritten version (and sometimes
even better if the compiler detects that some functions do not throw exceptions).

See also
 f The documentation of the Boost.SmartPtr library contains lots of examples and

other useful information about all the smart pointers' classes. You can read about
it at http://www.boost.org/doc/libs/1_53_0/libs/smart_ptr/smart_
ptr.htm.

Reference counting of pointers to classes
used across methods

Imagine that you have some dynamically allocated structure containing data, and you want
to process it in different execution threads. The code to do this is as follows:

#include <boost/thread.hpp>
#include <boost/bind.hpp>

void process1(const foo_class* p);
void process2(const foo_class* p);
void process3(const foo_class* p);

void foo1() {
 while (foo_class* p = get_data()) // C way
 {
 // There will be too many threads soon, see
 // recipe 'Executing different tasks in parallel'
 // for a good way to avoid uncontrolled growth of threads
 boost::thread(boost::bind(&process1, p))
 .detach();
 boost::thread(boost::bind(&process2, p))
 .detach();
 boost::thread(boost::bind(&process3, p))
 .detach();
 // delete p; Oops!!!!
 }
}

Chapter 3

75

We cannot deallocate p at the end of the while loop because it can still be used by threads
that run process functions. Process functions cannot delete p because they do not know that
other threads are not using it anymore.

Getting ready
This recipe uses the Boost.Thread library, which is not a header-only library, so your
program will need to link against the libboost_thread and libboost_system libraries.
Make sure that you understand the concept of threads before reading further. Refer to the
See also section for references on recipes that use threads.

You'll also need some basic knowledge on boost::bind or std::bind, which is almost
the same.

How to do it...
As you may have guessed, there is a class in Boost (and C++11) that will help you to deal
with it. It is called boost::shared_ptr, and it can be used as:

#include <boost/shared_ptr.hpp>

void process_sp1(const boost::shared_ptr<foo_class>& p);
void process_sp2(const boost::shared_ptr<foo_class>& p);
void process_sp3(const boost::shared_ptr<foo_class>& p);

void foo2() {
 typedef boost::shared_ptr<foo_class> ptr_t;
 ptr_t p;
 while (p = ptr_t(get_data())) // C way
 {
 boost::thread(boost::bind(&process_sp1, p))
 .detach();
 boost::thread(boost::bind(&process_sp2, p))
 .detach();
 boost::thread(boost::bind(&process_sp3, p))
 .detach();
 // no need to anything
 }
}

Managing Resources

76

Another example of this is as follows:

#include <string>
#include <boost/smart_ptr/make_shared.hpp>

void process_str1(boost::shared_ptr<std::string> p);
void process_str2(const boost::shared_ptr<std::string>& p);

void foo3() {
 boost::shared_ptr<std::string> ps =
 boost::make_shared<std::string>(
 "Guess why make_shared<std::string> "
 "is faster than shared_ptr<std::string> "
 "ps(new std::string('this string'))"
);
 boost::thread(boost::bind(&process_str1, ps))
 .detach();
 boost::thread(boost::bind(&process_str2, ps))
 .detach();
}

How it works...
The shared_ptr class has an atomic reference counter inside. When you copy it, the
reference counter is incremented, and when its destructor is called, the reference counter
is decremented. When the reference counter equals zero, delete is called for the object
pointed by shared_ptr.

Now, let's find out what's happening in the case of boost::thread
(boost::bind(&process_sp1, p)). The function process_sp1 takes a parameter
as a reference, so why is it not deallocated when we get out of the while loop? The answer
is simple. The functional object returned by bind() contains a copy of the shared pointer,
and that means that the data pointed by p won't be deallocated until the functional object
is destroyed.

Getting back to boost::make_shared, let's take a look at shared_ptr<std::string>
ps(new int(0)). In this case, we have two calls to new: firstly while constructing a pointer
to an integer, and secondly when constructing a shared_ptr class (it allocates an atomic
counter on heap using call new). But, when we construct shared_ptr using make_shared,
only one call to new will be made. It will allocate a single piece of memory and will construct
an atomic counter and the int object in that piece.

Chapter 3

77

There's more...
The atomic reference counter guarantees the correct behavior of shared_ptr across the
threads, but you must remember that atomic operations are not as fast as nonatomic. On
C++11 compatible compilers, you may reduce the atomic operations' count using std::move
(move the constructor of the shared pointer in such a way that the atomic counter is neither
incremented nor decremented).

The shared_ptr and make_shared classes are part of C++11, and they are declared in the
header <memory> in std:: namespace.

See also
 f Refer to Chapter 5, Multithreading, for more information about Boost.Thread and

atomic operations.

 f Refer to the Reordering the parameters of function recipe in Chapter 1, Starting to
Write Your Application, for more information about Boost.Bind.

 f Refer to the Binding a value as a function parameter recipe in Chapter 1, Starting to
Write Your Application, for more information about Boost.Bind.

 f The documentation of the Boost.SmartPtr library contains lots of examples and
other useful information about all the smart pointers' classes. You can read about
it at http://www.boost.org/doc/libs/1_53_0/libs/smart_ptr/smart_
ptr.htm.

Managing pointers to arrays that do not
leave scope

We already saw how to manage pointers to a resource in the Managing pointers to classes
that do not leave scope recipe. But, when we deal with arrays, we need to call delete[]
instead of a simple delete, otherwise there will be a memory leak. Have a look at the
following code:

void may_throw1(const char* buffer);
void may_throw2(const char* buffer);

void foo() {
 // we cannot allocate 10MB of memory on stack,
 // so we allocate it on heap
 char* buffer = new char[1024 * 1024 * 10];
 // Here comes some code, that may throw
 may_throw1(buffer);
 may_throw2(buffer);
 delete[] buffer;
}

Managing Resources

78

Getting ready
Knowledge of C++ exceptions and templates are required for this recipe.

How to do it...
The Boost.SmartPointer library has not only the scoped_ptr<> class but also a
scoped_array<> class.

#include <boost/scoped_array.hpp>

void foo_fixed() {
 // so we allocate it on heap
 boost::scoped_array<char> buffer(new char[1024 * 1024 * 10]);

 // Here comes some code, that may throw,
 // but now exception won't cause a memory leak
 may_throw1(buffer.get());
 may_throw2(buffer.get());

 // destructor of 'buffer' variable will call delete[]
}

How it works...
It works just like a scoped_ptr<> class but calls delete[] instead of delete in
the destructor.

There's more...
The scoped_array<> class has the same guarantees and design as scoped_ptr<>. It has
neither additional memory allocations nor virtual functions' call. It cannot be copied and is not
a part of C++11.

See also
 f The documentation of the Boost.SmartPtr library contains lots of examples and

other useful information about all the smart pointers' classes. You can read about
it at http://www.boost.org/doc/libs/1_53_0/libs/smart_ptr/smart_
ptr.htm.

Chapter 3

79

Reference counting pointers to arrays used
across methods

We continue coping with pointers, and our next task is to reference count an array. Let's
take a look at a program that gets some data from the stream and processes it in different
threads. The code to do this is as follows:

#include <cstring>
#include <boost/thread.hpp>
#include <boost/bind.hpp>

void do_process(const char* data, std::size_t size);

void do_process_in_background(const char* data, std::size_t size)
 {
 // We need to copy data, because we do not know,
 // when it will be deallocated by the caller
 char* data_cpy = new char[size];
 std::memcpy(data_cpy, data, size);

 // Starting thread of execution to process data
 boost::thread(boost::bind(&do_process, data_cpy, size))
 .detach();

 // We cannot delete[] data_cpy, because
 // do_process1 or do_process2 may still work with it
}

Just the same problem that occurred in the Reference counting of pointers to classes used
across methods recipe.

Getting ready
This recipe uses the Boost.Thread library, which is not a header-only library, so your
program will need to link against the libboost_thread and libboost_system libraries.
Make sure that you understand the concept of threads before reading further.

You'll also need some basic knowledge on boost::bind or std::bind, which is almost
the same.

Managing Resources

80

How to do it...
There are three solutions. The main difference between them is of type and construction
of the data_cpy variable. Each of these solutions does exactly the same things that are
described in the beginning of this recipe but without memory leaks. The solutions are:

 f The first solution:
#include <boost/shared_array.hpp>

void do_process(const boost::shared_array<char>& data,
 std::size_t size) {
 do_process(data.get(), size);
}

void do_process_in_background_v1(const char* data,
 std::size_t size) {
 // We need to copy data, because we do not know, when
 // it will be deallocated by the caller
 boost::shared_array<char> data_cpy(new char[size]);
 std::memcpy(data_cpy.get(), data, size);

 // Starting threads of execution to process data
 boost::thread(boost::bind(&do_process1, data_cpy))
 .detach();

 // no need to call delete[] for data_cpy, because
 // data_cpy destructor will deallocate data when
 // reference count will be zero
}

 f The second solution:

Since Boost 1.53 shared_ptr itself can take care of arrays:

#include <boost/shared_ptr.hpp>
#include <boost/make_shared.hpp>

void do_process_shared_ptr(
 const boost::shared_ptr<char[]>& data,
 std::size_t size)
{
 do_process(data.get(), size);
}

Chapter 3

81

void do_process_in_background_v2(const char* data,
 std::size_t size) {
 // Faster than 'First solution'
 boost::shared_ptr<char[]> data_cpy =
 boost::make_shared<char[]>(size);
 std::memcpy(data_cpy.get(), data, size);

 // Starting thread of execution to process data
 boost::thread(boost::bind(
 &do_process_shared_ptr, data_cpy, size
)).detach();

 // data_cpy destructor will deallocate data when
 // reference count will be zero
}

 f The third solution:

void do_process_shared_ptr2(
 const boost::shared_ptr<char>& data,
 std::size_t size)
{
 do_process(data.get(), size);
}
void do_process_in_background_v3(const char* data,
 std::size_t size) {
 // Same speed as in First solution
 boost::shared_ptr<char> data_cpy(
 new char[size],
 boost::checked_array_deleter<char>()
);
 std::memcpy(data_cpy.get(), data, size);

 // Starting threads of execution to process data
 boost::thread(boost::bind(
 &do_process_shared_ptr2, data_cpy, size
)).detach();

 // data_cpy destructor will deallocate data when
 // reference count will be zero
}

Managing Resources

82

How it works...
In each of these examples, shared classes count references and call delete[] for a pointer
when the reference count becomes equal to zero. The first and second examples are trivial. In
the third example, we provide a deleter object for a shared pointer. The deleter object will
be called instead of the default call to delete. This deleter is the same as used in C++11
in std::unique_ptr and std::shared_ptr.

There's more...
The first solution is traditional to Boost; prior to Boost 1.53, the functionality of the second
solution was not implemented in shared_ptr.

The second solution is the fastest one (it uses fewer calls to new), but it can be used only with
Boost 1.53 and higher.

The third solution is the most portable one. It can be used with older versions of Boost and
with C++11 STL's shared_ptr<> (just don't forget to change boost::checked_array_
deleter<T>() to std::default_delete<T[]>()).

See also
 f The documentation of the Boost.SmartPtr library contains lots of examples and

other useful information about all the smart pointers' classes. You can read about
it at http://www.boost.org/doc/libs/1_53_0/libs/smart_ptr/smart_
ptr.htm.

Storing any functional objects in a variable
C++ has a syntax to work with pointers to functions and member functions' pointers. And,
that is good! However, this mechanism is hard to use with functional objects. Consider the
situation when you are developing a library that has its API declared in the header files and
implementation in the source files. This library shall have a function that accepts any functional
objects. How would you pass a functional object to it? Have a look at the following code:

// Required for std::unary_function<> template
#include <functional>

// making a typedef for function pointer accepting int
// and returning nothing
typedef void (*func_t)(int);

Chapter 3

83

// Function that accepts pointer to function and
// calls accepted function for each integer that it has
// It cannot work with functional objects :(
void process_integers(func_t f);

// Functional object
class int_processor: public std::unary_function<int, void> {
 const int min_;
 const int max_;
 bool& triggered_;

public:
 int_processor(int min, int max, bool& triggered)
 : min_(min)
 , max_(max)
 , triggered_(triggered)
 {}

 void operator()(int i) const {
 if (i < min_ || i > max_) {
 triggered_ = true;
 }
 }
};

Getting ready
Reading the Storing any value in a container/variable recipe in Chapter 1, Starting to Write
Your Application, is recommended before starting this recipe.

You'll also need some basic knowledge on boost::bind or std::bind, which is almost
the same.

How to do it...
Let's see how to fix the example and make process_integers accept functional objects:

1. There is a solution, and it is called a Boost.Function library. It allows you to store
any function, a member function, or a functional object if its signature is a match to
the one described in a template argument:
#include <boost/function.hpp>

Managing Resources

84

typedef boost::function<void(int)> fobject_t;

// Now this function may accept functional objects
void process_integers(const fobject_t& f);

int main() {
 bool is_triggered = false;
 int_processor fo(0, 200, is_triggered);
 process_integers(fo);
 assert(is_triggered);
}

The boost::function class has a default constructor and has an empty state.

2. Checking for an empty/default constructed state can be done like this:

void foo(const fobject_t& f) {
 // boost::function is convertible to bool
 if (f) {
 // we have value in 'f'
 // ...
 } else {
 // 'f' is empty
 // ...
 }
}

How it works...
The fobject_t method stores in itself data from functional objects and erases their exact
type. It is safe to use the boost::function objects such as the following code:

bool g_is_triggered = false;
void set_functional_object(fobject_t& f) {
 int_processor fo(100, 200, g_is_triggered);
 f = fo;
 // fo leavs scope and will be destroyed,
 // but 'f' will be usable eve inouter scope
}

Does it remind you of the boost::any class? It uses the same technique—type erasure for
storing any function objects.

Chapter 3

85

There's more...
The Boost.Function library has an insane amount of optimizations; it may store small
functional objects without additional memory allocations and has optimized move assignment
operators. It is accepted as a part of C++11 STL library and is defined in the <functional>
header in the std:: namespace.

But, remember that boost::function implies an optimization barrier for the compiler.
It means that:

std::for_each(v.begin(), v.end(),
 boost::bind(std::plus<int>(), 10, _1));

will be better optimized by the compiler than

fobject_t f(boost::bind(std::plus<int>(), 10, _1));
std::for_each(v.begin(), v.end(), f);

This is why you should try to avoid using Boost.Function when its usage is not really
required. In some cases, the C++11 auto keyword can be handy instead:

auto f = boost::bind(std::plus<int>(), 10, _1);
std::for_each(v.begin(), v.end(), f);

See also
 f The official documentation of Boost.Function contains more examples,

performance measures, and class reference documentation. You can read about it
at http://www.boost.org/doc/libs/1_53_0/doc/html/function.html.

 f The Passing a function pointer in a variable recipe.

 f The Passing C++11 lambda functions in a variable recipe.

Passing a function pointer in a variable
We are continuing with the previous example, and now we want to pass a pointer to a function
in our process_integeres() method. Shall we add an overload for just function pointers,
or is there a more elegant way?

Getting ready
This recipe is continuing the previous one. You must read the previous recipe first.

Managing Resources

86

How to do it...
Nothing needs to be done as boost::function<> is also constructible from the function
pointers:

void my_ints_function(int i);

int main() {
 process_integeres(&my_ints_function);
}

How it works...
A pointer to my_ints_function will be stored inside the boost::function class,
and calls to boost::function will be forwarded to the stored pointer.

There's more...
The Boost.Function library provides good performance for pointers to functions, and it will
not allocate memory on heap. However, whatever you store in boost::function, it will use
an RTTI. If you disable RTTI, it will continue to work but will dramatically increase the size of a
compiled binary.

See also
 f The official documentation of Boost.Function contains more examples,

performance measures, and class reference documentation. You can read about it
at http://www.boost.org/doc/libs/1_53_0/doc/html/function.html.

 f The Passing C++11 lambda functions in a variable recipe.

Passing C++11 lambda functions in a
variable

We are continuing with the previous example, and now we want to use a lambda function with
our process_integers() method.

Getting ready
This recipe is continuing the series of the previous two. You must read them first. You will also
need a C++11 compatible compiler or at least a compiler with C++11 lambda support.

Chapter 3

87

How to do it...
Nothing needs to be done as boost::function<> is also usable with lambda functions of
any difficulty:

 // lambda function with no parameters that does nothing
 process_integeres([](int /*i*/){});

 // lambda function that stores a reference
 std::deque<int> ints;
 process_integeres([&ints](int i){
 ints.push_back(i);
 });

 // lambda function that modifies its content
 std::size_t match_count = 0;
 process_integeres([ints, &match_count](int i) mutable {
 if (ints.front() == i) {
 ++ match_count;
 }
 ints.pop_front();
 });

There's more...
Performance of the lambda function storage in Boost.Functional is the same as in other
cases. While the functional object produced by the lambda expression is small enough to
fit in an instance of boost::function, no dynamic memory allocation will be performed.
Calling an object stored in boost::function is close to the speed of calling a function by
a pointer. Copying of an object is close to the speed of constructing boost::function and
will exactly use a dynamic memory allocation in similar cases. Moving objects won't allocate
and deallocate memory.

See also
 f Additional information about performance and Boost.Function can be found on

the official documentation page at http://www.boost.org/doc/libs/1_53_0/
doc/html/function.html

Managing Resources

88

Containers of pointers
There are such cases when we need to store pointers in the container. The examples are:
storing polymorphic data in containers, forcing fast copy of data in containers, and strict
exception requirements for operations with data in containers. In such cases, the C++
programmer has the following choices:

 f Store pointers in containers and take care of their destructions using the operator
delete:
#include <set>
#include <algorithm>
#include <boost/bind.hpp>
#include <boost/type_traits/remove_pointer.hpp>
#include <cassert>

template <class T>
struct ptr_cmp: public std::binary_function<T, T, bool> {
 template <class T1>
 bool operator()(const T1& v1, const T1& v2) const {
 return operator ()(*v1, *v2);
 }

 bool operator()(const T& v1, const T& v2) const {
 return std::less<T>()(v1, v2);
 }
};

void example1() {
 std::set<int*, ptr_cmp<int> > s;
 s.insert(new int(1));
 s.insert(new int(0));
 // ...
 assert(**s.begin() == 0);
 // ...
 // Deallocating resources
 // Any exception in this code will lead to
 // memory leak
 std::for_each(s.begin(), s.end(),
 boost::bind(::operator delete, _1));
}

Such an approach is error prone and requires a lot of writing

Chapter 3

89

 f Store smart pointers in containers:

For the C++03 version:
 void example2_a() {
 typedef std::auto_ptr<int> int_aptr_t;
 std::set<int_aptr_t, ptr_cmp<int> > s;
 s.insert(int_aptr_t(new int(1)));
 s.insert(int_aptr_t(new int(0)));
 // ...
 assert(**s.begin() == 0);
 // ...
 // resources will be deallocated by auto_ptr<>
}

The std::auto_ptr method is deprecated, and it is not recommended to use it in
containers. Moreover, this example will not compile with C++11.

For the C++11 version:
void example2_b() {
 typedef std::unique_ptr<int> int_uptr_t;
 std::set<int_uptr_t, ptr_cmp<int> > s;
 s.insert(int_uptr_t(new int(1)));
 s.insert(int_uptr_t(new int(0)));
 // ...
 assert(**s.begin() == 0);
 // ...
 // resources will be deallocated by unique_ptr<>
}

This solution is a good one, but it cannot be used in C++03, and you still need to
write a comparator functional object

 f Use Boost.SmartPtr in the container:

#include <boost/shared_ptr.hpp>
void example3() {
 typedef boost::shared_ptr<int> int_sptr_t;
 std::set<int_sptr_t, ptr_cmp<int> > s;
 s.insert(int_sptr_t(new int(1)));
 s.insert(int_sptr_t(new int(0)));
 // ...
 assert(**s.begin() == 0);
 // ...
 // resources will be deallocated by shared_ptr<>
}

Managing Resources

90

This solution is portable, but you still need to write comparators, and it adds
performance penalties (an atomic counter requires additional memory,
and its increments/decrements are not as fast as nonatomic operations)

Getting ready
Knowledge of STL containers is required for better understanding of this recipe.

How to do it...
The Boost.PointerContainer library provides a good and portable solution:

#include <boost/ptr_container/ptr_set.hpp>
void correct_impl() {
 boost::ptr_set<int> s;
 s.insert(new int(1));
 s.insert(new int(0));
 // ...
 assert(*s.begin() == 0);
 // ...
 // resources will be deallocated by container itself
}

How it works...
The Boost.PointerContainer library has classes ptr_array, ptr_vector, ptr_set,
ptr_multimap, and others. All these containers simplify your life. When dealing with pointers,
they will be deallocating pointers in destructors and simplifying access to data pointed by the
pointer (no need for additional dereference in assert(*s.begin() == 0);).

There's more...
Previous examples were not cloning pointer data, but when we want to clone some data,
all we need to do is to just define a freestanding function such as new_clone() in the
namespace of the object to be cloned. Moreover, you may use the default T* new_clone(
const T& r) implementation if you include the header file <boost/ptr_container/
clone_allocator.hpp> as shown in the following code:

#include <boost/ptr_container/clone_allocator.hpp>
#include <boost/ptr_container/ptr_vector.hpp>

Chapter 3

91

 // Creating vector of 10 elements with values 100
 boost::ptr_vector<int> v;
 v.resize(10, new int(100));
 assert(v.size() == 10);
 assert(v.back() == 100);

See also
 f The official documentation contains detailed reference for each class, and you may

read about it at http://www.boost.org/doc/libs/1_53_0/libs/ptr_
container/doc/ptr_container.html

 f The first four recipes of this chapter will give you some examples of smart
pointers' usage

Doing something at scope exit
If you were dealing with languages such as Java, C#, or Delphi, you were obviously using the
try{} finally{} construction or scope(exit) in the D programming language. Let me
briefly describe to you what do these language constructions do.

When a program leaves the current scope via return or exception, code in the finally or
scope(exit) blocks is executed. This mechanism is perfect for implementing the RAII
pattern as shown in the following code snippet:

// Some pseudo code (suspiciously similar to Java code)
try {
 FileWriter f = new FileWriter("example_file.txt");
 // Some code that may trow or return
 // …
} finally {
 // Whatever happened in scope, this code will be executed
 // and file will be correctly closed
 if (f != null) {
 f.close()
 }
}

Is there a way to do such a thing in C++?

Getting ready
Basic C++ knowledge is required for this recipe. Knowledge of code behavior during thrown
exceptions will be useful.

Managing Resources

92

How to do it...
The Boost.ScopeExit library was designed to solve such problems:

#include <boost/scope_exit.hpp>
#include <cstdlib>
#include <cstdio>
#include <cassert>
int main() {
 std::FILE* f = std::fopen("example_file.txt", "w");
 assert(f);
 BOOST_SCOPE_EXIT(f) {
 // Whatever happened in scope, this code will be
 // executed and file will be correctly closed.
 std::fclose(f);
 } BOOST_SCOPE_EXIT_END
 // Some code that may throw or return.
 // ...
}

How it works...
The variable f is passed by value via BOOST_SCOPE_EXIT(f). When the program leaves the
scope of execution, the code between BOOST_SCOPE_EXIT(f) { and } BOOST_SCOPE_
EXIT_END will be executed. If we wish to pass the value by reference, use the & symbol in the
BOOST_SCOPE_EXIT macro. If we wish to pass multiple values, just separate them using a
comma.

Passing references to a pointer does not work well on some compilers.
The BOOST_SCOPE_EXIT(&f) macro cannot be compiled there,
which is why we do not capture it by reference in the example.

There's more...
To capture this inside a member function, we use a special symbol this_:

class theres_more_example {
public:
 void close(std::FILE*);
 void theres_more_example_func() {
 std::FILE* f = 0;

Chapter 3

93

 BOOST_SCOPE_EXIT(f, this_) { // Capture object `this_`.
 this_->close(f);
 } BOOST_SCOPE_EXIT_END
 }
};

The Boost.ScopeExit library allocates no additional memory on heap and does not use
virtual functions. Use the default syntax and do not define BOOST_SCOPE_EXIT_CONFIG_
USE_LAMBDAS because otherwise scope exit will be implemented using boost::function,
which may allocate additional memory and imply the optimization barrier.

See also
 f The official documentation contains more examples and use cases. You can read

about it at http://www.boost.org/doc/libs/1_53_0/libs/scope_exit/
doc/html/index.html.

Initializing the base class by a member of
the derived class

Let's take a look at the following example. We have some base class that has virtual functions
and must be initialized with reference to the std::ostream object:

#include <boost/noncopyable.hpp>
#include <sstream>

class tasks_processor: boost::noncopyable {
 std::ostream& log_;

protected:
 virtual void do_process() = 0;

public:
 explicit tasks_processor(std::ostream& log)
 : log_(log)
 {}

 void process() {
 log_ << "Starting data processing";
 do_process();
 }
};

Managing Resources

94

We also have a derived class that has a std::ostream object and implements the do_
process() function:

class fake_tasks_processor: public tasks_processor {
 std::ostringstream logger_;

 virtual void do_process() {
 logger_ << "Fake processor processed!";
 }

public:
 fake_tasks_processor()
 : tasks_processor(logger_) // Oops! logger_ does
 // not exist here
 , logger_()
 {}
};

This is not a very common case in programming, but when such mistakes happen, it is not
always simple to get the idea of bypassing it. Some people try to bypass it by changing the
order of logger_ and the base type initialization:

 fake_tasks_processor()
 : logger_() // Oops! logger_ still will be constructed
 // AFTER tasks_processor
 , tasks_processor(logger_)
 {}

It won't work as they expect because direct base classes are initialized before nonstatic
data members, regardless of the order of the member initializers.

Getting ready
Basic knowledge of C++ is required for this recipe.

How to do it...
The Boost.Utility library provides a quick solution for such cases; it is called the
boost::base_from_member template. To use it, you need to carry out the following steps:

1. Include the base_from_member.hpp header:
#include <boost/utility/base_from_member.hpp>

Chapter 3

95

2. Derive your class from boost::base_from_member<T> where T is a type that
must be initialized before the base (take care about the order of the base classes;
boost::base_from_member<T> must be placed before the class that uses T):
class fake_tasks_processor_fixed
 : boost::base_from_member<std::ostringstream>
 , public tasks_processor

3. Correctly write the constructor as follows:

{
 typedef boost::base_from_member<std::ostringstream>
 logger_t;
 // ...
public:
 fake_tasks_processor_fixed()
 : logger_t()
 , tasks_processor(logger_t::member)
 {}
};

How it works...
If direct base classes are initialized before nonstatic data members, and if direct base classes
would be initialized in declaration order as they appear in the base-specifier-list, we need to
somehow make a base class our nonstatic data member. Or make a base class that has a
member field with the required member:

template < typename MemberType, int UniqueID = 0 >class
 base_from_member{protected: MemberType member; //
 Constructors go there...};

There's more...
As you may see, base_from_member has an integer as a second template argument. This
is done for cases when we need multiple base_from_member classes of the same type:

class fake_tasks_processor2
 : boost::base_from_member<std::ostringstream, 0>
 , boost::base_from_member<std::ostringstream, 1>
 , public tasks_processor
{

Managing Resources

96

 typedef boost::base_from_member<std::ostringstream, 0>
 logger0_t;
 typedef boost::base_from_member<std::ostringstream, 1>
 logger1_t;

 virtual void do_process() {
 logger0_t::member << "0: Fake processor2 processed!";
 logger1_t::member << "1: Fake processor2 processed!";
 }
public:
 fake_tasks_processor2()
 : logger0_t()
 , logger1_t()
 , tasks_processor(logger0_t::member)
 {}
};

The boost::base_from_member class neither applies additional dynamic memory
allocations nor has virtual functions. The current implementation does not support C++11
features (such as perfect forwarding and variadic templates), but in Boost's trunk branch,
there is an implementation that can use all the benefits of C++11. It possibly will be merged
to release a branch in the nearest future.

See also
 f The Boost.Utility library contains many helpful classes and methods;

documentation for getting more information about it is at http://www.boost.
org/doc/libs/1_53_0/libs/utility/utility.htm

 f The Making a noncopyable class recipe in Chapter 1, Starting to Write Your
Application, contains more examples of classes from Boost.Utility

 f Also, the Using the C++11 move emulation recipe in Chapter 1, Starting to Write
Your Application, contains more examples of classes from Boost.Utility

4
Compile-time Tricks

In this chapter we will cover:

 f Checking sizes at compile time

 f Enabling the usage of templated functions for integral types

 f Disabling templated functions' usage for real types

 f Creating a type from number

 f Implementing a type trait

 f Selecting an optimal operator for a template parameter

 f Getting a type of expression in C++03

Introduction
In this chapter we'll see some basic examples on how the Boost libraries can be used in
compile-time checking, for tuning algorithms, and in other metaprogramming tasks.

Some readers may ask, "Why shall we care about compile-time things?". That's because the
released version of the program is compiled once, and runs multiple times. The more we
do at compile time, the less work remains for runtime, resulting in much faster and reliable
programs. Runtime checks are executed only if a part of the code with check is executed.
Compile-time checks won't give you to compile a program with error.

This chapter is possibly one of the most important. Understanding Boost sources and other
Boost-like libraries is impossible without it.

Compile-time Tricks

98

Checking sizes at compile time
Let's imagine that we are writing some serialization function that stores values in buffer of a
specified size:

#include <cstring>
#include <boost/array.hpp>

template <class T, std::size_t BufSizeV>
void serialize(const T& value, boost::array<unsigned char,
 BufSizeV>& buffer) {
 // TODO: fixme
 std::memcpy(&buffer[0], &value, sizeof(value));
}

This code has the following troubles:

 f The size of the buffer is not checked, so it may overflow

 f This function can be used with non-plain old data (POD) types, which would lead to
incorrect behavior

We may partially fix it by adding some asserts, for example:

template <class T, std::size_t BufSizeV>
void serialize(const T& value, boost::array<unsigned char,
 BufSizeV>& buffer) {
 assert(BufSizeV >= sizeof(value));
 // TODO: fixme
 std::memcpy(&buffer[0], &value, sizeof(value));
}

But, this is a bad solution. The BufSizeV and sizeof(value) values are known at compile
time, so we can potentially make this code to fail compilation if the buffer is too small, instead
of having a runtime assert (which may not trigger during debug, if function was not called, and
may even be optimized out in release mode, so very bad things may happen).

Getting ready
This recipe requires some knowledge of C++ templates and the Boost.Array library.

Chapter 4

99

How to do it...
Let's use the Boost.StaticAssert and Boost.TypeTraits libraries to correct the
solutions, and the output will be as follows:

#include <boost/static_assert.hpp>
#include <boost/type_traits/is_pod.hpp>

template <class T, std::size_t BufSizeV>
void serialize(const T& value, boost::array<unsigned char,
 BufSizeV>& buffer) {
 BOOST_STATIC_ASSERT(BufSizeV >= sizeof(value));
 BOOST_STATIC_ASSERT(boost::is_pod<T>::value);
 std::memcpy(&buffer[0], &value, sizeof(value));
}

How it works...
The BOOST_STATIC_ASSERT macro can be used only if an assert expression can be
evaluated at compile time and implicitly convertible to bool. It means that you may only use
sizeof(), static constants, and other constant expressions in it. If assert expression will
evaluate to false, BOOST_STATIC_ASSERT will stop our program compilation. In case of
serialization() function, if first static assertion fails, it means that someone used that
function for a very small buffer and that code must be fixed by the programmer. The C++11
standard has a static_assert keyword that is equivalent to Boost's version.

Here are some more examples:

BOOST_STATIC_ASSERT(3 >= 1);

struct some_struct { enum enum_t { value = 1}; };
BOOST_STATIC_ASSERT(some_struct::value);

template <class T1, class T2>
struct some_templated_struct {
 enum enum_t { value = (sizeof(T1) == sizeof(T2))};
};
BOOST_STATIC_ASSERT((some_templated_struct<int, unsigned
 int>::value));

If the BOOST_STATIC_ASSERT macro's assert expression has a
comma sign in it, we must wrap the whole expression in additional
brackets.

Compile-time Tricks

100

The last example is very close to what we can see on the second line of the serialize()
function. So now it is time to know more about the Boost.TypeTraits library. This library
provides a large number of compile-time metafunctions that allow us to get information
about types and modify types. The metafunctions usages look like boost::function_
name<parameters>::value or boost::function_name<parameters>::type.
The metafunction boost::is_pod<T>::value will return true, only if T is a POD type.

Let's take a look at some more examples:

#include <iostream>
#include <boost/type_traits/is_unsigned.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/type_traits/remove_const.hpp>

template <class T1, class T2>
void type_traits_examples(T1& /*v1*/, T2& /*v2*/) {
 // Returns true if T1 is an unsigned number
 std::cout << boost::is_unsigned<T1>::value;

 // Returns true if T1 has exactly the same type, as T2
 std::cout << boost::is_same<T1, T2>::value;

 // This line removes const modifier from type of T1.
 // Here is what will happen with T1 type if T1 is:
 // const int => int
 // int => int
 // int const volatile => int volatile
 // const int& => const int&
 typedef typename boost::remove_const<T1>::type t1_nonconst_t;
}

Some compilers may compile this code even without the typename
keyword, but such behavior violates the C++ standard, so it is highly
recommended to write typename.

There's more...
The BOOST_STATIC_ASSSERT macro has a more verbose variant called BOOST_STATIC_
ASSSERT_MSG that will output an error message in the compiler log (or in the IDE window) if
assertion fails. Take a look at the following code:

template <class T, std::size_t BufSizeV>
void serialize2(const T& value, boost::array<unsigned char,
 BufSizeV>& buf) {

Chapter 4

101

 BOOST_STATIC_ASSERT_MSG(boost::is_pod<T>::value,
 "This serialize2 function may be used only "
 "with POD types."
);

 BOOST_STATIC_ASSERT_MSG(BufSizeV >= sizeof(value),
 "Can not fit value to buffer. "
 "Make buffer bigger."
);

 std::memcpy(&buf[0], &value, sizeof(value));
}

 // Somewhere in code:
 boost::array<unsigned char, 1> buf;
 serialize2(std::string("Hello word"), buf);

The preceding code will give the following result during compilation on the g++ compiler in
the C++11 mode:

../../../BoostBook/Chapter4/static_assert/main.cpp: In instantiation
 of 'void serialize2(const T&, boost::array<unsigned char,
 BufSizeV>&) [with T = std::basic_string<char>; long unsigned int
 BufSizeV = 1ul]':

../../../BoostBook/Chapter4/static_assert/main.cpp:77:46: required
 from here

../../../BoostBook/Chapter4/static_assert/main.cpp:58:5: error:
 static assertion failed: This serialize2 function may be used only
 with POD types.

../../../BoostBook/Chapter4/static_assert/main.cpp:63:5: error:
 static assertion failed: Can not fit value to buffer. Make buffer
 bigger.

Neither BOOST_STATIC_ASSSERT, nor BOOST_STATIC_ASSSERT_MSG, nor any of the type
traits library imply runtime penalty. All those functions are executed at compile time, and won't
add a single assembly instruction in binary file.

The Boost.TypeTraits library was partially accepted into the C++11 standard; you
may thus find traits in the <type_traits> header in the std:: namespace. C++11
<type_traits> has some functions that do not exist in Boost.TypeTraits, but some
metafunctions exist only in Boost. When there is a similar function in Boost and STL, the STL
version (in rare cases) may work slightly better because of compiler-specific intrinsics usage.

As we have already mentioned earlier, the BOOST_STATIC_ASSERT_MSG macro was also
accepted into C++11 (and even into C11) as the keyword static_assert(expression,
message).

Compile-time Tricks

102

Use the Boost version of those libraries if you need portability across compilers or
metafunctions that does not exist in STLs <type_traits>.

See also
 f The next recipes in this chapter will give you more examples and ideas on how static

asserts and type traits may be used

 f Read the official documentation of Boost.StaticAssert for more examples
at http://www.boost.org/doc/libs/1_53_0/doc/html/boost_
staticassert.html

Enabling the usage of templated functions
for integral types

It's a common situation, when we have a templated class that implements some functionality.
Have a look at the following code snippet:

// Generic implementation
template <class T>
class data_processor {
 double process(const T& v1, const T& v2, const T& v3);
};

After execution of the preceding code, we have additional two optimized versions of that class,
one for integral, and another for real types:

// Integral types optimized version
template <class T>
class data_processor {
 typedef int fast_int_t;
 double process(fast_int_t v1, fast_int_t v2, fast_int_t v3);
};

// SSE optimized version for float types
template <class T>
class data_processor {
 double process(double v1, double v2, double v3);
};

Now the question, how to make the compiler to automatically choose the correct class for a
specified type, arises.

Chapter 4

103

Getting ready
This recipe requires the knowledge of C++ templates.

How to do it...
We'll be using Boost.Utility and Boost.TypeTraits to resolve this problem:

1. Let's start with including headers:
#include <boost/utility/enable_if.hpp>
#include <boost/type_traits/is_integral.hpp>
#include <boost/type_traits/is_float.hpp>

2. Let's add an additional template parameter with default value to our generic
implementation:
// Generic implementation
template <class T, class Enable = void>
class data_processor {
 // ...
};

3. Modify optimized versions in the following way, so that now they will be treated
by the compiler as template partial specializations:
// Integral types optimized version
template <class T>
class data_processor<T, typename boost::enable_if_c<
 boost::is_integral<T>::value
>::type> { /* ... */ };

// SSE optimized version for float types
template <class T>
class data_processor<T, typename boost::enable_if_c<
 boost::is_float<T>::value
>::type> { /* ... */ };

4. And, that's it! Now the compiler will automatically choose the correct class:

template <class T>
double example_func(T v1, T v2, T v3) {
 data_processor<T> proc;
 return proc.process(v1, v2, v3);
}

Compile-time Tricks

104

int main () {
 // Integral types optimized version
 // will be called
 example_func(1, 2, 3);
 short s = 0;
 example_func(s, s, s);

 // Real types version will be called
 example_func(1.0, 2.0, 3.0);
 example_func(1.0f, 2.0f, 3.0f);

 // Generic version will be called
 example_func("Hello", "word", "processing");
}

How it works...
The boost::enable_if_c template is a tricky one. It makes use of the SFINAE
(Substitution Failure Is Not An Error) principle, which is used during template instantiation.
Here is how the principle works: if an invalid argument or return type is formed during the
instantiation of a function or class template, the instantiation is removed from the overload
resolution set and does not cause a compilation error. Now let's get back to the solution,
and we'll see how it works with different types passed to the data_processor class as
the T parameter.

If we pass an int as T type, first the compiler will try to instantiate template partial
specializations, before using our nonspecialized (generic) version. When it tries to instantiate
a float version, the boost::is_float<T>::value metafunction will return false.
The boost::enable_if_c<false>::type metafunction cannot be correctly instantiated
(because boost::enable_if_c<false> has no ::type), and that is the place where
SFINAE will act. Because class template cannot be instantiated, and this must be interpreted
as not an error, compiler will skip this template specialization. Next, partial specialization
is the one that is optimized for integral types. The boost::is_integral<T>::value
metafunction will return true, and boost::enable_if_c<true>::type can be
instantiated, which makes it possible to instantiate the whole data_processor
specialization. The compiler found a matching partial specialization, so it does not need to try
to instantiate the nonspecialized method.

Now, let's try to pass some nonarithmetic type (for example, const char *), and
let's see what the compiler will do. First the compiler will try to instantiate template
partial specializations. The specializations with is_float<T>::value and is_
integral<T>::value will fail to instantiate, so the compiler will try to instantiate
our generic version, and will succeed.

Chapter 4

105

Without boost::enable_if_c<>, all the partial specialized versions may be instantiated
at the same time for any type, which leads to ambiguity and failed compilation.

If you are using templates and compiler reports that cannot choose
between two template classes of methods, you probably need
boost::enable_if_c<>.

There's more...
Another version of this method is called boost::enable_if (without _c at the end).
Difference between them is that enable_if_c accepts constant as a template parameter;
however, the short version accepts an object that has a value static member. For example,
boost::enable_if_c<boost::is_integral<T>::value >::type is equal to
boost::enable_if<boost::is_integral<T> >::type>.

C++11 has an std::enable_if defined in the <type_traits> header, which behaves
exactly like boost::enable_if_c. No difference between them exists, except that Boost's
version will work on non C++11 compilers too, providing better portability.

All the enabling functions are executed only at compile time and do not add a performance
overhead at runtime. However, adding an additional template parameter may produce a bigger
class name in typeid(T).name(), and add an extremely tiny performance overhead when
comparing two typeid() results on some platforms.

See also
 f Next recipes will give you more examples on enable_if usage.

 f You may also consult the official documentation of Boost.Utility. It contains
many examples and a lot of useful classes (which are used widely in this book).
Read about it at http://www.boost.org/doc/libs/1_53_0/libs/utility/
utility.htm.

 f You may also read some articles about template partial specializations at http://
msdn.microsoft.com/en-us/library/3967w96f%28v=vs.110%29.aspx.

Compile-time Tricks

106

Disabling templated functions' usage for
real types

We continue working with Boost metaprogramming libraries. In the previous recipe, we saw
how to use enable_if_c with classes, now it is time to take a look at its usage in template
functions. Consider the following example.

Initially, we had a template function that works with all the available types:

template <class T>
T process_data(const T& v1, const T& v2, const T& v3);

Now that we write code using process_data function, we use an optimized process_data
version for types that do have an operator += function:

template <class T>
T process_data_plus_assign(const T& v1, const T& v2, const T& v3);

But, we do not want to change the already written code; instead whenever it is possible, we
want to force the compiler to automatically use optimized function in place of the default one.

Getting ready
Read the previous recipe to get an idea of what boost::enable_if_c does, and for
understanding the concept of SFINAE. However, the knowledge of templates is still required.

How to do it...
Template magic can be done using the Boost libraries. Let's see how to do it:

1. We will need the boost::has_plus_assign<T> metafunction and the <boost/
enable_if.hpp> header:
#include <boost/utility/enable_if.hpp>
#include <boost/type_traits/has_plus_assign.hpp>

2. Now we will disable default implementation for types with plus assign operator:
// Modified generic version of process_data
template <class T>
typename boost::disable_if_c<boost::has_plus_assign<T>
 ::value,T>::type
 process_data(const T& v1, const T& v2, const T& v3);

Chapter 4

107

3. Enable optimized version for types with plus assign operator:
// This process_data will call a process_data_plus_assign
template <class T>
typename boost::enable_if_c<boost::has_plus_assign<T>::value,
T>::type
 process_data(const T& v1, const T& v2, const T& v3)
{
 return process_data_plus_assign(v1, v2, v3);
}

4. Now, users won't feel the difference, but the optimized version will be used wherever
possible:

int main() {
 int i = 1;
 // Optimized version
 process_data(i, i, i);

 // Default version
 // Explicitly specifing template parameter
 process_data<const char*>("Testing", "example", "function");
}

How it works...
The boost::disable_if_c<bool_value>::type metafunction disables method,
if bool_value equals to true (works just like boost::enable_if_c<!bool_
value>::type).

If we pass a class as the second parameter for boost::enable_if_c or
boost::disable_if_c, it will be returned via ::type in case of successful evaluation.

Let's go through the instantiation of templates step-by-step. If we pass int as T type, first the
compiler will search for function overload with required signature. Because there is no such
function, the next step will be to instantiate a template version of this function. For example,
the compiler started from our second (optimized) version; in that case, it will successfully
evaluate the typename boost::enable_if_c<boost::has_plus_assign<T>::value,
T>::type expression, and will get the T return type. But, the compiler won't stop; it will
continue instantiation attempts. It'll try to instantiate our first version of function, but will get
a failure during evaluation of typename boost::disable_if_c<boost::has_plus_
assign<T>::value. This failure won't be treated as an error (refer SFINAE). As you can see,
without enable_if_c and disable_if_c, there will be ambiguity.

Compile-time Tricks

108

There's more...
As in case of enable_if_c and enable_if, there is a disable_if version of the
disabling function:

// First version
template <class T>
typename boost::disable_if<boost::has_plus_assign<T>, T>::type
process_data2(const T& v1, const T& v2, const T& v3);

// process_data_plus_assign
template <class T>
typename boost::enable_if<boost::has_plus_assign<T>, T>::type
process_data2(const T& v1, const T& v2, const T& v3);

C++11 has neither disable_if_c, nor disable_if (you may use std::enable_
if<!bool_value>::type instead).

As it was mentioned in the previous recipe, all the enabling and disabling functions are
executed only at compile time, and do not add performance overhead at runtime.

See also
 f Read this chapter from the beginning to get more examples of compile-time tricks.

 f Consider reading the Boost.TypeTraits official documentation for more examples
and full list of metafunctions at http://www.boost.org/doc/libs/1_53_0/
libs/type_traits/doc/html/index.html.

 f The Boost.Utility library may provide you more examples of boost::enable_
if usage. Read about it at http://www.boost.org/doc/libs/1_53_0/libs/
utility/utility.htm.

Creating a type from number
We have now seen examples of how we can choose between functions without
boost::enable_if_c usage. Let's consider the following example, where we have a generic
method for processing POD datatypes:

#include <boost/static_assert.hpp>
#include <boost/type_traits/is_pod.hpp>

// Generic implementation
template <class T>
T process(const T& val) {
 BOOST_STATIC_ASSERT((boost::is_pod<T>::value));
 // ...
}

Chapter 4

109

And, we have the same function optimized for sizes 1, 4, and 8 bytes. How do we rewrite
process function, so that it can dispatch calls to optimized versions?

Getting ready
Reading at least the first recipe from this chapter is highly recommended, so that you will not
be confused by all the things that are happening here. Templates and metaprogramming shall
not scare you (or just get ready to see a lot of them).

How to do it...
We are going to see how the size of a template type can be converted to a variable of some
type, and how that variable can be used for deducing the right function overload.

1. Let's define our generic and optimized versions of process_impl function:
#include <boost/mpl/int.hpp>

namespace detail {
 // Generic implementation
 template <class T, class Tag>
 T process_impl(const T& val, Tag /*ignore*/) {
 // ...
 }

 // 1 byte optimized implementation
 template <class T>
 T process_impl(const T& val, boost::mpl::int_<1> /*ignore*/) {
 // ...
 }

 // 4 bytes optimized implementation
 template <class T>
 T process_impl(const T& val, boost::mpl::int_<4> /*ignore*/) {
 // ...
 }

 // 8 bytes optimized implementation
 template <class T>
 T process_impl(const T& val, boost::mpl::int_<8> /*ignore*/) {
 // ...
 }
} // namespace detail

Compile-time Tricks

110

2. Now we are ready to write process function:

// will be only dispatching calls
template <class T>
T process(const T& val) {
 BOOST_STATIC_ASSERT((boost::is_pod<T>::value));
 return detail::process_impl(
 val, boost::mpl::int_<sizeof(T)>());
}

How it works...
The most interesting part here is boost::mpl::int_<sizeof(T)>(). sizeof(T)
executes at compile time, so its output can be used as a template parameter. The class
boost::mpl::int_<> is just an empty class that holds a compile-time value of integral type
(in the Boost.MPL library, such classes are called Integral Constants). It can be implemented
as shown in the following code:

template <int Value>
struct int_ {
 static const int value = Value;
 typedef int_<Value> type;
 typedef int value_type;
};

We need an instance of this class, that is why we have a round parentheses at the end of
boost::mpl::int_<sizeof(T)>().

Now, let's take a closer look at how the compiler will decide which process_impl function
to use. First of all, the compiler will try to match functions that have a second parameter and
not a template. If sizeof(T) is 4, the compiler will try to search the function with signatures
like process_impl(T, boost::mpl::int_<8>), and will find our 4 bytes optimized
version from the detail namespace. If sizeof(T) is 34, compiler won't find the function
with signature like process_impl(T, boost::mpl::int_<34>),and will use a templated
variant process_impl(const T& val, Tag /*ignore*/).

There's more...
The Boost.MPL library has several data structures for metaprogramming. In this recipe, we
only scratched a top of the iceberg. You may find the following Integral Constant classes from
MPL useful:

 f bool_

 f int_

Chapter 4

111

 f long_

 f size_t

 f char_

All the Boost.MPL functions (except the for_each runtime function) are executed at
compile time and won't add runtime overhead. The Boost.MPL library is not a part of C++11,
but many STL libraries implement functions from it for their own needs.

See also
 f The recipes from Chapter 8, Metaprogramming, will give you more examples of

the Boost.MPL library usage. If you feel confident, you may also try to read its
documentation at http://www.boost.org/doc/libs/1_53_0/libs/mpl/
doc/index.html.

 f Read more examples of tags usage at http://www.boost.org/doc/
libs/1_53_0/libs/type_traits/doc/html/boost_typetraits/
examples/fill.html and http://www.boost.org/doc/libs/1_53_0/
libs/type_traits/doc/html/boost_typetraits/examples/copy.html.

Implementing a type trait
We need to implement a type trait that returns true if the std::vector type is passed to it
as a template parameter.

Getting ready
Some basic knowledge of the Boost.TypeTrait or STL type traits is required.

How to do it...
Let's see how to implement a type trait:

#include <vector>
#include <boost/type_traits/integral_constant.hpp>

template <class T>
struct is_stdvector: boost::false_type {};

template <class T, class Allocator>
struct is_stdvector<std::vector<T, Allocator> >: boost::true_type
{};

Compile-time Tricks

112

How it works...
Almost all the work is done by the boost::true_type and boost::false_type
classes. The boost::true_type class has a boolean ::value static constant in it that
equals to true, the boost::false_type class has a boolean ::value static constant
in it that equals to false. They also have some typedefs, and are usually derived from
boost::mpl::integral_c, which makes it easy to use types derived from true_type/
false_type with Boost.MPL.

Our first is_stdvector structure is a generic structure that will be used always when
template specialized version of such structure is not found. Our second is_stdvector
structure is a template specialization for the std::vector types (note that it is derived
from true_type!). So, when we pass vector type to the is_stdvector structure, template
specialized version will be used, otherwise generic version will be used, which is derived from
false_type.

3 lines There is no public keyword before boost::false_type and
boost::true_type in our trait because we use struct keyword,
and by default it uses public inheritance.

There's more...
Those readers who use the C++11 compatible compilers may use the true_type and
false_type types declared in the <type_traits> header from the std:: namespace
for creating their own type traits.

As usual, the Boost version is more portable because it can be used on C++03 compilers.

See also
 f Almost all the recipes from this chapter use type traits. Refer to the Boost.

TypeTraits documentation for more examples and information at http://www.
boost.org/doc/libs/1_53_0/libs/type_traits/doc/html/index.html.

Chapter 4

113

Selecting an optimal operator for a template
parameter

Imagine that we are working with classes from different vendors that implement different
amounts of arithmetic operations and have constructors from integers. And, we do want to
make a function that increments by one when any class is passed to it. Also, we want this
function to be effective! Take a look at the following code:

template <class T>
void inc(T& value) {
 // call ++value
 // or call value ++
 // or value += T(1);
 // or value = value + T(1);
}

Getting ready
Some basic knowledge of the C++ templates, and the Boost.TypeTrait or STL type traits
is required.

How to do it...
All the selecting can be done at compile time. This can be achieved using the Boost.
TypeTraits library, as shown in the following steps:

1. Let's start from making correct functional objects:
namespace detail {
 struct pre_inc_functor {
 template <class T>
 void operator()(T& value) const {
 ++ value;
 }
 };

 struct post_inc_functor {
 template <class T>
 void operator()(T& value) const {
 value++;
 }
 };

Compile-time Tricks

114

 struct plus_assignable_functor {
 template <class T>
 void operator()(T& value) const {
 value += T(1);
 }
 };

 struct plus_functor {
 template <class T>
 void operator()(T& value) const {
 value = value + T(1);
 }
 };
}

2. After that we will need a bunch of type traits:
#include <boost/type_traits/conditional.hpp>
#include <boost/type_traits/has_plus_assign.hpp>
#include <boost/type_traits/has_plus.hpp>
#include <boost/type_traits/has_post_increment.hpp>
#include <boost/type_traits/has_pre_increment.hpp>

3. And, we are ready to deduce correct functor and use it:

template <class T>
void inc(T& value) {
 typedef detail::plus_functor step_0_t;

 typedef typename boost::conditional<
 boost::has_plus_assign<T>::value,
 detail::plus_assignable_functor,
 step_0_t
 >::type step_1_t;

 typedef typename boost::conditional<
 boost::has_post_increment<T>::value,
 detail::post_inc_functor,
 step_1_t
 >::type step_2_t;

 typedef typename boost::conditional<
 boost::has_pre_increment<T>::value,
 detail::pre_inc_functor,
 step_2_t

Chapter 4

115

 >::type step_3_t;

 step_3_t() // default constructing functor
 (value); // calling operator() of a functor
}

How it works...
All the magic is done via the conditional<bool Condition, class T1, class T2>
metafunction. When this metafunction accepts true as a first parameter, it returns T1 via
the ::type typedef. When the boost::conditional metafunction accepts false as a
first parameter, it returns T2 via the ::type typedef. It acts like some kind of compile-time
if statement.

So, step0_t holds a detail::plus_functor metafunction and step1_t will hold
step0_t or detail::plus_assignable_functor. The step2_t type will hold step1_t
or detail::post_inc_functor. The step3_t type will hold step2_t or detail::pre_
inc_functor. What each step*_t typedef holds is deduced using type trait.

There's more...
There is a C++11 version of this function, which can be found in the <type_traits>
header in the std:: namespace. Boost has multiple versions of this function in different
libraries, for example, Boost.MPL has function boost::mpl::if_c, which acts exactly like
boost::conditional. It also has a version boost::mpl::if_ (without c at the end),
which will call ::type for its first template argument; and if it is derived from boost::true_
type (or is a boost::true_type type), it will return its second argument during the ::type
call, otherwise it will return the last template parameter. We can rewrite our inc() function to
use Boost.MPL, as shown in the following code:

#include <boost/mpl/if.hpp>

template <class T>
void inc_mpl(T& value) {
 typedef detail::plus_functor step_0_t;

 typedef typename boost::mpl::if_<
 boost::has_plus_assign<T>,
 detail::plus_assignable_functor,
 step_0_t
 >::type step_1_t;

 typedef typename boost::mpl::if_<
 boost::has_post_increment<T>,

Compile-time Tricks

116

 detail::post_inc_functor,
 step_1_t
 >::type step_2_t;

 typedef typename boost::mpl::if_<
 boost::has_pre_increment<T>,
 detail::pre_inc_functor,
 step_2_t
 >::type step_3_t;

 step_3_t() // default constructing functor
 (value); // calling operator() of a functor
}

See also
 f The recipe Enabling the usage of templated functions for integral types

 f The recipe Disabling templated functions' usage for real types

 f The Boost.TypeTraits documentation has a full list of available metafunctions.
Read about it at http://www.boost.org/doc/libs/1_53_0/libs/type_
traits/doc/html/index.html.

 f The recipes from Chapter 8, Metaprogramming, will give you more examples of
the Boost.MPL library usage. If you feel confident, you may also try to read its
documentation at http://www.boost.org/doc/libs/1_53_0/libs/mpl/
doc/index.html.

 f There is a proposal to add type switch to C++, and you may find it interesting. Read
about it at http://www.stroustrup.com/OOPSLA-typeswitch-draft.pdf.

Getting a type of expression in C++03
In the previous recipes, we saw some examples on boost::bind usage. It is a good and
useful tool with a small drawback; it is hard to store boost::bind metafunction's functor
as a variable in C++03.

#include <functional>
#include <boost/bind.hpp>

const ??? var = boost::bind(std::plus<int>(), _1, _1);

In C++11, we can use auto keyword instead of ???, and that will work. Is there a way to
do it in C++03?

Chapter 4

117

Getting ready
The knowledge of the C++11 auto and decltype keywords may help you to understand
this recipe.

How to do it...
We will need a Boost.Typeof library for getting return type of expression:

#include <boost/typeof/typeof.hpp>
BOOST_AUTO(var, boost::bind(std::plus<int>(), _1, _1));

How it works...
It just creates a variable with the name var, and the value of the expression is passed as
a second argument. Type of var is detected from the type of expression.

There's more...
An experienced C++11 reader will note that there are more keywords in the new standard for
detecting the types of expression. Maybe Boost.Typeof has macro for them too. Let's take
a look at the following C++11 code:

typedef decltype(0.5 + 0.5f) type;

Using Boost.Typeof, the preceding code can be written like the following code:

typedef BOOST_TYPEOF(0.5 + 0.5f) type;

C++11 version's decltype(expr) deduces and returns the type of expr.

template<class T1, class T2>
auto add(const T1& t1, const T2& t2) ->decltype(t1 + t2) {
 return t1 + t2;
};

Using Boost.Typeof, the preceding code can be written like the following code:

template<class T1, class T2>
BOOST_TYPEOF_TPL(T1() + T2()) add(const T1& t1, const T2& t2) {
 return t1 + t2;
};

Compile-time Tricks

118

C++11 has a special syntax for specifying return type at the end of the
function declaration. Unfortunately, this cannot be emulated in C++03,
so we cannot use t1 and t2 variables in macro.

You can freely use the results of the BOOST_TYPEOF() functions in templates and in any
other compile-time expressions:

#include <boost/static_assert.hpp>
#include <boost/type_traits/is_same.hpp>
BOOST_STATIC_ASSERT((boost::is_same<BOOST_TYPEOF(add(1, 1)),
 int>::value));

But unfortunately, this magic does not always work without help. For example, user-defined
classes are not always detected, so the following code may fail on some compilers:

namespace readers_project {
 template <class T1, class T2, class T3>
 struct readers_template_class{};
}

#include <boost/tuple/tuple.hpp>

typedef
 readers_project::readers_template_class<int, int, float>
readers_template_class_1;

typedef BOOST_TYPEOF(boost::get<0>(
 boost::make_tuple(readers_template_class_1(), 1)
)) readers_template_class_deduced;

BOOST_STATIC_ASSERT((
 boost::is_same<
 readers_template_class_1,
 readers_template_class_deduced
 >::value
));

In such situations, you may give Boost.Typeof a helping hand and register a template:

BOOST_TYPEOF_REGISTER_TEMPLATE(
 readers_project::readers_template_class /*class name*/,
 3 /*number of template classes*/
)

However, three most popular compilers correctly detected type even without BOOST_TYPEOF_
REGISTER_TEMPLATE and without C++11.

Chapter 4

119

See also
 f The official documentation of Boost.Typeof has more examples. Read about it

at http://www.boost.org/doc/libs/1_53_0/doc/html/typeof.html.

 f Bjarne Stroustrup may introduce some of the C++11 features to you. Read about it
at http://www.stroustrup.com/C++11FAQ.html.

5
Multithreading

In this chapter we will cover:

 f Creating an execution thread

 f Syncing access to a common resource

 f Fast access to a common resource using atomics

 f Creating a work_queue class

 f Multiple-readers-single-writer lock

 f Creating variables that are unique per thread

 f Interrupting a thread

 f Manipulating a group of threads

Introduction
In this chapter we'll take care of threads and all of the stuff connected with them. Basic
knowledge of multithreading is encouraged.

Multithreading means that multiple execution threads exist within a single process. Threads
may share process resources and have their own resources. Those execution threads may run
independently on different CPUs, leading to faster and more responsive programs.

The Boost.Thread library provides uniformity across operating system interfaces for working
with threads. It is not a header-only library, so all of the examples from this chapter will need
to link against the libboost_thread and libboost_system libraries.

Multithreading

122

Creating an execution thread
On modern multi-core compilers, to achieve maximal performance (or just to provide a good
user experience), programs usually must use multiple execution threads. Here is a motivating
example in which we need to create and fill a big file in a thread that draws the user interface:

#include <algorithm>
#include <fstream>
#include <iterator>

void set_not_first_run();
bool is_first_run();

// Function, that executes for a long time
void fill_file_with_data(char fill_char, std::size_t size, const char*
filename){
 std::ofstream ofs(filename);
 std::fill_n(std::ostreambuf_iterator<char>(ofs), size, fill_char);
 set_not_first_run();
}

// ...
// Somewhere in thread that draws a user interface
if (is_first_run()) {
 // This will be executing for a long time during which
 // users interface will freeze..
 fill_file_with_data(0, 8 * 1024 * 1024, "save_file.txt");
}

Getting ready
This recipe will require knowledge of the boost::bind library.

How to do it...
Starting an execution thread was never so easy:

#include <boost/thread.hpp>

// ...
// Somewhere in thread that draws a user interface
if (is_first_run()) {

Chapter 5

123

 boost::thread(boost::bind(
 &fill_file_with_data,
 0,
 8 * 1024 * 1024,
 "save_file.txt"
)).detach();
}

How it works...
The boost::thread variable accepts a functional object that can be called without
parameters (we provided one using boost::bind) and creates a separate execution thread.
That functional object will be copied into a constructed execution thread and will be run there.

main()

boost::thread
boost::bind(...)

In all of the recipes with the Boost.Thread library, we'll be using Version
4 (defined BOOST_THREAD_VERSION to 4) of threads by default and
pointing out some important differences between Boost.Thread versions.

After that, we call the detach() function, which will do the following:

 f The execution thread will be detached from the boost::thread variable but
will continue its execution

 f The boost::thread variable will hold a Not-A-Thread state

Multithreading

124

Note that without a call to detach(), the destructor of boost::thread will notice that
it still holds a thread and will call std::terminate, which will terminate our program.

Default constructed threads will also have a Not-A-Thread state, and they won't create
a separate execution thread.

There's more...
What if we want to make sure that a file was created and written before doing some other job?
In that case we need to join a thread using the following:

// ...
// Somewhere in thread that draws a user interface
if (is_first_run()) {
 boost::thread t(boost::bind(
 &fill_file_with_data,
 0,
 8 * 1024 * 1024,
 "save_file.txt"
));
 // Do some work
 // ...
 // Waiting for thread to finish
 t.join();
}

After the thread is joined, the boost::thread variable will hold a Not-A-Thread state
and its destructor won't call std::terminate.

Remember that the thread must be joined or detached before its
destructor is called. Otherwise, your program will terminate!
Beware that std::terminate() is called when any exception that is
not of type boost::thread_interrupted leaves the boundary of the
functional object and is passed to the boost::thread constructor.

The boost::thread class was accepted as a part of the C++11 standard and you can
find it in the <thread> header in the std:: namespace. By default, with BOOST_THREAD_
VERSION=2, the destructor of boost::thread will call detach(), which won't lead to
std::terminate. But doing so will break compatibility with std::thread, and some day,
when your project is moving to the C++ standard library threads or when BOOST_THREAD_
VERSION=2 is no longer supported this will give you a lot of surprises. Version 4 of Boost.
Thread is more explicit and strong, which is usually preferable in C++ language.

Chapter 5

125

There is a very helpful wrapper that works as a RAII wrapper around the thread and allows
you to emulate the BOOST_THREAD_VERSION=2 behavior; it is called boost::scoped_
thread<T>, where T can be one of the following classes:

 f boost::interrupt_and_join_if_joinable: To interrupt and join thread
at destruction

 f boost::join_if_joinable: To join a thread at destruction

 f boost::detach: To detach a thread at destruction

Here is a small example:

#include <boost/thread/scoped_thread.hpp>
void some_func();
void example_with_raii() {
 boost::scoped_thread<boost::join_if_joinable> t(
 (boost::thread(&some_func))
);
 // 't' will be joined at scope exit
}

We added additional parentheses around (boost::thread(&some_
func)) so that the compiler won't interpret it as a function declaration
instead of a variable construction.

There is no big difference between the Boost and C++11 STL versions of the thread
class; however, boost::thread is available on the C++03 compilers, so its usage is
more versatile.

See also
 f All of the recipes in this chapter will be using Boost.Thread; you may continue

reading to get more information about them

 f The official documentation has a full list of the boost::thread methods and
remarks about their availability in the C++11 STL implementation; it can be found
at http://www.boost.org/doc/libs/1_53_0/doc/html/thread.html

 f The Interrupting a thread recipe will give you an idea of what the
boost::interrupt_and_join_if_joinable class does

Multithreading

126

Syncing access to a common resource
Now that we know how to start execution threads, we want to have access to some common
resources from different threads:

#include <cassert>
#include <cstddef>

// In previous recipe we included
// <boost/thread.hpp>, which includes all
// the classes of Boost.Thread
#include <boost/thread/thread.hpp>

int shared_i = 0;

void do_inc() {
 for (std::size_t i = 0; i < 30000; ++i) {
 // do some work
 // ...

 const int i_snapshot = ++ shared_i;

 // do some work with i_snapshot
 // ...
 }
}

void do_dec() {
 for (std::size_t i = 0; i < 30000; ++i) {
 // do some work
 // ...

 const int i_snapshot = -- shared_i;

 // do some work with i_snapshot
 // ...
 }
}

void run() {
 boost::thread t1(&do_inc);
 boost::thread t2(&do_dec);

Chapter 5

127

 t1.join();
 t2.join();

 // assert(shared_i == 0); // Oops!
 std::cout << "shared_i == " << shared_i;
}

This 'Oops!' is not written there accidentally. For some people it will be a surprise, but there
is a big chance that shared_i won't be equal to 0:

shared_i == 19567

Modern compilers and processors have a huge number of different,
tricky optimizations that can break the preceding code. We won't
discuss them here, but there is a useful link in the See also section
to a document that briefly describes them.

And it will get even worse in cases when a common resource has some non-trivial classes;
segmentation faults and memory leaks may (and will) occur.

We need to change the code so that only one thread modifies the shared_i variable at a
single moment of time and so that all of the processor and compiler optimizations that inflict
multithreaded code are bypassed.

Getting ready
Basic knowledge of threads is recommended for this recipe.

How to do it...
Let's see how we can fix the previous example and make shared_i equal at the end
of the run:

1. First of all we'll need to create a mutex:
#include <boost/thread/mutex.hpp>
#include <boost/thread/locks.hpp>

int shared_i = 0;
boost::mutex i_mutex;

Multithreading

128

2. Put all the operations that modify or get data from the shared_i variable
between the following:

{ // Critical section begin
 boost::lock_guard<boost::mutex> lock(i_mutex);

And the following:
} // Critical section end

This is what it will look like:

void do_inc() {
 for (std::size_t i = 0; i < 30000; ++i) {

 // do some work
 // …

 int i_snapshot;
 { // Critical section begin
 boost::lock_guard<boost::mutex> lock(i_mutex);
 i_snapshot = ++ shared_i;
 } // Critical section end

 // do some work with i_snapshot
 // ...
 }
}

void do_dec() {
 for (std::size_t i = 0; i < 30000; ++i) {
 // do some work
 // ...

 int i_snapshot;
 { // Critical section begin
 boost::lock_guard<boost::mutex> lock(i_mutex);
 i_snapshot = -- shared_i;
 } // Critical section end

 // do some work with i_snapshot
 // ...
 }
}

Chapter 5

129

How it works...
The boost::mutex class takes care of all of the synchronization stuff. When a thread tries to
lock it via the boost::lock_guard<boost::mutex> variable and there is no other thread
holding a lock, it will successfully acquire unique access to the section of code until the lock
is unlocked or destroyed. If some other thread already holds a lock, the thread that tried
to acquire the lock will wait until another thread unlocks the lock. All the locking/unlocking
operations imply specific instructions so that the changes made in a critical section will be
visible to all threads. Also, you no longer need to make sure that modified values of resources
are visible to all cores and are not just modified in the processor's register and force the
processor and compiler to not reorder the instructions.

The boost::lock_guard class is a very simple RAII class that stores a reference to the
mutex and calls lock() in the single-parameter constructor and unlock() in the destructor.
Note the curly bracket usage in the preceding example; the lock variable is constructed
inside them so that, on reaching the critical section closing bracket, the destructor
for the lock variable will be called and the mutex will be unlocked. Even if some exception
occurs in the critical section, the mutex will be correctly unlocked.

lock()

++shared_i

unlock()

--shared_i

waits

lock()

unlock()

If you have some resources that are used from different threads,
usually all the code that uses them must be treated as a critical
section and secured by a mutex.

Multithreading

130

There's more...
Locking a mutex is potentially a very slow operation, which may stop your code for a long time,
until some other thread releases a lock. Try to make critical sections as small as possible and
try to have less of them in your code.

Let's take a look at how some operating systems (OS) handle locking on a multicore CPU.
When thread #1, running on CPU1, tries to lock a mutex that is already locked by another
thread, thread #1 is stopped by the OS till the lock is released. The stopped thread does
not eat processor resources, so the OS will still execute other threads on CPU1. Now we have
some threads running on CPU1; some other thread releases the lock, and now the OS has to
resume execution of a thread #1. So it will resume its execution on a currently free CPU, for
example, CPU2. This will result in CPU cache misses, and code will be running slightly slower
after the mutex is released. This is another reason to reduce the number of critical sections.
However, things are not so bad because a good OS will try to resume the thread on the same
CPU that it was using before.

Do not attempt to lock a boost::mutex variable twice in the same thread; it will lead
to a deadlock. If locking a mutex multiple times from a single thread is required, use
boost::recursive_mutex instead of the <boost/thread/recursive_mutex.hpp>
header. Locking it multiple times won't lead to a deadlock. The boost::recursive_mutex
will release the lock only after unlock() is called once for each lock() call. Avoid using
boost::recursive_mutex; it is slower than boost::mutex and usually indicates bad
code flow design.

The boost::mutex, boost::recursive_mutex, and boost::lock_guard classes were
accepted to the C++11 standard, and you may find them in the <mutex> header in the std::
namespace. No big difference between Boost and STL versions exists; a Boost version may
have some extensions (which are marked in the official documentation as EXTENSION) and
provide better portability because they can be used even on C++03 compilers.

See also
 f The next recipe will give you some ideas on how to make this example much faster

(and shorter).

 f Read the first recipe from this chapter to get more information about the
boost::thread class. The official documentation for Boost.Thread may help you
too; it can be found at http://www.boost.org/doc/libs/1_53_0/doc/html/
thread.html.

 f For more information about why the first example will fail and how multiprocessors
work with common resources, see Memory Barriers: a Hardware View for Software
Hackers at http://www.rdrop.com/users/paulmck/scalability/paper/
whymb.2010.07.23a.pdf.

Chapter 5

131

Fast access to common resource using
atomics

In the previous recipe, we saw how to safely access a common resource from different
threads. But in that recipe, we were doing two system calls (in locking and unlocking the
mutex) just to get the value from an integer:

{ // Critical section begin
 boost::lock_guard<boost::mutex> lock(i_mutex);
 i_snapshot = ++ shared_i;
} // Critical section end

This looks lame! And slow! Can we make the code from the previous recipe better?

Getting ready
Reading the first recipe is all you need to start with this. Or just some basic knowledge
of multithreading.

How to do it...
Let's see how to improve our previous example:

1. We will need different headers:
#include <cassert>
#include <cstddef>

#include <boost/thread/thread.hpp>
#include <boost/atomic.hpp>

2. Changing the type of shared_i is required (as it is no longer needed in the mutex):
boost::atomic<int> shared_i(0);

3. Remove all the boost::lock_guard variables:

void do_inc() {
 for (std::size_t i = 0; i < 30000; ++i) {
 // do some work
 // ...

Multithreading

132

 const int i_snapshot = ++ shared_i;
 // do some work with i_snapshot
 // ...
 }
}

void do_dec() {
 for (std::size_t i = 0; i < 30000; ++i) {
 // do some work
 // ...
 const int i_snapshot = -- shared_i;
 // do some work with i_snapshot
 // ...
 }
}

And that's it! Now it works.

int main() {
 boost::thread t1(&do_inc);
 boost::thread t2(&do_dec);
 t1.join();
 t2.join();
 assert(shared_i == 0);
 std::cout << "shared_i == " << shared_i << std::endl;
}

How it works...
Processors provide specific atomic operations that cannot be interfered with by other
processors or processor cores. These operations appear to occur instantaneously for
a system. Boost.Atomic provides classes that wrap around system-specific atomic
operations and provide a uniform and portable interface to work with them.

In other words, it is safe to use the boost::atomic<> variables from different threads
simultaneously. Each operation on the atomic variable will be seen by the system as a
single transaction. Series of operations on the atomic variables will be treated by the
system as a series of transactions:

-- shared_i; // Transaction #1
// Some other thread may work here with shared_i and change its value
++shared_i; // Transaction #2

Chapter 5

133

result
--shared_i

++shared_i

There's more...
The Boost.Atomic library can work only with POD types; otherwise, its behavior is
undefined. Some platforms/processors do not provide atomic operations for some types, so
Boost.Atomic will emulate atomic behavior using boost::mutex. The atomic type won't
use boost::mutex if the type-specific macro is set to 2:

#include <boost/static_assert.hpp>
BOOST_STATIC_ASSERT(BOOST_ATOMIC_INT_LOCK_FREE == 2);

The boost::atomic<T>::is_lock_free member function depends on runtime, so it is
not good for compile-time checks but may provide a more readable syntax when the runtime
check is enough:

assert(shared_i.is_lock_free());

Atomics work much faster than mutexes. If we compare the execution time of a recipe that
uses mutexes (0:00.08 seconds) and the execution time of the preceding example in this
recipe (0:00.02 seconds), we'll see the difference (tested on 3,00,000 iterations).

The C++11 compilers should have all the atomic classes, typedefs, and macros in the
<atomic> header in the std:: namespace. Compiler-specific implementations of
std::atomic may work faster than the Boost's version, if the compiler correctly supports
the C++11 memory model and atomic operations are not a compiler barrier for it any more.

See also
 f The official documentation may give you many more examples and some theoretical

information on the topic; it can be found at http://www.boost.org/doc/
libs/1_53_0/doc/html/atomic.html

 f For more information about how atomics work, see Memory Barriers: a Hardware
View for Software Hackers at http://www.rdrop.com/users/paulmck/
scalability/paper/whymb.2010.07.23a.pdf

Multithreading

134

Creating a work_queue class
Let's call the functional object that takes no arguments (a task, in short).

typedef boost::function<void()> task_t;

And now, imagine a situation where we have threads that post tasks and threads that execute
posted tasks. We need to design a class that can be safely used by both types of thread. This
class must have methods for getting a task (or blocking and waiting for a task until it is posted
by another thread), checking and getting a task if we have one (returning an empty task if no
tasks remain), and a method to post tasks.

Getting ready
Make sure that you feel comfortable with boost::thread or std::thread and know some
basics of mutexes.

How to do it...
The classes that we are going to implement will be close in functionality to
std::queue<task_t> and will also have thread synchronization. Let's start:

1. We'll need the following headers and members:
#include <deque>
#include <boost/function.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/thread/locks.hpp>
#include <boost/thread/condition_variable.hpp>

class work_queue {
public:
 typedef boost::function<void()> task_type;

private:
 std::deque<task_type> tasks_;
 boost::mutex tasks_mutex_;
 boost::condition_variable cond_;

Chapter 5

135

2. A function for putting a task in the queue will look like this:
public:
 void push_task(const task_type& task) {
 boost::unique_lock<boost::mutex> lock(tasks_mutex_);
 tasks_.push_back(task);
 lock.unlock();
 cond_.notify_one();
 }

3. A non-blocking function for getting a pushed task or an empty task (if no tasks
remain):
 task_type try_pop_task() {
 task_type ret;
 boost::lock_guard<boost::mutex> lock(tasks_mutex_);
 if (!tasks_.empty()) {
 ret = tasks_.front();
 tasks_.pop_front();
 }
 return ret;
 }

4. Blocking function for getting a pushed task or for blocking while the task is pushed
by another thread:

 task_type pop_task() {
 boost::unique_lock<boost::mutex> lock(tasks_mutex_);
 while (tasks_.empty()) {
 cond_.wait(lock);
 }
 task_type ret = tasks_.front();
 tasks_.pop_front();
 return ret;
 }
};

And this is how a work_queue class may be used:

#include <boost/thread/thread.hpp>

work_queue g_queue;

void do_nothing(){}

Multithreading

136

const std::size_t tests_tasks_count = 3000;

void pusher() {
 for (std::size_t i = 0; i < tests_tasks_count; ++i) {
 // Adding task to do nothing
 g_queue.push_task(&do_nothing);
 }
}

void popper_sync() {
 for (std::size_t i = 0; i < tests_tasks_count; ++i) {
 g_queue.pop_task() // Getting task
 (); // Executing task
 }
}

int main() {
 boost::thread pop_sync1(&popper_sync);
 boost::thread pop_sync2(&popper_sync);
 boost::thread pop_sync3(&popper_sync);

 boost::thread push1(&pusher);
 boost::thread push2(&pusher);
 boost::thread push3(&pusher);

 // Waiting for all the tasks to pop
 pop_sync1.join();
 pop_sync2.join();
 pop_sync3.join();

 push1.join();
 push2.join();
 push3.join();

 // Asserting that no tasks remained,
 // and falling though without blocking
 assert(!g_queue.try_pop_task());

 g_queue.push_task(&do_nothing);
 // Asserting that there is a task,
 // and falling though without blocking
 assert(g_queue.try_pop_task());
}

Chapter 5

137

How it works...
In this example, we will see a new RAII class boost::unique_lock. It is just a
boost::lock_guard class with additional functionality; for example, it has methods for
explicit unlocking and locking mutexes.

Going back to our work_queue class, let's start with the pop_task() function. In the
beginning, we are acquiring a lock and checking for available tasks. If there is a task, we
return it; otherwise, cond_.wait(lock) is called. This method will unlock the lock and
pause the execution thread until till some other thread notifies the current thread.

Now, let's take a look at the push_task method. In it we also acquire a lock, push a task
to tasks_.queue, unlock the lock, and call cond_notify_one(), which will wake up the
thread (if any) waiting in cond_wait(lock). So, after that, if some thread was waiting on
a conditional variable in a pop_task() method, the thread will continue its execution, call
lock.lock() deep inside cond_wait(lock), and check tasks_empty() in the while
loop. Because we just added a task in tasks_, we'll get out from the while loop, unlock
the mutex (the lock variable will go out of scope), and return a task.

pop_task()

notify_one()

push_task()

pop_task()

notify_one()

push_task()

notify_one()

push_task()

It is highly recommended that you check conditions in a loop, not just in
an if statement. The if statement will lead to an error if thread #1
pops a task after it is pushed by thread #2 but thread #3 is notified
by thread #2 before it (thread #3) starts waiting.

There's more...
Note that we explicitly unlocked the mutex before calling notify_one(). Without unlocking,
our example would still work.

Multithreading

138

But, in that case, the thread that has woken up may be blocked once more during an attempt
to call lock.lock() deep inside cond_wait(lock), which leads to more context switches
and worse performance.

With tests_tasks_count set to 3000000 and without explicit unlocking, this example runs
for 7 seconds:

$time -f E ./work_queue

0:07.38

With explicit unlocking, this example runs for 5 seconds:

$ time -f E ./work_queue

0:05.39

You may also notify all the threads waiting on a specific conditional variable using cond_
notify_all().

The C++11 standard has std::condition_variable declared in the <condition_
variable> header and std::unique_lock declared in the <mutex> header. Use the
Boost version if you need portable behavior, use C++03 compiler, or just use some of the
Boost's extensions.

See also
 f The first three recipes in this chapter provide a lot of useful information about

Boost.Thread

 f The official documentation may give you many more examples and some theoretical
information on the topic; it can be found at http://www.boost.org/doc/
libs/1_53_0/doc/html/thread.html

Multiple-readers-single-writer lock
Imagine that we are developing some online services. We have a map of registered users
with some properties for each user. This set is accessed by many threads, but it is very rarely
modified. All operations with the following set are done in a thread-safe manner:

#include <map>
#include <boost/thread/mutex.hpp>
#include <boost/thread/locks.hpp>

Chapter 5

139

struct user_info {
 std::string address;
 unsigned short age;

 // Other parameters
 // ...
};

class users_online {
 typedef boost::mutex mutex_t;
 mutable mutex_t users_mutex_;
 std::map<std::string, user_info> users_;

public:
 bool is_online(const std::string& username) const {
 boost::lock_guard<mutex_t> lock(mutex_);
 return users_.find(username) != users_.end();
 }

 unsigned short get_age(const std::string& username) const {
 boost::lock_guard<mutex_t> lock(mutex_);
 return users_.at(username).age;
 }

 void set_online(const std::string& username, const user_info& data)
 {
 boost::lock_guard<mutex_t> lock(mutex_);
 users_.insert(std::make_pair(username, data));
 }

 // Other methods
 // ...
};

But any operation will acquire a unique lock on the mutex_ variable, so even getting
resources will result in waiting on a locked mutex; therefore, this class will become a
bottleneck very soon.

Can we fix it?

Multithreading

140

How to do it...
Replace boost::unique_locks with boost::shared_lock for methods that do not
modify data:

#include <boost/thread/shared_mutex.hpp>

class users_online {
 typedef boost::shared_mutex mutex_t;
 mutable mutex_t users_mutex_;
 std::map<std::string, user_info> users_;

public:
 bool is_online(const std::string& username) const {
 boost::shared_lock<mutex_t> lock(users_mutex_);
 return users_.find(username) != users_.end();
 }

 unsigned short get_age(const std::string& username) const {
 boost::shared_lock<mutex_t> lock(users_mutex_);
 return users_.at(username).age;
 }

 void set_online(const std::string& username, const user_info& data)
 {
 boost::lock_guard<mutex_t> lock(users_mutex_);
 users_.insert(std::make_pair(username, data));
 }

 // Other methods
 // ...
};

How it works...
We can allow getting the data from multiple threads simultaneously if those threads do not
modify it. We need to uniquely own the mutex only if we are going to modify the data in it; in
all other situations simultaneous access to it is allowed. And that is what boost::shared_
mutex was designed for. It allows shared locking (read locking), which allows multiple
simultaneous access to resources.

When we do try to unique lock a resource that is shared locked, operations will be blocked
until there are no read locks remaining and only after that resource is unique locked, forcing
new shared locks to wait until the unique lock is released.

Chapter 5

141

Some readers may be seeing the mutable keyword for the first time. This keyword can be
applied to non-static and non-constant class members. The mutable data member can be
modified in the constant member functions.

There's more...
When you do need only unique locks, do not use boost::shared_mutex because it is
slightly slower than a usual boost::mutex class. However, in other cases, it may give a big
performance gain. For example, with four reading threads, shared mutex will work almost four
times faster than boost::mutex.
Unfortunately, shared mutexes are not the part of the C++11 standard.

See also
 f There is also a boost::upgrade_mutex class, which may be useful for cases

when a shared lock needs promotion to unique lock. See the Boost.Thread
documentation at http://www.boost.org/doc/libs/1_53_0/doc/html/
thread.html for more information.

 f For more information about the mutable keyword see http://herbsutter.
com/2013/01/01/video-you-dont-know-const-and-mutable/.

Creating variables that are unique per
thread

Let's take a glance at the recipe Creating a work_queue class. Each task there can be
executed in one of many threads and we do not know which one. Imagine that we want to
send the results of an executed task using some connection.

#include <boost/noncopyable.hpp>

class connection: boost::noncopyable {
public:
 // Opening a connection is a slow operation
 void open();

 void send_result(int result);

 // Other methods
 // ...
};

Multithreading

142

We have the following solutions:

 f Open a new connection when we need to send the data (which is slow)

 f Have a single connection for all the threads and wrap them in mutex
(which is also slow)

 f Have a pool of connections, get a connection from it in a thread-safe manner
and use it (a lot of coding is required, but this solution is fast)

 f Have a single connection per thread (fast and simple to implement)

So, how can we implement the last solution?

Getting ready
Basic knowledge of threads is required.

How to do it...
It is time to make a thread local variable:

// In header file
#include <boost/thread/tss.hpp>

connection& get_connection();

// In source file
boost::thread_specific_ptr<connection> connection_ptr;

connection& get_connection() {
 connection* p = connection_ptr.get();
 if (!p) {
 connection_ptr.reset(new connection);
 p = connection_ptr.get();
 p->open();
 }
 return *p;
}

Using a thread-specific resource was never so easy:

void task() {
 int result;
 // Some computations go there
 // ...

 // Sending result
 get_connection().send_result(result);
}

Chapter 5

143

How it works...
The boost::thread_specific_ptr variable holds a separate pointer for each thread.
Initially, this pointer is equal to NULL; that is why we check for !p and open a connection
if it is NULL.

So, when we enter get_connection() from the thread that has already initiated the
pointer, !p will return the value false and we'll return the already opened connection.
delete for the pointer will be called when the thread is exiting, so we do not need to worry
about memory leaks.

There's more...
You may provide your own cleanup function that will be called instead of delete at thread
exit. A cleanup function must have the void (*cleanup_function)(T*) signature and
will be passed during the boost::thread_specific_ptr construction.

C++11 has a special keyword, thread_local, to declare variables with thread local storage
duration. C++11 has no thread_specific_ptr class, but you may use thread_local
boost::scoped_ptr<T> or thread_local std::unique_ptr<T> to achieve the same
behavior on compilers that support thread_local.

See also
 f The Boost.Thread documentation gives a lot of good examples on different cases;

it can be found at http://www.boost.org/doc/libs/1_53_0/doc/html/
thread.html

 f Reading this topic at http://stackoverflow.com/questions/13106049/
c11-gcc-4-8-thread-local-performance-penalty.html and about the
GCC__thread keyword at http://gcc.gnu.org/onlinedocs/gcc-3.3.1/
gcc/Thread-Local.html may give you some ideas about how thread_local
is implemented in compilers and how fast it is

Multithreading

144

Interrupting a thread
Sometimes, we need to kill a thread that ate too many resources or that is just executing for
too long. For example, some parser works in a thread (and actively uses Boost.Thread),
but we already have the required amount of data from it, so parsing can be stopped. All we
have is:

boost::thread parser_thread(&do_parse);
 // Some code goes here
 // ...
 if (stop_parsing) {
 // no more parsing required
 // TODO: stop parser
 }

How can we do it?

Getting ready
Almost nothing is required for this recipe. You only need to have at least basic knowledge
of threads.

How to do it...
We can stop a thread by interrupting it:

if (stop_parsing) {
 // no more parsing required
 parser_thread.interrupt();
}

How it works...
Boost.Thread provides some predefined interruption points in which the thread is checked
for being interrupted via the interrupt() call. If the thread was interrupted, the exception
boost::thread_interrupted is thrown.

boost::thread_interrupted is not derived from std::exception!

Chapter 5

145

There's more...
As we know from the first recipe, if a function passed into a thread won't catch an
exception and the exception will leave function bounds, the application will terminate.
boost::thread_interrupted is the only exception to that rule; it may leave function
bounds and does not std::terminate() application; instead, it stops the execution thread.

We may also add interruption points at any point. All we need is to call boost::this_
thread::interruption_point():

void do_parse() {
 while (not_end_of_parsing) {
 boost::this_thread::interruption_point();
 // Some parsing goes here
 }
}

If interruptions are not required for a project, defining BOOST_THREAD_DONT_PROVIDE_
INTERRUPTIONS gives a small performance boost and totally disables thread interruptions.

C++11 has no thread interruptions but you can partially emulate them using atomic
operations:

 f Create an atomic Boolean variable

 f Check the atomic variable in the thread and throw some exception if it has changed

 f Do not forget to catch that exception in the function passed to the thread (otherwise
your application will terminate)

However, this won't help you if the code is waiting somewhere in a conditional variable or in a
sleep method.

See also
 f The official documentation for Boost.Thread provides a list of predefined

interruption points at http://www.boost.org/doc/libs/1_53_0/doc/
html/thread/thread_management.html#thread.thread_management.
tutorial.interruption.html

 f As an exercise, see the other recipes from this chapter and think of where additional
interruption points would improve the code

 f Reading other parts of the Boost.Thread documentation may be useful; go
to http://www.boost.org/doc/libs/1_53_0/doc/html/thread.html

Multithreading

146

Manipulating a group of threads
Those readers who were trying to repeat all the examples by themselves or those who were
experimenting with threads must already be bored with writing the following code to launch
threads:

boost::thread t1(&some_function);
boost::thread t2(&some_function);
boost::thread t3(&some_function);
// ...
t1.join();
t2.join();
t3.join();

Maybe there is a better way to do this?

Getting ready
Basic knowledge of threads will be more than enough for this recipe.

How to do it...
We may manipulate a group of threads using the boost::thread_group class.

1. Construct a boost::thread_group variable:
boost::thread_group threads;

2. Create threads into the preceding variable:
// Launching 10 threads
for (unsigned i = 0; i < 10; ++i) {
 threads.create_thread(&some_function);
}

3. Now you may call functions for all the threads inside boost::thread_group:

// Joining all threads
threads.join_all();

// We can also interrupt all of them
// by calling threads.interrupt_all();

Chapter 5

147

How it works...
The boost::thread_group variable just holds all the threads constructed or moved to
it and may send some calls to all the threads.

There's more...
C++11 has no thread_group class; it's Boost specific.

See also
 f The official documentation of Boost.Thread may surprise you with a lot of other

useful classes that were not described in this chapter; go to http://www.boost.
org/doc/libs/1_53_0/doc/html/thread.html

6
Manipulating Tasks

In this chapter we will cover:

 f Registering a task for processing an arbitrary datatype

 f Making timers and processing timer events as tasks

 f Network communication as a task

 f Accepting incoming connections

 f Executing different tasks in parallel

 f Conveyor tasks processing

 f Making a nonblocking barrier

 f Storing an exception and making a task from it

 f Getting and processing system signals as tasks

Introduction
This chapter is all about tasks. We'll be calling the functional object a task (because it is
shorter and better reflects what it shall do). The main idea of this chapter is that we can split
all the processing, computations, and interactions into functors (tasks) and process each
of those tasks almost independently. Moreover, we may not block on some slow operations
(such as receiving data from a socket or waiting for a time-out), but instead provide a callback
task and continue working with other tasks. Once the OS finishes the slow operation,
our callback will be executed.

Before you start
This chapter requires at least a basic knowledge of the first, third, and fifth chapters.

Manipulating Tasks

150

Registering a task for processing an
arbitrary datatype

First of all, let's take care of the class that will hold all the tasks and provide methods for their
execution. We were already doing something like this in the Creating a work_queue class
recipe, but some of the following problems were not addressed:

 f A task may throw an exception that leads a call to std::terminate

 f An interrupted thread may not notice interruption but will finish its task and interrupt
only during the next task (which is not what we wanted; we wanted to interrupt the
previous task)

 f Our work_queue class was only storing and returning tasks, but we need to add
methods for executing existing tasks

 f We need a way to stop processing the tasks

Getting ready
This recipe requires linking with the libboost_system library. Knowledge of Boost.Bind
and basic knowledge of Boost.Thread is also required.

How to do it...
We'll be using boost::io_service instead of work_queue from the previous chapter.
There is a reason for doing this, and we'll see it in the following recipes.

1. Let's start with the structure that wraps around a user task:
#include <boost/thread/thread.hpp>

namespace detail {

 template <class T>
 struct task_wrapped {
 private:
 T task_unwrapped_;

 public:
 explicit task_wrapped(const T& task_unwrapped)
 : task_unwrapped_(task_unwrapped)
 {}

 void operator()() const {
 // resetting interruption

Chapter 6

151

 try {
 boost::this_thread::interruption_point();
 } catch(const boost::thread_interrupted&){}

 try {
 // Executing task
 task_unwrapped_();
 } catch (const std::exception& e) {
 std::cerr<< "Exception: " << e.what() << '\n';
 } catch (const boost::thread_interrupted&) {
 std::cerr<< "Thread interrupted\n";
 } catch (...) {
 std::cerr<< "Unknown exception\n";
 }
 }
 };

2. For ease of use, we'll create a function that produces task_wrapped from the
user's functor:
 template <class T>
 task_wrapped<T> make_task_wrapped(const T& task_unwrapped)
 {
 return task_wrapped<T>(task_unwrapped);
 }

} // namespace detail

3. Now we are ready to write the tasks_processor class:
#include <boost/asio/io_service.hpp>
class tasks_processor: private boost::noncopyable {
 boost::asio::io_service ios_;
 boost::asio::io_service::work work_;
 tasks_processor()
 : ios_()
 , work_(ios_)
 {}
public:
 static tasks_processor& get();

4. Now we will add the push_task method:
 template <class T>
 inline void push_task(const T& task_unwrapped) {
 ios_.post(detail::make_task_wrapped(task_unwrapped));
 }

Manipulating Tasks

152

5. Let's finish this class by adding the member functions for starting and stopping
a task's execution loop:

 void start() {
 ios_.run();
 }
 void stop() {
 ios_.stop();
 }
}; // tasks_processor

It is time to test our class. For that, we'll create a testing function:
int g_val = 0;
void func_test() {
 ++ g_val;
 if (g_val == 3) {
 throw std::logic_error("Just checking");
 }

 boost::this_thread::interruption_point();
 if (g_val == 10) {
 // Emulation of thread interruption.
 // Will be caught and won't stop execution.
 throw boost::thread_interrupted();
 }
 if (g_val == 90) {
 tasks_processor::get().stop();
 }
}

The main function might look like this:

int main () {
 static const std::size_t tasks_count = 100;
 // stop() is called at 90
 BOOST_STATIC_ASSERT(tasks_count > 90);
 for (std::size_t i =0; i < tasks_count; ++i) {
 tasks_processor::get().push_task(&func_test);
 }

 // We can also use result of boost::bind call
 // as a task
 tasks_processor::get().push_task(
 boost::bind(std::plus<int>(), 2, 2) // counting 2 + 2
);

Chapter 6

153

 // Processing was not started.
 assert(g_val == 0);

 // Will not throw, but blocks till
 // one of the tasks it is owning
 // calls stop().
 tasks_processor::get().start();
 assert(g_val== 90);
}

How it works...
The boost::io_service variable can store and execute tasks posted to it. But we may not
post a user's tasks to it directly because they may throw or receive an interruption addressed
to other tasks. That is why we wrap a user's task in the detail::task_wrapped structure.
It resets all the previous interruptions by calling:

 try {
 boost::this_thread::interruption_point();
 } catch(const boost::thread_interrupted&){}

And this executes the task within the try{}catch() block making sure that no exception
will leave the operator() bounds.

The boost::io_service::run() method will be getting ready tasks from the
queue and executing them one by one. This loop is stopped via a call to boost::io_
service::stop(). The boost::io_service class will return from the run() function
if there are no more tasks left, so we force it to continue execution using an instance of
boost::asio::io_service::work.

The iostream classes and variables such as std::cerr and std::cout
are not thread safe. In real projects, additional synchronization must be
used to get readable output. For simplicity, we do not do that here.

There's more...
The C++11 STL library has no io_service; however, it (and a large part of the Boost.Asio
library) is proposed as a Technical Report (TR) as an addition to C++.

See also
 f The following recipes will show you why we chose boost::io_service instead

of our handwritten code

Manipulating Tasks

154

 f You may consider the Boost.Asio documentation to get some examples, tutorials,
and class references at http://www.boost.org/doc/libs/1_53_0/doc/
html/boost_asio.html

 f You may also read the Boost.Asio C++ Network Programming book, which gives a
smoother introduction to Boost.Asio and covers some details that are not covered
in this book

Making timers and processing timer events
as tasks

It is a common task to check something at specified intervals; for example, we need to check
some session for an activity once every 5 seconds. There are two popular solutions to such
a problem: creating a thread or sleeping for 5 seconds. This is a very lame solution that
consumes a lot of system resources and scales badly. We could instead use system specific
APIs for manipulating timers asynchronously. This is a better solution, but it requires a lot of
work and is not very portable (until you write many wrappers for different platforms). It also
makes you work with OS APIs that are not always very nice.

Getting ready
You must know how to use Boost.Bind and Boost.SmartPtr. See the first recipe of
this chapter to get information about the boost::asio::io_service and task_queue
classes. Link this recipe with the libboost_system library.

This recipe is a tricky one, so get ready!

How to do it...
This recipe is based on the code from the previous recipe. We just modify the tasks_
processor class by adding new methods to run a task at some specified time.

1. Let's add a method to our tasks_processor class for running a task at some time:
 typedef boost::asio::deadline_timer::time_type time_type;

 template <class Functor>
 void run_at(time_type time, const Functor& f) {
 detail::make_timer_task(ios_, time, f)
 .push_task();
 }

Chapter 6

155

2. We add a method to our task_queue class for running a task after the required time
duration passes:
 typedef boost::asio::deadline_timer::duration_type
 duration_type;

 template <class Functor>
 void run_after(duration_type duration, const Functor& f) {
 detail::make_timer_task(ios_, duration, f)
 .push_task();
 }

3. It's time to take care of the detail::make_timer_task function:
namespace detail {
 template <class Time, class Functor>
 inline timer_task<Functor> make_timer_task(
 boost::asio::io_service& ios,
 const Time& duration_or_time,
 const Functor& task_unwrapped)
 {
 return timer_task<Functor>(ios, duration_or_time,
 task_unwrapped);
 }
}

4. And the final step will be writing a timer_task structure:

#include <boost/asio/io_service.hpp>
#include <boost/asio/deadline_timer.hpp>
#include <boost/system/error_code.hpp>
#include <boost/make_shared.hpp>
#include <iostream>

namespace detail {

 typedef boost::asio::deadline_timer::duration_type
 duration_type;

 template <class Functor>
 struct timer_task: public task_wrapped<Functor> {
 private:
 typedef task_wrapped<Functor> base_t;
 boost::shared_ptr<boost::asio::deadline_timer> timer_;

 public:
 template <class Time>
 explicit timer_task(
 boost::asio::io_service& ios,
 const Time& duration_or_time,
 const Functor& task_unwrapped)

Manipulating Tasks

156

 : base_t(task_unwrapped)
 , timer_(boost::make_shared<boost::asio::deadline_timer>(
 boost::ref(ios), duration_or_time
))
 {}

 void push_task() const {
 timer_->async_wait(*this);
 }

 void operator()(const boost::system::error_code& error) const
 {
 if (!error) {
 base_t::operator()();
 } else {
 std::cerr << error << '\n';
 }
 }
 };
} // namespace detail

How it works...
That's how it all works; the user provides a timeout and a functor to the run_after
function. In it, a detail::timer_task object is constructed that stores a user provided
functor and creates a shared pointer to boost::asio::deadline_timer. The
constructed detail::timer_task object is pushed as a functor that must be called
when the timer is triggered. The detail::timer_task::operator() method accepts
boost::system::error_code, which will contain the description of any error that
occurred while waiting. If no error is occurred, we call the user's functor that is wrapped to
catch exceptions (we re-use the detail::task_wrapped structure from the first recipe).
The following diagram illustrates this:

run_at(...,functor)

S
om

e
ot

he
r

w
or

k
w

ill
 b

e
do

ne
 h

er
e

functor()

tim
e

pa
ss

ed

Chapter 6

157

Note that we wrapped boost::asio::deadline_timer in boost::shared_ptr and
passed the whole timer_task functor (including shared_ptr) in timer_->async_
wait(*this). This is done because boost::asio::deadline_timer must not
be destroyed until it is triggered, and storing the timer_task functor in io_service
guarantees this.

In short, when a specified amount of time has passed,
boost::asio::deadline_timer will push the user's task to
the boost::asio::io_service queue class for execution.

There's more...
Some platforms have no APIs to implement timers in a good way, so the Boost.Asio library
emulates the behavior of the asynchronous timer using an additional execution thread per
io_service. Anyways, Boost.Asio is one of the most portable and effective libraries to
deal with timers.

See also
 f Reading the first recipe from this chapter will teach you the basics of

boost::asio::io_service. The following recipes will provide you with more
examples of io_service usage and will show you how to deal with network
communications, signals, and other features using Boost.Asio.

 f You may consider the Boost.Asio documentation to get some examples, tutorials,
and class references at http://www.boost.org/doc/libs/1_53_0/doc/
html/boost_asio.html.

Network communication as a task
Receiving or sending data by network is a slow operation. While packets are received by the
machine, and while the OS verifies them and copies the data to the user-specified buffer,
multiple seconds may pass. And we may be able to do a lot of work instead of waiting. Let's
modify our tasks_processor class so that it will be capable of sending and receiving
data in an asynchronous manner. In nontechnical terms, we ask it to "receive at least N
bytes from the remote host and after that is done, call our functor. And by the way, do not
block on this call". Those readers who know about libev, libevent, or Node.js will find
a lot of familiar things in this recipe.

Manipulating Tasks

158

Getting ready
The previous and first recipes from this chapter are required to adopt this material more
easily. Knowledge of boost::bind, boost::shared_ptr, and placeholders are required
to get through it. Also, information on linking this recipe with the libboost_system library
is required.

How to do it...
Let's extend the code from the previous recipe by adding methods to create connections.
A connection would be represented by a tcp_connection_ptr class, which must be
constructed using only tasks_processor (As an analogy, tasks_processor is a factory
for constructing such connections).

1. We need a method in tasks_processor to create sockets to endpoints (we will be
calling them connections):
tcp_connection_ptr create_connection(const char* addr,
 unsigned short port_num)
{
 return tcp_connection_ptr(
 ios_,
 boost::asio::ip::tcp::endpoint(
 boost::asio::ip::address_v4::from_string(addr), port_num
)
);
}

2. We'll need a lot of header files included as follows:
#include <boost/asio/ip/tcp.hpp>
#include <boost/asio/placeholders.hpp>
#include <boost/asio/write.hpp>
#include <boost/asio/read.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/function.hpp>
#include <boost/enable_shared_from_this.hpp>

3. The class tcp_connection_ptr is required to manage connections. It owns the
socket and manages its lifetime. It's just a thin wrapper around boost::shared_pt
r<boost::asio::ip::tcp::socket> that hides Boost.Asio from the user.
class tcp_connection_ptr {
 boost::shared_ptr<boost::asio::ip::tcp::socket> socket_;

public:
 explicit tcp_connection_ptr(
 boost::shared_ptr<boost::asio::ip::tcp::socket> socket)
 : socket_(socket)
 {}

Chapter 6

159

 explicit tcp_connection_ptr(
 boost::asio::io_service& ios,
 const boost::asio::ip::tcp::endpoint& endpoint)
 : socket_(boost::make_shared<boost::asio::ip::tcp::socket>(
 boost::ref(ios)
))
 {
 socket_->connect(endpoint);
 }

4. The tcp_connection_ptr class will need methods for reading data:
 template <class Functor>
 void async_read(
 const boost::asio::mutable_buffers_1& buf,
 const Functor& f,
 std::size_t at_least_bytes) const
 {
 boost::asio::async_read(
 *socket_, buf, boost::asio::transfer_at_least(
 at_least_bytes
), f
);
 }

5. Methods for writing data are also required:
 template <class Functor>
 void async_write(
 const boost::asio::const_buffers_1& buf,
 const Functor& f) const
 {
 boost::asio::async_write(*socket_, buf, f);
 }

 template <class Functor>
 void async_write(
 const boost::asio::mutable_buffers_1& buf,
 const Functor& f) const
 {
 boost::asio::async_write(*socket_, buf, f);
 }

6. We will also add a method to shutdown the connection:
 void shutdown() const {
 socket_->shutdown(boost::asio::ip::tcp::socket::shutdown_both);
 socket_->close();
 }
};

Manipulating Tasks

160

Now the library user can use the preceding class like this to send the data:
const unsigned short g_port_num = 65001;

void send_auth_task() {
 tcp_connection_ptr soc = tasks_processor::get()
 .create_connection("127.0.0.1", g_port_num);

 boost::shared_ptr<std::string> data
 = boost::make_shared<std::string>("auth_name");

 soc.async_write(
 boost::asio::buffer(*data),
 boost::bind(
 &recieve_auth_task,
 boost::asio::placeholders::error,
 soc,
 data
)
);
}

Users may also use it like this to receive data:
void recieve_auth_task(
 const boost::system::error_code& err,
 const tcp_connection_ptr& soc,
 const boost::shared_ptr<std::string>& data)
{
 if (err) {
 std::cerr << "recieve_auth_task: Client error on recieve: "
 << err.message() << '\n';
 assert(false);
 }

 soc.async_read(
 boost::asio::buffer(&(*data)[0], data->size()),
 boost::bind(
 &finsh_socket_auth_task,
 boost::asio::placeholders::error,
 boost::asio::placeholders::bytes_transferred,
 soc,
 data
),
 1
);
}

Chapter 6

161

And this is how a library user may handle the received data:

bool g_authed = false;

void finsh_socket_auth_task(
 const boost::system::error_code& err,
 std::size_t bytes_transfered,
 const tcp_connection_ptr& soc,
 const boost::shared_ptr<std::string>& data)
{
 if (err && err != boost::asio::error::eof) {
 std::cerr << "finsh_socket_auth_task: Client error "
 << "on recieve: " << err.message() << '\n';
 assert(false);
 }

 if (bytes_transfered != 2) {
 std::cerr << "finsh_socket_auth_task: wrong bytes count\n";
 assert(false);
 }

 data->resize(bytes_transfered);
 if (*data != "OK") {
 std::cerr << "finsh_socket_auth_task: wrong response: "
 << *data << '\n';
 assert(false);
 }

 g_authed = true;
 soc.shutdown();
 tasks_processor::get().stop();
}

How it works...
All the interesting things happen in the async_* function's call. Just as in the case of
timers, asynchronous calls return immediately without executing a function. They only tell
the boost::asio::io_service class to execute the callback task after some operation
(for example, reading data from the socket) finishes. io_service will execute our function
in one of the threads that called the io_service::run() method.

Manipulating Tasks

162

The following diagram illustrates this:

async_write (...,functor1)

functor1()

async_read (...,functor2)

functor2()

data received

data sent

some other work will be
done here

*

*

*

Now, let's examine this step-by-step.

The tcp_connection_ptr class holds a shared pointer to
boost::asio::ip::tcp::socket, which is a Boost.Asio wrapper around native
sockets. We do not want to give a user the ability to use this wrapper directly because it
has synchronous methods whose usage we are trying to avoid.

The first constructor accepts a pointer to the socket (and will be used in our next recipe).
This constructor won't be used by the user because the boost::asio::ip::tcp::socket
constructor requires a reference to boost::asio::io_service, which is hidden inside
tasks_processor.

Of course, some users of our library could be smart enough to create an
instance of boost::asio::io_service, initialize sockets, and push
tasks to that instance. Moving the Boost.Asio library's contents into
the source file and implementing the Pimpl idiom will help you to protect
users from shooting their own feet, but we won't implement it here for
simplicity. Another way to do things is to declare the tasks_processor
class as a friend to tcp_connection_ptr and make the tcp_
connection_ptr constructors private.

Chapter 6

163

The second constructor accepts a remote endpoint and a reference to io_service.
There you may see how the socket is connected to an endpoint using the socket_-
>connect(endpoint) method. Also, this constructor should not be used by the user;
the user should use tasks_processor::create_connection instead.

Special care should be taken while using the async_write and async_read functions.
Socket and buffer must not be destructed until the asynchronous operation is completed; that
is why we bind shared_ptr to the functional object when calling the async_* functions:

tcp_connection_ptr soc = tasks_processor::get()
 .create_connection("127.0.0.1", g_port_num);

boost::shared_ptr<std::string> data
 = boost::make_shared<std::string>("auth_name");

soc.async_write(
 boost::asio::buffer(*data),
 boost::bind(
 &recieve_auth_task,
 boost::asio::placeholders::error,
 soc,
 data
)
);

Binding the shared pointer to the functional object, which will be called at the end of the
asynchronous operation, guarantees that at least one instance of boost::shared_ptr to
the connection and data exists. This means that both connection and data won't be destroyed
until the functional object destructor is called.

Boost.Asio may copy functors and that is why we used a
boost::shared_ptr<std::string> class instead of
passing the std::string class by value (which would invalidate
boost::asio::buffer(*data) and lead to a segmentation fault).

There's more...
Take a closer look at the finsh_socket_auth_task function. It checks for err !=
boost::asio::error::eof. This is done because the end of a data input is treated
as an error; however, this may also mean that the end host closed the socket, which is
not always bad (in our example, we treat it as a nonerror behavior).

Boost.Asio is not a part of C++11, but it is proposed for inclusion in C++, and we may
see it (or at least some parts of it) included in the next TR.

Manipulating Tasks

164

See also
 f See the official documentation to Boost.Asio for more examples, tutorials, and

full references at http://www.boost.org/doc/libs/1_53_0/doc/html/
boost_asio.html, as well as an example of how to use the UDP and ICMP
protocols. For readers familiar with the BSD socket API, the http://www.boost.
org/doc/libs/1_53_0/doc/html/boost_asio/overview/networking/
bsd_sockets.html page provides information about what a BSD call looks like
in Boost.Asio.

 f Read the Recording the parameters of function and Binding a value as a function
parameter recipes from Chapter 1, Starting to Write Your Application, for more
information about Boost.Bind. The Reference counting of pointers to classes used
across methods recipe from Chapter 3, Managing Resources, will give you more
information about what the boost::shared_ptr class does.

 f You may also read the book Boost.Asio C++ Network Programming, Packt Publishing,
which describes Boost.Asio in more detail.

Accepting incoming connections
A server side working with a network usually looks like a sequence where we first get
data, then process it, and then send the result. Imagine that we are creating some kind of
authorization server that will process a huge number of requests per second. In that case,
we will need to receive and send data asynchronously and process tasks in multiple threads.

In this recipe, we'll see how to extend our tasks_processor class to accept and process
incoming connections, and in the next recipe, we'll see how to make it multithreaded.

Getting ready
This recipe requires a good knowledge of boost::asio::io_service basics as described
in the first and third recipes of this chapter. Some knowledge of network communications will
be of help to you. Knowledge of boost::bind, boost::function, boost::shared_
ptr, and information from at least the two previous recipes is also required. Don't forget to
link this example with libboost_system.

How to do it...
Just as in the previous recipes, we'll be adding new methods to our tasks_processor class.

1. First of all, we need to add a function that starts listening on a specified port:
 template <class Functor>
 void add_listener(unsigned short port_num, const Functor& f) {
 listeners_map_t::const_iterator it = listeners_.find(port_num);

Chapter 6

165

 if (it != listeners_.end()) {
 throw std::logic_error(
 "Such listener for port '"
 + boost::lexical_cast<std::string>(port_num)
 + "' already created"
);
 }

 listeners_[port_num]
 = boost::make_shared<detail::tcp_listener>(
 boost::ref(ios_), port_num, f
);
 listeners_[port_num]->push_task(); // Start accepting
 }

2. We will also add a std::map variable that holds all the listeners:
 typedef std::map<
 unsigned short,
 boost::shared_ptr<detail::tcp_listener>
 > listeners_map_t;

 listeners_map_t listeners_;

3. And a function to stop the listener:
 void remove_listener(unsigned short port_num) {
 listeners_map_t::iterator it = listeners_.find(port_num);
 if (it == listeners_.end()) {
 throw std::logic_error(
 "No listener for port '"
 + boost::lexical_cast<std::string>(port_num)
 + "' created"
);
 }

 (*it).second->stop();
 listeners_.erase(it);
 }

4. Now we need to take care of the detail::tcp_listener class itself. It must have
an acceptor:
namespace detail {
 class tcp_listener
 : public boost::enable_shared_from_this<tcp_listener>
 {
 typedef boost::asio::ip::tcp::acceptor acceptor_t;
 acceptor_t acceptor_;

Manipulating Tasks

166

5. And a function that will be called on a successful accept:
 boost::function<void(tcp_connection_ptr)> func_;
 public:
 template <class Functor>
 tcp_listener(
 boost::asio::io_service& io_service,
 unsigned short port,
 const Functor& task_unwrapped)
 : acceptor_(io_service,boost::asio::ip::tcp::endpoint(
 boost::asio::ip::tcp::v4(), port
))
 , func_(task_unwrapped)
 {}

6. This is what a function for starting an accept will look like:
 void push_task() {
 if (!acceptor_.is_open()) {
 return;
 }

 typedef boost::asio::ip::tcp::socket socket_t;
 boost::shared_ptr<socket_t> socket
 = boost::make_shared<socket_t>(
 boost::ref(acceptor_.get_io_service())
);

 acceptor_.async_accept(*socket, boost::bind(
 &tcp_listener::handle_accept,
 this->shared_from_this(),
 tcp_connection_ptr(socket),
 boost::asio::placeholders::error
));
 }

7. A function to stop accepting is written like this:
 void stop() {
 acceptor_.close();
 }

8. And that is our wrapper function that will be called on a successful accept:
 private:
 void handle_accept(
 const tcp_connection_ptr& new_connection,
 const boost::system::error_code& error)

Chapter 6

167

 {
 push_task();

 if (!error) {
 make_task_wrapped(boost::bind(func_, new_connection))
 (); // Run the task
 } else {
 std::cerr << error << '\n';
 }
 }
 }; // class tcp_listener
} // namespace detail

How it works...
The function add_listener just checks that we have no listeners on the specified port
already, constructs a new detail::tcp_listener, and adds it to the listeners_ list.

When we construct boost::asio::ip::tcp::acceptor specifying the endpoint (see step
5), it opens a socket at the specified address.

Calling async_accept(socket, handler) for boost::asio::ip::tcp::acceptor
makes a call to our handler when the incoming connection is accepted. When a new connection
comes in, acceptor_ binds this connection to a socket and pushes the ready task to execute
the handler in task_queue (in boost::asio::io_service). As we understood from the
previous recipe, all the async_* calls return immediately and async_accept is not a special
case, so it won't call the handler directly. Let's take a closer look at our handler:

 boost::bind(
 &tcp_listener::handle_accept,
 this->shared_from_this(),
 tcp_connection_ptr(socket),
 boost::asio::placeholders::error
)

We need an instance of the current class to be alive when an accepting operation occurs, so
we provide a boost::shared_ptr variable as a second parameter for boost::bind (we
do it via this->shared_from_this() call). We also need to keep the socket alive, so we
provide it as a third parameter. The last parameter is a placeholder (such as _1 and _2 for
boost::bind) that says where the async_accept function should put the error variable
into your method.

Now let's take a closer look at our handle_accept method. Calling the push_task()
method is required to restart accepting our acceptor_. After that, we will check for errors
and if there are no errors, we will bind the user-provided handler to tcp_connection_ptr,
make an instance of task_wrapped from it (required for correctly handling exceptions and
interruption points), and execute it.

Manipulating Tasks

168

Now let's take a look at the remove_listener() method. On call, it will find a listener in the
list and call stop() for it. Inside stop(), we will call close() for an acceptor, return to the
remove_listener method, and erase the shared pointer to tcp_listener from the map
of listeners. After that, shared pointers to tcp_listener remain only in one accept task.

When we call stop() for an acceptor, all of its asynchronous operations will be canceled and
handlers will be called. If we take a look at the handle_accept method in the last step, we'll
see that in case of an error (or stopped acceptor), no more accepting tasks will be added.

After all the handlers are called, no shared pointer to the acceptor remains and a destructor
for tcp_connection will be called.

There's more...
We did not use all the features of the boost::asio::ip::tcp::acceptor
class. It can bind to a specific IPv6 or IPv4 address, if we provide a specific
boost::asio::ip::tcp::endpoint. You may also get a native socket via the native_
handle() method and use some OS-specific calls to tune the behavior. You may set up some
options for acceptor_ by calling set_option. For example, this is how you may force an
acceptor to reuse the address:

boost::asio::socket_base::reuse_address option(true);
acceptor_.set_option(option);

Reusing the address provides an ability to restart the server quickly after it
was terminated without correct shutdown. After the server was terminated,
a socket may be opened for some time and you won't be able to start the
server on the same address without the reuse_address option.

See also
 f Starting this chapter from the beginning is a good idea to get much more information

about Boost.Asio.

 f See the official documentation of Boost.Asio for more examples, tutorials, and a
complete reference at http://www.boost.org/doc/libs/1_53_0/doc/html/
boost_asio.html.

 f Read the Reordering the parameters of function and Binding a value as a function
parameter recipes from Chapter 1, Starting to Write Your Application, for more
information about Boost.Bind.

 f The Reference counting of pointers to classes used across methods recipe in
Chapter 3, Managing Resources, will give you more information about what
boost::shared_ptr does.

Chapter 6

169

Executing different tasks in parallel
Now it is time to make our tasks_queue process tasks in multiple threads. How hard could
this be?

Getting ready
You will need to read the first recipe from this chapter. Some knowledge of multithreading
is also required, especially reading the Manipulating a group of threads recipe in
Chapter 5, Multithreading.

How to do it...
All we need to do is to add the start_multiple method to our tasks_queue class:

#include <boost/thread/thread.hpp>

// Default value will attempt to guess optimal count of threads
void start_multiple(std::size_t threads_count = 0) {
 if (!threads_count) {
 threads_count = (std::max)(static_cast<int>(
 boost::thread::hardware_concurrency()), 1
);
 }

 // one thread is the current thread
 -- threads_count;
 boost::thread_group tg;
 for (std::size_t i = 0; i < threads_count; ++i) {
 tg.create_thread(boost::bind(
 &boost::asio::io_service::run, boost::ref(ios_)
));
 }

 ios_.run();
 tg.join_all();
}

Manipulating Tasks

170

And now we are able to do much more work, as illustrated in the following diagram:

run_at()

async_write()

async_read()

push_task()

some task 1some task 2

How it works...
The boost::asio::io_service::run method is thread safe. Almost all the methods
of Boost.Asio are thread safe, so all we need to do is run the boost::asio::io_
service::run method from different threads.

If you are executing tasks that modify a common resource, you will need to add
mutexes around that resource.

See the call to boost::thread::hardware_concurrency()? It returns the number of
threads that can be run concurrently. But it is just a hint and may sometimes return a 0 value,
which is why we are calling the std::max function for it. This ensures that threads_count
will store at least the value 1.

We wrapped std::max in parenthesis because some popular compilers define
the min() and max() macros, so we need additional tricks to work-around this.

There's more...
The boost::thread::hardware_concurrency() function is a part of C++11; you will
find it in the <thread> header of the std:: namespace. However, not all the boost::asio
classes are part of C++11 (but they are proposed for inclusion, so we may see them in the
next Technical Report (TR) for C++).

Chapter 6

171

See also
 f See the Boost.Asio documentation for more examples and information about

different classes at http://www.boost.org/doc/libs/1_53_0/doc/html/
boost_asio.html

 f See the Boost.Thread documentation for information about boost::thread_
group and boost::threads at http://www.boost.org/doc/libs/1_53_0/
doc/html/thread.html

 f Recipes from Chapter 5, Multithreading, (especially the last recipe called Manipulating
a group of threads) will give you information about Boost.Thread usage

 f The Binding a value as a function parameter recipe will help you to understand the
boost::bind function better

Conveyor tasks processing
Sometimes there is a requirement to process tasks within a specified time interval. Compared
to previous recipes, where we were trying to process tasks in the order of their appearance in
the queue, this is a big difference.

Consider an example where we are writing a program that connects two subsystems, one of
which produces data packets and the other writes modified data to the disk (something like
this can be seen in video cameras, sound recorders, and other devices). We need to process
data packets one by one, smoothly with the least jitter, and in multiple threads.

Our previous tasks_queue was bad at processing tasks in a specified order:

// global variables
tasks_queue queue;
subsystem1 subs1;
subsystem2 subs2;

tasks_queue& operator<< (tasks_queue&, data_packet& data) {
 decoded_data d_decoded = decode_data(data);
 compressed_data c_data = compress_data(d_decoded);
 subs2.send_data(c_data);
}

void start_data_accepting() {
 while (!subs1.is_stopped()) {
 queue << subs1.get_data();
 }
}

#include <boost/thread/thread.hpp>

Manipulating Tasks

172

int main() {
 // Getting data packets from first device
 // and putting them to queue
 boost::thread t(&start_data_accepting);
 // Which data packet will be processed first in
 // multi-threaded environment?
 // packet #2 may be processed before packet #1,
 // no guarantee that packets will be processed in
 // order of their appearance
 queue.run_multiple();
 t.join();
}

So how can we solve this?

Getting ready
Basic knowledge of boost::asio::io_service is required for this recipe; read at least
the first recipe from this chapter. The Creating a work_queue class recipe from Chapter 5,
Multithreading, is required for understanding this example. Code must be linked against the
boost_thread library.

How to do it...
This recipe is based on the code of the work_queue class from the Creating a work_queue
class recipe of Chapter 5, Multithreading. We'll make some modifications and will be using a
few instances of that class.

1. Let's start by creating separate queues for data decoding, data compressing, and
data sending:
workqueue decoding_queue, compressing_queue, sending_queue;

2. Now it is time to refactor the operator << and split it into multiple functions:
#include <boost/bind.hpp>

void do_decode(const data_packet& packet);
void start_data_accepting() {
 while (!subs1.is_stopped()) {
 decoding_queue.push_task(boost::bind(
 &do_decode, subs1.get_data()
));
 }
}

Chapter 6

173

void do_compress(const decoded_data& packet);
void do_decode(const data_packet& packet) {
 compressing_queue.push_task(boost::bind(
 &do_compress, decode_data(packet)
));
}

void do_compress(const decoded_data& packet) {
 sending_queue.push_task(boost::bind(
 &subsystem2::send_data,
 boost::ref(subs2),
 compress_data(packet)
));
}

3. Our work_queue class from Chapter 5, Multithreading, had no stop() function.
Let's add it:
// class work_queue from chapter 5
#include <deque>
#include <boost/function.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/thread/locks.hpp>
#include <boost/thread/condition_variable.hpp>

class work_queue {
public:
 typedef boost::function<void()> task_type;

private:
 std::deque<task_type> tasks_;
 boost::mutex mutex_;
 boost::condition_variable cond_;
 bool is_stopped_;

public:
 work_queue()
 : is_stopped_(false)
 {}

 void stop() {
 boost::unique_lock<boost::mutex> lock(mutex_);
 is_stopped_ = true;
 lock.unlock();
 cond_.notify_all();

Manipulating Tasks

174

 }

 void push_task(const task_type& task) {
 boost::unique_lock<boost::mutex> lock(mutex_);
 if (is_stopped_) {
 return;
 }
 tasks_.push_back(task);
 lock.unlock();
 cond_.notify_one();
 }

 task_type pop_task() {
 boost::unique_lock<boost::mutex> lock(mutex_);
 while (tasks_.empty()) {
 if (is_stopped_) {
 return task_type();
 }
 cond_.wait(lock);
 }

 task_type ret = tasks_.front();
 tasks_.pop_front();
 return ret;
 }
};

Now the work_queue class can be stopped. The pop_task() method will
return empty tasks if work_queue is stopped and no further tasks remain
in the tasks_ variable.

4. After doing all that is shown in step 3, we can write the code like this:
void run_while_not_stopped(work_queue& queue) {
 work_queue::task_type task;
 while (task = queue.pop_task()) {
 task();
 }
}

5. That is all! Now we only need to start the conveyor:
#include <boost/thread/thread.hpp>
int main() {
 // Getting data packets from first device and putting them
 // to queue

Chapter 6

175

 boost::thread t_data_accepting(&start_data_accepting);

 boost::thread t_data_decoding(boost::bind(
 &run_while_not_stopped, boost::ref(decoding_queue)
));

 boost::thread t_data_compressing(boost::bind(
 &run_while_not_stopped, boost::ref(compressing_queue)
));

 boost::thread t_data_sending(boost::bind(
 &run_while_not_stopped, boost::ref(sending_queue)
));

6. The conveyor can be stopped like this:

 t_data_accepting.join();
 decoding_queue.stop();
 t_data_decoding.join();
 compressing_queue.stop();
 t_data_compressing.join();
 sending_queue.stop();
 t_data_sending.join();

How it works...
The trick is to split the processing of a single data packet into some equally small subtasks
and process them one by one in different work_queues. In this example, we can split the
data process into data decoding, data compression, and data send.

The processing of six packets, ideally, would look like this:

Time Receiving Decoding Compressing Sending
Tick 1: packet #1

Tick 2: packet #2 packet #1

Tick 3: packet #3 packet #2 packet #1

Tick 4: packet #4 packet #3 packet #2 packet #1

Tick 5: packet #5 packet #4 packet #3 packet #2

Tick 6: packet #6 packet #5 packet #4 packet #3

Tick 7: packet #6 packet #5 packet #4

Tick 8: packet #6 packet #5

Tick 9: packet #6

Manipulating Tasks

176

However, our world is not ideal, so some tasks may finish faster than others. For example,
receiving may go faster than decoding and in that case, the decoding queue will be holding
a set of tasks to be done. We did not use io_service in our example because it does not
guarantee that posted tasks will be executed in order of their posting.

There's more...
All the tools used to create a conveyor in this example are available in C++11, so nothing
would stop you creating the same things without Boost on a C++11 compatible compiler.
However, Boost will make your code more portable, and usable on C++03 compilers.

See also
 f This technique is well known and used by processor developers. See http://

en.wikipedia.org/wiki/Instruction_pipeline. Here you will find a brief
description of all the characteristics of the conveyor.

 f The Creating a work_queue class recipe from Chapter 5, Multithreading, and the
Binding a value as a function parameter recipe from Chapter 1, Starting to Write
Your Application, will give you more information about methods used in this recipe.

Making a nonblocking barrier
In multithreaded programming, there is an abstraction called barrier. It stops execution
threads that reach it until the requested number of threads are not blocked on it. After that,
all the threads are released and they continue with their execution. Consider the following
example of where it can be used.

We want to process different parts of the data in different threads and then send the data:

#include <cstddef>
static const std::size_t data_length = 10000;

#include <boost/array.hpp>
struct vector_type : public boost::array<std::size_t, data_length> {
 void* alignment;
};

Chapter 6

177

typedef boost::array<vector_type, 4> data_t;
void fill_data(vector_type& data);
void compute_send_data(data_t& data);

#include <boost/thread/barrier.hpp>
void runner(std::size_t thread_index, boost::barrier& data_barrier,
data_t& data) {
 for (std::size_t i = 0; i < 1000; ++ i) {
 fill_data(data.at(thread_index));
 data_barrier.wait();
 if (!thread_index) {
 compute_send_data(data);
 }
 data_barrier.wait();
 }
}

#include <boost/thread/thread.hpp>
int main() {
 // Initing barriers
 boost::barrier data_barrier(data_t::static_size);

 // Initing data
 data_t data;

 // Run on 4 threads
 boost::thread_group tg;
 for (std::size_t i = 0; i < data_t::static_size; ++i) {
 tg.create_thread(boost::bind(
 &runner,
 i,
 boost::ref(data_barrier),
 boost::ref(data)
));
 }

 tg.join_all();
}

Manipulating Tasks

178

The data_barrier.wait() method blocks until all the threads fill the data. After that,
all the threads are released; the thread with the index 0 will compute data to be sent using
compute_send_data(data), while others are again waiting at the barrier as shown in the
following diagram:

THREAD#0 #1 #2 #3

BARRIER

BARRIER

fill_datafill_datafill_data

compute_send_data

fill_data

Looks lame, isn't it?

Getting ready
This recipe requires knowledge of the first recipe of this chapter. Knowledge of Boost.
Bind and Boost.Thread is also required. Code from this recipe requires linking against
the boost_thread and boost_system libraries.

How to do it...
We do not need to block at all! Let's take a closer look at the example. All we need to do
is to post four fill_data tasks and make the last finished task call compute_send_
data(data).

1. We'll need the tasks_processor class from the first recipe; no changes to it are
needed.

2. Instead of a barrier, we'll be using the atomic variable:
#include <boost/atomic.hpp>
typedef boost::atomic<unsigned int> atomic_count_t;

Chapter 6

179

3. Our new runner function will look like this:
void clever_runner(
 std::size_t thread_index,
 std::size_t iteration,
 atomic_count_t& counter,
 data_t& data)
{
 fill_data(data.at(thread_index));

 if (++counter == data_t::static_size) {
 compute_send_data(data);
 ++ iteration;

 if (iteration == 1000) {
 // exiting, because 1000 iterations are done
 tasks_processor::get().stop();
 return;
 }

 counter = 0;
 for (std::size_t i = 0; i < data_t::static_size; ++ i) {
 tasks_processor::get().push_task(boost::bind(
 clever_runner,
 i,
 iteration,
 boost::ref(counter),
 boost::ref(data)
));
 }

 }
}

4. Only the main function will change slightly, as follows:

// Initing counter
atomic_count_t counter(0);

// Initing data
data_t data;

// Run on 4 threads
tasks_processor& tp = tasks_processor::get();
for (std::size_t i = 0; i < data_t::static_size; ++i) {

Manipulating Tasks

180

 tp.push_task(boost::bind(
 &clever_runner,
 i,
 0, // first run
 boost::ref(counter),
 boost::ref(data)
));
}

tp.start();

How it works...
We don't block as no threads will be waiting for resources. Instead of blocking, we count the
tasks that finished filling the data. This is done by the counter atomic variable. The last
remaining task will have a counter variable equal to data_t::static_size. It will only
need to compute and send the data.

After that, we check for the exit condition (1000 iterations are done), and post the new data
by filling tasks to the queue.

There's more...
Is this solution better? Well, first of all, it scales better:

THREAD 0 #1 #2

fill_data

compute_send_data

fill_data

fill_data
fill_data

Chapter 6

181

This method can also be more effective for situations where a program does a lot of different
work. Because no threads are waiting in barriers, free threads may do other work while one
of the threads computes and sends the data.

All the tools used for this example are available in C++11 (you'll only need to replace io_
service inside tasks_processor with work_queue from Chapter 5, Multithreading).

See also
 f The official documentation for Boost.Asio may give you more information about

io_service usage at http://www.boost.org/doc/libs/1_53_0/doc/
html/boost_asio.html

 f See all the Boost.Function related recipes from Chapter 3, Managing Resources,
and the official documentation at http://www.boost.org/doc/libs/1_53_0/
doc/html/function.html for getting an idea of how tasks work

 f See the recipes from Chapter 1, Starting to Write Your Application, related to Boost.
Bind to get more information about what the boost::bind function does, or see
the official documentation at http://www.boost.org/doc/libs/1_53_0/
libs/bind/bind.html

Storing an exception and making a task
from it

Processing exceptions is not always trivial and may take a lot of time. Consider the situation
where an exception must be serialized and sent by the network. This may take milliseconds
and a few thousand lines of code. After the exception is caught is not always the best time
and place to process it.

So, can we store exceptions and delay their processing?

Getting ready
This recipe requires knowledge of boost::asio::io_service, which was described
in the first recipe of this chapter. Knowledge of Boost.Bind is also required.

Manipulating Tasks

182

How to do it...
All we need is to have the ability to store exceptions and pass them between threads just like
a normal variable.

1. Let's start with the function that processes exceptions. In our case, it will only be
outputting the exception information to the console:
#include <boost/exception_ptr.hpp>
#include <boost/lexical_cast.hpp>
void func_test2(); // Forward declaration

void process_exception(const boost::exception_ptr& exc) {
 try {
 boost::rethrow_exception(exc);
 } catch (const boost::bad_lexical_cast& /*e*/) {
 std::cout << "Lexical cast exception detected\n" << std::endl;

 // Pushing another task to execute
 tasks_processor::get().push_task(&func_test2);
 } catch (...) {
 std::cout << "Can not handle such exceptions:\n"
 << boost::current_exception_diagnostic_information()
 << std::endl;

 // Stopping
 tasks_processor::get().stop();
 }
}

2. Now we will write some functions to demonstrate how exceptions work:
void func_test1() {
 try {
 boost::lexical_cast<int>("oops!");
 } catch (...) {
 tasks_processor::get().push_task(boost::bind(
 &process_exception, boost::current_exception()
));
 }
}

#include <stdexcept>
void func_test2() {
 try {
 // Some code goes here

Chapter 6

183

 BOOST_THROW_EXCEPTION(std::logic_error(
 "Some fatal logic error"
));
 // Some code goes here
 } catch (...) {
 tasks_processor::get().push_task(boost::bind(
 &process_exception, boost::current_exception()
));
 }
}

3. Now, if we run the example like this:
 tasks_processor::get().push_task(&func_test1);
 tasks_processor::get().start();

We'll get the following output:
Lexical cast exception detected

Can not handle such exceptions:
../../../BoostBook/Chapter6/exception_ptr/main.cpp(109): Throw in
function void func_test2()
Dynamic exception type: boost::exception_detail::clone_
impl<boost::exception_detail::error_info_injector<std::logic_
error> >
std::exception::what: Some fatal logic error

How it works...
The Boost.Exception library provides an ability to store and rethrow exceptions. The
boost::current_exception() method must be called from inside the catch() block,
and it returns an object of the type boost::exception_ptr. So in func_test1(),
the boost::bad_lexical_cast exception will be thrown, which will be returned by
boost::current_exception(), and a task (a functional object) will be created from that
exception and the process_exception function's pointer.

The process_exception function will re-throw the exception (the only way to restore the
exception type from boost::exception_ptr is to rethrow it using boost::rethrow_
exception(exc) and then catch it by specifying the exception type).

In func_test2, we are throwing a std::logic_error exception using the BOOST_THROW_
EXCEPTION macro. This macro does a lot of useful work: it checks that our exception is derived
from std::exception and adds information to our exception about the source filename,
function name, and the number of the line of code where the exception was thrown. So when
an exception is re-thrown and caught by catch(...), boost::current_exception_
diagnostic_information(), we will be able to output much more information about it.

Manipulating Tasks

184

There's more...
Usually, exception_ptr is used to pass exceptions between threads. For example:

void run_throw(boost::exception_ptr& ptr) {
 try {
 // A lot of code goes here
 } catch (...) {
 ptr = boost::current_exception();
 }
}

int main () {
 boost::exception_ptr ptr;
 // Do some work in parallel
 boost::thread t(boost::bind(
 &run_throw,
 boost::ref(ptr)
));

 // Some code goes here
 // …

 t.join();

 // Checking for exception
 if (ptr) {
 // Exception occured in thread
 boost::rethrow_exception(ptr);
 }
}

The boost::exception_ptr class may allocate memory through heap multiple times,
uses atomics, and implements some of the operations by rethrowing and catching exceptions.
Try not to use it without an actual need.

C++11 has adopted boost::current_exception, boost::rethrow_exception, and
boost::exception_ptr. You will find them in the <exception> header of the std::
namespace. However, the BOOST_THROW_EXCEPTION and boost::current_exception_
diagnostic_information() methods are not in C++11, so you'll need to realize them on
your own (or just use the Boost versions).

Chapter 6

185

See also
 f The official documentation for Boost.Exception contains a lot of useful

information about implementation and restrictions at http://www.boost.org/
doc/libs/1_53_0/libs/exception/doc/boost-exception.html. You may
also find some information that is not covered in this recipe (for example, how to add
additional information to an already thrown exception).

 f The first recipe from this chapter will give you information about the tasks_
processor class. Recipes Binding a value as a function parameter from Chapter 1,
Starting to Write Your Application, and Converting strings to numbers from Chapter 2,
Converting Data, will help you with Boost.Bind and Boost.LexicalCast.

Getting and processing system signals as
tasks

When writing some server applications (especially for Linux OS), catching and processing
signals is required. Usually, all the signal handlers are set up at server start and do not
change during the application's execution.

The goal of this recipe is to make our tasks_processor class capable of processing signals.

Getting ready
We will need code from the first recipe of this chapter. Good knowledge of Boost.Bind and
Boost.Function is also required.

How to do it...
This recipe is similar to previous ones; we have some signal handlers, functions to register
them, and some support code.

1. Let's start with including the following headers:
#include <boost/asio/signal_set.hpp>
#include <boost/function.hpp>

2. Now we add a member for signals processing to the tasks_processor class:
private:
 boost::asio::signal_set signals_;
 boost::function<void(int)> users_signal_handler_;

Manipulating Tasks

186

3. The function that will be called upon signal capture is as follows:
 // private
 void handle_signals(
 const boost::system::error_code& error,
 int signal_number)
 {
 if (error) {
 std::cerr << "Error in signal handling: "
 << error << '\n';
 } else {
 // If signals occurs while there is no
 // waiting handlers, signal notification
 // is queued, so it won't be missed
 // while we are running
 // the users_signal_handler_
 detail::make_task_wrapped(boost::bind(
 boost::ref(users_signal_handler_),
 signal_number
))(); // make and run task_wrapped
 }

 signals_.async_wait(boost::bind(
 &tasks_processor::handle_signals, this, _1, _2
));
 }

4. Do not forget to initialize the signals_ member in the tasks_processor
constructor:
 tasks_processor()
 : ios_()
 , work_(ios_)
 , signals_(ios_)
 {}

5. And now we need a function for registering the signals handler:

 // This function is not threads safe!
 // Must be called before all the 'start()' calls
 // Function can be called only once
 template <class Func>
 void register_signals_handler(
 const Func& f,
 const std::vector<int>& signals_to_wait)
 {

Chapter 6

187

 // Making sure that this is the first call
 assert(!users_signal_handler_);

 users_signal_handler_ = f;
 std::for_each(
 signals_to_wait.begin(),
 signals_to_wait.end(),
 boost::bind(
 &boost::asio::signal_set::add, &signals_, _1
)
);

 signals_.async_wait(boost::bind(
 &tasks_processor::handle_signals, this, _1, _2
));
 }

That's all. Now we are ready to process signals. Following is a test program:
void accept_3_signals_and_stop(int signal) {
 static int signals_count = 0;
 assert(signal == SIGINT);
 ++ signals_count;
 std::cout << "Captured " << signals_count << " SIGINT\n";
 if (signals_count == 3) {
 tasks_processor::get().stop();
 }
}

int main () {
 tasks_processor::get().register_signals_handler(
 &accept_3_signals_and_stop,
 std::vector<int>(1, SIGINT) // vector containing 1 element
);

 tasks_processor::get().start();
}

This will give the following output:

Captured 1 SIGINT

Captured 2 SIGINT

Captured 3 SIGINT

Press any key to continue . . .

Manipulating Tasks

188

How it works...
Nothing is difficult here (compared to some previous recipes from this chapter). The
register_signals_handler function adds the signal numbers that will be processed.
It is done via a call to the boost::asio::signal_set::add function for each element
of the signals_to_wait vector (we do it using std::for_each and some magic of
boost::bind).

Next, the instruction makes signals_ member wait for the signal and calls the tasks_
processor::handle_signals member function for this on the signal capture. The
tasks_processor::handle_signals function checks for errors and if there is no error,
it creates a functional object by referring to users_signal_handler_ and the signal
number. This functional object will be wrapped in the task_wrapped structure (that handles
all the exceptions) and executed.

After that, we make signals_ member wait for a signal again.

There's more...
When a thread-safe dynamic adding and removing of signals is required, we may modify this
example to look like detail::timer_task from the Making timers and processing timer
events as tasks recipe of this chapter. When multiple boost::asio::signal_set objects
are registered as waiting on the same signals, a handler from each of signal_set will be
called on a single signal.

C++ has been capable of processing signals for a long time using the signal function from
the <csignal> header. However, it is incapable of using functional objects (which is a huge
disadvantage).

See also
 f The Binding a value as a function parameter and Reordering the parameters of

function recipes from Chapter 1, Starting to Write Your Application, provide a lot
of information about boost::bind. The official documentation may also help:
http://www.boost.org/doc/libs/1_53_0/libs/bind/bind.html

 f The Storing any functional object in a variable recipe (on Boost.Function) from
Chapter 3, Managing Resources, provides information about boost::function.

 f See the official Boost.Asio documentation has more information and examples
on boost::asio::signal_set and other features of this great library at
http://www.boost.org/doc/libs/1_53_0/doc/html/boost_asio.html.

7
Manipulating Strings

In this chapter we will cover:

 f Changing cases and case-insensitive comparison

 f Matching strings using regular expressions

 f Searching and replacing strings using regular expressions

 f Formatting strings using safe printf-like functions

 f Replacing and erasing strings

 f Representing a string with two iterators

 f Using a reference to string type

Introduction
This whole chapter is devoted to different aspects of changing, searching, and representing
strings. We'll see how some common string-related tasks can be easily done using the Boost
libraries. This chapter is easy enough; it addresses very common string manipulation tasks.
So, let's begin!

Changing cases and case-insensitive
comparison

This is a pretty common task. We have two non-Unicode or ANSI character strings:

#include <string>
std::string str1 = "Thanks for reading me!";
std::string str2 = "Thanks for reading ME!";

Manipulating Strings

190

 We need to compare them in a case-insensitive manner. There are a lot of methods to do
that; let's take a look at Boost's.

Getting ready
Basic knowledge of std::string is all we need here.

How to do it...
Here are some different ways to do case-insensitive comparisons:

1. The most trivial one is:
#include <boost/algorithm/string/predicate.hpp>

boost::iequals(str1, str2)

2. Using the Boost predicate and STL method:
#include <boost/algorithm/string/compare.hpp>
#include <algorithm>

str1.size() == str2.size() && std::equal(
 str1.begin(),
 str1.end(),
 str2.begin(),
 boost::is_iequal()
)

3. Making a lowercase copy of both the strings:
#include <boost/algorithm/string/case_conv.hpp>

std::string str1_low = boost::to_lower_copy(str1);
std::string str2_low = boost::to_lower_copy(str2);
assert(str1_low == str2_low);

4. Making an uppercase copy of the original strings:
#include <boost/algorithm/string/case_conv.hpp>

std::string str1_up = boost::to_upper_copy(str1);
std::string str2_up = boost::to_upper_copy(str2);
assert(str1_up == str2_up);

5. Converting the original strings to lowercase:

Chapter 7

191

#include <boost/algorithm/string/case_conv.hpp>

boost::to_lower(str1);
boost::to_lower(str2);
assert(str1 == str2);

How it works...
The second method is not an obvious one. In the second method, we compare the length
of the strings; if they have the same length, we compare the strings character by character
using an instance of the boost::is_iequal predicate. The boost::is_iequal predicate
compares two characters in a case-insensitive way.

The Boost.StringAlgorithm library uses i in the name of the method
or class, if this method is case-insensitive. For example, boost::is_
iequal, boost::iequals, boost::is_iless, and others.

There's more...
Each function and the functional object of the Boost.StringAlgorithm library that work
with cases accept std::locale. By default (and in our examples), methods and classes
use a default constructed std::locale. If we work a lot with strings, it may be a good
optimization to construct a std::locale variable once and pass it to all the methods.
Another good optimization would be to use the 'C' locale (if your application logic permits that)
via std::locale::classic():

 // On some platforms std::locale::classic() works
 // faster than std::locale()
 boost::iequals(str1, str2, std::locale::classic());

Nothing forbids you to use both optimizations.

Unfortunately, C++11 has no string functions from Boost.StringAlgorithm. All the
algorithms are fast and reliable, so do not be afraid to use them in your code.

See also
 f Official documentation on the Boost String Algorithms library can be found at

http://www.boost.org/doc/libs/1_53_0/doc/html/string_algo.html

 f See the C++ Coding Standards book by Andrei Alexandrescu and Herb Sutter for
an example on how to make a case-insensitive string with a few lines of code

Manipulating Strings

190

Matching strings using regular expressions
Let's do something useful! It's common that the user's input must be checked using some
regular expression-specific pattern that provides a flexible means of match. The problem is
that there are a lot of regex syntaxes; expressions written using one syntax are not handled
well by the other syntax. Another problem is that long regexes are not easy to write.

So in this recipe, we'll write a program that may use different types of regular expression
syntaxes and checks that the input strings match the specified regexes.

Getting ready
This recipe requires basic knowledge of STL. Knowledge of regular expression syntax can
be helpful, but it is not really required.

Linking examples against the libboost_regex library is required.

How to do it...
This regex matcher consists of a few lines of code in the main() function; however, I use it
a lot. It'll help you some day.

1. To implement it, we'll need the following headers:
#include <boost/regex.hpp>
#include <iostream>

2. At the start of the program, we need to output the available regex syntaxes:
int main() {
 std::cout
 << "Available regex syntaxes:\n"
 << "\t[0] Perl\n"
 << "\t[1] Perl case insensitive\n"
 << "\t[2] POSIX extended\n"
 << "\t[3] POSIX extended case insensitive\n"
 << "\t[4] POSIX basic\n"
 << "\t[5] POSIX basic case insensitive\n"
 << "Choose regex syntax: ";

3. Now correctly set up flags, according to the chosen syntax:
 boost::regex::flag_type flag;
 switch (std::cin.get()) {
 case '0': flag = boost::regex::perl;
 break;
 case '1': flag = boost::regex::perl|boost::regex::icase;

Chapter 7

191

 break;

 case '2': flag = boost::regex::extended;
 break;
 case '3': flag = boost::regex::extended|boost::regex::icase;
 break;
 case '4': flag = boost::regex::basic;
 break;

 case '5': flag = boost::regex::basic|boost::regex::icase;
 break;
 default:
 std::cout << "Inccorect number of regex syntax."
 <<"Exiting... \n";
 return -1;
 }
 // Disabling exceptions
 flag |= boost::regex::no_except;

4. Now we'll be requesting regex patterns in a loop:
 // Restoring std::cin
 std::cin.ignore();
 std::cin.clear();

 std::string regex, str;
 do {
 std::cout << "Input regex: ";
 if (!std::getline(std::cin, regex) || regex.empty()) {
 return 0;
 }

 // Without `boost::regex::no_except`flag this
 // constructor may throw
 const boost::regex e(regex, flag);
 if (e.status()) {
 std::cout << "Incorrect regex pattern!\n";
 continue;
 }

5. Getting a string to match in a loop:
 std::cout << "String to match: ";
 while (std::getline(std::cin, str) && !str.empty()) {

Manipulating Strings

190

6. Applying regex to it and outputting the result:
 bool matched = boost::regex_match(str, e);
 std::cout << (matched ? "MATCH\n" : "DOES NOT MATCH\n");
 std::cout << "String to match: ";
 } // end of `while (std::getline(std::cin, str))`

7. Finishing our example by restoring std::cin and requesting new regex patterns:

 // Restoring std::cin
 std::cin.ignore();
 std::cin.clear();
 } while (1);
} // int main()

Now if we run the preceding example, we'll get the following output:

Available regex syntaxes:

 [0] Perl

 [1] Perl case insensitive

 [2] POSIX extended

 [3] POSIX extended case insensitive

 [4] POSIX basic

 [5] POSIX basic case insensitive

Choose regex syntax: 0

Input regex: (\d{3}[#-]){2}

String to match: 123-123#

MATCH

String to match: 312-321-

MATCH

String to match: 21-123-

DOES NOT MATCH

String to match: ^Z

Input regex: \l{3,5}

String to match: qwe

MATCH

String to match: qwert

MATCH

String to match: qwerty

DOES NOT MATCH

String to match: QWE

Chapter 7

191

DOES NOT MATCH

String to match: ^Z

Input regex: ^Z

Press any key to continue . . .

How it works...
All this is done by the boost::regex class. It constructs an object that is capable of regex
parsing and compilation. The flags variable adds additional configuration options.

If the regular expression is incorrect, it throws an exception; if the boost::regex::no_
except flag was passed, it reports an error returning as non-zero in the status() call
(just like in our example):

if (e.status()) {
 std::cout << "Incorrect regex pattern!\n";
 continue;
}

This will result in:

Input regex: (incorrect regex(
Incorrect regex pattern!
Input regex:

Regular expression matching is done by a call to the boost::regex_match function. It
returns true in case of a successful match. Additional flags may be passed to regex_match,
but we avoided their usage for brevity of the example.

There's more...
C++11 contains almost all the Boost.Regex classes and flags. They can be found in the
<regex> header of the std:: namespace (instead of boost::). Official documentation
provides information about the differences between C++11 and Boost.Regex. It also
contains some performance measures that tell Boost.Regex is fast.

See also
 f The Searching and replacing strings using regular expressions recipe will give you

more information about Boost.Regex usage

 f You may also consider official documentation to get more information about flags,
performance measures, regular expression syntaxes, and C++11 conformance at
http://www.boost.org/doc/libs/1_53_0/libs/regex/doc/html/index.
html

Manipulating Strings

190

Searching and replacing strings
using regular expressions

My wife enjoyed the Matching strings using regular expressions recipe very much and told me
that I'll get no food until I improve it to be able to replace parts of the input string according
to a regex match. Each matched subexpression (part of the regex in parenthesis) must get
a unique number starting from 1; this number will be used to create a new string.

This is how an updated program will work like:

Available regex syntaxes:

 [0] Perl

 [1] Perl case insensitive

 [2] POSIX extended

 [3] POSIX extended case insensitive

 [4] POSIX basic

 [5] POSIX basic case insensitive

Choose regex syntax: 0

Input regex: (\d)(\d)

String to match: 00

MATCH: 0, 0,

Replace pattern: \1#\2

RESULT: 0#0

String to match: 42

MATCH: 4, 2,

Replace pattern: ###\1-\1-\2-\1-\1###

RESULT: ###4-4-2-4-4###

…

Getting ready
We'll be using the code from the Matching strings using regular expressions recipe.
You should read it before getting your hands on this one.

Linking the example against the libboost_regex library is required.

Chapter 7

191

How to do it...
This recipe is based on the code from the previous one. Let's see what must be changed.

1. No additional headers will be included; however, we'll need an additional string to
store the replace pattern:
 std::string regex, str, replace_string;

2. We'll replace boost::regex_match with boost::regex_find and output
matched results:
 std::cout << "String to match: ";
 while (std::getline(std::cin, str) && !str.empty()) {
 boost::smatch results;
 bool matched = regex_search(str, results, e);
 if (matched) {
 std::cout << "MATCH: ";
 std::copy(
 results.begin() + 1,
 results.end(),
 std::ostream_iterator<std::string>(std::cout, ", ")
);

3. After that, we need to get the replace pattern and apply it:

 std::cout << "\nReplace pattern: ";
 if (std::getline(std::cin, replace_string)
 && !replace_string.empty())
 {
 std::cout << "RESULT: "
 << boost::regex_replace(str, e, replace_string);
 } else {
 // Restoring std::cin
 std::cin.ignore();
 std::cin.clear();
 }
 } else { // `if (matched) `
 std::cout << "DOES NOT MATCH";
 }

That's it! Everyone's happy and I'm fed.

Manipulating Strings

190

How it works...
The boost::regex_search function doesn't only return a true or a false (such as the
boost::regex_match function does) value, but also stores matched parts. We output
matched parts using the following construction:

 std::copy(
 results.begin() + 1,
 results.end(),
 std::ostream_iterator<std::string>(std::cout, ", ")
);

Note that we outputted the results by skipping the first result (results.begin() + 1);
that is because results.begin() contains the whole regex match.

The boost::regex_replace function does all the replacing and returns the
modified string.

There's more...
There are different variants of the regex_* function; some of them receive bidirectional
iterators instead of strings and some provide output to the iterator.

boost::smatch is a typedef for boost::match_results<std::string::const_
iterator>; so if you are using some other bidirectional iterators instead of
std::string::const_iterator, you will need to use the type of your bidirectional
iterators as a template parameter for match_results.

match_results has a format function, so we can tune our example with it. Instead of:

std::cout << "RESULT: " << boost::regex_replace(str, e, replace_
string);

We may use the following:

std::cout << "RESULT: " << results.format(replace_string);

By the way, replace_string may have different formats:

Input regex: (\d)(\d)

String to match: 12

MATCH: 1, 2,

Replace pattern: $1-$2---$&---$$

RESULT: 1-2---12---$

All the classes and functions from this recipe exist in C++11, in the std:: namespace of the
<regex> header.

Chapter 7

191

See also
 f The official documentation on Boost.Regex will give you more examples and

information about performance, C++11 standard compatibility, and regular
expression syntax at http://www.boost.org/doc/libs/1_53_0/libs/
regex/doc/html/index.html. The Matching strings using regular expressions
recipe will tell you the basics of Boost.Regex.

Formatting strings using safe
printf-like functions

The printf family of functions is a threat to security. It is a very bad design to allow
users to put their own strings as a type and format the specifiers. So what do we do when
user-defined format is required? How shall we implement the std::string to_
string(const std::string& format_specifier) const; member function
of the following class?

class i_hold_some_internals {
 int i;
 std::string s;
 char c;
 // ...
};

Getting ready
Basic knowledge of STL is more than enough for this recipe.

How to do it...
We wish to allow users to specify their own output format for a string.

1. To do that in a safe manner, we'll need the following header:
#include <boost/format.hpp>

2. Now we will add some comments for the user:
 // fmt parameter must contain the following:
 // 1 for outputting integer 'i'
 // 2 for outputting string 's'
 // 3 for outputting character 'c'
 std::string
 to_string(const std::string& format_specifier) const {

Manipulating Strings

190

3. Now it is time to make all of them work:

 boost::format f(format_specifier);
 unsigned char flags = boost::io::all_error_bits;
 flags ^= boost::io::too_many_args_bit;
 f.exceptions(flags);
 return (f % i % s % c).str();
 }

That's all. Take a look at this code:
 i_hold_some_internals class_instance;

 std::cout << class_instance.to_string(
 "Hello, dear %2%! "
 "Did you read the book for %1% %% %3%\n"
);

 std::cout << class_instance.to_string(
 "%1% == %1% && %1%%% != %1%\n\n"
);

Imagine that class_instance has a member i equal to 100, an s member equal
to "Reader", and a member c equal to '!'. Then, the program will output the
following:

Hello, dear Reader! Did you read the book for 100 % !

100 == 100 && 100% != 100

How it works...
The boost::format class accepts the string that specifies the resulting string. Arguments
are passed to boost::format using operator%. Values %1%, %2%, %3%, %4%, and so on,
in the format specifying string, will be replaced by arguments passed to boost::format.

We disable the exceptions for cases when a format string contains fewer arguments than
passed to boost::format:

 boost::format f(format_specifier);
 unsigned char flags = boost::io::all_error_bits;
 flags ^= boost::io::too_many_args_bit;

This is done to allow some formats like this:

 // Outputs 'Reader'
 std::cout << class_instance.to_string("%2%\n\n");

Chapter 7

191

There's more...
And what will happen in case of an incorrect format?

 try {
 class_instance.to_string("%1% %2% %3% %4% %5%\n");
 assert(false);
 } catch (const std::exception& e) {
 // boost::io::too_few_args exception must be caught
 std::cout << e.what() << '\n';
 }

Well, in that case, no assertion will be triggered and the following lines will be outputted
to the console:

boost::too_few_args: format-string referred to more arguments than
were passed

C++11 has no std::format. The Boost.Format library is not a very fast library; try not
to use it much in performance critical sections.

See also
 f The official documentation contains more information about the performance of

the Boost.Format library. More examples and documentation on extended printf-
like format is available at http://www.boost.org/doc/libs/1_53_0/libs/
format/

Replacing and erasing strings
Situations where we need to erase something in a string, replace a part of the string, or erase
the first or last occurrence of some substring are very common. STL allows us to do most of
this, but it usually involves writing too much code.

We saw the Boost.StringAlgorithm library in action in the Changing cases and case-
insensitive comparison recipe. Let's see how it can be used to simplify our lives when we need
to modify some strings:

#include <string>
const std::string str = "Hello, hello, dear Reader.";

Getting ready
Basic knowledge of C++ is required for this example.

Manipulating Strings

190

How to do it...
This recipe shows how different string-erasing and replacing methods from the Boost.
StringAlgorithm library work.

Erasing requires the #include <boost/algorithm/string/erase.hpp> header:

namespace ba = boost::algorithm;
std::cout << "\n erase_all_copy :" << ba::erase_all_copy(str, ",");
std::cout << "\n erase_first_copy :" << ba::erase_first_copy(str,
",");
std::cout << "\n erase_last_copy :" << ba::erase_last_copy(str, ",");
std::cout << "\n ierase_all_copy :" << ba::ierase_all_copy(str,
"hello");
std::cout << "\n ierase_nth_copy :" << ba::ierase_nth_copy(str, ",",
1);

This code will output the following:

erase_all_copy :Hello hello dear Reader.
erase_first_copy :Hello hello, dear Reader.
erase_last_copy :Hello, hello dear Reader.
ierase_all_copy :, , dear Reader.
ierase_nth_copy :Hello, hello dear Reader.

Replacing requires the <boost/algorithm/string/replace.hpp> header:

namespace ba = boost::algorithm;

std::cout << "\n replace_all_copy :" << ba::replace_all_copy(str,
",", "!");
std::cout << "\n replace_first_copy :" << ba::replace_first_copy(str,
",", "!");
std::cout << "\n replace_head_copy :" << ba::replace_head_copy(str,
6, "Whaaaaaaa!");

This code will output the following:

replace_all_copy :Hello! hello! dear Reader.
replace_first_copy :Hello! hello, dear Reader.
replace_head_copy :Whaaaaaaa! hello, dear Reader.

How it works...
All the examples are self-documenting. The only one that is not obvious is the replace_
head_copy function. It accepts a number of bytes to replace as a second parameter and
a replace string as the third parameter. So, in the preceding example, Hello gets replaced
with Whaaaaaaa!.

Chapter 7

191

There's more...
There are also methods that modify strings in-place. They don't just end on _copy and return
void. All the case insensitive methods (the ones that start with i) accept std::locale as
the last parameter, and use a default constructed locale as a default parameter.

C++11 does not have Boost.StringAlgorithm methods and classes.

See also
 f The official documentation contains a lot of examples and a full reference on all the

methods at http://www.boost.org/doc/libs/1_53_0/doc/html/string_
algo.html

 f See the Changing cases and case-insensitive comparison recipe from this chapter
for more information about the Boost.StringAlgorithm library.

Representing a string with two iterators
There are situations when we need to split some strings into substrings and do something
with those substrings. For example, count whitespaces in the string and, of course, we want
to use Boost and be as efficient as possible.

Getting ready
You'll need some basic knowledge of STL algorithms for this recipe.

How to do it...
We won't be counting whitespaces; instead we'll split the string into sentences. You'll see that
it is very easy with Boost.

1. First of all, include the right headers:
#include <boost/algorithm/string/split.hpp>
#include <boost/algorithm/string/classification.hpp>
#include <algorithm>

2. Now let's define our test string:
int main() {
 const char str[]
 = "This is a long long character array."
 "Please split this character array to sentences!"
 "Do you know, that sentences are separated using period, "
 "exclamation mark and question mark? :-)"
 ;

Manipulating Strings

190

3. Now we make a typedef for our splitting iterator:
typedef boost::split_iterator<const char*> split_iter_t;

4. Construct that iterator:
 split_iter_t sentences = boost::make_split_iterator(str,
 boost::algorithm::token_finder(boost::is_any_of("?!."))
);

5. Now we can iterate between matches:
 for (unsigned int i = 1; !sentences.eof(); ++sentences, ++i) {
 boost::iterator_range<const char*> range = *sentences;
 std::cout << "Sentence #" << i << " : \t" << range << '\n';

6. Count the number of characters:
 std::cout << "Sentence has " << range.size() << "
characters.\n";

7. And count the whitespaces:

 std::cout
 << "Sentence has "
 << std::count(range.begin(), range.end(), ' ')
 << " whitespaces.\n\n";
 } // end of for(...) loop
} // end of main()

That's it. Now if we run this example, it will output:

Sentence #1 : This is a long long character array

Sentence has 35 characters.

Sentence has 6 whitespaces.

Sentence #2 : Please split this character array to sentences

Sentence has 46 characters.

Sentence has 6 whitespaces.

Sentence #3 : Do you know, that sentences are separated using
dot,

exclamation mark and question mark

Sentence has 87 characters.

Sentence has 13 whitespaces.

Chapter 7

191

Sentence #4 : :-)

Sentence has 4 characters.

Sentence has 1 whitespaces.

How it works...
The main idea of this recipe is that we do not need to construct std::string from
substrings. We even do not need to tokenize the whole string at once. All we need to do is
find the first substring and return it as a pair of iterators to the beginning and to the end of
substring. If we need more substrings, find the next substring and return a pair of iterators
for that substring.

Now let's take a closer look at boost::split_iterator. We constructed one using the
boost::make_split_iterator function that takes range as the first argument and
a binary finder predicate (or binary predicate) as the second. When split_iterator is
dereferenced, it returns the first substring as boost::iterator_range<const char*>,
which just holds a pair of iterators and has a few methods to work with them. When we
increment split_iterator, it will try to find the next substring, and if there is no substring
found, split_iterator::eof() will return true.

There's more...
The boost::iterator_range class is widely used across all the Boost libraries. You may
find it useful for your own code and libraries in situations where a pair of iterators must be
returned or where a function should accept/work with a pair of iterators.

The boost::split_iterator<> and boost::iterator_range<> classes accept
a forward iterator type as a template parameter. Because we were working with a
character array in the preceding example, we provided const char* as iterators. If
we were working with std::wstring, we would need to use the boost::split_
iterator<std::wstring::const_iterator> and boost::iterator_
range<std::wstring::const_iterator> types.

Manipulating Strings

190

C++11 has neither iterator_range nor split_iterator.

As the boost::iterator_range class has no virtual functions and no dynamic memory
allocations, it is fast and efficient. However, its output stream operator << has no specific
optimizations for character arrays, so streaming it is slow.

The boost::split_iterator class has a boost::function class in it, so constructing
it may be slow; however, iterating adds only a tiny overhead that you won't notice even in
performance critical sections.

See also
 f The next recipe will tell you about a nice replacement for boost::iterator_

range<const char*>.

 f The official documentation for Boost.StringAlgorithm will provide you with more
detailed information about classes and a whole bunch of examples at http://www.
boost.org/doc/libs/1_53_0/doc/html/string_algo.html.

 f More information about boost::iterator_range can be found here: http://
www.boost.org/doc/libs/1_53_0/libs/range/doc/html/range/
reference/utilities.html. It is a part of the Boost.Range library that is not
described in this book, but you may wish to study it by yourself.

Using a reference to string type
This recipe is the most important recipe in this chapter! Let's take a look at a very common
case, where we write a function that accepts a string and returns the part of the string
between character values passed in the starts and ends arguments:

#include <string>
#include <algorithm>

std::string between_str(const std::string& input, char starts,
 char ends)
{
 std::string::const_iterator pos_beg
 = std::find(input.begin(), input.end(), starts);

 if (pos_beg == input.end()) {
 return std::string(); // Empty
 }

 ++ pos_beg;
 std::string::const_iterator pos_end
 = std::find(input.begin(), input.end(), ends);

Chapter 7

191

 return std::string(pos_beg, pos_end);
}

Do you like this implementation? In my opinion, it looks awful; consider the following call to it:

between_str("Getting expression (between brackets)", '(', ')');

In this example, a temporary std::string variable will be constructed from "Getting
expression (between brackets)". The character array is long enough, so there is a big
chance that dynamic memory allocation will be called inside the std::string constructor
and the character array will be copied into it. Then, somewhere inside the between_str
function, new std::string will be constructed, which may also lead to another dynamic
memory allocation and result in copying.

So, this simple function may, and in most cases will:

 f Call dynamic memory allocation (twice)

 f Copy string (twice)

 f Deallocate memory (twice)

Can we do better?

Getting ready
This recipe requires basic knowledge of STL and C++.

How to do it...
We do not really need a std::string class here, we only need some pointer to the
character array and the array's size. Boost has the std::string_ref class.

1. To use the boost::string_ref class, include the following header:
#include <boost/utility/string_ref.hpp>

2. Change the method's signature:
boost::string_ref between(
 const boost::string_ref& input,
 char starts,
 char ends)

3. Change std::string to boost::string_ref: everywhere inside the
function body:
{
 boost::string_ref::const_iterator pos_beg

Manipulating Strings

190

 = std::find(input.cbegin(), input.cend(), starts);
 if (pos_beg == input.cend()) {
 return boost::string_ref(); // Empty
 }
 ++ pos_beg;
 boost::string_ref::const_iterator pos_end
 = std::find(input.cbegin(), input.cend(), ends);
 // ...

4. The boost::string_ref constructor accepts size as a second parameter, so we
need to slightly change the code:

 if (pos_end == input.cend()) {
 return boost::string_ref(pos_beg, input.end() - pos_beg);
 }
 return boost::string_ref(pos_beg, pos_end - pos_beg);
}

That's it! Now we may call between("Getting expression (between
brackets)", '(', ')') and it will work without any dynamic memory allocation
and characters copying. And we can still use it for std::string:

between(std::string("(expression)"), '(', ')')

How it works...
As already mentioned, boost::string_ref contains only a pointer to the character array
and size of data. It has a lot of constructors and may be initialized in different ways:

 boost::string_ref r0("^_^");

 std::string O_O("O__O");
 boost::string_ref r1 = O_O;

 std::vector<char> chars_vec(10, '#');
 boost::string_ref r2(&chars_vec.front(), chars_vec.size());

The boost::string_ref class has all the methods required by the container class, so it is
usable with STL algorithms and Boost algorithms:

#include <boost/algorithm/string/case_conv.hpp>
#include <boost/algorithm/string/replace.hpp>
#include <boost/lexical_cast.hpp>
#include <iterator>

void string_ref_algorithms_examples() {
 boost::string_ref r("O_O");

Chapter 7

191

 // Finding symbol
 std::find(r.cbegin(), r.cend(), '_');

 // Will print 'o_o'
 boost::to_lower_copy(std::ostream_iterator<char>(std::cout), r);
 std::cout << '\n';

 // Will print 'O_O'
 std::cout << r << '\n';

 // Will print '^_^'
 boost::replace_all_copy(
 std::ostream_iterator<char>(std::cout), r, "O", "^"
);
}

The boost::string_ref class does not really own string, so all its
methods return constant iterators. Because of that, we cannot use it in
methods that modify data, such as boost::to_lower(r).

While working with boost::string_ref, we should take additional care about data that
it refers to; it must exist and be valid for the whole lifetime of boost::string_ref.

There's more...
The boost::string_ref class is not a part of C++11, but it is proposed for inclusion in
the next standard.

The string_ref classes are fast and efficient; use them wherever it is possible.

The boost::string_ref class is actually a typedef in the boost:: namespace:

typedef basic_string_ref<char, std::char_traits<char> >
 string_ref;

You may also find useful the following typedefs for wide characters in the boost::
namespace:

typedef basic_string_ref<wchar_t, std::char_traits<wchar_t> >
 wstring_ref;

typedef basic_string_ref<char16_t, std::char_traits<char16_t> >
 u16string_ref;

typedef basic_string_ref<char32_t, std::char_traits<char32_t> >
 u32string_ref;

Manipulating Strings

190

See also
 f The official string_ref proposal for inclusion in C++ standard can be found at

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3442.
html

 f Boost documentation for string_ref could be found at http://www.boost.
org/doc/libs/1_53_0/libs/utility/doc/html/string_ref.html

8
Metaprogramming

In this chapter we will cover:

 f Using type "vector of types"

 f Manipulating a vector of types

 f Getting a function's result type at compile time

 f Making a higher-order metafunction

 f Evaluating metafunctions lazily

 f Converting all the tuple elements to strings

 f Splitting tuples

Introduction
This chapter is devoted to some cool and hard to understand metaprogramming methods.
These methods are not for everyday use, but they will be a real help in the development
of generic libraries.

Chapter 4, Compile-time Tricks, already covered the basics of metaprogramming. Reading it is
recommended for better understanding. In this chapter we'll go deeper and see how multiple
types can be packed into a single tuple like type. We'll make functions for manipulating
collections of types, we'll see how types of compile-time collections can be changed, and how
compile-time tricks can be mixed with runtime. All this is metaprogramming.

Fasten your seat belts and get ready, here we go!

Metaprogramming

212

Using type "vector of types"
There are situations when it would be great to work with all the template parameters as if
they were in a container. Imagine that we are writing something such as Boost.Variant:

#include <boost/mpl/aux_/na.hpp>

// boost::mpl::na == n.a. == not available
template <
 class T0 = boost::mpl::na,
 class T1 = boost::mpl::na,
 class T2 = boost::mpl::na,
 class T3 = boost::mpl::na,
 class T4 = boost::mpl::na,
 class T5 = boost::mpl::na,
 class T6 = boost::mpl::na,
 class T7 = boost::mpl::na,
 class T8 = boost::mpl::na,
 class T9 = boost::mpl::na
>
struct variant;

And the preceding code is where all the following interesting tasks start to happen:

 f How can we remove constant and volatile qualifiers from all the types?

 f How can we remove duplicate types?

 f How can we get the sizes of all the types?

 f How can we get the maximum size of the input parameters?

All these tasks can be easily solved using Boost.MPL.

Getting ready
A basic knowledge of Chapter 4, Compile-time Tricks, is required for this recipe. Gather
your courage before reading—there will be a lot of metaprogramming in this recipe.

Chapter 8

213

How to do it…
We have already seen how a type can be manipulated at compile time. Why can't we go further
and combine multiple types in an array and perform operations for each element of that array?

1. First of all, let's pack all the types in one of the Boost.MPL types containers:
#include <boost/mpl/vector.hpp>
template <
 class T0, class T1, class T2, class T3, class T4,
 class T5, class T6, class T7, class T8, class T9
>
struct variant {
 typedef boost::mpl::vector<T0, T1, T2, T3, T4, T5, T6, T7,
 T8, T9> types;
};

2. Let's make our example less abstract and see how it will work if we specify types:
#include <string>

struct declared{ unsigned char data[4096]; };

struct non_defined;

typedef variant<
 volatile int,
 const int,
 const long,
 declared,
 non_defined,
 std::string
>::types types;

3. We can check everything at compile time. Let's assert that types is not empty:
#include <boost/static_assert.hpp>
#include <boost/mpl/empty.hpp>
BOOST_STATIC_ASSERT((!boost::mpl::empty<types>::value));

4. We can also check that, for example, the non_defined types is still at the
index 4 position:
#include <boost/mpl/at.hpp>
#include <boost/type_traits/is_same.hpp>
BOOST_STATIC_ASSERT((boost::is_same<
 non_defined,
 boost::mpl::at_c<types, 4>::type
>::value));

Metaprogramming

214

5. And that the last type is still std::string:
#include <boost/mpl/back.hpp>
BOOST_STATIC_ASSERT((boost::is_same<
 boost::mpl::back<types>::type,
 std::string
>::value));

6. Now, when we are sure that types really contain all the types passed to our variant
structure, we can do some transformations. We'll start with removing constant and
volatile qualifiers:
#include <boost/mpl/transform.hpp>
#include <boost/type_traits/remove_cv.hpp>
typedef boost::mpl::transform<
 types,
 boost::remove_cv<boost::mpl::_1>
>::type noncv_types;

7. Now we remove the duplicate types:
#include <boost/mpl/unique.hpp>

typedef boost::mpl::unique<
 noncv_types,
 boost::is_same<boost::mpl::_1, boost::mpl::_2>
>::type unique_types;

8. We can now check that the vector contains only 5 types:
#include <boost/mpl/size.hpp>
BOOST_STATIC_ASSERT((boost::mpl::size<unique_types>::value == 5));

9. The next step is to compute sizes:
// Without this we'll get an error:
// use of undefined type 'non_defined'
struct non_defined{};

#include <boost/mpl/sizeof.hpp>
typedef boost::mpl::transform<
 unique_types,
 boost::mpl::sizeof_<boost::mpl::_1>
>::type sizes_types;

10. The final step is getting the maximum size:

#include <boost/mpl/max_element.hpp>
typedef boost::mpl::max_element<sizes_types>::type max_size_type;

Chapter 8

215

We can assert that the maximum size of the type is equal to the declared size of the
structure, which must be the largest one in our example:

BOOST_STATIC_ASSERT(max_size_type::type::value ==
sizeof(declared));

How it works...
The boost::mpl::vector class is a compile-time container that holds types. To be more
precise, it is a type that holds types. We don't make instances of it; instead we are just using it
in typedefs.

Unlike the STL containers, the Boost.MPL containers have no member methods. Instead,
methods are declared in a separate header. So to use some methods we need to:

 f Include the correct header

 f Call that method, usually by specifying the container as the first parameter

Here is another example:

#include <boost/mpl/size.hpp>
#include <cassert>

template <class Vector>
int foo_size() {
 return boost::mpl::size<Vector>::value;
}

int main() {
 typedef boost::mpl::vector<int,int,int> vector1_type;
 assert(foo_size<vector1_type>() == 3);
}

These methods should be familiar to you. We have already seen metafunctions in
Chapter 4, Compile-time Tricks. By the way, we are also using some metafunctions
(such as boost::is_same) from the familiar Boost.TypeTraits library.

So, in step 3, step 4, and step 5 we are just calling metafunctions for our container type.

The hardest part is coming up!

Remember, placeholders are widely used with the boost::bind and Boost.Asio libraries.
Boost.MPL has them too and they are required for combining the metafunctions:

typedef boost::mpl::transform<
 types,
 boost::remove_cv<boost::mpl::_1>
>::type noncv_types;

Metaprogramming

216

Here, boost::mpl::_1 is a placeholder and the whole expression means "for each type in
types, do boost::remove_cv<>::type and push back that type to the resulting vector.
Return the resulting vector via ::type".

Let's move to step 7. Here, we specify a comparison metafunction for boost::mpl::unique
using the boost::is_same<boost::mpl::_1, boost::mpl::_2> template parameter,
where boost::mpl::_1 and boost::mpl::_2 are placeholders. You may find it similar
to boost::bind(std::equal_to(), _1, _2), and the whole expression in step 7 is
similar to the following pseudo code:

 std::vector<type> types;
 // ...
 std::unique(types.begin(), types.end(),
 boost::bind(std::equal_to<type>(), _1, _2));

There is something interesting, which is required for better understanding, in step 9.
In the preceding code sizes_types is not a vector of values, but rather a vector of
integral constants—types representing numbers. The sizes_types typedef is actually
the following type:

 struct boost::mpl::vector<
 struct boost::mpl::size_t<4>,
 struct boost::mpl::size_t<4>,
 struct boost::mpl::size_t<4096>,
 struct boost::mpl::size_t<1>,
 struct boost::mpl::size_t<32>
 >

The final step should be clear now. It just gets the maximum element from the
sizes_types typedef.

We can use the Boost.MPL metafunctions in any place where
typedefs are allowed.

There's more...
The Boost.MPL library usage results in longer compilation time, but gives you the ability to do
everything you want with types. It does not add runtime overhead and won't add even a single
instruction to the binary. C++11 has no Boost.MPL classes, and Boost.MPL does not use
features of C++11, such as the variadic templates. This makes the Boost.MPL compilation
time longer on C++11 compilers, but makes it usable on C++03 compilers.

Chapter 8

217

See also
 f See Chapter 4, Compile-time Tricks, for the basics of metaprogramming

 f The Manipulating a vector of types recipe will give you even more information on
metaprogramming and the Boost.MPL library

 f See the official Boost.MPL documentation for more examples and full references
at http://www.boost.org/doc/libs/1_53_0/libs/mpl/doc/index.html

Manipulating a vector of types
The task of this recipe will be to modify the content of one boost::mpl::vector function
depending on the content of a second boost::mpl::vector function. We'll be calling
the second vector as the vector of modifiers and each of those modifiers can have the
following type:

// Make unsigned
struct unsigne; // No typo: 'unsigned' is a keyword, we cannot use it.

// Make constant
struct constant;

// Otherwise we do not change type
struct no_change;

So where shall we start?

Getting ready
A basic knowledge of Boost.MPL is required. Reading the Using type "vector of types" recipe
and Chapter 4, Compile-time Tricks, may help.

How to do it...
This recipe is similar to the previous one, but it also uses conditional compile-time
statements. Get ready, it won't be easy!

1. We shall start with headers:
// we'll need this at step 3
#include <boost/mpl/size.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/static_assert.hpp>

Metaprogramming

218

// we'll need this at step 4
#include <boost/mpl/if.hpp>
#include <boost/type_traits/make_unsigned.hpp>
#include <boost/type_traits/add_const.hpp>

// we'll need this at step 5
#include <boost/mpl/transform.hpp>

2. Now, let's put all the metaprogramming magic inside the structure, for simpler re-use:
template <class Types, class Modifiers>
struct do_modifications {

3. It is a good idea to check that the passed vectors have the same size:
 BOOST_STATIC_ASSERT((boost::is_same<
 typename boost::mpl::size<Types>::type,
 typename boost::mpl::size<Modifiers>::type
 >::value));

4. Now let's take care of modifying the metafunction:
 typedef boost::mpl::if_<
 boost::is_same<boost::mpl::_2, unsigne>,
 boost::make_unsigned<boost::mpl::_1>,
 boost::mpl::if_<
 boost::is_same<boost::mpl::_2, constant>,
 boost::add_const<boost::mpl::_1>,
 boost::mpl::_1
 >
 > binary_operator_t;

5. And the final step:

 typedef typename boost::mpl::transform<
 Types,
 Modifiers,
 binary_operator_t
 >::type type;
};

We can now run some tests and make sure that our metafunction works correctly:

#include <boost/mpl/vector.hpp>
typedef boost::mpl::vector<unsigne, no_change, constant, unsigne>
modifiers;
typedef boost::mpl::vector<int, char, short, long> types;
typedef do_modifications<types, modifiers>::type result_type;

Chapter 8

219

#include <boost/mpl/at.hpp>
BOOST_STATIC_ASSERT((boost::is_same<
 boost::mpl::at_c<result_type, 0>::type,
 unsigned int
>::value));

BOOST_STATIC_ASSERT((boost::is_same<
 boost::mpl::at_c<result_type, 1>::type,
 char
>::value));

BOOST_STATIC_ASSERT((boost::is_same<
 boost::mpl::at_c<result_type, 2>::type,
 const short
>::value));

BOOST_STATIC_ASSERT((boost::is_same<
 boost::mpl::at_c<result_type, 3>::type,
 unsigned long
>::value));

How it works...
In step 3 we assert that the sizes are equal, but we do it in an unusual way. The
boost::mpl::size<Types>::type metafunction actually returns the integral constant
struct boost::mpl::long_<4>, so in a static assertion we actually compare two types,
not two numbers. This can be rewritten in a more familiar way:

 BOOST_STATIC_ASSERT((
 boost::mpl::size<Types>::type::value
 ==
 boost::mpl::size<Modifiers>::type::value
));

Notice the typename keyword we use. Without it the compiler won't be
able to decide if ::type is actually a type or some variable. Previous
recipes did not require it, because parameters for the metafunction were
fully known at the point where we were using them. But in this recipe, the
parameter for the metafunction is a template.

Metaprogramming

220

We'll take a look at step 5, before taking care of step 4. In step 5, we provide the
Types, Modifiers, and binary_operator_t parameters from step 4 to the
boost::mpl::transform metafunction. This metafunction is rather simple—for each
passed vector it takes an element and passes it to a third parameter—a binary metafunction.
If we rewrite it in pseudo code, it will look like the following:

 vector result;

 for (std::size_t i = 0; i < Types.size(); ++i) {
 result.push_back(
 binary_operator_t(Types[i], Modifiers[i])
);
 }

 return result;

Step 4 may make someone's head hurt. At this step we are writing a metafunction that will
be called for each pair of types from the Types and Modifiers vectors (see the preceding
pseudo code). As we already know, boost::mpl::_2 and boost::mpl::_1
are placeholders. In this recipe, _1 is a placeholder for a type from the Types vector and _2
is a placeholder for a type from the Modifiers vector.

So the whole metafunction works like this:

 f Compares the second parameter passed to it (via _2) with an unsigned type

 f If the types are equal, makes the first parameter passed to it (via _1) unsigned and
returns that type

 f Otherwise, compares the second parameter passed to it (via _2) with a constant type

 f If the types are equal, makes the first parameter passed to it (via _1) constant and
returns that type

 f Otherwise, returns the first parameter passed to it (via _1)

We need to be very careful while constructing this metafunction. Additional care should be
taken so as to not call ::type at the end of it:

>::type binary_operator_t; // INCORRECT!

Chapter 8

221

If we call ::type, the compiler will attempt to evaluate the binary operator at this point and
this will lead to a compilation error. In pseudo code, such an attempt would look like this:

binary_operator_t foo;
// Attempt to call binary_operator_t::operator() without parameters,
// when it has version only with two parameters
foo();

There's more...
Working with metafunctions requires some practice. Even your humble servant cannot write
some functions correctly at the first attempt (second and third attempts are also not good
though). Do not be afraid to experiment!

The Boost.MPL library is not a part of C++11 and does not use C++11 features, but it can
be used with C++11 variadic templates:

template <class... T>
struct vt_example {
 typedef typename boost::mpl::vector<T...> type;
};

BOOST_STATIC_ASSERT((boost::is_same<
 boost::mpl::at_c<vt_example<int, char, short>::type, 0>::type,
 int
>::value));

As always, metafunctions won't add a single instruction to the resulting binary file and do not
make performance worse. However, by using them you can make your code more tuned to a
specific situation.

See also
 f Read this chapter from the beginning to get more simple examples of Boost.MPL usage

 f See Chapter 4, Compile-time Tricks, especially the Selecting an optimal operator for a
template parameter recipe, which contains code similar to the binary_operator_t
metafunction

 f The official documentation for Boost.MPL has more examples and a full table of
contents at http://www.boost.org/doc/libs/1_53_0/libs/mpl/doc/
index.html

Metaprogramming

222

Getting a function's result type at
compile time

Many features were added to C++11 to simplify the metaprogramming. One such feature
is the alternative function syntax. It allows deducing the result type of a template function.
Here is an example:

template <class T1, class T2>
auto my_function_cpp11(const T1& v1, const T2& v2)
 -> decltype(v1 + v2)
{
 return v1 + v2;
}

It allows us to write generic functions more easily and work in difficult situations:

#include <cassert>
struct s1 {};
struct s2 {};
struct s3 {};

inline s3 operator + (const s1& /*v1*/, const s2& /*v2*/) {
 return s3();
}

inline s3 operator + (const s2& /*v1*/, const s1& /*v2*/) {
 return s3();
}

int main() {
 s1 v1;
 s2 v2;
 my_function_cpp11(v1, v2);
 my_function_cpp11(v1, v2);
 assert(my_function_cpp11('\0', 1) == 1);
}

But Boost has a lot of functions like these and it does not require C++11 to work.

How is that possible and how can we make a C++03 version of the
my_function_cpp11 function?

Getting ready
A basic knowledge of C++ and templates is required for this recipe.

Chapter 8

223

How to do it...
C++11 greatly simplifies metaprogramming. A lot of code must be written in C++03 to make
something close to the alternative functions syntax.

1. We'll need to include the following header:
#include <boost/type_traits/common_type.hpp>

2. Now we need to make a metafunction in the result_of namespace for any types:
namespace result_of {

 template <class T1, class T2>
 struct my_function_cpp03 {
 typedef typename boost::common_type<T1, T2>::type type;
 };

3. And specialize it for types s1, and s2:
 template <>
 struct my_function_cpp03<s1, s2> {
 typedef s3 type;
 };

 template <>
 struct my_function_cpp03<s2, s1> {
 typedef s3 type;
 };
} // namespace result_of

4. Now we are ready to write the my_function_cpp03 function:

template <class T1, class T2>
inline typename result_of::my_function_cpp03<T1, T2>::type
 my_function_cpp03(const T1& v1, const T2& v2)
{
 return v1 + v2;
}

That's it! Now we can use this function almost like a C++11 one:

 s1 v1;
 s2 v2;

 my_function_cpp03(v1, v2);
 my_function_cpp03(v2, v1);
 assert(my_function_cpp03('\0', 1) == 1);

Metaprogramming

224

How it works...
The main idea of this recipe is that we can make a special metafunction that will deduce
the resulting type. Such a technique can be seen all through the Boost libraries, for example,
in the Boost.Variants implementation of boost::get<> or in almost any function from
Boost.Fusion.

Now, let's move through this step by step. The result_of namespace is just a kind of
tradition, but you can use your own and it won't matter. The boost::common_type<>
metafunction deduces a type common to several types, so we use it as a general case.
We also added two template specializations of the my_function_cpp03 structures
for the s1 and s2 types.

The disadvantage of writing metafunctions in C++03 is that
sometimes we are required to write a lot of code. Compare the
amount of code for my_function_cpp11 and my_function_
cpp03 including the result_of namespace to see the difference.

When the metafunction is ready, we can deduce the resulting type without C++11, so writing
my_function_cpp03 will be as easy as a pie:

template <class T1, class T2>
inline typename result_of::my_function_cpp03<T1, T2>::type
 my_function_cpp03(const T1& v1, const T2& v2)
{
 return v1 + v2;
}

There's more...
This technique does not add runtime overhead but it may slow down compilation a little bit.
You can use it with C++11 compilers as well.

See also
 f The recipes Enabling the usage of templated functions for integral types, Disabling

templated functions' usage for real types, and Selecting an optimal operator for a
template parameter from Chapter 4, Compile-time Tricks, will give you much more
information about Boost.TypeTraits and metaprogramming.

 f Consider the official documentation of Boost.Typetraits for more information
about ready metafunctions at http://www.boost.org/doc/libs/1_53_0/
libs/type_traits/doc/html/index.html

Chapter 8

225

Making a higher-order metafunction
Functions that accept other functions as an input parameter or functions that return
other functions are called higher-order functions. For example, the following functions
are higher-order:

function_t higher_order_function1();
void higher_order_function2(function_t f);
function_t higher_order_function3(function_t f);

We have already seen higher-order metafunctions in the recipes Using type "vector of types"
and Manipulating a vector of types from this chapter, where we used boost::transform.

In this recipe, we'll try to make our own higher-order metafunction named coalesce,
which accepts two types and two metafunctions. The coalesce metafunction applies
the first type-parameter to the first metafunction and compares the resulting type
with the boost::mpl::false_ type metafunction. If the resulting type is the
boost::mpl::false_ type metafunction, it returns the result of applying the second
type-parameter to the second metafunction, otherwise, it returns the first result type:

template <class Param1, class Param2, class Func1, class Func2>
struct coalesce;

Getting ready
This recipe (and chapter) is a tricky one. Reading this chapter from the beginning is
highly recommended.

How to do it...
The Boost.MPL metafunctions are actually structures, which can be easily passed as
a template parameter. The hard part is to do it correctly.

1. We'll need the following headers to write a higher-order metafunction:
#include <boost/mpl/apply.hpp>
#include <boost/mpl/if.hpp>
#include <boost/type_traits/is_same.hpp>

2. The next step is to evaluate our functions:
template <class Param1, class Param2, class Func1, class Func2>
struct coalesce {
 typedef typename boost::mpl::apply<Func1, Param1>::type type1;
 typedef typename boost::mpl::apply<Func2, Param2>::type type2;

Metaprogramming

226

3. Now we need to choose the correct result type:

 typedef typename boost::mpl::if_<
 boost::is_same< boost::mpl::false_, type1>,
 type2,
 type1
 >::type type;
};

That's it! we have completed a higher-order metafunction! Now we can use it,
just like that:

#include <boost/static_assert.hpp>
#include <boost/mpl/not.hpp>
using boost::mpl::_1;
using boost::mpl::_2;

typedef coalesce<
 boost::mpl::true_,
 boost::mpl::true_,
 boost::mpl::not_<_1>,
 boost::mpl::not_<_1>
>::type res1_t;
BOOST_STATIC_ASSERT((!res1_t::value));

typedef coalesce<
 boost::mpl::true_,
 boost::mpl::false_,
 boost::mpl::not_<_1>,
 boost::mpl::not_<_1>
>::type res2_t;
BOOST_STATIC_ASSERT((res2_t::value));

How it works...
The main problem with writing the higher-order metafunctions is taking care of the
placeholders. That's why we should not call Func1<Param1>::type directly. Instead,
we shall use the boost::apply metafunction, which accepts one function and up to five
parameters that will be passed to this function.

You can configure boost::mpl::apply to accept even
more parameters, defining the BOOST_MPL_LIMIT_
METAFUNCTION_ARITY macro to the required amount of
parameters, for example, to 6.

Chapter 8

227

There's more...
C++11 has nothing close to the Boost.MPL library to apply a metafunction.

See also
 f See the official documentation, especially the Tutorial section, for more information

about Boost.MPL at http://www.boost.org/doc/libs/1_53_0/libs/mpl/
doc/index.html

Evaluating metafunctions lazily
Lazy evaluation means that the function won't be called until we really need its result.
Knowledge of this recipe is highly recommended for writing good metafunctions.
The importance of lazy evaluation will be shown in the following example.

Imagine that we are writing a metafunction that accepts a function, a parameter, and a
condition. The resulting type of that function must be a fallback type if the condition
is false otherwise the result will be as follows:

struct fallback;

template <
 class Func,
 class Param,
 class Cond,
 class Fallback = fallback>
struct apply_if;

And the preceding code is the place where we cannot live without lazy evaluation.

Getting ready
Reading Chapter 4, Compile-time Tricks, is highly recommended. However, a good knowledge
of metaprogramming should be enough.

How to do it...
We will see how this recipe is essential for writing good metafunctions:

1. We'll need the following headers:
#include <boost/mpl/apply.hpp>
#include <boost/mpl/eval_if.hpp>
#include <boost/mpl/identity.hpp>

Metaprogramming

228

2. The beginning of the function is simple:
template <class Func, class Param, class Cond, class Fallback>
struct apply_if {
 typedef typename boost::mpl::apply<
 Cond, Param
 >::type condition_t;

3. But we should be careful here:
 typedef boost::mpl::apply<Func, Param> applied_type;

4. Additional care must be taken when evaluating an expression:

 typedef typename boost::mpl::eval_if_c<
 condition_t::value,
 applied_type,
 boost::mpl::identity<Fallback>
 >::type type;
};

That's it! Now we are free to use it like this:
#include <boost/static_assert.hpp>
#include <boost/type_traits/is_integral.hpp>
#include <boost/type_traits/make_unsigned.hpp>
#include <boost/type_traits/is_same.hpp>

using boost::mpl::_1;
using boost::mpl::_2;

typedef apply_if<
 boost::make_unsigned<_1>,
 int,
 boost::is_integral<_1>
>::type res1_t;
BOOST_STATIC_ASSERT((
 boost::is_same<res1_t, unsigned int>::value
));

typedef apply_if<
 boost::make_unsigned<_1>,
 float,
 boost::is_integral<_1>
>::type res2_t;
BOOST_STATIC_ASSERT((
 boost::is_same<res2_t, fallback>::value
));

Chapter 8

229

How it works...
The main idea of this recipe is that we should not execute the metafunction if the condition
is false. Because when the condition is false, there is a chance that the metafunction for
that type won't work:

// will fail with static assert somewhere deep in implementation
// of boost::make_unsigned<_1> if we won't be evaluating function
// lazy.
typedef apply_if<
 boost::make_unsigned<_1>,
 float,
 boost::is_integral<_1>
>::type res2_t;
BOOST_STATIC_ASSERT((
 boost::is_same<res2_t, fallback>::value
));

So, how do we evaluate a metafunction lazily?

The compiler won't look inside the metafunction if there is no access to the metafunction's
internal types or values. In other words, the compiler will try to compile the metafunction when
we try to get one of its members via ::. This can be a call to ::type or ::value. That is
what an incorrect version of apply_if looks like:

template <class Func, class Param, class Cond, class Fallback>
struct apply_if {
 typedef boost::mpl::apply<Cond, Param> condition_t;

 // Incorrect, metafunction is evaluated when `::type` called
 typedef typename boost::mpl::apply<Func, Param>::type applied_type;

 typedef typename boost::mpl::if_c<
 condition_t::value,
 applied_type,
 boost::mpl::identity<Fallback>
 >::type type;
};

This differs from our example, where we did not call ::type at step 3 and implemented
step 4 using eval_if_c, which calls ::type only for one of its parameters. The
boost::mpl::eval_if_c metafunction is implemented like this:

template<bool C, typename F1, typename F2>
struct eval_if_c {
 typedef typename if_c<C,F1,F2>::type f_;
 typedef typename f_::type type;
};

Metaprogramming

230

Because boost::mpl::eval_if_c calls ::type for a success condition and
fallback may have no ::type, we were required to wrap fallback into the
boost::mpl::identity. boost::mpl::identity class. This class is a very
simple but useful structure that returns its template parameter via a ::type call:

template <class T>
struct identity {
 typedef T type;
};

There's more...
As we previously mentioned, C++11 has no classes of Boost.MPL, but we can use
std::common_type<T> with a single argument just like boost::mpl::identity<T>.

Just as always, metafunctions do not add a single line to the output binary file. So you can
use metafunctions as many times as you want. The more you do at compile-time, the less will
remain for runtime.

See also
 f The boost::mpl::identity type can be used to disable Argument Dependent

Lookup (ADL) for template functions. See the sources of boost::implicit_cast
in the <boost/implicit_cast.hpp> header.

 f Reading this chapter from the beginning and the official documentation for Boost.
MPL may help: http://www.boost.org/doc/libs/1_53_0/libs/mpl/doc/
index.html

Converting all the tuple elements to strings
This recipe and the next one are devoted to a mix of compile time and runtime features. We'll
be using the Boost.Fusion library to see what it can do.

Remember that we were talking about tuples and arrays in the first chapter. Now we want to
write a single function that can stream elements of tuples and arrays to strings.

=
)

B
=
I 9

0 _ 0
“=)” “B=|” “Nine” “o_o”

Chapter 8

231

Getting ready
You should be aware of the boost::tuple and boost::array classes and of the
boost::lexical_cast function.

How to do it...
We already know almost all the functions and classes that will be used in this recipe.
We just need to gather all of them together.

1. We need to write a functor that converts any type to a string:
#include <boost/lexical_cast.hpp>
#include <boost/noncopyable.hpp>

struct stringize_functor: boost::noncopyable {
private:
 std::string& result;

public:
 explicit stringize_functor(std::string& res)
 : result(res)
 {}

 template <class T>
 void operator()(const T& v) const {
 result += boost::lexical_cast<std::string>(v);
 }
};

2. And this is the tricky part of the code:
#include <boost/fusion/include/for_each.hpp>

template <class Sequence>
std::string stringize(const Sequence& seq) {
 std::string result;
 boost::fusion::for_each(seq, stringize_functor(result));
 return result;
}

3. That's all! Now we can convert anything we want to a string:

struct cat{};

std::ostream& operator << (std::ostream& os, const cat&) {

Metaprogramming

232

 return os << "Meow! ";
}

#include <iostream>
#include <boost/fusion/adapted/boost_tuple.hpp>
#include <boost/fusion/adapted/std_pair.hpp>
#include <boost/fusion/adapted/boost_array.hpp>

int main() {
 boost::fusion::vector<cat, int, std::string> tup1(cat(), 0, "_0");
 boost::tuple<cat, int, std::string> tup2(cat(), 0, "_0");
 std::pair<cat, cat> cats;
 boost::array<cat, 10> many_cats;

 std::cout << stringize(tup1) << '\n'
 << stringize(tup2) << '\n'
 << stringize(cats) << '\n'
 << stringize(many_cats) << '\n';
}

The preceding example will output the following:

Meow! 0_0

Meow! 0_0

Meow! Meow!

Meow! Meow! Meow! Meow! Meow! Meow! Meow! Meow! Meow! Meow!

How it works...
The main problem with the stringize function is that neither boost::tuple nor
std::pair have begin() or end() methods, so we cannot call std::for_each. And this
is where Boost.Fusion steps in.

The Boost.Fusion library contains lots of terrific algorithms that can manipulate structures
at compile time.

The boost::fusion::for_each function iterates through elements in sequence and
applies a functor to each of the elements.

Note that we have included:

#include <boost/fusion/adapted/boost_tuple.hpp>
#include <boost/fusion/adapted/std_pair.hpp>
#include <boost/fusion/adapted/boost_array.hpp>

Chapter 8

233

This is required because, by default, Boost.Fusion works only with its own classes.
 Boost.Fusion has its own tuple class, boost::fusion::vector, which is quite
close to boost::tuple:

#include <boost/tuple/tuple.hpp>
#include <string>
#include <cassert>

void tuple_example() {
 boost::tuple<int, int, std::string> tup(1, 2, "Meow");
 assert(boost::get<0>(tup) == 1);
 assert(boost::get<2>(tup) == "Meow");
}

#include <boost/fusion/include/vector.hpp>
#include <boost/fusion/include/at_c.hpp>

void fusion_tuple_example() {
 boost::fusion::vector<int, int, std::string> tup(1, 2, "Meow");
 assert(boost::fusion::at_c<0>(tup) == 1);
 assert(boost::fusion::at_c<2>(tup) == "Meow");
}

But boost::fusion::vector is not as simple as boost::tuple. We'll see the difference
in the Splitting tuples recipe.

There's more...
There is one fundamental difference between boost::fusion::for_each and
std::for_each. The std::for_each function contains a loop inside it and determinates
at runtime, how many iterations will be done. However, boost::fusion::for_each knows
the iteration count at compile time and fully unrolls the loop, generating the following code for
stringize(tup2):

 std::string result;

 // Instead of
 // boost::fusion::for_each(seq, stringize_functor(result));
 // there'll be the following:
 {
 stringize_functor functor(result);
 functor(boost::fusion::at_c<0>(tup2));
 functor(boost::fusion::at_c<1>(tup2));
 functor(boost::fusion::at_c<2>(tup2));
 }
 return result;

Metaprogramming

234

C++11 contains no Boost.Fusion classes. All the methods of Boost.Fusion are
very effective. They do as much as possible at compile time and have some very
advanced optimizations.

See also
 f The Splitting tuples recipe will give more information about the true power of

Boost.Fusion

 f The official documentation for Boost.Fusion contains some interesting examples
and full references which can be found at http://www.boost.org/doc/
libs/1_53_0/libs/fusion/doc/html/index.html

Splitting tuples
This recipe will show a tiny piece of the Boost.Fusion library's abilities. We'll be splitting a
single tuple into two tuples, one with arithmetic types and the other with all the other types.

9
0 _ 0

=
) 1.23

B
=
I

1.23 9

=
)

B
=
I

0 _ 0

Getting ready
This recipe requires knowledge of Boost.MPL, placeholders, and Boost.Tuple. Read
the following recipes from Chapter 1, Starting to Write Your Application, Combining multiple
values into one for more information about tuples and Reordering parameters of a function
for information about placeholders. Reading this chapter from the beginning is recommended.

Chapter 8

235

How to do it...
This is possibly one of the hardest recipes in this chapter. Result types will be determined
at compile time and values for those types will be filled at runtime.

1. To implement that mix, we'll need the following headers:
#include <boost/fusion/include/remove_if.hpp>
#include <boost/type_traits/is_arithmetic.hpp>

2. Now we are ready to make a function that returns non-arithmetic types:
template <class Sequence>
typename boost::fusion::result_of::remove_if<
 const Sequence,
 boost::is_arithmetic<boost::mpl::_1>
>::type get_nonarithmetics(const Sequence& seq)
{
 return boost::fusion::remove_if<
 boost::is_arithmetic<boost::mpl::_1>
 >(seq);
}

3. And a function that returns arithmetic types:

template <class Sequence>
typename boost::fusion::result_of::remove_if<
 const Sequence,
 boost::mpl::not_< boost::is_arithmetic<boost::mpl::_1> >
>::type get_arithmetics(const Sequence& seq)
{
 return boost::fusion::remove_if<
 boost::mpl::not_< boost::is_arithmetic<boost::mpl::_1> >
 >(seq);
}

That's it! Now we are capable of doing the following tasks:

#include <boost/fusion/include/vector.hpp>
#include <cassert>
#include <boost/fusion/include/at_c.hpp>

int main() {
 typedef boost::fusion::vector<
 int, boost::blank, boost::blank, float
 > tup1_t;

Metaprogramming

236

 tup1_t tup1(8, boost::blank(), boost::blank(), 0.0);
 boost::fusion::vector<boost::blank, boost::blank> res_na
 = get_nonarithmetics(tup1);

 boost::fusion::vector<int, float> res_a = get_arithmetics(tup1);
 assert(boost::fusion::at_c<0>(res_a) == 8);
}

How it works...
The idea behind Boost.Fusion is that the compiler knows the structure layout at compile
time and whatever the compiler knows at compile time, we can change at the same time.
Boost.Fusion allows us to modify different sequences, add and remove fields, and change
field types. This is what we did in step 2 and step 3; we removed the non-required fields from
the tuple.

Now let's take a very close look at get_arithmetics. First of all its result type is deduced
using the following construction:

typename boost::fusion::result_of::remove_if<
 const Sequence,
 boost::is_arithmetic<boost::mpl::_1>
>::type

This should be familiar to us. We saw something like this in the Getting a function's result type
at compile time recipe in this chapter. The Boost.MPL placeholder boost::mpl::_1 should
also be familiar.

Now let's move inside the function and we'll see the following code:

 return boost::fusion::remove_if<
 boost::is_arithmetic<boost::mpl::_1>
 >(seq);

Remember that the compiler knows all the types of seq at compile time. This means
that Boost.Fusion can apply metafunctions to different elements of seq and get the
metafunction results for them. This also means that Boost.Fusion will be capable of
copying required fields from the old structure to the new one.

However, Boost.Fusion tries not to copy fields if at all possible.

The code in step 3 is very similar to the code in step 2, but it has a negated predicate for
removing non-required types.

Our functions can be used with any type supported by Boost.Fusion and not just with
boost::fusion::vector.

Chapter 8

237

There's more...
You can use Boost.MPL functions for the Boost.Fusion containers. You just need to
include #include <boost/fusion/include/mpl.hpp>:

#include <boost/fusion/include/mpl.hpp>
#include <boost/mpl/transform.hpp>
#include <boost/type_traits/remove_const.hpp>

template <class Sequence>
struct make_nonconst: boost::mpl::transform<
 Sequence,
 boost::remove_const<boost::mpl::_1>
> {};

typedef boost::fusion::vector<
 const int, const boost::blank, boost::blank
> type1;

typedef make_nonconst<type1>::type nc_type;

BOOST_STATIC_ASSERT((boost::is_same<
 boost::fusion::result_of::value_at_c<nc_type, 0>::type,
 int
>::value));

We have used boost::fusion::result_of::value_at_c
instead of boost::fusion::result_of::at_c because
boost::fusion::result_of::at_c returns the exact type that
will be used as a return type in the boost::fusion::at_c call,
which is a reference. boost::fusion::result_of::value_
at_c returns type without a reference.

The Boost.Fusion and Boost.MPL libraries are not a part of C++11. Boost.Fusion is
extremely fast. It has many optimizations. All the metafunctions that you use with it will be
evaluated at compile time.

It is worth mentioning that we saw only a tiny part of the Boost.Fusion abilities. A separate
book could be written about it.

Metaprogramming

238

See also
 f Good tutorials and full documentation for Boost.Fusion is available at the Boost

site http://www.boost.org/doc/libs/1_53_0/libs/fusion/doc/html/
index.html

 f You may also wish to see the official documentation for Boost.MPL at
http://www.boost.org/doc/libs/1_53_0/libs/mpl/doc/index.html

Containers

In this chapter we will cover:

 f Comparing strings in an ultra-fast manner

 f Using an unordered set and map

 f Making a map, where value is also a key

 f Using multi-index containers

 f Getting the benefits of single-linked list and memory pool

 f Using flat associative containers

Introduction
This chapter is devoted to the Boost containers and the things directly connected with
them. This chapter provides information about the Boost classes that can be used in every
day programming, and that will make your code much faster, and the development of new
applications easier.

Containers differ not only by functionality, but also by the efficiency (complexity) of some of
their members. The knowledge about complexities is essential for writing fast applications.
This chapter doesn't just introduce some new containers to you; it gives you tips on when
and when not to use a specific type of container or its methods.

So, let's begin!

9

Containers

240

Comparing strings in an ultra-fast manner
It is a common task to manipulate strings. Here we'll see how the operation of string
comparison can be done quickly using some simple tricks. This recipe is a trampoline
for the next one, where the techniques described here will be used to achieve constant
time-complexity searches.

So, we need to make a class that is capable of quickly comparing strings for equality.
We'll make a template function to measure the speed of comparison:

#include <string>

template <class T>
std::size_t test_default() {
 // Constants
 const std::size_t ii_max = 20000000;
 const std::string s(
 "Long long long string that "
 "will be used in tests to compare "
 "speed of equality comparisons."
);

 // Making some data, that will be
 // used in comparisons
 const T data[] = {
 T(s),
 T(s + s),
 T(s + ". Whooohooo"),
 T(std::string(""))
 };

 const std::size_t data_dimensions
 = sizeof(data) / sizeof(data[0]);
 std::size_t matches = 0u;
 for (std::size_t ii = 0; ii < ii_max; ++ii) {
 for (std::size_t i = 0; i < data_dimensions; ++i) {
 for (std::size_t j = 0; j < data_dimensions; ++j) {
 if (data[i] == data[j]) {
 ++ matches;
 }
 }
 }
 }

 return matches;
}

Chapter 9

241

Getting ready
This recipe requires only the basic knowledge of STL and C++.

How to do it...
We'll make std::string a public field in our own class, and add all the comparison code to
our class, without writing helper methods to work with stored std::string, as shown in the
following steps:

1. To do so, we'll need the following header:
#include <boost/functional/hash.hpp>

2. Now we can create our fast comparison class:
struct string_hash_fast {
 typedef std::size_t comp_type;

 const comp_type comparison_;
 const std::string str_;

 explicit string_hash_fast(const std::string& s)
 : comparison_(
 boost::hash<std::string>()(s)
)
 , str_(s)
 {}
};

3. Do not forget to define the equality comparison operators:
inline bool operator == (const string_hash_fast& s1,
 const string_hash_fast& s2)
{
 return s1.comparison_ == s2.comparison_
 && s1.str_ == s2.str_;
}

inline bool operator != (const string_hash_fast& s1,
 const string_hash_fast& s2)
{
 return !(s1 == s2);
}

Containers

242

4. And, that's it! Now we can run our tests and see the result using the following code:
#include <iostream>
int main(int argc, char* argv[]) {
 if (argc < 2) {
 assert(
 test_default<string_hash_fast>()
 ==
 test_default<std::string>()
);
 return 0;
 }

 switch (argv[1][0]) {
 case 'h':
 std::cout << "HASH matched: "
 << test_default<string_hash_fast>();
 break;

 case 's':
 std::cout << "STD matched: "
 << test_default<std::string>();
 break;

 default:
 assert(false);
 return -2;
 }
}

How it works...
The comparison of strings is slow because we are required to compare all the characters of
the string one-by-one, if the strings are of equal length. Instead of doing that, we replace the
comparison of strings with the comparison of integers. This is done via the hash function—the
function that makes some short-fixed length representation of the string. Let us talk about
the hash values on apples. Imagine that you have two apples with labels, as shown in the
following diagram, and you wish to check that the apples are of the same cultivar. The simplest
way to compare those apples is to compare them by labels. Otherwise you'll lose a lot of time
comparing the apples based on the color, size, form, and other parameters. A hash is something
like a label that reflects the value of the object.

Chapter 9

243

?

! != BA

?

=

B

A

So, let's move step-by-step.

In step 1, we include the header file that contains the definitions of the hash functions. In step
2, we declare our new string class that contains str_, which is the original value of the string
and comparison_, which is the computed hash value. Note the construction:

boost::hash<std::string>()(s)

Here, boost::hash<std::string> is a structure, a functional object just like
std::negate<>. That is why we need the first parenthesis—we construct that functional
object. The second parenthesis with s inside is a call to std::size_t operator()(const
std::string& s), which will compute the hash value.

Now take a look at step 3 where we define operator==. Look at the following code:

return s1.comparison_ == s2.comparison_ && s1.str_ == s2.str_;

And, take additional care about the second part of the expression. The hashing operation
loses information, which means that there is a possibility that more than one string produces
exactly the same hash value. It means that if the hashes mismatch, there is a 100 percent
guarantee that the strings will not match, otherwise we are required to compare the strings
using the traditional methods.

Well, it's time to compare numbers. If we measure the execution time using the default
comparison method, it will give us 819 milliseconds; however, our hashing comparison works
almost two times faster and finishes in 475 milliseconds.

There's more...
C++11 has the hash functional object, you may find it in the <functional> header in the
std:: namespace. You will know that the default Boost implementation of hash does not
allocate additional memory and also does not have virtual functions. Hashing in Boost and
STL is fast and reliable.

Containers

244

You can also specialize hashing for your own types. In Boost, it is done via specializing the
hash_value function in the namespace of a custom type:

// Must be in namespace of string_hash_fast class
inline std::size_t hash_value(const string_hash_fast& v) {
 return v.comparison_;
}

This is different from STL specialization of std::hash, where you are required to make a
template specialization of the hash<> structure in the std:: namespace.

Hashing in Boost is defined for all the basic type arrays (such as int, float, double,
and char), and for all the STL containers including std::array, std::tuple, and
std::type_index. Some libraries also provide hash specializations, for example, Boost.
Variant can hash any boost::variant class.

See also
 f Read the Using an unordered set and map recipe for more information about the

hash functions' usage.

 f The official documentation of Boost.Functional/Hash will tell you how to
combine multiple hashes and provides more examples. Read about it at http://
www.boost.org/doc/libs/1_53_0/doc/html/hash.html.

Using an unordered set and map
In the previous recipe, we saw how string comparison can be optimized using hashing. After
reading it, the following question may arise, "Can we make a container that will cache hashed
values to use faster comparison?".

The answer is yes, and we can do much more. We can achieve almost constant time
complexities for search, insertion, and removal of elements.

Getting ready
Basic knowledge of C++ and STL containers is required. Reading the previous recipe will
also help.

Chapter 9

245

How to do it...
This will be the simplest of all recipes:

1. All you need to do is just include the <boost/unordered_map.hpp> header,
if we wish to use maps or the <boost/unordered_set.hpp> header, if we wish
to use sets.

2. Now you are free to use boost::unordered_map, instead of std::map and
boost::unordered_set instead of std::set:
#include <boost/unordered_set.hpp>
void example() {
 boost::unordered_set<std::string> strings;

 strings.insert("This");
 strings.insert("is");
 strings.insert("an");
 strings.insert("example");

 assert(strings.find("is") != strings.cend());
}

How it works...
Unordered containers store values and remember the hash of each value. Now if you wish to
find a value in them, they will compute the hash of that value and search for that hash in the
container. After the hash is found, the containers check for equality between the found value and
the searched value. Then, the iterator to the value, or to the end of the container is returned.

Because the container can search for a constant width integral hash value, it may use
some optimizations and algorithms suitable only for integers. Those algorithms guarantee
constant search complexity O(1), when traditional std::set and std::map provide worse
complexity O(log(N)), where N is the number of elements in the container. This leads us to a
situation where the more elements in traditional std::set or std::map, the slower it works.
However, the performance of unordered containers does not depend on the element count.

Such good performance never comes free of cost. In unordered containers, values are
unordered (you are not surprised, are you?). It means that if we'll be outputting elements
of containers from begin() to end(), as follows:

template <class T>
void output_example() {
 T strings;

Containers

246

 strings.insert("CZ"); strings.insert("CD");
 strings.insert("A"); strings.insert("B");
 std::copy(
 strings.begin(),
 strings.end(),
 std::ostream_iterator<std::string>(std::cout, " ")
);
}

We'll get the following output for std::set and boost::unordered_set:

boost::unordered_set<std::string> : B A CD CZ

std::set<std::string> : A B CD CZ

So, how much does the performance differ? Have a look at the following output:

$ TIME="%E" time ./unordered s

STD matched: 20000000

0:31.39

$ TIME="%E" time ./unordered h

HASH matched: 20000000

0:26.93

The performance was measured using the following code:

template <class T>
std::size_t test_default() {
 // Constants
 const std::size_t ii_max = 20000000;
 const std::string s("Test string");

 T map;

 for (std::size_t ii = 0; ii < ii_max; ++ii) {
 map[s + boost::lexical_cast<std::string>(ii)] = ii;
 }

 // Inserting once more
 for (std::size_t ii = 0; ii < ii_max; ++ii) {
 map[s + boost::lexical_cast<std::string>(ii)] = ii;
 }

Chapter 9

247

 return map.size();
}

Note that the code contains a lot of string constructions, so it is not 100 percent correct to
measure the speedup using this test. It is here to show that unordered containers are usually
faster than ordered ones.

Sometimes a task might arise where we need to use a user-defined type in
unordered containers:

struct my_type {
 int val1_;
 std::string val2_;
};

To do that, we need to write a comparison operator for that type:

inline bool operator == (const my_type& v1, const my_type& v2) {
 return v1.val1_ == v2.val1_ && v1.val2_ == v2.val2_;}

Now, specialize the hashing function for that type. If the type consists of multiple fields, we
usually just need to combine the hashes of all the fields that participate in equal comparison:

std::size_t hash_value(const my_type& v) {
 std::size_t ret = 0u;

 boost::hash_combine(ret, v.val1_);
 boost::hash_combine(ret, v.val2_);
 return ret;
}

It is highly recommended to combine hashes using the
boost::hash_combine function.

There's more...
Multiversions of containers are also available: boost::unordered_multiset is defined
in the <boost/unordered_set.hpp> header, and boost::unordered_multimap
is defined in the <boost/unordered_map.hpp> header. Just like in the case of STL,
multiversions of containers are capable of storing multiple equal key values.

All the unordered containers allow you to specify your own hashing functor, instead of the
default boost::hash. They also allow you to specialize your own equal comparison functor,
instead of the default std::equal_to.

Containers

248

C++11 has all the unordered containers from Boost. You may find them in the headers:
<unordered_set> and <unordered_map>, in the std:: namespace, instead of boost::.
The Boost and the STL versions have the same performance, and must work in the same way.
However, Boost's unordered containers are available even on C++03 compilers, and make use
of the rvalue reference emulation of Boost.Move, so you can use those containers for the
move-only classes in C++03.

C++11 has no hash_combine function, so you will need to write your own:

template <class T>
inline void hash_combine(std::size_t& seed, const T& v)
{
 std::hash<T> hasher;
 seed ^= hasher(v) + 0x9e3779b9 + (seed<<6) + (seed>>2);
}

Or just use boost::hash_combine.

See also
 f The recipe Using the C++11 move emulation in Chapter 1, Starting to Write Your

Application, for more details on rvalue reference emulation of Boost.Move

 f More information about the unordered containers is available on the official site at
http://www.boost.org/doc/libs/1_53_0/doc/html/unordered.html

 f More information about combining hashes and computing hashes for ranges is
available at http://www.boost.org/doc/libs/1_53_0/doc/html/hash.
html

Making a map, where value is also a key
Several times in a year, we need something that can store and index a pair of values.
Moreover, we need to get the first part of the pair using the second, and get the second part
using the first. Confused? Let me show you an example. We are creating a vocabulary class,
wherein when the users put values into it, the class must return identifiers and when the
users put identifiers into it, the class must return values.

To be more practical, users will be entering login names into our vocabulary, and wish to get the
unique identifier of a person. They will also wish to get all the persons' names using identifiers.

Let's see how it can be implemented using Boost.

Getting ready
Basic knowledge of STL and templates are required for this recipe.

Chapter 9

249

How to do it...
This recipe is about the abilities of the Boost.Bimap library. Let's see how it can be used to
implement this task:

1. We'll need the following includes:
#include <boost/bimap.hpp>
#include <boost/bimap/multiset_of.hpp>

2. Now we are ready to make our vocabulary structure:
 typedef boost::bimap<
 std::string,
 boost::bimaps::multiset_of<std::size_t>
 > name_id_type;

 name_id_type name_id;

3. It can be filled using the following syntax:
 // Inserting keys <-> values
 name_id.insert(name_id_type::value_type(
 "John Snow", 1
));

 name_id.insert(name_id_type::value_type(
 "Vasya Pupkin", 2
));

 name_id.insert(name_id_type::value_type(
 "Antony Polukhin", 3
));

 // Same person as "Antony Polukhin"
 name_id.insert(name_id_type::value_type(
 "Anton Polukhin", 3
));

4. We can work with the left part of bimap just like with a map:
 std::cout << "Left:\n";
 typedef name_id_type::left_const_iterator
 left_const_iterator;
 for (left_const_iterator it = name_id.left.begin(),
 iend = name_id.left.end();
 it!= iend;
 ++it)

Containers

250

 {
 std::cout << it->first << " <=> " << it->second
 << '\n';
 }

5. The right part of bimap is almost the same as the left:
 std::cout << "\nRight:\n";
 typedef name_id_type::right_const_iterator
 right_const_iterator;
 for (right_const_iterator it = name_id.right.begin(),
 iend = name_id.right.end();
 it!= iend;
 ++it)
 {
 std::cout << it->first << " <=> " << it->second
 << '\n';
 }

6. We also need to ensure that there is such a person in the vocabulary:
 assert(
 name_id.find(name_id_type::value_type(
 "Anton Polukhin", 3
)) != name_id.end()
);

7. That's it. Now, if we put all the code (except includes) inside int main(), we'll get
the following output:
Left:
Anton Polukhin <=> 3
Antony Polukhin <=> 3
John Snow <=> 1
Vasya Pupkin <=> 2

Right:
1 <=> John Snow
2 <=> Vasya Pupkin
3 <=> Antony Polukhin
3 <=> Anton Polukhin

Chapter 9

251

How it works...
In step 2, we define the bimap type:

 typedef boost::bimap<
 std::string,
 boost::bimaps::multiset_of<std::size_t>
 > name_id_type;

The first template parameter tells that the first key must have type std::string, and
should work as std::set. The second template parameter tells that the second key must
have type std::size_t. Multiple first keys can have a single second key value, just like in
std::multimap.

We can specify the underlying behavior of bimap using classes from the boost::bimaps::
namespace. We can use hash map as an underlying type for the first key:

#include <boost/bimap/unordered_set_of.hpp>
#include <boost/bimap/unordered_multiset_of.hpp>

typedef boost::bimap<
 boost::bimaps::unordered_set_of<std::string>,
 boost::bimaps::unordered_multiset_of<std::size_t>
> hash_name_id_type;

When we do not specify the behavior of the key, and just specify its type, Boost.Bimap uses
boost::bimaps::set_of as a default behavior. Just like in our example, we can try to
express the following code using STL:

#include <boost/bimap/set_of.hpp>

typedef boost::bimap<
 boost::bimaps::set_of<std::string>,
 boost::bimaps::multiset_of<std::size_t>
> name_id_type;

Using STL it would look like a combination of the following two variables:

// name_id.left
std::map<std::string, std::size_t> key1;

// name_id.right
std::multimap<std::size_t, std::string> key2;

Containers

252

As we can see from the preceding comments, a call to name_id.left (in step 4) will return a
reference to something with an interface close to std::map<std::string, std::size_
t>. A call to name_id.right from step 5 will return something with an interface close to
std::multimap<std::size_t, std::string>.

In step 6, we work with a whole bimap, searching for a pair of keys, and making sure that
they are in the container.

There's more...
Unfortunately, C++11 has nothing close to Boost.Bimap. Here we have some other
bad news: Boost.Bimap does not support rvalue references, and on some compilers,
insane numbers of warnings will be shown. Refer to your compiler's documentation to get
the information about suppressing specific warnings.

The good news is that Boost.Bimap usually uses less memory than two STL containers,
and makes searches as fast as STL containers. It has no virtual function calls inside,
but does use dynamic allocations.

See also
 f The next recipe, Using multi-index containers, will give you more information about

multi-indexing, and about the Boost library that can be used instead of Boost.
Bimap

 f Read the official documentation for more examples and information about bimap at
http://www.boost.org/doc/libs/1_53_0/libs/bimap/doc/html/index.
html

Using multi-index containers
In the previous recipe, we made some kind of vocabulary, which is good when we need to
work with pairs. But, what if we need much more advanced indexing? Let's make a program
that indexes persons:

struct person {
 std::size_t id_;
 std::string name_;
 unsigned int height_;
 unsigned int weight_;
 person(std::size_t id, const std::string& name, unsigned int
 height, unsigned int weight)
 : id_(id)
 , name_(name)

Chapter 9

253

 , height_(height)
 , weight_(weight)
 {}
};

inline bool operator < (const person& p1, const person& p2) {
 return p1.name_ < p2.name_;
}

We will need a lot of indexes; for example, by name, ID, height, and weight.

Getting ready
Basic knowledge of STL containers and unordered maps is required.

How to do it...
All the indexes can be constructed and managed by a single Boost.Multiindex container.

1. To do so, we will need a lot of includes:
#include <boost/multi_index_container.hpp>
#include <boost/multi_index/ordered_index.hpp>
#include <boost/multi_index/hashed_index.hpp>
#include <boost/multi_index/identity.hpp>
#include <boost/multi_index/member.hpp>

2. The hardest part is to construct the multi-index type:
 typedef boost::multi_index::multi_index_container<
 person,
 boost::multi_index::indexed_by<
 // names are unique
 boost::multi_index::ordered_unique<
 boost::multi_index::identity<person>
 >,
 // IDs are not unique, but we do not need then
 //ordered
 boost::multi_index::hashed_non_unique<
 boost::multi_index::member<
 person, std::size_t, &person::id_
 >
 >,
 // Height may not be unique, but must be sorted
 boost::multi_index::ordered_non_unique<

Containers

254

 boost::multi_index::member<
 person, unsigned int, &person::height_
 >
 >,
 // Weight may not be unique, but must be sorted
 boost::multi_index::ordered_non_unique<
 boost::multi_index::member<
 person, unsigned int, &person::weight_
 >
 >
 > // closing for `boost::multi_index::indexed_by<
 > indexes_t;

3. Now we may insert values into our multi-index:
 indexes_t persons;

 // Inserting values
 persons.insert(person(1, "John Snow", 185, 80));
 persons.insert(person(2, "Vasya Pupkin", 165, 60));
 persons.insert(person(3, "Antony Polukhin", 183, 70));
 // Same person as "Antony Polukhin"
 persons.insert(person(3, "Anton Polukhin", 182, 70));

4. Let's construct a function for printing the index content:
template <std::size_t IndexNo, class Indexes>
void print(const Indexes& persons) {
 std::cout << IndexNo << ":\n";

 typedef typename Indexes::template nth_index<
 IndexNo
 >::type::const_iterator const_iterator_t;

 for (const_iterator_t it = persons.template
 get<IndexNo>().begin(),
 iend = persons.template get<IndexNo>().end();
 it != iend;
 ++it)
 {
 const person& v = *it;
 std::cout
 << v.name_ << ", "
 << v.id_ << ", "
 << v.height_ << ", "
 << v.weight_ << '\n'

Chapter 9

255

 ;
 }

 std::cout << '\n';
}

5. Print all the indexes as follows:
 print<0>(persons);
 print<1>(persons);
 print<2>(persons);
 print<3>(persons);

6. Some code from the previous recipe can also be used:
 assert(persons.get<1>().find(2)->name_ == "Vasya
 Pupkin");
 assert(
 persons.find(person(
 77, "Anton Polukhin", 0, 0
)) != persons.end()
);

 // Won' compile
 //assert(persons.get<0>().find("John Snow")->id_ == 1);

7. Now if we run our example, it will output the content of the indexes:

0:
Anton Polukhin, 3, 182, 70
Antony Polukhin, 3, 183, 70
John Snow, 1, 185, 80
Vasya Pupkin, 2, 165, 60

1:
John Snow, 1, 185, 80
Vasya Pupkin, 2, 165, 60
Anton Polukhin, 3, 182, 70
Antony Polukhin, 3, 183, 70

2:
Vasya Pupkin, 2, 165, 60
Anton Polukhin, 3, 182, 70
Antony Polukhin, 3, 183, 70

Containers

256

John Snow, 1, 185, 80

3:
Vasya Pupkin, 2, 165, 60
Antony Polukhin, 3, 183, 70
Anton Polukhin, 3, 182, 70
John Snow, 1, 185, 80

How it works...
The hardest part here is the construction of a multi-index type using boost::multi_
index::multi_index_container. The first template parameter is a class that we
are going to index. In our case, it is person. The second parameter is a type boost::
multi_index::indexed_by, all the indexes must be described as a template parameter
of that class.

Now, let's take a look at the first index description:

 boost::multi_index::ordered_unique<
 boost::multi_index::identity<person>
 >

The usage of the boost::multi_index::ordered_unique class means that the
index must work like std::set, and have all of its members. The boost::multi_
index::identity<person> class means that the index will use the operator < of a
person class for orderings.

The next table shows the relation between the Boost.MultiIndex types and the
STL containers:

The Boost.MultiIndex types STL containers
boost::multi_index::ordered_unique std::set

boost::multi_index::ordered_non_unique std::multiset

boost::multi_index::hashed_unique std::unordered_set

boost::multi_index::hashed_non_unique std::unordered_mutiset

boost::multi_index::sequenced std::list

Chapter 9

257

Let's take a look at the second index:
 boost::multi_index::hashed_non_unique<
 boost::multi_index::member<
 person, std::size_t, &person::id_
 >
 >

The boost::multi_index::hashed_non_unique type means that the index will
work like std::set, and boost::multi_index::member<person, std::size_t,
&person::id_> means that the index will apply the hash function only to a single member
field of the person structure, to person::id_.

The remaining indexes won't be a trouble now, so let's take a look at the usage of indexes
in the print function instead. Getting the type of iterator for a specific index is done using the
following code:

 typedef typename Indexes::template nth_index<
 IndexNo
 >::type::const_iterator const_iterator_t;

This looks slightly overcomplicated because Indexes is a template parameter. The example
would be simpler, if we could write this code in the scope of indexes_t:

 typedef indexes_t::nth_index<0>::type::const_iterator
 const_iterator_t;

The nth_index member metafunction takes a zero-based number of index to use. In our
example, index 1 is the index of IDs, index 2 is the index of heights and so on.

Now, let's take a look at how to use const_iterator_t:

 for (const_iterator_t it = persons.template
 get<IndexNo>().begin(),
 iend = persons.template get<IndexNo>().end();
 it != iend;
 ++it)
 {
 const person& v = *it;
 // ...

This can also be simplified for indexes_t being in scope:

 for (const_iterator_t it = persons.get<0>().begin(),
 iend = persons.get<0>().end();
 it != iend;
 ++it)
 {

Containers

258

 const person& v = *it;
 // ...

The function get<indexNo>() returns index. We can use that index almost like
an STL container.

There's more...
C++11 has no multi-index library. The Boost.MultiIndex library is a fast library that
uses no virtual functions. The official documentation of Boost.MultiIndex contains
performance and memory usage measures, showing that this library in most cases uses less
memory than STL-based handwritten code. Unfortunately, boost::multi_index::multi_
index_container does not support C++11 features, and also has no rvalue references
emulation using Boost.Move.

See also
 f The official documentation of Boost.MultiIndex contains tutorials, performance

measures, examples, and other Boost.Multiindex libraries' description of useful
features. Read about it at http://www.boost.org/doc/libs/1_53_0/libs/
multi_index/doc/index.html.

Getting the benefits of single-linked list and
memory pool

Nowadays, we usually use std::vector when we need nonassociative and nonordered
containers. This is recommended by Andrei Alexandrescu and Herb Sutter in the book
C++ Coding Standards, and even those users who did not read the book usually use
std::vector. Why? Well, std::list is slower, and uses much more resources than
std::vector. The std::deque container is very close to std::vector, but stores
values noncontinuously.

Everything is good until we do not need a container; however, if we need a container, erasing
and inserting elements does not invalidate iterators. Then we are forced to choose the slower
std::list.

But wait, there is a good solution in Boost for such cases!

Getting ready
Good knowledge of STL containers is required to understand the introductory part. After that,
only basic knowledge of C++ and STL containers is required.

Chapter 9

259

How to do it...
In this recipe, we'll be using two Boost libraries at the same time: Boost.Pool and
single-linked list from Boost.Container.

1. We'll need the following headers:
#include <boost/pool/pool_alloc.hpp>
#include <boost/container/slist.hpp>

2. Now we need to describe the type of our list. This can be done as shown in the
following code:
typedef boost::fast_pool_allocator<int> allocator_t;
typedef boost::container::slist<int, allocator_t> slist_t;

3. We can work with our single-linked list like with std::list. Take a look at the
function that is used to measure the speed of both the list types:
template <class ListT>
void test_lists() {
 typedef ListT list_t;

 // Inserting 1000000 zeros
 list_t list(1000000, 0);
 for (int i = 0; i < 1000; ++i) {
 list.insert(list.begin(), i);
 }

 // Searching for some value
 typedef typename list_t::iterator iterator;
 iterator it = std::find(list.begin(), list.end(), 777);
 assert(it != list.end());

 // Erasing some values
 for (int i = 0; i < 100; ++i) {
 list.pop_front();
 }

 // Iterator still valid and points to same value
 assert(it != list.end());
 assert(*it == 777);

 // Inserting more values
 for (int i = -100; i < 10; ++i) {
 list.insert(list.begin(), i);
 }

Containers

260

 // Iterator still valid and points to same value
 assert(it != list.end());
 assert(*it == 777);

 list_specific(list, it);
}

4. Features specific for each type of list are moved to list_specific functions:

void list_specific(slist_t& list, slist_t::iterator it) {
 typedef slist_t::iterator iterator;

 // Erasing element 776
 assert(*(++iterator(it)) == 776);
 assert(*it == 777);
 list.erase_after(it);
 assert(*it == 777);
 assert(*(++iterator(it)) == 775);

 // Freeing memory
 boost::singleton_pool<
 boost::pool_allocator_tag,
 sizeof(int)
 >::release_memory();
}

#include <list>
typedef std::list<int> stdlist_t;

void list_specific(stdlist_t& list, stdlist_t::iterator it)
 {
 typedef stdlist_t::iterator iterator;

 // Erasing element 776
 ++it;
 assert(*it == 776);
 it = list.erase(it);
 assert(*it == 775);
}

How it works...
When we are using std::list, we may notice a slowdown because each node of the
list needs a separate allocation. It means that usually when we insert 10 elements into
std::list, the container calls new 10 times.

Chapter 9

261

That is why we used boost::fast_pool_allocator<int> from Boost.Pool. This
allocator tries to allocate bigger blocks of memory, so that at a later stage, multiple nodes
can be constructed without any calls to allocate new ones.

The Boost.Pool library has a drawback—it uses memory for internal needs. Usually, an
additional sizeof pointer is used per element. To workaround that issue, we are using a
single linked list from Boost.Containers.

The boost::container::slist class is more compact, but its iterators can iterate only
forward. Step 3 will be trivial for those readers who are aware of STL containers, so we move
to step 4 to see some boost::container::slist specific features. Since the single-linked
list iterator could iterate only forward, traditional algorithms of insertion and deletion will take
linear time O(N). That's because when we are erasing or inserting, the previous element must
be modified to point at new elements of the list. To workaround that issue, the single-linked
list has the methods erase_after and insert_after that work for constant time O(1).
These methods insert or erase elements right after the current position of the iterator.

However, erasing and inserting values at the beginning
of single-linked lists makes no big difference.

Take a careful look at the following code:

 boost::singleton_pool<
 boost::pool_allocator_tag,
 sizeof(int)
 >::release_memory();

It is required because boost::fast_pool_allocator does not free memory, so we must
do it by hand. The Doing something at scope exit recipe from Chapter 3, Managing Resources,
will be a help in freeing Boost.Pool.

Let's take a look at the execution results to see the difference:

$TIME="Runtime=%E RAM=%MKB" time ./slist_and_pool l

std::list: Runtime=0:00.05 RAM=32440KB

$ TIME="Runtime=%E RAM=%MKB" time ./slist_and_pool s

slist_t: Runtime=0:00.02 RAM=17564KB

As we can see, slist_t uses half the memory, and is twice as fast compared to the
std::list class.

Containers

262

There's more...
C++11 has std::forward_list, which is very close to boost::containers::slist.
It also has the *_after methods, but has no size() method. They have the same
performance and neither of them have virtual functions, so these containers are fast and
reliable. However, the Boost version is also usable on C++03 compilers, and even has
support for rvalue references emulation via Boost.Move.

Pools are not part of C++11. Use the version from Boost; it is fast and does not use
virtual functions.

Guessing why boost::fast_pool_allocator does not free the
memory by itself? That's because C++03 has no stateful allocators,
so the containers are not copying and storing allocators. That makes it
impossible to implement a boost::fast_pool_allocator function
that deallocates memory by itself.

See also
 f The official documentation of Boost.Pool contains more examples and classes

to work with memory pools. Read about it at http://www.boost.org/doc/
libs/1_53_0/libs/pool/doc/html/index.html.

 f The Using flat associative containers recipe will introduce you to some more classes
from Boost.Container. You can also read the official documentation of Boost.
Container to study that library by yourself, or get full reference documentation
of its classes at http://www.boost.org/doc/libs/1_53_0/doc/html/
container.html.

 f Read about why stateful allocators may be required at http://www.boost.org/
doc/libs/1_53_0/doc/html/interprocess/allocators_containers.
html#interprocess.allocators_containers.allocator_introduction.

 f Vector vs List, and other interesting topics from Bjarne Stroustrup, the inventor of
the C++ programming language, can be found at http://channel9.msdn.com/
Events/GoingNative/GoingNative-2012/Keynote-Bjarne-Stroustrup-
Cpp11-Style.

Chapter 9

263

Using flat associative containers
After reading the previous recipe, some of the readers may start using fast pool allocators
everywhere; especially, for std::set and std::map. Well, I'm not going to stop you
from doing that, but let's at least take a look at an alternative: flat associative containers.
These containers are implemented on top of the traditional vector container and store the
values ordered.

Getting ready
Basic knowledge of STL associative containers is required.

How to do it...
The flat containers are part of the Boost.Container library. We already saw how to use
some of its containers in the previous recipes. In this recipe we'll be using a flat_set
associative container:

1. We'll need to include only a single header file:
#include <boost/container/flat_set.hpp>

2. After that, we are free to construct the flat container:
 boost::container::flat_set<int> set;

3. Reserving space for elements:
 set.reserve(4096);

4. Filling the container:
 for (int i = 0; i < 4000; ++i) {
 set.insert(i);
 }

5. Now we can work with it just like with std::set:

 // 5.1
 assert(set.lower_bound(500) - set.lower_bound(100) ==
 400);

 // 5.2
 set.erase(0);

 // 5.3
 set.erase(5000);

Containers

264

 // 5.4
 assert(std::lower_bound(set.cbegin(), set.cend(),
 900000) == set.cend());

 // 5.5
 assert(
 set.lower_bound(100) + 400
 ==
 set.find(500)
);

How it works...
Steps 1 and 2 are trivial, but step 3 requires attention. It is one of the most important steps
while working with flat associative containers and std::vector.

The boost::container::flat_set class stores its values ordered in vector, which
means that any insertion or deletion of elements takes linear time O(N), just like in case of
std::vector. This is a necessary evil. But for that, we gain almost three times less memory
usage per element, more processor cache friendly storage, and random access iterators. Take
a look at step 5, 5.1, where we were getting the distance between two iterators returned by
calls to the lower_bound member functions. Getting distance with a flat set takes constant
time O(1), while the same operation on iterators of std::set takes linear time O(N). In the
case of 5.1, getting the distance using std::set would be 400 times slower than getting
the distance for flat set containers.

Back to step 3. Without reserving memory, insertion of elements can become at times
slower and less memory efficient. The std::vector class allocates the required chunk of
memory and the in-place construct elements on that chunk. When we insert some element
without reserving the memory, there is a chance that there is no free space remaining on the
preallocated chunk of memory, so std::vector will allocate twice the chunk of memory that
was allocated previously. After that, std::vector will copy or move elements from the first
chunk to the second, delete elements of the first chunk, and deallocate the first chunk. Only
after that, insertion will occur. Such copying and deallocation may occur multiple times during
insertions, dramatically reducing the speed.

If you know the count of elements that std::vector or any flat
container must store, reserve the space for those elements before
insertion. There are no exceptions from that rule!

Step 4 is trivial, we are inserting elements here. Note that we are inserting ordered elements.
This is not required, but recommended to speedup insertion. Inserting elements at the end of
std::vector is much more cheaper than in the middle or at the beginning.

Chapter 9

265

In step 5, 5.2 and 5.3 do not differ much, except of their execution speed. Rules for
erasing elements are pretty much the same as for inserting them, so see the preceding
paragraph for explanations.

Maybe I'm telling you trivial things about containers, but I have seen
some very popular products that use features of C++11, have an insane
amount of optimizations and lame usage of STL containers, especially
std::vector.

In step 5, 5.4 shows you that the std::lower_bound function will work faster with
boost::container::flat_set than with std::set, because of random access iterators.

In step 5, 5.5 also shows you the benefit of random access iterators. Note that we did not use
the std::find function here. This is because that function takes linear time O(N), while the
member find functions take logarithmic time O(log(N)).

There's more...
When should we use flat containers, and when should we use usual ones? Well, it's up to you,
but here is a list of differences from the official documentation of Boost.Container that
will help you to decide:

 f Faster lookup than standard associative containers

 f Much faster iteration than standard associative containers

 f Less memory consumption for small objects (and for large objects if shrink_to_
fit is used)

 f Improved cache performance (data is stored in contiguous memory)

 f Nonstable iterators (iterators are invalidated when inserting and erasing elements)

 f Non-copyable and non-movable value types can't be stored

 f Weaker exception safety than standard associative containers (copy/move
constructors can throw an exception when shifting values in erasures and insertions)

 f Slower insertion and erasure than standard associative containers (specially for non-
movable types)

C++11 unfortunately has no flat containers. Flat containers from Boost are fast, have a lot
of optimizations, and do not use virtual functions. Classes from Boost.Containers have
support of rvalue reference emulation via Boost.Move so you are free to use them even on
C++03 compilers.

Containers

266

See also
 f Refer to the Getting the benefits of single-linked list and memory pool recipe for more

information about Boost.Container.

 f The recipe Using the C++11 move emulation in Chapter 1, Starting to Write Your
Application, will give you the basics of emulation rvalue references on C++03
compatible compilers.

 f The official documentation of Boost.Container contains a lot of useful information
about Boost.Container and full reference of each class. Read about it at
http://www.boost.org/doc/libs/1_53_0/doc/html/container.html.

10
Gathering Platform and

Compiler Information

In this chapter we will cover:

 f Detecting int128 support

 f Detecting RTTI support

 f Speeding up compilation using C++11 extern templates

 f Writing metafunctions using simpler methods

 f Reducing code size and increasing performance of user-defined types (UDTs) in
C++11

 f The portable way to export and import functions and classes

 f Detecting the Boost version and getting latest features

Introduction
Different projects and companies have different coding requirements. Some of them forbid
exceptions or RTTI and some forbid C++11. If you are willing to write portable code that can
be used by a wide range of projects, this chapter is for you.

Want to make your code as fast as possible and use the latest C++ features? You'll definitely
need a tool for detecting compiler features.

Some compilers have unique features that may greatly simplify your life. If you are targeting a
single compiler, you can save many hours and use those features. No need to implement their
analogues from scratch!

Gathering Platform and Compiler Information

268

This chapter is devoted to different helper macros used to detect compiler, platform, and
Boost features. Those macro are widely used across Boost libraries and are essential for
writing portable code that is able to work with any compiler flags.

Detecting int128 support
Some compilers have support for extended arithmetic types such as 128-bit floats or integers.
Let's take a quick glance at how to use them using Boost. We'll be creating a method that
accepts three parameters and returns the multiplied value of those methods.

Getting ready
Only basic knowledge of C++ is required.

How to do it...
What do we need to work with 128-bit integers? Macros that show that they are available and
a few typedefs to have portable type names across platforms.

1. We'll need only a single header:
#include <boost/config.hpp>

2. Now we need to detect int128 support:
#ifdef BOOST_HAS_INT128

3. Add some typedefs and implement the method as follows:
typedef boost::int128_type int_t;
typedef boost::uint128_type uint_t;

inline int_t mul(int_t v1, int_t v2, int_t v3) {
 return v1 * v2 * v3;
}

4. For compilers that do not support the int128 type, we may require support of the
int64 type:
#else // BOOST_NO_LONG_LONG

#ifdef BOOST_NO_LONG_LONG
#error "This code requires at least int64_t support"
#endif

Chapter 10

269

5. Now we need to provide some implementation for compilers without int128 support
using int64:
struct int_t { boost::long_long_type hi, lo; };
struct uint_t { boost::ulong_long_type hi, lo; };

inline int_t mul(int_t v1, int_t v2, int_t v3) {
 // Some hand written math
 // ...
}

#endif // BOOST_NO_LONG_LONG

How it works...
The header <boost/config.hpp> contains a lot of macros to describe compiler and
platform features. In this example, we used BOOST_HAS_INT128 to detect support of
128-bit integers and BOOST_NO_LONG_LONG to detect support of 64-bit integers.

As we may see from the example, Boost has typedefs for 64-bit signed and unsigned integers:

boost::long_long_type
boost::ulong_long_type

It also has typedefs for 128-bit signed and unsigned integers:

boost::int128_type
boost::uint128_type

There's more...
C++11 has support of 64-bit types via the long long int and unsigned long long
int built-in types. Unfortunately, not all compilers support C++11, so BOOST_NO_LONG_LONG
will be useful for you. 128-bit integers are not a part of C++11, so typedefs and macros from
Boost are the only way to write portable code.

See also
 f Read the recipe Detecting RTTI support for more information about Boost.Config.

 f Read the official documentation of Boost.Config for more information about its
abilities at http://www.boost.org/doc/libs/1_53_0/libs/config/doc/
html/index.html.

 f There is a library in Boost that allows constructing types of unlimited precision. Take
a look at the Boost.Multiprecision library at http://www.boost.org/doc/
libs/1_53_0/libs/multiprecision/doc/html/index.html.

Gathering Platform and Compiler Information

270

Detecting RTTI support
Some companies and libraries have specific requirements for their C++ code, such as
successful compilation without Runtime type information (RTTI). In this small recipe, we'll
take a look at how we can detect disabled RTTI, how to store information about types, and
compare types at runtime, even without typeid.

Getting ready
Basic knowledge of C++ RTTI usage is required for this recipe.

How to do it...
Detecting disabled RTTI, storing information about types, and comparing types at runtime are
tricks that are widely used across Boost libraries. The examples are Boost.Exception and
Boost.Function.

1. To do this, we first need to include the following header:
#include <boost/config.hpp>

2. Let's first look at the situation where RTTI is enabled and the C++11 std::type_
index class is available:
#if !defined(BOOST_NO_RTTI) \
 && !defined(BOOST_NO_CXX11_HDR_TYPEINDEX)

#include <typeindex>
using std::type_index;

template <class T>
type_index type_id() {
 return typeid(T);
}

3. Otherwise, we need to construct our own type_index class:
#else

#include <cstring>

struct type_index {
 const char* name_;

 explicit type_index(const char* name)
 : name_(name)
 {}
};

Chapter 10

271

inline bool operator == (const type_index& v1,
 const type_index& v2)
{
 return !std::strcmp(v1.name_, v2.name_);
}

inline bool operator != (const type_index& v1,
 const type_index& v2)
{
 // '!!' to supress warnings
 return !!std::strcmp(v1.name_, v2.name_);
}

4. The final step is to define the type_id function:
#include <boost/current_function.hpp>

template <class T>
inline type_index type_id() {
 return type_index(BOOST_CURRENT_FUNCTION);
}
#endif

5. Now we can compare types:
 assert(type_id<unsigned int>() == type_id<unsigned>());
 assert(type_id<double>() != type_id<long double>());

How it works...
The macro BOOST_NO_RTTI will be defined if RTTI is disabled, and the macro BOOST_NO_
CXX11_HDR_TYPEINDEX will be defined when the compiler has no <typeindex> header
and no std::type_index class.

The handwritten type_index structure from step 3 of the previous section only holds the
pointer to some string; nothing really interesting here.

Take a look at the BOOST_CURRENT_FUNCTION macro. It returns the full name of
the current function, including template parameters, arguments, and the return type.
For example, type_id<double>() will be represented as follows:

type_index type_id() [with T = double]

So, for any other type, BOOST_CURRENT_FUNCTION will return a different string, and that's
why the type_index variable from the example won't compare equal-to it.

Gathering Platform and Compiler Information

272

There's more...
Different compilers have different macros for getting the full function name and RTTI. Using
macros from Boost is the most portable solution. The BOOST_CURRENT_FUNCTION macro
returns the name at compile time, so it implies minimal runtime penalty.

See also
 f Read the upcoming recipes for more information on Boost.Config

 f Browse to https://github.com/apolukhin/type_index and refer to the
library there, which uses all the tricks from this recipe to implement type_index

 f Read the official documentation of Boost.Config at http://www.boost.org/
doc/libs/1_53_0/libs/config/doc/html/index.html

Speeding up compilation using C++11 extern
templates

Remember some situations where you were using some complicated template class declared
in the header file? Examples of such classes would be boost::variant, containers from
Boost.Container, or Boost.Spirit parsers. When we use such classes or methods,
they are usually compiled (instantiated) separately in each source file that is using them,
and duplicates are thrown away during linking. On some compilers, that may lead to slow
compilation speed.

If only there was some way to tell the compiler in which source file to instantiate it!

Getting ready
Basic knowledge of templates is required for this recipe.

How to do it...
This method is widely used in modern C++ standard libraries for compilers that do support
it. For example, the STL library, which is shipped with GCC, uses this technique to instantiate
std::basic_string<char> and std::basic_fstream<char>.

1. To do it by ourselves, we need to include the following header:
#include <boost/config.hpp>

Chapter 10

273

2. We also need to include a header file that contains a template class whose
instantiation count we wish to reduce:
#include <boost/variant.hpp>
#include <boost/blank.hpp>
#include <string>

3. The following is the code for compilers with support for C++11 extern templates:
#ifndef BOOST_NO_CXX11_EXTERN_TEMPLATE

extern template class boost::variant<
 boost::blank,
 int,
 std::string,
 double
>;

#endif

4. Now we need to add the following code to the source file where we wish the template
to be instantiated:
// Header with 'extern template'
#include "header.hpp"

#ifndef BOOST_NO_CXX11_EXTERN_TEMPLATE
template class boost::variant<
 boost::blank,
 int,
 std::string,
 double
>;
#endif

How it works...
The C++11 keyword extern template just tells the compiler not to instantiate the template
without an explicit request to do that.

The code in step 4 is an explicit request to instantiate the template in this source file.

The BOOST_NO_CXX11_EXTERN_TEMPLATE macro is defined when the compiler has support
of C++11 extern templates.

Gathering Platform and Compiler Information

274

There's more...
Extern templates do not affect the runtime performance of your program, but can significantly
reduce the compilation time of some template classes. Do not overuse them; they are nearly
useless for small template classes.

See also
 f Read the other recipes of this chapter to get more information about Boost.Config

 f Read the official documentation of Boost.Config for information about macros that
was not covered in this chapter, at http://www.boost.org/doc/libs/1_53_0/
libs/config/doc/html/index.html

Writing metafunctions using simpler
methods

Chapter 4, Compile-time Tricks, and Chapter 8, Metaprogramming, were devoted to
metaprogramming. If you were trying to use techniques from those chapters, you may
have noticed that writing a metafunction can take a lot of time. So it may be a good idea
to experiment with metafunctions using more user-friendly methods, such as C++11
constexpr, before writing a portable implementation.

In this recipe, we'll take a look at how to detect constexpr support.

Getting ready
The constexpr functions are functions that can be evaluated at compile time. That is all
we need to know for this recipe.

How to do it...
Currently, not many compilers support the constexpr feature, so a good new compiler
may be required for experiments. Let's see how we can detect compiler support for the
constexpr feature:

1. Just like in other recipes from this chapter, we start with the following header:
#include <boost/config.hpp>

Chapter 10

275

2. Now we will work with constexpr:
#if !defined(BOOST_NO_CXX11_CONSTEXPR) \
 && !defined(BOOST_NO_CXX11_HDR_ARRAY)

template <class T>
constexpr int get_size(const T& val) {
 return val.size() * sizeof(typename T::value_type);
}

3. Let's print an error if C++11 features are missing:
#else
#error "This code requires C++11 constexpr and std::array"
#endif

4. That's it; now we are free to write code such as the following:
std::array<short, 5> arr;
assert(get_size(arr) == 5 * sizeof(short));

unsigned char data[get_size(arr)];

How it works...
The BOOST_NO_CXX11_CONSTEXPR macro is defined when C++11 constexpr is available.

The constexpr keyword tells the compiler that the function can be evaluated at compile
time if all the inputs for that function are compile-time constants. C++11 imposes a lot of
limitations on what a constexpr function can do. C++14 will remove some of the limitations.

The BOOST_NO_CXX11_HDR_ARRAY macro is defined when the C++11 std::array class
and the <array> header are available.

There's more...
However, there are other usable and interesting macros for constexpr too, as follows:

 f The BOOST_CONSTEXPR macro expands to constexpr or does not expand

 f The BOOST_CONSTEXPR_OR_CONST macro expands to constexpr or const

 f The BOOST_STATIC_CONSTEXPR macro is the same as static BOOST_
CONSTEXPR_OR_CONST

Gathering Platform and Compiler Information

276

Using those macros, it is possible to write code that takes advantage of C++11 constant
expression features if they are available:

template <class T, T Value>
struct integral_constant {
 BOOST_STATIC_CONSTEXPR T value = Value;

 BOOST_CONSTEXPR operator T() const {
 return this->value;
 }
};

Now, we can use integral_constant as shown in the following code:

char array[integral_constant<int, 10>()];

In the example, BOOST_CONSTEXPR operator T() will be called to get the array size.

The C++11 constant expressions may improve compilation speed and diagnostic information
in case of error. It's a good feature to use.

See also
 f More information about constexpr usage can be read at http://

en.cppreference.com/w/cpp/language/constexpr

 f Read the official documentation of Boost.Config for more information about
macros at http://www.boost.org/doc/libs/1_53_0/libs/config/doc/
html/index.html

Reducing code size and increasing
performance of user-defined types
(UDTs) in C++11

C++11 has very specific logic when user-defined types (UDTs) are used in STL containers.
Containers will use move assignment and move construction only if the move constructor
does not throw exceptions or there is no copy constructor.

Let's see how we can ensure the move_nothrow assignment operator and move_nothrow
constructor of our type do not throw exceptions.

Chapter 10

277

Getting ready
Basic knowledge of C++11 rvalue references is required for this recipe. Knowledge of STL
containers will also serve you well.

How to do it...
Let's take a look at how we can improve our C++ classes using Boost.

1. All we need to do is mark the move_nothrow assignment operator and move_
nothrow constructor with the BOOST_NOEXCEPT macro:
#include <boost/config.hpp>
class move_nothrow {
 // Some class class members go here
 // ...
public:
 move_nothrow() BOOST_NOEXCEPT {}
 move_nothrow(move_nothrow&&) BOOST_NOEXCEPT
 // : members initialization
 // ...
 {}

 move_nothrow& operator=(move_nothrow&&) BOOST_NOEXCEPT
 {
 // Implementation
 // ...
 return *this;
 }

 move_nothrow(const move_nothrow&);
 move_nothrow& operator=(const move_nothrow&);
};

2. Now we may use the class with std::vector in C++11 without any modifications:
 std::vector<move_nothrow> v(10);
 v.push_back(move_nothrow());

3. If we remove BOOST_NOEXCEPT from the move constructor, we'll get the following
error for GCC-4.7 and later compilers:
/usr/include/c++/4.7/bits/stl_construct.h:77: undefined
 reference to `move_nothrow::move_nothrow(move_nothrow
 const&)'

Gathering Platform and Compiler Information

278

How it works...
The BOOST_NOEXCEPT macro expands to noexcept on compilers that support it. The STL
containers use type traits to detect if the constructor throws an exception or not. Type traits
make their decision mainly based on noexcept specifiers.

Why do we get an error without BOOST_NOEXCEPT? GCC's type traits return the move
constructor that move_nothrow throws, so std::vector will try to use the copy constructor
of move_nothrow, which is not defined.

There's more...
The BOOST_NOEXCEPT macro also reduces binary size irrespective of whether the definition
of the noexcept function or method is in a separate source file or not.

// In header file
int foo() BOOST_NOEXCEPT;

// In source file
int foo() BOOST_NOEXCEPT {
 return 0;
}

That's because in the latter case, the compiler knows that the function will not throw
exceptions and so there is no need to generate code that handles them.

If a function marked as noexcept does throw an exception, your program
will terminate without calling destructors for the constructed objects.

See also
 f A document describing why move constructors are allowed to throw exceptions and

how containers must move objects is available at http://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2010/n3050.html

 f Read the official documentation of Boost.Config for more examples of noexcept
macros existing in Boost, at http://www.boost.org/doc/libs/1_53_0/libs/
config/doc/html/index.html

Chapter 10

279

The portable way to export and import
functions and classes

Almost all modern languages have the ability to make libraries, which is a collection of classes
and methods that have a well-defined interface. C++ is no exception to this rule. We have two
types of libraries: runtime (also called shared or dynamic load) and static. But writing libraries
is not a trivial task in C++. Different platforms have different methods for describing which
symbols must be exported from the shared library.

Let's have a look at how to manage symbol visibility in a portable way using Boost.

Getting ready
Experience in creating dynamic and static libraries will be useful in this recipe.

How to do it...
The code for this recipe consists of two parts. The first part is the library itself. The second
part is the code that uses that library. Both parts use the same header, in which the library
methods are declared. Managing symbol visibility in a portable way using Boost is simple and
can be done using the following steps:

1. In the header file, we'll need definitions from the following include header:
#include <boost/config.hpp>

2. The following code must also be added to the header file:
#if defined(MY_LIBRARY_LINK_DYNAMIC)
if defined(MY_LIBRARY_COMPILATION)
define MY_LIBRARY_API BOOST_SYMBOL_EXPORT
else
define MY_LIBRARY_API BOOST_SYMBOL_IMPORT
endif
#else
define MY_LIBRARY_API
#endif

3. Now all the declarations must use the MY_LIBRARY_API macro:
int MY_LIBRARY_API foo();
class MY_LIBRARY_API bar {
public:
 /* ... */
 int meow() const;
};

Gathering Platform and Compiler Information

280

4. Exceptions must be declared with BOOST_SYMBOL_VISIBLE, otherwise they can be
caught only using catch(...) in the code that will use the library:
#include <stdexcept>
struct BOOST_SYMBOL_VISIBLE bar_exception
 : public std::exception
{};

5. Library source files must include the header file:
#define MY_LIBRARY_COMPILATION
#include "my_library.hpp"

6. Definitions of methods must also be in the source files of the library:
int MY_LIBRARY_API foo() {
 // Implementation
 // ...
 return 0;
}
int bar::meow() const {
 throw bar_exception();
}

7. Now we can use the library as shown in the following code:
#include "../my_library/my_library.hpp"
#include <cassert>

int main() {
 assert(foo() == 0);
 bar b;
 try {
 b.meow();
 assert(false);
 } catch (const bar_exception&) {}
}

How it works...
All the work is done in step 2. There we are defining the macro MY_LIBRARY_API, which will
be applied to classes and methods that we wish to export from our library. In step 2, we check
for MY_LIBRARY_LINK_DYNAMIC; if it is not defined, we are building a static library and
there is no need to define MY_LIBRARY_API.

Chapter 10

281

The developer must take care of MY_LIBRARY_LINK_DYNAMIC! It will
not define itself. So we need to make our build system to define it, if we
are making a dynamic library.

If MY_LIBRARY_LINK_DYNAMIC is defined, we are building a runtime library, and that's
where the workarounds start. You, as the developer, must tell the compiler that we are now
exporting these methods to the user. The user must tell the compiler that he/she is importing
methods from the library. To have a single header file for both library import and export, we
use the following code:

if defined(MY_LIBRARY_COMPILATION)
define MY_LIBRARY_API BOOST_SYMBOL_EXPORT
else
define MY_LIBRARY_API BOOST_SYMBOL_IMPORT
endif

When exporting the library (or, in other words, compiling it), we must define MY_LIBRARY_
COMPILATION. This leads to MY_LIBRARY_API being defined to BOOST_SYMBOL_EXPORT.
For example, see step 5, where we defined MY_LIBRARY_COMPILATION before including
my_library.hpp. If MY_LIBRARY_COMPILATION is not defined, the header is included by
the user, who doesn't know anything about that macro. And, if the header is included by the
user, the symbols must be imported from the library.

The BOOST_SYMBOL_VISIBLE macro must be used only for those classes that are not
exported and are used by RTTI. Examples of such classes are exceptions and classes being
cast using dynamic_cast.

There's more...
Some compilers export all the symbols by default but provide flags to disable such behavior.
For example, GCC provides -fvisibility=hidden. It is highly recommended to use those
flags because it leads to smaller binary size, faster loading of dynamic libraries, and better
logical structuring of binary input. Some inter-procedural optimizations can perform better
when fewer symbols are exported.

C++11 has generalized attributes that someday may be used to provide a portable way to
work with visibilities, but until then we have to use macros from Boost.

Gathering Platform and Compiler Information

282

See also
 f Read this chapter from the beginning to get more examples of Boost.Config usage

 f Consider reading the official documentation of Boost.Config for the full list of the
Boost.Config macro and their description at http://www.boost.org/doc/
libs/1_53_0/libs/config/doc/html/index.html

Detecting the Boost version and getting
latest features

Boost is being actively developed, so each release contains new features and libraries. Some
people wish to have libraries that compile for different versions of Boost and also want to use
some of the features of the new versions.

Let's take a look at the boost::lexical_cast change log. According to it, Boost 1.53 has
a lexical_cast(const CharType* chars, std::size_t count) function overload.
Our task for this recipe will be to use that function overload for new versions of Boost, and
work around that missing function overload for older versions.

Getting ready
Only basic knowledge of C++ and the Boost.Lexical library is required.

How to do it...
Well, all we need to do is get a version of Boost and use it to write optimal code. This can be
done as shown in the following steps:

1. We need to include headers containing the Boost version and boost::lexical_
cast:
#include <boost/version.hpp>
#include <boost/lexical_cast.hpp>

2. We will use the new feature of Boost.LexicalCast if it is available:
#if (BOOST_VERSION >= 105200)
int to_int(const char* str, std::size_t length) {
 return boost::lexical_cast<int>(str, length);
}

Chapter 10

283

3. Otherwise, we are required to copy data to std::string first:
#else
int to_int(const char* str, std::size_t length) {
 return boost::lexical_cast<int>(
 std::string(str, length)
);
}
#endif

4. Now we can use the code as shown here:
assert(to_int("10000000", 3) == 100);

How it works...
The BOOST_VERSION macro contains the Boost version written in the following format:
a single number for the major version, followed by three numbers for the minor version,
and then two numbers for the patch level. For example, Boost 1.46.1 will contain the
104601 number in the BOOST_VERSION macro.

So, we will check the Boost version in step 2 and choose the correct implementation
of the to_int function according to the abilities of Boost.LexicalCast.

There's more...
Having a version macro is a common practice for big libraries. Some of the Boost
libraries allow you to specify the version of the library to use; see Boost.Thread
and its BOOST_THREAD_VERSION macro for an example.

See also
 f Read the recipe Creating an execution thread in Chapter 5, Multithreading, for

more information about BOOST_THREAD_VERSION and how it affects the Boost.
Thread library, or read the documentation at http://www.boost.org/doc/
libs/1_53_0/doc/html/thread/changes.html

 f Read this chapter from the beginning or consider reading the official documentation
of Boost.Config at http://www.boost.org/doc/libs/1_53_0/libs/
config/doc/html/index.html

11
Working with the System

In this chapter we will cover:

 f Listing files in a directory

 f Erasing and creating files and directories

 f Passing data quickly from one process to another

 f Syncing interprocess communications

 f Using pointers in shared memory

 f The fastest way to read files

 f Coroutines – saving the state and postponing the execution

Introduction
Each operating system has many system calls doing almost the same things in slightly
different ways. Those calls differ in performance and differ from one operating system to
another. Boost provides portable and safe wrappers around those calls. Knowledge of those
wrappers is essential for writing good programs.

This chapter is devoted to working with the operating system. We have seen how to deal with
network communications and signals in Chapter 6, Manipulating Tasks. In this chapter, we'll
take a closer look at the filesystem and creating and deleting files. We'll see how data can be
passed between different system processes, how to read files at maximum speed, and how
to perform other tricks.

Working with the System

286

Listing files in a directory
There are STL functions and classes to read and write data to files. But there are no functions
to list files in a directory, to get the type of a file, or to get access rights for a file.

Let's see how such iniquities can be fixed using Boost. We'll be creating a program that lists
names, write accesses, and types of files in the current directory.

Getting ready
Some basics of C++ would be more than enough to use this recipe.

This recipe requires linking against the boost_system and boost_filesystem libraries.

How to do it...
This recipe and the next one are about portable wrappers for working with a filesystem:

1. We need to include the following two headers:
#include <boost/filesystem/operations.hpp>
#include <iostream>

2. Now we need to specify a directory:
int main() {
 boost::filesystem::directory_iterator begin("./");

3. After specifying the directory, loop through its content:
 boost::filesystem::directory_iterator end;
 for (; begin != end; ++ begin) {

4. The next step is getting the file info:
 boost::filesystem::file_status fs =
 boost::filesystem::status(*begin);

5. Now output the file info:
 switch (fs.type()) {
 case boost::filesystem::regular_file:
 std::cout << "FILE ";
 break;
 case boost::filesystem::symlink_file:
 std::cout << "SYMLINK ";
 break;
 case boost::filesystem::directory_file:

Chapter 11

287

 std::cout << "DIRECTORY ";
 break;
 default:
 std::cout << "OTHER ";
 break;
 }
 if (fs.permissions() & boost::filesystem::owner_write) {
 std::cout << "W ";
 } else {
 std::cout << " ";
 }

6. The final step would be to output the filename:

 std::cout << *begin << '\n';
 } /*for*/
} /*main*/

That's it. Now, if we run the program, it will output something like this:

FILE W "./main.o"
FILE W "./listing_files"
DIRECTORY W "./some_directory"
FILE W "./Makefile"

How it works...
Functions and classes of Boost.Filesystem just wrap around system-specific functions
to work with files.

Note the usage of / in step 2. POSIX systems use a slash to specify paths; Windows, by
default, uses backslashes. However, Windows understands forward slashes too, so ./
will work on all of the popular operating systems, and it means "the current directory".

Take a look at step 3, where we are default constructing the
boost::filesystem::directory_iterator class. It works just as a std::istream_
iterator class, which acts as an end iterator when default constructed.

Step 4 is a tricky one, not because this function is hard to understand, but
because lots of conversions are happening. Dereferencing the begin iterator
returns boost::filesystem::directory_entry, which is implicitly
converted to boost::filesystem::path, which is used as a parameter for the
boost::filesystem::status function. Actually, we can do much better:

boost::filesystem::file_status fs = begin->status();

Working with the System

286

Read the reference documentation carefully to avoid unrequired
implicit conversions.

Step 5 is obvious, so we are moving to step 6 where implicit conversion to the path happens
again. A better solution would be the following:

std::cout << begin->path() << '\n';

Here, begin->path() returns a const reference to the boost::filesystem::path
variable that is contained inside boost::filesystem::directory_entry.

There's more...
Unfortunately, Boost.Filesystem is not a part of C++11, but it is proposed for inclusion in
the next C++ standard. Boost.Filesystem currently misses support for rvalue references,
but still remains one of the simplest and most portable libraries to work with a filesystem.

See also
 f The Erasing and creating files and directories recipe will show another example of the

usage of Boost.Filesystem.

 f Read Boost's official documentation for Boost.Filesystem to get more info about
its abilities; it is available at the following link:
http://www.boost.org/doc/libs/1_53_0/libs/filesystem/doc/index.
htm.

 f The Boost.Filesystem library is proposed for inclusion in C++1y. The draft
is available at http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2012/n3399.html.

Erasing and creating files and directories
Let's consider the following lines of code:

 std::ofstream ofs("dir/subdir/file.txt");
 ofs << "Boost.Filesystem is fun!";

In these lines, we attempt to write something to file.txt in the dir/subdir directory.
This attempt will fail if there is no such directory. The ability to work with filesystems is
necessary for write a good working code.

Chapter 11

287

In this recipe we'll construct a directory and a subdirectory, write some data to a file, and
try to create symlink, and if the symbolic link's creation fails, erase the created file. We
will also avoid using exceptions as a mechanism of error reporting, preferring some form
of return codes.

Let's see how that can be done in an elegant way using Boost.

Getting ready
Basic knowledge of C++ and the std::ofstream class is required for this recipe. Boost.
Filesystem is not a header-only library, so code in this recipe requires linking against the
boost_system and boost_filesystem libraries.

How to do it...
We continue to deal with portable wrappers for a filesystem, and in this recipe we'll see how
to modify the directory content:

1. As always, we'll need to include some headers:
#include <boost/filesystem/operations.hpp>
#include <cassert>
#include <fstream>

2. Now we need a variable to store errors (if any):
int main() {
 boost::system::error_code error;

3. We will also create directories, if required, as follows:
 boost::filesystem::create_directories(
 "dir/subdir", error);
 assert(!error);

4. Then we will write data to the file:
 std::ofstream ofs("dir/subdir/file.txt");
 ofs << "Boost.Filesystem is fun!";
 assert(ofs);
 ofs.close();

5. We need to attempt to create symlink:
 boost::filesystem::create_directory_symlink("dir/subdir",
 "symlink", error);

6. Then we need to check that the file is accessible through symlink:
 if (!error) {
 std::cerr << "Symlink created\n";
 assert(boost::filesystem::exists("symlink/file.txt"));

Working with the System

286

7. Or remove the created file, if symlink creation failed:

 } else {
 std::cerr << "Failed to create a symlink\n";
 boost::filesystem::remove("dir/subdir/file.txt", error);
 assert(!error);
 } /*if (!error)*/
} /*main*/

How it works...
We saw boost::system::error_code in action in almost all of the recipes in Chapter 6,
Manipulating Tasks. It can store information about errors and is widely used throughout the
Boost libraries.

If you do not provide an instance of boost::system::error_
code to the Boost.Filesystem functions, the code will compile
well, but when an error occurs, an exception will be thrown. Usually a
boost::filesystem::filesystem_error exception is thrown
unless you are having trouble with allocating memory.

Take a careful look at step 3. We used the boost::filesystem::create_directories
function, not boost::filesystem::create_directory, because the latter cannot
create subdirectories.

The remaining steps are trivial to understand and should not cause any trouble.

There's more...
The boost::system::error_code class is a part of C++11 and can be found in the
<system_error> header in the std:: namespace. The classes of Boost.Filesystem
are not a part of C++11, but they are proposed for inclusion in C++1y, which will probably be
ready in 2014.

Finally, a small recommendation for those who are going to use Boost.Filesystem; when
the errors occurring during filesystem operations are routine, use boost::system::error_
codes. Otherwise, catching exceptions is preferable and more reliable.

See also
 f The Listing files in a directory recipe also contains information about Boost.

Filesystem. Read Boost's official documentation to get more information and
examples at http://www.boost.org/doc/libs/1_53_0/libs/filesystem/
doc/index.htm.

Chapter 11

287

Passing data quickly from one process to
another

Sometimes we write programs that will communicate with each other a lot. When
programs are run on different machines, using sockets is the most common technique for
communication. But if multiple processes run on a single machine, we can do much better!

Let's take a look at how to make a single memory fragment available from different processes
using the Boost.Interprocess library.

Getting ready
Basic knowledge of C++ is required for this recipe. Knowledge of atomic variables is also
required (take a look at the See also section for more information about atomics). Some
platforms require linking against the runtime library.

How to do it...
In this example we'll be sharing a single atomic variable between processes, making it
increment when a new process starts and decrement when the process terminates:

1. We'll need to include the following header for interprocess communications:
#include <boost/interprocess/managed_shared_memory.hpp>

2. Following the header, typedef and a check will help us make sure that atomics are
usable for this example:
#include <boost/atomic.hpp>

typedef boost::atomic<int> atomic_t;
#if (BOOST_ATOMIC_INT_LOCK_FREE != 2)
#error "This code requires lock-free boost::atomic<int>"
#endif

3. Create or get a shared segment of memory:
boost::interprocess::managed_shared_memory
 segment(boost::interprocess::open_or_create, "shm-cache",
1024);

4. Get or construct an atomic variable:
 atomic_t& atomic
 = *segment.find_or_construct<atomic_t> //1
 ("shm-counter") // 2
 (0) // 3
 ;

Working with the System

286

5. Work with the atomic variable in the usual way:
 std::cout << "I have index " << ++ atomic
 << "\nPress any key...";
 std::cin.get();

6. Destroy the atomic variable:

 int snapshot = -- atomic;
 if (!snapshot) {
 segment.destroy<atomic_t>("shm-counter");
 boost::interprocess::shared_memory_object
 ::remove("shm-cache");
 }
} /*main*/

That's all! Now if we run multiple instances of this program simultaneously, we'll see that each
new instance increments its index value.

How it works...
The main idea of this recipe is to get a segment of memory that is visible to all
processes, and place some data in it. Let's take a look at step 3, where we retrieve
such a segment of memory. Here, shm-cache is the name of the segment (different
segments differ in name); you can give any names you like to the segments. The
first parameter is boost::interprocess::open_or_create, which says that
boost::interprocess::managed_shared_memory will open an existing segment with
the name shm-cache, or it will construct it. The last parameter is the size of the segment.

The size of the segment must be big enough to fit the Boost.
Interprocess library-specific data in it. That's why we used 1024
and not sizeof(atomic_t). But it does not really matter, because
the operating system will round this value to the nearest larger
supported value, which is usually equal to or larger than 4 kilobytes.

Step 4 is a tricky one as we are doing multiple tasks at the same time here. In part 2 of this
step, we will find or construct a variable with the name shm-counter in the segment. In part
3 of step 4, we will provide a parameter, which will be used for the initialization of a variable
if it has not been found in step 2. This parameter will be used only if the variable is not found
and must be constructed, otherwise it is ignored. Take a closer look at the second line (part
1). See the call to the dereference operator *. We are doing it because segment.find_or_
construct<atomic_t> returns a pointer to atomic_t, and working with bare pointers in
C++ is a bad style.

Chapter 11

287

Note that we are using atomic variables in shared memory! This is required,
because two or more processes can simultaneously work with the same
shm-counter atomic variable.

You must be very careful when working with objects in shared memory; do not forget to
destroy them! In step 6, we are destroying the object and segment using their names.

There's more...
Take a closer look at step 2 where we are checking for BOOST_ATOMIC_INT_LOCK_FREE
!= 2. We are checking that atomic_t won't use mutexes. This is very important, because
usually, mutexes won't work in shared memory. So if BOOST_ATOMIC_INT_LOCK_FREE is
not equal to 2, we'll get an undefined behavior.

Unfortunately, C++11 has no interprocess classes, and as far as I know, Boost.
Interprocess is not proposed for inclusion in C++1y.

Once a managed segment is created, it cannot increase in size! Make sure
that you are creating segments big enough for your needs, or take a look at
the See also section for information about increasing managed segments.

Shared memory is the fastest way for processes to communicate, and works for processes
that can share memory. That usually means that the processes must run on the same host
or on a symmetric multiprocessing (SMP) cluster.

See also
 f The Syncing interprocess communications recipe will tell you more about shared

memory, interprocess communications, and syncing access to resources in shared
memory

 f See the Fast access to common resource using atomics recipe in Chapter 5,
Multithreading for more information about atomics

 f Boost's official documentation for Boost.Interprocess may also help; it
is available at http://www.boost.org/doc/libs/1_53_0/doc/html/
interprocess.html

 f How to increase managed segments is described at http://www.boost.org/
doc/libs/1_53_0/doc/html/interprocess/managed_memory_segments.
html#interprocess.managed_memory_segments.managed_memory_
segment_advanced_features.growing_managed_memory

Working with the System

286

Syncing interprocess communications
In the previous recipe, we saw how to create shared memory and how to place some objects in
it. Now it's time to do something useful. Let's take an example from the Creating a work_queue
class recipe in Chapter 5, Multithreading, and make it work for multiple processes. At the end of
this example, we'll get a class that can store different tasks and pass them between processes.

Getting ready
This recipe uses techniques from the previous one. You will also need to read the Creating
a work_queue class recipe in Chapter 5, Multithreading, and get its main idea. The example
requires linking against the runtime library on some platforms.

How to do it...
It is considered that spawning separate subprocesses instead of threads makes a program
more reliable, because termination of a subprocess won't terminate the main process. We
won't argue with that assumption here, and just see how data sharing between processes can
be implemented.

1. A lot of headers are required for this recipe:
#include <boost/interprocess/managed_shared_memory.hpp>
#include <boost/interprocess/containers/deque.hpp>
#include <boost/interprocess/allocators/allocator.hpp>
#include <boost/interprocess/sync/interprocess_mutex.hpp>
#include <boost/interprocess/sync/interprocess_condition.hpp>
#include <boost/interprocess/sync/scoped_lock.hpp>

#include <boost/optional.hpp>

2. Now we need to define our structure, task_structure, which will be used to store
tasks:
struct task_structure {
 // ...
};

3. Let's start writing the work_queue class:
class work_queue {
public:
 typedef task_structure task_type;
 typedef boost::interprocess::managed_shared_memory
 managed_shared_memory_t;

Chapter 11

287

 typedef boost::interprocess::allocator<
 task_type,
 managed_shared_memory_t::segment_manager
 > allocator_t;

4. Write the members of work_queue as follows:
private:
 managed_shared_memory_t segment_;
 const allocator_t allocator_;

 typedef boost::interprocess::deque<task_type, allocator_t>
 deque_t;

 typedef boost::interprocess::interprocess_mutex mutex_t;
 typedef boost::interprocess::interprocess_condition
 condition_t;
 typedef boost::interprocess::scoped_lock<mutex_t>
 scoped_lock_t;

 deque_t& tasks_;
 mutex_t& mutex_;
 boost::interprocess::interprocess_condition& cond_;

5. Initialization of members should look like the following:
public:
 explicit work_queue()
 : segment_(
 boost::interprocess::open_or_create,
 "work-queue",
 1024 * 1024 * 64
)
 , allocator_(segment_.get_segment_manager())
 , tasks_(
 *segment_.find_or_construct<deque_t>
 ("work-queue:deque")(allocator_)
)
 , mutex_(
 *segment_.find_or_construct<mutex_t>
 ("work-queue:mutex")()
)
 , cond_(
 *segment_.find_or_construct<condition_t>
 ("work-queue:condition")()
)
 {}

Working with the System

286

6. We need to make some minor changes to the member functions of work_queue,
such as using scoped_lock_t instead of the original unique locks:

 boost::optional<task_type> try_pop_task() {
 boost::optional<task_type> ret;
 scoped_lock_t lock(mutex_);
 if (!tasks_.empty()) {
 ret = tasks_.front();
 tasks_.pop_front();
 }
 return ret;
 }

How it works...
In this recipe, we are doing almost exactly the same things as in the Creating a work_queue class
recipe in Chapter 5, Multithreading, but when we allocate the data in shared memory, additional
care must be taken when doing memory allocations or using synchronization primitives.

Take additional care when storing shared memory objects that have pointers or references as
member fields. We'll see how to cope with pointers in the next recipe.

Take a look at step 2. We did not use boost::function as a task type because it has
pointers in it, so it won't work in shared memory.

Step 3 is interesting because of allocator_t. It is a type of allocator that all containers
must use to allocate elements. It is a stateful allocator, which means that it will be copied
along with the container. Also, it cannot be default constructed.

If memory is not allocated from the shared memory segment, it won't be available to other
processes; that's why a specific allocator for containers is required.

Step 4 is pretty trivial, except that we have only references to tasks_, mutex_, and cond_.
This is done because objects themselves are constructed in the shared memory. So, work_
queue can only store references to them.

In step 5 we are initializing members. This code will be familiar to you; we were doing exactly
the same things in the previous recipe. Note that we are providing an instance of allocator to
tasks_ while constructing it. That's because allocator_t cannot be constructed by the
container itself.

Shared memory is not destructed at the exit event of a process, so we can
run the program once, post the tasks to a work queue, stop the program,
start some other program, and get tasks stored by the first instance of the
program. Shared memory will be destroyed only at restart, or if you explicitly
call segment.deallocate("work-queue");.

Chapter 11

287

There's more...
As was mentioned in the previous recipe, C++11 has no classes from Boost.
Interprocess. Moreover, you must not use C++11 or C++03 containers in shared memory
segments. Some of those containers may work, but that behavior is not portable.

If you look inside some of the <boost/interprocess/containers/*.hpp> headers,
you'll find that they just use containers from the Boost.Containers library:

namespace boost { namespace interprocess {
 using boost::container::vector;
}}

Containers of Boost.Interprocess have all of the benefits of the Boost.Containers
library, including rvalue references and their emulation on older compilers.

Boost.Interprocess is the fastest solution for communication between processes that
are running on the same machine.

See also
 f The Using pointers in shared memory recipe

 f Read Chapter 5, Multithreading, for more information about synchronization
primitives and multithreading

 f Refer to Boost's official documentation for the Boost.Interprocess library for
more examples and information; it is available at the following link:

http://www.boost.org/doc/libs/1_53_0/doc/html/interprocess.html

Using pointers in shared memory
It is hard to imagine writing some C++ core classes without pointers. Pointers and references
are everywhere in C++, and they do not work in shared memory! So if we have a structure like
this in shared memory and assign the address of some integer variable in shared memory
to pointer_, we won't get the correct address in the other process that will attempt to use
pointer_ from that instance of with_pointer:

struct with_pointer {
 int* pointer_;
 // ...
 int value_holder_;
};

How can we fix that?

Working with the System

286

Getting ready
The previous recipe is required for understanding this one. The example requires linking
against the runtime system library on some platforms.

How to do it...
Fixing it is very simple; we need only to replace the pointer with offset_ptr<>:

#include <boost/interprocess/offset_ptr.hpp>
struct correct_struct {
 boost::interprocess::offset_ptr<int> pointer_;
 // ...
 int value_holder_;
};

Now we are free to use it as a normal pointer:

correct_struct& ref = *segment
 .construct<correct_struct>("structure")();

ref.pointer_ = &ref.value_holder_;
assert(ref.pointer_ == &ref.value_holder_);
assert(*ref.pointer_ == ref.value_holder_);

ref.value_holder_ = ethalon_value;
assert(*ref.pointer_ == ethalon_value);

How it works...
We cannot use pointers in shared memory because when a piece of shared memory is
mapped into the address space of a process, its address is valid only for that process. When
we are getting the address of a variable, it is just a local address for that process; other
processes will map shared memory to a different base address, and as a result the variable
address will differ.

Chapter 11

287

0x00000000

Process 1 Shared

0xFFFFFFFF

0x00000000

Process 2

0xFFFFFFFF

Shared

Same shared segment is mapped at different addresses

So how can we work with an address that is always changing? There is a trick! As the pointer
and structure are in the same shared memory segment, the distance between them does
not change. The idea behind boost::interprocess::offset_ptr is to remember that
distance, and on dereference, add the distance value to the process-dependent address of
the offset_ptr variable.

The offset pointer imitates the behavior of pointers, so it is a drop-in replacement that can be
applied fast.

Do not place classes that may have pointers or references into
shared memory!

There's more...
An offset pointer works slightly slower than the usual pointer because on each dereference, it
is required to compute the address. But this difference is not usually sufficient to bother you.

C++11 has no offset pointers.

See also
 f Boost's official documentation contains many examples and more advanced Boost.

Interprocess features; it is available at http://www.boost.org/doc/
libs/1_53_0/doc/html/interprocess.html

 f The fastest way to read files recipe contains information about some nontraditional
usage of the Boost.Interprocess library

Working with the System

286

The fastest way to read files
All around the Internet, people are asking "What is the fastest way to read files?". Let's
make our task for this recipe even harder: "What is the fastest and most portable way to
read binary files?"

Getting ready
Basic knowledge of C++ and the std::fstream containers is required for this recipe.

How to do it...
The technique from this recipe is widely used by applications critical to input and output
performance.

1. We'll need to include two headers from the Boost.Interprocess library:
#include <boost/interprocess/file_mapping.hpp>
#include <boost/interprocess/mapped_region.hpp>

2. Now we need to open a file:
const boost::interprocess::mode_t mode =
boost::interprocess::read_only;
boost::interprocess::file_mapping fm(filename, mode);

3. The main part of this recipe is mapping all of the files to memory:
boost::interprocess::mapped_region region(fm, mode, 0, 0);

4. Getting a pointer to the data in the file:

const char* begin
 = reinterpret_cast<const char*>(region.get_address());

That's it! Now we can work with a file just as with normal memory:

const char* pos = std::find(begin, begin + region.get_size(), '\1');

How it works...
All popular operating systems have the ability to map a file to processes' address space.
After such mapping is done, the process can work with those addresses just as with normal
memory. The operating system will take care of all of the file operations, such as caching and
read-ahead.

Chapter 11

287

Why is it faster than traditional read/writes? That's because in most cases read/write is
implemented as memory mapping and copying data to a user-specified buffer. So read usually
does more work.

Just as in the case of STL, we must provide an open mode when opening a file. See step 2
where we provided the boost::interprocess::read_only mode.

See step 3 where we mapped a whole file at once. This operation is actually really fast,
because the OS does not read data from the disk, but waits for the requests to be a part of
the mapped region. After a part of the mapped region was requested, the OS loads that part
of the file from the disk. As we can see, memory mapping operations are lazy, and the size
of the mapped region does not affect performance.

However, a 32-bit OS cannot memory-map large files, so you'll need to
map them in pieces. POSIX (Linux) operating systems require _FILE_
OFFSET_BITS=64 to be defined for the whole project to work with
large files on a 32-bit platform. Otherwise, the OS won't be able to map
parts of the file that are beyond 4 GB.

Now it's time to measure the performance:

$ TIME="%E" time ./reading_files m

mapped_region: 0:00.08

$ TIME="%E" time ./reading_files r

ifstream: 0:00.09

$ TIME="%E" time ./reading_files a

C:

 0:00.09

Just as expected, memory-mapped files are slightly faster than traditional reads. We can also
see that pure C methods have the same performance as that of the C++ std::ifstream
class, so please do not use functions related to FILE* in C++. They are just for C, not for C++!

For optimal performance of std::ifstream, do not forget to open files in binary mode and
read data by blocks:

std::ifstream f(filename, std::ifstream::binary);
// ...
char c[kilobyte];
f.read(c, kilobyte);

Working with the System

286

There's more...
Unfortunately, classes for memory mapping files are not part of C++11, and it looks like they
won't be in C++14 either.

Writing to memory-mapped regions is also a very fast operation. The OS will cache the writes
and won't flush modifications to the disc immediately. There is a difference between the
OS and the std::ofstream data caching. If the std::ofstream data is cached by an
application and it terminates, the cached data can be lost. When data is cached by the OS,
termination of the application won't lead to data loss. Power failures and system crashes lead
to data loss in both cases.

If multiple processes map a single file, and one of the processes modifies the mapped region,
the changes are immediately visible to the other processes.

See also
 f The Boost.Interprocess library contains a lot of useful features to work with the

system; not all of them are covered in this book. You can read more about this great
library at the official site:

http://www.boost.org/doc/libs/1_53_0/doc/html/interprocess.html

Coroutines – saving the state and
postponing the execution

Nowadays, plenty of embedded devices still have only a single core. Developers write
for those devices, trying to squeeze maximum performance out of them. Using Boost.
Threads or some other thread library for such devices is not effective; the OS will be forced
to schedule threads for execution, manage resources, and so on, as the hardware cannot
run them in parallel.

So how can we make a program switch to the execution of a subprogram while waiting for
some resource in the main part?

Getting ready
Basic knowledge of C++ and templates is required for this recipe. Reading some recipes
about Boost.Function may also help.

Chapter 11

287

How to do it...
This recipe is about coroutines, subroutines that allow multiple entry points. Multiple entry
points give us an ability to suspend and resume the execution of a program at certain
locations, switching to/from other subprograms.

1. The Boost.Coroutine library will take care of almost everything. We just need to
include its header:
#include <boost/coroutine/coroutine.hpp>

2. Make a coroutine type with the required signature:
typedef boost::coroutines::coroutine<
 std::string&(std::size_t max_characters_to_process)
> corout_t;

3. Make a coroutine:
void coroutine_task(corout_t::caller_type& caller);

int main() {
 corout_t coroutine(coroutine_task);

4. Now we can execute the subprogram while waiting for an event in the main program:
 // Doing some work
 // ...
 while (!spinlock.try_lock()) {
 // We may do some useful work, before
 // attempting to lock a spinlock once more
 coroutine(10); // Small delays
 }
 // Spinlock is locked

 // ...
 while (!port.block_ready()) {
 // We may do some useful work, before
 // attempting to get block of data once more
 coroutine(300); // Bigger delays
 std::string& s = coroutine.get();
 // ...
 }

Working with the System

286

5. The coroutine method should look like this:

void coroutine_task(corout_t::caller_type& caller) {
 std::string result;

 // Returning back to main program
 caller(result);

 while (1) {
 std::size_t max_characters_to_process = caller.get();
 // Do process some characters
 // ...

 // Returning result, switching back
 // to main program
 caller(result);
 } /*while*/
}

How it works...
At step 2, we are describing the signature of our subprogram using the function signature
std::string& (std::size_t) as a template parameter. This means that the subprogram
accepts std::size_t and returns a reference to a string.

Step 3 is interesting because of the coroutine_task signature. Note that this signature is
common for all coroutine tasks. caller is the variable that will be used to get parameters
from the caller and to return the result of the execution back.

Step 3 requires additional care because the constructor of corout_t will automatically
start the coroutine execution. That's why we call caller(result) at the beginning of the
coroutine task (it returns us to the main method).

When we call coroutine(10) in step 4, we are causing a coroutine program to execute.
Execution will jump to step 5 right after the first caller(result) method, where we'll get
a value 10 from caller.get() and will continue our execution until caller(result).
After that, execution will return to step 4, right after the coroutine(10) call. Next, a call to
coroutine(10) or coroutine(300) will continue the execution of the subprogram from
the place right after the second caller(result) method at step 5.

Chapter 11

287

coroutine(coroutine_task)

coroutine(10)

coroutine(10)

caller(result)

caller(result)

caller(result)

coroutine(300)

Take a look at std::string& s = coroutine.get() in step 4. Here, we'll be getting a
reference to the std::string result from the beginning of coroutine_task described
in step 5. We can even modify it, and coroutine_task will see the modified value. Let me
describe the main difference between coroutines and threads. When a coroutine is executed,
the main task does nothing. When the main task is executed, the coroutine task does nothing.
You have no such guarantee with threads. With coroutines, you explicitly specify when to
start a subtask and when to finish it. In a single core environment, threads can switch at any
moment of time; you cannot control that behavior.

Do not use thread's local storage and do not call boost::coroutines::
coroutine<>::operator() from inside the same coroutine; do not call
boost::coroutines::coroutine<>::get() when a coroutine task
is finished. These operations lead to undefined behavior.

There's more...
While switching threads, the OS does a lot of work, so it is not a very fast operation. However,
with coroutines, you have full control over switching tasks; moreover, you do not need to
do any OS-specific internal kernel work. Switching coroutines is much faster than switching
threads, however, it's not as fast as calling boost::function.

The Boost.Coroutine library will take care of calling a destructor for variables in a
coroutine task, so there's no need to worry about leaks.

Coroutines use the boost::coroutines::detail::forced_unwind
exception to free resources that are not derived from std::exception.
You must take care not to catch that exception in coroutine tasks.

C++11 has no coroutines. But coroutines use features of C++11 when possible,
and even emulate rvalue references on C++03 compilers. You cannot copy
boost::coroutines::coroutine<>, but you can move them using Boost.Move.

See also
 f Boost's official documentation contains more examples, performance notes,

restrictions, and use cases for the Boost.Coroutines library; it is available at the
following link:
http://www.boost.org/doc/libs/1_53_0/libs/coroutine/doc/html/
index.htm

 f Take a look at recipes from Chapter 3, Managing Resources, and Chapter 5,
Multithreading, to get the difference between the Boost.Coroutine, Boost.
Thread, and Boost.Function libraries

12
Scratching the Tip

of the Iceberg

In this chapter we will cover:

 f Working with graphs

 f Visualizing graphs

 f Using a true random number generator

 f Using portable math functions

 f Writing test cases

 f Combining multiple test cases in one test module

 f Manipulating images

Introduction
Boost is a huge collection of libraries. Some of those libraries are small and meant for
everyday use and others require a separate book to describe all of their features. This
chapter is devoted to some of those big libraries and to give you some basics to start with.

The first two recipes will explain the usage of Boost.Graph. It is a big library with an insane
number of algorithms. We'll see some basics and probably the most important part of it
visualization of graphs.

We'll also see a very useful recipe for generating true random numbers. This is a very
important requirement for writing secure cryptography systems.

Some C++ standard libraries lack math functions. We'll see how that can be fixed using Boost.
But the format of this book leaves no space to describe all of the functions.

Scratching the Tip of the Iceberg

308

Writing test cases is described in the Writing test cases and Combining multiple test cases
in one test module recipes. This is important for any production-quality system.

The last recipe is about a library that helped me in many courses during my university
days. Images can be created and modified using it. I personally used it to visualize different
algorithms, hide data in images, sign images, and generate textures.

Unfortunately, even this chapter cannot tell you about all of the Boost libraries. Maybe
someday I'll write another book... and then a few more.

Working with graphs
Some tasks require a graphical representation of data. Boost.Graph is a library that was
designed to provide a flexible way of constructing and representing graphs in memory. It also
contains a lot of algorithms to work with graphs, such as topological sort, breadth first search,
depth first search, and Dijkstra shortest paths.

Well, let's perform some basic tasks with Boost.Graph!

Getting ready
Only basic knowledge of C++ and templates is required for this recipe.

How to do it...
In this recipe, we'll describe a graph type, create a graph of that type, add some vertexes
and edges to the graph, and search for a specific vertex. That should be enough to start
using Boost.Graph.

1. We start with describing the graph type:
#include <boost/graph/adjacency_list.hpp>
#include <string>

typedef std::string vertex_t;
typedef boost::adjacency_list<
 boost::vecS
 , boost::vecS
 , boost::bidirectionalS
 , vertex_t
> graph_type;

2. Now we construct it:
 graph_type graph;

Chapter 12

309

3. Let's use a non portable trick that speeds up graph construction:
 static const std::size_t vertex_count = 5;
 graph.m_vertices.reserve(vertex_count);

4. Now we are ready to add vertexes to the graph:
typedef boost::graph_traits<graph_type>
 ::vertex_descriptor descriptor_t;

 descriptor_t cpp
 = boost::add_vertex(vertex_t("C++"), graph);
 descriptor_t stl
 = boost::add_vertex(vertex_t("STL"), graph);
 descriptor_t boost
 = boost::add_vertex(vertex_t("Boost"), graph);
 descriptor_t guru
 = boost::add_vertex(vertex_t("C++ guru"), graph);
 descriptor_t ansic
 = boost::add_vertex(vertex_t("C"), graph);

5. It is time to connect vertexes with edges:
 boost::add_edge(cpp, stl, graph);
 boost::add_edge(stl, boost, graph);
 boost::add_edge(boost, guru, graph);
 boost::add_edge(ansic, guru, graph);

6. We make a function that searches for a vertex:
template <class GraphT>
void find_and_print(const GraphT& g, boost::string_ref name) {

7. Now we will write code that gets iterators to all vertexes:
 typedef typename boost::graph_traits<graph_type>
 ::vertex_iterator vert_it_t;

 vert_it_t it, end;
 boost::tie(it, end) = boost::vertices(g);

8. It's time to run a search for the required vertex:

 typedef
 boost::graph_traits<graph_type>::vertex_descriptor desc_t;
 for (; it != end; ++ it) {
 desc_t desc = *it;
 if (boost::get(boost::vertex_bundle, g)[desc]
 == name.data()) {
 break;

Scratching the Tip of the Iceberg

310

 }
 }
 assert(it != end);
 std::cout << name << '\n';
} /* find_and_print */

How it works...
In step 1, we are describing what our graph must look like and upon what types it must be
based. boost::adjacency_list is a class that represents graphs as a two-dimensional
structure, where the first dimension contains vertexes and the second dimension contains
edges for that vertex. boost::adjacency_list must be the default choice for representing
a graph; it suits most cases.

The first template parameter, boost::adjacency_list, describes the structure used to
represent the edge list for each of the vertexes; the second one describes a structure to store
vertexes. We can choose different STL containers for those structures using specific selectors,
as listed in the following table:

Selector STL container
boost::vecS std::vector

boost::listS std::list

boost::slistS std::slist

boost::setS std::set

boost::multisetS std::multiset

boost::hash_setS std::hash_set

The third template parameter is used to make an undirected, directed, or bidirectional graph.
Use the boost::undirectedS, boost::directedS, and boost::bidirectionalS
selectors respectively.

The fifth template parameter describes the datatype that will be used as the vertex. In our
example, we chose std::string. We can also support a datatype for edges and provide
it as a template parameter.

Steps 2 and 3 are trivial, but at step 4 you will see a non portable way to speed up graph
construction. In our example, we use std::vector as a container for storing vertexes,
so we can force it to reserve memory for the required amount of vertexes. This leads to less
memory allocations/deallocations and copy operations during insertion of vertexes into the
graph. This step is non-portable because it is highly dependent on the current implementation
of boost::adjacency_list and on the chosen container type for storing vertexes.

Chapter 12

311

At step 4, we see how vertexes can be added to the graph. Note how boost::graph_
traits<graph_type> has been used. The boost::graph_traits class is used to
get types that are specific for a graph type. We'll see its usage and the description of
some graph-specific types later in this chapter. Step 5 shows what we need do to connect
vertexes with edges.

If we had provided a datatype for the edges, adding an edge
would look as follows:
boost::add_edge(ansic, guru,
edge_t(initialization_parameters), graph)

Note that at step 6 the graph type is a template parameter. This is recommended to
achieve better code reusability and make this function work with other graph types.

At step 7, we see how to iterate over all of the vertexes of the graph. The type of vertex
iterator is received from boost::graph_traits. The function boost::tie is a part
of Boost.Tuple and is used for getting values from tuples to the variables. So calling
boost::tie(it, end) = boost::vertices(g) will put the begin iterator into
the it variable and the end iterator into the end variable.

It may come as a surprise to you, but dereferencing a vertex iterator does not return
vertex data. Instead, it returns the vertex descriptor desc, which can be used in
boost::get(boost::vertex_bundle, g)[desc] to get vertex data, just as we
have done in step 8. The vertex descriptor type is used in many of the Boost.Graph
functions; we saw its use in the edge construction function in step 5.

As already mentioned, the Boost.Graph library contains the
implementation of many algorithms. You will find many search
policies implemented, but we won't discuss them in this book.
We will limit this recipe to only the basics of the graph library.

There's more...
The Boost.Graph library is not a part of C++11 and it won't be a part of C++1y. The
current implementation does not support C++11 features. If we are using vertexes that
are heavy to copy, we may gain speed using the following trick:

vertex_descriptor desc = boost::add_vertex(graph);
boost::get(boost::vertex_bundle, g_)[desc] = std::move(vertex_data);

It avoids copy constructions of boost::add_vertex(vertex_data, graph) and uses
the default construction with move assignment instead.

The efficiency of Boost.Graph depends on multiple factors, such as the underlying
containers types, graph representation, edge, and vertex datatypes.

Scratching the Tip of the Iceberg

312

See also
 f Reading the Visualizing graphs recipe can help you work more easily with graphs. You

may also consider reading its official documentation at the following link:

http://www.boost.org/doc/libs/1_53_0/libs/graph/doc/table_of_
contents.html

Visualizing graphs
Making programs that manipulate graphs was never easy because of issues with visualization.
When we work with STL containers such as std::map and std::vector, we can always
print the container's contents and see what is going on inside. But when we work with
complex graphs, it is hard to visualize the content in a clear way: too many vertexes and too
many edges.

In this recipe, we'll take a look at the visualization of Boost.Graph using the Graphviz tool.

Getting ready
To visualize graphs, you will need a Graphviz visualization tool. Knowledge of the preceding
recipe is also required.

How to do it...
Visualization is done in two phases. In the first phase, we make our program output the graph's
description in a text format; in the second phase, we import the output from the first step to
some visualization tool. The numbered steps in this recipe are all about the first phase.

1. Let's write the std::ostream operator for graph_type as done in the preceding
recipe:
#include <boost/graph/graphviz.hpp>
std::ostream& operator<<(std::ostream& out, const graph_type& g) {
 detail::vertex_writer<graph_type> vw(g);
 boost::write_graphviz(out, g, vw);
 return out;
}

2. The detail::vertex_writer structure, used in the preceding step, must be
defined as follows:
namespace detail {

 template <class GraphT>
 class vertex_writer {

Chapter 12

313

 const GraphT& g_;

 public:
 explicit vertex_writer(const GraphT& g)
 : g_(g)
 {}

 template <class VertexDescriptorT>
 void operator()(std::ostream& out,
 const VertexDescriptorT& d) const
 {
 out << " [label=\""
 << boost::get(boost::vertex_bundle, g_)[d]
 << "\"]";
 }
 }; // vertex_writer

} // namespace detail

That's all. Now, if we visualize the graph from the previous recipe using the std::cout
<< graph; command, the output can be used to create graphical pictures using the dot
command-line utility:

$ dot -Tpng -o dot.png

digraph G {

0 [label="C++"];

1 [label="STL"];

2 [label="Boost"];

3 [label="C++ guru"];

4 [label="C"];

0->1 ;

1->2 ;

2->3 ;

4->3 ;

}

Scratching the Tip of the Iceberg

314

The output of the preceding command is depicted in the following figure:

C++ guru

Boost C

STL

C++

We can also use the Gvedit or XDot programs for visualization if the command line
frightens you.

How it works...
The Boost.Graph library contains function to output graphs in Graphviz (DOT) format. If we
write boost::write_graphviz(out, g) with two parameters in step 1, the function will
output a graph picture with vertexes numbered from 0. That's not very useful, so we provide
an instance of the vertex_writer class that outputs vertex names.

As we can see in step 2, the format of output must be DOT, which is understood by the
Graphviz tool. You may need to read the Graphviz documentation for more info about the DOT
format.

If you wish to add some data to the edges during visualization, we need to provide an instance
of the edge visualizer as a fourth parameter to boost::write_graphviz.

There's more...
C++11 does not contain Boost.Graph or the tools for graph visualization. But you do not
need to worry—there are a lot of other graph formats and visualization tools and Boost.
Graph can work with plenty of them.

See also
 f The Working with graphs recipe contains information about the construction of

Boost.Graphs

 f You will find a lot of information about the DOT format and Graphviz at http://www.
graphviz.org/

Chapter 12

315

 f Boost's official documentation for the Boost.Graph library contains multiple
examples and useful information, and can be found at http://www.boost.org/
doc/libs/1_53_0/libs/graph/doc/table_of_contents.html

Using a true random number generator
I know of many examples of commercial products that use incorrect methods for getting
random numbers. It's a shame that some companies still use rand() in cryptography and
banking software.

Let's see how to get a fully random uniform distribution using Boost.Random that is suitable
for banking software.

Getting ready
Basic knowledge of C++ is required for this recipe. Knowledge of different types of
distributions will also be helpful. The code in this recipe requires linking against the boost_
random library.

How to do it...
To create a true random number, we need some help from the operating system or processor.
This is how it can be done using Boost:

1. We'll need to include the following headers:
#include <boost/config.hpp>
#include <boost/random/random_device.hpp>
#include <boost/random/uniform_int_distribution.hpp>

2. Advanced random number providers have different names under different platforms:
 static const std::string provider =
#ifdef BOOST_WINDOWS
 "Microsoft Strong Cryptographic Provider"
#else
 "/dev/urandom"
#endif
 ;

3. Now we are ready to initialize the generator with Boost.Random:
 boost::random_device device(provider);

4. Let's get a uniform distribution that returns a value between 1000 and 65535:
 boost::random::uniform_int_distribution<unsigned short>
 random(1000);

Scratching the Tip of the Iceberg

316

That's it. Now we can get true random numbers using the random(device) call.

How it works...
Why does the rand() function not suit banking? Because it generates pseudo-random
numbers, which means that the hacker could predict the next generated number. This is an
issue with all pseudo-random number algorithms. Some algorithms are easier to predict and
some harder, but it's still possible.

That's why we are using boost::random_device in this example (see step 3). That device
gathers information about random events from all around the operating system to construct
an unpredictable hardware-generated number. The examples of such events are delays
between pressed keys, delays between some of the hardware interruptions, and the internal
CPU random number generator.

Operating systems may have more than one such type of random number generators. In our
example for POSIX systems, we used /dev/urandom instead of the more secure /dev/
random because the latter remains in a blocked state until enough random events have been
captured by the OS. Waiting for entropy could take seconds, which is usually unsuitable for
applications. Use /dev/random to create long-lifetime GPG/SSL/SSH keys.

Now that we are done with generators, it's time to move to step 4 and talk about distribution
classes. If the generator just generates numbers (usually uniformly distributed), the
distribution class maps one distribution to another. In step 4, we made a uniform distribution
that returns a random number of unsigned short type. The parameter 1000 means that
distribution must return numbers greater or equal to 1000. We can also provide the maximum
number as a second parameter, which is by default equal to the maximum value storable in
the return type.

There's more...
Boost.Random has a huge number of true/pseudo random generators and distributions
for different needs. Avoid copying distributions and generators; this could turn out to be an
expensive operation.

C++11 has support for different distribution classes and generators. You will find all of the
classes from this example in the <random> header in the std:: namespace. The Boost.
Random libraries do not use C++11 features, and they are not really required for that library
either. Should you use Boost implementation or STL? Boost provides better portability across
systems; however, some STL implementations may have assembly-optimized implementations
and might provide some useful extensions.

Chapter 12

317

See also
 f The official documentation contains a full list of generators and distributions with

descriptions; it is available at the following link:

http://www.boost.org/doc/libs/1_53_0/doc/html/boost_random.html

Using portable math functions
Some projects require specific trigonometric functions, a library for numerically solving
ordinary differential equations, and working with distributions and constants. All of those
parts of Boost.Math would be hard to fit into even a separate book. A single recipe definitely
won't be enough. So let's focus on very basic everyday-use functions to work with float types.

We'll write a portable function that checks an input value for infinity and not-a-number (NaN)
values and changes the sign if the value is negative.

Getting ready
Basic knowledge of C++ is required for this recipe. Those who know C99 standard will find a
lot in common in this recipe.

How to do it...
Perform the following steps to check the input value for infinity and NaN values and change
the sign if the value is negative:

1. We'll need the following headers:
#include <boost/math/special_functions.hpp>
#include <cassert>

2. Asserting for infinity and NaN can be done like this:
template <class T>
void check_float_inputs(T value) {
 assert(!boost::math::isinf(value));
 assert(!boost::math::isnan(value));

3. Use the following code to change the sign:

 if (boost::math::signbit(value)) {
 value = boost::math::changesign(value);
 }

 // ...
} // check_float_inputs

Scratching the Tip of the Iceberg

318

That's it! Now we can check that check_float_inputs(std::sqrt(-1.0)) and check_
float_inputs(std::numeric_limits<double>::max() * 2.0) will cause asserts.

How it works...
Real types have specific values that cannot be checked using equality operators. For
example, if the variable v contains NaN, assert(v!=v) may or may not pass depending
on the compiler.

For such cases, Boost.Math provides functions that can reliably check for infinity and
NaN values.

Step 3 contains the boost::math::signbit function, which requires clarification. This
function returns a signed bit, which is 1 when the number is negative and 0 when the number
is positive. In other words, it returns true if the value is negative.

Looking at step 3 some readers might ask, "Why can't we just multiply by -1 instead of
calling boost::math::changesign?". We can. But multiplication may work slower than
boost::math::changesign and won't work for special values. For example, if your code
can work with nan, the code in step 3 will be able to change the sign of -nan and write nan
to the variable.

The Boost.Math library maintainers recommend wrapping math
functions from this example in round parenthesis to avoid collisions
with C macros. It is better to write (boost::math::isinf)
(value) instead of boost::math::isinf(value).

There's more...
C99 contains all of the functions described in this recipe. Why do we need them in Boost?
Well, some compiler vendors think that programmers do not need them, so you won't find
them in one very popular compiler. Another reason is that the Boost.Math functions can
be used for classes that behave like numbers.

Boost.Math is a very fast, portable, reliable library.

See also
 f Boost's official documentation contains lots of interesting examples and tutorials that

will help you get used to Boost.Math; browse to http://www.boost.org/doc/
libs/1_53_0/libs/math/doc/html/index.html

Chapter 12

319

Writing test cases
This recipe and the next one are devoted to auto-testing the Boost.Test library, which is used
by many Boost libraries. Let's get hands-on with it and write some tests for our own class.

#include <stdexcept>
struct foo {
 int val_;

 operator int() const;
 bool is_not_null() const;
 void throws() const; // throws(std::logic_error)
};

Getting ready
Basic knowledge of C++ is required for this recipe. The code of this recipe requires linking
against the static version of the boost_unit_test_framework library.

How to do it...
To be honest, there is more than one test library in Boost. We'll take a look at the most
functional one.

1. To use it, we'll need to define the macro and include the following header:
#define BOOST_TEST_MODULE test_module_name
#include <boost/test/unit_test.hpp>

2. Each set of tests must be written in the test case:
BOOST_AUTO_TEST_CASE(test_no_1) {

3. Checking some function for the true result is done as follows:
 foo f1 = {1}, f2 = {2};
 BOOST_CHECK(f1.is_not_null());

4. Checking for nonequality is implemented in the following way:
 BOOST_CHECK_NE(f1, f2);

5. Checking for an exception being thrown will look like this:

 BOOST_CHECK_THROW(f1.throws(), std::logic_error);
} // BOOST_AUTO_TEST_CASE(test_no_1)

That's it! After compilation and linking, we'll get an executable file that automatically tests
foo and outputs test results in a human-readable format.

Scratching the Tip of the Iceberg

320

How it works...
Writing unit tests is easy; you know how the function works and what result it should produce
in specific situations. So you just check if the expected result is the same as the function's
actual output. That's what we did in step 3. We know that f1.is_not_null() will return
true and we checked it. At step 4, we know that f1 is not equal to f2, so we checked it too.
The call to f1.throws() will produce the std::logic_error exception and we check that
an exception of the expected type is thrown.

At step 2, we are making a test case – a set of checks to validate correct behavior of the foo
structure. We can have multiple test cases in a single source file. For example, if we add the
following code:

BOOST_AUTO_TEST_CASE(test_no_2) {
 foo f1 = {1}, f2 = {2};
 BOOST_REQUIRE_NE(f1, f2);
 // ...
} // BOOST_AUTO_TEST_CASE(test_no_2)

This code will run along with the test_no_1 test case. The parameter passed to the BOOST_
AUTO_TEST_CASE macro is just a unique name of the test case that will be shown in case
of error.

Running 2 test cases...
main.cpp(15): error in "test_no_1": check f1.is_not_null() failed
main.cpp(17): error in "test_no_1": check f1 != f2 failed [0 == 0]
main.cpp(19): error in "test_no_1": exception std::logic_error is
expected
main.cpp(24): fatal error in "test_no_2": critical check f1 != f2
failed [0 == 0]

*** 4 failures detected in test suite "test_module_name"

There is a small difference between the BOOST_REQUIRE_* and BOOST_CHECK_* macros.
If the BOOST_REQUIRE_* macro check fails, the execution of the current test case will stop
and Boost.Test will run the next test case. However, failing BOOST_CHECK_* won't stop
the execution of the current test case.

Step 1 requires additional care. Note the BOOST_TEST_MODULE macro definition. This macro
must be defined before including the Boost.Test headers, otherwise linking of the program
will fail. More information can be found in the See also section of this recipe.

There's more...
Some readers may wonder, "Why did we write BOOST_CHECK_NE(f1, f2) in step 4 instead
of BOOST_CHECK(f1 != f2)?". The answer is simple: the macro at step 4 provides a more
readable and verbose output.

Chapter 12

321

C++11 lacks support for unit testing. However, the Boost.Test library can be used to test
C++11 code. Remember that the more tests you have, the more reliable code you get!

See also
 f The Combining multiple test cases in one test module recipe contains more

information about testing and the BOOST_TEST_MODULE macro

 f Refer to Boost's official documentation for a full list of test macros and information
about advanced features of Boost.Test; it's available at the following link:
http://www.boost.org/doc/libs/1_53_0/libs/test/doc/html/index.
html

Combining multiple test cases in one test
module

Writing auto tests is good for your project. But managing test cases is hard when the project
is large and many developers are working on it. In this recipe, we'll take a look at how to run
individual tests and how to combine multiple test cases in a single module.

Let's pretend that two developers are testing the foo structure declared in the foo.hpp
header and we wish to give them separate source files to write a test to. In that way, the
developers won't bother each other and can work in parallel. However, the default test run
must execute the tests of both developers.

Getting ready
Basic knowledge of C++ is required for this recipe. This recipe partially reuses code from the
previous recipe and it also requires linking against the static version of the boost_unit_
test_framework library.

How to do it...
This recipe uses the code from the previous one. This is a very useful recipe for testing large
projects; do not underestimate it.

1. Of all the headers in main.cpp from the previous recipe, leave only these two lines:
#define BOOST_TEST_MODULE test_module_name
#include <boost/test/unit_test.hpp>

Scratching the Tip of the Iceberg

322

2. Let's move the tests cases from the previous example into two different source files:
// developer1.cpp
#include <boost/test/unit_test.hpp>
#include "foo.hpp"
BOOST_AUTO_TEST_CASE(test_no_1) {
 // ...
}

///

// developer2.cpp
#include <boost/test/unit_test.hpp>
#include "foo.hpp"
BOOST_AUTO_TEST_CASE(test_no_2) {
 // ...
}

That's it! Thus compiling and linking all of the sources and both test cases will work on
program execution.

How it works...
All of the magic is done by the BOOST_TEST_MODULE macro. If it is defined before <boost/
test/unit_test.hpp>, Boost.Test thinks that this source file is the main one and all
of the helper testing infrastructure must be placed in it. Otherwise, only the test macro will
be included from <boost/test/unit_test.hpp>.

All of the BOOST_AUTO_TEST_CASE tests are run if you link them with the source file that
contains the BOOST_TEST_MODULE macro. When working on a big project, each developer
may enable compilation and linking of only their own sources. That gives independence from
other developers and increases the speed of development—no need to compile alien sources
and run alien tests while debugging.

There's more...
The Boost.Test library is good because of its ability to run tests selectively. We can choose
which tests to run and pass them as command-line arguments. For example, the following
command will run only the test_no_1 test case:

./testing_advanced –run=test_no_1

The following command will run two test cases:

./testing_advanced –run=test_no_1,test_no_2

Chapter 12

323

Unfortunately, C++11 standard does not have built-in testing support and it looks like C++1y
won't adopt the classes and methods of Boost.Test either.

See also
 f The Writing test cases recipe contains more information about the Boost.Test

library. Read Boost's official documentation for more information about Boost.Test,
at http://www.boost.org/doc/libs/1_53_0/libs/test/doc/html/utf.
html.

 f Brave readers can take a look at some of the test cases from the Boost library.
Those test cases are allocated in the libs subfolder located in the boost folder.
For example, Boost.LexicalCast tests cases are allocated at boost_1_53_0\
libs\conversion\test.

Manipulating images
I've left you something really tasty for dessert – Boost's Generic Image Library (GIL), which
allows you to manipulate images and not care much about image formats.

Let's do something simple and interesting with it; let's make a program that negates any picture.

Getting ready
This recipe requires basic knowledge of C++, templates, and Boost.Variant. The example
requires linking against the PNG library.

How to do it...
For simplicity, we'll be working with only PNG images.

1. Let's start with including the header files:
#include <boost/gil/gil_all.hpp>
#include <boost/gil/extension/io/png_dynamic_io.hpp>
#include <string>

2. Now we need to define the image types that we wish to work with:
 typedef boost::mpl::vector<
 boost::gil::gray8_image_t,
 boost::gil::gray16_image_t,
 boost::gil::rgb8_image_t,
 boost::gil::rgb16_image_t
 > img_types;

Scratching the Tip of the Iceberg

324

3. Opening an existing PNG image can be implemented like this:
 std::string file_name(argv[1]);
 boost::gil::any_image<img_types> source;
 boost::gil::png_read_image(file_name, source);

4. We need to apply the operation to the picture as follows:
 boost::gil::apply_operation(
 view(source),
 negate()
);

5. The following code line will help you to write an image:
 boost::gil::png_write_view("negate_" + file_name,
 const_view(source));

6. Let's take a look at the modifying operation:
struct negate {
 typedef void result_type; // required

 template <class View>
 void operator()(const View& source) const {
 // ...
 }
}; // negate

7. The body of operator() consists of getting a channel type:
typedef typename View::value_type value_type;
typedef typename boost::gil::channel_type<value_type>::type
 channel_t;

8. It also iterates through pixels:

const std::size_t channels
 = boost::gil::num_channels<View>::value;
const channel_t max_val = (std::numeric_limits<channel_t>::max)();

for (unsigned int y = 0; y < source.height(); ++y) {
 for (unsigned int x = 0; x < source.width(); ++x) {
 for (unsigned int c = 0; c < channels; ++c) {
 source(x, y)[c] = max_val - source(x, y)[c];
 }
 }
}

Now let's see the results of our program:

Chapter 12

325

The previous picture is the negative of the one that follows:

Scratching the Tip of the Iceberg

326

How it works...
In step 2, we are describing the types of images we wish to work with. Those images are gray
images with 8 and 16 bits per pixel and RGB pictures with 8 and 16 bits per pixel.

The boost::gil::any_image<img_types> class is a kind of Boost.Variant that
can hold an image of one of the img_types variable. As you may have already guessed,
boost::gil::png_read_image reads images into image variables.

The boost::gil::apply_operation function at step 4 is almost equal to
boost::apply_visitor from the Boost.Variant library. Note the usage of
view(source). The boost::gil::view function constructs a light wrapper around the
image that interprets it as a two-dimensional array of pixels.

Do you remember that for Boost.Variant we were deriving visitors from boost::static_
visitor? When we are using GIL's version of variant, we need to make a result_type
typedef inside visitor. You can see it in step 6.

A little bit of theory: images consist of points called pixels. Single images have pixels of the
same type. However, pixels of different images can differ in channel count and color bits for a
single channel. A channel represents a primary color. In the case of an RGB image, we'll have
a pixel consisting of three channels—red, green, and blue. In the case of a gray image, we'll
have a single channel representing gray.

Back to our image. In step 2, we described the types of images we wish to work with. In step
3, one of those image types is read from file and stored in the source variable. In step 4, the
operator() method of the negate visitor is instantiated for all image types.

In step 7, we can see how to get the channel type from the image view.

In step 8, we iterate through pixels and channels and negate them. Negation is done via max_
val - source(x, y)[c] and the result is written back to the image view.

We write an image back in step 5.

There's more...
C++11 has no built-in methods for working with images.

The Boost.GIL library is fast and efficient. The compilers optimize its code very well and we
can even help the optimizer using some of the Boost.GIL methods to unroll loops. But this
chapter talks about only some of the library basics, so it is time to stop.

Chapter 12

327

See also
 f More information about Boost.GIL can be found at Boost's official documentation;

go to http://www.boost.org/doc/libs/1_53_0/libs/gil/doc/index.
html

 f See the Storing multiple chosen types in a variable/container recipe in
Chapter 1, Starting to Write Your Application, for more information about
the Boost.Variant library

Index
A
access

syncing, to common resource 126-130
to common resource, atomics used 131-133

Argument Dependent Lookup (ADL) 230
array

pointers, managing 77, 78
pointers, reference counting 79-82
returning, from function 25, 27

async_read function 163
async_write function 163
atomics

used, for fast access to common resource
131, 132

auto keyword 116

B
barrier 176
base class

initializing, by derived class member 93-96
bimap

creating, with pair of keys 248-250
bind() function 31
Boost

about 7, 8, 307
more features, getting 282, 283
URL 15

boost::apply metafunction 226
boost::bad_lexical_cast exception class 48
boost::common_type<> metafunction 224
boost::container::slist class 261
boost::detach 125
boost::enable_if 105

boost::enable_if_c<false>::type metafunction
104

boost::enable_if_c template 104
boost::format class 200
boost::function class 84
boost::fusion::for_each function 232
boost::get<> function 28
boost::interrupt_and_join_if_joinable 125
boost::is_float<T>::value metafunction 104
boost::is_iequal predicate 191
boost::iterator_range class 205, 206
boost::join_if_joinable 125
boost::lexical_cast function 49, 52, 58
boost::lexical_cast functions 48
boost:: lock_guard class 129
boost::make_split_iterator function 205
boost::make_tuple() function 28
boost::mpl::false_ type metafunction 225
boost::mpl::transform metafunction 220
boost::mpl::vector class 215
boost::mpl::vector function 217
boost::mutex class 129
boost::numeric_cast function 55
boost::polymorphic_cast function 60
boost::regex::no_except flag 195
boost::regex_replace function 198
boost::regex_search function 198
boost::scoped_ptr<T> function 73
boost::shared_ptr 75
boost::spirit::qi::parse function 63
boost::split_iterator class 206
boost::string_ref class 208, 209
boost::string_ref constructor 208
boost::thread class 124
boost::thread_group variable 147

330

boost::thread variable 123
boost::true_type class 112
boost::upgrade_mutex class 141
boost::variant class 17
boost::adjacency_list 310
boost::bidirectionalS 310
Boost.Bimap library

used, for creating vocabulary structure 249
Boost.Config

URL 269
boost::container::flat_set class 264
Boost containers

about 239
flat associative containers 263
memory pool 259
multi-index containers 252
single linked list 259
string comparison 240
unordered map, using 244
unordered set, using 244

Boost.Coroutine library 303, 306
boost::current_exception() method 183
BOOST_CURRENT_FUNCTION

URL 271
boost::directedS 310
Boost.Exception library 183
boost::exception_ptr class 184
boost::fast_pool_allocator function 262
Boost.Filesystem 287
Boost.Fusion

about 236
URL 234

boost::gil::apply_operation function 326
Boost.GIL library 326
boost::gil::view function 326
Boost.Graph 307
Boost.Graph library 311
Boost.Interprocess library 291, 297
boost::io_service

run() method 153
boost::io_service class 153
boost::io_service variable 153
Boost.LexicalCast

about 48, 51
documentation, URL 59

Boost.Math 318

Boost.MPL
about 111
URL 227, 238

Boost.Multiindex
container 253
library 258

boost::multi_index::ordered_unique class 256
Boost.MultiIndex types

relation, with STL containers 256
BOOST_NO_CXX11_EXTERN_TEMPLATE

macro 273
BOOST_NO_CXX11_HDR_ARRAY macro 275
Boost.NumericConversion library 55
Boost.Pool library

drawback 261
Boost.ProgramOptions library 8
Boost.Random 316
Boost.Spirit library 65, 69, 70
BOOST_STATIC_ASSERT macro 99
BOOST_STATIC_ASSERT_MSG macro 101
BOOST_STATIC_ASSSERT macro 100
BOOST_STATIC_ASSSERT_MSG macro 100
Boost.StringAlgorithm library 202
Boost String Algorithms library

URL 191
boost::system::error_code class 290
BOOST_TEST_MODULE macro 322
Boost.Thread

about 130
documentation, URL 143, 147

boost::thread::hardware_concurrency() func-
tion 170

Boost.Tuple 28
Boost.TypeTraits

official documentation, URL 108
boost::undirectedS 310
boost_unit_test_framework 319
Boost.Utility library 40
BOOST_VERSION macro 283
BufSizeV value 98

C
C++03

expression type, getting 116-118
C++03 unions 16

331

C++11
about 243
user-defined types (UDTs), performance

improving 276, 277
C++11 extern templates

used, for speeding compilations 272-274
C++11 lambda functions

in variables, passing 86, 87
C++11 move emulation

using 37-40
C++11 standard 124
C++11 STL implementation

URL 125
cases

changing 189-191
insensitive, comparing 190, 191

class
making, movable 42-46
making, noncopyable 40, 41
pointers, managing 72, 73
pointers, reference counting 74-77

compile-time checks 97
configuration options

getting 8-12
constexpr function 274
constexpr keyword 275
container

multiple chosen types, storing 16-18
pointers 88-90
value, storing 13-15
working with 18-22

conveyor tasks
processing 171-175

coroutines 303
cref() function 36

D
data

passing, from one process to
another 291-293

data_barrier.wait() method 178
data_cpy variable 80
deleter object 82
detach() function 123, 124
detail::make_timer_task function 155

directories
creating 289, 290
file, listing in 286

dot command-line utility 313
dynamic load 279

E
exception

storing 181, 182
execution thread

creating 122-125
expression

type, getting 116-119
Extended Backus-Naur Form (EBNF) 62

F
files

creating 288-290
listing, in directory 286, 287
reading 300, 301

finsh_socket_auth_task function 163
flag

returning, on no value 22, 24
flat associative containers

using 263
working 264, 265

flat_set associative container 263
fobject_t method 84
function

array, returning from 25, 27
exporting 279-281
importing 279-281
parameters, reordering 30-34
result type, getting at compile-time 222-224

functional objects
storing, in variable 82-85

function parameter
value, binding as 34-37

function pointer
passing, in variable 85, 86

G
Generic Image Library (GIL) 323

330

graphs
visualizing 312-314
working with 308-311

Graphviz tool
used, for visualizing graph 312

Gvedit 314

H
handle_accept method 167
hash_combine function 248
hash_value function 244

I
images

manipulating 323-326
incoming connections

accepting 164-167
input

parsing 61-69
int128 support

detecting 268-272
interprocess communications

syncing 294-296
io_service::run() method 161
is_stdvector structure 112

L
libboost_program_options library 8
libboost_system library 150, 158
list_specific function 260

M
main() function 192
memory pool

benefits 258
metafunction

evaluating 227-230
writing, simpler methods used 274-276

mul_2 function 31
multi-index containers

using 252-255
working 256, 257

multiple test cases
combining, in one test module 321, 322

Multithreading 121

N
named return value optimization (NRVO) 52
network communication

performing, as task 157-161
noexcept function 278
nonblocking barrier

creating 176-180
noncopyable class

and movable class, creating 42-46
making 40, 41

non_declared types 213
non-Plain Old Data (POD) 98
Not-A-Thread state 124
numbers

converting, to numbers 53-56
converting, to strings 51, 52
strings, converting to 48, 50

O
Object class 13
operator() method 326
optimal operator

selecting, for template parameter 113-116

P
parameters, of function

reordering 30-33
parse function 63
Pimpl idiom 162
pointers

containers 88-90
to arrays, managing 77, 78
to arrays, reference counting 79-82
to classes, managing 72-74
to classes, reference counting 74, 76
using, in shared memory 297, 298

polymorphic objects
casting 59, 60

pop_task() function 137

333

portable math functions
using 317, 318

process_exception function 183
process_integers() method 86
program execution

switching, to/from other
subprograms 302-305

push_task method 151
push_task() method 167

R
rand() function 316
ref() function 36
register_signals_handler function 188
regular expressions

strings, matching by 192-198
strings, replacing by 196-198

remove_listener() method 168
replace_head_copy function 202
reset() function 73
result_of namespace 224
RTTI support

detecting 270
run_after function 156
run() function 153
runtime checks 97
runtime type information (RTTI) 15

S
safe printf-like functions

used, for formatting strings 199-201
scoped_array<> class 78
scoped_ptr<T> class template 73
scope(exit) 91, 92
serialization() function 99
SFINAE (Substitution Failure Is Not An Error)

principle 104
shared memory

pointers, using in 297-299
shared_ptr class 76
single linked list

benefits 258
size

checking, at compile time 98-102
size() method 262

sizeof(value) 98
sizes_types typedef 216
start_multiple method 169
std::for_each function 233
std::locale variable 191
std::string class 207
std::terminate() application 145
std::deque container 258
std::list container 258
std::map 245
std::set 245
std::string 241
std::vector container 258
string comparison

performing, in ultra-fast manner 240, 241
working 242, 243

stringize function 232
string_ref

URL 210
strings

converting, to numbers 48-50
erasing 201, 203
formatting, safe printf-like functions used

199, 200
matching, by regular expressions 192-195
replacing 201, 202
replacing, by regular expressions 196- 198
representing, with two iterators 203-206
searching, by regular expressions 196-198
type, reference using to 206-209

subroutines 303
symmetric multiprocessing (SMP) cluster 293

T
tags

URL 111
task

conveyor tasks processing 171-176
different tasks, executing in parallel 169, 170
exception, storing 181-183
incoming connections, accepting 164-167
nonblocking barrier, creating 176-180
registering, for arbitrary datatype processing

150-153
system signals, processing as tasks 185-188

tasks_processor class 151, 154, 164, 185

330

tasks_processor constructor 186
tcp_connection_ptr class 159, 162
Technical Report (TR) 153
templated functions

usage disabling, for real types 106, 107
usage enabling, for integral types 102-105

template parameter
optimal operator, selecting 113-115

test cases
writing 319, 320

test_function() 54
thread

access, syncing to common
resource 126-130

fast access to common resource, atomics
used 131-133

groups, manipulating 146
interrupting 144, 145
of execution, creating 122-125

timers and processing timer events
making, as tasks 154-157

true random number generator
using 315, 316

try_lock_device() function 23
tuple elements

converting, to strings 230-233
tuples

URL 30
splitting 234-237

type
creating, from number 108-111
trait, implementing 111, 112

U
unique locks

need for 138-140
unordered containers

using 245
unordered map

using 244-248
unordered set

using 244, 245
user-defined types

converting, from strings 56-59
converting, to strings 56-59
performance, increasing 276, 278

V
value

binding, as function parameter 34, 36
multiple values, combining 28-30
returning, on no value 22, 24
storing, in container 13-15
storing, in variable 13-15

variable
C++11 lambda functions, passing 86, 87
functional objects, storing 82-85
function pointer, passing 85, 86
multiple chosen types, storing 16-18
unique per thread, creating 141-143
value, storing 13-15

vector of types
manipulating 217-221
using 212-216

vertex_writer class 314
visualization 312

W
work_queue

about 150
creating 134-138

X
XDot 314

Thank you for buying

Boost C++ Application
Development Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Boost.Asio C++ Network
Programming
ISBN: 978-1-782163-26-8 Paperback: 156 pages

Enhance your skills with practical examples for C++
network programming

1. Augment your C++ network programming using
Boost.Asio

2. Discover how Boost.Asio handles synchronous
and asynchronous programming models

3. Practical examples of client/server applications

4. Learn how to deal with threading when writing
network applications

jQuery Tools UI Library
ISBN: 978-1-849517-80-5 Paperback: 112 pages

Learn jQuery Tools with clear, practical examples and get
inspiration for developing your own ideas with the library

1. Learn how to use jQuery Tools, with clear, practical
projects that you can use today in your websites

2. Learn how to use useful tools such as Overlay,
Scrollable, Tabs and Tooltips

3. Full of practical examples and illustrations, with
code that you can use in your own projects,
straight from the book

Please check www.PacktPub.com for information on our titles

Building Machine Learning
Systems with Python
ISBN: 978-1-782161-40-0 Paperback: 290 pages

Master the art of machine learning with Python and
build effective mahine learning system with this
intensive hands-on guide

1. Master Machine Learning using a broad set
of Python libraries and start building your own
Python-based ML systems

2. Covers classification, regression, feature
engineering, and much more guided by
practical examples

3. A scenario-based tutorial to get into the right
mind-set of a machine learner (data exploration)
and successfully implement this in your new or
existing projects

OpenCV Computer Vision
with Python
ISBN: 978-1-782163-92-3 Paperback: 122 pages

Learn to capture, videos, manipulate images, and track
objects with Python using the OpenCV Library

1. Set up OpenCV, its Python bindings, and optional
Kinect drivers on Windows, Mac or Ubuntu

2. Create an application that tracks and manipulates
faces

3. Identify face regions using normal color images
and depth images

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Starting to Write Your Application
	Introduction
	Getting configuration options
	Storing any value in a container/variable
	Storing multiple chosen types in a variable/container
	Using a safer way to work with a container that stores multiple chosen types
	Returning a value or flag where there is no value
	Returning an array from a function
	Combining multiple values into one
	Reordering the parameters of function
	Binding a value as a function parameter
	Using the C++11 move emulation
	Making a noncopyable class
	Making a noncopyable but movable class

	Chapter 2: Converting Data
	Introduction
	Converting strings to numbers
	Converting numbers to strings
	Converting numbers to numbers
	Converting user-defined types to/from strings
	Casting polymorphic objects
	Parsing simple input
	Parsing input

	Chapter 3: Managing Resources
	Introduction
	Managing pointers to classes that do not leave scope
	Reference counting of pointers to classes used across methods
	Managing pointers to arrays that do not leave scope
	Reference counting pointers to arrays used across methods
	Storing any functional objects in a variable
	Passing a function pointer in a variable
	Passing C++11 lambda functions in a variable
	Containers of pointers
	Doing something at scope exit
	Initializing the base class by a member of the derived class

	Chapter 4: Compile-time Tricks
	Introduction
	Checking sizes at compile time
	Enabling the usage of templated functions for integral types
	Disabling templated functions' usage for real types
	Creating a type from number
	Implementing a type trait
	Selecting an optimal operator for a template parameter
	Getting a type of expression in C++03

	Chapter 5: Multithreading
	Introduction
	Creating an execution thread
	Syncing access to a common resource
	Fast access to common resource using atomics
	Creating a work_queue class
	Multiple-readers-single-writer lock
	Creating variables that are unique per thread
	Interrupting a thread
	Manipulating a group of threads

	Chapter 6: Manipulating Tasks
	Introduction
	Registering a task for processing an arbitrary datatype
	Making timers and processing timer events as tasks
	Network communication as a task
	Accepting incoming connections
	Executing different tasks in parallel
	Conveyor tasks processing
	Making a nonblocking barrier
	Storing an exception and making a task from it
	Getting and processing system signals as tasks

	Chapter 7: Manipulating Strings
	Introduction
	Changing cases and case-insensitive comparison
	Matching strings using regular expressions
	Searching and replacing strings
using regular expressions
	Formatting strings using safe
printf-like functions
	Replacing and erasing strings
	Representing a string with two iterators
	Using a reference to string type

	Chapter 8: Metaprogramming
	Introduction
	Using type "vector of types"
	Manipulating a vector of types
	Getting a function's result type at
compile time
	Making a higher-order metafunction
	Evaluating metafunctions lazily
	Converting all the tuple elements to strings
	Splitting tuples

	Chapter 9: Containers
	Introduction
	Comparing strings in an ultra-fast manner
	Using an unordered set and map
	Making a map, where value is also a key
	Using multi-index containers
	Getting the benefits of single-linked list and memory pool
	Using flat associative containers

	Chapter 10: Gathering Platform and Compiler Information
	Introduction
	Detecting int128 support
	Detecting RTTI support
	Speeding up compilation using C++11 extern templates
	Writing metafunctions using simpler methods
	Reducing code size and increasing
	performance of user-defined types
(UDTs) in C++11
	The portable way to export and import functions and classes
	Detecting the Boost version and getting latest features

	Chapter 11: Working with the System
	Introduction
	Listing files in a directory
	Erasing and creating files and directories
	Passing data quickly from one process to another
	Syncing interprocess communications
	Using pointers in shared memory
	The fastest way to read files
	Coroutines – saving the state and postponing the execution

	Chapter 12: Scratching the Tip of the Iceberg
	Introduction
	Working with graphs
	Visualizing graphs
	Using a true random number generator
	Using portable math functions
	Writing test cases
	Combining multiple test cases in one test module
	Manipulating images

	Index

