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“	After	I	learned	the	C++	
basics,	I	then	learned	
how	to	use	C++	in	
production	code	from	
Meyers'	series	of	
Effective C++	books.	
Effective Modern C++		
is	the	most	important	
how-to	book	for	advice	
on	key	guidelines,	
styles,	and	idioms	to	use	
modern	C++	effectively	
and	well.	Don't	own	it	
yet?	Buy	this	one.	Now.”

—Herb Sutter 
 Chair of ISO C++ Standards Committee and 

C++ Software Architect at Microsoft

Twitter: @oreillymedia
facebook.com/oreilly

Coming to grips with C++11 and C++14 is more than a matter of familiarizing 
yourself with the features they introduce (e.g., auto type declarations, 
move semantics, lambda expressions, and concurrency support). The 
challenge is learning to use those features effectively—so that your 
software is correct, efficient, maintainable, and portable. That’s where 
this practical book comes in. It describes how to write truly great software 
using C++11 and C++14—i.e. using modern C++.

Topics include:

 ■ The pros and cons of braced initialization, noexcept 
specifications, perfect forwarding, and smart pointer make 
functions

 ■ The relationships among std::move, std::forward, rvalue 
references, and universal references

 ■ Techniques for writing clear, correct, effective lambda 
expressions

 ■ How std::atomic differs from volatile, how each should be 
used, and how they relate to C++'s concurrency API

 ■ How best practices in "old" C++ programming (i.e., C++98) 
require revision for software development in modern C++

Effective Modern C++ follows the proven guideline-based, example-driven 
format of Scott Meyers' earlier books, but covers entirely new material. It's 
essential reading for every modern C++ software developer.

For more than 20 years, Scott Meyers' Effective C++ books (Effective C++, More 
Effective C++, and Effective STL) have set the bar for C++ programming guidance. 
His clear, engaging explanations of complex technical material have earned him a 
worldwide following, keeping him in demand as a trainer, consultant, and confer-
ence presenter. He has a Ph.D. in Computer Science from Brown University.
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So, still interested in C++? You should be! Modern C++ (i.e., C++11/C++14)
is far more than just a facelift. Considering the new features, it seems that it’s

more a reinvention. Looking for guidelines and assistance? Then this book
is surely what you are looking for. Concerning C++, Scott Meyers was

and still is a synonym for accuracy, quality, and delight.
—Gerhard Kreuzer

Research and Development Engineer, Siemens AG

Finding utmost expertise is hard enough. Finding teaching perfectionism—
an author’s obsession with strategizing and streamlining explanations—is also difficult.
You know you’re in for a treat when you get to find both embodied in the same person.

Effective Modern C++ is a towering achievement from a consummate technical writer.
It layers lucid, meaningful, and well-sequenced clarifications on top of complex and

interconnected topics, all in crisp literary style. You’re equally unlikely to find a
technical mistake, a dull moment, or a lazy sentence in Effective Modern C++.

—Andrei Alexandrescu
Ph.D., Research Scientist, Facebook, and author of Modern C++ Design

As someone with over two decades of C++ experience, to get the most out of
modern C++ (both best practices and pitfalls to avoid), I highly recommend

getting this book, reading it thoroughly, and referring to it often!
I’ve certainly learned new things going through it!

—Nevin Liber
Senior Software Engineer, DRW Trading Group

Bjarne Stroustrup—the creator of C++—said, “C++11 feels like a new language.”
Effective Modern C++ makes us share this same feeling by clearly explaining

how everyday programmers can benefit from new features and idioms
of C++11 and C++14. Another great Scott Meyers book.

—Cassio Neri
FX Quantitative Analyst, Lloyds Banking Group
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Scott has the knack of boiling technical complexity down to an understandable kernel.
His Effective C++ books helped to raise the coding style of a previous generation of C++

programmers; the new book seems positioned to do the same for those using modern C++.
—Roger Orr

OR/2 Limited, a member of the ISO C++ standards committee

Effective Modern C++ is a great tool to improve your modern C++ skills. Not only does it
teach you how, when and where to use modern C++ and be effective, it also explains why.

Without doubt, Scott’s clear and insightful writing, spread over 42 well-thought items,
gives programmers a much better understanding of the language.

—Bart Vandewoestyne
Research and Development Engineer and C++ enthusiast

I love C++, it has been my work vehicle for many decades now. And with
the latest raft of features it is even more powerful and expressive than I

would have previously imagined. But with all this choice comes the question
“when and how do I apply these features?” As has always been the case,

Scott’s Effective C++ books are the definitive answer to this question.
—Damien Watkins

Computation Software Engineering Team Lead, CSIRO

Great read for transitioning to modern C++—new C++11/14
language features are described alongside C++98, subject items are

easy to reference, and advice summarized at the end of each section.
Entertaining and useful for both casual and advanced C++ developers.

—Rachel Cheng
F5 Networks

If you’re migrating from C++98/03 to C++11/14, you need the eminently practical and
clear information Scott provides in Effective Modern C++. If you’re already writing

C++11 code, you’ll probably discover issues with the new features through Scott’s
thorough discussion of the important new features of the language. Either way, this book

is worth your time.
—Rob Stewart

Boost Steering Committee member (boost.org)
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If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.
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Introduction

If you’re an experienced C++ programmer and are anything like me, you initially
approached C++11 thinking, “Yes, yes, I get it. It’s C++, only more so.” But as you
learned more, you were surprised by the scope of the changes. auto declarations,
range-based for loops, lambda expressions, and rvalue references change the face of
C++, to say nothing of the new concurrency features. And then there are the
idiomatic changes. 0 and typedefs are out, nullptr and alias declarations are in.
Enums should now be scoped. Smart pointers are now preferable to built-in ones.
Moving objects is normally better than copying them.

There’s a lot to learn about C++11, not to mention C++14.

More importantly, there’s a lot to learn about making effective use of the new capabil‐
ities. If you need basic information about “modern” C++ features, resources abound,
but if you’re looking for guidance on how to employ the features to create software
that’s correct, efficient, maintainable, and portable, the search is more challenging.
That’s where this book comes in. It’s devoted not to describing the features of C++11
and C++14, but instead to their effective application.

The information in the book is broken into guidelines called Items. Want to under‐
stand the various forms of type deduction? Or know when (and when not) to use
auto declarations? Are you interested in why const member functions should be
thread safe, how to implement the Pimpl Idiom using std::unique_ptr, why you
should avoid default capture modes in lambda expressions, or the differences
between std::atomic and volatile? The answers are all here. Furthermore, they’re
platform-independent, Standards-conformant answers. This is a book about portable
C++.

The Items in this book are guidelines, not rules, because guidelines have exceptions.
The most important part of each Item is not the advice it offers, but the rationale
behind the advice. Once you’ve read that, you’ll be in a position to determine whether
the circumstances of your project justify a violation of the Item’s guidance. The true
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goal of this book isn’t to tell you what to do or what to avoid doing, but to convey a
deeper understanding of how things work in C++11 and C++14.

Terminology and Conventions
To make sure we understand one another, it’s important to agree on some terminol‐
ogy, beginning, ironically, with “C++.” There have been four official versions of C++,
each named after the year in which the corresponding ISO Standard was adopted:
C++98, C++03, C++11, and C++14. C++98 and C++03 differ only in technical
details, so in this book, I refer to both as C++98. When I refer to C++11, I mean both
C++11 and C++14, because C++14 is effectively a superset of C++11. When I write
C++14, I mean specifically C++14. And if I simply mention C++, I’m making a broad
statement that pertains to all language versions.   

Term I Use Language Versions I Mean

C++ All

C++98 C++98 and C++03

C++11 C++11 and C++14

C++14 C++14

As a result, I might say that C++ places a premium on efficiency (true for all ver‐
sions), that C++98 lacks support for concurrency (true only for C++98 and C++03),
that C++11 supports lambda expressions (true for C++11 and C++14), and that
C++14 offers generalized function return type deduction (true for C++14 only).

C++11’s most pervasive feature is probably move semantics, and the foundation of
move semantics is distinguishing expressions that are rvalues from those that are lval‐
ues. That’s because rvalues indicate objects eligible for move operations, while lvalues
generally don’t. In concept (though not always in practice), rvalues correspond to
temporary objects returned from functions, while lvalues correspond to objects you
can refer to, either by name or by following a pointer or lvalue reference.

A useful heuristic to determine whether an expression is an lvalue is to ask if you can
take its address. If you can, it typically is. If you can’t, it’s usually an rvalue. A nice
feature of this heuristic is that it helps you remember that the type of an expression is
independent of whether the expression is an lvalue or an rvalue. That is, given a type
T, you can have lvalues of type T as well as rvalues of type T. It’s especially important
to remember this when dealing with a parameter of rvalue reference type, because the
parameter itself is an lvalue:
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class Widget {
public:
  Widget(Widget&& rhs);    // rhs is an lvalue, though it has
  …                        // an rvalue reference type
};

Here, it’d be perfectly valid to take rhs’s address inside Widget’s move constructor,
so rhs is an lvalue, even though its type is an rvalue reference. (By similar reasoning,
all parameters are lvalues.)

That code snippet demonstrates several conventions I normally follow:

• The class name is Widget. I use Widget whenever I want to refer to an arbitrary
user-defined type. Unless I need to show specific details of the class, I use Widget
without declaring it.

• I use the parameter name rhs (“right-hand side”). It’s my preferred parameter
name for the move operations (i.e., move constructor and move assignment oper‐
ator) and the copy operations (i.e., copy constructor and copy assignment opera‐
tor). I also employ it for the right-hand parameter of binary operators:

Matrix operator+(const Matrix& lhs, const Matrix& rhs);

It’s no surprise, I hope, that lhs stands for “left-hand side.”
• I apply special formatting to parts of code or parts of comments to draw your

attention to them. In the Widget move constructor above, I’ve highlighted the
declaration of rhs and the part of the comment noting that rhs is an lvalue.
Highlighted code is neither inherently good nor inherently bad. It’s simply code
you should pay particular attention to.

• I use “…” to indicate “other code could go here.” This narrow ellipsis is different
from the wide ellipsis (“...”) that’s used in the source code for C++11’s variadic
templates. That sounds confusing, but it’s not. For example:

template<typename... Ts>                // these are C++
void processVals(const Ts&... params)   // source code
{                                       // ellipses

  …                                     // this means "some
                                        // code goes here"
}

The declaration of processVals shows that I use typename when declaring type
parameters in templates, but that’s merely a personal preference; the keyword
class would work just as well. On those occasions where I show code excerpts
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from a C++ Standard, I declare type parameters using class, because that’s what
the Standards do.

When an object is initialized with another object of the same type, the new object is
said to be a copy of the initializing object, even if the copy was created via the move
constructor. Regrettably, there’s no terminology in C++ that distinguishes between
an object that’s a copy-constructed copy and one that’s a move-constructed copy:

void someFunc(Widget w);        // someFunc's parameter w
                                // is passed by value

Widget wid;                     // wid is some Widget

someFunc(wid);                  // in this call to someFunc,
                                // w is a copy of wid that's
                                // created via copy construction

someFunc(std::move(wid));       // in this call to SomeFunc,
                                // w is a copy of wid that's
                                // created via move construction

Copies of rvalues are generally move constructed, while copies of lvalues are usually
copy constructed. An implication is that if you know only that an object is a copy of
another object, it’s not possible to say how expensive it was to construct the copy. In
the code above, for example, there’s no way to say how expensive it is to create the
parameter w without knowing whether rvalues or lvalues are passed to someFunc.
(You’d also have to know the cost of moving and copying Widgets.)

In a function call, the expressions passed at the call site are the function’s arguments.
The arguments are used to initialize the function’s parameters. In the first call to
someFunc above, the argument is wid. In the second call, the argument is
std::move(wid). In both calls, the parameter is w. The distinction between argu‐
ments and parameters is important, because parameters are lvalues, but the argu‐
ments with which they are initialized may be rvalues or lvalues. This is especially
relevant during the process of perfect forwarding, whereby an argument passed to a
function is passed to a second function such that the original argument’s rvalueness
or lvalueness is preserved. (Perfect forwarding is discussed in detail in Item 30.)

Well-designed functions are exception safe, meaning they offer at least the basic
exception safety guarantee (i.e., the basic guarantee). Such functions assure callers
that even if an exception is thrown, program invariants remain intact (i.e., no data
structures are corrupted) and no resources are leaked. Functions offering the strong
exception safety guarantee (i.e., the strong guarantee) assure callers that if an excep‐
tion arises, the state of the program remains as it was prior to the call.
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When I refer to a function object, I usually mean an object of a type supporting an
operator() member function. In other words, an object that acts like a function.
Occasionally I use the term in a slightly more general sense to mean anything that
can be invoked using the syntax of a non-member function call (i.e., “function
Name(arguments)”). This broader definition covers not just objects supporting oper
ator(), but also functions and C-like function pointers. (The narrower definition
comes from C++98, the broader one from C++11.) Generalizing further by adding
member function pointers yields what are known as callable objects. You can gener‐
ally ignore the fine distinctions and simply think of function objects and callable
objects as things in C++ that can be invoked using some kind of function-calling syn‐
tax.

Function objects created through lambda expressions are known as closures. It’s sel‐
dom necessary to distinguish between lambda expressions and the closures they cre‐
ate, so I often refer to both as lambdas. Similarly, I rarely distinguish between
function templates (i.e., templates that generate functions) and template functions
(i.e., the functions generated from function templates). Ditto for class templates and
template classes.

Many things in C++ can be both declared and defined. Declarations introduce names
and types without giving details, such as where storage is located or how things are
implemented:

extern int x;                       // object declaration

class Widget;                       // class declaration

bool func(const Widget& w);         // function declaration

enum class Color;                   // scoped enum declaration
                                    // (see Item 10)

Definitions provide the storage locations or implementation details:

int x;                              // object definition

class Widget {                      // class definition
  …
};

bool func(const Widget& w)
{ return w.size() < 10; }           // function definition

enum class Color
{ Yellow, Red, Blue };              // scoped enum definition

 | 5



A definition also qualifies as a declaration, so unless it’s really important that some‐
thing is a definition, I tend to refer to declarations.

I define a function’s signature to be the part of its declaration that specifies parameter
and return types. Function and parameter names are not part of the signature. In the
example above, func’s signature is bool(const Widget&). Elements of a function’s
declaration other than its parameter and return types (e.g., noexcept or constexpr,
if present), are excluded. (noexcept and constexpr are described in Items 14 and
15.) The official definition of “signature” is slightly different from mine, but for this
book, my definition is more useful. (The official definition sometimes omits return
types.)

New C++ Standards generally preserve the validity of code written under older ones,
but occasionally the Standardization Committee deprecates features. Such features
are on standardization death row and may be removed from future Standards. Com‐
pilers may or may not warn about the use of deprecated features, but you should do
your best to avoid them. Not only can they lead to future porting headaches, they’re
generally inferior to the features that replace them. For example, std::auto_ptr is
deprecated in C++11, because std::unique_ptr does the same job, only better.

Sometimes a Standard says that the result of an operation is undefined behavior. That
means that runtime behavior is unpredictable, and it should go without saying that
you want to steer clear of such uncertainty. Examples of actions with undefined
behavior include using square brackets (“[]”) to index beyond the bounds of a
std::vector, dereferencing an uninitialized iterator, or engaging in a data race (i.e.,
having two or more threads, at least one of which is a writer, simultaneously access
the same memory location).

I call built-in pointers, such as those returned from new, raw pointers. The opposite of
a raw pointer is a smart pointer. Smart pointers normally overload the pointer-
dereferencing operators (operator-> and operator*), though Item 20 explains that
std::weak_ptr is an exception.

In source code comments, I sometimes abbreviate “constructor” as ctor and
“destructor” as dtor.  

Reporting Bugs and Suggesting Improvements
I’ve done my best to fill this book with clear, accurate, useful information, but surely
there are ways to make it better. If you find errors of any kind (technical, expository,
grammatical, typographical, etc.), or if you have suggestions for how the book could
be improved, please email me at emc++@aristeia.com. New printings give me the
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opportunity to revise Effective Modern C++, and I can’t address issues I don’t know
about!

To view the list of the issues I do know about, consult the book’s errata page, http://
www.aristeia.com/BookErrata/emc++-errata.html.
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CHAPTER 1

Deducing Types

C++98 had a single set of rules for type deduction: the one for function templates.
C++11 modifies that ruleset a bit and adds two more, one for auto and one for
decltype. C++14 then extends the usage contexts in which auto and decltype may
be employed. The increasingly widespread application of type deduction frees you
from the tyranny of spelling out types that are obvious or redundant. It makes C++
software more adaptable, because changing a type at one point in the source code
automatically propagates through type deduction to other locations. However, it can
render code more difficult to reason about, because the types deduced by compilers
may not be as apparent as you’d like.

Without a solid understanding of how type deduction operates, effective program‐
ming in modern C++ is all but impossible. There are just too many contexts where
type deduction takes place: in calls to function templates, in most situations where
auto appears, in decltype expressions, and, as of C++14, where the enigmatic
decltype(auto) construct is employed.

This chapter provides the information about type deduction that every C++ devel‐
oper requires. It explains how template type deduction works, how auto builds on
that, and how decltype goes its own way. It even explains how you can force com‐
pilers to make the results of their type deductions visible, thus enabling you to ensure
that compilers are deducing the types you want them to.

Item 1: Understand template type deduction.
When users of a complex system are ignorant of how it works, yet happy with what it
does, that says a lot about the design of the system. By this measure, template type
deduction in C++ is a tremendous success. Millions of programmers have passed
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arguments to template functions with completely satisfactory results, even though
many of those programmers would be hard-pressed to give more than the haziest
description of how the types used by those functions were deduced.

If that group includes you, I have good news and bad news. The good news is that
type deduction for templates is the basis for one of modern C++’s most compelling
features: auto. If you were happy with how C++98 deduced types for templates,
you’re set up to be happy with how C++11 deduces types for auto. The bad news is
that when the template type deduction rules are applied in the context of auto, they
sometimes seem less intuitive than when they’re applied to templates. For that rea‐
son, it’s important to truly understand the aspects of template type deduction that
auto builds on. This Item covers what you need to know.

If you’re willing to overlook a pinch of pseudocode, we can think of a function tem‐
plate as looking like this:

template<typename T>
void f(ParamType param);

A call can look like this:

f(expr);                    // call f with some expression

During compilation, compilers use expr to deduce two types: one for T and one for
ParamType. These types are frequently different, because ParamType often contains
adornments, e.g., const or reference qualifiers. For example, if the template is
declared like this,

template<typename T>
void f(const T& param);     // ParamType is const T&

and we have this call,

int x = 0;

f(x);                       // call f with an int

T is deduced to be int, but ParamType is deduced to be const int&.

It’s natural to expect that the type deduced for T is the same as the type of the argu‐
ment passed to the function, i.e., that T is the type of expr. In the above example,
that’s the case: x is an int, and T is deduced to be int. But it doesn’t always work that
way. The type deduced for T is dependent not just on the type of expr, but also on the
form of ParamType. There are three cases:
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• ParamType is a pointer or reference type, but not a universal reference. (Univer‐
sal references are described in Item 24. At this point, all you need to know is that
they exist and that they’re not the same as lvalue references or rvalue references.)

• ParamType is a universal reference.
• ParamType is neither a pointer nor a reference.

We therefore have three type deduction scenarios to examine. Each will be based on
our general form for templates and calls to it:

template<typename T>
void f(ParamType param);

f(expr);                // deduce T and ParamType from expr

Case 1: ParamType is a Reference or Pointer, but not a Universal
Reference

The simplest situation is when ParamType is a reference type or a pointer type, but
not a universal reference. In that case, type deduction works like this:

1. If expr’s type is a reference, ignore the reference part.
2. Then pattern-match expr’s type against ParamType to determine T.

For example, if this is our template,

template<typename T>
void f(T& param);       // param is a reference

and we have these variable declarations,

int x = 27;             // x is an int
const int cx = x;       // cx is a const int
const int& rx = x;      // rx is a reference to x as a const int

the deduced types for param and T in various calls are as follows:

f(x);                   // T is int, param's type is int&

f(cx);                  // T is const int,
                        // param's type is const int&

f(rx);                  // T is const int,
                        // param's type is const int&
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In the second and third calls, notice that because cx and rx designate const values, T
is deduced to be const int, thus yielding a parameter type of const int&. That’s
important to callers. When they pass a const object to a reference parameter, they
expect that object to remain unmodifiable, i.e., for the parameter to be a reference-to-
const. That’s why passing a const object to a template taking a T& parameter is safe:
the constness of the object becomes part of the type deduced for T.

In the third example, note that even though rx’s type is a reference, T is deduced to
be a non-reference. That’s because rx’s reference-ness is ignored during type deduc‐
tion.

These examples all show lvalue reference parameters, but type deduction works
exactly the same way for rvalue reference parameters. Of course, only rvalue argu‐
ments may be passed to rvalue reference parameters, but that restriction has nothing
to do with type deduction.

If we change the type of f’s parameter from T& to const T&, things change a little, but
not in any really surprising ways. The constness of cx and rx continues to be respec‐
ted, but because we’re now assuming that param is a reference-to-const, there’s no
longer a need for const to be deduced as part of T:

template<typename T>
void f(const T& param);  // param is now a ref-to-const

int x = 27;              // as before
const int cx = x;        // as before
const int& rx = x;       // as before

f(x);                    // T is int, param's type is const int&

f(cx);                   // T is int, param's type is const int&

f(rx);                   // T is int, param's type is const int&

As before, rx’s reference-ness is ignored during type deduction.

If param were a pointer (or a pointer to const) instead of a reference, things would
work essentially the same way:

template<typename T>
void f(T* param);        // param is now a pointer

int x = 27;              // as before
const int *px = &x;      // px is a ptr to x as a const int
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f(&x);                   // T is int, param's type is int*

f(px);                   // T is const int,
                         // param's type is const int*

By now, you may find yourself yawning and nodding off, because C++’s type deduc‐
tion rules work so naturally for reference and pointer parameters, seeing them in
written form is really dull. Everything’s just obvious! Which is exactly what you want
in a type deduction system.

Case 2: ParamType is a Universal Reference
Things are less obvious for templates taking universal reference parameters. Such
parameters are declared like rvalue references (i.e., in a function template taking a
type parameter T, a universal reference’s declared type is T&&), but they behave differ‐
ently when lvalue arguments are passed in. The complete story is told in Item 24, but
here’s the headline version:

• If expr is an lvalue, both T and ParamType are deduced to be lvalue references.
That’s doubly unusual. First, it’s the only situation in template type deduction
where T is deduced to be a reference. Second, although ParamType is declared
using the syntax for an rvalue reference, its deduced type is an lvalue reference.

• If expr is an rvalue, the “normal” (i.e., Case 1) rules apply.

For example:

template<typename T>
void f(T&& param);       // param is now a universal reference

int x = 27;              // as before
const int cx = x;        // as before
const int& rx = x;       // as before

f(x);                    // x is lvalue, so T is int&,
                         // param's type is also int&

f(cx);                   // cx is lvalue, so T is const int&,
                         // param's type is also const int&

f(rx);                   // rx is lvalue, so T is const int&,
                         // param's type is also const int&

f(27);                   // 27 is rvalue, so T is int,
                         // param's type is therefore int&&
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Item 24 explains exactly why these examples play out the way they do. The key point
here is that the type deduction rules for universal reference parameters are different
from those for parameters that are lvalue references or rvalue references. In particu‐
lar, when universal references are in use, type deduction distinguishes between lvalue
arguments and rvalue arguments. That never happens for non-universal references.

Case 3: ParamType is Neither a Pointer nor a Reference
When ParamType is neither a pointer nor a reference, we’re dealing with pass-by-
value:

template<typename T>
void f(T param);         // param is now passed by value

That means that param will be a copy of whatever is passed in—a completely new
object. The fact that param will be a new object motivates the rules that govern how T
is deduced from expr:

1. As before, if expr’s type is a reference, ignore the reference part.
2. If, after ignoring expr’s reference-ness, expr is const, ignore that, too. If it’s

volatile, also ignore that. (volatile objects are uncommon. They’re generally
used only for implementing device drivers. For details, see Item 40.)

Hence:

int x = 27;          // as before
const int cx = x;    // as before
const int& rx = x;   // as before

f(x);                // T's and param's types are both int

f(cx);               // T's and param's types are again both int

f(rx);               // T's and param's types are still both int

Note that even though cx and rx represent const values, param isn’t const. That
makes sense. param is an object that’s completely independent of cx and rx—a copy
of cx or rx. The fact that cx and rx can’t be modified says nothing about whether
param can be. That’s why expr’s constness (and volatileness, if any) is ignored
when deducing a type for param: just because expr can’t be modified doesn’t mean
that a copy of it can’t be.

It’s important to recognize that const (and volatile) is ignored only for by-value
parameters. As we’ve seen, for parameters that are references-to- or pointers-to-
const, the constness of expr is preserved during type deduction. But consider the
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case where expr is a const pointer to a const object, and expr is passed to a by-
value param:

template<typename T>
void f(T param);         // param is still passed by value

const char* const ptr =  // ptr is const pointer to const object
  "Fun with pointers";

f(ptr);                  // pass arg of type const char * const

Here, the const to the right of the asterisk declares ptr to be const: ptr can’t be
made to point to a different location, nor can it be set to null. (The const to the left
of the asterisk says that what ptr points to—the character string—is const, hence
can’t be modified.) When ptr is passed to f, the bits making up the pointer are
copied into param. As such, the pointer itself (ptr) will be passed by value. In accord
with the type deduction rule for by-value parameters, the constness of ptr will be
ignored, and the type deduced for param will be const char*, i.e., a modifiable
pointer to a const character string. The constness of what ptr points to is preserved
during type deduction, but the constness of ptr itself is ignored when copying it to
create the new pointer, param.

Array Arguments
That pretty much covers it for mainstream template type deduction, but there’s a
niche case that’s worth knowing about. It’s that array types are different from pointer
types, even though they sometimes seem to be interchangeable. A primary contribu‐
tor to this illusion is that, in many contexts, an array decays into a pointer to its first
element. This decay is what permits code like this to compile:

const char name[] = "J. P. Briggs";  // name's type is
                                     // const char[13]

const char * ptrToName = name;       // array decays to pointer

Here, the const char* pointer ptrToName is being initialized with name, which is a
const char[13]. These types (const char* and const char[13]) are not the same,
but because of the array-to-pointer decay rule, the code compiles.

But what if an array is passed to a template taking a by-value parameter? What hap‐
pens then?

template<typename T>
void f(T param);      // template with by-value parameter
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f(name);              // what types are deduced for T and param?

We begin with the observation that there is no such thing as a function parameter
that’s an array. Yes, yes, the syntax is legal,

void myFunc(int param[]);

but the array declaration is treated as a pointer declaration, meaning that myFunc
could equivalently be declared like this:

void myFunc(int* param);         // same function as above

This equivalence of array and pointer parameters is a bit of foliage springing from the
C roots at the base of C++, and it fosters the illusion that array and pointer types are
the same.

Because array parameter declarations are treated as if they were pointer parameters,
the type of an array that’s passed to a template function by value is deduced to be a
pointer type. That means that in the call to the template f, its type parameter T is
deduced to be const char*:

f(name);          // name is array, but T deduced as const char*

But now comes a curve ball. Although functions can’t declare parameters that are
truly arrays, they can declare parameters that are references to arrays! So if we modify
the template f to take its argument by reference,

template<typename T>
void f(T& param);      // template with by-reference parameter

and we pass an array to it,

f(name);               // pass array to f

the type deduced for T is the actual type of the array! That type includes the size of
the array, so in this example, T is deduced to be const char [13], and the type of f’s
parameter (a reference to this array) is const char (&)[13]. Yes, the syntax looks
toxic, but knowing it will score you mondo points with those few souls who care.

Interestingly, the ability to declare references to arrays enables creation of a template
that deduces the number of elements that an array contains:

// return size of an array as a compile-time constant. (The
// array parameter has no name, because we care only about
// the number of elements it contains.)
template<typename T, std::size_t N>                 // see info
constexpr std::size_t arraySize(T (&)[N]) noexcept  // below on
{                                                   // constexpr
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  return N;                                         // and
}                                                   // noexcept

As Item 15 explains, declaring this function constexpr makes its result available
during compilation. That makes it possible to declare, say, an array with the same
number of elements as a second array whose size is computed from a braced initial‐
izer:

int keyVals[] = { 1, 3, 7, 9, 11, 22, 35 };      // keyVals has
                                                 // 7 elements

int mappedVals[arraySize(keyVals)];              // so does
                                                 // mappedVals

Of course, as a modern C++ developer, you’d naturally prefer a std::array to a
built-in array:

std::array<int, arraySize(keyVals)> mappedVals;  // mappedVals'
                                                 // size is 7

As for arraySize being declared noexcept, that’s to help compilers generate better
code. For details, see Item 14.

Function Arguments
Arrays aren’t the only things in C++ that can decay into pointers. Function types can
decay into function pointers, and everything we’ve discussed regarding type deduc‐
tion for arrays applies to type deduction for functions and their decay into function
pointers. As a result:

void someFunc(int, double);   // someFunc is a function;
                              // type is void(int, double)

template<typename T>
void f1(T param);             // in f1, param passed by value

template<typename T>
void f2(T& param);            // in f2, param passed by ref

f1(someFunc);                 // param deduced as ptr-to-func;
                              // type is void (*)(int, double)

f2(someFunc);                 // param deduced as ref-to-func;
                              // type is void (&)(int, double)

This rarely makes any difference in practice, but if you’re going to know about array-
to-pointer decay, you might as well know about function-to-pointer decay, too.
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So there you have it: the auto-related rules for template type deduction. I remarked
at the outset that they’re pretty straightforward, and for the most part, they are. The
special treatment accorded lvalues when deducing types for universal references
muddies the water a bit, however, and the decay-to-pointer rules for arrays and func‐
tions stirs up even greater turbidity. Sometimes you simply want to grab your com‐
pilers and demand, “Tell me what type you’re deducing!” When that happens, turn to
Item 4, because it’s devoted to coaxing compilers into doing just that.

Things to Remember
• During template type deduction, arguments that are references are treated as

non-references, i.e., their reference-ness is ignored.
• When deducing types for universal reference parameters, lvalue arguments get

special treatment.
• When deducing types for by-value parameters, const and/or volatile argu‐

ments are treated as non-const and non-volatile.
• During template type deduction, arguments that are array or function names

decay to pointers, unless they’re used to initialize references.

Item 2: Understand auto type deduction.
If you’ve read Item 1 on template type deduction, you already know almost every‐
thing you need to know about auto type deduction, because, with only one curious
exception, auto type deduction is template type deduction. But how can that be?
Template type deduction involves templates and functions and parameters, but auto
deals with none of those things.

That’s true, but it doesn’t matter. There’s a direct mapping between template type
deduction and auto type deduction. There is literally an algorithmic transformation
from one to the other.

In Item 1, template type deduction is explained using this general function template

template<typename T>
void f(ParamType param);

and this general call:

f(expr);                    // call f with some expression

In the call to f, compilers use expr to deduce types for T and ParamType.
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When a variable is declared using auto, auto plays the role of T in the template, and
the type specifier for the variable acts as ParamType. This is easier to show than to
describe, so consider this example:

auto x = 27;

Here, the type specifier for x is simply auto by itself. On the other hand, in this decla‐
ration,

const auto cx = x;

the type specifier is const auto. And here,

const auto& rx = x;

the type specifier is const auto&. To deduce types for x, cx, and rx in these exam‐
ples, compilers act as if there were a template for each declaration as well as a call to
that template with the corresponding initializing expression:

template<typename T>               // conceptual template for
void func_for_x(T param);          // deducing x's type

func_for_x(27);                    // conceptual call: param's
                                   // deduced type is x's type

template<typename T>               // conceptual template for
void func_for_cx(const T param);   // deducing cx's type

func_for_cx(x);                    // conceptual call: param's
                                   // deduced type is cx's type

template<typename T>               // conceptual template for
void func_for_rx(const T& param);  // deducing rx's type

func_for_rx(x);                    // conceptual call: param's
                                   // deduced type is rx's type

As I said, deducing types for auto is, with only one exception (which we’ll discuss
soon), the same as deducing types for templates.

Item 1 divides template type deduction into three cases, based on the characteristics
of ParamType, the type specifier for param in the general function template. In a vari‐
able declaration using auto, the type specifier takes the place of ParamType, so there
are three cases for that, too:

• Case 1: The type specifier is a pointer or reference, but not a universal reference.
• Case 2: The type specifier is a universal reference.
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• Case 3: The type specifier is neither a pointer nor a reference.

We’ve already seen examples of cases 1 and 3:

auto x = 27;          // case 3 (x is neither ptr nor reference)

const auto cx = x;    // case 3 (cx isn't either)

const auto& rx = x;   // case 1 (rx is a non-universal ref.)

Case 2 works as you’d expect:

auto&& uref1 = x;     // x is int and lvalue,
                      // so uref1's type is int&

auto&& uref2 = cx;    // cx is const int and lvalue,
                      // so uref2's type is const int&

auto&& uref3 = 27;    // 27 is int and rvalue,
                      // so uref3's type is int&&

Item 1 concludes with a discussion of how array and function names decay into
pointers for non-reference type specifiers. That happens in auto type deduction, too:

const char name[] =            // name's type is const char[13]
  "R. N. Briggs";

auto arr1 = name;              // arr1's type is const char*

auto& arr2 = name;             // arr2's type is
                               // const char (&)[13]

void someFunc(int, double);    // someFunc is a function;
                               // type is void(int, double)

auto func1 = someFunc;         // func1's type is
                               // void (*)(int, double)

auto& func2 = someFunc;        // func2's type is
                               // void (&)(int, double)
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As you can see, auto type deduction works like template type deduction. They’re
essentially two sides of the same coin.

Except for the one way they differ. We’ll start with the observation that if you want to
declare an int with an initial value of 27, C++98 gives you two syntactic choices:

int x1 = 27;
int x2(27);

C++11, through its support for uniform initialization, adds these:

int x3 = { 27 };
int x4{ 27 };

All in all, four syntaxes, but only one result: an int with value 27.

But as Item 5 explains, there are advantages to declaring variables using auto instead
of fixed types, so it’d be nice to replace int with auto in the above variable declara‐
tions. Straightforward textual substitution yields this code:

auto x1 = 27;
auto x2(27);
auto x3 = { 27 };
auto x4{ 27 };

These declarations all compile, but they don’t have the same meaning as the ones
they replace. The first two statements do, indeed, declare a variable of type int with
value 27. The second two, however, declare a variable of type std::initial
izer_list<int> containing a single element with value 27!

auto x1 = 27;             // type is int, value is 27

auto x2(27);              // ditto

auto x3 = { 27 };         // type is std::initializer_list<int>,
                          // value is { 27 }

auto x4{ 27 };            // ditto

This is due to a special type deduction rule for auto. When the initializer for an
auto-declared variable is enclosed in braces, the deduced type is a std::initial
izer_list. If such a type can’t be deduced (e.g., because the values in the braced ini‐
tializer are of different types), the code will be rejected:

auto x5 = { 1, 2, 3.0 };  // error! can't deduce T for
                          // std::initializer_list<T>
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As the comment indicates, type deduction will fail in this case, but it’s important to
recognize that there are actually two kinds of type deduction taking place. One kind
stems from the use of auto: x5’s type has to be deduced. Because x5’s initializer is in
braces, x5 must be deduced to be a std::initializer_list. But std::initial
izer_list is a template. Instantiations are std::initializer_list<T> for some
type T, and that means that T’s type must also be deduced. Such deduction falls under
the purview of the second kind of type deduction occurring here: template type
deduction. In this example, that deduction fails, because the values in the braced ini‐
tializer don’t have a single type.

The treatment of braced initializers is the only way in which auto type deduction and
template type deduction differ. When an auto–declared variable is initialized with a
braced initializer, the deduced type is an instantiation of std::initializer_list.
But if the corresponding template is passed the same initializer, type deduction fails,
and the code is rejected:

auto x = { 11, 23, 9 };   // x's type is
                          // std::initializer_list<int>

template<typename T>      // template with parameter
void f(T param);          // declaration equivalent to
                          // x's declaration

f({ 11, 23, 9 });         // error! can't deduce type for T

However, if you specify in the template that param is a std::initializer_list<T>
for some unknown T, template type deduction will deduce what T is:

template<typename T>
void f(std::initializer_list<T> initList);

f({ 11, 23, 9 });         // T deduced as int, and initList's
                          // type is std::initializer_list<int>

So the only real difference between auto and template type deduction is that auto
assumes that a braced initializer represents a std::initializer_list, but template
type deduction doesn’t.

You might wonder why auto type deduction has a special rule for braced initializers,
but template type deduction does not. I wonder this myself. Alas, I have not been able
to find a convincing explanation. But the rule is the rule, and this means you must
remember that if you declare a variable using auto and you initialize it with a braced
initializer, the deduced type will always be std::initializer_list. It’s especially
important to bear this in mind if you embrace the philosophy of uniform initializa‐
tion—of enclosing initializing values in braces as a matter of course. A classic mistake
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in C++11 programming is accidentally declaring a std::initializer_list variable
when you mean to declare something else. This pitfall is one of the reasons some
developers put braces around their initializers only when they have to. (When you
have to is discussed in Item 7.)

For C++11, this is the full story, but for C++14, the tale continues. C++14 permits
auto to indicate that a function’s return type should be deduced (see Item 3), and
C++14 lambdas may use auto in parameter declarations. However, these uses of
auto employ template type deduction, not auto type deduction. So a function with an
auto return type that returns a braced initializer won’t compile:

auto createInitList()
{
  return { 1, 2, 3 };         // error: can't deduce type
}                             // for { 1, 2, 3 }

The same is true when auto is used in a parameter type specification in a C++14
lambda:

std::vector<int> v;
…

auto resetV =
  [&v](const auto& newValue) { v = newValue; };     // C++14

…

resetV({ 1, 2, 3 });          // error! can't deduce type
                              // for { 1, 2, 3 }

Things to Remember
• auto type deduction is usually the same as template type deduction, but auto

type deduction assumes that a braced initializer represents a std::initial
izer_list, and template type deduction doesn’t.

• auto in a function return type or a lambda parameter implies template type
deduction, not auto type deduction.

Item 3: Understand decltype.
decltype is an odd creature. Given a name or an expression, decltype tells you the
name’s or the expression’s type. Typically, what it tells you is exactly what you’d
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predict. Occasionally however, it provides results that leave you scratching your head
and turning to reference works or online Q&A sites for revelation.

We’ll begin with the typical cases—the ones harboring no surprises. In contrast to
what happens during type deduction for templates and auto (see Items 1 and 2),
decltype typically parrots back the exact type of the name or expression you give it:

const int i = 0;           // decltype(i) is const int

bool f(const Widget& w);   // decltype(w) is const Widget&
                           // decltype(f) is bool(const Widget&)

struct Point {
  int x, y;                // decltype(Point::x) is int
};                         // decltype(Point::y) is int

Widget w;                  // decltype(w) is Widget

if (f(w)) …                // decltype(f(w)) is bool

template<typename T>       // simplified version of std::vector
class vector {
public:
  …
  T& operator[](std::size_t index);
  …
};

vector<int> v;             // decltype(v) is vector<int>
…
if (v[0] == 0) …           // decltype(v[0]) is int&

See? No surprises.

In C++11, perhaps the primary use for decltype is declaring function templates
where the function’s return type depends on its parameter types. For example, sup‐
pose we’d like to write a function that takes a container that supports indexing via
square brackets (i.e., the use of “[]”) plus an index, then authenticates the user before
returning the result of the indexing operation. The return type of the function should
be the same as the type returned by the indexing operation.

operator[] on a container of objects of type T typically returns a T&. This is the case
for std::deque, for example, and it’s almost always the case for std::vector. For
std::vector<bool>, however, operator[] does not return a bool&. Instead, it
returns a brand new object. The whys and hows of this situation are explored in
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Item 6, but what’s important here is that the type returned by a container’s opera
tor[] depends on the container.

decltype makes it easy to express that. Here’s a first cut at the template we’d like to
write, showing the use of decltype to compute the return type. The template needs a
bit of refinement, but we’ll defer that for now:

template<typename Container, typename Index>    // works, but
auto authAndAccess(Container& c, Index i)       // requires
  -> decltype(c[i])                             // refinement
{
  authenticateUser();
  return c[i];
}

The use of auto before the function name has nothing to do with type deduction.
Rather, it indicates that C++11’s trailing return type syntax is being used, i.e., that the
function’s return type will be declared following the parameter list (after the “->”). A
trailing return type has the advantage that the function’s parameters can be used in
the specification of the return type. In authAndAccess, for example, we specify the
return type using c and i. If we were to have the return type precede the function
name in the conventional fashion, c and i would be unavailable, because they would
not have been declared yet.

With this declaration, authAndAccess returns whatever type operator[] returns
when applied to the passed-in container, exactly as we desire.

C++11 permits return types for single-statement lambdas to be deduced, and C++14
extends this to both all lambdas and all functions, including those with multiple
statements. In the case of authAndAccess, that means that in C++14 we can omit the
trailing return type, leaving just the leading auto. With that form of declaration,
auto does mean that type deduction will take place. In particular, it means that com‐
pilers will deduce the function’s return type from the function’s implementation:

template<typename Container, typename Index>    // C++14;
auto authAndAccess(Container& c, Index i)       // not quite
{                                               // correct
  authenticateUser();
  return c[i];                  // return type deduced from c[i]
}

Item 2 explains that for functions with an auto return type specification, compilers
employ template type deduction. In this case, that’s problematic. As we’ve discussed,
operator[] for most containers-of-T returns a T&, but Item 1 explains that during
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template type deduction, the reference-ness of an initializing expression is ignored.
Consider what that means for this client code:

std::deque<int> d;
…
authAndAccess(d, 5) = 10;  // authenticate user, return d[5],
                           // then assign 10 to it;
                           // this won't compile!

Here, d[5] returns an int&, but auto return type deduction for authAndAccess will
strip off the reference, thus yielding a return type of int. That int, being the return
value of a function, is an rvalue, and the code above thus attempts to assign 10 to an
rvalue int. That’s forbidden in C++, so the code won’t compile.

To get authAndAccess to work as we’d like, we need to use decltype type deduction
for its return type, i.e., to specify that authAndAccess should return exactly the same
type that the expression c[i] returns. The guardians of C++, anticipating the need to
use decltype type deduction rules in some cases where types are inferred, make this
possible in C++14 through the decltype(auto) specifier. What may initially seem
contradictory (decltype and auto?) actually makes perfect sense: auto specifies that
the type is to be deduced, and decltype says that decltype rules should be used
during the deduction. We can thus write authAndAccess like this:

template<typename Container, typename Index>   // C++14; works,
decltype(auto)                                 // but still
authAndAccess(Container& c, Index i)           // requires
{                                              // refinement
  authenticateUser();
  return c[i];
}

Now authAndAccess will truly return whatever c[i] returns. In particular, for the
common case where c[i] returns a T&, authAndAccess will also return a T&, and in
the uncommon case where c[i] returns an object, authAndAccess will return an
object, too.

The use of decltype(auto) is not limited to function return types. It can also be
convenient for declaring variables when you want to apply the decltype type deduc‐
tion rules to the initializing expression:

Widget w;

const Widget& cw = w;

auto myWidget1 = cw;             // auto type deduction:
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                                 // myWidget1's type is Widget

decltype(auto) myWidget2 = cw;   // decltype type deduction:
                                 // myWidget2's type is
                                 //   const Widget&

But two things are bothering you, I know. One is the refinement to authAndAccess I
mentioned, but have not yet described. Let’s address that now.

Look again at the declaration for the C++14 version of authAndAccess:

template<typename Container, typename Index>
decltype(auto) authAndAccess(Container& c, Index i);

The container is passed by lvalue-reference-to-non-const, because returning a refer‐
ence to an element of the container permits clients to modify that container. But this
means it’s not possible to pass rvalue containers to this function. Rvalues can’t bind
to lvalue references (unless they’re lvalue-references-to-const, which is not the case
here).

Admittedly, passing an rvalue container to authAndAccess is an edge case. An rvalue
container, being a temporary object, would typically be destroyed at the end of the
statement containing the call to authAndAccess, and that means that a reference to
an element in that container (which is typically what authAndAccess would return)
would dangle at the end of the statement that created it. Still, it could make sense to
pass a temporary object to authAndAccess. A client might simply want to make a
copy of an element in the temporary container, for example:

std::deque<std::string> makeStringDeque();   // factory function

// make copy of 5th element of deque returned
// from makeStringDeque
auto s = authAndAccess(makeStringDeque(), 5);

Supporting such use means we need to revise the declaration for authAndAccess to
accept both lvalues and rvalues. Overloading would work (one overload would
declare an lvalue reference parameter, the other an rvalue reference parameter), but
then we’d have two functions to maintain. A way to avoid that is to have authAndAc
cess employ a reference parameter that can bind to lvalues and rvalues, and Item 24
explains that that’s exactly what universal references do. authAndAccess can there‐
fore be declared like this:

template<typename Container, typename Index>    // c is now a
decltype(auto) authAndAccess(Container&& c,     // universal
                             Index i);          // reference
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In this template, we don’t know what type of container we’re operating on, and that
means we’re equally ignorant of the type of index objects it uses. Employing pass-by-
value for objects of an unknown type generally risks the performance hit of unneces‐
sary copying, the behavioral problems of object slicing (see Item 41), and the sting of
our coworkers’ derision, but in the case of container indices, following the example of
the Standard Library for index values (e.g., in operator[] for std::string,
std::vector, and std::deque) seems reasonable, so we’ll stick with pass-by-value
for them.

However, we need to update the template’s implementation to bring it into accord
with Item 25’s admonition to apply std::forward to universal references:

template<typename Container, typename Index>       // final
decltype(auto)                                     // C++14
authAndAccess(Container&& c, Index i)              // version
{
  authenticateUser();
  return std::forward<Container>(c)[i];
}

This should do everything we want, but it requires a C++14 compiler. If you don’t
have one, you’ll need to use the C++11 version of the template. It’s the same as its
C++14 counterpart, except that you have to specify the return type yourself:

template<typename Container, typename Index>       // final
auto                                               // C++11
authAndAccess(Container&& c, Index i)              // version
-> decltype(std::forward<Container>(c)[i])
{
  authenticateUser();
  return std::forward<Container>(c)[i];
}

The other issue that’s likely to be nagging at you is my remark at the beginning of this
Item that decltype almost always produces the type you expect, that it rarely sur‐
prises. Truth be told, you’re unlikely to encounter these exceptions to the rule unless
you’re a heavy-duty library implementer.

To fully understand decltype’s behavior, you’ll have to familiarize yourself with a
few special cases. Most of these are too obscure to warrant discussion in a book like
this, but looking at one lends insight into decltype as well as its use.

Applying decltype to a name yields the declared type for that name. Names are
lvalue expressions, but that doesn’t affect decltype’s behavior. For lvalue expressions
more complicated than names, however, decltype ensures that the type reported is
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always an lvalue reference. That is, if an lvalue expression other than a name has type
T, decltype reports that type as T&. This seldom has any impact, because the type of
most lvalue expressions inherently includes an lvalue reference qualifier. Functions
returning lvalues, for example, always return lvalue references.

There is an implication of this behavior that is worth being aware of, however. In

int x = 0;

x is the name of a variable, so decltype(x) is int. But wrapping the name x in
parentheses—“(x)”—yields an expression more complicated than a name. Being a
name, x is an lvalue, and C++ defines the expression (x) to be an lvalue, too.
decltype((x)) is therefore int&. Putting parentheses around a name can change
the type that decltype reports for it!

In C++11, this is little more than a curiosity, but in conjunction with C++14’s sup‐
port for decltype(auto), it means that a seemingly trivial change in the way you
write a return statement can affect the deduced type for a function:

decltype(auto) f1()
{
  int x = 0;
  …
  return x;        // decltype(x) is int, so f1 returns int
}

decltype(auto) f2()
{
  int x = 0;
  …
  return (x);      // decltype((x)) is int&, so f2 returns int&
}

Note that not only does f2 have a different return type from f1, it’s also returning a
reference to a local variable! That’s the kind of code that puts you on the express train
to undefined behavior—a train you certainly don’t want to be on.

The primary lesson is to pay very close attention when using decltype(auto).
Seemingly insignificant details in the expression whose type is being deduced can
affect the type that decltype(auto) reports. To ensure that the type being deduced
is the type you expect, use the techniques described in Item 4.

At the same time, don’t lose sight of the bigger picture. Sure, decltype (both alone
and in conjunction with auto) may occasionally yield type-deduction surprises, but
that’s not the normal situation. Normally, decltype produces the type you expect.
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This is especially true when decltype is applied to names, because in that case,
decltype does just what it sounds like: it reports that name’s declared type.

 
Things to Remember

• decltype almost always yields the type of a variable or expression without
any modifications.

• For lvalue expressions of type T other than names, decltype always reports a
type of T&.

• C++14 supports decltype(auto), which, like auto, deduces a type from its
initializer, but it performs the type deduction using the decltype rules.

Item 4: Know how to view deduced types.
The choice of tools for viewing the results of type deduction is dependent on the
phase of the software development process where you want the information. We’ll
explore three possibilities: getting type deduction information as you edit your code,
getting it during compilation, and getting it at runtime.

IDE Editors
Code editors in IDEs often show the types of program entities (e.g., variables, param‐
eters, functions, etc.) when you do something like hover your cursor over the entity.
For example, given this code,      

const int theAnswer = 42;

auto x = theAnswer;
auto y = &theAnswer;

an IDE editor would likely show that x’s deduced type was int and y’s was const
int*.

For this to work, your code must be in a more or less compilable state, because what
makes it possible for the IDE to offer this kind of information is a C++ compiler (or
at least the front end of one) running inside the IDE. If that compiler can’t make
enough sense of your code to parse it and perform type deduction, it can’t show you
what types it deduced.

For simple types like int, information from IDEs is generally fine. As we’ll see soon,
however, when more complicated types are involved, the information displayed by
IDEs may not be particularly helpful.
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Compiler Diagnostics
An effective way to get a compiler to show a type it has deduced is to use that type in
a way that leads to compilation problems. The error message reporting the problem
is virtually sure to mention the type that’s causing it.

Suppose, for example, we’d like to see the types that were deduced for x and y in the
previous example. We first declare a class template that we don’t define. Something
like this does nicely:

template<typename T>       // declaration only for TD;
class TD;                  // TD == "Type Displayer"

Attempts to instantiate this template will elicit an error message, because there’s no
template definition to instantiate. To see the types for x and y, just try to instantiate
TD with their types:

TD<decltype(x)> xType;     // elicit errors containing
TD<decltype(y)> yType;     // x's and y's types

I use variable names of the form variableNameType, because they tend to yield error
messages that help me find the information I’m looking for. For the code above, one
of my compilers issues diagnostics reading, in part, as follows (I’ve highlighted the
type information we’re after):

error: aggregate 'TD<int> xType' has incomplete type and
    cannot be defined
error: aggregate 'TD<const int *> yType' has incomplete type
    and cannot be defined

A different compiler provides the same information, but in a different form:

error: 'xType' uses undefined class 'TD<int>'
error: 'yType' uses undefined class 'TD<const int *>'

Formatting differences aside, all the compilers I’ve tested produce error messages
with useful type information when this technique is employed.

Runtime Output
The printf approach to displaying type information (not that I’m recommending
you use printf) can’t be employed until runtime, but it offers full control over the
formatting of the output. The challenge is to create a textual representation of the
type you care about that is suitable for display. “No sweat,” you’re thinking, “it’s
typeid and std::type_info::name to the rescue.” In our continuing quest to see
the types deduced for x and y, you may figure we can write this:
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std::cout << typeid(x).name() << '\n';    // display types for
std::cout << typeid(y).name() << '\n';    // x and y

This approach relies on the fact that invoking typeid on an object such as x or y
yields a std::type_info object, and std::type_info has a member function, name,
that produces a C-style string (i.e., a const char*) representation of the name of the
type.

Calls to std::type_info::name are not guaranteed to return anything sensible, but
implementations try to be helpful. The level of helpfulness varies. The GNU and
Clang compilers report that the type of x is “i”, and the type of y is “PKi”, for exam‐
ple. These results make sense once you learn that, in output from these compilers, “i”
means “int” and “PK” means “pointer to konst const.” (Both compilers support a
tool, c++filt, that decodes such “mangled” types.) Microsoft’s compiler produces
less cryptic output: “int” for x and “int const *” for y.

Because these results are correct for the types of x and y, you might be tempted to
view the type-reporting problem as solved, but let’s not be hasty. Consider a more
complex example:

template<typename T>                 // template function to
void f(const T& param);              // be called

std::vector<Widget> createVec();     // factory function

const auto vw = createVec();         // init vw w/factory return

if (!vw.empty()) {
  f(&vw[0]);                         // call f
  …
}

This code, which involves a user-defined type (Widget), an STL container (std::vec
tor), and an auto variable (vw), is more representative of the situations where you
might want some visibility into the types your compilers are deducing. For example,
it’d be nice to know what types are inferred for the template type parameter T and the
function parameter param in f.

Loosing typeid on the problem is straightforward. Just add some code to f to display
the types you’d like to see: 

template<typename T>
void f(const T& param)
{
  using std::cout;
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  cout << "T =     " << typeid(T).name() << '\n';     // show T

  cout << "param = " << typeid(param).name() << '\n'; // show
  …                                                   // param's
}                                                     // type

Executables produced by the GNU and Clang compilers produce this output:

T =     PK6Widget
param = PK6Widget

We already know that for these compilers, PK means “pointer to const,” so the only
mystery is the number 6. That’s simply the number of characters in the class name
that follows (Widget). So these compilers tell us that both T and param are of type
const Widget*.

Microsoft’s compiler concurs:

T =     class Widget const *
param = class Widget const *

Three independent compilers producing the same information suggests that the
information is accurate. But look more closely. In the template f, param’s declared
type is const T&. That being the case, doesn’t it seem odd that T and param have the
same type? If T were int, for example, param’s type should be const int&—not the
same type at all.

Sadly, the results of std::type_info::name are not reliable. In this case, for exam‐
ple, the type that all three compilers report for param are incorrect. Furthermore,
they’re essentially required to be incorrect, because the specification for std::
type_info::name mandates that the type be treated as if it had been passed to a tem‐
plate function as a by-value parameter. As Item 1 explains, that means that if the type
is a reference, its reference-ness is ignored, and if the type after reference removal is
const (or volatile), its constness (or volatileness) is also ignored. That’s why
param’s type—which is const Widget * const &—is reported as const Widget*.
First the type’s reference-ness is removed, and then the constness of the resulting
pointer is eliminated.

Equally sadly, the type information displayed by IDE editors is also not reliable—or
at least not reliably useful. For this same example, one IDE editor I know reports T’s
type as (I am not making this up):

const
std::_Simple_types<std::_Wrap_alloc<std::_Vec_base_types<Widget,
std::allocator<Widget> >::_Alloc>::value_type>::value_type *

The same IDE editor shows param’s type as:
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const std::_Simple_types<...>::value_type *const &

That’s less intimidating than the type for T, but the “...” in the middle is confusing
until you realize that it’s the IDE editor’s way of saying “I’m omitting all that stuff
that’s part of T’s type.” With any luck, your development environment does a better
job on code like this.

If you’re more inclined to rely on libraries than luck, you’ll be pleased to know that
where std::type_info::name and IDEs may fail, the Boost TypeIndex library
(often written as Boost.TypeIndex) is designed to succeed. The library isn’t part of
Standard C++, but neither are IDEs or templates like TD. Furthermore, the fact that
Boost libraries (available at boost.com) are cross-platform, open source, and available
under a license designed to be palatable to even the most paranoid corporate legal
team means that code using Boost libraries is nearly as portable as code relying on the
Standard Library.

Here’s how our function f can produce accurate type information using Boost.Type‐
Index:

#include <boost/type_index.hpp>

template<typename T>
void f(const T& param)
{
  using std::cout;
  using boost::typeindex::type_id_with_cvr;

  // show T
  cout << "T =     "
       << type_id_with_cvr<T>().pretty_name()
       << '\n';

  // show param's type
  cout << "param = "
       << type_id_with_cvr<decltype(param)>().pretty_name()
       << '\n';
  …
}

The way this works is that the function template boost::typeindex::

type_id_with_cvr takes a type argument (the type about which we want informa‐
tion) and doesn’t remove const, volatile, or reference qualifiers (hence the
“with_cvr” in the template name). The result is a boost::typeindex::type_index
object, whose pretty_name member function produces a std::string containing a
human-friendly representation of the type.
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With this implementation for f, consider again the call that yields incorrect type
information for param when typeid is used:

std::vector<Widget> createVec();     // factory function

const auto vw = createVec();         // init vw w/factory return

if (!vw.empty()) {
  f(&vw[0]);                         // call f
  …
}

Under compilers from GNU and Clang, Boost.TypeIndex produces this (accurate)
output:

T =     Widget const*
param = Widget const* const&

Results under Microsoft’s compiler are essentially the same:

T =     class Widget const *
param = class Widget const * const &

Such near-uniformity is nice, but it’s important to remember that IDE editors, com‐
piler error messages, and libraries like Boost.TypeIndex are merely tools you can use
to help you figure out what types your compilers are deducing. All can be helpful, but
at the end of the day, there’s no substitute for understanding the type deduction
information in Items 1–3.

Things to Remember
• Deduced types can often be seen using IDE editors, compiler error messages,

and the Boost TypeIndex library.
• The results of some tools may be neither helpful nor accurate, so an under‐

standing of C++’s type deduction rules remains essential.
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CHAPTER 2

auto

In concept, auto is as simple as simple can be, but it’s more subtle than it looks.
Using it saves typing, sure, but it also prevents correctness and performance issues
that can bedevil manual type declarations. Furthermore, some of auto’s type deduc‐
tion results, while dutifully conforming to the prescribed algorithm, are, from the
perspective of a programmer, just wrong. When that’s the case, it’s important to
know how to guide auto to the right answer, because falling back on manual type
declarations is an alternative that’s often best avoided.

This brief chapter covers all of auto’s ins and outs.

Item 5: Prefer auto to explicit type declarations.
Ah, the simple joy of

int x;

Wait. Damn. I forgot to initialize x, so its value is indeterminate. Maybe. It might
actually be initialized to zero. Depends on the context. Sigh.

Never mind. Let’s move on to the simple joy of declaring a local variable to be initial‐
ized by dereferencing an iterator:

template<typename It>    // algorithm to dwim ("do what I mean")
void dwim(It b, It e)    // for all elements in range from
{                        // b to e
  while (b != e) {
    typename std::iterator_traits<It>::value_type
      currValue = *b;
    …
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  }
}

Ugh. “typename std::iterator_traits<It>::value_type” to express the type of
the value pointed to by an iterator? Really? I must have blocked out the memory of
how much fun that is. Damn. Wait—didn’t I already say that?

Okay, simple joy (take three): the delight of declaring a local variable whose type is
that of a closure. Oh, right. The type of a closure is known only to the compiler,
hence can’t be written out. Sigh. Damn.

Damn, damn, damn! Programming in C++ is not the joyous experience it should be!

Well, it didn’t used to be. But as of C++11, all these issues go away, courtesy of auto.
auto variables have their type deduced from their initializer, so they must be initial‐
ized. That means you can wave goodbye to a host of uninitialized variable problems
as you speed by on the modern C++ superhighway:

int x1;                     // potentially uninitialized

auto x2;                    // error! initializer required

auto x3 = 0;                // fine, x's value is well-defined

Said highway lacks the potholes associated with declaring a local variable whose value
is that of a dereferenced iterator:

template<typename It>       // as before
void dwim(It b, It e)
{
  while (b != e) {
    auto currValue = *b;
    …
  }
}

And because auto uses type deduction (see Item 2), it can represent types known
only to compilers:

auto derefUPLess =                        // comparison func.
  [](const std::unique_ptr<Widget>& p1,   // for Widgets
     const std::unique_ptr<Widget>& p2)   // pointed to by
  { return *p1 < *p2; };                  // std::unique_ptrs

Very cool. In C++14, the temperature drops further, because parameters to lambda
expressions may involve auto:

auto derefLess =                          // C++14 comparison
  [](const auto& p1,                      // function for

38 | Item 5



     const auto& p2)                      // values pointed
  { return *p1 < *p2; };                  // to by anything
                                          // pointer-like

Coolness notwithstanding, perhaps you’re thinking we don’t really need auto to
declare a variable that holds a closure, because we can use a std::function object.
It’s true, we can, but possibly that’s not what you were thinking. And maybe now
you’re thinking “What’s a std::function object?” So let’s clear that up.

std::function is a template in the C++11 Standard Library that generalizes the idea
of a function pointer. Whereas function pointers can point only to functions, how‐
ever, std::function objects can refer to any callable object, i.e., to anything that can
be invoked like a function. Just as you must specify the type of function to point to
when you create a function pointer (i.e., the signature of the functions you want to
point to), you must specify the type of function to refer to when you create a
std::function object. You do that through std::function’s template parameter.
For example, to declare a std::function object named func that could refer to any
callable object acting as if it had this signature,

bool(const std::unique_ptr<Widget>&,  // C++11 signature for
     const std::unique_ptr<Widget>&)  // std::unique_ptr<Widget>
                                      // comparison function

you’d write this:

std::function<bool(const std::unique_ptr<Widget>&,
                   const std::unique_ptr<Widget>&)> func;

Because lambda expressions yield callable objects, closures can be stored in
std::function objects. That means we could declare the C++11 version of derefUP
Less without using auto as follows:

std::function<bool(const std::unique_ptr<Widget>&,
                   const std::unique_ptr<Widget>&)>
  derefUPLess = [](const std::unique_ptr<Widget>& p1,
                   const std::unique_ptr<Widget>& p2)
                  { return *p1 < *p2; };

It’s important to recognize that even setting aside the syntactic verbosity and need to
repeat the parameter types, using std::function is not the same as using auto. An
auto-declared variable holding a closure has the same type as the closure, and as such
it uses only as much memory as the closure requires. The type of a std::function-
declared variable holding a closure is an instantiation of the std::function tem‐
plate, and that has a fixed size for any given signature. This size may not be adequate
for the closure it’s asked to store, and when that’s the case, the std::function con‐
structor will allocate heap memory to store the closure. The result is that the
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std::function object typically uses more memory than the auto-declared object.
And, thanks to implementation details that restrict inlining and yield indirect func‐
tion calls, invoking a closure via a std::function object is almost certain to be
slower than calling it via an auto-declared object. In other words, the std::func
tion approach is generally bigger and slower than the auto approach, and it may
yield out-of-memory exceptions, too. Plus, as you can see in the examples above,
writing “auto” is a whole lot less work than writing the type of the std::function
instantiation. In the competition between auto and std::function for holding a
closure, it’s pretty much game, set, and match for auto. (A similar argument can be
made for auto over std::function for holding the result of calls to std::bind, but
in Item 34, I do my best to convince you to use lambdas instead of std::bind, any‐
way.)

The advantages of auto extend beyond the avoidance of uninitialized variables, ver‐
bose variable declarations, and the ability to directly hold closures. One is the ability
to avoid what I call problems related to “type shortcuts.” Here’s something you’ve
probably seen—possibly even written:

std::vector<int> v;
…
unsigned sz = v.size();

The official return type of v.size() is std::vector<int>::size_type, but few
developers are aware of that. std::vector<int>::size_type is specified to be an
unsigned integral type, so a lot of programmers figure that unsigned is good enough
and write code such as the above. This can have some interesting consequences. On
32-bit Windows, for example, both unsigned and std::vector<int>::size_type
are the same size, but on 64-bit Windows, unsigned is 32 bits, while std::vec
tor<int>::size_type is 64 bits. This means that code that works under 32-bit
Windows may behave incorrectly under 64-bit Windows, and when porting your
application from 32 to 64 bits, who wants to spend time on issues like that?

Using auto ensures that you don’t have to:

auto sz = v.size();  // sz's type is std::vector<int>::size_type

Still unsure about the wisdom of using auto? Then consider this code:

std::unordered_map<std::string, int> m;
…

for (const std::pair<std::string, int>& p : m)
{
  …                   // do something with p
}
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This looks perfectly reasonable, but there’s a problem. Do you see it?

Recognizing what’s amiss requires remembering that the key part of a std::unor
dered_map is const, so the type of std::pair in the hash table (which is what a
std::unordered_map is) isn’t std::pair<std::string, int>, it’s std::pair
<const std::string, int>. But that’s not the type declared for the variable p in the
loop above. As a result, compilers will strive to find a way to convert
std::pair<const std::string, int> objects (i.e., what’s in the hash table) to
std::pair<std::string, int> objects (the declared type for p). They’ll succeed by
creating a temporary object of the type that p wants to bind to by copying each object
in m, then binding the reference p to that temporary object. At the end of each loop
iteration, the temporary object will be destroyed. If you wrote this loop, you’d likely
be surprised by this behavior, because you’d almost certainly intend to simply bind
the reference p to each element in m.

Such unintentional type mismatches can be autoed away:

for (const auto& p : m)
{
  …                             // as before
}

This is not only more efficient, it’s also easier to type. Furthermore, this code has the
very attractive characteristic that if you take p’s address, you’re sure to get a pointer
to an element within m. In the code not using auto, you’d get a pointer to a tempo‐
rary object—an object that would be destroyed at the end of the loop iteration.

The last two examples—writing unsigned when you should have written std::vec
tor<int>::size_type and writing std::pair<std::string, int> when you
should have written std::pair<const std::string, int>—demonstrate how
explicitly specifying types can lead to implicit conversions that you neither want nor
expect. If you use auto as the type of the target variable, you need not worry about
mismatches between the type of variable you’re declaring and the type of the expres‐
sion used to initialize it.

There are thus several reasons to prefer auto over explicit type declarations. Yet auto
isn’t perfect. The type for each auto variable is deduced from its initializing expres‐
sion, and some initializing expressions have types that are neither anticipated nor
desired. The conditions under which such cases arise, and what you can do about
them, are discussed in Items 2 and 6, so I won’t address them here. Instead, I’ll turn
my attention to a different concern you may have about using auto in place of tradi‐
tional type declarations: the readability of the resulting source code.
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First, take a deep breath and relax. auto is an option, not a mandate. If, in your pro‐
fessional judgment, your code will be clearer or more maintainable or in some other
way better by using explicit type declarations, you’re free to continue using them. But
bear in mind that C++ breaks no new ground in adopting what is generally known in
the programming languages world as type inference. Other statically typed procedural
languages (e.g., C#, D, Scala, Visual Basic) have a more or less equivalent feature, to
say nothing of a variety of statically typed functional languages (e.g., ML, Haskell,
OCaml, F#, etc.). In part, this is due to the success of dynamically typed languages
such as Perl, Python, and Ruby, where variables are rarely explicitly typed. The soft‐
ware development community has extensive experience with type inference, and it
has demonstrated that there is nothing contradictory about such technology and the
creation and maintenance of large, industrial-strength code bases.

Some developers are disturbed by the fact that using auto eliminates the ability to
determine an object’s type by a quick glance at the source code. However, IDEs’ abil‐
ity to show object types often mitigates this problem (even taking into account the
IDE type-display issues mentioned in Item 4), and, in many cases, a somewhat
abstract view of an object’s type is just as useful as the exact type. It often suffices, for
example, to know that an object is a container or a counter or a smart pointer,
without knowing exactly what kind of container, counter, or smart pointer it is.
Assuming well-chosen variable names, such abstract type information should almost
always be at hand.

The fact of the matter is that writing types explicitly often does little more than intro‐
duce opportunities for subtle errors, either in correctness or efficiency or both. Fur‐
thermore, auto types automatically change if the type of their initializing expression
changes, and that means that some refactorings are facilitated by the use of auto. For
example, if a function is declared to return an int, but you later decide that a long
would be better, the calling code automatically updates itself the next time you com‐
pile if the results of calling the function are stored in auto variables. If the results are
stored in variables explicitly declared to be int, you’ll need to find all the call sites so
that you can revise them.

Things to Remember
• auto variables must be initialized, are generally immune to type mismatches

that can lead to portability or efficiency problems, can ease the process of
refactoring, and typically require less typing than variables with explicitly
specified types.

• auto-typed variables are subject to the pitfalls described in Items 2 and 6.
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Item 6: Use the explicitly typed initializer idiom when
auto deduces undesired types.

Item 5 explains that using auto to declare variables offers a number of technical
advantages over explicitly specifying types, but sometimes auto’s type deduction zigs
when you want it to zag. For example, suppose I have a function that takes a Widget
and returns a std::vector<bool>, where each bool indicates whether the Widget
offers a particular feature:

std::vector<bool> features(const Widget& w);

Further suppose that bit 5 indicates whether the Widget has high priority. We can
thus write code like this:

Widget w;
…

bool highPriority = features(w)[5];  // is w high priority?
…

processWidget(w, highPriority);      // process w in accord
                                     // with its priority

There’s nothing wrong with this code. It’ll work fine. But if we make the seemingly
innocuous change of replacing the explicit type for highPriority with auto,

auto highPriority = features(w)[5];  // is w high priority?

the situation changes. All the code will continue to compile, but its behavior is no
longer predictable:

processWidget(w, highPriority);      // undefined behavior!

As the comment indicates, the call to processWidget now has undefined behavior.
But why? The answer is likely to be surprising. In the code using auto, the type of
highPriority is no longer bool. Though std::vector<bool> conceptually holds
bools, operator[] for std::vector<bool> doesn’t return a reference to an element
of the container (which is what std::vector::operator[] returns for every type
except bool). Instead, it returns an object of type std::vector<bool>::reference
(a class nested inside std::vector<bool>).

std::vector<bool>::reference exists because std::vector<bool> is specified to
represent its bools in packed form, one bit per bool. That creates a problem for
std::vector<bool>’s operator[], because operator[] for std::vector<T> is
supposed to return a T&, but C++ forbids references to bits. Not being able to return a
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bool&, operator[] for std::vector<bool> returns an object that acts like a bool&.
For this act to succeed, std::vector<bool>::reference objects must be usable in
essentially all contexts where bool&s can be. Among the features in std::vec
tor<bool>::reference that make this work is an implicit conversion to bool. (Not
to bool&, to bool. To explain the full set of techniques used by std::vec
tor<bool>::reference to emulate the behavior of a bool& would take us too far
afield, so I’ll simply remark that this implicit conversion is only one stone in a larger
mosaic.)

With this information in mind, look again at this part of the original code:

bool highPriority = features(w)[5];  // declare highPriority's
                                     // type explicitly

Here, features returns a std::vector<bool> object, on which operator[] is
invoked. operator[] returns a std::vector<bool>::reference object, which is
then implicitly converted to the bool that is needed to initialize highPriority. high
Priority thus ends up with the value of bit 5 in the std::vector<bool> returned
by features, just like it’s supposed to.

Contrast that with what happens in the auto-ized declaration for highPriority:

auto highPriority = features(w)[5];  // deduce highPriority's
                                     // type

Again, features returns a std::vector<bool> object, and, again, operator[] is
invoked on it. operator[] continues to return a std::vector<bool>::reference
object, but now there’s a change, because auto deduces that as the type of highPrior
ity. highPriority doesn’t have the value of bit 5 of the std::vector<bool>
returned by features at all.

The value it does have depends on how std::vector<bool>::reference is imple‐
mented. One implementation is for such objects to contain a pointer to the machine
word holding the referenced bit, plus the offset into that word for that bit. Consider
what that means for the initialization of highPriority, assuming that such a
std::vector<bool>::reference implementation is in place.

The call to features returns a temporary std::vector<bool> object. This object
has no name, but for purposes of this discussion, I’ll call it temp. operator[] is
invoked on temp, and the std::vector<bool>::reference it returns contains a
pointer to a word in the data structure holding the bits that are managed by temp,
plus the offset into that word corresponding to bit 5. highPriority is a copy of this
std::vector<bool>::reference object, so highPriority, too, contains a pointer
to a word in temp, plus the offset corresponding to bit 5. At the end of the statement,
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temp is destroyed, because it’s a temporary object. Therefore, highPriority contains
a dangling pointer, and that’s the cause of the undefined behavior in the call to proc
essWidget:

processWidget(w, highPriority);    // undefined behavior!
                                   // highPriority contains
                                   // dangling pointer!

std::vector<bool>::reference is an example of a proxy class: a class that exists
for the purpose of emulating and augmenting the behavior of some other type. Proxy
classes are employed for a variety of purposes. std::vector<bool>::reference
exists to offer the illusion that operator[] for std::vector<bool> returns a refer‐
ence to a bit, for example, and the Standard Library’s smart pointer types (see Chap‐
ter 4) are proxy classes that graft resource management onto raw pointers. The utility
of proxy classes is well-established. In fact, the design pattern “Proxy” is one of the
most longstanding members of the software design patterns Pantheon.

Some proxy classes are designed to be apparent to clients. That’s the case for
std::shared_ptr and std::unique_ptr, for example. Other proxy classes are
designed to act more or less invisibly. std::vector<bool>::reference is an exam‐
ple of such “invisible” proxies, as is its std::bitset compatriot, std::bitset::ref
erence.

Also in that camp are some classes in C++ libraries employing a technique known as
expression templates. Such libraries were originally developed to improve the effi‐
ciency of numeric code. Given a class Matrix and Matrix objects m1, m2, m3, and m4,
for example, the expression

Matrix sum = m1 + m2 + m3 + m4;

can be computed much more efficiently if operator+ for Matrix objects returns a
proxy for the result instead of the result itself. That is, operator+ for two Matrix
objects would return an object of a proxy class such as Sum<Matrix, Matrix> instead
of a Matrix object. As was the case with std::vector<bool>::reference and
bool, there’d be an implicit conversion from the proxy class to Matrix, which would
permit the initialization of sum from the proxy object produced by the expression on
the right side of the “=”. (The type of that object would traditionally encode the entire
initialization expression, i.e., be something like Sum<Sum<Sum<Matrix, Matrix>,
Matrix>, Matrix>. That’s definitely a type from which clients should be shielded.)

As a general rule, “invisible” proxy classes don’t play well with auto. Objects of such
classes are often not designed to live longer than a single statement, so creating vari‐
ables of those types tends to violate fundamental library design assumptions. That’s
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the case with std::vector<bool>::reference, and we’ve seen that violating that
assumption can lead to undefined behavior.

You therefore want to avoid code of this form:

auto someVar = expression of "invisible" proxy class type;

But how can you recognize when proxy objects are in use? The software employing
them is unlikely to advertise their existence. They’re supposed to be invisible, at least
conceptually! And once you’ve found them, do you really have to abandon auto and
the many advantages Item 5 demonstrates for it?

Let’s take the how-do-you-find-them question first. Although “invisible” proxy
classes are designed to fly beneath programmer radar in day-to-day use, libraries
using them often document that they do so. The more you’ve familiarized yourself
with the basic design decisions of the libraries you use, the less likely you are to be
blindsided by proxy usage within those libraries.

Where documentation comes up short, header files fill the gap. It’s rarely possible for
source code to fully cloak proxy objects. They’re typically returned from functions
that clients are expected to call, so function signatures usually reflect their existence. 
Here’s the spec for std::vector<bool>::operator[], for example:

namespace std {                            // from C++ Standards

  template <class Allocator>
  class vector<bool, Allocator> {
  public:
    …
    class reference { … };

    reference operator[](size_type n);
    …
  };
}

Assuming you know that operator[] for std::vector<T> normally returns a T&,
the unconventional return type for operator[] in this case is a tip-off that a proxy
class is in use. Paying careful attention to the interfaces you’re using can often reveal
the existence of proxy classes.

In practice, many developers discover the use of proxy classes only when they try to
track down mystifying compilation problems or debug incorrect unit test results.
Regardless of how you find them, once auto has been determined to be deducing the
type of a proxy class instead of the type being proxied, the solution need not involve
abandoning auto. auto itself isn’t the problem. The problem is that auto isn’t deduc‐
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ing the type you want it to deduce. The solution is to force a different type deduction.
The way you do that is what I call the explicitly typed initializer idiom.

The explicitly typed initializer idiom involves declaring a variable with auto, but
casting the initialization expression to the type you want auto to deduce. Here’s how
it can be used to force highPriority to be a bool, for example:

auto highPriority = static_cast<bool>(features(w)[5]);

Here, features(w)[5] continues to return a std::vector<bool>::reference
object, just as it always has, but the cast changes the type of the expression to bool,
which auto then deduces as the type for highPriority. At runtime, the std::vec
tor<bool>::reference object returned from std::vector<bool>::operator[]
executes the conversion to bool that it supports, and as part of that conversion, the
still-valid pointer to the std::vector<bool> returned from features is derefer‐
enced. That avoids the undefined behavior we ran into earlier. The index 5 is then
applied to the bits pointed to by the pointer, and the bool value that emerges is used
to initialize highPriority.

For the Matrix example, the explicitly typed initializer idiom would look like this:

auto sum = static_cast<Matrix>(m1 + m2 + m3 + m4);

Applications of the idiom aren’t limited to initializers yielding proxy class types. It
can also be useful to emphasize that you are deliberately creating a variable of a type
that is different from that generated by the initializing expression. For example, sup‐
pose you have a function to calculate some tolerance value:

double calcEpsilon();            // return tolerance value

calcEpsilon clearly returns a double, but suppose you know that for your applica‐
tion, the precision of a float is adequate, and you care about the difference in size
between floats and doubles. You could declare a float variable to store the result
of calcEpsilon,

float ep = calcEpsilon();        // impliclitly convert
                                 // double → float

but this hardly announces “I’m deliberately reducing the precision of the value
returned by the function.” A declaration using the explicitly typed initializer idiom,
however, does:

auto ep = static_cast<float>(calcEpsilon());

Similar reasoning applies if you have a floating-point expression that you are deliber‐
ately storing as an integral value. Suppose you need to calculate the index of an ele‐
ment in a container with random access iterators (e.g., a std::vector, std::deque,
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or std::array), and you’re given a double between 0.0 and 1.0 indicating how far
from the beginning of the container the desired element is located. (0.5 would indi‐
cate the middle of the container.) Further suppose that you’re confident that the
resulting index will fit in an int. If the container is c and the double is d, you could
calculate the index this way,

int index = d * c.size();

but this obscures the fact that you’re intentionally converting the double on the right
to an int. The explicitly typed initializer idiom makes things transparent:

auto index = static_cast<int>(d * c.size());

Things to Remember
• “Invisible” proxy types can cause auto to deduce the “wrong” type for an ini‐

tializing expression.
• The explicitly typed initializer idiom forces auto to deduce the type you want

it to have.
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CHAPTER 3

Moving to Modern C++

When it comes to big-name features, C++11 and C++14 have a lot to boast of. auto,
smart pointers, move semantics, lambdas, concurrency—each is so important, I
devote a chapter to it. It’s essential to master those features, but becoming an effective
modern C++ programmer requires a series of smaller steps, too. Each step answers
specific questions that arise during the journey from C++98 to modern C++. When
should you use braces instead of parentheses for object creation? Why are alias decla‐
rations better than typedefs? How does constexpr differ from const? What’s the
relationship between const member functions and thread safety? The list goes on
and on. And one by one, this chapter provides the answers.

Item 7: Distinguish between () and {} when creating
objects.

Depending on your perspective, syntax choices for object initialization in C++11
embody either an embarrassment of riches or a confusing mess. As a general rule,
initialization values may be specified with parentheses, an equals sign, or braces:

int x(0);             // initializer is in parentheses

int y = 0;            // initializer follows "="

int z{ 0 };           // initializer is in braces

In many cases, it’s also possible to use an equals sign and braces together:

int z = { 0 };        // initializer uses "=" and braces

For the remainder of this Item, I’ll generally ignore the equals-sign-plus-braces syn‐
tax, because C++ usually treats it the same as the braces-only version.
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The “confusing mess” lobby points out that the use of an equals sign for initialization
often misleads C++ newbies into thinking that an assignment is taking place, even
though it’s not. For built-in types like int, the difference is academic, but for user-
defined types, it’s important to distinguish initialization from assignment, because
different function calls are involved:

Widget w1;            // call default constructor

Widget w2 = w1;       // not an assignment; calls copy ctor

w1 = w2;              // an assignment; calls copy operator=

Even with several initialization syntaxes, there were some situations where C++98
had no way to express a desired initialization. For example, it wasn’t possible to
directly indicate that an STL container should be created holding a particular set of
values (e.g., 1, 3, and 5).

To address the confusion of multiple initialization syntaxes, as well as the fact that
they don’t cover all initialization scenarios, C++11 introduces uniform initialization:
a single initialization syntax that can, at least in concept, be used anywhere and
express everything. It’s based on braces, and for that reason I prefer the term braced
initialization. “Uniform initialization” is an idea. “Braced initialization” is a syntactic
construct.

Braced initialization lets you express the formerly inexpressible. Using braces, speci‐
fying the initial contents of a container is easy:

std::vector<int> v{ 1, 3, 5 }; // v's initial content is 1, 3, 5

Braces can also be used to specify default initialization values for non-static data
members. This capability—new to C++11—is shared with the “=” initialization syn‐
tax, but not with parentheses:

class Widget {
  …

private:
  int x{ 0 };                  // fine, x's default value is 0
  int y = 0;                   // also fine
  int z(0);                    // error!
};

On the other hand, uncopyable objects (e.g., std::atomics—see Item 40) may be
initialized using braces or parentheses, but not using “=”: 

std::atomic<int> ai1{ 0 };     // fine
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std::atomic<int> ai2(0);       // fine

std::atomic<int> ai3 = 0;      // error!

It’s thus easy to understand why braced initialization is called “uniform.” Of C++’s
three ways to designate an initializing expression, only braces can be used every‐
where.

A novel feature of braced initialization is that it prohibits implicit narrowing conver‐
sions among built-in types. If the value of an expression in a braced initializer isn’t
guaranteed to be expressible by the type of the object being initialized, the code won’t
compile:

double x, y, z;

…

int sum1{ x + y + z };       // error! sum of doubles may
                             // not be expressible as int

Initialization using parentheses and “=” doesn’t check for narrowing conversions,
because that could break too much legacy code:

int sum2(x + y + z);         // okay (value of expression
                             // truncated to an int)

int sum3 = x + y + z;        // ditto

Another noteworthy characteristic of braced initialization is its immunity to C++’s
most vexing parse. A side effect of C++’s rule that anything that can be parsed as a
declaration must be interpreted as one, the most vexing parse most frequently afflicts
developers when they want to default-construct an object, but inadvertently end up
declaring a function instead. The root of the problem is that if you want to call a con‐
structor with an argument, you can do it like this,

Widget w1(10);     // call Widget ctor with argument 10

but if you try to call a Widget constructor with zero arguments using the analogous
syntax, you declare a function instead of an object:

Widget w2();       // most vexing parse! declares a function
                   // named w2 that returns a Widget!

Functions can’t be declared using braces for the parameter list, so default-
constructing an object using braces doesn’t have this problem:

Widget w3{};       // calls Widget ctor with no args
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There’s thus a lot to be said for braced initialization. It’s the syntax that can be used
in the widest variety of contexts, it prevents implicit narrowing conversions, and it’s
immune to C++’s most vexing parse. A trifecta of goodness! So why isn’t this Item
entitled something like “Prefer braced initialization syntax”?

The drawback to braced initialization is the sometimes-surprising behavior that
accompanies it. Such behavior grows out of the unusually tangled relationship among
braced initializers, std::initializer_lists, and constructor overload resolution.
Their interactions can lead to code that seems like it should do one thing, but actually
does another. For example, Item 2 explains that when an auto-declared variable has a
braced initializer, the type deduced is std::initializer_list, even though other
ways of declaring a variable with the same initializer would yield a more intuitive
type. As a result, the more you like auto, the less enthusiastic you’re likely to be about
braced initialization.

In constructor calls, parentheses and braces have the same meaning as long as
std::initializer_list parameters are not involved:

class Widget {
public:
  Widget(int i, bool b);      // ctors not declaring
  Widget(int i, double d);    // std::initializer_list params
  …
};

Widget w1(10, true);          // calls first ctor

Widget w2{10, true};          // also calls first ctor

Widget w3(10, 5.0);           // calls second ctor

Widget w4{10, 5.0};           // also calls second ctor

If, however, one or more constructors declare a parameter of type std::initial
izer_list, calls using the braced initialization syntax strongly prefer the overloads
taking std::initializer_lists. Strongly. If there’s any way for compilers to con‐
strue a call using a braced initializer to be to a constructor taking a std::initial
izer_list, compilers will employ that interpretation. If the Widget class above is
augmented with a constructor taking a std::initializer_list<long double>, for
example,

class Widget {
public:
  Widget(int i, bool b);                           // as before
  Widget(int i, double d);                         // as before
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  Widget(std::initializer_list<long double> il);   // added

  …
};

Widgets w2 and w4 will be constructed using the new constructor, even though the
type of the std::initializer_list elements (long double) is, compared to the
non-std::initializer_list constructors, a worse match for both arguments!
Look:

Widget w1(10, true);     // uses parens and, as before,
                         // calls first ctor

Widget w2{10, true};     // uses braces, but now calls
                         // std::initializer_list ctor
                         // (10 and true convert to long double)

Widget w3(10, 5.0);      // uses parens and, as before,
                         // calls second ctor

Widget w4{10, 5.0};      // uses braces, but now calls
                         // std::initializer_list ctor
                         // (10 and 5.0 convert to long double)

Even what would normally be copy and move construction can be hijacked by
std::initializer_list constructors:

class Widget {
public:
  Widget(int i, bool b);                           // as before
  Widget(int i, double d);                         // as before
  Widget(std::initializer_list<long double> il);   // as before

  operator float() const;                          // convert
  …                                                // to float

};

Widget w5(w4);               // uses parens, calls copy ctor

Widget w6{w4};               // uses braces, calls
                             // std::initializer_list ctor
                             // (w4 converts to float, and float
                             // converts to long double)
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Widget w7(std::move(w4));    // uses parens, calls move ctor

Widget w8{std::move(w4)};    // uses braces, calls
                             // std::initializer_list ctor
                             // (for same reason as w6)

Compilers’ determination to match braced initializers with constructors taking
std::initializer_lists is so strong, it prevails even if the best-match std::ini
tializer_list constructor can’t be called. For example:

class Widget {
public:
  Widget(int i, bool b);                   // as before
  Widget(int i, double d);                 // as before

  Widget(std::initializer_list<bool> il);  // element type is
                                           // now bool

  …                                        // no implicit
};                                         // conversion funcs

Widget w{10, 5.0};      // error! requires narrowing conversions

Here, compilers will ignore the first two constructors (the second of which offers an
exact match on both argument types) and try to call the constructor taking a
std::initializer_list<bool>. Calling that constructor would require converting
an int (10) and a double (5.0) to bools. Both conversions would be narrowing
(bool can’t exactly represent either value), and narrowing conversions are prohibited
inside braced initializers, so the call is invalid, and the code is rejected.

Only if there’s no way to convert the types of the arguments in a braced initializer to
the type in a std::initializer_list do compilers fall back on normal overload
resolution. For example, if we replace the std::initializer_list<bool> construc‐
tor with one taking a std::initializer_list<std::string>, the non-
std::initializer_list constructors become candidates again, because there is no
way to convert ints and bools to std::strings:

class Widget {
public:
  Widget(int i, bool b);               // as before
  Widget(int i, double d);             // as before

  // std::initializer_list element type is now std::string
  Widget(std::initializer_list<std::string> il);
  …                                    // no implicit
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};                                     // conversion funcs

Widget w1(10, true);     // uses parens, still calls first ctor

Widget w2{10, true};     // uses braces, now calls first ctor

Widget w3(10, 5.0);      // uses parens, still calls second ctor

Widget w4{10, 5.0};      // uses braces, now calls second ctor

This brings us near the end of our examination of braced initializers and constructor
overloading, but there’s an interesting edge case that needs to be addressed. Suppose
you use an empty set of braces to construct an object that supports default construc‐
tion and also supports std::initializer_list construction. What do your empty
braces mean? If they mean “no arguments,” you get default construction, but if they
mean “empty std::initializer_list,” you get construction from a std::ini
tializer_list with no elements.

The rule is that you get default construction. Empty braces mean no arguments, not
an empty std::initializer_list:

class Widget {
public:
  Widget();                                // default ctor

  Widget(std::initializer_list<int> il);   // std::initializer
                                           // _list ctor

  …                                        // no implicit
};                                         // conversion funcs

Widget w1;            // calls default ctor

Widget w2{};          // also calls default ctor

Widget w3();          // most vexing parse! declares a function!

If you want to call a std::initializer_list constructor with an empty std::ini
tializer_list, you do it by making the empty braces a constructor argument—by
putting the empty braces inside the parentheses or braces demarcating what you’re
passing:

Widget w4({});        // calls std::initializer_list ctor
                      // with empty list

Widget w5{{}};        // ditto
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At this point, with seemingly arcane rules about braced initializers, std::initial
izer_lists, and constructor overloading burbling about in your brain, you may be
wondering how much of this information matters in day-to-day programming. More
than you might think, because one of the classes directly affected is std::vector.
std::vector has a non-std::initializer_list constructor that allows you to
specify the initial size of the container and a value each of the initial elements should
have, but it also has a constructor taking a std::initializer_list that permits
you to specify the initial values in the container. If you create a std::vector of a
numeric type (e.g., a std::vector<int>) and you pass two arguments to the con‐
structor, whether you enclose those arguments in parentheses or braces makes a tre‐
mendous difference:

std::vector<int> v1(10, 20);  // use non-std::initializer_list
                              // ctor: create 10-element
                              // std::vector, all elements have
                              // value of 20

std::vector<int> v2{10, 20};  // use std::initializer_list ctor:
                              // create 2-element std::vector,
                              // element values are 10 and 20

But let’s step back from std::vector and also from the details of parentheses,
braces, and constructor overloading resolution rules. There are two primary take‐
aways from this discussion. First, as a class author, you need to be aware that if your
set of overloaded constructors includes one or more functions taking a std::ini
tializer_list, client code using braced initialization may see only the std::ini
tializer_list overloads. As a result, it’s best to design your constructors so that
the overload called isn’t affected by whether clients use parentheses or braces. In
other words, learn from what is now viewed as an error in the design of the std::vec
tor interface, and design your classes to avoid it.

An implication is that if you have a class with no std::initializer_list construc‐
tor, and you add one, client code using braced initialization may find that calls that
used to resolve to non-std::initializer_list constructors now resolve to the
new function. Of course, this kind of thing can happen any time you add a new func‐
tion to a set of overloads: calls that used to resolve to one of the old overloads might
start calling the new one. The difference with std::initializer_list constructor
overloads is that a std::initializer_list overload doesn’t just compete with
other overloads, it overshadows them to the point where the other overloads may
hardly be considered. So add such overloads only with great deliberation.

The second lesson is that as a class client, you must choose carefully between paren‐
theses and braces when creating objects. Most developers end up choosing one kind
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of delimiter as a default, using the other only when they have to. Braces-by-default
folks are attracted by their unrivaled breadth of applicability, their prohibition of nar‐
rowing conversions, and their immunity to C++’s most vexing parse. Such folks
understand that in some cases (e.g., creation of a std::vector with a given size and
initial element value), parentheses are required. On the other hand, the go-
parentheses-go crowd embraces parentheses as their default argument delimiter.
They’re attracted to its consistency with the C++98 syntactic tradition, its avoidance
of the auto-deduced-a-std::initializer_list problem, and the knowledge that
their object creation calls won’t be inadvertently waylaid by std::initial
izer_list constructors. They concede that sometimes only braces will do (e.g.,
when creating a container with particular values). There’s no consensus that either
approach is better than the other, so my advice is to pick one and apply it consis‐
tently.

If you’re a template author, the tension between parentheses and braces for object
creation can be especially frustrating, because, in general, it’s not possible to know
which should be used. For example, suppose you’d like to create an object of an arbi‐
trary type from an arbitrary number of arguments. A variadic template makes this
conceptually straightforward:

template<typename T,                // type of object to create
         typename... Ts>            // types of arguments to use
void doSomeWork(Ts&&... params)
{

  create local T object from params...
  …

}

There are two ways to turn the line of pseudocode into real code (see Item 25 for
information about std::forward):

T localObject(std::forward<Ts>(params)...);    // using parens

T localObject{std::forward<Ts>(params)...};    // using braces

So consider this calling code:

std::vector<int> v;
…
doSomeWork<std::vector<int>>(10, 20);
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1 More flexible designs—ones that permit callers to determine whether parentheses or braces should be used in
functions generated from a template—are possible. For details, see the 5 June 2013 entry of Andrzej’s C++
blog, “Intuitive interface — Part I.”

If doSomeWork uses parentheses when creating localObject, the result is a
std::vector with 10 elements. If doSomeWork uses braces, the result is a std::vec
tor with 2 elements. Which is correct? The author of doSomeWork can’t know. Only
the caller can.

This is precisely the problem faced by the Standard Library functions
std::make_unique and std::make_shared (see Item 21). These functions resolve
the problem by internally using parentheses and by documenting this decision as part
of their interfaces.1

Things to Remember
• Braced initialization is the most widely usable initialization syntax, it prevents

narrowing conversions, and it’s immune to C++’s most vexing parse.
• During constructor overload resolution, braced initializers are matched to
std::initializer_list parameters if at all possible, even if other construc‐
tors offer seemingly better matches.

• An example of where the choice between parentheses and braces can make a
significant difference is creating a std::vector<numeric type> with two
arguments.

• Choosing between parentheses and braces for object creation inside templates
can be challenging.

Item 8: Prefer nullptr to 0 and NULL.
So here’s the deal: the literal 0 is an int, not a pointer. If C++ finds itself looking at 0
in a context where only a pointer can be used, it’ll grudgingly interpret 0 as a null
pointer, but that’s a fallback position. C++’s primary policy is that 0 is an int, not a
pointer.

Practically speaking, the same is true of NULL. There is some uncertainty in the details
in NULL’s case, because implementations are allowed to give NULL an integral type
other than int (e.g., long). That’s not common, but it doesn’t really matter, because
the issue here isn’t the exact type of NULL, it’s that neither 0 nor NULL has a pointer
type.
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In C++98, the primary implication of this was that overloading on pointer and inte‐
gral types could lead to surprises. Passing 0 or NULL to such overloads never called a
pointer overload:

void f(int);        // three overloads of f
void f(bool);
void f(void*);

f(0);               // calls f(int), not f(void*)

f(NULL);            // might not compile, but typically calls
                    // f(int). Never calls f(void*)

The uncertainty regarding the behavior of f(NULL) is a reflection of the leeway gran‐
ted to implementations regarding the type of NULL. If NULL is defined to be, say, 0L
(i.e., 0 as a long), the call is ambiguous, because conversion from long to int, long
to bool, and 0L to void* are considered equally good. The interesting thing about
that call is the contradiction between the apparent meaning of the source code (“I’m
calling f with NULL—the null pointer”) and its actual meaning (“I’m calling f with
some kind of integer—not the null pointer”). This counterintuitive behavior is what
led to the guideline for C++98 programmers to avoid overloading on pointer and
integral types. That guideline remains valid in C++11, because, the advice of this Item
notwithstanding, it’s likely that some developers will continue to use 0 and NULL,
even though nullptr is a better choice.

nullptr’s advantage is that it doesn’t have an integral type. To be honest, it doesn’t
have a pointer type, either, but you can think of it as a pointer of all types. nullptr’s
actual type is std::nullptr_t, and, in a wonderfully circular definition,
std::nullptr_t is defined to be the type of nullptr. The type std::nullptr_t
implicitly converts to all raw pointer types, and that’s what makes nullptr act as if it
were a pointer of all types.

Calling the overloaded function f with nullptr calls the void* overload (i.e., the
pointer overload), because nullptr can’t be viewed as anything integral:

f(nullptr);         // calls f(void*) overload

Using nullptr instead of 0 or NULL thus avoids overload resolution surprises, but
that’s not its only advantage. It can also improve code clarity, especially when auto
variables are involved. For example, suppose you encounter this in a code base:

auto result = findRecord( /* arguments */ );

if (result == 0) {
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  …
}

If you don’t happen to know (or can’t easily find out) what findRecord returns, it
may not be clear whether result is a pointer type or an integral type. After all, 0
(what result is tested against) could go either way. If you see the following, on the
other hand,

auto result = findRecord( /* arguments */ );

if (result == nullptr) {
  …
}

there’s no ambiguity: result must be a pointer type.

nullptr shines especially brightly when templates enter the picture. Suppose you
have some functions that should be called only when the appropriate mutex has been
locked. Each function takes a different kind of pointer:

int    f1(std::shared_ptr<Widget> spw);  // call these only when
double f2(std::unique_ptr<Widget> upw);  // the appropriate
bool   f3(Widget* pw);                   // mutex is locked

Calling code that wants to pass null pointers could look like this:

std::mutex f1m, f2m, f3m;         // mutexes for f1, f2, and f3

using MuxGuard =                  // C++11 typedef; see Item 9
  std::lock_guard<std::mutex>;
…

{
  MuxGuard g(f1m);            // lock mutex for f1
  auto result = f1(0);        // pass 0 as null ptr to f1
}                             // unlock mutex

…

{
  MuxGuard g(f2m);            // lock mutex for f2
  auto result = f2(NULL);     // pass NULL as null ptr to f2
}                             // unlock mutex

…

{
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  MuxGuard g(f3m);            // lock mutex for f3
  auto result = f3(nullptr);  // pass nullptr as null ptr to f3
}                             // unlock mutex

The failure to use nullptr in the first two calls in this code is sad, but the code
works, and that counts for something. However, the repeated pattern in the calling
code—lock mutex, call function, unlock mutex—is more than sad. It’s disturbing.
This kind of source code duplication is one of the things that templates are designed
to avoid, so let’s templatize the pattern:

template<typename FuncType,
         typename MuxType,
         typename PtrType>
auto lockAndCall(FuncType func,
                 MuxType& mutex,
                 PtrType ptr) -> decltype(func(ptr))
{
  MuxGuard g(mutex);
  return func(ptr);
}

If the return type of this function (auto … -> decltype(func(ptr)) has you scratch‐
ing your head, do your head a favor and navigate to Item 3, which explains what’s
going on. There you’ll see that in C++14, the return type could be reduced to a simple
decltype(auto):

template<typename FuncType,
         typename MuxType,
         typename PtrType>
decltype(auto) lockAndCall(FuncType func,        // C++14
                           MuxType& mutex,
                           PtrType ptr)
{
  MuxGuard g(mutex);
  return func(ptr);
}

Given the lockAndCall template (either version), callers can write code like this:

auto result1 = lockAndCall(f1, f1m, 0);          // error!

…

auto result2 = lockAndCall(f2, f2m, NULL);       // error!

…
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auto result3 = lockAndCall(f3, f3m, nullptr);    // fine

Well, they can write it, but, as the comments indicate, in two of the three cases, the
code won’t compile. The problem in the first call is that when 0 is passed to lockAnd
Call, template type deduction kicks in to figure out its type. The type of 0 is, was,
and always will be int, so that’s the type of the parameter ptr inside the instantiation
of this call to lockAndCall. Unfortunately, this means that in the call to func inside
lockAndCall, an int is being passed, and that’s not compatible with the
std::shared_ptr<Widget> parameter that f1 expects. The 0 passed in the call to
lockAndCall was intended to represent a null pointer, but what actually got passed
was a run-of-the-mill int. Trying to pass this int to f1 as a std::shared_ptr
<Widget> is a type error. The call to lockAndCall with 0 fails because inside the
template, an int is being passed to a function that requires a std::

shared_ptr<Widget>.

The analysis for the call involving NULL is essentially the same. When NULL is passed
to lockAndCall, an integral type is deduced for the parameter ptr, and a type error
occurs when ptr—an int or int-like type—is passed to f2, which expects to get a
std::unique_ptr<Widget>.

In contrast, the call involving nullptr has no trouble. When nullptr is passed to
lockAndCall, the type for ptr is deduced to be std::nullptr_t. When ptr is
passed to f3, there’s an implicit conversion from std::nullptr_t to Widget*,
because std::nullptr_t implicitly converts to all pointer types.

The fact that template type deduction deduces the “wrong” types for 0 and NULL (i.e.,
their true types, rather than their fallback meaning as a representation for a null
pointer) is the most compelling reason to use nullptr instead of 0 or NULL when you
want to refer to a null pointer. With nullptr, templates pose no special challenge.
Combined with the fact that nullptr doesn’t suffer from the overload resolution sur‐
prises that 0 and NULL are susceptible to, the case is ironclad. When you want to refer
to a null pointer, use nullptr, not 0 or NULL.

Things to Remember
• Prefer nullptr to 0 and NULL.
• Avoid overloading on integral and pointer types.
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Item 9: Prefer alias declarations to typedefs.
I’m confident we can agree that using STL containers is a good idea, and I hope that
Item 18 convinces you that using std::unique_ptr is a good idea, but my guess is
that neither of us is fond of writing types like “std::unique_ptr<std::unor
dered_map<std::string, std::string>>” more than once. Just thinking about it
probably increases the risk of carpal tunnel syndrome.

Avoiding such medical tragedies is easy. Introduce a typedef:

typedef
  std::unique_ptr<std::unordered_map<std::string, std::string>>
  UPtrMapSS;

But typedefs are soooo C++98. They work in C++11, sure, but C++11 also offers 
alias declarations:

using UPtrMapSS =
  std::unique_ptr<std::unordered_map<std::string, std::string>>;

Given that the typedef and the alias declaration do exactly the same thing, it’s rea‐
sonable to wonder whether there is a solid technical reason for preferring one over
the other.

There is, but before I get to it, I want to mention that many people find the alias dec‐
laration easier to swallow when dealing with types involving function pointers:

// FP is a synonym for a pointer to a function taking an int and
// a const std::string& and returning nothing
typedef void (*FP)(int, const std::string&);      // typedef

// same meaning as above
using FP = void (*)(int, const std::string&);     // alias
                                                  // declaration

Of course, neither form is particularly easy to choke down, and few people spend
much time dealing with synonyms for function pointer types, anyway, so this is
hardly a compelling reason to choose alias declarations over typedefs.

But a compelling reason does exist: templates. In particular, alias declarations may be
templatized (in which case they’re called alias templates), while typedefs cannot.
This gives C++11 programmers a straightforward mechanism for expressing things
that in C++98 had to be hacked together with typedefs nested inside templatized
structs. For example, consider defining a synonym for a linked list that uses a cus‐
tom allocator, MyAlloc. With an alias template, it’s a piece of cake:
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template<typename T>                           // MyAllocList<T>
using MyAllocList = std::list<T, MyAlloc<T>>;  // is synonym for
                                               // std::list<T,
                                               //   MyAlloc<T>>

MyAllocList<Widget> lw;                        // client code

With a typedef, you pretty much have to create the cake from scratch:

template<typename T>                     // MyAllocList<T>::type
struct MyAllocList {                     // is synonym for
  typedef std::list<T, MyAlloc<T>> type; // std::list<T,
};                                       //   MyAlloc<T>>

MyAllocList<Widget>::type lw;            // client code

It gets worse. If you want to use the typedef inside a template for the purpose of cre‐
ating a linked list holding objects of a type specified by a template parameter, you
have to precede the typedef name with typename:

template<typename T>
class Widget {                         // Widget<T> contains
private:                               // a MyAllocList<T>
  typename MyAllocList<T>::type list;  // as a data member
  …
};

Here, MyAllocList<T>::type refers to a type that’s dependent on a template type
parameter (T). MyAllocList<T>::type is thus a dependent type, and one of C++’s
many endearing rules is that the names of dependent types must be preceded by type
name.

If MyAllocList is defined as an alias template, this need for typename vanishes (as
does the cumbersome “::type” suffix):

template<typename T>
using MyAllocList = std::list<T, MyAlloc<T>>;  // as before

template<typename T>
class Widget {
private:
  MyAllocList<T> list;                         // no "typename",
  …                                            // no "::type"
};

To you, MyAllocList<T> (i.e., use of the alias template) may look just as dependent
on the template parameter T as MyAllocList<T>::type (i.e., use of the nested type
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def), but you’re not a compiler. When compilers process the Widget template and
encounter the use of MyAllocList<T> (i.e., use of the alias template), they know that
MyAllocList<T> is the name of a type, because MyAllocList is an alias template: it
must name a type. MyAllocList<T> is thus a non-dependent type, and a typename
specifier is neither required nor permitted.

When compilers see MyAllocList<T>::type (i.e., use of the nested typedef) in the
Widget template, on the other hand, they can’t know for sure that it names a type,
because there might be a specialization of MyAllocList that they haven’t yet seen
where MyAllocList<T>::type refers to something other than a type. That sounds
crazy, but don’t blame compilers for this possibility. It’s the humans who have been
known to produce such code.

 For example, some misguided soul may have concocted something like this:

class Wine { … };

template<>                       // MyAllocList specialization
class MyAllocList<Wine> {        // for when T is Wine
private:
  enum class WineType            // see Item 10 for info on
  { White, Red, Rose };          // "enum class"

  WineType type;                 // in this class, type is
  …                              // a data member!
};

As you can see, MyAllocList<Wine>::type doesn’t refer to a type. If Widget were to
be instantiated with Wine, MyAllocList<T>::type inside the Widget template
would refer to a data member, not a type. Inside the Widget template, then, whether
MyAllocList<T>::type refers to a type is honestly dependent on what T is, and
that’s why compilers insist on your asserting that it is a type by preceding it with
typename.

If you’ve done any template metaprogramming (TMP), you’ve almost certainly bum‐
ped up against the need to take template type parameters and create revised types
from them. For example, given some type T, you might want to strip off any const-
or reference-qualifiers that T contains, e.g., you might want to turn const
std::string& into std::string. Or you might want to add const to a type or turn
it into an lvalue reference, e.g., turn Widget into const Widget or into Widget&. (If
you haven’t done any TMP, that’s too bad, because if you want to be a truly effective
C++ programmer, you need to be familiar with at least the basics of this facet of C++.
You can see examples of TMP in action, including the kinds of type transformations I
just mentioned, in Items 23 and 27.)
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C++11 gives you the tools to perform these kinds of transformations in the form of
type traits, an assortment of templates inside the header <type_traits>. There are
dozens of type traits in that header, and not all of them perform type transforma‐
tions, but the ones that do offer a predictable interface. Given a type T to which you’d
like to apply a transformation, the resulting type is std::transformation

<T>::type. For example:

std::remove_const<T>::type           // yields T from const T

std::remove_reference<T>::type       // yields T from T& and T&&

std::add_lvalue_reference<T>::type   // yields T& from T

The comments merely summarize what these transformations do, so don’t take them
too literally. Before using them on a project, you’d look up the precise specifications,
I know.

My motivation here isn’t to give you a tutorial on type traits, anyway. Rather, note
that application of these transformations entails writing “::type” at the end of each
use. If you apply them to a type parameter inside a template (which is virtually always
how you employ them in real code), you’d also have to precede each use with type
name. The reason for both of these syntactic speed bumps is that the C++11 type
traits are implemented as nested typedefs inside templatized structs. That’s right,
they’re implemented using the type synonym technology I’ve been trying to convince
you is inferior to alias templates!

There’s a historical reason for that, but we’ll skip over it (it’s dull, I promise), because
the Standardization Committee belatedly recognized that alias templates are the bet‐
ter way to go, and they included such templates in C++14 for all the C++11 type
transformations. The aliases have a common form: for each C++11 transformation
std::transformation<T>::type, there’s a corresponding C++14 alias template
named std::transformation_t. Examples will clarify what I mean:

std::remove_const<T>::type           // C++11: const T → T
std::remove_const_t<T>               // C++14 equivalent

std::remove_reference<T>::type       // C++11: T&/T&& → T
std::remove_reference_t<T>           // C++14 equivalent

std::add_lvalue_reference<T>::type   // C++11: T → T&
std::add_lvalue_reference_t<T>       // C++14 equivalent

The C++11 constructs remain valid in C++14, but I don’t know why you’d want to
use them. Even if you don’t have access to C++14, writing the alias templates yourself
is child’s play. Only C++11 language features are required, and even children can
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mimic a pattern, right? If you happen to have access to an electronic copy of the
C++14 Standard, it’s easier still, because all that’s required is some copying and past‐
ing. Here, I’ll get you started:

template <class T>
using remove_const_t = typename remove_const<T>::type;

template <class T>
using remove_reference_t = typename remove_reference<T>::type;

template <class T>
using add_lvalue_reference_t =
  typename add_lvalue_reference<T>::type;

See? Couldn’t be easier.

Things to Remember
• typedefs don’t support templatization, but alias declarations do.
• Alias templates avoid the “::type” suffix and, in templates, the “typename”

prefix often required to refer to typedefs.
• C++14 offers alias templates for all the C++11 type traits transformations.

Item 10: Prefer scoped enums to unscoped enums.
As a general rule, declaring a name inside curly braces limits the visibility of that
name to the scope defined by the braces. Not so for the enumerators declared in
C++98-style enums. The names of such enumerators belong to the scope containing
the enum, and that means that nothing else in that scope may have the same name:

enum Color { black, white, red };   // black, white, red are
                                    // in same scope as Color

auto white = false;                 // error! white already
                                    // declared in this scope

The fact that these enumerator names leak into the scope containing their enum defi‐
nition gives rise to the official term for this kind of enum: unscoped. Their new C++11
counterparts, scoped enums, don’t leak names in this way:

enum class Color { black, white, red };  // black, white, red
                                         // are scoped to Color

auto white = false;              // fine, no other
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                                 // "white" in scope

Color c = white;                 // error! no enumerator named
                                 // "white" is in this scope

Color c = Color::white;          // fine

auto c = Color::white;           // also fine (and in accord
                                 // with Item 5's advice)

Because scoped enums are declared via “enum class”, they’re sometimes referred to as
enum classes.

The reduction in namespace pollution offered by scoped enums is reason enough to
prefer them over their unscoped siblings, but scoped enums have a second compelling
advantage: their enumerators are much more strongly typed. Enumerators for unsco‐
ped enums implicitly convert to integral types (and, from there, to floating-point
types). Semantic travesties such as the following are therefore completely valid:

enum Color { black, white, red };        // unscoped enum

std::vector<std::size_t>                 // func. returning
  primeFactors(std::size_t x);           // prime factors of x

Color c = red;
…

if (c < 14.5) {                // compare Color to double (!)

  auto factors =               // compute prime factors
    primeFactors(c);           // of a Color (!)
  …
}

Throw a simple “class” after “enum”, however, thus transforming an unscoped enum
into a scoped one, and it’s a very different story. There are no implicit conversions
from enumerators in a scoped enum to any other type:

enum class Color { black, white, red };  // enum is now scoped

Color c = Color::red;                    // as before, but
…                                        // with scope qualifier

if (c < 14.5) {                // error! can't compare
                               // Color and double
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  auto factors =               // error! can't pass Color to
    primeFactors(c);           // function expecting std::size_t
  …
}

If you honestly want to perform a conversion from Color to a different type, do what
you always do to twist the type system to your wanton desires—use a cast:

if (static_cast<double>(c) < 14.5) {       // odd code, but
                                           // it's valid

  auto factors =                                // suspect, but
    primeFactors(static_cast<std::size_t>(c));  // it compiles
  …
}

It may seem that scoped enums have a third advantage over unscoped enums, because
scoped enums may be forward-declared, i.e., their names may be declared without
specifying their enumerators:

enum Color;               // error!

enum class Color;         // fine

This is misleading. In C++11, unscoped enums may also be forward-declared, but
only after a bit of additional work. The work grows out of the fact that every enum in
C++ has an integral underlying type that is determined by compilers. For an unsco‐
ped enum like Color,

enum Color { black, white, red };

compilers might choose char as the underlying type, because there are only three val‐
ues to represent. However, some enums have a range of values that is much larger,
e.g.:

enum Status { good = 0,
              failed = 1,
              incomplete = 100,
              corrupt = 200,
              indeterminate = 0xFFFFFFFF
            };

Here the values to be represented range from 0 to 0xFFFFFFFF. Except on unusual
machines (where a char consists of at least 32 bits), compilers will have to select an
integral type larger than char for the representation of Status values.
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To make efficient use of memory, compilers often want to choose the smallest under‐
lying type for an enum that’s sufficient to represent its range of enumerator values. In
some cases, compilers will optimize for speed instead of size, and in that case, they
may not choose the smallest permissible underlying type, but they certainly want to
be able to optimize for size. To make that possible, C++98 supports only enum defini‐
tions (where all enumerators are listed); enum declarations are not allowed. That
makes it possible for compilers to select an underlying type for each enum prior to the
enum being used.

But the inability to forward-declare enums has drawbacks. The most notable is proba‐
bly the increase in compilation dependencies. Consider again the Status enum:

enum Status { good = 0,
              failed = 1,
              incomplete = 100,
              corrupt = 200,
              indeterminate = 0xFFFFFFFF
            };

This is the kind of enum that’s likely to be used throughout a system, hence included
in a header file that every part of the system is dependent on. If a new status value is
then introduced,

enum Status { good = 0,
              failed = 1,
              incomplete = 100,
              corrupt = 200,
              audited = 500,
              indeterminate = 0xFFFFFFFF
            };

it’s likely that the entire system will have to be recompiled, even if only a single sub‐
system—possibly only a single function!—uses the new enumerator. This is the kind
of thing that people hate. And it’s the kind of thing that the ability to forward-declare
enums in C++11 eliminates. For example, here’s a perfectly valid declaration of a
scoped enum and a function that takes one as a parameter:

enum class Status;                   // forward declaration

void continueProcessing(Status s);   // use of fwd-declared enum

The header containing these declarations requires no recompilation if Status’s
definition is revised. Furthermore, if Status is modified (e.g., to add the audited
enumerator), but continueProcessing’s behavior is unaffected (e.g., because
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continueProcessing doesn’t use audited), continueProcessing’s implementation
need not be recompiled, either.

But if compilers need to know the size of an enum before it’s used, how can C++11’s
enums get away with forward declarations when C++98’s enums can’t? The answer is
simple: the underlying type for a scoped enum is always known, and for unscoped
enums, you can specify it.

By default, the underlying type for scoped enums is int:

enum class Status;                 // underlying type is int

If the default doesn’t suit you, you can override it:

enum class Status: std::uint32_t;  // underlying type for
                                   // Status is std::uint32_t
                                   // (from <cstdint>)

Either way, compilers know the size of the enumerators in a scoped enum.

To specify the underlying type for an unscoped enum, you do the same thing as for a
scoped enum, and the result may be forward-declared:

enum Color: std::uint8_t;       // fwd decl for unscoped enum;
                                // underlying type is
                                // std::uint8_t

Underlying type specifications can also go on an enum’s definition:

enum class Status: std::uint32_t { good = 0,
                                   failed = 1,
                                   incomplete = 100,
                                   corrupt = 200,
                                   audited = 500,
                                   indeterminate = 0xFFFFFFFF
                                 };

In view of the fact that scoped enums avoid namespace pollution and aren’t suscepti‐
ble to nonsensical implicit type conversions, it may surprise you to hear that there’s
at least one situation where unscoped enums may be useful. That’s when referring to
fields within C++11’s std::tuples. For example, suppose we have a tuple holding
values for the name, email address, and reputation value for a user at a social net‐
working website:

using UserInfo =                 // type alias; see Item 9
  std::tuple<std::string,        // name
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             std::string,        // email
             std::size_t> ;      // reputation

Though the comments indicate what each field of the tuple represents, that’s proba‐
bly not very helpful when you encounter code like this in a separate source file:

UserInfo uInfo;                  // object of tuple type
…

auto val = std::get<1>(uInfo);   // get value of field 1

As a programmer, you have a lot of stuff to keep track of. Should you really be
expected to remember that field 1 corresponds to the user’s email address? I think
not. Using an unscoped enum to associate names with field numbers avoids the need
to:

enum UserInfoFields { uiName, uiEmail, uiReputation };

UserInfo uInfo;                        // as before
…

auto val = std::get<uiEmail>(uInfo);   // ah, get value of
                                       // email field

What makes this work is the implicit conversion from UserInfoFields to
std::size_t, which is the type that std::get requires.

The corresponding code with scoped enums is substantially more verbose:

enum class UserInfoFields { uiName, uiEmail, uiReputation };

UserInfo uInfo;                        // as before
…

auto val =
  std::get<static_cast<std::size_t>(UserInfoFields::uiEmail)>
    (uInfo);

The verbosity can be reduced by writing a function that takes an enumerator and
returns its corresponding std::size_t value, but it’s a bit tricky. std::get is a tem‐
plate, and the value you provide is a template argument (notice the use of angle
brackets, not parentheses), so the function that transforms an enumerator into a
std::size_t has to produce its result during compilation. As Item 15 explains, that
means it must be a constexpr function.

In fact, it should really be a constexpr function template, because it should work
with any kind of enum. And if we’re going to make that generalization, we should
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generalize the return type, too. Rather than returning std::size_t, we’ll return the
enum’s underlying type. It’s available via the std::underlying_type type trait. (See
Item 9 for information on type traits.) Finally, we’ll declare it noexcept (see Item 14),
because we know it will never yield an exception. The result is a function template
toUType that takes an arbitrary enumerator and can return its value as a compile-
time constant:

template<typename E>
constexpr typename std::underlying_type<E>::type
  toUType(E enumerator) noexcept
{
  return
    static_cast<typename
                std::underlying_type<E>::type>(enumerator);
}

In C++14, toUType can be simplified by replacing typename std::underly
ing_type<E>::type with the sleeker std::underlying_type_t (see Item 9):

template<typename E>                               // C++14
constexpr std::underlying_type_t<E>
  toUType(E enumerator) noexcept
{
  return static_cast<std::underlying_type_t<E>>(enumerator);
}

The even-sleeker auto return type (see Item 3) is also valid in C++14:

template<typename E>                               // C++14
constexpr auto
  toUType(E enumerator) noexcept
{
  return static_cast<std::underlying_type_t<E>>(enumerator);
}

Regardless of how it’s written, toUType permits us to access a field of the tuple like
this:

auto val = std::get<toUType(UserInfoFields::uiEmail)>(uInfo);

It’s still more to write than use of the unscoped enum, but it also avoids namespace
pollution and inadvertent conversions involving enumerators. In many cases, you
may decide that typing a few extra characters is a reasonable price to pay for the abil‐
ity to avoid the pitfalls of an enum technology that dates to a time when the state of
the art in digital telecommunications was the 2400-baud modem.
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Things to Remember
• C++98-style enums are now known as unscoped enums.
• Enumerators of scoped enums are visible only within the enum. They convert

to other types only with a cast.
• Both scoped and unscoped enums support specification of the underlying type.

The default underlying type for scoped enums is int. Unscoped enums have no
default underlying type.

• Scoped enums may always be forward-declared. Unscoped enums may be
forward-declared only if their declaration specifies an underlying type.

Item 11: Prefer deleted functions to private undefined
ones.

If you’re providing code to other developers, and you want to prevent them from
calling a particular function, you generally just don’t declare the function. No func‐
tion declaration, no function to call. Easy, peasy. But sometimes C++ declares func‐
tions for you, and if you want to prevent clients from calling those functions, the
peasy isn’t quite so easy any more.

The situation arises only for the “special member functions,” i.e., the member func‐
tions that C++ automatically generates when they’re needed. Item 17 discusses these
functions in detail, but for now, we’ll worry only about the copy constructor and the
copy assignment operator. This chapter is largely devoted to common practices in
C++98 that have been superseded by better practices in C++11, and in C++98, if you
want to suppress use of a member function, it’s almost always the copy constructor,
the assignment operator, or both.

The C++98 approach to preventing use of these functions is to declare them private
and not define them. For example, near the base of the iostreams hierarchy in the
C++ Standard Library is the class template basic_ios. All istream and ostream
classes inherit (possibly indirectly) from this class. Copying istreams and ostreams is
undesirable, because it’s not really clear what such operations should do. An istream
object, for example, represents a stream of input values, some of which may have
already been read, and some of which will potentially be read later. If an istream were
to be copied, would that entail copying all the values that had already been read as
well as all the values that would be read in the future? The easiest way to deal with
such questions is to define them out of existence. Prohibiting the copying of streams
does just that.
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To render istream and ostream classes uncopyable, basic_ios is specified in C++98
as follows (including the comments):

template <class charT, class traits = char_traits<charT> >
class basic_ios : public ios_base {
public:
  …

private:
  basic_ios(const basic_ios& );            // not defined
  basic_ios& operator=(const basic_ios&);  // not defined
};

Declaring these functions private prevents clients from calling them. Deliberately
failing to define them means that if code that still has access to them (i.e., member
functions or friends of the class) uses them, linking will fail due to missing function
definitions.

In C++11, there’s a better way to achieve essentially the same end: use “= delete” to
mark the copy constructor and the copy assignment operator as deleted functions.
Here’s the same part of basic_ios as it’s specified in C++11:

template <class charT, class traits = char_traits<charT> >
class basic_ios : public ios_base {
public:
  …
  basic_ios(const basic_ios& ) = delete;
  basic_ios& operator=(const basic_ios&) = delete;
  …
};

The difference between deleting these functions and declaring them private may
seem more a matter of fashion than anything else, but there’s greater substance here
than you might think. Deleted functions may not be used in any way, so even code
that’s in member and friend functions will fail to compile if it tries to copy
basic_ios objects. That’s an improvement over the C++98 behavior, where such
improper usage wouldn’t be diagnosed until link-time.

By convention, deleted functions are declared public, not private. There’s a reason
for that. When client code tries to use a member function, C++ checks accessibility
before deleted status. When client code tries to use a deleted private function, some
compilers complain only about the function being private, even though the func‐
tion’s accessibility doesn’t really affect whether it can be used. It’s worth bearing this
in mind when revising legacy code to replace private-and-not-defined member
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functions with deleted ones, because making the new functions public will generally
result in better error messages.

An important advantage of deleted functions is that any function may be deleted,
while only member functions may be private. For example, suppose we have a non-
member function that takes an integer and returns whether it’s a lucky number:

bool isLucky(int number);

C++’s C heritage means that pretty much any type that can be viewed as vaguely
numerical will implicitly convert to int, but some calls that would compile might not
make sense:

if (isLucky('a')) …            // is 'a' a lucky number?

if (isLucky(true)) …           // is "true"?

if (isLucky(3.5)) …            // should we truncate to 3
                               // before checking for luckiness?

If lucky numbers must really be integers, we’d like to prevent calls such as these from
compiling.

One way to accomplish that is to create deleted overloads for the types we want to
filter out:

bool isLucky(int number);            // original function

bool isLucky(char) = delete;         // reject chars

bool isLucky(bool) = delete;         // reject bools

bool isLucky(double) = delete;       // reject doubles and
                                     // floats

(The comment on the double overload that says that both doubles and floats will
be rejected may surprise you, but your surprise will dissipate once you recall that,
given a choice between converting a float to an int or to a double, C++ prefers the
conversion to double. Calling isLucky with a float will therefore call the double
overload, not the int one. Well, it’ll try to. The fact that that overload is deleted will
prevent the call from compiling.)

Although deleted functions can’t be used, they are part of your program. As such,
they are taken into account during overload resolution. That’s why, with the deleted
function declarations above, the undesirable calls to isLucky will be rejected:

if (isLucky('a')) …           // error! call to deleted function
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if (isLucky(true)) …          // error!

if (isLucky(3.5f)) …          // error!

Another trick that deleted functions can perform (and that private member func‐
tions can’t) is to prevent use of template instantiations that should be disabled. For
example, suppose you need a template that works with built-in pointers (Chapter 4’s
advice to prefer smart pointers to raw pointers notwithstanding):

template<typename T>
void processPointer(T* ptr);

There are two special cases in the world of pointers. One is void* pointers, because
there is no way to dereference them, to increment or decrement them, etc. The other
is char* pointers, because they typically represent pointers to C-style strings, not
pointers to individual characters. These special cases often call for special handling,
and, in the case of the processPointer template, let’s assume the proper handling is
to reject calls using those types. That is, it should not be possible to call
processPointer with void* or char* pointers.

That’s easily enforced. Just delete those instantiations:

template<>
void processPointer<void>(void*) = delete;

template<>
void processPointer<char>(char*) = delete;

Now, if calling processPointer with a void* or a char* is invalid, it’s probably also
invalid to call it with a const void* or a const char*, so those instantiations will
typically need to be deleted, too:

template<>
void processPointer<const void>(const void*) = delete;

template<>
void processPointer<const char>(const char*) = delete;

And if you really want to be thorough, you’ll also delete the const volatile void*
and const volatile char* overloads, and then you’ll get to work on the overloads
for pointers to the other standard character types: std::wchar_t, std::char16_t,
and std::char32_t.

Interestingly, if you have a function template inside a class, and you’d like to disable
some instantiations by declaring them private (à la classic C++98 convention), you
can’t, because it’s not possible to give a member function template specialization a
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different access level from that of the main template. If processPointer were a
member function template inside Widget, for example, and you wanted to disable
calls for void* pointers, this would be the C++98 approach, though it would not 
compile:

class Widget {
public:
  …
  template<typename T>
  void processPointer(T* ptr)
  { … }

private:
  template<>                                 // error!
  void processPointer<void>(void*);

};

The problem is that template specializations must be written at namespace scope, not
class scope. This issue doesn’t arise for deleted functions, because they don’t need a
different access level. They can be deleted outside the class (hence at namespace
scope):

class Widget {
public:
  …
  template<typename T>
  void processPointer(T* ptr)
  { … }
  …

};

template<>                                          // still
void Widget::processPointer<void>(void*) = delete;  // public,
                                                    // but
                                                    // deleted

The truth is that the C++98 practice of declaring functions private and not defining
them was really an attempt to achieve what C++11’s deleted functions actually
accomplish. As an emulation, the C++98 approach is not as good as the real thing. It
doesn’t work outside classes, it doesn’t always work inside classes, and when it does
work, it may not work until link-time. So stick to deleted functions.
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Things to Remember
• Prefer deleted functions to private undefined ones.
• Any function may be deleted, including non-member functions and template

instantiations.

Item 12: Declare overriding functions override.
The world of object-oriented programming in C++ revolves around classes, inheri‐
tance, and virtual functions. Among the most fundamental ideas in this world is that
virtual function implementations in derived classes override the implementations of
their base class counterparts. It’s disheartening, then, to realize just how easily virtual
function overriding can go wrong. It’s almost as if this part of the language were
designed with the idea that Murphy’s Law wasn’t just to be obeyed, it was to be hon‐
ored.

Because “overriding” sounds a lot like “overloading,” yet is completely unrelated, let
me make clear that virtual function overriding is what makes it possible to invoke a
derived class function through a base class interface:

class Base {
public:
  virtual void doWork();         // base class virtual function
  …
};

class Derived: public Base {
public:
  virtual void doWork();         // overrides Base::doWork
  …                              // ("virtual" is optional
};                               // here)

std::unique_ptr<Base> upb =      // create base class pointer
  std::make_unique<Derived>();   // to derived class object;
                                 // see Item 21 for info on
…                                // std::make_unique

upb->doWork();                   // call doWork through base
                                 // class ptr; derived class
                                 // function is invoked

For overriding to occur, several requirements must be met:
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• The base class function must be virtual.
• The base and derived function names must be identical (except in the case of

destructors).
• The parameter types of the base and derived functions must be identical.
• The constness of the base and derived functions must be identical.
• The return types and exception specifications of the base and derived functions

must be compatible.

To these constraints, which were also part of C++98, C++11 adds one more:

• The functions’ reference qualifiers must be identical. Member function reference
qualifiers are one of C++11’s less-publicized features, so don’t be surprised if
you’ve never heard of them. They make it possible to limit use of a member func‐
tion to lvalues only or to rvalues only. Member functions need not be virtual to
use them:

class Widget {
public:
  …
  void doWork() &;       // this version of doWork applies
                         // only when *this is an lvalue

  void doWork() &&;      // this version of doWork applies
};                       // only when *this is an rvalue

…

Widget makeWidget();     // factory function (returns rvalue)

Widget w;                // normal object (an lvalue)

…

w.doWork();              // calls Widget::doWork for lvalues
                         // (i.e., Widget::doWork &)

makeWidget().doWork();   // calls Widget::doWork for rvalues
                         // (i.e., Widget::doWork &&)

I’ll say more about member functions with reference qualifiers later, but for now,
simply note that if a virtual function in a base class has a reference qualifier,
derived class overrides of that function must have exactly the same reference
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qualifier. If they don’t, the declared functions will still exist in the derived class,
but they won’t override anything in the base class.

All these requirements for overriding mean that small mistakes can make a big differ‐
ence. Code containing overriding errors is typically valid, but its meaning isn’t what
you intended. You therefore can’t rely on compilers notifying you if you do some‐
thing wrong. For example, the following code is completely legal and, at first sight,
looks reasonable, but it contains no virtual function overrides—not a single derived
class function that is tied to a base class function. Can you identify the problem in
each case, i.e., why each derived class function doesn’t override the base class func‐
tion with the same name?

class Base {
public:
  virtual void mf1() const;
  virtual void mf2(int x);
  virtual void mf3() &;
  void mf4() const;
};

class Derived: public Base {
public:
  virtual void mf1();
  virtual void mf2(unsigned int x);
  virtual void mf3() &&;
  void mf4() const;
};

Need some help?

• mf1 is declared const in Base, but not in Derived.
• mf2 takes an int in Base, but an unsigned int in Derived.
• mf3 is lvalue-qualified in Base, but rvalue-qualified in Derived.
• mf4 isn’t declared virtual in Base.

You may think, “Hey, in practice, these things will elicit compiler warnings, so I don’t
need to worry.” Maybe that’s true. But maybe it’s not. With two of the compilers I
checked, the code was accepted without complaint, and that was with all warnings
enabled. (Other compilers provided warnings about some of the issues, but not all of
them.)

Because declaring derived class overrides is important to get right, but easy to get
wrong, C++11 gives you a way to make explicit that a derived class function is
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supposed to override a base class version: declare it override. Applying this to the
example above would yield this derived class:

class Derived: public Base {
public:
  virtual void mf1() override;
  virtual void mf2(unsigned int x) override;
  virtual void mf3() && override;
  virtual void mf4() const override;
};

This won’t compile, of course, because when written this way, compilers will kvetch
about all the overriding-related problems. That’s exactly what you want, and it’s why
you should declare all your overriding functions override.

The code using override that does compile looks as follows (assuming that the goal
is for all functions in Derived to override virtuals in Base):

class Base {
public:
  virtual void mf1() const;
  virtual void mf2(int x);
  virtual void mf3() &;
  virtual void mf4() const;
};

class Derived: public Base {
public:
  virtual void mf1() const override;
  virtual void mf2(int x) override;
  virtual void mf3() & override;
  void mf4() const override;          // adding "virtual" is OK,
};                                    // but not necessary

Note that in this example, part of getting things to work involves declaring mf4 vir‐
tual in Base. Most overriding-related errors occur in derived classes, but it’s possible
for things to be incorrect in base classes, too.

A policy of using override on all your derived class overrides can do more than just
enable compilers to tell you when would-be overrides aren’t overriding anything. It
can also help you gauge the ramifications if you’re contemplating changing the signa‐
ture of a virtual function in a base class. If derived classes use override everywhere,
you can just change the signature, recompile your system, see how much damage
you’ve caused (i.e., how many derived classes fail to compile), then decide whether
the signature change is worth the trouble. Without override, you’d have to hope you
have comprehensive unit tests in place, because, as we’ve seen, derived class virtuals
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2 Applying final to a virtual function prevents the function from being overridden in derived classes. final
may also be applied to a class, in which case the class is prohibited from being used as a base class.

that are supposed to override base class functions, but don’t, need not elicit compiler
diagnostics.

C++ has always had keywords, but C++11 introduces two contextual keywords, over
ride and final.2 These keywords have the characteristic that they are reserved, but
only in certain contexts. In the case of override, it has a reserved meaning only
when it occurs at the end of a member function declaration. That means that if you
have legacy code that already uses the name override, you don’t need to change it
for C++11:

class Warning {           // potential legacy class from C++98
public:
  …
  void override();        // legal in both C++98 and C++11
  …                       // (with the same meaning)
};

That’s all there is to say about override, but it’s not all there is to say about member
function reference qualifiers. I promised I’d provide more information on them later,
and now it’s later.

If we want to write a function that accepts only lvalue arguments, we declare a non-
const lvalue reference parameter:

void doSomething(Widget& w);      // accepts only lvalue Widgets

If we want to write a function that accepts only rvalue arguments, we declare an
rvalue reference parameter:

void doSomething(Widget&& w);     // accepts only rvalue Widgets

Member function reference qualifiers simply make it possible to draw the same dis‐
tinction for the object on which a member function is invoked, i.e., *this. It’s pre‐
cisely analogous to the const at the end of a member function declaration, which
indicates that the object on which the member function is invoked (i.e., *this) is
const.

The need for reference-qualified member functions is not common, but it can arise.
For example, suppose our Widget class has a std::vector data member, and we
offer an accessor function that gives clients direct access to it:

class Widget {
public:
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  using DataType = std::vector<double>;      // see Item 9 for
  …                                          // info on "using"

  DataType& data() { return values; }
  …

private:
  DataType values;
};

This is hardly the most encapsulated design that’s seen the light of day, but set that
aside and consider what happens in this client code:

Widget w;
…

auto vals1 = w.data();               // copy w.values into vals1

The return type of Widget::data is an lvalue reference (a std::vector<double>&,
to be precise), and because lvalue references are defined to be lvalues, we’re initializ‐
ing vals1 from an lvalue. vals1 is thus copy constructed from w.values, just as the
comment says.

Now suppose we have a factory function that creates Widgets,

Widget makeWidget();

and we want to initialize a variable with the std::vector inside the Widget returned
from makeWidget:

auto vals2 = makeWidget().data();    // copy values inside the
                                     // Widget into vals2

Again, Widgets::data returns an lvalue reference, and, again, the lvalue reference is
an lvalue, so, again, our new object (vals2) is copy constructed from values inside
the Widget. This time, though, the Widget is the temporary object returned from
makeWidget (i.e., an rvalue), so copying the std::vector inside it is a waste of time.
It’d be preferable to move it, but, because data is returning an lvalue reference, the
rules of C++ require that compilers generate code for a copy. (There’s some wiggle
room for optimization through what is known as the “as if rule,” but you’d be foolish
to rely on your compilers finding a way to take advantage of it.)

What’s needed is a way to specify that when data is invoked on an rvalue Widget, the
result should also be an rvalue. Using reference qualifiers to overload data for lvalue
and rvalue Widgets makes that possible:
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class Widget {
public:
  using DataType = std::vector<double>;
  …

  DataType& data() &                // for lvalue Widgets, 
  { return values; }                // return lvalue

  DataType data() &&                // for rvalue Widgets,
  { return std::move(values); }     // return rvalue
  …

private:
  DataType values;
};

Notice the differing return types from the data overloads. The lvalue reference over‐
load returns an lvalue reference (i.e., an lvalue), and the rvalue reference overload
returns a temporary object (i.e., an rvalue). This means that client code now behaves
as we’d like:

auto vals1 = w.data();             // calls lvalue overload for
                                   // Widget::data, copy-
                                   // constructs vals1

auto vals2 = makeWidget().data();  // calls rvalue overload for
                                   // Widget::data, move-
                                   // constructs vals2

This is certainly nice, but don’t let the warm glow of this happy ending distract you
from the true point of this Item. That point is that whenever you declare a function in
a derived class that’s meant to override a virtual function in a base class, be sure to
declare that function override.

Things to Remember
• Declare overriding functions override.
• Member function reference qualifiers make it possible to treat lvalue and

rvalue objects (*this) differently.

Item 12 | 85



Item 13: Prefer const_iterators to iterators.
const_iterators are the STL equivalent of pointers-to-const. They point to values
that may not be modified. The standard practice of using const whenever possible
dictates that you should use const_iterators any time you need an iterator, yet
have no need to modify what the iterator points to.

That’s as true for C++98 as for C++11, but in C++98, const_iterators had only
halfhearted support. It wasn’t that easy to create them, and once you had one, the
ways you could use it were limited. For example, suppose you want to search a
std::vector<int> for the first occurrence of 1983 (the year “C++” replaced “C with
Classes” as the name of the programming language), then insert the value 1998 (the
year the first ISO C++ Standard was adopted) at that location. If there’s no 1983 in
the vector, the insertion should go at the end of the vector. Using iterators in
C++98, that was easy:

std::vector<int> values;

…

std::vector<int>::iterator it =
  std::find(values.begin(),values.end(), 1983);
values.insert(it, 1998);

But iterators aren’t really the proper choice here, because this code never modifies
what an iterator points to. Revising the code to use const_iterators should be
trivial, but in C++98, it was anything but. Here’s one approach that’s conceptually
sound, though still not correct:

typedef std::vector<int>::iterator IterT;             // type-
typedef std::vector<int>::const_iterator ConstIterT;  // defs

std::vector<int> values;

…

ConstIterT ci =
  std::find(static_cast<ConstIterT>(values.begin()),  // cast
            static_cast<ConstIterT>(values.end()),    // cast
            1983);

values.insert(static_cast<IterT>(ci), 1998);    // may not
                                                // compile; see
                                                // below
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The typedefs aren’t required, of course, but they make the casts in the code easier to
write. (If you’re wondering why I’m showing typedefs instead of following the
advice of Item 9 to use alias declarations, it’s because this example shows C++98
code, and alias declarations are a feature new to C++11.)

The casts in the call to std::find are present because values is a non-const con‐
tainer and in C++98, there was no simple way to get a const_iterator from a non-
const container. The casts aren’t strictly necessary, because it was possible to get
const_iterators in other ways (e.g., you could bind values to a reference-to-const
variable, then use that variable in place of values in your code), but one way or
another, the process of getting const_iterators to elements of a non-const con‐
tainer involved some amount of contorting.

Once you had the const_iterators, matters often got worse, because in C++98,
locations for insertions (and erasures) could be specified only by iterators.
const_iterators weren’t acceptable. That’s why, in the code above, I cast the
const_iterator (that I was so careful to get from std::find) into an iterator:
passing a const_iterator to insert wouldn’t compile.

To be honest, the code I’ve shown might not compile, either, because there’s no
portable conversion from a const_iterator to an iterator, not even with a
static_cast. Even the semantic sledgehammer known as reinterpret_cast can’t
do the job. (That’s not a C++98 restriction. It’s true in C++11, too. const_iterators
simply don’t convert to iterators, no matter how much it might seem like they
should.) There are some portable ways to generate iterators that point where
const_iterators do, but they’re not obvious, not universally applicable, and not
worth discussing in this book. Besides, I hope that by now my point is clear:
const_iterators were so much trouble in C++98, they were rarely worth the
bother. At the end of the day, developers don’t use const whenever possible, they use
it whenever practical, and in C++98, const_iterators just weren’t very practical.

All that changed in C++11. Now const_iterators are both easy to get and easy to
use. The container member functions cbegin and cend produce const_iterators,
even for non-const containers, and STL member functions that use iterators to iden‐
tify positions (e.g., insert and erase) actually use const_iterators. Revising the
original C++98 code that uses iterators to use const_iterators in C++11 is truly
trivial:

std::vector<int> values;                           // as before

…

auto it =                                          // use cbegin
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  std::find(values.cbegin(),values.cend(), 1983);  // and cend

values.insert(it, 1998);

Now that’s code using const_iterators that’s practical!

About the only situation in which C++11’s support for const_iterators comes up a
bit short is when you want to write maximally generic library code. Such code takes
into account that some containers and container-like data structures offer begin and
end (plus cbegin, cend, rbegin, etc.) as non-member functions, rather than mem‐
bers. This is the case for built-in arrays, for example, and it’s also the case for some
third-party libraries with interfaces consisting only of free functions. Maximally
generic code thus uses non-member functions rather than assuming the existence of
member versions.

For example, we could generalize the code we’ve been working with into a findAnd
Insert template as follows:

template<typename C, typename V>
void findAndInsert(C& container,          // in container, find
                   const V& targetVal,    // first occurrence
                   const V& insertVal)    // of targetVal, then
{                                         // insert insertVal
  using std::cbegin;                      // there
  using std::cend;

  auto it = std::find(cbegin(container),  // non-member cbegin
                      cend(container),    // non-member cend
                      targetVal);

  container.insert(it, insertVal);
}

This works fine in C++14, but, sadly, not in C++11. Through an oversight during
standardization, C++11 added the non-member functions begin and end, but it
failed to add cbegin, cend, rbegin, rend, crbegin, and crend. C++14 rectifies that
oversight.

If you’re using C++11, you want to write maximally generic code, and none of the
libraries you’re using provides the missing templates for non-member cbegin and
friends, you can throw your own implementations together with ease. For example,
here’s an implementation of non-member cbegin:

template <class C>
auto cbegin(const C& container)->decltype(std::begin(container))
{
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  return std::begin(container);         // see explanation below
}

You’re surprised to see that non-member cbegin doesn’t call member cbegin, aren’t
you? So was I. But follow the logic. This cbegin template accepts any type of argu‐
ment representing a container-like data structure, C, and it accesses this argument
through its reference-to-const parameter, container. If C is a conventional con‐
tainer type (e.g., a std::vector<int>), container will be a reference to a const
version of that container (e.g., a const std::vector<int>&). Invoking the non-
member begin function (provided by C++11) on a const container yields a
const_iterator, and that iterator is what this template returns. The advantage of
implementing things this way is that it works even for containers that offer a begin
member function (which, for containers, is what C++11’s non-member begin calls),
but fail to offer a cbegin member. You can thus use this non-member cbegin on
containers that directly support only begin.

This template also works if C is a built-in array type. In that case, container becomes
a reference to a const array. C++11 provides a specialized version of non-member
begin for arrays that returns a pointer to the array’s first element. The elements of a
const array are const, so the pointer that non-member begin returns for a const
array is a pointer-to-const, and a pointer-to-const is, in fact, a const_iterator for
an array. (For insight into how a template can be specialized for built-in arrays, con‐
sult Item 1’s discussion of type deduction in templates that take reference parameters
to arrays.)

But back to basics. The point of this Item is to encourage you to use const_itera
tors whenever you can. The fundamental motivation—using const whenever it’s
meaningful—predates C++11, but in C++98, it simply wasn’t practical when working
with iterators. In C++11, it’s eminently practical, and C++14 tidies up the few bits of
unfinished business that C++11 left behind.

Things to Remember
• Prefer const_iterators to iterators.
• In maximally generic code, prefer non-member versions of begin, end,
rbegin, etc., over their member function counterparts.
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Item 14: Declare functions noexcept if they won’t emit
exceptions.

In C++98, exception specifications were rather temperamental beasts. You had to
summarize the exception types a function might emit, so if the function’s implemen‐
tation was modified, the exception specification might require revision, too. Chang‐
ing an exception specification could break client code, because callers might be
dependent on the original exception specification. Compilers typically offered no
help in maintaining consistency among function implementations, exception specifi‐
cations, and client code. Most programmers ultimately decided that C++98 exception
specifications weren’t worth the trouble.

During work on C++11, a consensus emerged that the truly meaningful information
about a function’s exception-emitting behavior was whether it had any. Black or
white, either a function might emit an exception or it guaranteed that it wouldn’t.
This maybe-or-never dichotomy forms the basis of C++11’s exception specifications,
which essentially replace C++98’s. (C++98-style exception specifications remain
valid, but they’re deprecated.) In C++11, unconditional noexcept is for functions
that guarantee they won’t emit exceptions.

Whether a function should be so declared is a matter of interface design. The
exception-emitting behavior of a function is of key interest to clients. Callers can
query a function’s noexcept status, and the results of such a query can affect the
exception safety or efficiency of the calling code. As such, whether a function is
noexcept is as important a piece of information as whether a member function is
const. Failure to declare a function noexcept when you know that it won’t emit an
exception is simply poor interface specification.

But there’s an additional incentive to apply noexcept to functions that won’t pro‐
duce exceptions: it permits compilers to generate better object code. To understand
why, it helps to examine the difference between the C++98 and C++11 ways of saying
that a function won’t emit exceptions. Consider a function f that promises callers
they’ll never receive an exception. The two ways of expressing that are:

int f(int x) throw();     // no exceptions from f: C++98 style

int f(int x) noexcept;    // no exceptions from f: C++11 style

If, at runtime, an exception leaves f, f’s exception specification is violated. With the
C++98 exception specification, the call stack is unwound to f’s caller, and, after some
actions not relevant here, program execution is terminated. With the C++11 excep‐
tion specification, runtime behavior is slightly different: the stack is only possibly
unwound before program execution is terminated.
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The difference between unwinding the call stack and possibly unwinding it has a sur‐
prisingly large impact on code generation. In a noexcept function, optimizers need
not keep the runtime stack in an unwindable state if an exception would propagate
out of the function, nor must they ensure that objects in a noexcept function are
destroyed in the inverse order of construction should an exception leave the function.
Functions with “throw()” exception specifications lack such optimization flexibility,
as do functions with no exception specification at all. The situation can be summar‐
ized this way:

RetType function(params) noexcept;     // most optimizable

RetType function(params) throw();      // less optimizable

RetType function(params);              // less optimizable

This alone is sufficient reason to declare functions noexcept whenever you know
they won’t produce exceptions.

For some functions, the case is even stronger. The move operations are the preemi‐
nent example. Suppose you have a C++98 code base making use of a std::vec
tor<Widget>. Widgets are added to the std::vector from time to time via
push_back:

std::vector<Widget> vw;

…

Widget w;

…                        // work with w

vw.push_back(w);         // add w to vw

…

Assume this code works fine, and you have no interest in modifying it for C++11.
However, you do want to take advantage of the fact that C++11’s move semantics can
improve the performance of legacy code when move-enabled types are involved. You
therefore ensure that Widget has move operations, either by writing them yourself or
by seeing to it that the conditions for their automatic generation are fulfilled (see
Item 17).

When a new element is added to a std::vector, it’s possible that the std::vector
lacks space for it, i.e., that the std::vector’s size is equal to its capacity. When that
happens, the std::vector allocates a new, larger, chunk of memory to hold its
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3 The checking is typically rather roundabout. Functions like std::vector::push_back call
std::move_if_noexcept, a variation of std::move that conditionally casts to an rvalue (see Item 23),
depending on whether the type’s move constructor is noexcept. In turn, std::move_if_noexcept consults
std::is_nothrow_move_constructible, and the value of this type trait (see Item 9) is set by compilers,
based on whether the move constructor has a noexcept (or throw()) designation.

elements, and it transfers the elements from the existing chunk of memory to the new
one. In C++98, the transfer was accomplished by copying each element from the old
memory to the new memory, then destroying the objects in the old memory. This
approach enabled push_back to offer the strong exception safety guarantee: if an
exception was thrown during the copying of the elements, the state of the std::vec
tor remained unchanged, because none of the elements in the old memory were
destroyed until all elements had been successfully copied into the new memory.

In C++11, a natural optimization would be to replace the copying of std::vector
elements with moves. Unfortunately, doing this runs the risk of violating
push_back’s exception safety guarantee. If n elements have been moved from the old
memory and an exception is thrown moving element n+1, the push_back operation
can’t run to completion. But the original std::vector has been modified: n of its
elements have been moved from. Restoring their original state may not be possible,
because attempting to move each object back into the original memory may itself
yield an exception.

This is a serious problem, because the behavior of legacy code could depend on
push_back’s strong exception safety guarantee. Therefore, C++11 implementations
can’t silently replace copy operations inside push_back with moves unless it’s known
that the move operations won’t emit exceptions. In that case, having moves replace
copies would be safe, and the only side effect would be improved performance.

std::vector::push_back takes advantage of this “move if you can, but copy if you
must” strategy, and it’s not the only function in the Standard Library that does. Other
functions sporting the strong exception safety guarantee in C++98 (e.g., std::vec
tor::reserve, std::deque::insert, etc.) behave the same way. All these functions
replace calls to copy operations in C++98 with calls to move operations in C++11
only if the move operations are known to not emit exceptions. But how can a func‐
tion know if a move operation won’t produce an exception? The answer is obvious: it
checks to see if the operation  is declared noexcept.3

swap functions comprise another case where noexcept is particularly desirable. swap
is a key component of many STL algorithm implementations, and it’s commonly
employed in copy assignment operators, too. Its widespread use renders the opti‐
mizations that noexcept affords especially worthwhile. Interestingly, whether swaps
in the Standard Library are noexcept is sometimes dependent on whether user-
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defined swaps are noexcept. For example, the declarations for the Standard Library’s
swaps for arrays and std::pair are:

template <class T, size_t N>
void swap(T (&a)[N],                                    // see
          T (&b)[N]) noexcept(noexcept(swap(*a, *b)));  // below

template <class T1, class T2>
struct pair {
  …
  void swap(pair& p) noexcept(noexcept(swap(first, p.first)) &&
                              noexcept(swap(second, p.second)));
  …
};

These functions are conditionally noexcept: whether they are noexcept depends on
whether the expressions inside the noexcept clauses are noexcept. Given two arrays
of Widget, for example, swapping them is noexcept only if swapping individual ele‐
ments in the arrays is noexcept, i.e., if swap for Widget is noexcept. The author of
Widget’s swap thus determines whether swapping arrays of Widget is noexcept.
That, in turn, determines whether other swaps, such as the one for arrays of arrays of
Widget, are noexcept. Similarly, whether swapping two std::pair objects contain‐
ing Widgets is noexcept depends on whether swap for Widgets is noexcept. The
fact that swapping higher-level data structures can generally be noexcept only if
swapping their lower-level constituents is noexcept should motivate you to offer
noexcept swap functions whenever you can.

By now, I hope you’re excited about the optimization opportunities that noexcept
affords. Alas, I must temper your enthusiasm. Optimization is important, but cor‐
rectness is more important. I noted at the beginning of this Item that noexcept is
part of a function’s interface, so you should declare a function noexcept only if you
are willing to commit to a noexcept implementation over the long term. If you
declare a function noexcept and later regret that decision, your options are bleak.
You can remove noexcept from the function’s declaration (i.e., change its interface),
thus running the risk of breaking client code. You can change the implementation
such that an exception could escape, yet keep the original (now incorrect) exception
specification. If you do that, your program will be terminated if an exception tries to
leave the function. Or you can resign yourself to your existing implementation, aban‐
doning whatever kindled your desire to change the implementation in the first place.
None of these options is appealing.

The fact of the matter is that most functions are exception-neutral. Such functions
throw no exceptions themselves, but functions they call might emit one. When that
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4 The interface specifications for move operations on containers in the Standard Library lack noexcept. How‐
ever, implementers are permitted to strengthen exception specifications for Standard Library functions, and,
in practice, it is common for at least some container move operations to be declared noexcept. That practice
exemplifies this Item’s advice. Having found that it’s possible to write container move operations such that
exceptions aren’t thrown, implementers often declare the operations noexcept, even though the Standard
does not require them to do so.

happens, the exception-neutral function allows the emitted exception to pass through
on its way to a handler further up the call chain. Exception-neutral functions are
never noexcept, because they may emit such “just passing through” exceptions. Most
functions, therefore, quite properly lack the noexcept designation.

Some functions, however, have natural implementations that emit no exceptions, and
for a few more—notably the move operations and swap—being noexcept can have
such a significant payoff, it’s worth implementing them in a noexcept manner if at
all possible.4 When you can honestly say that a function should never emit excep‐
tions, you should definitely declare it noexcept.

Please note that I said some functions have natural noexcept implementations.
Twisting a function’s implementation to permit a noexcept declaration is the tail
wagging the dog. Is putting the cart before the horse. Is not seeing the forest for the
trees. Is…choose your favorite metaphor. If a straightforward function implementa‐
tion might yield exceptions (e.g., by invoking a function that might throw), the hoops
you’ll jump through to hide that from callers (e.g., catching all exceptions and replac‐
ing them with status codes or special return values) will not only complicate your
function’s implementation, it will typically complicate code at call sites, too. For
example, callers may have to check for status codes or special return values. The run‐
time cost of those complications (e.g., extra branches, larger functions that put more
pressure on instruction caches, etc.) could exceed any speedup you’d hope to achieve
via noexcept, plus you’d be saddled with source code that’s more difficult to com‐
prehend and maintain. That’d be poor software engineering.

For some functions, being noexcept is so important, they’re that way by default. In
C++98, it was considered bad style to permit the memory deallocation functions (i.e.,
operator delete and operator delete[]) and destructors to emit exceptions, and
in C++11, this style rule has been all but upgraded to a language rule. By default, all
memory deallocation functions and all destructors—both user-defined and compiler-
generated—are implicitly noexcept. There’s thus no need to declare them noexcept.
(Doing so doesn’t hurt anything, it’s just unconventional.) The only time a destructor
is not implicitly noexcept is when a data member of the class (including inherited
members and those contained inside other data members) is of a type that expressly
states that its destructor may emit exceptions (e.g., declares it “noexcept(false)”).
Such destructors are uncommon. There are none in the Standard Library, and if the
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5 “Regardless of the state of the program” and “no constraints” doesn’t legitimize programs whose behavior is
already undefined. For example, std::vector::size has a wide contract, but that doesn’t require that it
behave reasonably if you invoke it on a random chunk of memory that you’ve cast to a std::vector. The
result of the cast is undefined, so there are no behavioral guarantees for the program containing the cast.

destructor for an object being used by the Standard Library (e.g., because it’s in a
container or was passed to an algorithm) emits an exception, the behavior of the pro‐
gram is undefined.

It’s worth noting that some library interface designers distinguish functions with
wide contracts from those with narrow contracts. A function with a wide contract has
no preconditions. Such a function may be called regardless of the state of the pro‐
gram, and it imposes no constraints on the arguments that callers pass it.5 Functions
with wide contracts never exhibit undefined behavior.

Functions without wide contracts have narrow contracts. For such functions, if a pre‐
condition is violated, results are undefined.

If you’re writing a function with a wide contract and you know it won’t emit excep‐
tions, following the advice of this Item and declaring it noexcept is easy. For func‐
tions with narrow contracts, the situation is trickier. For example, suppose you’re
writing a function f taking a std::string parameter, and suppose f’s natural imple‐
mentation never yields an exception. That suggests that f should be declared noex
cept.

Now suppose that f has a precondition: the length of its std::string parameter
doesn’t exceed 32 characters. If f were to be called with a std::string whose length
is greater than 32, behavior would be undefined, because a precondition violation by
definition results in undefined behavior. f is under no obligation to check this pre‐
condition, because functions may assume that their preconditions are satisfied. (Call‐
ers are responsible for ensuring that such assumptions are valid.) Even with a
precondition, then, declaring f noexcept seems  appropriate:

void f(const std::string& s) noexcept;    // precondition:
                                          // s.length() <= 32

But suppose that f’s implementer chooses to check for precondition violations.
Checking isn’t required, but it’s also not forbidden, and checking the precondition
could be useful, e.g., during system testing. Debugging an exception that’s been
thrown is generally easier than trying to track down the cause of undefined behavior.
But how should a precondition violation be reported such that a test harness or a cli‐
ent error handler could detect it? A straightforward approach would be to throw a
“precondition was violated” exception, but if f is declared noexcept, that would be
impossible; throwing an exception would lead to program termination. For this rea‐
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son, library designers who distinguish wide from narrow contracts generally reserve
noexcept for functions with wide contracts.

As a final point, let me elaborate on my earlier observation that compilers typically
offer no help in identifying inconsistencies between function implementations and
their exception specifications. Consider this code, which is perfectly legal:

void setup();           // functions defined elsewhere
void cleanup();

void doWork() noexcept
{
  setup();              // set up work to be done

  …                     // do the actual work

  cleanup();            // perform cleanup actions
}

Here, doWork is declared noexcept, even though it calls the non-noexcept functions
setup and cleanup. This seems contradictory, but it could be that setup and
cleanup document that they never emit exceptions, even though they’re not declared
that way. There could be good reasons for their non-noexcept declarations. For
example, they might be part of a library written in C. (Even functions from the
C Standard Library that have been moved into the std namespace lack exception
specifications, e.g., std::strlen isn’t declared noexcept.) Or they could be part of a
C++98 library that decided not to use C++98 exception specifications and hasn’t yet
been revised for C++11.

Because there are legitimate reasons for noexcept functions to rely on code lacking
the noexcept guarantee, C++ permits such code, and compilers generally don’t issue
warnings about it.

Things to Remember
• noexcept is part of a function’s interface, and that means that callers may

depend on it.
• noexcept functions are more optimizable than non-noexcept functions.
• noexcept is particularly valuable for the move operations, swap, memory

deallocation functions, and destructors.
• Most functions are exception-neutral rather than noexcept.
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Item 15: Use constexpr whenever possible.
If there were an award for the most confusing new word in C++11, constexpr would
probably win it. When applied to objects, it’s essentially a beefed-up form of const,
but when applied to functions, it has a quite different meaning. Cutting through the
confusion is worth the trouble, because when constexpr corresponds to what you
want to express, you definitely want to use it.

Conceptually, constexpr indicates a value that’s not only constant, it’s known dur‐
ing compilation. The concept is only part of the story, though, because when con
stexpr is applied to functions, things are more nuanced than this suggests. Lest I
ruin the surprise ending, for now I’ll just say that you can’t assume that the results of
constexpr functions are const, nor can you take for granted that their values are
known during compilation. Perhaps most intriguingly, these things are features. It’s
good that constexpr functions need not produce results that are const or known
during compilation!

But let’s begin with constexpr objects. Such objects are, in fact, const, and they do,
in fact, have values that are known at compile time. (Technically, their values are
determined during translation, and translation consists not just of compilation but
also of linking. Unless you write compilers or linkers for C++, however, this has no
effect on you, so you can blithely program as if the values of constexpr objects were
determined during compilation.)

Values known during compilation are privileged. They may be placed in read-only
memory, for example, and, especially for developers of embedded systems, this can
be a feature of considerable importance. Of broader applicability is that integral val‐
ues that are constant and known during compilation can be used in contexts where
C++ requires an integral constant expression. Such contexts include specification of
array sizes, integral template arguments (including lengths of std::array objects),
enumerator values, alignment specifiers, and more. If you want to use a variable for
these kinds of things, you certainly want to declare it constexpr, because then com‐
pilers will ensure that it has a compile-time value:

int sz;                             // non-constexpr variable

…

constexpr auto arraySize1 = sz;     // error! sz's value not
                                    // known at compilation

std::array<int, sz> data1;          // error! same problem

constexpr auto arraySize2 = 10;     // fine, 10 is a
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                                    // compile-time constant

std::array<int, arraySize2> data2;  // fine, arraySize2
                                    // is constexpr

Note that const doesn’t offer the same guarantee as constexpr, because const
objects need not be initialized with values known during compilation:

int sz;                             // as before

…

const auto arraySize = sz;          // fine, arraySize is
                                    // const copy of sz

std::array<int, arraySize> data;    // error! arraySize's value
                                    // not known at compilation

Simply put, all constexpr objects are const, but not all const objects are con
stexpr. If you want compilers to guarantee that a variable has a value that can be
used in contexts requiring compile-time constants, the tool to reach for is con
stexpr, not const.

Usage scenarios for constexpr objects become more interesting when constexpr
functions are involved. Such functions produce compile-time constants when they
are called with compile-time constants. If they’re called with values not known until
runtime, they produce runtime values. This may sound as if you don’t know what
they’ll do, but that’s the wrong way to think about it. The right way to view it is this:

• constexpr functions can be used in contexts that demand compile-time con‐
stants. If the values of the arguments you pass to a constexpr function in such a
context are known during compilation, the result will be computed during
compilation. If any of the arguments’ values is not known during compilation,
your code will be rejected.

• When a constexpr function is called with one or more values that are not
known during compilation, it acts like a normal function, computing its result at
runtime. This means you don’t need two functions to perform the same opera‐
tion, one for compile-time constants and one for all other values. The constexpr
function does it all.

Suppose we need a data structure to hold the results of an experiment that can be run
in a variety of ways. For example, the lighting level can be high, low, or off during the
course of the experiment, as can the fan speed and the temperature, etc. If there are n
environmental conditions relevant to the experiment, each of which has three possi‐
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ble states, the number of combinations is 3n. Storing experimental results for all com‐
binations of conditions thus requires a data structure with enough room for 3n values.
Assuming each result is an int and that n is known (or can be computed) during
compilation, a std::array could be a reasonable data structure choice. But we’d
need a way to compute 3n during compilation. The C++ Standard Library provides
std::pow, which is the mathematical functionality we need, but, for our purposes,
there are two problems with it. First, std::pow works on floating-point types, and we
need an integral result. Second, std::pow isn’t constexpr (i.e., isn’t guaranteed to
return a compile-time result when called with compile-time values), so we can’t use it
to specify a std::array’s size.

Fortunately, we can write the pow we need. I’ll show how to do that in a moment, but
first let’s look at how it could be declared and used:

constexpr                              // pow's a constexpr func
int pow(int base, int exp) noexcept    // that never throws
{
  …                                    // impl is below
}

constexpr auto numConds = 5;                 // # of conditions

std::array<int, pow(3, numConds)> results;   // results has
                                             // 3^numConds
                                             // elements

Recall that the constexpr in front of pow doesn’t say that pow returns a const value,
it says that if base and exp are compile-time constants, pow’s result may be used as a
compile-time constant. If base and/or exp are not compile-time constants, pow’s
result will be computed at runtime. That means that pow can not only be called to do
things like compile-time-compute the size of a std::array, it can also be called in
runtime contexts such as this:

auto base = readFromDB("base");       // get these values
auto exp = readFromDB("exponent");    // at runtime

auto baseToExp = pow(base, exp);      // call pow function
                                      // at runtime

Because constexpr functions must be able to return compile-time results when
called with compile-time values, restrictions are imposed on their implementations.
The restrictions differ between C++11 and C++14.

In C++11, constexpr functions may contain no more than a single executable state‐
ment: a return. That sounds more limiting than it is, because two tricks can be used
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to extend the expressiveness of constexpr functions beyond what you might think.
First, the conditional “?:” operator can be used in place of if-else statements, and
second, recursion can be used instead of loops. pow can therefore be implemented
like this:

constexpr int pow(int base, int exp) noexcept
{
  return (exp == 0 ? 1 : base * pow(base, exp - 1));
}

This works, but it’s hard to imagine that anybody except a hard-core functional pro‐
grammer would consider it pretty. In C++14, the restrictions on constexpr func‐
tions are substantially looser, so the following implementation becomes possible:

constexpr int pow(int base, int exp) noexcept       // C++14
{
  auto result = 1;
  for (int i = 0; i < exp; ++i) result *= base;

  return result;
}

constexpr functions are limited to taking and returning literal types, which essen‐
tially means types that can have values determined during compilation. In C++11, all
built-in types except void qualify, but user-defined types may be literal, too, because
constructors and other member functions may be constexpr:

class Point {
public:
  constexpr Point(double xVal = 0, double yVal = 0) noexcept
  : x(xVal), y(yVal)
  {}

  constexpr double xValue() const noexcept { return x; }
  constexpr double yValue() const noexcept { return y; }

  void setX(double newX) noexcept { x = newX; }
  void setY(double newY) noexcept { y = newY; }

private:
  double x, y;
};

Here, the Point constructor can be declared constexpr, because if the arguments
passed to it are known during compilation, the value of the data members of the con‐
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6 Because Point::xValue returns double, the type of mid.xValue() * 10 is also double. Floating-point types
can’t be used to instantiate templates or to specify enumerator values, but they can be used as part of larger
expressions that yield integral types. For example, static_cast<int>(mid.xValue() * 10) could be used to
instantiate a template or to specify an enumerator value.

structed Point can also be known during compilation. Points so initialized could
thus be constexpr:

constexpr Point p1(9.4, 27.7);      // fine, "runs" constexpr
                                    // ctor during compilation

constexpr Point p2(28.8, 5.3);      // also fine

Similarly, the getters xValue and yValue can be constexpr, because if they’re
invoked on a Point object with a value known during compilation (e.g., a constexpr
Point object), the values of the data members x and y can be known during compila‐
tion. That makes it possible to write constexpr functions that call Point’s getters
and to initialize constexpr objects with the results of such functions:

constexpr
Point midpoint(const Point& p1, const Point& p2) noexcept
{
  return { (p1.xValue() + p2.xValue()) / 2,    // call constexpr
           (p1.yValue() + p2.yValue()) / 2 };  // member funcs
}

constexpr auto mid = midpoint(p1, p2);     // init constexpr
                                           // object w/result of
                                           // constexpr function

This is very exciting. It means that the object mid, though its initialization involves
calls to constructors, getters, and a non-member function, can be created in read-
only memory! It means you could use an expression like mid.xValue() * 10 in an
argument to a template or in an expression specifying the value of an enumerator!6 It
means that the traditionally fairly strict line between work done during compilation
and work done at runtime begins to blur, and some computations traditionally done
at runtime can migrate to compile time. The more code taking part in the migration,
the faster your software will run. (Compilation may take longer, however.)

In C++11, two restrictions prevent Point’s member functions setX and setY from
being declared constexpr. First, they modify the object they operate on, and in
C++11, constexpr member functions are implicitly const. Second, they have void
return types, and void isn’t a literal type in C++11. Both these restrictions are lifted
in C++14, so in C++14, even Point’s setters can be constexpr:
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class Point {
public:
  …

  constexpr void setX(double newX) noexcept     // C++14
  { x = newX; }

  constexpr void setY(double newY) noexcept     // C++14
  { y = newY; }

  …

};

That makes it possible to write functions like this:

// return reflection of p with respect to the origin (C++14)
constexpr Point reflection(const Point& p) noexcept
{
  Point result;                       // create non-const Point

  result.setX(-p.xValue());           // set its x and y values
  result.setY(-p.yValue());

  return result;                      // return copy of it
}

Client code could look like this:

constexpr Point p1(9.4, 27.7);        // as above
constexpr Point p2(28.8, 5.3);
constexpr auto mid = midpoint(p1, p2);

constexpr auto reflectedMid =         // reflectedMid's value is
  reflection(mid);                    // (-19.1 -16.5) and known
                                      // during compilation

The advice of this Item is to use constexpr whenever possible, and by now I hope it’s
clear why: both constexpr objects and constexpr functions can be employed in a
wider range of contexts than non-constexpr objects and functions. By using con
stexpr whenever possible, you maximize the range of situations in which your
objects and functions may be used.

It’s important to note that constexpr is part of an object’s or function’s interface.
constexpr proclaims “I can be used in a context where C++ requires a constant
expression.” If you declare an object or function constexpr, clients may use it in
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such contexts. If you later decide that your use of constexpr was a mistake and you
remove it, you may cause arbitrarily large amounts of client code to stop compiling.
(The simple act of adding I/O to a function for debugging or performance tuning
could lead to such a problem, because I/O statements are generally not permitted in
constexpr functions.) Part of “whenever possible” in “Use constexpr whenever
possible” is your willingness to make a long-term commitment to the constraints it
imposes on the objects and functions you apply it to.

Things to Remember
• constexpr objects are const and are initialized with values known during

compilation.
• constexpr functions can produce compile-time results when called with

arguments whose values are known during compilation.
• constexpr objects and functions may be used in a wider range of contexts

than non-constexpr objects and functions.
• constexpr is part of an object’s or function’s interface.

Item 16: Make const member functions thread safe.
If we’re working in a mathematical domain, we might find it convenient to have a
class representing polynomials. Within this class, it would probably be useful to have
a function to compute the root(s) of a polynomial, i.e., values where the polynomial
evaluates to zero. Such a function would not modify the polynomial, so it’d be natural
to  declare it const:

class Polynomial {
public:
  using RootsType =          // data structure holding values
    std::vector<double>;     // where polynomial evals to zero
  …                          // (see Item 9 for info on "using")

  RootsType roots() const;

  …

};

Computing the roots of a polynomial can be expensive, so we don’t want to do it if
we don’t have to. And if we do have to do it, we certainly don’t want to do it more
than once. We’ll thus cache the root(s) of the polynomial if we have to compute
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them, and we’ll implement roots to return the cached value. Here’s the basic
approach:

class Polynomial {
public:
  using RootsType = std::vector<double>;

  RootsType roots() const
  {
    if (!rootsAreValid) {            // if cache not valid

      …                              // compute roots,
                                     // store them in rootVals
      rootsAreValid = true;
    }

    return rootVals;
  }

private:
  mutable bool rootsAreValid{ false };    // see Item 7 for info
  mutable RootsType rootVals{};           // on initializers
};

Conceptually, roots doesn’t change the Polynomial object on which it operates, but,
as part of its caching activity, it may need to modify rootVals and rootsAreValid.
That’s a classic use case for mutable, and that’s why it’s part of the declarations for
these data members.

Imagine now that two threads simultaneously call roots on a Polynomial object:

Polynomial p;

…

/*-----  Thread 1  ----- */     /*-------  Thread 2  ------- */

auto rootsOfP = p.roots();      auto valsGivingZero = p.roots();

This client code is perfectly reasonable. roots is a const member function, and that
means it represents a read operation. Having multiple threads perform a read opera‐
tion without synchronization is safe. At least it’s supposed to be. In this case, it’s not,
because inside roots, one or both of these threads might try to modify the data
members rootsAreValid and rootVals. That means that this code could have dif‐
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ferent threads reading and writing the same memory without synchronization, and
that’s the definition of a data race. This code has undefined behavior.

The problem is that roots is declared const, but it’s not thread safe. The const dec‐
laration is as correct in C++11 as it would be in C++98 (retrieving the roots of a poly‐
nomial doesn’t change the value of the polynomial), so what requires rectification is
the lack of thread safety.

The easiest way to address the issue is the usual one: employ a mutex:

class Polynomial {
public:
  using RootsType = std::vector<double>;

  RootsType roots() const
  {
    std::lock_guard<std::mutex> g(m);     // lock mutex

    if (!rootsAreValid) {                 // if cache not valid

      …                                   // compute/store roots

      rootsAreValid = true;
    }

    return rootVals;
  }                                       // unlock mutex

private:
  mutable std::mutex m;
  mutable bool rootsAreValid{ false };
  mutable RootsType rootVals{};
};

The std::mutex m is declared mutable, because locking and unlocking it are non-
const member functions, and within roots (a const member function), m would
otherwise be considered a const object.

It’s worth noting that because std::mutex is a move-only type (i.e., a type that can be
moved, but not copied), a side effect of adding m to Polynomial is that Polynomial
loses the ability to be copied. It can still be moved, however.

In some situations, a mutex is overkill. For example, if all you’re doing is counting
how many times a member function is called, a std::atomic counter (i.e, one where
other threads are guaranteed to see its operations occur indivisibly—see Item 40) will
often be a less expensive way to go. (Whether it actually is less expensive depends on
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the hardware you’re running on and the implementation of mutexes in your Stan‐
dard Library.) Here’s how you can employ a std::atomic to count calls:

class Point {                                // 2D point
public:
  …

  double distanceFromOrigin() const noexcept     // see Item 14
  {                                              // for noexcept

    ++callCount;                             // atomic increment

    return std::sqrt((x * x) + (y * y));
  }

private:
  mutable std::atomic<unsigned> callCount{ 0 };
  double x, y;
};

Like std::mutexes, std::atomics are move-only types, so the existence of call
Count in Point means that Point is also move-only.

Because operations on std::atomic variables are often less expensive than mutex
acquisition and release, you may be tempted to lean on std::atomics more heavily
than you should. For example, in a class caching an expensive-to-compute int, you
might try to use a pair of std::atomic variables instead of a mutex:

class Widget {
public:
  …

  int magicValue() const
  {
    if (cacheValid) return cachedValue;
    else {
      auto val1 = expensiveComputation1();
      auto val2 = expensiveComputation2();
      cachedValue = val1 + val2;               // uh oh, part 1
      cacheValid = true;                       // uh oh, part 2
      return cachedValue;
    }
  }

private:
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  mutable std::atomic<bool> cacheValid{ false };
  mutable std::atomic<int> cachedValue;
};

This will work, but sometimes it will work a lot harder than it should. Consider:

• A thread calls Widget::magicValue, sees cacheValid as false, performs the
two expensive computations, and assigns their sum to cachedValue.

• At that point, a second thread calls Widget::magicValue, also sees cacheValid
as false, and thus carries out the same expensive computations that the first
thread has just finished. (This “second thread” may in fact be several other
threads.)

Such behavior is contrary to the goal of caching. Reversing the order of the assign‐
ments to cachedValue and CacheValid eliminates that problem, but the result is
even worse:

class Widget {
public:
  …

  int magicValue() const
  {
    if (cacheValid) return cachedValue;
    else {
      auto val1 = expensiveComputation1();
      auto val2 = expensiveComputation2();
      cacheValid = true;                        // uh oh, part 1
      return cachedValue = val1 + val2;         // uh oh, part 2
    }
  }

  …

};

Imagine that cacheValid is false, and then:

• One thread calls Widget::magicValue and executes through the point where
cacheValid is set to true.

• At that moment, a second thread calls Widget::magicValue and checks cache
Valid. Seeing it true, the thread returns cachedValue, even though the first
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thread has not yet made an assignment to it. The returned value is therefore
incorrect.

There’s a lesson here. For a single variable or memory location requiring synchroni‐
zation, use of a std::atomic is adequate, but once you get to two or more variables
or memory locations that require manipulation as a unit, you should reach for a
mutex. For Widget::magicValue, that would look like this:

class Widget {
public:
  …

  int magicValue() const
  {
    std::lock_guard<std::mutex> guard(m);   // lock m

    if (cacheValid) return cachedValue;
    else {
      auto val1 = expensiveComputation1();
      auto val2 = expensiveComputation2();
      cachedValue = val1 + val2;
      cacheValid = true;
      return cachedValue;
    }
  }                                         // unlock m
  …

private:
  mutable std::mutex m;
  mutable int cachedValue;                  // no longer atomic
  mutable bool cacheValid{ false };         // no longer atomic
};

Now, this Item is predicated on the assumption that multiple threads may simultane‐
ously execute a const member function on an object. If you’re writing a const mem‐
ber function where that’s not the case—where you can guarantee that there will never
be more than one thread executing that member function on an object—the thread
safety of the function is immaterial. For example, it’s unimportant whether member
functions of classes designed for exclusively single-threaded use are thread safe. In
such cases, you can avoid the costs associated with mutexes and std::atomics, as
well as the side effect of their rendering the classes containing them move-only. How‐
ever, such threading-free scenarios are increasingly uncommon, and they’re likely to
become rarer still. The safe bet is that const member functions will be subject to con‐
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current execution, and that’s why you should ensure that your const member func‐
tions are thread safe.

 
Things to Remember

• Make const member functions thread safe unless you’re certain they’ll never
be used in a concurrent context.

• Use of std::atomic variables may offer better performance than a mutex, but
they’re suited for manipulation of only a single variable or memory location.

Item 17: Understand special member function
generation.

In official C++ parlance, the special member functions are the ones that C++ is willing
to generate on its own. C++98 has four such functions: the default constructor, the
destructor, the copy constructor, and the copy assignment operator. There’s fine
print, of course. These functions are generated only if they’re needed, i.e., if some
code uses them without their being expressly declared in the class. A default con‐
structor is generated only if the class declares no constructors at all. (This prevents
compilers from creating a default constructor for a class where you’ve specified that
constructor arguments are required.) Generated special member functions are
implicitly public and inline, and they’re nonvirtual unless the function in question
is a destructor in a derived class inheriting from a base class with a virtual destructor.
In that case, the compiler-generated destructor for the derived class is also virtual.

But you already know these things. Yes, yes, ancient history: Mesopotamia, the Shang
dynasty, FORTRAN, C++98. But times have changed, and the rules for special mem‐
ber function generation in C++ have changed with them. It’s important to be aware
of the new rules, because few things are as central to effective C++ programming as
knowing when compilers silently insert member functions into your classes.

As of C++11, the special member functions club has two more inductees: the move
constructor and the move assignment operator. Their signatures are:

class Widget {
public:
  …
  Widget(Widget&& rhs);              // move constructor

  Widget& operator=(Widget&& rhs);   // move assignment operator
  …
};
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The rules governing their generation and behavior are analogous to those for their
copying siblings. The move operations are generated only if they’re needed, and if
they are generated, they perform “memberwise moves” on the non-static data mem‐
bers of the class. That means that the move constructor move-constructs each non-
static data member of the class from the corresponding member of its parameter rhs,
and the move assignment operator move-assigns each non-static data member from
its parameter. The move constructor also move-constructs its base class parts (if there
are any), and the move assignment operator move-assigns its base class parts.

Now, when I refer to a move operation move-constructing or move-assigning a data
member or base class, there is no guarantee that a move will actually take place.
“Memberwise moves” are, in reality, more like memberwise move requests, because
types that aren’t move-enabled (i.e., that offer no special support for move operations,
e.g., most C++98 legacy classes) will be “moved” via their copy operations. The heart
of each memberwise “move” is application of std::move to the object to be moved
from, and the result is used during function overload resolution to determine
whether a move or a copy should be performed. Item 23 covers this process in detail.
For this Item, simply remember that a memberwise move consists of move opera‐
tions on data members and base classes that support move operations, but a copy
operation for those that don’t.

As is the case with the copy operations, the move operations aren’t generated if you
declare them yourself. However, the precise conditions under which they are gener‐
ated differ a bit from those for the copy operations.

The two copy operations are independent: declaring one doesn’t prevent compilers
from generating the other. So if you declare a copy constructor, but no copy assign‐
ment operator, then write code that requires copy assignment, compilers will gener‐
ate the copy assignment operator for you. Similarly, if you declare a copy assignment
operator, but no copy constructor, yet your code requires copy construction, compil‐
ers will generate the copy constructor for you. That was true in C++98, and it’s still
true in C++11.

The two move operations are not independent. If you declare either, that prevents
compilers from generating the other. The rationale is that if you declare, say, a move
constructor for your class, you’re indicating that there’s something about how move
construction should be implemented that’s different from the default memberwise
move that compilers would generate. And if there’s something wrong with member‐
wise move construction, there’d probably be something wrong with memberwise
move assignment, too. So declaring a move constructor prevents a move assignment
operator from being generated, and declaring a move assignment operator prevents
compilers from generating a move constructor.

Furthermore, move operations won’t be generated for any class that explicitly
declares a copy operation. The justification is that declaring a copy operation (con‐
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struction or assignment) indicates that the normal approach to copying an object
(memberwise copy) isn’t appropriate for the class, and compilers figure that if mem‐
berwise copy isn’t appropriate for the copy operations, memberwise move probably
isn’t appropriate for the move operations.

This goes in the other direction, too. Declaring a move operation (construction or
assignment) in a class causes compilers to disable the copy operations. (The copy
operations are disabled by deleting them—see Item 11). After all, if memberwise
move isn’t the proper way to move an object, there’s no reason to expect that mem‐
berwise copy is the proper way to copy it. This may sound like it could break C++98
code, because the conditions under which the copy operations are enabled are more
constrained in C++11 than in C++98, but this is not the case. C++98 code can’t have
move operations, because there was no such thing as “moving” objects in C++98. The
only way a legacy class can have user-declared move operations is if they were added
for C++11, and classes that are modified to take advantage of move semantics have to
play by the C++11 rules for special member function generation.

Perhaps you’ve heard of a guideline known as the Rule of Three. The Rule of Three
states that if you declare any of a copy constructor, copy assignment operator, or
destructor, you should declare all three. It grew out of the observation that the need
to take over the meaning of a copy operation almost always stemmed from the class
performing some kind of resource management, and that almost always implied that
(1) whatever resource management was being done in one copy operation probably
needed to be done in the other copy operation and (2) the class destructor would also
be participating in management of the resource (usually releasing it). The classic
resource to be managed was memory, and this is why all Standard Library classes that
manage memory (e.g., the STL containers that perform dynamic memory manage‐
ment) all declare “the big three”: both copy operations and a destructor. 

A consequence of the Rule of Three is that the presence of a user-declared destructor
indicates that simple memberwise copy is unlikely to be appropriate for the copying
operations in the class. That, in turn, suggests that if a class declares a destructor, the
copy operations probably shouldn’t be automatically generated, because they
wouldn’t do the right thing. At the time C++98 was adopted, the significance of this
line of reasoning was not fully appreciated, so in C++98, the existence of a user-
declared destructor had no impact on compilers’ willingness to generate copy opera‐
tions. That continues to be the case in C++11, but only because restricting the
conditions under which the copy operations are generated would break too much
legacy code.

The reasoning behind the Rule of Three remains valid, however, and that, combined
with the observation that declaration of a copy operation precludes the implicit gen‐
eration of the move operations, motivates the fact that C++11 does not generate
move operations for a class with a user-declared destructor.
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So move operations are generated for classes (when needed) only if these three things
are true:

• No copy operations are declared in the class.
• No move operations are declared in the class.
• No destructor is declared in the class.

At some point, analogous rules may be extended to the copy operations, because
C++11 deprecates the automatic generation of copy operations for classes declaring
copy operations or a destructor. This means that if you have code that depends on
the generation of copy operations in classes declaring a destructor or one of the copy
operations, you should consider upgrading these classes to eliminate the dependence.
Provided the behavior of the compiler-generated functions is correct (i.e, if member‐
wise copying of the class’s non-static data members is what you want), your job is
easy, because C++11’s “= default” lets you say that explicitly:

class Widget {
public:
  …
  ~Widget();                             // user-declared dtor

  …                                      // default copy ctor
  Widget(const Widget&) = default;       // behavior is OK

  Widget&                                // default copy assign
    operator=(const Widget&) = default;  // behavior is OK
  …
};

This approach is often useful in polymorphic base classes, i.e., classes defining inter‐
faces through which derived class objects are manipulated. Polymorphic base classes
normally have virtual destructors, because if they don’t, some operations (e.g., the use
of delete or typeid on a derived class object through a base class pointer or refer‐
ence) yield undefined or misleading results. Unless a class inherits a destructor that’s
already virtual, the only way to make a destructor virtual is to explicitly declare it that
way. Often, the default implementation would be correct, and “= default” is a good
way to express that. However, a user-declared destructor suppresses generation of the
move operations, so if movability is to be supported, “= default” often finds a sec‐
ond application. Declaring the move operations disables the copy operations, so if
copyability is also desired, one more round of “= default” does the job:

class Base {
public:
  virtual ~Base() = default;                // make dtor virtual
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  Base(Base&&) = default;                   // support moving
  Base& operator=(Base&&) = default;

  Base(const Base&) = default;              // support copying
  Base& operator=(const Base&) = default;

  …

};

In fact, even if you have a class where compilers are willing to generate the copy and
move operations and where the generated functions would behave as you want, you
may choose to adopt a policy of declaring them yourself and using “= default” for
their definitions. It’s more work, but it makes your intentions clearer, and it can help
you sidestep some fairly subtle bugs. For example, suppose you have a class repre‐
senting a string table, i.e., a data structure that permits fast lookups of string values
via an integer ID:

class StringTable {
public:
  StringTable() {}
  …                 // functions for insertion, erasure, lookup,
                    // etc., but no copy/move/dtor functionality

private:
  std::map<int, std::string> values;
};

Assuming that the class declares no copy operations, no move operations, and no
destructor, compilers will automatically generate these functions if they are used.
That’s very convenient.

But suppose that sometime later, it’s decided that logging the default construction
and the destruction of such objects would be useful. Adding that functionality is easy:

class StringTable {
public:
  StringTable()
  { makeLogEntry("Creating StringTable object"); }     // added
  
  ~StringTable()                                       // also
  { makeLogEntry("Destroying StringTable object"); }   // added

  …                                     // other funcs as before
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private:
  std::map<int, std::string> values;    // as before
};

This looks reasonable, but declaring a destructor has a potentially significant side
effect: it prevents the move operations from being generated. However, creation of
the class’s copy operations is unaffected. The code is therefore likely to compile, run,
and pass its functional testing. That includes testing its move functionality, because
even though this class is no longer move-enabled, requests to move it will compile
and run. Such requests will, as noted earlier in this Item, cause copies to be made.
Which means that code “moving” StringTable objects actually copies them,
i.e., copies the underlying std::map<int, std::string> objects. And copying a std
::map<int, std::string> is likely to be orders of magnitude slower than moving it.
The simple act of adding a destructor to the class could thereby have introduced a
significant performance problem! Had the copy and move operations been explicitly
defined using “= default”, the problem would not have arisen.

Now, having endured my endless blathering about the rules governing the copy and
move operations in C++11, you may wonder when I’ll turn my attention to the two
other special member functions, the default constructor and the destructor. That
time is now, but only for this sentence, because almost nothing has changed for these
member functions: the rules in C++11 are nearly the same as in C++98.

The C++11 rules governing the special member functions are thus:

• Default constructor: Same rules as C++98. Generated only if the class contains
no user-declared constructors.

• Destructor: Essentially same rules as C++98; sole difference is that destructors
are noexcept by default (see Item 14). As in C++98, virtual only if a base class
destructor is virtual.

• Copy constructor: Same runtime behavior as C++98: memberwise copy con‐
struction of non-static data members. Generated only if the class lacks a user-
declared copy constructor. Deleted if the class declares a move operation.
Generation of this function in a class with a user-declared copy assignment oper‐
ator or destructor is deprecated.

• Copy assignment operator: Same runtime behavior as C++98: memberwise
copy assignment of non-static data members. Generated only if the class lacks a
user-declared copy assignment operator. Deleted if the class declares a move
operation. Generation of this function in a class with a user-declared copy con‐
structor or destructor is deprecated.
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• Move constructor and move assignment operator: Each performs memberwise
moving of non-static data members. Generated only if the class contains no user-
declared copy operations, move operations, or destructor.

Note that there’s nothing in the rules about the existence of a member function tem‐
plate preventing compilers from generating the special member functions. That
means that if Widget looks like this,

class Widget {
  …
  template<typename T>                // construct Widget
  Widget(const T& rhs);               // from anything

  template<typename T>                // assign Widget
  Widget& operator=(const T& rhs);    // from anything
  …
};

compilers will still generate copy and move operations for Widget (assuming the
usual conditions governing their generation are fulfilled), even though these tem‐
plates could be instantiated to produce the signatures for the copy constructor and
copy assignment operator. (That would be the case when T is Widget.) In all likeli‐
hood, this will strike you as an edge case barely worth acknowledging, but there’s a
reason I’m mentioning it. Item 26 demonstrates that it can have important conse‐
quences.

Things to Remember
• The special member functions are those compilers may generate on their own:

default constructor, destructor, copy operations, and move operations.
• Move operations are generated only for classes lacking explicitly declared

move operations, copy operations, and a destructor.
• The copy constructor is generated only for classes lacking an explicitly

declared copy constructor, and it’s deleted if a move operation is declared.
The copy assignment operator is generated only for classes lacking an explic‐
itly declared copy assignment operator, and it’s deleted if a move operation is
declared. Generation of the copy operations in classes with an explicitly
declared destructor is deprecated.

• Member function templates never suppress generation of special member
functions.
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CHAPTER 4

Smart Pointers

Poets and songwriters have a thing about love. And sometimes about counting. Occa‐
sionally both. Inspired by the rather different takes on love and counting by Elizabeth
Barrett Browning (“How do I love thee? Let me count the ways.”) and Paul Simon
(“There must be 50 ways to leave your lover.”), we might try to enumerate the rea‐
sons why a raw pointer is hard to love:

1. Its declaration doesn’t indicate whether it points to a single object or to an array.
2. Its declaration reveals nothing about whether you should destroy what it points

to when you’re done using it, i.e., if the pointer owns the thing it points to.
3. If you determine that you should destroy what the pointer points to, there’s no

way to tell how. Should you use delete, or is there a different destruction mech‐
anism (e.g., a dedicated destruction function the pointer should be passed to)?

4. If you manage to find out that delete is the way to go, Reason 1 means it may
not be possible to know whether to use the single-object form (“delete”) or the
array form (“delete []”). If you use the wrong form, results are undefined.

5. Assuming you ascertain that the pointer owns what it points to and you discover
how to destroy it, it’s difficult to ensure that you perform the destruction exactly
once along every path in your code (including those due to exceptions). Missing a
path leads to resource leaks, and doing the destruction more than once leads to
undefined behavior.

6. There’s typically no way to tell if the pointer dangles, i.e., points to memory that
no longer holds the object the pointer is supposed to point to. Dangling pointers
arise when objects are destroyed while pointers still point to them.

117



Raw pointers are powerful tools, to be sure, but decades of experience have demon‐
strated that with only the slightest lapse in concentration or discipline, these tools can
turn on their ostensible masters.

Smart pointers are one way to address these issues. Smart pointers are wrappers
around raw pointers that act much like the raw pointers they wrap, but that avoid
many of their pitfalls. You should therefore prefer smart pointers to raw pointers.
Smart pointers can do virtually everything raw pointers can, but with far fewer
opportunities for error.

There are four smart pointers in C++11: std::auto_ptr, std::unique_ptr,
std::shared_ptr, and std::weak_ptr. All are designed to help manage the life‐
times of dynamically allocated objects, i.e., to avoid resource leaks by ensuring that
such objects are destroyed in the appropriate manner at the appropriate time (includ‐
ing in the event of exceptions).

std::auto_ptr is a deprecated leftover from C++98. It was an attempt to standard‐
ize what later became C++11’s std::unique_ptr. Doing the job right required move
semantics, but C++98 didn’t have them. As a workaround, std::auto_ptr co-opted
its copy operations for moves. This led to surprising code (copying a std::auto_ptr
sets it to null!) and frustrating usage restrictions (e.g., it’s not possible to store
std::auto_ptrs in containers).

std::unique_ptr does everything std::auto_ptr does, plus more. It does it as effi‐
ciently, and it does it without warping what it means to copy an object. It’s better
than std::auto_ptr in every way. The only legitimate use case for std::auto_ptr
is a need to compile code with C++98 compilers. Unless you have that constraint,
you should replace std::auto_ptr with std::unique_ptr and never look back.

The smart pointer APIs are remarkably varied. About the only functionality common
to all is default construction. Because comprehensive references for these APIs are
widely available, I’ll focus my discussions on information that’s often missing from
API overviews, e.g., noteworthy use cases, runtime cost analyses, etc. Mastering such
information can be the difference between merely using these smart pointers and
using them effectively.

Item 18: Use std::unique_ptr for exclusive-ownership
resource management.

When you reach for a smart pointer, std::unique_ptr should generally be the one
closest at hand. It’s reasonable to assume that, by default, std::unique_ptrs are the
same size as raw pointers, and for most operations (including dereferencing), they
execute exactly the same instructions. This means you can use them even in situa‐
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class Investment { … };

class Stock:
  public Investment { … };

class Bond:
  public Investment { … };

class RealEstate:
  public Investment { … };

Investment

BondStock RealEstate

tions where memory and cycles are tight. If a raw pointer is small enough and fast
enough for you, a std::unique_ptr almost certainly is, too.

std::unique_ptr embodies exclusive ownership semantics. A non-null std::
unique_ptr always owns what it points to. Moving a std::unique_ptr transfers
ownership from the source pointer to the destination pointer. (The source pointer is
set to null.) Copying a std::unique_ptr isn’t allowed, because if you could copy a
std::unique_ptr, you’d end up with two std::unique_ptrs to the same resource,
each thinking it owned (and should therefore destroy) that resource.
std::unique_ptr is thus a move-only type. Upon destruction, a non-null
std::unique_ptr destroys its resource. By default, resource destruction is accom‐
plished by applying delete to the raw pointer inside the std::unique_ptr.

A common use for std::unique_ptr is as a factory function return type for objects
in a hierarchy. Suppose we have a hierarchy for types of investments (e.g., stocks,
bonds, real estate, etc.) with a base class Investment.

A factory function for such a hierarchy typically allocates an object on the heap and
returns a pointer to it, with the caller being responsible for deleting the object when
it’s no longer needed. That’s a perfect match for std::unique_ptr, because the
caller acquires responsibility for the resource returned by the factory (i.e., exclusive
ownership of it), and the std::unique_ptr automatically deletes what it points to
when the std::unique_ptr is destroyed. A factory function for the Investment
hierarchy could be declared like this:

template<typename... Ts>              // return std::unique_ptr
std::unique_ptr<Investment>           // to an object created
makeInvestment(Ts&&... params);       // from the given args

Callers could use the returned std::unique_ptr in a single scope as follows,

{
  …
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1 There are a few exceptions to this rule. Most stem from abnormal program termination. If an exception prop‐
agates out of a thread’s primary function (e.g., main, for the program’s initial thread) or if a noexcept specifi‐
cation is violated (see Item 14), local objects may not be destroyed, and if std::abort or an exit function
(i.e., std::_Exit, std::exit, or std::quick_exit) is called, they definitely won’t be.

  auto pInvestment =              // pInvestment is of type
    makeInvestment( arguments );  // std::unique_ptr<Investment>

  …

}                                 // destroy *pInvestment

but they could also use it in ownership-migration scenarios, such as when the
std::unique_ptr returned from the factory is moved into a container, the container
element is subsequently moved into a data member of an object, and that object is
later destroyed. When that happens, the object’s std::unique_ptr data member
would also be destroyed, and its destruction would cause the resource returned from
the factory to be destroyed. If the ownership chain got interrupted due to an excep‐
tion or other atypical control flow (e.g., early function return or break from a loop),
the std::unique_ptr owning the managed resource would eventually have its
destructor called,1 and the resource it was managing would thereby be destroyed.

By default, that destruction would take place via delete, but, during construction,
std::unique_ptr objects can be configured to use custom deleters: arbitrary func‐
tions (or function objects, including those arising from lambda expressions) to be
invoked when it’s time for their resources to be destroyed. If the object created by
makeInvestment shouldn’t be directly deleted, but instead should first have a log
entry written, makeInvestment could be implemented as follows. (An explanation
follows the code, so don’t worry if you see something whose motivation is less than
obvious.)

auto delInvmt = [](Investment* pInvestment)       // custom
                {                                 // deleter
                  makeLogEntry(pInvestment);      // (a lambda
                  delete pInvestment;             // expression)
                };

template<typename... Ts>                          // revised
std::unique_ptr<Investment, decltype(delInvmt)>   // return type
makeInvestment(Ts&&... params)
{
  std::unique_ptr<Investment, decltype(delInvmt)> // ptr to be
    pInv(nullptr, delInvmt);                      // returned
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  if ( /* a Stock object should be created */ )
  {
    pInv.reset(new Stock(std::forward<Ts>(params)...));
  }
  else if ( /* a Bond object should be created */ )
  {
    pInv.reset(new Bond(std::forward<Ts>(params)...));
  }
  else if ( /* a RealEstate object should be created */ )
  {
    pInv.reset(new RealEstate(std::forward<Ts>(params)...));
  }

  return pInv;
}

In a moment, I’ll explain how this works, but first consider how things look if you’re
a caller. Assuming you store the result of the makeInvestment call in an auto vari‐
able, you frolic in blissful ignorance of the fact that the resource you’re using requires
special treatment during deletion. In fact, you veritably bathe in bliss, because the use
of std::unique_ptr means you need not concern yourself with when the resource
should be destroyed, much less ensure that the destruction happens exactly once
along every path through the program. std::unique_ptr takes care of all those
things automatically. From a client’s perspective, makeInvestment’s interface is
sweet.

The implementation is pretty nice, too, once you understand the following:

• delInvmt is the custom deleter for the object returned from makeInvestment.
All custom deletion functions accept a raw pointer to the object to be destroyed,
then do what is necessary to destroy that object. In this case, the action is to call
makeLogEntry and then apply delete. Using a lambda expression to create
delInvmt is convenient, but, as we’ll see shortly, it’s also more efficient than
writing a conventional function.

• When a custom deleter is to be used, its type must be specified as the second type
argument to std::unique_ptr. In this case, that’s the type of delInvmt, and
that’s why the return type of makeInvestment is std::unique_ptr<Invest
ment, decltype(delInvmt)>. (For information about decltype, see Item 3.)

• The basic strategy of makeInvestment is to create a null std::unique_ptr,
make it point to an object of the appropriate type, and then return it. To asso‐
ciate the custom deleter delInvmt with pInv, we pass that as its second construc‐
tor argument.
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• Attempting to assign a raw pointer (e.g., from new) to a std::unique_ptr won’t
compile, because it would constitute an implicit conversion from a raw to a
smart pointer. Such implicit conversions can be problematic, so C++11’s smart
pointers prohibit them. That’s why reset is used to have pInv assume owner‐
ship of the object created via new.

• With each use of new, we use std::forward to perfect-forward the arguments
passed to makeInvestment (see Item 25). This makes all the information pro‐
vided by callers available to the constructors of the objects being created.

• The custom deleter takes a parameter of type Investment*. Regardless of the
actual type of object created inside makeInvestment (i.e., Stock, Bond, or Real
Estate), it will ultimately be deleted inside the lambda expression as an Invest
ment* object. This means we’ll be deleting a derived class object via a base class
pointer. For that to work, the base class—Investment—must have a virtual 
destructor:

class Investment {
public:
  …                                             // essential
  virtual ~Investment();                        // design
  …                                             // component!
};

In C++14, the existence of function return type deduction (see Item 3) means that
makeInvestment could be implemented in this simpler and more encapsulated fash‐
ion:

template<typename... Ts>
auto makeInvestment(Ts&&... params)              // C++14
{
  auto delInvmt = [](Investment* pInvestment)    // this is now
                  {                              // inside
                    makeLogEntry(pInvestment);   // make-
                    delete pInvestment;          // Investment
                  };

  std::unique_ptr<Investment, decltype(delInvmt)>   // as
    pInv(nullptr, delInvmt);                        // before

  if ( … )                                          // as before
  {
    pInv.reset(new Stock(std::forward<Ts>(params)...));
  }
  else if ( … )                                     // as before
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  {
    pInv.reset(new Bond(std::forward<Ts>(params)...));
  }
  else if ( … )                                     // as before
  {
    pInv.reset(new RealEstate(std::forward<Ts>(params)...));
  }
  return pInv;                                      // as before
}

I remarked earlier that, when using the default deleter (i.e., delete), you can reason‐
ably assume that std::unique_ptr objects are the same size as raw pointers. When
custom deleters enter the picture, this may no longer be the case. Deleters that are
function pointers generally cause the size of a std::unique_ptr to grow from one
word to two. For deleters that are function objects, the change in size depends on
how much state is stored in the function object. Stateless function objects (e.g., from
lambda expressions with no captures) incur no size penalty, and this means that
when a custom deleter can be implemented as either a function or a captureless
lambda expression, the lambda is preferable:

auto delInvmt1 = [](Investment* pInvestment)      // custom
                 {                                // deleter
                   makeLogEntry(pInvestment);     // as
                   delete pInvestment;            // stateless
                 };                               // lambda

template<typename... Ts>                          // return type
std::unique_ptr<Investment, decltype(delInvmt1)>  // has size of
makeInvestment(Ts&&... args);                     // Investment*

void delInvmt2(Investment* pInvestment)           // custom
{                                                 // deleter
  makeLogEntry(pInvestment);                      // as function
  delete pInvestment;
}

template<typename... Ts>                 // return type has
std::unique_ptr<Investment,              // size of Investment*
                void (*)(Investment*)>   // plus at least size
makeInvestment(Ts&&... params);          // of function pointer!

Function object deleters with extensive state can yield std::unique_ptr objects of
significant size. If you find that a custom deleter makes your std::unique_ptrs
unacceptably large, you probably need to change your design.

Item 18 | 123



Factory functions are not the only common use case for std::unique_ptrs. They’re
even more popular as a mechanism for implementing the Pimpl Idiom. The code for
that isn’t complicated, but in some cases it’s less than straightforward, so I’ll refer you
to Item 22, which is dedicated to the topic.

std::unique_ptr comes in two forms, one for individual objects (std::
unique_ptr<T>) and one for arrays (std::unique_ptr<T[]>). As a result, there’s
never any ambiguity about what kind of entity a std::unique_ptr points to. The
std::unique_ptr API is designed to match the form you’re using. For example,
there’s no indexing operator (operator[]) for the single-object form, while the array
form lacks dereferencing operators (operator* and operator->).

The existence of std::unique_ptr for arrays should be of only intellectual interest
to you, because std::array, std::vector, and std::string are virtually always
better data structure choices than raw arrays. About the only situation I can conceive
of when a std::unique_ptr<T[]> would make sense would be when you’re using a
C-like API that returns a raw pointer to a heap array that you assume ownership of.

std::unique_ptr is the C++11 way to express exclusive ownership, but one of its
most attractive features is that it easily and efficiently converts to a std::
shared_ptr:

std::shared_ptr<Investment> sp =    // converts std::unique_ptr
  makeInvestment( arguments );      // to std::shared_ptr

This is a key part of why std::unique_ptr is so well suited as a factory function
return type. Factory functions can’t know whether callers will want to use exclusive-
ownership semantics for the object they return or whether shared ownership (i.e.,
std::shared_ptr) would be more appropriate. By returning a std::unique_ptr,
factories provide callers with the most efficient smart pointer, but they don’t hinder
callers from replacing it with its more flexible sibling. (For information about
std::shared_ptr, proceed to Item 19.)

Things to Remember
• std::unique_ptr is a small, fast, move-only smart pointer for managing

resources with exclusive-ownership semantics.
• By default, resource destruction takes place via delete, but custom deleters

can be specified. Stateful deleters and function pointers as deleters increase the
size of std::unique_ptr objects.

• Converting a std::unique_ptr to a std::shared_ptr is easy.
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Item 19: Use std::shared_ptr for shared-ownership
resource management.

Programmers using languages with garbage collection point and laugh at what C++
programmers go through to prevent resource leaks. “How primitive!” they jeer.
“Didn’t you get the memo from Lisp in the 1960s? Machines should manage resource
lifetimes, not humans.” C++ developers roll their eyes. “You mean the memo where
the only resource is memory and the timing of resource reclamation is nondetermin‐
istic? We prefer the generality and predictability of destructors, thank you.” But our
bravado is part bluster. Garbage collection really is convenient, and manual lifetime
management really can seem akin to constructing a mnemonic memory circuit using
stone knives and bear skins.  Why can’t we have the best of both worlds: a system that
works automatically (like garbage collection), yet applies to all resources and has pre‐
dictable timing (like destructors)?

std::shared_ptr is the C++11 way of binding these worlds together. An object
accessed via std::shared_ptrs has its lifetime managed by those pointers through
shared ownership. No specific std::shared_ptr owns the object. Instead, all
std::shared_ptrs pointing to it collaborate to ensure its destruction at the point
where it’s no longer needed. When the last std::shared_ptr pointing to an object
stops pointing there (e.g., because the std::shared_ptr is destroyed or made to
point to a different object), that std::shared_ptr destroys the object it points to. As
with garbage collection, clients need not concern themselves with managing the life‐
time of pointed-to objects, but as with destructors, the timing of the objects’ destruc‐
tion is deterministic.

A std::shared_ptr can tell whether it’s the last one pointing to a resource by con‐
sulting the resource’s reference count, a value associated with the resource that keeps
track of how many std::shared_ptrs point to it. std::shared_ptr constructors
increment this count (usually—see below), std::shared_ptr destructors decrement
it, and copy assignment operators do both. (If sp1 and sp2 are std::shared_ptrs to
different objects, the assignment “sp1 = sp2;” modifies sp1 such that it points to the
object pointed to by sp2. The net effect of the assignment is that the reference count
for the object originally pointed to by sp1 is decremented, while that for the object
pointed to by sp2 is incremented.) If a std::shared_ptr sees a reference count of
zero after performing a decrement, no more std::shared_ptrs point to the
resource, so the std::shared_ptr destroys it.

The existence of the reference count has performance implications:
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2 This implementation is not required by the Standard, but every Standard Library implementation I’m familiar
with employs it.

• std::shared_ptrs are twice the size of a raw pointer, because they internally
contain a raw pointer to the resource as well as a raw pointer to the resource’s
reference count.2

• Memory for the reference count must be dynamically allocated. Conceptually,
the reference count is associated with the object being pointed to, but pointed-to
objects know nothing about this. They thus have no place to store a reference
count. (A pleasant implication is that any object—even those of built-in types—
may be managed by std::shared_ptrs.) Item 21 explains that the cost of the
dynamic allocation is avoided when the std::shared_ptr is created by
std::make_shared, but there are situations where std::make_shared can’t be
used. Either way, the reference count is stored as dynamically allocated data.

• Increments and decrements of the reference count must be atomic, because
there can be simultaneous readers and writers in different threads. For example,
a std::shared_ptr pointing to a resource in one thread could be executing its
destructor (hence decrementing the reference count for the resource it points to),
while, in a different thread, a std::shared_ptr to the same object could be
copied (and therefore incrementing the same reference count). Atomic opera‐
tions are typically slower than non-atomic operations, so even though reference
counts are usually only a word in size, you should assume that reading and writ‐
ing them is comparatively costly.

Did I pique your curiosity when I wrote that std::shared_ptr constructors only
“usually” increment the reference count for the object they point to? Creating a
std::shared_ptr pointing to an object always yields one more std::shared_ptr
pointing to that object, so why mustn’t we always increment the reference count?

Move construction, that’s why. Move-constructing a std::shared_ptr from
another std::shared_ptr sets the source std::shared_ptr to null, and that means
that the old std::shared_ptr stops pointing to the resource at the moment the new
std::shared_ptr starts. As a result, no reference count manipulation is required.
Moving std::shared_ptrs is therefore faster than copying them: copying requires
incrementing the reference count, but moving doesn’t. This is as true for assignment
as for construction, so move construction is faster than copy construction, and move
assignment is faster than copy assignment.

Like std::unique_ptr (see Item 18), std::shared_ptr uses delete as its default
resource-destruction mechanism, but it also supports custom deleters.
The design of this support differs from that for std::unique_ptr, however. For
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std::unique_ptr, the type of the deleter is part of the type of the smart pointer. For
std::shared_ptr, it’s not:

auto loggingDel = [](Widget *pw)        // custom deleter
                  {                     // (as in Item 18)
                    makeLogEntry(pw);
                    delete pw;
                  };

std::unique_ptr<                        // deleter type is
  Widget, decltype(loggingDel)          // part of ptr type
  > upw(new Widget, loggingDel);

std::shared_ptr<Widget>                 // deleter type is not
  spw(new Widget, loggingDel);          // part of ptr type

The std::shared_ptr design is more flexible. Consider two std::shared_ptr
<Widget>s, each with a custom deleter of a different type (e.g., because the custom
deleters are specified via lambda expressions):

auto customDeleter1 = [](Widget *pw) { … };    // custom deleters,
auto customDeleter2 = [](Widget *pw) { … };    // each with a
                                               // different type

std::shared_ptr<Widget> pw1(new Widget, customDeleter1);
std::shared_ptr<Widget> pw2(new Widget, customDeleter2);

Because pw1 and pw2 have the same type, they can be placed in a container of objects
of that type:

std::vector<std::shared_ptr<Widget>> vpw{ pw1, pw2 };

They could also be assigned to one another, and they could each be passed to a func‐
tion taking a parameter of type std::shared_ptr<Widget>. None of these things
can be done with std::unique_ptrs that differ in the types of their custom deleters,
because the type of the custom deleter would affect the type of the std::unique_ptr.

In another difference from std::unique_ptr, specifying a custom deleter doesn’t
change the size of a std::shared_ptr object. Regardless of deleter, a
std::shared_ptr object is two pointers in size. That’s great news, but it should
make you vaguely uneasy. Custom deleters can be function objects, and function
objects can contain arbitrary amounts of data. That means they can be arbitrarily
large. How can a std::shared_ptr refer to a deleter of arbitrary size without using
any more memory?
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It can’t. It may have to use more memory. However, that memory isn’t part of the
std::shared_ptr object. It’s on the heap or, if the creator of the std::shared_ptr
took advantage of std::shared_ptr support for custom allocators, it’s wherever the
memory managed by the allocator is located. I remarked earlier that a
std::shared_ptr object contains a pointer to the reference count for the object it
points to. That’s true, but it’s a bit misleading, because the reference count is part of a
larger data structure known as the control block. There’s a control block for each
object managed by std::shared_ptrs. The control block contains, in addition to the
reference count, a copy of the custom deleter, if one has been specified. If a custom
allocator was specified, the control block contains a copy of that, too. The control
block may also contain additional data, including, as Item 21 explains, a secondary
reference count known as the weak count, but we’ll ignore such data in this Item. We
can envision the memory associated with a std::shared_ptr<T> object as looking
like this:

Ptr to T T Object

Reference Count

Weak Count

Other Data
(e.g., custom deleter,

allocator, etc.)

Control BlockPtr to Control Block

std::shared_ptr<T>

An object’s control block is set up by the function creating the first
std::shared_ptr to the object. At least that’s what’s supposed to happen. In gen‐
eral, it’s impossible for a function creating a std::shared_ptr to an object to know
whether some other std::shared_ptr already points to that object, so the following
rules for control block creation are used:

• std::make_shared (see Item 21) always creates a control block. It manufac‐
tures a new object to point to, so there is certainly no control block for that
object at the time std::make_shared is called.

• A control block is created when a std::shared_ptr is constructed from a
unique-ownership pointer (i.e., a std::unique_ptr or std::auto_ptr).
Unique-ownership pointers don’t use control blocks, so there should be no con‐
trol block for the pointed-to object. (As part of its construction, the
std::shared_ptr assumes ownership of the pointed-to object, so the unique-
ownership pointer is set to null.)
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• When a std::shared_ptr constructor is called with a raw pointer, it creates a
control block. If you wanted to create a std::shared_ptr from an object that
already had a control block, you’d presumably pass a std::shared_ptr or a
std::weak_ptr (see Item 20) as a constructor argument, not a raw pointer.
std::shared_ptr constructors taking std::shared_ptrs or std::weak_ptrs
as constructor arguments don’t create new control blocks, because they can rely
on the smart pointers passed to them to point to any necessary control blocks.

A consequence of these rules is that constructing more than one std::shared_ptr
from a single raw pointer gives you a complimentary ride on the particle accelerator
of undefined behavior, because the pointed-to object will have multiple control
blocks. Multiple control blocks means multiple reference counts, and multiple refer‐
ence counts means the object will be destroyed multiple times (once for each refer‐
ence count). That means that code like this is bad, bad, bad:

auto pw = new Widget;                          // pw is raw ptr

…

std::shared_ptr<Widget> spw1(pw, loggingDel);  // create control
                                               // block for *pw
…

std::shared_ptr<Widget> spw2(pw, loggingDel);  // create 2nd
                                               // control block
                                               // for *pw!

The creation of the raw pointer pw to a dynamically allocated object is bad, because it
runs contrary to the advice behind this entire chapter: to prefer smart pointers to raw
pointers. (If you’ve forgotten the motivation for that advice, refresh your memory on
page 115.) But set that aside. The line creating pw is a stylistic abomination, but at
least it doesn’t cause undefined program behavior.

Now, the constructor for spw1 is called with a raw pointer, so it creates a control
block (and thereby a reference count) for what’s pointed to. In this case, that’s *pw
(i.e., the object pointed to by pw). In and of itself, that’s okay, but the constructor for
spw2 is called with the same raw pointer, so it also creates a control block (hence a
reference count) for *pw. *pw thus has two reference counts, each of which will even‐
tually become zero, and that will ultimately lead to an attempt to destroy *pw twice.
The second destruction is responsible for the undefined behavior.

There are at least two lessons regarding std::shared_ptr use here. First, try to
avoid passing raw pointers to a std::shared_ptr constructor. The usual alternative
is to use std::make_shared (see Item 21), but in the example above, we’re using cus‐
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tom deleters, and that’s not possible with std::make_shared. Second, if you must
pass a raw pointer to a std::shared_ptr constructor, pass the result of new directly
instead of going through a raw pointer variable. If the first part of the code above
were rewritten like this,

std::shared_ptr<Widget> spw1(new Widget,    // direct use of new
                             loggingDel);

it’d be a lot less tempting to create a second std::shared_ptr from the same raw
pointer. Instead, the author of the code creating spw2 would naturally use spw1 as an
initialization argument (i.e., would call the std::shared_ptr copy constructor), and
that would pose no problem whatsoever:

std::shared_ptr<Widget> spw2(spw1);     // spw2 uses same
                                        // control block as spw1

An especially surprising way that using raw pointer variables as std::shared_ptr
constructor arguments can lead to multiple control blocks involves the this pointer.
Suppose our program uses std::shared_ptrs to manage Widget objects, and we
have a data structure that keeps track of Widgets that have been processed:

std::vector<std::shared_ptr<Widget>> processedWidgets;

Further suppose that Widget has a member function that does the processing:

class Widget {
public:
  …
  void process();
  …
};

Here’s a reasonable-looking approach for Widget::process:

void Widget::process()
{
  …                                       // process the Widget

  processedWidgets.emplace_back(this);    // add it to list of
}                                         // processed Widgets;
                                          // this is wrong!

The comment about this being wrong says it all—or at least most of it. (The part
that’s wrong is the passing of this, not the use of emplace_back. If you’re not famil‐
iar with emplace_back, see Item 42.) This code will compile, but it’s passing a raw
pointer (this) to a container of std::shared_ptrs. The std::shared_ptr thus
constructed will create a new control block for the pointed-to Widget (*this). That
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doesn’t sound harmful until you realize that if there are std::shared_ptrs outside
the member function that already point to that Widget, it’s game, set, and match for
undefined behavior.

The std::shared_ptr API includes a facility for just this kind of situation. It has
probably the oddest of all names in the Standard C++ Library: std::

enable_shared_from_this. That’s a template for a base class you inherit from if
you want a class managed by std::shared_ptrs to be able to safely create a
std::shared_ptr from a this pointer. In our example, Widget would inherit from
std::enable_shared_from_this as follows:

class Widget: public std::enable_shared_from_this<Widget> {
public:
  …
  void process();
  …
};

As I said, std::enable_shared_from_this is a base class template. Its type parame‐
ter is always the name of the class being derived, so Widget inherits from
std::enable_shared_from_this<Widget>. If the idea of a derived class inheriting
from a base class templatized on the derived class makes your head hurt, try not to
think about it. The code is completely legal, and the design pattern behind it is so well
established, it has a standard name, albeit one that’s almost as odd as
std::enable_shared_from_this. The name is The Curiously Recurring Template
Pattern (CRTP). If you’d like to learn more about it, unleash your search engine,
because here we need to get back to std::enable_shared_from_this.

std::enable_shared_from_this defines a member function that creates a
std::shared_ptr to the current object, but it does it without duplicating control
blocks. The member function is shared_from_this, and you use it in member func‐
tions whenever you want a std::shared_ptr that points to the same object as the
this pointer. Here’s a safe implementation of Widget::process:

void Widget::process()
{
  // as before, process the Widget
  …

  // add std::shared_ptr to current object to processedWidgets
  processedWidgets.emplace_back(shared_from_this());
}
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Internally, shared_from_this looks up the control block for the current object, and
it creates a new std::shared_ptr that refers to that control block. The design relies
on the current object having an associated control block. For that to be the case, there
must be an existing std::shared_ptr (e.g., one outside the member function calling
shared_from_this) that points to the current object. If no such std::shared_ptr
exists (i.e., if the current object has no associated control block), behavior is unde‐
fined, although shared_from_this typically throws an exception.

To prevent clients from calling member functions that invoke shared_from_this
before a std::shared_ptr points to the object, classes inheriting from
std::enable_shared_from_this often declare their constructors private and
have clients create objects by calling factory functions that return std::

shared_ptrs. Widget, for example, could look like this: 

class Widget: public std::enable_shared_from_this<Widget> {
public:
  // factory function that perfect-forwards args
  // to a private ctor
  template<typename... Ts>
  static std::shared_ptr<Widget> create(Ts&&... params);

  …
  void process();             // as before
  …

private:
  …                           // ctors
};

By now, you may only dimly recall that our discussion of control blocks was motiva‐
ted by a desire to understand the costs associated with std::shared_ptrs. Now that
we understand how to avoid creating too many control blocks, let’s return to the
original topic.

A control block is typically only a few words in size, although custom deleters and
allocators may make it larger. The usual control block implementation is more
sophisticated than you might expect. It makes use of inheritance, and there’s even a
virtual function. (It’s used to ensure that the pointed-to object is properly destroyed.)
That means that using std::shared_ptrs also incurs the cost of the machinery for
the virtual function used by the control block.

Having read about dynamically allocated control blocks, arbitrarily large deleters and
allocators, virtual function machinery, and atomic reference count manipulations,
your enthusiasm for std::shared_ptrs may have waned somewhat. That’s fine.
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They’re not the best solution to every resource management problem. But for the
functionality they provide, std::shared_ptrs exact a very reasonable cost. Under
typical conditions, where the default deleter and default allocator are used and where
the std::shared_ptr is created by std::make_shared, the control block is only
about three words in size, and its allocation is essentially free. (It’s incorporated into
the memory allocation for the object being pointed to. For details, see Item 21.)
Dereferencing a std::shared_ptr is no more expensive than dereferencing a raw
pointer. Performing an operation requiring a reference count manipulation (e.g.,
copy construction or copy assignment, destruction) entails one or two atomic opera‐
tions, but these operations typically map to individual machine instructions, so
although they may be expensive compared to non-atomic instructions, they’re still
just single instructions. The virtual function machinery in the control block is gener‐
ally used only once per object managed by std::shared_ptrs: when the object is
destroyed.

In exchange for these rather modest costs, you get automatic lifetime management of
dynamically allocated resources. Most of the time, using std::shared_ptr is vastly
preferable to trying to manage the lifetime of an object with shared ownership by
hand. If you find yourself doubting whether you can afford use of std::shared_ptr,
reconsider whether you really need shared ownership. If exclusive ownership will do
or even may do, std::unique_ptr is a better choice. Its performance profile is close
to that for raw pointers, and “upgrading” from std::unique_ptr to std::
shared_ptr is easy, because a std::shared_ptr can be created from a std::
unique_ptr.

The reverse is not true. Once you’ve turned lifetime management of a resource over
to a std::shared_ptr, there’s no changing your mind. Even if the reference count is
one, you can’t reclaim ownership of the resource in order to, say, have a
std::unique_ptr manage it. The ownership contract between a resource and the
std::shared_ptrs that point to it is of the ’til-death-do-us-part variety. No divorce,
no annulment, no dispensations.

Something else std::shared_ptrs can’t do is work with arrays. In yet another dif‐
ference from std::unique_ptr, std::shared_ptr has an API that’s designed only
for pointers to single objects. There’s no std::shared_ptr<T[]>. From time to
time, “clever” programmers stumble on the idea of using a std::shared_ptr<T> to
point to an array, specifying a custom deleter to perform an array delete (i.e., delete
[]). This can be made to compile, but it’s a horrible idea. For one thing,
std::shared_ptr offers no operator[], so indexing into the array requires awk‐
ward expressions based on pointer arithmetic. For another, std::shared_ptr sup‐
ports derived-to-base pointer conversions that make sense for single objects, but that
open holes in the type system when applied to arrays. (For this reason, the
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std::unique_ptr<T[]> API prohibits such conversions.) Most importantly, given
the variety of C++11 alternatives to built-in arrays (e.g., std::array, std::vector,
std::string), declaring a smart pointer to a dumb array is almost always a sign of
bad design.

Things to Remember
• std::shared_ptrs offer convenience approaching that of garbage collection

for the shared lifetime management of arbitrary resources.
• Compared to std::unique_ptr, std::shared_ptr objects are typically

twice as big, incur overhead for control blocks, and require atomic reference
count manipulations.

• Default resource destruction is via delete, but custom deleters are supported.
The type of the deleter has no effect on the type of the std::shared_ptr.

• Avoid creating std::shared_ptrs from variables of raw pointer type.

Item 20: Use std::weak_ptr for std::shared_ptr-
like pointers that can dangle.

Paradoxically, it can be convenient to have a smart pointer that acts like a
std::shared_ptr (see Item 19), but that doesn’t participate in the shared ownership
of the pointed-to resource. In other words, a pointer like std::shared_ptr that
doesn’t affect an object’s reference count. This kind of smart pointer has to contend
with a problem unknown to std::shared_ptrs: the possibility that what it points to
has been destroyed. A truly smart pointer would deal with this problem by tracking
when it dangles, i.e., when the object it is supposed to point to no longer exists. That’s
precisely the kind of smart pointer std::weak_ptr is. 

You may be wondering how a std::weak_ptr could be useful. You’ll probably won‐
der even more when you examine the std::weak_ptr API. It looks anything but
smart. std::weak_ptrs can’t be dereferenced, nor can they be tested for nullness.
That’s because std::weak_ptr isn’t a standalone smart pointer. It’s an augmentation
of std::shared_ptr.

The relationship begins at birth. std::weak_ptrs are typically created from
std::shared_ptrs. They point to the same place as the std::shared_ptrs initializ‐
ing them, but they don’t affect the reference count of the object they point to:

auto spw =                       // after spw is constructed,
  std::make_shared<Widget>();    // the pointed-to Widget's
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                                 // ref count (RC) is 1. (See
                                 // Item 21 for info on
                                 // std::make_shared.)
…

std::weak_ptr<Widget> wpw(spw);  // wpw points to same Widget
                                 // as spw. RC remains 1
…

spw = nullptr;                   // RC goes to 0, and the
                                 // Widget is destroyed.
                                 // wpw now dangles

std::weak_ptrs that dangle are said to have expired. You can test for this directly,

if (wpw.expired()) …             // if wpw doesn't point
                                 // to an object…

but often what you desire is a check to see if a std::weak_ptr has expired and, if it
hasn’t (i.e., if it’s not dangling), to access the object it points to. This is easier desired
than done. Because std::weak_ptrs lack dereferencing operations, there’s no way to
write the code. Even if there were, separating the check and the dereference would
introduce a race condition: between the call to expired and the dereferencing action,
another thread might reassign or destroy the last std::shared_ptr pointing to the
object, thus causing that object to be destroyed. In that case, your dereference would
yield undefined behavior.

What you need is an atomic operation that checks to see if the std::weak_ptr has
expired and, if not, gives you access to the object it points to. This is done by creating
a std::shared_ptr from the std::weak_ptr. The operation comes in two forms,
depending on what you’d like to have happen if the std::weak_ptr has expired
when you try to create a std::shared_ptr from it. One form is std::

weak_ptr::lock, which returns a std::shared_ptr. The std::shared_ptr is null
if the std::weak_ptr has expired:

std::shared_ptr<Widget> spw1 = wpw.lock();  // if wpw's expired,
                                            // spw1 is null

auto spw2 = wpw.lock();                     // same as above,
                                            // but uses auto

The other form is the std::shared_ptr constructor taking a std::weak_ptr as an
argument. In this case, if the std::weak_ptr has expired, an exception is thrown:

std::shared_ptr<Widget> spw3(wpw);    // if wpw's expired,
                                      // throw std::bad_weak_ptr
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But you’re probably still wondering about how std::weak_ptrs can be useful. Con‐
sider a factory function that produces smart pointers to read-only objects based on a
unique ID. In accord with Item 18’s advice regarding factory function return types, it
returns a std::unique_ptr:

std::unique_ptr<const Widget> loadWidget(WidgetID id);

If loadWidget is an expensive call (e.g., because it performs file or database I/O) and
it’s common for IDs to be used repeatedly, a reasonable optimization would be to
write a function that does what loadWidget does, but also caches its results. Clogging
the cache with every Widget that has ever been requested can lead to performance
problems of its own, however, so another reasonable optimization would be to
destroy cached Widgets when they’re no longer in use.

For this caching factory function, a std::unique_ptr return type is not a good fit.
Callers should certainly receive smart pointers to cached objects, and callers should
certainly determine the lifetime of those objects, but the cache needs a pointer to the
objects, too. The cache’s pointers need to be able to detect when they dangle, because
when factory clients are finished using an object returned by the factory, that object
will be destroyed, and the corresponding cache entry will dangle. The cached pointers
should therefore be std::weak_ptrs—pointers that can detect when they dangle.
That means that the factory’s return type should be a std::shared_ptr, because
std::weak_ptrs can detect when they dangle only when an object’s lifetime is man‐
aged by std::shared_ptrs.

Here’s a quick-and-dirty implementation of a caching version of loadWidget:

std::shared_ptr<const Widget> fastLoadWidget(WidgetID id)
{
  static std::unordered_map<WidgetID,
                            std::weak_ptr<const Widget>> cache;

  auto objPtr = cache[id].lock();   // objPtr is std::shared_ptr
                                    // to cached object (or null
                                    // if object's not in cache)

  if (!objPtr) {                    // if not in cache,
    objPtr = loadWidget(id);        // load it
    cache[id] = objPtr;             // cache it
  }
  return objPtr;
}
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This implementation employs one of C++11’s hash table containers (std::unor
dered_map), though it doesn’t show the WidgetID hashing and equality-comparison
functions that would also have to be present.

The implementation of fastLoadWidget ignores the fact that the cache may accu‐
mulate expired std::weak_ptrs corresponding to Widgets that are no longer in use
(and have therefore been destroyed). The implementation can be refined, but rather
than spend time on an issue that lends no additional insight into std::weak_ptrs,
let’s consider a second use case: the Observer design pattern. The primary compo‐
nents of this pattern are subjects (objects whose state may change) and observers
(objects to be notified when state changes occur). In most implementations, each
subject contains a data member holding pointers to its observers. That makes it easy
for subjects to issue state change notifications. Subjects have no interest in control‐
ling the lifetime of their observers (i.e., when they’re destroyed), but they have a great
interest in making sure that if an observer gets destroyed, subjects don’t try to subse‐
quently access it. A reasonable design is for each subject to hold a container of
std::weak_ptrs to its observers, thus making it possible for the subject to determine
whether a pointer dangles before using it.

As a final example of std::weak_ptr’s utility, consider a data structure with objects
A, B, and C in it, where A and C share ownership of B and therefore hold
std::shared_ptrs to it:

A B C
std::shared_ptr std::shared_ptr

Suppose it’d be useful to also have a pointer from B back to A. What kind of pointer
should this be?

A B C
std::shared_ptr

???

std::shared_ptr

There are three choices:

• A raw pointer. With this approach, if A is destroyed, but C continues to point to
B, B will contain a pointer to A that will dangle. B won’t be able to detect that, so B
may inadvertently dereference the dangling pointer. That would yield undefined
behavior.

• A std::shared_ptr. In this design, A and B contain std::shared_ptrs to each
other. The resulting std::shared_ptr cycle (A points to B and B points to A) will

Item 20 | 137



prevent both A and B from being destroyed. Even if A and B are unreachable from
other program data structures (e.g., because C no longer points to B), each will
have a reference count of one. If that happens, A and B will have been leaked, for
all practical purposes: it will be impossible for the program to access them, yet
their resources will never be reclaimed.

• A std::weak_ptr. This avoids both problems above. If A is destroyed, B’s
pointer back to it will dangle, but B will be able to detect that. Furthermore,
though A and B will point to one another, B’s pointer won’t affect A’s reference
count, hence can’t keep A from being destroyed when std::shared_ptrs no
longer point to it.

Using std::weak_ptr is clearly the best of these choices. However, it’s worth noting
that the need to employ std::weak_ptrs to break prospective cycles of std::
shared_ptrs is not terribly common. In strictly hierarchal data structures such as
trees, child nodes are typically owned only by their parents. When a parent node is
destroyed, its child nodes should be destroyed, too. Links from parents to children
are thus generally best represented by std::unique_ptrs. Back-links from children
to parents can be safely implemented as raw pointers, because a child node should
never have a lifetime longer than its parent. There’s thus no risk of a child node
dereferencing a dangling parent pointer.

Of course, not all pointer-based data structures are strictly hierarchical, and when
that’s the case, as well as in situations such as caching and the implementation of lists
of observers, it’s nice to know that std::weak_ptr stands at the ready.

From an efficiency perspective, the std::weak_ptr story is essentially the same as
that for std::shared_ptr. std::weak_ptr objects are the same size as std::
shared_ptr objects, they make use of the same control blocks as std::

shared_ptrs (see Item 19), and operations such as construction, destruction, and
assignment involve atomic reference count manipulations. That probably surprises
you, because I wrote at the beginning of this Item that std::weak_ptrs don’t partici‐
pate in reference counting. Except that’s not quite what I wrote. What I wrote was
that std::weak_ptrs don’t participate in the shared ownership of objects and hence
don’t affect the pointed-to object’s reference count. There’s actually a second reference
count in the control block, and it’s this second reference count that std::weak_ptrs
manipulate. For details, continue on to Item 21.
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3 To create a full-featured make_unique with the smallest effort possible, search for the standardization docu‐
ment that gave rise to it, then copy the implementation you’ll find there. The document you want is N3656 by
Stephan T. Lavavej, dated 2013-04-18.

Things to Remember
• Use std::weak_ptr for std::shared_ptr-like pointers that can dangle.
• Potential use cases for std::weak_ptr include caching, observer lists, and the

prevention of std::shared_ptr cycles.

Item 21: Prefer std::make_unique and
std::make_shared to direct use of new.

Let’s begin by leveling the playing field for std::make_unique and std::

make_shared. std::make_shared is part of C++11, but, sadly, std::make_

unique isn’t. It joined the Standard Library as of C++14. If you’re using C++11,
never fear, because a basic version of std::make_unique is easy to write yourself.
Here, look:

template<typename T, typename... Ts>
std::unique_ptr<T> make_unique(Ts&&... params)
{
  return std::unique_ptr<T>(new T(std::forward<Ts>(params)...));
}

As you can see, make_unique just perfect-forwards its parameters to the constructor
of the object being created, constructs a std::unique_ptr from the raw pointer new
produces, and returns the std::unique_ptr so created. This form of the function
doesn’t support arrays or custom deleters (see Item 18), but it demonstrates that with
only a little effort, you can create make_unique if you need to.3 Just remember not to
put your version in namespace std, because you won’t want it to clash with a vendor-
provided version when you upgrade to a C++14 Standard Library implementation.

std::make_unique and std::make_shared are two of the three make functions:
functions that take an arbitrary set of arguments, perfect-forward them to the con‐
structor for a dynamically allocated object, and return a smart pointer to that object.
The third make function is std::allocate_shared. It acts just like
std::make_shared, except its first argument is an allocator object to be used for the
dynamic memory allocation.
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Even the most trivial comparison of smart pointer creation using and not using a
make function reveals the first reason why using such functions is preferable. Con‐
sider:

auto upw1(std::make_unique<Widget>());      // with make func

std::unique_ptr<Widget> upw2(new Widget);   // without make func

auto spw1(std::make_shared<Widget>());      // with make func

std::shared_ptr<Widget> spw2(new Widget);   // without make func

I’ve highlighted the essential difference: the versions using new repeat the type being
created, but the make functions don’t. Repeating types runs afoul of a key tenet of
software engineering: code duplication should be avoided. Duplication in source
code increases compilation times, can lead to bloated object code, and generally ren‐
ders a code base more difficult to work with. It often evolves into inconsistent code,
and inconsistency in a code base often leads to bugs. Besides, typing something twice
takes more effort than typing it once, and who’s not a fan of reducing their typing
burden?

The second reason to prefer make functions has to do with exception safety. Suppose
we have a function to process a Widget in accord with some priority:

void processWidget(std::shared_ptr<Widget> spw, int priority);

Passing the std::shared_ptr by value may look suspicious, but Item 41 explains
that if processWidget always makes a copy of the std::shared_ptr (e.g., by storing
it in a data structure tracking Widgets that have been processed), this can be a rea‐
sonable design choice.

Now suppose we have a function to compute the relevant priority,

int computePriority();

and we use that in a call to processWidget that uses new instead of
std::make_shared:

processWidget(std::shared_ptr<Widget>(new Widget),  // potential
              computePriority());                   // resource
                                                    // leak!

As the comment indicates, this code could leak the Widget conjured up by new. But
how? Both the calling code and the called function are using std::shared_ptrs, and
std::shared_ptrs are designed to prevent resource leaks. They automatically
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destroy what they point to when the last std::shared_ptr pointing there goes away.
If everybody is using std::shared_ptrs everywhere, how can this code leak?

The answer has to do with compilers’ translation of source code into object code. At
runtime, the arguments for a function must be evaluated before the function can be
invoked, so in the call to processWidget, the following things must occur before
processWidget can begin execution:

• The expression “new Widget” must be evaluated, i.e., a Widget must be created
on the heap.

• The constructor for the std::shared_ptr<Widget> responsible for managing
the pointer produced by new must be executed.

• computePriority must run.

Compilers are not required to generate code that executes them in this order. “new
Widget” must be executed before the std::shared_ptr constructor may be called,
because the result of that new is used as an argument to that constructor, but compute
Priority may be executed before those calls, after them, or, crucially, between them.
That is, compilers may emit code to execute the operations in this order:

1. Perform “new Widget”.
2. Execute computePriority.
3. Run std::shared_ptr constructor.

If such code is generated and, at runtime, computePriority produces an exception,
the dynamically allocated Widget from Step 1 will be leaked, because it will never be
stored in the std::shared_ptr that’s supposed to start managing it in Step 3.

Using std::make_shared avoids this problem. Calling code would look like this:

processWidget(std::make_shared<Widget>(),   // no potential
              computePriority());           // resource leak

At runtime, either std::make_shared or computePriority will be called first. If it’s
std::make_shared, the raw pointer to the dynamically allocated Widget is safely
stored in the returned std::shared_ptr before computePriority is called. If compu
tePriority then yields an exception, the std::shared_ptr destructor will see to it
that the Widget it owns is destroyed. And if computePriority is called first and
yields an exception, std::make_shared will not be invoked, and there will hence be
no dynamically allocated Widget to worry about.
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If we replace std::shared_ptr and std::make_shared with std::unique_ptr and
std::make_unique, exactly the same reasoning applies. Using std::make_unique
instead of new is thus just as important in writing exception-safe code as using
std::make_shared.

A special feature of std::make_shared (compared to direct use of new) is improved
efficiency. Using std::make_shared allows compilers to generate smaller, faster
code that employs leaner data structures. Consider the following direct use of new:

std::shared_ptr<Widget> spw(new Widget);

It’s obvious that this code entails a memory allocation, but it actually performs two.
Item 19 explains that every std::shared_ptr points to a control block containing,
among other things, the reference count for the pointed-to object. Memory for this
control block is allocated in the std::shared_ptr constructor. Direct use of new,
then, requires one memory allocation for the Widget and a second allocation for the
control block.

If std::make_shared is used instead,

auto spw = std::make_shared<Widget>();

one allocation suffices. That’s because std::make_shared allocates a single chunk of
memory to hold both the Widget object and the control block. This optimization
reduces the static size of the program, because the code contains only one memory
allocation call, and it increases the speed of the executable code, because memory is
allocated only once. Furthermore, using std::make_shared obviates the need for
some of the bookkeeping information in the control block, potentially reducing the
total memory footprint for the program.

The efficiency analysis for std::make_shared is equally applicable to std::allo
cate_shared, so the performance advantages of std::make_shared extend to that
function, as well.

The arguments for preferring make functions over direct use of new are strong ones.
Despite their software engineering, exception safety, and efficiency advantages, how‐
ever, this Item’s guidance is to prefer the make functions, not to rely on them exclu‐
sively. That’s because there are circumstances where they can’t or shouldn’t be used.

For example, none of the make functions permit the specification of custom deleters
(see Items 18 and 19), but both std::unique_ptr and std::shared_ptr have con‐
structors that do. Given a custom deleter for a Widget,

auto widgetDeleter = [](Widget* pw) { … };

creating a smart pointer using it is straightforward using new:
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std::unique_ptr<Widget, decltype(widgetDeleter)>
  upw(new Widget, widgetDeleter);

std::shared_ptr<Widget> spw(new Widget, widgetDeleter);

There’s no way to do the same thing with a make function.

A second limitation of make functions stems from a syntactic detail of their imple‐
mentations. Item 7 explains that when creating an object whose type overloads con‐
structors both with and without std::initializer_list parameters, creating the
object using braces prefers the std::initializer_list constructor, while creating
the object using parentheses calls the non-std::initializer_list constructor.
The make functions perfect-forward their parameters to an object’s constructor, but
do they do so using parentheses or using braces? For some types, the answer to this
question makes a big difference. For example, in these calls,

auto upv = std::make_unique<std::vector<int>>(10, 20);

auto spv = std::make_shared<std::vector<int>>(10, 20);

do the resulting smart pointers point to std::vectors with 10 elements, each of
value 20, or to std::vectors with two elements, one with value 10 and the other
with value 20? Or is the result indeterminate?

The good news is that it’s not indeterminate: both calls create std::vectors of size
10 with all values set to 20. That means that within the make functions, the perfect
forwarding code uses parentheses, not braces. The bad news is that if you want to
construct your pointed-to object using a braced initializer, you must use new directly.
Using a make function would require the ability to perfect-forward a braced initial‐
izer, but, as Item 30 explains, braced initializers can’t be perfect-forwarded. However,
Item 30 also describes a workaround: use auto type deduction to create a std::ini
tializer_list object from a braced initializer (see Item 2), then pass the auto-
created object through the make function:

// create std::initializer_list
auto initList = { 10, 20 };

// create std::vector using std::initializer_list ctor
auto spv = std::make_shared<std::vector<int>>(initList);

For std::unique_ptr, these two scenarios (custom deleters and braced initializers)
are the only ones where its make functions are problematic. For std::shared_ptr
and its make functions, there are two more. Both are edge cases, but some developers
live on the edge, and you may be one of them.
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4 In practice, the value of the weak count isn’t always equal to the number of std::weak_ptrs referring to the
control block, because library implementers have found ways to slip additional information into the weak
count that facilitate better code generation. For purposes of this Item, we’ll ignore this and assume that the
weak count’s value is the number of std::weak_ptrs referring to the control block.

Some classes define their own versions of operator new and operator delete. The
presence of these functions implies that the global memory allocation and dealloca‐
tion routines for objects of these types are inappropriate. Often, class-specific rou‐
tines are designed only to allocate and deallocate chunks of memory of precisely the
size of objects of the class, e.g., operator new and operator delete for class Widget
are often designed only to handle allocation and deallocation of chunks of memory of
exactly size sizeof(Widget). Such routines are a poor fit for std::shared_ptr’s
support for custom allocation (via std::allocate_shared) and deallocation (via
custom deleters), because the amount of memory that std::allocate_shared
requests isn’t the size of the dynamically allocated object, it’s the size of that object
plus the size of a control block. Consequently, using make functions to create objects
of types with class-specific versions of operator new and operator delete is typi‐
cally a poor idea.

The size and speed advantages of std::make_shared vis-à-vis direct use of new stem
from std::shared_ptr’s control block being placed in the same chunk of memory
as the managed object. When that object’s reference count goes to zero, the object is
destroyed (i.e., its destructor is called). However, the memory it occupies can’t be
released until the control block has also been destroyed, because the same chunk of
dynamically allocated memory contains both.

As I noted, the control block contains bookkeeping information beyond just the ref‐
erence count itself. The reference count tracks how many std::shared_ptrs refer to
the control block, but the control block contains a second reference count, one that
tallies how many std::weak_ptrs refer to the control block. This second reference
count is known as the weak count.4 When a std::weak_ptr checks to see if it has
expired (see Item 19), it does so by examining the reference count (not the weak
count) in the control block that it refers to. If the reference count is zero (i.e., if the
pointed-to object has no std::shared_ptrs referring to it and has thus been
destroyed), the std::weak_ptr has expired. Otherwise, it hasn’t.

As long as std::weak_ptrs refer to a control block (i.e., the weak count is greater
than zero), that control block must continue to exist. And as long as a control block
exists, the memory containing it must remain allocated. The memory allocated by a
std::shared_ptr make function, then, can’t be deallocated until the last
std::shared_ptr and the last std::weak_ptr referring to it have been destroyed.
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If the object type is quite large and the time between destruction of the last
std::shared_ptr and the last std::weak_ptr is significant, a lag can occur between
when an object is destroyed and when the memory it occupied is freed:

class ReallyBigType { … };

auto pBigObj =                          // create very large
  std::make_shared<ReallyBigType>();    // object via
                                        // std::make_shared

…            // create std::shared_ptrs and std::weak_ptrs to
             // large object, use them to work with it

…            // final std::shared_ptr to object destroyed here,
             // but std::weak_ptrs to it remain

…            // during this period, memory formerly occupied
             // by large object remains allocated

…            // final std::weak_ptr to object destroyed here;
             // memory for control block and object is released

With a direct use of new, the memory for the ReallyBigType object can be released
as soon as the last std::shared_ptr to it is destroyed:

class ReallyBigType { … };              // as before

std::shared_ptr<ReallyBigType> pBigObj(new ReallyBigType);
                                        // create very large
                                        // object via new

…            // as before, create std::shared_ptrs and
             // std::weak_ptrs to object, use them with it

…            // final std::shared_ptr to object destroyed here,
             // but std::weak_ptrs to it remain;
             // memory for object is deallocated

…            // during this period, only memory for the
             // control block remains allocated

…            // final std::weak_ptr to object destroyed here;
             // memory for control block is released

Should you find yourself in a situation where use of std::make_shared is impossible
or inappropriate, you’ll want to guard yourself against the kind of exception-safety
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problems we saw earlier. The best way to do that is to make sure that when you use
new directly, you immediately pass the result to a smart pointer constructor in a
statement that does nothing else. This prevents compilers from generating code that
could emit an exception between the use of new and invocation of the constructor for
the smart pointer that will manage the newed object.

As an example, consider a minor revision to the exception-unsafe call to the process
Widget function we examined earlier. This time, we’ll specify a custom deleter:

void processWidget(std::shared_ptr<Widget> spw,  // as before
                   int priority);

void cusDel(Widget *ptr);                        // custom
                                                 // deleter

Here’s the exception-unsafe call:

processWidget(                                   // as before,
  std::shared_ptr<Widget>(new Widget, cusDel),   // potential
  computePriority()                              // resource
);                                               // leak!

Recall: if computePriority is called after “new Widget” but before the
std::shared_ptr constructor, and if computePriority yields an exception, the
dynamically allocated Widget will be leaked.

Here the use of a custom deleter precludes use of std::make_shared, so the way to
avoid the problem is to put the allocation of the Widget and the construction of the
std::shared_ptr into their own statement, then call processWidget with the
resulting std::shared_ptr. Here’s the essence of the technique, though, as we’ll see
in a moment, we can tweak it to improve its performance:

std::shared_ptr<Widget> spw(new Widget, cusDel);

processWidget(spw, computePriority());     // correct, but not
                                           // optimal; see below

This works, because a std::shared_ptr assumes ownership of the raw pointer
passed to its constructor, even if that constructor yields an exception. In this example,
if spw’s constructor throws an exception (e.g., due to an inability to dynamically allo‐
cate memory for a control block), it’s still guaranteed that cusDel will be invoked on
the pointer resulting from “new Widget”.

The minor performance hitch is that in the exception-unsafe call, we’re passing an
rvalue to processWidget,
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processWidget(
  std::shared_ptr<Widget>(new Widget, cusDel),  // arg is rvalue
  computePriority()
);

but in the exception-safe call, we’re passing an lvalue:

processWidget(spw, computePriority());          // arg is lvalue

Because processWidget’s std::shared_ptr parameter is passed by value, construc‐
tion from an rvalue entails only a move, while construction from an lvalue requires a
copy. For std::shared_ptr, the difference can be significant, because copying a
std::shared_ptr requires an atomic increment of its reference count, while moving
a std::shared_ptr requires no reference count manipulation at all. For the
exception-safe code to achieve the level of performance of the exception-unsafe code,
we need to apply std::move to spw to turn it into an rvalue (see Item 23):

processWidget(std::move(spw),            // both efficient and
              computePriority());        // exception safe

That’s interesting and worth knowing, but it’s also typically irrelevant, because you’ll
rarely have a reason not to use a make function. And unless you have a compelling
reason for doing otherwise, using a make function is what you should do.

Things to Remember
• Compared to direct use of new, make functions eliminate source code duplica‐

tion, improve exception safety, and, for std::make_shared and std::allo
cate_shared, generate code that’s smaller and faster.

• Situations where use of make functions is inappropriate include the need to
specify custom deleters and a desire to pass braced initializers.

• For std::shared_ptrs, additional situations where make functions may be
ill-advised include (1) classes with custom memory management and (2) sys‐
tems with memory concerns, very large objects, and std::weak_ptrs that
outlive the corresponding std::shared_ptrs.

Item 22: When using the Pimpl Idiom, define special
member functions in the implementation file.

If you’ve ever had to combat excessive build times, you’re familiar with the Pimpl
(“pointer to implementation”) Idiom. That’s the technique whereby you replace the
data members of a class with a pointer to an implementation class (or struct), put the
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data members that used to be in the primary class into the implementation class, and
access those data members indirectly through the pointer. For example, suppose
Widget looks like  this:

class Widget {                     // in header "widget.h"
public:
  Widget();
  …
private:
  std::string name;
  std::vector<double> data;
  Gadget g1, g2, g3;               // Gadget is some user-
};                                 // defined type

Because Widget’s data members are of types std::string, std::vector, and
Gadget, headers for those types must be present for Widget to compile, and that
means that Widget clients must #include <string>, <vector>, and gadget.h.
Those headers increase the compilation time for Widget clients, plus they make those
clients dependent on the contents of the headers. If a header’s content changes,
Widget clients must recompile. The standard headers <string> and <vector> don’t
change very often, but it could be that gadget.h is subject to frequent revision.

Applying the Pimpl Idiom in C++98 could have Widget replace its data members
with a raw pointer to a struct that has been declared, but not defined:

class Widget {                 // still in header "widget.h"
public:
  Widget();
  ~Widget();                   // dtor is needed—see below
  …

private:
  struct Impl;                 // declare implementation struct
  Impl *pImpl;                 // and pointer to it
};

Because Widget no longer mentions the types std::string, std::vector, and
Gadget, Widget clients no longer need to #include the headers for these types. That
speeds compilation, and it also means that if something in these headers changes,
Widget clients are unaffected.

A type that has been declared, but not defined, is known as an incomplete type.
Widget::Impl is such a type. There are very few things you can do with an incom‐
plete type, but declaring a pointer to it is one of them. The Pimpl Idiom takes advan‐
tage of that.
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Part 1 of the Pimpl Idiom is the declaration of a data member that’s a pointer to an
incomplete type. Part 2 is the dynamic allocation and deallocation of the object that
holds the data members that used to be in the original class. The allocation and deal‐
location code goes in the implementation file, e.g., for Widget, in widget.cpp:

#include "widget.h"            // in impl. file "widget.cpp"
#include "gadget.h"
#include <string>
#include <vector>

struct Widget::Impl {          // definition of Widget::Impl
  std::string name;            // with data members formerly
  std::vector<double> data;    // in Widget
  Gadget g1, g2, g3;
};

Widget::Widget()               // allocate data members for
: pImpl(new Impl)              // this Widget object
{}

Widget::~Widget()              // destroy data members for
{ delete pImpl; }              // this object

Here I’m showing #include directives to make clear that the overall dependencies on
the headers for std::string, std::vector, and Gadget continue to exist. However,
these dependencies have been moved from widget.h (which is visible to and used by
Widget clients) to widget.cpp (which is visible to and used only by the Widget
implementer). I’ve also highlighted the code that dynamically allocates and deallo‐
cates the Impl object. The need to deallocate this object when a Widget is destroyed
is what necessitates the Widget destructor.

But I’ve shown you C++98 code, and that reeks of a bygone millennium. It uses raw
pointers and raw new and raw delete and it’s all just so…raw. This chapter is built
on the idea that smart pointers are preferable to raw pointers, and if what we want is
to dynamically allocate a Widget::Impl object inside the Widget constructor and
have it destroyed at the same time the Widget is, std::unique_ptr (see Item 18) is
precisely the tool we need. Replacing the raw pImpl pointer with a std::unique_ptr
yields this code for the header file,

class Widget {                      // in "widget.h"
public:
  Widget();
  …

private:
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  struct Impl; 
  std::unique_ptr<Impl> pImpl;      // use smart pointer
};                                  // instead of raw pointer

and this for the implementation file:

#include "widget.h"                 // in "widget.cpp"
#include "gadget.h"
#include <string>
#include <vector>

struct Widget::Impl {               // as before
  std::string name;
  std::vector<double> data;
  Gadget g1, g2, g3;
};

Widget::Widget()                    // per Item 21, create
: pImpl(std::make_unique<Impl>())   // std::unique_ptr
{}                                  // via std::make_unique

You’ll note that the Widget destructor is no longer present. That’s because we have
no code to put into it. std::unique_ptr automatically deletes what it points to when
it (the std::unique_ptr) is destroyed, so we need not delete anything ourselves.
That’s one of the attractions of smart pointers: they eliminate the need for us to sully
our hands with manual resource release.

This code compiles, but, alas, the most trivial client use doesn’t:

#include "widget.h"

Widget w;                           // error!

The error message you receive depends on the compiler you’re using, but the text
generally mentions something about applying sizeof or delete to an incomplete
type. Those operations aren’t among the things you can do with such types.

This apparent failure of the Pimpl Idiom using std::unique_ptrs is alarming,
because (1) std::unique_ptr is advertised as supporting incomplete types, and (2)
the Pimpl Idiom is one of std::unique_ptrs most common use cases. Fortunately,
getting the code to work is easy. All that’s required is a basic understanding of the
cause of the problem.

The issue arises due to the code that’s generated when w is destroyed (e.g., goes out of
scope). At that point, its destructor is called. In the class definition using
std::unique_ptr, we didn’t declare a destructor, because we didn’t have any code to
put into it. In accord with the usual rules for compiler-generated special member
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functions (see Item 17), the compiler generates a destructor for us. Within that
destructor, the compiler inserts code to call the destructor for Widget’s data member
pImpl. pImpl is a std::unique_ptr<Widget::Impl>, i.e., a std::unique_ptr
using the default deleter. The default deleter is a function that uses delete on the raw
pointer inside the std::unique_ptr. Prior to using delete, however, implementa‐
tions typically have the default deleter employ C++11’s static_assert to ensure 
that the raw pointer doesn’t point to an incomplete type. When the compiler gener‐
ates code for the destruction of the Widget w, then, it generally encounters a
static_assert that fails, and that’s usually what leads to the error message. This
message is associated with the point where w is destroyed, because Widget’s destruc‐
tor, like all compiler-generated special member functions, is implicitly inline. The
message itself often refers to the line where w is created, because it’s the source code
explicitly creating the object that leads to its later implicit destruction.

To fix the problem, you just need to make sure that at the point where the code to
destroy the std::unique_ptr<Widget::Impl> is generated, Widget::Impl is a
complete type. The type becomes complete when its definition has been seen, and
Widget::Impl is defined inside widget.cpp. The key to successful compilation,
then, is to have the compiler see the body of Widget’s destructor (i.e., the place where
the compiler will generate code to destroy the std::unique_ptr data member) only
inside widget.cpp after Widget::Impl has been defined.

Arranging for that is simple. Declare Widget’s destructor in widget.h, but don’t
define it there:

class Widget {                     // as before, in "widget.h"
public:
  Widget();
  ~Widget();                       // declaration only
  …

private:                           // as before
  struct Impl;
  std::unique_ptr<Impl> pImpl;
};

Define it in widget.cpp after Widget::Impl has been defined:

#include "widget.h"                // as before, in "widget.cpp"
#include "gadget.h"
#include <string>
#include <vector>

  struct Widget::Impl {            // as before, definition of
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  std::string name;                // Widget::Impl
  std::vector<double> data;
  Gadget g1, g2, g3;
};

Widget::Widget()                   // as before
: pImpl(std::make_unique<Impl>())
{}

Widget::~Widget()                  // ~Widget definition
{}

This works well, and it requires the least typing, but if you want to emphasize that the
compiler-generated destructor would do the right thing—that the only reason you
declared it was to cause its definition to be generated in Widget’s implementation
file, you can define the destructor body with “= default”:

Widget::~Widget() = default;       // same effect as above

Classes using the Pimpl Idiom are natural candidates for move support, because
compiler-generated move operations do exactly what’s desired: perform a move on
the underlying std::unique_ptr. As Item 17 explains, the declaration of a destruc‐
tor in Widget prevents compilers from generating the move operations, so if you
want move support, you must declare the functions yourself. Given that the
compiler-generated versions would behave correctly, you’re likely to be tempted to
implement them as follows:

class Widget {                                 // still in
public:                                        // "widget.h"
  Widget();
  ~Widget();

  Widget(Widget&& rhs) = default;              // right idea,
  Widget& operator=(Widget&& rhs) = default;   // wrong code!
 
  …

private:                                       // as before
  struct Impl;
  std::unique_ptr<Impl> pImpl;
};

This approach leads to the same kind of problem as declaring the class without a
destructor, and for the same fundamental reason. The compiler-generated move
assignment operator needs to destroy the object pointed to by pImpl before reassign‐
ing it, but in the Widget header file, pImpl points to an incomplete type. The situa‐
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tion is different for the move constructor. The problem there is that compilers
typically generate code to destroy pImpl in the event that an exception arises inside
the move constructor, and destroying pImpl requires that Impl be complete.

Because the problem is the same as before, so is the fix—move the definition of the
move operations into the implementation file:

class Widget {                       // still in "widget.h"
public:
  Widget();
  ~Widget();

  Widget(Widget&& rhs);              // declarations
  Widget& operator=(Widget&& rhs);   // only

  …

private:                             // as before
  struct Impl;
  std::unique_ptr<Impl> pImpl;
};

#include <string>                    // as before,
…                                    // in "widget.cpp"

struct Widget::Impl { … };           // as before

Widget::Widget()                     // as before
: pImpl(std::make_unique<Impl>())
{}

Widget::~Widget() = default;         // as before

Widget::Widget(Widget&& rhs) = default;              // defini-
Widget& Widget::operator=(Widget&& rhs) = default;   // tions

The Pimpl Idiom is a way to reduce compilation dependencies between a class’s
implementation and the class’s clients, but, conceptually, use of the idiom doesn’t
change what the class represents. The original Widget class contained std::string,
std::vector, and Gadget data members, and, assuming that Gadgets, like
std::strings and std::vectors, can be copied, it would make sense for Widget to
support the copy operations. We have to write these functions ourselves, because (1)
compilers won’t generate copy operations for classes with move-only types like
std::unique_ptr and (2) even if they did, the generated functions would copy only
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the std::unique_ptr (i.e., perform a shallow copy), and we want to copy what the
pointer points to (i.e., perform a deep copy).

In a ritual that is by now familiar, we declare the functions in the header file and
implement them in the implementation file:

class Widget {                         // still in "widget.h"
public:
  …                                    // other funcs, as before

  Widget(const Widget& rhs);              // declarations
  Widget& operator=(const Widget& rhs);   // only

private:                                  // as before
  struct Impl;
  std::unique_ptr<Impl> pImpl;
};

#include "widget.h"                  // as before,
…                                    // in "widget.cpp"

struct Widget::Impl { … };           // as before

Widget::~Widget() = default;         // other funcs, as before

Widget::Widget(const Widget& rhs)              // copy ctor
: pImpl(std::make_unique<Impl>(*rhs.pImpl))
{}

Widget& Widget::operator=(const Widget& rhs)   // copy operator=
{
  *pImpl = *rhs.pImpl;
  return *this;
}

Both function implementations are conventional. In each case, we simply copy the
fields of the Impl struct from the source object (rhs) to the destination object
(*this). Rather than copy the fields one by one, we take advantage of the fact that
compilers will create the copy operations for Impl, and these operations will copy
each field automatically. We thus implement Widget’s copy operations by calling
Widget::Impl’s compiler-generated copy operations. In the copy constructor, note
that we still follow the advice of Item 21 to prefer use of std::make_unique over
direct use of new.
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For purposes of implementing the Pimpl Idiom, std::unique_ptr is the smart
pointer to use, because the pImpl pointer inside an object (e.g., inside a Widget) has
exclusive ownership of the corresponding implementation object (e.g., the
Widget::Impl object). Still, it’s interesting to note that if we were to use
std::shared_ptr instead of std::unique_ptr for pImpl, we’d find that the advice
of this Item no longer applied. There’d be no need to declare a destructor in Widget,
and without a user-declared destructor, compilers would happily generate the move
operations, which would do exactly what we’d want them to. That is, given this code
in widget.h,

class Widget {                     // in "widget.h"
public:
  Widget();
  …                                // no declarations for dtor
                                   // or move operations
private:
  struct Impl; 
  std::shared_ptr<Impl> pImpl;     // std::shared_ptr
};                                 // instead of std::unique_ptr

and this client code that #includes widget.h,

Widget w1;

auto w2(std::move(w1));            // move-construct w2

w1 = std::move(w2);                // move-assign w1

everything would compile and run as we’d hope: w1 would be default constructed, its
value would be moved into w2, that value would be moved back into w1, and then
both w1 and w2 would be destroyed (thus causing the pointed-to Widget::Impl
object to be destroyed).

The difference in behavior between std::unique_ptr and std::shared_ptr for
pImpl pointers stems from the differing ways these smart pointers support custom
deleters. For std::unique_ptr, the type of the deleter is part of the type of the smart
pointer, and this makes it possible for compilers to generate smaller runtime data
structures and faster runtime code. A consequence of this greater efficiency is that
pointed-to types must be complete when compiler-generated special functions (e.g.,
destructors or move operations) are used. For std::shared_ptr, the type of the
deleter is not part of the type of the smart pointer. This necessitates larger runtime
data structures and somewhat slower code, but pointed-to types need not be com‐
plete when compiler-generated special functions are employed.
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For the Pimpl Idiom, there’s not really a trade-off between the characteristics of
std::unique_ptr and std::shared_ptr, because the relationship between classes
like Widget and classes like Widget::Impl is exclusive ownership, and that makes
std::unique_ptr the proper tool for the job. Nevertheless, it’s worth knowing that
in other situations—situations where shared ownership exists (and
std::shared_ptr is hence a fitting design choice), there’s no need to jump through
the function-definition hoops that use of std::unique_ptr entails.

Things to Remember
• The Pimpl Idiom decreases build times by reducing compilation dependencies

between class clients and class implementations.
• For std::unique_ptr pImpl pointers, declare special member functions in

the class header, but implement them in the implementation file. Do this even
if the default function implementations are acceptable.

• The above advice applies to std::unique_ptr, but not to std::shared_ptr.
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CHAPTER 5

Rvalue References, Move Semantics,
and Perfect Forwarding

When you first learn about them, move semantics and perfect forwarding seem
pretty straightforward:

• Move semantics makes it possible for compilers to replace expensive copying
operations with less expensive moves. In the same way that copy constructors
and copy assignment operators give you control over what it means to copy
objects, move constructors and move assignment operators offer control over the
semantics of moving. Move semantics also enables the creation of move-only
types, such as std::unique_ptr, std::future, and std::thread.

• Perfect forwarding makes it possible to write function templates that take arbi‐
trary arguments and forward them to other functions such that the target func‐
tions receive exactly the same arguments as were passed to the forwarding
functions.

Rvalue references are the glue that ties these two rather disparate features together.
They’re the underlying language mechanism that makes both move semantics and
perfect forwarding possible.

The more experience you have with these features, the more you realize that your ini‐
tial impression was based on only the metaphorical tip of the proverbial iceberg. The
world of move semantics, perfect forwarding, and rvalue references is more nuanced
than it appears. std::move doesn’t move anything, for example, and perfect forward‐
ing is imperfect. Move operations aren’t always cheaper than copying; when they are,
they’re not always as cheap as you’d expect; and they’re not always called in a context
where moving is valid. The construct “type&&” doesn’t always represent an rvalue
reference.
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No matter how far you dig into these features, it can seem that there’s always more to
uncover. Fortunately, there is a limit to their depths. This chapter will take you to the
bedrock. Once you arrive, this part of C++11 will make a lot more sense. You’ll know
the usage conventions for std::move and std::forward, for example. You’ll be
comfortable with the ambiguous nature of “type&&”. You’ll understand the reasons
for the surprisingly varied behavioral profiles of move operations. All those pieces
will fall into place. At that point, you’ll be back where you started, because move
semantics, perfect forwarding, and rvalue references will once again seem pretty
straightforward. But this time, they’ll stay that way.

In the Items in this chapter, it’s especially important to bear in mind that a parameter
is always an lvalue, even if its type is an rvalue reference. That is, given

void f(Widget&& w);

the parameter w is an lvalue, even though its type is rvalue-reference-to-Widget. (If
this surprises you, please review the overview of lvalues and rvalues that begins on
page 2.)

Item 23: Understand std::move and std::forward.
It’s useful to approach std::move and std::forward in terms of what they don’t do.
std::move doesn’t move anything. std::forward doesn’t forward anything. At run‐
time, neither does anything at all. They generate no executable code. Not a single
byte.

std::move and std::forward are merely functions (actually function templates)
that perform casts. std::move unconditionally casts its argument to an rvalue, while
std::forward performs this cast only if a particular condition is fulfilled. That’s it.
The explanation leads to a new set of questions, but, fundamentally, that’s the com‐
plete story.

To make the story more concrete, here’s a sample implementation of std::move in
C++11. It’s not fully conforming to the details of the Standard, but it’s very close.

template<typename T>                       // in namespace std
typename remove_reference<T>::type&&
move(T&& param)
{
  using ReturnType =                       // alias declaration;
    typename remove_reference<T>::type&&;  // see Item 9

  return static_cast<ReturnType>(param);
}
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I’ve highlighted two parts of the code for you. One is the name of the function,
because the return type specification is rather noisy, and I don’t want you to lose your
bearings in the din. The other is the cast that comprises the essence of the function.
As you can see, std::move takes a reference to an object (a universal reference, to be
precise—see Item 24) and it returns a reference to the same object.

The “&&” part of the function’s return type implies that std::move returns an rvalue
reference, but, as Item 28 explains, if the type T happens to be an lvalue reference, T&&
would become an lvalue reference. To prevent this from happening, the type trait (see
Item 9) std::remove_reference is applied to T, thus ensuring that “&&” is applied
to a type that isn’t a reference. That guarantees that std::move truly returns an
rvalue reference, and that’s important, because rvalue references returned from func‐
tions are rvalues. Thus, std::move casts its argument to an rvalue, and that’s all it
does.

As an aside, std::move can be implemented with less fuss in C++14. Thanks to func‐
tion return type deduction (see Item 3) and to the Standard Library’s alias template
std::remove_reference_t (see Item 9), std::move can be written this way:

template<typename T>                          // C++14; still in
decltype(auto) move(T&& param)                // namespace std
{
  using ReturnType = remove_reference_t<T>&&;
  return static_cast<ReturnType>(param);
}

Easier on the eyes, no?

Because std::move does nothing but cast its argument to an rvalue, there have been
suggestions that a better name for it might have been something like rvalue_cast.
Be that as it may, the name we have is std::move, so it’s important to remember
what std::move does and doesn’t do. It does cast. It doesn’t move.

Of course, rvalues are candidates for moving, so applying std::move to an object
tells the compiler that the object is eligible to be moved from. That’s why std::move
has the name it does: to make it easy to designate objects that may be moved from.

In truth, rvalues are only usually candidates for moving. Suppose you’re writing a
class representing annotations. The class’s constructor takes a std::string parame‐
ter comprising the annotation, and it copies the parameter to a data member. Flush
with the information in Item 41, you declare a by-value parameter:

class Annotation {
public:
  explicit Annotation(std::string text);  // param to be copied,
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  …                                       // so per Item 41,
};                                        // pass by value

But Annotation’s constructor needs only to read text’s value. It doesn’t need to
modify it. In accord with the time-honored tradition of using const whenever possi‐
ble, you revise your declaration such that text is const:

class Annotation {
public:
  explicit Annotation(const std::string text)
  …
};

To avoid paying for a copy operation when copying text into a data member, you
remain true to the advice of Item 41 and apply std::move to text, thus producing
an rvalue:

class Annotation {
public:
  explicit Annotation(const std::string text)
  : value(std::move(text))  // "move" text into value; this code
  { … }                     // doesn't do what it seems to!
  
  …

private:
  std::string value;
};

This code compiles. This code links. This code runs. This code sets the data member
value to the content of text. The only thing separating this code from a perfect real‐
ization of your vision is that text is not moved into value, it’s copied. Sure, text is
cast to an rvalue by std::move, but text is declared to be a const std::string, so
before the cast, text is an lvalue const std::string, and the result of the cast is an
rvalue const std::string, but throughout it all, the constness remains.

Consider the effect that has when compilers have to determine which std::string
constructor to call. There are two possibilities:

class string {            // std::string is actually a 
public:                   // typedef for std::basic_string<char>
  …
  string(const string& rhs);    // copy ctor
  string(string&& rhs);         // move ctor
  …
};
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In the Annotation constructor’s member initialization list, the result of
std::move(text) is an rvalue of type const std::string. That rvalue can’t be
passed to std::string’s move constructor, because the move constructor takes an
rvalue reference to a non-const std::string. The rvalue can, however, be passed to
the copy constructor, because an lvalue-reference-to-const is permitted to bind to a
const rvalue. The member initialization therefore invokes the copy constructor in
std::string, even though text has been cast to an rvalue! Such behavior is essential
to maintaining const-correctness. Moving a value out of an object generally modifies
the object, so the language should not permit const objects to be passed to functions
(such as move constructors) that could modify them.

There are two lessons to be drawn from this example. First, don’t declare objects
const if you want to be able to move from them. Move requests on const objects are
silently transformed into copy operations. Second, std::move not only doesn’t
actually move anything, it doesn’t even guarantee that the object it’s casting will be
eligible to be moved. The only thing you know for sure about the result of applying
std::move to an object is that it’s an rvalue.

The story for std::forward is similar to that for std::move, but whereas
std::move unconditionally casts its argument to an rvalue, std::forward does it
only under certain conditions. std::forward is a conditional cast. To understand
when it casts and when it doesn’t, recall how std::forward is typically used. The
most common scenario is a function template taking a universal reference parameter
that is to be passed to another function:

void process(const Widget& lvalArg);     // process lvalues
void process(Widget&& rvalArg);          // process rvalues

template<typename T>                     // template that passes
void logAndProcess(T&& param)            // param to process
{
  auto now =                             // get current time
    std::chrono::system_clock::now();

  makeLogEntry("Calling 'process'", now);
  process(std::forward<T>(param));
}

Consider two calls to logAndProcess, one with an lvalue, the other with an rvalue:

Widget w;

logAndProcess(w);                  // call with lvalue
logAndProcess(std::move(w));       // call with rvalue
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Inside logAndProcess, the parameter param is passed to the function process. pro
cess is overloaded for lvalues and rvalues. When we call logAndProcess with an
lvalue, we naturally expect that lvalue to be forwarded to process as an lvalue, and
when we call logAndProcess with an rvalue, we expect the rvalue overload of pro
cess to be invoked.

But param, like all function parameters, is an lvalue. Every call to process inside
logAndProcess will thus want to invoke the lvalue overload for process. To prevent
this, we need a mechanism for param to be cast to an rvalue if and only if the argu‐
ment with which param was initialized—the argument passed to logAndProcess—
was an rvalue. This is precisely what std::forward does. That’s why std::forward
is a conditional cast: it casts to an rvalue only if its argument was initialized with an
rvalue.

You may wonder how std::forward can know whether its argument was initialized
with an rvalue. In the code above, for example, how can std::forward tell whether
param was initialized with an lvalue or an rvalue? The brief answer is that that infor‐
mation is encoded in logAndProcess’s template parameter T. That parameter is
passed to std::forward, which recovers the encoded information. For details on
exactly how that works, consult Item 28.

Given that both std::move and std::forward boil down to casts, the only differ‐
ence being that std::move always casts, while std::forward only sometimes does,
you might ask whether we can dispense with std::move and just use std::forward
everywhere. From a purely technical perspective, the answer is yes: std::forward
can do it all. std::move isn’t necessary. Of course, neither function is really neces‐
sary, because we could write casts everywhere, but I hope we agree that that would be,
well, yucky.

std::move’s attractions are convenience, reduced likelihood of error, and greater
clarity. Consider a class where we want to track how many times the move construc‐
tor is called. A static counter that’s incremented during move construction is all we
need. Assuming the only non-static data in the class is a std::string, here’s the
conventional way (i.e., using std::move) to implement the move constructor:

class Widget {
public:
  Widget(Widget&& rhs)
  : s(std::move(rhs.s))
  { ++moveCtorCalls; }

  …
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private:
  static std::size_t moveCtorCalls;
  std::string s;
};

To implement the same behavior with std::forward, the code would look like this:

class Widget {
public:
  Widget(Widget&& rhs)                      // unconventional,
  : s(std::forward<std::string>(rhs.s))     // undesirable
  { ++moveCtorCalls; }                      // implementation

  …

};

Note first that std::move requires only a function argument (rhs.s), while
std::forward requires both a function argument (rhs.s) and a template type argu‐
ment (std::string). Then note that the type we pass to std::forward should be a
non-reference, because that’s the convention for encoding that the argument being
passed is an rvalue (see Item 28). Together, this means that std::move requires less
typing than std::forward, and it spares us the trouble of passing a type argument
that encodes that the argument we’re passing is an rvalue. It also eliminates the possi‐
bility of our passing an incorrect type (e.g., std::string&, which would result in the
data member s being copy constructed instead of move constructed).

More importantly, the use of std::move conveys an unconditional cast to an rvalue,
while the use of std::forward indicates a cast to an rvalue only for references to
which rvalues have been bound. Those are two very different actions. The first one
typically sets up a move, while the second one just passes—forwards—an object to
another function in a way that retains its original lvalueness or rvalueness. Because
these actions are so different, it’s good that we have two different functions (and
function names) to distinguish them.

Things to Remember
• std::move performs an unconditional cast to an rvalue. In and of itself, it

doesn’t move anything.
• std::forward casts its argument to an rvalue only if that argument is bound

to an rvalue.
• Neither std::move nor std::forward do anything at runtime.
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1 Item 25 explains that universal references should almost always have std::forward applied to them, and as
this book goes to press, some members of the C++ community have started referring to universal references
as forwarding references.

Item 24: Distinguish universal references from rvalue
references.

It’s been said that the truth shall set you free, but under the right circumstances, a
well-chosen lie can be equally liberating. This Item is such a lie. Because we’re dealing
with software, however, let’s eschew the word “lie” and instead say that this Item
comprises an “abstraction.”  

To declare an rvalue reference to some type T, you write T&&. It thus seems reason‐
able to assume that if you see “T&&” in source code, you’re looking at an rvalue refer‐
ence. Alas, it’s not quite that simple:

void f(Widget&& param);             // rvalue reference

Widget&& var1 = Widget();           // rvalue reference

auto&& var2 = var1;                 // not rvalue reference

template<typename T>
void f(std::vector<T>&& param);     // rvalue reference

template<typename T>
void f(T&& param);                  // not rvalue reference

In fact, “T&&” has two different meanings. One is rvalue reference, of course. Such
references behave exactly the way you expect: they bind only to rvalues, and their pri‐
mary raison d’être is to identify objects that may be moved from.

The other meaning for “T&&” is either rvalue reference or lvalue reference. Such refer‐
ences look like rvalue references in the source code (i.e., “T&&”), but they can behave
as if they were lvalue references (i.e., “T&”). Their dual nature permits them to bind to
rvalues (like rvalue references) as well as lvalues (like lvalue references). Furthermore,
they can bind to const or non-const objects, to volatile or non-volatile objects,
even to objects that are both const and volatile. They can bind to virtually any‐
thing. Such unprecedentedly flexible references deserve a name of their own. I call
them universal references.1

Universal references arise in two contexts. The most common is function template
parameters, such as this example from the sample code above:
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template<typename T>
void f(T&& param);             // param is a universal reference

The second context is auto declarations, including this one from the sample code
above:

auto&& var2 = var1;            // var2 is a universal reference

What these contexts have in common is the presence of type deduction. In the tem‐
plate f, the type of param is being deduced, and in the declaration for var2, var2’s
type is being deduced. Compare that with the following examples (also from the sam‐
ple code above), where type deduction is missing. If you see “T&&” without type
deduction, you’re looking at an rvalue reference:

void f(Widget&& param);        // no type deduction;
                               // param is an rvalue reference

Widget&& var1 = Widget();      // no type deduction;
                               // var1 is an rvalue reference

Because universal references are references, they must be initialized. The initializer
for a universal reference determines whether it represents an rvalue reference or an
lvalue reference. If the initializer is an rvalue, the universal reference corresponds to
an rvalue reference. If the initializer is an lvalue, the universal reference corresponds
to an lvalue reference. For universal references that are function parameters, the ini‐
tializer is provided at the call site:

template<typename T>
void f(T&& param);     // param is a universal reference

Widget w;
f(w);                  // lvalue passed to f; param's type is
                       // Widget& (i.e., an lvalue reference)

f(std::move(w));       // rvalue passed to f; param's type is
                       // Widget&& (i.e., an rvalue reference)

For a reference to be universal, type deduction is necessary, but it’s not sufficient. The
form of the reference declaration must also be correct, and that form is quite con‐
strained. It must be precisely “T&&”. Look again at this example from the sample code
we saw earlier:

template<typename T>
void f(std::vector<T>&& param);  // param is an rvalue reference

When f is invoked, the type T will be deduced (unless the caller explicitly specifies it,
an edge case we’ll not concern ourselves with). But the form of param’s type declara‐
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tion isn’t “T&&”, it’s “std::vector<T>&&”. That rules out the possibility that param is
a universal reference. param is therefore an rvalue reference, something that your
compilers will be happy to confirm for you if you try to pass an lvalue to f:

std::vector<int> v;
f(v);                             // error! can't bind lvalue to
                                  // rvalue reference

Even the simple presence of a const qualifier is enough to disqualify a reference from
being universal:

template<typename T>
void f(const T&& param);         // param is an rvalue reference

If you’re in a template and you see a function parameter of type “T&&”, you might
think you can assume that it’s a universal reference. You can’t. That’s because being
in a template doesn’t guarantee the presence of type deduction. Consider this
push_back member function in std::vector:

template<class T, class Allocator = allocator<T>>  // from C++
class vector {                                     // Standards
public:
  void push_back(T&& x);
  …
};

push_back’s parameter certainly has the right form for a universal reference, but
there’s no type deduction in this case. That’s because push_back can’t exist without a
particular vector instantiation for it to be part of, and the type of that instantiation
fully determines the declaration for push_back. That is, saying

std::vector<Widget> v;

causes the std::vector template to be instantiated as follows:

class vector<Widget, allocator<Widget>> {
public:
  void push_back(Widget&& x);               // rvalue reference
  …
};

Now you can see clearly that push_back employs no type deduction. This push_back
for vector<T> (there are two—the function is overloaded) always declares a parame‐
ter of type rvalue-reference-to-T.

In contrast, the conceptually similar emplace_back member function in std::vec
tor does employ type deduction:
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template<class T, class Allocator = allocator<T>>  // still from
class vector {                                     // C++
public:                                            // Standards
  template <class... Args>
  void emplace_back(Args&&... args);
  …
};

Here, the type parameter Args is independent of vector’s type parameter T, so Args
must be deduced each time emplace_back is called. (Okay, Args is really a parameter
pack, not a type parameter, but for purposes of this discussion, we can treat it as if it
were a type parameter.)

The fact that emplace_back’s type parameter is named Args, yet it’s still a universal
reference, reinforces my earlier comment that it’s the form of a universal reference
that must be “T&&”. There’s no requirement that you use the name T. For example,
the following template takes a universal reference, because the form (“type&&”) is
right, and param’s type will be deduced (again, excluding the corner case where the
caller explicitly specifies the type):

template<typename MyTemplateType>         // param is a
void someFunc(MyTemplateType&& param);    // universal reference

I remarked earlier that auto variables can also be universal references. To be more
precise, variables declared with the type auto&& are universal references, because type
deduction takes place and they have the correct form (“T&&”). auto universal refer‐
ences are not as common as universal references used for function template parame‐
ters, but they do crop up from time to time in C++11. They crop up a lot more in
C++14, because C++14 lambda expressions may declare auto&& parameters. For
example, if you wanted to write a C++14 lambda to record the time taken in an arbi‐
trary function invocation, you could do this:

auto timeFuncInvocation =
  [](auto&& func, auto&&... params)               // C++14
  {
    start timer;
    std::forward<decltype(func)>(func)(           // invoke func
      std::forward<decltype(params)>(params)...   // on params
      );                              
    stop timer and record elapsed time;
  };

If your reaction to the “std::forward<decltype(blah blah blah)>” code inside
the lambda is, “What the…?!”, that probably just means you haven’t yet read Item 33.
Don’t worry about it. The important thing in this Item is the auto&& parameters that
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the lambda declares. func is a universal reference that can be bound to any callable
object, lvalue or rvalue. args is zero or more universal references (i.e., a universal ref‐
erence parameter pack) that can be bound to any number of objects of arbitrary
types. The result, thanks to auto universal references, is that timeFuncInvocation
can time pretty much any function execution. (For information on the difference
between “any” and “pretty much any,” turn to Item 30.)

Bear in mind that this entire Item—the foundation of universal references—is a lie…
er, an “abstraction.” The underlying truth is known as reference collapsing, a topic to
which Item 28 is dedicated. But the truth doesn’t make the abstraction any less useful.
Distinguishing between rvalue references and universal references will help you read
source code more accurately (“Does that T&& I’m looking at bind to rvalues only or to
everything?”), and it will avoid ambiguities when you communicate with your collea‐
gues (“I’m using a universal reference here, not an rvalue reference…”). It will also
allow you to make sense of Items 25 and 26, which rely on the distinction. So
embrace the abstraction. Revel in it. Just as Newton’s laws of motion (which are tech‐
nically incorrect) are typically just as useful as and easier to apply than Einstein’s
theory of general relativity (“the truth”), so is the notion of universal references nor‐
mally preferable to working through the details of reference collapsing.

Things to Remember
• If a function template parameter has type T&& for a deduced type T, or if an

object is declared using auto&&, the parameter or object is a universal refer‐
ence.

• If the form of the type declaration isn’t precisely type&&, or if type deduction
does not occur, type&& denotes an rvalue reference.

• Universal references correspond to rvalue references if they’re initialized with
rvalues. They correspond to lvalue references if they’re initialized with lval‐
ues.  

Item 25: Use std::move on rvalue references,
std::forward on universal references.

Rvalue references bind only to objects that are candidates for moving. If you have an
rvalue reference parameter, you know that the object it’s bound to may be moved:

class Widget {
  Widget(Widget&& rhs);        // rhs definitely refers to an
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  …                            // object eligible for moving
};

That being the case, you’ll want to pass such objects to other functions in a way that
permits those functions to take advantage of the object’s rvalueness. The way to do
that is to cast parameters bound to such objects to rvalues. As Item 23 explains, that’s
not only what std::move does, it’s what it was created for:

class Widget {
public:
  Widget(Widget&& rhs)               // rhs is rvalue reference
  : name(std::move(rhs.name)),
    p(std::move(rhs.p))
    { … }
  …

private:
  std::string name;
  std::shared_ptr<SomeDataStructure> p;
};

A universal reference, on the other hand (see Item 24), might be bound to an object
that’s eligible for moving. Universal references should be cast to rvalues only if they
were initialized with rvalues. Item 23 explains that this is precisely what std::for
ward does:

class Widget {
public:
  template<typename T>
  void setName(T&& newName)               // newName is
  { name = std::forward<T>(newName); }    // universal reference

  …
};

In short, rvalue references should be unconditionally cast to rvalues (via std::move)
when forwarding them to other functions, because they’re always bound to rvalues,
and universal references should be conditionally cast to rvalues (via std::forward)
when forwarding them, because they’re only sometimes bound to rvalues.

Item 23 explains that using std::forward on rvalue references can be made to
exhibit the proper behavior, but the source code is wordy, error-prone, and unidio‐
matic, so you should avoid using std::forward with rvalue references. Even worse is
the idea of using std::move with universal references, because that can have the
effect of unexpectedly modifying lvalues (e.g., local variables):
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class Widget {
public:
  template<typename T>
  void setName(T&& newName)         // universal reference
  { name = std::move(newName); }    // compiles, but is
  …                                 // bad, bad, bad!

private:
  std::string name;
  std::shared_ptr<SomeDataStructure> p;
};

std::string getWidgetName();        // factory function

Widget w;

auto n = getWidgetName();           // n is local variable

w.setName(n);                       // moves n into w!

…                                   // n's value now unknown

Here, the local variable n is passed to w.setName, which the caller can be forgiven for
assuming is a read-only operation on n. But because setName internally uses
std::move to unconditionally cast its reference parameter to an rvalue, n’s value will
be moved into w.name, and n will come back from the call to setName with an unspe‐
cified value. That’s the kind of behavior that can drive callers to despair—possibly to
violence.

You might argue that setName shouldn’t have declared its parameter to be a univer‐
sal reference. Such references can’t be const (see Item 24), yet setName surely
shouldn’t modify its parameter. You might point out that if setName had simply been
overloaded for const lvalues and for rvalues, the whole problem could have been
avoided. Like this:

class Widget {
public:
  void setName(const std::string& newName)      // set from
  { name = newName; }                           // const lvalue

  void setName(std::string&& newName)           // set from
  { name = std::move(newName); }                // rvalue

  …
};
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That would certainly work in this case, but there are drawbacks. First, it’s more
source code to write and maintain (two functions instead of a single template). Sec‐
ond, it can be less efficient. For example, consider this use of setName:

w.setName("Adela Novak");

With the version of setName taking a universal reference, the string literal "Adela
Novak" would be passed to setName, where it would be conveyed to the assignment
operator for the std::string inside w. w’s name data member would thus be assigned
directly from the string literal; no temporary std::string objects would arise. With
the overloaded versions of setName, however, a temporary std::string object
would be created for setName’s parameter to bind to, and this temporary
std::string would then be moved into w’s data member. A call to setName would
thus entail execution of one std::string constructor (to create the temporary), one
std::string move assignment operator (to move newName into w.name), and one
std::string destructor (to destroy the temporary). That’s almost certainly a more
expensive execution sequence than invoking only the std::string assignment oper‐
ator taking a const char* pointer. The additional cost is likely to vary from imple‐
mentation to implementation, and whether that cost is worth worrying about will
vary from application to application and library to library, but the fact is that replac‐
ing a template taking a universal reference with a pair of functions overloaded on
lvalue references and rvalue references is likely to incur a runtime cost in some cases.
If we generalize the example such that Widget’s data member may be of an arbitrary
type (rather than knowing that it’s std::string), the performance gap can widen
considerably, because not all types are as cheap to move as std::string (see
Item 29).

The most serious problem with overloading on lvalues and rvalues, however, isn’t the
volume or idiomaticity of the source code, nor is it the code’s runtime performance.
It’s the poor scalability of the design. Widget::setName takes only one parameter, so
only two overloads are necessary, but for functions taking more parameters, each of
which could be an lvalue or an rvalue, the number of overloads grows geometrically:
n parameters necessitates 2n overloads. And that’s not the worst of it. Some functions
—function templates, actually—take an unlimited number of parameters, each of
which could be an lvalue or rvalue. The poster children for such functions are
std::make_shared, and, as of C++14, std::make_unique (see Item 21). Check out
the declarations of their most commonly used overloads:

template<class T, class... Args>                 // from C++11
shared_ptr<T> make_shared(Args&&... args);       // Standard

template<class T, class... Args>                 // from C++14
unique_ptr<T> make_unique(Args&&... args);       // Standard
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For functions like these, overloading on lvalues and rvalues is not an option: univer‐
sal references are the only way to go. And inside such functions, I assure you,
std::forward is applied to the universal reference parameters when they’re passed
to other functions. Which is exactly what you should do.

Well, usually. Eventually. But not necessarily initially. In some cases, you’ll want to
use the object bound to an rvalue reference or a universal reference more than once
in a single function, and you’ll want to make sure that it’s not moved from until
you’re otherwise done with it. In that case, you’ll want to apply std::move (for rvalue
references) or std::forward (for universal references) to only the final use of the
reference. For example:

template<typename T>                       // text is
void setSignText(T&& text)                 // univ. reference
{
  sign.setText(text);                      // use text, but
                                           // don't modify it

  auto now =                               // get current time
    std::chrono::system_clock::now();
    
  signHistory.add(now,
                  std::forward<T>(text));  // conditionally cast
}                                          // text to rvalue

Here, we want to make sure that text’s value doesn’t get changed by sign.setText,
because we want to use that value when we call signHistory.add. Ergo the use of
std::forward on only the final use of the universal reference.

For std::move, the same thinking applies (i.e., apply std::move to an rvalue refer‐
ence the last time it’s used), but it’s important to note that in rare cases, you’ll want to
call std::move_if_noexcept instead of std::move. To learn when and why, consult
Item 14.

If you’re in a function that returns by value, and you’re returning an object bound to
an rvalue reference or a universal reference, you’ll want to apply std::move or
std::forward when you return the reference. To see why, consider an operator+
function to add two matrices together, where the left-hand matrix is known to be an
rvalue (and can hence have its storage reused to hold the sum of the matrices):

Matrix                                        // by-value return
operator+(Matrix&& lhs, const Matrix& rhs)
{
  lhs += rhs;
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  return std::move(lhs);                      // move lhs into
}                                             // return value

By casting lhs to an rvalue in the return statement (via std::move), lhs will be
moved into the function’s return value location. If the call to std::move were omit‐
ted,

Matrix                                        // as above
operator+(Matrix&& lhs, const Matrix& rhs)
{
  lhs += rhs;
  return lhs;                                 // copy lhs into
}                                             // return value

the fact that lhs is an lvalue would force compilers to instead copy it into the return
value location. Assuming that the Matrix type supports move construction, which is
more efficient than copy construction, using std::move in the return statement
yields more efficient code.

If Matrix does not support moving, casting it to an rvalue won’t hurt, because the
rvalue will simply be copied by Matrix’s copy constructor (see Item 23). If Matrix is
later revised to support moving, operator+ will automatically benefit the next time it
is compiled. That being the case, there’s nothing to be lost (and possibly much to be
gained) by applying std::move to rvalue references being returned from functions
that return by value.

The situation is similar for universal references and std::forward. Consider a func‐
tion template reduceAndCopy that takes a possibly unreduced Fraction object,
reduces it, and then returns a copy of the reduced value. If the original object is an
rvalue, its value should be moved into the return value (thus avoiding the expense of
making a copy), but if the original is an lvalue, an actual copy must be created.
Hence:

template<typename T>         
Fraction                           // by-value return
reduceAndCopy(T&& frac)            // universal reference param
{
  frac.reduce();
  return std::forward<T>(frac);    // move rvalue into return
}                                  // value, copy lvalue

If the call to std::forward were omitted, frac would be unconditionally copied into
reduceAndCopy’s return value.

Some programmers take the information above and try to extend it to situations
where it doesn’t apply. “If using std::move on an rvalue reference parameter being
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2 Eligible local objects include most local variables (such as w inside makeWidget) as well as temporary objects
created as part of a return statement. Function parameters don’t qualify. Some people draw a distinction
between application of the RVO to named and unnamed (i.e., temporary) local objects, limiting the term
RVO to unnamed objects and calling its application to named objects the named return value optimization
(NRVO).

copied into a return value turns a copy construction into a move construction,” they
reason, “I can perform the same optimization on local variables that I’m returning.”
In other words, they figure that given a function returning a local variable by value,
such as this,

Widget makeWidget()        // "Copying" version of makeWidget
{
  Widget w;                // local variable

  …                        // configure w

  return w;                // "copy" w into return value
}

they can “optimize” it by turning the “copy” into a move:

Widget makeWidget()        // Moving version of makeWidget
{
  Widget w;
  …
  return std::move(w);     // move w into return value
}                          // (don't do this!)

My liberal use of quotation marks should tip you off that this line of reasoning is
flawed. But why is it flawed?

It’s flawed, because the Standardization Committee is way ahead of such program‐
mers when it comes to this kind of optimization. It was recognized long ago that the
“copying” version of makeWidget can avoid the need to copy the local variable w by
constructing it in the memory alloted for the function’s return value. This is known
as the return value optimization (RVO), and it’s been expressly blessed by the C++
Standard for as long as there’s been one.

Wording such a blessing is finicky business, because you want to permit such copy
elision only in places where it won’t affect the observable behavior of the software.
Paraphrasing the legalistic (arguably toxic) prose of the Standard, this particular
blessing says that compilers may elide the copying (or moving) of a local object2 in a
function that returns by value if (1) the type of the local object is the same as that
returned by the function and (2) the local object is what’s being returned. With that
in mind, look again at the “copying” version of makeWidget:
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Widget makeWidget()        // "Copying" version of makeWidget
{
  Widget w;
  …
  return w;                // "copy" w into return value
}

Both conditions are fulfilled here, and you can trust me when I tell you that for this
code, every decent C++ compiler will employ the RVO to avoid copying w. That
means that the “copying” version of makeWidget doesn’t, in fact, copy anything.

The moving version of makeWidget does just what its name says it does (assuming
Widget offers a move constructor): it moves the contents of w into makeWidget’s
return value location. But why don’t compilers use the RVO to eliminate the move,
again constructing w in the memory alloted for the function’s return value? The
answer is simple: they can’t. Condition (2) stipulates that the RVO may be performed
only if what’s being returned is a local object, but that’s not what the moving version
of makeWidget is doing. Look again at its return statement:

return std::move(w);

What’s being returned here isn’t the local object w, it’s a reference to w—the result of
std::move(w). Returning a reference to a local object doesn’t satisfy the conditions
required for the RVO, so compilers must move w into the function’s return value
location. Developers trying to help their compilers optimize by applying std::move
to a local variable that’s being returned are actually limiting the optimization options
available to their compilers!

But the RVO is an optimization. Compilers aren’t required to elide copy and move
operations, even when they’re permitted to. Maybe you’re paranoid, and you worry
that your compilers will punish you with copy operations, just because they can. Or
perhaps you’re insightful enough to recognize that there are cases where the RVO is
difficult for compilers to implement, e.g., when different control paths in a function
return different local variables. (Compilers would have to generate code to construct
the appropriate local variable in the memory allotted for the function’s return value,
but how could compilers determine which local variable would be appropriate?) If so,
you might be willing to pay the price of a move as insurance against the cost of a
copy. That is, you might still think it’s reasonable to apply std::move to a local
object you’re returning, simply because you’d rest easy knowing you’d never pay for a
copy.

In that case, applying std::move to a local object would still be a bad idea. The part
of the Standard blessing the RVO goes on to say that if the conditions for the RVO
are met, but compilers choose not to perform copy elision, the object being returned
must be treated as an rvalue. In effect, the Standard requires that when the RVO is
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permitted, either copy elision takes place or std::move is implicitly applied to local
objects being returned. So in the “copying” version of makeWidget,

Widget makeWidget()        // as before
{
  Widget w;
  …
  return w;
}

compilers must either elide the copying of w or they must treat the function as if it
were written like this:

Widget makeWidget()
{
  Widget w;
  …
  return std::move(w);     // treat w as rvalue, because
}                          // no copy elision was performed

The situation is similar for by-value function parameters. They’re not eligible for
copy elision with respect to their function’s return value, but compilers must treat
them as rvalues if they’re returned. As a result, if your source code looks like this,

Widget makeWidget(Widget w)       // by-value parameter of same
{                                 // type as function's return
  …
  return w;
}

compilers must treat it as if it had been written this way:

Widget makeWidget(Widget w)
{
  …
  return std::move(w);            // treat w as rvalue
}

This means that if you use std::move on a local object being returned from a func‐
tion that’s returning by value, you can’t help your compilers (they have to treat the
local object as an rvalue if they don’t perform copy elision), but you can certainly hin‐
der them (by precluding the RVO). There are situations where applying std::move
to a local variable can be a reasonable thing to do (i.e., when you’re passing it to a
function and you know you won’t be using the variable any longer), but as part of a
return statement that would otherwise qualify for the RVO or that returns a by-
value parameter isn’t among them.
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Things to Remember
• Apply std::move to rvalue references and std::forward to universal refer‐

ences the last time each is used.
• Do the same thing for rvalue references and universal references being

returned from functions that return by value.
• Never apply std::move or std::forward to local objects if they would other‐

wise be eligible for the return value optimization.

Item 26: Avoid overloading on universal references.
Suppose you need to write a function that takes a name as a parameter, logs the cur‐
rent date and time, then adds the name to a global data structure. You might come up
with a function that looks something like this:

std::multiset<std::string> names;     // global data structure

void logAndAdd(const std::string& name)
{
  auto now =                          // get current time
    std::chrono::system_clock::now();

  log(now, "logAndAdd");              // make log entry

  names.emplace(name);                // add name to global data
}                                     // structure; see Item 42
                                      // for info on emplace

This isn’t unreasonable code, but it’s not as efficient as it could be. Consider three
potential calls:

std::string petName("Darla");

logAndAdd(petName);                   // pass lvalue std::string

logAndAdd(std::string("Persephone")); // pass rvalue std::string

logAndAdd("Patty Dog");               // pass string literal

In the first call, logAndAdd’s parameter name is bound to the variable petName.
Within logAndAdd, name is ultimately passed to names.emplace. Because name is an
lvalue, it is copied into names. There’s no way to avoid that copy, because an lvalue
(petName) was passed into logAndAdd.

Item 25 | 177



In the second call, the parameter name is bound to an rvalue (the temporary
std::string explicitly created from "Persephone"). name itself is an lvalue, so it’s
copied into names, but we recognize that, in principle, its value could be moved into
names. In this call, we pay for a copy, but we should be able to get by with only a
move.

In the third call, the parameter name is again bound to an rvalue, but this time it’s to a
temporary std::string that’s implicitly created from "Patty Dog". As in the sec‐
ond call, name is copied into names, but in this case, the argument originally passed to
logAndAdd was a string literal. Had that string literal been passed directly to
emplace, there would have been no need to create a temporary std::string at all.
Instead, emplace would have used the string literal to create the std::string object
directly inside the std::multiset. In this third call, then, we’re paying to copy a
std::string, yet there’s really no reason to pay even for a move, much less a copy.

We can eliminate the inefficiencies in the second and third calls by rewriting
logAndAdd to take a universal reference (see Item 24) and, in accord with Item 25,
std::forwarding this reference to emplace. The results speak for themselves:

template<typename T>
void logAndAdd(T&& name)
{
  auto now = std::chrono::system_clock::now();
  log(now, "logAndAdd");
  names.emplace(std::forward<T>(name));
}

std::string petName("Darla");          // as before

logAndAdd(petName);                    // as before, copy
                                       // lvalue into multiset

logAndAdd(std::string("Persephone"));  // move rvalue instead
                                       // of copying it

logAndAdd("Patty Dog");                // create std::string
                                       // in multiset instead
                                       // of copying a temporary
                                       // std::string

Hurray, optimal efficiency!

Were this the end of the story, we could stop here and proudly retire, but I haven’t
told you that clients don’t always have direct access to the names that logAndAdd
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requires. Some clients have only an index that logAndAdd uses to look up the corre‐
sponding name in a table. To support such clients, logAndAdd is overloaded:

std::string nameFromIdx(int idx);      // return name
                                       // corresponding to idx

void logAndAdd(int idx)                // new overload
{
  auto now = std::chrono::system_clock::now();
  log(now, "logAndAdd");
  names.emplace(nameFromIdx(idx));
}

Resolution of calls to the two overloads works as expected:

std::string petName("Darla");          // as before

logAndAdd(petName);                    // as before, these
logAndAdd(std::string("Persephone"));  // calls all invoke
logAndAdd("Patty Dog");                // the T&& overload

logAndAdd(22);                         // calls int overload

Actually, resolution works as expected only if you don’t expect too much. Suppose a
client has a short holding an index and passes that to logAndAdd:

short nameIdx;
…                                      // give nameIdx a value

logAndAdd(nameIdx);                    // error!

The comment on the last line isn’t terribly illuminating, so let me explain what hap‐
pens here.

There are two logAndAdd overloads. The one taking a universal reference can deduce
T to be short, thus yielding an exact match. The overload with an int parameter can
match the short argument only with a promotion. Per the normal overload resolu‐
tion rules, an exact match beats a match with a promotion, so the universal reference
overload is invoked.

Within that overload, the parameter name is bound to the short that’s passed in.
name is then std::forwarded to the emplace member function on names (a
std::multiset<std::string>), which, in turn, dutifully forwards it to the
std::string constructor. There is no constructor for std::string that takes a
short, so the std::string constructor call inside the call to multiset::emplace
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inside the call to logAndAdd fails. All because the universal reference overload was a
better match for a short argument than an int.

Functions taking universal references are the greediest functions in C++. They
instantiate to create exact matches for almost any type of argument. (The few kinds of
arguments where this isn’t the case are described in Item 30.) This is why combining
overloading and universal references is almost always a bad idea: the universal refer‐
ence overload vacuums up far more argument types than the developer doing the
overloading generally expects.

An easy way to topple into this pit is to write a perfect forwarding constructor. A
small modification to the logAndAdd example demonstrates the problem. Instead of
writing a free function that can take either a std::string or an index that can be
used to look up a std::string, imagine a class Person with constructors that do the
same  thing:

class Person {
public:
  template<typename T>         
  explicit Person(T&& n)           // perfect forwarding ctor;
  : name(std::forward<T>(n)) {}    // initializes data member

  explicit Person(int idx)         // int ctor
  : name(nameFromIdx(idx)) {}
  …

private:
  std::string name;
};

As was the case with logAndAdd, passing an integral type other than int (e.g.,
std::size_t, short, long, etc.) will call the universal reference constructor over‐
load instead of the int overload, and that will lead to compilation failures. The prob‐
lem here is much worse, however, because there’s more overloading present in
Person than meets the eye. Item 17 explains that under the appropriate conditions,
C++ will generate both copy and move constructors, and this is true even if the class
contains a templatized constructor that could be instantiated to produce the signa‐
ture of the copy or move constructor. If the copy and move constructors for Person
are thus generated, Person will effectively look like this:

class Person {
public:
  template<typename T>              // perfect forwarding ctor
  explicit Person(T&& n)
  : name(std::forward<T>(n)) {}
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  explicit Person(int idx);         // int ctor

  Person(const Person& rhs);        // copy ctor
                                    // (compiler-generated)

  Person(Person&& rhs);             // move ctor
  …                                 // (compiler-generated)

};

This leads to behavior that’s intuitive only if you’ve spent so much time around com‐
pilers and compiler-writers, you’ve forgotten what it’s like to be human:

Person p("Nancy");

auto cloneOfP(p);                   // create new Person from p;
                                    // this won't compile!

Here we’re trying to create a Person from another Person, which seems like about as
obvious a case for copy construction as one can get. (p’s an lvalue, so we can banish
any thoughts we might have about the “copying” being accomplished through a move
operation.) But this code won’t call the copy constructor. It will call the perfect-
forwarding constructor. That function will then try to initialize Person’s
std::string data member with a Person object (p). std::string having no con‐
structor taking a Person, your compilers will throw up their hands in exasperation,
possibly punishing you with long and incomprehensible error messages as an expres‐
sion of their displeasure.

“Why,” you might wonder, “does the perfect-forwarding constructor get called
instead of the copy constructor? We’re initializing a Person with another Person!”
Indeed we are, but compilers are sworn to uphold the rules of C++, and the rules of
relevance here are the ones governing the resolution of calls to overloaded functions.

Compilers reason as follows. cloneOfP is being initialized with a non-const lvalue
(p), and that means that the templatized constructor can be instantiated to take a
non-const lvalue of type Person. After such instantiation, the Person class looks like
this:

class Person {
public:
  explicit Person(Person& n)             // instantiated from
  : name(std::forward<Person&>(n)) {}    // perfect-forwarding
                                         // template

  explicit Person(int idx);              // as before

Item 26 | 181



  Person(const Person& rhs);             // copy ctor
  …                                      // (compiler-generated)

};

In the statement,

auto cloneOfP(p);

p could be passed to either the copy constructor or the instantiated template. Calling
the copy constructor would require adding const to p to match the copy construc‐
tor’s parameter’s type, but calling the instantiated template requires no such addition.
The overload generated from the template is thus a better match, so compilers do
what they’re designed to do: generate a call to the better-matching function. “Copy‐
ing” non-const lvalues of type Person is thus handled by the perfect-forwarding
constructor, not the copy constructor.

If we change the example slightly so that the object to be copied is const, we hear an
entirely different tune:

const Person cp("Nancy");     // object is now const

auto cloneOfP(cp);            // calls copy constructor!

Because the object to be copied is now const, it’s an exact match for the parameter
taken by the copy constructor. The templatized constructor can be instantiated to
have the same signature,

class Person {
public:
  explicit Person(const Person& n);      // instantiated from
                                         // template

  Person(const Person& rhs);             // copy ctor
                                         // (compiler-generated)
  …
};

but this doesn’t matter, because one of the overload-resolution rules in C++ is that in
situations where a template instantiation and a non-template function (i.e., a “nor‐
mal” function) are equally good matches for a function call, the normal function is
preferred. The copy constructor (a normal function) thereby trumps an instantiated
template with the same signature.
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(If you’re wondering why compilers generate a copy constructor when they could
instantiate a templatized constructor to get the signature that the copy constructor
would have, review Item 17.)

The interaction among perfect-forwarding constructors and compiler-generated
copy and move operations develops even more wrinkles when inheritance enters the
picture. In particular, the conventional implementations of derived class copy and
move operations behave quite surprisingly. Here, take a look:

class SpecialPerson: public Person {
public:
  SpecialPerson(const SpecialPerson& rhs)  // copy ctor; calls
  : Person(rhs)                            // base class
  { … }                                    // forwarding ctor!

  SpecialPerson(SpecialPerson&& rhs)       // move ctor; calls
  : Person(std::move(rhs))                 // base class
  { … }                                    // forwarding ctor!
};

As the comments indicate, the derived class copy and move constructors don’t call
their base class’s copy and move constructors, they call the base class’s perfect-
forwarding constructor! To understand why, note that the derived class functions are
using arguments of type SpecialPerson to pass to their base class, then work
through the template instantiation and overload-resolution consequences for the
constructors in class Person. Ultimately, the code won’t compile, because there’s no
std::string constructor taking a SpecialPerson.

I hope that by now I’ve convinced you that overloading on universal reference
parameters is something you should avoid if at all possible. But if overloading on uni‐
versal references is a bad idea, what do you do if you need a function that forwards
most argument types, yet needs to treat some argument types in a special fashion?
That egg can be unscrambled in a number of ways. So many, in fact, that I’ve devoted
an entire Item to them. It’s Item 27. The next Item. Keep reading, you’ll bump right
into it.

Things to Remember
• Overloading on universal references almost always leads to the universal refer‐

ence overload being called more frequently than expected.
• Perfect-forwarding constructors are especially problematic, because they’re

typically better matches than copy constructors for non-const lvalues, and
they can hijack derived class calls to base class copy and move constructors.
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Item 27: Familiarize yourself with alternatives to
overloading on universal references.

Item 26 explains that overloading on universal references can lead to a variety of
problems, both for freestanding and for member functions (especially constructors).
Yet it also gives examples where such overloading could be useful. If only it would
behave the way we’d like! This Item explores ways to achieve the desired behavior,
either through designs that avoid overloading on universal references or by employ‐
ing them in ways that constrain the types of arguments they can match.

The discussion that follows builds on the examples introduced in Item 26. If you
haven’t read that Item recently, you’ll want to review it before continuing.

Abandon overloading
The first example in Item 26, logAndAdd, is representative of the many functions that
can avoid the drawbacks of overloading on universal references by simply using dif‐
ferent names for the would-be overloads. The two logAndAdd overloads, for example,
could be broken into logAndAddName and logAndAddNameIdx. Alas, this approach
won’t work for the second example we considered, the Person constructor, because
constructor names are fixed by the language. Besides, who wants to give up overload‐
ing?

Pass by const T&
An alternative is to revert to C++98 and replace pass-by-universal-reference with
pass-by-lvalue-reference-to-const. In fact, that’s the first approach Item 26 considers
(shown on page 175). The drawback is that the design isn’t as efficient as we’d prefer.
Knowing what we now know about the interaction of universal references and over‐
loading, giving up some efficiency to keep things simple might be a more attractive
trade-off than it initially appeared.

Pass by value
An approach that often allows you to dial up performance without any increase in
complexity is to replace pass-by-reference parameters with, counterintuitively, pass
by value. The design adheres to the advice in Item 41 to consider passing objects by
value when you know you’ll copy them, so I’ll defer to that Item for a detailed discus‐
sion of how things work and how efficient they are. Here, I’ll just show how the tech‐
nique could be used in the Person example:

class Person {
public:
  explicit Person(std::string n) // replaces T&& ctor; see
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  : name(std::move(n)) {}        // Item 41 for use of std::move
  
  explicit Person(int idx)       // as before
  : name(nameFromIdx(idx)) {}
  …

private:
  std::string name;
};

Because there’s no std::string constructor taking only an integer, all int and int-
like arguments to a Person constructor (e.g., std::size_t, short, long) get fun‐
neled to the int overload. Similarly, all arguments of type std::string (and things
from which std::strings can be created, e.g., literals such as "Ruth") get passed to
the constructor taking a std::string. There are thus no surprises for callers. You
could argue, I suppose, that some people might be surprised that using 0 or NULL to
indicate a null pointer would invoke the int overload, but such people should be
referred to Item 8 and required to read it repeatedly until the thought of using 0 or
NULL as a null pointer makes them recoil.

Use Tag dispatch
Neither pass by lvalue-reference-to-const nor pass by value offers support for perfect
forwarding. If the motivation for the use of a universal reference is perfect forward‐
ing, we have to use a universal reference; there’s no other choice. Yet we don’t want
to abandon overloading. So if we don’t give up overloading and we don’t give up uni‐
versal references, how can we avoid overloading on universal references?

It’s actually not that hard. Calls to overloaded functions are resolved by looking at all
the parameters of all the overloads as well as all the arguments at the call site, then
choosing the function with the best overall match—taking into account all parame‐
ter/argument combinations. A universal reference parameter generally provides an
exact match for whatever’s passed in, but if the universal reference is part of a param‐
eter list containing other parameters that are not universal references, sufficiently
poor matches on the non-universal reference parameters can knock an overload with
a universal reference out of the running. That’s the basis behind the tag dispatch
approach, and an example will make the foregoing description easier to understand.

We’ll apply tag dispatch to the logAndAdd example on page 177. Here’s the code for
that example, lest you get sidetracked looking it up:

std::multiset<std::string> names;      // global data structure

template<typename T>                   // make log entry and add

Item 27 | 185



void logAndAdd(T&& name)               // name to data structure
{
  auto now = std::chrono::system_clock::now();
  log(now, "logAndAdd");
  names.emplace(std::forward<T>(name));
}

By itself, this function works fine, but were we to introduce the overload taking an
int that’s used to look up objects by index, we’d be back in the troubled land of
Item 26. The goal of this Item is to avoid that. Rather than adding the overload, we’ll
reimplement logAndAdd to delegate to two other functions, one for integral values
and one for everything else. logAndAdd itself will accept all argument types, both
integral and non-integral.

The two functions doing the real work will be named logAndAddImpl, i.e., we’ll use
overloading. One of the functions will take a universal reference. So we’ll have both
overloading and universal references. But each function will also take a second
parameter, one that indicates whether the argument being passed is integral. This
second parameter is what will prevent us from tumbling into the morass described in
Item 26, because we’ll arrange it so that the second parameter will be the factor that
determines which overload is selected.

Yes, I know, “Blah, blah, blah. Stop talking and show me the code!” No problem.
Here’s an almost-correct version of the updated logAndAdd:

template<typename T>
void logAndAdd(T&& name)
{
  logAndAddImpl(std::forward<T>(name),
                std::is_integral<T>());     // not quite correct
}

This function forwards its parameter to logAndAddImpl, but it also passes an argu‐
ment indicating whether that parameter’s type (T) is integral. At least, that’s what it’s
supposed to do. For integral arguments that are rvalues, it’s also what it does. But, as
Item 28 explains, if an lvalue argument is passed to the universal reference name, the
type deduced for T will be an lvalue reference. So if an lvalue of type int is passed to
logAndAdd, T will be deduced to be int&. That’s not an integral type, because refer‐
ences aren’t integral types. That means that std::is_integral<T> will be false for
any lvalue argument, even if the argument really does represent an integral value.

Recognizing the problem is tantamount to solving it, because the ever-handy Stan‐
dard C++ Library has a type trait (see Item 9), std::remove_reference, that does
both what its name suggests and what we need: remove any reference qualifiers from
a type. The proper way to write logAndAdd is therefore:
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template<typename T>
void logAndAdd(T&& name)
{
  logAndAddImpl(
    std::forward<T>(name),
    std::is_integral<typename std::remove_reference<T>::type>()
  );
}

This does the trick. (In C++14, you can save a few keystrokes by using
std::remove_reference_t<T> in place of the highlighted text. For details, see
Item 9.)

With that taken care of, we can shift our attention to the function being called,
logAndAddImpl. There are two overloads, and the first is applicable only to non-
integral types (i.e., to types where std::is_integral<typename std::remove_ref
erence<T>::type> is false):

template<typename T>                             // non-integral
void logAndAddImpl(T&& name, std::false_type)    // argument:
{                                                // add it to
  auto now = std::chrono::system_clock::now();   // global data
  log(now, "logAndAdd");                         // structure
  names.emplace(std::forward<T>(name));
}

This is straightforward code, once you understand the mechanics behind the high‐
lighted parameter. Conceptually, logAndAdd passes a boolean to logAndAddImpl
indicating whether an integral type was passed to logAndAdd, but true and false
are runtime values, and we need to use overload resolution—a compile-time phenom‐
enon—to choose the correct logAndAddImpl overload. That means we need a type
that corresponds to true and a different type that corresponds to false. This need is
common enough that the Standard Library provides what is required under the
names std::true_type and std::false_type. The argument passed to logAndAd
dImpl by logAndAdd is an object of a type that inherits from std::true_type if T is
integral and from std::false_type if T is not integral. The net result is that this
logAndAddImpl overload is a viable candidate for the call in logAndAdd only if T is
not an integral type.

The second overload covers the opposite case: when T is an integral type. In that
event, logAndAddImpl simply finds the name corresponding to the passed-in index
and passes that name back to logAndAdd:

std::string nameFromIdx(int idx);             // as in Item 26
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void logAndAddImpl(int idx, std::true_type)   // integral
{                                             // argument: look
  logAndAdd(nameFromIdx(idx));                // up name and
}                                             // call logAndAdd
                                              // with it

By having logAndAddImpl for an index look up the corresponding name and pass it
to logAndAdd (from where it will be std::forwarded to the other logAndAddImpl
overload), we avoid the need to put the logging code in both logAndAddImpl over‐
loads.

In this design, the types std::true_type and std::false_type are “tags” whose
only purpose is to force overload resolution to go the way we want. Notice that we
don’t even name those parameters. They serve no purpose at runtime, and in fact we
hope that compilers will recognize that the tag parameters are unused and will opti‐
mize them out of the program’s execution image. (Some compilers do, at least some
of the time.) The call to the overloaded implementation functions inside logAndAdd
“dispatches” the work to the correct overload by causing the proper tag object to be
created. Hence the name for this design: tag dispatch. It’s a standard building block of
template metaprogramming, and the more you look at code inside contemporary
C++ libraries, the more often you’ll encounter it.

For our purposes, what’s important about tag dispatch is less how it works and more
how it permits us to combine universal references and overloading without the prob‐
lems described in Item 26. The dispatching function—logAndAdd—takes an uncon‐
strained universal reference parameter, but this function is not overloaded. The
implementation functions—logAndAddImpl—are overloaded, and one takes a uni‐
versal reference parameter, but resolution of calls to these functions depends not just
on the universal reference parameter, but also on the tag parameter, and the tag val‐
ues are designed so that no more than one overload will be a viable match. As a
result, it’s the tag that determines which overload gets called. The fact that the univer‐
sal reference parameter will always generate an exact match for its argument is imma‐
terial.

Constraining templates that take universal references
A keystone of tag dispatch is the existence of a single (unoverloaded) function as the
client API. This single function dispatches the work to be done to the implementa‐
tion functions. Creating an unoverloaded dispatch function is usually easy, but the
second problem case Item 26 considers, that of a perfect-forwarding constructor for
the Person class (shown on page 178), is an exception. Compilers may generate copy
and move constructors themselves, so even if you write only one constructor and use
tag dispatch within it, some constructor calls may be handled by compiler-generated
functions that bypass the tag dispatch system.
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In truth, the real problem is not that the compiler-generated functions sometimes
bypass the tag dispatch design, it’s that they don’t always pass it by. You virtually
always want the copy constructor for a class to handle requests to copy lvalues of that
type, but, as Item 26 demonstrates, providing a constructor taking a universal refer‐
ence causes the universal reference constructor (rather than the copy constructor) to
be called when copying non-const lvalues. That Item also explains that when a base
class declares a perfect-forwarding constructor, that constructor will typically be
called when derived classes implement their copy and move constructors in the con‐
ventional fashion, even though the correct behavior is for the base class’s copy and
move constructors to be invoked.

For situations like these, where an overloaded function taking a universal reference is
greedier than you want, yet not greedy enough to act as a single dispatch function, tag
dispatch is not the droid you’re looking for. You need a different technique, one that
lets you rachet down the conditions under which the function template that the uni‐
versal reference is part of is permitted to be employed. What you need, my friend, is
std::enable_if.

std::enable_if gives you a way to force compilers to behave as if a particular tem‐
plate didn’t exist. Such templates are said to be disabled. By default, all templates are
enabled, but a template using std::enable_if is enabled only if the condition speci‐
fied by std::enable_if is satisfied. In our case, we’d like to enable the Person
perfect-forwarding constructor only if the type being passed isn’t Person. If the type
being passed is Person, we want to disable the perfect-forwarding constructor (i.e.,
cause compilers to ignore it), because that will cause the class’s copy or move con‐
structor to handle the call, which is what we want when a Person object is initialized
with another Person.

The way to express that idea isn’t particularly difficult, but the syntax is off-putting,
especially if you’ve never seen it before, so I’ll ease you into it. There’s some boiler‐
plate that goes around the condition part of std::enable_if, so we’ll start with that.
Here’s the declaration for the perfect-forwarding constructor in Person, showing
only as much of the std::enable_if as is required simply to use it. I’m showing
only the declaration for this constructor, because the use of std::enable_if has no
effect on the function’s implementation. The implementation remains the same as in
Item 26.

class Person {
public:
  template<typename T,
           typename = typename std::enable_if<condition>::type>
  explicit Person(T&& n);

  …
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};

To understand exactly what’s going on in the highlighted text, I must regretfully sug‐
gest that you consult other sources, because the details take a while to explain, and
there’s just not enough space for it in this book. (During your research, look into
“SFINAE” as well as std::enable_if, because SFINAE is the technology that makes
std::enable_if work.) Here, I want to focus on expression of the condition that
will control whether this constructor is enabled.

The condition we want to specify is that T isn’t Person, i.e., that the templatized con‐
structor should be enabled only if T is a type other than Person. Thanks to a type
trait that determines whether two types are the same (std::is_same), it would seem
that the condition we want is !std::is_same<Person, T>::value. (Notice the “!”
at the beginning of the expression. We want for Person and T to not be the same.)
This is close to what we need, but it’s not quite correct, because, as Item 28 explains,
the type deduced for a universal reference initialized with an lvalue is always an
lvalue reference. That means that for code like this,

Person p("Nancy");

auto cloneOfP(p);          // initialize from lvalue

the type T in the universal constructor will be deduced to be Person&. The types Per
son and Person& are not the same, and the result of std::is_same will reflect that:
std::is_same<Person, Person&>::value is false.

If we think more precisely about what we mean when we say that the templatized
constructor in Person should be enabled only if T isn’t Person, we’ll realize that
when we’re looking at T, we want to ignore

• Whether it’s a reference. For the purpose of determining whether the universal
reference constructor should be enabled, the types Person, Person&, and Per
son&& are all the same as Person.

• Whether it’s const or volatile. As far as we’re concerned, a const Person and
a volatile Person and a const volatile Person are all the same as a Person.

This means we need a way to strip any references, consts, and volatiles from T
before checking to see if that type is the same as Person. Once again, the Standard
Library gives us what we need in the form of a type trait. That trait is std::decay.
std::decay<T>::type is the same as T, except that references and cv-qualifiers (i.e.,
const or volatile qualifiers) are removed. (I’m fudging the truth here, because
std::decay, as its name suggests, also turns array and function types into pointers
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(see Item 1), but for purposes of this discussion, std::decay behaves as I’ve
described.) The condition we want to control whether our constructor is enabled,
then, is

!std::is_same<Person, typename std::decay<T>::type>::value

i.e., Person is not the same type as T, ignoring any references or cv-qualifiers. (As
Item 9 explains, the “typename” in front of std::decay is required, because the type
std::decay<T>::type depends on the template parameter T.)

Inserting this condition into the std::enable_if boilerplate above, plus formatting
the result to make it easier to see how the pieces fit together, yields this declaration
for Person’s perfect-forwarding constructor:

class Person {
public:
  template<
    typename T,
    typename = typename std::enable_if<
                 !std::is_same<Person,
                               typename std::decay<T>::type
                              >::value
               >::type
  >
  explicit Person(T&& n);

  …

};

If you’ve never seen anything like this before, count your blessings. There’s a reason I
saved this design for last. When you can use one of the other mechanisms to avoid
mixing universal references and overloading (and you almost always can), you
should. Still, once you get used to the functional syntax and the proliferation of angle
brackets, it’s not that bad. Furthermore, this gives you the behavior you’ve been striv‐
ing for. Given the declaration above, constructing a Person from another Person—
lvalue or rvalue, const or non-const, volatile or non-volatile—will never
invoke the constructor taking a universal reference.

Success, right? We’re done!

Um, no. Belay that celebration. There’s still one loose end from Item 26 that contin‐
ues to flap about. We need to tie it down.

Suppose a class derived from Person implements the copy and move operations in
the conventional manner:
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class SpecialPerson: public Person {
public:
  SpecialPerson(const SpecialPerson& rhs)  // copy ctor; calls
  : Person(rhs)                            // base class
  { … }                                    // forwarding ctor!

  SpecialPerson(SpecialPerson&& rhs)       // move ctor; calls
  : Person(std::move(rhs))                 // base class
  { … }                                    // forwarding ctor!

  …
};

This is the same code I showed in Item 26 (on page 206), including the comments,
which, alas, remain accurate. When we copy or move a SpecialPerson object, we
expect to copy or move its base class parts using the base class’s copy and move con‐
structors, but in these functions, we’re passing SpecialPerson objects to the base
class’s constructors, and because SpecialPerson isn’t the same as Person (not even
after application of std::decay), the universal reference constructor in the base class
is enabled, and it happily instantiates to perform an exact match for a SpecialPer
son argument. This exact match is better than the derived-to-base conversions that
would be necessary to bind the SpecialPerson objects to the Person parameters in
Person’s copy and move constructors, so with the code we have now, copying and
moving SpecialPerson objects would use the Person perfect-forwarding construc‐
tor to copy or move their base class parts! It’s déjà Item 26 all over again.

The derived class is just following the normal rules for implementing derived class
copy and move constructors, so the fix for this problem is in the base class and, in
particular, in the condition that controls whether Person’s universal reference con‐
structor is enabled. We now realize that we don’t want to enable the templatized con‐
structor for any argument type other than Person, we want to enable it for any
argument type other than Person or a type derived from Person. Pesky inheritance!

You should not be surprised to hear that among the standard type traits is one that
determines whether one type is derived from another. It’s called std::is_base_of.
std::is_base_of<T1, T2>::value is true if T2 is derived from T1. Types are con‐
sidered to be derived from themselves, so std::is_base_of<T, T>::value is true.
This is handy, because we want to revise our condition controlling Person’s perfect-
forwarding constructor such that the constructor is enabled only if the type T, after
stripping it of references and cv-qualifiers, is neither Person nor a class derived from
Person. Using std::is_base_of instead of std::is_same gives us what we need:
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class Person {
public:
  template<
    typename T,
    typename = typename std::enable_if<
                 !std::is_base_of<Person,
                                  typename std::decay<T>::type
                                 >::value
               >::type
  >
  explicit Person(T&& n);

  …

};

Now we’re finally done. Provided we’re writing the code in C++11, that is. If we’re
using C++14, this code will still work, but we can employ alias templates for
std::enable_if and std::decay to get rid of the “typename” and “::type” cruft,
thus yielding this somewhat more palatable code:

class Person {                                     // C++14
public:
  template<
    typename T,
    typename = std::enable_if_t<               // less code here
                 !std::is_base_of<Person,
                                  std::decay_t<T>  // and here
                                 >::value
               >                                   // and here
  >
  explicit Person(T&& n);

  …

};

Okay, I admit it: I lied. We’re still not done. But we’re close. Tantalizingly close.
Honest.

We’ve seen how to use std::enable_if to selectively disable Person’s universal ref‐
erence constructor for argument types we want to have handled by the class’s copy
and move constructors, but we haven’t yet seen how to apply it to distinguish integral
and non-integral arguments. That was, after all, our original goal; the constructor
ambiguity problem was just something we got dragged into along the way.
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All we need to do—and I really do mean that this is everything—is (1) add a Person
constructor overload to handle integral arguments and (2) further constrain the
templatized constructor so that it’s disabled for such arguments. Pour these ingredi‐
ents into the pot with everything else we’ve discussed, simmer over a low flame, and
savor the aroma of success:

class Person {
public:
  template<
    typename T,
    typename = std::enable_if_t<
      !std::is_base_of<Person, std::decay_t<T>>::value
      &&
      !std::is_integral<std::remove_reference_t<T>>::value
    >
  > 
  explicit Person(T&& n)        // ctor for std::strings and
  : name(std::forward<T>(n))    // args convertible to
  { … }                         // std::strings

  explicit Person(int idx)      // ctor for integral args
  : name(nameFromIdx(idx))
  { … }

  …                             // copy and move ctors, etc.

private:
  std::string name;
};

Voilà! A thing of beauty! Well, okay, the beauty is perhaps most pronounced for
those with something of a template metaprogramming fetish, but the fact remains
that this approach not only gets the job done, it does it with unique aplomb. Because
it uses perfect forwarding, it offers maximal efficiency, and because it controls the
combination of universal references and overloading rather than forbidding it, this
technique can be applied in circumstances (such as constructors) where overloading
is unavoidable.

Trade-offs
The first three techniques considered in this Item—abandoning overloading, passing
by const T&, and passing by value—specify a type for each parameter in the func‐
tion(s) to be called. The last two techniques—tag dispatch and constraining template
eligibility—use perfect forwarding, hence don’t specify types for the parameters. This
fundamental decision—to specify a type or not—has consequences.
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As a rule, perfect forwarding is more efficient, because it avoids the creation of tem‐
porary objects solely for the purpose of conforming to the type of a parameter decla‐
ration. In the case of the Person constructor, perfect forwarding permits a string
literal such as "Nancy" to be forwarded to the constructor for the std::string
inside Person, whereas techniques not using perfect forwarding must create a tem‐
porary std::string object from the string literal to satisfy the parameter specifica‐
tion for the Person constructor.

But perfect forwarding has drawbacks. One is that some kinds of arguments can’t be
perfect-forwarded, even though they can be passed to functions taking specific types.
Item 30 explores these perfect forwarding failure cases.

A second issue is the comprehensibility of error messages when clients pass invalid
arguments. Suppose, for example, a client creating a Person object passes a string lit‐
eral made up of char16_ts (a type introduced in C++11 to represent 16-bit charac‐
ters) instead of chars (which is what a std::string consists of):

Person p(u"Konrad Zuse");   // "Konrad Zuse" consists of
                            // characters of type const char16_t

With the first three approaches examined in this Item, compilers will see that the
available constructors take either int or std::string, and they’ll produce a more or
less straightforward error message explaining that there’s no conversion from const
char16_t[12] to int or std::string.

With an approach based on perfect forwarding, however, the array of const
char16_ts gets bound to the constructor’s parameter without complaint. From there
it’s forwarded to the constructor of Person’s std::string data member, and it’s
only at that point that the mismatch between what the caller passed in (a const
char16_t array) and what’s required (any type acceptable to the std::string con‐
structor) is discovered. The resulting error message is likely to be, er, impressive.
With one of the compilers I use, it’s more than 160 lines long.

In this example, the universal reference is forwarded only once (from the Person
constructor to the std::string constructor), but the more complex the system, the
more likely that a universal reference is forwarded through several layers of function
calls before finally arriving at a site that determines whether the argument type(s) are
acceptable. The more times the universal reference is forwarded, the more baffling
the error message may be when something goes wrong. Many developers find that
this issue alone is grounds to reserve universal reference parameters for interfaces
where performance is a foremost concern.

In the case of Person, we know that the forwarding function’s universal reference
parameter is supposed to be an initializer for a std::string, so we can use a
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static_assert to verify that it can play that role. The std::is_constructible
type trait performs a compile-time test to determine whether an object of one type
can be constructed from an object (or set of objects) of a different type (or set of
types), so the assertion is easy to write:

class Person {
public:
  template<                                 // as before
    typename T,
    typename = std::enable_if_t<
      !std::is_base_of<Person, std::decay_t<T>>::value
      &&
      !std::is_integral<std::remove_reference_t<T>>::value
    >
  >
  explicit Person(T&& n)
  : name(std::forward<T>(n))
  {
    // assert that a std::string can be created from a T object
    static_assert(
      std::is_constructible<std::string, T>::value,
      "Parameter n can't be used to construct a std::string"
   );

   …                    // the usual ctor work goes here

  }

  …                     // remainder of Person class (as before)

};

This causes the specified error message to be produced if client code tries to create a
Person from a type that can’t be used to construct a std::string. Unfortunately, in
this example the static_assert is in the body of the constructor, but the forward‐
ing code, being part of the member initialization list, precedes it. With the compilers
I use, the result is that the nice, readable message arising from the static_assert
appears only after the usual error messages (up to 160-plus lines of them) have been
emitted.
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Things to Remember
• Alternatives to the combination of universal references and overloading

include the use of distinct function names, passing parameters by lvalue-
reference-to-const, passing parameters by value, and using tag dispatch.

• Constraining templates via std::enable_if permits the use of universal ref‐
erences and overloading together, but it controls the conditions under which
compilers may use the universal reference overloads.

• Universal reference parameters often have efficiency advantages, but they typ‐
ically have usability disadvantages.

Item 28: Understand reference collapsing.
Item 23 remarks that when an argument is passed to a template function, the type
deduced for the template parameter encodes whether the argument is an lvalue or an
rvalue. The Item fails to mention that this happens only when the argument is used
to initialize a parameter that’s a universal reference, but there’s a good reason for the
omission: universal references aren’t introduced until Item 24. Together, these obser‐
vations about universal references and lvalue/rvalue encoding mean that for this tem‐
plate,

template<typename T>
void func(T&& param);

the deduced template parameter T will encode whether the argument passed to param
was an lvalue or an rvalue.

The encoding mechanism is simple. When an lvalue is passed as an argument, T is
deduced to be an lvalue reference. When an rvalue is passed, T is deduced to be a
non-reference. (Note the asymmetry: lvalues are encoded as lvalue references, but
rvalues are encoded as non-references.) Hence:

Widget widgetFactory();     // function returning rvalue

Widget w;                   // a variable (an lvalue)

func(w);                    // call func with lvalue; T deduced
                            // to be Widget&

func(widgetFactory());      // call func with rvalue; T deduced
                            // to be Widget
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In both calls to func, a Widget is passed, yet because one Widget is an lvalue and one
is an rvalue, different types are deduced for the template parameter T. This, as we
shall soon see, is what determines whether universal references become rvalue refer‐
ences or lvalue references, and it’s also the underlying mechanism through which
std::forward does its work.

Before we can look more closely at std::forward and universal references, we must
note that references to references are illegal in C++. Should you try to declare one,
your compilers will reprimand you:

int x;
…
auto& & rx = x;   // error! can't declare reference to reference

But consider what happens when an lvalue is passed to a function template taking a
universal reference:

template<typename T>
void func(T&& param);    // as before

func(w);                 // invoke func with lvalue;
                         // T deduced as Widget&

If we take the type deduced for T (i.e., Widget&) and use it to instantiate the template,
we get this:

void func(Widget& && param);

A reference to a reference! And yet compilers issue no protest. We know from
Item 24 that because the universal reference param is being initialized with an lvalue,
param’s type is supposed to be an lvalue reference, but how does the compiler get
from the result of taking the deduced type for T and substituting it into the template
to the following, which is the ultimate function signature?

void func(Widget& param);

The answer is reference collapsing. Yes, you are forbidden from declaring references
to references, but compilers may produce them in particular contexts, template
instantiation being among them. When compilers generate references to references,
reference collapsing dictates what happens next.

There are two kinds of references (lvalue and rvalue), so there are four possible
reference-reference combinations (lvalue to lvalue, lvalue to rvalue, rvalue to lvalue,
and rvalue to rvalue). If a reference to a reference arises in a context where this is per‐
mitted (e.g., during template instantiation), the references collapse to a single refer‐
ence according to this rule:
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If either reference is an lvalue reference, the result is an lvalue reference.
Otherwise (i.e., if both are rvalue references) the result is an rvalue refer‐
ence.

In our example above, substitution of the deduced type Widget& into the template
func yields an rvalue reference to an lvalue reference, and the reference-collapsing
rule tells us that the result is an lvalue reference.

Reference collapsing is a key part of what makes std::forward work. As explained
in Item 25, std::forward is applied to universal reference parameters, so a common
use case looks like this:

template<typename T>
void f(T&& fParam)
{
  …                                    // do some work

  someFunc(std::forward<T>(fParam));   // forward fParam to
}                                      // someFunc

Because fParam is a universal reference, we know that the type parameter T will
encode whether the argument passed to f (i.e., the expression used to initialize
fParam) was an lvalue or an rvalue. std::forward’s job is to cast fParam (an lvalue)
to an rvalue if and only if T encodes that the argument passed to f was an rvalue, i.e.,
if T is a non-reference type.

Here’s how std::forward can be implemented to do that:

template<typename T>                                // in
T&& forward(typename                                // namespace
              remove_reference<T>::type& param)     // std
{
  return static_cast<T&&>(param);
}

This isn’t quite Standards-conformant (I’ve omitted a few interface details), but the
differences are irrelevant for the purpose of understanding how std::forward
behaves.

Suppose that the argument passed to f is an lvalue of type Widget. T will be deduced
as Widget&, and the call to std::forward will instantiate as std::forward
<Widget&>. Plugging Widget& into the std::forward implementation yields this:
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Widget& && forward(typename
                     remove_reference<Widget&>::type& param)
{ return static_cast<Widget& &&>(param); }

The type trait std::remove_reference<Widget&>::type yields Widget (see
Item 9), so std::forward becomes:

Widget& && forward(Widget& param)
{ return static_cast<Widget& &&>(param); }

Reference collapsing is also applied to the return type and the cast, and the result is
the final version of std::forward for the call:

Widget& forward(Widget& param)                  // still in
{ return static_cast<Widget&>(param);  }        // namespace std

As you can see, when an lvalue argument is passed to the function template f,
std::forward is instantiated to take and return an lvalue reference. The cast inside
std::forward does nothing, because param’s type is already Widget&, so casting it to
Widget& has no effect. An lvalue argument passed to std::forward will thus return
an lvalue reference. By definition, lvalue references are lvalues, so passing an lvalue to
std::forward causes an lvalue to be returned, just like it’s supposed to.

Now suppose that the argument passed to f is an rvalue of type Widget. In this case,
the deduced type for f’s type parameter T will simply be Widget. The call inside f to
std::forward will thus be to std::forward<Widget>. Substituting Widget for T in
the std::forward implementation gives this:

Widget&& forward(typename
                   remove_reference<Widget>::type& param)
{ return static_cast<Widget&&>(param); }

Applying std::remove_reference to the non-reference type Widget yields the
same type it started with (Widget), so std::forward becomes this:

Widget&& forward(Widget& param)
{ return static_cast<Widget&&>(param); }

There are no references to references here, so there’s no reference collapsing, and this
is the final instantiated version of std::forward for the call.

Rvalue references returned from functions are defined to be rvalues, so in this case,
std::forward will turn f’s parameter fParam (an lvalue) into an rvalue. The end
result is that an rvalue argument passed to f will be forwarded to someFunc as an
rvalue, which is precisely what is supposed to happen.
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In C++14, the existence of std::remove_reference_t makes it possible to imple‐
ment std::forward a bit more concisely:

template<typename T>                         // C++14; still in
T&& forward(remove_reference_t<T>& param)    // namespace std
{
  return static_cast<T&&>(param);
}

Reference collapsing occurs in four contexts. The first and most common is template
instantiation. The second is type generation for auto variables. The details are essen‐
tially the same as for templates, because type deduction for auto variables is essen‐
tially the same as type deduction for templates (see Item 2). Consider again this
example from earlier in the Item:

template<typename T>
void func(T&& param);

Widget widgetFactory();     // function returning rvalue

Widget w;                   // a variable (an lvalue)

func(w);                    // call func with lvalue; T deduced
                            // to be Widget&

func(widgetFactory());      // call func with rvalue; T deduced
                            // to be Widget

This can be mimicked in auto form. The declaration

auto&& w1 = w;

initializes w1 with an lvalue, thus deducing the type Widget& for auto. Plugging
Widget& in for auto in the declaration for w1 yields this reference-to-reference code,

Widget& && w1 = w;

which, after reference collapsing, becomes

Widget& w1 = w;

As a result, w1 is an lvalue reference.

On the other hand, this declaration,

auto&& w2 = widgetFactory();

initializes w2 with an rvalue, causing the non-reference type Widget to be deduced for
auto. Substituting Widget for auto gives us this:
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Widget&& w2 = widgetFactory();

There are no references to references here, so we’re done; w2 is an rvalue reference.

We’re now in a position to truly understand the universal references introduced in
Item 24. A universal reference isn’t a new kind of reference, it’s actually an rvalue ref‐
erence in a context where two conditions are satisfied:

• Type deduction distinguishes lvalues from rvalues. Lvalues of type T are
deduced to have type T&, while rvalues of type T yield T as their deduced type.

• Reference collapsing occurs.

The concept of universal references is useful, because it frees you from having to rec‐
ognize the existence of reference collapsing contexts, to mentally deduce different
types for lvalues and rvalues, and to apply the reference collapsing rule after mentally
substituting the deduced types into the contexts in which they occur.

I said there were four such contexts, but we’ve discussed only two: template instantia‐
tion and auto type generation. The third is the generation and use of typedefs and
alias declarations (see Item 9). If, during creation or evaluation of a typedef, refer‐
ences to references arise, reference collapsing intervenes to eliminate them. For
example, suppose we have a Widget class template with an embedded typedef for an
rvalue reference type,

template<typename T>
class Widget {
public:
  typedef T&& RvalueRefToT;
  …
};

and suppose we instantiate Widget with an lvalue reference type:

Widget<int&> w;

Substituting int& for T in the Widget template gives us the following typedef:

typedef int& && RvalueRefToT;

Reference collapsing reduces it to this,

typedef int& RvalueRefToT;

which makes clear that the name we chose for the typedef is perhaps not as descrip‐
tive as we’d hoped: RvalueRefToT is a typedef for an lvalue reference when Widget
is instantiated with an lvalue reference type.
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The final context in which reference collapsing takes place is uses of decltype. If,
during analysis of a type involving decltype, a reference to a reference arises, refer‐
ence collapsing will kick in to eliminate it. (For information about decltype, see
Item 3.)

Things to Remember
• Reference collapsing occurs in four contexts: template instantiation, auto type

generation, creation and use of typedefs and alias declarations, and
decltype.

• When compilers generate a reference to a reference in a reference collapsing
context, the result becomes a single reference. If either of the original refer‐
ences is an lvalue reference, the result is an lvalue reference. Otherwise it’s an
rvalue reference.

• Universal references are rvalue references in contexts where type deduction
distinguishes lvalues from rvalues and where reference collapsing occurs.

Item 29: Assume that move operations are not present,
not cheap, and not used.

Move semantics is arguably the premier feature of C++11. “Moving containers is now
as cheap as copying pointers!” you’re likely to hear, and “Copying temporary objects
is now so efficient, coding to avoid it is tantamount to premature optimization!” Such
sentiments are easy to understand. Move semantics is truly an important feature. It
doesn’t just allow compilers to replace expensive copy operations with comparatively
cheap moves, it actually requires that they do so (when the proper conditions are ful‐
filled). Take your C++98 code base, recompile with a C++11-conformant compiler
and Standard Library, and—shazam!—your software runs faster.

Move semantics can really pull that off, and that grants the feature an aura worthy of
legend. Legends, however, are generally the result of exaggeration. The purpose of
this Item is to keep your expectations grounded.

Let’s begin with the observation that many types fail to support move semantics. The
entire C++98 Standard Library was overhauled for C++11 to add move operations
for types where moving could be implemented faster than copying, and the imple‐
mentation of the library components was revised to take advantage of these opera‐
tions, but chances are that you’re working with a code base that has not been
completely revised to take advantage of C++11. For types in your applications (or in
the libraries you use) where no modifications for C++11 have been made, the exis‐
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std::vector<Widget> vw1;

// put data into vw1

…

// move vw1 into vw2. Runs in
// constant time. Only ptrs
// in vw1 and vw2 are modified
auto vw2 = std::move(vw1);

vw1

vw1
null

vw2

Widgets

Widgets

tence of move support in your compilers is likely to do you little good. True, C++11
is willing to generate move operations for classes that lack them, but that happens
only for classes declaring no copy operations, move operations, or destructors (see
Item 17). Data members or base classes of types that have disabled moving (e.g., by
deleting the move operations—see Item 11) will also suppress compiler-generated
move operations. For types without explicit support for moving and that don’t qual‐
ify for compiler-generated move operations, there is no reason to expect C++11 to
deliver any kind of performance improvement over C++98.

Even types with explicit move support may not benefit as much as you’d hope. All
containers in the standard C++11 library support moving, for example, but it would
be a mistake to assume that moving all containers is cheap. For some containers, this
is because there’s no truly cheap way to move their contents. For others, it’s because
the truly cheap move operations the containers offer come with caveats the container
elements can’t satisfy.

Consider std::array, a new container in C++11. std::array is essentially a built-
in array with an STL interface. This is fundamentally different from the other stan‐
dard containers, each of which stores its contents on the heap. Objects of such
container types hold (as data members), conceptually, only a pointer to the heap
memory storing the contents of the container. (The reality is more complex, but for
purposes of this analysis, the differences are not important.) The existence of this
pointer makes it possible to move the contents of an entire container in constant
time: just copy the pointer to the container’s contents from the source container to
the target, and set the source’s pointer to null:

std::array objects lack such a pointer, because the data for a std::array’s con‐
tents are stored directly in the std::array object:
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std::array<Widget, 10000> aw1;

// put data into aw1

…

// move aw1 into aw2. Runs in
// linear time. All elements in
// aw1 are moved into aw2
auto aw2 = std::move(aw1);

aw1
Widgets

aw1
Widgets (moved from)

aw2
Widgets (moved to)

Note that the elements in aw1 are moved into aw2. Assuming that Widget is a type
where moving is faster than copying, moving a std::array of Widget will be faster
than copying the same std::array. So std::array certainly offers move support.
Yet both moving and copying a std::array have linear-time computational com‐
plexity, because each element in the container must be copied or moved. This is far
from the “moving a container is now as cheap as assigning a couple of pointers”
claim that one sometimes hears.

On the other hand, std::string offers constant-time moves and linear-time copies.
That makes it sound like moving is faster than copying, but that may not be the case.
Many string implementations employ the small string optimization (SSO). With the
SSO, “small” strings (e.g., those with a capacity of no more than 15 characters) are
stored in a buffer within the std::string object; no heap-allocated storage is used.
Moving small strings using an SSO-based implementation is no faster than copying
them, because the copy-only-a-pointer trick that generally underlies the performance
advantage of moves over copies isn’t applicable.

The motivation for the SSO is extensive evidence that short strings are the norm for
many applications. Using an internal buffer to store the contents of such strings elim‐
inates the need to dynamically allocate memory for them, and that’s typically an effi‐
ciency win. An implication of the win, however, is that moves are no faster than
copies, though one could just as well take a glass-half-full approach and say that for
such strings, copying is no slower than moving.

Even for types supporting speedy move operations, some seemingly sure-fire move
situations can end up making copies. Item 14 explains that some container opera‐
tions in the Standard Library offer the strong exception safety guarantee and that to
ensure that legacy C++98 code dependent on that guarantee isn’t broken when
upgrading to C++11, the underlying copy operations may be replaced with move
operations only if the move operations are known to not throw. A consequence is
that even if a type offers move operations that are more efficient than the corre‐
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sponding copy operations, and even if, at a particular point in the code, a move oper‐
ation would generally be appropriate (e.g., if the source object is an rvalue), compilers
might still be forced to invoke a copy operation because the corresponding move
operation isn’t declared noexcept.

There are thus several scenarios in which C++11’s move semantics do you no good:

• No move operations: The object to be moved from fails to offer move opera‐
tions. The move request therefore becomes a copy request.

• Move not faster: The object to be moved from has move operations that are no
faster than its copy operations.

• Move not usable: The context in which the moving would take place requires a
move operation that emits no exceptions, but that operation isn’t declared noex
cept.

It’s worth mentioning, too, another scenario where move semantics offers no effi‐
ciency gain:

• Source object is lvalue: With very few exceptions (see e.g., Item 25) only rvalues
may be used as the source of a move operation.

But the title of this Item is to assume that move operations are not present, not cheap,
and not used. This is typically the case in generic code, e.g., when writing templates,
because you don’t know all the types you’re working with. In such circumstances, you
must be as conservative about copying objects as you were in C++98—before move
semantics existed. This is also the case for “unstable” code, i.e., code where the char‐
acteristics of the types being used are subject to relatively frequent modification.

Often, however, you know the types your code uses, and you can rely on their charac‐
teristics not changing (e.g., whether they support inexpensive move operations).
When that’s the case, you don’t need to make assumptions. You can simply look up
the move support details for the types you’re using. If those types offer cheap move
operations, and if you’re using objects in contexts where those move operations will
be invoked, you can safely rely on move semantics to replace copy operations with
their less expensive move counterparts.

Things to Remember
• Assume that move operations are not present, not cheap, and not used.
• In code with known types or support for move semantics, there is no need for

assumptions.
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Item 30: Familiarize yourself with perfect forwarding
failure cases.

One of the features most prominently emblazoned on the C++11 box is perfect for‐
warding. Perfect forwarding. It’s perfect! Alas, tear the box open, and you’ll find that
there’s “perfect” (the ideal), and then there’s “perfect” (the reality). C++11’s perfect
forwarding is very good, but it achieves true perfection only if you’re willing to over‐
look an epsilon or two. This Item is devoted to familiarizing you with the epsilons.

Before embarking on our epsilon exploration, it’s worthwhile to review what’s meant
by “perfect forwarding.” “Forwarding” just means that one function passes—forwards
—its parameters to another function. The goal is for the second function (the one
being forwarded to) to receive the same objects that the first function (the one doing
the forwarding) received. That rules out by-value parameters, because they’re copies
of what the original caller passed in. We want the forwarded-to function to be able to
work with the originally-passed-in objects. Pointer parameters are also ruled out,
because we don’t want to force callers to pass pointers. When it comes to general-
purpose forwarding, we’ll be dealing with parameters that are references.

Perfect forwarding means we don’t just forward objects, we also forward their salient
characteristics: their types, whether they’re lvalues or rvalues, and whether they’re
const or volatile. In conjunction with the observation that we’ll be dealing with
reference parameters, this implies that we’ll be using universal references (see
Item 24), because only universal reference parameters encode information about the
lvalueness and rvalueness of the arguments that are passed to them.

Let’s assume we have some function f, and we’d like to write a function (in truth, a
function template) that forwards to it. The core of what we need looks like this:

template<typename T>
void fwd(T&& param)                  // accept any argument
{
  f(std::forward<T>(param));         // forward it to f
}

Forwarding functions are, by their nature, generic. The fwd template, for example,
accepts any type of argument, and it forwards whatever it gets. A logical extension of
this genericity is for forwarding functions to be not just templates, but variadic tem‐
plates, thus accepting any number of arguments. The variadic form for fwd looks like
this:

template<typename... Ts>
void fwd(Ts&&... params)             // accept any arguments
{
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  f(std::forward<Ts>(params)...);    // forward them to f
}

This is the form you’ll see in, among other places, the standard containers’ emplace‐
ment functions (see Item 42) and the smart pointer factory functions,
std::make_shared and std::make_unique (see Item 21).

Given our target function f and our forwarding function fwd, perfect forwarding fails
if calling f with a particular argument does one thing, but calling fwd with the same
argument does something different:

f( expression );      // if this does one thing,
fwd( expression );    // but this does something else, fwd fails
                      // to perfectly forward expression to f

Several kinds of arguments lead to this kind of failure. Knowing what they are and
how to work around them is important, so let’s tour the kinds of arguments that can’t
be perfect-forwarded.

Braced initializers
Suppose f is declared like this:

void f(const std::vector<int>& v);

In that case, calling f with a braced initializer compiles,

f({ 1, 2, 3 });       // fine, "{1, 2, 3}" implicitly
                      // converted to std::vector<int>

but passing the same braced initializer to fwd doesn’t compile:

fwd({ 1, 2, 3 });     // error! doesn't compile

That’s because the use of a braced initializer is a perfect forwarding failure case.

All such failure cases have the same cause. In a direct call to f (such as f({ 1, 2,
3 })), compilers see the arguments passed at the call site, and they see the types of the
parameters declared by f. They compare the arguments at the call site to the parame‐
ter declarations to see if they’re compatible, and, if necessary, they perform implicit
conversions to make the call succeed. In the example above, they generate a tempo‐
rary std::vector<int> object from { 1, 2, 3 } so that f’s parameter v has a
std::vector<int> object to bind to.

When calling f indirectly through the forwarding function template fwd, compilers
no longer compare the arguments passed at fwd’s call site to the parameter declara‐
tions in f. Instead, they deduce the types of the arguments being passed to fwd, and
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they compare the deduced types to f’s parameter declarations. Perfect forwarding
fails when either of the following occurs:

• Compilers are unable to deduce a type for one or more of fwd’s parameters. In
this case, the code fails to compile.

• Compilers deduce the “wrong” type for one or more of fwd’s parameters. Here,
“wrong” could mean that fwd’s instantiation won’t compile with the types that
were deduced, but it could also mean that the call to f using fwd’s deduced types
behaves differently from a direct call to f with the arguments that were passed to
fwd. One source of such divergent behavior would be if f were an overloaded
function name, and, due to “incorrect” type deduction, the overload of f called
inside fwd were different from the overload that would be invoked if f were
called directly.

In the “fwd({ 1, 2, 3 })” call above, the problem is that passing a braced initializer
to a function template parameter that’s not declared to be a std::initial
izer_list is decreed to be, as the Standard puts it, a “non-deduced context.” In
plain English, that means that compilers are forbidden from deducing a type for the
expression { 1, 2, 3 } in the call to fwd, because fwd’s parameter isn’t declared to be
a std::initializer_list. Being prevented from deducing a type for fwd’s parame‐
ter, compilers must understandably reject the call.

Interestingly, Item 2 explains that type deduction succeeds for auto variables initial‐
ized with a braced initializer. Such variables are deemed to be std::initial
izer_list objects, and this affords a simple workaround for cases where the type the
forwarding function should deduce is a std::initializer_list—declare a local
variable using auto, then pass the local variable to the forwarding function:

auto il = { 1, 2, 3 };     // il's type deduced to be
                           // std::initializer_list<int>

fwd(il);                   // fine, perfect-forwards il to f

0 or NULL as null pointers
Item 8 explains that when you try to pass 0 or NULL as a null pointer to a template,
type deduction goes awry, deducing an integral type (typically int) instead of a
pointer type for the argument you pass. The result is that neither 0 nor NULL can be
perfect-forwarded as a null pointer. The fix is easy, however: pass nullptr instead of
0 or NULL. For details, consult Item 8.

Item 30 | 209



Declaration-only integral static const data members
As a general rule, there’s no need to define integral static const data members in
classes; declarations alone suffice. That’s because compilers perform const propaga‐
tion on such members’ values, thus eliminating the need to set aside memory for
them. For example, consider this code:

class Widget {
public:
  static const std::size_t MinVals = 28; // MinVals' declaration
  …
};
…                                        // no defn. for MinVals

std::vector<int> widgetData;
widgetData.reserve(Widget::MinVals);     // use of MinVals

Here, we’re using Widget::MinVals (henceforth simply MinVals) to specify widget
Data’s initial capacity, even though MinVals lacks a definition. Compilers work
around the missing definition (as they are required to do) by plopping the value 28
into all places where MinVals is mentioned. The fact that no storage has been set
aside for MinVals’ value is unproblematic. If MinVals’ address were to be taken (e.g.,
if somebody created a pointer to MinVals), then MinVals would require storage (so
that the pointer had something to point to), and the code above, though it would
compile, would fail at link-time until a definition for MinVals was provided.

With that in mind, imagine that f (the function fwd forwards its argument to) is
declared like this:

void f(std::size_t val);

Calling f with MinVals is fine, because compilers will just replace MinVals with its
value:

f(Widget::MinVals);         // fine, treated as "f(28)"

Alas, things may not go so smoothly if we try to call f through fwd:

fwd(Widget::MinVals);       // error! shouldn't link

This code will compile, but it shouldn’t link. If that reminds you of what happens if
we write code that takes MinVals’ address, that’s good, because the underlying prob‐
lem is the same.

Although nothing in the source code takes MinVals’ address, fwd’s parameter is a
universal reference, and references, in the code generated by compilers, are usually
treated like pointers. In the program’s underlying binary code (and on the hardware),
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pointers and references are essentially the same thing. At this level, there’s truth to
the adage that references are simply pointers that are automatically dereferenced.
That being the case, passing MinVals by reference is effectively the same as passing it
by pointer, and as such, there has to be some memory for the pointer to point to.
Passing integral static const data members by reference, then, generally requires
that they be defined, and that requirement can cause code using perfect forwarding to
fail where the equivalent code without perfect forwarding succeeds.

But perhaps you noticed the weasel words I sprinkled through the preceding discus‐
sion. The code “shouldn’t” link. References are “usually” treated like pointers. Passing
integral static const data members by reference “generally” requires that they be
defined. It’s almost like I know something I don’t really want to tell you…

That’s because I do. According to the Standard, passing MinVals by reference
requires that it be defined. But not all implementations enforce this requirement. So,
depending on your compilers and linkers, you may find that you can perfect-forward
integral static const data members that haven’t been defined. If you do, congratu‐
lations, but there is no reason to expect such code to port. To make it portable, sim‐
ply provide a definition for the integral static const data member in question. For
MinVals, that’d look like this:

const std::size_t Widget::MinVals;     // in Widget's .cpp file

Note that the definition doesn’t repeat the initializer (28, in the case of MinVals).
Don’t stress over this detail, however. If you forget and provide the initializer in both
places, your compilers will complain, thus reminding you to specify it only once.

Overloaded function names and template names
Suppose our function f (the one we keep wanting to forward arguments to via fwd)
can have its behavior customized by passing it a function that does some of its work.
Assuming this function takes and returns ints, f could be declared like this:

void f(int (*pf)(int));         // pf = "processing function"

It’s worth noting that f could also be declared using a simpler non-pointer syntax.
Such a declaration would look like this, though it’d have the same meaning as the
declaration above:

void f(int pf(int));            // declares same f as above

Either way, now suppose we have an overloaded function, processVal:

int processVal(int value);
int processVal(int value, int priority);

We can pass processVal to f,
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f(processVal);                  // fine

but it’s something of a surprise that we can. f demands a pointer to a function as its
argument, but processVal isn’t a function pointer or even a function, it’s the name
of two different functions. However, compilers know which processVal they need:
the one matching f’s parameter type. They thus choose the processVal taking one
int, and they pass that function’s address to f.

What makes this work is that f’s declaration lets compilers figure out which version
of processVal is required. fwd, however, being a function template, doesn’t have any
information about what type it needs, and that makes it impossible for compilers to
determine which overload should be passed:

fwd(processVal);            // error! which processVal?

processVal alone has no type. Without a type, there can be no type deduction, and
without type deduction, we’re left with another perfect forwarding failure case.

The same problem arises if we try to use a function template instead of (or in addi‐
tion to) an overloaded function name. A function template doesn’t represent one
function, it represents many functions:

template<typename T>
T workOnVal(T param)        // template for processing values
{ … }

fwd(workOnVal);             // error! which workOnVal
                            // instantiation?

The way to get a perfect-forwarding function like fwd to accept an overloaded func‐
tion name or a template name is to manually specify the overload or instantiation
you want to have forwarded. For example, you can create a function pointer of the
same type as f’s parameter, initialize that pointer with processVal or workOnVal
(thus causing the proper version of processVal to be selected or the proper instan‐
tiation of workOnVal to be generated), and pass the pointer to fwd:

using ProcessFuncType =                        // make typedef;
  int (*)(int);                                // see Item 9

ProcessFuncType processValPtr = processVal;    // specify needed
                                               // signature for
                                               // processVal

fwd(processValPtr);                            // fine

fwd(static_cast<ProcessFuncType>(workOnVal));  // also fine
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3 This assumes that bitfields are laid out lsb (least significant bit) to msb (most significant bit). C++ doesn’t
guarantee that, but compilers often provide a mechanism that allows programmers to control bitfield layout.

Of course, this requires that you know the type of function pointer that fwd is for‐
warding to. It’s not unreasonable to assume that a perfect-forwarding function will
document that. After all, perfect-forwarding functions are designed to accept any‐
thing, so if there’s no documentation telling you what to pass, how would you know?

Bitfields
The final failure case for perfect forwarding is when a bitfield is used as a function
argument. To see what this means in practice, observe that an IPv4 header can be
modeled as follows:3

struct IPv4Header {
  std::uint32_t version:4,
                IHL:4,
                DSCP:6,
                ECN:2,
                totalLength:16;
  …
};

If our long-suffering function f (the perennial target of our forwarding function fwd)
is declared to take a std::size_t parameter, calling it with, say, the totalLength
field of an IPv4Header object compiles without fuss:

void f(std::size_t sz);        // function to call

IPv4Header h;
…
f(h.totalLength);              // fine

Trying to forward h.totalLength to f via fwd, however, is a different story:

fwd(h.totalLength);            // error!

The problem is that fwd’s parameter is a reference, and h.totalLength is a non-
const bitfield. That may not sound so bad, but the C++ Standard condemns the
combination in unusually clear prose: “A non-const reference shall not be bound to
a bit-field.” There’s an excellent reason for the prohibition. Bitfields may consist of
arbitrary parts of machine words (e.g., bits 3-5 of a 32-bit int), but there’s no way to
directly address such things. I mentioned earlier that references and pointers are the
same thing at the hardware level, and just as there’s no way to create a pointer to
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arbitrary bits (C++ dictates that the smallest thing you can point to is a char), there’s
no way to bind a reference to arbitrary bits, either.

Working around the impossibility of perfect-forwarding a bitfield is easy, once you
realize that any function that accepts a bitfield as an argument will receive a copy of
the bitfield’s value. After all, no function can bind a reference to a bitfield, nor can
any function accept pointers to bitfields, because pointers to bitfields don’t exist. The
only kinds of parameters to which a bitfield can be passed are by-value parameters
and, interestingly, references-to-const. In the case of by-value parameters, the called
function obviously receives a copy of the value in the bitfield, and it turns out that in
the case of a reference-to-const parameter, the Standard requires that the reference
actually bind to a copy of the bitfield’s value that’s stored in an object of some stan‐
dard integral type (e.g., int). References-to-const don’t bind to bitfields, they bind
to “normal” objects into which the values of the bitfields have been copied.

The key to passing a bitfield into a perfect-forwarding function, then, is to take
advantage of the fact that the forwarded-to function will always receive a copy of the
bitfield’s value. You can thus make a copy yourself and call the forwarding function
with the copy. In the case of our example with IPv4Header, this code would do the
trick:

// copy bitfield value; see Item 6 for info on init. form
auto length = static_cast<std::uint16_t>(h.totalLength);

fwd(length);                        // forward the copy

Upshot
In most cases, perfect forwarding works exactly as advertised. You rarely have to
think about it. But when it doesn’t work—when reasonable-looking code fails to
compile or, worse, compiles, but doesn’t behave the way you anticipate—it’s impor‐
tant to know about perfect forwarding’s imperfections. Equally important is knowing
how to work around them. In most cases, this is straightforward. 

Things to Remember
• Perfect forwarding fails when template type deduction fails or when it deduces

the wrong type.
• The kinds of arguments that lead to perfect forwarding failure are braced ini‐

tializers, null pointers expressed as 0 or NULL, declaration-only integral const
static data members, template and overloaded function names, and bitfields.
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CHAPTER 6

Lambda Expressions

Lambda expressions—lambdas—are a game changer in C++ programming. That’s
somewhat surprising, because they bring no new expressive power to the language.
Everything a lambda can do is something you can do by hand with a bit more typing.
But lambdas are such a convenient way to create function objects, the impact on day-
to-day C++ software development is enormous. Without lambdas, the STL “_if”
algorithms (e.g., std::find_if, std::remove_if, std::count_if, etc.) tend to be
employed with only the most trivial predicates, but when lambdas are available, use
of these algorithms with nontrivial conditions blossoms. The same is true of algo‐
rithms that can be customized with comparison functions (e.g., std::sort,
std::nth_element, std::lower_bound, etc.). Outside the STL, lambdas make it
possible to quickly create custom deleters for std::unique_ptr and
std::shared_ptr (see Items 18 and 19), and they make the specification of predi‐
cates for condition variables in the threading API equally straightforward (see
Item 39). Beyond the Standard Library, lambdas facilitate the on-the-fly specification
of callback functions, interface adaption functions, and context-specific functions for
one-off calls. Lambdas really make C++ a more pleasant programming language.

The vocabulary associated with lambdas can be confusing. Here’s a brief refresher:

• A lambda expression is just that: an expression. It’s part of the source code. In
std::find_if(container.begin(), container.end(),
             [](int val) { return 0 < val && val < 10; });

the highlighted expression is the lambda.
• A closure is the runtime object created by a lambda. Depending on the capture

mode, closures hold copies of or references to the captured data. In the call to
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std::find_if above, the closure is the object that’s passed at runtime as the
third argument to std::find_if.

• A closure class is a class from which a closure is instantiated. Each lambda causes
compilers to generate a unique closure class. The statements inside a lambda
become executable instructions in the member functions of its closure class.

A lambda is often used to create a closure that’s used only as an argument to a func‐
tion. That’s the case in the call to std::find_if above. However, closures may gen‐
erally be copied, so it’s usually possible to have multiple closures of a closure type
corresponding to a single lambda. For example, in the following code,

{

  int x;                                 // x is local variable
  …

  auto c1 =                              // c1 is copy of the
    [x](int y) { return x * y > 55; };   // closure produced
                                         // by the lambda

  auto c2 = c1;                          // c2 is copy of c1

  auto c3 = c2;                          // c3 is copy of c2

  …

}

c1, c2, and c3 are all copies of the closure produced by the lambda.

Informally, it’s perfectly acceptable to blur the lines between lambdas, closures, and
closure classes. But in the Items that follow, it’s often important to distinguish what
exists during compilation (lambdas and closure classes), what exists at runtime (clo‐
sures), and how they relate to one another.

Item 31: Avoid default capture modes.
There are two default capture modes in C++11: by-reference and by-value. Default
by-reference capture can lead to dangling references. Default by-value capture lures
you into thinking you’re immune to that problem (you’re not), and it lulls you into
thinking your closures are self-contained (they may not be).

That’s the executive summary for this Item. If you’re more engineer than executive,
you’ll want some meat on those bones, so let’s start with the danger of default by-
reference capture.
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A by-reference capture causes a closure to contain a reference to a local variable or to
a parameter that’s available in the scope where the lambda is defined. If the lifetime
of a closure created from that lambda exceeds the lifetime of the local variable or
parameter, the reference in the closure will dangle. For example, suppose we have a
container of filtering functions, each of which takes an int and returns a bool indi‐
cating whether a passed-in value satisfies the filter:

using FilterContainer =                     // see Item 9 for
  std::vector<std::function<bool(int)>>;    // "using", Item 2
                                            // for std::function

FilterContainer filters;                    // filtering funcs

We could add a filter for multiples of 5 like this:

filters.emplace_back(                       // see Item 42 for
  [](int value) { return value % 5 == 0; }  // info on
);                                          // emplace_back

However, it may be that we need to compute the divisor at runtime, i.e., we can’t just
hard-code 5 into the lambda. So adding the filter might look more like this:

void addDivisorFilter()
{
  auto calc1 = computeSomeValue1();
  auto calc2 = computeSomeValue2();

  auto divisor = computeDivisor(calc1, calc2);

  filters.emplace_back(                              // danger!
    [&](int value) { return value % divisor == 0; }  // ref to
  );                                                 // divisor
}                                                    // will
                                                     // dangle!

This code is a problem waiting to happen. The lambda refers to the local variable
divisor, but that variable ceases to exist when addDivisorFilter returns. That’s
immediately after filters.emplace_back returns, so the function that’s added to
filters is essentially dead on arrival. Using that filter yields undefined behavior
from virtually the moment it’s created.

Now, the same problem would exist if divisor’s by-reference capture were explicit,

filters.emplace_back(
  [&divisor](int value)                // danger! ref to
  { return value % divisor == 0; }     // divisor will
);                                     // still dangle!
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but with an explicit capture, it’s easier to see that the viability of the lambda is depen‐
dent on divisor’s lifetime. Also, writing out the name, “divisor,” reminds us to
ensure that divisor lives at least as long as the lambda’s closures. That’s a more spe‐
cific memory jog than the general “make sure nothing dangles” admonition that
“[&]” conveys.

If you know that a closure will be used immediately (e.g., by being passed to an STL
algorithm) and won’t be copied, there is no risk that references it holds will outlive
the local variables and parameters in the environment where its lambda is created. In
that case, you might argue, there’s no risk of dangling references, hence no reason to
avoid a default by-reference capture mode. For example, our filtering lambda might
be used only as an argument to C++11’s std::all_of, which returns whether all ele‐
ments in a range satisfy a condition:

template<typename C>
void workWithContainer(const C& container)
{
  auto calc1 = computeSomeValue1();             // as above
  auto calc2 = computeSomeValue2();             // as above

  auto divisor = computeDivisor(calc1, calc2);  // as above

  using ContElemT = typename C::value_type;     // type of
                                                // elements in
                                                // container

  using std::begin;                             // for
  using std::end;                               // genericity;
                                                // see Item 13

  if (std::all_of(                              // if all values
        begin(container), end(container),       // in container
        [&](const ContElemT& value)             // are multiples
        { return value % divisor == 0; })       // of divisor...
      ) {
    …                                           // they are...
  } else {
    …                                           // at least one
  }                                             // isn't...
}

It’s true, this is safe, but its safety is somewhat precarious. If the lambda were found
to be useful in other contexts (e.g., as a function to be added to the filters con‐
tainer) and was copy-and-pasted into a context where its closure could outlive divi
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sor, you’d be back in dangle-city, and there’d be nothing in the capture clause to
specifically remind you to perform lifetime analysis on divisor.

Long-term, it’s simply better software engineering to explicitly list the local variables
and parameters that a lambda depends on.

By the way, the ability to use auto in C++14 lambda parameter specifications means
that the code above can be simplified in C++14. The ContElemT typedef can be elimi‐
nated, and the if condition can be revised as follows:

if (std::all_of(begin(container), end(container),
                [&](const auto& value)                // C++14
                { return value % divisor == 0; }))

One way to solve our problem with divisor would be a default by-value capture
mode. That is, we could add the lambda to filters as follows:

filters.emplace_back(                                 // now
  [=](int value) { return value % divisor == 0; }     // divisor
);                                                    // can't
                                                      // dangle

This suffices for this example, but, in general, default by-value capture isn’t the anti-
dangling elixir you might imagine. The problem is that if you capture a pointer by
value, you copy the pointer into the closures arising from the lambda, but you don’t
prevent code outside the lambda from deleteing the pointer and causing your
copies to dangle.

“That could never happen!” you protest. “Having read Chapter 4, I worship at the
house of smart pointers. Only loser C++98 programmers use raw pointers and
delete.” That may be true, but it’s irrelevant because you do, in fact, use raw point‐
ers, and they can, in fact, be deleted out from under you. It’s just that in your
modern C++ programming style, there’s often little sign of it in the source code.

Suppose one of the things Widgets can do is add entries to the container  of filters:

class Widget {
public:
  …                                  // ctors, etc.
  void addFilter() const;            // add an entry to filters

private:
  int divisor;                       // used in Widget's filter
};

Widget::addFilter could be defined like this:
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void Widget::addFilter() const
{
  filters.emplace_back(
    [=](int value) { return value % divisor == 0; }
  );
}

To the blissfully uninitiated, this looks like safe code. The lambda is dependent on
divisor, but the default by-value capture mode ensures that divisor is copied into
any closures arising from the lambda, right?

Wrong. Completely wrong. Horribly wrong. Fatally wrong.

Captures apply only to non-static local variables (including parameters) visible in
the scope where the lambda is created. In the body of Widget::addFilter, divisor
is not a local variable, it’s a data member of the Widget class. It can’t be captured. Yet
if the default capture mode is eliminated, the code won’t compile:

void Widget::addFilter() const
{
  filters.emplace_back(                             // error!
    [](int value) { return value % divisor == 0; }  // divisor
  );                                                // not
}                                                   // available

Furthermore, if an attempt is made to explicitly capture divisor (either by value or
by reference—it doesn’t matter), the capture won’t compile, because divisor isn’t a
local variable or a parameter:

void Widget::addFilter() const
{
  filters.emplace_back(
    [divisor](int value)                // error! no local
    { return value % divisor == 0; }    // divisor to capture
  );
}

So if the default by-value capture clause isn’t capturing divisor, yet without the
default by-value capture clause, the code won’t compile, what’s going on?

The explanation hinges on the implicit use of a raw pointer: this. Every non-static
member function has a this pointer, and you use that pointer every time you men‐
tion a data member of the class. Inside any Widget member function, for example,
compilers internally replace uses of divisor with this->divisor. In the version of
Widget::addFilter with a default by-value capture,
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void Widget::addFilter() const
{
  filters.emplace_back(
    [=](int value) { return value % divisor == 0; }
  );
}

what’s being captured is the Widget’s this pointer, not divisor. Compilers treat the
code as if it had been written as follows:

void Widget::addFilter() const
{
  auto currentObjectPtr = this;
  
  filters.emplace_back(
    [currentObjectPtr](int value)
    { return value % currentObjectPtr->divisor == 0; }
  );
}

Understanding this is tantamount to understanding that the viability of the closures
arising from this lambda is tied to the lifetime of the Widget whose this pointer they
contain a copy of. In particular, consider this code, which, in accord with Chapter 4,
uses pointers of only the smart variety:

using FilterContainer =                     // as before
  std::vector<std::function<bool(int)>>;

FilterContainer filters;                    // as before

void doSomeWork()
{
  auto pw =                       // create Widget; see
    std::make_unique<Widget>();   // Item 21 for
                                  // std::make_unique

  pw->addFilter();                // add filter that uses
                                  // Widget::divisor
  …
}                                 // destroy Widget; filters
                                  // now holds dangling pointer!

When a call is made to doSomeWork, a filter is created that depends on the Widget
object produced by std::make_unique, i.e., a filter that contains a copy of a pointer
to that Widget—the Widget’s this pointer. This filter is added to filters, but when
doSomeWork finishes, the Widget is destroyed by the std::unique_ptr managing its
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lifetime (see Item 18). From that point on, filters contains an entry with a dangling
pointer.

This particular problem can be solved by making a local copy of the data member
you want to capture and then capturing the copy:

void Widget::addFilter() const
{
  auto divisorCopy = divisor;                // copy data member

  filters.emplace_back(
    [divisorCopy](int value)                 // capture the copy
    { return value % divisorCopy == 0; }     // use the copy
  );
}

To be honest, if you take this approach, default by-value capture will work, too,

void Widget::addFilter() const
{
  auto divisorCopy = divisor;                // copy data member

  filters.emplace_back(
    [=](int value)                           // capture the copy
    { return value % divisorCopy == 0; }     // use the copy
  );
}

but why tempt fate? A default capture mode is what made it possible to accidentally
capture this when you thought you were capturing divisor in the first place.

In C++14, a better way to capture a data member is to use generalized lambda cap‐
ture (see Item 32):

void Widget::addFilter() const
{
  filters.emplace_back(               // C++14:
    [divisor = divisor](int value)    // copy divisor to closure
    { return value % divisor == 0; }  // use the copy
  );
}

There’s no such thing as a default capture mode for a generalized lambda capture,
however, so even in C++14, the advice of this Item—to avoid default capture modes
—stands.

An additional drawback to default by-value captures is that they can suggest that the
corresponding closures are self-contained and insulated from changes to data outside
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the closures. In general, that’s not true, because lambdas may be dependent not just
on local variables and parameters (which may be captured), but also on objects with
static storage duration. Such objects are defined at global or namespace scope or are
declared static inside classes, functions, or files. These objects can be used inside
lambdas, but they can’t be captured. Yet specification of a default by-value capture
mode can lend the impression that they are. Consider this revised version of the add
DivisorFilter function we saw earlier:

void addDivisorFilter()
{
  static auto calc1 = computeSomeValue1();      // now static
  static auto calc2 = computeSomeValue2();      // now static

  static auto divisor =                         // now static
    computeDivisor(calc1, calc2);

  filters.emplace_back(
    [=](int value)                     // captures nothing!
    { return value % divisor == 0; }   // refers to above static
  );

  ++divisor;                           // modify divisor
}

A casual reader of this code could be forgiven for seeing “[=]” and thinking, “Okay,
the lambda makes a copy of all the objects it uses and is therefore self-contained.” But
it’s not self-contained. This lambda doesn’t use any non-static local variables, so
nothing is captured. Rather, the code for the lambda refers to the static variable
divisor. When, at the end of each invocation of addDivisorFilter, divisor is
incremented, any lambdas that have been added to filters via this function will
exhibit new behavior (corresponding to the new value of divisor). Practically speak‐
ing, this lambda captures divisor by reference, a direct contradiction to what the
default by-value capture clause seems to imply. If you stay away from default by-
value capture clauses, you eliminate the risk of your code being misread in this way.

Things to Remember
• Default by-reference capture can lead to dangling references.
• Default by-value capture is susceptible to dangling pointers (especially this),

and it misleadingly suggests that lambdas are self-contained.
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Item 32: Use init capture to move objects into closures.
Sometimes neither by-value capture nor by-reference capture is what you want. If
you have a move-only object (e.g., a std::unique_ptr or a std::future) that you
want to get into a closure, C++11 offers no way to do it. If you have an object that’s
expensive to copy but cheap to move (e.g., most containers in the Standard Library),
and you’d like to get that object into a closure, you’d much rather move it than copy
it. Again, however, C++11 gives you no way to accomplish that.

But that’s C++11. C++14 is a different story. It offers direct support for moving
objects into closures. If your compilers are C++14-compliant, rejoice and read on. If
you’re still working with C++11 compilers, you should rejoice and read on, too,
because there are ways to approximate move capture in C++11.

The absence of move capture was recognized as a shortcoming even as C++11 was
adopted. The straightforward remedy would have been to add it in C++14, but the
Standardization Committee chose a different path. They introduced a new capture
mechanism that’s so flexible, capture-by-move is only one of the tricks it can per‐
form. The new capability is called init capture. It can do virtually everything the
C++11 capture forms can do, plus more. The one thing you can’t express with an init
capture is a default capture mode, but Item 31 explains that you should stay away
from those, anyway. (For situations covered by C++11 captures, init capture’s syntax
is a bit wordier, so in cases where a C++11 capture gets the job done, it’s perfectly
reasonable to use it.)

Using an init capture makes it possible for you to specify

1. the name of a data member in the closure class generated from the lambda and
2. an expression initializing that data member.

Here’s how you can use init capture to move a std::unique_ptr into a closure:

class Widget {                          // some useful type
public:
  …

  bool isValidated() const;
  bool isProcessed() const;
  bool isArchived() const;

private:
  …
};

224 | Item 32



auto pw = std::make_unique<Widget>();   // create Widget; see
                                        // Item 21 for info on
                                        // std::make_unique

…                                       // configure *pw

auto func = [pw = std::move(pw)]               // init data mbr
            { return pw->isValidated()         // in closure w/
                     && pw->isArchived(); };   // std::move(pw)

The highlighted text comprises the init capture. To the left of the “=” is the name of
the data member in the closure class you’re specifying, and to the right is the initializ‐
ing expression. Interestingly, the scope on the left of the “=” is different from the
scope on the right. The scope on the left is that of the closure class. The scope on the
right is the same as where the lambda is being defined. In the example above, the
name pw on the left of the “=” refers to a data member in the closure class, while the
name pw on the right refers to the object declared above the lambda, i.e., the variable
initialized by the call to std::make_unique. So “pw = std::move(pw)” means “create
a data member pw in the closure, and initialize that data member with the result of
applying std::move to the local variable pw.”

As usual, code in the body of the lambda is in the scope of the closure class, so uses of
pw there refer to the closure class data member.

The comment “configure *pw” in this example indicates that after the Widget is cre‐
ated by std::make_unique and before the std::unique_ptr to that Widget is cap‐
tured by the lambda, the Widget is modified in some way. If no such configuration is
necessary, i.e., if the Widget created by std::make_unique is in a state suitable to be
captured by the lambda, the local variable pw is unnecessary, because the closure
class’s data member can be directly initialized by std::make_unique:

auto func = [pw = std::make_unique<Widget>()]  // init data mbr
            { return pw->isValidated()         // in closure w/
                     && pw->isArchived(); };   // result of call
                                               // to make_unique

This should make clear that the C++14 notion of “capture” is considerably general‐
ized from C++11, because in C++11, it’s not possible to capture the result of an
expression. As a result, another name for init capture is generalized lambda capture.

But what if one or more of the compilers you use lacks support for C++14’s init cap‐
ture? How can you accomplish move capture in a language lacking support for move
capture?

Item 32 | 225



Remember that a lambda expression is simply a way to cause a class to be generated
and an object of that type to be created. There is nothing you can do with a lambda
that you can’t do by hand. The example C++14 code we just saw, for example, can be
written in C++11 like this:

class IsValAndArch {                         // "is validated
public:                                      // and archived"
  using DataType = std::unique_ptr<Widget>;

  explicit IsValAndArch(DataType&& ptr)      // Item 25 explains
  : pw(std::move(ptr)) {}                    // use of std::move

  bool operator()() const
  { return pw->isValidated() && pw->isArchived(); }

private:
  DataType pw;
};

auto func = IsValAndArch(std::make_unique<Widget>());

That’s more work than writing the lambda, but it doesn’t change the fact that if you
want a class in C++11 that supports move-initialization of its data members, the only
thing between you and your desire is a bit of time with your keyboard.

If you want to stick with lambdas (and given their convenience, you probably do),
move capture can be emulated in C++11 by

1. moving the object to be captured into a function object produced by
std::bind and

2. giving the lambda a reference to the “captured” object.

If you’re familiar with std::bind, the code is pretty straightforward. If you’re not
familiar with std::bind, the code takes a little getting used to, but it’s worth the
trouble.

Suppose you’d like to create a local std::vector, put an appropriate set of values
into it, then move it into a closure. In C++14, this is easy:

std::vector<double> data;                 // object to be moved
                                          // into closure

…                                         // populate data

auto func = [data = std::move(data)]      // C++14 init capture
            { /* uses of data */ };
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I’ve highlighted key parts of this code: the type of object you want to move
(std::vector<double>), the name of that object (data), and the initializing expres‐
sion for the init capture (std::move(data)). The C++11 equivalent is as follows,
where I’ve highlighted the same key things:

std::vector<double> data;                 // as above

…                                         // as above

auto func =
  std::bind(                              // C++11 emulation
    [](const std::vector<double>& data)   // of init capture
    { /* uses of data */ },
    std::move(data)
  );

Like lambda expressions, std::bind produces function objects. I call function
objects returned by std::bind bind objects. The first argument to std::bind is a
callable object. Subsequent arguments represent values to be passed to that object.

A bind object contains copies of all the arguments passed to std::bind. For each
lvalue argument, the corresponding object in the bind object is copy constructed. For
each rvalue, it’s move constructed. In this example, the second argument is an rvalue
(the result of std::move—see Item 23), so data is move constructed into the bind
object. This move construction is the crux of move capture emulation, because mov‐
ing an rvalue into a bind object is how we work around the inability to move an
rvalue into a C++11 closure.

When a bind object is “called” (i.e., its function call operator is invoked) the argu‐
ments it stores are passed to the callable object originally passed to std::bind. In
this example, that means that when func (the bind object) is called, the move-
constructed copy of data inside func is passed as an argument to the lambda that
was passed to std::bind.

This lambda is the same as the lambda we’d use in C++14, except a parameter, data,
has been added to correspond to our pseudo-move-captured object. This parameter
is an lvalue reference to the copy of data in the bind object. (It’s not an rvalue refer‐
ence, because although the expression used to initialize the copy of data

(“std::move(data)”) is an rvalue, the copy of data itself is an lvalue.) Uses of data
inside the lambda will thus operate on the move-constructed copy of data inside the
bind object.

By default, the operator() member function inside the closure class generated from
a lambda is const. That has the effect of rendering all data members in the closure
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const within the body of the lambda. The move-constructed copy of data inside the
bind object is not const, however, so to prevent that copy of data from being modi‐
fied inside the lambda, the lambda’s parameter is declared reference-to-const. If the
lambda were declared mutable, operator() in its closure class would not be
declared const, and it would be appropriate to omit const in the lambda’s parame‐
ter declaration:

auto func =
  std::bind(                               // C++11 emulation
    [](std::vector<double>& data) mutable  // of init capture
    { /* uses of data */ },                // for mutable lambda
    std::move(data)
  );

Because a bind object stores copies of all the arguments passed to std::bind, the
bind object in our example contains a copy of the closure produced by the lambda
that is its first argument. The lifetime of the closure is therefore the same as the life‐
time of the bind object. That’s important, because it means that as long as the closure
exists, the bind object containing the pseudo-move-captured object exists, too.

If this is your first exposure to std::bind, you may need to consult your favorite
C++11 reference before all the details of the foregoing discussion fall into place. Even
if that’s the case, these fundamental points should be clear:

• It’s not possible to move-construct an object into a C++11 closure, but it is possi‐
ble to move-construct an object into a C++11 bind object.

• Emulating move-capture in C++11 consists of move-constructing an object into
a bind object, then passing the move-constructed object to the lambda by refer‐
ence.

• Because the lifetime of the bind object is the same as that of the closure, it’s pos‐
sible to treat objects in the bind object as if they were in the closure.

As a second example of using std::bind to emulate move capture, here’s the C++14
code we saw earlier to create a std::unique_ptr in a closure:

auto func = [pw = std::make_unique<Widget>()]    // as before,
            { return pw->isValidated()           // create pw
                     && pw->isArchived(); };     // in closure

And here’s the C++11 emulation:

auto func = std::bind(
              [](const std::unique_ptr<Widget>& pw)
              { return pw->isValidated()
                     && pw->isArchived(); },
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              std::make_unique<Widget>()
            );

It’s ironic that I’m showing how to use std::bind to work around limitations in
C++11 lambdas, because in Item 34, I advocate the use of lambdas over std::bind.
However, that Item explains that there are some cases in C++11 where std::bind
can be useful, and this is one of them. (In C++14, features such as init capture and
auto parameters eliminate those cases.)

Things to Remember
• Use C++14’s init capture to move objects into closures.
• In C++11, emulate init capture via hand-written classes or std::bind.

Item 33: Use decltype on auto&& parameters to
std::forward them.

One of the most exciting features of C++14 is generic lambdas—lambdas that use
auto in their parameter specifications. The implementation of this feature is straight‐
forward: operator() in the lambda’s closure class is a template. Given this lambda,
for example,

auto f = [](auto x){ return func(normalize(x)); };

the closure class’s function call operator looks like this:

class SomeCompilerGeneratedClassName {
public:
  template<typename T>                   // see Item 3 for 
  auto operator()(T x) const             // auto return type
  { return func(normalize(x)); }

  …                                      // other closure class
};                                       // functionality

In this example, the only thing the lambda does with its parameter x is forward it to
normalize. If normalize treats lvalues differently from rvalues, this lambda isn’t
written properly, because it always passes an lvalue (the parameter x) to normalize,
even if the argument that was passed to the lambda was an rvalue.

The correct way to write the lambda is to have it perfect-forward x to normalize.
Doing that requires two changes to the code. First, x has to become a universal refer‐
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ence (see Item 24), and second, it has to be passed to normalize via std::forward
(see Item 25). In concept, these are trivial modifications:

auto f = [](auto&& x)
         { return func(normalize(std::forward<???>(x))); };

Between concept and realization, however, is the question of what type to pass to
std::forward, i.e., to determine what should go where I’ve written ??? above.

Normally, when you employ perfect forwarding, you’re in a template function taking
a type parameter T, so you just write std::forward<T>. In the generic lambda,
though, there’s no type parameter T available to you. There is a T in the templatized
operator() inside the closure class generated by the lambda, but it’s not possible to
refer to it from the lambda, so it does you no good.

Item 28 explains that if an lvalue argument is passed to a universal reference parame‐
ter, the type of that parameter becomes an lvalue reference. If an rvalue is passed, the
parameter becomes an rvalue reference. This means that in our lambda, we can
determine whether the argument passed was an lvalue or an rvalue by inspecting the
type of the parameter x. decltype gives us a way to do that (see Item 3). If an lvalue
was passed in, decltype(x) will produce a type that’s an lvalue reference. If an
rvalue was passed, decltype(x) will produce an rvalue reference type.

Item 28 also explains that when calling std::forward, convention dictates that the
type argument be an lvalue reference to indicate an lvalue and a non-reference to
indicate an rvalue. In our lambda, if x is bound to an lvalue, decltype(x) will yield
an lvalue reference. That conforms to convention. However, if x is bound to an
rvalue, decltype(x) will yield an rvalue reference instead of the customary non-
reference.

But look at the sample C++14 implementation for std::forward from Item 28:

template<typename T>                         // in namespace
T&& forward(remove_reference_t<T>& param)    // std
{
  return static_cast<T&&>(param);
}

If client code wants to perfect-forward an rvalue of type Widget, it normally instanti‐
ates std::forward with the type Widget (i.e, a non-reference type), and the
std::forward template yields this function:

Widget&& forward(Widget& param)            // instantiation of
{                                          // std::forward when
  return static_cast<Widget&&>(param);     // T is Widget
}
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But consider what would happen if the client code wanted to perfect-forward the
same rvalue of type Widget, but instead of following the convention of specifying T to
be a non-reference type, it specified it to be an rvalue reference. That is, consider
what would happen if T were specified to be Widget&&. After initial instantiation of
std::forward and application of std::remove_reference_t, but before reference
collapsing (once again, see Item 28), std::forward would look like this:

Widget&& && forward(Widget& param)         // instantiation of
{                                          // std::forward when
  return static_cast<Widget&& &&>(param);  // T is Widget&&
}                                          // (before reference-
                                           // collapsing)

Applying the reference-collapsing rule that an rvalue reference to an rvalue reference
becomes a single rvalue reference, this instantiation emerges:

Widget&& forward(Widget& param)            // instantiation of
{                                          // std::forward when
  return static_cast<Widget&&>(param);     // T is Widget&&
}                                          // (after reference-
                                           // collapsing)

If you compare this instantiation with the one that results when std::forward is
called with T set to Widget, you’ll see that they’re identical. That means that instanti‐
ating std::forward with an rvalue reference type yields the same result as instantiat‐
ing it with a non-reference type.

That’s wonderful news, because decltype(x) yields an rvalue reference type when
an rvalue is passed as an argument to our lambda’s parameter x. We established
above that when an lvalue is passed to our lambda, decltype(x) yields the custom‐
ary type to pass to std::forward, and now we realize that for rvalues, decltype(x)
yields a type to pass to std::forward that’s not conventional, but that nevertheless
yields the same outcome as the conventional type. So for both lvalues and rvalues,
passing decltype(x) to std::forward gives us the result we want. Our perfect-
forwarding lambda can therefore be written like this:

auto f =
  [](auto&& param)
  {
    return
      func(normalize(std::forward<decltype(param)>(param)));
  };

From there, it’s just a hop, skip, and six dots to a perfect-forwarding lambda that
accepts not just a single parameter, but any number of parameters, because C++14
lambdas can also be variadic:
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auto f =
  [](auto&&... params)
  {
    return
    func(normalize(std::forward<decltype(params)>(params)...));
  };

Things to Remember
• Use decltype on auto&& parameters to std::forward them.

Item 34: Prefer lambdas to std::bind.
std::bind is the C++11 successor to C++98’s std::bind1st and std::bind2nd,
but, informally, it’s been part of the Standard Library since 2005. That’s when the
Standardization Committee adopted a document known as TR1, which included
bind’s specification. (In TR1, bind was in a different namespace, so it was
std::tr1::bind, not std::bind, and a few interface details were different.) This
history means that some programmers have a decade or more of experience using
std::bind. If you’re one of them, you may be reluctant to abandon a tool that’s
served you well. That’s understandable, but in this case, change is good, because in
C++11, lambdas are almost always a better choice than std::bind. As of C++14, the
case for lambdas isn’t just stronger, it’s downright ironclad.

This Item assumes that you’re familiar with std::bind. If you’re not, you’ll want to
acquire a basic understanding before continuing. Such an understanding is worth‐
while in any case, because you never know when you might encounter uses of
std::bind in a code base you have to read or maintain.

As in Item 32, I refer to the function objects returned from std::bind as bind
objects.

The most important reason to prefer lambdas over std::bind is that lambdas are
more readable. Suppose, for example, we have a function to set up an audible alarm:

// typedef for a point in time (see Item 9 for syntax)
using Time = std::chrono::steady_clock::time_point;

// see Item 10 for "enum class"
enum class Sound { Beep, Siren, Whistle };

// typedef for a length of time
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using Duration = std::chrono::steady_clock::duration;

// at time t, make sound s for duration d
void setAlarm(Time t, Sound s, Duration d);

Further suppose that at some point in the program, we’ve determined we’ll want an
alarm that will go off an hour after it’s set and that will stay on for 30 seconds. The
alarm sound, however, remains undecided. We can write a lambda that revises
setAlarm’s interface so that only a sound needs to be specified:

// setSoundL ("L" for "lambda") is a function object allowing a
// sound to be specified for a 30-sec alarm to go off an hour
// after it's set
auto setSoundL =                             
  [](Sound s)
  {
    // make std::chrono components available w/o qualification
    using namespace std::chrono;

    setAlarm(steady_clock::now() + hours(1),  // alarm to go off
             s,                               // in an hour for
             seconds(30));                    // 30 seconds
  };

I’ve highlighted the call to setAlarm inside the lambda. This is a normal-looking
function call, and even a reader with little lambda experience can see that the param‐
eter s passed to the lambda is passed as an argument to setAlarm.

We can streamline this code in C++14 by availing ourselves of the standard suffixes
for seconds (s), milliseconds (ms), hours (h), etc., that build on C++11’s support for
user-defined literals. These suffixes are implemented in the std::literals name‐
space, so the above code can be rewritten as follows:

auto setSoundL =                             
  [](Sound s)
  {
    using namespace std::chrono;
    using namespace std::literals;         // for C++14 suffixes

    setAlarm(steady_clock::now() + 1h,     // C++14, but
             s,                            // same meaning
             30s);                         // as above
  };
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Our first attempt to write the corresponding std::bind call is below. It has an error
that we’ll fix in a moment, but the correct code is more complicated, and even this
simplified version brings out some important issues:

using namespace std::chrono;           // as above
using namespace std::literals;

using namespace std::placeholders;     // needed for use of "_1"

auto setSoundB =                       // "B" for "bind"
  std::bind(setAlarm,
            steady_clock::now() + 1h,  // incorrect! see below
            _1,
            30s);

I’d like to highlight the call to setAlarm here as I did in the lambda, but there’s no
call to highlight. Readers of this code simply have to know that calling setSoundB
invokes setAlarm with the time and duration specified in the call to std::bind. To
the uninitiated, the placeholder “_1” is essentially magic, but even readers in the
know have to mentally map from the number in that placeholder to its position in the
std::bind parameter list in order to understand that the first argument in a call to
setSoundB is passed as the second argument to setAlarm. The type of this argument
is not identified in the call to std::bind, so readers have to consult the setAlarm
declaration to determine what kind of argument to pass to setSoundB.

But, as I said, the code isn’t quite right. In the lambda, it’s clear that the expression
“steady_clock::now() + 1h” is an argument to setAlarm. It will be evaluated when
setAlarm is called. That makes sense: we want the alarm to go off an hour after
invoking setAlarm. In the std::bind call, however, “steady_clock::now() + 1h”
is passed as an argument to std::bind, not to setAlarm. That means that the
expression will be evaluated when std::bind is called, and the time resulting from
that expression will be stored inside the resulting bind object. As a consequence, the
alarm will be set to go off an hour after the call to std::bind, not an hour after the
call to setAlarm!

Fixing the problem requires telling std::bind to defer evaluation of the expression
until setAlarm is called, and the way to do that is to nest a second call to std::bind
inside the first one:

auto setSoundB =
  std::bind(setAlarm,
            std::bind(std::plus<>(), steady_clock::now(), 1h),
            _1,
            30s);
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If you’re familiar with the std::plus template from C++98, you may be surprised to
see that in this code, no type is specified between the angle brackets, i.e., the code
contains “std::plus<>”, not “std::plus<type>”. In C++14, the template type
argument for the standard operator templates can generally be omitted, so there’s no
need to provide it here. C++11 offers no such feature, so the C++11 std::bind
equivalent to the lambda is:

using namespace std::chrono;                   // as above
using namespace std::placeholders;

auto setSoundB =
  std::bind(setAlarm,
            std::bind(std::plus<steady_clock::time_point>(),
                      steady_clock::now(),
                      hours(1)),
            _1,
            seconds(30));

If, at this point, the lambda’s not looking a lot more attractive, you should probably
have your eyesight checked.

When setAlarm is overloaded, a new issue arises. Suppose there’s an overload taking
a fourth parameter specifying the alarm volume:

enum class Volume { Normal, Loud, LoudPlusPlus };

void setAlarm(Time t, Sound s, Duration d, Volume v);

The lambda continues to work as before, because overload resolution chooses the
three-argument version of setAlarm:

auto setSoundL =                               // same as before
  [](Sound s)
  {
    using namespace std::chrono;

    setAlarm(steady_clock::now() + 1h,         // fine, calls
             s,                                // 3-arg version
             30s);                             // of setAlarm
  };

The std::bind call, on the other hand, now fails to compile:

auto setSoundB =                               // error! which
  std::bind(setAlarm,                          // setAlarm?
            std::bind(std::plus<>(),
                      steady_clock::now(),
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                      1h),
            _1,
            30s);

The problem is that compilers have no way to determine which of the two setAlarm
functions they should pass to std::bind. All they have is a function name, and the
name alone is ambiguous.

To get the std::bind call to compile, setAlarm must be cast to the proper function
pointer type:

using SetAlarm3ParamType = void(*)(Time t, Sound s, Duration d);

auto setSoundB =                                        // now
  std::bind(static_cast<SetAlarm3ParamType>(setAlarm),  // okay
            std::bind(std::plus<>(),
                      steady_clock::now(),
                      1h),
            _1,
            30s);

But this brings up another difference between lambdas and std::bind. Inside the
function call operator for setSoundL (i.e., the function call operator of the lambda’s
closure class), the call to setAlarm is a normal function invocation that can be
inlined by compilers in the usual fashion:

setSoundL(Sound::Siren);      // body of setAlarm may
                              // well be inlined here

The call to std::bind, however, passes a function pointer to setAlarm, and that
means that inside the function call operator for setSoundB (i.e., the function call
operator for the bind object), the call to setAlarm takes place through a function
pointer. Compilers are less likely to inline function calls through function pointers,
and that means that calls to setAlarm through setSoundB are less likely to be fully
inlined than those through setSoundL:

setSoundB(Sound::Siren);      // body of setAlarm is less
                              // likely to be inlined here

It’s thus possible that using lambdas generates faster code than using std::bind.

The setAlarm example involves only a simple function call. If you want to do any‐
thing more complicated, the scales tip even further in favor of lambdas. For example,
consider this C++14 lambda, which returns whether its argument is between a mini‐
mum value (lowVal) and a maximum value (highVal), where lowVal and highVal
are local variables:
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auto betweenL =
  [lowVal, highVal]
  (const auto& val)                          // C++14
  { return lowVal <= val && val <= highVal; };

std::bind can express the same thing, but the construct is an example of job secu‐
rity through code obscurity:

using namespace std::placeholders;           // as above

auto betweenB =
  std::bind(std::logical_and<>(),            // C++14
              std::bind(std::less_equal<>(), lowVal, _1),
              std::bind(std::less_equal<>(), _1, highVal));

In C++11, we’d have to specify the types we wanted to compare, and the std::bind
call would then look like this:

auto betweenB =                              // C++11 version
  std::bind(std::logical_and<bool>(),
              std::bind(std::less_equal<int>(), lowVal, _1),
              std::bind(std::less_equal<int>(), _1, highVal));

Of course, in C++11, the lambda couldn’t take an auto parameter, so it’d have to
commit to a type, too:

auto betweenL =                              // C++11 version
  [lowVal, highVal]
  (int val)
  { return lowVal <= val && val <= highVal; };

Either way, I hope we can agree that the lambda version is not just shorter, but also
more comprehensible and maintainable.

Earlier, I remarked that for those with little std::bind experience, its placeholders
(e.g., _1, _2, etc.) are essentially magic. But it’s not just the behavior of the placehold‐
ers that’s opaque. Suppose we have a function to create compressed copies of
Widgets,

enum class CompLevel { Low, Normal, High };  // compression
                                             // level

Widget compress(const Widget& w,             // make compressed
                CompLevel lev);              // copy of w

and we want to create a function object that allows us to specify how much a particu‐
lar Widget w should be compressed. This use of std::bind will create such an object:
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1 std::bind always copies its arguments, but callers can achieve the effect of having an argument stored by
reference by applying std::ref to it. The result of

    auto compressRateB = std::bind(compress, std::ref(w), _1);

is that compressRateB acts as if it holds a reference to w, rather than a copy.

Widget w;

using namespace std::placeholders;

auto compressRateB = std::bind(compress, w, _1);

Now, when we pass w to std::bind, it has to be stored for the later call to compress.
It’s stored inside the object compressRateB, but how is it stored—by value or by ref‐
erence? It makes a difference, because if w is modified between the call to std::bind
and a call to compressRateB, storing w by reference will reflect the changes, while
storing it by value won’t.

The answer is that it’s stored by value,1 but the only way to know that is to memorize
how std::bind works; there’s no sign of it in the call to std::bind. Contrast that
with a lambda approach, where whether w is captured by value or by reference is
explicit:

auto compressRateL =                         // w is captured by
  [w](CompLevel lev)                         // value; lev is
  { return compress(w, lev); };              // passed by value

Equally explicit is how parameters are passed to the lambda. Here, it’s clear that the
parameter lev is passed by value. Hence:

compressRateL(CompLevel::High);              // arg is passed
                                             // by value

But in the call to the object resulting from std::bind, how is the argument passed?

compressRateB(CompLevel::High);              // how is arg
                                             // passed?

Again, the only way to know is to memorize how std::bind works. (The answer is
that all arguments passed to bind objects are passed by reference, because the func‐
tion call operator for such objects uses perfect forwarding.)

Compared to lambdas, then, code using std::bind is less readable, less expressive,
and possibly less efficient. In C++14, there are no reasonable use cases for
std::bind. In C++11, however, std::bind can be justified in two constrained situa‐
tions:
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• Move capture. C++11 lambdas don’t offer move capture, but it can be emulated
through a combination of a lambda and std::bind. For details, consult Item 32,
which also explains that in C++14, lambdas’ support for init capture eliminates
the need for the emulation.

• Polymorphic function objects. Because the function call operator on a bind
object uses perfect forwarding, it can accept arguments of any type (modulo the
restrictions on perfect forwarding described in Item 30). This can be useful when
you want to bind an object with a templatized function call operator. For exam‐
ple, given this class,

class PolyWidget {
public:
    template<typename T>
    void operator()(const T& param);
    …
};

std::bind can bind a PolyWidget as follows:
PolyWidget pw;

auto boundPW = std::bind(pw, _1);

boundPW can then be called with different types of  arguments:
boundPW(1930);              // pass int to
                            // PolyWidget::operator()

boundPW(nullptr);           // pass nullptr to
                            // PolyWidget::operator()

boundPW("Rosebud");         // pass string literal to
                            // PolyWidget::operator()

There is no way to do this with a C++11 lambda. In C++14, however, it’s easily
achieved via a lambda with an auto parameter:

auto boundPW = [pw](const auto& param)    // C++14
               { pw(param); };

These are edge cases, of course, and they’re transient edge cases at that, because com‐
pilers supporting C++14 lambdas are increasingly common.

When bind was unofficially added to C++ in 2005, it was a big improvement over its
1998 predecessors. The addition of lambda support to C++11 rendered std::bind
all but obsolete, however, and as of C++14, there are just no good use cases for it.
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Things to Remember
• Lambdas are more readable, more expressive, and may be more efficient than

using std::bind.
• In C++11 only, std::bind may be useful for implementing move capture or

for binding objects with templatized function call operators.
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CHAPTER 7

The Concurrency API

One of C++11’s great triumphs is the incorporation of concurrency into the language
and library. Programmers familiar with other threading APIs (e.g., pthreads or Win‐
dows threads) are sometimes surprised at the comparatively Spartan feature set that
C++ offers, but that’s because a great deal of C++’s support for concurrency is in the
form of constraints on compiler-writers. The resulting language assurances mean
that for the first time in C++’s history, programmers can write multithreaded pro‐
grams with standard behavior across all platforms. This establishes a solid foundation
on which expressive libraries can be built, and the concurrency elements of the Stan‐
dard Library (tasks, futures, threads, mutexes, condition variables, atomic objects,
and more) are merely the beginning of what is sure to become an increasingly rich set
of tools for the development of concurrent C++ software.

In the Items that follow, bear in mind that the Standard Library has two templates for
futures: std::future and std::shared_future. In many cases, the distinction is
not important, so I often simply talk about futures, by which I mean both kinds.

Item 35: Prefer task-based programming to thread-
based.

If you want to run a function doAsyncWork asynchronously, you have two basic
choices. You can create a std::thread and run doAsyncWork on it, thus employing
a thread-based approach:

int doAsyncWork();

std::thread t(doAsyncWork);

Or you can pass doAsyncWork to std::async, a strategy known as task-based:
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1 Assuming you have one. Some embedded systems don’t.

auto fut = std::async(doAsyncWork);        // "fut" for "future"

In such calls, the function object passed to std::async (e.g., doAsyncWork) is con‐
sidered a task.

The task-based approach is typically superior to its thread-based counterpart, and the
tiny amount of code we’ve seen already demonstrates some reasons why. Here,
doAsyncWork produces a return value, which we can reasonably assume the code
invoking doAsyncWork is interested in. With the thread-based invocation, there’s no
straightforward way to get access to it. With the task-based approach, it’s easy,
because the future returned from std::async offers the get function. The get func‐
tion is even more important if doAsyncWork emits an exception, because get pro‐
vides access to that, too. With the thread-based approach, if doAsyncWork throws, the
program dies (via a call to std::terminate).

A more fundamental difference between thread-based and task-based programming
is the higher level of abstraction that task-based embodies. It frees you from the
details of thread management, an observation that reminds me that I need to summa‐
rize the three meanings of “thread” in concurrent C++ software:

• Hardware threads are the threads that actually perform computation. Contempo‐
rary machine architectures offer one or more hardware threads per CPU core.

• Software threads (also known as OS threads or system threads) are the threads
that the operating system1 manages across all processes and schedules for execu‐
tion on hardware threads. It’s typically possible to create more software threads
than hardware threads, because when a software thread is blocked (e.g., on I/O or
waiting for a mutex or condition variable), throughput can be improved by exe‐
cuting other, unblocked, threads.

• std::threads are objects in a C++ process that act as handles to underlying
software threads. Some std::thread objects represent “null” handles, i.e., corre‐
spond to no software thread, because they’re in a default-constructed state
(hence have no function to execute), have been moved from (the moved-to
std::thread then acts as the handle to the underlying software thread), have
been joined (the function they were to run has finished), or have been detached
(the connection between them and their underlying software thread has been
severed).

Software threads are a limited resource. If you try to create more than the system can
provide, a std::system_error exception is thrown. This is true even if the function
you want to run can’t throw. For example, even if doAsyncWork is noexcept,
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int doAsyncWork() noexcept;          // see Item 14 for noexcept

this statement could result in an exception:

std::thread t(doAsyncWork);          // throws if no more
                                     // threads are available

Well-written software must somehow deal with this possibility, but how? One
approach is to run doAsyncWork on the current thread, but that could lead to unbal‐
anced loads and, if the current thread is a GUI thread, responsiveness issues. Another
option is to wait for some existing software threads to complete and then try to create
a new std::thread again, but it’s possible that the existing threads are waiting for an
action that doAsyncWork is supposed to perform (e.g., produce a result or notify a
condition variable).

Even if you don’t run out of threads, you can have trouble with oversubscription.
That’s when there are more ready-to-run (i.e., unblocked) software threads than
hardware threads. When that happens, the thread scheduler (typically part of the OS)
time-slices the software threads on the hardware. When one thread’s time-slice is fin‐
ished and another’s begins, a context switch is performed. Such context switches
increase the overall thread management overhead of the system, and they can be par‐
ticularly costly when the hardware thread on which a software thread is scheduled is
on a different core than was the case for the software thread during its last time-slice.
In that case, (1) the CPU caches are typically cold for that software thread (i.e., they
contain little data and few instructions useful to it) and (2) the running of the “new”
software thread on that core “pollutes” the CPU caches for “old” threads that had
been running on that core and are likely to be scheduled to run there again.

Avoiding oversubscription is difficult, because the optimal ratio of software to hard‐
ware threads depends on how often the software threads are runnable, and that can
change dynamically, e.g., when a program goes from an I/O-heavy region to a
computation-heavy region. The best ratio of software to hardware threads is also
dependent on the cost of context switches and how effectively the software threads
use the CPU caches. Furthermore, the number of hardware threads and the details of
the CPU caches (e.g., how large they are and their relative speeds) depend on the
machine architecture, so even if you tune your application to avoid oversubscription
(while still keeping the hardware busy) on one platform, there’s no guarantee that
your solution will work well on other kinds of machines.

Your life will be easier if you dump these problems on somebody else, and using
std::async does exactly that:

auto fut = std::async(doAsyncWork);   // onus of thread mgmt is
                                      // on implementer of
                                      // the Standard Library
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This call shifts the thread management responsibility to the implementer of the C++
Standard Library. For example, the likelihood of receiving an out-of-threads excep‐
tion is significantly reduced, because this call will probably never yield one. “How can
that be?” you might wonder. “If I ask for more software threads than the system can
provide, why does it matter whether I do it by creating std::threads or by calling
std::async?” It matters, because std::async, when called in this form (i.e., with
the default launch policy—see Item 36), doesn’t guarantee that it will create a new
software thread. Rather, it permits the scheduler to arrange for the specified function
(in this example, doAsyncWork) to be run on the thread requesting doAsyncWork’s
result (i.e., on the thread calling get or wait on fut), and reasonable schedulers take
advantage of that freedom if the system is oversubscribed or is out of threads.

If you pulled this “run it on the thread needing the result” trick yourself, I remarked
that it could lead to load-balancing issues, and those issues don’t go away simply
because it’s std::async and the runtime scheduler that confront them instead of
you. When it comes to load balancing, however, the runtime scheduler is likely to
have a more comprehensive picture of what’s happening on the machine than you
do, because it manages the threads from all processes, not just the one your code is
running in.

With std::async, responsiveness on a GUI thread can still be problematic, because
the scheduler has no way of knowing which of your threads has tight responsiveness
requirements. In that case, you’ll want to pass the std::launch::async launch pol‐
icy to std::async. That will ensure that the function you want to run really executes
on a different thread (see Item 36).

State-of-the-art thread schedulers employ system-wide thread pools to avoid over‐
subscription, and they improve load balancing across hardware cores through work-
stealing algorithms. The C++ Standard does not require the use of thread pools or
work-stealing, and, to be honest, there are some technical aspects of the C++11 con‐
currency specification that make it more difficult to employ them than we’d like.
Nevertheless, some vendors take advantage of this technology in their Standard
Library implementations, and it’s reasonable to expect that progress will continue in
this area. If you take a task-based approach to your concurrent programming, you
automatically reap the benefits of such technology as it becomes more widespread. If,
on the other hand, you program directly with std::threads, you assume the burden
of dealing with thread exhaustion, oversubscription, and load balancing yourself, not
to mention how your solutions to these problems mesh with the solutions imple‐
mented in programs running in other processes on the same machine.

Compared to thread-based programming, a task-based design spares you the travails
of manual thread management, and it provides a natural way to examine the results
of asynchronously executed functions (i.e., return values or exceptions). Neverthe‐
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less, there are some situations where using threads directly may be appropriate. They
include:

• You need access to the API of the underlying threading implementation. The
C++ concurrency API is typically implemented using a lower-level platform-
specific API, usually pthreads or Windows’ Threads. Those APIs are currently
richer than what C++ offers. (For example, C++ has no notion of thread priori‐
ties or affinities.) To provide access to the API of the underlying threading
implementation, std::thread objects typically offer the native_handle mem‐
ber function. There is no counterpart to this functionality for std::futures (i.e.,
for what std::async returns).

• You need to and are able to optimize thread usage for your application. This
could be the case, for example, if you’re developing server software with a known
execution profile that will be deployed as the only significant process on a
machine with fixed hardware characteristics.

• You need to implement threading technology beyond the C++ concurrency
API, e.g., thread pools on platforms where your C++ implementations don’t
offer them.

These are uncommon cases, however. Most of the time, you should choose task-
based designs instead of programming with threads.

Things to Remember
• The std::thread API offers no direct way to get return values from asyn‐

chronously run functions, and if those functions throw, the program is termi‐
nated.

• Thread-based programming calls for manual management of thread exhaus‐
tion, oversubscription, load balancing, and adaptation to new platforms.

• Task-based programming via std::async with the default launch policy han‐
dles most of these issues for you.

Item 36: Specify std::launch::async if
asynchronicity is essential.

When you call std::async to execute a function (or other callable object), you’re
generally intending to run the function asynchronously. But that’s not necessarily
what you’re asking std::async to do. You’re really requesting that the function be
run in accord with a std::async launch policy. There are two standard policies, each
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2 This is a simplification. What matters isn’t the future on which get or wait is invoked, it’s the shared state to
which the future refers. (Item 38 discusses the relationship between futures and shared states.) Because
std::futures support moving and can also be used to construct std::shared_futures, and because
std::shared_futures can be copied, the future object referring to the shared state arising from the call to
std::async to which f was passed is likely to be different from the one returned by std::async. That’s a
mouthful, however, so it’s common to fudge the truth and simply talk about invoking get or wait on the
future returned from std::async.

represented by an enumerator in the std::launch scoped enum. (See Item 10 for
information on scoped enums.) Assuming a function f is passed to std::async for
execution,

• The std::launch::async launch policy means that f must be run asynchro‐
nously, i.e., on a different thread.

• The std::launch::deferred launch policy means that f may run only when
get or wait is called on the future returned by std::async.2 That is, f’s execu‐
tion is deferred until such a call is made. When get or wait is invoked, f will
execute synchronously, i.e., the caller will block until f finishes running. If nei‐
ther get nor wait is called, f will never run.

Perhaps surprisingly, std::async’s default launch policy—the one it uses if you
don’t expressly specify one—is neither of these. Rather, it’s these or-ed together. The
following two calls have exactly the same meaning:

auto fut1 = std::async(f);                     // run f using
                                               // default launch
                                               // policy

auto fut2 = std::async(std::launch::async |    // run f either
                       std::launch::deferred,  // async or
                       f);                     // deferred

The default policy thus permits f to be run either asynchronously or synchronously.
As Item 35 points out, this flexibility permits std::async and the thread-
management components of the Standard Library to assume responsibility for thread
creation and destruction, avoidance of oversubscription, and load balancing. That’s
among the things that make concurrent programming with std::async so conve‐
nient.

But using std::async with the default launch policy has some interesting implica‐
tions. Given a thread t executing this statement,

auto fut = std::async(f);   // run f using default launch policy
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• It’s not possible to predict whether f will run concurrently with t, because f
might be scheduled to run deferred.

• It’s not possible to predict whether f runs on a thread different from the
thread invoking get or wait on fut. If that thread is t, the implication is that
it’s not possible to predict whether f runs on a thread different from t.

• It may not be possible to predict whether f runs at all, because it may not be
possible to guarantee that get or wait will be called on fut along every path
through the program.

The default launch policy’s scheduling flexibility often mixes poorly with the use of
thread_local variables, because it means that if f reads or writes such thread-local
storage (TLS), it’s not possible to predict which thread’s variables will be accessed:

auto fut = std::async(f);        // TLS for f possibly for
                                 // independent thread, but
                                 // possibly for thread
                                 // invoking get or wait on fut

It also affects wait-based loops using timeouts, because calling wait_for or
wait_until on a task (see Item 35) that’s deferred yields the value
std::launch::deferred. This means that the following loop, which looks like it
should eventually terminate, may, in reality, run forever:

using namespace std::literals;        // for C++14 duration
                                      // suffixes; see Item 34

void f()                              // f sleeps for 1 second,
{                                     // then returns
  std::this_thread::sleep_for(1s);
}

auto fut = std::async(f);             // run f asynchronously
                                      // (conceptually)

while (fut.wait_for(100ms) !=         // loop until f has
       std::future_status::ready)     // finished running...
{                                     // which may never happen!
  …
}
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If f runs concurrently with the thread calling std::async (i.e., if the launch policy
chosen for f is std::launch::async), there’s no problem here (assuming f
eventually finishes), but if f is deferred, fut.wait_for will always return std::
future_status::deferred. That will never be equal to std::future_status::
ready, so the loop will never terminate.

This kind of bug is easy to overlook during development and unit testing, because it
may manifest itself only under heavy loads. Those are the conditions that push the
machine towards oversubscription or thread exhaustion, and that’s when a task may
be most likely to be deferred. After all, if the hardware isn’t threatened by oversub‐
scription or thread exhaustion, there’s no reason for the runtime system not to sched‐
ule the task for concurrent execution.

The fix is simple: just check the future corresponding to the std::async call to see
whether the task is deferred, and, if so, avoid entering the timeout-based loop.
Unfortunately, there’s no direct way to ask a future whether its task is deferred.
Instead, you have to call a timeout-based function—a function such as wait_for. In
this case, you don’t really want to wait for anything, you just want to see if the return
value is std::future_status::deferred, so stifle your mild disbelief at the neces‐
sary circumlocution and call wait_for with a zero timeout:

auto fut = std::async(f);                  // as above

if (fut.wait_for(0s) ==                    // if task is
    std::future_status::deferred)          // deferred...
{
                        // ...use wait or get on fut
  …                     // to call f synchronously

} else {                // task isn't deferred
  while (fut.wait_for(100ms) !=            // infinite loop not
         std::future_status::ready) {      // possible (assuming
                                           // f finishes)

    …                  // task is neither deferred nor ready,
                       // so do concurrent work until it's ready
  }

  …                    // fut is ready

}
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The upshot of these various considerations is that using std::async with the default
launch policy for a task is fine as long as the following conditions are fulfilled:

• The task need not run concurrently with the thread calling get or wait.
• It doesn’t matter which thread’s thread_local variables are read or written.
• Either there’s a guarantee that get or wait will be called on the future returned

by std::async or it’s acceptable that the task may never execute.
• Code using wait_for or wait_until takes the possibility of deferred status into

account.

If any of these conditions fails to hold, you probably want to guarantee that
std::async will schedule the task for truly asynchronous execution. The way to do
that is to pass std::launch::async as the first argument when you make the call:

auto fut = std::async(std::launch::async, f);  // launch f
                                               // asynchronously

In fact, having a function that acts like std::async, but that automatically uses
std::launch::async as the launch policy, is a convenient tool to have around, so
it’s nice that it’s easy to write. Here’s the C++11 version:

template<typename F, typename... Ts>
inline
std::future<typename std::result_of<F(Ts...)>::type>
reallyAsync(F&& f, Ts&&... params)       // return future
{                                        // for asynchronous
  return std::async(std::launch::async,  // call to f(params...)
                    std::forward<F>(f),
                    std::forward<Ts>(params)...);
}

This function receives a callable object f and zero or more parameters params and
perfect-forwards them (see Item 25) to std::async, passing std::launch::async
as the launch policy. Like std::async, it returns a std::future for the result of
invoking f on params. Determining the type of that result is easy, because the type
trait std::result_of gives it to you. (See Item 9 for general information on type
traits.)

reallyAsync is used just like std::async:

auto fut = reallyAsync(f);         // run f asynchronously;
                                   // throw if std::async
                                   // would throw
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In C++14, the ability to deduce reallyAsync’s return type streamlines the function
declaration:

template<typename F, typename... Ts>
inline
auto                                           // C++14
reallyAsync(F&& f, Ts&&... params)
{
  return std::async(std::launch::async,
                    std::forward<F>(f),
                    std::forward<Ts>(params)...);
}

This version makes it crystal clear that reallyAsync does nothing but invoke
std::async with the std::launch::async launch policy.

Things to Remember
• The default launch policy for std::async permits both asynchronous and

synchronous task execution.
• This flexibility leads to uncertainty when accessing thread_locals, implies

that the task may never execute, and affects program logic for timeout-based
wait calls.

• Specify std::launch::async if asynchronous task execution is essential.

Item 37: Make std::threads unjoinable on all paths.
Every std::thread object is in one of two states: joinable or unjoinable. A joinable
std::thread corresponds to an underlying asynchronous thread of execution that is
or could be running. A std::thread corresponding to an underlying thread that’s
blocked or waiting to be scheduled is joinable, for example. std::thread objects cor‐
responding to underlying threads that have run to completion are also considered
joinable.

An unjoinable std::thread is what you’d expect: a std::thread that’s not joinable.
Unjoinable std::thread objects include:

• Default-constructed std::threads. Such std::threads have no function to
execute, hence don’t correspond to an underlying thread of execution.

250 | Item 36



• std::thread objects that have been moved from. The result of a move is that
the underlying thread of execution a std::thread used to correspond to (if any)
now corresponds to a different std::thread.

• std::threads that have been joined. After a join, the std::thread object no
longer corresponds to the underlying thread of execution that has finished run‐
ning.

• std::threads that have been detached. A detach severs the connection
between a std::thread object and the underlying thread of execution it corre‐
sponds to.

One reason a std::thread’s joinability is important is that if the destructor for a
joinable thread is invoked, execution of the program is terminated. For example, sup‐
pose we have a function doWork that takes a filtering function, filter, and a maxi‐
mum value, maxVal, as parameters. doWork checks to make sure that all conditions
necessary for its computation are satisfied, then performs the computation with all
the values between 0 and maxVal that pass the filter. If it’s time-consuming to do the
filtering and it’s also time-consuming to determine whether doWork’s conditions are
satisfied, it would be reasonable to do those two things concurrently.

Our preference would be to employ a task-based design for this (see Item 35), but
let’s assume we’d like to set the priority of the thread doing the filtering. Item 35
explains that that requires use of the thread’s native handle, and that’s accessible only
through the std::thread API; the task-based API (i.e., futures) doesn’t provide it.
Our approach will therefore be based on threads, not tasks.

We could come up with code like this:

constexpr auto tenMillion = 10000000;         // see Item 15
                                              // for constexpr

bool doWork(std::function<bool(int)> filter,  // returns whether
            int maxVal = tenMillion)          // computation was
{                                             // performed; see
                                              // Item 2 for
                                              // std::function

  std::vector<int> goodVals;                  // values that
                                              // satisfy filter

  std::thread t([&filter, maxVal, &goodVals]  // populate
                {                             // goodVals
                  for (auto i = 0; i <= maxVal; ++i)
                   { if (filter(i)) goodVals.push_back(i); }
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                });

  auto nh = t.native_handle();                // use t's native
  …                                           // handle to set
                                              // t's priority
  if (conditionsAreSatisfied()) {
    t.join();                                 // let t finish
    performComputation(goodVals);
    return true;                              // computation was
  }                                           // performed

  return false;                               // computation was
}                                             // not performed

Before I explain why this code is problematic, I’ll remark that tenMillion’s initializ‐
ing value can be made more readable in C++14 by taking advantage of C++14’s abil‐
ity to use an apostrophe as a digit separator:

constexpr auto tenMillion = 10'000'000;       // C++14

I’ll also remark that setting t’s priority after it has started running is a bit like closing
the proverbial barn door after the equally proverbial horse has bolted. A better design
would be to start t in a suspended state (thus making it possible to adjust its priority
before it does any computation), but I don’t want to distract you with that code. If
you’re more distracted by the code’s absence, turn to Item 39, because it shows how
to start threads suspended.

But back to doWork. If conditionsAreSatisfied() returns true, all is well, but if it
returns false or throws an exception, the std::thread object t will be joinable
when its destructor is called at the end of doWork. That would cause program execu‐
tion to be terminated.

You might wonder why the std::thread destructor behaves this way. It’s because
the two other obvious options are arguably worse. They are:

• An implicit join. In this case, a std::thread’s destructor would wait for its
underlying asynchronous thread of execution to complete. That sounds reason‐
able, but it could lead to performance anomalies that would be difficult to track
down. For example, it would be counterintuitive that doWork would wait for its
filter to be applied to all values if conditionsAreSatisfied() had already
returned false.

• An implicit detach. In this case, a std::thread’s destructor would sever the
connection between the std::thread object and its underlying thread of execu‐
tion. The underlying thread would continue to run. This sounds no less reason‐
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able than the join approach, but the debugging problems it can lead to are
worse. In doWork, for example, goodVals is a local variable that is captured by
reference. It’s also modified inside the lambda (via the call to push_back). Sup‐
pose, then, that while the lambda is running asynchronously, conditionsAreSa
tisfied() returns false. In that case, doWork would return, and its local
variables (including goodVals) would be destroyed. Its stack frame would be
popped, and execution of its thread would continue at doWork’s call site.
Statements following that call site would, at some point, make additional func‐
tion calls, and at least one such call would probably end up using some or all of
the memory that had once been occupied by the doWork stack frame. Let’s call
such a function f. While f was running, the lambda that doWork initiated would
still be running asynchronously. That lambda could call push_back on the stack
memory that used to be goodVals but that is now somewhere inside f’s stack
frame. Such a call would modify the memory that used to be goodVals, and that
means that from f’s perspective, the content of memory in its stack frame could
spontaneously change! Imagine the fun you’d have debugging that.

The Standardization Committee decided that the consequences of destroying a joina‐
ble thread were sufficiently dire that they essentially banned it (by specifying that
destruction of a joinable thread causes program termination).

This puts the onus on you to ensure that if you use a std::thread object, it’s made
unjoinable on every path out of the scope in which it’s defined. But covering every
path can be complicated. It includes flowing off the end of the scope as well as jump‐
ing out via a return, continue, break, goto or exception. That can be a lot of paths.

Any time you want to perform some action along every path out of a block, the nor‐
mal approach is to put that action in the destructor of a local object. Such objects are
known as RAII objects, and the classes they come from are known as RAII classes.
(RAII itself stands for “Resource Acquisition Is Initialization,” although the crux of
the technique is destruction, not initialization). RAII classes are common in the Stan‐
dard Library. Examples include the STL containers (each container’s destructor
destroys the container’s contents and releases its memory), the standard smart point‐
ers (Items 18–20 explain that std::unique_ptr’s destructor invokes its deleter on
the object it points to, and the destructors in std::shared_ptr and std::weak_ptr
decrement reference counts), std::fstream objects (their destructors close the files
they correspond to), and many more. And yet there is no standard RAII class for
std::thread objects, perhaps because the Standardization Committee, having rejec‐
ted both join and detach as default options, simply didn’t know what such a class
should do. 
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Fortunately, it’s not difficult to write one yourself. For example, the following class
allows callers to specify whether join or detach should be called when a Threa
dRAII object (an RAII object for a std::thread) is destroyed:

class ThreadRAII {
public:
  enum class DtorAction { join, detach };    // see Item 10 for
                                             // enum class info

  ThreadRAII(std::thread&& t, DtorAction a)  // in dtor, take
  : action(a), t(std::move(t)) {}            // action a on t
  
  ~ThreadRAII()
  {                                          // see below for
    if (t.joinable()) {                      // joinability test

      if (action == DtorAction::join) {
        t.join();
      } else {
        t.detach();
      }
      
    }
  }

  std::thread& get() { return t; }           // see below

private:
  DtorAction action;
  std::thread t;
};

I hope this code is largely self-explanatory, but the following points may be helpful:

• The constructor accepts only std::thread rvalues, because we want to move the
passed-in std::thread into the ThreadRAII object. (Recall that std::thread
objects aren’t copyable.)

• The parameter order in the constructor is designed to be intuitive to callers
(specifying the std::thread first and the destructor action second makes more
sense than vice versa), but the member initialization list is designed to match the
order of the data members’ declarations. That order puts the std::thread object
last. In this class, the order makes no difference, but in general, it’s possible for
the initialization of one data member to depend on another, and because
std::thread objects may start running a function immediately after they are
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initialized, it’s a good habit to declare them last in a class. That guarantees that at
the time they are constructed, all the data members that precede them have
already been initialized and can therefore be safely accessed by the asynchro‐
nously running thread that corresponds to the std::thread data member.

• ThreadRAII offers a get function to provide access to the underlying
std::thread object. This is analogous to the get functions offered by the stan‐
dard smart pointer classes that give access to their underlying raw pointers. Pro‐
viding get avoids the need for ThreadRAII to replicate the full std::thread
interface, and it also means that ThreadRAII objects can be used in contexts
where std::thread objects are required.

• Before the ThreadRAII destructor invokes a member function on the
std::thread object t, it checks to make sure that t is joinable. This is necessary,
because invoking join or detach on an unjoinable thread yields undefined
behavior. It’s possible that a client constructed a std::thread, created a
ThreadRAII object from it, used get to acquire access to t, and then did a move
from t or called join or detach on it. Each of those actions would render t
unjoinable.
If you’re worried that in this code,

if (t.joinable()) {

  if (action == DtorAction::join) {
    t.join();
  } else {
    t.detach();
  }
}

a race exists, because between execution of t.joinable() and invocation of
join or detach, another thread could render t unjoinable, your intuition is
commendable, but your fears are unfounded. A std::thread object can change
state from joinable to unjoinable only through a member function call, e.g., join,
detach, or a move operation. At the time a ThreadRAII object’s destructor is
invoked, no other thread should be making member function calls on that object.
If there are simultaneous calls, there is certainly a race, but it isn’t inside the
destructor, it’s in the client code that is trying to invoke two member functions
(the destructor and something else) on one object at the same time. In general,
simultaneous member function calls on a single object are safe only if all are to
const member functions (see Item 16).

Employing ThreadRAII in our doWork example would look like this:
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bool doWork(std::function<bool(int)> filter,  // as before
            int maxVal = tenMillion)
{
  std::vector<int> goodVals;                  // as before

  ThreadRAII t(                               // use RAII object
    std::thread([&filter, maxVal, &goodVals]
                {                             
                  for (auto i = 0; i <= maxVal; ++i)
                    { if (filter(i)) goodVals.push_back(i); }
                }),
                ThreadRAII::DtorAction::join  // RAII action
  );

  auto nh = t.get().native_handle();
  …

  if (conditionsAreSatisfied()) {
    t.get().join();
    performComputation(goodVals);
    return true;
  }

  return false;
}

In this case, we’ve chosen to do a join on the asynchronously running thread in the
ThreadRAII destructor, because, as we saw earlier, doing a detach could lead to
some truly nightmarish debugging. We also saw earlier that doing a join could lead
to performance anomalies (that, to be frank, could also be unpleasant to debug), but
given a choice between undefined behavior (which detach would get us), program
termination (which use of a raw std::thread would yield), or performance anoma‐
lies, performance anomalies seems like the best of a bad lot.

Alas, Item 39 demonstrates that using ThreadRAII to perform a join on
std::thread destruction can sometimes lead not just to a performance anomaly, but
to a hung program. The “proper” solution to these kinds of problems would be to
communicate to the asynchronously running lambda that we no longer need its work
and that it should return early, but there’s no support in C++11 for interruptible
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3 You’ll find a nice treatment in Anthony Williams’ C++ Concurrency in Action (Manning Publications, 2012),
section 9.2.

threads. They can be implemented by hand, but that’s a topic beyond the scope of
this  book.3

Item 17 explains that because ThreadRAII declares a destructor, there will be no
compiler-generated move operations, but there is no reason ThreadRAII objects
shouldn’t be movable. If compilers were to generate these functions, the functions
would do the right thing, so explicitly requesting their creation isappropriate:

class ThreadRAII {
public:
  enum class DtorAction { join, detach };           // as before

  ThreadRAII(std::thread&& t, DtorAction a)         // as before
  : action(a), t(std::move(t)) {}

  ~ThreadRAII()
  {
    …                                               // as before
  }

  ThreadRAII(ThreadRAII&&) = default;               // support
  ThreadRAII& operator=(ThreadRAII&&) = default;    // moving

  std::thread& get() { return t; }                  // as before

private:                                            // as before
  DtorAction action;
  std::thread t;
};

Things to Remember
• Make std::threads unjoinable on all paths.
• join-on-destruction can lead to difficult-to-debug performance anomalies.
• detach-on-destruction can lead to difficult-to-debug undefined behavior.
• Declare std::thread objects last in lists of data members.
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4 Item 39 explains that the kind of communications channel associated with a future can be employed for other
purposes. For this Item, however, we’ll consider only its use as a mechanism for a callee to convey its result to
a caller.

Item 38: Be aware of varying thread handle destructor
behavior.

Item 37 explains that a joinable std::thread corresponds to an underlying system
thread of execution. A future for a non-deferred task (see Item 36) has a similar rela‐
tionship to a system thread. As such, both std::thread objects and future objects
can be thought of as handles to system threads.

From this perspective, it’s interesting that std::threads and futures have such dif‐
ferent behaviors in their destructors. As noted in Item 37, destruction of a joinable
std::thread terminates your program, because the two obvious alternatives—an
implicit join and an implicit detach—were considered worse choices. Yet the
destructor for a future sometimes behaves as if it did an implicit join, sometimes as
if it did an implicit detach, and sometimes neither. It never causes program termina‐
tion. This thread handle behavioral bouillabaisse deserves closer examination.

We’ll begin with the observation that a future is one end of a communications chan‐
nel through which a callee transmits a result to a caller.4 The callee (usually running
asynchronously) writes the result of its computation into the communications chan‐
nel (typically via a std::promise object), and the caller reads that result using a
future. You can think of it as follows, where the dashed arrow shows the flow of
information from callee to caller:

Caller
future

Callee(typically)
std::promise

But where is the callee’s result stored? The callee could finish before the caller invokes
get on a corresponding future, so the result can’t be stored in the callee’s
std::promise. That object, being local to the callee, would be destroyed when the
callee finished.

The result can’t be stored in the caller’s future, either, because (among other reasons)
a std::future may be used to create a std::shared_future (thus transferring
ownership of the callee’s result from the std::future to the std::shared_future),
which may then be copied many times after the original std::future is destroyed.
Given that not all result types can be copied (i.e., move-only types) and that the result
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must live at least as long as the last future referring to it, which of the potentially
many futures corresponding to the callee should be the one to contain its result?

Because neither objects associated with the callee nor objects associated with the
caller are suitable places to store the callee’s result, it’s stored in a location outside
both. This location is known as the shared state. The shared state is typically repre‐
sented by a heap-based object, but its type, interface, and implementation are not
specified by the Standard. Standard Library authors are free to implement shared
states in any way they like.

We can envision the relationship among the callee, the caller, and the shared state as
follows, where dashed arrows once again represent the flow of information:

Caller Callee’s
Result

Shared State
future

Callee(typically)
std::promise

The existence of the shared state is important, because the behavior of a future’s
destructor—the topic of this Item—is determined by the shared state associated with
the future. In particular,

• The destructor for the last future referring to a shared state for a non-
deferred task launched via std::async blocks until the task completes. In
essence, the destructor for such a future does an implicit join on the thread on
which the asynchronously executing task is running.

• The destructor for all other futures simply destroys the future object. For
asynchronously running tasks, this is akin to an implicit detach on the underly‐
ing thread. For deferred tasks for which this is the final future, it means that the
deferred task will never run.

These rules sound more complicated than they are. What we’re really dealing with is
a simple “normal” behavior and one lone exception to it. The normal behavior is that
a future’s destructor destroys the future object. That’s it. It doesn’t join with any‐
thing, it doesn’t detach from anything, it doesn’t run anything. It just destroys the
future’s data members. (Well, actually, it does one more thing. It decrements the ref‐
erence count inside the shared state that’s manipulated by both the futures referring
to it and the callee’s std::promise. This reference count makes it possible for the
library to know when the shared state can be destroyed. For general information
about reference counting, see Item 19.)

The exception to this normal behavior arises only for a future for which all of the fol‐
lowing apply:
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• It refers to a shared state that was created due to a call to std::async.
• The task’s launch policy is std::launch::async (see Item 36), either because

that was chosen by the runtime system or because it was specified in the call to
std::async.

• The future is the last future referring to the shared state. For std::futures,
this will always be the case. For std::shared_futures, if other std::shared_
futures refer to the same shared state as the future being destroyed, the future
being destroyed follows the normal behavior (i.e., it simply destroys its data
members).

Only when all of these conditions are fulfilled does a future’s destructor exhibit spe‐
cial behavior, and that behavior is to block until the asynchronously running task
completes. Practically speaking, this amounts to an implicit join with the thread
running the std::async-created task.

It’s common to hear this exception to normal future destructor behavior summarized
as “Futures from std::async block in their destructors.” To a first approximation,
that’s correct, but sometimes you need more than a first approximation. Now you
know the truth in all its glory and wonder.

Your wonder may take a different form. It may be of the “I wonder why there’s a spe‐
cial rule for shared states for non-deferred tasks that are launched by std::async”
variety. It’s a reasonable question. From what I can tell, the Standardization Commit‐
tee wanted to avoid the problems associated with an implicit detach (see Item 37),
but they didn’t want to adopt as radical a policy as mandatory program termination
(as they did for joinable std::threads—again, see Item 37), so they compromised
on an implicit join. The decision was not without controversy, and there was serious
talk about abandoning this behavior for C++14. In the end, no change was made, so
the behavior of destructors for futures is consistent in C++11 and C++14.

The API for futures offers no way to determine whether a future refers to a shared
state arising from a call to std::async, so given an arbitrary future object, it’s not
possible to know whether it will block in its destructor waiting for an asynchronously
running task to finish. This has some interesting implications:

// this container might block in its dtor, because one or more
// contained futures could refer to a shared state for a non-
// deferred task launched via std::async
std::vector<std::future<void>> futs;   // see Item 39 for info
                                       // on std::future<void>

class Widget {                         // Widget objects might
public:                                // block in their dtors
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  …

private:
  std::shared_future<double> fut;
};

Of course, if you have a way of knowing that a given future does not satisfy the condi‐
tions that trigger the special destructor behavior (e.g., due to program logic), you’re
assured that that future won’t block in its destructor. For example, only shared states
arising from calls to std::async qualify for the special behavior, but there are other
ways that shared states get created. One is the use of std::packaged_task. A
std::packaged_task object prepares a function (or other callable object) for asyn‐
chronous execution by wrapping it such that its result is put into a shared state. A
future referring to that shared state can then be obtained via std::packaged_task’s
get_future function:

int calcValue();                      // func to run

std::packaged_task<int()>             // wrap calcValue so it
  pt(calcValue);                      // can run asynchronously

auto fut = pt.get_future();           // get future for pt

At this point, we know that the future fut doesn’t refer to a shared state created by a
call to std::async, so its destructor will behave normally.

Once created, the std::packaged_task pt can be run on a thread. (It could be run
via a call to std::async, too, but if you want to run a task using std::async, there’s
little reason to create a std::packaged_task, because std::async does everything
std::packaged_task does before it schedules the task for execution.)

std::packaged_tasks aren’t copyable, so when pt is passed to the std::thread
constructor, it must be cast to an rvalue (via std::move—see Item 23):

std::thread t(std::move(pt));         // run pt on t

This example lends some insight into the normal behavior for future destructors, but
it’s easier to see if the statements are put together inside a block:

{                                     // begin block

  std::packaged_task<int()>
    pt(calcValue);

  auto fut = pt.get_future();
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  std::thread t(std::move(pt));

  …                                   // see below

}                                     // end block

The most interesting code here is the “…” that follows creation of the std::thread
object t and precedes the end of the block. What makes it interesting is what can
happen to t inside the “…” region. There are three basic possibilities:

• Nothing happens to t. In this case, t will be joinable at the end of the scope.
That will cause the program to be terminated (see Item 37).

• A join is done on t. In this case, there would be no need for fut to block in its
destructor, because the join is already present in the calling code.

• A detach is done on t. In this case, there would be no need for fut to detach in
its destructor, because the calling code already does that.

In other words, when you have a future corresponding to a shared state that arose
due to a std::packaged_task, there’s usually no need to adopt a special destruction
policy, because the decision among termination, joining, or detaching will be made in
the code that manipulates the std::thread on which the std::packaged_task is
typically run.

Things to Remember
• Future destructors normally just destroy the future’s data members.
• The final future referring to a shared state for a non-deferred task launched

via std::async blocks until the task completes.

Item 39: Consider void futures for one-shot event
communication.

Sometimes it’s useful for a task to tell a second, asynchronously running task that a
particular event has occurred, because the second task can’t proceed until the event
has taken place. Perhaps a data structure has been initialized, a stage of computation
has been completed, or a significant sensor value has been detected. When that’s the
case, what’s the best way for this kind of inter-thread communication to take place?

An obvious approach is to use a condition variable (condvar). If we call the task that
detects the condition the detecting task and the task reacting to the condition the
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reacting task, the strategy is simple: the reacting task waits on a condition variable,
and the detecting thread notifies that condvar when the event occurs. Given

std::condition_variable cv;             // condvar for event

std::mutex m;                           // mutex for use with cv

the code in the detecting task is as simple as simple can be:

…                                       // detect event

cv.notify_one();                        // tell reacting task

If there were multiple reacting tasks to be notified, it would be appropriate to replace
notify_one with notify_all, but for now, we’ll assume there’s only one reacting
task.

The code for the reacting task is a bit more complicated, because before calling wait
on the condvar, it must lock a mutex through a std::unique_lock object. (Locking
a mutex before waiting on a condition variable is typical for threading libraries. The
need to lock the mutex through a std::unique_lock object is simply part of the
C++11 API.) Here’s the conceptual approach:

…                                      // prepare to react

{                                      // open critical section

  std::unique_lock<std::mutex> lk(m);  // lock mutex

  cv.wait(lk);                         // wait for notify;
                                       // this isn't correct!

  …                                    // react to event
                                       // (m is locked)

}                                      // close crit. section;
                                       // unlock m via lk's dtor

…                                      // continue reacting
                                       // (m now unlocked)

The first issue with this approach is what’s sometimes termed a code smell: even if the
code works, something doesn’t seem quite right. In this case, the odor emanates from
the need to use a mutex. Mutexes are used to control access to shared data, but it’s
entirely possible that the detecting and reacting tasks have no need for such media‐
tion. For example, the detecting task might be responsible for initializing a global
data structure, then turning it over to the reacting task for use. If the detecting task
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never accesses the data structure after initializing it, and if the reacting task never
accesses it before the detecting task indicates that it’s ready, the two tasks will stay out
of each other’s way through program logic. There will be no need for a mutex. The
fact that the condvar approach requires one leaves behind the unsettling aroma of
suspect design.

Even if you look past that, there are two other problems you should definitely pay
attention to:

• If the detecting task notifies the condvar before the reacting task waits, the
reacting task will hang. In order for notification of a condvar to wake another
task, the other task must be waiting on that condvar. If the detecting task hap‐
pens to execute the notification before the reacting task executes the wait, the
reacting task will miss the notification, and it will wait forever.

• The wait statement fails to account for spurious wakeups. A fact of life in
threading APIs (in many languages—not just C++) is that code waiting on a con‐
dition variable may be awakened even if the condvar wasn’t notified. Such awak‐
enings are known as spurious wakeups. Proper code deals with them by
confirming that the condition being waited for has truly occurred, and it does
this as its first action after waking. The C++ condvar API makes this exception‐
ally easy, because it permits a lambda (or other function object) that tests for the
waited-for condition to be passed to wait. That is, the wait call in the reacting
task could be written like this:

cv.wait(lk,
        []{ return whether the event has occurred; });

Taking advantage of this capability requires that the reacting task be able to
determine whether the condition it’s waiting for is true. But in the scenario we’ve
been considering, the condition it’s waiting for is the occurrence of an event that
the detecting thread is responsible for recognizing. The reacting thread may have
no way of determining whether the event it’s waiting for has taken place. That’s
why it’s waiting on a condition variable!

There are many situations where having tasks communicate using a condvar is a
good fit for the problem at hand, but this doesn’t seem to be one of them.

For many developers, the next trick in their bag is a shared boolean flag. The flag is
initially false. When the detecting thread recognizes the event it’s looking for, it sets
the flag:

std::atomic<bool> flag(false);      // shared flag; see
                                    // Item 40 for std::atomic

…                                   // detect event
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flag = true;                        // tell reacting task

For its part, the reacting thread simply polls the flag. When it sees that the flag is set,
it knows that the event it’s been waiting for has occurred:

…                                   // prepare to react

while (!flag);                      // wait for event

…                                   // react to event

This approach suffers from none of the drawbacks of the condvar-based design.
There’s no need for a mutex, no problem if the detecting task sets the flag before the
reacting task starts polling, and nothing akin to a spurious wakeup. Good, good,
good.

Less good is the cost of polling in the reacting task. During the time the task is wait‐
ing for the flag to be set, the task is essentially blocked, yet it’s still running. As such,
it occupies a hardware thread that another task might be able to make use of, it incurs
the cost of a context switch each time it starts or completes its time-slice, and it could
keep a core running that might otherwise be shut down to save power. A truly
blocked task would do none of these things. That’s an advantage of the condvar-
based approach, because a task in a wait call is truly blocked.

It’s common to combine the condvar and flag-based designs. A flag indicates whether
the event of interest has occurred, but access to the flag is synchronized by a mutex.
Because the mutex prevents concurrent access to the flag, there is, as Item 40
explains, no need for the flag to be std::atomic; a simple bool will do. The detect‐
ing task would then look like this:

std::condition_variable cv;           // as before
std::mutex m;

bool flag(false);                     // not std::atomic

…                                     // detect event

{
  std::lock_guard<std::mutex> g(m);   // lock m via g's ctor

  flag = true;                        // tell reacting task
                                      // (part 1)

}                                     // unlock m via g's dtor
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cv.notify_one();                      // tell reacting task
                                      // (part 2)

And here’s the reacting task:

…                                      // prepare to react

{                                      // as before
  std::unique_lock<std::mutex> lk(m);  // as before

  cv.wait(lk, [] { return flag; });    // use lambda to avoid
                                       // spurious wakeups

  …                                    // react to event
                                       // (m is locked)
}

…                                      // continue reacting
                                       // (m now unlocked)

This approach avoids the problems we’ve discussed. It works regardless of whether
the reacting task waits before the detecting task notifies, it works in the presence of
spurious wakeups, and it doesn’t require polling. Yet an odor remains, because the
detecting task communicates with the reacting task in a very curious fashion. Notify‐
ing the condition variable tells the reacting task that the event it’s been waiting for
has probably occurred, but the reacting task must check the flag to be sure. Setting
the flag tells the reacting task that the event has definitely occurred, but the detecting
task still has to notify the condition variable so that the reacting task will awaken and
check the flag. The approach works, but it doesn’t seem terribly clean.

An alternative is to avoid condition variables, mutexes, and flags by having the react‐
ing task wait on a future that’s set by the detecting task. This may seem like an odd
idea. After all, Item 38 explains that a future represents the receiving end of a com‐
munications channel from a callee to a (typically asynchronous) caller, and here
there’s no callee-caller relationship between the detecting and reacting tasks. How‐
ever, Item 38 also notes that a communications channel whose transmitting end is a
std::promise and whose receiving end is a future can be used for more than just
callee-caller communication. Such a communications channel can be used in any sit‐
uation where you need to transmit information from one place in your program to
another. In this case, we’ll use it to transmit information from the detecting task to
the reacting task, and the information we’ll convey will be that the event of interest
has taken place.

The design is simple. The detecting task has a std::promise object (i.e., the writing
end of the communications channel), and the reacting task has a corresponding
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future. When the detecting task sees that the event it’s looking for has occurred, it sets
the std::promise (i.e., writes into the communications channel). Meanwhile, the
reacting task waits on its future. That wait blocks the reacting task until the
std::promise has been set.

Now, both std::promise and futures (i.e., std::future and std::shared_future)
are templates that require a type parameter. That parameter indicates the type of data
to be transmitted through the communications channel. In our case, however, there’s
no data to be conveyed. The only thing of interest to the reacting task is that its future
has been set. What we need for the std::promise and future templates is a type that
indicates that no data is to be conveyed across the communications channel. That
type is void. The detecting task will thus use a std::promise<void>, and the react‐
ing task a std::future<void> or std::shared_future<void>. The detecting task
will set its std::promise<void> when the event of interest occurs, and the reacting
task will wait on its future. Even though the reacting task won’t receive any data
from the detecting task, the communications channel will permit the reacting task to
know when the detecting task has “written” its void data by calling set_value on its
std::promise.

So given

std::promise<void> p;               // promise for
                                    // communications channel

the detecting task’s code is trivial,

…                                   // detect event

p.set_value();                      // tell reacting task

and the reacting task’s code is equally simple:

…                                   // prepare to react

p.get_future().wait();              // wait on future
                                    // corresponding to p

…                                   // react to event

Like the approach using a flag, this design requires no mutex, works regardless of
whether the detecting task sets its std::promise before the reacting task waits, and
is immune to spurious wakeups. (Only condition variables are susceptible to that
problem.) Like the condvar-based approach, the reacting task is truly blocked after
making the wait call, so it consumes no system resources while waiting. Perfect,
right?
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Not exactly. Sure, a future-based approach skirts those shoals, but there are other
hazards to worry about. For example, Item 38 explains that between a std::promise
and a future is a shared state, and shared states are typically dynamically allocated.
You should therefore assume that this design incurs the cost of heap-based allocation
and deallocation.

Perhaps more importantly, a std::promise may be set only once. The communica‐
tions channel between a std::promise and a future is a one-shot mechanism: it can’t
be used repeatedly. This is a notable difference from the condvar- and flag-based
designs, both of which can be used to communicate multiple times. (A condvar can
be repeatedly notified, and a flag can always be cleared and set again.)

The one-shot restriction isn’t as limiting as you might think. Suppose you’d like to
create a system thread in a suspended state. That is, you’d like to get all the overhead
associated with thread creation out of the way so that when you’re ready to execute
something on the thread, the normal thread-creation latency will be avoided. Or you
might want to create a suspended thread so that you could configure it before letting
it run. Such configuration might include things like setting its priority or core affin‐
ity. The C++ concurrency API offers no way to do those things, but std::thread
objects offer the native_handle member function, the result of which is intended to
give you access to the platform’s underlying threading API (usually POSIX threads or
Windows threads). The lower-level API often makes it possible to configure thread
characteristics such as priority and affinity.

Assuming you want to suspend a thread only once (after creation, but before it’s run‐
ning its thread function), a design using a void future is a reasonable choice. Here’s
the essence of the technique:

std::promise<void> p;

void react();                        // func for reacting task

void detect()                        // func for detecting task
{
  std::thread t([]                   // create thread
                {
                  p.get_future().wait();     // suspend t until
                  react();                   // future is set
                });
  …                                  // here, t is suspended
                                     // prior to call to react

  p.set_value();                     // unsuspend t (and thus
                                     // call react)

268 | Item 39



5 A reasonable place to begin researching the matter is my 24 December 2013 blog post at The View From Aris‐
teia, “ThreadRAII + Thread Suspension = Trouble?”

  …                                  // do additional work

  t.join();                          // make t unjoinable
}                                    // (see Item 37)

Because it’s important that t become unjoinable on all paths out of detect, use of an
RAII class like Item 37’s ThreadRAII seems like it would be advisable. Code like this
comes to mind:

void detect()
{
  ThreadRAII tr(                          // use RAII object
    std::thread([]
                {                       
                  p.get_future().wait();
                  react();
                }),
    ThreadRAII::DtorAction::join          // risky! (see below)
  );

  …                                       // thread inside tr
                                          // is suspended here

  p.set_value();                          // unsuspend thread
                                          // inside tr
  …

}

This looks safer than it is. The problem is that if in the first “…” region (the one with
the “thread inside tr is suspended here” comment), an exception is emitted,
set_value will never be called on p. That means that the call to wait inside the
lambda will never return. That, in turn, means that the thread running the lambda
will never finish, and that’s a problem, because the RAII object tr has been config‐
ured to perform a join on that thread in tr’s destructor. In other words, if an excep‐
tion is emitted from the first “…” region of code, this function will hang, because tr’s
destructor will never complete.

There are ways to address this problem, but I’ll leave them in the form of the hal‐
lowed exercise for the reader.5 Here, I’d like to show how the original code (i.e., not
using ThreadRAII) can be extended to suspend and then unsuspend not just one
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reacting task, but many. It’s a simple generalization, because the key is to use
std::shared_futures instead of a std::future in the react code. Once you know
that the std::future’s share member function transfers ownership of its shared
state to the std::shared_future object produced by share, the code nearly writes
itself. The only subtlety is that each reacting thread needs its own copy of the
std::shared_future that refers to the shared state, so the std::shared_future
obtained from share is captured by value by the lambdas running on the reacting
threads:

std::promise<void> p;                // as before

void detect()                        // now for multiple
{                                    // reacting tasks

  auto sf = p.get_future().share();  // sf's type is
                                     // std::shared_future<void>

  std::vector<std::thread> vt;              // container for
                                            // reacting threads

  for (int i = 0; i < threadsToRun; ++i) {
    vt.emplace_back([sf]{ sf.wait();        // wait on local
                          react(); });      // copy of sf; see
  }                                         // Item 42 for info
                                            // on emplace_back

  …                                  // detect hangs if
                                     // this "…" code throws!

  p.set_value();                     // unsuspend all threads

  …

  for (auto& t : vt) {               // make all threads
    t.join();                        // unjoinable; see Item 2
  }                                  // for info on "auto&"
}

The fact that a design using futures can achieve this effect is noteworthy, and that’s
why you should consider it for one-shot event communication.
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Things to Remember
• For simple event communication, condvar-based designs require a superflu‐

ous mutex, impose constraints on the relative progress of detecting and react‐
ing tasks, and require reacting tasks to verify that the event has taken place.

• Designs employing a flag avoid those problems, but are based on polling, not
blocking.

• A condvar and flag can be used together, but the resulting communications
mechanism is somewhat stilted.

• Using std::promises and futures dodges these issues, but the approach uses
heap memory for shared states, and it’s limited to one-shot communication.

Item 40: Use std::atomic for concurrency, volatile
for special memory.

Poor volatile. So misunderstood. It shouldn’t even be in this chapter, because it has
nothing to do with concurrent programming. But in other programming languages
(e.g., Java and C#), it is useful for such programming, and even in C++, some compil‐
ers have imbued volatile with semantics that render it applicable to concurrent
software (but only when compiled with those compilers). It’s thus worthwhile to dis‐
cuss volatile in a chapter on concurrency if for no other reason than to dispel the
confusion surrounding it.

The C++ feature that programmers sometimes confuse volatile with—the feature
that definitely does belong in this chapter—is the std::atomic template. Instantia‐
tions of this template (e.g., std::atomic<int>, std::atomic<bool>,
std::atomic<Widget*>, etc.) offer operations that are guaranteed to be seen as
atomic by other threads. Once a std::atomic object has been constructed, opera‐
tions on it behave as if they were inside a mutex-protected critical section, but the
operations are generally implemented using special machine instructions that are
more efficient than would be the case if a mutex were employed.

Consider this code using std::atomic:

std::atomic<int> ai(0);    // initialize ai to 0

ai = 10;                   // atomically set ai to 10

std::cout << ai;           // atomically read ai's value

++ai;                      // atomically increment ai to 11
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--ai;                      // atomically decrement ai to 10

During execution of these statements, other threads reading ai may see only values
of 0, 10, or 11. No other values are possible (assuming, of course, that this is the only
thread modifying ai).

Two aspects of this example are worth noting. First, in the “std::cout << ai;” state‐
ment, the fact that ai is a std::atomic guarantees only that the read of ai is atomic.
There is no guarantee that the entire statement proceeds atomically. Between the
time ai’s value is read and operator<< is invoked to write it to the standard output,
another thread may have modified ai’s value. That has no effect on the behavior of
the statement, because operator<< for ints uses a by-value parameter for the int to
output (the outputted value will therefore be the one that was read from ai), but it’s
important to understand that what’s atomic in that statement is nothing more than
the read of ai.

The second noteworthy aspect of the example is the behavior of the last two state‐
ments—the increment and decrement of ai. These are each read-modify-write
(RMW) operations, yet they execute atomically. This is one of the nicest characteris‐
tics of the std::atomic types: once a std::atomic object has been constructed, all
member functions on it, including those comprising RMW operations, are guaran‐
teed to be seen by other threads as atomic.

In contrast, the corresponding code using volatile guarantees virtually nothing in a
multithreaded context:

volatile int vi(0);        // initialize vi to 0

vi = 10;                   // set vi to 10

std::cout << vi;           // read vi's value

++vi;                      // increment vi to 11

--vi;                      // decrement vi to 10

During execution of this code, if other threads are reading the value of vi, they may
see anything, e.g, -12, 68, 4090727—anything! Such code would have undefined
behavior, because these statements modify vi, so if other threads are reading vi at
the same time, there are simultaneous readers and writers of memory that’s neither
std::atomic nor protected by a mutex, and that’s the definition of a data race.
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As a concrete example of how the behavior of std::atomics and volatiles can dif‐
fer in a multithreaded program, consider a simple counter of each type that’s incre‐
mented by multiple threads. We’ll initialize each to 0:

std::atomic<int> ac(0);    // "atomic counter"

volatile int vc(0);        // "volatile counter"

We’ll then increment each counter one time in two simultaneously running threads:

/*-----  Thread 1  ----- */     /*-------  Thread 2  ------- */

         ++ac;                             ++ac;
         ++vc;                             ++vc;

When both threads have finished, ac’s value (i.e., the value of the std::atomic)
must be 2, because each increment occurs as an indivisible operation. vc’s value, on
the other hand, need not be 2, because its increments may not occur atomically. Each
increment consists of reading vc’s value, incrementing the value that was read, and
writing the result back into vc. But these three operations are not guaranteed to pro‐
ceed atomically for volatile objects, so it’s possible that the component parts of the
two increments of vc are interleaved as follows:

1. Thread 1 reads vc’s value, which is 0.
2. Thread 2 reads vc’s value, which is still 0.
3. Thread 1 increments the 0 it read to 1, then writes that value into vc.
4. Thread 2 increments the 0 it read to 1, then writes that value into vc.

vc’s final value is therefore 1, even though it was incremented twice.

This is not the only possible outcome. vc’s final value is, in general, not predictable,
because vc is involved in a data race, and the Standard’s decree that data races cause
undefined behavior means that compilers may generate code to do literally anything.
Compilers don’t use this leeway to be malicious, of course. Rather, they perform opti‐
mizations that would be valid in programs without data races, and these optimiza‐
tions yield unexpected and unpredictable behavior in programs where races are
present.

The use of RMW operations isn’t the only situation where std::atomics comprise a
concurrency success story and volatiles suffer failure. Suppose one task computes
an important value needed by a second task. When the first task has computed the
value, it must communicate this to the second task. Item 39 explains that one way for
the first task to communicate the availability of the desired value to the second task is
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6 This is true only for std::atomics using sequential consistency, which is both the default and the only consis‐
tency model for std::atomic objects that use the syntax shown in this book. C++11 also supports consis‐
tency models with more flexible code-reordering rules. Such weak (aka relaxed) models make it possible to
create software that runs faster on some hardware architectures, but the use of such models yields software
that is much more difficult to get right, to understand, and to maintain. Subtle errors in code using relaxed
atomics is not uncommon, even for experts, so you should stick to sequential consistency if at all possible.

by using a std::atomic<bool>. Code in the task computing the value would look
something like this:

std::atomic<bool> valAvailable(false);

auto imptValue = computeImportantValue();  // compute value

valAvailable = true;                       // tell other task
                                           // it's available

As humans reading this code, we know it’s crucial that the assignment to imptValue
take place before the assignment to valAvailable, but all compilers see is a pair of
assignments to independent variables. As a general rule, compilers are permitted to
reorder such unrelated assignments. That is, given this sequence of assignments
(where a, b, x, and y correspond to independent variables),

a = b;
x = y;

compilers may generally reorder them as follows:

x = y;
a = b;

Even if compilers don’t reorder them, the underlying hardware might do it (or might
make it seem to other cores as if it had), because that can sometimes make the code
run faster.

However, the use of std::atomics imposes restrictions on how code can be reor‐
dered, and one such restriction is that no code that, in the source code, precedes a
write of a std::atomic variable may take place (or appear to other cores to take
place) afterwards.6 That means that in our code,

auto imptValue = computeImportantValue();  // compute value

valAvailable = true;                       // tell other task
                                           // it's available

not only must compilers retain the order of the assignments to imptValue and
valAvailable, they must generate code that ensures that the underlying hardware
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does, too. As a result, declaring valAvailable as std::atomic ensures that our crit‐
ical ordering requirement—imptValue must be seen by all threads to change no later
than valAvailable does—is maintained.

Declaring valAvailable as volatile doesn’t impose the same code reordering
restrictions:

volatile bool valAvailable(false);

auto imptValue = computeImportantValue();

valAvailable = true;  // other threads might see this assignment
                      // before the one to imptValue!

Here, compilers might flip the order of the assignments to imptValue and valAvail
able, and even if they don’t, they might fail to generate machine code that would
prevent the underlying hardware from making it possible for code on other cores to
see valAvailable change before imptValue.

These two issues—no guarantee of operation atomicity and insufficient restrictions
on code reordering—explain why volatile’s not useful for concurrent program‐
ming, but it doesn’t explain what it is useful for. In a nutshell, it’s for telling compilers
that they’re dealing with memory that doesn’t behave normally.

“Normal” memory has the characteristic that if you write a value to a memory loca‐
tion, the value remains there until something overwrites it. So if I have a normal int,

int x;

and a compiler sees the following sequence of operations on it,

auto y = x;           // read x
y = x;                // read x again

the compiler can optimize the generated code by eliminating the assignment to y,
because it’s redundant with y’s initialization.

Normal memory also has the characteristic that if you write a value to a memory
location, never read it, and then write to that memory location again, the first write
can be eliminated, because it was never used. So given these two adjacent statements,

x = 10;               // write x
x = 20;               // write x again

compilers can eliminate the first one. That means that if we have this in the source
code,

auto y = x;           // read x
y = x;                // read x again
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x = 10;               // write x
x = 20;               // write x again

compilers can treat it as if it had been written like this:

auto y = x;           // read x

x = 20;               // write x

Lest you wonder who’d write code that performs these kinds of redundant reads and
superfluous writes (technically known as redundant loads and dead stores), the
answer is that humans don’t write it directly—at least we hope they don’t. However,
after compilers take reasonable-looking source code and perform template instantia‐
tion, inlining, and various common kinds of reordering optimizations, it’s not
uncommon for the result to have redundant loads and dead stores that compilers can
get rid of.

Such optimizations are valid only if memory behaves normally. “Special” memory
doesn’t. Probably the most common kind of special memory is memory used for
memory-mapped I/O. Locations in such memory actually communicate with periph‐
erals, e.g., external sensors or displays, printers, network ports, etc. rather than read‐
ing or writing normal memory (i.e., RAM). In such a context, consider again the code
with seemingly redundant reads:

auto y = x;           // read x
y = x;                // read x again

If x corresponds to, say, the value reported by a temperature sensor, the second read
of x is not redundant, because the temperature may have changed between the first
and second reads.

It’s a similar situation for seemingly superfluous writes. In this code, for example,

x = 10;               // write x
x = 20;               // write x again

if x corresponds to the control port for a radio transmitter, it could be that the code is
issuing commands to the radio, and the value 10 corresponds to a different command
from the value 20. Optimizing out the first assignment would change the sequence of
commands sent to the radio.

volatile is the way we tell compilers that we’re dealing with special memory. Its
meaning to compilers is “Don’t perform any optimizations on operations on this
memory.” So if x corresponds to special memory, it’d be declared volatile:

volatile int x;

Consider the effect that has on our original code sequence:
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7 y’s type is auto-deduced, so it uses the rules described in Item 2. Those rules dictate that for the declaration of
non-reference non-pointer types (which is the case for y), const and volatile qualifiers are dropped. y’s
type is therefore simply int. This means that redundant reads of and writes to y can be eliminated. In the
example, compilers must perform both the initialization of and the assignment to y, because x is volatile,
so the second read of x might yield a different value from the first one.

auto y = x;           // read x
y = x;                // read x again (can't be optimized away)

x = 10;               // write x (can't be optimized away)
x = 20;               // write x again

This is precisely what we want if x is memory-mapped (or has been mapped to a
memory location shared across processes, etc.).

Pop quiz! In that last piece of code, what is y’s type: int or volatile int?7

The fact that seemingly redundant loads and dead stores must be preserved when
dealing with special memory explains, by the way, why std::atomics are unsuitable
for this kind of work. Compilers are permitted to eliminate such redundant opera‐
tions on std::atomics. The code isn’t written quite the same way it is for vola
tiles, but if we overlook that for a moment and focus on what compilers are
permitted to do, we can say that, conceptually, compilers may take this,

std::atomic<int> x;

auto y = x;           // conceptually read x (see below)
y = x;                // conceptually read x again (see below)

x = 10;               // write x
x = 20;               // write x again

and optimize it to this:

auto y = x;           // conceptually read x (see below)
x = 20;               // write x

For special memory, this is clearly unacceptable behavior.

Now, as it happens, neither of these two statements will compile when x is
std::atomic:

auto y = x;           // error!
y = x;                // error!

That’s because the copy operations for std::atomic are deleted (see Item 11). And
with good reason. Consider what would happen if the initialization of y with x com‐
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piled. Because x is std::atomic, y’s type would be deduced to be std::atomic, too
(see Item 2). I remarked earlier that one of the best things about std::atomics is
that all their operations are atomic, but in order for the copy construction of y from x
to be atomic, compilers would have to generate code to read x and write y in a single
atomic operation. Hardware generally can’t do that, so copy construction isn’t sup‐
ported for std::atomic types. Copy assignment is deleted for the same reason,
which is why the assignment from x to y won’t compile. (The move operations aren’t
explicitly declared in std::atomic, so, per the rules for compiler-generated special
functions described in Item 17, std::atomic offers neither move construction nor
move assignment.)

It’s possible to get the value of x into y, but it requires use of std::atomic’s member
functions load and store. The load member function reads a std::atomic’s value
atomically, while the store member function writes it atomically. To initialize y with
x, followed by putting x’s value in y, the code must be written like this:

std::atomic<int> y(x.load());     // read x

y.store(x.load());                // read x again

This compiles, but the fact that reading x (via x.load()) is a separate function call
from initializing or storing to y makes clear that there is no reason to expect either
statement as a whole to execute as a single atomic operation.

Given that code, compilers could “optimize” it by storing x’s value in a register
instead of reading it twice:

register = x.load();              // read x into register

std::atomic<int> y(register);     // init y with register value

y.store(register);                // store register value into y

The result, as you can see, reads from x only once, and that’s the kind of optimization
that must be avoided when dealing with special memory. (The optimization isn’t per‐
mitted for volatile variables.)

The situation should thus be clear:

• std::atomic is useful for concurrent programming, but not for accessing spe‐
cial memory.

• volatile is useful for accessing special memory, but not for concurrent pro‐
gramming.
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Because std::atomic and volatile serve different purposes, they can even be used
together:

volatile std::atomic<int> vai;    // operations on vai are
                                  // atomic and can't be
                                  // optimized away

This could be useful if vai corresponded to a memory-mapped I/O location that was
concurrently accessed by multiple threads.

As a final note, some developers prefer to use std::atomic’s load and store mem‐
ber functions even when they’re not required, because it makes explicit in the source
code that the variables involved aren’t “normal.” Emphasizing that fact isn’t unrea‐
sonable. Accessing a std::atomic is typically much slower than accessing a non-
std::atomic, and we’ve already seen that the use of std::atomics prevents
compilers from performing certain kinds of code reorderings that would otherwise
be permitted. Calling out loads and stores of std::atomics can therefore help iden‐
tify potential scalability chokepoints. From a correctness perspective, not seeing a call
to store on a variable meant to communicate information to other threads (e.g., a
flag indicating the availability of data) could mean that the variable wasn’t declared
std::atomic when it should have been.

This is largely a style issue, however, and as such is quite different from the choice
between std::atomic and volatile.

Things to Remember
• std::atomic is for data accessed from multiple threads without using

mutexes. It’s a tool for writing concurrent software.
• volatile is for memory where reads and writes should not be optimized

away. It’s a tool for working with special memory.
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1 In this Item, to “copy” a parameter generally means to use it as the source of a copy or move operation. Recall
on page 2 that C++ has no terminology to distinguish a copy made by a copy operation from one made by a
move operation.

CHAPTER 8

Tweaks

For every general technique or feature in C++, there are circumstances where it’s rea‐
sonable to use it, and there are circumstances where it’s not. Describing when it
makes sense to use a general technique or feature is usually fairly straightforward, but
this chapter covers two exceptions. The general technique is pass by value, and the
general feature is emplacement. The decision about when to employ them is affected
by so many factors, the best advice I can offer is to consider their use. Nevertheless,
both are important players in effective modern C++ programming, and the Items
that follow provide the information you’ll need to determine whether using them is
appropriate for your software.

Item 41: Consider pass by value for copyable parameters
that are cheap to move and always copied.

Some function parameters are intended to be copied.1 For example, a member func‐
tion addName might copy its parameter into a private container. For efficiency, such a
function should copy lvalue arguments, but move rvalue arguments:

class Widget {
public:
  void addName(const std::string& newName)    // take lvalue;
  { names.push_back(newName); }               // copy it

  void addName(std::string&& newName)         // take rvalue;
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  { names.push_back(std::move(newName)); }    // move it; see
  …                                           // Item 25 for use
                                              // of std::move
private:
  std::vector<std::string> names;
};

This works, but it requires writing two functions that do essentially the same thing.
That chafes a bit: two functions to declare, two functions to implement, two func‐
tions to document, two functions to maintain. Ugh.

Furthermore, there will be two functions in the object code—something you might
care about if you’re concerned about your program’s footprint. In this case, both
functions will probably be inlined, and that’s likely to eliminate any bloat issues
related to the existence of two functions, but if these functions aren’t inlined every‐
where, you really will get two functions in your object code.

An alternative approach is to make addName a function template taking a universal
reference (see Item 24):

class Widget {
public:
  template<typename T>                          // take lvalues
  void addName(T&& newName)                     // and rvalues;
  {                                             // copy lvalues,
    names.push_back(std::forward<T>(newName));  // move rvalues;
  }                                             // see Item 25
                                                // for use of
  …                                             // std::forward

};

This reduces the source code you have to deal with, but the use of universal refer‐
ences leads to other complications. As a template, addName’s implementation must
typically be in a header file. It may yield several functions in object code, because it
not only instantiates differently for lvalues and rvalues, it also instantiates differently
for std::string and types that are convertible to std::string (see Item 25). At the
same time, there are argument types that can’t be passed by universal reference (see
Item 30), and if clients pass improper argument types, compiler error messages can
be intimidating (see Item 27).

Wouldn’t it be nice if there were a way to write functions like addName such that lval‐
ues were copied, rvalues were moved, there was only one function to deal with (in
both source and object code), and the idiosyncrasies of universal references were
avoided? As it happens, there is. All you have to do is abandon one of the first rules
you probably learned as a C++ programmer. That rule was to avoid passing objects of
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user-defined types by value. For parameters like newName in functions like addName,
pass by value may be an entirely reasonable strategy.

Before we discuss why pass-by-value may be a good fit for newName and addName,
let’s see how it would be implemented:

class Widget {
public:
  void addName(std::string newName)           // take lvalue or
  { names.push_back(std::move(newName)); }    // rvalue; move it

  …

};

The only non-obvious part of this code is the application of std::move to the param‐
eter newName. Typically, std::move is used with rvalue references, but in this case,
we know that (1) newName is a completely independent object from whatever the
caller passed in, so changing newName won’t affect callers and (2) this is the final use
of newName, so moving from it won’t have any impact on the rest of the function.

The fact that there’s only one addName function explains how we avoid code duplica‐
tion, both in the source code and the object code. We’re not using a universal refer‐
ence, so this approach doesn’t lead to bloated header files, odd failure cases, or
confounding error messages. But what about the efficiency of this design? We’re
passing by value. Isn’t that expensive?

In C++98, it was a reasonable bet that it was. No matter what callers passed in, the
parameter newName would be created by copy construction. In C++11, however, add
Name will be copy constructed only for lvalues. For rvalues, it will be move construc‐
ted. Here, look:

Widget w;

…

std::string name("Bart");

w.addName(name);                 // call addName with lvalue

…

w.addName(name + "Jenne");       // call addName with rvalue
                                 // (see below)
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In the first call to addName (when name is passed), the parameter newName is initial‐
ized with an lvalue. newName is thus copy constructed, just like it would be in C++98.
In the second call, newName is initialized with the std::string object resulting from
a call to operator+ for std::string (i.e., the append operation). That object is an
rvalue, and newName is therefore move constructed.

Lvalues are thus copied, and rvalues are moved, just like we want. Neat, huh?

It is neat, but there are some caveats you need to keep in mind. Doing that will be
easier if we recap the three versions of addName we’ve considered:

class Widget {                                  // Approach 1:
public:                                         // overload for
  void addName(const std::string& newName)      // lvalues and
  { names.push_back(newName); }                 // rvalues

  void addName(std::string&& newName)
  { names.push_back(std::move(newName)); }
  …

private:
  std::vector<std::string> names;
};

class Widget {                                  // Approach 2:
public:                                         // use universal
  template<typename T>                          // reference
  void addName(T&& newName)
  { names.push_back(std::forward<T>(newName)); }
  …
};

class Widget {                                  // Approach 3:
public:                                         // pass by value
  void addName(std::string newName)
  { names.push_back(std::move(newName)); }
  …
};

I refer to the first two versions as the “by-reference approaches,” because they’re both
based on passing their parameters by reference.
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Here are the two calling scenarios we’ve examined:

Widget w;
…
std::string name("Bart");

w.addName(name);                       // pass lvalue
…
w.addName(name + "Jenne");             // pass rvalue

Now consider the cost, in terms of copy and move operations, of adding a name to a
Widget for the two calling scenarios and each of the three addName implementations
we’ve discussed. The accounting will largely ignore the possibility of compilers opti‐
mizing copy and move operations away, because such optimizations are context- and
compiler-dependent and, in practice, don’t change the essence of the analysis.

• Overloading: Regardless of whether an lvalue or an rvalue is passed, the caller’s
argument is bound to a reference called newName. That costs nothing, in terms of
copy and move operations. In the lvalue overload, newName is copied into
Widget::names. In the rvalue overload, it’s moved. Cost summary: one copy for
lvalues, one move for rvalues.

• Using a universal reference: As with overloading, the caller’s argument is bound
to the reference newName. This is a no-cost operation. Due to the use of
std::forward, lvalue std::string arguments are copied into Widget::names,
while rvalue std::string arguments are moved. The cost summary for
std::string arguments is the same as with overloading: one copy for lvalues,
one move for rvalues.
Item 25 explains that if a caller passes an argument of a type other than
std::string, it will be forwarded to a std::string constructor, and that could
cause as few as zero std::string copy or move operations to be performed.
Functions taking universal references can thus be uniquely efficient. However,
that doesn’t affect the analysis in this Item, so we’ll keep things simple by assum‐
ing that callers always pass std::string arguments.

• Passing by value: Regardless of whether an lvalue or an rvalue is passed, the
parameter newName must be constructed. If an lvalue is passed, this costs a copy
construction. If an rvalue is passed, it costs a move construction. In the body of
the function, newName is unconditionally moved into Widget::names. The cost
summary is thus one copy plus one move for lvalues, and two moves for rvalues.
Compared to the by-reference approaches, that’s one extra move for both lvalues
and rvalues.
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2 Sentences like this are why it’d be nice to have terminology that distinguishes copies made via copy opera‐
tions from copies made via move operations.

Look again at this Item’s title:

Consider pass by value for copyable parameters that are cheap to move
and always copied.

It’s worded the way it is for a reason. Four reasons, in fact:

1. You should only consider using pass by value. Yes, it requires writing only one
function. Yes, it generates only one function in the object code. Yes, it avoids the
issues associated with universal references. But it has a higher cost than the alter‐
natives, and, as we’ll see below, in some cases, there are expenses we haven’t yet
discussed.

2. Consider pass by value only for copyable parameters. Parameters failing this test
must have move-only types, because if they’re not copyable, yet the function
always makes a copy, the copy must be created via the move constructor.2 Recall
that the advantage of pass by value over overloading is that with pass by value,
only one function has to be written. But for move-only types, there is no need to
provide an overload for lvalue arguments, because copying an lvalue entails call‐
ing the copy constructor, and the copy constructor for move-only types is dis‐
abled. That means that only rvalue arguments need to be supported, and in that
case, the “overloading” solution requires only one overload: the one taking an
rvalue reference.
Consider a class with a std::unique_ptr<std::string> data member and a
setter for it. std::unique_ptr is a move-only type, so the “overloading”
approach to its setter consists of a single function:

class Widget {
public:
  …
  void setPtr(std::unique_ptr<std::string>&& ptr)
  { p = std::move(ptr); }

private:
  std::unique_ptr<std::string> p;
};

A caller might use it this way:
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Widget w;
…

w.setPtr(std::make_unique<std::string>("Modern C++"));

Here the rvalue std::unique_ptr<std::string> returned from
std::make_unique (see Item 21) is passed by rvalue reference to setPtr, where
it’s moved into the data member p. The total cost is one move.
If setPtr were to take its parameter by value,

class Widget {
public:
  …

  void setPtr(std::unique_ptr<std::string> ptr)
  { p = std::move(ptr); }

  …
};

the same call would move construct the parameter ptr, and ptr would then be
move assigned into the data member p. The total cost would thus be two moves
—twice that of the “overloading” approach.

3. Pass by value is worth considering only for parameters that are cheap to move.
When moves are cheap, the cost of an extra one may be acceptable, but when
they’re not, performing an unnecessary move is analogous to performing an
unnecessary copy, and the importance of avoiding unnecessary copy operations
is what led to the C++98 rule about avoiding pass by value in the first place!

4. You should consider pass by value only for parameters that are always copied. To
see why this is important, suppose that before copying its parameter into the
names container, addName checks to see if the new name is too short or too long.
If it is, the request to add the name is ignored. A pass-by-value implementation
could be written like this:

class Widget {
public:
  void addName(std::string newName)
  {
    if ((newName.length() >= minLen) &&
        (newName.length() <= maxLen))
      {
        names.push_back(std::move(newName));
      }
  }
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  …

private:
  std::vector<std::string> names;
};

This function incurs the cost of constructing and destroying newName, even if
nothing is added to names. That’s a price the by-reference approaches wouldn’t
be asked to pay.

Even when you’re dealing with a function performing an unconditional copy on a
copyable type that’s cheap to move, there are times when pass by value may not be
appropriate. That’s because a function can copy a parameter in two ways: via con‐
struction (i.e., copy construction or move construction) and via assignment (i.e., copy
assignment or move assignment). addName uses construction: its parameter newName
is passed to vector::push_back, and inside that function, newName is copy con‐
structed into a new element created at the end of the std::vector. For functions
that use construction to copy their parameter, the analysis we saw earlier is complete:
using pass by value incurs the cost of an extra move for both lvalue and rvalue argu‐
ments.

When a parameter is copied using assignment, the situation is more complicated.
Suppose, for example, we have a class representing passwords. Because passwords
can be changed, we provide a setter function, changeTo. Using a pass-by-value strat‐
egy, we could implement Password like this:

class Password {
public:
  explicit Password(std::string pwd)     // pass by value
  : text(std::move(pwd)) {}              // construct text

  void changeTo(std::string newPwd)      // pass by value
  { text = std::move(newPwd); }          // assign text

  …

private:
  std::string text;                      // text of password
};

Storing the password as plain text will whip your software security SWAT team into a
frenzy, but ignore that and consider this code:
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std::string initPwd("Supercalifragilisticexpialidocious");

Password p(initPwd);

There are no suprises here: p.text is constructed with the given password, and using
pass by value in the constructor incurs the cost of a std::string move construction
that would not be necessary if overloading or perfect forwarding were employed. All
is well.

A user of this program may not be as sanguine about the password, however, because
“Supercalifragilisticexpialidocious” is found in many dictionaries. He or she may
therefore take actions that lead to code equivalent to the following being executed:

std::string newPassword = "Beware the Jabberwock";

p.changeTo(newPassword);

Whether the new password is better than the old one is debatable, but that’s the user’s
problem. Ours is that changeTo’s use of assignment to copy the parameter newPwd
probably causes that function’s pass-by-value strategy to explode in cost.

The argument passed to changeTo is an lvalue (newPassword), so when the parame‐
ter newPwd is constructed, it’s the std::string copy constructor that’s called. That
constructor allocates memory to hold the new password. newPwd is then move-
assigned to text, which causes the memory already held by text to be deallocated.
There are thus two dynamic memory management actions within changeTo: one to
allocate memory for the new password, and one to deallocate the memory for the old
password.

But in this case, the old password (“Supercalifragilisticexpialidocious”) is longer than
the new one (“Beware the Jabberwock”), so there’s no need to allocate or deallocate
anything. If the overloading approach were used, it’s likely that none would take 
place:

class Password {
public:
  …

  void changeTo(const std::string& newPwd)      // the overload
  {                                             // for lvalues

    text = newPwd;           // can reuse text's memory if
                             // text.capacity() >= newPwd.size()
  }

  …
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private:
  std::string text;                             // as above
};

In this scenario, the cost of pass by value includes an extra memory allocation and
deallocation—costs that are likely to exceed that of a std::string move operation
by orders of magnitude.

Interestingly, if the old password were shorter than the new one, it would typically be
impossible to avoid an allocation-deallocation pair during the assignment, and in
that case, pass by value would run at about the same speed as pass by reference. The
cost of assignment-based parameter copying can thus depend on the values of the
objects participating in the assignment! This kind of analysis applies to any parame‐
ter type that holds values in dynamically allocated memory. Not all types qualify, but
many—including std::string and std::vector—do.

This potential cost increase generally applies only when lvalue arguments are passed,
because the need to perform memory allocation and deallocation typically occurs
only when true copy operations (i.e., not moves) are performed. For rvalue argu‐
ments, moves almost always suffice.

The upshot is that the extra cost of pass by value for functions that copy a parameter
using assignment depends on the type being passed, the ratio of lvalue to rvalue argu‐
ments, whether the type uses dynamically allocated memory, and, if so, the imple‐
mentation of that type’s assignment operators and the likelihood that the memory
associated with the assignment target is at least as large as the memory associated
with the assignment source. For std::string, it also depends on whether the imple‐
mentation uses the small string optimization (SSO—see Item 29) and, if so, whether
the values being assigned fit in the SSO buffer.

So, as I said, when parameters are copied via assignment, analyzing the cost of pass
by value is complicated. Usually, the most practical approach is to adopt a “guilty
until proven innocent” policy, whereby you use overloading or universal references
instead of pass by value unless it’s been demonstrated that pass by value yields
acceptably efficient code for the parameter type you need.

Now, for software that must be as fast as possible, pass by value may not be a viable
strategy, because avoiding even cheap moves can be important. Moreover, it’s not
always clear how many moves will take place. In the Widget::addName example, pass
by value incurs only a single extra move operation, but suppose that Widget::add
Name called Widget::validateName, and this function also passed by value. (Pre‐
sumably it has a reason for always copying its parameter, e.g., to store it in a data
structure of all values it validates.) And suppose that validateName called a third
function that also passed by value…
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You can see where this is headed. When there are chains of function calls, each of
which employs pass by value because “it costs only one inexpensive move,” the cost
for the entire chain of calls may not be something you can tolerate. Using by-
reference parameter passing, chains of calls don’t incur this kind of accumulated
overhead.

An issue unrelated to performance, but still worth keeping in mind, is that pass by
value, unlike pass by reference, is susceptible to the slicing problem. This is well-trod
C++98 ground, so I won’t dwell on it, but if you have a function that is designed to
accept a parameter of a base class type or any type derived from it, you don’t want to
declare a pass-by-value parameter of that type, because you’ll “slice off” the derived-
class characteristics of any derived type object that may be passed in:

class Widget { … };                          // base class

class SpecialWidget: public Widget { … };    // derived class

void processWidget(Widget w);   // func for any kind of Widget,
                                // including derived types;
…                               // suffers from slicing problem

SpecialWidget sw;

…

processWidget(sw);              // processWidget sees a
                                // Widget, not a SpecialWidget!

If you’re not familiar with the slicing problem, search engines and the Internet are
your friends; there’s lots of information available. You’ll find that the existence of the
slicing problem is another reason (on top of the efficiency hit) why pass by value has
a shady reputation in C++98. There are good reasons why one of the first things you
probably learned about C++ programming was to avoid passing objects of user-
defined types by value.

C++11 doesn’t fundamentally change the C++98 wisdom regarding pass by value. In
general, pass by value still entails a performance hit you’d prefer to avoid, and pass by
value can still lead to the slicing problem. What’s new in C++11 is the distinction
between lvalue and rvalue arguments. Implementing functions that take advantage of
move semantics for rvalues of copyable types requires either overloading or using
universal references, both of which have drawbacks. For the special case of copyable,
cheap-to-move types passed to functions that always copy them and where slicing is
not a concern, pass by value can offer an easy-to-implement alternative that’s nearly
as efficient as its pass-by-reference competitors, but avoids their disadvantages.
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Things to Remember
• For copyable, cheap-to-move parameters that are always copied, pass by value

may be nearly as efficient as pass by reference, it’s easier to implement, and it
can generate less object code.

• Copying parameters via construction may be significantly more expensive
than copying them via assignment.

• Pass by value is subject to the slicing problem, so it’s typically inappropriate
for base class parameter types.

Item 42: Consider emplacement instead of insertion.
If you have a container holding, say, std::strings, it seems logical that when you
add a new element via an insertion function (i.e., insert, push_front, push_back,
or, for std::forward_list, insert_after), the type of element you’ll pass to the
function will be std::string. After all, that’s what the container has in it.

Logical though this may be, it’s not always true. Consider this code:

std::vector<std::string> vs;         // container of std::string

vs.push_back("xyzzy");               // add string literal

Here, the container holds std::strings, but what you have in hand—what you’re
actually trying to push_back—is a string literal, i.e., a sequence of characters inside
quotes. A string literal is not a std::string, and that means that the argument
you’re passing to push_back is not of the type held by the container.

push_back for std::vector is overloaded for lvalues and rvalues as follows:

template <class T,                           // from the C++11
          class Allocator = allocator<T>>    // Standard
class vector {
public:
  …
  void push_back(const T& x);                // insert lvalue
  void push_back(T&& x);                     // insert rvalue
  …
};

In the call

vs.push_back("xyzzy");
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compilers see a mismatch between the type of the argument (const char[6]) and the
type of the parameter taken by push_back (a reference to a std::string). They
address the mismatch by generating code to create a temporary std::string object
from the string literal, and they pass that temporary object to push_back. In other
words, they treat the call as if it had been written like this:

vs.push_back(std::string("xyzzy"));  // create temp. std::string
                                     // and pass it to push_back

The code compiles and runs, and everybody goes home happy. Everybody except the
performance freaks, that is, because the performance freaks recognize that this code
isn’t as efficient as it should be.

To create a new element in a container of std::strings, they understand, a
std::string constructor is going to have to be called, but the code above doesn’t
make just one constructor call. It makes two. And it calls the std::string destruc‐
tor, too. Here’s what happens at runtime in the call to push_back:

1. A temporary std::string object is created from the string literal "xyzzy". This
object has no name; we’ll call it temp. Construction of temp is the first
std::string construction. Because it’s a temporary object, temp is an rvalue.

2. temp is passed to the rvalue overload for push_back, where it’s bound to the
rvalue reference parameter x. A copy of x is then constructed in the memory for
the std::vector. This construction—the second one—is what actually creates a
new object inside the std::vector. (The constructor that’s used to copy x into
the std::vector is the move constructor, because x, being an rvalue reference,
gets cast to an rvalue before it’s copied. For information about the casting of
rvalue reference parameters to rvalues, see Item 25.)

3. Immediately after push_back returns, temp is destroyed, thus calling the
std::string destructor.

The performance freaks can’t help but notice that if there were a way to take the
string literal and pass it directly to the code in step 2 that constructs the std::string
object inside the std::vector, we could avoid constructing and destroying temp.
That would be maximally efficient, and even the performance freaks could content‐
edly decamp.

Because you’re a C++ programmer, there’s an above-average chance you’re a perfor‐
mance freak. If you’re not, you’re still probably sympathetic to their point of view. (If
you’re not at all interested in performance, shouldn’t you be in the Python room
down the hall?) So I’m pleased to tell you that there is a way to do exactly what is
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needed for maximal efficiency in the call to push_back. It’s to not call push_back.
push_back is the wrong function. The function you want is emplace_back.

emplace_back does exactly what we desire: it uses whatever arguments are passed to
it to construct a std::string directly inside the std::vector. No temporaries are
involved:

vs.emplace_back("xyzzy");   // construct std::string inside
                            // vs directly from "xyzzy"

emplace_back uses perfect forwarding, so, as long as you don’t bump into one of
perfect forwarding’s limitations (see Item 30), you can pass any number of arguments
of any combination of types through emplace_back. For example, if you’d like to
create a std::string in vs via the std::string constructor taking a character and
a repeat count, this would do it:

vs.emplace_back(50, 'x');   // insert std::string consisting
                            // of 50 'x' characters

emplace_back is available for every standard container that supports push_back.
Similarly, every standard container that supports push_front supports
emplace_front. And every standard container that supports insert (which is all
but std::forward_list and std::array) supports emplace. The associative con‐
tainers offer emplace_hint to complement their insert functions that take a “hint”
iterator, and std::forward_list has emplace_after to match its insert_after.

What makes it possible for emplacement functions to outperform insertion functions
is their more flexible interface. Insertion functions take objects to be inserted, while
emplacement functions take constructor arguments for objects to be inserted. This dif‐
ference permits emplacement functions to avoid the creation and destruction of tem‐
porary objects that insertion functions can necessitate.

Because an argument of the type held by the container can be passed to an emplace‐
ment function (the argument thus causes the function to perform copy or move con‐
struction), emplacement can be used even when an insertion function would require
no temporary. In that case, insertion and emplacement do essentially the same thing.
For example, given

std::string queenOfDisco("Donna Summer");

both of the following calls are valid, and both have the same net effect on the con‐
tainer:

vs.push_back(queenOfDisco);       // copy-construct queenOfDisco
                                  // at end of vs

vs.emplace_back(queenOfDisco);    // ditto
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Emplacement functions can thus do everything insertion functions can. They some‐
times do it more efficiently, and, at least in theory, they should never do it less effi‐
ciently. So why not use them all the time?

Because, as the saying goes, in theory, there’s no difference between theory and prac‐
tice, but in practice, there is. With current implementations of the Standard Library,
there are situations where, as expected, emplacement outperforms insertion, but,
sadly, there are also situations where the insertion functions run faster. Such situa‐
tions are not easy to characterize, because they depend on the types of arguments
being passed, the containers being used, the locations in the containers where inser‐
tion or emplacement is requested, the exception safety of the contained types’ con‐
structors, and, for containers where duplicate values are prohibited (i.e., std::set,
std::map, std::unordered_set, std::unordered_map), whether the value to be
added is already in the container. The usual performance-tuning advice thus applies:
to determine whether emplacement or insertion runs faster, benchmark them both.

That’s not very satisfying, of course, so you’ll be pleased to learn that there’s a heuris‐
tic that can help you identify situations where emplacement functions are most likely
to be worthwhile. If all the following are true, emplacement will almost certainly out‐
perform insertion:

• The value being added is constructed into the container, not assigned.  The
example that opened this Item (adding a std::string with the value "xyzzy" to
a std::vector vs) showed the value being added to the end of vs—to a place
where no object yet existed. The new value therefore had to be constructed into
the std::vector. If we revise the example such that the new std::string goes
into a location already occupied by an object, it’s a different story. Consider:

std::vector<std::string> vs;         // as before

…                                    // add elements to vs

vs.emplace(vs.begin(), "xyzzy");     // add "xyzzy" to
                                     // beginning of vs

For this code, few implementations will construct the added std::string into
the memory occupied by vs[0]. Instead, they’ll move-assign the value into place.
But move assignment requires an object to move from, and that means that a
temporary object will need to be created to be the source of the move. Because
the primary advantage of emplacement over insertion is that temporary objects
are neither created nor destroyed, when the value being added is put into the
container via assignment, emplacement’s edge tends to disappear.
Alas, whether adding a value to a container is accomplished by construction or
assignment is generally up to the implementer. But, again, heuristics can help.
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Node-based containers virtually always use construction to add new values, and
most standard containers are node-based. The only ones that aren’t are
std::vector, std::deque, and std::string. (std::array isn’t, either, but it
doesn’t support insertion or emplacement, so it’s not relevant here.) Within the
non-node-based containers, you can rely on emplace_back to use construction
instead of assignment to get a new value into place, and for std::deque, the
same is true of emplace_front.

• The argument type(s) being passed differ from the type held by the container.
Again, emplacement’s advantage over insertion generally stems from the fact that
its interface doesn’t require creation and destruction of a temporary object when
the argument(s) passed are of a type other than that held by the container. When
an object of type T is to be added to a container<T>, there’s no reason to expect
emplacement to run faster than insertion, because no temporary needs to be cre‐
ated to satisfy the insertion interface.

• The container is unlikely to reject the new value as a duplicate. This means
that the container either permits duplicates or that most of the values you add
will be unique. The reason this matters is that in order to detect whether a value
is already in the container, emplacement implementations typically create a node
with the new value so that they can compare the value of this node with existing
container nodes. If the value to be added isn’t in the container, the node is linked
in. However, if the value is already present, the emplacement is aborted and the
node is destroyed, meaning that the cost of its construction and destruction was
wasted. Such nodes are created for emplacement functions more often than for
insertion functions.

The following calls from earlier in this Item satisfy all the criteria above. They also
run faster than the corresponding calls to push_back.

vs.emplace_back("xyzzy");   // construct new value at end of
                            // container; don't pass the type in
                            // container; don't use container
                            // rejecting duplicates

vs.emplace_back(50, 'x');   // ditto

When deciding whether to use emplacement functions, two other issues are worth
keeping in mind. The first regards resource management. Suppose you have a con‐
tainer of std::shared_ptr<Widget>s,

std::list<std::shared_ptr<Widget>> ptrs;

and you want to add a std::shared_ptr that should be released via a custom deleter
(see Item 19). Item 21 explains that you should use std::make_shared to create
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std::shared_ptrs whenever you can, but it also concedes that there are situations
where you can’t. One such situation is when you want to specify a custom deleter. In
that case, you must use new directly to get the raw pointer to be managed by the
std::shared_ptr.

If the custom deleter is this function,

void killWidget(Widget* pWidget);

the code using an insertion function could look like this:

ptrs.push_back(std::shared_ptr<Widget>(new Widget, killWidget));

It could also look like this, though the meaning would be the same:

ptrs.push_back({ new Widget, killWidget });

Either way, a temporary std::shared_ptr would be constructed before calling
push_back. push_back’s parameter is a reference to a std::shared_ptr, so there
has to be a std::shared_ptr for this parameter to refer to.

The creation of the temporary std::shared_ptr is what emplace_back would
avoid, but in this case, that temporary is worth far more than it costs. Consider the
following potential sequence of events:

1. In either call above, a temporary std::shared_ptr<Widget> object is construc‐
ted to hold the raw pointer resulting from “new Widget”. Call this object temp.

2. push_back takes temp by reference. During allocation of a list node to hold a
copy of temp, an out-of-memory exception gets thrown.

3. As the exception propagates out of push_back, temp is destroyed. Being the sole
std::shared_ptr referring to the Widget it’s managing, it automatically relea‐
ses that Widget, in this case by calling killWidget.

Even though an exception occurred, nothing leaks: the Widget created via “new
Widget” in the call to push_back is released in the destructor of the
std::shared_ptr that was created to manage it (temp). Life is good.

Now consider what happens if emplace_back is called instead of push_back:

ptrs.emplace_back(new Widget, killWidget);

1. The raw pointer resulting from “new Widget” is perfect-forwarded to the point
inside emplace_back where a list node is to be allocated. That allocation fails,
and an out-of-memory exception is thrown.
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2. As the exception propagates out of emplace_back, the raw pointer that was the
only way to get at the Widget on the heap is lost. That Widget (and any resources
it owns) is leaked.

In this scenario, life is not good, and the fault doesn’t lie with std::shared_ptr. The
same kind of problem can arise through the use of std::unique_ptr with a custom
deleter. Fundamentally, the effectiveness of resource-managing classes like
std::shared_ptr and std::unique_ptr is predicated on resources (such as raw
pointers from new) being immediately passed to constructors for resource-managing
objects. The fact that functions like std::make_shared and std::make_unique
automate this is one of the reasons they’re so important.

In calls to the insertion functions of containers holding resource-managing objects
(e.g., std::list<std::shared_ptr<Widget>>), the functions’ parameter types gen‐
erally ensure that nothing gets between acquisition of a resource (e.g., use of new) and
construction of the object managing the resource. In the emplacement functions,
perfect-forwarding defers the creation of the resource-managing objects until they
can be constructed in the container’s memory, and that opens a window during
which exceptions can lead to resource leaks. All standard containers are susceptible
to this problem. When working with containers of resource-managing objects, you
must take care to ensure that if you choose an emplacement function over its inser‐
tion counterpart, you’re not paying for improved code efficiency with diminished
exception safety.

Frankly, you shouldn’t be passing expressions like “new Widget” to emplace_back or
push_back or most any other function, anyway, because, as Item 21 explains, this
leads to the possibility of exception safety problems of the kind we just examined.
Closing the door requires taking the pointer from “new Widget” and turning it over
to a resource-managing object in a standalone statement, then passing that object as
an rvalue to the function you originally wanted to pass “new Widget” to. (Item 21
covers this technique in more detail.) The code using push_back should therefore be
written more like this:

std::shared_ptr<Widget> spw(new Widget,    // create Widget and
                            killWidget);   // have spw manage it

ptrs.push_back(std::move(spw));            // add spw as rvalue

The emplace_back version is similar:

std::shared_ptr<Widget> spw(new Widget, killWidget);
ptrs.emplace_back(std::move(spw));

Either way, the approach incurs the cost of creating and destroying spw. Given that
the motivation for choosing emplacement over insertion is to avoid the cost of a tem‐
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porary object of the type held by the container, yet that’s conceptually what spw is,
emplacement functions are unlikely to outperform insertion functions when you’re
adding resource-managing objects to a container and you follow the proper practice
of ensuring that nothing can intervene between acquiring a resource and turning it
over to a resource-managing object.

 A second noteworthy aspect of emplacement functions is their interaction with
explicit constructors. In honor of C++11’s support for regular expressions, sup‐
pose you create a container of regular expression objects:

std::vector<std::regex> regexes;

Distracted by your colleagues’ quarreling over the ideal number of times per day to
check one’s Facebook account, you accidentally write the following seemingly mean‐
ingless code:

regexes.emplace_back(nullptr);    // add nullptr to container
                                  // of regexes?

You don’t notice the error as you type it, and your compilers accept the code without
complaint, so you end up wasting a bunch of time debugging. At some point, you
discover that you have inserted a null pointer into your container of regular expres‐
sions. But how is that possible? Pointers aren’t regular expressions, and if you tried to
do something like this,

std::regex r = nullptr;           // error! won't compile

compilers would reject your code. Interestingly, they would also reject it if you called
push_back instead of emplace_back:

regexes.push_back(nullptr);       // error! won't compile

The curious behavior you’re experiencing stems from the fact that std::regex
objects can be constructed from character strings. That’s what makes useful code like
this legal:

std::regex upperCaseWord("[A-Z]+");

Creation of a std::regex from a character string can exact a comparatively large
runtime cost, so, to minimize the likelihood that such an expense will be incurred
unintentionally, the std::regex constructor taking a const char* pointer is
explicit. That’s why these lines don’t compile:

std::regex r = nullptr;           // error! won't compile

regexes.push_back(nullptr);       // error! won't compile

In both cases, we’re requesting an implicit conversion from a pointer to a
std::regex, and the explicitness of that constructor prevents such conversions.
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In the call to emplace_back, however, we’re not claiming to pass a std::regex
object. Instead, we’re passing a constructor argument for a std::regex object. That’s
not considered an implicit conversion request. Rather, it’s viewed as if you’d written
this code:

std::regex r(nullptr);           // compiles

If the laconic comment “compiles” suggests a lack of enthusiasm, that’s good, because
this code, though it will compile, has undefined behavior. The std::regex construc‐
tor taking a const char* pointer requires that the pointed-to string comprise a valid
regular expression, and the null pointer fails that requirement. If you write and com‐
pile such code, the best you can hope for is that it crashes at runtime. If you’re not so
lucky, you and your debugger could be in for a special bonding experience.

Setting aside push_back, emplace_back, and bonding for a moment, notice how
these very similar initialization syntaxes yield different results:

std::regex r1 = nullptr;         // error! won't compile

std::regex r2(nullptr);          // compiles

In the official terminology of the Standard, the syntax used to initialize r1 (employ‐
ing the equals sign) corresponds to what is known as copy initialization. In contrast,
the syntax used to initialize r2 (with the parentheses, although braces may be used
instead) yields what is called direct initialization. Copy initialization is not permitted
to use explicit constructors. Direct initialization is. That’s why the line initializing
r1 doesn’t compile, but the line initializing r2 does.

But back to push_back and emplace_back and, more generally, the insertion func‐
tions versus the emplacement functions. Emplacement functions use direct initializa‐
tion, which means they may use explicit constructors. Insertion functions employ
copy initialization, so they can’t. Hence:

regexes.emplace_back(nullptr);  // compiles. Direct init permits
                                // use of explicit std::regex
                                // ctor taking a pointer

regexes.push_back(nullptr);     // error! copy init forbids
                                // use of that ctor

The lesson to take away is that when you use an emplacement function, be especially
careful to make sure you’re passing the correct arguments, because even explicit
constructors will be considered by compilers as they try to find a way to interpret
your code as valid.
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Things to Remember
• In principle, emplacement functions should sometimes be more efficient than

their insertion counterparts, and they should never be less efficient.
• In practice, they’re most likely to be faster when (1) the value being added is

constructed into the container, not assigned; (2) the argument type(s) passed
differ from the type held by the container; and (3) the container won’t reject
the value being added due to it being a duplicate.

• Emplacement functions may perform type conversions that would be rejected
by insertion functions.
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