

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Introduction

Foreword

About The Authors

Part I—Introduction To OpenGL

Chapter 1—What Is OpenGL?
About OpenGL

A History of OpenGL

Further Developments in OpenGL

How OpenGL Works

OpenGL under Windows

Graphics Architecture: Software versus
Hardware

Limitations of the Generic Implementation

Future Prospects for OpenGL in Windows

Chapter 2—3D Graphics Fundamentals
3D Perception

2D + Perspective = 3D

Hidden Line Removal

Colors and Shading

Lights and Shadows

Coordinate Systems

2D Cartesian Coordinates

Coordinate Clipping

Viewports, Your Window to 3D

Drawing Primitives

3D Cartesian Coordinates

Projections, The Essence of 3D

Orthographic Projections

Perspective Projections

Summary

Chapter 3—Learning OpenGL With The
AUX Library

OpenGL: An API, Not a Language

The OpenGL Division of Labor

OpenGL Data Types

Function Naming Conventions

The AUX Library

Platform Independence

AUX = Platform I/O, the Easy Way

Dissecting a Short OpenGL Program

The Includes

The Body

Display Mode: Single-Buffered

Position the Window

Create the OpenGL Window

Clear a Window (Erase with a Color)

Actually Clear

Flush That Queue

Drawing Shapes with OpenGL

The Rendering Function

Drawing a Rectangle

Initialization

Scaling to the Window

Setting the Viewport and Clipping Volume

Defining the Viewport

Defining the Clipping Volume

Keeping a Square Square

Animation with AUX

Double Buffering

Finally, Some 3D!

Summary

Reference Section

Chapter 4—OpenGL for Windows: OpenGL
+ Win32 = Wiggle

Drawing in Windows Windows

GDI Device Contexts

OpenGL Rendering Contexts

Using the Wiggle Functions

Creating and Selecting a Rendering Context

Painting with OpenGL

Preparing the Window for OpenGL

Window Styles

Pixel Formats

Return of the Bouncing Square

Scaling to the Window

Ticktock, the Idle Clock

Lights, Camera, Action!

Summary

Reference Section

Chapter 5—Errors and Other Messages from
OpenGL

When Bad Things Happen to Good Code

Who Am I and What Can I Do?

Extensions to OpenGL

Get a Clue with glHint

Summary

Reference Section

Part II—Using OpenGL

Chapter 6—Drawing in 3D: Lines, Points,
and Polygons

Drawing Points in 3D

Setting Up a 3D Canvas

A 3D Point: The Vertex

Draw Something!

Drawing Points

Our First Example

Setting the Point Size

Drawing Lines in 3D

Line Strips and Loops

Approximating Curves with Straight Lines

Setting the Line Width

Line Stippling

Drawing Triangles in 3D

Triangles: Your First Polygon

Winding

Triangle Strips

Triangle Fans

Building Solid Objects

Setting Polygon Colors

Hidden Surface Removal

Culling: Hiding Surfaces for Performance

Polygon Modes

Other Primitives

Four-Sided Polygons: Quads

Quad Strips

General Polygons

Filling Polygons, or Stippling Revisited

Polygon Construction Rules

Subdivision and Edges

Summary

Reference Section

Chapter 7—Manipulating 3D Space:
Coordinate Transformations

Is This the Dreaded Math Chapter?

Understanding Transformations

Eye Coordinates

Viewing Transformations

Modeling Transformations

The Modelview Duality

Projection Transformations

Viewport Transformations

Matrix Munching

What Is a Matrix?

The Transformation Pipeline

The Modelview Matrix

Translation

Rotation

Scaling

The Identity Matrix

The Matrix Stacks

A Nuclear Example

Using Projections

Orthographic Projections

Perspective Projections

A Far-Out Example

Advanced Matrix Manipulation

Loading a Matrix

Performing Your Own Transformations

Other Transformations

Summary

Reference Section

Chapter 8—Color and Shading
What Is a Color?

Light as a Wave

Light as a Particle

Your Personal Photon Detector

The Computer as a Photon Generator

PC Color Hardware

PC Display Modes

Screen Resolution

Color Depth

4-Bit Color

8-Bit Color

24-Bit Color

Other Color Depths

Selecting a Color

The Color Cube

Setting the Drawing Color

Shading

Setting the Shading Model

Windows Palettes

Color Matching

Dithering

Advantages of a Palette in 8-Bit Mode

Palette Arbitration

Creating a Palette

Do You Need a Palette?

The Palette’s Structure

The 3-3-2 Palette

Building the Palette

Palette Creation and Disposal

Some Restrictions Apply

Color Index Mode

Why Use Color Index Mode?

Using Color Index Mode

Show the Triangle

Summary

Reference Section

Chapter 9—Lighting and Lamps
Light in the Real World

Ambient Light

Diffuse Light

Specular Light

Put It All Together

Materials in the Real World

Material Properties

Adding Light to Materials

Calculating Ambient Light Effects

Diffuse and Specular Effects

Adding Light to a Scene

Enable the Lighting

Set Up the Lighting Model

Set Material Properties

Using a Light Source

Which Way Is Up?

Surface Normals

Specifying a Normal

Unit Normals

Finding a Normal

Setting Up a Source

Setting the Material Properties

Specifying the Polygons

Lighting Effects

Specular Highlights

Specular Light

Specular Reflectance

Specular Exponent

Normal Averaging

Spotlights

Creating a Spotlight

Drawing a Spotlight

Shadows

What Is a Shadow?

Squish Code

A Shadow Example

Lighting and Color Index Mode

Summary

Reference Section

Chapter 10—3D Modeling and Object
Composition

Defining the Task

Choosing a Projection

Choosing the Lighting and Material Properties

Displaying the Results

Constructing a Model, One Piece at a Time

The Head

The Shaft

The Thread

Putting the Model Together

A Makeshift Benchmark

Improving Performance

Creating a Display List

Summary

Reference Section

Chapter 11—Raster Graphics in OpenGL
Drawing Bitmaps

Bitmap Fonts

Building a Simple Font Library

Pixmaps: Bitmaps with Color

Drawing Pixmaps

Remapping Colors

Color Mapping Tables

Scaling a Pixmap

Panning a Pixmap

Reading Pixmaps

Copying Pixmaps

A Bitmap File Viewer

About Windows Bitmap Files

Reading the .BMP File

Writing the .BMP File

Printing the Bitmap

Displaying the Bitmap

Summary

Reference Section

Chapter 12—Texture Mapping
The Basics of Texture Mapping

Defining Texture Images

Defining 1D Textures

Defining 2D Textures

Drawing Textured Polygons

Mipmapped Textures

A Terrain Viewing Program

Defining the Terrain

Drawing Terrain

Drawing the Scene

Automatically Generating Texture
Coordinates

Flying Through the Terrain

Summary

Reference Section

Chapter 13—Quadrics: Spheres, Cylinders,
and Disks

Creating a Quadric

Changing the Way Quadrics Are Drawn

Drawing Cylinders

Drawing Cones

Texturing and Cylinders

Drawing Disks

Disks and Textures

Drawing Partial Disks

Drawing Spheres

Spheres and Textures

Drawing a Pencil

Summary

Reference Section

Part III—Advanced Topics and Special Effects

Chapter 14—The OpenGL State Machine
Basic OpenGL State Functions

Saving and Restoring States

Drawing States

Depth Buffer States

Stencil Buffer States

Lighting States

Texturing States

Pixel States

Reference Section

Chapter 15—Buffers: Not Just for Animation
What Are Buffers?

Configuring Buffers

The Color Buffer

Double Buffering

Stereo Buffering

Swapping Buffers

The Depth Buffer

Depth Comparisons

Depth Values

Applications of the Depth Buffer

Another Application of the Depth Buffer

Cutting Away Parts of a Scene

The Stencil Buffer

Using the Stencil Buffer

Stencil Buffer Functions

Drawing into the Stencil Buffer

The Accumulation Buffer

Using the Accumulation Buffer for Motion
Blur

Using the Accumulation Buffer for
Anti-Aliasing

Reference Section

Chapter 16—Visual Effects: Blending and
Fog

Blending

Using Blending for Transparency

Using Blending with Anti-Aliasing

Using Blending for a Paint Program

Fog

Drawing Depth-Cued Teapots

Other Types of Fog

Fog Distance

Revisiting the Terrain Viewing Program

Summary

Reference Section

Chapter 17—Curves and Surfaces: What the
#%@!&* Are NURBS?

Curves and Surfaces

Parametric Representation

Control Points

Continuity

Evaluators

A 2D Curve

Evaluating a Curve

A 3D Surface

Lighting and Normal Vectors

NURBS

From Bázier to B-Splines

Knots

Creating a NURBS Surface

NURBS Properties

Define the Surface

Trimming

Summary

Reference Section

Chapter 18—Polygon Tessellation
Complex Polygons

Drawing Concave Polygons

Drawing Complex Polygons

Callback Functions

Summary

Reference Section

Chapter 19—Interactive Graphics
Selection

Naming Your Primitives

Working with Selection Mode

The Selection Buffer

Picking

Hierarchical Picking

Feedback

The Feedback Buffer

Feedback Data

PassThrough Markers

An Example

Label the Objects for Feedback

Step 1: Select the Object

Step 2: Get Feedback on the Object

Summary

Reference Section

Chapter 20—OpenGL On The 'Net: VRML
When Worlds Collide

Two-Dimensional Navigation

Enter VRML

WebSpace

Installation

The Walk Viewer

The Examiner Viewer

Open Inventor and VRML

Summary

Part IV—OpenGL with. . .

Chapter 21—MFC-Based OpenGL
Programming

Isolate Your OpenGL Code

Starting with AppWizard

Build the Shell

Add the Libraries

Get CView Ready for OpenGL

Pixel Format and Rendering Context

Clean Up the Rendering Context

Handling Window Resizing

Rendering the Scene

Don’t Erase First

CPalette Handling

Summary

Chapter 22—OWL-Based OpenGL
Programming

Isolate Your OpenGL Code

Starting with AppExpert

Build the Shell

Add the Headers

Add the Message Handlers

Fleshing Out the Shell

Get TWindowView Ready for OpenGL

Pixel Format and Rendering Context

Clean Up the Rendering Context

Handling Window Resizing

Rendering the Scene

No Flickering Allowed

Keep It Moving

TPalette Handling

Summary

Chapter 23—Visual Basic and 4GL-Based
OpenGL Programming

Low-Level Access Required

The Magic of Objects

Plug and Play

Wrap It Up

Use and Operation of WaiteGL.OCX

OpenGL Flags

Installing and Using WaiteGL from VB 4.0

Installing the Control

A Visual Basic Example

Painting the OpenGL Window

Now for Some Action

Installing the OCX in Delphi 2.0

Installing the Control

A Delphi Example

Painting the OpenGL Window

Now for Some Action

Some Notes About the Source

Summary

Chapter 24—The Future of OpenGL and
Windows

Conclusion

Appendix A

Appendix B

Appendix C

Appendix D

Index

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible - Table of Contents

http://www.itknowledge.com/reference/archive/1571690735/ewtoc.html [20-03-2000 21:22:32]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Table of Contents

Introduction
Welcome to OpenGL SuperBible! The first time I ever heard of OpenGL
was at the 1992 Win32 Developers Conference in San Francisco. Windows
NT 3.1 was in early beta (or late alpha) and many vendors were present,
pledging their future support for this exciting new platform. Among them
was a company called Silicon Graphics, Inc. (SGI). They were showing off
their graphics workstations and playing video demos of special effects from
some popular movies. NT was running on MIPS processors—now owned
by SGI—but their primary purpose in this booth was to promote a new 3D
graphics standard called OpenGL. It was based on SGI’s proprietary IRIS
GL and was fresh out of the box as a graphics standard. Significantly,
Microsoft was pledging future support for OpenGL in Windows NT.

I had to wait until the beta release of NT 3.5 before I got my first personal
taste of OpenGL. Those first OpenGL-based screensavers only scratched
the surface of what was possible with this graphics API. Like many other
people, I struggled through the Microsoft help files and bought a copy of
the OpenGL Programming Guide (now called simply “The Red Book” by
most). The Red Book avoids platform issues and uses for all its examples
the Auxiliary (AUX) library, a platform-independent program framework
forOpenGL graphics.

At that time, the Red Book was the only book available for learning
OpenGL. Though quite thorough in its coverage of OpenGL functions, it is
lacking in two important respects. First, it is not a primer. Whatever the
intent of the authors, the book assumes a substantial working knowledge of
3D graphics concepts in general. The Red Book’s second drawback is its
platform independence. As a Windows developer, I needed answers to
some important questions, such as how to use a .BMP file as a texture, how
to create an OpenGL-usable palette for an 8-bit display device, and how to
use all those “wiggle” functions Microsoft threw in.

OpenGL SuperBible fills in those gaps. I wanted to provide a 3D graphics
introduction and an OpenGL tutorial rolled into one. In addition, I
approached the whole subject within the context of the single most popular
desktop operating system of all time, Microsoft Windows. And I added a
Reference Section of thorough function definitions at the end of each
chapter, making this book a good complement to the Waite Group line of
bible reference books.

Who This Book Is For

This book will suit a wide audience of OpenGL and Windows
programmers. Windows programmers wanting to learn about 3D graphics
and how to implement them using OpenGL will find what they need. So
will experienced Windows and 3D graphics programmers wanting to learn
more about the industry standard OpenGL. This book will also be of value
to seasoned OpenGL programmers who have a workstation background but
need some assistance porting their applications and experience to the
Microsoft Windows platforms.

System Requirements for OpenGL

OpenGL is not available on the 16-bit versions of Microsoft Windows (3.1,
3.11, and so forth) from Microsoft. Microsoft added OpenGL to Windows
NT 3.5, and to Windows 95 via a separate distribution of some DLLs.
(These DLLs are available via Microsoft’s FTP and Web sites and are
included on this book’s CD, in the \Windows95 subdirectory.)

OpenGL SuperBible does not attempt to cover any third-party OpenGL or
OpenGL-like libraries for the 32- or 16-bit environments.
Programmatically, OpenGL used under Windows 95 is the same as
OpenGL used under Windows NT. The first set of DLLs shipped by
Microsoft for Windows NT supports all of the OpenGL 1.0 functions that
are also available under Windows NT 3.5 and 3.51. OpenGL 1.1 functions
are being added to Windows NT 4.0, and a new set of DLLs should be
ready for Windows 95 by the time this book ships. See the readme.txt file
on the CD for any late-breaking information.

All of the samples in the book should run fine on a fast 486 (that’s a “real”
486, mind you, which means a built-in math coprocessor!) with at least
8MB of RAM. Most programming environments will require at least this
much horsepower, anyway. If you’re interested, all the code in the book and
on the CD was developed and found to run acceptably on a 90MHz
Pentium with 32MB of RAM and a 16/24-bit color display card. You will
need a display card capable of at least 256 colors (an 8-bit color card).
There is significant improvement in OpenGL’s speed and appearance when
you give it a good color depth to work with. If you can run in a mode that
gives you 65,000 or more colors, your results will be even better.

Language

With the exception of two chapters that specifically deal with C++
frameworks, all the source code in this book is written in C. The choice
between C and C++ can become an almost religious crusade between two
warring camps. It is reasonable to expect that any competent C++
programmer can also follow well-structured C code, but the converse is not
always true. There is a popular C++ library for OpenGL called Open
Inventor; any attempt here to build a C++ class library around OpenGL
would be a duplication of an already fine effort and is beyond the scope and
purpose of this book anyway. This brings us to our choice of tools.

Compilers

All of the sample code was originally developed using Microsoft’s Visual
C++ 4.0. (Yes, you can compile C with it!) With each sample you will find
Visual C++ project files. Since all samples are in C and make no use of
vendor-specific libraries, you shouldn’t have any trouble building the
projects with any other 32-bit compiler. I will assume that you are familiar
with your environment of choice and know how to add libraries and header
files to your projects.

For programmers who prefer C++ application frameworks such as MFC or
OWL, chapters are included that deal with these two in particular. In
addition, many of the C samples are also provided in an MFC (Visual C++)
version and an OWL (Borland C++) version.These samples can be found in
the \MFC and \OWL subdirectories on the CD. Project files for the Borland
Compiler are also provided for these samples, prepared using Borland C++
5.0.

Another special consideration has been made for users of Borland tools: the
CD contains a Borland-specific version of the OpenGL Auxiliary library.
This library isn’t part of the official OpenGL specification, but it is usually
implemented on the same various platforms as OpenGL. For reasons
unknown, Borland includes a header file for this library but not the library
itself, and the version of the AUX library that ships with Microsoft tools is
incompatible with Borland C++. For additional notes on using Borland C++
with this book, see the \Borland subdirectory on the CD.

What’s in This Book

OpenGL SuperBible is divided into four sections. Part I is an introduction to
OpenGL and the fundamentals of using it from within Microsoft Windows.
In Part II we cover the basics of programming with OpenGL. This includes
primitives, viewing and modeling transformations, lighting, and texture
mapping. In Part III we dig into some of the more advanced topics and
functionality within OpenGL—the OpenGL State Machine, special visual
effects, more detail on the OpenGL buffers, advanced surface generation,
and some interactive graphics. For Part IV, we’ve added supplementary
information on using OpenGL from different programming environments
(MFC, OWL, and Visual Basic). Finally, there’s a discussion of the future
of OpenGL under Windows.

Part I: Introduction to OpenGL

Chapter 1 - What Is OpenGL?

In this chapter, we provide you with a working knowledge of what OpenGL
is, where it came from, and where it is going. We also discuss at a high
level the differences between and compatibilities of OpenGL and the
Microsoft Windows graphics system.

Chapter 2 - 3D Graphics Fundamentals

This chapter is for newcomers to 3D graphics. It introduces fundamental
concepts and some common vocabulary.

Chapter 3 - Learning OpenGL with the AUX Library

In this chapter, you will begin writing programs that use OpenGL. For
starters, we’ll make things simple by using the AUX library. This common
toolkit library is platform- and windowing system-independent. We also
cover OpenGL function and variable naming conventions, as well as the
DLLs and libraries that contain the OpenGL functionality.

Chapter 4 - OpenGL for Windows: OpenGL + Win32 = Wiggle

Here you’ll begin writing real Windows (message-based) programs that use
OpenGL. You’ll learn about Microsoft’s “wiggle” functions that glue
OpenGL rendering code to Windows device contexts. We’ll also talk about
which Windows messages should be responded to and how.

Chapter 5 - Errors and Other Message from OpenGL

We’ll explore OpenGL’s method of reporting errors, and how it provides
information about its version and vendor.

Part II: Using OpenGL

Chapter 6 - Drawing in 3D: Lines, Points, and Polygons

Here you’ll learn how all 3D objects are created by assembling 2D
primitives. All the OpenGL primitives are covered, as well as how to hide
surfaces within your scenes.

Chapter 7 - Manipulating 3D Space: Coordinate Transformations

In this chapter you’ll learn about moving your objects or view within your
scenes. You’ll learn how to rotate, translate, and scale. We take a simplified
approach to our study of matrix transformations, so you will understand
how to use them even if youdon’t know the first thing about matrices.

Chapter 8 - Color and Shading

Here you’ll learn how to liven up your objects by adding color. Shading
objects smoothly from one color to another will be child’s play after you’ve
completed this chapter. We also show you how and why you need to
construct a 3-3-2 palette for OpenGL when your code runs on a 256-color
video card.

Chapter 9 - Lighting and Lamps

OpenGL supports up to eight independent light sources per scene. You’ll
learn how to use these lamps, how to set lighting parameters and properties,
and how they interact with reflective material properties that you can assign
to your objects.

Chapter 10 - 3D Modeling and Object Composition

For this chapter, we show you how to build complex 3D objects out of
smaller, less complex 3D objects. We also introduce OpenGL display lists
as a method of breaking down your objects and improving performance, as
well.

Chapter 11 - Raster Graphics in OpenGL

In this chapter you’ll learn how to manipulate bitmap graphics from within
OpenGL. This includes reading in a Windows .BMP file and displaying it
in an OpenGL scene.

Chapter 12 - Texture Mapping

Texture mapping is one of the most useful features of any 3D graphics
toolkit. You’ll learn how to wrap bitmaps onto polygons, and how to use
automatic texture coordinate generation.

Chapter 13 - Quadrics: Spheres, Cylinders, and Disks

This chapter covers the OpenGL Utility library (glu) functions for quickly
constructing some common shapes.

Part III: Advanced Topics and Special Effects

Chapter 14 - The OpenGL State Machine

Many global OpenGL parameters and settings are maintained via the
OpenGL State Machine. In this chapter you’ll learn about this mechanism,
as well as some generalized functions for setting and accessing the various
parameters.

Chapter 15 - Buffers: Not Just for Animation

This chapter goes into more depth about the various OpenGL buffers. As
you’ll see, they’re not just for doing screen flipping.

Chapter 16 - Visual Effects, Blending, and Fog

Some other visual special effects are covered in this chapter. These include
alpha blending and fog effects for transparency and depth cues.

Chapter 17 - Curves and Surfaces: What the #%@!&* Are NURBS?

This chapter explores the utility functions that evaluate Bázier and NURBS
curves and surfaces. You can use these functions to create complex shapes
with a small amount of code.

Chapter 18 - Polygon Tessellation

Here you’ll learn how to break down complex or concave polygons into
smaller, more manageable pieces.

Chapter 19 - Interactive Graphics

This chapter explains two OpenGL features: selection and feedback. These
groups of functions make it possible for the user to interact with objects in
the scene. You can also get rendering details about any single object in the
scene.

Chapter 20 - OpenGL on the ‘Net: VRML

This chapter introduces VRML (Virtual Reality Modeling Language) and
its history with OpenGL. Open Inventor is discussed, as well, and its
relationship to OpenGL and VRML.

Part IV: OpenGL with...

Chapter 21 - MFC-Based OpenGL Programming

This chapter is for C++ programmers using Microsoft’s MFC class library.
We’ll show you how to use OpenGL from an MFC-based application, and
how to add rendering capabilities to any CWnd window.

Chapter 22 - OWL-Based OpenGL Programming

This chapter is for C++ programmers using Borland C++ and the OWL
application framework. You’ll learn how to add OpenGL rendering
capabilities to any OWL TWindow-derived window.

Chapter 23 - OpenGL Programming from Visual Basic and 4GL

In this chapter we give you an OCX that wraps most of the OpenGL
functions and commands. This allows easy OpenGL programming from
Visual Basic (4.0 or later) or any 32-bit environment that supports OCXs.
Examples are given for both Visual Basic 4.0 and Delphi 2.0.

Chapter 24 - The Future of OpenGL and Windows

This chapter looks at the future of 3D graphics and OpenGL in Windows.
We discuss the implications of the Microsoft DirectX API, which includes
Direct Draw, Direct Sound, Direct Play, Direct Input, and Direct 3D, and
will ultimately incorporate the Reality Labs 3D API.

Appendixes

Appendix A - Performance-Tuning OpenGL for Windows

Here we will provide some general-purpose performance-tuning tips for
using OpenGL under Windows NT and Windows 95.

Appendix B - Further Reading

A list of additional reading materials is provided for more in-depth research
on any of the topics covered by this book.

Appendix C - OpenGL Version 1.1

OpenGL 1.1 was finalized during development of this book. The new
functions and capabilities are not covered here, but Appendix C gives you a
high-level overview of the new version’s additions. The CD also contains
more up-to-date and complete documentation on the new functions and
capabilities being added for Windows NT 4.0, as well as some example
programs.

Appendix D - Glossary

A glossary of common 3D graphics and OpenGL terms.

About the Companion CD

OpenGL SuperBible comes with a CD-ROM that’s jam-packed with
samples and other OpenGL goodies. A directory called Book, off the root
directory of the CD, contains all the source code from the book. In addition,
there are many examples demonstrating the concepts presented from each
chapter that may not have been described in the text of the book.

Each chapter of the book has its own subdirectory in the Book directory.
Within each chapter subdirectory is another subdirectory for each example
on the disk. For instance, the bouncing square program from Chapter 3 is
located in the X:\Book\Chapt3\bounce subdirectory (where X is your
CD-ROM drive).

Some of the chapter directories have a subdirectory called \Tank. This is a
roving tank/robot simulation program that we observe as we progress
through the book. Though it’s not analyzed chapter by chapter, the
simulation becomes more complex as we gradually add more of the
functions and features of OpenGL. See the readme.txt file for details on the
construction of this example program.

Some of the sample programs from each chapter will also be written in C++
using MFC or OWL. These sample programs are under X:\MFC\ or
X:\OWL\. Again, within the MFC and OWL subdirectories there is an
additional directory for each chapter.

The two final major subdirectories in the CD root are \Borland and
\OpenGL11. The \Borland subdirectory contains a Borland-specific version
of the AUX library. See the readme.txt file in that directory for details on
the library’s functionality and use.The \OpenGL11directory contains a
document describing the OpenGL 1.1 additions that Microsoft is
incorporating for Windows NT 4.0. In addition, you’ll also find several
example programs that demonstrate these new capabilities.

Be sure to consult the file readme.txt in the root directory for any
late-breaking news or additions to the content of the CD. This file also
contains a complete listing of all the files and programs on the CD ROM.

Engage!

If you are learning OpenGL or 3D graphics for the first time, then I
sincerely envy you. Nothing is more satisfying and just plain fun than
learning a new technology or tool for the first time. Although OpenGL has
its roots in scientific modeling and simulation, you don’t need to be a rocket
scientist to master it. The step-by-step approach taken throughout this book
will guide you to new levels of programming skill. Learning OpenGL is
comparable to learning SQL for database programming. Before I knew
SQL, I could not quite imagine the new power I would wield as a database
developer. If you have been tinkering with 3D graphics or are just wanting
to get started, you are only just beginning to glimpse the new power and
capabilities that OpenGL will afford you!

—Richard S. Wright, Jr.

Table of Contents

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Introduction

http://www.itknowledge.com/reference/archive/1571690735/index.html [20-03-2000 21:24:41]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Table of Contents

Foreword

Due to its enormous processing and hardware requirements,
three-dimensional computer graphics had until recently been available only
on specialized workstations, even though the technology has been around
for decades. Today, personal computers have become so powerful that
interactive 3D graphics is no longer out of reach of such systems. A PC
today performs as well as a graphics workstation from a few years ago, but
at a small fraction of the cost.

OpenGL is an industry effort that brings traditional workstation graphics
technology to the PC. Microsoft has been an active advocate of this
technology since it was first developed. It has worked with many hardware
vendors to enable high performance3D graphics hardware on PCs.

The Windows platform now offers OpenGL applications ranging from
VRML browsers to CAD/CAM and animation packages. It will also be the
platform with which to release an OpenGL 1.1 implementation well ahead
of all other platforms!

Richard Wright has long been an advocate of Win32 and OpenGL
technology. He is an active participant in the comp.graphics.api.opengl
newsgroup, and has helped resolve many programmers’ problems. Richard
and I regularly exchange notes and ideas in e-mail. I am glad that he is
sharing his years of knowledge with others in OpenGL SuperBible from
Waite Group Press, and I’m confident you will benefit from his insight and
knowledge in developing your OpenGL applications for Windows.

Hock San Lee

OpenGL Development Manager

Microsoft Corporation

June 1996

Table of Contents

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Foreword

http://www.itknowledge.com/reference/archive/1571690735/about.html [20-03-2000 21:24:45]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Table of Contents

About the Authors
Richard S. Wright, Jr. works for Visteon Corporation in Maitland, Florida,
developing Windows-based applications for the healthcare industry.
Richard first learned to program in the eighth grade in 1978 on a paper
terminal. At age 16, his parents let him buy a computer instead of a car, and
he sold his first computer program less than a year later. When he graduated
from high school, his first job was teaching programming and computer
literacy for a local consumer education company. He studied electrical
engineering and computer science at the University of Louisville’s Speed
Scientific School and made it to his senior year before his career got the
best of him. A native of Louisville, Kentucky, he now lives with his wife
and three children in sunny Lake Mary, Florida. When not programming or
dodging hurricanes, Richard is an amateur astronomer, a beach bum, and
Sunday School teacher.

Michael Sweet works at the Chesapeake Test Range at Patuxent River,
Maryland, and is co-owner of Easy Software Products, a small software
firm specializing in computer graphics on Silicon Graphics workstations.
He first started using a computer terminalat the age of six and sold his first
program at 12. Michael was hired as a consultant doing computer graphics
while finishing his bachelors degree in computer science at the SUNY
Institute of Technology in Utica/Rome, New York. He moved to Maryland
shortly after graduating. When he has free time, he enjoys cycling,
photography, and playing the trumpet.

Dedications

Dedicated to the memory of Richard S. Wright, Sr. I Thessalonians 4:16

—Richard S. Wright, Jr.

To my folks for putting a computer terminal in front of me at age six, and to
my girlfriend, Sandra, for putting up with me while I worked on this book.

—Michael Sweet

Acknowledgments

There are many people who provided inspiration, technical assistance,
ideas, and just lots of really strong iced tea when I badly needed it. Most of
all, I wish to acknowledge my own family’s sacrifice: Thank you to
LeeAnne, my wife, who gave up countless nights, weekends, and quiet
evenings, not to mention taking on many extra responsibilities at home so
her husband could “get famous.” Many thanks to my three children (Sara,
Stephen, and Alex), who missed not a few bedtime stories, trips to the park,
and bike rides, or who just got grumped at for no reason other than that
Daddy hadn’t slept in a week. No career achievement would have been
worth losing them. I know how fortunate I am that at the end of this I can
still have my cake and eat it, too.

Many thanks go out to all the people at Waite Group Press, who really
brought the book together. Special thanks to John Crudo for getting my foot
in the door a few years ago, and for recommending me for my first writing
assignment before my first “real”book. Thanks to Harry Henderson for
keeping me on track and encouraging me whenever I started feeling sorry
for myself. Thank you to Kurt Stephan for seeing me through, and for being
flexible but firm with the schedule whenever disaster struck, or whenI
decided to suddenly change the fabric of the universe (usually over a
weekend before a deadline). Lest I forget, thanks to Jill Pisoni and Joanne
Miller, who got the book rolling in the first place—Jill for pulling teeth at
one particular software company, and Joanne for sticking through four or
five title changes, countless proposal revisions, three revisions of a sample
chapter, and a hurricane before this thing took off. Finally, thank you to
Mitch Waite himself for helping me shape the first “prototype” chapter, not
to mention introducing me to the game Mech Warrior 2.

Credit and thanks also go out to Mike Sweet, author of Chapters 11 through
16 and 18, who jumped in at the last minute and bailed me out when my
first co-author fell through. Thanks to Jeff Bankston for checking all the
samples and for pointing out the important fact that not everyone has a
24-bit graphics card.

I also would like to thank everyone in the OpenGL community at large. I
spent a lot of time in the OpenGL newsgroup asking and answering
questions, and from there much of the content of the book was shaped.
Special thanks to Hock San Lee at Microsoft, who answered many
questions on and off line, and provided me with advance material on the
new OpenGL features in NT 4.0. John Schimpf at SGI and Robert
Weideman at Template graphics were also very helpful.

—Richard S. Wright, Jr.

Many thanks to Harry Henderson, Jeff Bankston, and, of course, Kurt
Stephan for making this book come together so quickly.

—Michael Sweet

Table of Contents

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:About The Authors

http://www.itknowledge.com/reference/archive/1571690735/about_author.html [20-03-2000 21:24:50]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Part I
Introduction To OpenGL

Part I of this book introduces you to 3D graphics and programming with
OpenGL. We start with a brief discussion of OpenGL, its background,
purpose, and how it works. Then, before getting into any code, we’ll talk
generally about 3D graphics on computers, including how and why we
“think” we see 3D, and how an object’s position and orientation in 3D
space is specified. You’ll get the fundamental background and terminology
you need to get the best out of this book.

In Chapter 3 you’ll start writing your first OpenGL programs. You’ll learn
about the various libraries and headers that are needed, and how OpenGL
functions and data types are called and named. Initially we’ll cover the
AUX library, a toolkit for learning OpenGL independently of any particular
platform. Then we’ll “wiggle” our way into writing programs that use
OpenGL under Windows 95 and Windows NT, in Chapter 4. We’ll cover
the extensions to the Windows GDI (graphical device interface) to support
OpenGL under Windows and describe how they must be used.

In Chapter 5 you’ll get some essential information on OpenGL’s handling
and reporting of error conditions. We’ll tell you how you can ask the AUX
library to identify itself and who makes it, and how to give performance
“hints” to the library. With this knowledge in hand, you’ll be ready to
tackle the meatier issues of OpenGL in Part II, where the examples will get
a lot better!

Chapter 1
What Is OpenGL?
OpenGL is strictly defined as “a software interface to graphics hardware.”
In essence, it is a 3D graphics and modeling library that is extremely
portable and very fast. Using OpenGL, you can create elegant and beautiful
3D graphics with nearly the visual quality of a ray-tracer. The greatest
advantage to using OpenGL is that it is orders of magnitude faster than a
ray-tracer. It uses algorithms carefully developed and optimized by Silicon
Graphics, Inc. (SGI), an acknowledged world leader in computer graphics
and animation.

OpenGL is intended for use with computer hardware that is designed and
optimized for the display and manipulation of 3D graphics. Software-only,
“generic” implementations of OpenGL are also possible, and the Microsoft
Windows NT and Windows 95 implementations fall into this category.
Soon this may not strictly be the case, because more and more PC graphics
hardware vendors are adding 3D acceleration to their products. Although
this is mostly driven by the market for 3D games, it closely parallels the
evolution of 2D Windows-based graphics accelerators that optimize
operations such as line drawing and bitmap filling and manipulation. Just as
today no one would consider using an ordinary VGA card to run Windows
on a new machine, soon 3D accelerated graphics cards will become
commonplace.

The Windows Graphics APIs
First there was GDI (Graphics Device Interface), which made it possible
to write hardware-independent graphics—but at the cost of speed. Then
graphics card makers began writing optimized GDI drivers to
considerably speed up GDI. Then Microsoft introduced WinG to lure
game developers. WinG consisted of little more than a few functions that
got bitmaps to the display much faster, but it was still too slow. Microsoft
next created the Direct Draw API for really low-level access to the
hardware. This became rolled in with a whole set of DirectX APIs for
writing directly to hardware, making games easier to write and improving
their performance. Finally, 3DDI (a part of DirectX) gives
high-performance 3D games a much needed shot in the arm. In Chapter
24 we talk more about the evolution and relationship of Windows and 3D
graphics acceleration.

OpenGL is used for a variety of purposes, from CAD engineering and
architectural applications to computer-generated dinosaurs in blockbuster
movies. The introduction of an industry standard 3D API to a mass-market
operating system such as Microsoft Windows has some exciting
repercussions. With hardware acceleration and fast PC microprocessors
becoming commonplace, 3D graphics will soon be typical components of
consumer and business applications, not just of games and scientific
applications.

Who remembers when spreadsheets had only 2D graphics and charting
capabilities? If you think adding 3D to ordinary applications is extravagant,
take a look at the bottom line of the companies that first exploited this idea.
Quattro Pro, one of the first to simplify 3D charting, nearly captured the
entire spreadsheet market. Today it takes far more than flat,
two-dimensional pie charts to guarantee long-term success for spreadsheet
applications.

This isn’t to say that everyone will be using OpenGL to do pie and bar
charts for business applications. Nevertheless, appearances count for a lot.
The success or failure of products with otherwise roughly equivalent
features often depends on “sex appeal.” And you can add a lot of sex appeal
with good 3D graphics!

About OpenGL

Let’s take a look at OpenGL’s origins, who’s “in charge” of OpenGL, and
where OpenGL is going. We’ll also examine the principles of OpenGL
implementation.

A History of OpenGL

OpenGL is a relatively new industry standard that in only a few years has
gained an enormous following. The forerunner of OpenGL was GL from
Silicon Graphics. “IRIS GL” was the 3D programming API for that
company’s high-end IRIS graphics workstations. These computers were
more than just general-purpose computers; they had specialized hardware
optimized for the display of sophisticated graphics. This hardware provided
ultrafast matrix transformations (a prerequisite for 3D graphics), hardware
support for depth buffering, and other features. When SGI tried porting
IRIS GL to other hardware platforms, however, problems occurred.

OpenGL is the result of SGI’s efforts to improve IRIS GL’s portability. The
new language would offer the power of GL but would be “Open,” allowing
for easier adaptability to other hardware platforms and operating systems.
(SGI still maintains IRIS GL, but no enhancements or features other than
bug fixes are being made.)

On July 1, 1992, Version 1.0 of the OpenGL specification was introduced.
Just five days later, at the very first Win32 developers conference, SGI
demonstrated OpenGL running on their IRIS Indigo hardware. Video clips
from films such as Terminator Two: Judgment Day, and medical imaging
applications were popular attractions in the vendor exhibit hall. Already,
SGI and Microsoft were working together to bring OpenGL to a future
version of Windows NT.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:What Is OpenGL

http://www.itknowledge.com/reference/archive/1571690735/ch01/001-009.html [20-03-2000 21:24:55]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Further Developments in OpenGL

An open standard is not really open if only one vendor controls it. Thus, all
enhancements to OpenGL are decided by the OpenGL Architecture Review
Board (ARB), whose founding members are SGI, Digital Equipment
Corporation, IBM, Intel, and Microsoft. The OpenGL ARB meets twice a
year.

These meetings are open to the public, and nonmember companies may
participate in discussions (although they can’t vote). Permission to attend
must be requested in advance, and meetings are kept small to improve
productivity. Members of the ARB frequently participate in the Internet
newsgroup comp.graphics.api.opengl. Questions and recommendations can
also be aired there.

In December 1995 the ARB ratified the final specification for Version 1.1
of OpenGL. Many of the additions and changes from Version 1.0 were for
performance reasons and are summarized in Appendix A.

How OpenGL Works

OpenGL is a procedural rather than a descriptive graphics language. Instead
of describing the scene and how it should appear, the programmer actually
describes the steps necessary to achieve a certain appearance or effect.
These “steps” involve calls to a highly portable API that includes
approximately 120 commands and functions. These are used to draw
graphics primitives such as points, lines, and polygons in three dimensions.
In addition, OpenGL supports lighting and shading, texture mapping,
animation, and other special effects.

OpenGL does not include any functions for window management, user
interaction, or file I/O. Each host environment (such as Microsoft
Windows) has its own functions for this purpose and is responsible for
implementing some means of handing over to OpenGL the drawing control
of a window or bitmap.

OpenGL under Windows

OpenGL made its debut in the release of Windows NT 3.5. A set of DLLs
was also made available to add support for OpenGL to Windows 95 shortly
after its release. This book, in fact, is specifically about Microsoft’s generic
implementation of OpenGL. We will guide you, the developer, through the
fundamentals of 3D graphics first, and then show you how to compile and
link some OpenGL programs under Windows NT or Windows 95. Moving
on, we’ll cover the “wiggle” functions provided by Microsoft—the glue
that enables the OpenGL graphics API to work with Microsoft’s GDI. From
there we will cover the entire OpenGL API, using the context of Microsoft
Windows NT and/or Windows95.

Graphics Architecture: Software versus Hardware

Using OpenGL is not at all like using GDI for drawing in windows. In fact,
the current selection of pens, brushes, fonts, and other GDI objects will
have no effect on OpenGL. Just as GDI uses the device context to control
drawing in a window, OpenGL uses a rendering context. A rendering
context is associated with a device context, which in turn is associated with
a window, and voilà—OpenGL is rendering in a window. Chapter 4
discusses all the mechanics associated with this process.

As we said earlier, OpenGL was meant to run on systems with hardware
acceleration. PC graphics vendors are adding OpenGL support for their
cards. Properly written OpenGL applications should not know the
difference between hardware accelerated rendering and the purely software
rendering of the generic implementation. The user will notice, however,
that performance is significantly enhanced when hardware acceleration is
present.

Figure 1-1 illustrates hardware acceleration under Windows, including
normal GDI acceleration and Direct Draw acceleration, as well as OpenGL
acceleration. On the far left you can see how an application makes normal
GDI calls that are routed down through WINSRV.DLL to the Win32
Device Driver Interface. The Win32 DDI then communicates directly with
the graphics card device driver, where the GDI acceleration is performed.

Figure 1-1 Overview of how Windows graphics acceleration works

Direct Draw is optimized for direct access to graphics hardware. It bypasses
the GDI completely and talks directly to the graphics hardware with
perhaps only a thin hardware abstraction layer in between, and some
software emulation for unsupported features. Direct Draw is typically used
for games and allows direct manipulation of graphics memory for ultrafast
2D graphics and animation.

On the far right of Figure 1-1 you see OpenGL and other 3D API calls
routed through a 3D device driver interface. 3DDI is specifically designed
to allow hardware manufacturers to accelerate OpenGL and gaming 3D
APIs such as the Reality Labs API. (For a discussion of OpenGL and the
Reality Labs API, see Chapter 24. In addition, hardware vendors with
specific hardware acceleration for OpenGL (such as the GLINT chipset)
may install their own OpenGL client drivers along with specialized
device-driver interfaces.

Limitations of the Generic Implementation

Unless specifically supported by hardware, Microsoft’s generic
implementation of OpenGL has some limitations. There is no direct support
for printing OpenGL graphics to a monochrome printer or to a color printer
with less than 4-bit planes of color (16 colors). Hardware palettes for
various windows are not supported. Instead, Windows has a single
hardware palette that must be arbitrated among multiple running
applications.

Finally, some OpenGL features are not implemented, including
stereoscopic images, auxiliary buffers, and alpha bit planes. These features
may or may not be implemented in hardware, however. Your application
should check for their availability before making use of them (see Chapter
5).

Future Prospects for OpenGL in Windows

The introduction of OpenGL into the Windows family of operating systems
opens up some exciting possibilities. As millions of PCs become
OpenGL-enabled, Windows may well become the most popular platform
for OpenGL-based applications. Initially this implementation may be for
scientific and engineering modeling and visualization applications, but
commonplace hardware will make high-performance games and other
consumer applications possible before long.

Even for vendors producing OpenGL based applications on other platforms,
Microsoft Windows implementations could prove to be a substantial source
of secondary revenue. Windows-based workstations are an attractive
alternative to high-cost specialty workstations, with the added bonus of
being able to run some of today’s best business and productivity
applications.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:What Is OpenGL

http://www.itknowledge.com/reference/archive/1571690735/ch01/009-012.html [20-03-2000 21:25:05]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Chapter 2
3D Graphics Fundamentals

What you’ll learn in this chapter:
How the eyes perceive three dimensions

How a 2D image can have the appearance of 3D

How Cartesian coordinates specify object positions

What a clipping volume is

How viewports affect image dimensions

How 3D objects are built from 2D primitives

How to work with orthographic and perspective projections

Before getting into the specifics of using OpenGL to create 3D graphics,
we’ll take some time out to establish some 3D vocabulary. In doing so, we
will orient you to the fundamental concepts of 3D graphics and coordinate
systems. You’ll find out why we can get away with calling 2D images on a
flat computer screen 3D graphics. Readers experienced in 3D graphics who
are ready to get started using OpenGL may want to just skim this chapter.

3D Perception

“3D computer graphics” are actually two-dimensional images on a flat
computer screen that provide an illusion of depth, or a third “dimension.” In
order to truly see in 3D, you need to actually view the object with both
eyes, or supply each eye with separate and unique images of the object.
Take a look at Figure 2-1. Each eye receives a two-dimensional image that
is much like a temporary photograph on the retina (the back part of your
eye). These two images are slightly different because they are received at
two different angles (your eyes are spaced apart on purpose). The brain then
combines these slightly different images to produce a single, composite 3D
picture in your head, as shown in Figure 2-1.

Figure 2-1 How the eyes “see” three dimensions

In Figure 2-1, the angle [theta] between the images gets smaller as the
object goes farther away. This 3D effect can be amplified by increasing the
angle between the two images. Viewmasters (those hand-held stereoscopic
viewers you probably had as a kid) and 3D movies capitalize on this effect
by placing each of your eyes on a separate lens, or by providing
color-filtered glasses that separate two superimposed images. These images
are overenhanced for dramatic or cinematic purposes.

So what happens when you cover one eye? You may think you are still
seeing in 3D, but try this experiment: Place a glass or some other object just
out of arm’s reach, off to your left side. Cover your right eye with your
right hand and reach for the glass. (Maybe you should use an empty plastic
one!) Notice that you have a more difficult time estimating how much
farther you need to reach (if at all) before you touch the glass. Now uncover
your right eye and reach for the glass, and you can easily discern how far
you need to lean to reach the glass. This is why people who have lost one
eye often have difficulty with distance perception.

2D + Perspective = 3D

The reason the world doesn’t become suddenly flat when you cover one eye
is that many of a 3D world’s effects are also present in a 2D world. This is
just enough to trigger your brain’s ability to discern depth. The most
obvious cue is that nearby objects appear larger than distant objects. This
effect is called perspective. And perspective plus color changes, textures,
lighting, shading, and variations of color intensities (due to lighting)
together add up to our perception of a three-dimensional image.

Perspective alone is enough to lend the appearance of three dimensions.
Figure 2-2 presents a simple wireframe cube. Even without coloring or
shading, the cube still has the appearance of a three-dimensional object.
Stare at the cube for long enough, however, and the front and back of the
cube will switch places. This is because your brain is confused by the lack
of any surface in the drawing.

Figure 2-2 This simple wireframe cube demonstrates perspective

Hidden Line Removal

Figure 2-2 contains just enough information to lend the appearance of three
dimensions, but not enough to let you discern the front of the cube from the
back. When viewing a real object, how do you tell the front from the back?
Simple—the back is obscured by the front. If the cube in Figure 2-2 were a
solid, you wouldn’t be able to see the corners in the back of the cube, and
thus you wouldn’t confuse them for the corners in the front of the cube.
Even if the cube were made of wire, parts of the wires in front would
obscure parts of the wires in the back. To simulate this in a
two-dimensional drawing, lines that would be obscured by surfaces in front
of them must be removed. This is called hidden line removal and it has
been done to the cube in Figure 2-3.

Figure 2-3 The cube after hidden lines are removed

Colors and Shading

Figure 2-3 still doesn’t look much like a real-world object. The faces of the
cube are exactly the same color as the background, and all you can see are
the front edges of the object. A real cube would have some color and/or
texture; in a wooden cube, for example, the color and grain of the wood
would show. On a computer (or on paper), if all we did was color the cube
and draw it in two dimensions, we would have something similar to Figure
2-4.

Figure 2-4 The cube with color, but no shading

Now we are back to an object that appears two-dimensional, and unless we
specifically draw the edges in a different color, there is no perception of
three dimensions at all. In order to regain our perspective of a solid object
(without drawing the edges a different color), we need to either make each
of the three visible sides a different color, or make them the same color
with shading to produce the illusion of lighting. In Figure 2-5, the faces of
the cube all have a different color or shade.

Figure 2-5 The cube with its visible faces in three different shades

Lights and Shadows

One last element we must not neglect is lighting. Lighting has two
important effects on objects viewed in three dimensions. First, it causes a
surface of a uniform color to appear shaded when viewed or illuminated
from an angle. Second, objects that do not transmit light (most solid
objects) cast a shadow when they obstruct the path of a ray of light. See
Figure 2-6.

Figure 2-6 A solid cube illuminated by a single light

Two sources of light can influence our three-dimensional objects. Ambient
light, which is undirected light, is simply a uniform illumination that can
cause shading effects on objects of a solid color; ambient light causes
distant edges to appear dimmer. Another source of light is from a light
source, called a lamp. Lamps can be used to change the shading of solid
objects and for shadow effects.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:3D Graphics Fundamentals

http://www.itknowledge.com/reference/archive/1571690735/ch02/013-019.html [20-03-2000 21:25:19]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Coordinate Systems

Now that you know how the eye can perceive three dimensions on a
two-dimensional surface (the computer screen), let’s consider how to draw
these objects on the screen. When you draw points, lines, or other shapes on
the computer screen, you usually specify a position in terms of a row and
column. For example, on a standard VGA screen there are 640 pixels from
left to right, and 480 pixels from top to bottom. To specify a point in the
middle of the screen, you specify that a point should be plotted at
(320,240)—that is, 320 pixels from the left of the screen and 240 pixels
down from the top of the screen.

In OpenGL, when you create a window to draw in, you must also specify
the coordinate system you wish to use, and how to map the specified
coordinates into physical screen pixels. Let’s first see how this applies to
two-dimensional drawing, and then extend the principle to three
dimensions.

2D Cartesian Coordinates

The most common coordinate system for two-dimensional plotting is the
Cartesian coordinate system. Cartesian coordinates are specified by an x
coordinate and a y coordinate. The x coordinate is a measure of position in
the horizontal direction and y is a measure of position in the vertical
direction.

The origin of the Cartesian system is at x=0, y=0. Cartesian coordinates are
written as coordinate pairs, in parentheses, with the x coordinate first and
the y coordinate second, separated by a comma. For example, the origin
would be written as (0,0). Figure 2-7 depicts the Cartesian coordinate
system in two dimensions. The x and y lines with tick marks are called the
axes and can extend from negative to positive infinity. Note that this figure
represents the true Cartesian coordinate system pretty much as you used it
in grade school. Today, differing Windows mapping modes can cause the
coordinates you specify when drawing to be interpreted differently. Later in
the book, you’ll see how to map this true coordinate space to window
coordinates in different ways.

Figure 2-7 The Cartesian plane

The x-axis and y-axis are perpendicular (intersecting at a right angle) and
together define the xy plane. A plane is, most simply put, a flat surface. In
any coordinate system, two axes that intersect at right angles define a plane.
In a system with only two axes, there is naturally only one plane to draw
on.

Coordinate Clipping

A window is measured physically in terms of pixels. Before you can start
plotting points, lines, and shapes in a window, you must tell OpenGL how
to translate specified coordinate pairs into screen coordinates. This is done
by specifying the region of Cartesian space that occupies the window; this
region is known as the clipping area. In two-dimensional space, the
clipping area is the minimum and maximum x and y values that are inside
the window. Another way of looking at this is specifying the origin’s
location in relation to the window. Figure 2-8 shows two common clipping
areas.

Figure 2-8 Two clipping areas

In the first example, on the left of Figure 2-8, x coordinates in the window
range left to right from 0 to +150, and y coordinates range bottom to top
from 0 to +100. A point in the middle of the screen would be represented as
(75,50). The second example shows a clipping area with x coordinates
ranging left to right from –75 to +75, and y coordinates ranging bottom to
top from –50 to +50. In this example, a point in the middle of the screen
would be at the origin (0,0). It is also possible using OpenGL functions (or
ordinary Windows functions for GDI drawing) to turn the coordinate
system upside-down or flip it right to left. In fact, the default mapping for
Windows windows is for positive y to move down from the top to the
bottom of the window. Although useful when drawing text from top to
bottom, this default mapping is not as convenient for drawing graphics.

Viewports, Your Window to 3D

Rarely will your clipping area width and height exactly match the width and
height of the window in pixels. The coordinate system must therefore be
mapped from logical Cartesian coordinates to physical screen pixel
coordinates. This mapping is specified by a setting known as the viewport.
The viewport is the region within the window’s client area that will be used
for drawing the clipping area . The viewport simply maps the clipping area
to a region of the window. Usually the viewport is defined as the entire
window, but this is not strictly necessary—for instance, you might only
want to draw in the lower half of the window.

Figure 2-9 shows a large window measuring 300 x 200 pixels with the
viewport defined as the entire client area. If the clipping area for this
window were set to be 0 to 150 along the x-axis and 0 to 100 along the
y-axis, then the logical coordinates would be mapped to a larger screen
coordinate system in the viewing window. Each increment in the logical
coordinate system would be matched by two increments in the physical
coordinate system (pixels) of the window.

Figure 2-9 A viewport defined as twice the size of the clipping area

In contrast, Figure 2-10 shows a viewport that matches the clipping area.
The viewing window is still 300 x 200 pixels, however, and this causes the
viewing area to occupy the lower-left side of the window.

Figure 2-10 A viewport defined as the same dimensions as the clipping
area

You can use viewports to shrink or enlarge the image inside the window,
and to display only a portion of the clipping area by setting the viewport to
be larger than the window’s client area.

Drawing Primitives

In both 2D and 3D, when you draw an object you will actually compose it
with several smaller shapes called primitives. Primitives are
two-dimensional surfaces such as points, lines, and polygons (a flat,
multisided shape) that are assembled in 3D space to create 3D objects. For
example, a three-dimensional cube like the one in Figure 2-5 is made up of
six two-dimensional squares, each placed on a separate face. Each corner of
the square (or of any primitive) is called a vertex. These vertices are then
specified to occupy a particular coordinate in 2D or 3D space. You’ll learn
about all the OpenGL primitives and how to use them in Chapter 6.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:3D Graphics Fundamentals

http://www.itknowledge.com/reference/archive/1571690735/ch02/019-023.html [20-03-2000 21:25:28]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

3D Cartesian Coordinates

Now we’ll extend our two-dimensional coordinate system into the third
dimension and add a depth component. Figure 2-11 shows the Cartesian
coordinate system with a new axis, z. The z-axis is perpendicular to both
the x- and y-axes. It represents a line drawn perpendicularly from the center
of the screen heading toward the viewer. (We have rotated our view of the
coordinate system from Figure 2-7 to the left with respect to the y-axis, and
down and back with respect to the x-axis. If we hadn’t, the z-axis would
come straight out at you and you wouldn’t see it.) Now we specify a
position in three-dimensional space with three coordinates—x, y, and z.
Figure 2-11 shows the point (–4, 4, 4) for clarification.

Figure 2-11 Cartesian coordinates in three dimensions

Projections, The Essence of 3D

You’ve seen how to specify a position in 3D space using Cartesian
coordinates. No matter how we might convince your eye, however, pixels
on a screen have only two dimensions. How does OpenGL translate these
Cartesian coordinates into two-dimensional coordinates that can be plotted
on a screen? The short answer is “trigonometry and simple matrix
manipulation.” Simple? Well, not really—we could actually go on for many
pages and lose most of our readers who didn’t take or don’t remember their
linear algebra from college explaining this “simple” technique. You’ll learn
more about it in Chapter 7, and for a deeper discussion you can check out
the references in Appendix B. Fortunately, you don’t need to understand the
math in order to use OpenGL to create graphics.

All you really need to understand to get the most from this book is a
concept called projection. The 3D coordinates are projected onto a 2D
surface (the window background). It’s like tracing the outlines of some
object behind a piece of glass with a black marker. When the object is gone
or you move the glass, you can still see the outline of the object with its
angular edges. In Figure 2-12 a house in the background is traced onto a flat
piece of glass. By specifying the projection, you specify the clipping
volume (remember clipping areas?) that you want displayed in your
window, and how it should be translated.

Figure 2-12 A 3D image projected onto a 2D surface

Orthographic Projections

You will mostly be concerned with two main types of projections in
OpenGL. The first is called an orthographic or parallel projection. You use
this projection by specifying a square or rectangular clipping volume.
Anything outside this clipping area is not drawn. Furthermore, all objects
that have the same dimensions appear the same size, regardless of whether
they are far away or nearby. This type of projection (shown in Figure 2-13)
is most often used in architectural design or CAD (computer aided design).

Figure 2-13 The clipping volume for an orthographic projection

You specify the clipping volume in an orthographic projection by
specifying the far, near, left, right, top, and bottom clipping planes. Objects
and figures that you place within this viewing volume are then projected
(taking into account their orientation) to a 2D image that appears on your
screen.

Perspective Projections

A second and more common projection is the perspective projection. This
projection adds the effect that distant objects appear smaller than nearby
objects. The viewing volume (Figure 2-14) is something like a pyramid with
the top shaved off. This shaved off part is called the frustum. Objects nearer
to the front of the viewing volume appear close to their original size, while
objects near the back of the volume shrink as they are projected to the front
of the volume. This type of projection gives the most realism for simulation
and 3D animation.

Figure 2-14 The clipping volume for a perspective projection

Summary

In this chapter we have introduced the very basics of 3D graphics. You’ve
seen why you actually need two images of an object from different angles
in order to perceive true three-dimensional space. You’ve also seen the
illusion of depth created in a 2D drawing by means of perspective, hidden
line removal, and coloring, shading, and lighting techniques. The Cartesian
coordinate system was introduced for 2D and 3D drawing, and you learned
about two methods used by OpenGL to project three-dimensional drawings
onto a two-dimensional screen.

We purposely left out the details of how these effects are actually created
by OpenGL. In the chapters that follow, you will find out how to employ
these techniques and take maximum advantage of OpenGL’s power. On the
Companion CD you’ll find one program for Chapter 2 (CUBE) that
demonstrates the concepts covered in the first section of this chapter. In
CUBE, pressing the spacebar will advance you from a wireframe cube to a
fully lit cube complete with shadow. You won’t understand the code at this
point, but it makes a powerful demonstration of what is to come. By the
time you finish this book, you will be able to revisit this example and even
be able to write it from scratch yourself.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:3D Graphics Fundamentals

http://www.itknowledge.com/reference/archive/1571690735/ch02/023-026.html [20-03-2000 21:25:40]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Chapter 3
Learning OpenGL With The AUX
Library

What you’ll learn in this chapter:

Which headers and libraries are used with OpenGL
How the AUX library provides basic windowing functions on just about
any platform
How to use OpenGL to create a window and draw in it
How to use the OpenGL default coordinate system
How to create composite colors using the RGB (red, green, blue)
components
How viewports affect image dimensions
How to scale your drawing to fit any size window
How to perform simple animation using double buffering
How to draw predefined objects

Now that you’ve been introduced to OpenGL and the principles of 3D
graphics, it’s time to set our hands to writing some OpenGL code. This
chapter starts with an overview of how OpenGL works with your compiler,
and you’ll learn some conventions for naming variables and functions. If
you have already written some OpenGL programs, you may have
“discovered” many of these details for yourself. If that is the case, you may
just want to skim through the first section and jump right into using the
AUX library.

OpenGL: An API, Not a Language

OpenGL is not a programming language; it is an API (Application
Programming Interface). Whenever we say that a program is
OpenGL-based or an OpenGL application, we mean that it was written in
some programming language (such as C or C++) that makes calls to one or
more of the OpenGL libraries. We are not saying that the program uses
OpenGL exclusively to do drawing. It may combine the best features of two
different graphics packages. Or it may use OpenGL for only a few specific
tasks, and environment-specific graphics (such as the Windows GDI) for
others.

As an API, the OpenGL library follows the C calling convention. This
means programs in C can easily call functions in the API either because the
functions are themselves written in C or because a set of intermediate C
functions is provided that calls functions written in assembler or some other
language. In this book, our programs will be written in either C or C++ and
designed to run under Windows NT and Windows95. C++ programs can
easily access C functions and APIs in the same manner as C, with only
some minor considerations. Other programming languages—such as
so-called 4GLs (“fourth-generation languages”) like Visual Basic—that can
call functions in C libraries can also make use of OpenGL. Chapter 23
discusses this in more detail.

Calling C Functions from C++
Except for the chapters that deal specifically with C++ application
frameworks or 4GLs, all of the chapter examples are written in C. On the
accompanying CD, many of these samples have also been provided in
C++ using two popular application frameworks (MFC and OWL). You
can examine these examples and see how we made use of preprocessor
macros to keep most of our OpenGL drawing code in C.

The OpenGL Division of Labor

The OpenGL API is divided into three distinct libraries. See Table 3-1 for a
breakdown.

• The first, covered in this chapter, is the Auxiliary or AUX library
(sometimes referred to as the “toolkit” library), glaux.lib. The
declarations for this library are contained in the file glaux.h. The
functions contained in this library are not really a part of the OpenGL
specification, but rather a toolkit that provides a
platform-independent framework for calling OpenGL functions. If
your compiler vendor did not supply these files, they can be obtained
from the Microsoft Win32 SDK. All functions from this library begin
with the prefix aux.

• The functions that actually define OpenGL as specified by the
OpenGL Architecture Review Board are contained in the library
opengl32.dll, and its header gl.h. Functions from this library are
prefixed with gl.

• Finally, there is an OpenGL utility library glu32.dll and its header
glu.h. This library contains utility functions that make everyday tasks
easier, such as drawing spheres, disks, and cylinders. The utility
library is actually written using OpenGL commands, and thus is
guaranteed to be available on all platforms that support the OpenGL
specification. These functions are all prefixed with glu.

All of the functions in the opengl32.dll and glu32.dll libraries are available
for use when using the AUX library for your program’s framework, which
is what most of this chapter focuses on. Along the way, you’ll learn the
basics of OpenGL, and a few of the commands from the gl library.

Table 3-1 OpenGL libraries and headers

Library Name Library
Filename Header File Function Prefix

Auxiliary or
Toolkit

glaux.lib glaux.h aux

OpenGL or gl opengl32.dll gl.h gl
Utility library or
glu

glu32.dll glu.h glu

A Note About the Libraries
You may have noticed that the AUX library is actually a library that is
linked into your application. The other OpenGL libraries, however, are
actually implemented as DLLs. The import libraries that you will need to
link to are opengl32.lib and glu32.lib. Typically they are provided by
your compiler vendor, or you may obtain them via the Win32 SDK from
Microsoft. If you are using Borland C++, you will need to build your own
import libraries with Borland’s implib.exe utility.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Learning OpenGL with the AUX Library

http://www.itknowledge.com/reference/archive/1571690735/ch03/027-031.html [20-03-2000 21:25:44]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

OpenGL Data Types

To make it easier to port OpenGL code from one platform to another,
OpenGL defines its own data types. These data types map to normal C data
types that you can use instead, if desired. The various compilers and
environments, however, have their own rules for the size and memory
layout of various C variables. By using the OpenGL defined variable types,
you can insulate your code from these types of changes.

Table 3-2 lists the OpenGL data types, their corresponding C data types
under the 32-bit Windows environments (Win32), and the appropriate
suffix for literals. In this book we will use the suffixes for all literal values.
You will see later that these suffixes are also used in many OpenGL
function names.

Table 3-2 OpenGL variable types and corresponding C data types

OpenGL Data
Type

Internal
Representation

Defined as C
Type

C Literal
Suffix

GLbyte 8-bit integer Signed char b
GLshort 16-bit integer Short s
GLint, GLsizei 32-bit integer Long I
GLfloat,
GLclampf

32-bit floating point Float f

GLdouble,
GLclampd

64-bit floating point Double d

GLubyte,
GLboolean

8-bit unsigned integer
Unsigned char ub

GLushort 16-bit unsigned
integer

Unsigned short us

GLuint, GLenum,
GLbitfield

32-bit unsigned
integer

Unsigned long ui

All data types start with a GL to denote OpenGL. Most are followed by
their corresponding C data types (byte, short, int, float, etc.). Some have a u
first to denote an unsigned data type, such as ubyte to denote an unsigned
byte. For some uses a more descriptive name is given, such as size to denote
a value of length or depth. For example, GLsizei is an OpenGL variable
denoting a size parameter that is represented by an integer. The clamp is
used for color composition and stands for color amplitude. This data type is
found with both f and d suffixes to denote float and double data types. The
GLboolean variables are used to indicate True and False conditions,
GLenum for enumerated variables, and GLbitfield for variables that contain
binary bit fields.

Pointers and arrays are not give any special consideration. An array of ten
GLshort variables would simply be declared as

GLshort shorts[10];

and an array of ten pointers to GLdouble variables would be declared with

GLdouble *doubles[10];

Some other pointer object types are used for NURBS and Quadrics. They
take more explanation and will be covered in later chapters.

Function Naming Conventions

OpenGL functions all follow a naming convention that tells you which
library the function is from, and often how many and what type of
arguments the function takes. All functions have a root that represents the
function’s corresponding OpenGL command. For example, the glColor3f()
function has the root Color. The gl prefix represents the gl library (see
Table 3-1), and the 3f suffix means the function takes three floating point
arguments. All OpenGL functions take the following format:

<Library prefix><Root command><Optional argument count><Optional
argument type>

Figure 3-1 illustrates the parts of an OpenGL function. This sample
function with the suffix 3f takes three floating point arguments. Other
variations take three integers (glColor3i()), three doubles (glColor3d()), and
so forth. This convention of adding the number and type of arguments (see
Table 3-1) to the end of OpenGL functions makes it very easy to remember
the argument list without having to look it up. Some versions of glColor
take four arguments to specify an alpha component, as well.

Figure 3-1 Dissected OpenGL Function

In the reference sections of this book, these “families” of functions are
listed by their library prefix and root. Thus all the variations of glColor
(glColor3f, glColor4f, glColor3i, etc.) will be listed under a single
entry—glColor.

Clean Code
Many C/C++ compilers for Windows assume that any floating-point
literal value is of type double unless explicitly told otherwise via the
suffix mechanism. When using literals for floating point arguments, if
you don’t specify that these arguments are of type float instead of double,
the compiler will issue a warning while compiling because it detects that
you are passing a double to a function defined to accept only floats,
resulting in a possible loss of precision. As our OpenGL programs grow,
these warnings will quickly number in the hundreds and will make it
difficult to find any real syntax errors. You can turn these warnings off
using the appropriate compiler options—but we advise against this. It’s
better to write clean, portable code the first time. So clean up those
warning messages by cleaning up the code (in this case, by explicitly
using the float type)—not by disabling potentially useful warnings.

Additionally, you may be tempted to use the functions that accept
double-precision floating point arguments, rather than go to all the bother
of specifying your literals as floats. However, OpenGL uses floats
internally, and using anything other than the single-precision floating
point functions will add a performance bottleneck, as the values are
converted to floats anyway before being processed by OpenGL.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Learning OpenGL with the AUX Library

http://www.itknowledge.com/reference/archive/1571690735/ch03/031-034.html [20-03-2000 21:25:51]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The AUX Library

For the remainder of this chapter, you will learn to use the Auxiliary (AUX)
library as a way to learn OpenGL. The AUX library was created to facilitate
the learning and writing of OpenGL programs without being distracted by
the minutiae of your particular environment, be it UNIX, Windows, or
whatever. You don’t write “final” code when using AUX; it is more of a
preliminary staging ground for testing your ideas. A lack of basic GUI
features limits the library’s use for building useful applications.

A set of core AUX functions is available on nearly every implementation of
OpenGL. These functions handle window creation and manipulation, as
well as user input. Other functions draw some complete 3D figures as
wireframe or solid objects. By using the AUX library to create and manage
the window and user interaction, and OpenGL to do the drawing, it is
possible to write programs that create fairly complex renderings. You can
move these programs to different environments with a recompile.

In addition to the core functions, each environment that implements an
AUX library also implements some other helper functions to enable
system-specific operations such as buffer swapping and image loading. The
more your code relies on these additional AUX library functions, the less
portable your code will be. On the other hand, by making full use of these
functions you can create fantastic scenes that will amaze your friends and
even the family dog—without having to learn all the gritty details of
Windows programming.

Unfortunately, it’s unlikely that all of the functionality of a useful
application will be embodied entirely in the code used to draw in 3D, so
you can’t rely entirely on the AUX library for everything. Nevertheless, the
AUX library excels in its role for learning and demonstration exercises.
And for some applications, you may be able to employ the AUX library to
iron out your 3D graphics code before integrating it into a complete
application.

Platform Independence

OpenGL is a powerful and sophisticated API for creating 3D graphics, with
over 300 commands that cover everything from setting material colors and
reflective properties to doing rotations and complex coordinate
transformations. You may be surprised that OpenGL has not a single
function or command relating to window or screen management. In
addition, there are no functions for keyboard input or mouse interaction.
Consider, however, that one of the primary goals of the OpenGL designers
was platform independence. Creating and opening a window is done
differently under the various platforms. Even if OpenGL did have a
command for opening a window, would you use it or would you use the
operating system’s own built-in API call?

Another platform issue is the handling of keyboard and mouse input events
under the different operating systems and environments. If every
environment handled these the same, we would have only one environment
to worry about and thus no need for an “open” API. This is not the case,
however, and it probably won’t be within our brief lifetimes! So OpenGL’s
platform independence comes at the cost of OS and GUI functions.

AUX = Platform I/O, the Easy Way

The AUX library was initially created as a toolkit to enable learning
OpenGL without getting mired in the details of any particular operating
system or user interface. To accomplish this, AUX provides rudimentary
functions for creating a window and for reading mouse and keyboard
activity. Internally, the AUX library makes use of the native environment’s
APIs for these functions. The functions exposed by the AUX library then
remain the same on all platforms.

The AUX library contains only a handful of functions for window
management and the handling of input events, but saves you the trouble of
managing these in pure C or C++ through the Windows API. The library
also contains functions for drawing some relatively simple 3D objects such
as a sphere, cube, torus (doughnut), and even a teapot. With very little
effort, you can use the AUX library to display a window and perform some
OpenGL commands. Though AUX is not really part of the OpenGL
specification, it seems to follow that spec around to every platform to which
OpenGL is ported. Windows is no exception, and the source code for the
AUX library is even included free in the Win32 SDK from Microsoft.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Learning OpenGL with the AUX Library

http://www.itknowledge.com/reference/archive/1571690735/ch03/034-035.html [20-03-2000 21:25:56]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Dissecting a Short OpenGL Program

In order to understand the AUX library better, let’s take a look at possibly the world’s shortest OpenGL
program, which was written using the AUX library. Listing 3-1 presents the shortest.c program. Its output is
shown in Figure 3-2.

Figure 3-2 Output from shortest.c

Listing 3-1 Shortest OpenGL program in the world

// shortest.c
// The shortest OpenGL program possible

#include <windows.h> // Standard Window header required
for all programs
#include <conio.h> // Console I/O functions
#include <gl\gl.h> // OpenGL functions
#include <gl\glaux.h> // AUX Library functions

void main(void)
 {
 // These are the AUX functions to set up the window
 auxInitDisplayMode(AUX_SINGLE | AUX_RGBA);
 auxInitPosition(100,100,250,250);
 auxInitWindow("My first OpenGL Program");

 // These are the OpenGL functions that do something in the window
 glClearColor(0.0f, 0.0f, 1.0f, 1.0f);
 glClear(GL_COLOR_BUFFER_BIT);

 glFlush();

 // Stop and wait for a keypress
 cprintf("Press any key to close the Window\n");
 getch();
 }

Console Modes
A console-mode application is a Win32 program that runs in a text mode window. This is very much like
running a DOS program under Windows NT or Windows 95, except the program is a true 32-bit application and
has access to the entire Win32 API. Console-mode programs are not limited to text mode. They can in fact
create GUI windows for auxiliary output (try calling MessageBox() with a NULL window handle from the
above program), and GUI-based applications can even create console windows if needed. The AUX library
allows you to easily write a console-based program with only a main() function that can create an auxiliary GUI
window for OpenGL output.

To build this program, you need to set your compiler and link options to build a Win32 console (or
text-based) application. You will need to link to the AUX library glaux.lib and the OpenGL import library
opengl32.lib. See your compiler’s documentation for individual instructions on building console
applications.

The shortest.c program doesn’t do very much. When run from the command line, it creates a standard GUI
window with the caption “My first OpenGL Program” and a clear blue background. It then prints the
message “Press any key to close the window” in the console window. The GUI window will not respond to
any mouse or keyboard activity, and the console window waits for you to press a key before terminating (you
will have to switch focus back to the console window first to do this). It doesn’t even behave very well—you
can’t move or resize the OpenGL window, and the window doesn’t even repaint. If you obscure the window
with another window and then uncover it, the client area goes black.

This simple program contains three AUX library functions (prefixed with aux) and three “real” OpenGL
functions (prefixed with gl). Let’s examine the program line by line, after which we’ll introduce some more
functions and substantially improve on our first example.

The Includes

Here are the include files:

#include <windows.h>
#include <conio.h>
#include <gl\gl.h>
#include <gl\glaux.h>

These includes define the function prototypes used by the program. The windows.h header file is required by
all Windows GUI applications; even though this is a console-mode program, the AUX library creates a GUI
window to draw in. The file conio.h is for console I/O. It’s included because we use cprintf() to print a
message, and getch() to terminate the program when a key is pressed. The file gl.h defines the OpenGL
functions that are prefixed with gl; and glaux.h contains all the functions necessary for the AUX library.

The Body

Next comes the main body of the program:

void main(void)
 {

Console mode C and C++ programs always start execution with the function main(). If you are an
experienced Windows nerd, you may wonder where WinMain() is in this example. It’s not there because we
start with a console-mode application, so we don’t have to start with window creation and a message loop. It
is possible with Win32 to create graphical windows from console applications, just as it is possible to create
console windows from GUI applications. These details are buried within the AUX library (remember, the
AUX library is designed to hide these platform details).

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Learning OpenGL with the AUX Library

http://www.itknowledge.com/reference/archive/1571690735/ch03/035-037.html [20-03-2000 21:26:04]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Display Mode: Single-Buffered

The next line of code

auxInitDisplayMode(AUX_SINGLE | AUX_RGBA);

tells the AUX library what type of display mode to use when creating the window. The flags here tell it to
use a single-buffered window (AUX_SINGLE) and to use RGBA color mode (AUX_RGBA). A
single-buffered window means that all drawing commands are performed on the window displayed. An
alternative is a double-buffered window, where the drawing commands are actually executed to create a
scene off screen, then quickly swapped into view on the window. This is often used to produce animation
effects and will be demonstrated later in this chapter. RGBA color mode means that you specify colors by
supplying separate intensities of red, green, and blue components (more on color modes in Chapter 8).

Position the Window

After setting the display mode, you need to tell the AUX library where to put the window and how big to
make it. The next line of code does this:

auxInitPosition(100,100,250,250);

The parameters represent the upper-left corner of the window and its width and height. Specifically, this
line tells the program to place the upper-left corner at coordinates (100,100), and to make the window 250
pixels wide and 250 pixels high. On a screen of standard VGA resolution (640 x 480), this window will
take up a large portion of the display. At SuperVGA resolutions (800 x 600 and above), the window will
take less space even though the number of pixels remains the same (250 x 250).

Here is the prototype for this function:

auxInitPosition(GLint x, GLint y, GLsizei width, GLsizei height);

The GLint and GLsizei data types are defined as integers (as described in the earlier section about data
types). The x parameter is the number of screen pixels counted from the left side of the screen, and y is
the number of pixels counted down from the top of the screen. This is how Windows converts desktop
screen coordinates to a physical location by default. OpenGL’s default method for counting the x
coordinate is the same; however, it counts the y coordinate from bottom to top—just the opposite of
Windows. See Figures 3-3 and 3-4.

Figure 3-3 Default Windows screen coordinate mapping

Figure 3-4 Default OpenGL window coordinate mapping

Porting Note
Although Windows maps desktop coordinates as shown in Figure 3-3, the X Window System maps desktop
coordinates the same way that OpenGL does in Figure 3-4. If you are porting an AUX library program from
another environment, you may need to change the call to auxInitPosition() to account for this.

Create the OpenGL Window

The last call to the AUX library actually creates the window on the screen. The code

auxInitWindow("My first OpenGL Program");

creates the window and sets the caption to “My first OpenGL Program.” Obviously, the single argument
to auxInitWindow is the caption for the window title bar. If you stopped here, the program would create
an empty window (black background is the default) with the caption specified, and then terminate, closing
the OpenGL window immediately. The addition of our last getch() prevents the window from
disappearing, but still nothing of interest happens in the window.

Clear a Window (Erase with a Color)

The three lines of code we’ve looked at so far from the AUX library are sufficient to initialize and create a
window that OpenGL will draw in. From this point on, all OpenGL commands and function calls will
operate on this window.

The next line of code

glClearColor(0.0f, 0.0f, 1.0f, 0.0f);

is your first real OpenGL function call. This function sets the color used when clearing the window. The
prototype for this function is

void glClearColor(GLclampf red, GLclampf green, GLclampf blue, GLclampf
alpha);

GLclampf is defined as a float under most implementations of OpenGL. In OpenGL, a single color is
represented as a mixture of red, green, and blue components. The range for each component can vary
from 0.0 to 1.0. This is similar to the Windows specification of colors using the RGB macro to create a
COLORREF value. (See the Windows95 API Bible from Waite Group Press for details.) The difference is
that in Windows each color component in a COLORREF can range from 0 to 255, giving a total of 256 x
256 x 256—or over 16 million colors. With OpenGL, the values for each component can be any valid
floating-point value between 0 and 1, thus yielding a theoretically infinite number of potential colors.
Practically speaking, OpenGL represents colors internally as 32-bit values, yielding a true maximum of
4,294,967,296 colors (called true color on some hardware). Thus the effective range for each component
is from 0.0 to 1.0, in steps of approximately .00006.

Naturally, both Windows and OpenGL take this color value and convert it internally to the nearest
possible exact match with the available video hardware and palette. We’ll explore this more closely in
Chapter 8.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Learning OpenGL with the AUX Library

http://www.itknowledge.com/reference/archive/1571690735/ch03/037-040.html [20-03-2000 21:26:12]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Table 3-3 lists some common colors and their component values. These values can be
used with any of the OpenGL color-related functions.

Table 3-3 Some common composite colors

Composite Color Red Component Green Component Blue Component

Black 0.0 0.0 0.0
Red 1.0 0.0 0.0
Green 0.0 1.0 0.0
Yellow 1.0 1.0 0.0
Blue 0.0 0.0 1.0
Magenta 1.0 0.0 1.0
Cyan 0.0 1.0 1.0
Dark gray 0.25 0.25 0.25
Light gray 0.75 0.75 0.75
Brown 0.60 0.40 0.12
Pumpkin orange 0.98 0.625 0.12
Pastel pink 0.98 .04 0.7
Barney purple 0.60 0.40 0.70
White 1.0 1.0 1.0

The last argument to glClearColor() is the alpha component. The alpha component is
used for blending and special effects such as translucence. Translucence refers to an
object’s ability to allow light to pass through it. Suppose you are representing a piece
of red stained glass, but a blue light is shining behind it. The blue light will affect the
appearance of the red in the glass (blue + red = purple). You can use the alpha
component value to make a blue color that is semitransparent; so it works like a sheet
of water—an object behind it shows through. There is more to this type of effect than
the alpha value, and in Chapter 16 we will write an example program that
demonstrates it; until then you should leave this value as 1.

Actually Clear

Now that we have told OpenGL what color to use for clearing, we need an instruction
to do the actual clearing. This accomplished by the line

glClear(GL_COLOR_BUFFER_BIT);

The glClear() function clears a particular buffer or combination of buffers. A buffer is
a storage area for image information. The red, green, and blue components of a
drawing actually have separate buffers, but they are usually collectively referred to as
the color buffer.

Buffers are a powerful feature of OpenGL and will be covered in detail in Chapter 15.
For the next several chapters, all you really need to understand is that the color buffer
is where the displayed image is stored internally, and that clearing the buffer with
glClear removes the drawing from the window.

Flush That Queue

Our final OpenGL function call comes next:

glFlush();

This line causes any unexecuted OpenGL commands to be executed—we have two at
this point: glClearColor() and glClear().

Internally, OpenGL uses a rendering pipeline that processes commands sequentially.
OpenGL commands and statements often are queued up until the OpenGL server
processes several “requests” at once. This improves performance, especially when
constructing complex objects. Drawing is accelerated because the slower graphics
hardware is accessed less often for a given set of drawing instructions. (When Win32
was first introduced, this same concept was added to the Windows GDI to improve
graphics performance under Windows NT.) In our short program, the glFlush()
function simply tells OpenGL that it should proceed with the drawing instructions
supplied thus far before waiting for any more drawing commands.

The last bit of code for this example

// Stop and wait for a keypress
cprintf("Press any key to close the Window\n");
getch();
}

displays a message in the console window and stops the program until you press a key,
at which point the program is terminated and the window is destroyed.

It may not be the most interesting OpenGL program in existence, but shortest.c
demonstrates the very basics of getting a window up using the AUX library and it
shows you how to specify a color and clear the window. Next we want to spruce up
our program by adding some more AUX library and OpenGL functions.

Drawing Shapes with OpenGL

The shortest.c program made an empty window with a blue background. Let’s do
some drawing in the window. In addition, we want to be able to move and resize the
window so that it behaves more like a Windows window. We will also dispense with
using getch() to determine when to terminate the program. In Listing 3-2 you can see
the modifications.

The first change you’ll notice is in the headers. The conio.h file is no longer included
because we aren’t using getch() or cprintf() anymore.

Listing 3-2 A friendlier OpenGL program

// friendly.c
// A friendlier OpenGL program

#include <windows.h> // Standard header for Windows
#include <gl\gl.h> // OpenGL library
#include <gl\glaux.h> // AUX library

// Called by AUX library to draw scene
void CALLBACK RenderScene(void)
 {
 // Set clear color to blue
 glClearColor(0.0f, 0.0f, 1.0f, 1.0f);

 // Clear the window
 glClear(GL_COLOR_BUFFER_BIT);

 // Set current drawing color to red
 // R G B
 glColor3f(1.0f, 0.0f, 0.0f);

 // Draw a filled rectangle with current color
 glRectf(100.0f, 150.0f, 150.0f, 100.0f);

 glFlush();
 }

void main(void)
 {
 // AUX library window and mode setup
 auxInitDisplayMode(AUX_SINGLE | AUX_RGBA);
 auxInitPosition(100,100,250,250);
 auxInitWindow("My second OpenGL Program");

 // Set function to call when window needs updating
 auxMainLoop(RenderScene);
 }

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Learning OpenGL with the AUX Library

http://www.itknowledge.com/reference/archive/1571690735/ch03/040-043.html [20-03-2000 21:26:17]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The Rendering Function

Next, you’ll see we have created the function RenderScene().

// Called by AUX library to draw scene
void CALLBACK RenderScene(void)
 {
 ...
 ...

This is where we have moved all code that does the actual drawing in the window. The
process of drawing with OpenGL is often referred to as rendering, so we used that
descriptive name. In later examples we’ll be putting most of our drawing code in this
function.

Make note of the CALLBACK statement in the function declaration. This is required
because we’re going to tell the AUX library to call this function whenever the window
needs updating. Callback functions are simply functions that you write, which the AUX
library will be calling in your behalf. You’ll see how this works later.

Drawing a Rectangle

Previously, all our program did was clear the screen. We’ve added the following two lines
of drawing code:

// Set current drawing color to red
// R G B
glColor3f(1.0f, 0.0f, 0.0f);

// Draw a filled rectangle with current color
glRectf(100.0f, 150.0f, 150.0f, 100.0f);

These lines set the color used for future drawing operations (lines and filling) with the call
to glColor3f(). Then glRectf() draws a filled rectangle.

The glColor3f() function selects a color in the same manner as glClearColor(), but no alpha
translucency component needs to be specified:

void glColor3f(GLfloat red, GLfloat green, GLfloat blue);

The glRectf () function takes floating point arguments, as denoted by the trailing f. The
number of arguments is not used in the function name because all glRect variations take
four arguments. The four arguments of glRectf(),

void glRectf(GLfloat x1, GLfloat y1, GLfloat x2, GLfloat y2);

represent two coordinate pairs—(x1, y1) and (x2, y2). The first pair represents the
upper-left corner of the rectangle, and the second pair represents the lower-right corner.
See Figure 3-4 if you need a review of OpenGL coordinate mapping.

Initialization

The main body of friendly.c starts the same way as our first example:

void main(void)
 {
 // AUX library window and mode setup
 auxInitDisplayMode(AUX_SINGLE | AUX_RGBA);
 auxInitPosition(100,100,250,250);
 auxInitWindow("My second OpenGL Program");

 // Set function to call when window needs updating
 auxMainLoop(RenderScene);
 }

As before, the three auxInitxxx calls set up and display the window in which we’ll be
drawing. In the final line, auxMainLoop() takes the name of the function that does the
drawing, RenderScene(). The AUX library’s auxMainLoop() function simply keeps the
program going until it’s terminated by closing the window. This function’s single
argument is a pointer to another function it should call whenever the window needs
updating. This callback function will be called when the window is first displayed, when
the window is moved or resized, and when the window is uncovered by some other
window.

// Called by AUX library to draw scene
void CALLBACK RenderScene(void)
 {
 // Set clear color to Blue
 glClearColor(0.0f, 0.0f, 1.0f, 1.0f);

 // Clear the window
 glClear(GL_COLOR_BUFFER_BIT);

 // Set current drawing color to red
 // R G B
 glColor3f(1.0f, 0.0f, 0.0f);

 // Draw a filled rectangle with current color
 glRectf(100.0f, 150.0f, 150.0f, 100.0f);

 glFlush();
 }

At this point, the program will display a red square in the middle of a blue window,
because we used fixed locations for the square. If you make the window larger, the square
will remain in the lower-left corner of the window. When you make the window smaller,
the square may no longer fit in the client area. This is because as you resize the window,
the screen extents of the window change; however, the drawing code continues to place the
rectangle at (100, 150, 150, 100). In the original window this was directly in the center; in
a larger window these coordinates are located in the lower-left corner. See Figure 3-5.

Figure 3-5 Effects of changing window size

Scaling to the Window

In nearly all windowing environments, the user may at any time change the size and
dimensions of the window. When this happens, the window usually responds by redrawing
its contents, taking into consideration the window’s new dimensions. Sometimes you may
wish to simply clip the drawing for smaller windows, or display the entire drawing at its
original size in a larger window. For our purposes, we usually will want to scale the
drawing to fit within the window, regardless of the size of the drawing or window. Thus a
very small window would have a complete but very small drawing, and a larger window
would have a similar but larger drawing. You see this in most drawing programs when you
stretch a window as opposed to enlarging the drawing. Stretching a window usually
doesn’t change the drawing size, but magnifying the image will make it grow.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Learning OpenGL with the AUX Library

http://www.itknowledge.com/reference/archive/1571690735/ch03/043-045.html [20-03-2000 21:26:23]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Setting the Viewport and Clipping Volume

In Chapter 2 we discussed how viewports and clipping volumes affect the coordinate range and scaling of 2D
and 3D drawings in a 2D window on the computer screen. Now we will examine the setting of viewport and
clipping volume coordinates in OpenGL. When we created our window with the function call

 auxInitPosition(100,100,250,250);

the AUX library by default created a viewport that matched the window size exactly (0, 0, 250, 250). The
clipping volume by default was set to be the first quadrant of Cartesian space, with the x- and y-axis extending
the length and height of the window. The z-axis extends perpendicular to the viewer, giving a flat 2D
appearance to objects drawn in the xy plane. Figure 3-6 illustrates this graphically.

Figure 3-6 The viewport and clipping volume for friendly.c

Although our drawing is a 2D flat rectangle, we are actually drawing in a 3D coordinate space. The glRectf()
function draws the rectangle in the xy plane at z = 0. Your perspective is down along the positive z-axis to see
the square rectangle at z = 0.

Whenever the window size changes, the viewport and clipping volume must be redefined for the new window
dimensions. Otherwise, you’ll see the effect shown in Figure 3-5, where the mapping of the coordinate system
to screen coordinates stays the same regardless of window size.

Because window size changes are detected and handled differently under various environments, the AUX
library provides the function auxReshapeFunc(), which registers a callback that the AUX library will call
whenever the window dimensions change. The function you pass to auxReshapeFunc() is prototyped like this:

void CALLBACK ChangeSize(GLsizei w, GLsizei h);

We have chosen ChangeSize as a descriptive name for this function and will use that name for our future
examples.

The ChangeSize() function will receive the new width and height whenever the window size changes. We can
use this information to modify the mapping of our desired coordinate system to real screen coordinates, with
the help of two OpenGL functions: glViewport() and glOrtho(). Listing 3-3 shows our previous example
modified to account for various window sizes and dimensions. Only the changed main() function and our new
ChangeSize() function are shown.

Listing 3-3 Scaling in OpenGL

// Scale.c
// Scaling an OpenGL Window.

// Called by AUX Library when the window has changed size
void CALLBACK ChangeSize(GLsizei w, GLsizei h)
 {
 // Prevent a divide by zero
 if(h == 0)
 h = 1;

 // Set Viewport to window dimensions
 glViewport(0, 0, w, h);

 // Reset coordinate system
 glLoadIdentity();

 // Establish clipping volume (left, right, bottom, top, near, far)
 if (w <= h)
 glOrtho (0.0f, 250.0f, 0.0f, 250.0f*h/w, 1.0, -1.0);
 else
 glOrtho (0.0f, 250.0f*w/h, 0.0f, 250.0f, 1.0, -1.0);
 }

void main(void)
 {
 // Set up and initialize AUX window
 auxInitDisplayMode(AUX_SINGLE | AUX_RGBA);
 auxInitPosition(100,100,250,250);
 auxInitWindow("Scaling Window");

 // Set function to call when window changes size
 auxReshapeFunc(ChangeSize);

 // Set function to call when window needs updating
 auxMainLoop(RenderScene);
 }

Now, when you change the size or dimensions of the window, the square will change size as well. A much
larger window will have a much larger square and a much smaller window will have a much smaller square. If
you make the window long horizontally, the square will be centered vertically, far left of center. If you make
the window tall vertically, the square will be centered horizontally, closer to the bottom of the window. Note
that the rectangle always remains square. To see a square scaled as the window resizes, see Figure 3-7a and
Figure 3-7b.

Figure 3-7a Image scaled to match window size

Figure 3-7b Square scaled as the window resizes

Defining the Viewport

To understand how the viewport definition is achieved, let’s look more carefully at the ChangeSize() function.
It first calls glViewport() with the new width and height of the window. The glViewport function is defined as

void glViewport(GLint x, GLint y, GLsizei width, GLsizei height);

The x and y parameters specify the lower-right corner of the viewport within the window, and the width and
height parameters specify these dimensions in pixels. Usually x and y will both be zero, but you can use
viewports to render more than one drawing in different areas of a window. The viewport defines the area
within the window in actual screen coordinates that OpenGL can use to draw in (see Figure 3-8). The current
clipping volume is then mapped to the new viewport. If you specify a viewport that is smaller than the window
coordinates, the rendering will be scaled smaller, as you see in Figure 3-8.

Figure 3-8 Viewport-to-window mapping

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Learning OpenGL with the AUX Library

http://www.itknowledge.com/reference/archive/1571690735/ch03/045-049.html [20-03-2000 21:26:34]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Defining the Clipping Volume

The last requirement of our ChangeSize() function is to redefine the clipping volume so that the aspect ratio
remains square. The aspect ratio is the ratio of the number of pixels along a unit of length in the vertical
direction to the number of pixels along the same unit of length in the horizontal direction. An aspect ratio of
1.0 would define a square aspect ratio. An aspect ratio of 0.5 would specify that for every two pixels in the
horizontal direction for a unit of length, there is one pixel in the vertical direction for the same unit of length.

If a viewport is specified that is not square and it is mapped to a square clipping volume, that will cause
images to be distorted. For example, a viewport matching the window size and dimensions but mapped to a
square clipping volume would cause images to appear tall and thin in tall and thin windows, and wide and
short in wide and short windows. In this case, our square would only appear square when the window was
sized to be a square.

In our example, an orthographic projection is used for the clipping volume (see Chapter 2). The OpenGL
command to create this projection is glOrtho():

void glOrtho(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top,
 GLdouble near, GLdouble far);

In 3D Cartesian space, the left and right values specify the minimum and maximum coordinate value
displayed along the x-axis; bottom and top are for the y-axis. The near and far parameters are for the z-axis,
generally with negative values extending away from the viewer (see Figure 3-9).

Figure 3-9 Cartesian space

Just before the code using glOrtho(), you’ll notice a single call to glLoadIdentity(). This is needed because
glOrtho() doesn’t really establish the clipping volume, but rather modifies the existing clipping volume. It
multiplies the matrix that describes the current clipping volume by the matrix that describes the clipping
volume described in its arguments. The discussion of matrix manipulations and coordinate transformations is
in Chapter 7. For now, you just need to know that glLoadIdentity() serves to “reset” the coordinate system to
unity before any matrix manipulations are performed. Without this “reset” every time glOrtho() is called, each
successive call to glOrtho() could result in a further corruption of our intended clipping volume, which may
not even display our rectangle.

Keeping a Square Square

The following code does the actual work of keeping our “square” square.

if (w <= h)
 glOrtho (0, 250, 0, 250*h/w, 1.0, -1.0);
else
 glOrtho (0, 250*w/h, 0, 250, 1.0, -1.0);

Our clipping volume (visible coordinate space) is modified so that the left-hand side is always at x = 0. The
right-hand side extends to 250 unless the window is wider than it is tall. In that case, the right-hand side is
extended by the aspect ratio of the window. The bottom is always at y = 0, and extends upward to 250 unless
the window is taller than it is wide. In that case the upper coordinate is extended by the aspect ratio. This
serves to keep a square coordinate region 250 x 250 available regardless of the shape of the window. Figure
3-10 shows how this works.

Figure 3-10 Clipping region for three different windows

Animation with AUX

Thus far, we’ve discussed the basics of using the AUX library for creating a window and using OpenGL
commands for the actual drawing. You will often want to move or rotate your images and scenes, creating an
animated effect. Let’s take the previous example, which draws a square, and make the square bounce off the
sides of the window. You could create a loop that continually changes your object’s coordinates before calling
the RenderScene() function. This would cause the square to appear to move around within the window.

The AUX library provides a function that makes it much easier to set up a simple animated sequence. This
function, auxIdleFunc(), takes the name of a function to call continually while your program sits idle. The
function to perform your idle processing is prototyped like this:

void CALLBACK IdleFunction(void);

This function is then called repeatedly by the AUX library unless the window is being moved or resized.

If we change the hard-coded values for the location of our rectangle to variables, and then constantly modify
those variables in the IdleFunction(), the rectangle will appear to move across the window. Let’s look at an
example of this kind of animation. In Listing 3-4, we’ll modify Listing 3-3 to bounce the square around off the
inside borders of the window. We’ll need to keep track of the position and size of the rectangle as we go
along, and account for any changes in window size.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Learning OpenGL with the AUX Library

http://www.itknowledge.com/reference/archive/1571690735/ch03/049-052.html [20-03-2000 21:26:41]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Listing 3-4 Animated bouncing square

// bounce.c
// Bouncing square

#include <windows.h> // Standard windows include
#include <gl\gl.h> // OpenGL library
#include <gl\glaux.h> // AUX library

// Initial square position and size
GLfloat x1 = 100.0f;
GLfloat y1 = 150.0f;
GLsizei rsize = 50;

// Step size in x and y directions
// (number of pixels to move each time)
GLfloat xstep = 1.0f;
GLfloat ystep = 1.0f;

// Keep track of window’s changing width and height
GLfloat windowWidth;
GLfloat windowHeight;

// Called by AUX library when the window has changed size
void CALLBACK ChangeSize(GLsizei w, GLsizei h)
 {
 // Prevent a divide by zero, when window is too short
 // (you can’t make a window of zero width)
 if(h == 0)
 h = 1;

 // Set the viewport to be the entire window
 glViewport(0, 0, w, h);

 // Reset the coordinate system before modifying
 glLoadIdentity();

 // Keep the square square, this time, save calculated
 // width and height for later use
 if (w <= h)
 {
 windowHeight = 250.0f*h/w;
 windowWidth = 250.0f;
 }
else
 {
 windowWidth = 250.0f*w/h;
 windowHeight = 250.0f;
 }

 // Set the clipping volume
 glOrtho(0.0f, windowWidth, 0.0f, windowHeight, 1.0f, -1.0f);
 }

// Called by AUX library to update window
void CALLBACK RenderScene(void)
 {
 // Set background clearing color to blue
 glClearColor(0.0f, 0.0f, 1.0f, 1.0f);

 // Clear the window with current clearing color
 glClear(GL_COLOR_BUFFER_BIT);

 // Set drawing color to red, and draw rectangle at
 // current position.
 glColor3f(1.0f, 0.0f, 0.0f);
 glRectf(x1, y1, x1+rsize, y1+rsize);

 glFlush();
 }

// Called by AUX library when idle (window not being
// resized or moved)
void CALLBACK IdleFunction(void)
 {
 // Reverse direction when you reach left or right edge
 if(x1 > windowWidth-rsize || x1 < 0)
 xstep = -xstep;

 // Reverse direction when you reach top or bottom edge
 if(y1 > windowHeight-rsize || y1 < 0)
 ystep = -ystep;

 // Check bounds. This is in case the window is made
 // smaller and the rectangle is outside the new
 // clipping volume
 if(x1 > windowWidth-rsize)
 x1 = windowWidth-rsize-1;

 if(y1 > windowHeight-rsize)
 y1 = windowHeight-rsize-1;

 // Actually move the square
 x1 += xstep;
 y1 += ystep;

 // Redraw the scene with new coordinates
 RenderScene();
 }

// Main body of program
void main(void)
 {
 // AUX window setup and initialization
 auxInitDisplayMode(AUX_SINGLE | AUX_RGBA);
 auxInitPosition(100,100,250,250);
 auxInitWindow("Simple 2D Animation");

 // Set function to call when window is resized
 auxReshapeFunc(ChangeSize);

 // Set function to call when program is idle
 auxIdleFunc(IdleFunction);

 // Start main loop
 auxMainLoop(RenderScene);
 }

The animation produced by this example is very poor, even on very fast hardware. Because the
window is being cleared each time before drawing the square, it flickers the entire time it’s moving
about, and you can easily see the square actually being drawn as two triangles. To produce smoother
animation, you need to employ a feature known as double buffering.

Double Buffering

One of the most important features of any graphics packages is support for double buffering. This
feature allows you to execute your drawing code while rendering to an off-screen buffer. Then a swap
command places your drawing on screen instantly.

Double buffering can serve two purposes. The first is that some complex drawings may take a long
time to draw and you may not want each step of the image composition to be visible. Using double
buffering, you can compose an image and display it only after it is complete. The user never sees a
partial image; only after the entire image is ready is it blasted to the screen.

A second use for double buffering is for animation. Each frame is drawn in the off-screen buffer and
then swapped quickly to the screen when ready. The AUX library supports double-buffered windows.
We need to make only two changes to the bounce.c program to produce a much smoother animation.
First, change the line in main() that initializes the display mode to indicate that it should use double
buffering:

 auxInitDisplayMode(AUX_DOUBLE | AUX_RGBA);

This will cause all the drawing code to render in an off-screen buffer.

Next, add a single line to the end of the Render() function:

 auxSwapBuffers();

The auxSwapBuffers() function causes the off-screen buffer used for drawing to be swapped to the
screen. (The complete code for this is in the BOUNCE2 example on the CD.) This produces a very
smooth animation of the red square bouncing around inside the window. See Figure 3-11.

Figure 3-11 Bouncing square

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Learning OpenGL with the AUX Library

http://www.itknowledge.com/reference/archive/1571690735/ch03/052-056.html [20-03-2000 21:26:47]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Finally, Some 3D!

Thus far, all our samples have been simple rectangles in the middle of the
window; they either scaled to the new window size or bounced around off
the walls. By now you may be bouncing off some walls of your own,
waiting anxiously to see something in 3D. Wait no more!

As mentioned earlier, we have been drawing in 3D all along, but our view
of the rectangle has been perpendicular to the clipping volume. If we could
just rotate the clipping volume with respect to the viewer, we might actually
see something with a little depth. However, we aren’t going to get into
coordinate transformations and rotations until Chapter 7. And even if we
started that work now, a flat rectangle isn’t very interesting, even when
viewed from an angle.

To see some depth, we need to draw an object that is not flat. The AUX
library contains nearly a dozen 3D objects—from a sphere to a teapot—that
can be created with a single function call. These called functions are of the
form auxSolidxxxx() or auxWirexxxx(), where xxxx names the solid or
wireframe object that is created. For example, the following command
draws a wireframe teapot of approximately 50.0 units in diameter:

auxWireTeapot(50.0f);

If we define a clipping volume that extends from -100 to 100 along all three
axes, we’ll get the wireframe teapot shown in Figure 3-12. The teapot is
probably the best example at this point because the other objects still look
two-dimensional when viewed from a parallel projection. The program that
produced this image is found in this chapter’s subdirectory on the CD in
teapot.c.

Figure 3-12 A wireframe teapot

If you change the wire teapot to a solid teapot with the command

auxSolidTeapot(50.0f);

you’ll see only a red outline of the teapot. In order to see relief in a
solid-colored object, you will need to incorporate shading and lighting with
other OpenGL commands that you’ll learn about in Chapter 9 and later.

For further study of the AUX library objects, see the samples AUXWIRE
and AUXSOLID on the CD in this chapter’s subdirectory. These samples
make use of the glRotatef() function (explained in Chapter 7), which spins
the objects around all three axes of the viewing volume. Some of these
objects make use of the utility library, so be sure that you link with
glu32.lib when using these objects yourself.

Summary

In this chapter we have introduced the AUX library toolkit and presented
the fundamentals of writing a program that uses OpenGL. We have used
this library to show the easiest possible way to create a window and draw in
it using OpenGL commands. You have learned to use the AUX library to
create windows that can be resized, as well as to create simple animation.
You have also been introduced to the process of using OpenGL to do
drawing—composing and selecting colors, clearing the screen, drawing a
rectangle, and setting the viewport and clipping volume to scale images to
match the window size. We’ve also discussed the various OpenGL data
types, and the headers and libraries required to build programs that use
OpenGL.

The Auxiliary library contains many other functions to handle keyboard and
mouse input as well. Microsoft’s implementation of the Aux library
contains Windows-specific functions that enable access to window handles
and device contexts. You are encouraged to explore the upcoming reference
section of this chapter to discover other uses and features of the AUX
library. You’ll also want to examine and run the other Chapter 3 samples on
the CD.

Reference Section

auxIdleFunc
Purpose

Establishes a callback function for idle processing.

Include File
<glaux.h>

Syntax
void auxIdleFunc(AUXIDLEPROC func);

Description
Specifies the idle function func() to be called when no other activity
is pending. Typically used for animation. When not busy rendering
the current scene, the idle function changes some parameters used by
the rendering function to produce the next scene.

Parameters
func

This function is prototyped as

void CALLBACK IdleFunc(void);
This is the user-defined function used for idle processing. Passing
NULL as this function name will disable idle processing.

Returns
None.

Example
See BOUNCE and BOUNCE2 examples from this chapter.

See Also
auxSwapBuffers, auxMainLoop, auxReshapeFunc

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Learning OpenGL with the AUX Library

http://www.itknowledge.com/reference/archive/1571690735/ch03/056-058.html [20-03-2000 21:26:55]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Chapter 4
OpenGL for Windows: OpenGL +
Win32 = Wiggle

What you’ll learn in this chapter:
OpenGL Tasks in a Window
Without the AUX Library Functions You’ll Use

Create and use rendering contexts wglCreateContext,
wglDeleteContext, wglMakeCurrent

Request and select a pixel format ChoosePixelFormat, SetPixelFormat
Respond to window messages WM_PAINT, WM_CREATE,

WM_DESTROY, WM_SIZE
Use double buffering in Windows SwapBuffers

OpenGL is purely a graphics API, with user interaction and the
screen/window handled by the host environment. To facilitate this
partnership, each environment usually has some extensions that “glue”
OpenGL to its own window management and user interface functions. This
glue is code that associates OpenGL drawing commands to a particular
window. It is also necessary to provide functions for setting buffer modes,
color depths, and other drawing characteristics.

For Microsoft Windows, the glue code is embodied in six new wiggle
functions added to OpenGL (called wiggle because they are prefixed with
wgl rather than gl), and five new Win32 functions added to the Windows
NT and 95 GDI. These gluing functions are explained in this chapter, where
we will dispense with using the AUX library for our OpenGL framework.

In Chapter 3 we used the AUX library as a learning tool to introduce the
fundamentals of OpenGL programming in C. You have learned how to
draw some 2D and 3D objects and how to specify a coordinate system and
viewing perspective, without having to consider Windows programming
details. Now it is time to break from our “Windowless” examination of
OpenGL and see how it works in the Windows environment. Unless you
are content with a single window, no menus, no printing ability, no dialogs,
and few of the other features of a modern user interface, you need to learn
how to use OpenGL in your Win32 applications.

Starting with this chapter, we will build full-fledged Windows applications
that can take advantage of all the operating system’s features. You will see
what characteristics a Windows window must have in order to support
OpenGL graphics. You will learn which messages a well-behaved OpenGL
window should handle, and how. The concepts of this chapter are
introduced gradually, as we use C to build a model OpenGL program that
will provide the initial framework for all future examples.

Thus far in this book, you’ve needed no prior knowledge of 3D graphics
and only a rudimentary knowledge of C programming. From this point on,
however, we assume you have at least an entry-level knowledge of
Windows programming. (Otherwise, we’d have wound up writing a book
twice the size of this one, and we’d have had to spend more time on the
details of Windows programming and less on OpenGL programming.) If
you are new to Windows, or if you cut your teeth on one of the Application
Frameworks and aren’t all that familiar with Windows procedures, message
routing, and so forth, you’ll want to check out some of the recommended
reading in Appendix B, Further Reading, before going too much further in
this text.

Drawing in Windows Windows

With the AUX library we had only one window, and OpenGL always knew
that we wanted to draw in that window (where else would we go?). Your
own Windows applications, however, will often have more than one
window. In fact, dialog boxes, controls, and even menus are actually
windows at a fundamental level; it’s nearly impossible to have a useful
program that contains only one window. So how does OpenGL know where
to draw when you execute your rendering code? Before we try to answer
this question, let’s first review how we normally draw in a window without
using OpenGL.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:OpenGL for Windows: OpenGL + Win32 = Wiggle

http://www.itknowledge.com/reference/archive/1571690735/ch04/077-078.html [20-03-2000 21:27:00]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

GDI Device Contexts

To draw in a window without using OpenGL, you use the Windows GDI (Graphical Device Interface)
functions. Each window has a device context that actually receives the graphics output, and each GDI function
takes a device context as an argument to indicate which window you want the function to affect. You can have
multiple device contexts, but only one for each window.

The example program WINRECT on the Companion CD draws an ordinary window with a blue background
and a red square in the center. The output from this program, shown in Figure 4-1, will look familiar to you.
This is the same image produced by our second OpenGL program in Chapter 3, friendly.c. Unlike that earlier
example, however, the WINRECT program is done entirely with the Windows API. WINRECT’s code is pretty
generic as far as Windows programming goes. There is a WinMain that gets things started and keeps the
message pump going, and a WndProc to handle messages for the main window.

Figure 4-1 Windows version of friendly.c, the OpenGL sample from Chapter 3

Your familiarity with Windows programming should extend to the details of creating and displaying a window,
so we’ll cover only the code from this example that is responsible for the drawing of the background and
square.

First we must create a blue and a red brush for filling and painting. The handles for these brushes are declared
globally.

// Handles to GDI brushes we will use for drawing
HBRUSH hBlueBrush,hRedBrush;

Then the brushes are created in the WinMain function, using the RGB macro to create solid red and blue
brushes.

// Create a blue and red brush for drawing and filling
// operations. // Red, green, blue
hBlueBrush = CreateSolidBrush(RGB(0, 0, 255));
hRedBrush = CreateSolidBrush(RGB(255, 0, 0));

When the window style is being specified, the background is set to use the blue brush in the window class
structure.

wc.hbrBackground = hBlueBrush; // Use blue brush for background

Window size and position (previously set with auxInitPosition) are set when the window is created.

// Create the main application window
hWnd = CreateWindow(
 lpszAppName,
 lpszAppName,
 WS_OVERLAPPEDWINDOW,
 100, 100, // Size and dimensions of window
 250, 250,
 NULL,
 NULL,
 hInstance,
 NULL);

Finally, the actual painting of the window interior is handled by the WM_PAINT message handler in the
WndProc function.

 case WM_PAINT:
 {
 PAINTSTRUCT ps;
 HBRUSH hOldBrush;

 // Start painting
 BeginPaint(hWnd,&ps);

 // Select and use the red brush
 hOldBrush = SelectObject(ps.hdc,hRedBrush);

 // Draw a rectangle filled with the currently
 // selected brush
 Rectangle(ps.hdc,100,100,150,150);

 // Deselect the brush
 SelectObject(ps.hdc,hOldBrush);

 // End painting
 EndPaint(hWnd,&ps);
 }
 break;

The call to BeginPaint prepares the window for painting, and sets the hdc member of the PAINTSTRUCT
structure to the device context to be used for drawing in this window. This handle to the device context is used
as the first parameter to all GDI functions, identifying which window they should operate on. This code then
selects the red brush for painting operations and draws a filled rectangle at the coordinates (100,100,150,150).
Then the brush is deselected, and EndPaint cleans up the painting operation for you.

Before you jump to the conclusion that OpenGL should work in a similar way, remember that the GDI is
Windows-specific. Other environments do not have device contexts, window handles, and the like. OpenGL, on
the other hand, was designed to be completely portable among environments and hardware platforms. Adding a
device context parameter to the OpenGL functions would render your OpenGL code useless in any environment
other than Windows.

OpenGL Rendering Contexts

In order to accomplish the portability of the core OpenGL functions, each environment must implement some
means of specifying a current rendering window before executing any OpenGL commands. In Windows, the
OpenGL environment is embodied in what is known as the rendering context. Just as a device context
remembers settings about drawing modes and commands for the GDI, the rendering context remembers
OpenGL settings and commands.

You may have more than one rendering context in your application—for instance, two windows that are using
different drawing modes, perspectives, and so on. However, in order for OpenGL commands to know which
window they are operating on, only one rendering context may be current at any one time per thread. When a
rendering context is made current, it is also associated with a device context and thus with a particular window.
Now OpenGL knows which window into which to render. Figure 4-2 illustrates this concept, as OpenGL
commands are routed to the window indirectly associated with the current rendering context.

Figure 4-2 How OpenGL commands find their window

Performance Tip:
The OpenGL library is thread-safe, meaning you can have multiple threads rendering their own windows or
bitmaps simultaneously. This has obvious performance benefits for multiprocessor systems. Threads can also be
beneficial on single-processor systems, as in having one thread render while another thread handles the user
interface. You can also have multiple threads rendering objects within the same rendering context. In this chapter’s
subdirectory on the CD, the supplementary example program GLTHREAD is an example of using threads with
OpenGL.

Using the Wiggle Functions

The rendering context is not a strictly OpenGL concept, but rather an addition to the Windows API to support
OpenGL. In fact, the new wiggle functions were added to the Win32 API specifically to add windowing support
for OpenGL. The three most used functions with regard to the rendering context are

HGLRC wglCreateContext(HDC hDC);
BOOL wglDeleteContext(HGLRC hrc);
BOOL wglMakeCurrent(HDC hDC, HGLRC hrc);

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:OpenGL for Windows: OpenGL + Win32 = Wiggle

http://www.itknowledge.com/reference/archive/1571690735/ch04/078-082.html [20-03-2000 21:27:10]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Creating and Selecting a Rendering Context

Notice first the new data type HGLRC, which represents a handle to a rendering context. The
wglCreateContext function takes a handle to a windows GDI device context and returns a handle to an
OpenGL rendering context. Like a GDI device context, a rendering context must be deleted when you are
through with it. The wglDeleteContext function does this for you, taking as its only parameter the handle of
the rendering context to be deleted.

When a rendering context is created for a given device context, it is said to be suitable for drawing on that
device context. When the rendering context is made current with wglMakeCurrent, it is not strictly necessary
that the device context specified be the one used to create the rendering context in the first place. However,
the device context used when a rendering context is made current must have the same characteristics as the
device context used to create the rendering context. These characteristics include color depth, buffer
definitions, and so forth, and are embodied in what is known as the pixel format.

To make a rendering context current for a device context different from that used to create it, they must both
have the same pixel format. You may deselect the current rendering context either by making another
rendering context current, or by calling wglMakeCurrent with NULL for the rendering context. (Selecting
and setting the pixel format for the device context will be covered shortly.)

Painting with OpenGL

If you haven’t done much GDI programming, keeping track of both the device context and the rendering
context may seem bewildering, but it’s actually very simple to do after you’ve seen it done once. In the old
days of 16-bit Windows programming, you needed to retrieve a device context, process it quickly, and
release it as soon as you were done with it—because Windows could only remember five device contexts at
a time. In the new era of 32-bit Windows, these internal resource limitations are all but gone. This does not
give us permission to be careless, but it does mean that there are fewer implications to creating a window
with its own private device context (window style WS_OWNDC), getting the window, and hanging on until
we are done with it. Furthermore, since most of our examples will be animated, we can avoid repeated (and
expensive) calls to GetDC every time we need to make the rendering context current. Another time-saver for
us is to make the rendering context current once it is created, and keep it current. If only one window per
thread uses OpenGL, this will never be a problem, and it will save the time of repeated calls to
wglMakeCurrent.

Only two window messages require any code that handles the creating and deleting of a rendering context:
WM_CREATE and WM_DESTROY. Naturally, the rendering context is created in the WM_CREATE
message, and it is deleted in the WM_DESTROY message. The following skeleton section from a window
procedure of a window that uses OpenGL graphics shows the creation and deleting of a rendering context:

LRESULT CALLBACK WndProc(HWND hWnd, …
 {
 static HGLRC hRC; // Save the rendering context between calls
 static HDC hDC; // Save the device context between calls

 switch(msg)
 {
 case WM_CREATE:
 hDeviceContext = GetDC(hWnd)
 …

 hRenderContext = wglCreateContext(hDC);
 wglMakeCurrent(hDC,hRC);
 break;

 case WM_DESTROY:
 wglMakeCurrent(hDC,NULL);
 wglDeleteContext(hRC);

 PostQuitMessage(0);
 break;
 }
 }

The painting and drawing of the window is still handled by the WM_PAINT message, only now it will
contain your OpenGL drawing commands. In this message, you can dispense with the BeginPaint/EndPaint
sequence. (These functions cleared the window, hid the caret for drawing operations, and validated the
window region after painting.) With OpenGL, you only need to validate the window client area in order to
keep a constant stream of WM_PAINT messages from being posted to the window. Here is a skeletal
WM_PAINT handler:

case WM_PAINT:
 {
 // OpenGL drawing code or your Render function called here.
 RenderScene();

 ValidateRect(hWnd,NULL);
 }
break;

Programming Trick:
You can still use the device context with GDI commands to draw in the window after the OpenGL scene is
drawn. The Microsoft documentation states that this is fully supported except in double-buffered windows. You
can, however, use GDI calls in double-buffered windows—as long as you make your calls after the buffer swap.
What’s actually not supported are GDI calls to the back buffer of a double-buffered window. It’s best to avoid
such calls, anyway, since one of the primary reasons for using double buffering is to provide flicker-free and
instantaneous screen updates.

Preparing the Window for OpenGL

At this point you may be chomping at the bit to write a quick-and-dirty windows program using the
foregoing code and a render function from a previous chapter in the WM_PAINT handler. But don’t start
cobbling together code just yet. There are still two important preparatory steps we need to take before
creating the rendering context.

Window Styles

In order for OpenGL to draw in a window, the window must be created with the WS_CLIPCHILDREN and
WS_CLIPSIBLINGS styles set, and it must not contain the CS_PARENTDC style. This is because the
rendering context is only suitable for drawing in the window for which it was created (as specified by the
device context in the wglCreateContext function), or in a window with exactly the same pixel format. The
WS_CLIPCHILDREN and WS_CLIPSIBLINGS styles keep the paint function from trying to update any
child windows. CS_PARENTDC (which causes a window to inherit its parent’s device context) is forbidden
because a rendering context can be associated with only one device context and window. If these styles are
not specified you will not be able to set a pixel format for the window—the last detail before we begin our
first Windows OpenGL program.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:OpenGL for Windows: OpenGL + Win32 = Wiggle

http://www.itknowledge.com/reference/archive/1571690735/ch04/082-084.html [20-03-2000 21:27:15]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Pixel Formats

Drawing in a window with OpenGL also requires that you select a pixel format. Like the rendering context,
the pixel format is not really a part of OpenGL per se. It is an extension to the Win32 API (specifically, to the
GDI) to support OpenGL functionality. The pixel format sets a device context’s OpenGL properties, such as
color and buffer depth, and whether the window is double-buffered. You must set the pixel format for a device
context before it can be used to create a rendering context. Here are the two functions you will need to use:

int ChoosePixelFormat(HDC hDC, PIXELFORMATDESCRIPTOR *ppfd)
BOOL SetPixelFormat(HDC hDC, int
iPixelFormat, IXELFORMATDESCRIPTOR *ppfd)

Setting the pixel format is a three-step process. First, you fill out the PIXELFORMATDESCRIPTOR structure
according to the characteristics and behavior you want the window to possess (we’ll examine these fields
shortly). You then pass this structure to the ChoosePixelFormat function. The ChoosePixelFormat function
returns an integer index to an available pixel format for the specified device context. This index is then passed
to the SetPixelFormat function. The sequence looks something like this:

PIXELFORMATDESCRIPTOR pixelFormat;
int nFormatIndex;
HDC hDC;

// initialize pixelFormat structure
….
….

nFormatIndex = ChoosePixelFormat(hDC, &pixelFormat);
SetPixelFormat(hDC, nPixelFormat, &pixelFormat);

ChoosePixelFormat attempts to match a supported pixel format to the information requested in the
PIXELFORMATDESCRIPTOR structure. The returned index is the identifier for this pixel format. For
instance, you may request a pixel format that has 16 million colors on screen, but the hardware may only
support 256 simultaneous colors. In this case, the returned pixel format will be as close an approximation as
possible—for this example, a 256-color pixel format. This index is passed to SetPixelFormat.

You’ll find a detailed explanation of the PIXELFORMATDESCRIPTOR structure in the Reference Section
under the function DescribePixelFormat. Listing 4-1 shows a function from the GLRECT sample program that
establishes the PIXELFORMATDESCRIPTOR structure and sets the pixel format for a device context.

Listing 4-1 A high-level function that sets up the pixel format for a device context

/ Select the pixel format for a given device context
void SetDCPixelFormat(HDC hDC)
 {
 int nPixelFormat;

 static PIXELFORMATDESCRIPTOR pfd = {
 sizeof(PIXELFORMATDESCRIPTOR), // Size of this structure
 1, // Version of this
 structure

 PFD_DRAW_TO_WINDOW | // Draw to window
 (not bitmap)

 PFD_SUPPORT_OPENGL | // Support OpenGL calls
 PFD_DOUBLEBUFFER, // Double-buffered mode
 PFD_TYPE_RGBA, // RGBA Color mode
 24, // Want 24bit color
 0,0,0,0,0,0, // Not used to select mode
 0,0, // Not used to select mode
 0,0,0,0,0, // Not used to select mode
 32, // Size of depth buffer
 0, // Not used to select mode
 0, // Not used to select mode
 PFD_MAIN_PLANE, // Draw in main plane
 0, // Not used to select mode
 0,0,0 }; // Not used to select mode

 // Choose a pixel format that best matches that described in pfd
 nPixelFormat = ChoosePixelFormat(hDC, &pfd);

 // Set the pixel format for the device context
 SetPixelFormat(hDC, nPixelFormat, &pfd);
 }

As you can see in this example, not all the members of the PIXELFORMATDESCRIPTOR structure are used
when requesting a pixel format. Table 4-1 lists the members that are set in Listing 4-1. The rest of the data
elements can be set to zero for now.

Table 4-1 Members of PIXELFORMATDESCRIPTOR used when requesting a pixel format

Member Description

nSize The size of the structure, set to sizeof(PIXELFORMATDESCRIPTOR).
nVersion The version of this data structure, set to 1.
dwFlags Flags that specify the properties of the pixel buffer, set to

(PFD_DRAW_TO_WINDOW | PFD_SUPPORT_OPENGL |
PFD_DOUBLEBUFFER). These indicate the device context is not a bitmap
context, that OpenGL will be used for drawing, and that the window should
be double buffered.

iPixelType The type of pixel data. Actually, tells OpenGL to use RGBA mode or color
index mode. Set to PFD_TYPE_RGBA for RGBA mode.

cColorBits The number of color bitplanes, in this case 24-bit color. If hardware does
not support 24-bit color, the maximum number of color bitplanes supported
by the hardware will be selected.

cDepthBits The depth of the depth (z-axis) buffer. Set to 32 for maximum accuracy, but
16 is often sufficient (see Reference Section).

iLayerType The type of layer. Only PFD_MAIN_PLANE is valid for the Windows
implementation of OpenGL.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:OpenGL for Windows: OpenGL + Win32 = Wiggle

http://www.itknowledge.com/reference/archive/1571690735/ch04/084-086.html [20-03-2000 21:27:20]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Return of the Bouncing Square

At last we have enough information to create a Windows window that uses OpenGL, without using the
AUX library. The program shown in Listing 4-2 contains the necessary Windows code along with the
rendering function from Chapter 3’s BOUNCE2 example program. You can see by the length of this code
that the AUX library saves you a lot of effort.

The RenderScene, ChangeSize, and IdleFunction functions are virtually unchanged from the Chapter 3
example and are thus omitted here. These functions, along with the function in Listing 4-1, make up the
sample program GLRECT. Figure 4-3 shows the familiar bouncing rectangle. Listing 4-2 shows the
WinMain function that creates the window and services messages for the program and the WndProc
function for the window that handles the individual messages.

Figure 4-3 Windows version of the bouncing square

Listing 4-2 Animated square program, without the AUX library

// Entry point of all Windows programs
int APIENTRY WinMain(HINSTANCE hInstance,
 HINSTANCE hPrevInstance,
 LPSTR lpCmdLine,
 int nCmdShow)
 {
 MSG msg; // Windows message structure
 WNDCLASS wc; // Windows class structure
 HWND hWnd; // Storage for window handle

 // Register Window style
 wc.style = CS_HREDRAW | CS_VREDRAW;
 wc.lpfnWndProc = (WNDPROC) WndProc;
 wc.cbClsExtra = 0;
 wc.cbWndExtra = 0;
 wc.hInstance = hInstance;
 wc.hIcon = NULL;
 wc.hCursor = LoadCursor(NULL, IDC_ARROW);

 // No need for background brush for OpenGL window
 wc.hbrBackground = NULL;

 wc.lpszMenuName = NULL;
 wc.lpszClassName = lpszAppName;

 // Register the window class
 if(RegisterClass(&wc) == 0)
 return FALSE;

 // Create the main application window
 hWnd = CreateWindow(
 lpszAppName,
 lpszAppName,

 // OpenGL requires WS_CLIPCHILDREN and
 WS_CLIPSIBLINGS

 WS_OVERLAPPEDWINDOW | WS_CLIPCHILDREN
 | WS_CLIPSIBLINGS,

 // Window position and size
 100, 100,
 250, 250,

 NULL,
 NULL,
 hInstance,
 NULL);
 // If window was not created, quit
 if(hWnd == NULL)
 return FALSE;

 // Display the window
 ShowWindow(hWnd,SW_SHOW);
 UpdateWindow(hWnd);

 // Process application messages until the application closes
 while(GetMessage(&msg, NULL, 0, 0))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }

 return msg.wParam;
 }

// Window procedure, handles all messages for this program
LRESULT CALLBACK WndProc(HWND hWnd,
 UINT message,
 WPARAM wParam,
 LPARAM lParam)
 {
 static HGLRC hRC; // Permanent Rendering context
 static HDC hDC; // Private GDI Device context

 switch (message)
 {
 // Window creation, setup for OpenGL
 case WM_CREATE:
 // Store the device context
 hDC = GetDC(hWnd);

 // Select the pixel format
 SetDCPixelFormat(hDC);

 // Create the rendering context
 and make it current

 hRC = wglCreateContext(hDC);
 wglMakeCurrent(hDC, hRC);

 // Create a timer that fires every millisecond
 SetTimer(hWnd,101,1,NULL);
 break;

 // Window is being destroyed, cleanup
 case WM_DESTROY:
 // Kill the timer that we created
 KillTimer(hWnd,101);

 // Deselect the current rendering
 context and delete it

 wglMakeCurrent(hDC,NULL);
 wglDeleteContext(hRC);

 // Tell the application to terminate
 after the window

 // is gone.
 PostQuitMessage(0);
 break;

 // Window is resized.
 case WM_SIZE:
 // Call our function which modifies the clipping
 // volume and viewport
 ChangeSize(LOWORD(lParam), HIWORD(lParam));
 break;

 // Timer, moves and bounces the rectangle, simply calls
 // our previous OnIdle function, then invalidates the
 // window so it will be redrawn.
 case WM_TIMER:
 {
 IdleFunction();

 InvalidateRect(hWnd,NULL,FALSE);
 }
 break;

 // The painting function. This message sent by Windows
 // whenever the screen needs updating.
 case WM_PAINT:
 {
 // Call OpenGL drawing code
 RenderScene();

 // Call function to swap the buffers
 SwapBuffers(hDC);

 // Validate the newly painted client area
 ValidateRect(hWnd,NULL);
 }
 break;

 default: // Passes it on if unproccessed
 return (DefWindowProc(hWnd, message, wParam, lParam));

 }
return (0L);
}

The code for the Windows version of the bouncing square will be quite understandable to you if you’ve
been following our discussion. Let’s look at a few points that may be of special interest.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:OpenGL for Windows: OpenGL + Win32 = Wiggle

http://www.itknowledge.com/reference/archive/1571690735/ch04/086-090.html [20-03-2000 21:27:27]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Scaling to the Window

In our AUX library-based example in Chapter 3, the AUX library called the
registered function ChangeSize whenever the window dimension changed. For our
new example, we need to trap the WM_SIZE message sent by Windows when the
call to ChangeSize occurs. Now we call ChangeSize ourselves, passing the
LOWORD of lParam, which represents the new width of the window, and the
HIWORD of lParam, which contains the new height of the window.

// Window is resized.
case WM_SIZE:
 // Call our function which modifies the clipping
 // volume and viewport
 ChangeSize(LOWORD(lParam), HIWORD(lParam));
 break;

Ticktock, the Idle Clock

Also handled graciously for us by the AUX library was a call to our function
IdleFunction. This function was called whenever the program didn’t have anything
better to do (such as draw the scene). We can easily simulate this activity by setting
up a Windows timer for our window. The following code:

// Create a timer that fires every millisecond
SetTimer(hWnd,101,1,NULL);

which is called when the window is created, sets up a Windows timer for the
window. A WM_TIMER message is sent every millisecond by Windows to the
OpenGL window. Actually, this happens as often as Windows can send the
messages—no less than a millisecond apart—and only when there are no other
messages in the applications message queue. (See the Windows API Bible, by
James L. Conger, published by Waite Group Press for more information on
Windows timers.) When the WndProc function receives a WM_TIMER message,
this code is executed:

case WM_TIMER:
 {
 IdleFunction();

 InvalidateRect(hWnd,NULL,FALSE);
 }
 break;

The IdleFunction is identical to the version in BOUNCE2 except that now it
doesn’t contain a call to RenderScene(). Instead, the window is repainted by calling
InvalidateRect, which causes Windows to post a WM_PAINT message.

Lights, Camera, Action!

Everything else is in place, and now it’s time for action. The OpenGL code to
render the scene is placed within the WM_PAINT message handler. This code calls
RenderScene (again, stolen from the BOUNCE2 example), swaps the buffers, and
validates the window (to keep further WM_PAINT messages from coming).

case WM_PAINT:
 {
 // Call OpenGL drawing code
 RenderScene();

 // Call function to swap the buffers
 SwapBuffers(hDC);

 // Validate the newly painted client area
 ValidateRect(hWnd,NULL);
 }
 break;

Here we also find a new function for the Windows GDI, SwapBuffers. This
function serves the same purpose the auxSwapBuffers—to move the back buffer of
a double-buffered window to the front. The only parameter is the device context.
Note that this device context must have a pixel format with the
PFD_DOUBLEBUFFER flag set; otherwise, the function fails.

That’s it! You now have a code skeleton into which you can drop any OpenGL
rendering procedure you want. It will be neatly maintained in a window that has all
the usual Windows properties (moving, resizing, and so on). Furthermore, you can
of course use this code to create an OpenGL window as part of a full-fledged
application that includes other windows, menus, and so on.

Missing Palette Code
If you compare the code from the GLRECT program listing here with the one on
the CD, you will notice two other windows messages that are handled by that code
but not by the code listed here. These two messages,
WM_QUERYNEWPALETTE and WM_PALETTECHANGED, handle Windows
palette mapping. Another function, GetOpenGLPalette, creates the palette for us.
Palettes are a necessary evil when using a graphics card that supports only 256 or
fewer colors. Without this code, we could not get the colors we asked for with
glColor, nor even a close approximation when using these particular cards.
Palettes and color under Windows constitute a significant topic that is covered in
Chapter 8, where we give it the attention it deserves. This is yet another dirty
detail that the AUX library hid from us!

Summary

In this chapter you should have gained an appreciation for all the work that goes on
behind the scenes when you use the AUX library for your program and window
framework. You’ve seen how the concept of rendering contexts was introduced to
the Windows GDI so that OpenGL would know which window into which it was
allowed to render. You have also learned how selecting and setting a pixel format
prepares the device context before a rendering context can be created for it. In
addition, you have seen which Windows messages should be processed to provide
the functionality of the AUX library helper functions for window resizing and
idle-time animation.

The following Reference Section contains some additional functions not covered in
this chapter’s discussion because their use requires some concepts and functionality
not yet introduced. You’ll find examples of these functions on the CD,
demonstrating all the functions in our References. You are encouraged to explore
and modify these examples.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:OpenGL for Windows: OpenGL + Win32 = Wiggle

http://www.itknowledge.com/reference/archive/1571690735/ch04/090-092.html [20-03-2000 21:27:32]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Reference Section

ChoosePixelFormat
Purpose

Selects the pixel format closest to that specified by the PIXELFORMATDESCRIPTOR, and
that can be supported by the given device context.

Include File
<wingdi.h>

Syntax
int ChoosePixelFormat(HDC hDC, CONST PIXELFORMATDESCRIPTOR *ppfd);

Description
This function is used to determine the best available pixel format for a given device context
based on the desired characteristics described in the PIXELFORMATDESCRIPTOR structure.
This returned format index is then used in the SetPixelFormat function.

Parameters
hDC

HDC: The device context for which this function seeks a best-match pixel format.

ppfd

PIXELFORMATDESCRIPTOR: Pointer to a structure that describes the ideal pixel format that
is being sought. The entire contents of this structure are not pertinent to its future use. For a
complete description of the PIXELFORMATDESCRIPTOR structure, see the
DescribePixelFormat function. Here are the relevant members for this function:

nSize WORD: The size of the structure, usually set to
sizeof(PIXELFORMATDESCRIPTOR).

nVersion WORD: The version number of this structure, set to 1.
dwFlag DWORD: A set of flags that specify properties of the pixel

buffer.
iPixelType BYTE: The color mode (RGBA or color index) type.
cColorBits BYTE: The depth of the color buffer.
cAlphaBits BYTE: The depth of the alpha buffer.
cAccumBits BYTE: The depth of the accumulation buffer.
cDepthBits BYTE: The depth of the depth buffer.
cStencilBits BYTE: The depth of the stencil buffer.
cAuxBuffers BYTE: The number of auxiliary buffers (not supported by

Microsoft).
iLayerType BYTE: The layer type (not supported by Microsoft).

Returns
The index of the nearest matching pixel format for the logical format specified, or zero if no
suitable pixel format can be found.

Example

This code from the GLRECT example code in this chapter demonstrates a pixel format being selected:

 int nPixelFormat;

 static PIXELFORMATDESCRIPTOR pfd = {
 sizeof(PIXELFORMATDESCRIPTOR), // Size of this structure
 1,
 …
 …
 };

 // Choose a pixel format that best matches that described in pfd
 nPixelFormat = ChoosePixelFormat(hDC, &pfd);

 // Set the pixel format for the device context
 SetPixelFormat(hDC, nPixelFormat, &pfd);

See Also
DescribePixelFormat, GetPixelFormat, SetPixelFormat

DescribePixelFormat
Purpose

Obtains detailed information about a pixel format.

Include File
<wingdi.h>

Syntax
int DescribePixelFormat(HDC hDC, int iPixelFormat, UINT nBytes,
LPPIXELFORMATDESCRIPTOR ppfd);

Description
This function fills the PIXELFORMATDESCRIPTOR structure with information about the
pixel format specified for the given device context. It also returns the maximum available pixel
format for the device context. If ppfd is NULL, the function still returns the maximum valid
pixel format for the device context. Some fields of the PIXELFORMATDESCRIPTOR are not
supported by the Microsoft generic implementation of OpenGL, but these values may be
supported by individual hardware manufacturers.

Parameters
hDC

HDC: The device context containing the pixel format of interest.

iPixelFormat

int: The pixel format of interest for the specified device context.

nBytes

UINT: The size of the structure pointed to by ppfd. If this value is zero, no data will be copied to
the buffer. This should be set to sizeof(PIXELFORMATDESCRIPTOR).

ppfd

LPPIXELFORMATDESCRIPTOR: A pointer to the PIXELFORMATDESCRIPTOR that on
return will contain the detailed information about the pixel format of interest. The
PIXELFORMATDESCRIPTOR structure is defined as follows:

 typedef struct tagPIXELFORMATDESCRIPTOR {
 WORD nSize;
 WORD nVersion;
 DWORD dwFlags;
 BYTE iPixelType;
 BYTE cColorBits;
 BYTE cRedBits;
 BYTE cRedShift;
 BYTE cGreenBits;
 BYTE cGreenShift;
 BYTE cBlueBits;
 BYTE cBlueShift;
 BYTE cAlphaBits;
 BYTE cAlphaShift;
 BYTE cAccumBits;
 BYTE cAccumRedBits;
 BYTE cAccumGreenBits;
 BYTE cAccumBlueBits;
 BYTE cAccumAlphaBits;
 BYTE cDepthBits;
 BYTE cStencilBits;
 BYTE cAuxBuffers;
 BYTE iLayerType;
 BYTE bReserved;
 DWORD dwLayerMask;
 DWORD dwVisibleMask;
 DWORD dwDamageMask;
 } PIXELFORMATDESCRIPTOR;

nSize contains the size of the structure. It should always be set to
sizeof(PIXELFORMATDESCRIPTOR).

nVersion holds the version number of this structure. It should always be set to 1.

dwFlags contains a set of bit flags (Table 4-2) that describe properties of the pixel format. Except as
noted, these flags are not mutually exclusive.

Table 4-2 Flags for the dwFlags member of PIXELFORMATDESCRIPTOR

Flag Description

PFD_DRAW_TO_WINDOW The buffer is used to draw to a window or device surface
such as a printer.

PFD_DRAW_TO_BITMAP The buffer is used to draw to a memory bitmap.
PFD_SUPPORT_GDI The buffer supporting GDI drawing. This flag is mutually

exclusive with PFD_DOUBLEBUFFER.
PFD_SUPPORT_OPENGL The buffer supporting OpenGL drawing.
PFD_GENERIC_FORMAT The pixel format is a generic implementation (supported by

GDI emulation). If this flag is not set, the pixel format is
supported by hardware or a device driver.

PFD_NEED_PALETTE The pixel format requires the use of logical palettes.
PFD_NEED_SYSTEM_PALETTE Used for nongeneric implementations that support only one

hardware palette. This function forces the hardware palette
to a one-to-one mapping to the logical palette.

PFD_DOUBLEBUFFER The pixel format is double buffered. This flag is mutually
exclusive with PFD_SUPPORT_GDI.

PFD_STEREO The buffer is stereoscopic. This is analogous to front and
back buffers in double buffering, only there are left and
right buffers. Not supported by Microsoft’s generic
implementation of OpenGL.

PFD_DOUBLE_BUFFER_DONTCARE When choosing a pixel format, the format may be either
single- or double-buffered, without preference.

PFD_STEREO_DONTCARE When choosing a pixel format, the view may be either
stereoscopic or monoscopic, without preference.

iPixelType specifies the type of pixel data. More specifically, it specifies the color selection mode. It
may be one of the values in Table 4-3.

Table 4-3 Flag values for iPixelType

Flag Description

PFD_TYPE_RGBA RGBA color mode. Each pixel color is selected by specifiying the red,
blue, green, and alpha components.

PFD_TYPE_COLORINDEX Color index mode. Each pixel color is selected by an index into a
palette (color table).

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:OpenGL for Windows: OpenGL + Win32 = Wiggle

http://www.itknowledge.com/reference/archive/1571690735/ch04/092-095.html [20-03-2000 21:27:37]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Chapter 5
Errors and Other Messages from OpenGL

What you’ll learn in this chapter:
How To… Functions You’ll Use

Get the error code of the last OpenGL error glGetError
Convert an error code into a textual description of the problem gluErrorString
Get version and vendor information from OpenGL glGetString, gluGetString
Make implementation-dependent performance hints glHint

In any project, we want to write robust and well-behaved programs that respond politely to their users and
have some amount of flexibility. Graphical programs that use OpenGL are no exception. Now we don’t want
to turn this chapter into a course on software engineering and quality assurance, but if you want your
programs to run smoothly, you need to account for errors and unexpected circumstances. OpenGL provides
you with two different methods of performing an occasional sanity check in your code.

The first of OpenGL’s control mechanisms is error detection. If an error occurs, you need to be able to stop
and say “Hey, an error occurred, and this is what it was.” This is the only way in code that will let you know
your rendering of the Space Station Freedom is now the Space Station Melted Crayola.

The second OpenGL sanity check is a simple solution to a common problem— something of which every
programmer, good and bad, is sometimes guilty. Let’s say you know that Microsoft’s implementation of the
Generic GDI version of OpenGL lets you get away with drawing in a double-buffered window using GDI, as
long as you draw in the front buffer. Then you buy one of those fancy, warp drive accelerator cards, and the
vendor throws in a new rendering engine. Worse, suppose your customer buys one of these cards. Will your
code still work? Will it eat your image and spit out psychedelic rainbows? You may have a good reason for
using such optimization tricks; it’s certainly faster to use TextOut than to call wglUseFontBitmaps. (Of
course, if you do have this fancy-dancy video card, TextOut may not be the fastest road to Rome anymore
anyhow.) The simple way to guard against this type of catastrophe is to check the version and vendor of your
OpenGL library. If your implementation is the generic Microsoft, cheat to your heart’s content; otherwise,
better stick to the documented way of doing things.

In summary, if you want to take advantage of vendor or version specific behavior, you should check in your
code to make sure that the vendor and version are the same as that you designed for. Later, we’ll discuss
OpenGL Hints, which allow you to instruct the rendering engine to make tradeoffs for the sake of speed, or
image quality. This would be the preferred means of using vendor specific optimizations.

When Bad Things Happen to Good Code

Internally, OpenGL maintains a set of six error status flags. Each flag represents a different type of error.
Whenever one of these errors occurs, the corresponding flag is set. To see if any of these flags is set, call
glGetError:

GLenum glGetError(void);

The glGetError function returns one of the values listed in Table 5-1, located in the Reference Section under
glGetError. The GLU library defines three errors of its own, but these errors map exactly to two flags already
present. If more than one of these flags is set, glGetError still returns only one distinct value. This value is
then cleared when glGetError is called, and recalling glGetError will return either another error flag or
GL_NO_ERROR. Usually, you will want to call glGetError in a loop that continues checking for error flags
until the return value is GL_NO_ERROR.

Listing 5-1 is a section of code from the GLTELL example that loops, checking for error messages until
there are none. Notice that the error string is placed in a control in a dialog box. You can see this in the
output from the GLTELL program in Figure 5-1.

Figure 5-1 An About box describing the GL and GLU libraries, along with any recent errors

Listing 5-1 Code sample that retrieves errors until there are no more errors

// Display any recent error messages
 i = 0;
 do {
 glError = glGetError();

 SetDlgItemText(hDlg,IDC_ERROR1+i,gluErrorString(glError));
 i++;
 }
 while(i < 6 && glError != GL_NO_ERROR);

You can use another function in the GLU library, gluErrorString, to get a string describing the error flag:

const GLubyte* gluErrorString(GLenum errorCode);

This function takes as its only argument the error flag (returned from glGetError, or hand-coded), and returns
a static string describing that error. For example, the error flag GL_INVALID_ENUM returns the string

invalid enumerant

You can take some peace of mind from the assurance that if an error is caused by an invalid call to an
OpenGL function or command, that function or command is ignored. OpenGL may not behave as you
intended, but it will continue to run. The only exception to this is GL_OUT_OF_MEMORY (or
GLU_OUT_OF_MEMORY, which has the same value anyway). When this error occurs, the state of
OpenGL is undefined—indeed, the state of your program may be undefined! With this error, it’s best to
clean up as gracefully as possible and terminate the program.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Errors and Other Messages from OpenGL

http://www.itknowledge.com/reference/archive/1571690735/ch05/109-114.html [20-03-2000 21:27:44]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Who Am I and What Can I Do?

As mentioned in the introduction of this section, there are times when you want to take advantage of a
known behavior in a particular implementation. If you know for a fact that you are using Microsoft’s
rendering engine, and the version number is the same as what you tested your program with, it’s not unusual
that you’ll want to try some trick to enhance your program’s performance. To be sure that the functionality
you’re exploiting exists on the machine running your program, you need a way to query OpenGL for the
vendor and version number of the rendering engine. Both the GL library and GLU library can return version
and vendor specific information about themselves.

For the GL library, you can call glGetString:

const GLubyte *glGetString(GLenum name);

This function returns a static string describing the requested aspect of the GL library. The valid parameter
values are listed under glGetString in the Reference Section, along with the aspect of the GL library they
represent.

The GLU library has a corresponding function, gluGetString:

const GLubyte *gluGetString(GLenum name);

It returns a string describing the requested aspect of the GLU library. The valid parameters are listed under
gluGetString in the Reference Section, along with the aspect of the GLU library they represent.

Listing 5-2 is a section of code from the GLTELL sample program, a modified version of our faithful
bouncing square. This time we’ve added a menu and an About box. The About box, shown earlier in Figure
5-1, displays information about the vendor and version of both the GL and GLU libraries. In addition, we’ve
added an error to the code to produce a listing of error messages.

Listing 5-2 Example usage of glGetString an gluGetString

 // glGetString demo
 SetDlgItemText(hDlg,IDC_OPENGL_VENDOR,glGetString(GL_VENDOR));
 SetDlgItemText(hDlg,IDC_OPENGL_RENDERER,glGetString(GL_RENDERER));
 SetDlgItemText(hDlg,IDC_OPENGL_VERSION,glGetString(GL_VERSION));
 SetDlgItemText(hDlg,IDC_OPENGL_EXTENSIONS,glGetString(GL_EXTENSIONS));

 // gluGetString demo
 SetDlgItemText(hDlg,IDC_GLU_VERSION,gluGetString(GLU_VERSION));
 SetDlgItemText(hDlg,IDC_GLU_EXTENSIONS,gluGetString(GLU_EXTENSIONS));

Extensions to OpenGL

Take special note of the GL_EXTENSIONS and/or GLU_EXTENSIONS flags. Some vendors (including
Microsoft, with the latest versions of OpenGL) may add extensions to OpenGL that offer vendor-specific
optimizations, or popular OpenGL extensions that aren’t yet part of the standard. These features can enhance
your performance considerably. If you make use of these extension functions, however, you must test for the
presence of the extensions (using GL_EXTENSIONS); and if they are not present, you must implement the
feature by some other means.

The list of extensions returned will contain spaces between each entry. You will have to parse the string
yourself to test for the presence of a particular extension library. For more information on OpenGL
extensions, see the wglGetProcAddress function (Chapter 4), or your specific vendor’s documentation. The
Microsoft extensions are discussed and demonstrated in Appendix A.

Get a Clue with glHint

We have mentioned taking advantage of known anomalies in the OpenGL libraries. You can exploit other
vendor-specific behaviors, as well. For one thing, you may want to perform renderings as quickly as possible
on a generic implementation, but switch to a more accurate view for hardware-assisted implementations.
Even without the vendor dependencies, you may simply want OpenGL to be a little less picky for the sake of
speed—or to be more fastidious and produce a better image, no matter how long it takes.

The function glHint allows you to specify certain preferences of quality or speed for different types of
operations. The function is defined as follows:

void glHint(GLenum target, GLenum mode);

The target parameter allows you to specify types of behavior you want to modify. These values, listed under
glHint in the Reference Section, include hints for fog and anti-aliasing accuracy. The mode parameter tells
OpenGL what you care most about—fastest render time and nicest output, for instance—or that you don’t
care. An example use might be rendering into a small preview window with lower accuracy to get a faster
preview image, saving the higher accuracy and qualities for final output. Enumerated values for mode are
also listed under glHint in the Reference Section.

For a demonstration of these settings on various images, see the supplementary sample program WINHINT
in this chapter’s subdirectory on the CD.

Bear in mind that not all implementations are required to support glHint, other than accepting input and not
generating an error. This means your version of OpenGL may ignore any or all of these requests.

Summary

Even in an imperfect world, we can at least check for error conditions and possibly take action based on
them. We can also determine vender and version information so that we can take advantage of known
capabilities or watch out for known deficiencies. This chapter has shown you how to marshal your forces
against these problems. You’ve also seen how you can ask OpenGL to prefer speed or quality in some types
of operations. Again, this depends on the vendor and implementation details of your version of OpenGL.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Errors and Other Messages from OpenGL

http://www.itknowledge.com/reference/archive/1571690735/ch05/114-116.html [20-03-2000 21:27:49]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Reference Section

glGetError
Purpose

Returns information about the current error state.

Include File
<gl.h>

Syntax
GLenum glGetError(void);

Description
OpenGL maintains five error flags, listed in Table 5-1. When an error
flag is set, it remains set until glGetError is called, at which time it
will be set to GL_NO_ERROR. Multiple flags may be set
simultaneously, in which case glGetError must be called again to
clear any remaining errors. Generally, it is a good idea to call
glGetError in a loop to ensure that all error flags have been cleared. If
glGetError is called between glBegin and glEnd statements, the
GL_INVALID_OPERATION flag is set.

Returns
One of the error flags in Table 5-1. In all cases except
GL_OUT_OF_MEMORY, the offending command is ignored and
the condition of the OpenGL state variables, buffers, etc., is not
affected. In the case of GL_OUT_OF_MEMORY, the state of
OpenGL is undefined.

Example
See the GLTELL sample from Listing 5-1.

See Also
gluErrorString

Table 5-1 Valid error return codes from glGetError
Value Meaning

GL_NO_ERROR No errors have occurred.
GL_INVALID_ENUM

GLU_INVALID_ENUM
An invalid value was specified for an
enumerated argument.

GL_INVALID_VALUE
GLU_INVALID_VALUE A numeric argument was out of range.
GL_INVALID_OPERATION An operation was attempted that is not

allowed in the current state.
GL_STACK_OVERFLOW A command was attempted that would have

resulted in a stack overflow.
GL_STACK_UNDERFLOW A command was attempted that would have

resulted in a stack underflow.
GL_OUT_OF_MEMORY
GLU_OUT_OF_MEMORY There is insufficient memory to execute the

requested command.

glGetString
Purpose

Returns a string describing some aspect of the OpenGL
implementation.

Include File
<gl.h>

Syntax
const GLubyte *glGetString(GLenum name);

Description
This function returns a string describing some aspect of the current
OpenGL implementation. This string is statically defined, and the
return address cannot be modified.

Parameters
name

GLenum: Identifies the aspect of the OpenGL implementation to
describe. This may be one of the following values:

GL_VENDOR Returns the name of the company responsible
for this implementation.

GL_RENDERER Returns the name of the renderer. This can
vary with specific hardware configurations.
GDI Generic specifies unassisted software
emulation of OpenGL.

GL_VERSION Returns the version number of this
implementation.

GL_EXTENSIONS Returns a list of supported extensions for this
version and implementation. Each entry in the
list is separated by a space.

Returns
A character string describing the requested aspect, or NULL if an
invalid identifier is used.

Example
See the GLTELL sample from Listing 5-2.

See Also
gluGetString

glHint
Purpose

Allows the programmer to specify implementation-dependent
performance hints.

Include File
<gl.h>

Syntax
void glHint(GLenum target, GLenum mode);

Description
Certain aspects of OpenGL behavior are open to interpretation on
some implementations. This function allows some aspects to be
controlled with performance hints that request optimization for speed
or fidelity. There is no requirement that the glHint has any effect, and
may be ignored for some implementations.

Parameters
target

GLenum: Indicates the behavior to be controlled. This may be any of
the following values:

GL_FOG_HINT Influences accuracy
of fog calculations

GL_LINE_SMOOTH_HINT Influences quality of
anti-aliased lines.

GL_PERSPECTIVE_CORRECTION_HINT Influences quality of
color and texture
interpolation.

GL_POINT_SMOOTH_HINT Influences quality of
anti-aliased points.

GL_POLYGON_SMOOTH_HINT Influences quality of
anti-aliased polygons.

mode

GLenum: Indicates the desired optimized behavior. This may be any
of the following values:

GL_FASTEST The most efficient or quickest method should
be used.

GL_NICEST The most accurate or highest quality method
should be used.

GL_DONT_CARE No preference on the method used.

Returns
None.

Example
The following code is found in the WINHINT supplementary sample
program. It tells OpenGL that it should render anti-aliased lines as
quickly as possible, even if it has to sacrifice the image quality.

 glHint(GL_LINE_SMOOTH_HINT, GL_FASTEST);

gluErrorString
Purpose

Retrieves a string that describes a particular error code.

Include File
<glu.h>

Syntax
const GLubyte* gluErrorString(GLenum errorCode);

Description
This function returns a string describing error code specified. This
string is statically defined, and the return address cannot be modified.
The returned string is ANSI. To return ANSI or UNICODE
depending on the environment, call the macro glErrorStringWIN.

Parameters
errorCode

GLenum: The error code to be described in the return string. Any of
the codes in Table5-1 may be used.

Returns
A string describing the error code specified.

Example
See the GLTELL sample from Listing 5-2.

See Also
glGetError

gluGetString
Purpose

Returns the version and extension information about the GLU library.

Include File
<glu.h>

Syntax
const GLubyte *gluGetString(GLenum name);

Description
This function returns a string describing either the version or
extension information about the GLU library. This string is statically
defined, and the return address cannot be modified.

Parameters
name

GLenum: Identifies the aspect of the GLU library to describe. This
may be one of the following values:

GLU_VERSION Returns the version information for the GLU
Library. The format of the return string is:

<version number><space><vendor information>
GLU_EXTENSIONS Returns a list of supported extensions for this

version of the GLU Library. Each entry in
the list is separated by a space.

Returns
A character string describing the requested aspect, or NULL if an
invalid identifier is used.

Example
See the GLTELL sample from Listing 5-2.

See Also
glGetString

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Errors and Other Messages from OpenGL

http://www.itknowledge.com/reference/archive/1571690735/ch05/116-119.html [20-03-2000 21:27:55]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Part II
Using OpenGL

It seems that every programming language class in college started with that
same goofy “How many miles per gallon did you get on the way to New
York” example program. First you needed to learn to use the terminal, then
the editor, compiler, and linker, how the programs were structured, and
finally some language syntax. Unfortunately, we must all learn to crawl
before we can walk, and learning OpenGL is no exception.

Part I of this book introduced OpenGL, the hows and whys of 3D, and the
format of OpenGL functions. Then we started gluing this to the Windows
API, building Windows-based programs that used OpenGL to paint in the
client area. We learned how to look for errors, how to interpret them, and
how to make sure we don’t take advantage of features that don’t exist!

Now it’s time to graduate from our baby walkers and start stumbling across
the room. First, in Chapter 6, we’ll cover all the OpenGL drawing
primitives. You’ll use these building blocks to make larger and more
complex objects. Next you’ll find out about all the things you can do in 3D
space with your newfound object-building tools: translation, rotation, and
other coordinate transformation goodies. Walking with more confidence,
you’ll be ready for Chapters 8 and 9, which give you color, shading, and
lighting for photo-realistic effects. The remaining chapters offer advanced
object-manipulation tools, techniques for juggling images and texture maps
with ease, and some more specialized 3D object primitives.

When you’re done with Part II, you’ll be ready for your first 100-yard dash!
By the end of the book, the Olympics!

Be sure and follow along with the tank/robot simulation development that
starts in this section of the book. This special sample program won’t be
discussed in the chapters ahead, and can only be found on the CD, where
the simulation will be enhanced with that chapter’s techniques and
functions. The readme.txt file for each step discusses the enhancements
along the way.

Anybody else tired of bouncing squares? Read on! Now we’re into the good
stuff!

Chapter 6
Drawing in 3D: Lines, Points, and
Polygons

What you’ll learn in this chapter:
How To… Functions You’ll Use

Draw points, lines, and shapes glBegin/glEnd/glVertex
Set shape outlines to wireframe or solid
objects

glPolygonMode

Set point sizes for drawing glPointSize
Set line drawing width glLineWidth
Perform hidden surface removal glCullFace
Set patterns for broken lines glLineStipple
Set polygon fill patterns glPolygonStipple

If you’ve ever had a chemistry class (and probably even if you haven’t),
you know that all matter is made up of atoms, and that all atoms consist of
only three things: protons, neutrons, and electrons. All the materials and
substances you have ever come into contact with—from the petals of a rose
to the sand on the beach—are just different arrangements of these three
fundamental building blocks. Although this is a little oversimplified for
most anyone beyond the third or fourth grade, it demonstrates a powerful
principle: With just a few simple building blocks, you can create highly
complex and beautiful structures.

The connection is fairly obvious. Objects and scenes that you create with
OpenGL are also made up of smaller, simpler shapes, arranged and
combined in various and unique ways. In this chapter we will explore these
building blocks of 3D objects, called primitives. All primitives in OpenGL
are one- or two-dimensional objects, ranging from single points to lines and
complex polygons. In this chapter you will learn everything you need to
know in order to draw objects in three dimensions from these simpler
shapes.

Drawing Points in 3D

When you first learned to draw any kind of graphics on any computer
system, you usually started with pixels. A pixel is the smallest element on
your computer monitor, and on color systems that pixel can be any one of
many available colors. This is computer graphics at its simplest: Draw a
point somewhere on the screen, and make it a specific color. Then build on
this simple concept, using your favorite computer language to produce
lines, polygons, circles, and other shapes and graphics. Perhaps even a
GUI…

With OpenGL, however, drawing on the computer screen is fundamentally
different. You’re not concerned with physical screen coordinates and
pixels, but rather positional coordinates in your viewing volume. You let
OpenGL worry about how to get your points, lines, and everything else
translated from your established 3D space to the 2D image made by your
computer screen.

This chapter and the next cover the most fundamental concepts of OpenGL
or any 3D graphics toolkit. In the upcoming chapter, we’ll go into
substantial detail about how this transformation from 3D space to the 2D
landscape of your computer monitor takes place, as well as how to
manipulate (rotate, translate, and scale) your objects. For now, we shall take
this ability for granted in order to focus on plotting and drawing in a 3D
coordinate system. This may seem backwards, but if you first know how to
draw something, and then worry about all the ways to manipulate your
drawings, the material coming up in Chapter 7 will be more interesting and
easier to learn. Once you have a solid understanding of graphics primitives
and coordinate transformations, you will be able to quickly master any 3D
graphics language or API.

Setting Up a 3D Canvas

Figure 6-1 shows a simple viewing volume that we will use for the
examples in this chapter. The area enclosed by this volume is a Cartesian
coordinate space that ranges from –100 to +100 on all three axes, x, y, and
z. (For a review of Cartesian coordinates, see Chapter 2.) Think of this
viewing volume as your three-dimensional canvas on which you will be
drawing with OpenGL commands and functions.

Figure 6-1 Cartesian viewing volume measuring 100 x 100 x 100

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Drawing in 3D: Lines, Points, and Polygons

http://www.itknowledge.com/reference/archive/1571690735/ch06/121-128.html [20-03-2000 21:28:02]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

We established this volume with a call to glOrtho(), much as we did for others in the previous chapters.
Listing 6-1 shows the code for our ChangeSize() function that gets called when the window is sized (including
when it is first created). This code looks a little different from that in previous chapters, and you’ll notice
some unfamiliar functions (glMatrixMode, glLoadIdentity). We’ll spend more time on these in Chapter 7,
exploring their operation in more detail.

Listing 6-1 Code to establish the viewing volume in Figure 6-1

// Change viewing volume and viewport. Called when window is resized
void ChangeSize(GLsizei w, GLsizei h)
 {
 GLfloat nRange = 100.0f;

 // Prevent a divide by zero
 if(h == 0)
 h = 1;

 // Set Viewport to window dimensions
 glViewport(0, 0, w, h);

 // Reset projection matrix stack
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();

 // Establish clipping volume (left, right, bottom, top, near, far)
 if (w <= h)
 glOrtho (-nRange, nRange, -nRange*h/w, nRange*h/w,
 -nRange,nRange);
else
 glOrtho (-nRange*w/h, nRange*w/h, -nRange, nRange,
 -nRange,nRange);

 // Reset Model view matrix stack
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 }

Why the Cart Before the Horse
Look at any of the source code of this chapter, and you’ll notice some new functions in the RenderScene()
functions: glRotate(), glPushMatrix(), and glPopMatrix(). Though they’re covered in more detail in Chapter 7,
we’re introducing them now. That’s because they implement some important features that we wanted you to have
as soon as possible. These functions let you plot and draw in 3D, and help you easily visualize your drawing from
different angles. All of this chapter’s sample programs employ the arrow keys for rotating the drawing around the
x- and y-axes. Look at any 3D drawing dead-on (straight down the z-axis) and it may still look two-dimensional.
But when you can spin the drawings around in space, it’s much easier to see the effects of what you’re drawing.

There is a lot to learn about drawing in 3D, and in this chapter we want you to focus on that. By changing only the
drawing code for any of the examples that follow, you can start experimenting right away with 3D drawing and
still get interesting results. Later, you’ll learn how to manipulate drawings using the other functions.

A 3D Point: The Vertex

To specify a drawing point in this 3D “palette,” we use the OpenGL function glVertex—without a doubt the
most used function in all of the OpenGL API. This is the “lowest common denominator” of all the OpenGL
primitives: a single point in space. The glVertex function can take from two to four parameters of any
numerical type, from bytes to doubles, subject to the naming conventions discussed in Chapter 3.

The following single line of code specifies a point in our coordinate system located 50 units along the x-axis,
50 units along the y-axis, and 0 units out the z-axis:

glVertex3f(50.0f, 50.0f, 0.0f);

This point is illustrated in Figure 6-2. Here we chose to represent the coordinates as floating point values, as
we shall do for the remainder of the book. Also, the form of glVertex() that we have used takes three
arguments for the x, y, and z coordinate values, respectively.

Figure 6-2 The point (50,50,0) as specified by glVertex3f(50.0f, 50.0f, 0.0f)

Two other forms of glVertex take two and four arguments, respectively. We could represent the same point in
Figure 6-2 with this code:

glVertex2f(50.0f, 50.0f);

This form of glVertex takes only two arguments that specify the x and y values, and assumes the z coordinate
to be 0.0 always. The form of glVertex taking four arguments, glVertex4, uses a fourth coordinate value w,
which is used for scaling purposes. You will learn more about this in Chapter 7 when we spend more time
exploring coordinate transformations.

Draw Something!

Now we have a way of specifying a point in space to OpenGL. What can we make of it, and how do we tell
OpenGL what to do with it? Is this vertex a point that should just be plotted? Is it the endpoint of a line, or the
corner of a cube? The geometric definition of a vertex is not just a point in space, but rather the point at which
an intersection of two lines or curves occurs. This is the essence of primitives.

A primitive is simply the interpretation of a set or list of vertices into some shape drawn on the screen. There
are ten primitives in OpenGL, from a simple point drawn in space to a closed polygon of any number of sides.
You use the glBegin command to tell OpenGL to begin interpreting a list of vertices as a particular primitive.
You then end the list of vertices for that primitive with the glEnd command. Kind of intuitive, don’t you
think?

Drawing Points

Let’s begin with the first and simplest of primitives: points. Look at the following code:

glBegin(GL_POINTS); // Select points as the primitive
 glVertex3f(0.0f, 0.0f, 0.0f); // Specify a point
 glVertex3f(50.0f, 50.0f, 50.0f); // Specify another point
glEnd(); // Done drawing points

The argument to glBegin, GL_POINTS, tells OpenGL that the following vertices are to be interpreted and
drawn as points. Two vertices are listed here, which translates to two specific points, both of which would be
drawn.

This brings up an important point about glBegin and glEnd: You can list multiple primitives between calls as
long as they are for the same primitive type. In this way, with a single glBegin/glEnd sequence you can
include as many primitives as you like.

This next code segment is very wasteful and will execute more slowly than the preceding code:

glBegin(GL_POINTS); // Specify point drawing
 glVertex3f(0.0f, 0.0f, 0.0f);
glEnd();

glBegin(GL_POINTS); // Specify another point
 glVertex3f(50.0f, 50.0f, 50.0f);
glEnd();

Indenting Your Code
In the foregoing examples, did you notice the indenting style used for the calls to glVertex()? This convention is
used by most OpenGL programmers to make the code easier to read. It is not required, but it does make it easier
to find where primitives start and stop.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Drawing in 3D: Lines, Points, and Polygons

http://www.itknowledge.com/reference/archive/1571690735/ch06/128-132.html [20-03-2000 21:28:09]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Our First Example

The code shown in Listing 6-2 draws some points in our 3D environment. It uses some simple
trigonometry to draw a series of points that form a corkscrew path up the z-axis. This code is from the
POINTS program, which is on the CD in the subdirectory for this chapter. All of the example
programs use the framework we established in Chapters 4 and 5. Notice that in the SetupRC() function
we are setting the current drawing color to green.

Listing 6-2 Rendering code to produce a spring-shaped path of points

// Define a constant for the value of PI
#define GL_PI 3.1415f

// This function does any needed initialization on the rendering
// context.
void SetupRC()
 {
 // Black background
 glClearColor(0.0f, 0.0f, 0.0f, 1.0f);

 // Set drawing color to green
 glColor3f(0.0f, 1.0f, 0.0f);
 }

// Called to draw scene
void RenderScene(void)
 {
 GLfloat x,y,z,angle; // Storage for coordinates and angles

 // Clear the window with current clearing color
 glClear(GL_COLOR_BUFFER_BIT);

 // Save matrix state and do the rotation
 glPushMatrix();
 glRotatef(xRot, 1.0f, 0.0f, 0.0f);
 glRotatef(yRot, 0.0f, 1.0f, 0.0f);

 // Call only once for all remaining points
 glBegin(GL_POINTS);

 z = -50.0f;
 for(angle = 0.0f; angle <= (2.0f*GL_PI)*3.0f; angle += 0.1f)
 {
 x = 50.0f*sin(angle);
 y = 50.0f*cos(angle);

 // Specify the point and move the Z value up a little
 glVertex3f(x, y, z);
 z += 0.5f;
 }

 // Done drawing points
 glEnd();

 // Restore transformations
 glPopMatrix();

 // Flush drawing commands
 glFlush();
 }

Only the code between calls to glBegin and glEnd is important for our purpose in this and the other
examples for this chapter. This code calculates the x and y coordinates for an angle that spins between
0º and 360º three times. (We express this programmatically in radians rather than degrees; if you don’t
know trigonometry, you can take our word for it. If you’re interested, see the box, “The Trigonometry
of Radians/Degrees.” Each time a point is drawn, the z value is increased slightly. When this program
is run, all you will see is a circle of points, because you are initially looking directly down the z-axis.
To better see the effect, use the arrow keys to spin the drawing around the x- and y-axes. This is
illustrated in Figure 6-3.

Figure 6-3 Output from the POINTS sample program

One Thing at a Time
Again, don’t get too distracted by the functions in this sample that we haven’t covered yet (glPushMatrix,
glPopMatrix, and glRotate). These functions are used to rotate the image around so you can better see the
positioning of the points as they are drawn in 3D space. We will be covering these in some detail in
Chapter 7. If we hadn’t used these features now, you wouldn’t be able to see the effects of your 3D
drawings, and this and the following sample programs wouldn’t be very interesting to look at. For the
rest of the sample code in this chapter, we will only be showing the code that includes the glBegin and
glEnd statements.

The Trigonometry of Radians/Degrees
The figure in this box shows a circle drawn in the xy plane. A line segment from the origin (0,0) to any
point on the circle will make an angle (a) with the x-axis. For any given angle, the trigonometric
functions Sine and Cosine will return the x and y values of the point on the circle. By stepping a variable
that represents the angle all the way around the origin, we can calculate all the points on the circle. Note
that the C runtime functions sin() and cos() accept angle values measured in radians instead of degrees.
There are 2*PI radians in a circle, where PI is a nonrational number that is approximately 3.1415
(nonrational means there are an infinite number of values past the decimal point).

Setting the Point Size

When you draw a single point, the size of the point is one pixel by default. You can change this with
the function glPointSize.

void glPointSize(GLfloat size);

The glPointSize function takes a single parameter that specifies the approximate diameter in pixels of
the point drawn. Not all point sizes are supported, however, and you should check to make sure the
point size you specify is available. Use the following code to get the range of point sizes, and the
smallest interval between them:

GLfloat sizes[2]; // Store supported point size range
GLfloat step; // Store supported point size increments

// Get supported point size range and step size
glGetFloatv(GL_POINT_SIZE_RANGE,sizes);
glGetFloatv(GL_POINT_SIZE_GRANULARITY,&step);

Here the sizes array will contain two elements that contain the smallest and the largest valid value for
glPointsize. In addition, the variable step will hold the smallest step size allowable between the point
sizes. The OpenGL specification only requires that one point size, 1.0, be supported. The Microsoft
implementation of OpenGL allows for point sizes from 0.5 to 10.0, with 0.125 the smallest step size.
Specifying a size out of range will not be interpreted as an error. Instead, the largest or smallest
supported size will be used, whichever is closest to the value specified.

OpenGL State Variables
OpenGL maintains the state of many of its internal variables and settings. This collection of settings is
called the OpenGL State Machine. The State Machine can be queried to determine the state of any of its
variables and settings. Any feature or capability you enable or disable with glEnable/glDisable, as well as
numeric settings set with glSet, can be queried with the many variations of glGet. Chapter 14 explores
the OpenGL State Machine more completely.

Let’s look at a sample that makes use of these new functions. The code shown in Listing 6-3 produces
the same spiral shape as our first example, but this time the point sizes are gradually increased from the
smallest valid size to the largest valid size. This example is from the program POINTSZ in the CD
subdirectory for this chapter. The output from POINTSZ is shown in Figure 6-4.

Figure 6-4 Output from POINTSZ program

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Drawing in 3D: Lines, Points, and Polygons

http://www.itknowledge.com/reference/archive/1571690735/ch06/132-136.html [20-03-2000 21:28:18]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Listing 6-3 Code from POINTSZ that produces a spiral with gradually increasing point sizes

// Define a constant for the value of PI
#define GL_PI 3.1415f

// Called to draw scene
void RenderScene(void)
 {
 GLfloat x,y,z,angle; // Storage for coordinates and angles
 GLfloat sizes[2]; // Store supported point size range
 GLfloat step; // Store supported point size increments
 GLfloat curSize; // Store current point size
 …
 …

 // Get supported point size range and step size
 glGetFloatv(GL_POINT_SIZE_RANGE,sizes);
 glGetFloatv(GL_POINT_SIZE_GRANULARITY,&step);

 // Set the initial point size
 curSize = sizes[0];

 // Set beginning z coordinate
 z = -50.0f;

 // Loop around in a circle three times
 for(angle = 0.0f; angle <= (2.0f*GL_PI)*3.0f; angle += 0.1f)
 {
 // Calculate x and y values on the circle
 x = 50.0f*sin(angle);
 y = 50.0f*cos(angle);

 // Specify the point size before the primitive is specified
 glPointSize(curSize);

 // Draw the point
 glBegin(GL_POINTS);
 glVertex3f(x, y, z);
 glEnd();

 // Bump up the z value and the point size
 z += 0.5f;
 curSize += step;
 }

 …
 …
 }

This example demonstrates a couple of important things. For starters, notice that glPointSize must be called
outside the glBegin/glEnd statements. Not all OpenGL functions are valid between these function calls. Though
glPointSize affects all points drawn after it, you don’t begin drawing points until you call
glBegin(GL_POINTS). For a complete list of valid functions that you can call within a glBegin/glEnd
sequence, see the Reference Section.

The most obvious thing you probably noticed about the POINTSZ excerpt is that the larger point sizes are
represented simply by larger squares. This is the default behavior, but it typically is undesirable for many
applications. Also, you may be wondering why you can increase the point size by a value less than one. If a
value of 1.0 represents one pixel, how do you draw less than a pixel or, say, 2.5 pixels?

The answer is that the point size specified in glPointSize isn’t the exact point size in pixels, but the approximate
diameter of a circle containing all the pixels that will be used to draw the point. You can get OpenGL to draw
the points as better points (that is, small filled circles) by enabling point smoothing, with a call to

glEnable(GL_POINT_SMOOTH);

Other functions affect how points and lines are smoothed, but this falls under the larger topic of anti-aliasing
(Chapter 16). Anti-aliasing is a technique used to smooth out jagged edges and round out corners. We mention
it now only in case you want to play with this on your own, and to whet your appetite for the rest of the book!

Drawing Lines in 3D

The GL_POINTS primitive we have been using thus far is pretty straightforward; for each vertex specified, it
draws a point. The next logical step is to specify two vertices and draw a line between them. This is exactly
what the next primitive, GL_LINES, does. The following short section of code draws a single line between two
points (0,0,0) and (50, 50, 50):

glBegin(GL_LINES);
 glVertex3f(0.0f, 0.0f, 0.0f);
 glVertex3f(50.0f, 50.0f, 50.0f);
glEnd();

Note here that two vertices are used to specify a single primitive. For every two vertices specified, a single line
is drawn. If you specify an odd number of vertices for GL_LINES, the last vertex is just ignored. Listing 6-4,
from the LINES sample program on the CD, shows a more complex sample that draws a series of lines fanned
around in a circle. The output from this program is shown in Figure 6-5.

Figure 6-5 Output from the LINES sample program

Listing 6-4 Code from the sample program LINES that displays a series of lines fanned in a circle

 // Call only once for all remaining points
 glBegin(GL_LINES);
 // All lines lie in the xy plane.
 z = 0.0f;
 for(angle = 0.0f; angle <= GL_PI*3.0f; angle += 0.5f)
 {
 // Top half of the circle
 x = 50.0f*sin(angle);
 y = 50.0f*cos(angle);
 glVertex3f(x, y, z); // First end point of line

 // Bottom half of the circle
 x = 50.0f*sin(angle+3.1415f);
 y = 50.0f*cos(angle+3.1415f);
 glVertex3f(x, y, z); // Second end point of line
 }

 // Done drawing points
glEnd();

Line Strips and Loops

The next two OpenGL primitives build on GL_LINES by allowing you to specify a list of vertices through
which a line is drawn. When you specify GL_LINE_STRIP, a line is drawn from one vertex to the next in a
continuous segment. The following code draws two lines in the xy plane that are specified by three vertices.
Figure 6-6 shows an example.

glBegin(GL_LINE_STRIP);
 glVertex3f(0.0f, 0.0f, 0.0f); // V0
 glVertex3f(50.0f, 50.0f, 0.0f); // V1
 glVertex3f(50.0f, 100.0f, 0.0f); // V2
glEnd();

Figure 6-6 An example of a GL_LINE_STRIP specified by three vertices

The last line-based primitive is the GL_LINE_LOOP. This primitive behaves just like a GL_LINE_STRIP, but
one final line is drawn between the last vertex specified and the first one specified. This is an easy way to draw
a closed-line figure. Figure 6-7 shows a GL_LINE_LOOP drawn using the same vertices as for the
GL_LINE_STRIP in Figure 6-6.

Figure 6-7 The same vertices from Figure 6-6, used by a GL_LINE_LOOP primitive

Approximating Curves with Straight Lines

The POINTS example program, shown earlier in Figure 6-3, showed you how to plot points along a
spring-shaped path. You may have been tempted to push the points closer and closer together (by setting
smaller values for the angle increment) to create a smooth spring-shaped curve instead of the broken points that
only approximated the shape. This is a perfectly valid operation, but it can be quite slow for larger and more
complex curves with thousands of points.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Drawing in 3D: Lines, Points, and Polygons

http://www.itknowledge.com/reference/archive/1571690735/ch06/136-141.html [20-03-2000 21:28:29]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

A better way of approximating a curve is to use a GL_LINE_STRIP to play connect-the-dots. As the
dots move closer together, a smoother curve materializes, without your having to specify all those
points. Listing 6-5 shows the code from Listing 6-2, with the GL_POINTS replaced by
GL_LINE_STRIP. The output from this new program, LSTRIPS, is shown in Figure 6-8. As you can
see, the approximation of the curve is quite good. You will find this handy technique almost ubiquitous
among OpenGL programs.

Figure 6-8 Output from the LSTRIPS program approximating a smooth curve

Listing 6-5 Code from the sample program LSTRIPS, demonstrating Line Strips

 // Call only once for all remaining points
 glBegin(GL_LINE_STRIP);
 z = -50.0f;

 for(angle = 0.0f; angle <= (2.0f*GL_PI)*3.0f; angle += 0.1f)
 {
 x = 50.0f*sin(angle);
 y = 50.0f*cos(angle);

 // Specify the point and move the Z value up a little
 glVertex3f(x, y, z);
 z += 0.5f;
 }

 // Done drawing points
 glEnd();

Setting the Line Width

Just as you can set different point sizes, you can also specify various line widths when drawing lines.
This is done with the glLineWidth function:

void glLineWidth(GLfloat width);

The glLineWidth function takes a single parameter that specifies the approximate width, in pixels, of
the line drawn. Just like point sizes, not all line widths are supported, and you should check to make
sure the line width you want to specify is available. Use the following code to get the range of line
widths, and the smallest interval between them:

GLfloat sizes[2]; // Store supported line width range
GLfloat step; // Store supported line width increments

// Get supported line width range and step size
glGetFloatv(GL_LINE_WIDTH_RANGE,sizes);
glGetFloatv(GL_LINE_WIDTH_GRANULARITY,&step);

Here the sizes array will contain two elements that contain the smallest and the largest valid value for
glLineWidth. In addition, the variable step will hold the smallest step size allowable between the line
widths. The OpenGL specification only requires that one line width, 1.0, be supported. The Microsoft
implementation of OpenGL allows for line widths from 0.5 to 10.0, with 0.125 the smallest step size.

Listing 6-6 shows code for a more substantial example of glLineWidth. It’s from the program
LINESW and draws ten lines of varying widths. It starts at the bottom of the window at –90 on the
y-axis and climbs the y-axis 20 units for each new line. Every time it draws a new line, it increases the
line width by 1. Figure 6-9 shows the output for this program.

Figure 6-9 Demonstration of glLineWidth from LINESW program

Listing 6-6 Drawing lines of various widths

// Called to draw scene
void RenderScene(void)
 {
 GLfloat y; // Storage for varying Y coordinate
 GLfloat fSizes[2]; // Line width range metrics
 GLfloat fCurrSize; // Save current size

 …
 …
 …

 // Get line size metrics and save the smallest value
 glGetFloatv(GL_LINE_WIDTH_RANGE,fSizes);
 fCurrSize = fSizes[0];

 // Step up Y axis 20 units at a time
 for(y = -90.0f; y < 90.0f; y += 20.0f)
 {
 // Set the line width
 glLineWidth(fCurrSize);

 // Draw the line
 glBegin(GL_LINES);
 glVertex2f(-80.0f, y);
 glVertex2f(80.0f, y);
 glEnd();

 // Increase the line width
 fCurrSize += 1.0f;
 }

 …
 …
 }

Notice that we used glVertex2f() this time instead of glVertex3f() to specify the coordinates for our
lines. As mentioned, this is only a convenience because we are drawing in the xy plane, with a z value
of zero. To see that you are still drawing lines in three dimensions, simply use the arrow keys to spin
your lines around. You will see easily that all the lines lie on a single plane.

Line Stippling

In addition to changing line widths, you can create lines with a dotted or dashed pattern, called
stippling. To use line stippling, you must first enable stippling with a call to

glEnable(GL_LINE_STIPPLE);

Then the function glLineStipple establishes the pattern that the lines will use for drawing.

void glLineStipple(GLint factor, GLushort pattern);

Reminder
Any feature or ability that is enabled by a call to glEnable() can be disabled by a call to glDisable().

The pattern parameter is a 16-bit value that specifies a pattern to use when drawing the lines. Each bit
represents a section of the line segment that is either on or off. By default, each bit corresponds to a
single pixel, but the factor parameter serves as a multiplier to increase the width of the pattern. For
example, setting factor to 5 would cause each bit in the pattern to represent five pixels in a row that
would be either on or off. Furthermore, bit 0 (the least significant bit) of the pattern is used first to
specify the line. Figure 6-10 illustrates a sample bit pattern applied to a line segment.

Figure 6-10 Stipple pattern is used to construct a line segment

Why Are These Patterns Backward?
You might wonder why the bit pattern used for stippling is used in reverse when drawing the line.
Internally, it’s much faster for OpenGL to shift this pattern to the left one place, each time it needs to get
the next mask value. For high-performance applications, reversing this pattern internally (to make it
easier for humans to understand) can take up precious processor time.

Listing 6-7 shows a sample of using a stippling pattern that is just a series of alternating On and Off
bits (0101010101010101). This program draws ten lines from the bottom of the window up the y-axis
to the top. Each line is stippled with the pattern 0x5555, but for each new line the pattern multiplier is
increased by 1. You can clearly see the effects of the widened stipple pattern in Figure 6-11.

Figure 6-11 Output from the LSTIPPLE program

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Drawing in 3D: Lines, Points, and Polygons

http://www.itknowledge.com/reference/archive/1571690735/ch06/141-145.html [20-03-2000 21:28:41]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Listing 6-7 Code from LSTIPPLE that demonstrates the effect of factor on the bit pattern

// Called to draw scene
void RenderScene(void)
 {
 GLfloat y; // Storage for varying Y coordinate
 GLint factor = 1; // Stippling factor
 GLushort pattern = 0x5555; // Stipple pattern

 …
 …
 // Enable Stippling
 glEnable(GL_LINE_STIPPLE);

 // Step up Y axis 20 units at a time
 for(y = -90.0f; y < 90.0f; y += 20.0f)
 {
 // Reset the repeat factor and pattern
 glLineStipple(factor,pattern);

 // Draw the line
 glBegin(GL_LINES);
 glVertex2f(-80.0f, y);
 glVertex2f(80.0f, y);
 glEnd();

 factor++;
 }
 …
 …
 }

Drawing Triangles in 3D

You’ve seen how to draw points and lines, and even how to draw some enclosed polygons with
GL_LINE_LOOP. With just these primitives, you could easily draw any shape possible in three
dimensions. You could, for example, draw six squares and arrange them so they form the sides of a cube.

You may have noticed, however, that any shapes you create with these primitives are not filled with any
color—after all, you are only drawing lines. In fact, all the previous example draws is a wireframe cube,
not a solid cube. To draw a solid surface, you need more than just points and lines; you need polygons. A
polygon is a closed shape that may or may not be filled with the currently selected color, and it is the basis
of all solid-object composition in OpenGL.

Triangles: Your First Polygon

The simplest polygon possible is the triangle, with only three sides. The GL_TRIANGLES primitive is
used to draw triangles, and it does so by connecting three vertices together. The following code draws two
triangles using three vertices each, as shown in Figure 6-12:

Figure 6-12 Two triangles drawn using GL_TRIANGLES

glBegin(GL_TRIANGLES);
 glVertex2f(0.0f, 0.0f); // V0
 glVertex2f(25.0f, 25.0f); // V1
 glVertex2f(50.0f, 0.0f); // V2

 glVertex2f(-50.0f, 0.0f); // V3
 glVertex2f(-75.0f, 50.0f); // V4
 glVertex2f(-25.0f, 0.0f); // V5
glEnd();

Note that the triangles will be filled with the currently selected drawing color. If you don’t specify a
drawing color at some point, you can’t be certain of the result (there is no default drawing color).

Choose the Fastest Primitives for Performance Tip
The triangle is the primitive of choice for the OpenGL programmer. You will find that, with a little work, any
polygonal shape can be composed of one or more triangles placed carefully together. Most 3D accelerated
hardware is highly optimized for the drawing of triangles. In fact, you will see many 3D benchmarks
measured in triangles per second.

Winding

An important characteristic of any polygonal primitive is illustrated in Figure 6-12. Notice the arrows on
the lines that connect the vertices. When the first triangle is drawn, the lines are drawn from V0 to V1, then
to V2, and finally back to V0 to close the triangle. This path is in the order that the vertices are specified,
and for this example, that order is clockwise from your point of view. The same directional characteristic is
present for the second triangle, as well.

The combination of order and direction in which the vertices are specified is called winding. The triangles
in Figure 6-12 are said to have clockwise winding because they are literally wound in the clockwise
direction. If we reverse the positions of V4 and V5 on the triangle on the left, we get counterclockwise
winding as shown in Figure 6-13.

Figure 6-13 Two triangles with different windings

OpenGL by default considers polygons that have counterclockwise winding to be front facing. This means
that the triangle on the left in Figure 6-13 is showing us the front of the triangle, and the one on the right is
showing the back side of the triangle.

Why is this important? As you will soon see, you will often want to give the front and back of a polygon
different physical characteristics. You can hide the back of a polygon altogether, or give it a different color
and reflective property as well (see Chapter 9). It’s very important to keep the winding of all polygons in a
scene consistent, using front-facing polygons to draw the outside surface of any solid objects. In the
upcoming section on solid objects, we will demonstrate this principle using some models that are more
complex.

If you need to reverse the default behavior of OpenGL, you can do so by calling the function

glFrontFace(GL_CW);

The GL_CW parameter tells OpenGL that clockwise-wound polygons are to be considered front facing. To
change back to counterclockwise winding for the front face, use GL_CCW.

Triangle Strips

For many surfaces and shapes, you will need to draw several connected triangles. You can save a lot of
time by drawing a strip of connected triangles with the GL_TRIANGLE_STRIP primitive. Figure 6-14
shows the progression of a strip of three triangles specified by a set of five vertices numbered V0 through
V4. Here you see the vertices are not necessarily traversed in the same order they were specified. The
reason for this is to preserve the winding (counterclockwise) of each triangle.

Figure 6-14 The progression of a GL_TRIANGLE_STRIP

(By the way, for the rest of our discussion of polygonal primitives, we won’t be showing you any more
code fragments to demonstrate the vertices and the glBegin statements. You should have the swing of
things by now. Later, when we have a real sample program to work with, we’ll resume the examples.)

There are two advantages to using a strip of triangles instead of just specifying each triangle separately.
First, after specifying the first three vertices for the initial triangle, you only need to specify a single point
for each additional triangle. This saves a lot of time (as well as data space) when you have many triangles
to draw. The second advantage is that it’s a good idea, as mentioned previously, to compose an object or
surface out of triangles rather than some of the other primitives.

Another advantage to composing large flat surfaces out of several smaller triangles is that when lighting
effects are applied to the scene, the simulated effects can be better reproduced by OpenGL. You’ll learn to
apply this technique in Chapter 9.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Drawing in 3D: Lines, Points, and Polygons

http://www.itknowledge.com/reference/archive/1571690735/ch06/145-149.html [20-03-2000 21:28:50]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Triangle Fans

In addition to triangle strips, you can use GL_TRIANGLE_FAN to produce a group of connected
triangles that fan around a central point. Figure 6-15 shows a fan of three triangles produced by
specifying four vertices. The first vertex, V0, forms the origin of the fan. After the first three vertices are
used to draw the initial triangle, all subsequent vertices are used with the origin (V0) and the vertex
immediately preceding it (Vn-1) to form the next triangle. Notice that the vertices are traversed in a
clockwise direction, rather than counterclockwise.

Figure 6-15 The progression of GL_TRIANGLE_FAN

Building Solid Objects

Composing a solid object out of triangles (or any other polygon) involves more than just assembling a
series of vertices in a 3D coordinate space. Let’s examine the example program TRIANGLE, which uses
two triangle fans to create a cone in our viewing volume. The first fan produces the cone shape, using
the first vertex as the point of the cone and the remaining vertices as points along a circle further down
the z-axis. The second fan forms a circle and lies entirely in the xy plane, making up the bottom surface
of the cone.

The output from TRIANGLE is shown in Figure 6-16. Here you are looking directly down the z-axis
and can only see a circle composed of a fan of triangles. The individual triangles are emphasized by
coloring them alternately green and red.

Figure 6-16 Initial output from the TRIANGLE sample program

The code for the SetupRC and RenderScene functions is shown in Listing 6-8. (You will see some
unfamiliar variables and specifiers that will be explained shortly.) This program demonstrates several
aspects of composing 3D objects. Notice the Effects menu item; this will be used to enable and disable
some 3D drawing features so we can explore some of the characteristics of 3D object creation.

Listing 6-8 Pertinent code for the TRIANGLE sample program

// This function does any needed initialization on the rendering
// context.
void SetupRC()
 {
 // Black background
 glClearColor(0.0f, 0.0f, 0.0f, 1.0f);

 // Set drawing color to green
 glColor3f(0.0f, 1.0f, 0.0f);

 // Set color shading model to flat
 glShadeModel(GL_FLAT);

 // Clockwise-wound polygons are front facing; this is reversed
 // because we are using triangle fans
 glFrontFace(GL_CW);
 }

// Called to draw scene
void RenderScene(void)
 {
 GLfloat x,y,angle; // Storage for coordinates and angles
 int iPivot = 1; // Used to flag alternating colors

 // Clear the window and the depth buffer
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Turn culling on if flag is set
 if(bCull)
 glEnable(GL_CULL_FACE);
 else
 glDisable(GL_CULL_FACE);
 // Enable depth testing if flag is set
 if(bDepth)
 glEnable(GL_DEPTH_TEST);
 else
 glDisable(GL_DEPTH_TEST);
 // Draw the back side as a polygon only, if flag is set
 if(bOutline)
 glPolygonMode(GL_BACK,GL_LINE);
 else
 glPolygonMode(GL_BACK,GL_FILL);

 // Save matrix state and do the rotation
 glPushMatrix();
 glRotatef(xRot, 1.0f, 0.0f, 0.0f);
 glRotatef(yRot, 0.0f, 1.0f, 0.0f);

 // Begin a triangle fan
 glBegin(GL_TRIANGLE_FAN);

 // Pinnacle of cone is shared vertex for fan, moved up z-axis
 // to produce a cone instead of a circle
 glVertex3f(0.0f, 0.0f, 75.0f);

 // Loop around in a circle and specify even points
 along the circle
 // as the vertices of the triangle fan
 for(angle = 0.0f; angle < (2.0f*GL_PI); angle += (GL_PI/8.0f))
 {
 // Calculate x and y position of the next vertex
 x = 50.0f*sin(angle);
 y = 50.0f*cos(angle);

 // Alternate color between red and green
 if((iPivot %2) == 0)
 glColor3f(0.0f, 1.0f, 0.0f);
 else
 glColor3f(1.0f, 0.0f, 0.0f);
 // Increment pivot to change color next time
 iPivot++;

 // Specify the next vertex for the triangle fan
 glVertex2f(x, y);
 }

 // Done drawing fan for cone
 glEnd();

 // Begin a new triangle fan to cover the bottom
 glBegin(GL_TRIANGLE_FAN);

 // Center of fan is at the origin
 glVertex2f(0.0f, 0.0f);
 for(angle = 0.0f; angle < (2.0f*GL_PI); angle += (GL_PI/8.0f))
 {
 // Calculate x and y position of the next vertex
 x = 50.0f*sin(angle);
 y = 50.0f*cos(angle);

 // Alternate color between red and green
 if((iPivot %2) == 0)
 glColor3f(0.0f, 1.0f, 0.0f);
 else
 glColor3f(1.0f, 0.0f, 0.0f);

 // Increment pivot to change color next time
 iPivot++;

 // Specify the next vertex for the triangle fan
 glVertex2f(x, y);
 }

 // Done drawing the fan that covers the bottom
 glEnd();
 // Restore transformations
 glPopMatrix();
 // Flush drawing commands
 glFlush();
 }

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Drawing in 3D: Lines, Points, and Polygons

http://www.itknowledge.com/reference/archive/1571690735/ch06/149-153.html [20-03-2000 21:28:58]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Setting Polygon Colors

Until now, we have set the current color only once and drawn only a single shape. Now,
with multiple polygons, things get slightly more interesting. We want to use different colors
so we can see our work more easily. Colors are actually specified per vertex, not per
polygon. The shading model affects whether the polygon is then solidly colored (using the
current color selected when the last vertex was specified), or smoothly shaded between the
colors specified for each vertex.

The line glShadeModel(GL_FLAT); tells OpenGL to fill the polygons with the solid color
that was current when the polygon’s last vertex was specified. This is why we can simply
change the current color to red or green before specifying the next vertex in our triangle fan.
On the other hand, the line glShadeModel(GL_SMOOTH); would tell OpenGL to shade the
triangles smoothly from each vertex, attempting to interpolate the colors between those
specified for each vertex. You’ll be learning much more about color and shading in Chapter
8.

Hidden Surface Removal

Hold down one of the arrow keys to spin the cone around, and don’t select anything from
the Effects menu yet. You’ll notice something unsettling: The cone appears to be swinging
back and forth plus and minus 180º, with the bottom of the cone always facing you, but not
rotating a full 360º. Figure 6-17 shows this more clearly.

Figure 6-17 The rotating cone appears to be wobbling back and forth

This is occurring because the bottom of the cone is being drawn after the sides of the cone
are drawn. This means, no matter how the cone is oriented, the bottom is then drawn on top
of it, producing the “wobbling” illusion. This effect is not limited to just the various sides
and parts of an object. If more than one object is drawn and one is in front of the other (from
the viewer’s perspective), the last object drawn will still appear over the previously drawn
object.

You can correct this peculiarity with a simple technique called hidden surface removal, and
OpenGL has functions that will do this for you behind the scenes. The concept is simple:
When a pixel is drawn, it is assigned a value (called the z value) that denotes its distance
from the viewer’s perspective. Later, when another pixel needs to be drawn to that screen
location, the new pixel’s z value is compared to that of the pixel that is already stored there.
If the new pixel’s z value is higher, then it is closer to the viewer and thus in front of the
previous pixel, so the previous pixel will be obscured by the new pixel. If the new pixel’s z
value is lower, then it must be behind the existing pixel and thus would not be obscured.
This maneuver is accomplished internally by a depth buffer, which will be discussed in
Chapter 15.

To enable depth testing, simply call

glEnable(GL_DEPTH_TEST);

This is done in Listing 6-8 when the bDepth variable is set to True, and depth testing is
disabled if bDepth is False.

// Enable depth testing if flag is set
if(bDepth)
 glEnable(GL_DEPTH_TEST);
else
 glDisable(GL_DEPTH_TEST);

The bDepth variable is set when Depth Test is selected from the Effects menu. In addition,
the depth buffer must be cleared each time the scene is rendered. The depth buffer is
analogous to the color buffer in that it contains information about the distance of the pixels
from the observer. This is used to determine if any pixels are hidden by pixels closer to the
observer.

// Clear the window and the depth buffer
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

Figure 6-18 shows the Effects menu with depth testing enabled. It also shows the cone with
the bottom correctly hidden behind the sides. You can see that depth testing is practically a
prerequisite to creation of 3D objects out of solid polygons.

Figure 6-18 The bottom of the cone is now correctly placed behind the sides for this
orientation

Culling: Hiding Surfaces for Performance

You can see that there are obvious visual advantages to not drawing a surface that is
obstructed by another. Even so, you pay some performance overhead because every pixel
drawn must be compared with the previous pixel’s z value. Sometimes, however, you know
that a surface will never be drawn anyway, so why specify it? The answer is that you may
not wish to draw the back sides of the surface.

In our working example, the cone is a closed surface and we never see the inside. OpenGL is
actually (internally) drawing the back sides of the far side of the cone, and then the front
sides of the polygons facing us. Then, by a comparison of z buffer values, the far side of the
cone is eliminated. Figures 6-19a and 6-19b show our cone at a particular orientation with
depth testing turned on (a) and off (b). Notice that the green and red triangles that make up
the cone sides change when depth testing is enabled. Without depth testing, the sides of the
triangles at the far side of the cone show through.

Figure 6-19a With depth testing

Figure 6-19b Without depth testing

Earlier in the chapter we explained how OpenGL uses winding to determine the front and
back sides of polygons, and that it is important to keep the polygons that define the outside
of your objects wound in a consistent direction. This consistency is what allows us to tell
OpenGL to render only the front, only the back, or both sides of polygons. By eliminating
the back sides of the polygons, we can drastically reduce the amount of necessary processing
to render the image. Even though depth testing will eliminate the appearance of the inside of
objects, internally OpenGL must take them into account unless we explicitly tell it not to.

The elimination of the front or back of polygons is called culling. Culling is enabled or
disabled for our program by the following code fragment from Listing 6-8:

// Clockwise-wound polygons are front facing; this is reversed
// because we are using triangle fans
glFrontFace(GL_CW);

…
…

// Turn culling on if flag is set
if(bCull)
 glEnable(GL_CULL_FACE);
else
 glDisable(GL_CULL_FACE);

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Drawing in 3D: Lines, Points, and Polygons

http://www.itknowledge.com/reference/archive/1571690735/ch06/153-157.html [20-03-2000 21:29:09]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Note that we first changed the definition of front-facing polygons to be
those with clockwise winding (because our triangle fans are all wound
clockwise).

Figure 6-20 demonstrates that the bottom of the cone is gone when culling
is enabled. This is because we didn’t follow our own rule about all the
surface polygons having the same winding. The triangle fan that makes up
the bottom of the cone is wound clockwise, like the fan that makes up the
sides of the cone, but the front side of the cone’s bottom section is facing
the inside. See Figure 6-21.

Figure 6-20 The bottom of the cone is culled because the front-facing
triangles are inside

Figure 6-21 How the cone was assembled from two triangle fans

We could have corrected this by changing the winding rule, by calling

glFrontFace(GL_CCW);

just before we drew the second triangle fan. But in this example we wanted
to make it easy for you to see culling in action, as well as get set up for our
next demonstration of polygon tweaking.

Polygon Modes

Polygons don’t have to be filled with the current color. By default, polygons
are drawn solid, but you can change this behavior by specifying that
polygons are to be drawn as outlines or just points (only the vertices are
plotted). The function glPolygonMode() allows polygons to be rendered
filled, as outlines, or as points only. In addition, this rendering mode can be
applied to both sides of the polygons or to just the front or back. The
following code from Listing 6-8 shows the polygon mode being set to
outlines or solid, depending on the state of the Boolean variable bOutline:

// Draw back side as a polygon only, if flag is set
if(bOutline)
 glPolygonMode(GL_BACK,GL_LINE);
else
 glPolygonMode(GL_BACK,GL_FILL);

Figure 6-22 shows the back sides of all polygons rendered as outlines. (We
had to disable culling to produce this image; otherwise, the inside would be
eliminated and you’d get no outlines.) Notice that the bottom of the cone is
now wireframe instead of solid, and you can see up inside the cone where
the inside walls are also drawn as wireframe triangles.

Figure 6-22 Using glPolygonMode() to render one side of the triangles as
outlines

Other Primitives

Triangles are the preferred primitive for object composition since most
OpenGL hardware specifically accelerates triangles, but they are not the
only primitives available. Some hardware will provide for acceleration of
other shapes as well, and programmatically it may be simpler to use a
general-purpose graphics primitive. The remaining OpenGL primitives
provide for rapid specification of a quadrilateral or quadrilateral strip, as
well as a general-purpose polygon. If you know your code is going to be run
in an environment that accelerates general-purpose polygons, these may be
your best bet in terms of performance.

Four-Sided Polygons: Quads

The next most complex shape from a triangle is a quadrilateral, or a
four-sided figure. OpenGL’s GL_QUADS primitive draws a four-sided
polygon. In Figure 6-23 a quad is drawn from four vertices. Note also that
quads have clockwise winding.

Figure 6-23 An example of GL_QUAD

Quad Strips

Just as you can for triangles, you can specify a strip of connected
quadrilaterals with the GL_QUAD_STRIP primitive. Figure 6-24 shows the
progression of a quad strip specified by six vertices. Quad strips, like single
GL_QUADS, maintain a clockwise winding.

Figure 6-24 Progression of GL_QUAD_STRIP

General Polygons

The final OpenGL primitive is the GL_POLYGON, which can be used to
draw a polygon having any number of sides. Figure 6-25 shows a polygon
consisting of five vertices. Polygons created with GL_POLYGON have
clockwise winding, as well.

Figure 6-25 Progression of GL_POLYGON

What About Rectangles?
All ten of the OpenGL primitives are used with glBegin/glEnd to draw
general-purpose polygonal shapes. One shape is so common, it has a
special function instead of being a primitive; that shape is the rectangle. It
was actually the first shape you learned to draw back in Chapter 3. The
function glRect() provides an easy and convenient mechanism for
specifying rectangles without having to resort to GL_QUAD.

Filling Polygons, or Stippling Revisited

There are two methods of applying a pattern to solid polygons. The
customary method is texture mapping, where a bitmap is mapped to the
surface of a polygon, and this is covered in Chapter 11. Another way is to
specify a stippling pattern, as we did for lines. A polygon stipple pattern is
nothing more than a 32 x 32 monochrome bitmap that is used for the fill
pattern.

To enable polygon stippling, call

glEnable(GL_POLYGON_STIPPLE);

and then call

glPolygonStipple(pBitmap);

where pBitmap is a pointer to a data area containing the stipple pattern.
Hereafter, all polygons will be filled using the pattern specified by pBitmap
(GLubyte *). This pattern is similar to that used by line stippling, except the
buffer is large enough to hold a 32 x 32-bit pattern. Also, the bits are read
with the MSB (Most Significant Bit) first, which is just the opposite of line
stipple patterns. Figure 6-26 shows a bit pattern for a campfire that we will
use for a stipple pattern.

Figure 6-26 Building a polygon stipple pattern

Pixel Storage
As you will learn in Chapter 11, you can modify the way pixels for
stipple patterns are interpreted, with the glPixelStore() function. For now,
though, we will stick to simple polygon stippling.

To construct a mask to represent this pattern, we store one row at a time
from the bottom up. Fortunately, unlike line-stipple patterns, the data is by
default interpreted just as it is stored, with the most significant bit read first.
Each byte can then be read from left to right and stored in an array of
GLubyte large enough to hold 32 rows of 4 bytes apiece.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Drawing in 3D: Lines, Points, and Polygons

http://www.itknowledge.com/reference/archive/1571690735/ch06/157-162.html [20-03-2000 21:29:27]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Listing 6-9 shows the code used to store this pattern. Each row of the array represents a row
from Figure 6-26. The first row in the array is the last row of the figure, and so on, up to the
last row of the array and the first row of the figure.

Listing 6-9 The mask definition for the campfire in Figure 6-26

// Bitmap of camp fire
GLubyte fire[] = { 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0xc0,
 0x00, 0x00, 0x01, 0xf0,
 0x00, 0x00, 0x07, 0xf0,
 0x0f, 0x00, 0x1f, 0xe0,
 0x1f, 0x80, 0x1f, 0xc0,
 0x0f, 0xc0, 0x3f, 0x80,
 0x07, 0xe0, 0x7e, 0x00,
 0x03, 0xf0, 0xff, 0x80,
 0x03, 0xf5, 0xff, 0xe0,
 0x07, 0xfd, 0xff, 0xf8,
 0x1f, 0xfc, 0xff, 0xe8,
 0xff, 0xe3, 0xbf, 0x70,
 0xde, 0x80, 0xb7, 0x00,
 0x71, 0x10, 0x4a, 0x80,
 0x03, 0x10, 0x4e, 0x40,
 0x02, 0x88, 0x8c, 0x20,
 0x05, 0x05, 0x04, 0x40,
 0x02, 0x82, 0x14, 0x40,
 0x02, 0x40, 0x10, 0x80,
 0x02, 0x64, 0x1a, 0x80,
 0x00, 0x92, 0x29, 0x00,
 0x00, 0xb0, 0x48, 0x00,
 0x00, 0xc8, 0x90, 0x00,
 0x00, 0x85, 0x10, 0x00,
 0x00, 0x03, 0x00, 0x00,
 0x00, 0x00, 0x10, 0x00};

Suggestion: Come Back Later
If you are still uncertain about how this campfire bitmap is stored and interpreted, we suggest
you come back and reread this material after you’ve finished Chapter 11, “Raster Graphics in
OpenGL.”

To make use of this stipple pattern, we must first enable polygon stippling and then specify this
pattern as the stipple pattern. The PSTIPPLE example program does this, and then draws a
hexagon (stop sign) using the stipple pattern. Listing 6-10 is the pertinent code, and Figure 6-27
shows the output from PSTIPPLE.

Listing 6-10 Code from PSTIPPLE that draws a stippled hexagon

// This function does any needed initialization on the rendering
// context.
void SetupRC()
 {
 // Black background
 glClearColor(0.0f, 0.0f, 0.0f, 1.0f);

 // Set drawing color to red
 glColor3f(1.0f, 0.0f, 0.0f);

 // Enable polygon stippling
 glEnable(GL_POLYGON_STIPPLE);

 // Specify a specific stipple pattern
 glPolygonStipple(fire);
 }

// Called to draw scene
void RenderScene(void)
 {
 // Clear the window
 glClear(GL_COLOR_BUFFER_BIT);

 …
 …

 // Begin the stop sign shape,
 // use a standard polygon for simplicity
 glBegin(GL_POLYGON);
 glVertex2f(-20.0f, 50.0f);
 glVertex2f(20.0f, 50.0f);
 glVertex2f(50.0f, 20.0f);
 glVertex2f(50.0f, -20.0f);
 glVertex2f(20.0f, -50.0f);
 glVertex2f(-20.0f, -50.0f);
 glVertex2f(-50.0f, -20.0f);
 glVertex2f(-50.0f, 20.0f);
 glEnd();

 …
 …

 // Flush drawing commands
 glFlush();
 }

Figure 6-27 Output from the PSTIPPLE program

Figure 6-28 shows the hexagon rotated somewhat. You’ll notice that the stipple pattern is still
used, but the pattern is not rotated with the polygon. That’s because the stipple pattern is only
used for simple polygon filling on screen. If you need to map a bitmap to a polygon so that it
mimics the polygon’s surface, you will have to use texture mapping (Chapter 12).

Figure 6-28 PSTIPPLE output with the polygon rotated, showing that the stipple pattern is not
rotated

Polygon Construction Rules

When you are using many polygons to construct a complex surface, you’ll need to remember
two important rules.

The first rule is that all polygons must be planar. That is, all the vertices of the polygon must lie
in a single plane, as illustrated in Figure 6-29. The polygon cannot twist or bend in space.

Figure 6-29 Planar vs. nonplanar polygons

Here is yet another good reason to use triangles. No triangle can ever be twisted so that all three
points do not line up in a plane, because mathematically it only takes three points to define a
plane. (So if you can plot an invalid triangle, aside from winding it in the wrong direction, the
Nobel Prize committee may just be looking for you!)

The second rule of polygon construction is that the polygon’s edges must not intersect, and the
polygon must be convex. A polygon intersects itself if any two of its lines cross. “Convex”
means that the polygon cannot have any indentions. A more rigorous test of a convex polygon
is to draw some lines through it. If any given line enters and leaves the polygon more than
once, then the polygon is not convex. Figure 6-30 gives examples of good and bad polygons.

Figure 6-30 Some valid and invalid primitive polygons

Why the Limitations on Polygons?
You may be wondering why OpenGL places the restrictions on polygon construction. Handling
polygons can become quite complex, and OpenGL’s restrictions allow it to use very fast
algorithms for the rendering of these polygons. We predict that you’ll not find these restrictions
burdensome, and that you’ll be able to build any shapes or objects you need using the existing
primitives. (And you can use GL_LINES to draw an otherwise illegal shape, too.)

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Drawing in 3D: Lines, Points, and Polygons

http://www.itknowledge.com/reference/archive/1571690735/ch06/162-166.html [20-03-2000 21:29:37]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Subdivision and Edges

Even though OpenGL can only draw convex polygons, there’s still a way to
create a nonconvex polygon—by arranging two or more convex polygons
together. For example, let’s take a four-point star as shown in Figure 6-31.
This shape is obviously not convex and thus violates OpenGL’s rules for
simple polygon construction. However, the star on the right is composed of
six separate triangles, which are legal polygons.

Figure 6-31 A nonconvex four-point star made up of six triangles

When the polygons are filled, you won’t be able to see any edges and the
figure will seem to be a single shape on screen. However, if you use
glPolygonMode to switch to an outline drawing, it would be distracting to
see all those little triangles making up some larger surface area.

OpenGL provides a special flag called an edge flag for this purpose. By
setting and clearing the edge flag as you specify a list of vertices, you
inform OpenGL which line segments are considered border lines (lines that
go around the border of your shape), and which ones are not (internal lines
that shouldn’t be visible). The glEdgeFlag() function takes a single
parameter that sets the edge flag to True or False. When set to True, any
vertices that follow mark the beginning of a boundary line segment. Listing
6-11 shows an example of this from the STAR example program on the
CD.

Listing 6-11 Example usage of glEdgeFlag from the STAR program

 // Begin the triangles
 GlBegin(GL_TRIANGLES);

 glEdgeFlag(bEdgeFlag);
 glVertex2f(-20.0f, 0.0f);
 glEdgeFlag(TRUE);
 glVertex2f(20.0f, 0.0f);
 glVertex2f(0.0f, 40.0f);

 glVertex2f(-20.0f,0.0f);
 glVertex2f(-60.0f,-20.0f);
 glEdgeFlag(bEdgeFlag);
 glVertex2f(-20.0f,-40.0f);
 glEdgeFlag(TRUE);

 glVertex2f(-20.0f,-40.0f);
 glVertex2f(0.0f, -80.0f);
 glEdgeFlag(bEdgeFlag);
 glVertex2f(20.0f, -40.0f);
 glEdgeFlag(TRUE);

 glVertex2f(20.0f, -40.0f);
 glVertex2f(60.0f, -20.0f);
 glEdgeFlag(bEdgeFlag);
 glVertex2f(20.0f, 0.0f);
 glEdgeFlag(TRUE);

 // Center square as two triangles
 glEdgeFlag(bEdgeFlag);
 glVertex2f(-20.0f, 0.0f);
 glVertex2f(-20.0f,-40.0f);
 glVertex2f(20.0f, 0.0f);

 glVertex2f(-20.0f,-40.0f);
 glVertex2f(20.0f, -40.0f);
 glVertex2f(20.0f, 0.0f);
 glEdgeFlag(TRUE);

 // Done drawing Triangles
 glEnd();

The Boolean variable bEdgeFlag is toggled on and off by a menu option to
make the edges appear and disappear. If this flag is True, then all edges are
considered boundary edges and will appear when the polygon mode is set to
GL_LINES. In Figures 6-32a and 6-32b you can see the output from STAR,
showing the wireframe star with and without edges.

Figure 6-32a STAR program with edges enabled

Figure 6-32b STAR program without edges enabled

Summary

We’ve covered a lot of ground in this chapter. At this point you can create
your 3D space for rendering, and you know how to draw everything from
points and lines to complex polygons. We’ve also shown you how to
assemble these two dimensional primitives as the surface of
three-dimensional objects.

We encourage you to experiment with what you have learned in this
chapter. Use your imagination and create some of your own 3D objects
before moving on to the rest of the book. You’ll then have some personal
samples to work with and enhance as you learn and explore new techniques
throughout the book.

Here Comes the Tank/Robot Simulation
Beginning with this chapter, we will begin constructing a tank and robot
simulator as a supplementary example (found on the CD). The goal of
this simulation is to have both the tank and robot roam around in a virtual
landscape, allowing for viewpoints from the tank’s or robot’s perspective.
The tank/robot simulator is not explained as part of the text, but the
simulation will be gradually enhanced using the techniques presented in
each chapter. You can start now and view some of the objects that will
exist in the virtual world of our tank and robot. Observe and study how
these objects are composed entirely of the primitives from this chapter.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Drawing in 3D: Lines, Points, and Polygons

http://www.itknowledge.com/reference/archive/1571690735/ch06/166-171.html [20-03-2000 21:29:46]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Reference Section

glBegin
Purpose

Used to denote the beginning of a group of vertices that define one or more primitives.

Include File
<gl.h>

Syntax
void glBegin(GLenum mode);

Description
This function is used in conjunction with glEnd to delimit the vertices of an OpenGL
primitive. Multiple vertices sets may be included within a single glBegin/glEnd pair, as long
as they are for the same primitive type. Other settings may also be made with additional
OpenGL commands that affect the vertices following them. Only these OpenGL functions
may be called within a glBegin/glEnd sequence: glVertex, glColor, glIndex, glNormal,
glEvalCoord, glCallList, glCallLists, glTexCoord, glEdgeFlag, and glMaterial.

Parameters
mode

GLenum: This value specifies the primitive to be constructed. It may be any of the values in
Table 6-1.

Returns
None.

Example

You can find this ubiquitous function in literally every example and supplementary sample in this
chapter. The following code shows a single point being drawn at the origin of the x,y,z coordinate
system.

 glBegin(GL_POINTS)
 glVertex3f(0.0f, 0.0f, 0.0f); //plots point at origin
 glEnd();

See Also
glEnd, glVertex

Table 6-1 OpenGL Primitives Supported by glBegin()

Mode Primitive Type

GL_POINTS The specified vertices are used to create a single point each.
GL_LINES The specified vertices are used to create line segments. Every two

vertices specify a single and separate line segment. If the number of
vertices is odd, the last one is ignored.

GL_LINE_STRIP The specified vertices are used to create a line strip. After the first
vertex, each subsequent vertex specifies the next point to which the
line is extended.

GL_LINE_LOOP Behaves as GL_LINE_STRIP, except a final line segment is drawn
between the last and the first vertex specified. This is typically used
to draw closed regions that may violate the rules regarding
GL_POLYGON usage.

GL_TRIANGLES The specified vertices are used to construct triangles. Every three
vertices specify a new triangle. If the number of vertices is not
evenly divisible by three, the extra vertices are ignored.

GL_TRIANGLE_STRIP The specified vertices are used to create a strip of triangles. After
the first three vertices are specified, each of any subsequent vertices
is used with the two preceding ones to construct the next triangle.
Each triplet of vertices (after the initial set) is automatically
rearranged to ensure consistent winding of the triangles.

GL_TRIANGLE_FAN The specified vertices are used to construct a triangle fan. The first
vertex serves as an origin, and each vertex after the third is
combined with the foregoing one and the origin. Any number of
triangles may be fanned in this manner.

GL_QUADS Each set of four vertices is used to construct a quadrilateral (a
four-sided polygon). If the number of vertices is not evenly
divisible by four, the remaining ones are ignored.

GL_QUAD_STRIP The specified vertices are used to construct a strip of quadrilaterals.
One quadrilateral is defined for each pair of vertices after the first
pair. Unlike the vertex ordering for GL_QUADS, each pair of
vertices is used in the reverse order specified, to ensure consistent
winding.

GL_POLYGON The specified vertices are used to construct a convex polygon. The
polygon edges must not intersect. The last vertex is automatically
connected to the first vertex to insure the polygon is closed.

glCullFace
Purpose

Specifies whether the front or back of polygons should be eliminated from drawing.

Include File
<gl.h>

Syntax
void glCullFace(GLenum mode);

Description
This function disables lighting, shading, and color calculations and operations on either the
front or back of a polygon. Eliminates unnecessary rendering computations because the
back side of polygons will never be visible regardless of rotation or translation of the
objects. Culling is enabled or disabled by calling glEnable and glDisable with the
GL_CULL_FACE parameter. The front and back of the polygon are defined by use of
glFrontFace() and by the order in which the vertices are specified (clockwise or
counterclockwise winding).

Parameters
mode

GLenum: Specifies which face of polygons should be culled. May be either GL_FRONT or
GL_BACK.

Returns
None.

Example

The following code (from the TRIANGLE example in this chapter) shows how the color and
drawing operations are disabled for the inside of the cone when the Boolean variable bCull is set
to True.

 // Clockwise-wound polygons are front facing; this is reversed
 // because we are using triangle fans
 glFrontFace(GL_CW);
 …
 …
 …
 // Turn culling on if flag is set
 if(bCull)
 glEnable(GL_CULL_FACE);
 else
 glDisable(GL_CULL_FACE);

See Also
glFrontFace, glLightModel

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Drawing in 3D: Lines, Points, and Polygons

http://www.itknowledge.com/reference/archive/1571690735/ch06/171-173.html [20-03-2000 21:29:51]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Chapter 7
Manipulating 3D Space: Coordinate
Transformations

What you’ll learn in this chapter:
How to... Functions You’ll Use

Establish your position in the scene gluLookAt/glTranslate/glRotate
Position objects within the scene glTranslate/glRotate
Scale objects glScale
Establish a perspective
transformation

gluPerspective

Perform your own matrix
transformations

glLoadMatrix/glMultMatrix

In Chapter 6, you learned how to draw points, lines, and various primitives
in 3D. To turn a collection of shapes into a coherent scene, you must
arrange them in relation to one another and to the viewer. In this chapter,
you’ll start moving shapes and objects around in your coordinate system.
(Actually, you don’t move the objects, but rather shift the coordinate system
to create the view you want.) The ability to place and orient your objects in
a scene is a crucial tool for any 3D graphics programmer. As you will see, it
is actually very convenient to describe your objects’ dimensions around the
origin, and then translate and rotate the objects into the desired position.

Is This the Dreaded Math Chapter?

Yes, this is the dreaded math chapter. However, you can relax—we are
going to take a more moderate approach to these principles than some texts.

The keys to object and coordinate transformations are two modeling
matrices maintained by OpenGL. To familiarize you with these matrices,
this chapter strikes a compromise between two extremes in computer
graphics philosophy. On the one hand, we could warn you, “Please review a
textbook on linear algebra before reading this chapter.” On the other hand,
we could perpetuate the deceptive reassurance that you can “learn to do 3D
graphics without all those complex mathematical formulas.” But we don’t
agree with either camp.

In reality, yes, you can get along just fine without understanding the finer
mathematics of 3D graphics, just as you can drive your car every day
without having to know anything at all about automotive mechanics and the
internal combustion engine. But you’d better know enough about your car
to realize that you need an oil change every so often, that you have to fill
the tank with gas regularly and change the tires when they get bald. This
makes you a responsible (and safe!) automobile owner. If you want to be a
responsible and capable OpenGL programmer, the same standards apply.
You want to understand at least the basics, so you know what can be done
and what tools will best suit the job.

So, even if you don’t have the ability to multiply two matrices in your head,
you need to know what matrices are and that they are the means to
OpenGL’s 3D magic. But before you go dusting off that old linear algebra
textbook (doesn’t everyone have one?), have no fear—OpenGL will do all
the math for you. Think of it as using a calculator to do long division when
you don’t know how to do it on paper. Though you don’t have to do it
yourself, you still know what it is and how to apply it. See—you can have
your cake and eat it too!

Understanding Transformations

Transformations make possible the projection of 3D coordinates onto a 2D
screen. Transformations also allow you to rotate objects around, move them
about, and even stretch, shrink, and wrap them. Rather than modifying your
object directly, a transformation modifies the coordinate system. Once a
transformation rotates the coordinate system, then the object will appear
rotated when it is drawn. There are three types of transformations that occur
between the time you specify your vertices and the time they appear on the
screen: viewing, modeling, and projection. In this section we will examine
the principles of each type of transformation, which you will find
summarized in Table 7-1.

Table 7-1 Summary of the OpenGL Transformations

Transformation Use

Viewing Specifies the location of the viewer or camera
Modeling Moves objects around scene

Modelview
Describes the duality of viewing and modeling
transformations

Projection Clips and sizes the viewing volume
Viewport Scales final output to the window

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Manipulating 3D Space: Coordinate Transformations

http://www.itknowledge.com/reference/archive/1571690735/ch07/185-187.html [20-03-2000 21:29:56]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Eye Coordinates

An important concept throughout this chapter is that of eye coordinates.
Eye coordinates are from the viewpoint of the observer, regardless of any
transformations that may occur—think of them as “absolute” screen
coordinates. Thus, eye coordinates are not real coordinates, but rather
represent a virtual fixed coordinate system that is used as a common frame
of reference. All of the transformations discussed in this chapter are
described in terms of their effects relative to the eye coordinate system.

Figure 7-1 shows the eye coordinate system from two viewpoints. On the
left (a), the eye coordinates are represented as seen by the observer of the
scene (that is, perpendicular to the monitor). On the right (b), the eye
coordinate system is rotated slightly so you can better see the relation of the
z-axis. Positive x and y are pointed right and up, respectively, from the
viewer’s perspective. Positive z travels away from the origin toward the
user, and negative z values travel farther away from the viewpoint into the
screen.

Figure 7-1 Two perspectives of eye coordinates

When you draw in 3D with OpenGL, you use the Cartesian coordinate
system. In the absence of any transformations, the system in use would be
identical to the eye coordinate system. All of the various transformations
change the current coordinate system with respect to the eye coordinates.
This, in essence, is how you move and rotate objects in your scene—by
moving and rotating the coordinate system with respect to eye coordinates.
Figure 7-2 gives a two-dimensional example of the coordinate system
rotated 45º clockwise by eye coordinates. A square plotted on this rotated
coordinate system would also appear rotated.

Figure 7-2 A coordinate system rotated with respect to eye coordinates

In this chapter you’ll study the methods by which you modify the current
coordinate system before drawing your objects. You can even save the state
of the current system, do some transformations and drawing, and then
restore the state and start over again. By chaining these events, you will be
able to place objects all about the scene and in various orientations.

Viewing Transformations

The viewing transformation is the first to be applied to your scene. It is
used to determine the vantage point of the scene. By default, the point of
observation is at the origin (0,0,0) looking down the negative z-axis (“into”
the monitor screen). This point of observation is moved relative to the eye
coordinate system to provide a specific vantage point. When the point of
observation is located at the origin, then objects drawn with positive z
values would be behind the observer.

The viewing transformation allows you to place the point of observation
anywhere you want, and looking in any direction. Determining the viewing
transformation is like placing and pointing a camera at the scene.

In the scheme of things, the viewing transformation must be specified
before any other transformations. This is because it moves the currently
working coordinate system in respect to the eye coordinate system. All
subsequent transformations then occur based on the newly modified
coordinate system. Later you’ll see more easily how this works, when we
actually start looking at how to make these transformations.

Modeling Transformations

Modeling transformations are used to manipulate your model and the
particular objects within it. This transformation moves objects into place,
rotates them, and scales them. Figure 7-3 illustrates three modeling
transformations that you will apply to your objects. Figure 7-3a shows
translation, where an object is moved along a given axis. Figure 7-3b
shows a rotation, where an object is rotated about one of the axes. Finally,
Figure 7-3c shows the effects of scaling, where the dimensions of the object
are increased or decreased by a specified amount. Scaling can occur
nonuniformly (the various dimensions can be scaled by different amounts),
and this can be used to stretch and shrink objects.

Figure 7-3 The modeling transformation

The final appearance of your scene or object can depend greatly on the
order in which the modeling transformations are applied. This is
particularly true of translation and rotation. Figure 7-4a shows the
progression of a square rotated first about the z-axis and then translated
down the newly transformed x-axis. In Figure 7-4b, the same square is first
translated down the x-axis and then rotated around the z-axis. The
difference in the final dispositions of the square occurs because each
transformation is performed with respect to the last transformation
performed. In Figure 7-4a, the square is rotated with respect to the origin
first. In 7-4b, after the square is translated, the rotation is then performed
around the newly translated origin.

Figure 7-4 Modeling transforms: rotation/translation and
translation/rotation

The Modelview Duality

The viewing and the modeling transformations are, in fact, the same in
terms of their internal effects as well as the final appearance of the scene.
The distinction between the two is made purely as a convenience for the
programmer. There is no real difference between moving an object
backward, and moving the reference system forward—as shown in Figure
7-5, the net effect is the same. (You experience this firsthand when you’re
sitting in your car at an intersection and you see the car next to you roll
forward; it may seem to you that your own car is rolling backwards.). The
term “modelview” is used here to indicate that you can think of this
transformation either as the modeling transformation, or the viewing
transformation, but in fact there is no distinction—thus, it is the modelview
transformation.

Figure 7-5 Two ways of viewing the viewing transformation

The viewing transformation, therefore, is essentially nothing but a modeling
transformation that you apply to a virtual object (the viewer) before
drawing objects. As you will soon see, new transformations are repeatedly
specified as you place more and more objects in the scene. The initial
transformation provides a reference from which all other transformations
are based.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Manipulating 3D Space: Coordinate Transformations

http://www.itknowledge.com/reference/archive/1571690735/ch07/187-191.html [20-03-2000 21:30:09]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Projection Transformations

The projection transformation is applied to your final Modelview
orientation. This projection actually defines the viewing volume and
establishes clipping planes. More specifically, the projection transformation
specifies how a finished scene (after all the modeling is done) is translated
to the final image on the screen. You will learn about two types of
projections in this chapter: orthographic and perspective.

In an orthographic projection, all the polygons are drawn on screen with
exactly the relative dimensions specified. This is typically used for CAD, or
blueprint images where the precise dimensions are being rendered
realistically.

A perspective projection shows objects and scenes more as they would
appear in real life than in a blueprint. The trademark of perspective
projections is foreshortening, which makes distant objects appear smaller
than nearby objects of the same size. And parallel lines will not always be
drawn parallel. In a railroad track, for instance, the rails are parallel, but
with perspective projection they appear to converge at some distant point.
We call this point the vanishing point.

The benefit of perspective projection is that you don’t have to figure out
where lines converge, or how much smaller distant objects are. All you
need to do is specify the scene using the Modelview transformations, and
then apply the perspective projection. It will work all the magic for you.

Figure 7-6 compares orthographic and perspective projections on two
different scenes.

Figure 7-6 Two examples of orthographic vs. perspective projections

In general, you should use orthographic projections when you are modeling
simple objects that are unaffected by the position and distance of the
viewer. Orthographic views usually occur naturally when the ratio of the
object’s size to its distance from the viewer is quite small (say, a large
object that’s far away). Thus, an automobile viewed on a showroom floor
can be modeled orthographically, but if you are standing directly in front of
the car and looking down the length of it, perspective would come into
play. Perspective projections are used for rendering scenes that contain
many objects spaced apart, for walk-through or flying scenes, or for
modeling any large objects that may appear distorted depending on the
viewer’s location. For the most part, perspective projections will be the
most typical.

Viewport Transformations

When all is said and done, you end up with a two-dimensional projection of
your scene that will be mapped to a window somewhere on your screen.
This mapping to physical window coordinates is the last transformation that
is done, and it is called the viewport transformation. The viewport was
discussed briefly in Chapter 3, where you used it to stretch an image or
keep a scene squarely placed in a rectangular window.

Matrix Munching

Now that you’re armed with some basic vocabulary and definitions of
transformations, you’re ready for some simple matrix mathematics. Let’s
examine how OpenGL performs these transformations and get to know the
functions you will call to achieve your desired effects.

The mathematics behind these transformations are greatly simplified by the
mathematical notation of the matrix. Each of the transformations we have
discussed can be achieved by multiplying a matrix that contains the
vertices, by a matrix that describes the transformation. Thus all the
transformations achievable with OpenGL can be described as a
multiplication of two or more matrices.

What Is a Matrix?

A matrix is nothing more than a set of numbers arranged in uniform rows
and columns—in programming terms, a two-dimensional array. A matrix
doesn’t have to be square, but each row or column must have the same
number of elements as every other row or column in the matrix. Figure 7-7
presents some examples of matrices. (These don’t represent anything in
particular but only serve to demonstrate matrix structure.) Note that a
matrix can have but a single column.

Figure 7-7 Examples of matrices

Our purpose here is not to go into the details of matrix mathematics and
manipulation. If you want to know more about manipulating matrices and
hand-coding some special transformations, see Appendix B for some good
references.

The Transformation Pipeline

To effect the types of transformations described in this chapter, you will
modify two matrices in particular: the Modelview matrix, and the
Projection matrix. Don’t worry, OpenGL gives you some high-level
functions that you can call for these transformations. Only if you want to do
something unusual do you need to call the lower-level functions that
actually set the values contained in the matrices.

The road from raw vertex data to screen coordinates is a long one. Figure
7-8 is a flowchart of this process. First, your vertex is converted to a 1 x 4
matrix in which the first three values are the x, y, and z coordinates. The
fourth number is a scaling factor that you can apply manually by using the
vertex functions that take four values. This is the w coordinate, usually 1.0
by default. You will seldom modify this value directly but will apply one of
the scaling functions to the Modelview matrix instead.

Figure 7-8 The vertex transformation pipeline

The vertex is then multiplied by the Modelview matrix, which yields the
transformed eye coordinates. The eye coordinates are then multiplied by the
Projection matrix to yield clip coordinates. This effectively eliminates all
data outside the viewing volume. The clip coordinates are then divided by
the w coordinate to yield normalized device coordinates. The w value may
have been modified by the Projection matrix or the Modelview matrix,
depending on the transformations that may have occurred. Again, OpenGL
and the high-level matrix functions will hide all this from you.

Finally, your coordinate triplet is mapped to a 2D plane by the viewport
transformation. This is also represented by a matrix, but not one that you
will specify or modify directly. OpenGL will set it up internally depending
on the values you specified to glViewport.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Manipulating 3D Space: Coordinate Transformations

http://www.itknowledge.com/reference/archive/1571690735/ch07/192-195.html [20-03-2000 21:30:18]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The Modelview Matrix

The Modelview matrix is a 4 x 4 matrix that represents the transformed coordinate
system you are using to place and orient your objects. The vertices you provide for your
primitives are used as a single-column matrix and multiplied by the Modelview matrix
to yield new transformed coordinates in relation to the eye coordinate system.

In Figure 7-9, a matrix containing data for a single vertex is multiplied by the
Modelview matrix to yield new eye coordinates. The vertex data is actually four
elements, with an extra value w, that represents a scaling factor. This value is set by
default to 1.0, and rarely will you change this yourself.

Figure 7-9 Matrix equation that applies the Modelview transformation to a single
vertex

Translation

Let’s take an example that modifies the Modelview matrix. Say you wanted to draw a
cube using the AUX library’s auxWireCube() function. You would simply call

auxWireCube(10.0f);

and you would have a cube centered at the origin that measures 10 units on a side. To
move the cube up the y-axis by 10 units before drawing it, you would multiply the
Modelview matrix by a matrix that describes a translation of 10 units up the y-axis, and
then do your drawing. In skeleton form, the code looks like this:

// Construct a translation matrix for positive 10 Y
...

// Multiply it by the Modelview matrix
...

// Draw the cube
auxWireCube(10.0f);

Actually, such a matrix is fairly easy to construct, but it would require quite a few lines
of code. Fortunately, a high-level function is provided that does this for you:

void glTranslatef(GLfloat x, GLfloat y, GLfloat z);

This function takes as parameters the amount to translate along the x, y, and z
directions. It then constructs an appropriate matrix and does the multiplication. Now the
pseudocode from above looks like the following, and the effect is illustrated in Figure
7-10.

// Translate up the y-axis 10 units
glTranslatef(0.0f, 10.0f, 0.0f);

// Draw the cube
auxWireCube(10.0f);

Figure 7-10 A cube translated 10 units in the positive y direction

Rotation

To rotate an object about one of the three axes, you would have to devise a Rotation
matrix to be multiplied by the Modelview matrix. Again, a high-level function comes to
the rescue:

glRotatef((GLfloat angle, GLfloat x, GLfloat y, GLfloat z);

Here we are performing a rotation around the vector specified by the x, y, and z
arguments. The angle of rotation is in the counterclockwise direction measured in
degrees and specified by the argument angle. In the simplest of cases, the rotation is
around one of the axes, so only that value needs to be specified.

You can also perform a rotation around an arbitrary axis by specifying x, y, and z values
for that vector. To see the axis of rotation, you can just draw a line from the origin to
the point represented by (x,y,z). The following code rotates the cube by 45º around an
arbitrary axis specified by (1,1,1), as illustrated in Figure 7-11.

// Perform the transformation
glRotatef(90.0f, 1.0f, 1.0f, 1.0f);

// Draw the cube
auxWireCube(10.0f);

Figure 7-11 A cube rotated about an arbitrary axis

Scaling

A scaling transformation increases the size of your object by expanding all the vertices
along the three axes by the factors specified. The function

glScalef(GLfloat x, GLfloat y, GLfloat z);

multiplies the x, y, and z values by the scaling factors specified.

Scaling does not have to be uniform. You can use it to stretch or squeeze objects, as
well. For example, the following code will produce a cube that is twice as large along
the x- and z-axis as the cubes discussed in the previous examples, but still the same
along the y-axis. The result is shown in Figure 7-12.

// Perform the scaling transformation
glScalef(2.0f, 1.0f, 2.0f);

// Draw the cube
auxWireCube(10.0f);

Figure 7-12 A nonuniform scaling of a cube

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Manipulating 3D Space: Coordinate Transformations

http://www.itknowledge.com/reference/archive/1571690735/ch07/195-198.html [20-03-2000 21:30:31]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The Identity Matrix

You may be wondering about now why we had to bother with all this
matrix stuff in the first place. Can’t we just call these transformation
functions to move our objects around and be done with it? Do we really
need to know that it is the Modelview matrix that is being modified?

The answer is yes and no, but only if you are drawing a single object in
your scene. This is because the effects of these functions are cumulative.
Each time you call one, the appropriate matrix is constructed and multiplied
by the current Modelview matrix. The new matrix then becomes the current
Modelview matrix, which is then multiplied by the next transformation, and
so on.

Suppose you want to draw two spheres—one 10 units up the positive
y-axis, and one 10 units out the positive x-axis, as shown in Figure 7-13.
You might be tempted to write code that looks something like this:

// Go 10 units up the y-axis
glTranslatef(0.0f, 10.0f, 0.0f);

// Draw the first sphere
auxSolidSphere(1.0f);

// Go 10 units out the x-axis
glTranslatef(10.0f, 0.0f, 0.0f);

// Draw the second sphere
auxSolidSphere(1.0f);

Figure 7-13 Two spheres drawn on the y- and x-axis

Consider, however, that each call to glTranslate is cumulative on the
Modelview matrix, so the second call would translate 10 units in the
positive x direction from the previous translation in the y direction. This
would yield the results shown in Figure 7-14.

Figure 7-14 The result of two consecutive translations

You could make an extra call to glTranslate to back down the y-axis 10
units in the negative direction, but this would make some complex scenes
very difficult to code and debug. A simpler method would be to reset the
Modelview matrix to a known state—in this case, centered at the origin of
our eye coordinate system.

This is done by loading the Modelview matrix with the Identity matrix. The
Identity matrix specifies that no transformation is to occur, in effect saying
that all the coordinates you specify when drawing are in eye coordinates.
An Identity matrix contains all 0’s with the exception of a diagonal row of
ones. When this matrix is multiplied by any vertex matrix, the result is that
the vertex matrix is unchanged. Figure 7-15 shows this equation.

Figure 7-15 Multiplying a vertex matrix by the identity matrix yields the
same vertex matrix

As we’ve already stated, the details of performing matrix multiplication are
outside the scope of this book. For now, just remember this: Loading the
Identity matrix means that no transformations are performed on the
vertices. In essence, you are resetting the Modelview matrix back to the
origin.

The following two lines load the identity matrix into the Modelview matrix:

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

The first line specifies that the current operating matrix is the Modelview
matrix. Once you set the current operating matrix (the matrix that your
matrix functions are affecting), it remains the active matrix until you
change it. The second line loads the current matrix (in this case, the
Modelview matrix) with the identity matrix.

Now the following code will produce results as shown in Figure 7-13:

// Set current matrix to Modelview and reset
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

// Go 10 units up the y-axis
glTranslatef(0.0f, 10.0f, 0.0f);

// Draw the first sphere
auxSolidSphere(1.0f);

// Reset Modelview matrix again
glLoadIdentity();

// Go 10 units out the x-axis
glTranslatef(10.0f, 0.0f, 0.0f);

// Draw the second sphere
auxSolidSphere(1.0f);

The Matrix Stacks

It is not always desirable to reset the Modelview matrix to Identity before
placing every object. Often you will want to save the current transformation
state and then restore it after some objects have been placed. This is most
convenient when you have initially transformed the Modelview matrix as
your viewing transformation (and thus are no longer located at the origin).

To facilitate this, OpenGL maintains a matrix stack for both the Modelview
and Projection matrices. A matrix stack works just like an ordinary program
stack. You can push the current matrix onto the stack to save it, then make
your changes to the current matrix. Popping the matrix off the stack then
restores it. Figure 7-16 shows the stack principle in action.

Figure 7-16 The matrix stack in action

Texture Matrix Stack:
The texture stack is another matrix stack available to the programmer.
This is used for the transformation of texture coordinates. Chapter 12
examines texture mapping and texture coordinates and contains a
discussion of the texture matrix stack.

The stack depth can reach a maximum value that can be retrieved with a
call to either

glGet(GL_MAX_MODELVIEW_STACK_DEPTH);

or

glGet(GL_MAX_PROJECTION_STACK_DEPTH);

If you exceed the stack depth, you’ll get a GL_STACK_OVERFLOW; if
you try to pop a matrix value off the stack when there is none, you will
generate a GL_STACK_UNDERFLOW. The stack depth is implementation
dependent. For the Microsoft software implementation these values are 32
for the Modelview and 2 for the Projection stack.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Manipulating 3D Space: Coordinate Transformations

http://www.itknowledge.com/reference/archive/1571690735/ch07/198-202.html [20-03-2000 21:30:41]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

A Nuclear Example

Let’s put to use what we have learned. In the next example, we will build a crude,
animated model of an atom. This atom will have a single sphere at the center to
represent the nucleus, and three electrons in orbit about the atom. Here we’ll use an
orthographic projection, as we have previously in this book. (Some other interesting
projections are covered in the upcoming section, “Using Projections.”)

Our ATOM program uses a timer to move the electrons four times a second
(undoubtedly much slower than any real electrons!). Each time the Render function is
called, the angle of revolution about the nucleus is incremented. Also, each electron lies
in a different plane. Listing 7-1 shows the Render function for this example, and the
output from the ATOM program is shown in Figure 7-17.

Figure 7-17 Output from the ATOM example program

Listing 7-1 Render function from ATOM example program

// Called to draw scene
void RenderScene(void)
 {
 // Angle of revolution around the nucleus
 static float fElect1 = 0.0f;

 // Clear the window with current clearing color
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Reset the modelview matrix
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();

 // Translate the whole scene out and into view
 // This is the initial viewing transformation
 glTranslatef(0.0f, 0.0f, -100.0f);

 // Red Nucleus
 glRGB(255, 0, 0);
 auxSolidSphere(10.0f);

 // Yellow Electrons
 glRGB(255,255,0);

 // First Electron Orbit
 // Save viewing transformation
 glPushMatrix();

 // Rotate by angle of revolution
 glRotatef(fElect1, 0.0f, 1.0f, 0.0f);

 // Translate out from origin to orbit distance
 glTranslatef(90.0f, 0.0f, 0.0f);

 // Draw the electron
 auxSolidSphere(6.0f);

 // Restore the viewing transformation
 glPopMatrix();

 // Second Electron Orbit
 glPushMatrix();
 glRotatef(45.0f, 0.0f, 0.0f, 1.0f);
 glRotatef(fElect1, 0.0f, 1.0f, 0.0f);
 glTranslatef(-70.0f, 0.0f, 0.0f);
 auxSolidSphere(6.0f);
 glPopMatrix();

 // Third Electron Orbit
 glPushMatrix();
 glRotatef(360.0f, -45.0f, 0.0f, 0.0f, 1.0f);
 glRotatef(fElect1, 0.0f, 1.0f, 0.0f);
 glTranslatef(0.0f, 0.0f, 60.0f);
 auxSolidSphere(6.0f);
 glPopMatrix();

 // Increment the angle of revolution
 fElect1 += 10.0f;
 if(fElect1 > 360.0f)
 fElect1 = 0.0f;

 // Flush drawing commands
 glFlush();
 }

Let’s examine the code for placing one of the electrons, a couple of lines at a time. The
first line saves the current Modelview matrix by pushing the current transformation on
the stack:

// First Electron Orbit
// Save viewing transformation
glPushMatrix();

Now the coordinate system is rotated around the y axis by an angle fElect1:

// Rotate by angle of revolution
glRotatef(fElect1, 0.0f, 1.0f, 0.0f);

Now the electron is drawn by translating down the newly rotated coordinate system:

// Translate out from origin to orbit distance
glTranslatef(90.0f, 0.0f, 0.0f);

Then the electron is drawn (as a solid sphere), and we restore the Modelview matrix by
popping it off the matrix stack:

// Draw the electron
auxSolidSphere(6.0f);

// Restore the viewing transformation
glPopMatrix();

The other electrons are placed similarly.

Using Projections

In our examples so far we have used the Modelview matrix to position our vantage
point of the viewing volume and to place our objects therein. The Projection matrix
actually specifies the size and shape of our viewing volume.

Thus far in this book, we have created a simple parallel viewing volume using the
function glOrtho, setting the near and far, left and right, and top and bottom clipping
coordinates. When the Projection matrix is loaded with the Identity matrix, the diagonal
line of 1’s specifies that the clipping planes extend from the origin to positive 1 in all
directions. The projection matrix does no scaling or perspective adjustments. As you
will soon see, there are some alternatives to this approach.

Orthographic Projections

An orthographic projection, used for most of this book thus far, is square on all sides.
The logical width is equal at the front, back, top, bottom, left, and right sides. This
produces a parallel projection, which is useful for drawings of specific objects that do
not have any foreshortening when viewed from a distance. This is good for CAD or
architectural drawings, for which you want to represent the exact dimensions and
measurements on screen.

Figure 7-18 shows the output from the example program ORTHO on the CD in this
chapter’s subdirectory. To produce this hollow, tube-like box, we used an orthographic
projection just as we did for all our previous examples. Figure 7-19 shows the same box
rotated more to the side so you can see how long it actually is.

Figure 7-18 A hollow square tube shown with an orthographic projection

Figure 7-19 A side view showing the length of the square tube

In Figure 7-20, you’re looking directly down the barrel of the tube. Because the tube
does not converge in the distance, this is not an entirely accurate view of how such a
tube would appear in real life. To add some perspective, we use a perspective
projection.

Figure 7-20 Looking down the barrel of the tube

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Manipulating 3D Space: Coordinate Transformations

http://www.itknowledge.com/reference/archive/1571690735/ch07/202-207.html [20-03-2000 21:30:52]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Perspective Projections

A perspective projection performs perspective division to shorten and shrink objects that are farther away
from the viewer. The width of the back of the viewing volume does not have the same measurements as the
front of the viewing volume. Thus an object of the same logical dimensions will appear larger at the front
of the viewing volume than if it were drawn at the back of the viewing volume.

The picture in our next example is of a geometric shape called a frustum. A frustum is a section of a
pyramid viewed from the narrow end to the broad end. Figure 7-21 shows the frustum, with the observer in
place.

Figure 7-21 A perspective projection defined by a frustum

You can define a frustum with the function glFrustum. Its parameters are the coordinates and distances
between the front and back clipping planes. However, glFrustum is not very intuitive about setting up your
projection to get the desired effects. The utility function gluPerspective is easier to use and somewhat more
intuitive:

void gluPerspective(GLdouble fovy, GLdouble aspect, GLdouble zNear,
 GLdouble zFar);

Parameters for the gluPerspective function are a field-of-view angle in the vertical direction; the aspect
ratio of the height to width; and the distances to the near and far clipping planes. See Figure 7-22. The
aspect ratio is then found by dividing the width (w) by the height (h) of the front clipping plane.

Figure 7-22 The frustum as defined by gluPerspective

Listing 7-2 shows how we change our orthographic projection from the previous examples to use a
perspective projection. Foreshortening adds realism to our earlier orthographic projections of the square
tube, as shown in Figures 7-23, 7-24, and 7-25. The only substantial change we made for our typical
projection code in Listing 7-2 is the added call to gluPerspective.

Figure 7-23 The square tube with a perspective projection

Figure 7-24 Side view with foreshortening

Figure 7-25 Looking down the barrel of the tube with perspective added

Listing 7-2 Setting up the perspective projection for the PERSPECT example program

// Change viewing volume and viewport. Called when window is resized
void ChangeSize(GLsizei w, GLsizei h)
 {
 GLfloat fAspect;

 // Prevent a divide by zero
 if(h == 0)
 h = 1;

 // Set Viewport to window dimensions
 glViewport(0, 0, w, h);

 fAspect = (GLfloat)w/(GLfloat)h;

 // Reset coordinate system
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();

 // Produce the perspective projection
 gluPerspective(60.0f, fAspect, 1.0, 400.0);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 }

A Far-Out Example

For a complete example showing Modelview manipulation and perspective projections, we have modeled
the Sun and the Earth/Moon system in revolution. We have enabled some lighting and shading for drama,
so you can more easily see the effects of our operations. You’ll be learning about shading and lighting in
the next two chapters.

In our model, we have the Earth moving around the Sun, and the Moon revolving around the Earth. A light
source is placed behind the observer to illuminate the Sun sphere. The light is then moved to the center of
the Sun in order to light the Earth and Moon from the direction of the Sun, thus producing phases. This is a
dramatic example of how easy it is to produce realistic effects with OpenGL.

Listing 7-3 shows the code that sets up our projection, and the rendering code that keeps the system in
motion. A timer elsewhere in the program invalidates the window four times a second to keep the Render
function in action. Notice in Figures 7-26 and 7-27 that when the Earth appears larger, it’s on the near side
of the Sun; on the far side, it appears smaller.

Figure 7-26 The Sun/Earth/Moon system with the Earth on the near side

Figure 7-27 The Sun/Earth/Moon system with the Earth on the far side

Listing 7-3 Code that produces the Sun/Earth/Moon System

// Change viewing volume and viewport. Called when window is resized
void ChangeSize(GLsizei w, GLsizei h)
 {
 GLfloat fAspect;

 // Prevent a divide by zero
 if(h == 0)
 h = 1;

 // Set Viewport to window dimensions
 glViewport(0, 0, w, h);

 // Calculate aspect ratio of the window
 fAspect = (GLfloat)w/(GLfloat)h;

 // Set the perspective coordinate system
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();

 // Field of view of 45 degrees, near and far planes 1.0 and 425
 gluPerspective(45.0f, fAspect, 1.0, 425.0);

 // Modelview matrix reset
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 }

// Called to draw scene
void RenderScene(void)
 {
 // Earth and Moon angle of revolution
 static float fMoonRot = 0.0f;
 static float fEarthRot = 0.0f;

 // Clear the window with current clearing color
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Save the matrix state and do the rotations
 glMatrixMode(GL_MODELVIEW);
 glPushMatrix();

 // Set light position before viewing transformation
 glLightfv(GL_LIGHT0,GL_POSITION,lightPos);

 // Translate the whole scene out and into view
 glTranslatef(0.0f, 0.0f, -300.0f);

 // Set material color, Red
 // Sun
 glRGB(255, 255, 0);
 auxSolidSphere(15.0f);

 // Move the light after we draw the sun!
 glLightfv(GL_LIGHT0,GL_POSITION,lightPos);

 // Rotate coordinate system
 glRotatef(fEarthRot, 0.0f, 1.0f, 0.0f);

 // Draw the Earth
 glRGB(0,0,255);
 glTranslatef(105.0f,0.0f,0.0f);
 auxSolidSphere(15.0f);

 // Rotate from Earth-based coordinates and draw Moon
 glRGB(200,200,200);
 glRotatef(fMoonRot,0.0f, 1.0f, 0.0f);
 glTranslatef(30.0f, 0.0f, 0.0f);
 fMoonRot+= 15.0f;
 if(fMoonRot > 360.0f)
 fMoonRot = 0.0f;

 auxSolidSphere(6.0f);

 // Restore the matrix state
 glPopMatrix();// Modelview matrix

 // Step earth orbit 5 degrees
 fEarthRot += 5.0f;
 if(fEarthRot > 360.0f)
 fEarthRot = 0.0f;

 // Flush drawing commands
 glFlush();
 }

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Manipulating 3D Space: Coordinate Transformations

http://www.itknowledge.com/reference/archive/1571690735/ch07/207-213.html [20-03-2000 21:31:05]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Advanced Matrix Manipulation

You don’t have to use the high-level functions to produce your transformations. We
recommend that you do, however, because those functions often are highly optimized for their
particular purpose, whereas the low-level functions are designed for general use. Two of these
high-level functions make it possible for you to load your own matrix and multiply it into either
the Modelview or Projection matrix stacks.

Loading a Matrix

You can load an arbitrary matrix into the Projection, Modelview, or Texture matrix stacks.
First, declare an array to hold the 16 values of a 4 x 4 matrix. Make the desired matrix stack the
current one, and call glLoadMatrix.

The matrix is stored in column-major order, which simply means that each column is traversed
first from top to bottom. Figure 7-28 shows the matrix elements in numbered order. The
following code shows an array being loaded with the Identity matrix, then being loaded into the
Modelview matrix stack. This is equivalent to calling glLoadIdentity using the higher-level
functions.

// Equivalent, but more flexible
glFloat m[] = { 1.0f, 0.0f, 0.0f, 0.0f,
 0.0f, 1.0f, 0.0f, 0.0f,
 0.0f, 0.0f, 1.0f, 0.0f,
 0.0f, 0.0f, 0.0f, 1.0f };

glMatrixMode(GL_MODELVIEW);
glLoadMatrixf(m);

Figure 7-28 Column-major matrix ordering

Performing Your Own Transformations

You can load an array with an arbitrary matrix if you want, and multiply it, too, into one of the
three matrix stacks. The following code shows a Transformation matrix that translates 10 units
along the x-axis. This matrix is then multiplied into the Modelview matrix. You can also
achieve this affect by calling glTranslatef.

 // Define the Translation matrix
 glFloat m[] = { 1.0f, 0.0f, 0.0f, 10.0f,
 0.0f, 1.0f, 0.0f, 0.0f,
 0.0f, 0.0f, 1.0f, 0.0f,
 0.0f, 0.0f, 0.0f, 1.0f };

 // Multiply the translation matrix by the current modelview
 // matrix. The new matrix becomes the modelview matrix
 glMatrixMode(GL_MODELVIEW);
 glMultMatrixf(m);

Other Transformations

There’s no particular advantage in duplicating the functionality of gLoadIdentity or
glTranslatef by specifying a matrix. The real reason for allowing manipulation of arbitrary
matrices is to allow for complex matrix transformations. One such use is for drawing shadows,
and you’ll see that in action in Chapter 9. Some other uses are wrapping one object around
another object, and certain lens effects. For information on these advanced uses, see Appendix
B.

Summary

In this chapter, you’ve learned concepts crucial to using OpenGL for creation of 3D scenes.
Even if you can’t juggle matrices in your head, you now know what matrices are and how they
are used to perform the various transformations. You’ve also learned how to manipulate the
Modelview and Projection matrix stacks to place your objects in the scene and to determine
how they are viewed on screen.

Finally, we also showed you the functions needed to perform your own matrix magic if you are
so inclined. These functions allow you to create your own matrices and load them into the
matrix stack, or multiply them by the current matrix first.

The tank/robot simulation at this point in the book will now allow you to move around in a
three-dimensional world and explore objects placed all around. If you study the simulation code
thus far, you will find excellent use of perspective projections, as well as the gluLookAt utility
function that provides a simple way to specify your viewing transformation. Your 3D world is
made of wire for now, but that will be changing very soon.

Reference Section

glFrustum
Purpose

Multiplies the current matrix by a Perspective matrix.

Include File
<gl.h>

Syntax
void glFrustum(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top,
GLdouble near, GLdouble far);

Description
This function creates a Perspective matrix that produces a perspective projection. The
eye is assumed to be located at (0,0,0), with -far being the location of the far clipping
plane, and -near specifying the location of the near clipping plane. This function can
adversely affect the precision of the depth buffer if the ratio of far to near (far/near) is
large.

Parameters
left, right

GLdouble: Coordinates for the left and right clipping planes.

bottom, top

GLdouble: Coordinates for the bottom and top clipping planes.

near, far

GLdouble: Distance to the near and far clipping planes. Both of these values must be
positive.

Returns
None.

Example

The code below sets up a Perspective matrix that defines a viewing volume from 0 to –100 on
the z-axis. The x and y extents are 100 units in the positive and negative directions.

 glLoadMatrix(GL_PROJECTION);
 glLoadIdentify();
 glFrustum(-100.0f, 100.0f, -100.0f, 100.0f, 0.0f, 100.0f);

See Also
glOrtho, glMatrixMode, glMultMatrix, glViewport

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Manipulating 3D Space: Coordinate Transformations

http://www.itknowledge.com/reference/archive/1571690735/ch07/214-216.html [20-03-2000 21:31:14]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Chapter 8
Color and Shading

What you’ll learn in this chapter:
How to… Functions You’ll Use

Specify a color in terms of RGB
components

glColor

Set the shading model glShadeModel
Create a 3-3-2 palette CreatePalette
Make use of a palette RealizePalette, SelectPalette,

UpdateColors

At last we are going to talk about color! This is perhaps the single most
important aspect of any graphics library—even above animation support.
You must remember one thing as you develop graphics applications: In this
case, the old adage isn’t true; looks ARE everything! Don’t let anyone tell
you otherwise. Yes, it’s true that features, performance, price, and
reliability are important factors when you’re selecting and working with a
graphics application, but let’s face it—on the scales of product evaluation,
looks have the largest impact most of the time.

If you want to make a living in this field, you cannot develop just for the
intellectual few who may think as you do. Go for the masses! Consider this:
Black-and-white TVs were cheaper to make than color sets.
Black-and-white video cameras, too, were cheaper and more efficient to
make and use—and for a long time they were more reliable. But look
around at our society today and draw your own conclusions. Of course,
black-and-white has its place, but color is now paramount. (Then again, we
wish they hadn’t colorized all those Shirley Temple movies…)

What Is a Color?

First let’s talk a little bit about color itself. How is a color made in nature,
and how do we see colors? Understanding color theory and how the human
eye sees a color scene will lend some insight into how you create a color
programmatically. (If color theory is old hat to you, you can probably skip
this section.)

Light as a Wave

Color is simply a wavelength of light that is visible to the human eye. If you
had any physics classes in school, you may remember something about
light being both a wave and a particle. It is modeled as a wave that travels
through space much as a ripple through a pond; and it is modeled as a
particle, such as a raindrop falling to the ground. If this seems confusing,
you know why most people don’t study quantum mechanics!

The light you see from nearly any given source is actually a mixture of
many different kinds of light. These kinds of light are identified by their
wavelengths. The wavelength of light is measured as the distance between
the peaks of the light wave, as illustrated in Figure 8-1.

Figure 8-1 How a wavelength of light is measured

Wavelengths of visible light range from 390 nanometers (one billionth of a
meter) for violet light, to 720 nanometers for red light; this range is
commonly called the spectrum. You’ve undoubtedly heard the terms
ultraviolet and infrared; these represent light not visible to the naked eye,
lying beyond the ends of the spectrum You will recognize the spectrum as
containing all the colors of the rainbow. See Figure 8-2.

Figure 8-2 The spectrum of visible light

Light as a Particle

“OK, Mr. Smart Brain,” you may ask, “If color is a wavelength of light and
the only visible light is in this 'rainbow’ thing, where is the brown for my
Fig Newtons or the black for my coffee, or even the white of this page?”
We’ll begin answering that question by telling you that black is not a color;
nor is white. Actually, black is the absence of color, and white is an even
combination of all the colors at once. That is, a white object reflects all
wavelengths of colors evenly, and a black object absorbs all wavelengths
evenly.

As for the brown of those fig bars and the many other colors that you see,
they are indeed colors. Actually, at the physical level they are composite
colors. They are made of varying amounts of the “pure” colors found in the
spectrum. To understand how this works, think of light as a particle. Any
given object when illuminated by a light source is struck by “billions and
billions” (my apologies to Carl Sagan) of photons, or tiny light particles.
Remembering our physics mumbo jumbo, each of these photons is also a
wave, which has a wavelength, and thus a specific color in the spectrum.

All physical objects are made up of atoms. The reflection of photons from
an object depends on the kinds of atoms, the amount of each kind, and the
arrangement of atoms in the object. Some photons will be reflected and
some will be absorbed (the absorbed photons are usually converted to heat),
and any given material or mixture of materials (such as your fig bar) will
reflect more of some wavelengths than others. Figure 8-3 illustrates this
principle.

Figure 8-3 An object reflects some photons and absorbs others

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Color and Shading

http://www.itknowledge.com/reference/archive/1571690735/ch08/227-230.html [20-03-2000 21:31:23]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Your Personal Photon Detector

The reflected light from your fig bar, when seen by your eye, is interpreted
as color. The billions of photons enter your eye and are focused onto the
back of your eye, where your retina acts as sort of a photographic plate. The
retina’s millions of cone cells are excited when struck by the photons, and
this causes neural energy to travel to your brain, which interprets the
information as light and color. The more photons that strike the cone cells,
the more excited they get. This level of excitation is interpreted by your
brain as the brightness of the light, which makes sense—the brighter the
light, the more photons there are to strike the cone cells.

The eye has three kinds of cone cells. All of them respond to photons, but
each kind responds most to a particular wavelength. One is more excited by
photons that have reddish wavelengths, one by green wavelengths, and one
by blue wavelengths. Thus light that is composed mostly of red
wavelengths will excite red-sensitive cone cells more than the other cells,
and your brain receives the signal that the light you are seeing is mostly
reddish. You do the math—a combination of different wavelengths of
various intensities will, of course, yield a mix of colors. All wavelengths
equally represented thus is perceived as white, and no light of any
wavelength is black.

You can see that any “color” that your eye perceives is actually made up of
light all over the visible spectrum. The “hardware” in your eye detects what
it sees in terms of the relative concentrations and strengths of red, green,
and blue light. Figure 8 -4 shows how brown comprises a photon mix of
60% red photons, 40% green photons, and 10% blue photons.

Figure 8-4 How the “color” brown is perceived by the eye

The Computer as a Photon Generator

It makes sense that when we wish to generate a color with a computer, we
do so by specifying separate intensities for red, green, and blue components
of the light. It so happens that color computer monitors are designed to
produce three kinds of light (can you guess which three?), each with
varying degrees of intensity. In the back of your computer monitor is an
electron gun that shoots electrons at the back of the screen you view. This
screen contains phosphors that emit red, green, and blue light when struck
by the electrons. The intensity of the light emitted varies with the intensity
of the electron beam. These three color phosphors are then packed closely
together to make up a single physical dot on the screen. See Figure 8-5.

Figure 8-5 How a computer monitor generates colors

You may recall that in Chapter 3 we explained how OpenGL defines a
color exactly as intensities of red, green, and blue, with the glColor
command. Here we will cover more thoroughly the two color modes
supported by OpenGL.

• RGBA color mode is what we have been using all along for the
examples in this book. When drawing in this mode, you set a color
precisely by specifying it in terms of the three color components
(Red, Green, and Blue).

• With color index mode, you choose a color while drawing by
specifying an index into an array of available colors called a palette.
Within this palette, you specify the exact color you want by setting
the intensities of the red, green, and blue components.

PC Color Hardware

There once was a time when state-of-the-art PC graphics hardware meant
the Hercules graphics card. This card could produce bitmapped images with
a resolution of 720 × 348. The drawback was that each pixel had only two
states: on and off. At that time, bitmapped graphics of any kind on a PC
was a big deal, and you could produce some great monochrome graphics.
Your author even did some 3D graphics on a Hercules card back in college.

Actually predating the Hercules card was the CGA card, the Color Graphics
Adapter. Introduced with the first IBM PC, this card could support
resolutions of 320 ×200 pixels and could place any four of 16 colors on the
screen at once. A higher resolution (640 ×200) with two colors was also
possible, but wasn’t as effective or cost conscious as the Hercules card
(color monitors = $$$). CGA was puny by today’s standards—it was even
outmatched then by the graphics capabilities of a $200 Commodore 64 or
Atari home computer. Lacking adequate resolution for business graphics or
even modest modeling, CGA was used primarily for simple PC games or
business applications that could benefit from colored text. Generally
though, it was hard to make a good business justification for this more
expensive hardware.

The next big breakthrough for PC graphics came when IBM introduced the
Enhanced Graphics Adapter (EGA) card. This one could do more than 25
lines of colored text in new text modes, and for graphics could support 640
×350-pixel bitmapped graphics in 16 colors! Other technical improvements
eliminated some flickering problems of the CGA ancestor and provided for
better and smoother animation. Now arcade-style games, real business
graphics, and even 3D graphics became not only possible but even
reasonable on the PC. This advance was a giant move beyond CGA, but
still PC graphics were in their infancy.

The last mainstream PC graphics standard set by IBM was the VGA card
(which stood for Vector Graphics Array rather than the commonly held
Video Graphics Adapter). This card was significantly faster than the EGA,
could support 16 colors at a higher resolution (640 ×480) and 256 colors at
a lower resolution of 320 ×200. These 256 colors were selected from a
palette of over 16 million possible colors. That’s when the floodgates
opened for PC graphics. Near photo-realistic graphics become possible on
PCs. Ray tracers, 3D games, and photo-editing software began to pop up in
the PC market.

IBM, as well, had a high-end graphics card—the 8514—for their
“workstations.” This card could do 1024 ×768 graphics at 256 colors. IBM
thought this card would only be used by CAD and scientific applications!
But one thing is certain about the consumer market: They always want
more. It was this short-sightedness that cost IBM its role as standard-setter
in the PC graphics market. Other vendors began to ship “Super-VGA” cards
that could display higher and higher resolutions, with more and more
colors. First 800 ×600, then 1024 ×768 and even higher, with first 256
colors, then 32,000, to 65,000. Today 24-bit color cards can display 16
million colors at resolutions up to 1024 ×768. Inexpensive PC hardware can
support full color at VGA resolutions, or 8 00 ×600 Super-VGA
resolutions. Most Windows PCs sold today can support at least 65,000
colors at resolutions of 1024 ×768.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Color and Shading

http://www.itknowledge.com/reference/archive/1571690735/ch08/230-233.html [20-03-2000 21:31:33]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

All this power makes for some really cool possibilities—photo-realistic 3D
graphics to name just one. When Microsoft ported OpenGL to the Windows
platform, that enabled creation of high-end graphics applications for PCs.
Today’s Pentium and Pentium Pro P Cs are still no match for modern SGI
Workstations. But combine them with 3D-graphics accelerated graphics
cards, and you can get the kind of performance possible only a few years
ago on $100,000 graphics workstations—at a Wal-Mart Christmas special!
In the very near future, typical home machines will be capable of very
sophisticated simulations, games, and more. Our children will laugh at the
term “virtual reality” in the same way we smile at those old Buck Rogers
rocket ships.

PC Display Modes

Microsoft Windows revolutionized the world of PC graphics in two
respects. First, it created a mainstream graphical operating environment that
was adopted by the business world at large and, soon thereafter, the
consumer market. Second, it made PC graphics significantly easier for
programmers to do. With Windows, the hardware was “virtualized” by
Windows display device drivers. Instead of having to write instructions
directly to the video hardware, programmers today can write to a single
API, and Windows handles the specifics of talking to the hardware.
Typically, Microsoft provides in the Windows base package (usually with
vendor assistance) drivers for the more popular graphics cards. Hardware
vendors with later hardware and software revisions ship their cards with
Windows drivers and often provide updates to these drivers on BBSs or on
the Internet.

There was a time when Windows shipped with drivers for the Hercules
monochrome cards, and standard CGA, and EGA video adapters. Not
anymore. Standard VGA is now considered the bottom of the barrel. New
PCs sold today are capable of at least 640 ×480 resolution with 16 colors,
and the choices of resolution and color depth go up from there.

Screen Resolution

Screen resolution for today’s PCs can vary from 640 ×480 pixels up to
1280 ×1024 or more. Screen resolution, however, is not usually a prime
limiting factor in writing graphics applications. The lower resolution of 640
×480 is considered adequate for most graphics display tasks. More
important is the size of the window, and this is taken into account easily
with clipping volume and viewport settings (see Chapter 3). By scaling the
size of the drawing to the size of the window, you can easily account for the
various resolutions and window size combinations that can occur.
Well-written graphics applications will display the same approximate image
regardless of screen resolution. The user should automatically be able to see
more and sharper details as the resolution increases.

Color Depth

If an increase in screen resolution or in the number of available drawing
pixels in turn increases the detail and sharpness of the image, so too should
an increase in available colors improve the clarity of the resulting image.
An image displayed on a computer that can display millions of colors
should look remarkably better than the same image displayed with only 16
colors. In programming, there are really only three color depths that you
need to worry about: 4-bit, 8-bit, and 24-bit.

4-Bit Color

On the low end, your program may be run in a video mode that only
supports 16 colors—called 4-bit mode because there are 4 bits devoted to
color information for each pixel. These 4 bits represent a value from 0 to 15
that provides an index into a set of 16 predefined colors. With only 16
colors at your disposal, , there is little you can do to improve the clarity and
sharpness of your image. It is generally accepted that most serious graphics
applications can ignore the 16-color mode.

8-Bit Color

The 8-bit mode supports up to 256 colors on the screen. This is a substantial
improvement, and when combined with dithering (explained later in this
chapter) can produce satisfactory results for many applications. There are 8
bits devoted to each pixel, which are used to hold a value from 0 to 255 that
references an index into a color table called the palette. The colors in this
color table can be selected from over 16 million possible colors. If you need
256 shades of red, the hardware will support it.

Each color in the palette is selected by specifying 8 bits each for separate
intensities of red, green, and blue, which means the intensity of each
component can range from 0 to 255. This effectively yields a choice of over
16 million different colors for the palette. By selecting these colors
carefully, near-photographic quality can be achieved on the PC screen.

24-Bit Color

The best quality image production available today on PCs is 24-bit color
mode. In this mode, a full 24 bits are devoted to each pixel to hold eight bits
of color data for each of the red, green, and blue color components (8 + 8 +
8 = 24). You have the capability to put any of over 16 million possible
colors in every pixel on the screen. The most obvious drawback to this
mode is the amount of memory required for high-resolution screens (over
2MB for a 1024 ×768 screen). Also indirectly, it is much slower to move
larger chunks of memory around when doing animation, or just drawing on
the screen. Fortunately, today’s accelerated graphics adapters are optimized
for these types of operations.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Color and Shading

http://www.itknowledge.com/reference/archive/1571690735/ch08/233-235.html [20-03-2000 21:31:38]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Other Color Depths

For saving memory or improving performance, many display cards also
support various other color modes.

In the area of performance improvement, some cards support a 32-bit color
mode sometimes called true color mode. Actually, the 32-bit color mode
cannot display any more colors than the 24-bit mode, but it improves
performance by aligning the data for each pixel on a 32-bit address
boundary. Unfortunately, this results in a wasted 8-bits (1 byte) per pixel.
On today’s 32-bit Intel PCs, a memory address evenly divisible by 32
results in much faster memory access.

Two other popular display modes are sometimes supported to use memory
more efficiently. The first is 15-bit color mode, which uses 5 bits each for
storing red, green, and blue components. Each pixel can display any of
32,768 different colors. And in 16-bit mode, an additional bit is added for
one of the color components (usually green), allowing one of 65,536
possible colors for each pixel. This last mode, especially, is practically as
effective as 24-bit for photographic image reproduction. It is difficult to tell
the difference between 16-bit and 24-bit color modes for most photographic
images, although some banding may be observed on smoothly shaded
surfaces with only 16 bits of color.

Programmatically, a color in the 15- or 16-bit color mode is set in the same
way as for the 24-bit color modes—that is, as a set of three 8-bit intensities.
The hardware or device driver takes this 24-bit color value and scales it to
the nearest matching 15- or 16-bit color value before setting the pixel color.

Selecting a Color

You now know that OpenGL specifies an exact color as separate intensities
of red, green, and blue components. You also know that
Windows-supported PC hardware may be able to display nearly all of these
combinations, or only a very few. How, then, do we specify a desired color
in terms of these red, green, and blue components? And how will Windows
fulfill this request using the colors it has available?

The Color Cube

Since a color is specified by three positive color values, we can model the
available colors as a volume that we shall call the RGB color space. Figure
8-6 shows what this color space looks like at the origin with red, green, and
blue as the axes. The red, green, and blue coordinates are specified just like
x, y, and z coordinates. At the origin (0,0,0), the relative intensities of all
the components is zero, and the resulting color is black. The maximum
available on the PC for storage information is 24 bits, so with 8 bits for
each component, let’s say that a value of 255 along the axis would represent
full saturation of that component. We would then end up with a cube
measuring 255 on each side. The corner directly opposite black, where the
concentrations are (0,0,0), is white with relative concentrations of
(255,255,255). At full saturation (255) from the origin along each axis
would lie the pure colors of red, green, and blue, respectively.

Figure 8-6 The origin of RGB color space

This “color cube” (Figure 8-7) then contains all the possible colors, either
on the surface of the cube or within the interior of the cube. For example,
all possible shades of gray between black and white lie internally on the
diagonal line between the corner (0,0,0) and (255,255,255).

Figure 8-7 The RGB color space

Figure 8-8 is a screenshot of the smoothly shaded color cube produced by a
sample program from this chapter, CCUBE. The surface of this cube shows
the color variations from black on one corner to white on the opposite
corner. Red, green, and blue are present on their corners 255 units from
black. Additionally, the colors yellow, cyan, and magenta have corners
showing the combination of the other three primary colors. This program
will do an adequate job of rendering the color cube, even in a 16-color
Windows display mode, and you’ll learn how this is done later in this
chapter. You can also spin the color cube around to examine all of its sides,
by pressing the arrow keys.

Figure 8-8 Output from CCUBE is this color cube

Setting the Drawing Color

Let’s briefly review the glColor() function. It is prototyped as follows:

void glColor<x><t>(red, green, blue, alpha);

In the function name, the <x> represents the number of arguments; it may
be 3 for three arguments of red, green, and blue, or 4 for four arguments to
include the alpha component. (The alpha component specifies the
translucency of the color and will be covered in more detail in (Chapter 15.)
For the time being, just use a three-argument version of the function.

The <t> in the function name specifies the argument’s data type and can be
b, d, f, i, s, ub, ui, us, for byte, double, float, integer, short, unsigned byte,
unsigned integer, and unsigned short data types, respectively. Another
version of the function has a v appended to the end; this version takes an
array that contains the arguments (the v stands for vectored). In the
Reference Section you will find an entry with more details on the glColor()
function.

Most OpenGL programs that you’ll see will use glColor3f and will specify
the intensity of each component as 0.0 for none or 1.0 for full intensity.
However, it may be easier, if you have Windows programming experience,
to use the glColor3ub version of the function. This version takes three
unsigned bytes, from 0 to 255, to specify the intensities of red, green, and
blue. Using this version of the function is like using the Windows RGB
macro to specify a color:

 glColor3ub(0,255,128) = RGB(0,255,128)

In fact, this may make it easier for you to match your OpenGL colors to
existing RGB colors used by your program for other non-OpenGL drawing
tasks.

Remember that the RGB macro specifies a color to Windows but does not
itself set the current drawing color, as glColor does. To do this, you’d use
the RGB macro in conjunction with the creation of a GDI pen or brush.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Color and Shading

http://www.itknowledge.com/reference/archive/1571690735/ch08/235-238.html [20-03-2000 21:31:47]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Shading

Our previous working definition for glColor was that this function set the current
drawing color, and all objects drawn after this command would have the last color
specified. Now that we have discussed the OpenGL drawing primitives (Chapter 6), we
can expand this definition to this: The glColor function sets the current color that is
used for all vertices drawn after the command. So far, all of our examples have drawn
wireframe objects, or solid objects with each face a different but solid color. If we
specify a different color for each vertex of a primitive (either point, line, or polygon),
what color is the interior?

Let’s answer this question first regarding points. A point has only one vertex, and
whatever color you specify for that vertex will be the resulting color for that point.

A line, however, has two vertices and each can be set to a different color. The color of
the line depends on the shading model. Shading is simply defined as the smooth
transition from one color to the next. Any two points in our RGB color space (Figure
8-7) can be connected by a straight line.

Smooth shading causes the colors along the line to vary as they do through the color
cube from one color point to the other. In Figure 8-9, the color cube is shown with the
black and white corners pointed out. Below it is a line with two vertices, one black and
one white. The colors selected along the length of the line match the colors along the
straight line in the color cube, from the black to the white corners. This results in a line
that progresses from black through lighter and lighter shades of gray and eventually to
white.

Figure 8-9 How a line is shaded from black to white

You can do shading mathematically by finding the equation of the line connecting two
points in the three-dimensional RGB color space. Then simply loop through from one
end of the line to the other, retrieving coordinates along the way to provide the color of
each pixel on the screen. Many good books on computer graphics will explain the
algorithm to accomplish this and scale your color line to the physical line on the screen,
etc. Fortunately, OpenGL will do all this for you!

The shading exercise becomes slightly more complex for polygons. A triangle, for
instance, can also be represented as a plane within the color cube. Figure 8-10 shows a
triangle with each vertex at full saturation for the red, green, and blue color
components. The code to display this triangle is in Listing 8-1, and in the example
program TRIANGLES on the CD.

Figure 8-10 A triangle in RGB color space

Listing 8-1 Drawing a smooth-shaded triangle with red, green, and blue corners

// Enable smooth shading
 glShadeModel(GL_SMOOTH);
 // Draw the triangle
 glBegin(GL_TRIANGLES);
 // Red Apex
 glColor3ub((GLubyte)255,(GLubyte)0,(GLubyte)0);
 glVertex3f(0.0f,200.0f,0.0f);

 // Green on the right bottom corner
 glColor3ub((GLubyte)0,(GLubyte)255,(GLubyte)0);
 glVertex3f(200.0f,-70.0f,0.0f);

 // Blue on the left bottom corner
 glColor3ub((GLubyte)0,(GLubyte)0,(GLubyte)255);
 glVertex3f(-200.0f, -70.0f, 0.0f);
glEnd();

Setting the Shading Model

The first line of Listing 8-1 actually sets the shading model OpenGL uses to do smooth
shading—the model we have been discussing. This is the default shading model, but it’s
a good idea to call this function anyway to ensure that your program is operating the
way you intended.

(The other shading model that can be specified with glShadeModel is GL_FLAT for flat
shading. Flat shading means that no shading calculations are performed on the interior
of primitives. Generally, with flat shading the color of the primitive’s interior is the
color that was specified for the last vertex. The only exception is for a GL_POLYGON
primitive, in which case the color is that of the first vertex.)

Then the code in Listing 8-1 sets the top of the triangle to be pure red, the lower-right
corner to be green, and the remaining bottom-left corner to be blue. Because smooth
shading is specified, the interior of the triangle is shaded to provide a smooth transition
between each corner.

The output from the TRIANGLE program is shown in Figure 8-11. This represents the
plane shown graphically in Figure 8-10.

Figure 8-11 Output from the TRIANGLES program

Polygons, more complex than triangles, can also have different colors specified for each
vertex. In these instances, the underlying logic for shading can become more intricate.
Fortunately, you never have to worry about it with OpenGL. No matter how complex
your polygon, OpenGL will successfully shade the interior points between each vertex.

Note that you will rarely wish to do this type of shading yourself, anyway. This is
primarily used to produce lighting effects, and OpenGL once again comes to the rescue.
We’ll cover lighting in the Chapter 9.

Windows Palettes

The TRIANGLE and CCUBE example programs work reasonably well regardless of
how many colors are available. If you can change the color depth of your system, try
running these programs at the various color depths, starting at 16 colors and going up to
16 million if possible. You’ll notice that the colors make a smooth transition regardless
of color depth, but the higher color depths provide a smoother and more appealing
image. Figures 8-12a and 8-12b show the output of the TRIANGLES sample with 16
colors and 16 million colors, respectively. Even though these pictures are not in color,
you can see how much smoother the second triangle appears.

Figure 8-12a Output of the TRIANGLES sample with 16 colors

Figure 8-12b With 16 million colors the triangle is much smoother

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Color and Shading

http://www.itknowledge.com/reference/archive/1571690735/ch08/238-242.html [20-03-2000 21:32:00]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Color Matching

What happens when you try to draw a pixel of a particular color using the
RGB values we have discussed? Internally, Windows defines a color using
8 bits each for the red, green, and blue components using the RGB macro,
and you can use glColor3ub to duplicate this functionality within OpenGL.

If the PC graphics card is in 24-bit color mode, then each pixel is displayed
precisely in the color specified by the 24-bit value (three 8-bit intensities).
In the 15- and 16-bit color modes, Windows passes the 24-bit color value to
the display driver, which converts the color to a 15- or 16-bit color value
before displaying it. In 24-bit color mode, the RGB color cube measured
255 (or 8 bits) per side. In 15- or 16-bit color mode, the color cube
measures 32 (5 bits) or 64 (6 bits) on a side. The device driver then matches
the 24-bit color value to the nearest color match in the 15 or 16-bit color
cube.

Figure 8-13 shows how an 8-bit red value might be mapped to a 5-bit red
value.

Figure 8-13 A medium-intensity red being mapped from an 8-bit value to
a 5-bit value

At the low end of the scale, 4-bit color mode can only display 16 colors.
These colors are fixed and cannot be modified. Internally, Windows still
represents each color with a 24-bit RGB value. When you specify a color to
use for drawing operations using the RGB macro or glColor3ub, Windows
uses the nearest color of the 16 available to fulfill the request. If the color is
being used for fill operations, the color is approximated by dithering the
available colors.

Dithering

Having only 16 colors to work with makes the 4-bit color modes poorly
suited for graphics. One thing the Windows GDI will do to help is to
perform dithering on solid shapes and objects in this mode. Dithering is a
means of placing different colors close together to produce the illusion of
another composite color. For example, if you place yellow and blue squares
together in a checkerboard pattern, the pattern will take on a greenish
appearance. Without actually mixing the colors, the green would have a
grainy appearance. By changing the proportion of yellow to green squares,
you are effectively changing the intensities of yellow and green.

Windows uses dithering to produce colors not available in the current
palette. In 16-color mode, image quality is typically very poor for more
complex scenes. Figure 8-12 is a vivid demonstration of Windows
dithering; we attempted to produce the RGB triangle on a system with only
16 colors. Generally, Windows does not perform dithering for OpenGL.

OpenGL can also do its own dithering, providing the command

glEnable(GL_DITHER);

This can sometimes improve image quality substantially in 8- and 15-bit
color modes. You can see dithering in action in the example program
DITHER from this chapter’s subdirectory on the CD. This program draws a
cube with sides of various colors and allows dithering to be enabled or
disabled from the menu. When run in 8-bit color mode or better, dithering
has little effect, but in the 4-bit, 16-color mode the dithered scene is
remarkably different.

Advantages of a Palette in 8-Bit Mode

The 8-bit color modes can display 256 colors, and this results in a
remarkable improvement for color graphics. When Windows is running in a
color mode that supports 256 colors, it would make sense if those colors
were evenly distributed across RGB color space. Then all applications
would have a relatively wide choice of colors, and when a color was
selected, the nearest available color would be used. Unfortunately, this is
not very practical in the real world.

Since the 256 colors in the palette for the device can be selected from over
16 million different colors, an application can substantially improve the
quality of its graphics by carefully selecting those colors—and many do.
For example, to produce a seascape, additional shades of blue will be
needed. CAD and modeling applications modify the palette to produce
smooth shading of a surface of a particular single color. For example, the
scene may require as many as 200 shades of gray to accurately render the
image of a pipe’s cross section. Thus, applications for the PC typically
change this palette to meet their needs, resulting in near-photographic
quality for many images and scenes. For 256 color bitmaps, the Windows
.bmp format even has an array that’s 256 entries long, containing 24-bit
RGB values specifying the palette for the stored image.

An application can create a palette with the CreatePalette function,
identifying the palette by a handle of type HPALETTE. This function takes
a logical palette structure (LOGPALETTE) that contains 256 entries, each
specifying 8-bit values for red, green, and blue components. But before we
examine palette creation, let’s take a look at how multitasked applications
can share the single system palette in 8-bit color mode.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Color and Shading

http://www.itknowledge.com/reference/archive/1571690735/ch08/242-244.html [20-03-2000 21:32:06]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Palette Arbitration

Windows multitasking allows many applications to be on screen at once. The hardware supports only 256
colors on screen at once, however, so all applications must share the same system palette. If one application
changes the system palette, images in the other windows may have scrambled colors, producing some
undesired psychedelic effects. To arbitrate palette usage among applications, Windows sends a set of
messages. Applications are notified when another application has changed the system palette, and they are
notified when their window has received focus and palette modification is possible.

When an application receives keyboard or mouse input focus, Windows sends a
WM_QUERYNEWPALETTE message to the main window of the application. This message asks the
application if it wants to realize a new palette. Realizing a palette means the application copies the palette
entries from its private palette to the system palette. To do this, the application must first select the palette into
the device context for the window being updated, and then call RealizePalette. Listing 8-2 presents the code
for this message handler; it will be in all subsequent examples from this book.

Listing 8-2 Typical palette-arbitration code for Windows-based applications

 static HPALETTE hPalette = NULL; // Permenant palette handle

 …
 …
 // Palette is created and referenced by hPalette
 …
 …
 // Windows is telling the application that it may modify
 // the system palette. This message in essance asks the
 // application for a new palette.
 case WM_QUERYNEWPALETTE:
 // If the palette was created.
 if(hPalette)
 {
 int nRet;

 // Selects the palette into the current device context
 SelectPalette(hDC, hPalette, FALSE);

 // Map entries from the currently selected palette to
 // the system palette. The return value is the number
 // of palette entries modified.
 nRet = RealizePalette(hDC);

 // Repaint, forces remap of palette in current window
 InvalidateRect(hWnd,NULL,FALSE);

 return nRet;
 }
 break;

 // This window may set the palette, even though it is not the
 // currently active window.
 case WM_PALETTECHANGED:
 // Don't do anything if the palette does not exist, or if
 // this is the window that changed the palette.
 if((hPalette != NULL) && ((HWND)wParam != hWnd))
 {
 // Select the palette into the device context
 SelectPalette(hDC,hPalette,FALSE);

 // Map entries to system palette
 RealizePalette(hDC);

 // Remap the current colors to the newly realized
 palette
 UpdateColors(hDC);
 return 0;
 }
 break;

Another message sent by Windows for palette realization is WM_PALETTECHANGED. This message is sent
to windows that can realize their palette but may not have the current focus. When this message is sent, you
must also check the value of wParam. If wParam contains the handle to the current window receiving the
message, then WM_QUERYNEWPALETTE has already been processed, and the palette does not need to be
realized again.

Note also in Listing 8-2 that the value of hPalette is checked against NULL before either of these
palette-realization messages is processed. If the application is not running in 8-bit color mode, then no palette
needs to be created or realized by these functions. Structuring your code in this way makes it useful for
displays that don’t use palettes as well as those that do.

Creating a Palette

Unfortunately, palette considerations are a necessary evil if your application is to run on the 8-bit hardware
that’s still in use in some environments. So what do you do if your code is executing on a machine that only
supports 256 colors?

For image reproduction, we recommend selecting a range of colors that closely match the original colors. For
OpenGL rendering under most circumstances, however, you want the widest possible range of colors for
general-purpose use. The trick is to select the palette colors so that they’re evenly distributed throughout the
color cube. Then, whenever a color is specified that is not already in the palette, Windows will select the
nearest color in the color cube. As mentioned earlier, this is not ideal for some applications, but for OpenGL
rendered scenes it is the best we can do. Unless there is substantial texture mapping in the scene with a wide
variety of colors, results are usually acceptable.

Do You Need a Palette?

To determine if your application needs a palette, you can call DescribePixelFormat() after you have set the
pixel format. Test the dwFlags member of the PIXELFORMATDECRIPTOR returned by
DescribePixelFormat(), for the bit value PFD_NEED_PALETTE. If this bit is set, you will need to create a
palette for use by your application. Listing 8-3 shows the necessary code for this test.

Listing 8-3 Testing to see if an application needs a palette

 PIXELFORMATDESCRIPTOR pfd; // Pixel Format Descriptor
 int nPixelFormat;
 // Pixel format index

 // Get the pixel format index and retrieve the pixel format
 description
 nPixelFormat = GetPixelFormat(hDC);
 DescribePixelFormat(hDC, nPixelFormat, sizeof(PIXELFORMATDESCRIPTOR),
 &pfd);

 // Does this pixel format require a palette?
 if(!(pfd.dwFlags & PFD_NEED_PALETTE))
 return NULL;// Does not need a palette

 // Palette creation code
 …
 …

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Color and Shading

http://www.itknowledge.com/reference/archive/1571690735/ch08/244-247.html [20-03-2000 21:32:11]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The Palette’s Structure

To create a palette, you must first allocate memory for a LOGPALETTE structure. This structure is
filled with the information that describes the palette, and then is passed to the Win32 function
CreatePalette(). The LOGPALETTE structure is defined as follows:

 typedef struct tagLOGPALETTE { // lgpl
 WORD palVersion;
 WORD palNumEntries;
 PALETTEENTRY palPalEntry[1];
 } LOGPALETTE;

The first two members are the palette header and contain the palette version (always set to 0x300) and
the number of color entries (256 for 8-bit modes). Each entry is then defined as a PALETTEENTRY
structure that contains the RGB components of the color entry.

The following code allocates space for the logical palette:

LOGPALETTE *pPal; // Pointer to memory for logical palette
 …
 …
// Allocate space for a logical palette structure plus all the palette
// entries
pPal = (LOGPALETTE*)malloc(sizeof(LOGPALETTE) +
nColors*sizeof(PALETTEENTRY));

Here, nColors specifies the number of colors to place in the palette, which for our purposes is always
256.

Each entry in the palette then is a PALETTEENTRY structure, which is defined as follows:

 typedef struct tagPALETTEENTRY { // pe
 BYTE peRed;
 BYTE peGreen;
 BYTE peBlue;
 BYTE peFlags;
 } PALETTEENTRY;

The peRed, peGreen, and peBlue members specify an 8-bit value that represents the relative intensities
of each color component. In this way, each of the 256 palette entries contains a 24-color definition. The
peFlags member describes advanced usage of the palette entries. For OpenGL purposes you can just set
this to NULL.

In addition to the 3-3-2 palette, Windows can support other 8-bit palettes for doing things such as
specifying 200 shades of gray.

The 3-3-2 Palette

Now comes the tricky part. Not only must our 256 palette entries be spread evenly throughout the RGB
color cube, but they must be in a certain order. It is this order that enables OpenGL to find the color it
needs, or the closest available color in the palette. Remember that in an 8-bit color mode you have 3 bits
each for red and green, and 2 bits for blue. This is commonly referred to as a 3-3-2 palette. So our RGB
color cube measures 8 by 8 by 3 along the red, green, and blue axes, respectively.

To find the color needed in the palette, an 8-8-8 color reference (the 24-bit color mode setup) is scaled to
a 3-3-2 reference. This 8-bit value is then the index into our palette array. The red intensities of 0–7 in
the 3-3-2 palette must correspond to the intensities 0–255 in the 8-8-8 palette. Figure 8-14 illustrates
how the red, green, and blue components are combined to make the palette index.

When we build the palette, we loop through all values from 0 to 255. We then decompose the index into
the red, green, and blue intensities represented by these values (in terms of the 3-3-2 palette). Each
component is multiplied by 255 and divided by the maximum value represented, which has the effect of
smoothly stepping the intensities from 0 to 7 for red and green, and from 0 to 3 for the blue. Table 8-1
shows some sample palette entries, to demonstrate component calculation.

Table 8-1 A Few Sample Palette Entries for a 3-3-2 Palette

Palette Entry Binary (B G R) Blue Component Green Component Red
Component

0 000 000 000000 0 0 0
1 00 000 001 0 0 1*255/7
2 00 000 010 0 0 2*255/7
3 00 000 011 0 0 3*255/7
9 00 001 001 0 1*255/7 1*255/7
10 00 001 010 0 1*255/7 2*255/7
137 10 001 001 2*255/3 1*255/7 1*255/7
138 10 001 010 2*255/7 1*255/7 2*255/3
255 11 111 111 3*255/3 7*255/7 7*255/7

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Color and Shading

http://www.itknowledge.com/reference/archive/1571690735/ch08/247-249.html [20-03-2000 21:32:18]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Building the Palette

Unfortunately, at this time OpenGL for Windows will only support 3-3-2 palettes in RGBA color mode. This
is actually specified in the PIXELFORMATDESCRIPTOR returned by DescribePixelFormat(). The members
cRedBits, cGreenBits, and cBluebits specify 3, 3, and 2, respectively, for the number of bits that can represent
each component. Furthermore, the cRedShift, cGreenShift, and cBlueShift values specify how much to shift
the respective component value to the left (in this case, 0, 3, and 6 for red, green, and blue shifts). These sets
of values compose the palette index (Figure 8-14).

Figure 8-14 3-3-2 palette packing

The code in Listing 8-4 creates a palette if needed and returns its handle. This function makes use of the
component bit counts and shift information in the PIXELFORMATDESCRIPTOR to accommodate any
subsequent palette requirements, such as a 2-2-2 palette .

Listing 8-4 Function to create a palette for OpenGL

// If necessary, creates a 3-3-2 palette for the device context listed.
HPALETTE GetOpenGLPalette(HDC hDC)
 {
 HPALETTE hRetPal = NULL; // Handle to palette to be created
 PIXELFORMATDESCRIPTOR pfd; // Pixel Format Descriptor
 LOGPALETTE *pPal; // Pointer to memory for logical palette
 int nPixelFormat; // Pixel format index
 int nColors; // Number of entries in palette
 int i; // Counting variable
 BYTE RedRange,GreenRange,BlueRange;
 // Range for each color entry (7,7,and 3)

 // Get the pixel format index and retrieve the pixel format description
 nPixelFormat = GetPixelFormat(hDC);
 DescribePixelFormat(hDC, nPixelFormat, sizeof(PIXELFORMATDESCRIPTOR),
 &pfd);

 // Does this pixel format require a palette? If not, do not create a
 // palette and just return NULL
 if(!(pfd.dwFlags & PFD_NEED_PALETTE))
 return NULL;

 // Number of entries in palette. 8 bits yields 256 entries
 nColors = 1 << pfd.cColorBits;

 // Allocate space for a logical palette structure plus all the palette
 // entries
 pPal = (LOGPALETTE*)malloc(sizeof(LOGPALETTE) +
 nColors*sizeof(PALETTEENTRY));

 // Fill in palette header
 pPal->palVersion = 0x300;// Windows 3.0
 pPal->palNumEntries = nColors; // table size

 // Build mask of all 1's. This creates a number represented by having
 // the low order ×bits set, where ×= pfd.cRedBits, pfd.cGreenBits,and
 // pfd.cBlueBits.
 RedRange = (1 << pfd.cRedBits) -1; // 7 for 3-3-2 palettes
 GreenRange = (1 << pfd.cGreenBits) - 1; // 7 for 3-3-2 palettes
 BlueRange = (1 << pfd.cBlueBits) -1; // 3 for 3-3-2 palettes

 // Loop through all the palette entries
 for(i = 0; i < nColors; i++)
 {
 // Fill in the 8-bit equivalents for each component
 pPal->palPalEntry[i].peRed = (i >> pfd.cRedShift) & RedRange;
 pPal->palPalEntry[i].peRed = (unsigned char)(
 (double) pPal->palPalEntry[i].peRed * 255.0
 / RedRange);

 pPal->palPalEntry[i].peGreen = (i >> pfd.cGreenShift)
 & GreenRange;
 pPal->palPalEntry[i].peGreen = (unsigned char)(
 (double)pPal->palPalEntry[i].peGreen * 255.0
 /GreenRange);

 pPal->palPalEntry[i].peBlue = (i >> pfd.cBlueShift)
 & BlueRange;
 pPal->palPalEntry[i].peBlue = (unsigned char)(
 (double)pPal->palPalEntry[i].peBlue * 255.0
 / BlueRange);

 pPal->palPalEntry[i].peFlags = (unsigned char) NULL;
 }

 // Create the palette
 hRetPal = CreatePalette(pPal);

 // Go ahead and select and realize the palette for this device context
 SelectPalette(hDC,hRetPal,FALSE);
 RealizePalette(hDC);

 // Free the memory used for the logical palette structure
 free(pPal);

 // Return the handle to the new palette
 return hRetPal;
 }

Palette Creation and Disposal

The palette should be created and realized before the rendering context is created or made current. The
function in Listing 8-4 requires only the device context, once the pixel format has been set. It will then return a
handle to a palette if one is needed. Listing 8-5 shows the sequence of operations when the window is created
and destroyed. This is similar to code presented previously for the creation and destruction of the rendering
context, only now it also takes into account the possible existence of a palette.

Listing 8-5 A palette is created and destroyed

 // Window creation, setup for OpenGL
 case WM_CREATE:
 // Store the device context
 hDC = GetDC(hWnd);

 // Select the pixel format
 SetDCPixelFormat(hDC);

 // Create the palette if needed
 hPalette = GetOpenGLPalette(hDC);

 // Create the rendering context and make it current
 hRC = wglCreateContext(hDC);
 wglMakeCurrent(hDC, hRC);
 break;

 // Window is being destroyed, cleanup
 case WM_DESTROY:
 // Deselect the current rendering context and delete it
 wglMakeCurrent(hDC,NULL);
 wglDeleteContext(hRC);

 // If a palette was created, destroy it here
 if(hPalette != NULL)
 DeleteObject(hPalette);

 // Tell the application to terminate after the window
 // is gone.
 PostQuitMessage(0);
 break;

Some Restrictions Apply

Not all of your 256 palette entries will actually be mapped to the system palette. Windows reserves 20 entries
for static system colors that include the standard 16 VGA/EGA colors. This protects the standard windows
components (title bars, buttons, etc.) from alteration whenever an application changes the system palette.
When your application realizes its palette, these 20 colors will not be overwritten. Fortunately, some of these
colors already exist or are closely matched in the 3-3-2 palette. Those that don’t are closely enough matched
that you shouldn’t be able to tell the difference.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Color and Shading

http://www.itknowledge.com/reference/archive/1571690735/ch08/249-251.html [20-03-2000 21:32:25]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Color Index Mode

OpenGL also supports the alternative color index mode. In this mode, you specify a color for drawing
operations by specifying an index into an array of colors, rather than as an RGB triplet.

You cannot use color index mode and RGBA color mode together. This means if you use color index mode
on a true-color device (or near true-color, such as a 16-bit color card), you won’t have access to all the
available colors. Under some implementations, the color index palette can be up to 4,096 entries long. The
Microsoft implementation however, only supports 256 entries.

You can use color index mode to do contour mapping in which some function of the surface returns an index
into the palette. It is somewhat faster than RGBA, and the limitations of the 3-3-2 palette do not exist. For
example, if you need 200 shades of gray, you can have them. However, some of the lighting effects
discussed in the next chapter are not available under color index mode either.

Why Use Color Index Mode?

There are really very few good reasons to use color index mode. Typically, this mode is used to get more
control over the palette. You can also do palette animation, but only on devices that support palettes (8-bit
display cards). This doesn’t mean you can’t use color index mode on these devices; it only means there is no
corresponding hardware palette with which you can perform animation. Palette animation occurs when you
change the entries in the palette, which causes a corresponding change in all screen pixels having that palette
index. This can produce color cycling for some special effects.

Another reason to use color index mode is for applications that use color to indicate a third dimension—to
indicate the pressure at certain spatialregions, for instance. You can also use this mode for false color images
that do not require an organized palette. Finally, color index mode can be somewhat faster in 8-bit color
modes because only one color channel (as opposed to three, one each for red, green, and blue) needs to be
manipulated instead of three.

In addition to limiting the color selection, color index mode does not support some of OpenGL’s other
special effects—including many lighting effects and shading, fog, anti-aliasing, and alpha blending.
Generally, it is better to use RGBA mode.

As mentioned, the most significant advantage of using color index mode is for more palette control on 8-bit
display devices. The 3-3-2 palette limits your color choices, and if you want 200 shades of red to do really
smooth shading on an 8-bit display, you are out of luck. In color index mode, however, the palette entries
range from darkest to lightest colors. You can separate the palette into as many or as few bands as you like.
The INDEX sample program displays a triangle shaded from black to bright red (see Figure 8-15). This
shading is not possible in 8-bit color mode using at 3-3-2 palette.

Figure 8-15 Output from INDEX showing over 200 shades of red for smooth shading

Using Color Index Mode

To specify color index mode, all you need to do is set the iPixelType member of the
PIXELFORMATDESCRIPTOR to PFD_TYPE_COLORINDEX. First, though, you need to create a palette.
With color index mode, the palette is specific to the application. For our INDEX sample program, we want a
palette consisting only of shades of red to do very smooth shading in an 8-bit color mode. Listing 8-6 is the
code to create this palette.

Listing 8-6 Code to create a palette consisting only of shades of red

// Creates a color ramp from black to bright red
HPALETTE GetRedPalette(HDC hDC)
 {
 HPALETTE hRetPal = NULL; // Handle to palette to be created
 LOGPALETTE *pPal; // Pointer to memory for logical palette
 int i; // Counting variable

// Allocate space for a logical palette structure plus all the palette
// entries
pPal =
 {LOGPALETTE*)malloc(sizeof(LOGPALETTE)+256*sizeof(PALETTEENTRY));

// Fill in palette header
pPal->palVersion = 0x300;// Windows 3.0
pPal->palNumEntries = 256;// table size

// Loop through all the palette entries, creating a graduated red
// palette containing only shades of red
for(i = 10; i < 246; i++)
 {
 pPal->palPalEntry[i].peRed = i;// Red intensity from 0 to 255
 pPal->palPalEntry[i].peGreen = 0;
 pPal->palPalEntry[i].peBlue = 0;
 pPal->palPalEntry[i].peFlags = (unsigned char) NULL;
 }

// Create the palette
hRetPal = CreatePalette(pPal);

// Go ahead and select and realize the palette for this device context
SelectPalette(hDC,hRetPal,FALSE);
RealizePalette(hDC);

// Free the memory used for the logical palette structure
free(pPal);

// Return the handle to the new palette
return hRetPal;
}

Notice that this code always returns a palette. No check is made to see if the pixel format required a palette.
This is because you can use color index mode even in the high-color modes. All of the other code concerning
palette realization remains unaffected.

Show the Triangle

Now the code to render the triangle sets the color of the triangle’s apex to color index 0, which is the darkest
entry in the palette with 0 intensity (black). The color for the bottom two corners is set to palette index 255,
the brightest shade of red. With smooth shading enabled, this code (Listing 8-7) produces the triangle seen in
Figure 8-15.

Listing 8-7 Code to render the shaded triangle in the INDEX program

void RenderScene(void)
 {
 // Clear the window with current clearing color
 glClear(GL_COLOR_BUFFER_BIT);

 // Enable smooth shading
 glShadeModel(GL_SMOOTH);

 // Draw the triangle
 glBegin(GL_TRIANGLES);
 // Darkest Red Apex (black)
 glIndexi(0);
 glVertex3f(0.0f,200.0f,0.0f);

 // Brightest red bottom corners
 glIndexi(255);
 glVertex3f(200.0f,-70.0f,0.0f);
 glVertex3f(-200.0f, -70.0f, 0.0f);
 glEnd();

 // Flush drawing commands
 glFlush();
 }

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Color and Shading

http://www.itknowledge.com/reference/archive/1571690735/ch08/251-254.html [20-03-2000 21:32:32]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Summary

This chapter covers one of the most important features supported by a graphics package: color.
You have seen how to specify a color in terms of its RGB components, and how these components
relate to one another in the RGB color cube. Your understanding of glColor has been expanded to
include the coloring of vertices, and you have seen how this affects shading. We explained
OpenGL’s selection of colors in 4-, 8-, 16-, and 24-bit Windows color modes. We demonstrated
the building of a 3-3-2 palette for use by OpenGL in 8-bit color modes. Finally, we took a brief
look at color index mode and its utilization to gain better palette control in 8-bit color modes.

Good use of color and shading is a prerequisite for good 3D graphics. The upcoming chapter
explains how OpenGL uses shading to produce lighting effects. You’ll learn how to specify
material colors and lighting conditions and allow OpenGL to select the drawing colors.

Reference Section

glClearIndex
Purpose

Sets the clear value for the color index buffers.

Include File
<gl.h>

Syntax
void glClearIndex(GLfloat color);

Description
This function specifies the color index to use in color index mode to clear the color buffers.
This has the net effect of clearing the window and setting the background color to the color
in the index specified by the color parameter.

Parameters
color

GLfloat: The value to use when the color index buffers are cleared with glClear. The default
is 0.

Returns
None.

Example
See the sample program INDEX in this chapter.

See Also
glClear, glGet

glColor
Purpose

Sets the current color when in RGBA color mode.

Include File
<gl.h>

Variations
void glColor3b(GLbyte red,GLbyte green, GLbyte blue);
void glColor3d(GLdouble red, GLdouble green, GLdouble blue);
void glColor3f(GLfloat red, GLfloat green, GLfloat blue);
void glColor3i(GLint red, GLint green, GLint blue);
void glColor3s(GLshort red, GLshort green, GLshort blue);
void glColor3ub(GLubyte red, GLubyte green, GLubyte blue);
void glColor3ui(GLuint red, GLuint green, GLuint blue);
void glColor3us(GLushort red, GLushort green, GLushort blue);
void glColor4b(GLbyte red, GLbyte green, GLbyte blue, GLbyte alpha);
void glColor4d(GLdouble red, GLdouble green, GLdouble blue, GLdouble alpha);
void glColor4f(GLfloat red, GLfloat green, GLfloat blue, GLfloat alpha);
void glColor4i(GLint red, GLint green, GLint blue, GLint alpha);
void glColor4s(GLshort red, GLshort green, GLshort blue, GLshort alpha);
void glColor4ub(GLubyte red, GLubyte green, GLubyte blue, GLubyte alpha);
void glColor4ui(GLuint red, GLuint green, GLuint blue, GLuint alpha);
void glColor4us(GLushort red, GLushort green, GLushort blue, GLushort alpha);
void glColor3bv(const GLbyte *v);
void glColor3dv(const GLdouble *v);
void glColor3fv(const GLfloat *v);
void glColor3iv(const GLint *v);
void glColor3sv(const GLshort *v);
void glColor3ubv(const GLubyte *v);
void glColor3uiv(const GLuint *v);
void glColor3usv(const GLushort *v);
void glColor4bv(const GLbyte *v);
void glColor4dv(const GLdouble *v);
void glColor4fv(const GLfloat *v);
void glColor4iv(const GLint *v);
void glColor4sv(const GLshort *v);
void glColor4ubv(const GLubyte *v);
void glColor4uiv(const GLuint *v);
void glColor4usv(const GLushort *v);

Description
This function sets the current color by specifying separate red, green, and blue components
of the color. Some functions also accept an alpha component. Each component represents
the range of intensity from zero (0.0) to full intensity (1.0). Functions with the v suffix take
a pointer to an array that specifies the components. Each element in the array must be of the
same type. When the alpha component is not specified, it is implicitly set to 1.0. When
non-floating point types are specified, the range from zero to the largest value represented
by that type is mapped to the floating point range 0.0 to 1.0.

Parameters
red

Specifies the red component of the color.

green

Specifies the green component of the color.

blue

Specifies the blue component of the color.

alpha

Specifies the alpha component of the color. Used only in variations that take four
arguments.

*v

A pointer to an array of red, green, blue, and possibly alpha values.

Returns
None.

Example

The following code from the CCUBE example in this chapter sets one of the corners of the color
cube to white.

 // Front face
 glBegin(GL_POLYGON);

 // White
 glColor3ub((GLubyte) 255, (GLubyte)255, (GLubyte)255);
 glVertex3f(50.0f,50.0f,50.0f);

See Also
glIndex

glColorMask
Purpose

Enables or disables modification of color components in the color buffers.

Include File
<gl.h>

Syntax
void glColorMask(GLboolean bRed, GLboolean bGreen, GLboolean bBlue, GLboolean
bAlpha);

Description
This function allows changes to individual color components in the color buffer to be
disabled or enabled (all are enabled by default). For example, setting the bAlpha argument
to GL_FALSE disallows changes to the alpha color component.

Parameters
bRed

GLboolean: Specifies whether the red component may be modified.

bGreen

GLboolean: Specifies whether the green component may be modified.

bBlue

GLboolean: Specifies whether the blue component may be modified.

bAlpha

GLboolean: Specifies whether the alpha component may be modified.

Returns
None.

Example
See the sample program MASK on the CD for this chapter.

See Also
glColor, glIndex, glIndexMask, glDepthMask, glStencilMask

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Color and Shading

http://www.itknowledge.com/reference/archive/1571690735/ch08/254-257.html [20-03-2000 21:32:37]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Chapter 9
Lighting and Lamps

What you’ll learn in this chapter:
How to… Functions You’ll Use

Set the lighting model glLightModel
Set lighting parameters glLight
Set material reflective properties glColorMaterial, glMaterial
Use surface normals glNormal

This chapter discusses lighting: in our opinion, the honey spot of OpenGL.
You’ve been learning OpenGL from the ground up—how to put programs
together, then how to assemble objects from primitives and manipulate
them in 3D space. In Chapter 8 we showed you how to add color to your
objects and do smooth shading. All well and good, but let’s face it—any
good summer co-op student with a good book on computer graphics could
have put this much together themselves building only on the Windows GDI.
To recoin a phrase, “Where’s the Beef?”

To put it succinctly, the beef starts here. For most of the rest of this book,
science takes a back seat and magic rules. According to Arthur C. Clarke,
“Any sufficiently advanced technology is indistinguishable from magic.”
Of course there is no real magic involved in lighting, but it sure can seem
that way at times. (If you want to dig into the mathematics, see Appendix
B.)

Another name for this chapter might be “Adding Realism to Your Scenes.”
You see, there is more to an object’s color in the real world than what we
explained in Chapter 8. In addition to having a color, objects can appear
shiny or dull or may even glow with their own light. An object’s apparent
color will vary with bright or dim lighting, and even the color of the light
hitting an object will make a difference. An illuminated object can even be
shaded across its surface when lit or viewed from an angle.

Most of the rest of Parts II and III are concerned with techniques that allow
you to add more and more realism to your scenes. So put away your
calculators (if you want), bring out your wizard’s cap, and take a deep
breath… The magic show starts here!

Light in the Real World

Real objects don’t appear in a solid or shaded color based solely on their
RGB value. Figure 9-1 shows the output from the program JET from the
CD. It’s a simple jet airplane, hand plotted with triangles using only the
methods covered so far in this book. As usual, JET and the other programs
in this chapter allow you to spin the object around by using the arrow keys
to better see the effects.

Figure 9-1 A simple jet built by setting a different color for each triangle

The selection of colors is meant to highlight the three-dimensional structure
of the jet. Aside from the crude assemblage of triangles, however, you can
see that it looks hardly anything like a real object. Suppose you constructed
a model of this airplane and painted each flat surface the colors represented.
The model would still appear glossy or flat depending on the kind of paint
used, and the color of each flat surface would vary with the angle of your
view and any sources of light.

OpenGL does a very good job of approximating the real world in terms of
lighting conditions. Unless an object emits its own light, it is illuminated by
three different kinds of light: ambient, diffuse, and specular.

Ambient Light

Ambient light is light that doesn’t come from any particular direction. It has
a source, but the rays of light have bounced around the room or scene and
become directionless. Objects illuminated by ambient light are evenly lit on
all surfaces in all directions. You can think of all previous examples in this
book as being lit by a bright ambient light, because the objects were always
visible and evenly colored (or shaded) regardless of their rotation or
viewing angle. Figure 9-2 shows an object illuminated by ambient light.

Figure 9-2 An object illuminated purely by ambient light

Diffuse Light

Diffuse light comes from a particular direction but is reflected evenly off a
surface. Even though the light is reflected evenly, the object surface is
brighter if the light is pointed directly at the surface than if the light grazes
the surface from an angle. A good example of a diffuse light source is
fluorescent lighting, or sunlight streaming in a side window at noon. In
Figure 9-3 the object is illuminated by a diffuse light source.

Figure 9-3 An object illuminated by a purely diffuse light source

Specular Light

Like diffuse light, specular light is directional, but it is reflected sharply
and in a particular direction. A highly specular light tends to cause a bright
spot on the surface it shines upon, which is called the specular highlight. A
spotlight and the Sun are examples of specular light. Figure 9-4 shows an
object illuminated by a purely specular light source.

Figure 9-4 An object illuminated by a purely specular light source

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Lighting and Lamps

http://www.itknowledge.com/reference/archive/1571690735/ch09/261-266.html [20-03-2000 21:32:49]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Put It All Together

No single light source is composed entirely of any of the three types of light just
described. Rather, it is made up of varying intensities of each. For example, a red
laser beam in a lab is composed of almost a pure-red specular component.
However, smoke or dust particles scatter the beam, so it can be seen traveling
across the room. This scattering represents the diffuse component of the light. If
the beam is bright and no other light sources are present, you’d notice objects in
the room taking on a red hue. This would be a very small ambient component of
that light.

Thus a light source in a scene is said to be composed of three lighting
components: ambient, diffuse, and specular. Just like the components of a color,
each lighting component is defined with an RGBA value that describes the
relative intensities of red, green, and blue light that make up that component. (We
will ignore the alpha component until Chapter 15.) For example, our red laser
light might be described by the component values in Table 9-1.

Table 9-1 Color and Light Distribution for a Red Laser Light Source

 Red Green Blue Alpha

Specular 0.99 0.0 0.0 1.0
Diffuse 0.10 0.0 0.0 1.0
Ambient 0.05 0.0 0.0 1.0

Note that the red laser beam has no green or blue light. Also, note that specular,
diffuse, and ambient light can each range in intensity from 0.0 to 1.0. You could
interpret this table as saying that the red laser light in some scenes has a very high
specular component, a small diffuse component, and a very small ambient
component. Wherever it shines, you are probably going to see a reddish spot.
Also, because of conditions (smoke, dust, etc.) in the room, the diffuse component
will allow the beam to be seen traveling through the air. Finally, the ambient
component—likely due to smoke or dust particles, as well—will scatter a tiny bit
of light all about the room. Ambient and diffuse components of light are
frequently combined because they are so similar in nature.

Materials in the Real World

Light is only part of the equation, though. In the real world, objects do have a
color of their own. In Chapter 8, we described the color of an object as being
defined by its reflected wavelengths of light. A blue ball reflects mostly blue
photons and absorbs most others. This assumes that the light shining on the ball
has blue photons in it to be reflected and detected by the observer. Generally,
most scenes in the real world are illuminated by a white light containing an even
mixture of all the colors. Under white light, therefore, most objects appear in their
proper or “natural” colors. However, this is not always so; put the blue ball in a
dark room with only a yellow light, and the ball would appear black to the viewer,
because all the yellow light would be absorbed and there would be no blue to be
reflected.

Material Properties

When we use lighting, we do not describe polygons as having a particular color,
but rather as being made up of materials that have certain reflective properties.
Instead of saying that a polygon is red, we say that the polygon is made of a
material that reflects mostly red light. We are still saying that the surface is red,
but now we must also specify the material’s reflective properties for ambient,
diffuse, and specular light sources. A material may be shiny and reflect specular
light very well, while absorbing most of the ambient or diffuse light. Conversely,
a flat colored object may absorb all specular light and won’t be shiny under any
circumstances. Another property to be specified is the emission property for
objects that emit their own light, such as taillights or glow-in-the-dark watches.

Adding Light to Materials

Setting lighting and material properties to achieve the desired effect takes some
practice. There are no color cubes or rules of thumb to give you quick and easy
answers. This is where analysis gives way to art, and science yields to magic. The
CD subdirectory for this chapter contains a supplementary sample program called
MATLIGHT (for Materials and Lighting Studio). This program allows you to
change material and lighting properties on the fly for a scene composed of some
simple objects. You can use MATLIGHT to get a feel for the various lighting and
material property settings. In addition, because the source is included, you can
also substitute your own objects in MATLIGHT and work out the lighting and
material details before committing your scene to code.

When drawing an object, OpenGL decides which color to use for each pixel in the
object. That object has reflective “colors,” and the light source has “colors” of its
own. How does OpenGL determine which colors to use? Understanding this is not
difficult, but it does take some simple grade-school multiplication. (See, that
teacher told you you’d need it one day!)

Each vertex of your primitives is assigned an RGB color value based on the net
effect of the ambient, diffuse, and specular illumination multiplied by the
ambient, diffuse, and specular reflectance of the material properties. By making
use of smooth shading between the vertices, the illusion of illumination is
achieved!

Calculating Ambient Light Effects

First you need to put away the notion of color and instead think only in terms of
red, green, and blue intensities. For an ambient light source of half-intensity red,
green, and blue components, you’d have an RGB value for that source of (0.5,
0.5, 0.5). If this ambient light illuminates an object with ambient reflective
properties specified in RGB terms of (.50, 1.0, .50), then the net “color”
component from the ambient light would be

(0.50 * .50, 0.5 * 1.0, 0.50 * .50) = (0.25, 0.5, 0.25)

which would be the result of multiplying each of the ambient light source terms
by each of the ambient material property terms. See Figure 9-5.

Figure 9-5 Calculating the ambient color component of an object

Thus, the material color components actually determine the percentage of incident
light that is reflected. In our example, the ambient light had a red component that
was at one-half intensity, and the material ambient property of .5 specified that
one-half of that half-intensity light was reflected. Half of a half is a fourth, or
0.25.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Lighting and Lamps

http://www.itknowledge.com/reference/archive/1571690735/ch09/267-269.html [20-03-2000 21:32:56]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Diffuse and Specular Effects

For ambient light, this is as simple as it gets. Diffuse light, too, has RGB intensities that interact in
the same way with material properties. However, diffuse light is directional, and the intensity at the
surface of the object will vary depending on the angle between the surface and the light source. The
same goes for specular light sources and intensities. The net effect in terms of RGB values is
figured the same way as for ambient light, with the intensity of the light source (adjusted for the
angle of incidence) being multiplied by the material reflectance. Finally, all three RGB terms are
added to yield a final color for the object. If any single color component is above 1.0, it is clamped
to that value (you can’t get more intense than full intensity!).

Generally, the ambient and diffuse components of light sources and materials are the same and have
the greatest effect in determining the color of the object. Specular light and material properties tend
to be light gray or white. The specular component depends significantly on the angle of incidence,
and specular highlights on an object are usually white.

Adding Light to a Scene

This may seem like a lot of theory to digest all of a sudden. So let’s slow down and start exploring
some examples of the OpenGL code needed for lighting; this will also help reinforce what you’ve
just learned. We will also be demonstrating some additional features and requirements of lighting in
OpenGL. The next few examples build on our JET program. The initial version contains no lighting
code and just draws triangles with hidden surface elimination enabled. But when we’re done, the
jet’s metallic surface will glisten in the sunlight as you rotate it with the arrow keys.

Enable the Lighting

To tell OpenGL to use lighting calculations, call glEnable() with the GL_LIGHTING parameter,
like this:

glEnable(GL_LIGHTING);

This alone tells OpenGL to use material properties and lighting parameters in determining the color
for each vertex in your scene. However, without any specified material properties or lighting
parameters, your object will remain dark and unlit as shown in Figure 9-6. Look at the code for any
of the JET-based example programs, and you’ll see that we have called a function SetupRC() right
after creating the rendering context. This is where we will do any initialization of lighting
parameters.

Figure 9-6 Jet with lighting enabled, but no light or material properties defined

Set Up the Lighting Model

After enabling lighting calculations, the first thing you need to do is set up the lighting model. The
three parameters that affect the lighting model are set with the glLightModel() function.

The first lighting parameter used in our next example is GL_LIGHT_MODEL_AMBIENT. This
allows a global ambient light to be specified that illuminates all objects evenly from all sides. The
following code specifies that a bright white light is to be used:

// Bright white light - full intensity RGB values
GLfloat ambientLight[] = { 1.0f, 1.0f, 1.0f, 1.0f };

// Enable lighting
glEnable(GL_LIGHTING);

// Set light model to use ambient light specified by ambientLight[]
glLightModelfv(GL_LIGHT_MODEL_AMBIENT,ambientLight);

The variation of glLightModel shown here, glLightModelfv, takes as its first parameter the lighting
model parameter being modified or set, and then an array of the RGBA values that make up the
light. The default RGBA values of this global ambient light are (0.2, 0.2, 0.2, 1.0), which is fairly
dim. Other lighting model parameters allow you to determine if the front, back, or both sides of
polygons are illuminated, and the calculation of specular lighting angles. See the Reference Section
for more information on these parameters.

Set Material Properties

Now that we have an ambient light source, we need to set some material properties so that our
polygons reflect light and we can see our jet. There are two ways to set material properties. The first
is to use the function glMaterial before specifying each polygon or set of polygons. Examine the
following code fragment:

Glfloat gray[] = { 0.75f, 0.75f, 0.75f, 1.0f };
…
…
glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, gray);

glBegin(GL_TRIANGLES);
 glVertex3f(-15.0f,0.0f,30.0f);
 glVertex3f(0.0f, 15.0f, 30.0f);
 glVertex3f(0.0f, 0.0f, -56.0f);
glEnd();

The first parameter to glMaterialfv specifies whether the front, back, or both (GL_FRONT,
GL_BACK, or GL_FRONT_AND_BACK) take on the material properties specified. The second
parameter tells which properties are being set; in this instance both the ambient and diffuse
reflectances are being set to the same values. The final parameter is an array containing the RGBA
values that make up these properties. All primitives specified after the glMaterial call are affected
by the last values set, until another call to glMaterial is made.

Under most circumstances, the ambient and diffuse components are the same, and unless you want
specular highlights (sparkling, shiny spots), you don’t need to define specular reflective properties.
Even so, it would still be quite tedious if we had to define an array for every color in our object and
call glMaterial() before each polygon or group of polygons.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Lighting and Lamps

http://www.itknowledge.com/reference/archive/1571690735/ch09/269-272.html [20-03-2000 21:33:03]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

This leads us to the second and preferred way of setting material properties, called color tracking. With color
tracking you can tell OpenGL to set material properties by only calling glColor. To enable color tracking, call
glEnable() with the GL_COLOR_MATERIAL parameter:

glEnable(GL_COLOR_MATERIAL);

Then the function glColorMaterial specifies the material parameters that will follow the values set by glColor.

For example, to set the ambient and diffuse properties of the fronts of polygons to track the colors set by
glColor, call

glColorMaterial(GL_FRONT,GL_AMBIENT_AND_DIFFUSE);

The earlier code fragment setting material properties would then be as follows. This looks like more code, but it
will actually save many lines of code and execute faster as the number of polygons grows.

// Enable color tracking
glEnable(GL_COLOR_MATERIAL);

// Front material ambient and diffuse colors track glColor
glColorMaterial(GL_FRONT,GL_AMBIENT_AND_DIFFUSE);

glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, gray);

…
…
glcolor3f(0.75f, 0.75f, 0.75f);
glBegin(GL_TRIANGLES);
 glVertex3f(-15.0f,0.0f,30.0f);
 glVertex3f(0.0f, 15.0f, 30.0f);
 glVertex3f(0.0f, 0.0f, -56.0f);
glEnd();

Listing 9-1 contains the code we add with the SetupRC function to our JET example, to set up a bright ambient
light source, and to set the material properties that allow the object to reflect light and be seen. We have also
changed the colors of the jet so that each section is a different color rather than each polygon. Notice in the final
output (Figure 9-7) that it’s not much different from the image before we had lighting. However, if we reduce
the ambient light by half, we get the image shown in Figure 9-8. This is accomplished by setting the ambient
light RGBA values to the following:

GLfloat ambientLight[] = { 0.5f, 0.5f, 0.5f, 1.0f };

Figure 9-7 Output from completed AMBIENT example program

Figure 9-8 Output from AMBIENT when the light source is cut in half

You can see how we might reduce the ambient light in a scene to produce a dimmer image. This is useful for
simulations in which dusk approaches gradually or when a more direct light source is blocked, as when an
object is in the shadow of another, larger object.

Listing 9-1 Set up for ambient lighting conditions

// This function does any needed initialization on the rendering
// context. Here it sets up and initializes the lighting for
// the scene.
void SetupRC()
 {
 // Light values
 // Bright white light
 GLfloat ambientLight[] = { 1.0f, 1.0f, 1.0f, 1.0f };

 glEnable(GL_DEPTH_TEST); // Hidden surface removal
 glEnable(GL_CULL_FACE); // Do not calculate inside of jet
 glFrontFace(GL_CCW); // Counter clock-wise polygons face out

 // Lighting stuff
 glEnable(GL_LIGHTING); // Enable lighting

 // Set light model to use ambient light specified by ambientLight[]
 glLightModelfv(GL_LIGHT_MODEL_AMBIENT,ambientLight);

 glEnable(GL_COLOR_MATERIAL); // Enable Material color tracking

 // Front material ambient and diffuse colors track glColor
 glColorMaterial(GL_FRONT,GL_AMBIENT_AND_DIFFUSE);

 // Nice light blue background
 glClearColor(0.0f, 0.0f, 05.f,1.0f);
 }

Using a Light Source

Manipulating the ambient light has its uses, but for most applications attempting to model the real world, one or
more specific sources of light must be specified. In addition to their intensities and colors, these sources will
have a location and a direction. The placement of these lights can dramatically affect the appearance of your
scene.

OpenGL supports up to eight independent light sources located anywhere in your scene or out of the viewing
volume. You can locate a light source an infinite distance away and make its light rays parallel, or make it a
nearby light source radiating outward. You can also specify a spotlight with a specific cone of light radiating
from it, as well as manipulate its characteristics.

Which Way Is Up?

When you specify a light source, you tell OpenGL where it is and in which direction it’s shining. Often the light
source will be shining in all directions, or it may be directional. Either way, for any object you draw, the rays of
light from any source (other than a pure ambient source) will strike the surface of the polygons that make up the
object at an angle. Of course, in the case of a directional light, the surface of all polygons may not necessarily
be illuminated. To calculate the shading effects across the surface of the polygons, OpenGL must be able to
calculate this angle.

In Figure 9-9, a polygon (a square) is being struck by a ray of light from some source. The ray makes an angle
(A) with the plane as it strikes the surface. The light is then reflected at an angle (B) toward the viewer (or you
wouldn’t see it). These angles are used in conjunction with the lighting and material properties we have
discussed thus far to calculate the apparent color of that location. It happens by design that the locations used by
OpenGL are the vertices of the polygon. By calculating the apparent colors for each vertex and then doing
smooth shading between them (explained in Chapter 8), the illusion of lighting is created. Magic!

Figure 9-9 Light is reflected off objects at specific angles

From a programming standpoint, this presents a slight conceptual difficulty. Each polygon is created as a set of
vertices, which are nothing more than points. Each vertex is then struck by a ray of light at some angle. How
then do you (or OpenGL) calculate the angle between a point and a line (the ray of light)? Of course you can’t
geometrically find the angle between a single point and a line in 3D space, because there are an infinite number
of possibilities. Therefore, you must associate with each vertex some piece of information that denotes a
direction upward from the vertex and away from the surface of the primitive.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Lighting and Lamps

http://www.itknowledge.com/reference/archive/1571690735/ch09/272-275.html [20-03-2000 21:33:12]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Surface Normals

A line from the vertex in this upward direction would then start in some imaginary plane (or your polygon)
at a right angle. This line is called a normal vector. That word vector may sound like something the Star
Trek crew members toss around, but it just means a line perpendicular to a real or imaginary surface. A
vector is a line pointed in some direction, and the word normal is just another way for eggheads to say
perpendicular (intersecting at a 90º angle). As if the word perpendicular weren’t bad enough! Therefore, a
normal vector is a line pointed in a direction that is at a 90º angle to the surface of your polygon. Figure
9-10 presents examples of 2D and 3D normal vectors.

Figure 9-10 A 2D and a 3D normal vector

You may already be asking why we must specify a normal vector for each vertex. Why can’t we just
specify a single normal for a polygon and use it for each vertex? We can—and for our first few examples,
we will. However, there are times when you don’t want each normal to be exactly perpendicular to the
surface of the polygon. You may have noticed that many surfaces are not flat! You can approximate these
surfaces with flat, polygonal sections, but you will end up with a jagged or multifaceted surface. Later we’ll
discuss a technique to produce the illusion of smooth curves with straight lines by “tweaking” your surface
normals (more magic!). But first things first.

Specifying a Normal

To see how we specify a normal for a vertex, let’s take a look at Figure 9-11—a plane floating above the xz
plane in 3D space. We’ve made this simple to demonstrate the concept. Notice the line through the vertex
(1,1,0) that is perpendicular to the plane. If we select any point on this line, say (1,10,0), then the line from
the first point (1,1,0) to the second point (1,10,0) is our normal vector. The second point specified actually
indicates that the direction from the vertex is up in the y direction. This is also used to indicate the front and
back sides of polygons, as the vector travels up and away from the front surface.

Figure 9-11 A normal vector traveling perpendicular from the surface

You can see that this second point is the number of units in the x, y, and z directions for some point on the
normal vector away from the vertex. Rather than specifying two points for each normal vector, we can
subtract the vertex from the second point on the normal, yielding a single coordinate triplet that indicates
the x, y, and z steps away from the vertex. For our example this would be

(1,10,0) - (1,1,0) = (1-1, 10-1, 0) = (0, 9, 0)

Another way of looking at this is, if the vertex were translated to the origin, the point specified by
subtracting the two original points would still specify the direction pointing away and at a 90º angle from
the surface. Figure 9-12 shows the newly translated normal vector.

Figure 9-12 The newly translated normal vector

The vector is a directional quantity that tells OpenGL which direction the vertices (or polygon) face. This
next code segment shows a normal vector being specified for one of the triangles in the JET example
program:

glBegin(GL_TRIANGLES);
 glNormal3f(0.0f, -1.0f, 0.0f);
 glVertex3f(0.0f, 0.0f, 60.0f);
 glVertex3f(-15.0f, 0.0f, 30.0f);
 glVertex3f(15.0f,0.0f,30.0f);
glEnd();

The function glNormal3f takes the coordinate triplet that specifies a normal vector pointing in the direction
perpendicular to the surface of this triangle. In this example, the normals for all three vertices have the
same direction, which is down the negative y axis. This is a very simple example because the triangle is
lying flat in the xz plane, and it actually represents a bottom section of the jet.

The prospect of specifying a normal for every vertex or polygon in your drawing may seem daunting,
especially since very few surfaces will lie cleanly in one of the major planes. Never fear, we will shortly
present a reusable function that you can call again and again to calculate your normals for you.

Polygon Winding:
Take special note of the order of the vertices in the jet’s triangle. If you viewed this triangle being drawn from
the direction in which the normal vector points, the corners would appear counterclockwise around the
triangle. This is called polygon winding. By default, the front of a polygon is defined as the side from which
the vertices appear to be wound in a counterclockwise fashion.

Unit Normals

As OpenGL does its magic, all surface normals must eventually be converted to unit normals. A unit
normal is just a normal vector that has a length of 1. The normal in Figure 9-12 has a length of 9. You can
find the length of any normal by squaring each component, adding them together, and taking the square
root. Divide each component of the normal by the length and you get a vector pointed in exactly the same
direction, but only 1 unit long. In this case, our new normal vector would be specified as (0,1,0). This is
called normalization. Thus, for lighting calculations, all normal vectors must be normalized. Talk about
jargon!

You can tell OpenGL to convert your normals to unit normals automatically, by enabling normalization
with glEnable and a parameter of GL_NORMALIZE:

 glEnable(GL_NORMALIZE);

This does, however, have performance penalties. It’s far better to calculate your normals ahead of time as
unit normals instead of relying on OpenGL to do this for you.

Given any normal vector specified by a coordinate triplet that indicates the direction from the origin, you
can easily find the equivalent unit normal vector with the function in Listing 9-2.

Listing 9-2 A function that reduces any normal vector to a unit normal vector

// Reduces a normal vector specified as a set of three coordinates,
// to a unit normal vector of length 1.
void ReduceToUnit(float vector[3])
 {
 float length;

 // Calculate the length of the vector
 length = (float)sqrt((vector[0]*vector[0]) +
 (vector[1]*vector[1]) +
 (vector[2]*vector[2]));

 // Keep the program from blowing up by providing an acceptable
 // value for vectors whose length may be calculated too close to
 zero.
 if(length == 0.0f)
 length = 1.0f;

 // Dividing each element by the length will result in a
 // unit normal vector.
 vector[0] /= length;
 vector[1] /= length;
 vector[2] /= length;
 }

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Lighting and Lamps

http://www.itknowledge.com/reference/archive/1571690735/ch09/275-279.html [20-03-2000 21:33:22]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Finding a Normal

Figure 9-13 presents another polygon that is not simply lying in one of the axis planes. The normal vector
pointing away from this surface is more difficult to guess, so we need an easy way to calculate the normal for
any arbitrary polygon in 3D coordinates.

Figure 9-13 A nontrivial normal problem

You can easily calculate the normal vector for any polygon consisting of at least three points that lie in a
single plane (a flat polygon). Figure 9-14 shows three points, P1, P2, and P3, that you can use to define two
vectors: vector V1 from P1 to P2, and vector V2 from P1 to P2. Mathematically, two vectors in
three-dimensional space define a plane (your original polygon lies in this plane). If you take the cross product
of those two vectors (written mathematically as V1 X V2, the resulting vector is perpendicular to that plane
(or normal). Figure 9-15 shows the vector V3 derived by taking the cross product of V1 and V2.

Figure 9-14 Two vectors defined by three points on a plane

Figure 9-15 A normal vector as cross product of two vectors

Don’t worry if you don’t know how to take the cross product of two vectors; all you need is the function in
Listing 9-3. To use this function, pass it an array containing any three vertices from your polygon (specify in
counterclockwise winding order), and an array that will contain the normal vector on return. The constant
values x, y, and z are provided for your benefit if you want to see how the function works.

Listing 9-3 Function to calculate a normal vector with any three vertices from a polygon

// Points p1, p2, & p3 specified in counterclockwise order
void calcNormal(float v[3][3], float out[3])
 {
 float v1[3],v2[3];
 static const int x = 0;
 static const int y = 1;
 static const int z = 2;

 // Calculate two vectors from the three points
 v1[x] = v[0][x] - v[1][x];
 v1[y] = v[0][y] - v[1][y];
 v1[z] = v[0][z] - v[1][z];

 v2[x] = v[1][x] - v[2][x];
 v2[y] = v[1][y] - v[2][y];
 v2[z] = v[1][z] - v[2][z];

 // Take the cross product of the two vectors to get
 // the normal vector which will be stored in out[]
 out[x] = v1[y]*v2[z] - v1[z]*v2[y];
 out[y] = v1[z]*v2[x] - v1[x]*v2[z];
 out[z] = v1[x]*v2[y] - v1[y]*v2[x];

 // Normalize the vector (shorten length to one)
 ReduceToUnit(out);
 }

Setting Up a Source

Now that you understand the requirements of setting up your polygons to receive and interact with a light
source, it’s time to turn on the lights! Listing 9-4 shows the SetupRC() function from the example program
LITJET. Part of the setup process for this sample program creates a light source and places it to the upper-left,
slightly behind the viewer. The light source GL_LIGHT0 has its ambient and diffuse components set to the
intensities specified by the arrays ambientLight[], and diffuseLight[].This results in a moderate white light
source.

GLfloat ambientLight[] = { 0.3f, 0.3f, 0.3f, 1.0f };
GLfloat diffuseLight[] = { 0.7f, 0.7f, 0.7f, 1.0f };
…
…
// Setup and enable light 0
glLightfv(GL_LIGHT0,GL_AMBIENT,ambientLight);
glLightfv(GL_LIGHT0,GL_DIFFUSE,diffuseLight);

The light is positioned by this code:

GLfloat lightPos[] = { -50.f, 50.0f, 100.0f, 1.0f };
…
…
glLightfv(GL_LIGHT0,GL_POSITION,lightPos);

Here lightPos[] contains the position of the light. The last value in this array is 1.0, which specifies that the
designated coordinates are the position of the light source. If the last value in the array is 0.0, it indicates that
the light is an infinite distance away along the vector specified by this array. We’ll touch more on this later.

Finally, the light source GL_LIGHT0 is enabled:

glEnable(GL_LIGHT0);

Listing 9-4 Light and rendering context setup for LITJET

// This function does any needed initialization on the rendering
// context. Here it sets up and initializes the lighting for
// the scene.
void SetupRC()
 {
 // Light values and coordinates
 GLfloat ambientLight[] = { 0.3f, 0.3f, 0.3f, 1.0f };
 GLfloat diffuseLight[] = { 0.7f, 0.7f, 0.7f, 1.0f };
 Glfloat lightPos[] = { -50.f, 50.0f, 100.0f, 1.0f };

 glEnable(GL_DEPTH_TEST); // Hidden surface removal
 glFrontFace(GL_CCW); // Counter clock-wise polygons face out
 glEnable(GL_CULL_FACE); // Do not calculate inside of jet

 // Enable lighting
 glEnable(GL_LIGHTING);

 // Setup and enable light 0
 glLightfv(GL_LIGHT0,GL_AMBIENT,ambientLight);
 glLightfv(GL_LIGHT0,GL_DIFFUSE,diffuseLight);
 glLightfv(GL_LIGHT0,GL_POSITION,lightPos);
 glEnable(GL_LIGHT0);

 // Enable color tracking
 glEnable(GL_COLOR_MATERIAL);

 // Set Material properties to follow glColor values
 glColorMaterial(GL_FRONT, GL_AMBIENT_AND_DIFFUSE);

 // Light blue background
 glClearColor(0.0f, 0.0f, 1.0f, 1.0f);
 }

Setting the Material Properties

Notice in Listing 9-4 that color tracking is enabled, and the properties to be tracked are the ambient and
diffuse reflective properties for the front surface of the polygons. This is just as it was defined in the
AMBIENT sample program:

// Enable color tracking
glEnable(GL_COLOR_MATERIAL);

// Set Material properties to follow glColor values
glColorMaterial(GL_FRONT, GL_AMBIENT_AND_DIFFUSE);

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Lighting and Lamps

http://www.itknowledge.com/reference/archive/1571690735/ch09/279-282.html [20-03-2000 21:33:32]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Specifying the Polygons

The rendering code from the first two JET samples changes considerably now, to support the new
lighting model. Listing 9-5 is taken from the RenderScene() function from LITJET.

Listing 9-5 Code sample that sets color, calculates and specifies normals and polygons

 float normal[3]; // Storage for calculated surface normal
 …
 …
 // Set material color
 glRGB(0, 255, 0);
 glBegin(GL_TRIANGLES);
 glNormal3f(0.0f, -1.0f, 0.0f);
 glVertex3f(0.0f, 0.0f, 60.0f);
 glVertex3f(-15.0f, 0.0f, 30.0f);
 glVertex3f(15.0f,0.0f,30.0f);
 //glEnd();

 {
 // Vertices for this triangle
 float v[3][3] = {{ 15.0f, 0.0f, 30.0f},
 { 0.0f, 15.0f, 30.0f},
 { 0.0f, 0.0f, 60.0f}};

 // Calculate the normal for the plane
 calcNormal(v,normal);

 // Draw the triangle using the plane normal
 // for all the vertices
 //glBegin(GL_TRIANGLES);
 glNormal3fv(normal);
 glVertex3fv(v[0]);
 glVertex3fv(v[1]);
 glVertex3fv(v[2]);
 //glEnd();

 }

You’ll notice that we are calculating the normal vector using our code in Listing 9-3. Also, the
material properties are now following the colors set by glColor (which is wrapped by our glRGB
macro). One other thing you’ll notice is that not every triangle is blocked by glBegin()/glEnd()
functions. You can specify once that you are drawing triangles, and every three vertices will be used
for a new triangle until you specify otherwise with glEnd(). For very large numbers of polygons,
this can considerably boost performance by eliminating many unnecessary function calls.

Figure 9-16 shows the output from the completed LITJET example program. By rotating the jet
around with the arrow keys, you can see the dramatic shading effects as the surface of the jet moves
in the light.

Figure 9-16 Output from LITJET sample

Performance Tip:
The most obvious way to improve the performance of this code would be to calculate all the normal
vectors ahead of time and store them for use in the Render function. Before you pursue this, read
Chapter 10’s material on display lists. Display lists provide a means of storing calculated values not
only for the normal vectors, but for the polygon data as well. Remember, these examples are meant to
demonstrate the concepts. They are not necessarily the most efficient code possible.

Lighting Effects

The ambient and diffuse light from the LITJET example are sufficient to provide the illusion of
lighting. The surface of the jet appears shaded according to the angle of the incident light. As the jet
rotates, these angles change and you can see the lighting effects changing in such a way that you
can easily guess where the light is coming from.

We ignored the specular component of the light source, however, as well as the specular reflectivity
of the material properties on the jet. Although the lighting effects are pronounced, the surface of the
jet is rather flatly colored. Ambient and diffuse lighting and material properties are all you need if
you are modeling clay, wood, cardboard, cloth, or some other flatly colored object. But for metallic
surfaces like the skin of an airplane, some shine is often necessary.

Specular Highlights

Specular lighting and material properties add needed gloss to the surface of your objects. This
shininess has a whitening effect on an object’s color and can produce specular highlights when the
angle of incident light is sharp in relation to the viewer. A specular highlight is what occurs when
nearly all the light striking the surface of an object is reflected away. The white sparkle on a shiny
red ball in the sunlight is good example of a specular highlight.

Specular Light

Adding a specular component to a light source is very easily done. The following code shows the
light source setup for the LITJET program, modified to add a specular component to the light.

// Light values and coordinates
// Light values and coordinates
GLfloat ambientLight[] = { 0.3f, 0.3f, 0.3f, 1.0f };
GLfloat diffuseLight[] = { 0.7f, 0.7f, 0.7f, 1.0f };
GLfloat specular[] = { 1.0f, 1.0f, 1.0f, 1.0f};
Glfloat lightPos[] = { 0.0f, 150.0f, 150.0f, 1.0f };
…
…

// Enable lighting
glEnable(GL_LIGHTING);

// Setup and enable light 0
glLightfv(GL_LIGHT0,GL_AMBIENT,ambientLight);
glLightfv(GL_LIGHT0,GL_DIFFUSE,diffuseLight);
glLightfv(GL_LIGHT0,GL_SPECULAR,specular);
glLightfv(GL_LIGHT0,GL_POSITION,lightPos);
glEnable(GL_LIGHT0);

The specular[] array specifies a very bright white light source for the specular component of the
light. Our purpose here is to model bright sunlight. The line

glLightfv(GL_LIGHT0,GL_SPECULAR,specular);

simply adds this specular component to the light source GL_LIGHT0.

If this were the only change you made to LITJET, you wouldn’t see any difference in the jet’s
appearance. This is because we haven’t yet defined any specular reflectance properties for the
material properties.

Specular Reflectance

Adding specular reflectance to material properties is just as easy as adding the specular component
to the light source. This next code segment shows the code from LITJET, again modified to add
specular reflectance to the material properties.

// Light values and coordinates
GLfloat specref[] = { 1.0f, 1.0f, 1.0f, 1.0f };

…
…

// Enable color tracking
glEnable(GL_COLOR_MATERIAL);

// Set Material properties to follow glColor values
glColorMaterial(GL_FRONT, GL_AMBIENT_AND_DIFFUSE);

// All materials hereafter have full specular reflectivity
// with a high shine
glMaterialfv(GL_FRONT, GL_SPECULAR,specref);
glMateriali(GL_FRONT,GL_SHININESS,128);

As before, we enable color tracking so that the ambient and diffuse reflectance of the materials
follow the current color set by the glColor() functions. (Of course, we don’t want the specular
reflectance to track glColor, because we are specifying it separately and it doesn’t change.)

Now we’ve added an array specref[] that contains the RGBA values for our specular reflectance.
This array of all 1’s will produce a surface that reflects nearly all incident specular light. The line

glMaterialfv(GL_FRONT, GL_SPECULAR,specref);

sets the material properties for all subsequent polygons to have this reflectance. Since we do not call
glMaterial again with the GL_SPECULAR property, all materials will have this property. We did
this on purpose because we want the entire jet to appear made of metal or very shiny composites.

What we have done here in our setup routine is important: We have specified that the ambient and
diffuse reflective material properties of all future polygons (until we say otherwise with another call
to glMaterial or glColorMaterial) will change as the current color changes, but that the specular
reflective properties will remain the same.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Lighting and Lamps

http://www.itknowledge.com/reference/archive/1571690735/ch09/283-286.html [20-03-2000 21:33:39]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Specular Exponent

As stated earlier, high specular light and reflectivity brighten the colors of the object. For this example, the
present extremely high specular light (full intensity) and specular reflectivity (full reflectivity) will result in
a jet that appears almost totally white or gray except where the surface points away from the light source
(in which case it would be black and unlit). To temper this effect, we use the next line of code after the
specular component is specified, as follows:

glMateriali(GL_FRONT,GL_SHININESS,128);

The GL_SHININES property sets the specular exponent of the material, which specifies how small and
focused the specular highlight is. A value of 0 specifies an unfocused specular highlight, which is actually
what is producing the brightening of the colors evenly across the entire polygon. If you set this value, you
reduce the size and increase the focus of the specular highlight, causing a shiny spot to appear. The larger
the value, the more shiny and pronounced the surface. The range of this parameter is 1–128 for all
implementations of OpenGL.

Listing 9-6 shows the new SetupRC code in the sample program SHINYJET. This is the only code that
changed from LITJET (other than the title of the window) to produce a very shiny and glistening jet. Figure
9-17 shows the output from this program, but to fully appreciate the effect, you should run the program and
hold down one of the arrow keys to spin the jet about in the sunlight.

Figure 9-17 Output from the SHINYJET program

Listing 9-6 Setup from SHINYJET to produce specular highlights on the jet

// This function does any needed initialization on the rendering
// context. Here it sets up and initializes the lighting for
// the scene.
void SetupRC()
 {
 // Light values and coordinates
 GLfloat ambientLight[] = { 0.3f, 0.3f, 0.3f, 1.0f };
 GLfloat diffuseLight[] = { 0.7f, 0.7f, 0.7f, 1.0f };
 GLfloat specular[] = { 1.0f, 1.0f, 1.0f, 1.0f};
 Glfloat lightPos[] = { 0.0f, 150.0f, 150.0f, 1.0f };
 GLfloat specref[] = { 1.0f, 1.0f, 1.0f, 1.0f };

 glEnable(GL_DEPTH_TEST); // Hidden surface removal
 glFrontFace(GL_CCW); // Counterclockwise polygons face out
 glEnable(GL_CULL_FACE); // Do not calculate inside of jet

 // Enable lighting
 glEnable(GL_LIGHTING);

 // Set up and enable light 0
 glLightfv(GL_LIGHT0,GL_AMBIENT,ambientLight);
 glLightfv(GL_LIGHT0,GL_DIFFUSE,diffuseLight);
 glLightfv(GL_LIGHT0,GL_SPECULAR,specular);
 glLightfv(GL_LIGHT0,GL_POSITION,lightPos);
 glEnable(GL_LIGHT0);

 // Enable color tracking
 glEnable(GL_COLOR_MATERIAL);

 // Set Material properties to follow glColor values
 glColorMaterial(GL_FRONT, GL_AMBIENT_AND_DIFFUSE);

 // All materials hereafter have full specular reflectivity
 // with a high shine
 glMaterialfv(GL_FRONT, GL_SPECULAR,specref);
 glMateriali(GL_FRONT,GL_SHININESS,128);

 // Light blue background
 glClearColor(0.0f, 0.0f, 1.0f, 1.0f);
 }

Normal Averaging

Earlier we mentioned that by “tweaking” your normals you can produce smooth surfaces with straight
lines. This technique, known as normal averaging, produces some interesting optical illusions. Say you
have a surface like that shown in Figure 9-18, with the usual surface normals.

Figure 9-18 Jagged surface with the usual surface normals

Although the normals are shown in between the corners, they are actually specified for each vertex. If you
take into account that each vertex actually boarders another surface, you can specify the normal for that
vertex as the average of the two normals at that point for each surface. Figure 9-19 shows that for two
adjoining surfaces, their common corner would have a different normal specified as each surface is drawn.
If we take the average of these two normals and use it when we specify each surface, the joining of the two
surfaces will appear less sharp after OpenGL does its surface shading.

Figure 9-19 Averaging the normals will make sharp corners appear softer

Listing 9-7 shows the rendering function that creates the surface shown in Figure 9-18. (This code is from
the example program WAVEY in the CD subdirectory for this chapter.) The surface is created by stepping
from left to right for the x coordinates, and alternating up and down in the y coordinate direction. The z
coordinates are constant, with –50 being the front of the image and 50 being at the back.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Lighting and Lamps

http://www.itknowledge.com/reference/archive/1571690735/ch09/286-288.html [20-03-2000 21:33:48]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Listing 9-7 The rendering function from the WAVEY example program

// Called to draw scene
void RenderScene(void)
 {
 float normal[3]; // Storage for calculate normal
 float v[4][3]; // Storage for rectangle coordinates
 float lastY; // Left-hand side of rectangle
 float nextY; // Right-hand side of rectangle
 float temp; // Temporary storage for swapping
 float x; // X coordinate storage

 // Menu state specifies if wireframe or not
 if(iState == WIRE)
 glPolygonMode(GL_FRONT_AND_BACK,GL_LINE);
 else
 glPolygonMode(GL_FRONT_AND_BACK,GL_FILL);

 // Menu state specifies if smooth or flat shading
 if(iState == SMOOTH || iState == AVERAGE)
 glShadeModel(GL_SMOOTH);
 else
 glShadeModel(GL_FLAT);

 // Clear the window with current clearing color
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Reset viewing volume and viewport
 ChangeSize(lastWidth,lastHeight);

 // Rotate the image according to accumulated angle set
 // by the arrow key handlers
 glRotatef(xRot, 1.0f, 0.0f, 0.0f);
 glRotatef(yRot, 0.0f, 1.0f, 0.0f);

 // Set surface color to blue
 glRGB(0,0,255);

 // Initialize the y steppings
 lastY = 0.0f;
 nextY = 10.0f;

 // Loop through x coordinate from left to right, build
 // a rectangle with alternating slopes upward and downward
 for(x = -60.0f; x < 60.0f; x+= 20.0f)
 {
 // 1st Vertices
 v[0][0] = x; // X coord for left
 v[0][1] = lastY;
 v[0][2] = 50.0f; // Z coord for back

 // 2nd vertices
 v[1][0] = x; // X coord for left
 v[1][1] = lastY;
 v[1][2] = -50.0f; // Z coord for front

 // 3rd Vertices
 v[2][0] = x + 20.0f; // X coord for right
 v[2][1] = nextY;
 v[2][2] = -50.0f; // Z coord for front

 // 4th Vertices
 v[3][0] = x + 20.0f; // X coord for right
 v[3][1] = nextY;
 v[3][2] = 50.0f; // Z coord for back

 // Begin the polygon
 glBegin(GL_POLYGON);
 if(iState != AVERAGE)
 {
 // Calculate and set the normal vector,
 unless
 // averaging selected from the menu.
 calcNormal(v,normal);
 glNormal3fv(normal);
 }
 else // Average normals. Here we cheat because we
 know
 // the normal points either up or down
 {
 // Normal points straight up
 if(nextY == 10)
 glNormal3f(0.0f,1.0f, 0.0f);
 else
 // Normal points straight down
 glNormal3f(0.0f,-1.0f, 0.0f);
 }

 // Specify the left two verticies
 glVertex3fv(v[0]);
 glVertex3fv(v[1]);

 // Do the same, but the normal on the other side
 points
 // the other direction
 if(iState == AVERAGE)
 {
 if(nextY == 10)
 glNormal3f(0.0f,-1.0f, 0.0f);
 // points down
 else
 glNormal3f(0.0f,1.0f, 0.0f);
 // points up
 }

 // Specify the right two vertices
 glVertex3fv(v[2]);
 glVertex3fv(v[3]);
 glEnd();

 // Swap the y coordinate positions
 temp = lastY;
 lastY = nextY;
 nextY = temp;
 }

 // Flush drawing commands
 glFlush();
 }

The WAVEY program has menu options to render just a wireframe image, do flat or smooth shading, and
finally do the normal averaging. Figure 9-20 shows this folding image using flat shading, and Figure 9-21 is the
same object with the normals averaged. You can see that the second image appears to have a smooth rippling
effect across its surface.

Figure 9-20 Bent surface with regular surface normals

Figure 9-21 Bent surface with surface normals averaged together

Spotlights

So far, we have been specifying a light’s position with glLight as follows:

// Array to specify position
GLfloat lightPos[] = { 0.0f, 150.0f, 150.0f, 1.0f };

…
…

// Set the light position
glLightfv(GL_LIGHT0,GL_POSITION,lightPos);

The array lightPos[] contains the x, y, and z values that specify either the light’s actual position in the scene, or
the direction from which the light is coming. The last value, a 1.0 in this case, indicates that the light is actually
present at this location. By default, the light will radiate equally in all directions from this location—but this can
be changed to make a spotlight effect.

To make a light source an infinite distance away and coming from the direction specified by this vector, you
would place a 0.0 in this last lightPos[] array element. A directional light source, as this is called, strikes the
surface of your objects evenly. That is, all the light rays are parallel. In a positional light source on the other
hand, the light rays diverge from the light source. The specular highlights achieved in the SHINYJET example
would not be possible with a directional light source. Rather than the glistening spot, the entire face of the
triangles that make up the jet would be white when they faced the light source dead on (the light rays strike the
surface at a 90º angle).

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Lighting and Lamps

http://www.itknowledge.com/reference/archive/1571690735/ch09/289-292.html [20-03-2000 21:33:57]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Creating a Spotlight

Creating a spotlight is no different from creating any other directional light source. The code in Listing 9-8
shows the SetupRC() function from the SPOT example program. This program places a blue sphere in the
center of the window. A spotlight is created that can be moved vertically with the up and down arrow keys,
and horizontally with the left and right arrow keys. As the spotlight moves over the surface of the sphere, a
specular highlight follows it on the surface.

Listing 9-8 Lighting setup for the SPOT sample program

// Light values and coordinates
GLfloat lightPos[] = { 0.0f, 0.0f, 75.0f, 1.0f };
GLfloat specular[] = { 1.0f, 1.0f, 1.0f, 1.0f};
GLfloat specref[] = { 1.0f, 1.0f, 1.0f, 1.0f };
GLfloat ambientLight[] = { 0.5f, 0.5f, 0.5f, 1.0f};
GLfloat spotDir[] = { 0.0f, 0.0f, -1.0f };

// This function does any needed initialization on the rendering
// context. Here it sets up and initializes the lighting for
// the scene.
void SetupRC()
 {
 glEnable(GL_DEPTH_TEST); // Hidden surface removal
 glFrontFace(GL_CCW); // Counterclockwise polygons face out
 glEnable(GL_CULL_FACE); // Do not try to display the back sides

 // Enable lighting
 glEnable(GL_LIGHTING);

 // Set up and enable light 0
 // Supply a slight ambient light so the objects can be seen
 glLightModelfv(GL_LIGHT_MODEL_AMBIENT, ambientLight);

 // The light is composed of just diffuse and specular components
 glLightfv(GL_LIGHT0,GL_DIFFUSE,ambientLight);
 glLightfv(GL_LIGHT0,GL_SPECULAR,specular);
 glLightfv(GL_LIGHT0,GL_POSITION,lightPos);

 // Specific spot effects
 // Cut off angle is 60 degrees
 glLightf(GL_LIGHT0,GL_SPOT_CUTOFF,60.0f);

 // Fairly shiny spot
 glLightf(GL_LIGHT0,GL_SPOT_EXPONENT,100.0f);

 // Enable this light in particular
 glEnable(GL_LIGHT0);

 // Enable color tracking
 glEnable(GL_COLOR_MATERIAL);

 // Set Material properties to follow glColor values
 glColorMaterial(GL_FRONT, GL_AMBIENT_AND_DIFFUSE);

 // All materials hereafter have full specular reflectivity
 // with a high shine
 glMaterialfv(GL_FRONT, GL_SPECULAR,specref);
 glMateriali(GL_FRONT, GL_SHININESS,128);

 // Black background
 glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
 }

The following lines are actually what make a positional light source into a spotlight:

// Specific spot effects
// Cut off angle is 60 degrees
glLightf(GL_LIGHT0,GL_SPOT_CUTOFF,60.0f);

// Fairly shiny spot
glLightf(GL_LIGHT0,GL_SPOT_EXPONENT,100.0f);

The GL_SPOT_CUTOFF value specifies the radial angle of the cone of light emanating from the spotlight.
For a normal positional light, this is 180º so that the light is not confined to a cone. Spotlights emit a cone of
light, and objects outside this cone are not illuminated. Figure 9-22 shows how this angle translates to the cone
width.

Figure 9-22 The angle of the spotlight’s cone

Drawing a Spotlight

When you place a spotlight in a scene, the light must come from somewhere. Just because you have a source
of light at some location doesn’t mean that you will see a bright spot there. For our SPOT example program,
we placed a red cone at the spotlight source to show where the light was coming from. Inside the end of this
cone, we placed a bright yellow sphere to simulate a light bulb. Listing 9-9 shows the complete code to render
the scene.

Make special note of the statement

glPushAttrib(GL_LIGHTING_BIT);

Just following this statement, we disable lighting and render a bright yellow sphere. Then we make a call to

glPopAttrib();

The first statement saves the state of all the lighting state variables. Then we can just disable lighting long
enough to draw a yellow light bulb and put the lighting system back the way it was. See the Chapter 14
Reference Section entries for glPushAttrib and glPopAttrib for more information on saving and restoring state
variables. A sample screen from our SPOT example program is shown in Figure 9-23.

Figure 9-23 Output of the SPOT program demonstrating spotlights

Listing 9-9 The rendering function for SPOT, showing how the spotlight is moved

// Called to draw scene
void RenderScene(void)
 {
 // Clear the window with current clearing color
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Set material color and draw a sphere in the middle
 glRGB(0, 0, 255);
 auxSolidSphere(30.0f);

// Now place the light
// Save the coordinate transformation
glPushMatrix();
 // Rotate coordinate system
 glRotatef(yRot, 0.0f, 1.0f, 0.0f);
 glRotatef(xRot, 1.0f, 0.0f, 0.0f);

 // Specify new position and direction in rotated coords.
 glLightfv(GL_LIGHT0,GL_POSITION,lightPos);
 glLightfv(GL_LIGHT0,GL_SPOT_DIRECTION,spotDir);

 // Draw a red cone to enclose the light source
 glRGB(255,0,0);

 // Translate origin to move the cone out to where the light
 // is positioned.
 glTranslatef(lightPos[0],lightPos[1],lightPos[2]);
 auxSolidCone(4.0f,6.0f);

 // Draw a smaller displaced sphere to denote the light bulb
 // Save the lighting state variables
 glPushAttrib(GL_LIGHTING_BIT);

 // Turn off lighting and specify a bright yellow sphere
 glDisable(GL_LIGHTING);
 glRGB(255,255,0);
 auxSolidSphere(3.0f);

 // Restore lighting state variables
 glPopAttrib();

// Restore coordinate transformations
glPopMatrix();

// Flush drawing commands
glFlush();
}

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Lighting and Lamps

http://www.itknowledge.com/reference/archive/1571690735/ch09/293-296.html [20-03-2000 21:34:05]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Shadows

A chapter on lighting naturally begs the topic of shadows. Adding shadows to your scenes can greatly
improve their realism and visual effectiveness. In Figures 9-24a and 9-24b you see two views of a lighted
cube, one without and one with a shadow (this is the example program from Chapter 2). The cube in Figure
9-24b with a shadow looks much more believable.

Figure 9-24a Lighted cube without a shadow

Figure 9-24b Lighted cube with a shadow

What Is a Shadow?

Conceptually, drawing a shadow is quite simple. A shadow is produced when an object keeps light from a
light source from striking some object or surface behind the object casting the shadow. The area on the
shadowed object’s surface, outlined by the object casting the shadow, appears dark. We can produce a
shadow programmatically by flattening the original object into the plane of the surface in which the object
lies. The object is then drawn in black or some dark color, perhaps with some translucence (see the shadow
sample in Chapter 16). Figure 9-25 illustrates this flattening.

Figure 9-25 Flattening an object to create a shadow

The process of squishing an object against another surface is accomplished using some of those advanced
matrix manipulations we explored in Chapter 7. Here we will boil it down to make it as simple as possible.

Squish Code

We need to flatten the Modelview projection matrix so that any and all objects drawn into it are now in this
flattened two-dimensional world. No matter how the object is oriented, it will be squished into the plane in
which the shadow lies. The second consideration is the distance and direction of the light source. The
direction of the light source determines the shape of the shadow, and influences the size. If you’ve ever seen
your shadow in the late or early morning hours, you know how long and warped your shadow can appear
depending on the position of the Sun.

The function in Listing 9-10 takes three points that lie in the plane in which you want the shadow to appear,
the position of the light source, and finally a pointer to a transformation matrix that this function will
construct. Without delving too much into linear algebra, what this function does is deduce the coefficients of
the equation of the plane in which the shadow will appear, and use it along with the lighting position to build
a Transformation matrix. If you multiply this matrix by the current Modelview matrix, all further drawing
will be flattened into this plane.

Listing 9-10 Function to make a shadow transformation matrix

// Creates a shadow projection matrix out of the plane equation
// coefficients and the position of the light. The return value is stored
// in destMat[][]
void MakeShadowMatrix(GLfloat points[3][3], GLfloat lightPos[4],
 GLfloat destMat[4][4])
 {
 GLfloat planeCoeff[4];
 GLfloat dot;

 // Find the plane equation coefficients
 // Find the first three coefficients the same way we
 // find a normal.
 calcNormal(points,planeCoeff);

 // Find the last coefficient by back substitutions
 planeCoeff[3] = - (
 (planeCoeff[0]*points[2][0]) +
 (planeCoeff[1]*points[2][1]) +
 (planeCoeff[2]*points[2][2]));

 // Dot product of plane and light position
 dot = planeCoeff[0] * lightPos[0] +
 planeCoeff[1] * lightPos[1] +
 planeCoeff[2] * lightPos[2] +
 planeCoeff[3] * lightPos[3];

 // Now do the projection
 // First column
 destMat[0][0] = dot - lightPos[0] * planeCoeff[0];
 destMat[1][0] = 0.0f - lightPos[0] * planeCoeff[1];
 destMat[2][0] = 0.0f - lightPos[0] * planeCoeff[2];
 destMat[3][0] = 0.0f - lightPos[0] * planeCoeff[3];

 // Second column
 destMat[0][1] = 0.0f - lightPos[1] * planeCoeff[0];
 destMat[1][1] = dot - lightPos[1] * planeCoeff[1];
 destMat[2][1] = 0.0f - lightPos[1] * planeCoeff[2];
 destMat[3][1] = 0.0f - lightPos[1] * planeCoeff[3];

 // Third Column
 destMat[0][2] = 0.0f - lightPos[2] * planeCoeff[0];
 destMat[1][2] = 0.0f - lightPos[2] * planeCoeff[1];
 destMat[2][2] = dot - lightPos[2] * planeCoeff[2];
 destMat[3][2] = 0.0f - lightPos[2] * planeCoeff[3];

 // Fourth Column
 destMat[0][3] = 0.0f - lightPos[3] * planeCoeff[0];
 destMat[1][3] = 0.0f - lightPos[3] * planeCoeff[1];
 destMat[2][3] = 0.0f - lightPos[3] * planeCoeff[2];
 destMat[3][3] = dot - lightPos[3] * planeCoeff[3];
 }

A Shadow Example

To demonstrate the use of the function in Listing 9-10, we will suspend our jet in air high above the ground.
We’ll place the light source directly above and a bit to the left of the jet. As you use the arrow keys to spin
the jet around, the shadow cast by the jet will appear flattened on the ground below. The output from this
SHADOW example program is shown in Figure 9-26.

Figure 9-26 Output from the SHADOW example program

The code in Listing 9-11 shows how the shadow projection matrix was created for this example. Note that
we create the matrix once in SetupRC() and save it in a global variable.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Lighting and Lamps

http://www.itknowledge.com/reference/archive/1571690735/ch09/296-300.html [20-03-2000 21:34:16]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Listing 9-11 Setting up the shadow projection matrix

GLfloat lightPos[] = { -75.0f, 150.0f, -50.0f, 0.0f };
…
…

// Transformation matrix to project shadow
GLfloat shadowMat[4][4];
…
…

// This function does any needed initialization on the rendering
// context. Here it sets up and initializes the lighting for
// the scene.
void SetupRC()
 {
 // Any three points on the ground (counterclockwise order)
 GLfloat points[3][3] = {{ -30.0f, -149.0f, -20.0f },
 { -30.0f, -149.0f, 20.0f },
 {40.0f, -149.0f, 20.0f }};

 glEnable(GL_DEPTH_TEST); // Hidden surface removal
 glFrontFace(GL_CCW); // Counterclockwise polygons
 face out
 glEnable(GL_CULL_FACE); // Do not calculate inside of jet

 // Enable lighting
 glEnable(GL_LIGHTING);

 …
 // Code to setup lighting, etc.
 …

 // Light blue background
 glClearColor(0.0f, 0.0f, 1.0f, 1.0f);

 // Calculate projection matrix to draw shadow on the ground
 MakeShadowMatrix(points, lightPos, shadowMat);
 }

Listing 9-12 shows the rendering code for the SHADOW example. We first draw the jet as we normally
would; then we restore the Modelview matrix and multiply it by the shadow matrix. This creates our squish
Projection matrix. Then we draw the jet again (we’ve modified our code to accept a flag telling the DrawJet
function to render in color or black). After restoring the Modelview matrix once again, we draw a small
yellow sphere to approximate the position of the light, and then draw a plane below the jet to indicate the
ground. This rectangle lies in the same plane in which our shadow will be drawn.

Listing 9-12 Render the jet and its shadow

// Called to draw scene
void RenderScene(void)
 {
 // Clear the window with current clearing color
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Save the matrix state and do the rotations
 glPushMatrix();

 // Draw jet at new orientation, put light in correct position
 // before rotating the jet
 glLightfv(GL_LIGHT0,GL_POSITION,lightPos);
 glRotatef(xRot, 1.0f, 0.0f, 0.0f);
 glRotatef(yRot, 0.0f, 1.0f, 0.0f);

 DrawJet(FALSE);

 // Restore original matrix state
 glPopMatrix();

 // Get ready to draw the shadow and the ground
 // First disable lighting and save the projection state
 glPushAttrib(GL_LIGHTING_BIT);
 glDisable(GL_LIGHTING);
 glPushMatrix();

 // Multiply by shadow projection matrix
 glMultMatrixf((GLfloat *)shadowMat);

 // Now rotate the jet around in the new flattened space
 glRotatef(xRot, 1.0f, 0.0f, 0.0f);
 glRotatef(yRot, 0.0f, 1.0f, 0.0f);

 // Pass true to indicate drawing shadow
 DrawJet(TRUE);

 // Restore the projection to normal
 glPopMatrix();

 // Draw the light source
 glPushMatrix();
 glTranslatef(lightPos[0],lightPos[1], lightPos[2]);
 glRGB(255,255,0);
 auxSolidSphere(5.0f);
 glPopMatrix();

 // Draw the ground; we do manual shading to a darker green
 // in the background to give the illusion of depth
 glBegin(GL_QUADS);
 glRGB(0,128,0);
 glVertex3f(400.0f, -150.0f, -200.0f);
 glVertex3f(-400.0f, -150.0f, -200.0f);
 glRGB(0,255,0);
 glVertex3f(-400.0f, -150.0f, 200.0f);
 glVertex3f(400.0f, -150.0f, 200.0f);
 glEnd();

 // Restore lighting state variables
 glPopAttrib();

 // Flush drawing commands
 glFlush();
 }

Lighting and Color Index Mode

In Chapter 8, you learned that in color index mode, color is specified as an index into a palette rather than
as components of red, green, and blue light. This has some obvious implications for lighting effects. Most
of the lighting functions expect light and material properties to be specified in terms of these RGBA
components.

Some consideration is made for color index mode by OpenGL, but in color index mode your lights may
only contain diffuse and specular components. Material properties can include shininess, ambient, diffuse,
and specular light, and although this may be enough to do some lighting, it is questionable whether it’s
actually worth the effort.

In order to do lighting, your palette must contain three color ramps for ambient, diffuse, and specular
colorings. To achieve satisfactory results, your ramps will usually progress from black to shades of a single
color and finally to white. It’s possible to define these such that you produce a smoothly shaded object in a
single color, but this has few if any practical applications.

Generally, most recognized OpenGL texts recommend that you avoid color index mode for lighting effects.
Still, if you must use it, the CD contains a supplementary example called ILIGHT that shows how to use
color index mode to illuminate a scene with some objects. However, all these objects are the same color!

Summary

In this chapter you have been introduced to some of the more magical and powerful capabilities of
OpenGL. You’ve seen how to specify one or more light sources and define their lighting characteristics in
terms of ambient, diffuse, and specular components. We explained how the corresponding material
properties interact with these light sources, and demonstrated some special effects such as adding specular
highlights and softening sharp edges.

Also covered were lighting positions, and creation and manipulation of spotlights. The high-level matrix
munching function presented here will make shadow generation as easy as it gets. Finally, we explained
why you should avoid color index mode for lighting effects. The demonstration programs in this chapter
are fairly simple, but you’ll find more samples on the CD in the subdirectory for this chapter. The programs
on the CD further demonstrate all of these effects, including scenes with more than one light source.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Lighting and Lamps

http://www.itknowledge.com/reference/archive/1571690735/ch09/300-303.html [20-03-2000 21:34:21]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Reference Section

glColorMaterial
Purpose

Allows material colors to track the current color as set by glColor.

Include File
<gl.h>

Syntax
void glColorMaterial(GLenum face, GLenum mode);

Description
This function allows material properties to be set without having to call glMaterial directly. By
using this function, certain material properties can be set to follow the current color as specified
by glColor. By default, color tracking is disabled; to enable it, you must also call
glEnable(GL_COLOR_MATERIAL). To disable color tracking again, call
glDisable(GL_COLOR_MATERIAL).

Parameters
face

GLenum: Specifies if the front (GL_FRONT), back (GL_BACK), or both
(GL_FRONT_AND_BACK) should follow the current color.

mode

GLenum: Specifies which material property should be following the current color. This can be
GL_EMISSION, GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR, or
GL_AMBIENT_AND_DIFFUSE.

Returns
None.

Example

The following code from the AMBIENT example program enables color tracking, then sets the front
material parameters for ambient and diffuse reflectivity to follow the colors specified by glColor.

 glEnable(GL_COLOR_MATERIAL); // Enable Material color tracking

 // Front material ambient and diffuse colors track glColor
 glColorMaterial(GL_FRONT,GL_AMBIENT_AND_DIFFUSE);

See Also
glColor, glMaterial, glLight, glLightModel

glCullFace
Purpose

Specifies whether the front or back of polygons should be eliminated from drawing.

Include File
<gl.h>

Syntax
void glCullFace(GLenum mode);

Description
This function disables lighting, shading, and color calculations and operations on either the front
or back of a polygon. If, for instance, an object is closed in so that the back side of the polygons
will never be visible regardless of rotation or translation, this will eliminate unnecessary
computations in the display of the scene. Culling is enabled or disabled by calling glEnable and
glDisable with the GL_CULL_FACE parameter. The front and back of the polygon are defined
by use of the glFrontFace function and the order in which the vertices are specified (clockwise
or counterclockwise winding).

Parameters
mode

GLenum: Specifies which face of polygons should be culled. May be either GL_FRONT, or
GL_BACK.

Returns
None.

Example

The following code from the AMBIENT example from this chapter shows how the color and drawing
operations are disabled for the inside of the jet. It is also necessary to indicate which side of the
polygon is the outside by specifying clockwise or counterclockwise winding.

 glEnable(GL_CULL_FACE); // Do not calculate inside of jet
 glFrontFace(GL_CCW); // Counterclockwise polygons face out

See Also
glFrontFace, glLightModel

glFrontFace
Purpose

Defines which side of a polygon is the front or back.

Include File
<gl.h>

Syntax
void glFrontFace(GLenum mode);

Description
When a scene is made up of objects that are closed (you cannot see the inside), there is no need
to do color or lighting calculations on the inside of the object. The glCullFace function will turn
off such calculations for either the front or back of polygons. The glFrontFace function
determines which side of the polygons is considered the front. If the vertices of a polygon are
specified such that they travel around the polygon in a clockwise fashion, the polygon is said to
have clockwise winding. If the vertices travel counterclockwise, the polygon is said to have
counterclockwise winding. This function allows either the clockwise or counterclockwise wound
face to be considered the front of the polygon.

Parameters
mode

GLenum: Specifies the orientation of front facing polygons, clockwise (GL_CW) or
counterclockwise (GL_CCW).

Returns
None.

Example

The following code from the AMBEINT example from this chapter shows how the color and drawing
operations are disabled for the inside of the jet. It is also necessary to indicate which side of the
polygon is the outside by specifying clockwise or counterclockwise winding.

 glEnable(GL_CULL_FACE); // Do not calculate inside of jet
 glFrontFace(GL_CCW); // Counterclockwise polygons face out

See Also
glCullFace, glLightModel

glGetMaterial
Purpose

Returns the current material property settings.

Include File
<gl.h>

Variations
void glGetMaterialfv(GLenum face, GLenum pname, GLfloat *params);

void glGetMaterialiv(GLenum face, GLenum pname, GLint *params);

Description
Use this function to query the current front or back material properties. The return values are
stored at the address pointed to by params. For most properties this is an array of four values
containing the RGBA components of the property specified.

Parameters
face

GLenum: Specifies whether the front (GL_FRONT), or back (GL_BACK) material properties
are being sought.

pname

GLenum: Specifies which material property is being queried. Valid values are: GL_AMBIENT,
GL_DIFFUSE, GL_SPECULAR, GL_EMISSION, GL_SHININESS, and
GL_COLOR_INDEXES.

params

GLint* or GLfloat*: An array of integer or floating point values representing the return values.
For GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR, and GL_EMISSION this is a
four-element array containing the RGBA values of the property specified. For GL_SHININESS
a single value representing the specular exponent of the material is returned.
GL_COLOR_INDEXES returns an array of three elements containing the ambient, diffuse, and
specular components in the form of color indexes. GL_COLOR_INDEXES is only used for
color index lighting.

Returns
None.

Example

The following code shows how all the current material properties are read and stored.

 // Storage for all the material properties
 GLfloat mbientMat[4],diffuseMat[4],specularMat[4],emissionMat[4];
 GLfloat shine;
 …
 …
 // Read all the material properties
 glGetMaterialfv(GL_FRONT,GL_AMBIENT,ambientMat);
 glGetMaterialfv(GL_FRONT,GL_DIFFUSE,diffuseMat);
 glGetMaterialfv(GL_FRONT,GL_SPECULAR,specularMat);
 glGetMaterialfv(GL_FRONT,GL_EMISSION,emissionMat);
 glGetMaterialfv(GL_FRONT,GL_SHININESS,&shine);

See Also
glMaterial

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Lighting and Lamps

http://www.itknowledge.com/reference/archive/1571690735/ch09/303-306.html [20-03-2000 21:34:26]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Chapter 10
3D Modeling and Object Composition

What you’ll learn in this chapter:
How to… Functions You’ll Use

Assemble polygons to create 3D objects glBegin/glEnd/glVertex
Optimize object display with display lists glNewList/glEndList/glCallList

Your quiver is quite full of OpenGL arrows by now and it’s time to go hunting. Unlike previous chapters, this
is going to be a project chapter, where you can put some of this stuff to practical use. We are going to define a
problem or goal and pursue it to its logical end: a finished program. Along the way, you’ll gain some insight in
how to break your objects and scenes into smaller, more manageable pieces. We’ll compose a complex object
out of smaller, simpler objects, which in turn are composed of just the OpenGL primitives.

As a finishing touch we’ll show you why and how to apply display lists. One of the biggest reasons for using
display lists is speed, so for the icing on the cake, we’ll even give you a crude but effective means of
benchmarking your code.

Defining the Task

To demonstrate building a figure out of smaller simpler figures, we will use an interesting, yet simple example
that creates a model of a metallic bolt (like those holding your disk drive together). Although this particular
bolt may not exist in any hardware store, it will have the essential features. We shall make the bolt as simple
as possible while still retaining the flavor of our task.

The bolt will have a six-sided head and a threaded shaft, like many typical steel bolts. Since this is a learning
exercise, we’ll simplify the threads by making them raised on the surface of the bolt shaft rather than carved
out of the shaft.

Figure 10-1 is a rough sketch of what we’re aiming for. We will build the three major components of this
bolt—the head, the shaft, and the threads—individually and then put them together to form the final object.

Figure 10-1 The hex bolt to be modeled in this chapter

Choosing a Projection

Before we start constructing, we need a projection, a frame of reference for placing the objects. For an
example like this, an orthogonal projection is the best choice. This is a typical choice for applications such as
CAD, in which an object is being modeled and measured exactly. This bolt has a specific width, height, and
number of threads and is comparatively small. Using a perspective projection would make sense if we were
modeling something larger such as a landscape, where the effect would be more apparent.

Listing 10-1 is the code that creates the viewing volume. It creates an orthogonal projection and represents a
coordinate system that reaches 100 units along the x- and y-axis. An extra 100 units is supplied along the
z-axis where the viewer will be located.

Listing 10-1 Setting up the orthogonal projection for this chapter’s examples

// Change viewing volume and viewport. Called when window is resized
void ChangeSize(GLsizei w, GLsizei h)
 {
 GLfloat nRange = 100.0f;

 // Prevent a divide by zero
 if(h == 0)
 h = 1;

 // Set Viewport to window dimensions
 glViewport(0, 0, w, h);

 // Reset coordinate system
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();

 // Establish clipping volume (left, right, bottom, top, near, far)
 if (w <= h)
 glOrtho (-nRange, nRange, -nRange*h/w, nRange*h/w,
 -nRange*2.0f, nRange*2.0f);
 else
 glOrtho (-nRange*w/h, nRange*w/h, -nRange, nRange,
 -nRange*2.0f, nRange*2.0f);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 }

Choosing the Lighting and Material Properties

With the projection chosen, the next step is to select a lighting model for our view of the bolt. Listing 10-2 is
the code to set up the rendering context including the lighting and material properties. We make sure the
ambient light is bright enough to see all the features, and include a specular component to make it glisten just
as a real metal bolt would. The single light source is positioned to the upper-left of the viewer.

Listing 10-2 Setting up the rendering context and lighting conditions

// This function does any needed initialization on the rendering
// context. Here it sets up and initializes the lighting for
// the scene.
void SetupRC()
 {
 // Light values and coordinates
 GLfloat ambientLight[] = {0.4f, 0.4f, 0.4f, 1.0f };
 GLfloat diffuseLight[] = {0.7f, 0.7f, 0.7f, 1.0f };
 GLfloat specular[] = { 0.9f, 0.9f, 0.9f, 1.0f};
 Glfloat lightPos[] = { -50.0f, 200.0f, 200.0f, 1.0f };
 GLfloat specref[] = { 0.6f, 0.6f, 0.6f, 1.0f };

 glEnable(GL_DEPTH_TEST); // Hidden surface removal
 glEnable(GL_CULL_FACE);// Do not calculate inside of solid object
 // Enable lighting
 glEnable(GL_LIGHTING);

 // Set up light 0
 glLightModelfv(GL_LIGHT_MODEL_AMBIENT,ambientLight);
 glLightfv(GL_LIGHT0,GL_AMBIENT,ambientLight);
 glLightfv(GL_LIGHT0,GL_DIFFUSE,diffuseLight);
 glLightfv(GL_LIGHT0,GL_SPECULAR,specular);

 // Position and turn on the light
 glLightfv(GL_LIGHT0,GL_POSITION,lightPos);
 glEnable(GL_LIGHT0);

 // Enable color tracking
 glEnable(GL_COLOR_MATERIAL);

 // Set material properties to follow glColor values
 glColorMaterial(GL_FRONT, GL_AMBIENT_AND_DIFFUSE);

 // All materials hereafter have full specular reflectivity
 // with a moderate shine
 glMaterialfv(GL_FRONT, GL_SPECULAR,specref);
 glMateriali(GL_FRONT,GL_SHININESS,64);

 // Black background
 glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
 }

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:3D Modeling and Object Composition

http://www.itknowledge.com/reference/archive/1571690735/ch10/315-318.html [20-03-2000 21:34:34]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Displaying the Results

Once we have determined the viewing, lighting, and material parameters, all that remains is to render the scene.
Listing 10-3 shows the code outline used to display our bolt and bolt pieces. The SomeFunc() line is just a
placeholder for function calls to render the head, shaft, and threads individually. We save the matrix state,
perform any rotations (defined by the keyboard activity, as in all this book’s previous examples), and call a
function that renders some specific object or part of an object.

Listing 10-3 Rendering the object, allowing for rotated views

// Called to draw scene
void RenderScene(void)
 {
 // Clear the window with current clearing color
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Save the matrix state
 glMatrixMode(GL_MODELVIEW);
 glPushMatrix();

 // Rotate about x and y axes
 glRotatef(xRot, 1.0f, 0.0f, 0.0f);
 glRotatef(yRot, 0.0f, 1.0f, 0.0f);

 // Specific code to draw the object …
 …
 … SomeFunc(); // Place Holder
 glPopMatrix();

 // Flush drawing commands
 glFlush();
 }

Constructing a Model, One Piece at a Time

Any given programming task can be separated into smaller, more manageable tasks. This makes the smaller
pieces easier to handle and code, and introduces some reusability into our code base, as well. Three-dimensional
modeling is no exception, you will create large complex systems out of many smaller and more manageable
pieces.

We have decided to break the bolt down into three pieces: head, shaft, and thread. Certainly this makes it much
simpler for us to consider each section graphically, but it also give us three objects that we can reuse. In more
complex modeling applications, this reusability is of crucial importance. In a CAD-type application, for
example, you would probably have many different bolts to model—with various lengths, thickness, and thread
density. Instead of the RenderHead() function that draws the head of the bolt in this example, you might want to
write a function that takes parameters specifying the number of sides, thickness, and diameter of the bolt head.

Another thing we will do is model each piece of our bolt in coordinates that are most convenient for describing
the object. Most often, objects are modeled around the origin and then translated and rotated into place. Later,
when composing the final object, we can translate the components, rotate them, and even scale them if
necessary to assemble our composite object.

The Head

The head of our bolt has six smooth sides and is smooth on top and bottom, as well. We can construct this solid
object with two hexagons that represent the top and bottom of the head, and a series of quadrilaterals around the
edges to represent the sides. We could use GL_QUAD and GL_POLYGON to draw this with a minimum
number of vertices; however, as we’ve mentioned previously, you should always use triangles whenever
possible. For any accelerated OpenGL hardware (and even some software routines), it may actually be faster to
draw two triangles arranged together rather than a single quadrilateral.

Figure 10-2 illustrates how the bolt head will be constructed with triangles. We use a triangle fan with six
triangles for the top and bottom sections of the head. Then each face of the side of the bolt is composed of two
triangles.

Figure 10-2 Triangle outline of bolt head

A total of 24 triangles are used to draw the head of the bolt: 6 each on the top and bottom, and 12 more to
compose the sides of the bolt head. Listing 10-4 is the function that renders the head of the bolt. Figure 10-3
shows the output of this program, HEAD, in this chapter’s subdirectory on the CD. Notice that this code
contains no functions that we haven’t yet covered, but it’s more substantial than any of the simpler chapter
examples.

Figure 10-3 Output from the HEAD program

Listing 10-4 Rendering the head of the bolt

// Creates the head of the bolt
void RenderHead(void)
 {
 float x,y,angle; // Calculated positions
 float height = 25.0f; // Thickness of the head
 float diameter = 30.0f; // Diameter of the head
 float normal[3],corners[4][3]; // Storage of vertices and normals
 float step = (3.1415f/3.0f); // step = 1/6th of a circle =
 hexagon

// Set material color for head of bolt
glColor3f(0.0f, 0.0f, 0.7f);

// Clockwise polygons face out, set for fans
glFrontFace(GL_CW);

// Begin a new triangle fan to cover the top
glBegin(GL_TRIANGLE_FAN);

 // All the normals for the top of the bolt point straight up
 // the z axis.
 glNormal3f(0.0f, 0.0f, 1.0f);

 // Center of fan is at the origin
 glVertex3f(0.0f, 0.0f, 0.0f);

 // Divide the circle up into 6 sections and start dropping
 // points to specify the fan
 for(angle = 0.0f; angle < (2.0f*3.1415f); angle += step)
 {
 // Calculate x and y position of the next vertex
 x = diameter*(float)sin(angle);
 y = diameter*(float)cos(angle);

 // Specify the next vertex for the triangle fan
 glVertex3f(x, y, 0.0f);
 }

 // Last vertex closes the fan
 glVertex3f(0.0f, diameter, 0.0f);

// Done drawing the fan that covers the bottom
glEnd();

// Now draw the bottom of the bolt head. Switch to
// clockwise polygons facing out.
glFrontFace(GL_CCW);

// Begin a new triangle fan to cover the bottom
glBegin(GL_TRIANGLE_FAN);

 // Normal for bottom points straight down the negative z axis
 glNormal3f(0.0f, 0.0f, -1.0f);

 // Center of fan is at the origin
 glVertex3f(0.0f, 0.0f, -height);

 // Divide the circle up into 6 sections and start dropping
 // points to specify the fan
 for(angle = 0.0f; angle < (2.0f*3.1415f); angle += step)
 {
 // Calculate x and y position of the next vertex
 x = diameter*(float)sin(angle);
 y = diameter*(float)cos(angle);

 // Specify the next vertex for the triangle fan
 glVertex3f(x, y, -height);
 }
 // Last vertex, used to close the fan
 glVertex3f(0.0f, diameter, -height);

 // Done drawing the fan that covers the bottom
 glEnd();

 // Build the sides out of triangles (two each). Each face
 // will consist of two triangles arranged to form a
 // quadrilateral
 glBegin(GL_TRIANGLES);

 // Go around and draw the sides
 for(angle = 0.0f; angle < (2.0f*3.1415f); angle += step)
 {
 // Calculate x and y position of the next hex point
 x = diameter*(float)sin(angle);
 y = diameter*(float)cos(angle);

 // start at bottom of head
 corners[0][0] = x;
 corners[0][1] = y;
 corners[0][2] = -height;

 // extrude to top of head
 corners[1][0] = x;
 corners[1][1] = y;
 corners[1][2] = 0.0f;

 // Calculate the next hex point
 x = diameter*(float)sin(angle+step);
 y = diameter*(float)cos(angle+step);

 // Make sure we aren't done before proceeding
 if(angle+step < 3.1415*2.0)
 {
 // If we are done, just close the fan at a
 // known coordinate.
 corners[2][0] = x;
 corners[2][1] = y;
 corners[2][2] = 0.0f;

 corners[3][0] = x;
 corners[3][1] = y;
 corners[3][2] = -height;
 }
 else
 {
 // We aren't done, the points at the top
 and bottom
 // of the head.
 corners[2][0] = 0.0f;
 corners[2][1] = diameter;
 corners[2][2] = 0.0f;

 corners[3][0] = 0.0f;
 corners[3][1] = diameter;
 corners[3][2] = -height;
 }

 // The normal vectors for the entire face will
 // all point the same direction
 calcNormal(corners, normal);
 glNormal3fv(normal);

 // Specify each triangle separately to lie next
 // to each other.
 glVertex3fv(corners[0]);
 glVertex3fv(corners[1]);
 glVertex3fv(corners[2]);

 glVertex3fv(corners[0]);
 glVertex3fv(corners[2]);
 glVertex3fv(corners[3]);
 }

glEnd();
}

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:3D Modeling and Object Composition

http://www.itknowledge.com/reference/archive/1571690735/ch10/318-323.html [20-03-2000 21:34:44]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The Shaft

The shaft of the bolt is nothing more than a cylinder with a bottom on it. We compose a cylinder by plotting xy
values around in a circle, and then take two z values at these points and get polygons that approximate the wall
of a cylinder. Once again, however, we will compose this wall entirely out of triangles. Figure 10-4 shows the
outline of the cylinder.

Figure 10-4 Triangle outline of the bolt shaft

We also create the bottom of the shaft with a triangle fan. Notice that the smaller the step size is around the
circle, the smaller the flat facets that make up the cylinder wall and the more closely the wall will approximate a
smooth curve.

Listing 10-5 is the code to produce this cylinder. Notice that the normals are not calculated for the triangles
using the vertices of the triangles. We usually set the normal to be the same for all vertices, but here we’ll break
with this tradition to specify a new normal for each vertex. Since we are simulating a curved surface, the normal
specified for each vertex would be normal to the actual curve.

Listing 10-5 Rendering the shaft of the bolt

// Creates the shaft of the bolt as a cylinder with one end
// closed.
void RenderShaft(void)
 {
 float x,y,angle; // Used to calculate cylinder
 wall
 float height = 75.0f; // Height of the cylinder
 float diameter = 20.0f; // Diameter of the cylinder
 float normal[3],corners[4][3]; // Storage for vertices
 calculations
 float step = (3.1415f/50.0f); // Approximate the cylinder
 wall with
 // 100 flat segments.

 // Set material color for head of screw
 glColor3f(0.0f, 0.0f, 0.7f);

 // counterclockwise polygons face out (the default for triangles)
 glFrontFace(GL_CCW);

 // First assemble the wall as 100 quadrilaterals formed by
 // placing adjoining triangles together
 glBegin(GL_TRIANGLES);

 // Go around and draw the sides
 for(angle = 0.0f; angle < (2.0f*3.1415f); angle += step)
 {
 // Calculate x and y position of the next vertex
 x = diameter*(float)sin(angle);
 y = diameter*(float)cos(angle);

 // Get the coordinate for this point and extrude the
 // length of the cylinder.
 corners[0][0] = x;
 corners[0][1] = y;
 corners[0][2] = -height;

 corners[1][0] = x;
 corners[1][1] = y;
 corners[1][2] = 0.0f;

 // Get the next point and do the same
 x = diameter*(float)sin(angle+step);
 y = diameter*(float)cos(angle+step);

 // If finished, use known starting point to close the
 surface
 if(angle+step < 3.1415*2.0) // Not Finished
 {
 corners[2][0] = x;
 corners[2][1] = y;
 corners[2][2] = 0.0f;

 corners[3][0] = x;
 corners[3][1] = y;
 corners[3][2] = -height;
 }
 else
 {
 // Finished, use the starting point
 corners[2][0] = 0.0f;
 corners[2][1] = diameter;
 corners[2][2] = 0.0f;

 corners[3][0] = 0.0f;
 corners[3][1] = diameter;
 corners[3][2] = -height;
 }

 // Instead of using real normal to actual flat section,
 // use what the normal would be if the surface were really
 // curved. Since the cylinder goes up the z axis, the normal
 // points from the z axis out directly through each vertex.
 // Therefore we can use the vertex as the normal, as long as
 // we reduce it to unit length first.

 // First Triangle //
 // Fill the normal vector with the coordinate points
 normal[0] = corners[0][0];
 normal[1] = corners[0][1];
 normal[2] = corners[0][2];

 // Reduce to length of one and specify for this point
 ReduceToUnit(normal);
 glNormal3fv(normal);
 glVertex3fv(corners[0]);

 // Get vertex, calculate unit normal and go
 normal[0] = corners[1][0];
 normal[1] = corners[1][1];
 normal[2] = corners[1][2];
 ReduceToUnit(normal);
 glNormal3fv(normal);
 glVertex3fv(corners[1]);

 // Get vertex, calculate unit normal and go
 normal[0] = corners[2][0];
 normal[1] = corners[2][1];
 normal[2] = corners[2][2];
 ReduceToUnit(normal);
 glNormal3fv(normal);
 glVertex3fv(corners[2]);

 // Second Triangle //

 // Get vertex, calculate unit normal and go
 normal[0] = corners[2][0];
 normal[1] = corners[2][1];
 normal[2] = corners[2][2];
 ReduceToUnit(normal);
 glNormal3fv(normal);
 glVertex3fv(corners[2]);

 // Get vertex, calculate unit normal and go
 normal[0] = corners[3][0];
 normal[1] = corners[3][1];
 normal[2] = corners[3][2];
 ReduceToUnit(normal);
 glNormal3fv(normal);
 glVertex3fv(corners[3]);

 // Get vertex, calculate unit normal and go
 normal[0] = corners[0][0];
 normal[1] = corners[0][1];
 normal[2] = corners[0][2];
 ReduceToUnit(normal);
 glNormal3fv(normal);
 glVertex3fv(corners[0]);
 }

 glEnd(); // Done with cylinder sides

 // Begin a new triangle fan to cover the bottom
 glBegin(GL_TRIANGLE_FAN);

 // Normal points down the z axis
 glNormal3f(0.0f, 0.0f, -1.0f);

 // Center of fan is at the origin
 glVertex3f(0.0f, 0.0f, -height);

 // Spin around, matching step size of cylinder wall
 for(angle = 0.0f; angle < (2.0f*3.1415f); angle += step)
 {
 // Calculate x and y position of the next vertex
 x = diameter*(float)sin(angle);
 y = diameter*(float)cos(angle);

 // Specify the next vertex for the triangle fan
 glVertex3f(x, y, -height);
 }

 // Close the fan
 glVertex3f(0.0f, diameter, -height);
 glEnd();
 }

Fortunately, the cylinder is wrapped symmetrically around the z-axis. Thus, the normal for each vertex can be
found by normalizing (reducing to length 1) the vertex itself. Figure 10-5 shows the output from the SHAFT
program.

Figure 10-5 Output from the SHAFT program

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:3D Modeling and Object Composition

http://www.itknowledge.com/reference/archive/1571690735/ch10/323-326.html [20-03-2000 21:34:53]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The Thread

The thread is the most complex part of the bolt. It’s composed of two planes arranged in a V shape that
follows a corkscrew pattern up the length of the shaft. It is created as two flat segments arranged in a V
pattern. Figure 10-6 illustrates the triangle outline of this shape and Listing 10-6 is the OpenGL code used to
produce this shape.

Figure 10-6 Progression of triangle outline of thread

Listing 10-6 Rendering the thread of the bolt

// Creates the thread of the bolt
void RenderThread(void)
 {
 float x,y,z,angle; // Calculate coordinates and step
 angle
 float height = 75.0f; // Height of the threading
 float diameter = 20.0f; // Diameter of the threading
 float normal[3],corners[4][3]; // Storage for normal and corners
 float step = (3.1415f/32.0f); // One revolution
 float revolutions = 7.0f; // How many times around the shaft
 float threadWidth = 2.0f; // How wide is the thread
 float threadThick = 3.0f; // How thick is the thread
 float zstep = .125f; // How much does the thread move up
 // the z axis each time a new
 segment
 // is drawn.
 // 360 degrees in radians
 #define PI2 (2.0f*3.1415f)

 // Set material color for thread
 glColor3f(0.0f, 0.0f, 0.4f);

 z = -height+2;// Starting spot almost to the end

 // Go around and draw the sides until finished spinning up
 for(angle = 0.0f; angle < PI2*revolutions; angle += step)
 {
 // Calculate x and y position of the next vertex
 x = diameter*(float)sin(angle);
 y = diameter*(float)cos(angle);

 // Store the next vertex next to the shaft
 corners[0][0] = x;
 corners[0][1] = y;
 corners[0][2] = z;

 // Calculate the position away from the shaft
 x = (diameter+threadWidth)*(float)sin(angle);
 y = (diameter+threadWidth)*(float)cos(angle);

 corners[1][0] = x;
 corners[1][1] = y;
 corners[1][2] = z;

 // Calculate the next position away from the shaft
 x = (diameter+threadWidth)*(float)sin(angle+step);
 y = (diameter+threadWidth)*(float)cos(angle+step);

 corners[2][0] = x;
 corners[2][1] = y;
 corners[2][2] = z + zstep;

 // Calculate the next position along the shaft
 x = (diameter)*(float)sin(angle+step);
 y = (diameter)*(float)cos(angle+step);

 corners[3][0] = x;
 corners[3][1] = y;
 corners[3][2] = z+ zstep;

 // We'll be using triangles, so make
 // counterclockwise polygons face out
 glFrontFace(GL_CCW);
 glBegin(GL_TRIANGLES);// Start the top section of thread

 // Calculate the normal for this segment
 calcNormal(corners, normal);
 glNormal3fv(normal);

 // Draw two triangles to cover area
 glVertex3fv(corners[0]);
 glVertex3fv(corners[1]);
 glVertex3fv(corners[2]);

 glVertex3fv(corners[2]);
 glVertex3fv(corners[3]);
 glVertex3fv(corners[0]);

 glEnd();

 // Move the edge along the shaft slightly up the z axis
 // to represent the bottom of the thread
 corners[0][2] += threadThick;
 corners[3][2] += threadThick;

 // Recalculate the normal since points have changed. This
 // time it points in the opposite direction, so reverse it
 calcNormal(corners, normal);
 normal[0] = -normal[0];
 normal[1] = -normal[1];
 normal[2] = -normal[2];

 // Switch to clockwise facing out for underside of the
 // thread.
 glFrontFace(GL_CW);

 // Draw the two triangles
 glBegin(GL_TRIANGLES);
 glNormal3fv(normal);

 glVertex3fv(corners[0]);
 glVertex3fv(corners[1]);
 glVertex3fv(corners[2]);

 glVertex3fv(corners[2]);
 glVertex3fv(corners[3]);
 glVertex3fv(corners[0]);

 glEnd();

 // Creep up the z axis
 z += zstep;
 }
}

Figure 10-7 shows the output of the THREAD program.

Figure 10-7 Output from the THREAD program

Putting the Model Together

The bolt is assembled by drawing all three sections in their appropriate location. All sections are translated
appropriately up the z-axis. The shaft and threads are translated the same amount because essentially they
occupy the same location. All that needs to be done is to put the pieces in the appropriate locations, and hidden
surface removal will automatically eliminate hidden surfaces for us.

Listing 10-7 is the rendering code that manipulates and renders the three bolt components. Figure 10-8 shows
the final output of the BOLT program.

Listing 10-7 Rendering code to draw the completed bolt

// Called to draw the entire bolt
void RenderScene(void)
 {
 // Clear the window with current clearing color
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Save the matrix state and do the rotations
 glMatrixMode(GL_MODELVIEW);

 // Rotate and translate, then render the bolt head
 glPushMatrix();
 glRotatef(xRot, 1.0f, 0.0f, 0.0f);
 glRotatef(yRot, 0.0f, 1.0f, 0.0f);
 glTranslatef(0.0f, 0.0f, 55.0f);
 RenderHead();
 glPopMatrix();

 // Save matrix state, rotate, translate and draw the
 // shaft and thread together
 glPushMatrix();
 glRotatef(xRot, 1.0f, 0.0f, 0.0f);
 glRotatef(yRot, 0.0f, 1.0f, 0.0f);
 glTranslatef(0.0f, 0.0f, 40.0f);

 // Render just the hexagonal head of the nut
 RenderShaft();
 RenderThread();

 glPopMatrix();

 // Flush drawing commands
 glFlush();

Figure 10-8 Output from the BOLT program

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:3D Modeling and Object Composition

http://www.itknowledge.com/reference/archive/1571690735/ch10/326-331.html [20-03-2000 21:35:06]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

A Makeshift Benchmark

Our final program produces a fairly good representation of the metal bolt we set out to model. Consisting of
over 1,700 triangles, this is the most complex example in this book so far. Comparatively speaking, however,
this number of triangles isn’t anywhere close to the largest number of polygons you’ll encounter when
composing larger scenes and more complex objects. In fact, the latest 3D accelerated graphics cards are rated at
hundreds of thousands of triangles per second, and that’s for the cheap ones! One of the goals of this chapter is
to introduce you to using display lists to optimize rendering speed. Before we can get into a comparison of
rendering speeds, however, we will need a way to measure this—a benchmark.

When we get into the subject of display lists, we want you to be able to see that there is a performance
difference rather than just take our word for it. So let’s modify our BOLT program slightly. Rather than
spinning the object about its axes when arrow keys are pressed, we’ll have it spin repeatedly around just the
y-axis in particular. As you might imagine, this turns the program into a continual triangle-generator that we can
use to more easily see differences in performance. Listing 10-8 is the changed RenderScene() function used for
SPINBOLT.

Listing 10-8 New RenderScene() function to spin bolt around the y-axis

// Called to draw the entire bolt
void RenderScene(void)
 {
 // Clear the window with current clearing color
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Make sure we have the correct matrix mode
 glMatrixMode(GL_MODELVIEW);

 // Rotate and translate the coordinate system
 glRotatef(5.0f, 0.0f, 1.0f, 0.0f);

 // Translate and render the head
 glTranslatef(0.0f, 0.0f, 55.0f);
 RenderHead();

 // Translate back some and render the shaft and thread
 glTranslatef(0.0f, 0.0f, -15.0f);
 RenderShaft();
 RenderThread();

 // Translate back some again for next pass
 glTranslatef(0.0f, 0.0f, -40.0f);

 // Flush drawing commands
 gl Flush();
 }

This new rendering function does not save or restore the matrix state. We use glTranslate to manually restore
the translation state of the matrix before leaving the function, but the effects of glRotate are cumulative. This
causes the bolt to be rotated around its y-axis by 5º every time the bolt is rendered.

One simple animation technique would be to create a timer, and when the WM_TIMER message is received,
invalidate the window causing a redraw. In this manner we can speed up and slow down the animation as
desired. Our goal is not simple animation, however, but to get a feel for the rate of the rotations. A reasonable
criterion is the amount of time required to spin the bolt completely around the y-axis (360º).

Using WM_TIMER messages would be a poor choice for benchmarking for two reasons. First, your window is
not guaranteed to receive all the WM_TIMER messages (the OS could be too busy). And second, if you specify
the time intervals, what good does it do to then measure those intervals with any confidence that they truly
indicate performance?

What we really want to do is time the interval between the starting and stopping of rendering. This could
provide a value that is too small for practical use, so we can just time the interval between a given number of
renderings. By repeatedly rendering the scene a number of times and measuring the time it takes to perform
these renderings, we have a fairly good benchmark.

Caution: This Is Only an Approximation!
This benchmark is very informal and uses a method of timing computer programs that’s not accurate enough for
publishing important results. We only use it here to demonstrate an easily detectable performance gain when using
display lists. To compare your real programs (as well as the two presented here), you should at least have the rest of
your system idle when running the test. Many factors can increase or decrease the values you get, but as long as
conditions are more or less equal, you will see a time difference between the two bolt-spinning programs.

You might be tempted to just stack together a bunch of calls to RenderScene and obtain the time before and
after to calculate the elapsed time. This would work, but closing the application would be very difficult because
it would not have the chance to service any other messages (such as WM_CLOSE). The best way to get a
Windows program to repeatedly paint its client area is to omit validation of the client area when the
WM_PAINT handler is finished. If the client area is still invalid, Windows will just keep posting WM_PAINT
messages to your application forever. In the midst of these WM_PAINT messages, other messages such as
WM_CLOSE will still appear and be processed.

Listing 10-9 is the WM_PAINT handler for our new program, SPINBOLT.

Listing 10-9 WM_PAINT message handler for SPINBOLT

 // Storage for timing values
 static unsigned long ulStart = 0L;
 static unsigned long ulFinish = 0L;
 static double dTime = 0.0;

 // Storage for performance statistics
 char cBuffer[80];
 RECT cRect;

 …
 …
 …

 // The painting function. This message sent by Windows
 // whenever the screen needs updating.
 case WM_PAINT:
 {
 // Count how many times rendered
 static iRenderCount = 0;

 // Get time at beginning of spin
 if(iRenderCount == 0)
 ulStart = ulGetProfileTime();

 // Call OpenGL drawing code
 RenderScene();

 // Bring image to front
 SwapBuffers(hDC);

 // Increment count. If 71 or over get the finish
 time
 iRenderCount++;

 if(iRenderCount > 71)
 {
 iRenderCount = 0;

 ulFinish = ulGetProfileTime();

 // Calculate the time in seconds
 dTime = ulFinish - ulStart;
 dTime /= 1000.0;
 }

 // Display time (be sure and set background colors)
 sprintf(cBuffer,"%3.1f Seconds for 360 degrees.",
 dTime);
 GetClientRect(hWnd,&cRect);
 SetBkColor(hDC,RGB(0,0,255));
 SetTextColor(hDC,RGB(255,255,0));
 TextOut(hDC,0,cRect.bottom-20,cBuffer,strlen
 (cBuffer));

 // Do not validate, forcing a continuous repaint
 }
 break;

This message handler gets the current system time and counts the number of times it is called. After 71 times, it
gets the new time, subtracts the difference, and displays the lapsed time. Remember that our bolt is rotating 5º
each time it is rendered, so this technique effectively measures the amount of time it takes to spin the bolt 360º.

The function ulGetProfileTime simply gets the system time in clock ticks and converts it to thousandths of a
second. (You can examine this yourself in the source listing if you want, but its operation is not germane to our
discussion here.) SPINBOLT’s output is shown in Figure 10-9. The time to spin the bolt around in this example
was just under 15 seconds (on a 90MHz Pentium with no hardware 3D acceleration).

Figure 10-9 Output from the SPINBOLT program

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:3D Modeling and Object Composition

http://www.itknowledge.com/reference/archive/1571690735/ch10/331-334.html [20-03-2000 21:35:14]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Improving Performance

You may have spotted a glaring performance problem with the WM_PAINT technique, however. Each
time the bolt is drawn, a large number of calculations must be performed to redraw the thread, the shaft,
and the bolt head. Among these calculations are some pretty expensive calls to sin() and cos().

What we need is a way of storing all these vertices and normals as they are calculated, so we can reuse
them rather than go back through all that trigonometry to calculate spiral paths and such. OpenGL has
just what we need: display lists. With a display list, you can record OpenGL function calls (and their
results) and play them back at a later time. Display lists are faster than just reexecuting the same
OpenGL functions singly. Further, non-OpenGL calls such as our trigonometry and normal calculations
are not stored, but their results, which are passed to the OpenGL functions, are. You should be getting an
inkling of why display lists are such a good idea.

Human Beings and Computer Performance
A good rule of thumb in any type of software engineering is to work first on improvements that yield at
least a 20% increase in performance. It is universally accepted that human beings, for the most part, have
difficulty “detecting” an increase in software performance that is less than 20%. For OpenGL, this 20%
value can often be attained quickly by using display lists when the number of polygons is high. It’s a good
idea to get in the habit of using them.

Creating a Display List

Creating a display list is a very straightforward process. Just as you delimit an OpenGL primitive with
glBegin/glEnd, you delimit a display list with glNewList/glEndList. A display list, however, is named
with an integer value that you supply. The following code represents a typical example of display list
creation:

glNewList(1,GL_COMPILE);
 …
 …
 // Some OpenGL Code
 …
 …
glEndList();

As the second parameter to glNewList, you can specify GL_COMPILE or
GL_COMPILE_AND_EXECUTE. This tells OpenGL whether to compile and store the OpenGL
commands, or to compile, store, and execute the commands as they occur. Later, when you need to
execute the display list, simply call

glCallList(1);

The identifier you supply is the same as that supplied in the corresponding call to glNewList.

Listing 10-10 is the code for our new example, SLSTBOLT, which makes use of display lists to produce
the spinning bolt. Notice that you can nest calls to display lists. The maximum number of nested calls is
64 to prevent infinite recursion. In this code, we create a display list for each part of the bolt, and then
one display list that does all the coordinate transformations and calls the lists to create the completed
bolt.

Listing 10-10 New spinning bolt code using display lists

#define HEAD_LIST 1
#define SHAFT_LIST 2
#define THREAD_LIST 3
#define BOLT_LIST 4
 …
 …
// This function does any needed initialization on the rendering
// context. Here it sets up and initializes the lighting for
// the scene, and creates display lists used later
void SetupRC()
 {
 …
 …
 …
 // Create display list for Bolt head
 glNewList(HEAD_LIST,GL_COMPILE);
 RenderHead();
 glEndList();

 // Create display list for shaft
 glNewList(SHAFT_LIST,GL_COMPILE);
 RenderShaft();
 glEndList();

 // Create display list for thread
 glNewList(THREAD_LIST,GL_COMPILE);
 RenderThread();
 glEndList();

 // Create nested display list for entire bolt
 glNewList(BOLT_LIST,GL_COMPILE);

 // Clear the window with current clearing color
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Make sure we have the correct matrix mode
 glMatrixMode(GL_MODELVIEW);

 // Rotate and translate the coordinate system
 // Note this will be cumulative
 glRotatef(5.0f, 0.0f, 1.0f, 0.0f);

 // Translate and render the head
 glTranslatef(0.0f, 0.0f, 55.0f);
 glCallList(HEAD_LIST);

 // Translate back some and render the shaft and thread
 together
 glTranslatef(0.0f, 0.0f, -15.0f);
 glCallList(SHAFT_LIST);
 glCallList(THREAD_LIST);

 // Translate back again for next pass
 glTranslatef(0.0f, 0.0f, -40.0f);

 // End Bolt list
 glEndList();
 }
// Called to draw the entire bolt
void RenderScene(void)
 {
 glCallList(BOLT_LIST);

 // Flush drawing commands
 glFlush();
 }

You’ll see that we defined some macros to identify the display lists more easily. These macros simply
map to the numeric value that identifies the display list. Figure 10-10 shows the output from this new
and improved spinning bolt program. The elapsed time for the example using display lists was just over
13 seconds, about a 2-second improvement. This may not seem like much, but wait a few chapters and
come back and try it again with special effects such as texture mapping or NURBS surfaces. As
mentioned earlier, 1,700 triangles is really a very small portion of what some larger and more complex
scenes will consist of.

Figure 10-10 Output from SLSTBOLT using display lists

The Tank Simulator
Try the tank simulator as it stood after the last chapter, and compare it to the one for this chapter. This
version, which makes heavy use of display lists, consists of many thousands of triangles, and you won’t
need any benchmarking program or stopwatch to know that the performance has been enhanced!

Summary

We used this chapter to slow down somewhat and just talk about how to build a three-dimensional
object, starting with using the OpenGL primitives to create simple 3D pieces, and then assembling them
into a larger and more complex object. Learning the API is the easy part, but your level of experience in
assembling 3D objects and scenes will be what differentiates you from your peers. Once an object or
scene is broken down into small and potentially reusable components, you can save building time by
using display lists. You’ll find many more functions for utilizing and managing display lists in the
Reference Section. You also learned a simple way to benchmark your OpenGL programs so you can get
firsthand experience of the effects of optimizing your code.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:3D Modeling and Object Composition

http://www.itknowledge.com/reference/archive/1571690735/ch10/334-338.html [20-03-2000 21:35:21]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Reference Section

glCallList
Purpose

Executes a display list.

Include File
<gl.h>

Syntax
void glCallList(GLuint list);

Description
Executes the display list identified by list. The OpenGL State Machine is not restored after this
function is called, so it is a good idea to call glPushMatrix beforehand and glPopMatrix
afterwards. Calls to glCallList may be nested. The function glGet with the argument
GL_MAX_LIST_NESTING returns the maximum number of allowable nests. For Microsoft
Windows, this value is 64.

Parameters
list

GLuint: Identifies the display list to be executed.

Returns
None.

Example

The following code saves the matrix state before calling a display list. It then restores the state
afterwards. This code is from the BOLTL example program from this chapter’s subdirectory on the
CD.

 // Save the current transform state
 glPushMatrix();

 // Draw the bolt including nested display lists
 glCallList(BOLT_HEAD);

 // Restore state
 glPopMatrix();

See Also
glCallLists, glDeleteLists, glGenLists, glNewList

glCallLists
Purpose

Executes a list of display lists.

Include File
<gl.h>

Syntax
void glCallLists(GLsizei n, GLenum type, const GLvoid *lists);

Description
This function calls the display lists listed in the *lists array sequentially. This array can be of
nearly any data type. The result is converted or clamped to the nearest integer value to determine
the actual index of the display list. Optionally, the list values can be offset by a value specified
by the function glListBase.

Parameters
n

GLsizei: Number of elements in the array of display lists.

type

GLenum: Specifies the datatype of the array stored at *lists. This can be any one of the
following values: GL_BYTE, GL_UNSIGNED_BYTE, GL_SHORT,
GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED_INT, GL_FLOAT, GL_2_BYTES,
GL_3_BYTES, and GL_4_BYTES.

*lists

GLvoid: An array of elements of the type specified in type. The data type is void to allow any of
the above data types to be used.

Returns
None.

Example

The following code shows how to call a list of display lists with a single call:

 // Storage for the display list identifiers
 int lists[50];
 int i;
 …
 …
 // Create list names
 for(i = 0; i < 50; i++)
 lists[i] = i+1;

 // Build some fifty display lists //////////
 // First list
 glNewList(lists[0],GL_COMPILE);
 …
 …
 glEndList();

 // Second list
 glNewList(lists[1],GL_COMPILE);
 …
 …
 glEndList();

 // And so on …
 …
 …

 // Call all fifty lists with a single call
 glCallLists(50, GL_INT, lists);

See Also
glCallList, glDeleteLists, glGenLists, glListBase, glNewList

glDeleteLists
Purpose

Deletes a continuous range of display lists.

Include File
<gl.h>

Syntax
void glDeleteLists(GLuint list, GLsizei range);

Description
This function deletes a range of display lists. The range goes from an initial value and proceeds
until the number of lists deleted as specified by range is completed. Deleting unused display
lists can save considerable memory. Unused display lists in the range of those specified are
ignored and do not cause an error.

Parameters
list

GLuint: The integer name of the first display list to delete.

range

GLsizei: The number of display lists to be deleted following the initially specified list.

Returns
None.

Example

The following single line of code shows any and all display lists with identifiers between 1 and 50
being deleted:

 glDeleteLists(1, 50);

See Also
glCallList, glCallLists, glGenLists, glIsList, glNewList

glEndList
Purpose

Delimits the end of a display list.

Include File
<gl.h>

Syntax
void glEndList(void);

Description
Display lists are created by first calling glNewList. Thereafter, all OpenGL commands are
compiled and placed in the display list. The glEndList function terminates the creation of this
display list.

Returns
None.

Example

The following example code shows an example of a display list being delimited by glNewList and
glEndList. This particular display list is composed by nesting two other display lists within it.

 // Begin delimit of list
 glNewList(BOLT_LIST,GL_COMPILE);

 // Display list calls two previously defined display lists
 glCallList(SHAFT_LIST);
 glCallList(THREAD_LIST);

 // End this display list
 glEndList();

See Also
glCallList, glCallLists, glDeleteLists, glGenLists, glIsList

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:3D Modeling and Object Composition

http://www.itknowledge.com/reference/archive/1571690735/ch10/338-341.html [20-03-2000 21:35:26]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Chapter 11
Raster Graphics in OpenGL

What you’ll learn in this chapter:
How to… Functions You’ll Use

Draw bitmap images glBitmap/glRasterPos
Use bitmap fonts wglUseFontBitmaps/glGenLists/glCallLists
Draw color images glDrawPixels
Read and copy color images on the screen glCopyPixels/glReadPixels
Read and write Windows bitmap files LoadDIBitmap/SaveDIBitmap

You’ve probably heard a lot of sales hype lately about how much better it is to work with 3D graphics
than with those old 2D graphics from years ago. While this is true for the most part, ultimately those 3D
graphics are drawn in two dimensions on your screen. Raster graphics are two-dimensional arrays of
colors and are used not only for displaying 3D graphics on the screen but also for printing images on
raster printers or motion-picture film

In addition to the vector and polygon functions we’ve examined so far, OpenGL provides several
functions that directly manage 2D bitmaps and images. Those functions are the subject of this chapter.

Drawing Bitmaps

Bitmaps in OpenGL are two-color images that are used to quickly draw characters or symbols (such as
icons) on the screen. This diverges from the (incorrect) Microsoft Windows definition that includes
multicolored images, as well. OpenGL provides a single function to draw bitmaps: glBitmap. When you
draw a bitmap with glBitmap, the first color (0) is transparent. The second color (1) is drawn using the
current color and lighting material attributes.

Figure 11-1 shows an OpenGL bitmap image of smiley faces. The code (Listing 11-1) to draw this
window consists of the bitmap data followed by a call to glBitmap.

Figure 11-1 Output from glBitmap example

Listing 11-1 Drawing the window of smiley faces

void
RepaintWindow(RECT *rect) /* I - Client area rectangle */
{
 int i; /* Looping var */
 static GLubyte smiley[] = /* 16x16 smiley face */
 {
 0x03, 0xc0, 0, 0, /* **** */
 0x0f, 0xf0, 0, 0, /* ******** */
 0x1e, 0x78, 0, 0, /* **** **** */
 0x39, 0x9c, 0, 0, /* *** ** *** */
 0x77, 0xee, 0, 0, /* *** ****** *** */
 0x6f, 0xf6, 0, 0, /* ** ******** ** */
 0xff, 0xff, 0, 0, /* **************** */
 0xff, 0xff, 0, 0, /* **************** */
 0xff, 0xff, 0, 0, /* **************** */
 0xff, 0xff, 0, 0, /* **************** */
 0x73, 0xce, 0, 0, /* *** **** *** */
 0x73, 0xce, 0, 0, /* *** **** *** */
 0x3f, 0xfc, 0, 0, /* ************ */
 0x1f, 0xf8, 0, 0, /* ********** */
 0x0f, 0xf0, 0, 0, /* ******** */
 0x03, 0xc0, 0, 0 /* **** */
 };
 glViewport(0, 0, rect->right, rect->bottom);

 glClearColor(0.0, 0.0, 0.0, 1.0);
 glClear(GL_COLOR_BUFFER_BIT);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 glOrtho(0.0, rect->right - 1.0, 0.0, rect->bottom - 1.0, -1.0, 1.0);

 /*
 * This bitmap is aligned to 4-byte boundaries…
 */

 glPixelTransferi(GL_UNPACK_ALIGNMENT, 4);

 glColor3f(1.0, 0.0, 0.0);
 for (i = 0; i < 100; i ++)
 {
 glRasterPos2i(rand() % rect->right, rand() % rect->bottom);
 glBitmap(16, 16, 8.0, 8.0, 0.0, 0.0, smiley);
 };

 glFinish();
}

In this example, we have defined a 16 x 16-pixel bitmap image of a smiley face. The bitmap is an array
of 32 unsigned bytes (GLubyte), with bit 7 of the first byte corresponding to the bottom-left corner.

Some Things to Note About Bitmaps:
OpenGL bitmaps are usually defined “upside down.” That is, they are stored from bottom to top. (In fact,
you can see that the happy face defined as “smiley” is upside down.) To define them from top to bottom,
you must specify a negative height. Also, because of bugs in the Microsoft OpenGL libraries, you must
align each scanline (row) of bitmap data to a 4-byte boundary. With a properly functioning OpenGL
library, you could use the glPixelStore function described later in this chapter to change the bitmap
alignment.

After defining a bitmap image to draw, we must specify the current raster position by calling the
glRasterPos function:

glRasterPos2i(rand() % rect->right, rand() % rect->bottom);

In this example, we are positioning our smiley face randomly within the client area of our window with
the bitmap offset by 8 pixels from the left and bottom. The raster position is specified in world/model
coordinates, just like a glVertex position. In addition to setting the current raster position, glRasterPos
also sets a raster position valid flag. This Boolean flag is True if the raster position lies inside the
current viewport, and False otherwise.

A Note About Clipping:
Polygons and other vector-drawing primitives will still be drawn if they lie partially out of the current
viewport, and clipped to the edges of the viewport. Clipping for bitmaps works a little differently. If the
raster position you specify lies outside of the current viewport, the bitmap will not be drawn.

To draw the bitmap, call the glBitmap function:

glBitmap(16, 16, 8.0, 8.0, 0.0, 0.0, smiley);

In this case we are drawing a 16 x 16 bitmap whose center lies at (8.0, 8.0) in the bitmap. After the
bitmap is drawn, the raster position is moved (0.0, 0.0) pixels.

The prototype for this function is as follows:

glBitmap(GLsizei width, GLsizei height,
 Gfloat xorig, GLfloat yorig,
 GLfloat xmove, GLfloat ymove,
 const GLubyte *bits)

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Raster Graphics in OpenGL

http://www.itknowledge.com/reference/archive/1571690735/ch11/347-350.html [20-03-2000 21:35:34]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The width and height parameters specify the width and height of the bitmap. The bits parameter contains
the bitmap you want to draw and is 32-bit aligned. The xorig and yorig parameters contain the center
location of the bitmap. After the bitmap is drawn, the current raster position is moved by (xmove,ymove)
pixels, and the raster position valid flag is left unchanged. The xmove and ymove parameters are normally
used for bitmap fonts (described in the upcoming section) to advance to the next character “cell.”

A Note About the Current Raster Position:
As stated earlier, bitmaps will not be drawn if the raster position is outside the bitmap. However, since the
raster position valid flag is left unchanged after a call to glBitmap, you can use glBitmap to position and
draw bitmaps that are partially clipped on the edge of the current viewport. For example, here’s how to draw
the smiley bitmap just to the left of the current viewport:

 glRasterPos2i(0, 0);
 glBitmap(0, 0, 0.0, 0.0, -4.0, 0.0, NULL);
 glBitmap(16, 16, 8.0, 8.0, 0.0, 0.0, smiley);

The NULL parameter in the first call to glBitmap simply specifies that there is no bitmap to draw. After the
first call to glBitmap, the current raster position will be moved 4 pixels to the left (–4.0) before the real
bitmap is drawn in the second call. This solution also applies to drawing pixmaps, explained later in this
chapter.

Bitmap Fonts

One very important application of bitmaps is displaying character strings. Under ordinary circumstances,
you would have to define a bitmap array for each character and then draw the bitmaps as necessary to
display the string. Fortunately, the Microsoft Windows Win32 libraries provide a function called
wglUseFontBitmaps to generate these bitmaps from font files loaded on your system.

To use the font bitmaps, OpenGL provides three functions: glGenLists, glListBase and glCallLists
(described in Chapter 10). The glGenLists function generates a contiguous series of OpenGL display list
IDs that will hold the character bitmaps created by wglUseFontBitmaps.

GLuint base;
HDC hdc;

base = glGenLists(96);
wglUseFontBitmaps(hdc, 32, 96, base);

This creates 96 character bitmaps from the current font starting at character 32, the ASCII code for the
space character. The base variable contains the first display list bitmap in the font—in this case, character
32 (ASCII space). To display a string of characters using these bitmaps, you use a combination of
glListBase and glCallLists:

char *s;

glListBase(base - 32);
glCallLists(strlen(s), GL_UNSIGNED_BYTE, s);

The glListBase function sets the base display list ID. The glCallList and glCallLists functions will add
this number to the display list ID(s) passed to them, effectively selecting the font you just defined. The
glCallLists function calls a series of display lists based upon the array of characters (unsigned bytes) you
pass in, which draws the character string.

Building a Simple Font Library

Certainly the wglCreateFontBitmaps function simplifies font creation, but you still have to do a lot just to
output a character string. You can build a usable font library fairly easily, however. To start, you’ll need a
font creation function (Listing 11-2).

Listing 11-2 The beginning of the FontCreateBitmaps function

GLuint
FontCreateBitmaps(HDC hdc, /* I - Device Context */
 char *typeface, /* I - Font specification */
 int height, /* I - Font height/size in pixels */
 int weight, /* I - Weight of font (bold, etc) */
 DWORD italic) /* I - Text is italic */
{
 Gluint base; /* Base display list for font */
 HFONT font; /* Windows font ID */

 if ((base = glGenLists(96)) == 0)
 return (0);

The typeface argument is simply the name of the font, such as Courier or Helvetica, and specifies the
style of character that you want. The height, weight, and italic arguments are passed directly to
wglUseFontBitmaps and set the size and appearance of the characters.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Raster Graphics in OpenGL

http://www.itknowledge.com/reference/archive/1571690735/ch11/350-352.html [20-03-2000 21:35:39]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Before you create the font bitmaps, you need to decide on a character set. Normally you’ll use the ANSI or
UNICODE character sets. The ANSI character set (ANSI_CHARSET) provides the standard 7-bit ASCII
character set. To support international characters and diacritical marks, use the UNICODE character set
instead (UNICODE_CHARSET). Some fonts use special character sets. The Symbol font, for example,
provides Greek letters and many scientific symbols.

For this simple implementation, we will set the character set to ANSI_CHARSET for normal fonts, and
SYMBOL_FONTSET for the Symbol font. See Listing 11-3.

Listing 11-3 Continuation of the FontCreateBitmaps function

 if (stricmp(typeface, "symbol") == 0)
 font = CreateFont(height, 0, 0, 0, weight, italic, FALSE, FALSE,
 SYMBOL_CHARSET, OUT_TT_PRECIS,
 CLIP_DEFAULT_PRECIS, DRAFT_QUALITY,
 DEFAULT_PITCH, typeface);
 else
 font = CreateFont(height, 0, 0, 0, weight, italic, FALSE, FALSE,
 ANSI_CHARSET, OUT_TT_PRECIS,
 CLIP_DEFAULT_PRECIS, DRAFT_QUALITY,
 DEFAULT_PITCH, typeface);

 SelectObject(hdc, font);

 wglUseFontBitmaps(hdc, 32, 96, base);

 return (base);
 }

If you need to use international characters, change the “normal” character set to UNICODE_CHARSET, and
define 224 characters (256 minus 32), as shown here:

 else
 font = CreateFont(height, 0, 0, 0, weight, italic, FALSE, FALSE,
 UNICODE_CHARSET, OUT_TT_PRECIS,
 CLIP_DEFAULT_PRECIS, DRAFT_QUALITY,
 DEFAULT_PITCH, typeface);

 SelectObject(hdc, font);

 wglUseFontBitmaps(hdc, 32, 224, base);

To complement FontCreateBitmaps you’ll need a font deletion function (Listing 11-4). Here the glDeleteLists
function simply deletes the specified display lists, in this case our font bitmaps. As with the
FontCreateBitmaps function, to make this function work with international character sets you need to change
the number of display lists from 96 to 224.

Listing 11-4 FontDelete function

void
FontDelete(GLuint font) /* I - Font to delete */
{
 if (font == 0)
 return;

 glDeleteLists(font, 96);
}

Finally, to make drawing character strings easier, you can make put-string and printf-string functions.
FontPuts (Listing 11-5) uses the glPushAttrib and glPopAttrib functions to save and restore the current display
list base ID. If you forget to do this, you might inadvertently affect your other drawing code that uses display
lists!

Listing 11-5 FontPuts function

void
FontPuts(GLuint font, /* I - Font to use */
 char *s) /* I - String to display */
{
 if (font == 0)
 return;

 if (s == NULL)
 return;

 glPushAttrib(GL_LIST_BIT);
 glListBase(font - 32);
 glCallLists(strlen(s), GL_UNSIGNED_BYTE, s);
 glPopAttrib();
}

A Note About glCallLists and Strings:
It is important to remember that glCallLists and the font functions presented here do not handle control characters
such as tab and newline. If you include control characters in the string you display, other display lists may be
called that affect your final output. This behavior can be controlled by parsing the incoming string prior to using
glCallLists. Newline and tab functionality can be simulated using the glBitmap technique outlined in the previous
note, “A Note About the Current Raster Position,” along with a call to glGetIntegerv (described in Chapter 14).

The FontPrintf function (Listing 11-6) uses the <stdarg.h> header file to manage the variable number of
arguments needed for vsprintf, which formats the string to be drawn.

Listing 11-6 FontPrintf function

#define MAX_STRING 1024

void
FontPrintf(GLuint font, /* I <?> - Font to use */
 char *format, /* I - printf() style format string */
 …)/* I - Other arguments as necessary */
{
 va_list ap; /* Argument pointer */
 char s[MAX_STRING + 1]; /* Output string */

 if (format == NULL)
 return;

 va_start(ap, format); /* Start variable argument processing */
 vsprintf(s, format, ap); /* Format the text into our output string */
 va_end(ap); /* End variable argument processing */

 FontPuts(font, s);
}

The complete code for FontCreate, FontDelete, FontPuts, and FontPrintf can be found in the CH11\FONT.C
file. Prototypes are in the CH11\FONT.H file on the source code CD-ROM.

Pixmaps: Bitmaps with Color

Images with more than two colors are usually called pixmaps (short for pixel maps) and are used as
background images or textures (covered in Chapter 12). In OpenGL, pixmaps are generally either 8-bit color
index images or 24-bit RGB images.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Raster Graphics in OpenGL

http://www.itknowledge.com/reference/archive/1571690735/ch11/352-354.html [20-03-2000 21:35:44]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Drawing Pixmaps

OpenGL provides a single function for drawing pixmaps called glDrawPixels. Like glBitmap,
glDrawPixels uses the current raster position to define the lower-left corner of the image. You cannot
specify a raster origin or movement as you can for glBitmap.

BITMAPINFO *BitmapInfo;
GLubyte *BitmapBits;

glRasterPos2i(xoffset, yoffset);
glDrawPixels(BitmapInfo->bmiHeader.biWidth,
 BitmapInfo->bmiHeader.biHeight,
 GL_RGB, GL_UNSIGNED_BYTE, BitmapBits);

The glDrawPixels function accepts five arguments:

glDrawPixels(GLsizei width, GLsizei height,
 GLenum format, GLenum type,
 Glvoid *pixels)

The format parameter specifies the colorspace of the pixmap; valid formats are in Table 11-1. The
GL_COLOR_INDEX format specifies that each color value in the pixmap is an index into the current
Windows logical color palette. Color index images are often used for icons. The GL_LUMINANCE
format maps each color value to a grayscale value on the screen, with the minimum value being
completely black and the maximum value being completely white. The GL_RGB format specifies the
exact red, green, and blue values for each pixel in the image.

Table 11-1 OpenGL Pixel Formats

Format Description

GL_COLOR_INDEX Color index pixels
GL_LUMINANCE Grayscale pixels
GL_RGB RGB pixels

The type parameter of glDrawPixels specifies the type and range of each color value or component, as
listed in Table 11-2.

Table 11-2 OpenGL Pixel Types

Type Description

GL_BYTE Signed 8-bit values (from –128 to 127)
GL_UNSIGNED_BYTE Unsigned 8-bit values (from 0 to 255)
GL_BITMAP Bitmap image (from 0 to 1)

Remapping Colors

When using GL_COLOR_INDEX colors, you can remap the colors in your pixmap or bitmap using the
glPixelMap or glPixelTransfer functions. The glPixelTransfer function lets you specify scaling and
offsets for color index and RGB values. For example, here is the code to brighten an RGB image by
10%:

glPixelTransferf(GL_RED_SCALE, 1.1)
glPixelTransferf(GL_GREEN_SCALE, 1.1);
glPixelTransferf(GL_BLUE_SCALE, 1.1);

Similarly, to offset the color indices of a bitmap to the palette entries you have defined for it, use

glPixelTransferi(GL_INDEX_OFFSET, bitmap_entry);

In the “smiley” bitmap example (Listing 11-7), we might use this to remap the two colors in the bitmap
to difference indices:

Listing 11-7 Repaint Window function to draw smiley faces

void
RepaintWindow(RECT *rect) /* I - Client area rectangle */
{
 int i; /* Looping var */
 static GLubyte smiley[] = /* 16x16 smiley face */
 {
 0x03, 0xc0, 0, 0, /* **** */
 0x0f, 0xf0, 0, 0, /* ******** */
 0x1e, 0x78, 0, 0, /* **** **** */
 0x39, 0x9c, 0, 0, /* *** ** *** */
 0x77, 0xee, 0, 0, /* *** ****** *** */
 0x6f, 0xf6, 0, 0, /* ** ******** ** */
 0xff, 0xff, 0, 0, /* **************** */
 0xff, 0xff, 0, 0, /* **************** */
 0xff, 0xff, 0, 0, /* **************** */
 0xff, 0xff, 0, 0, /* **************** */
 0x73, 0xce, 0, 0, /* *** **** *** */
 0x73, 0xce, 0, 0, /* *** **** *** */
 0x3f, 0xfc, 0, 0, /* ************ */
 0x1f, 0xf8, 0, 0, /* ********** */
 0x0f, 0xf0, 0, 0, /* ******** */
 0x03, 0xc0, 0, 0 /* **** */
 };

 glViewport(0, 0, rect->right, rect->bottom);

 glClearIndex(0.0);
 glClear(GL_COLOR_BUFFER_BIT);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 glOrtho(0.0, rect->right - 1.0, 0.0, rect->bottom - 1.0, -1.0, 1.0);

 /* * This bitmap is aligned to 4-byte boundaries…
 */

 glPixelTransferi(GL_UNPACK_ALIGNMENT, 4);
 glPixelTransferi(GL_INDEX_OFFSET, 1);

 for (i = 0; i < 100; i ++)
 {
 glRasterPos2i(rand() % rect->right, rand() % rect->bottom);
 glDrawPixels(16, 16, GL_COLOR_INDEX, GL_BITMAP, smiley);
 };

 glFinish();
}

Color Mapping Tables

Sometimes it is necessary to apply color corrections that are more complicated than simple linear scale
and offset. One application is gamma correction, in which the intensity of each color value is adjusted to
a power curve that compensates for irregularities on your monitor or printer (see Figure 11-2). The
glPixelMap function allows you to do this by specifying a lookup table, as follows:

GLfloatlut[256];
GLfloatgamma_value;
int i;

gamma_value = 1.7; /* For NTSC video monitors */
for (i = 0; i < 256; i ++)
 lut[i] = pow(i / 255.0, 1.0 / gamma_value);

glPixelTransferi(GL_MAP_COLOR, GL_TRUE);
glPixelMap(GL_PIXEL_MAP_R_TO_R, 256, lut);
glPixelMap(GL_PIXEL_MAP_G_TO_G, 256, lut);
glPixelMap(GL_PIXEL_MAP_B_TO_B, 256, lut);

Figure 11-2 Image without gamma correction (left) and with a gamma correction of 1.7 (right)

Scaling a Pixmap

Besides adjusting the colors of a pixmap, you can adjust the size of the pixmap using the glPixelZoom
function. This function accepts two floating point parameters specifying the X and Y scaling factors for
the image:

glPixelZoom(1.0, 1.0); /* Don’t scale the image */
glPixelZoom(-1.0, 1.0); /* Flip the image horizontally */
glPixelZoom(1.0, -2.0); /* Flip the image and double the height */
glPixelZoom(0.33, 0.33); /* Draw the image 1/3 size */

As you can see, glPixelZoom allows you to scale and flip an image just about any way you like. For
other nonlinear effects, such as rippling water or perspective correction, you’ll need to use texture
mapping (Chapter 12).

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Raster Graphics in OpenGL

http://www.itknowledge.com/reference/archive/1571690735/ch11/354-357.html [20-03-2000 21:35:52]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Panning a Pixmap

The glPixelStore function can be used to pan inside an image. For example, to display the center 300 x 300
pixel area of a 640 x 480 pixel image, you would use

glPixelStorei(GL_UNPACK_ROW_LENGTH, 640);
glPixelStorei(GL_UNPACK_SKIP_PIXELS, (640 - 300) / 2);
glPixelStorei(GL_UNPACK_SKIP_ROWS, (480 - 300) / 2);
glDrawPixels(300, 300, GL_RGB, GL_UNSIGNED_BYTE, BitmapBits);

In this example, the GL_UNPACK_ROW_LENGTH value specifies the width of the original image in
pixels. Set this when the width specified with glDrawPixels is different from the width of the image.

GL_UNPACK_SKIP_PIXELS specifies the number of pixels to skip on the left side of the image. Here we
skip the first (640 – 300) / 2, or 170 pixels on the left side of the image to show the middle.

GL_UNPACK_SKIP_ROWS is similar but specifies the number of rows or scanlines in the image to skip.
Normally, this value represents the number of rows from the bottom, but you can change this by specifying
a negative Y scaling with glPixelZoom.

NOTE: The GL_UNPACK_ROW_LENGTH, GL_UNPACK_SKIP_PIXELS, and
GL_UNPACK_SKIP_ROWS attributes refer to the original pixmap size in pixels, not the size after zooming!

Reading Pixmaps

OpenGL provides a function called glReadPixels that can read an image from the screen. Beyond the
obvious application of saving your created image to disk, it can also be used for cool effects with texture
mapping.

Unlike glDrawPixels, glReadPixels ignores the current raster position and requires you to specify an (x,y)
viewport coordinate for the lower-left corner of the image to read. Listing 11-8 demonstrates how to read
the current viewport into a Windows bitmap structure suitable for saving to a file or using as a texture.

Listing 11-8 ReadDIBitmap function

/*
 * 'ReadDIBitmap()' - Read the current OpenGL viewport into a
 * 24-bit RGB bitmap.
 *
 * Returns the bitmap pixels if successful and NULL otherwise.
 */

void *
ReadDIBitmap(BITMAPINFO **info) /* O - Bitmap information */
{
 long i, j, /* Looping var */
 bitsize, /* Total size of bitmap */
 width; /* Aligned width of a scanline */
 GLint viewport[4]; /* Current viewport */
 void *bits; /* RGB bits */
 GLubyte *rgb, /* RGB looping var */
 temp; /* Temporary var for swapping */
 /*
 * Grab the current viewport…
 */

 glGetIntegerv(GL_VIEWPORT, viewport);

 /*
 * Allocate memory for the header and bitmap…
 */

 if ((*info = (BITMAPINFO *)malloc(sizeof(BITMAPINFOHEADER))) == NULL)
 {
 /*
 * Couldn't allocate memory for bitmap info - return NULL…
 */

 return (NULL);
 };

 width = viewport[2] * 3; /* Real width of scanline */
 width = (width + 3) & ~3; /* Aligned to 4 bytes */
 bitsize = width * viewport[3]; /* Size of bitmap, aligned */

 if ((bits = calloc(bitsize, 1)) == NULL)
 {
 /*
 * Couldn't allocate memory for bitmap pixels - return NULL…
 */

 free(*info);
 return (NULL);
 };

 /*
 * Read pixels from the framebuffer…
 */

 glFinish(); /* Finish all OpenGL commands */
 glPixelStorei(GL_PACK_ALIGNMENT, 4); /* Force 4-byte alignment */
 glPixelStorei(GL_PACK_ROW_LENGTH, 0);
 glPixelStorei(GL_PACK_SKIP_ROWS, 0);
 glPixelStorei(GL_PACK_SKIP_PIXELS, 0);

 glReadPixels(0, 0, viewport[2], viewport[3], GL_RGB, GL_UNSIGNED_BYTE,
 bits);

 /*
 * Swap red and blue for the bitmap…
 */

 for (i = 0; i < viewport[3]; i ++)
 for (j = 0, rgb = ((GLubyte *)bits) + i * width;
 j < viewport[2];
 j ++, rgb += 3)
 {
 temp = rgb[0];
 rgb[0] = rgb[2];
 rgb[2] = temp;
 };
 /*
 * Finally, initialize the bitmap header information…
 */

 (*info)->bmiHeader.biSize = sizeof(BITMAPINFOHEADER);
 (*info)->bmiHeader.biWidth = viewport[2];
 (*info)->bmiHeader.biHeight = viewport[3];
 (*info)->bmiHeader.biPlanes = 1;
 (*info)->bmiHeader.biBitCount = 24;
 (*info)->bmiHeader.biCompression = BI_RGB;
 (*info)->bmiHeader.biSizeImage = bitsize;
 (*info)->bmiHeader.biXPelsPerMeter = 2952; /* 75 DPI */
 (*info)->bmiHeader.biYPelsPerMeter = 2952; /* 75 DPI */
 (*info)->bmiHeader.biClrUsed = 0;
 (*info)->bmiHeader.biClrImportant = 0;

 return (bits);
}

The first thing you need to do is find out the size of the current viewport, using glGetIntegerv as shown just
below. (This function is described in Chapter 14). This places the current X origin, Y origin, X size, and Y
size into the viewport array, as shown in Table 11-3.

/*
 * Grab the current viewport…
 */

 glGetIntegerv(GL_VIEWPORT, viewport);

Table 11-3 Viewport Array Definitions

Index Description

0 X origin of viewport (pixels)
1 Y origin of viewport (pixels)
2 X size of viewport (pixels)
3 Y size of viewport (pixels)

Once you have the size of the viewport, you then allocate memory for the pixmap. It’s important to note
that Windows bitmaps (and OpenGL pixmaps by default) must have the beginning of each line at a 32-bit
boundary. To accomplish this, we do the following:

width = viewport[2] * 3; /* Real width of scanline *
width = (width + 3) & ~3; /* Aligned to 4 bytes */

You must round the computed actual byte width of the viewport (in this case, 3 bytes for every pixel wide)
up to the nearest 32-bit (or 4-byte) boundary. The total size of the pixmap then becomes

bitsize = width * viewport[3]; /* Size of bitmap, aligned */

After allocating memory for the pixmap, we call glReadPixels to get the contents of the current viewport
and fill in the Windows BITMAPHEADER structure with all the necessary information.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Raster Graphics in OpenGL

http://www.itknowledge.com/reference/archive/1571690735/ch11/358-361.html [20-03-2000 21:35:57]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Copying Pixmaps

OpenGL also provides a function to copy an area on the screen to another location—as needed, for instance,
in scrolling or “magnifying glass” views:

int mousex, mousey;

glReadBuffer(GL_FRONT);
glDrawBuffer(GL_FRONT);
glPixelZoom(2.0, 2.0);
glRasterPos2i(0, 0);
glCopyPixels(mousex - 8, mousey - 8, 16, 16, GL_COLOR);

Here the glCopyPixels function copies pixels from the given location to the current raster position:

void glCopyPixels(GLint x, GLint y, GLsizei width, GLsizei height, GLenum
type)

The x and y parameters specify the lower-left corner of the area to be copied. Width and height specify the
size of the image to be copied. Pixels are copied from the specified (x,y) location to the current raster
position. The type argument specifies which values are to be copied. For most applications, the pixel type is
GL_COLOR to copy color indices or RGB values.

Pixel zoom is applied to the output pixels but not to the input pixels. In the example just above, a 16 x
16-pixel image will be copied to the lower-left corner of the window and scaled to 32 x 32 pixels. Offsets
and sizes specified with calls to glPixelStore do not affect glCopyPixels. Changes made with glPixelTransfer
and glPixelMap do, however.

A Bitmap File Viewer

Now that we’ve covered all the bitmap-related functions that are available, let’s write a Windows .BMP
file-viewing program using OpenGL. Our goals for this program are fairly straightforward:

• Load any Windows .BMP file

• Scale the image to the current window size

• Provide simple controls to change the image brightness and gamma correction

• Show a magnified view of the image underneath the mouse pointer

• Save the displayed image to disk

• Print the displayed image

The final code for this program can be found in CH11\OGLVIEW.C.

About Windows Bitmap Files

Before we write the code, let’s review the ubiquitous Windows bitmap format. Despite their limitations,
Windows .BMP files are probably the most common and widely supported files used by PCs capable of from
2 to 16.7 million colors. With only a few exceptions, .BMP files do not utilize data compression schemes, so
it’s easy to read and use these files in your OpenGL programs.

A .BMP file is organized into three or four sections, depending on the type of colors used (see Figure 11-3).
All .BMP files start with a BITMAPFILEHEADER structure containing an identification string (“BM”) the
total size of the file, and an offset to the actual image data. Here is that structure:

typedef struct
{
 WORD bfType; /* “BM” */
 DWORD bfSize; /* Size of file in bytes */
 WORD bfReserved1; /* Reserved, always 0 */
 WORD bfReserved2; /* Reserved, always 0 */
 DWORD bfOffBits; /* Offset to image in bytes */
} BITMAPFILEHEADER;

Figure 11-3 Organization of a .BMP file

Following the file header is a BITMAPINFOHEADER structure that describes the contents of the image, as
follows:

typedef struct
{
 DWORD biSize; /* Size of BITMAPINFOHEADER in bytes */
 LONG biWidth; /* Width of image in pixels */
 LONG biHeight; /* Height of image in pixels */
 WORD biPlanes; /* # of color planes (always 1) */
 WORD biBitCount; /* # of color bits */
 DWORD biCompression; /* Type of compression used */
 DWORD biSizeImage; /* Size of the image in bytes */
 LONG biXPelsPerMeter; /* Horizontal pixels per meter */
 LONG biYPelsPerMeter; /* Vertical pixels per meter */
 DWORD biClrUsed; /* Number of color used */
 DWORD biClrImportant; /* Number of 'important’ colors */
} BITMAPINFOHEADER;

For color index (palette) images, a color palette follows the BITMAPINFOHEADER structure for every
color in the image. Image data follows immediately after.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Raster Graphics in OpenGL

http://www.itknowledge.com/reference/archive/1571690735/ch11/361-363.html [20-03-2000 21:36:05]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Reading the .BMP File

Because the .BMP file format is so simple, reading a .BMP file is almost trivial. You start by opening the file
and reading a BITMAPFILEHEADER structure.

if ((fp = fopen(filename, "rb")) == NULL)
 return (NULL);

fread(&header, sizeof(BITMAPFILEHEADER), 1, fp);

if (header.bfType != 'MB') /* Check for BM reversed… */
{
 /*
 * Not a bitmap file - return NULL…
 */

 fclose(fp);
 return (NULL);
};

If the header looks good, you then read the BITMAPINFO structure along with any color palette definitions.

infosize = header.bfOffBits - sizeof(BITMAPFILEHEADER);
fread(*info, 1, infosize, fp);

And finally, you read the bitmap data and close the file.

if ((bitsize = (*info)->bmiHeader.biSizeImage) == 0)
 bitsize = ((*info)->bmiHeader.biWidth *
 (*info)->bmiHeader.biBitCount + 7) / 8 *
 abs((*info)->bmiHeader.biHeight);

fread(bits, 1, bitsize, fp);
fclose(fp);

Listing 11-9 contains the final code for LoadDIBitmap, with error checking.

Listing 11-9 LoadDIBitmap function

void *
LoadDIBitmap(char *filename, /* I - File to load */
 BITMAPINFO **info) /* O - Bitmap information */
{
 FILE *fp; /* Open file pointer */
 void *bits; /* Bitmap pixel bits */
 long bitsize, /* Size of bitmap */
 infosize; /* Size of header information */
 BITMAPFILEHEADER header; /* File header */

 /*
 * Try opening the file; use "rb" mode to read this *binary* file.
 */

 if ((fp = fopen(filename, "rb")) == NULL)
 return (NULL);

 /*
 * Read the file header and any following bitmap information…
 */

 if (fread(&header, sizeof(BITMAPFILEHEADER), 1, fp) < 1)
 {
 /*
 * Couldn't read the file header - return NULL…
 */

 fclose(fp);
 return (NULL);
 };

 if (header.bfType != 'MB') /* Check for BM reversed… */
 {
 /*
 * Not a bitmap file - return NULL…
 */

 fclose(fp);
 return (NULL);
 };
 infosize = header.bfOffBits - sizeof(BITMAPFILEHEADER);
 if ((*info = (BITMAPINFO *)malloc(infosize)) == NULL)
 {
 /*
 * Couldn't allocate memory for bitmap info - return NULL…
 */

 fclose(fp);
 return (NULL);
 };

 if (fread(*info, 1, infosize, fp) < infosize)
 {
 /*
 * Couldn't read the bitmap header - return NULL…
 */

 free(*info);
 fclose(fp);
 return (NULL);
 };

 /*
 * Now that we have all the header info read in, allocate memory for the
 * bitmap and read *it* in…
 */

 if ((bitsize = (*info)->bmiHeader.biSizeImage) == 0)
 bitsize = ((*info)->bmiHeader.biWidth *
 (*info)->bmiHeader.biBitCount + 7) / 8 *
 abs((*info)->bmiHeader.biHeight);

 if ((bits = malloc(bitsize)) == NULL)
 {
 /*
 * Couldn't allocate memory - return NULL!
 */

 free(*info);
 fclose(fp);
 return (NULL);
 };

 if (fread(bits, 1, bitsize, fp) < bitsize)
 {
 /*
 * Couldn't read bitmap - free memory and return NULL!
 */

 free(*info);
 free(bits);
 fclose(fp);
 return (NULL);
 };

 /*
 * OK, everything went fine - return the allocated bitmap…
 */

 fclose(fp);
 return (bits);
}

Writing the .BMP File

As they say in the car repair manuals, “Installation is the reverse of removal.” To write a .BMP file, you
simply add a BITMAPFILEHEADER structure to the bitmap in memory and write it to disk. Listing 11-10 is
the SaveDIBitmap function.

Listing 11-10 SaveDIBitmap function

int
SaveDIBitmap(char *filename, /* I - File to save to */
 BITMAPINFO *info, /* I - Bitmap information */
 void *bits) /* I - Bitmap pixel bits */
{
 FILE *fp; /* Open file pointer */
 long size, /* Size of file */
 infosize, /* Size of bitmap info */
 bitsize; /* Size of bitmap pixels */
 BITMAPFILEHEADER header; /* File header */

 /*
 * Try opening the file; use "wb" mode to write this *binary* file.
 */

 if ((fp = fopen(filename, "wb")) == NULL)
 return (-1);

 if (info->bmiHeader.biSizeImage == 0)/* Figure out the bitmap size */
 bitsize = (info->bmiHeader.biWidth *
 info->bmiHeader.biBitCount + 7) / 8 *
 abs(info->bmiHeader.biHeight);
 else
 bitsize = info->bmiHeader.biSizeImage;

 infosize = sizeof(BITMAPINFOHEADER);
 switch (info->bmiHeader.biCompression)
 {
 case BI_BITFIELDS :
 infosize += 12; /* Add 3 RGB doubleword masks */
 if (info->bmiHeader.biClrUsed == 0)
 break;
 case BI_RGB :
 if (info->bmiHeader.biBitCount > 8 &&
 info->bmiHeader.biClrUsed == 0)
 break;
 case BI_RLE8 :
 case BI_RLE4 :
 if (info->bmiHeader.biClrUsed == 0)
 infosize += (1 << info->bmiHeader.biBitCount) * 4;
 else
 infosize += info->bmiHeader.biClrUsed * 4;
 break;
 };

 size = sizeof(BITMAPFILEHEADER) + infosize + bitsize;

 /*
 * Write the file header, bitmap information, and bitmap pixel data…
 */

 header.bfType = 'MB'; /* Non-portable… sigh */
 header.bfSize = size;
 header.bfReserved1 = 0;
 header.bfReserved2 = 0;
 header.bfOffBits = sizeof(BITMAPFILEHEADER) + infosize;
 if (fwrite(&header, 1, sizeof(BITMAPFILEHEADER), fp) <
 sizeof(BITMAPFILEHEADER))
 {
 /*
 * Couldn't write the file header - return…
 */

 fclose(fp);
 return (-1);
 };

 if (fwrite(info, 1, infosize, fp) < infosize)
 {
 /*
 * Couldn't write the bitmap header - return…
 */

 fclose(fp);
 return (-1);
 };

 if (fwrite(bits, 1, bitsize, fp) < bitsize)
 {
 /*
 * Couldn't write the bitmap - return…
 */

 fclose(fp);
 return (-1);
 };

 /*
 * OK, everything went fine - return…
 */

 fclose(fp);
 return (0);
}

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Raster Graphics in OpenGL

http://www.itknowledge.com/reference/archive/1571690735/ch11/363-367.html [20-03-2000 21:36:10]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Printing the Bitmap

Because Windows provides several convenient functions for printing within an application, it only makes
sense to be able to print from our bitmap viewing program. For this example program, you will be using the
standard GDI printing services.

The first thing you do is display a standard Windows print dialog using PrintDlg, as shown here:

memset(&pd, 0, sizeof(pd));
pd.lStructSize = sizeof(pd);
pd.hwndOwner = owner;
pd.Flags = PD_RETURNDC;
pd.hInstance = NULL;
if (!PrintDlg(&pd))
 return (0);

If the PrintDlg function returns 0, the user has clicked the Cancel button. Otherwise, the PRINTDLG structure
will contain a device context (HDC) handle that we can use for printing.

Next, you need to start the print job.

di.cbSize = sizeof(DOCINFO);
di.lpszDocName = "OpenGL Image";
di.lpszOutput = NULL;
StartDoc(pd.hDC, &di);

After this, you draw the bitmap using the StretchBlt function and end the print job.

StretchBlt(pd.hDC, xoffset, yoffset, xsize, ysize,
 hdc, 0, 0, info->bmiHeader.biWidth,
 info->bmiHeader.biHeight, SRCCOPY);

EndPage(pd.hDC);
EndDoc(pd.hDC);

We compute the first 4 parameters to StretchBlt based on the size of the output page. Basically, we want to
scale the image to the page yet keep the aspect ratio (width/height) the same.

xsize = rect.right;
ysize = xsize * info->bmiHeader.biHeight / info->bmiHeader.biWidth;
if (ysize > rect.bottom)
{
 ysize = rect.bottom;
 xsize = ysize * info->bmiHeader.biWidth / info->bmiHeader.biHeight;
};

The offsets are computed by taking half of the difference of widths and heights:

xoffset = (rect.right - xsize) / 2;
yoffset = (rect.bottom - ysize) / 2;

Normally you might pop up a “busy printing” dialog for the user, but in this case printing happens so fast it
wouldn’t be useful.

The final code for the PrintDIBitmap function is in Listing 11-11.

Listing 11-11 PrintDIBitmap function

int
PrintDIBitmap(HWND owner, /* I - Owner/parent window */
 BITMAPINFO *info, /* I - Bitmap information */
 void *bits) /* I - Bitmap pixel bits */
{
 PRINTDLG pd; /* Print dialog information */
 long xsize, /* Size of printed image */
 ysize,
 xoffset, /* Offset from edges for image */
 yoffset;
 RECT rect; /* Page rectangle */
 DOCINFO di; /* Document info */
 HDC hdc; /* Device context for bitmap */
 HBITMAP bitmap; /* Bitmap image */
 HBRUSH brush; /* Background brush for page */
 HCURSOR busy, /* Busy cursor */
 oldcursor; /* Old cursor */
 /*
 * Range check…
 */

 if (info == NULL || bits == NULL)
 return (0);

 /*
 * Initialize a PRINTDLG structure before displaying a standard Windows
 * print dialog…
 */

 memset(&pd, 0, sizeof(pd));
 pd.lStructSize = sizeof(pd);
 pd.hwndOwner = owner;
 pd.Flags = PD_RETURNDC;
 pd.hInstance = NULL;
 if (!PrintDlg(&pd))
 return (0); /* User chose 'cancel'… */

 /*
 * OK, user wants to print, so set the cursor to 'busy' and start the
 * print job…
 */

 busy = LoadCursor(NULL, IDC_WAIT);
 oldcursor = SetCursor(busy);

 SetMapMode(pd.hDC, MM_TEXT);
 di.cbSize = sizeof(DOCINFO);
 di.lpszDocName = "OpenGL Image";
 di.lpszOutput = NULL;

 StartDoc(pd.hDC, &di);
 StartPage(pd.hDC);

 /*
 * Clear the background to white…
 */

 rect.top = 0;
 rect.left = 0;
 rect.right = GetDeviceCaps(pd.hDC, HORZRES);
 rect.bottom = GetDeviceCaps(pd.hDC, VERTRES);
 brush = CreateSolidBrush(0x00ffffff);
 FillRect(pd.hDC, &rect, brush);

 /*
 * Stretch the bitmap to fit the page…
 */

 hdc = CreateCompatibleDC(pd.hDC);
 bitmap = CreateDIBitmap(hdc, &(info->bmiHeader), CBM_INIT, bits, info,
 DIB_RGB_COLORS);
 SelectObject(hdc, bitmap);

 xsize = rect.right;
 ysize = xsize * info->bmiHeader.biHeight / info->bmiHeader.biWidth;
 if (ysize > rect.bottom)
 {
 ysize = rect.bottom;
 xsize = ysize * info->bmiHeader.biWidth / info->bmiHeader.biHeight;
 };

 xoffset = (rect.right - xsize) / 2;
 yoffset = (rect.bottom - ysize) / 2;

 StretchBlt(pd.hDC, xoffset, yoffset, xsize, ysize,
 hdc, 0, 0, info->bmiHeader.biWidth, info->bmiHeader.biHeight,
 SRCCOPY);

 /*
 * That's it. End the print job and free anything we allocated…
 */

 EndPage(pd.hDC);
 EndDoc(pd.hDC);
 DeleteDC(pd.hDC);

 DeleteObject(bitmap);
 DeleteObject(brush);
 DeleteObject(busy);
 DeleteDC(hdc);

 /*
 * Restore the cursor and return…
 */

 SetCursor(oldcursor);

 return (1);
}

Displaying the Bitmap

The OpenGL part of our example program begins with displaying the .BMP file. Like most OpenGL
programs, this one starts out by setting the current viewport and viewing transformations.

glViewport(0, 0, rect->right, rect->bottom);

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(0.0, rect->right - 1.0, 0.0, rect->bottom - 1.0, -1.0, 1.0);
glMatrixMode(GL_MODELVIEW);

After this, you draw the bitmap. Here we are scaling the image to fit the current window while maintaining a
1:1 aspect ratio. The following code should look very familiar—you used it in the PrintDIBitmap function
above:

xsize = rect->right;
ysize = BitmapInfo->bmiHeader.biHeight * xsize /
 BitmapInfo->bmiHeader.biWidth;
if (ysize > rect->bottom)
{
 ysize = rect->bottom;
 xsize = BitmapInfo->bmiHeader.biWidth * ysize /
 BitmapInfo->bmiHeader.biHeight;
};

xscale = (float)xsize / (float)BitmapInfo->bmiHeader.biWidth;
yscale = (float)ysize / (float)BitmapInfo->bmiHeader.biHeight;

xoffset = (rect->right - xsize) * 0.5;
yoffset = (rect->bottom - ysize) * 0.5;

glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
glPixelZoom(xscale, yscale);
glRasterPos2i(xoffset, yoffset);
glDrawPixels(BitmapInfo->bmiHeader.biWidth,
 BitmapInfo->bmiHeader.biHeight,
 GL_RGB, GL_UNSIGNED_BYTE, BitmapBits);

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Raster Graphics in OpenGL

http://www.itknowledge.com/reference/archive/1571690735/ch11/367-371.html [20-03-2000 21:36:16]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Interestingly enough, the Windows StretchBlt function can display bitmap images faster than
glDrawPixels. Of course, StretchBlt cannot perform the glPixelMap and glPixelTransfer functions,
though.

The final code for the RepaintWindow function is in Listing 11-12.

Listing 11-12 RepaintWindow function

void
RepaintWindow(RECT *rect) /* I - Client area rectangle */
{
 GLint xoffset, /* X offset of image */
 yoffset; /* Y offset of image */
 GLint xsize, /* X size of scaled image */
 ysize; /* Y size of scaled image */
 GLfloat xscale, /* Scaling in X direction */
 yscale; /* Scaling in Y direction */

 /*
 * Reset the viewport and clear the window to white…
 */

 glViewport(0, 0, rect->right, rect->bottom);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 glOrtho(0.0, rect->right - 1.0, 0.0, rect->bottom - 1.0, -1.0, 1.0);
 glMatrixMode(GL_MODELVIEW);

 glClearColor(1.0, 1.0, 1.0, 1.0);
 glClear(GL_COLOR_BUFFER_BIT);

 /*
 * If we have loaded a bitmap image, scale it to fit the window…
 */

 if (BitmapBits != NULL)
 {
 xsize = rect->right;
 ysize = BitmapInfo->bmiHeader.biHeight * xsize /
 BitmapInfo->bmiHeader.biWidth;
 if (ysize > rect->bottom)
 {
 ysize = rect->bottom;
 xsize = BitmapInfo->bmiHeader.biWidth * ysize /
 BitmapInfo->bmiHeader.biHeight;
 };

 xscale = (float)xsize / (float)BitmapInfo->bmiHeader.biWidth;
 yscale = (float)ysize / (float)BitmapInfo->bmiHeader.biHeight;

 xoffset = (rect->right - xsize) * 0.5;
 yoffset = (rect->bottom - ysize) * 0.5;

 glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
 glPixelZoom(xscale, yscale);
 glRasterPos2i(xoffset, yoffset);
 glDrawPixels(BitmapInfo->bmiHeader.biWidth,
 BitmapInfo->bmiHeader.biHeight,
 GL_RGB, GL_UNSIGNED_BYTE, BitmapBits);
 };

 glFinish();
}

Summary

In this chapter you have learned about most of the OpenGL bitmap functions. Beyond the simple
application of character fonts, bitmaps can be full-color images for window backgrounds or texture
images (explored in the chapter coming up). OpenGL functions such as glPixelMap, glPixelTransfer,
and glPixelZoom can be used for special effects, as well.

Reference Section

glCopyPixels
Purpose

Copies a rectangular block of pixels in the frame buffer.

Include File
<GL/gl.h>

Syntax
void glCopyPixels(GLint x, GLint y, GLsizei width, GLsizei height, GLenum type);

Description
This function copies pixel data from the indicated area in the framebuffer to the current raster
position. Use glRasterPos to set the current raster position. If the current raster position is not
valid, then no pixel data is copied.
Calls to glPixelMap, glPixelTransfer, and glPixelZoom affect the operation of glCopyPixels, as
indicated in their pages in this Reference Section.

Parameters
x

GLint: The lower-left corner window horizontal coordinate.

y

GLint: The lower-left corner window vertical coordinate.

width

GLsizei: The width of the image in pixels.

height

GLsizei: The height of the image in pixels. If negative, the image is drawn from top to bottom. By
default, images are drawn bottom to top.

type

GLenum: The type of pixel values to be copied. Valid types are as follows:

GL_COLOR Color buffer values
GL_STENCIL Stencil buffer values
GL_DEPTH Depth buffer values

Returns
None.

Example
See the example in CH11\OGLVIEW.C.

See Also
glPixelMap, glPixelStore, glPixelTransfer, glPixelZoom

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Raster Graphics in OpenGL

http://www.itknowledge.com/reference/archive/1571690735/ch11/371-373.html [20-03-2000 21:36:21]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Chapter 12
Texture Mapping

What you’ll learn in this chapter:
How to… Functions You’ll Use

Drape images onto polygons
(texture mapping)

glTexImage1D/glTexImage2D

Use .BMP files as textures TextureLoadBitmap/TextureLoadMipmapy
Use automatic texture
coordinate generation

glTexGen

Texture mapping is probably the most significant advance in computer
graphics in the last ten years. OpenGL provides texture image mapping
functions that fit images onto polygons in your scene. How those images
are put onto the polygons is up to you.

Texture mapping is used in games, including DOOM, for realistic images
of rooms and monsters. Unlike OpenGL, these games use a texturing
method called raycasting to map texture images onto polygons. Though
raycasting is much faster on standard graphics cards than the texture
mapping provided by OpenGL, it is also limited to flat surfaces in a 2D
plane. That is, you can’t look up or down. Texture mapping in OpenGL
doesn’t have this limitation, but you can expect it to work more slowly on
standard graphics cards.

The good news is that some newer, affordable 3D graphics cards support
OpenGL and hardware texturing. When a board supports hardware texture
mapping, your CPU doesn’t have to do all the texture mapping calculations
and preparation—the graphics card does it for you.

The examples in this chapter will run on any Windows-compatible graphics
card. If your graphics card supports 16- or 24-bit “true color” displays,
you’ll want to use them. Besides better-looking scenes, you’ll find that the
16- and 24-bit modes are actually faster.

The Basics of Texture Mapping

Texture mapping in OpenGL is fairly straightforward. To begin with, every
texture is an image of some sort.

A 1D texture is an image with width but no height, or vise versa; 1D
textures are a single pixel wide or high. You might think that 1D textures
aren’t very useful, but in fact they can take the place of more conventional
color-shading techniques and accelerate rendering in the process! Figure
12-1 shows a 1D “ROY-G-BIV” (Red, Orange, Yellow - Green - Blue,
Indigo, Violet) texture to display a rainbow. The texture image is a line of
pixels (color values) covering the color spectrum seen in a rainbow. The
equivalent nontextured scene would contain seven times the polygons of the
textured one and require much more rendering time.

Figure 12-1 A 1D textured rainbow

A 2D texture is an image that is more than 1 pixel wide and high and is
generally loaded from a Windows .BMP file. Two-dimensional textures are
commonly used to replace complex surface geometry (lots of polygons) on
buildings, trees, and so forth. These 2D textures can also be used to add
realistic background details, like the clouds in the sky in Figure 12-2.

Figure 12-2 A 2D sky texture and the resulting scene

The 1D and 2D textures you’ve seen so far are composed of RGB color
values. Textures can also be composed of color indices or luminance (gray)
levels, and can include alpha (transparency) values. The latter is useful for
defining natural objects such as trees, because the alpha value can be used
to make the tree visible but let the background show through. You’ll learn
more about this in Chapter 16.

Some hardware also supports 3D (volume) textures with OpenGL. Volume
textures are used for viewing CAT, MRI, and other 3D “scans.”
Unfortunately, even a small 256 x 256 x 256 grayscale texture image will
need a whopping 16 MB of memory. Currently an extension to OpenGL,
3D texturing may be included as a required feature in the OpenGL 1.1
specification.

Defining Texture Images

Naturally, you must define a texture image before you can draw textured
polygons in OpenGL. Texture images follow the same storage rules as
bitmaps (discussed in Chapter 11).

A Note About Texture Images:
The OpenGL standard requires that texture images’ dimensions must be a
power of 2. Texture images can also have 1 or 2 border pixels around
their edges to define the color of polygons that fall outside the texture
image.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Texture Mapping

http://www.itknowledge.com/reference/archive/1571690735/ch12/383-385.html [20-03-2000 21:37:00]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Defining 1D Textures

OpenGL provides a single function for defining 1D textures: glTexImage1D. The glTexImage1D function
accepts eight arguments:

void glTexImage1D(GLenum target, GLint level, GLint components,
 GLsizei width, GLint border, GLenum format,
 GLenum type, const GLvoid *pixels)

The target argument specifies which texture should be defined; this argument must be GL_TEXTURE_1D.
The level argument indicates the texture image’s level of detail and is usually 0. Other values are used for
mipmapped textures (described later in this chapter). The components argument specifies the number of
color values used for each pixel. For color index textures, components must be 1. Values of 3 and 4 are
used for RGB and RGBA texture images, respectively.

Width and border specify the size of the texture image. The border value controls the number of border
pixels OpenGL should expect (and use) and may have a value of 0, 1, or 2. The width parameter specifies
the width of the main texture image (without the border pixels) and must be a power of 2.

The format argument indicates the type of color values to expect—GL_COLOR_INDEX,
GL_LUMINANCE, GL_RGB, or GL_RGBA.

You’ll find an example of defining a 1D texture in Listing 12-1 and in the example code CH12\TEX1D.C
on the source code CD-ROM.

Listing 12-1 Defining a 1D texture image

void
LoadAllTextures(void)
{
 static unsigned char roygbiv_image[8][3] =
 {
 { 0x3f, 0x00, 0x3f }, /* Dark Violet (for 8 colors…) */
 { 0x7f, 0x00, 0x7f }, /* Violet */
 { 0xbf, 0x00, 0xbf }, /* Indigo */
 { 0x00, 0x00, 0xff }, /* Blue */
 { 0x00, 0xff, 0x00 }, /* Green */
 { 0xff, 0xff, 0x00 }, /* Yellow */
 { 0xff, 0x7f, 0x00 }, /* Orange */
 { 0xff, 0x00, 0x00 } /* Red */
 };
 glNewList(RainbowTexture = glGenLists(1), GL_COMPILE);
 glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
 glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
 glTexImage1D(GL_TEXTURE_1D, 0, 3, 8, 0, GL_RGB, GL_UNSIGNED_BYTE,
 roygbiv_image);
 glEndList();
}

The example code creates a display list containing the texture image and the desired magnification and
minification filter, GL_LINEAR. The minification filter is used when the polygon to be drawn is smaller
than the texture image, in this case 8 pixels. The magnification filter is used when the polygon is larger than
the texture image. By designating the GL_LINEAR filter, you tell OpenGL to linearly interpolate color
values in the texture image before drawing anything on the screen. The other filters you can use for
GL_TEXTURE_MIN_FILTER are listed in Table 12-1.

Table 12-1 Texture Image Filters

Filter Description

GL_NEAREST Nearest-neighbor filtering.
GL_LINEAR Linear interpolation.
GL_NEAREST_MIPMAP_NEAREST Nearest-neighbor mipmapped filtering.
GL_NEAREST_MIPMAP_LINEAR Linear interpolated mipmaps.
GL_LINEAR_MIPMAP_NEAREST Linear interpolation of mipmaps.
GL_LINEAR_MIPMAP_LINEAR Linear interpolation of interpolated mipmaps.

GL_NEAREST filtering takes the closest pixel in the texture image rather than interpolating between
pixels. You’ll learn more about mipmap filtering later in the chapter.

Defining 2D Textures

To define a 2D texture image in OpenGL, you call glTexImage2D. The glTexImage2D function takes a
height argument in addition to the ones that glTexImage1D uses, as follows:

void glTexImage2D(GLenum target, GLint level, GLint components,
 GLsizei width, GLsizei height, GLint border,
 GLenum format, GLenum type, const GLvoid *pixels)

Like glTexImage1D, the width and height arguments must be a power of 2.

Listing 12-2 shows how to load a sky texture image complete with clouds.

Listing 12-2 Defining a 2D texure image

void
LoadAllTextures(void)
{
 BITMAPINFO *info; /* Bitmap information */
 void *bits; /* Bitmap pixel bits */
 GLubyte *rgb; /* Bitmap RGB pixels */

 /*
 * Try loading the bitmap and converting it to RGB…
 */

 bits = LoadDIBitmap('textures/sky.bmp’, &info);
 if (bits == NULL)
 return;

 rgb = ConvertRGB(info, bits);
 if (rgb == NULL)
 {
 free(info);
 free(bits);

 return;
 };

 glNewList(SkyTexture = glGenLists(1), GL_COMPILE);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);

 /*
 * Define the 2D texture image.
 */

 glPixelStorei(GL_UNPACK_ALIGNMENT, 4); /* Force 4-byte alignment */
 glPixelStorei(GL_UNPACK_ROW_LENGTH, 0);
 glPixelStorei(GL_UNPACK_SKIP_ROWS, 0);
 glPixelStorei(GL_UNPACK_SKIP_PIXELS, 0);

 glTexImage2D(GL_TEXTURE_2D, 0, 3, info->bmiHeader.biWidth,
 info->bmiHeader.biHeight, 0, GL_RGB, GL_UNSIGNED_BYTE,
 rgb);

 glEndList();

 /*
 * Free the bitmap and RGB images, then return 0 (no errors).
 */

 free(rgb);
 free(info);
 free(bits);
}

A Note About Textures:
You’ll notice that all the examples presented in this chapter use display lists to store texture images. Display
lists generally speed up the drawing of static graphics commands, and texture images are no exception. In
addition, the forthcoming OpenGL 1.1 API includes texture object support that optimizes texture images
stored in display lists by keeping them loaded in the graphics hardware texture memory if available.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Texture Mapping

http://www.itknowledge.com/reference/archive/1571690735/ch12/385-388.html [20-03-2000 21:37:07]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Drawing Textured Polygons

Once you have defined a texture, you still have to enable texturing. To enable 1D
texturing, you’d use the following:

glDisable(GL_TEXTURE_2D);
glEnable(GL_TEXTURE_1D);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);

The glEnable call enables 1D texturing. If you forget to enable texturing, none of
your polygons will be textured! The glTexEnvi function sets texturing to “decal”
mode, meaning that images are overlaid directly upon the polygons.

Other texturing modes are listed in Table 12-2.

Table 12-2 Texture Modes for GL_TEXTURE_ENV_MODE

Mode Description

GL_MODULATE Texture pixels “filter” existing pixel colors on the screen.
GL_DECAL Texture pixels replace existing pixels on the screen.
GL_BLEND Texture pixels “filter” existing pixels colors and are

combined with a constant color.

The GL_MODULATE texture mode multiplies the current texture color (or
luminance) by the color on the screen. For one-component (luminance) textures, this
translates into a brightness filter that will vary the brightness of the screen image
based upon the texture image. For three-component (RGB) textures, you can
generate “colored lens filter” effects.

Unlike GL_MODULATE texturing, GL_BLEND texturing allows you to blend a
constant color into the scene based upon the texture image. You’d use GL_BLEND
texturing for things like clouds; the constant color would be off-white, and the
texture image would be of a cloud.

Once you have defined the texturing mode to use, you can then proceed with the
drawing of your polygons. Listing 12-3 shows how to draw the rainbow in Figure
12-1.

Listing 12-3 Drawing a 1D textured rainbow

glEnable(GL_TEXTURE_1D);
glCallList(RainbowTexture);
glBegin(GL_QUAD_STRIP);
 for (th = 0.0; th <= M_PI; th += (0.03125 * M_PI))
 {
 /*
 * Bottom edge of rainbow…
 */

 x = cos(th) * 50.0;
 y= sin(th) * 50.0;
 z = -50.0;
 glTexCoord1f(0.0);
 glVertex3f(x, y, z);

 /*
 * Top edge of rainbow…
 */

 x = cos(th) * 55.0;
 y = sin(th) * 55.0;
 z = -50.0;
 glTexCoord1f(1.0);
 glVertex3f(x, y, z);
};
glEnd();

To position the ROY-G-BIV texture on the rainbow, you call glTexCoord. For 1D
textures, you call one of the glTexCoord1f, glTexCoord1d, glTexCoord1s, or
glTexCoord1i functions. A value of 0.0 represents the leftmost pixel in the image,
and 1.0 represents the rightmost pixel. Values outside this range are handled
differently depending on the value of the GL_TEXTURE_WRAP_S parameter. If
GL_TEXTURE_WRAP_S is set to GL_CLAMP (the default), then texture
coordinates are restricted to a range of 0.0 to 1.0, inclusive. When a polygon strays
from the texture image, it is drawn using the color(s) along the texture image’s edges
(see Figure 12-3) or the texture image border colors, if defined. Texture coordinates
are traditionally referred to as S and T, or (s,t) instead of X and Y.

Figure 12-3 GL_CLAMP textures

If you use GL_REPEAT instead, the texture image is tiled over the polygon. Texture
coordinates are used modulo 1.0—that is, the texture image repeats at regular
intervals. GL_REPEAT texturing can be used to reduce the size of texture images on
repetitive surfaces. The challenge with these kinds of textures is to make the edges of
each tile blend into the next.

Automatically Generating Texture Coordinates:
Generating texture coordinates can be a tedious task. Later in this chapter you’ll
learn about the glTexGen functions that can generate these coordinates
automatically for you.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Texture Mapping

http://www.itknowledge.com/reference/archive/1571690735/ch12/388-390.html [20-03-2000 21:37:16]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Mipmapped Textures

So far, we’ve dealt exclusively with single-texture images. That is, whenever we draw a textured
polygon, the polygon is painted with a single 1D or 2D image. This is fine for some scenes, but
animated displays often need various levels of detail depending on the distance from the viewer. For
example, when walking through a virtual room, you might want a high-resolution image of a picture
close up, but only the outline at a distance.

OpenGL supports textures with multiple images, called mipmapped textures. Mipmapping selects the
texture image closest to the screen resolution for a polygon. Loading mipmapped textures takes
slightly longer than standard textures, but the visual results are impressive. In addition, mipmapped
textures can improve display performance by reducing the need for GL_LINEAR image filters.

What Does the 'Mip’ in 'Mipmapped’ Mean?:
'mip’ is latin for 'many’. 'Mipmapping’ means 'many images’.

Mipmapped textures are defined by providing a specific level parameter for each image. For the
ROY-G-BIV texture in the previous example, you would use the following:

static unsigned char roygbiv_image0[16][3];
static unsigned char roygbiv_image1[8][3];
static unsigned char roygbiv_image2[4][3];
static unsigned char roygbiv_image3[2][3];
static unsigned char roygbiv_image4[1][3];
glNewList(RainbowTexture = glGenLists(1), GL_COMPILE);
 glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
 glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER,
 GL_NEAREST_MIPMAP_LINEAR);

 glTexImage1D(GL_TEXTURE_1D, 0, 3, 16, 0, GL_RGB, GL_UNSIGNED_BYTE,
 roygbiv_image0);
 glTexImage1D(GL_TEXTURE_1D, 1, 3, 8, 0, GL_RGB, GL_UNSIGNED_BYTE,
 roygbiv_image1);
 glTexImage1D(GL_TEXTURE_1D, 2, 3, 4, 0, GL_RGB, GL_UNSIGNED_BYTE,
 roygbiv_image2);
 glTexImage1D(GL_TEXTURE_1D, 3, 3, 2, 0, GL_RGB, GL_UNSIGNED_BYTE,
 roygbiv_image3);
 glTexImage1D(GL_TEXTURE_1D, 4, 3, 1, 0, GL_RGB, GL_UNSIGNED_BYTE,
 roygbiv_image4);
glEndList();

The image levels are specified in the first parameter to glTexImage1D(). The level 0 image is your
primary, highest-resolution image for the texture. The level 1 image is half the size of the primary
image, and so forth. When drawing polygons with a mipmapped texture, you need to use one of the
minification filters (GL_TEXTURE_MIN_FILTER) in Table 12-3.

Table 12-3 Minification Filters

Filter Description

GL_NEAREST_MIPMAP_NEAREST Use the image nearest to the screen (polygon)
resolution. Use the GL_NEAREST filter when
texturing with this image.

GL_NEAREST_MIPMAP_LINEAR Use the image nearest to the screen (polygon)
resolution. Use the GL_LINEAR filter when texturing
with this image.

GL_LINEAR_MIPMAP_NEAREST Linearly interpolate between the two images nearest to
the screen (polygon) resolution. Use the
GL_NEAREST filter when texturing with this image.

GL_LINEAR_MIPMAP_LINEAR Linearly interpolate between the two images nearest to
the screen (polygon) resolution. Use the GL_LINEAR
filter when texturing with this image.

The GL_LINEAR_MIPMAP_NEAREST and GL_LINEAR_MIPMAP_LINEAR filters can be very
expensive in terms of display performance. GL_NEAREST_MIPMAP_NEAREST is roughly
equivalent to GL_NEAREST in performance, but generally produces much better results. Mipmap
images are chosen by comparing the size of the polygon as it will be drawn on the screen, to the sizes
of the mipmap images.

To make your life a bit easier, the OpenGL utility library (GLU32.LIB) provides two functions that
automatically generate mipmapped images based on a single, high-resolution texture. In the
following code, the gluBuild1DMipmaps and gluBuild2DMipmaps functions take the place of
glTexImage1D and glTexImage2D:

/* 1D texture */
glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER,
 GL_NEAREST_MIPMAP_LINEAR);
gluBuild1DMipmaps(GL_TEXTURE_1D, 3, 8, 0, GL_RGB, GL_UNSIGNED_BYTE,
 roygbiv_image);

/* 2D texture */
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_NEAREST_MIPMAP_NEAREST);
gluBuild2DMipmaps(GL_TEXTURE_2D, 3, info->bmiHeader.biWidth,
 info->bmiHeader.biHeight, 0, GL_RGB,
 GL_UNSIGNED_BYTE, rgb);

Because the gluBuild1DMipmaps and gluBuild2DMipmaps functions create images from one image,
the appearance of some textured images may not be accurate. It’s like drawing text characters at
different sizes—scaling the bitmaps doesn’t always generate good-looking results! When you run
into this sort of problem, generate your mipmap images manually.

A Terrain Viewing Program

Our project for this chapter is a terrain viewing program that takes advantage of some of the
texture-mapping features we have discussed. With this program, we’ll want to accomplish the
following:

• View textured terrain scenes

• Edit the terrain interactively in 3D

• Fly through the terrain

• Print the current scene

• Save the current scene to a .BMP file

The entire terrain program is listed at the end of this chapter, just before the Reference Section. A
copy of the program is in the CH12 source directory on your CD-ROM. Double-click on the
TEXSCENE.EXE program icon to try it out!

Defining the Terrain

To keep things simple, we’ll define our terrain as a grid of elevation points with a texture attribute
such as “this is water” or “this is a mountain.” Each point in the grid will also have an associated
lighting normal to add realism.

#define TERRAIN_SIZE 21

int TerrainType[TERRAIN_SIZE][TERRAIN_SIZE];
GLfloat TerrainHeight[TERRAIN_SIZE][TERRAIN_SIZE];
GLfloat TerrainNormal[TERRAIN_SIZE][TERRAIN_SIZE][3];

Here the TerrainType array contains the type of terrain at each point and is assigned one of the
following control IDs from our user-interface resource file:

IDC_GRASS Grasslands
IDC_WATER Water
IDC_TREES Trees/woodland
IDC_ROCKS Rocks/cliffs
IDC_MOUNTAINS Mountains

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Texture Mapping

http://www.itknowledge.com/reference/archive/1571690735/ch12/390-393.html [20-03-2000 21:37:23]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Drawing Terrain

Our terrain drawing controls consist of a toolbar dialog window with five buttons that select the current
type of terrain. To draw the terrain, you just click and drag in the main window (see Figure 12-4).

Figure 12-4 Textured terrain editing window

The heart of the drawing interface is in the DrawTerrain function. It uses the OpenGL selection
mechanism to determine which terrain points are under the mouse pointer. Instead of drawing the
terrain to the screen, selection rendering records “hits” inside the selection area (in this case, the mouse
pointer) to a buffer you provide. In DrawTerrain, we record the (x,y) location of the terrain in the
selection buffer, as in a “paint-by-numbers” book (see Figure 12-5). OpenGL selection is covered in
more detail in Chapter 19.

Figure 12-5 Picking a terrain cell

Once we have the (x,y) terrain locations, we then reset the height and type of these points in the
draw_cell function (Listing 12-4).

Listing 12-4 The draw_cell function

void
draw_cell(int x, /* I - Terrain X location */
 int y) /* I - Terrain Y location */
{
 /*
 * Range check the terrain location…
 */

 if (x < 0 || x >= TERRAIN_SIZE ||
 y < 0 || y >= TERRAIN_SIZE)
 return;

 if (TerrainType[y][x] == TerrainCurrent)
 return; /* Already the right type */

 TerrainType[y][x] = TerrainCurrent;

 /*
 * Force a redraw…
 */
 InvalidateRect(SceneWindow, NULL, TRUE);

 /*
 * Set the height of the terrain 'cell’. For water, the
 * height is constant at WATER_HEIGHT. Other other types,
 * we add a random pertubation to make the terrain more
 * interesting/realistic.
 */

 switch (TerrainCurrent)
 {
 case IDC_WATER :
 TerrainHeight[y][x] = WATER_HEIGHT;
 break;
 case IDC_GRASS :
 TerrainHeight[y][x] = GRASS_HEIGHT + 0.1 * (rand() % 5);
 break;
 case IDC_TREES :
 TerrainHeight[y][x] = TREES_HEIGHT + 0.1 * (rand() % 5);
 break;
 case IDC_ROCKS :
 TerrainHeight[y][x] = ROCKS_HEIGHT + 0.1 * (rand() % 5);
 break;
 case IDC_MOUNTAINS :
 TerrainHeight[y][x] = MOUNTAINS_HEIGHT + 0.15 * (rand() % 5);
 break;
 };
}

For the IDC_WATER terrain type, the point height is just set to WATER_HEIGHT (0.0). For other
types, we add a small amount of random “jitter” to make the terrain look more realistic. Once the
selected cell is drawn, we recompute the lighting normals using the new height values in
UpdateNormals. Each lighting normal is calculated using the points above and to the right of the
current point with the following formula:

N = lighting normal
H = height of current point
Hu = height of point above
Hr = height of point to the right

Nx = (Hr - H) / |N|
Ny = 1 / |N|
Nz = (Hu - H) / |N|

This is just a simplification of the cross product of adjacent terrain grid-cells. Once all the normals are
recalculated, the scene is redrawn.

Drawing the Scene

Now that we’ve taken care of the drudge work, we can concentrate on displaying the terrain. You’ll
remember that besides displaying a pretty textured image, we also want to fly through this terrain. To
accomplish this, we need to draw the terrain without textures—basically because texture mapping on a
standard PC is too slow for animation. When the user isn’t flying around (or drawing, for that matter),
we want to draw with the textures. We will take care of this with a little conditional code and a few
lighting parameters.

Also, because drawing the textured scene will be slower than the fly-through scene, we need to provide
some feedback to the user that our program is doing something. For simplicity, we’ll just draw to the
front buffer (the visible one) when texturing, and to the back buffer (the invisible one for animation)
when flying or drawing. This way, when the program updates the textured scene, the user will see the
image being drawn. You’ll learn more about buffers in Chapter 15.

The RepaintWindow function handles redrawing the terrain for the user. It starts off by selecting the
front or back buffer (as described just above). Then it clears the color and depth bits, as follows:

glViewport(0, 0, rect->right, rect->bottom);

glClearColor(0.5, 0.5, 1.0, 1.0);

glEnable(GL_DEPTH_TEST);

if (Moving || Drawing)
{
 glDisable(GL_TEXTURE_2D);
 glDrawBuffer(GL_BACK);
}
else
{
 glEnable(GL_TEXTURE_2D);
 glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);
 glDrawBuffer(GL_FRONT);
};

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

After this, RepaintWindow draws in the sky. For performance reasons, the sky is only drawn when the
user is not flying over or drawing the terrain. Since the background is cleared to a light blue, this isn’t
really a problem. The sky is shaped like a pyramid and has the SKY.BMP texture image mapped to it
for a nice, cloudy blue sky.

Once the sky is drawn, RepaintWindow starts drawing the terrain. The algorithm used is quite simple
and basically generates strips of quadrilaterals (squares) along the terrain points. Each strip uses a
different texture or lighting material color, so we have to issue glBegin/glEnd calls for each one. See
Figure 12-6 for a graphical depiction of the algorithm.

Figure 12-6 The terrain-drawing algorithm

As you can see, this algorithm won’t track the terrain exactly, but it is fast and simple to implement. It
scans the terrain from left to right and from bottom to top, and starts a new GL_QUAD_STRIP
primitive whenever the terrain type changes. Along the way it assigns lighting normals and texture
coordinates for each point on the terrain.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Texture Mapping

http://www.itknowledge.com/reference/archive/1571690735/ch12/393-396.html [20-03-2000 21:37:37]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Automatically Generating Texture Coordinates

Generating all those texture coordinates can be tedious. Fortunately, OpenGL has an answer that we can use! In
the current drawing code, we issue glTexCoord2i calls

glTexCoord2i(x * 2, y * 2);

for each and every point in the terrain. But instead of doing this for each point, we can use the glTexGen
functions to define the S and T coordinates in terms of the X and Z position in the scene (Y is used for the
height). To generate coordinates for our terrain, then, we can use the following:

static GLint s_vector[4] = { 2, 0, 0, 0 };
static GLint t_vector[4] = { 0, 0, 2, 0 };

glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
glTexGeniv(GL_S, GL_OBJECT_PLANE, s_vector);

glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
glTexGeniv(GL_T, GL_OBJECT_PLANE, t_vector);

Here the GL_OBJECT_LINEAR mapping mode maps the texture coordinates from object coordinates:

coordinate = X * vector[0] + Y * vector[1] +
 Z * vector[2] + W * vector[3]

The vector array is specified with glTexGen function:

void glTexGeniv(GLenum coord, GLenum pname, GLint *params)

where the coord parameter specifies which texture image coordinate to generate, GL_S or GL_T, and the pname
parameter specifies the vector to define; in this case GL_OBJECT_PLANE. Finally, the params array specifies
the object plane vector that is used to compute the texture coordinate.

The previous code for our terrain would generate these coordinates:

S = 2 * X
T = 2 * Z

To make OpenGL use these generated coordinates, you must enable texture coordinate generation, as follows:

glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);

The file TEXSCENE.C contains a version of our terrain viewing program that uses generated texture
coordinates. The same techniques can be used with a 1D texture image. For the 1D image, you’d probably
generate the S coordinate from the height (Y) to color the terrain based upon the height of the terrain.
Generating texture coordinates is usually faster than specifying them manually in immediate mode, but is
slower when using display lists.

Flying Through the Terrain

When the user is flying through the terrain, we need to regulate the flying speed based on the update rate of our
scene. Rather than trying to maintain a fixed update rate—which can vary depending on the graphics card and
CPU being used—we will measure the elapsed time from the last update to the current time. The FlyTerrain
function manages this by measuring the time in milliseconds between each call, and moving the viewer forward
at a fixed speed relative to the elapsed time.

Summary

In this chapter you’ve learned how to texture-map images onto polygons and other primitives using OpenGL.
Texturing can provide that extra measure of realism that makes computer graphics so exciting to work with.

The OpenGL glTexParameter functions provide many ways to improve the quality of texture images when they
are drawn. Mipmapped texture images provide multiple levels of detail that improve rendering quality and
speed. Linear interpolation of texture images can improve certain types of textures, such as the sky texture used
in the example project.

The glTexGen functions can simplify generation of texture coordinates by removing unnecessary or tedious
calculations. By removing large amounts of conditional glTexCoord calls, automatic coordinate generation also
simplifies programs that must display both textured and nontextured scenes

For games and other interactive, animated displays, you may want to support both textured and nontextured
displays until accelerated OpenGL graphics boards become more widely available.

Now here is Listing 12-5, the complete terrain viewing program, TEXSCENE.C.

Listing 12-5 TEXSCENE.C: The terrain viewing program

#include 'texture.h’
#include 'texscene.h’
#include <stdarg.h>
#include <math.h>
#ifndef M_PI
define M_PI (double)3.14159265358979323846
#endif /* !M_PI */

/*
 * Constants…
 */

#define TERRAIN_SIZE 21
#define TERRAIN_EDGE ((TERRAIN_SIZE - 1) / 2)
#define TERRAIN_SCALE (500.0 / TERRAIN_EDGE)

#define GRASS_HEIGHT 0.0
#define WATER_HEIGHT 0.0
#define TREES_HEIGHT 0.0
#define ROCKS_HEIGHT 0.5
#define MOUNTAINS_HEIGHT 1.0

/*
 * Globals…
 */

HWND SceneWindow; /* Scene window */
HPALETTE ScenePalette; /* Color palette (if necessary) */
HDC SceneDC; /* Drawing context */
HGLRC SceneRC; /* OpenGL rendering context */

GLuint SkyTexture, /* Sky texture image */
 GrassTexture, /* Grass… */
 RocksTexture, /* Rock… */
 WaterTexture, /* Water… */
 TreesTexture, /* Trees… */
 MountainsTexture; /* Mountains… */

HBITMAP GrassDownBitmap, /* Grass button down image */
 GrassUpBitmap, /* Grass button up image */
 GrassSelectBitmap, /* Grass button selected image */
 RocksDownBitmap, /* … */
 RocksUpBitmap,
 RocksSelectBitmap,
 WaterDownBitmap,
 WaterUpBitmap,
 WaterSelectBitmap,
 TreesDownBitmap,
 TreesUpBitmap,
 TreesSelectBitmap,
 MountainsDownBitmap,
 MountainsUpBitmap,
 MountainsSelectBitmap;

HWND TerrainWindow; /* Terrain dialog */
int TerrainCurrent = IDC_WATER;
int TerrainType[TERRAIN_SIZE][TERRAIN_SIZE];
GLfloat TerrainHeight[TERRAIN_SIZE][TERRAIN_SIZE];
GLfloat TerrainNormal[TERRAIN_SIZE][TERRAIN_SIZE][3];

double MoveTime; /* Last update time */
GLboolean Moving = GL_FALSE, /* GL_TRUE if flying */
 Drawing = GL_FALSE; /* GL_TRUE if drawing */
POINT CenterMouseXY; /* Initial mouse pos */
GLfloat Position[3] = { 0.0, TERRAIN_SCALE, 0.0 };
 /* Viewer position */
GLfloat Heading = 0.0, /* Viewer heading */
 Pitch = 0.0, /* Viewer pitch */
 Roll = 0.0; /* Viewer roll */

/*
 * Local functions…
 */

void DisplayErrorMessage(char *, …);
void MakePalette(int);
LRESULT CALLBACK SceneProc(HWND, UINT, WPARAM, LPARAM);
UINT CALLBACK TerrainDlgProc(HWND, UINT, WPARAM, LPARAM);
void InitializeTerrain(void);
void LoadAllTextures(void);
void LoadAllBitmaps(HINSTANCE);
void DrawTerrain(int, int);
void FlyTerrain(int, int);
void RepaintWindow(RECT *);
void SaveBitmapFile(void);
void PrintBitmap(void);
double GetClock(void);

/*
 * 'WinMain()’ - Main entry…
 */

int APIENTRY
WinMain(HINSTANCE hInst, /* I - Current process instance */
 HINSTANCE hPrevInstance, /* I - Parent process instance */
 LPSTR lpCmdLine, /* I - Command-line arguments */
 int nCmdShow) /* I - Show window at startup? */
{
 MSG msg; /* Window UI event */
 WNDCLASS wc; /* Window class */
 POINT pos; /* Current mouse pos */

 /*
 * Initialize the terrain to all grasslands…
 */
 InitializeTerrain();

 /*
 * Register main window…
 */

 wc.style = 0;
 wc.lpfnWndProc = (WNDPROC)SceneProc;
 wc.cbClsExtra = 0;
 wc.cbWndExtra = 0;
 wc.hInstance = hInst;
 wc.hIcon = NULL;
 wc.hCursor = LoadCursor(NULL, IDC_ARROW);
 wc.hbrBackground = 0;
 wc.lpszMenuName = MAKEINTRESOURCE(IDR_MENU1);
 wc.lpszClassName = 'Textured Scene’;

 if (RegisterClass(&wc) == 0)
 {
 DisplayErrorMessage('Unable to register window class!’);
 return (FALSE);
 };

 /*
 * Then create it…
 */

 SceneWindow = CreateWindow('Textured Scene’, 'Textured Scene’,
 WS_OVERLAPPEDWINDOW | WS_CLIPCHILDREN |
 WS_CLIPSIBLINGS,
 32, 32, 400, 300,
 NULL, NULL, hInst, NULL);

 if (SceneWindow == NULL)
 {
 DisplayErrorMessage('Unable to create window!’);
 return (FALSE);
 };

 ShowWindow(SceneWindow, nCmdShow);
 UpdateWindow(SceneWindow);

 /*
 * Load the bitmaps for the buttons, and then create the terrain
 * editing dialog.
 */

 LoadAllBitmaps(hInst);

 TerrainWindow = CreateDialog(hInst, MAKEINTRESOURCE(IDD_TERRAIN_DIALOG),
 SceneWindow, (DLGPROC)TerrainDlgProc);

 /*
 * Loop on events until the user quits this application…
 */

 while (TRUE)
 {
 /*
 * Process all messages in the queue…
 */

 while (!Moving ||
 PeekMessage(&msg, NULL, 0, 0, PM_NOREMOVE) == TRUE)
 if (GetMessage(&msg, NULL, 0, 0))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 else
 return (1);

 /*
 * Handle flying as necessary…
 */

 GetCursorPos(&pos);
 FlyTerrain(pos.x, pos.y);
 };

 return (msg.wParam);
}

/*
 * 'DisplayErrorMessage()’ - Display an error message dialog.
 */

void
DisplayErrorMessage(char *format, /* I - printf() style
 format string */
 ...) /* I - Other arguments
 as necessary */
{
 va_list ap; /* Argument pointer */
 char s[1024]; /* Output string */

 if (format == NULL)
 return;

 va_start(ap, format);
 vsprintf(s, format, ap);
 va_end(ap);

 MessageBeep(MB_ICONEXCLAMATION);
 MessageBox(NULL, s, 'Error’, MB_OK | MB_ICONEXCLAMATION);
}

/*
 * 'MakePalette()’ - Make a color palette for RGB colors if necessary.
 */

void
MakePalette(int pf) /* I - Pixel format ID */
{
 PIXELFORMATDESCRIPTOR pfd; /* Pixel format information */
 LOGPALETTE *pPal; /* Pointer to logical
 palette */
 int nColors; /* Number of entries
 in palette */
 int i, /* Color index */
 rmax, /* Maximum red value */
 gmax, /* Maximum green va6lue */
 bmax; /* Maximum blue value */

 /*
 * Find out if we need to define a color palette…
 */

 DescribePixelFormat(SceneDC, pf, sizeof(PIXELFORMATDESCRIPTOR), &pfd);

 if (!(pfd.dwFlags & PFD_NEED_PALETTE))
 {
 ScenePalette = NULL;
 return;
 };

 /*
 * Allocate memory for a color palette…
 */

 nColors = 1 << pfd.cColorBits;

 pPal = (LOGPALETTE *)malloc(sizeof(LOGPALETTE) +
 nColors * sizeof(PALETTEENTRY));

 pPal->palVersion = 0x300;
 pPal->palNumEntries = nColors;

 /*
 * Get the maximum values for red, green, and blue. Then build 'nColors’
 * colors…
 */

 rmax = (1 << pfd.cRedBits) - 1;
 gmax = (1 << pfd.cGreenBits) - 1;
 bmax = (1 << pfd.cBlueBits) - 1;

 for (i = 0; i < nColors; i ++)
 {
 pPal->palPalEntry[i].peRed = 255 * ((i >>
 pfd.cRedShift) & rmax) / rmax;
 pPal->palPalEntry[i].peGreen = 255 * ((i >>
 pfd.cGreenShift) & gmax) / gmax;
 pPal->palPalEntry[i].peBlue = 255 * ((i >>
 pfd.cBlueShift) & bmax) / bmax;

 pPal->palPalEntry[i].peFlags = 0;
 };

 /*
 * Create, select, and realize the palette…
 */

 ScenePalette = CreatePalette(pPal);
 SelectPalette(SceneDC, ScenePalette, FALSE);
 RealizePalette(SceneDC);

 free(pPal);
}

/*
 * 'SceneProc()’ - Handle window events in the viewing window.
 */

LRESULT CALLBACK
SceneProc(HWND hWnd, /* I - Window triggering this event */
 UINT uMsg, /* I - Message type */
 WPARAM wParam, /* I - 'word’ parameter value */
 LPARAM lParam) /* I - 'long’ parameter value */
{
 int pf; /* Pixel format ID */
 PIXELFORMATDESCRIPTOR pfd; /* Pixel format information */
 PAINTSTRUCT ps; /* WM_PAINT message info */
 RECT rect; /* Current client area rectangle */

 switch (uMsg)
 {
 case WM_CREATE :
 /*
 * 'Create' message. Get device and rendering contexts, and
 * setup the client area for OpenGL drawing…
 */

 SceneDC = GetDC(hWnd);

 pfd.nSize = sizeof(pfd);
 pfd.nVersion = 1;
 pfd.dwFlags = PFD_DRAW_TO_WINDOW | PFD_SUPPORT_OPENGL
 | PFD_DOUBLEBUFFER;
 /* Do OpenGL drawing */
 pfd.dwLayerMask = PFD_MAIN_PLANE; /* Main drawing plane */
 pfd.iPixelType = PFD_TYPE_RGBA; /* RGB color buffer */
 pfd.cColorBits = 0; /* Best color buffer
 please */
 pfd.cDepthBits = 32; /* Need a depth buffer */
 pfd.cStencilBits = 0; /* No stencil buffer */
 pfd.cAccumBits = 0; /* No accumulation buffer */

 pf = ChoosePixelFormat(SceneDC, &pfd);
 if (pf == 0)
 DisplayErrorMessage('texscene was unable to choose a
 suitable pixel format!’);
 else if (!SetPixelFormat(SceneDC, pf, &pfd))
 DisplayErrorMessage('texscene was unable to set the pixel
 format!’);

 MakePalette(pf);

 SceneRC = wglCreateContext(SceneDC);
 wglMakeCurrent(SceneDC, SceneRC);

 /*
 * Load all the texture images into display lists…
 */

 LoadAllTextures();
 break;

 case WM_SIZE :
 case WM_PAINT :
 /*
 * Repaint the client area with our bitmap…
 */

 BeginPaint(hWnd, &ps);

 GetClientRect(hWnd, &rect);
 RepaintWindow(&rect);

 EndPaint(hWnd, &ps);
 break;

 case WM_COMMAND :
 /*
 * Handle menu selections…
 */

 switch (LOWORD(wParam))
 {
 case IDM_FILE_SAVEAS :
 SaveBitmapFile();
 break;
 case IDM_FILE_PRINT :
 PrintBitmap();
 break;
 case IDM_FILE_EXIT :
 DestroyWindow(SceneWindow);
 break;

 case IDM_WINDOW_TERRAIN :
 /*
 * Toggle the terrain dialog window on and off…
 */

 if (GetMenuState(GetMenu(SceneWindow), IDM_WINDOW_TERRAIN,
 MF_BYCOMMAND) & MF_CHECKED)
 {
 CheckMenuItem(GetMenu(SceneWindow), IDM_WINDOW_TERRAIN,
 MF_BYCOMMAND | MF_UNCHECKED);
 ShowWindow(TerrainWindow, SW_HIDE);
 }
 else
 {
 CheckMenuItem(GetMenu(SceneWindow), IDM_WINDOW_TERRAIN,
 MF_BYCOMMAND | MF_CHECKED);
 ShowWindow(TerrainWindow, SW_SHOW);
 };
 break;
 };
 break;

 case WM_QUIT :
 case WM_CLOSE :
 /*
 * Destroy the windows and bitmaps and exit…
 */

 DestroyWindow(SceneWindow);
 DestroyWindow(TerrainWindow);

 DeleteObject(GrassDownBitmap);
 DeleteObject(GrassSelectBitmap);
 DeleteObject(GrassUpBitmap);
 DeleteObject(WaterDownBitmap);
 DeleteObject(WaterSelectBitmap);
 DeleteObject(WaterUpBitmap);
 DeleteObject(RocksDownBitmap);
 DeleteObject(RocksSelectBitmap);
 DeleteObject(RocksUpBitmap);
 DeleteObject(TreesDownBitmap);
 DeleteObject(TreesSelectBitmap);
 DeleteObject(TreesUpBitmap);
 DeleteObject(MountainsDownBitmap);
 DeleteObject(MountainsSelectBitmap);
 DeleteObject(MountainsUpBitmap);

 exit(0);
 break;

 case WM_DESTROY :
 /*
 * Release and free the device context, rendering
 * context, and color palette…
 */

 if (SceneRC)
 wglDeleteContext(SceneRC);

 if (SceneDC)
 ReleaseDC(SceneWindow, SceneDC);

 if (ScenePalette)
 DeleteObject(ScenePalette);

 PostQuitMessage(0);
 break;

 case WM_QUERYNEWPALETTE :
 /*
 * Realize the color palette if necessary…
 */

 if (ScenePalette)
 {
 SelectPalette(SceneDC, ScenePalette, FALSE);
 RealizePalette(SceneDC);

 InvalidateRect(hWnd, NULL, FALSE);
 return (TRUE);
 };
 break;

 case WM_PALETTECHANGED:
 /*
 * Reselect our color palette if necessary…
 */

 if (ScenePalette && (HWND)wParam != hWnd)
 {
 SelectPalette(SceneDC, ScenePalette, FALSE);
 RealizePalette(SceneDC);

 UpdateColors(SceneDC);
 };
 break;

 case WM_LBUTTONDOWN :
 /*
 * The left mouse button just was pressed. If we have
 * the terrain dialog window open, then this signifies
 * the beginning of drawing.
 *
 * Otherwise, set the 'Moving’ flag to true to indicate
 * flying.
 */

 SetCapture(SceneWindow);

 if (IsWindowVisible(TerrainWindow))
 {
 DrawTerrain(LOWORD(lParam), HIWORD(lParam));
 Drawing = GL_TRUE;
 }
 else
 {
 GetCursorPos(&CenterMouseXY);
 Moving = GL_TRUE;
 MoveTime = GetClock();
 };
 break;

 case WM_MOUSEMOVE :
 /*
 * The mouse pointer moved. If we are in the process of
 * drawing some terrain, do it.
 *
 * Otherwise, ignore the message because we fly from the
 * main loop.
 */

 if (Drawing)
 DrawTerrain(LOWORD(lParam), HIWORD(lParam));
 break;

 case WM_LBUTTONUP :
 /*
 * The user released the left mouse button. Stop drawing
 * or flying…
 */

 Moving = GL_FALSE;
 Drawing = GL_FALSE;
 ReleaseCapture();

 InvalidateRect(SceneWindow, NULL, TRUE);
 break;

 default :
 /*
 * Pass all other messages through the default window
 * procedure…
 */

 return (DefWindowProc(hWnd, uMsg, wParam, lParam));
 };

 return (FALSE);
}

/*
 * 'TerrainDlgProc()' - Process messages in the terrain dialog window.
 */

UINT CALLBACK
TerrainDlgProc(HWND hWnd, /* I - Source window */
 UINT uMsg, /* I - Message type */
 WPARAM wParam, /* I - 'word' parameter value */
 LPARAM lParam) /* I - 'long' parameter value */
{
 HDC hdc; /* Drawing context for buttons */
 LPDRAWITEMSTRUCT lpdis; /* Button state info */
 UINT idCtl; /* Button ID */

 switch (uMsg)
 {
 case WM_DRAWITEM :
 /*
 * Windows wants us to draw a button. Figure out which
 * button it is, and display as necessary…
 */

 idCtl = (UINT)wParam;
 lpdis = (LPDRAWITEMSTRUCT)lParam;
 hdc = CreateCompatibleDC(lpdis->hDC);

 switch (idCtl)
 {
 case IDC_WATER :
 if (lpdis->itemState & ODS_SELECTED)
 SelectObject(hdc, WaterDownBitmap);
 else if (TerrainCurrent == IDC_WATER)
 SelectObject(hdc, WaterSelectBitmap);
 else
 SelectObject(hdc, WaterUpBitmap);
 break;
 case IDC_GRASS :
 if (lpdis->itemState & ODS_SELECTED)
 SelectObject(hdc, GrassDownBitmap);
 else if (TerrainCurrent == IDC_GRASS)
 SelectObject(hdc, GrassSelectBitmap);
 else
 SelectObject(hdc, GrassUpBitmap);
 break;
 case IDC_TREES :
 if (lpdis->itemState & ODS_SELECTED)
 SelectObject(hdc, TreesDownBitmap);
 else if (TerrainCurrent == IDC_TREES)
 SelectObject(hdc, TreesSelectBitmap);
 else
 SelectObject(hdc, TreesUpBitmap);
 break;
 case IDC_ROCKS :
 if (lpdis->itemState & ODS_SELECTED)
 SelectObject(hdc, RocksDownBitmap);
 else if (TerrainCurrent == IDC_ROCKS)
 SelectObject(hdc, RocksSelectBitmap);
 else
 SelectObject(hdc, RocksUpBitmap);
 break;
 case IDC_MOUNTAINS :
 if (lpdis->itemState & ODS_SELECTED)
 SelectObject(hdc, MountainsDownBitmap);
 else if (TerrainCurrent == IDC_MOUNTAINS)
 SelectObject(hdc, MountainsSelectBitmap);
 else
 SelectObject(hdc, MountainsUpBitmap);
 break;
 };

 /*
 * Stretch the bitmap to fit the button area…
 */

 StretchBlt(lpdis->hDC, lpdis->rcItem.left,
 lpdis->rcItem.top, lpdis->rcItem.right,
 lpdis->rcItem.bottom,
 hdc, 0, 0, 24, 24, SRCCOPY);
 DeleteDC(hdc);
 break;

 case WM_CLOSE :
 /*
 * Close the window (hide it) and turn the check mark off
 * in the main menu.
 */

 ShowWindow(TerrainWindow, SW_HIDE);
 CheckMenuItem(GetMenu(SceneWindow), IDM_WINDOW_TERRAIN,
 MF_BYCOMMAND | MF_UNCHECKED);
 break;

 case WM_COMMAND :
 /*
 * A button was selected - choose the new current terrain
 * type.
 */

 switch (LOWORD(wParam))
 {
 case IDC_GRASS :
 case IDC_TREES :
 case IDC_ROCKS :
 case IDC_WATER :
 case IDC_MOUNTAINS :
 TerrainCurrent = LOWORD(wParam);

 InvalidateRect(TerrainWindow, NULL, TRUE);
 UpdateWindow(TerrainWindow);
 return (TRUE);
 };
 break;
 };

 return (FALSE);
}

/*
 * 'LoadAllBitmaps()’ - Load bitmap images for the terrain control buttons.
 */

void
LoadAllBitmaps(HINSTANCE hInstance) /* I - Process instance */
{
 GrassDownBitmap = LoadBitmap((HANDLE)hInstance,
 MAKEINTRESOURCE(IDB_GRASS_DOWN));
 GrassSelectBitmap = LoadBitmap((HANDLE)hInstance,
 MAKEINTRESOURCE(IDB_GRASS_SELECT));
 GrassUpBitmap = LoadBitmap((HANDLE)hInstance,
 MAKEINTRESOURCE(IDB_GRASS_UP));

 WaterDownBitmap = LoadBitmap((HANDLE)hInstance,
 MAKEINTRESOURCE(IDB_WATER_DOWN));
 WaterSelectBitmap = LoadBitmap((HANDLE)hInstance,
 MAKEINTRESOURCE(IDB_WATER_SELECT));
 WaterUpBitmap = LoadBitmap((HANDLE)hInstance,
 MAKEINTRESOURCE(IDB_WATER_UP));

 RocksDownBitmap = LoadBitmap((HANDLE)hInstance,
 MAKEINTRESOURCE(IDB_ROCKS_DOWN));
 RocksSelectBitmap = LoadBitmap((HANDLE)hInstance,
 MAKEINTRESOURCE(IDB_ROCKS_SELECT));
 RocksUpBitmap = LoadBitmap((HANDLE)hInstance,
 MAKEINTRESOURCE(IDB_ROCKS_UP));

 TreesDownBitmap = LoadBitmap((HANDLE)hInstance,
 MAKEINTRESOURCE(IDB_TREES_DOWN));
 TreesSelectBitmap = LoadBitmap((HANDLE)hInstance,
 MAKEINTRESOURCE(IDB_TREES_SELECT));
 TreesUpBitmap = LoadBitmap((HANDLE)hInstance,
 MAKEINTRESOURCE(IDB_TREES_UP));

 MountainsDownBitmap = LoadBitmap((HANDLE)hInstance,
 MAKEINTRESOURCE(IDB_MOUNTAINS_DOWN));
 MountainsSelectBitmap = LoadBitmap((HANDLE)hInstance,
 MAKEINTRESOURCE(IDB_MOUNTAINS_
 SELECT));
 MountainsUpBitmap = LoadBitmap((HANDLE)hInstance,
 MAKEINTRESOURCE(IDB_MOUNTAINS_UP));
}

/*
 * 'LoadAllTextures()’ - Load texture images for the scene.
 */

void
LoadAllTextures(void)
{
 glNewList(SkyTexture = glGenLists(1), GL_COMPILE);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
 TextureLoadBitmap('textures/sky.bmp’);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
 glEndList();

 glNewList(RocksTexture = glGenLists(1), GL_COMPILE);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
 TextureLoadMipmap('textures/rock.bmp’);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST_
 MIPMAP_LINEAR);
 glEndList();

 glNewList(GrassTexture = glGenLists(1), GL_COMPILE);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
 TextureLoadMipmap('textures/grass.bmp’);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST_
 MIPMAP_LINEAR);
 glEndList();

 glNewList(WaterTexture = glGenLists(1), GL_COMPILE);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
 TextureLoadMipmap('textures/water.bmp’);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST_
 MIPMAP_LINEAR);
 glEndList();

 glNewList(TreesTexture = glGenLists(1), GL_COMPILE);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
 TextureLoadMipmap('textures/trees.bmp’);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST_
 MIPMAP_LINEAR);
 glEndList();

 glNewList(MountainsTexture = glGenLists(1), GL_COMPILE);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
 TextureLoadMipmap('textures/mountain.bmp’);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST_
 MIPMAP_LINEAR);
 glEndList();
}

/*
 * 'UpdateNormals()’ - Update the lighting normals for the
 * terrain…
 */

void
UpdateNormals(void)
{
 int x, y; /* Terrain (x,y) location */
 GLfloat (*n)[3], /* Current terrain normal */
 nx, ny, nz, /* Normal components */
 d, /* Normal magnitude */
 height; / Current terrain height */
 /*
 * Loop through the terrain arrays and regenerate the
 * lighting normals based on the terrain height.
 */

 n = TerrainNormal[0];
 height = TerrainHeight[0];
 for (y = 0; y < (TERRAIN_SIZE - 1); y ++, n ++, height ++)
 {
 for (x = 0; x < (TERRAIN_SIZE - 1); x ++, n ++, height ++)
 {
 /*
 * Compute the cross product of the vectors above and to
 * the right (simplified for this special case).
 */

 nx = height[0] - height[1];
 ny = -1.0;
 nz = height[0] - height[TERRAIN_SIZE];

 d = -sqrt(nx * nx + ny * ny + nz * nz);

 n[0][0] = nx / d; /* Normalize the normal vector */
 n[0][1] = ny / d;
 n[0][2] = nz / d;
 };

 /*
 * Compute the cross product of the vectors above and to
 * the left (simplified for this special case) for the last

Open GL Super Bible:Texture Mapping

http://www.itknowledge.com/reference/archive/1571690735/ch12/396-424.html (1 of 2) [20-03-2000 21:37:51]

 * column in the grid.
 */

 nx = height[0] - height[-1];
 ny = -1.0;
 nz = height[0] - height[TERRAIN_SIZE];

 d = -sqrt(nx * nx + ny * ny + nz * nz);

 n[0][0] = nx / d; /* Normalize the normal vector */
 n[0][1] = ny / d;
 n[0][2] = nz / d;
 };

 /*
 * Set the top row of normals to be the same as the second-to-
 * last row of normals.
 */

 for (x = 0; x < TERRAIN_SIZE; x ++, n ++)
 {
 n[0][0] = n[-TERRAIN_SIZE][0];
 n[0][1] = n[-TERRAIN_SIZE][1];
 n[0][2] = n[-TERRAIN_SIZE][2];
 };
}

/*
 * 'InitializeTerrain()’ - Initialize the terrain arrays…
 */

void
InitializeTerrain(void)
{
 int x, y; /* Terrain (x,y) location */

 /*
 * Fill the terrain array with grass…
 */

 TerrainCurrent = IDC_WATER;

 for (y = 0; y < TERRAIN_SIZE; y ++)
 for (x = 0; x < TERRAIN_SIZE; x ++)
 {
 TerrainType[y][x] = IDC_GRASS;
 TerrainHeight[y][x] = GRASS_HEIGHT + 0.1 * (rand() % 5);
 };

 /*
 * Update the lighting normals…
 */

 UpdateNormals();
}

/*
 * 'draw_cell()’ - Draw (fill-in) a single terrain cell…
 */

void
draw_cell(int x, /* I - Terrain X location */
 int y) /* I - Terrain Y location */
{
 /*
 * Range check the terrain location…
 */

 if (x < 0 || x >= TERRAIN_SIZE ||
 y < 0 || y >= TERRAIN_SIZE)
 return;

 if (TerrainType[y][x] == TerrainCurrent)
 return; /* Already the right type */

 TerrainType[y][x] = TerrainCurrent;

 /*
 * Force a redraw…
 */

 InvalidateRect(SceneWindow, NULL, TRUE);

 /*
 * Set the height of the terrain 'cell’. For water, the
 * height is constant at WATER_HEIGHT. For other types,
 * we add a random pertubation to make the terrain more
 * interesting/realistic.
 */

 switch (TerrainCurrent)
 {
 case IDC_WATER :
 TerrainHeight[y][x] = WATER_HEIGHT;
 break;
 case IDC_GRASS :
 TerrainHeight[y][x] = GRASS_HEIGHT + 0.1 * (rand() % 5);
 break;
 case IDC_TREES :
 TerrainHeight[y][x] = TREES_HEIGHT + 0.1 * (rand() % 5);
 break;
 case IDC_ROCKS :
 TerrainHeight[y][x] = ROCKS_HEIGHT + 0.1 * (rand() % 5);
 break;
 case IDC_MOUNTAINS :
 TerrainHeight[y][x] = MOUNTAINS_HEIGHT + 0.15 * (rand() % 5);
 break;
 };
}

/*
 * 'DrawTerrain()’ - Draw a terrain cell at the given mouse
 * position.
 */

void
DrawTerrain(int mousex, /* I - Horizontal mouse position */
 int mousey) /* I - Vertical mouse position */
{
 int i, /* Looping var */
 count, /* Selection count */
 x, y; /* Terrain (x,y) location */
 GLfloat *height; /* Current height */
 GLuint buffer[100]; /* Selection buffer */
 GLint viewport[4]; /* OpenGL viewport */

 /*
 * Get the current OpenGL viewport and make the vertical
 * mouse position start from the bottom of the viewport.
 */

 glGetIntegerv(GL_VIEWPORT, viewport);
 mousey = viewport[3] - 1 - mousey;

 /*
 * Begin selection into a 100 'hit’ buffer…
 *
 * Allow picks within 4 pixels of the current mouse position.
 */

 glSelectBuffer(100, buffer);
 glRenderMode(GL_SELECT);

 glInitNames();
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPickMatrix((GLdouble)mousex, (GLdouble)mousey, 4.0, 4.0,
 viewport);
 gluPerspective(45.0, (float)viewport[2] / (float)viewport[3],
 0.1, 1000.0);

 glMatrixMode(GL_MODELVIEW);
 glPushMatrix();
 /*
 * Rotate/translate for the current viewing position and
 * orientation.
 */

 glRotatef(Roll, 0.0, 0.0, 1.0);
 glRotatef(Pitch, -1.0, 0.0, 0.0);
 glRotatef(Heading, 0.0, 1.0, 0.0);
 glTranslatef(-Position[0],
 -Position[1],
 -Position[2]);
 glScalef(TERRAIN_SCALE, TERRAIN_SCALE, TERRAIN_SCALE);

 /*
 * Draw the terrain into the selection buffer. This is
 * done differently than the RepaintWindow() function does
 * so that we can select individual cells rather than whole
 * strips of one type.
 *
 * The select buffer has names pushed on the stack for both
 * the X and Y locations in the terrain…
 */

 height = TerrainHeight[0];
 glPushName(0);
 for (y = 0; y < (TERRAIN_SIZE - 1); y ++, height ++)
 {
 glLoadName(y);
 glPushName(0);

 for (x = 0; x < (TERRAIN_SIZE - 1); x ++, height ++)
 {
 glLoadName(x);
 glBegin(GL_POLYGON);
 glVertex3f((GLfloat)(x - TERRAIN_EDGE),
 height[0],
 (GLfloat)(y - TERRAIN_EDGE));
 glVertex3f((GLfloat)(x - TERRAIN_EDGE),
 height[TERRAIN_SIZE],
 (GLfloat)(y - TERRAIN_EDGE + 1));
 glVertex3f((GLfloat)(x - TERRAIN_EDGE + 1),
 height[1],
 (GLfloat)(y - TERRAIN_EDGE));
 glVertex3f((GLfloat)(x - TERRAIN_EDGE + 1),
 height[TERRAIN_SIZE + 1],
 (GLfloat)(y - TERRAIN_EDGE + 1));
 glEnd();
 };

 glPopName();
 };
 glPopName();
 glPopMatrix();
 glFinish();

 /*
 * Get the 'hits’ in the selection buffer…
 */

 count = glRenderMode(GL_RENDER);
 for (i = 0; i < count; i += 3)
 {
 if (buffer[i] == 0)
 continue;

 /*
 * Each 'hit’ will contain the following parameters:
 *
 * 0 - count (2)
 * 1 - Z minimum value
 * 2 - Z maximum value
 * 3 - Y location in terrain
 * 4 - X location in terrain
 */

 x = buffer[i + 4];
 y = buffer[i + 3];
 i += buffer[i];

 /*
 * Fill-in the 4 corners of the selected cell…
 */

 draw_cell(x, y);
 draw_cell(x + 1, y);
 draw_cell(x, y + 1);
 draw_cell(x + 1, y + 1);

 /*
 * Update lighting normals for the terrain.
 */

 UpdateNormals();
 };
}

/*
 * 'FlyTerrain()’ - Fly using the given mouse position.
 */

void
FlyTerrain(int mousex, /* I - Horizontal mouse position */
 int mousey) /* I - Vertical mouse position */
{
 RECT rect; /* Current client rectangle */
 GLfloat movex, movey; /* Scale mouse movement */
 double curtime, /* Current time in seconds */
 distance; /* Distance to move */
 GLfloat cheading, /* Cosine of heading */
 sheading, /* Sine of heading */
 cpitch, /* Cosine of pitch */
 spitch; /* Sine of pitch */

 /*
 * Get the current system time to figure out how far to move.
 */

 curtime = GetClock();
 distance = 10.0 * (curtime - MoveTime);
 MoveTime = curtime;

 /*
 * See how far the mouse pointer is from the 'center’ (click)
 * position.
 */

 movex = 0.05 * (mousex - CenterMouseXY.x);
 movey = 0.05 * (mousey - CenterMouseXY.y);

 /*
 * Adjust roll, pitch, and heading according to the current
 * mouse inputs and orientation.
 */

 Roll += movex;
 Pitch += movey * cos(Roll * M_PI / 180.0);
 Heading += movey * sin(Roll * M_PI / 180.0);

 if (Heading < 0.0)
 Heading += 360.0;
 else if (Heading >= 360.0)
 Heading -= 360.0;

 if (Pitch < -180.0)
 Pitch += 360.0;
 else if (Pitch >= 180.0)
 Pitch -= 360.0;

 if (Roll < -180.0)
 Roll += 360.0;
 else if (Roll >= 180.0)
 Roll -= 360.0;

 /*
 * Move based upon the current orientation…
 */

 cheading = cos(Heading * M_PI / 180.0);
 sheading = sin(Heading * M_PI / 180.0);
 cpitch = cos(Pitch * M_PI / 180.0);
 spitch = sin(Pitch * M_PI / 180.0);

 Position[0] += distance * sheading * cpitch;
 Position[2] -= distance * cheading * cpitch;
 Position[1] += distance * spitch;

 /*
 * Redraw the window using the new position and orientation…
 */

 GetClientRect(SceneWindow, &rect);
 RepaintWindow(&rect);
}

/*
 * 'RepaintWindow()’ - Redraw the client area with our scene.
 */

void
RepaintWindow(RECT *rect) /* I - Client area rectangle */
{
 int i; /* Looping var */
 int x, y; /* Terrain (x,y) location */
 int last_type; /* Previous terrain type */
 int *type; /* Current terrain type */
 GLfloat *height, /* Current terrain height */
 (*n)[3]; /* Current terrain normal */
 static GLfloat sky_top[4][3] =
 { /* Sky coordinates */
 { -TERRAIN_EDGE, TERRAIN_SIZE * 0.8, -TERRAIN_EDGE },
 { TERRAIN_EDGE, TERRAIN_SIZE * 0.8, -TERRAIN_EDGE },
 { TERRAIN_EDGE, TERRAIN_SIZE * 0.8, TERRAIN_EDGE },
 { -TERRAIN_EDGE, TERRAIN_SIZE * 0.8, TERRAIN_EDGE }
 };
 static GLfloat sky_bottom[4][3] =
 {
 { -TERRAIN_EDGE, 0.0, -TERRAIN_EDGE },
 { TERRAIN_EDGE, 0.0, -TERRAIN_EDGE },
 { TERRAIN_EDGE, 0.0, TERRAIN_EDGE },
 { -TERRAIN_EDGE, 0.0, TERRAIN_EDGE }
 };
 static GLfloat sunpos[4] = { 0.0, 1.0, 0.0, 0.0 };
 static GLfloat suncolor[4] = { 64.0, 64.0, 64.0, 1.0 };
 static GLfloat sunambient[4] = { 0.001, 0.001, 0.001, 1.0 };

 /*
 * Reset the viewport and clear the window to light blue…
 */

 glViewport(0, 0, rect->right, rect->bottom);

 glClearColor(0.5, 0.5, 1.0, 1.0);

 glEnable(GL_DEPTH_TEST);

 if (Moving || Drawing)
 {
 /*
 * Don’t texture while flying or drawing; it’s too slow…
 * Also, draw to the back buffer for smooth animation.
 */

 glDisable(GL_TEXTURE_2D);
 glDrawBuffer(GL_BACK);
 }
 else
 {
 /*
 * Enable textures when we’ve stopped moving or drawing.
 * This generates a nice scene that we can printout or
 * save to a bitmap file…
 *
 * Because it takes longer, we draw to the front buffer
 * so the user can see some progress…
 */

 glEnable(GL_TEXTURE_2D);
 glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);
 glDrawBuffer(GL_FRONT);
 };

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 /*
 * Setup viewing transformations for the current position and
 * orientation…
 */

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(45.0, (float)rect->right / (float)rect->bottom,
 0.1, 1000.0);

 glMatrixMode(GL_MODELVIEW);
 glPushMatrix();
 glRotatef(Roll, 0.0, 0.0, 1.0);
 glRotatef(Pitch, -1.0, 0.0, 0.0);
 glRotatef(Heading, 0.0, 1.0, 0.0);
 glTranslatef(-Position[0],
 -Position[1],
 -Position[2]);
 glScalef(TERRAIN_SCALE, TERRAIN_SCALE, TERRAIN_SCALE);

 if (!(Moving || Drawing))
 {
 /*
 * Draw the sky…
 */

 glDisable(GL_LIGHTING);
 glCallList(SkyTexture);
 glBegin(GL_QUAD_STRIP);
 for (i = 0; i < 4; i ++)
 {
 glTexCoord2f((float)i, 0.0);
 glVertex3fv(sky_bottom[i]);
 glTexCoord2f((float)i, 0.8);
 glVertex3fv(sky_top[i]);
 };

 glTexCoord2f(4.0, 0.0);
 glVertex3fv(sky_bottom[0]);

 glTexCoord2f(4.0, 0.8);
 glVertex3fv(sky_top[0]);
 glEnd();

 glBegin(GL_TRIANGLE_FAN);
 glTexCoord2f(0.5, 1.0);
 glVertex3f(0.0, TERRAIN_SIZE, 0.0);

 for (i = 0; i < 4; i ++)
 {
 glTexCoord2f((float)i, 0.8);
 glVertex3fv(sky_top[i]);
 };

 glTexCoord2f(4.0, 0.8);
 glVertex3fv(sky_top[0]);
 glEnd();
 };

 /*
 * Setup lighting…
 */

 glEnable(GL_LIGHTING);
 glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);

 glEnable(GL_LIGHT0);
 glLightfv(GL_LIGHT0, GL_POSITION, sunpos);
 glLightfv(GL_LIGHT0, GL_DIFFUSE, suncolor);
 glLightfv(GL_LIGHT0, GL_AMBIENT, sunambient);

 if (Moving || Drawing)
 glEnable(GL_COLOR_MATERIAL);
 else
 glDisable(GL_COLOR_MATERIAL);

 /*
 * Then the terrain…
 */

 type = TerrainType[0];
 height = TerrainHeight[0];
 n = TerrainNormal[0];
 for (y = 0; y < (TERRAIN_SIZE - 1); y ++)
 {
 last_type = -1;

 for (x = 0; x < TERRAIN_SIZE; x ++, type ++, height ++, n ++)
 {
 if (last_type != *type)
 {

 /*
 * If the type of terrain changes, end any existing
 * strip of quads and reset color/texture parameters…
 */

 if (last_type != -1)
 glEnd();

 switch (*type)
 {
 case IDC_WATER :
 if (Moving || Drawing)
 glColor3f(0.0, 0.0, 0.5);
 else
 glCallList(WaterTexture);
 break;
 case IDC_GRASS :
 if (Moving || Drawing)
 glColor3f(0.0, 0.5, 0.0);
 else
 glCallList(GrassTexture);
 break;
 case IDC_ROCKS :
 if (Moving || Drawing)
 glColor3f(0.25, 0.25, 0.25);
 else
 glCallList(RocksTexture);
 break;
 case IDC_TREES :
 if (Moving || Drawing)
 glColor3f(0.0, 0.25, 0.0);
 else
 glCallList(TreesTexture);
 break;
 case IDC_MOUNTAINS :
 if (Moving || Drawing)
 glColor3f(0.2, 0.1, 0.05);
 else
 glCallList(MountainsTexture);
 break;
 };

 glBegin(GL_QUAD_STRIP);
 if (last_type != -1)
 {
 /*
 * Start from the previous location to prevent
 * holes…
 */

 glTexCoord2i(x * 2 - 2, y * 2);
 glNormal3fv(n[-1]);
 glVertex3f((GLfloat)(x - TERRAIN_EDGE - 1),
 height[-1],
 (GLfloat)(y - TERRAIN_EDGE));
 glTexCoord2i(x * 2 - 2, y * 2 + 2);
 glNormal3fv(n[TERRAIN_SIZE - 1]);
 glVertex3f((GLfloat)(x - TERRAIN_EDGE - 1),
 height[TERRAIN_SIZE - 1],
 (GLfloat)(y - TERRAIN_EDGE + 1));
 };
 last_type = *type;
 };

 glTexCoord2i(x * 2, y * 2);
 glNormal3fv(n[0]);
 glVertex3f((GLfloat)(x - TERRAIN_EDGE),
 height[0],
 (GLfloat)(y - TERRAIN_EDGE));
 glTexCoord2i(x * 2, y * 2 + 2);
 glNormal3fv(n[TERRAIN_SIZE]);
 glVertex3f((GLfloat)(x - TERRAIN_EDGE),
 height[TERRAIN_SIZE],
 (GLfloat)(y - TERRAIN_EDGE + 1));
 };

 glEnd();
 };
 glPopMatrix();

/*
 * While we fly or draw we’re double-buffering. Swap buffers
 * as necessary…
 */

 glFinish();
 if (Moving || Drawing)
 SwapBuffers(SceneDC);
}

/*
 * 'SaveBitmapFile()’ - Save the currently displayed scene to disk.
 */

void
SaveBitmapFile(void)
{
 char title[256], /* Title of file */
 filename[256], /* Name of file */
 directory[256]; /* Current directory */
 OPENFILENAME ofn; /* Filename dialog structure */
 void *bits; /* Screen bitmap bits */
 BITMAPINFO *info; /* Screen bitmap info */

 /*
 * Grab the screen bitmap…
 */

 bits = ReadDIBitmap(&info);
 if (bits == NULL)
 {
 DisplayErrorMessage('Unable to get OpenGL bitmap from screen!’);
 return;
 };

 /*
 * Pop up a filename dialog…
 */

 strcpy(directory, '.’);
 strcpy(filename, 'untitled.bmp’);
 strcpy(title, '');

 memset(&ofn, 0, sizeof(ofn));

 ofn.lStructSize = sizeof(ofn);
 ofn.hwndOwner = SceneWindow;
 ofn.lpstrFilter = 'Bitmaps\0*.BMP\0\0’;
 ofn.nFilterIndex = 1;
 ofn.lpstrFile = filename;
 ofn.nMaxFile = sizeof(filename) - 1;
 ofn.lpstrFileTitle = title;
 ofn.nMaxFileTitle = sizeof(title) - 1;
 ofn.lpstrInitialDir = directory;
 ofn.lpstrTitle = 'Save Bitmap File’;
 ofn.Flags = OFN_HIDEREADONLY | OFN_PATHMUSTEXIST |
 OFN_NONETWORKBUTTON;

 if (GetSaveFileName(&ofn))
 {
 /*
 * Save the named bitmap to disk…
 */

 if (SaveDIBitmap(filename, info, bits))
 DisplayErrorMessage('Could not save to file \’%s\’ -\n%s’,
 filename, strerror(errno));
 };

 /*
 * Free memory and return…
 */

 free(info);
 free(bits);
}

 /*
 * 'PrintBitmap()’ - Print the currently displayed scene.
 */

void
PrintBitmap(void)
{
 void *bits; /* Screen bitmap bits */
 BITMAPINFO *info; /* Screen bitmap info */

 /*
 * Grab the screen bitmap…
 */

 bits = ReadDIBitmap(&info);
 if (bits == NULL)
 {
 DisplayErrorMessage('Unable to get OpenGL bitmap from screen!’);
 return;
 };

 /*
 * Print the bitmap…
 */

 PrintDIBitmap(SceneWindow, info, bits);

 /*
 * Free memory and return…
 */

 free(info);
 free(bits);
}

/*
 * 'GetClock()’ - Return an increasing clock time in milliseconds…
 */

double
GetClock(void)
{
 SYSTEMTIME curtime; /* Current system time */

 GetSystemTime(&curtime);
 return (curtime.wHour * 3600.0 +
 curtime.wMinute * 60.0 +
 curtime.wSecond +
 curtime.wMilliseconds * 0.001);
}

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Texture Mapping

http://www.itknowledge.com/reference/archive/1571690735/ch12/396-424.html (2 of 2) [20-03-2000 21:37:51]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Reference Section

glTexCoord
Purpose

Specifies the current texture image coordinate for textured polygon rendering.

Include File
<GL/gl.h>

Syntax
void glTexCoord1{dfis}(TYPE s);

void glTexCoord1{dfis}v(TYPE *s);

void glTexCoord2{dfis}(TYPE s, TYPE t);

void glTexCoord2{dfis}v(TYPE *st);

void glTexCoord3{dfis}(TYPE s, TYPE t, TYPE r);

void glTexCoord3{dfis}v(TYPE *stq);

void glTexCoord4{dfis}(TYPE s, TYPE t, TYPE r, TYPE q);

void glTexCoord4{dfis}v(TYPE *strq);

Description
These functions set the current texture image coordinate in 1–4 dimensions. For example, the s
and t parameters correspond to the horizontal and vertical image coordinates of a 2D texture
image.

Parameters
s

The horizontal texture image coordinate.

t

The vertical texture image coordinate.

r

The texture image depth coordinate.

q

The texture image “time” coordinate.

Returns
None.

Example
See the example in CH12\TEXSCENE.C on the source code CD-ROM.

See Also
glTexEnv, glTexGen, glTexImage1D, glTexImage2D, glTexParameter

glTexEnv
Purpose

Sets texturing parameters.

Include File
<GL/gl.h>

Syntax
void glTexEnvf(GLenum target, GLenum pname, GLfloat param);

void glTexEnvfv(GLenum target, GLenum pname, GLfloat *param);

void glTexEnvi(GLenum target, GLenum pname, GLint param);

void glTexEnviv(GLenum target, GLenum pname, GLint *param);

Description
The glTexEnv functions set texture-mapping parameters that control how texture images are
mapped to polygons. The GL_DECAL texturing mode uses a texture image directly to draw
polygon. GL_BLEND and GL_MODULATE texture modes use the
GL_TEXTURE_ENV_COLOR color and the current framebuffer to determine what pixels are
textured.

Parameters
target

GLenum: The texture environment to define; must be GL_TEXTURE_ENV.

pname

GLenum: The parameter name to define. Valid names are as follows:

GL_TEXTURE_ENV_MODE Specifies the type of texturing to do.

GL_TEXTURE_ENV_COLOR Specifies the color to use for blending.

param

The parameter value. For GL_TEXTURE_ENV_COLOR, param is a pointer to an RGBA color
value. For GL_TEXTURE_ENV_MODE, it can be one of the following constants:

GL_DECAL Texture images are directly mapped to the framebuffer.
GL_BLEND Texture images are blended with a constant color

(GL_TEXTURE_ENV_ COLOR) before being mapped to the
framebuffer.

GL_MODULATE Texture images are multiplied with the framebuffer before being
mapped to it.

Returns
None.

Example
See the example in CH12\TEXSCENE.C on the source code CD-ROM.

See Also
glTexCoord, glTexGen, glTexImage1D, glTexImage2D, glTexParameter

glTexGen
Purpose

Defines parameters for texture coordinate generation.

Include File
<GL/gl.h>

Syntax
void glTexGend(GLenum coord, GLenum pname, GLdouble param);

void glTexGenf(GLenum coord, GLenum pname, GLfloat param);

void glTexGeni(GLenum coord, GLenum pname, GLint param);

void glTexGendv(GLenum coord, GLenum pname, GLdouble *param);

void glTexGenfv(GLenum coord, GLenum pname, GLfloat *param);

void glTexGeniv(GLenum coord, GLenum pname, GLint *param);

Description
This function sets parameters for texture coordinate generation when one or more of
GL_TEXTURE_GEN_S, GL_TEXTURE_GEN_T, GL_TEXTURE_GEN_R, or
GL_TEXTURE_GEN_Q is enabled with glEnable.

When GL_TEXTURE_GEN_MODE is set to GL_OBJECT_LINEAR, texture coordinates are
generated by multiplying the current object (vertex) coordinates by the constant vector specified
by GL_OBJECT_PLANE:

 coordinate = v[0] * p[0] + v[1] * p[1] + v[2] * p[2] + v[3] * p[3]

For GL_EYE_LINEAR, the eye coordinates (object coordinate multiplied through the
GL_MODELVIEWmatrix) are used.

When GL_TEXTURE_GEN_MODE is set to GL_SPHERE_MAP, coordinates are generated in a
sphere about the current viewing position or origin.

Parameters
coord

GLenum: The texture coordinate to map. Must be one of GL_S, GL_T, GL_R, or GL_Q.

pname

GLenum: The parameter to set. Must be one of GL_TEXTURE_GEN_MODE,
GL_OBJECT_PLANE, or GL_EYE_PLANE.

param

The parameter value. For GL_TEXTURE_GEN_MODE, param is one of the following:

GL_OBJECT_LINEAR Texture coordinates are calculated from object (vertex)
coordinates.

GL_EYE_LINEAR Texture coordinates are calculated by eye coordinates
(object coordinates multiplied through the
GL_MODELVIEW matrix).

GL_SPHERE_MAP Texture coordinates are generated in a sphere around
the viewing position.

For GL_OBJECT_PLANE and GL_EYE_PLANE, param is a 4-element array that is used as a
multiplier for object or eye coordinates.

Returns
None.

Example
See the example in CH12\TEXSCEN2.C on the source code CD-ROM.

See Also
glTexCoord, glTexEnv, glTexImage1D, glTexImage2D, glTexParameter

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Texture Mapping

http://www.itknowledge.com/reference/archive/1571690735/ch12/424-427.html [20-03-2000 21:37:57]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Chapter 13
Quadrics: Spheres, Cylinders, and Disks

What you’ll learn in this chapter:
How to… Functions You’ll Use

Create quadrics to draw simple geometric shapes gluNewQuadric
Control the quality of drawn shapes
Draw the shapes using different OpenGL primitives gluQuadricDrawStyle
Use lighting and texturing with quadrics gluQuadricNormals/gluQuadricTexture

We can hear you asking: “What the heck are quadrics?” Well, quadrics are a part of the OpenGL
Utility Library (GLU32.LIB) that supports the drawing of simple three-dimensional geometric
shapes. In particular, functions are provided to draw cones, cylinders, disks, and spheres. In this
chapter we’ll explore the practical uses of these quadric functions in your programs.

Creating a Quadric

Every quadric you draw on the screen has a state (or collection of settings) associated with it. The
gluNewQuadric function creates an opaque state variable that describes the current drawing style,
orientation, lighting mode, texturing mode, and callback functions, as follows:

GLUquadricObj *obj;

obj = gluNewQuadric();

Note that a quadric state does not include the geometric shape to be drawn. Instead, it describes how
to draw geometric shapes. This allows you to reuse quadrics for many different kinds of shapes.

Changing the Way Quadrics Are Drawn

Once you have created a quadric, you can customize the drawing of shapes by changing the quadric
state. The GLU functions for this are gluQuadricDrawStyle, gluQuadricNormals,
gluQuadricOrientation, and gluQuadricTexture.

void gluQuadricDrawStyle(GLUquadricObj *obj, GLenum drawStyle)
void gluQuadricNormals(GLUquadricObj *obj, GLenum normals)
void gluQuadricOrientation(GLUquadricObj *obj, GLenum orientation)
void gluQuadricTexture(GLUquadricObj *obj, GLboolean textureCoords)

The gluQuadricDrawStyle function selects the type of OpenGL drawing primitives that are used to
draw the shape. The default style is to fill shapes using polygon and strip primitives (GLU_FILL).
Table 13-1 shows the possible styles.

Table 13-1 Quadric Drawing Styles

Style Description

GLU_FILL Quadrics are drawn filled in, using polygon and strip
primitives.

GLU_LINE Quadrics are drawn “wireframe,” using line primitives.
GLU_SILHOUETTE Quadrics are drawn using line primitives; only the outside

edges are drawn.
GLU_POINT Quadrics are drawn using point primitives.

Lighting normals are usually generated automatically for quadrics. The gluQuadricNormals
function controls calculation of normals. Table 13-2 lists the possible lighting calculations.

Table 13-2 Quadric Lighting Normal Modes

Normal Mode Description

GLU_NONE No lighting normals are generated.
GLU_FLAT Lighting normals are generated for each polygon to create

a faceted appearance.
GLU_SMOOTH Lighting normals are generated for each vertex to create a

smooth appearance.

To control the direction of lighting normals, the gluQuadricOrientation function is provided to make
normals point outwards (GLU_OUTSIDE) or inwards (GLU_INSIDE). This has particular
application with spheres (if you are inside or outside the sphere).

Finally, texture coordinates can be generated automatically for your quadrics. The
gluQuadricTexture function enables (GL_TRUE) or disables (GL_FALSE) texture coordinate
generation. We’ll cover exactly how texture coordinates are chosen as we start drawing quadrics on
the screen.

As you may remember, texture coordinates are used for texture mapping images onto polygons (see
Chapter 12).

Drawing Cylinders

Cylinders are drawn using gluCylinder. A cylinder drawn with this function is essentially a tube that
runs along the z-axis (see Figure 13-1). The ends of the cylinder are never filled in!

Figure 13-1 Quadric cylinders

void gluCylinder(GLUquadricObj *obj,
 GLdouble baseRadius,
 GLdouble topRadius,
 GLdouble height,
 GLint slices,
 GLint stacks)

The baseRadius and topRadius arguments specifiy the radius of the cylinder at the bottom and top
of the cylinder. The height argument specifies the actual height (or length) of the tube.

The slices and stacks arguments control how many subdivisions (sides) are generated around and
along the cylinder. Generally, you will make slices a number around 20 to give the cylinder a
smooth appearance. Values below this will yield a faceted appearance; values greater than 20 may
cause display jitter. When you utilize spotlighting or a lot of specular highlights, you will also want
the stacks argument set high, usually the same as the height argument. Otherwise, set stacks to 2 to
cover the top and bottom of the cylinder.

Cylinders can also be employed for the generation of faceted surfaces, such as a pencil or a tool
socket.

Drawing Cones

While the OpenGL Utility Library does not include a special cone-drawing function, the
gluCylinder function can be used to make cones simply by specifying a topRadius or bottomRadius
of 0.0.

Texturing and Cylinders

When texturing a gluCylinder shape, textures are wrapped from the forward edge (0,radius,0) of the
cylinder. This means your texture images should be upside-down to display properly on the
cylinder. We’ll use textures with cylinders in the pencil project in this chapter.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Quadrics: Spheres, Cylinders, and Disks

http://www.itknowledge.com/reference/archive/1571690735/ch13/433-436.html [20-03-2000 21:38:06]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Drawing Disks

Disks are round, flat shapes that may contain holes. Examples of disks
include coins and washers.

void gluDisk(GLUquadricObj *obj,
 GLdouble innerRadius,
 GLdouble outerRadius,
 GLint slices,
 GLint loops)

The innerRadius and outerRadius arguments control the size of the hole and
disk, respectively. If the innerRadius argument is 0.0, the disk is drawn as a
solid circle (see Figure 13-2).

Figure 13-2 Quadric disks

The slices argument sets the number of sides the disk has and generally
should be a number around 20 to make the disk look round. The loops
argument controls the number of concentric rings that are drawn for the
disk (between the inner and outer radii); this usually should be set to 1 for
circles and 2 for washers. As is true for cylinders, using larger values for
loops will improve specular lighting and spotlight effects.

Disks and Textures

Texture images for disks are mapped so that the texture image just touches
the cylinder at the edges. The top of the texture image is mapped to the top
of the disk, the left side to the left side of the disk, and so forth.

Drawing Partial Disks

The OpenGL Utility Library also provides a function to display partial
disks. When drawing a partial disk, you specify a start angle and sweep
angle for the disk. The startAngle argument specifies a clockwise angle in
degrees from the top of the disk. The sweepAngle argument specifies the
number of degrees of arc to draw. For instance, 90º would be a quarter disk,
and so forth.

void gluPartialDisk(GLUquadricObj *obj,
 GLdouble innerRadius,
 GLdouble outerRadius,
 GLint slices,
 GLint loops,
 GLdouble startAngle,
 GLdouble sweepAngle)

Drawing Spheres

Spheres are hollow balls or globes. When you draw a sphere, you specify
the radius of the sphere.

void gluSphere(GLUquadricObj *obj,
 GLdouble radius,
 GLint slices,
 GLint stacks)

If you think of the sphere as a globe, the slices argument represents the
number of lines of longitude, and the stacks argument represents the
number of lines of latitude (see Figure 13-3).

Figure 13-3 A quadric sphere

Spheres and Textures

Texture images are mapped to spheres using longitude and latitude
coordinates. A world map image would wrap perfectly around the sphere.

Drawing a Pencil

To close this chapter, we’ll write a little program that rotates an image of a
pencil (see Figure 13-4). The pencil consists of three cylinders and two
texture images. The first texture image has the typical symbol for a #2
pencil, and the words “OpenGL Country Club” wrapped around the pencil.
For the end and the sharpened point of the pencil, we’ll use a second image
of wood with exposed lead (well, carbon).

Figure 13-4 Quadric pencil window

The point of the pencil, obviously, is a cone. The end of the pencil isn’t
quite as obvious. Since it’s flat, you might expect to use a disk for the end.
Unfortunately, the result of the way texture images are applied to disks
doesn’t look right with our texture image (see Figure 13-5). So instead, the
end is made using a cylinder with a height and topRadius of 0.0.

Figure 13-5 Pencil and lead texture images

Since quadrics are drawn from (0, 0, 0), you have to translate the
coordinates of the pieces prior to drawing them. For example, to draw the
body of the pencil you would do this:

glPushMatrix();
 glTranslatef(0.0, 0.0, -20.0);
 gluCylinder(PencilObj, 5.0, 5.0, 40.0, 6, 2);
glPopMatrix();

In the pencil drawing program, Listing 13-1, the RepaintWindow function
handles drawing everything. The first thing we display is the body of the
pencil, which is a six-sided cylinder.

gluQuadricNormals(PencilObj, GLU_FLAT);
glCallList(PencilTexture);

glPushMatrix();
 glTranslatef(0.0, 0.0, -20.0);

 gluCylinder(PencilObj, 5.0, 5.0, 40.0, 6, 2);
glPopMatrix();

Next, we display the point and end of the pencil using the “lead” texture
image. Again, we’ll use six-sided cylinders to do the work we need.

gluQuadricNormals(PencilObj, GLU_SMOOTH);
glCallList(LeadTexture);

glPushMatrix();
 glTranslatef(0.0, 0.0, 20.0);

 gluCylinder(PencilObj, 5.0, 0.0, 7.5, 6, 2);
glPopMatrix();

glPushMatrix();
 glTranslatef(0.0, 0.0, -20.0);

 gluCylinder(PencilObj, 5.0, 0.0, 0.0, 6, 2);
glPopMatrix();

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Quadrics: Spheres, Cylinders, and Disks

http://www.itknowledge.com/reference/archive/1571690735/ch13/436-440.html [20-03-2000 21:38:19]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Summary

In this chapter we’ve covered the quadric drawing functions. OpenGL quadrics are geometric shapes that form
the basic “building blocks” of many objects, both manufactured and natural. Using the quadric drawing
functions is a convenient and fast way to avoid writing a lot of extra code for drawing these shapes.

Now here’s Listing 13-1, the pencil program.

Listing 13-1 The pencil drawing program

/*
 * Include necessary headers.
 */

#include "texture.h"
#include "pencil.h"
#include <stdarg.h>
/*
 * Globals…
 */

HWND PencilWindow; /* Scene window */
HPALETTE PencilPalette; /* Color palette (if necessary) */
HDC PencilDC; /* Drawing context */
HGLRC PencilRC; /* OpenGL rendering context */

GLuint PencilTexture, /* Pencil texture image */
 LeadTexture; /* Lead… */

GLfloat PencilRoll = 0.0, /* Pencil orientation */
 PencilPitch = 90.0,
 PencilHeading = 0.0;
GLUquadricObj *PencilObj;
/*
* Local functions…
 */
void DisplayErrorMessage(char *, …);
void MakePalette(int);
LRESULT CALLBACK PencilProc(HWND, UINT, WPARAM, LPARAM);
void LoadAllTextures(void);
void RepaintWindow(RECT *);
void PrintBitmap(void);

/*
 * 'WinMain()' - Main entry…
 */

int APIENTRY
WinMain(HINSTANCE hInst, /* I - Current process instance */
 HINSTANCE hPrevInstance, /* I - Parent process instance */
 LPSTR lpCmdLine, /* I - Command-line arguments */
 int nCmdShow) /* I - Show window at startup? */
{
 MSG msg; /* Window UI event */
 WNDCLASS wc; /* Window class */
 RECT rect; /* Current client area rectangle */

 /*
 * Register main window…
 */

 wc.style = 0;
 wc.lpfnWndProc = (WNDPROC)PencilProc;
 wc.cbClsExtra = 0;
 wc.cbWndExtra = 0;
 wc.hInstance = hInst;
 wc.hIcon = NULL;
 wc.hCursor = LoadCursor(NULL, IDC_ARROW);
 wc.hbrBackground = 0;
 wc.lpszMenuName = MAKEINTRESOURCE(IDR_MENU1);
 wc.lpszClassName = "Textured Quadric Pencil";

 if (RegisterClass(&wc) == 0)
 {
 DisplayErrorMessage("Unable to register window class!");
 return (FALSE);
 };

 /*
 * Then create it…
 */

 PencilWindow = CreateWindow("Textured Quadric Pencil", "Textured
 Quadric Pencil", WS_OVERLAPPEDWINDOW
 | WS_CLIPCHILDREN | WS_CLIPSIBLINGS,
 32, 32, 400, 300,
 NULL, NULL, hInst, NULL);

 if (PencilWindow == NULL)
 {
 DisplayErrorMessage("Unable to create window!");
 return (FALSE);
 };

 ShowWindow(PencilWindow, nCmdShow);
 UpdateWindow(PencilWindow);
 /*
 * Loop on events until the user quits this application…
 */

 while (TRUE)
 {
 /*
 * Process all messages in the queue…
 */

 while (PeekMessage(&msg, NULL, 0, 0, PM_NOREMOVE) == TRUE)
 if (GetMessage(&msg, NULL, 0, 0))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 else
 return (1);

 /*
 * Spin the pencil…
 */

 PencilRoll += 1.0;
 PencilPitch += 2.0;
 PencilHeading += 3.0;

 GetClientRect(PencilWindow, &rect);
 RepaintWindow(&rect);
 };

 return (msg.wParam);
}
/*
 * 'DisplayErrorMessage()' - Display an error message dialog.
 */

void
DisplayErrorMessage(char *format, /* I - printf() style format string */
 …) /* I - Other arguments as necessary */
{
 va_list ap; /* Argument pointer */
 char s[1024]; /* Output string */

 if (format == NULL)
 return;

 va_start(ap, format);
 vsprintf(s, format, ap);
 va_end(ap);

 MessageBeep(MB_ICONEXCLAMATION);
 MessageBox(NULL, s, "Error", MB_OK | MB_ICONEXCLAMATION);
}

/*
 * 'MakePalette()' - Make a color palette for RGB colors if necessary.
 */

void
MakePalette(int pf) /* I - Pixel format ID */
{
 PIXELFORMATDESCRIPTOR pfd; /* Pixel format information */
 LOGPALETTE *pPal; /* Pointer to logical palette */
 int nColors; /* Number of entries in palette */
 int i, /* Color index */
 rmax, /* Maximum red value */
 gmax, /* Maximum green value */
 bmax; /* Maximum blue value */

 /*
 * Find out if we need to define a color palette…
 */

 DescribePixelFormat(PencilDC, pf, sizeof(PIXELFORMATDESCRIPTOR), &pfd);

 if (!(pfd.dwFlags & PFD_NEED_PALETTE))
 {
 PencilPalette = NULL;
 return;
 };

 /*
 * Allocate memory for a color palette…
 */

 nColors = 1 << pfd.cColorBits;

 pPal = (LOGPALETTE *)malloc(sizeof(LOGPALETTE) +
 nColors * sizeof(PALETTEENTRY));
 pPal->palVersion = 0x300;
 pPal->palNumEntries = nColors;

 /*
 * Get the maximum values for red, green, and blue. Then build 'nColors'
 * colors…
 */

 rmax = (1 << pfd.cRedBits) - 1;
 gmax = (1 << pfd.cGreenBits) - 1;
 bmax = (1 << pfd.cBlueBits) - 1;

 for (i = 0; i < nColors; i ++)
 {
 pPal->palPalEntry[i].peRed = 255 *
 ((i >> pfd.cRedShift) & rmax) /
 rmax;
 pPal->palPalEntry[i].peGreen = 255 *
 ((i >> pfd.cGreenShift) & gmax) /
 gmax;
 pPal->palPalEntry[i].peBlue = 255 *
 ((i >> pfd.cBlueShift) & bmax) /
 bmax;

 pPal->palPalEntry[i].peFlags = 0;
 };

 /*
 * Create, select, and realize the palette…
 */

 PencilPalette = CreatePalette(pPal);
 SelectPalette(PencilDC, PencilPalette, FALSE);
 RealizePalette(PencilDC);

 free(pPal);
}

/*
 * 'PencilProc()' - Handle window events in the viewing window.
 */

LRESULT CALLBACK
PencilProc(CHWND hWnd, /* I - Window triggering this event */
 UINT uMsg, /* I - Message type */
 WPARAM wParam, /* I - 'word' parameter value */
 LPARAM lParam) /* I - 'long' parameter value */
{
 int pf; /* Pixel format ID */
 PIXELFORMATDESCRIPTOR pfd; /* Pixel format information */
 PAINTSTRUCT ps; /* WM_PAINT message info */
 RECT rect; /* Current client area rectangle */

 switch (uMsg)
 {
 case WM_CREATE :
 /*
 * 'Create' message. Get device and rendering contexts, and
 * setup the client area for OpenGL drawing…
 */

 PencilDC = GetDC(hWnd);
 pfd.nSize = sizeof(pfd);
 pfd.nVersion = 1;
 pfd.dwFlags = PFD_DRAW_TO_WINDOW | PFD_SUPPORT_OPENGL
 | PFD_DOUBLEBUFFER;
 /* Do OpenGL drawing */
 pfd.dwLayerMask = PFD_MAIN_PLANE; /* Main drawing plane */
 pfd.iPixelType = PFD_TYPE_RGBA; /* RGB color buffer */
 pfd.cColorBits = 0; /* Best color buffer
 please*/
 pfd.cDepthBits = 32; /* Need a depth buffer */
 pfd.cStencilBits = 0; /* No stencil buffer */
 pfd.cAccumBits = 0; /* No accumulation buffer
 */

 pf = ChoosePixelFormat(PencilDC, &pfd);
 if (pf == 0)
 DisplayErrorMessage("texscene was unable to choose a suitable
 pixel format!");
 else if (!SetPixelFormat(PencilDC, pf, &pfd))
 DisplayErrorMessage("texscene was unable to set the pixel
 format!");

 MakePalette(pf);

 PencilRC = wglCreateContext(PencilDC);
 wglMakeCurrent(PencilDC, PencilRC);

 /*
 * Load all the texture images into display lists…
 */

 LoadAllTextures();
 PencilObj = gluNewQuadric();
 gluQuadricTexture(PencilObj, GL_TRUE);
 break;

case WM_SIZE :
case WM_PAINT :
 /*
 * Repaint the client area with our bitmap…
 */

 BeginPaint(hWnd, &ps);

 GetClientRect(hWnd, &rect);
 RepaintWindow(&rect);

 EndPaint(hWnd, &ps);
 break;

 case WM_COMMAND :
 /*
 * Handle menu selections…
 */

 switch (LOWORD(wParam))
 {
 case IDM_FILE_PRINT :
 PrintBitmap();
 break;
 case IDM_FILE_EXIT :
 DestroyWindow(PencilWindow);
 break;
 };
 break;
 case WM_QUIT :
 case WM_CLOSE :
 /*
 * Destroy the windows and bitmaps and exit…
 */

 DestroyWindow(PencilWindow);

 exit(0);
 break;

 case WM_DESTROY :
 /*
 * Release and free the device context, rendering
 * context, and color palette…
 */

 if (PencilRC)
 wglDeleteContext(PencilRC);

 if (PencilDC)
 ReleaseDC(PencilWindow, PencilDC);

 if (PencilPalette)
 DeleteObject(PencilPalette);

 PostQuitMessage(0);
 break;

 case WM_QUERYNEWPALETTE :
 /*
 * Realize the color palette if necessary…
 */

 if (PencilPalette)
 {
 SelectPalette(PencilDC, PencilPalette, FALSE);
 RealizePalette(PencilDC);

 InvalidateRect(hWnd, NULL, FALSE);
 return (TRUE);
 };
 break;

 case WM_PALETTECHANGED:
 /*
 * Reselect our color palette if necessary…
 */

 if (PencilPalette && (HWND)wParam != hWnd)
 {
 SelectPalette(PencilDC, PencilPalette, FALSE);
 RealizePalette(PencilDC);

 UpdateColors(PencilDC);
 };
 break;

default :
 /*
 * Pass all other messages through the default window
 * procedure…
 */

 return (DefWindowProc(hWnd, uMsg, wParam, lParam));
 };

 return (FALSE);
}

/*
 * 'LoadAllTextures()' - Load texture images for the scene.
 */

void
LoadAllTextures(void)
{
 glNewList(PencilTexture = glGenLists(1), GL_COMPILE);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
 TextureLoadBitmap("textures/pencil.bmp");
 glEndList();

 glNewList(LeadTexture = glGenLists(1), GL_COMPILE);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
 TextureLoadBitmap("textures/lead.bmp");
 glEndList();
}

/*
 * 'RepaintWindow()' - Redraw the client area with our pencil.
 */

void
RepaintWindow(RECT *rect) /* I - Client area rectangle */
{
 /*
 * Reset the viewport and clear the window to light blue…
 */

 glViewport(0, 0, rect->right, rect->bottom);

 glClearColor(0.7, 0.7, 1.0, 1.0);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 /*
 * Setup viewing transformations for the current position and
 * orientation…
 */

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(45.0, (float)rect->right / (float)rect->bottom,
 0.1, 1000.0);
 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
 glEnable(GL_DEPTH_TEST);
 glEnable(GL_TEXTURE_2D);
 glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);

 glMatrixMode(GL_MODELVIEW);
 glPushMatrix();
 glTranslatef(0.0, 0.0, -80.0);
 glRotatef(PencilHeading, 0.0, -1.0, 0.0);
 glRotatef(PencilPitch, 1.0, 0.0, 0.0);
 glRotatef(PencilRoll, 0.0, 0.0, -1.0);

 /*
 * First the pencil body - this uses a 6-sided cylinder…
 */

 gluQuadricNormals(PencilObj, GLU_FLAT);
 glCallList(PencilTexture);

 glPushMatrix();
 glTranslatef(0.0, 0.0, -20.0);

 gluCylinder(PencilObj, 5.0, 5.0, 40.0, 6, 2);
 glPopMatrix();

 /*
 * Then the ends - a cone at the tip and a flat cone at the base…
 */

 gluQuadricNormals(PencilObj, GLU_SMOOTH);
 glCallList(LeadTexture);

 glPushMatrix();
 glTranslatef(0.0, 0.0, 20.0);

 gluCylinder(PencilObj, 5.0, 0.0, 7.5, 6, 2);
 glPopMatrix();

 glPushMatrix();
 glTranslatef(0.0, 0.0, -20.0);

 /*
 * Normally we might use a disk shape for this, but unfortunately the
 texture
 * coordinates don't match up…
 */
 gluCylinder(PencilObj, 5.0, 0.0, 0.0, 6, 2);
 glPopMatrix();
 glPopMatrix();

 /*
 * Swap buffers and return…
 */

 glFinish();
 SwapBuffers(PencilDC);
}
/*
 * 'PrintBitmap()' - Print the currently displayed scene.
 */

void
PrintBitmap(void)
{
 void *bits; /* Screen bitmap bits */
 BITMAPINFO *info; /* Screen bitmap info */

 /*
 * Grab the screen bitmap…
 */

 bits = ReadDIBitmap(&info);
 if (bits == NULL)
 {
 DisplayErrorMessage("Unable to get OpenGL bitmap from screen!");
 return;
 };

 /*
 * Print the bitmap…
 */

 PrintDIBitmap(PencilWindow, info, bits);

 /*
 * Free memory and return…
 */

 free(info);
 free(bits);
}

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Quadrics: Spheres, Cylinders, and Disks

http://www.itknowledge.com/reference/archive/1571690735/ch13/440-449.html [20-03-2000 21:38:27]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Reference Section

gluCylinder
Purpose

Draws a quadric cylinder.

Include File
<GL/glu.h>

Syntax
void gluCylinder(GLUquadricObj *obj, GLdouble baseRadius,
GLdouble topRadius, GLdouble height, GLint slices, GLint stacks);

Description
This function draws a hollow cylinder with no ends along the z-axis.
If topRadius or bottomRadius is 0, a cone is drawn instead. The
cylinder is projected height units along the positive z-axis. The slices
argument controls the number of sides along the cylinder. The stacks
argument controls the number of segments along the z-axis (across
the cylinder) that are generated.

Parameters
obj

GLUquadricObj *: The quadric state information to use for
rendering.

baseRadius

GLdouble: The radius of the base (Z=0) of the cylinder.

topRadius
GLdouble: The radius of the top (Z=height) of the cylinder.

height

GLdouble: The height or length of the cylinder along the z-axis.

slices

GLint: The number of sides on the cylinder.

stacks

GLint: The number of segments in the cylinder along the z-axis.

Returns
None.

Example
See the example in CH13\PENCIL.C.

See Also
gluDeleteQuadric, gluNewQuadric, gluQuadricCallback,
gluQuadricDrawStyle, gluQuadricNormals, gluQuadricOrientation,
gluQuadricTexture

gluDeleteQuadric
Purpose

Deletes a quadric state object.

Include File
<GL/glu.h>

Syntax
void gluDeleteQuadric(GLUquadricObj *obj);

Description
This function deletes a quadric state object. Once an object has been
deleted it cannot be used for drawing again.

Parameters
obj

GLUquadricObj *: The quadric state object to delete.

Returns
None.

See Also
gluNewQuadric, gluQuadricCallback, gluQuadricDrawStyle,
gluQuadricNormals, gluQuadricOrientation, gluQuadricTexture

gluDisk
Purpose

Draws a quadric disk.

Include File
<GL/glu.h>

Syntax
void gluDisk(GLUquadricObj *obj, GLdouble innerRadius,
GLdouble outerRadius, GLint slices, GLint loops);

Description
This function draws a disk perpendicular to the z-axis. If innerRadius
is 0, a solid (filled) circle is drawn instead of a washer. The slices
argument controls the number of sides on the disk. The loops
argument controls the number of rings generated out from the z-axis.

Parameters
obj

GLUquadricObj *: The quadric state information to use for
rendering.

innerRadius

GLdouble: The inside radius of the disk.

outerRadius
GLdouble: The outside radius of the disk.

slices

GLint: The number of sides on the cylinder.

loops

GLint: The number of rings out from the z-axis.

Returns
None.

See Also
gluDeleteQuadric, gluNewQuadric, gluQuadricCallback,
gluQuadricDrawStyle, gluQuadricNormals, gluQuadricOrientation,
gluQuadricTexture

gluNewQuadric
Purpose

Creates a new quadric state object.

Include File
<GL/glu.h>

Syntax
GLUquadricObj *gluNewQuadric(void);

Description
This function creates a new opaque quadric state object to be used for
drawing. The quadric state object contains specifications that
determine how subsequent images will be drawn.

Parameters
None.

Returns
GLUquadricObj *: NULL if no memory is available; otherwise, a
valid quadric state object pointer.

Example
See the example in CH13\PENCIL.C.

See Also
gluDeleteQuadric, gluQuadricCallback, gluQuadricDrawStyle,
gluQuadricNormals, gluQuadricOrientation, gluQuadricTexture

gluPartialDisk
Purpose

Draws a partial quadric disk.

Include File
<GL/glu.h>

Syntax
void gluPartialDisk(GLUquadricObj *obj, GLdouble innerRadius,
GLdouble outerRadius, GLint slices, GLint loops, GLdouble
startAngle, GLdouble sweepAngle);

Description
This function draws a partial disk perpendicular to the z-axis. If
innerRadius is 0, a solid (filled) circle is drawn instead of a washer.
The slices argument controls the number of sides on the disk. The
loops argument controls the number of rings out from the z-axis that
are generated. The startAngle argument specifies the starting angle of
the disk with 0º at the top of the disk and 90º at the right of the disk.
The sweepAngle argument specifies the portion of the disk in
degrees.

Parameters
obj

GLUquadricObj *: The quadric state information to use for
rendering.

innerRadius

GLdouble: The inside radius of the disk.

outerRadius

GLdouble: The outside radius of the disk.

slices

GLint: The number of sides on the cylinder.

loops

GLint: The number of rings out from the z-axis.

startAngle

GLdouble: The start angle of the partial disk.

sweepAngle

GLdouble: The angular size of the partial disk.

Returns
None.

See Also
gluDeleteQuadric, gluNewQuadric, gluQuadricCallback,
gluQuadricDrawStyle, gluQuadricNormals, gluQuadricOrientation,
gluQuadricTexture

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Quadrics: Spheres, Cylinders, and Disks

http://www.itknowledge.com/reference/archive/1571690735/ch13/449-452.html [20-03-2000 21:38:33]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Part III
Advanced Topics and Special Effects

If you’ve been reading this book from front to back as a tutorial, you are now quite well grounded in
the use of OpenGL for a variety of purposes. In the third part of this book, we are going to cover a
few remaining topics that will enhance your knowledge and understanding of OpenGL. We will also
be covering some special effects and capabilities of the API that may take a little more time to digest
than the previous material.

First, we visit the OpenGL State Machine in Chapter 14. Until now we have taken this for granted
and covered some of the variables only when they have been relevant to our discussion. Now a look
at the entire concept and how to take advantage of it is in order. Then a more complete discussion of
the OpenGL buffers (Chapter 15) will be in order.

Many scenes and objects can benefit by some of the visual fine-tuning that is afforded by the
techniques presented in Chapter 16. Here you will see how to soften or sharpen images, and how to
create some spectacular effects made possible with translucence.

Complex surface generation can be a real headache. Chapter 17 will give you some high-level tools
that can make these surfaces easier to create. Useful techniques for breaking down your polygons into
smaller ones are shown in Chapter 18, and in Chapter 19 you’ll learn how to interact with your scenes
and objects using the OpenGL features of selection and feedback.

Finally, we will end our coverage of the API with a closer look at just one use for OpenGL. You’ll
see how Virtual Reality over the Internet has its roots in an OpenGL C++ class library called Open
Inventor.

Chapter 14
The OpenGL State Machine

What you’ll learn in this chapter:
How to… Functions You’ll Use

Enable and disable rendering options glEnable/glDisable
Query the state of rendering options glIsEnabled/glGetInteger/glGetFloat/glGetDouble
Save and restore some or all of the current state glPushAttrib/glPopAttrib

The rendering state is one of the things that make OpenGL so fast and efficient at drawing 3D
graphics. This state is grouped logically into different categories such as color, lighting, texturing,
and so forth. Each rendering context (HRC) that you create has its own rendering state specific to a
window or off-screen bitmap.

Unlike most of the other chapters, this chapter does not contain any complete example programs.
Rather, you will find these state functions used in examples for every other chapter in the book.

Basic OpenGL State Functions

OpenGL’s two functions that enable and disable rendering features are called, appropriately enough,
glEnable and glDisable. You pass these functions a single enumerated constant, such as
GL_DEPTH_TEST, as follows:

glEnable(GL_DEPTH_TEST); /* Enable depth buffer testing */
glDisable(GL_DEPTH_TEST); /* Disable depth buffer testing */

You can retrieve the current state using glIsEnabled, glIsDisabled, and glGetBooleanv, as in the
following:

GLboolean state;

/*
 * GL_TRUE if depth testing is enabled…
 */
state = glIsEnabled(GL_DEPTH_TEST);

/*
 * GL_TRUE if depth testing is disabled…
 */
state = glIsDisabled(GL_DEPTH_TEST);

/*
 * Returns Boolean state value; GL_TRUE if depth testing is enabled…
 */
glGetBooleanv(GL_DEPTH_TEST, &state);

Most OpenGL state variables are Boolean values, on or off. Some, like the current viewport, are an
array of integers, or an array of floating point numbers for the current RGBA color. To address these
types of state values, OpenGL adds glGetDoublev, glGetFloatv, and glGetInteger:

GLint istate[4];
GLfloat fstate[4];
GLdouble dstate[3];

glGetIntegerv(GL_VIEWPORT, istate);
glGetFloatv(GL_CURRENT_COLOR, fstate);
glGetDoublev(GL_CURRENT_NORMAL, dstate);

You’ll learn more about the various state variables further into the chapter.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:The OpenGL State Machine

http://www.itknowledge.com/reference/archive/1571690735/ch14/457-462.html [20-03-2000 21:38:39]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Saving and Restoring States

Just as OpenGL maintains a stack of Projection, Modelview, and Texture matrices, it has a stack for
the current rendering state. Unlike the matrix stack, the state stack gives you much more control over
exactly what you save (push) or restore (pop) from the stack; see Figure 14-1.

Figure 14-1 OpenGL attribute stack

The OpenGL functions to save and restore rendering state attributes are glPushAttrib and glPopAttrib.
The glPushAttrib function works a lot like glPushMatrix, except that you can select the state values to
put on the stack! To save all of the current rendering state, you would call

glPushAttrib(GL_ALL_ATTRIB_BITS);

Usually, however, you’re only interested in saving a specific set of information, such as the current
color, line width, and so forth. OpenGL defines many constants for specific types of information (see
Table 14-1). For example:

glPushAttrib(GL_CURRENT_BIT); /* Save current drawing color, etc */
glPushAttrib(GL_LIGHTING_BIT); /* Save current lighting settings */
glPushAttrib(GL_TEXTURING_BIT); /* Save current texturing settings */

Table 14-1 glPushAttrib attribute bits

Attribute Bit Description

GL_ACCUM_BUFFER_BIT Accumulation buffer clear value.
GL_COLOR_BUFFER_BIT Alpha test state, function, and values. Blending state,

function, and values. GL_DITHER state. Current drawing
buffer(s). Current logical operation state and function.
Current RGBA/index clear color and write masks.

GL_CURRENT_BIT Current RGBA color or color index. Current lighting normal
and texture coordinate. Current raster position,
GL_CURRENT_RASTER_POSITION_VALID, and
GL_EDGE_FLAG.
GL_DEPTH_BUFFER_BITGL_DEPTH_TEST state, depth
buffer function, depth buffer clear value, and
GL_DEPTH_WRITEMASK state.

GL_ENABLE_BIT GL_ALPHA_TEST, GL_AUTO_NORMAL, and
GL_BLEND state. User-defined clipping plane state.
GL_COLOR_MATERIAL, GL_CULL_FACE,
GL_DEPTH_TEST, GL_DITHER, GL_FOG, GL_LIGHTi,
GL_LIGHTING, GL_LINE_SMOOTH,
GL_LINE_STIPPLE, GL_LOGIC_OP, GL_MAP1_x,
GL_MAP2_x, GL_NORMALIZE, GL_POINT_SMOOTH,
GL_POLYGON_SMOOTH, GL_POLYGON_STIPPLE,
GL_SCISSOR_TEST, GL_STENCIL_TEST,
GL_TEXTURE_1D, GL_TEXTURE_2D, and
GL_TEXTURE_GEN_x states.

GL_EVAL_BIT GL_MAP1_x and GL_MAP2_x state, 1D and 2D grid
endpoints and divisions, GL_AUTO_NORMAL state.

GL_FOG_BIT GL_FOG state, fog color, fog density, linear fog start, linear
fog end, fog index, GL_FOG_MODE value.

GL_HINT_BIT GL_PERSPECTIVE_CORRECTION_HINT,
GL_POINT_SMOOTH_HINT,
GL_LINE_SMOOTH_HINT,
GL_POLYGON_SMOOTH_HINT, and GL_FG_HINT
state.

GL_LIGHTING_BIT GL_COLOR_MATERIAL state.
GL_COLOR_MATERIAL_FACE value. Color material
parameters that are tracking the ambient scene color.
GL_LIGHT_MODEL_LOCAL_VIEWER and
GL_LIGHT_MODEL_TWO_SIDE values. GL_LIGHTING
and GL_LIGHTx states. All light parameters.
GL_SHADE_MODEL value.

GL_LINE_BIT GL_LINE_SMOOTH and GL_LINE_STIPPLE states. Line
stipple pattern and repeat counter. Line width.

GL_LIST_BIT GL_LIST_BASE value.
GL_PIXEL_MODE_BIT GL_RED_BIAS, GL_RED_SCALE, GL_GREEN_BIAS,

GL_GREEN_SCALE, GL_BLUE_BIAS,
GL_BLUE_SCALE, GL_ALPHA_BIAS,
GL_ALPHA_SCALE, GL_DEPTH_BIAS,
GL_DEPTH_SCALE, GL_INDEX_OFFSET,
GL_INDEX_SHIFT, GL_MAP_COLOR,
GL_MAP_DEPTH, GL_ZOOM_X, GL_ZOOM_Y, and
GL_READ_BUFFER settings.

GL_POINT_BIT GL_POINT_SMOOTH state, point size.
GL_POLYGON_BIT GL_CULL_FACE, GL_CULL_FACE_MODE,

GL_FRONT_FACE, GL_POLYGON_MODE,
GL_POLYGON_SMOOTH, GL_POLYGON_STIPPLE.

GL_POLYGON_STIPPLE_BIT Polygon stipple image.
GL_SCISSOR_BIT GL_SCISSOR_TEST state, scissor box.
GL_STENCIL_BUFFER_BIT GL_STENCIL_TEST state. Stencil function and reference

value. Stencil value mask. Stencil fail, pass, and depth buffer
pass action. Stencil buffer clear value and writemask.

GL_TEXTURE_BIT Enable bits for all texture coordinates. Border color for each
texture image. Minification filter and magnification filter.
Texture coordinates and wrap modes. Color and mode for
each texture environment. GL_TEXTURE_GEN_x,
GL_TEXTURE_GEN_MODE settings. glTexGen plane
equations.

GL_TRANSFORM_BIT Coefficients of the six clipping planes, enable bits for the
clipping planes, GL_MATRIX_MODE setting,
GL_NORMALIZE state.

GL_VIEWPORT_BIT Depth range, viewport origin, and extent.

Once you have done your rendering, you restore those state bits with glPopAttrib. This function
accepts no arguments and restores only what was saved with the last glPushAttrib

Drawing States

OpenGL has a large number of states associated with drawing actions for the basic glBegin/glEnd
primitives. Most are saved with a call to glPushAttrib(GL_CURRENT_BIT | GL_LINE_BIT). See
Table 14-2.

Table 14-2 Drawing state variables

State Variable Description

GL_ALPHA_TEST Do alpha value testing.
GL_BLEND Perform pixel blending operations.
GL_CLIP_PLANEx Clip drawing operations outside the specified clipping plane.
GL_CULL_FACE Cull back- or front-facing polygons.
GL_DITHER Dither color values.
GL_LINE_SMOOTH Anti-alias lines.
GL_LINE_STIPPLE Apply a bit pattern to lines.
GL_LOGIC_OP Do logical operations on pixels when drawing.
GL_POINT_SMOOTH Anti-alias points.
GL_POLYGON_SMOOTH Anti-alias polygons.
GL_POLYGON_STIPPLE Apply a bit pattern to polygons.
GL_SCISSOR_TEST Clip drawing outside the glScissor region.

Depth Buffer States

The most common mistake made by beginning OpenGL programmers is to forget to enable depth
testing with glEnable(GL_DEPTH_TEST). Without depth testing, hidden surface removal is not
performed using the depth buffer (see Chapter 15). Calling glPushAttrib with
GL_DEPTH_BUFFER_BIT takes care of saving the GL_DEPTH_TEST state.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:The OpenGL State Machine

http://www.itknowledge.com/reference/archive/1571690735/ch14/462-465.html [20-03-2000 21:38:49]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Stencil Buffer States

The stencil buffer supports many special effects, including shadows. Like
the depth buffer, however, the stencil buffer is very easy to control. Save
stencil buffer state information with
glPushAttrib(GL_STENCIL_BUFFER_BIT). which saves the current
GL_STENCIL_TEST value.

Lighting States

Of all the OpenGL features, lighting has the most OpenGL state
information. The state information for lighting includes the current lighting
environment (model) settings for color and lighting mode; material
definitions; the color, position, and direction of light; and other parameters.
Moreover, OpenGL adds even more state information with automatic
lighting normal generation.

Table 14-3 lists all the available variables. At the very minimum, you’ll
need to call glEnable(GL_LIGHTING) and glEnable(GL_LIGHT0). To
save the current lighting state, call glPushAttrib(GL_LIGHTING_BIT |
GL_EVAL_BIT).

Table 14-3 Lighting State Variables

State Variable Description

GL_AUTO_NORMAL Automatically generate lighting normals
from glMap parameters.

GL_COLOR_MATERIAL Assign material colors from the current
drawing color.

GL_LIGHTING Enable lighting calculations.
GL_LIGHTx Enable lighx.
GL_MAP1_NORMAL Enable mapping of lighting normals from

1D coordinates.
GL_MAP2_NORMAL Enable mapping of lighting normals from

2D coordinates.
GL_NORMALIZE Normalize all lighting normals prior to

doing calculations.

Texturing States

In terms of complexity, texturing in OpenGL is second only to lighting.
Table 14-4 lists the available variables.

Table 14-4 Texturing State Variables

State Variable Description

GL_MAP1_TEXTURE_COORD_1 The s texture coordinate will be
generated by calls to glEvalPoint1,
glEvalMesh1, and glEvalCoord1.

GL_MAP1_TEXTURE_COORD_2 The s and t texture coordinates will
be generated by calls to
glEvalPoint1, glEvalMesh1, and
glEvalCoord1.

GL_MAP1_TEXTURE_COORD_3 The s, t, and r texture coordinates
will be generated by calls to
glEvalPoint1, glEvalMesh1, and
glEvalCoord1.

GL_MAP1_TEXTURE_COORD_4 The s, t, r, and q texture coordinates
will be generated by calls to
glEvalPoint1, glEvalMesh1, and
glEvalCoord1.

GL_MAP2_TEXTURE_COORD_1 The s texture coordinate will be
generated by calls to glEvalPoint2,
glEvalMesh2, and glEvalCoord2.

GL_MAP2_TEXTURE_COORD_2 The s and t texture coordinates will
be generated by calls to
glEvalPoint2, glEvalMesh2, and
glEvalCoord2.

GL_MAP2_TEXTURE_COORD_3 The s, t, and r texture coordinates
will be generated by calls to
glEvalPoint2, glEvalMesh2, and
glEvalCoord2.

GL _MAP2_TEXTURE_COORD_4 The s, t, r, and q texture coordinates
will be generated by calls to
glEvalPoint2, glEvalMesh2, and
glEvalCoord2.

GL_TEXTURE_1D Enable 1D texturing unless 2D
texturing is enabled.

GL_TEXTURE_2D Enable 2D texturing.
GL_TEXTURE_GEN_Q Automatically generate the q texture

coordinate from calls to glVertex.
GL_TEXTURE_GER Automatically generate the r texture

coordinate from calls to glVertex.
GL_TE XTURE_GEN_S Automatically generate the s texture

coordinate from calls to glVertex.
GL_TEXTURE_GEN_T Automatically generate the t texture

coordinate from calls to glVertex.

To save the current texturing parameters, call glEnable with
GL_TEXTURE_BIT and GL_EVAL_BIT. When you’re enabling
texturing, make sure to enable onlone of the texturing modes—either
GL_TEXTURE_1D or GL_TEXTURE_2D. The OpenGL spec states that
2D texturing overrides 1D texturing, but some implementations do not
comply with this.

Pixel States

Pixel transfer, storage, and mapping modes are probably the least
understood and least optimized OpenGL features. Save them with a call to
glPushAttrib(GL_PIXEL_BIT). There are no glEnable states for these
modes.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:The OpenGL State Machine

http://www.itknowledge.com/reference/archive/1571690735/ch14/465-467.html [20-03-2000 21:38:55]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Reference Section

glDisable, glEnable
Purpose

Disables or enables an OpenGL feature.

Include File
<GL/gl.h>

Syntax
void glDisable(GLenum feature); glEnable

Description
glDisable disables an OpenGL drawing feature, and glEnable enables
an OpenGL drawing feature.

Parameters
feature

GLenum: The feature to disable or enable, from Table 14-5.

Returns
None.

See Also
glIsEnabled, glPopAttrib, glPushAttrib

Table 14-5 Features Enabled/Disabled by glEnable/glDisable

Feature Description

GL_AUTO_NORMAL Automatically generate lighting
normals from glMap parameters.

GL_COLOR_MATERIAL Assign material colors from the
current drawing color.

GL_LIGHTING Enable lighting calculations.
GL_LIGHTx Enable lightx.
GL_MAP1_NORMAL Enable mapping of lighting normals

from 1D coordinates.
GL_MAP2_NORMAL Enable mapping of lighting normals

from 2D coordinates.
GL_NORMALIZE Normalize all lighting normals prior

to doing calculations.
GL_MAP1_TEXTURE_COORD_1 The s texture coordinate will be

generated by calls to glEvalPoint1,
glEvalMesh1, and glEvalCoord1.

GL_MAP1_TEXTURE_COORD_2 The s and t texture coordinates will
be generated by calls to
glEvalPoint1, glEvalMesh1, and
glEvalCoord1.

GL_MAP1_TEXTURE_COORD_3 The s, t, and r texture coordinates
will be generated by calls to
glEvalPoint1, glEvalMesh1, and
glEvalCoord1.

GL_MAP1_TEXTURE_COORD_4 The s, t, r, and q texture coordinates
will be generated by calls to
glEvalPoint1, glEvalMesh1, and
glEvalCoord1.

GL_MAP2_TEXTURE_COORD_1 The s texture coordinate will be
generated by calls to glEvalPoint2,
glEvalMesh2, and glEvalCoord2.

GL_MAP2_TEXTURE_COORD_2 The s and t texture coordinates will
be generated by calls to
glEvalPoint2, glEvalMesh2, and
glEvalCoord2.

GL_MAP2_TEXTURE_COORD_3 The s, t, and r texture coordinates
will be generated by calls to
glEvalPoint2, glEvalMesh2, and
glEvalCoord2.

GL_MAP2_TEXTURE_COORD_4 The s, t, r, and q texture coordinates
will be generated by calls to
glEvalPoint2, glEvalMesh2, and
glEvalCoord2.

GL_TEXTURE_1D Enable 1D texturing unless 2D
texturing is enabled.

GL_TEXTURE_2D Enable 2D texturing.
GL_TEXTURE_GEN_Q Automatically generate the q texture

coordinate from calls to glVertex.
GL_TEXTURE_GEN_R Automatically generate the r texture

coordinate from calls to glVertex.
GL_TEXTURE_GEN_S Automatically generate the s texture

coordinate from calls to glVertex.
GL_TEXTURE_GEN_T Automatically generate the t texture

coordinate from calls to glVertex.
GL_STENCIL_TEST Enable stencil buffer comparisons.
GL_DEPTH_TEST Enable depth buffer comparisons.
GL_ALPHA_TEST Do alpha value testing.
GL_BLEND Perform pixel blending operations.
GL_CLIP_PLANEx Clip drawing operations outside the

specified clipping plane.
GL_CULL_FACE Cull back- or front-facing polygons.
GL_DITHER Dither color values.
GL_LINE_SMOOTH Anti-alias lines.
GL_LINE_STIPPLE Apply a bit pattern to lines.
GL_LOGIC_OP Do logical operations on pixels when

drawing.
GL_POINT_SMOOTH Anti-alias points.
GL_POLYGON_SMOOTH Anti-alias polygons.
GL_POLYGON_STIPPLE Apply a bit pattern to polygons.

GL_SCISSOR_TEST
Clip drawing outside the glScissor
region.

glIsEnabled
Purpose

Tests if an OpenGL feature is enabled.

Include File
<GL/gl.h>

Syntax
GLboolean glIsEnabled(GLenum feature);

Description
This function returns GL_TRUE if the specified feature has been
enabled and GL_FALSE otherwise.

Parameters
feature

GLenum: The feature to test (see glEnable).

Returns
GLboolean: GL_TRUE if the feature is enabled, GL_FALSE
otherwise.

See Also
glDisable, glEnable, glPopAttrib, glPushAttrib

glPopAttrib
Purpose

Restores state information saved with glPushAttib.

Include File
<GL/gl.h>

Syntax
void glPopAttrib(void);

Description
glPopAttrib restores previously saved state information from a call to
glPushAttrib. If the attribute stack is empty, the current OpenGL
error state is set and the call is ignored.

Parameters
None.

Returns
None.

See Also
glDisable, glEnable, glIsEnabled, glPushAttrib

glPushAttrib
Purpose

Saves OpenGL state information.

Include File
<GL/gl.h>

Syntax
void glPushAttrib(GLuint bits);

Description
This function saves OpenGL state information specified by bits. If
the attribute stack is full, the current OpenGL error state is set and the
top of the stack is overwritten.

Parameters
bits

GLuint: The state information to save (see Table 14-1).

Returns
None.

See Also
glDisable, glEnable, glIsEnabled, glPopAttrib

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:The OpenGL State Machine

http://www.itknowledge.com/reference/archive/1571690735/ch14/467-469.html [20-03-2000 21:39:01]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Chapter 15
Buffers: Not Just for Animation

What you’ll learn in this chapter:
How to... Functions You’ll Use

Set up buffers ChoosePixelFormat/SetPixelFormat
Use the depth buffer glEnable/glDepthFunc/glDepthRange
Use the stencil buffer glEnable/glStencilFunc
Use the accumulation buffer glEnable/glAccum

In the previous chapters, we’ve used buffers for color and depth information. OpenGL provides
several kinds of buffers that are linked by the OpenGL graphics context:

• Color buffer

• Depth buffer

• Stencil buffer

• Accumulation buffer

Each buffer has specific capabilities beyond simple double-buffering for animation and
depth-buffering for hidden surface removal as described in this chapter.

What Are Buffers?

A buffer in OpenGL is essentially a two-dimensional array of values that correspond to a pixel in a
window or off-screen image. Each buffer has the same number of columns and rows (width and
height) as the current client area of a window but holds a different range and type of values. See
Figure 15-1.

Figure 15-1 OpenGL buffer organization

Configuring Buffers

Before using OpenGL, you must configure the window’s hardware device context (HDC) for the
buffers and color mode you require. The PIXELFORMATDESCRIPTOR structure contains this
information. Here’s the typical way this buffer is set up:

// This structure holds buffer, layer, and color mode information.
PIXELFORMATDESCRIPTOR pfd;

// First initialize the pfd size and version...
pfd.nSize = sizeof(pfd);
pfd.nVersion = 1;

// Next, layer and buffering information...
pfd.dwFlags = PFD_DRAW_TO_WINDOW | PFD_SUPPORT_OPENGL;
pfd.dwLayerMask = PFD_MAIN_PLANE;
pfd.iLayerType = PFD_MAIN_PLANE;

// The pixel type indicates whether we use color indices or RGBA
pfd.iPixelType = PFD_TYPE_RGBA;

// Now we specify the *minimum* number of bitplanes we need for
// each buffer. Windows will choose the closest pixel format
// satisfying our minimum requirements.
pfd.cColorBits = 8;
pfd.cDepthBits = 16;
pfd.cAccumBits = 0;
pfd.cStencilBits = 0;

The dwFlags bitfield specifies that we want to draw into the window using OpenGL. It also tells
Windows the number of color buffers we require. See Table 15-1.

Table 15-1 PIXELFORMATDESCRIPTOR Option Flags

Flag Description

PFD_DRAW_TO_WINDOW Draw into a window.
PFD_DRAW_TO_BITMAP Draw into an off-screen bitmap.
PFD_SUPPORT_GDI The color buffer supports GDI drawing commands.
PFD_SUPPORT_OPENGL The buffers support OpenGL drawing commands.
PFD_DOUBLEBUFFER The color values are double buffered.
PFD_STEREO Two sets of buffers are available (left and right).
PFD_DOUBLE_BUFFER_DONTCARE It doesn’t matter if the color values are double

buffered.
PFD_STEREO_DONTCARE It doesn’t matter if the buffers are in stereo.

The dwLayerMask and iLayerType fields specify the drawing planes that are to be used and are
usually set to PFD_MAIN_PLANE. Some OpenGL graphics cards provide auxiliary buffers above
and below the normal Windows color plane allowing you to draw menus or other graphical constructs
without overwriting the main image. The generic implementation provided by Microsoft does not
support auxiliary drawing planes.

The iPixelType field specifies how color values are represented and can be one of the two values in
Table 15-2.

Table 15-2 PIXELFORMATDESCRIPTOR Pixel Types

Pixel Type Description

PFD_TYPE_RGBA Colors are composed of red, green, blue, and alpha values.
PFD_TYPE_COLORINDEX Colors are composed of an index value in the current logical

palette.

The cColorBits, cDepthBits, cAccumBits, and cStencilBits fields specify the size of each buffer for
the window. Specifying 0 for a field disables that buffer, except for cColorBits. If you specify 0 for
cColorBits, Windows will provide the minimum number of bits available—usually 4 or 8 bits (16 or
256 colors). When iPixelType is set to PFD_TYPE_RGBA, the cColorBits field specifies the total
number of red, green, and blue color bits. The current generic implementation of OpenGL provided
by Microsoft does not support alpha color bits.

Once you have filled in all the necessary PIXELFORMATDESCRIPTOR information, you can set
the pixel format for the window with a few simple calls, as shown here:

// The device context refers to the graphics driver for this window.
HDC hdc;

// This integer holds the Windows pixel format code
int pf;

// Choose and select the pixel format...
pf = ChoosePixelFormat(hdc, &pfd);
if (pf == 0)
{
 // Could not find the pixel format...
 MessageBox(NULL, "ChoosePixelFormat failed!", "Error", MB_OK);
}
else if (!SetPixelFormat(hdc, pf, &pfd))
{
 // Could not set the pixel format...
 MessageBox(NULL, "SetPixelFormat failed!", "Error", MB_OK);
}

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Buffers: Not Just for Animation

http://www.itknowledge.com/reference/archive/1571690735/ch15/471-476.html [20-03-2000 21:39:11]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

After calling ChoosePixelFormat, the PIXELFORMATDESCRIPTOR information is filled with the actual
hardware values that were chosen. On return, the dwFlags field can contain three additional flags that require
your attention; they are listed in Table 15-3.

Table 15-3 PIXELFORMATDESCRIPTOR Return Values

Return Value Description

PFD_GENERIC_FORMAT
The requested format is supported by the generic
implementation.

PFD_NEED_PALETTE The RGBA color buffer will be drawn on a palette-managed
device and requires a logical palette.

PFD_NEED_SYSTEM_PALETTE The color values require a fixed system palette to display
correctly. Call SetSystemPaletteUse() to force a one-to-one
mapping of the logical palette and the system palette.

If PFD_NEED_PALETTE is set, you should define a logical palette as specified by the cRedBits, cRedShift,
cGreenBits, cGreenShift, cBlueBits, and cBlueShift fields. Following is an example of a defined palette.

HDC hdc;
PIXELFORMATDESCRIPTOR pfd;
HPALETTE palette;
LOGPALETTE *pal;
int i,
 pf,
 num_colors,
 red, num_reds,
 blue, num_blues,
 green, num_greens;

// Get the current pixel format information
pf = GetPixelFormat(hdc);
DescribePixelFormat(hdc, pf, sizeof(PIXELFORMATDESCRIPTOR), &pfd);

// Check to see if we need to make a palette
if (pfd.dwFlags & PFD_NEED_PALETTE)
{
 // Yes, we do. First, allocate logical color palette entries...
 num_colors = 1 << pfd.cColorBits;
 pal = (PLOGPALETTE)LocalAlloc(LMEM_FIXED, sizeof(LOGPALETTE) +
 num_colors * sizeof(PALETTEENTRY));
 pal->palVersion = 0x300;
 pal->palNumEntries = num_colors;

 num_reds = (1 << pfd.cRedBits) - 1;
 num_greens = (1 << pfd.cGreenBits) - 1;
 num_blues = (1 << pfd.cBlueBits) - 1;

 for (blue = 0, i = 0; blue <= num_blues; blue ++)
 for (green = 0; green <= num_greens; green ++)
 for (red = 0; red <= num_reds; red ++, i ++)
 {
 pal->palPalEntry[i].peRed = 255 * red / num_reds;
 pal->palPalEntry[i].peGreen = 255 * green / num_greens;
 pal->palPalEntry[i].peBlue = 255 * blue / num_blues;
 pal->palPalEntry[i].peFlags = 0;
 }

 palette = CreatePalette(pal);
 SelectPalette(hdc, palette, FALSE);
 RealizePalette(hdc);

 LocalFree(pal);
}

The Color Buffer

The color buffer holds pixel color information. Each pixel can contain a color index or red/green/blue/alpha
(RGBA) values that describes the appearance of that pixel. RGBA pixels are displayed directly using the
closest available color(s) on the screen. The generic OpenGL implementation from Microsoft does not support
alpha color values at this time.

The appearance of color index pixels is determined by looking up the index in an RGB color table. Under
Windows these color tables are implemented using a logical color palette. Color index mode is very useful for
displaying tabular data graphically (for example, stress or force meters), as shown in the second depth buffer
example in “Another Application of the Depth Buffer.”

Double Buffering

Double buffering provides an additional off-screen color buffer that is often used for animation. With double
buffering you can draw a scene off screen and quickly “swap” it onto the screen, eliminating the annoying
flicker that would otherwise be present.

Double buffering only affects the color buffer and does not provide a second depth, accumulation, or stencil
buffer. If you choose a pixel format with double buffering, OpenGL selects the “back” buffer for drawing.
You can change this using the glDrawBuffer function to specify one of the values in Table 15-4.

Table 15-4 glDrawBuffer Values

Buffer Description

GL_FRONT Draw only to the front (visible) color buffer.
GL_BACK Draw only to the back (hidden) color buffer.
GL_FRONT_AND_BACK Draw to both the front and back color buffers.

Stereo Buffering

Stereo buffering provides an additional color buffer in single-buffered mode and two additional color buffers
in double-buffered mode, to generate a left- and right-eye screen image. (See Table 15-5.) True
three-dimensional images can be generated by choosing the correct viewing positions for each eye, usually
offset by a few “inches” to simulate the distance between our eyes. Stereo buffering is not available on most
PC graphics cards.

Table 15-5 Stereo Buffer Values

Buffer Description

GL_LEFT_FRONT Draw only to the left-front buffer.
GL_LEFT_BACK Draw only to the left-back buffer.
GL_RIGHT_FRONT Draw only to the right-front buffer.
GL_RIGHT_BACK Draw only to the right-back buffer.
GL_FRONT Draw to both the left- and right-front buffers.
GL_BACK Draw to both the left- and right-back buffers.

In addition to specifying the front or back buffer for drawing, the glDrawBuffer function can select the left- or
right-eye buffers.

Swapping Buffers

Open GL does support double buffering, but there is no OpenGL function to actually swap the front and back
buffers! Fortunately, every windowing system with OpenGL support has a function call to accomplish this.
Under Windows, this call is

SwapBuffers(hdc);

where hdc is the device context for the window in which you are drawing. If you have chosen a
stereo-buffered pixel format, both the left and right eyes are swapped by the one call.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Buffers: Not Just for Animation

http://www.itknowledge.com/reference/archive/1571690735/ch15/476-479.html [20-03-2000 21:39:17]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The Depth Buffer

The depth buffer holds distance values for each pixel. Each value represents
the pixel’s distance from the viewer and is scaled to fill the current near/far
clipping volume. The software implementation of OpenGL under Windows
supports both 16- and 32-bit depth values.

The depth buffer is normally used to perform hidden surface removal.
Hidden surface removal is a process that occurs naturally in the real world;
when one solid (opaque) object is placed in front of another, the nearer
object will hide some or all of the one behind it.

In OpenGL, the depth buffer can also be used for some interesting effects,
such as cutting away the front of objects to show the inner surfaces (see
Figures 15-2a and 15-2b).

Figure 15-2a Typical depth buffering with GL_LESS

Figure 15-2b Typical depth buffering with GL_GREATER

Depth Comparisons

When you draw in a window using OpenGL, the Z position of each pixel is
compared with the value in the depth buffer. If the result of the comparison
is True, the pixel is stored in the color buffer along with its depth. OpenGL
defines eight depth-comparison functions that can be used for depth
buffering (Table 15-6).

Table 15-6 Depth Comparison Functions

Name Function

GL_NEVER Always False.
GL_LESS True if source Z < depth Z.
GL_EQUAL True if source Z = depth Z.
GL_LEQUAL True if source Z <= depth Z.
GL_GREATER True if source Z > depth Z.
GL_NOTEQUAL True if source Z != depth Z.
GL_GEQUAL True if source Z >= depth Z.
GL_ALWAYS Always True.

The default comparison function is GL_LESS. To change it, call
glDepthFunc:

glDepthFunc(function);

Using the GL_LESS function, pixels in a polygon are drawn if the depth
value of the pixel is less than the depth value in the depth buffer.

Depth Values

When using the GL_EQUAL and GL_NOTEQUAL depth comparisons, it
is sometimes necessary to alter the range of depth values used, in order to
reduce the number of available values (keeping the number of values to a
minimum). Use glDepth Range, as follows:

glDepthRange(near, far);

The near and far parameters are floating point numbers between 0.0 and
1.0, inclusive. The defaults are 0.0 for near and 1.0 for far. Normally, near
is less than far, but you may also reverse the order to achieve special effects
(or use the GL_GREATER and GL_GEQUAL functions). Reducing the
range of values stored in the depth buffer does not affect clipping, but it
will make the depth buffer less accurate and can lead to errors in hidden
surface removal in the display.

Some depth comparisons need a different initial depth value. By default, the
depth buffer is cleared to 1.0 with the glClear function. To specify a
different value, use the glClearDepth function:

glClearDepth(depth);

The depth parameter is a floating point number between 0.0 and 1.0,
inclusive, unless you have defined a smaller range with glDepthRange. In
general, use a value of 0.0 for GL_GREATER and GL_GEQUAL
comparisons, and 1.0 for GL_LESS and GL_LEQUAL comparisons.

Applications of the Depth Buffer

The usual application of the depth buffer is to remove hidden surfaces. As
noted earlier, the depth buffer can also be used to cut away the front parts of
a scene. Listing 15-1 demonstrates this type of application. The key to this
program is the use of glDepthFunc and glClearDepth:

glDepthFunc(depth_function);

Here we use a global variable to hold the current depth function. The
depth_function variable is initialized to GL_LESS when the program starts.
When the user presses the D key, the toggle_depth callback function
switches this between GL_GREATER and GL_LESS.

if (depth_function == GL_LESS)
 glClearDepth(1.0);
else
 glClearDepth(0.0);

The glClearDepth call is needed to provide the correct initial depth value
for the window, since the depth value is 1.0 by default. Nothing would be
drawn when the depth function is set to GL_GREATER, because no pixel
could possibly have a depth value greater than 1.0.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Buffers: Not Just for Animation

http://www.itknowledge.com/reference/archive/1571690735/ch15/479-481.html [20-03-2000 21:39:26]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Listing 15-1 Depth buffer example using glDepthFunc

/*
 * "depth.c" - A test program demonstrating the use of glDepthFunc().
 *
 * Press the 'd' key to toggle between GL_LESS and GL_GREATER depth
 * tests. Press the 'ESC' key to quit.
 */

#include <GL/glaux.h>

/*
 * These #define constants are provided for compatibility between MS
 * Windows and the rest of the world.
 *
 * CALLBACK and APIENTRY are function modifiers under MS Windows.
 */

#ifndef WIN32
define CALLBACK
define APIENTRY
#endif /* !WIN32 */

GLenum depth_function = GL_LESS; /* Current depth function */

/*
 * 'reshape_scene()' - Change the size of the scene...
 */

void CALLBACK
reshape_scene(GLsizei width, /* I - Width of the window in pixels */
 GLsizei height) /* I - Height of the window in pixels */
{
 /*
 * Reset the current viewport and perspective transformation...
 */

 glViewport(0, 0, width, height);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(22.5, (float)width / (float)height, 0.1, 1000.0);

 glMatrixMode(GL_MODELVIEW);
}

/*
 * 'draw_scene()' - Draw a scene containing a cube with a sphere in
 * front of it.
 */

void CALLBACK
draw_scene(void)
{
 static float red_light[4] = { 1.0, 0.0, 0.0, 1.0 };
 static float red_pos[4] = { 1.0, 1.0, 1.0, 0.0 };
 static float blue_light[4] = { 0.0, 0.0, 1.0, 1.0 };
 static float blue_pos[4] = { -1.0, -1.0, -1.0, 0.0 };

 /*
 * Enable drawing features that we need...
 */

 glEnable(GL_DEPTH_TEST);
 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
 glEnable(GL_LIGHT1);

 glShadeModel(GL_SMOOTH);
 glDepthFunc(depth_function);

 /*
 * Clear the color and depth buffers...
 */

 if (depth_function == GL_LESS)
 glClearDepth(1.0);
 else
 glClearDepth(0.0);

 glClearColor(0.0, 0.0, 0.0, 0.0);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 /*
 * Draw the cube and sphere in different colors...
 *
 * We have positioned two lights in this scene. The first is red and
 * located above, to the right, and behind the viewer. The second
 * is blue and located below, to the left, and in front of the viewer.
 */

 glLightfv(GL_LIGHT0, GL_DIFFUSE, red_light);
 glLightfv(GL_LIGHT0, GL_POSITION, red_pos);

 glLightfv(GL_LIGHT1, GL_DIFFUSE, blue_light);
 glLightfv(GL_LIGHT1, GL_POSITION, blue_pos);

 glPushMatrix();
 glTranslatef(-1.0, 0.0, -20.0);
 auxSolidSphere(1.0);
 glPopMatrix();

 glPushMatrix();
 glTranslatef(1.0, 0.0, -20.0);
 glRotatef(15.0, 0.0, 1.0, 0.0);
 glRotatef(15.0, 0.0, 0.0, 1.0);
 auxSolidCube(2.0);
 glPopMatrix();

 glFlush();
}

/*
 * 'toggle_depth()' - Toggle the depth function between GL_LESS and
 * GL_GREATER.
 */

void CALLBACK
toggle_depth(void)
{
 if (depth_function == GL_LESS)
 depth_function = GL_GREATER;
 else
 depth_function = GL_LESS;
}

/*
 * 'main()' - Initialize the window and display the scene until the
 * user presses the ESCape key.
 */

void
main(void)
{
 auxInitDisplayMode(AUX_RGB | AUX_SINGLE | AUX_DEPTH);
 auxInitWindow(?Depth Function?);

 auxKeyFunc(AUX_d, toggle_depth);
 auxReshapeFunc(reshape_scene);

 auxMainLoop(draw_scene);
}

/*
 * End of "depth.c".
 */

Another Application of the Depth Buffer

The depth buffer can also be used to generate a contour mapping of a scene, which shows different colors
for each depth. Contour maps can be generated using the glReadPixels function and by specifying the
depth component as the value of interest, as follows:

glReadPixels(x, y, width, height, GL_DEPTH_COMPONENT, type, pixels);

The returned depth values can then be scaled and assigned to color values that can be displayed as a
contour image, especially in color index mode, like this:

#define WIDTH 320
#define HEIGHT 200
GLfloat pixels[WIDTH * HEIGHT];
int i;

// draw the scene...
glEnable(GL_DEPTH_TEST);
...
// Grab the depth buffer
glReadPixels(0, 0, WIDTH, HEIGHT, GL_DEPTH_COMPONENT, GL_FLOAT,
 pixels);
// Convert depth values to color indices
for (i = 0; i < (WIDTH * HEIGHT); i ++)
 pixels[i] = pixels[i] * 255.0; // Assume 256 color palette
// Display the new pixels on the screen
glDisable(GL_DEPTH_TEST);
glDrawPixels(0, 0, WIDTH, HEIGHT, GL_COLOR_INDEX, GL_FLOAT, pixels);

In a real application, you’d probably want to provide some user control over the color palette and range of
values. You can also use RGBA color values to enhance a scene, using glBlendFunc to mix the “normal”
image with the “depth” image.

Cutting Away Parts of a Scene

Let’s see how to cut away parts of a scene—an engine block, for instance—to show some internal
operation that would not normally be visible. Listing 15-2 is an example of using the depth buffer for this
purpose.

The heart of this program is the draw_scene function, which draws a picture of a cube and sphere being
cut by a moving plane. To cut away parts of the scene, we first draw the cutting plane. Instead of drawing
to the color buffer, we begin by disabling drawing to the color buffer with glDrawBuffer.

glDrawBuffer(GL_NONE);

glBegin(GL_POLYGON);
 glVertex3f(-100.0, 100.0, cutting_plane);
 glVertex3f(100.0, 100.0, cutting_plane);
 glVertex3f(100.0, -100.0, cutting_plane);
 glVertex3f(-100.0, -100.0, cutting_plane);
glEnd();

glDrawBuffer(GL_BACK);

Once the cutting plane is drawn, we reenable color buffer drawing and proceed with drawing the cube and
sphere. The invisible plane we drew will restrict what is drawn on the screen to polygons that lie behind
it, effectively cutting away parts of the scene.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Buffers: Not Just for Animation

http://www.itknowledge.com/reference/archive/1571690735/ch15/481-485.html [20-03-2000 21:39:33]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Listing 15-2 Using glDrawBuffer to cut away selected pieces of an object

/*
 * "depthcut.c" - A test program demonstrating the use of glDepthFunc()
 * and glDrawBuffer() to cut away parts of a scene.
 *
 * Press the 'd' key to toggle between GL_LESS and GL_GREATER depth
 * tests. Press the 'ESC' key to quit.
 */

#include <GL/glaux.h>

/*
 * These #define constants are provided for compatibility between MS
 * Windows and the rest of the world.
 *
 * CALLBACK and APIENTRY are function modifiers under MS Windows.
 */

#ifndef WIN32
define CALLBACK
define APIENTRY
#endif /* !WIN32 */

GLenum depth_function = GL_LESS; /* Current depth function */
GLfloat cutting_plane = -15.0, /* Cutting plane distance */
 cutting_dir = -1.0; /* Cutting plane direction */

/*
 * 'reshape_scene()' - Change the size of the scene...
 */

void CALLBACK
reshape_scene(GLsizei width, /* I - Width of the window in pixels */
 GLsizei height) /* I - Height of the window in pixels */
{

 /*
 * Reset the current viewport and perspective transformation...
 */

 glViewport(0, 0, width, height);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(22.5, (float)width / (float)height, 0.1, 1000.0);

 glMatrixMode(GL_MODELVIEW);
}

/*
 * 'draw_scene()' - Draw a scene containing a cube with a sphere in
 * front of it.
 */

void CALLBACK
draw_scene(void)
{
 static float red_light[4] = { 1.0, 0.0, 0.0, 1.0 };
 static float red_pos[4] = { 1.0, 1.0, 1.0, 0.0 };
 static float blue_light[4] = { 0.0, 0.0, 1.0, 1.0 };
 static float blue_pos[4] = { -1.0, -1.0, -1.0, 0.0 };

 /*
 * Enable drawing features that we need...
 */

 glEnable(GL_DEPTH_TEST);
 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
 glEnable(GL_LIGHT1);

 glShadeModel(GL_SMOOTH);
 glDepthFunc(depth_function);

 /*
 * Clear the color and depth buffers...
 */

 if (depth_function == GL_LESS)
 glClearDepth(1.0);
 else
 glClearDepth(0.0);

 glClearColor(0.0, 0.0, 0.0, 0.0);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 /*
 * Draw the cutting plane. Note that we disable drawing into the normal
 * color buffer while we do this...
 */

 glDrawBuffer(GL_NONE);
 glBegin(GL_POLYGON);
 glVertex3f(-100.0, 100.0, cutting_plane);
 glVertex3f(100.0, 100.0, cutting_plane);
 glVertex3f(100.0, -100.0, cutting_plane);
 glVertex3f(-100.0, -100.0, cutting_plane);
 glEnd();

 glDrawBuffer(GL_BACK);

 /*
 * Draw the cube and sphere in different colors...
 *
 * We have positioned two lights in this scene. The first is red and
 * located above, to the right, and behind the viewer. The second

 * is blue and located below, to the left, and in front of the viewer.
 */

 glLightfv(GL_LIGHT0, GL_DIFFUSE, red_light);
 glLightfv(GL_LIGHT0, GL_POSITION, red_pos);

 glLightfv(GL_LIGHT1, GL_DIFFUSE, blue_light);
 glLightfv(GL_LIGHT1, GL_POSITION, blue_pos);

 glPushMatrix();
 glTranslatef(-1.0, 0.0, -20.0);
 auxSolidSphere(1.0);
 glPopMatrix();

 glPushMatrix();
 glTranslatef(1.0, 0.0, -20.0);
 glRotatef(15.0, 0.0, 1.0, 0.0);
 glRotatef(15.0, 0.0, 0.0, 1.0);
 auxSolidCube(2.0);
 glPopMatrix();

 auxSwapBuffers();
}

/*
 * 'toggle_depth()' - Toggle the depth function between GL_LESS and
 * GL_GREATER.
 */

void CALLBACK
toggle_depth(void)
{
 if (depth_function == GL_LESS)
 depth_function = GL_GREATER;
 else
 depth_function = GL_LESS;
}

/*
 * 'move_plane()' - Move the cutting plane while we are idle...
 */

void CALLBACK
move_plane(void)
{
 cutting_plane += cutting_dir;

 /*
 * Reverse directions as needed...
 */

 if (cutting_plane <= -30.0 ||
 cutting_plane >= -15.0)
 cutting_dir = -cutting_dir;

 draw_scene();
}

/*
 * 'main()' - Initialize the window and display the scene until the
 * user presses the ESCape key.
 */

void
main(void)
{
 auxInitDisplayMode(AUX_RGB | AUX_DOUBLE | AUX_DEPTH);
 auxInitWindow("Depth Function");

 auxKeyFunc(AUX_d, toggle_depth);
 auxReshapeFunc(reshape_scene);
 auxIdleFunc(move_plane);

 auxMainLoop(draw_scene);
}

/*
 * End of "depthcut.c".
 */

The Stencil Buffer

The stencil buffer provides many options to restrict drawing on the screen and has many applications that the
depth buffer just can’t do. At its simplest level, the stencil buffer can be used to block out certain areas on the
screen. For example, a flight simulation program might use the stencil buffer to restrict drawing operations to
the inside of the aircraft’s round controls such as the artificial horizon and airspeed indicators.

Perhaps the most exciting application of the stencil buffer is for shadows. Depending on your graphics
hardware, you can generate hard and soft shadows from multiple light sources, making your scenes much
more realistic and exciting.

Using the Stencil Buffer

To use the stencil buffer, you have to first request one. For Windows, this means setting the cStencilBits
field in the Pixel Format Descriptor (PFD) for your window, as in

pfd.cStencilBits = 1;

Once you have requested a stencil buffer, you must enable stenciling by calling
glEnable(GL_STENCIL_TEST). Without this call, all stencil buffer operations are disabled.

Stencil Buffer Functions

There are four stenciling functions in OpenGL:

void glClearStencil(GLint s)
void glStencilFunc(GLenum func, GLint ref, GLuint mask)
void glStencilMask(GLuint mask)
void glStencilOp(GLenum fail, GLenum zfail, GLzpass)

The glClearStencil function is similar to glClearColor, glClearDepth, and glClearIndex; it provides the initial
value that is stored in the stencil buffer when glClear(GL_STENCIL_BIT) is called. By default, a 0 stencil
value is stored in the stencil buffer. Unlike the depth and color buffers, you don’t always clear the stencil
buffer every time you redisplay your scene. In the flight simulator example mentioned earlier, the aircraft
control area might never change position or size, so redrawing into the stencil buffer would be unnecessary.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Buffers: Not Just for Animation

http://www.itknowledge.com/reference/archive/1571690735/ch15/485-489.html [20-03-2000 21:39:39]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Drawing into the Stencil Buffer

Once you have enabled the GL_STENCIL_TEST attribute with glEnable, you’ll still need to set up how the
stencil buffer operates. By default, it does nothing, allowing drawing to occur anywhere on the screen without
updating the stencil buffer. To make stenciling work effectively, however, we need to put values into the
stencil buffer. The glStencilFunc and glStencilOp functions handle this interaction.

The glStencilFunc function defines a comparison function, reference value, and mask for all stencil buffer
operations. The valid functions are in Table 15-7.

Table 15-7 Stenciling Functions

Function Description

GL_NEVER The stencil test always fails (no drawing occurs).
GL_LESS Passes if the reference value is less than the stencil value.
GL_LEQUAL Passes if the reference value is less than or equal to the stencil value.
GL_GREATER Passes if the reference value is greater than the stencil value.
GL_GEQUAL Passes if the reference value is greater than or equal to the stencil value.
GL_EQUAL Passes if the reference value is equal to the stencil value.
GL_NOTEQUAL Passes if the reference value is not equal to the stencil value.
GL_ALWAYS The default; stencil test always passes (drawing always occurs).

Coupled with the stencil function is the stencil operation, defined with glStencilOp. Valid operations are in
Table 15-8.

Table 15-8 Stenciling Operations

Operation Description

GL_KEEP Keep the current stencil buffer contents.
GL_ZERO Set the stencil buffer value to 0.
GL_REPLACE Set the stencil buffer value to the function reference value.
GL_INCR Increment the current stencil buffer value.
GL_DECR Decrement the current stencil buffer value.
GL_INVERT Bitwise invert the current stencil buffer value.

Normally a mask image is used to outline the area in which drawing is to take place. Here is an example of
drawing a mask image into the stencil buffer:

glStencilFunc(GL_ALWAYS, 1, 1);
glStencilOp(GL_REPLACE, GL_REPLACE, GL_REPLACE);

Then you would issue drawing commands that store a value of 1 in the stencil buffer. To draw using the
stencil buffer mask, do the following prior to drawing the scene:

glStencilFunc(GL_EQUAL, 1, 1);
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);

Because this operates with all OpenGL drawing functions including glBitmap, you can use the stencil buffer
to create many special “hole” effects for animations! Listing 15-3 contains a version of DEPTHCUT.C called
STENCILCT.C that uses the stencil buffer instead of the depth buffer to cut away the middle of the cube.

Following is the heart of this program, which uses the functions described above:

glStencilFunc(GL_ALWAYS, 1, 1);
glStencilOp(GL_REPLACE, GL_REPLACE, GL_REPLACE);

glPushMatrix();
 glTranslatef(-1.0, 0.0, -20.0);
 auxSolidSphere(1.0);
glPopMatrix();

Once the stencil image is drawn, we draw the cube wherever the sphere was not drawn:

glStencilFunc(GL_NOTEQUAL, 1, 1); /* Draw where sphere isn’t */
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);

...

glPushMatrix();
 glTranslatef(1.0, 0.0, -20.0);
 glRotatef(15.0, 0.0, 1.0, 0.0);
 glRotatef(15.0, 0.0, 0.0, 1.0);
 auxSolidCube(2.0);
glPopMatrix();

Listing 15-3 STENCILCT.C, a stencil buffer example

/*
 * "stencilct.c" - A test program demonstrating the use of glStencilFunc()
 * and glStencilOp() to cut away the middle of a cube.
 */

#include <GL/glaux.h>

/*
 * These #define constants are provided for compatibility between MS
 * Windows and the rest of the world.
 *
 * CALLBACK and APIENTRY are function modifiers under MS Windows.
 */

#ifndef WIN32
define CALLBACK
define APIENTRY
#endif /* !WIN32 */

/*
 * 'reshape_scene()' - Change the size of the scene...
 */

void CALLBACK
reshape_scene(GLsizei width, /* I - Width of the window in pixels */
 GLsizei height) /* I - Height of the window in pixels */
{
 /*
 * Reset the current viewport and perspective transformation...
 */

 glViewport(0, 0, width, height);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(22.5, (float)width / (float)height, 0.1, 1000.0);

 glMatrixMode(GL_MODELVIEW);
}

/*
 * 'draw_scene()' - Draw a scene containing a cube with a sphere in
 * front of it.
 */

void CALLBACK
draw_scene(void)
{
 static float red_light[4] = { 1.0, 0.0, 0.0, 1.0 };
 static float red_pos[4] = { 1.0, 1.0, 1.0, 0.0 };
 static float
 blue_light[4] = { 0.0, 0.0, 1.0, 1.0 };
 static float blue_pos[4] = { -1.0, -1.0, -1.0, 0.0 };

 /*
 * Enable drawing features that we need...
 */

 glEnable(GL_DEPTH_TEST);
 glEnable(GL_STENCIL_TEST);
 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
 glEnable(GL_LIGHT1);

 glShadeModel(GL_SMOOTH);

 /*
 * Clear the color, depth, and stencil buffers...
 */

 glClearColor(0.0, 0.0, 0.0, 0.0);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT |
 GL_STENCIL_BUFFER_BIT);

 /*
 * Draw the sphere that will be cutting away parts of the cube...
 */

 glStencilFunc(GL_ALWAYS, 1, 1);
 glStencilOp(GL_REPLACE, GL_REPLACE, GL_REPLACE);

 glPushMatrix();
 glTranslatef(-1.0, 0.0, -20.0);
 auxSolidSphere(1.0);
 glPopMatrix();

 /*
 * Clear the color and depth buffers once again...
 */

 glClearColor(0.0, 0.0, 0.0, 0.0);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 /*
 * Draw the cube...
 *
 * We have positioned two lights in this scene. The first is red and
 * located above, to the right, and behind the viewer. The second
 * is blue and located below, to the left, and in front of the viewer.
 */

 glStencilFunc(GL_NOTEQUAL, 1, 1);
 glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);

 glLightfv(GL_LIGHT0, GL_DIFFUSE, red_light);
 glLightfv(GL_LIGHT0, GL_POSITION, red_pos);

 glLightfv(GL_LIGHT1, GL_DIFFUSE, blue_light);
 glLightfv(GL_LIGHT1, GL_POSITION, blue_pos);

 glPushMatrix();
 glTranslatef(1.0, 0.0, -20.0);
 glRotatef(15.0, 0.0, 1.0, 0.0);
 glRotatef(15.0, 0.0, 0.0, 1.0);
 auxSolidCube(2.0);
 glPopMatrix();

 auxSwapBuffers();
}

/*
 * 'main()' - Initialize the window and display the scene until the user
 * presses the ESCape key.
 */

int APIENTRY
WinMain(HINSTANCE hInstance,
 HINSTANCE hPrev,
 LPSTR lpCmdLine,
 int nCmdShow)
{
 auxInitDisplayMode(AUX_RGB | AUX_DOUBLE | AUX_DEPTH | AUX_STENCIL);
 auxInitWindow("Stenciling");

 auxReshapeFunc(reshape_scene);
 auxMainLoop(draw_scene);
}

/*
 * End of "stencilct.c".
 */

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Buffers: Not Just for Animation

http://www.itknowledge.com/reference/archive/1571690735/ch15/489-493.html [20-03-2000 21:39:45]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The Accumulation Buffer

The accumulation buffer provides support for many special effects such as motion blur and depth of field.
It also supports full-screen anti-aliasing, although other methods (such as multisampling) are better suited
to this task.

The accumulation buffer is considerably less complex than the other buffers discussed so far. It has a single
function, glAccum, that manages all accumulation buffer actions. The actions that can be performed are in
Table 15-9.

Table 15-9 Accumulation Operations

Operation Description

GL_ACCUM Add scaled color-buffer values to the accumulation buffer.
GL_LOAD Load scaled color-buffer values into the accumulation buffer, replacing

whatever had been there before.
GL_ADD Add a constant color to the accumulation buffer’s values.
GL_MULT Multiply color values in the accumulation buffer by a constant color

(filtering effects).
GL_RETURN Copy the accumulation buffer into the main color buffer.

The normal way you use the accumulation buffer is to render multiple views into it and display the final
composite scene with glAccum(GL_RETURN, 1.0).

Using the Accumulation Buffer for Motion Blur

As a coworker of ours once said, “It’s easy to make any application of the accumulation buffer look like
motion blur!” The problem is akin to what happens when your hands shake as you take a picture with a
camera—too much jitter will blur the image.

You’ll find that rendering motion blur is a little more complicated than just drawing a sequence of frames
with the camera moving between each frame. We perceive motion blur when an object moves faster than
our eyes can track it. In essence, the picture changes as the brain is “processing” the image, but the focus on
the moving target is never lost. In a camera, light entering the lens exposes the film for a finite amount of
time. Depending on the camera and photographer, the amount of blur seen may be small around the edges,
or it could streak across the image.

When you simulate motion blur with computer graphics, it is important to remember that the current (or
final) position of the object you are blurring must look more solid (or focused) than the rest of the frames.
The easiest way to accomplish this is to use a larger color scaling factor when accumulating the current
frame so that more of the color values from the final frame used will stand out from the rest. A typical
implementation looks something like this:

/* Draw the current frame */
draw_frame(0);
/* Load the accumulation buffer with 50% of the current frame */
glAccum(GL_LOAD, 0.5);

/* Draw the last 10 frames and accumulate 5% for each */
for (i = 1; i <= 10; i ++)
{
 draw_frame(-i);
 glAccum(GL_ACCUM, 0.05);
};

/* Display the final scene */
glAccum(GL_RETURN, 1.0);

Notice that you don’t have to use glClear to initialize the accumulation buffer contents, as you do with the
color, depth, and stencil buffers. Instead, most often you’ll use glAccum(GL_LOAD, s) on the first frame
of the scene. The program in Listing 15-4 demonstrates motion blur on the cube and sphere.

Listing 15-4 MOTION.C: Motion blur using the accumulation buffer

/*
 * "motion.c" - A test program demonstrating the use of glAccum() for
 * motion blur.
 */

#include <GL/glaux.h>

/*
 * These #define constants are provided for compatibility between MS
 * Windows and the rest of the world.
 *
 * CALLBACK and APIENTRY are function modifiers under MS Windows.
 */

#ifndef WIN32
define CALLBACK
define APIENTRY
#endif /* !WIN32 */

GLfloat rotation = 0.0;

/*
 * 'reshape_scene()' - Change the size of the scene...
 */

void CALLBACK
reshape_scene(GLsizei width, /* I - Width of the window in pixels */
 GLsizei height) /* I - Height of the window in pixels */
{
 /*
 * Reset the current viewport and perspective transformation...
 */

 glViewport(0, 0, width, height);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(22.5, (float)width / (float)height, 0.1, 1000.0);

 glMatrixMode(GL_MODELVIEW);
}

/*
 * 'draw_scene()' - Draw a scene containing a cube with a sphere in
 * front of it.
 */

void CALLBACK
draw_scene(void)
{
 GLfloat frame;
 static float red_light[4] = { 1.0, 0.0, 0.0, 1.0 };
 static float red_pos[4] = { 1.0, 1.0, 1.0, 0.0 };
 static float
 blue_light[4] = { 0.0, 0.0, 1.0, 1.0 };
 static float blue_pos[4] = { -1.0, -1.0, -1.0, 0.0 };

 /*
 * Enable drawing features that we need...
 */

 glEnable(GL_DEPTH_TEST);
 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
 glEnable(GL_LIGHT1);

 glShadeModel(GL_SMOOTH);

 /*
 * Clear the color and depth buffers...
 */

 glClearColor(0.0, 0.0, 0.0, 0.0);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 /*
 * Draw the cube and sphere in different colors...
 *
 * We have positioned two lights in this scene. The first is red and
 * located above, to the right, and behind the viewer. The second
 * is blue and located below, to the left, and in front of the viewer.
 */

 glLightfv(GL_LIGHT0, GL_DIFFUSE, red_light);
 glLightfv(GL_LIGHT0, GL_POSITION, red_pos);

 glLightfv(GL_LIGHT1, GL_DIFFUSE, blue_light);
 glLightfv(GL_LIGHT1, GL_POSITION, blue_pos);

 /*
 * Draw the objects 11 times starting at the current rotation...
 */

 for (frame = 0.0; frame <= 11.0; frame ++)
 {
 glPushMatrix();
 glTranslatef(0.0, 0.0, -20.0);
 glRotatef(rotation - frame, 0.0, 1.0, 0.0);

 glPushMatrix();
 glTranslatef(-1.0, 0.0, 0.0);
 auxSolidSphere(1.0);
 glPopMatrix();

 glPushMatrix();
 glTranslatef(1.0, 0.0, 0.0);
 glRotatef(15.0, 0.0, 1.0, 0.0);
 glRotatef(15.0, 0.0, 0.0, 1.0);
 auxSolidCube(2.0);
 glPopMatrix();
 glPopMatrix();

 /*
 * Accumulate 50% the first time, 5% every other time...
 */

 if (frame == 0.0)
 glAccum(GL_LOAD, 0.5);
 else
 glAccum(GL_ACCUM, 0.05);
 };

 /*
 * Copy the accumulated results back to the color buffer...
 */

 glAccum(GL_RETURN, 1.0);

 auxSwapBuffers();
}

/*
 * 'rotate_objects()' - Rotate while we are idle...
 */

void CALLBACK
rotate_objects(void)
{
 rotation += 2.0;
 if (rotation >= 360.0)
 rotation -= 360.0;

 draw_scene();
}

/*
 * 'main()' - Initialize the window and display the scene until the user
 * presses the ESCape key.
 */

int APIENTRY
WinMain(HINSTANCE hInstance,
 HINSTANCE hPrev,
 LPSTR lpCmdLine,
 int nCmdShow)
{
 auxInitDisplayMode(AUX_RGB | AUX_DOUBLE | AUX_DEPTH | AUX_ACCUM);
 auxInitWindow("Motion Blur");

 auxReshapeFunc(reshape_scene);
 auxIdleFunc(rotate_objects);

 auxMainLoop(draw_scene);
}

/*
 * End of "motion.c".
 */

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Buffers: Not Just for Animation

http://www.itknowledge.com/reference/archive/1571690735/ch15/493-497.html [20-03-2000 21:39:52]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Using the Accumulation Buffer for Anti-Aliasing

Another application of the accumulation buffer is full-scene anti-aliasing.
The basic strategy is to jitter the image one-half a pixel in several
directions, to blur the edges of an image but not the solid areas.
Accumulating as little as four of these “jittered” scenes will produce
remarkably smoother images. The Microsoft Visual C++ compiler includes
many OpenGL examples that use jitter for anti-aliasing. See the file
OPENGL\BOOK\JITTER.H from the Visual C++ CD-ROM for many
different sets of jitter values.

Anti-aliasing with the accumulation buffer does carry a price in speed,
however. If you want to do any real-time anti-aliased animation, you’ll
have to look at graphics hardware that supports multisampling to do your
anti-aliasing for you. The accumulation buffer is just too slow for
interactive work.

If you are generating stills or stop-motion animations, the accumulation
buffer will give you anti-aliasing and simulated depth-of-field that simply
are not possible with multisampling.

Reference Section

glAccum
Purpose

Operates on the accumulation buffer to establish pixel values.

Include File
<GL/gl.h>

Syntax
void glAccum(GLenum func, GLfloat value);

Description
This function operates on the accumulation buffer. Except for
GL_RETURN, color values are scaled by the value parameter and
added or stored into the accumulation buffer. For GL_RETURN, the
accumulation buffer’s color values are scaled by the value parameter
and stored in the current color buffer.

Parameters
func

GLenum: The accumulation function to apply. Valid functions are as
follows:

GL_ACCUM Add scaled color-buffer values to the
accumulation buffer.

GL_LOAD Load scaled color-buffer values into the
accumulation buffer, replacing whatever was
there before.

GL_ADD Add a constant color to the accumulation buffer
values.

GL_MULT Multiply color values in the accumulation buffer
by a constant color (filtering effects).

GL_RETURN Copy the accumulation buffer into the main color
buffer.

Returns
None.

Example
See the CH15\MOTION.C example on the source code CD-ROM.

See Also
ChoosePixelFormat, SetPixelFormat

glClearColor
Purpose

Specifies a color value for the color buffer.

Include File
<GL/gl.h>

Syntax
void glClearColor(GLfloat red, GLfloat green, GLfloat blue, GLfloat
alpha);

Description
This function sets the color value that will be used when clearing the
color buffer with glClear(GL_COLOR_BUFFER_BIT).

Parameters
red

GLfloat: The red color value for the color buffer.

green

GLfloat: The green color value for the color buffer.

blue

GLfloat: The blue color value for the color buffer.

alpha

GLfloat: The alpha color value for the color buffer.

Returns
None.

See Also
ChoosePixelFormat, SetPixelFormat

glClearDepth
Purpose

Specifies a depth value for the depth buffer.

Include File
<GL/gl.h>

Syntax
void glClearDepth(GLclampd depth);

Description
This function sets the depth value that will be used when clearing the
depth buffer with glClear(GL_DEPTH_BUFFER_BIT).

Parameters
depth

GLclampd: The clear value for the depth buffer.

Returns
None.

See Also
ChoosePixelFormat, SetPixelFormat

glClearIndex
Purpose

Specifies a color index value for the color buffer.

Include File
<GL/gl.h>

Syntax
void glClearIndex(GLfloat index);

Description
This function sets the color index value that will be used when
clearing the color buffer with glClear(GL_COLOR_BUFFER_BIT).

Parameters
index

GLfloat: The color index value for the color buffer.

Returns
None.

See Also
ChoosePixelFormat, SetPixelFormat

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Buffers: Not Just for Animation

http://www.itknowledge.com/reference/archive/1571690735/ch15/497-500.html [20-03-2000 21:39:59]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Chapter 16
Visual Effects: Blending and Fog

What you’ll learn in this chapter:
How to… Functions You’ll Use

Display transparent or translucent
lines and polygons

glBlendFunc

Add weather haze and fog effects glFog

This chapter introduces the color blending and fog functions provided by
OpenGL, both of which can be used to add that last bit of realism you need.

The color blending functions support effects such as transparency that can
be used to simulate windows, drink glasses, and other transparent objects.
The fog functions add a variable amount of color to the polygons you draw,
producing a scene that looks “hazy” or just downright dreary!

Something to remember when using these special effects is that they don’t
look good on an 8-bit display. Make sure your programs contain the option
of disabling these effects when running on 8-bit displays.

Blending

Blending in OpenGL provides pixel-level control of RGBA color storage in
the color buffer. Blending operations cannot be used in color index mode
and are disabled in color index windows.

To enable blending in RGBA windows, you must first call
glEnable(GL_BLEND). After this, you call glBlendFunc with two
arguments: the source and the destination colors’ blending functions (see
Tables 16-1 and 16-2). By default, these arguments are GL_ONE and
GL_ZERO, respectively, which is equivalent to glDisable(GL_BLEND).

Table 16-1 Blending Functions for Source Color

Function Blend Factor

GL_ZERO Source color = 0,0,0,0.
GL_ONE Uses <?> Source color.
GL_DST_COLOR Source color is multiplied by the

destination pixel color.
GL_ONE_MINUS_DST_COLOR Source color is multiplied by (1,1,1,1 –

destination color).

GL_SRC_ALPHA
Source color multiplied by source
alpha.

GL_ONE_MINUS_SRC_ALPHA
Source color multiplied by (1 – source
alpha).

GL_DST_ALPHA Source color multiplied by destination
alpha; not supported by Microsoft
OpenGL.

GL_ONE_MINUS_DST_ALPHA Source color multiplied by (1 –
destination alpha); not supported by
Microsoft OpenGL.

GL_SRC_ALPHA_SATURATE Source color multiplied by the
minimum of the source and (1 –
destination) alphas; not supported by
Microsoft OpenGL.

Table 16-2 Blending Functions for Destination Color

Function Blend Factor

GL_ZERO Destination color = 0,0,0,0.
GL_ONE Use <?> Destination color.
GL_SRC_COLOR Destination color is multiplied by the

source pixel color.
GL_ONE_MINUS_SRC_COLOR Destination color is multiplied by

(1,1,1,1 – source color).
GL_SRC_ALPHA Destination color multiplied by source

alpha.
GL_ONE_MINUS_SRC_ALPHA Destination color multiplied by (1 –

source alpha).
GL_DST_ALPHA Destination color multiplied by

destination alpha; not supported by
Microsoft OpenGL.

GL_ONE_MINUS_DST_ALPHA Destination color multiplied by (1 –
destination alpha); not supported by
Microsoft OpenGL.

GL_SRC_ALPHA_SATURATE Destination color multiplied by the
minimum of the source and (1 –
destination) alphas; not supported by
Microsoft OpenGL.

Using Blending for Transparency

Transparency is perhaps the most typical use of blending, often used for
windows, bottles, and other 3D objects that you can see through.
Transparency can also be used to combine multiple images, or for “soft”
brushes in a paint program.

Following are the blending functions for all of these applications:

glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

This combination takes the source color and scales it based on the alpha
component, and then adds the destination pixel color scaled by 1 minus the
alpha value. Stated more simply, this blending function takes a fraction of
the current drawing color and overlays it on the pixel on the screen. The
alpha component of the color can be from 0 (completely transparent) to 1
(completely opaque), as follows:

Rd = Rs * As + Rd * (1 - As)
Gd = Gs * As + Gd * (1 - As)
Bd = Bs * As + Bd * (1 - As)

Because only the source alpha component is used, you do not need a
graphics board that supports alpha color planes in the color buffer. This is
important because the standard Microsoft OpenGL implementation does not
support alpha color planes.

Something to remember with alpha-blended transparency is that the normal
depth-buffer test can interfere with the effect you’re trying to achieve. To
make sure that your transparent polygons and lines are drawn properly,
always draw them from back to front.

Listing 16-1 shows the code that was used to draw the transparent teapot in
Figure 16-1. In the draw_scene function, we draw the two teapots from
back to front to ensure that the rear teapot can be seen through the front
one. You’ll notice some artifacts remain visible in the front teapot where
the surface polygons intersect. You can’t eliminate these completely, but
you can reduce them by sorting the polygons by depth first and enabling
back-face culling with glEnable(GL_CULL_FACE).

Figure 16-1 Transparent teapot using blending

The first thing draw_scene does is set the blending function to do
transparency based on the drawing (source) color’s alpha component:

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

Next, the opaque teapot is drawn with blending disabled so that we can
always see the teapot through the transparent one:

glDisable(GL_BLEND);
glColor3f(1.0, 1.0, 0.0);
auxSolidTeapot(1.0);

Finally, blending is enabled and the transparent teapot is drawn with an
alpha (transparency) value of 0.25:

glEnable(GL_BLEND);
glColor4f(1.0, 1.0, 1.0, 0.25);
auxSolidTeapot(1.0);

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Visual Effects:nBlending and Fog

http://www.itknowledge.com/reference/archive/1571690735/ch16/503-508.html [20-03-2000 21:40:09]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Listing 16-1 BLENDPOT.C: Using glBlendFunc for transparency

/*
 * "blendpot.c" - A test program demonstrating the use of glBlendFunc()
 * for transparency.
 */

#include <GL/glaux.h>

/*
 * These #define constants are provided for compatibility between MS
 * Windows and the rest of the world.
 *
 * CALLBACK and APIENTRY are function modifiers under MS Windows.
 */

#ifndef WIN32
define CALLBACK
define APIENTRY
#endif /* !WIN32 */

GLfloat rotation = 0.0;

/*
 * 'reshape_scene()' - Change the size of the scene…
 */

void CALLBACK
reshape_scene(GLsizei width, /* I - Width of the window in pixels */
 GLsizei height) /* I - Height of the window in pixels */
{
 /*
 * Reset the current viewport and perspective transformation…
 */

 glViewport(0, 0, width, height);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(22.5, (float)width / (float)height, 0.1, 1000.0);

 glMatrixMode(GL_MODELVIEW);
}

/*
 * 'draw_scene()' - Draw a scene containing a cube with a sphere in front
 * of it.
 */

void CALLBACK
draw_scene(void)
{
 GLfloat frame;
 static float red_light[4] = { 1.0, 0.0, 0.0, 1.0 };
 static float red_pos[4] = { 1.0, 1.0, 1.0, 0.0 };
 static float blue_light[4] = { 0.0, 0.0, 1.0, 1.0 };
 static float blue_pos[4] = { -1.0, -1.0, -1.0, 0.0 };

 /*
 * Enable drawing features that we need…
 */

 glEnable(GL_DEPTH_TEST);
 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
 glEnable(GL_LIGHT1);

 glShadeModel(GL_SMOOTH);

 /*
 * Clear the color and depth buffers…
 */

 glClearColor(0.0, 0.0, 0.0, 0.0);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 /*
 * Draw the cube and sphere in different colors…
 *
 * We have positioned two lights in this scene. The first is red and
 * located above, to the right, and behind the viewer. The second is
 * blue and located below, to the left, and in front of the viewer.
 */

 glLightfv(GL_LIGHT0, GL_DIFFUSE, red_light);
 glLightfv(GL_LIGHT0, GL_POSITION, red_pos);

 glLightfv(GL_LIGHT1, GL_DIFFUSE, blue_light);
 glLightfv(GL_LIGHT1, GL_POSITION, blue_pos);

 glEnable(GL_COLOR_MATERIAL);
 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

 glPushMatrix();
 glTranslatef(0.0, 0.0, -15.0);
 glRotatef(-rotation, 0.0, 1.0, 0.0);

 glDisable(GL_BLEND);
 glColor3f(1.0, 1.0, 0.0);
 auxSolidTeapot(1.0);
 glPopMatrix();

 glPushMatrix();
 glTranslatef(0.0, 0.0, -10.0);
 glRotatef(rotation, 0.0, 1.0, 0.0);
 glEnable(GL_BLEND);
 glColor4f(1.0, 1.0, 1.0, 0.25);
 auxSolidTeapot(1.0);
 glPopMatrix();

 auxSwapBuffers();
}

/*
 * 'rotate_objects()' - Rotate while we are idle…
 */

void CALLBACK
rotate_objects(void)
{
 rotation += 2.0;
 if (rotation >= 360.0)
 rotation -= 360.0;

 draw_scene();
}

/*
 * 'main()' - Initialize the window and display the scene until the user
 * presses the ESCape key.
 */

void
main(void)
{
 auxInitDisplayMode(AUX_RGB | AUX_DOUBLE | AUX_DEPTH);
 auxInitWindow("Blended Teapot");

 auxReshapeFunc(reshape_scene);
 auxIdleFunc(rotate_objects);

 auxMainLoop(draw_scene);
}

/*
 * End of "blendpot.c".
 */

Using Blending with Anti-Aliasing

The appearance of anti-aliased points, lines, and polygons can be enhanced by using the same two blending
functions as for transparency, GL_SRC_ALPHA and GL_ONE_MINUS_SRC_ALPHA. On systems with
hardware-assisted anti-aliasing and blending, blending will produce results similar to full-screen anti-aliased
scenes made using the accumulation buffer. At the same time, blending is several times faster than
accumulation because the scene needs to be drawn only once.

To draw a scene using blending and anti-aliased primitives, call the following functions:

glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_LINE_SMOOTH);
glEnable(GL_POINT_SMOOTH);
glEnable(GL_POLYGON_SMOOTH);

Using Blending for a Paint Program

The same techniques used for 3D graphics can be applied to 2D graphics. In the case of paint programs, we
can use blending to create soft-edged “brushes.” To start, we will define alpha images of each brush. An
alpha image contains alpha values but no RGB (color) values and will define how much color actually is
drawn on the page (see Figure 16-2).

Figure 16-2 Alpha “brush” image

To “paint” using this brush image, we’re going to use a different set of blending functions:

glBlendFunc(GL_SRC_COLOR, GL_ONE_MINUS_SRC_ALPHA);

Instead of the GL_SRC_ALPHA function for the source color, we use the GL_SRC_COLOR function,
which uses the current color instead of the alpha component. Thus, the color that will be applied is as
follows:

R = Rs * Ab + Rd * (1.0 - Ab)
G = Gs * Ab + Gd * (1.0 - Ab)
B = Bs * Ab + Bd * (1.0 - Ab)

That is, the alpha values from the brush image will be used instead of the current alpha color value!

Listing 16-2 is a simple “paint” program that uses a 7 x 7 pixel brush image for painting. The main event
loop handles drawing in the window. When you hold the left mouse button down, the event loop will call the
DrawXY function to paint at the current mouse position:

glRasterPos2i(mousex, mousey);
glDrawPixels(7, 7, GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE, BlendBrush[0]);

The RepaintWindow function clears the client area whenever the window is resized or needs to be redrawn:

glViewport(0, 0, rect->right, rect->bottom);
glOrtho(0.0, (float)rect->right, (float)rect->bottom, 0.0, -1.0, 1.0);

glClearColor(0.0, 0.0, 0.0, 1.0);
glClear(GL_COLOR_BUFFER_BIT);

glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

Unfortunately, this means you’ll lose your painting. A real paint application could use glReadPixels to copy
the drawn pixels to an off-screen buffer, which could be used to redraw the screen later using glDrawPixels.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Visual Effects:nBlending and Fog

http://www.itknowledge.com/reference/archive/1571690735/ch16/508-512.html [20-03-2000 21:40:17]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Fog

OpenGL provides depth-cueing (shading based upon distance) and atmospheric effects through the glFog
function. Essentially, fog provides a way of adding (mixing) a predefined color with each vertex or texture
image based upon the distance from the user. Fog is often used in flight simulators and animation packages
to provide the final real-world look to computer graphics.

OpenGL supports three kinds of fog: GL_LINEAR for depth-cueing, GL_EXP for heavy fog or clouds, and
GL_EXP2 for smoke and weather haze. Figure 16-3 shows GL_LINEAR fog; later, in Figure 16-5, you can
see the effect of GL_EXP fog.

Figure 16-3 Depth-cued teapots using glFog

You choose the type of fog (or fog mode) using glFogi:

glFogi(GL_FOG_MODE, GL_LINEAR);

glFogi(GL_FOG_MODE, GL_EXP);

glFogi(GL_FOG_MODE, GL_EXP2);

Once you have chosen the fog type, you must choose a fog color that will be mixed with your scene using
the glFogfv or glFogiv functions:

GLfloat fog_color[4] = { r, g, b, a };
glFogfv(GL_FOG_COLOR, fog_color);

GLint fog_color[4] = { r, g, b, a };
glFogiv(GL_FOG_COLOR, fog_color);

For depth-cueing, you’ll generally want to make the fog color the same as the background (black, in Figure
16-3). This will make the depth-cueing look “correct” to the eye—that is, objects farther away will appear to
fade into the background. For some applications, you might want to give the fog a bright color such as
yellow, instead, so that things stand out more against the background.

Drawing Depth-Cued Teapots

Listing 16-3 draws two teapots using depth-cueing. The draw_scene function handles all graphics drawing
and starts by setting the fog color to black and the fog mode to GL_LINEAR.

static float fog_color[4] = { 0.0, 0.0, 0.0, 0.0 };

glEnable(GL_FOG);
glFogf(GL_FOG_MODE, GL_LINEAR);
glFogfv(GL_FOG_COLOR, fog_color);

Finally, it draws both teapots at different distances from the viewer. The results are visibly obvious.

Listing 16-3 FOGPOT.C: Depth-cued teapots using glFog

#include <GL/glaux.h>

/*
 * These #define constants are provided for compatibility between MS
 * Windows and the rest of the world.
 *
 * CALLBACK and APIENTRY are function modifiers under MS Windows.
 */

#ifndef WIN32
define CALLBACK
define APIENTRY
#endif /* !WIN32 */

GLfloat rotation = 0.0;

/*
 * 'reshape_scene()' - Change the size of the scene…
 */

void CALLBACK
reshape_scene(GLsizei width, /* I - Width of the window in pixels */
 GLsizei height) /* I - Height of the window in pixels */
{
 /*
 * Reset the current viewport and perspective transformation…
 */

 glViewport(0, 0, width, height);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(22.5, (float)width / (float)height, 0.1, 1000.0);

 glMatrixMode(GL_MODELVIEW);
}

/*
 * 'draw_scene()' - Draw a scene containing a cube with a sphere in front
 * of it.
 */

void CALLBACK
draw_scene(void)
{
 static float red_light[4] = { 1.0, 0.0, 0.0, 1.0 };
 static float red_pos[4] = { 1.0, 1.0, 1.0, 0.0 };
 static float blue_light[4] = { 0.0, 0.0, 1.0, 1.0 };
 static float blue_pos[4] = { -1.0, -1.0, -1.0, 0.0 };
 static float fog_color[4] = { 0.0, 0.0, 0.0, 0.0 };

 /*
 * Enable drawing features that we need…
 */

 glEnable(GL_DEPTH_TEST);
 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
 glEnable(GL_LIGHT1);

 glShadeModel(GL_SMOOTH);

 /*
 * Clear the color and depth buffers…
 */

 glClearColor(0.0, 0.0, 0.0, 0.0);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 /*
 * Draw the cube and sphere in different colors…
 *
 * We have positioned two lights in this scene. The first is red and
 * located above, to the right, and behind the viewer. The second is
 * blue and located below, to the left, and in front of the viewer.
 */

 glLightfv(GL_LIGHT0, GL_DIFFUSE, red_light);
 glLightfv(GL_LIGHT0, GL_POSITION, red_pos);

 glLightfv(GL_LIGHT1, GL_DIFFUSE, blue_light);
 glLightfv(GL_LIGHT1, GL_POSITION, blue_pos);

 glEnable(GL_COLOR_MATERIAL);

 glEnable(GL_FOG);
 glFogf(GL_FOG_MODE, GL_LINEAR);
 glFogfv(GL_FOG_COLOR, fog_color);

 glPushMatrix();
 glTranslatef(-1.0, 0.0, -15.0);
 glRotatef(-rotation, 0.0, 1.0, 0.0);

 glColor3f(1.0, 1.0, 0.0);
 auxSolidTeapot(1.0);
 glPopMatrix();

 glPushMatrix();
 glTranslatef(1.0, 0.0, -10.0);
 glRotatef(rotation, 0.0, 1.0, 0.0);

 glColor3f(0.0, 1.0, 1.0);
 auxSolidTeapot(1.0);
 glPopMatrix();

 auxSwapBuffers();
}

/*
 * 'rotate_objects()' - Rotate while we are idle…
 */

void CALLBACK
rotate_objects(void)
{
 rotation += 2.0;
 if (rotation >= 360.0)
 rotation -= 360.0;

 draw_scene();
}

/*
 * 'main()' - Initialize the window and display the scene until the user
 * presses the ESCape key.
 */

void
main(void)
{
 auxInitDisplayMode(AUX_RGB | AUX_DOUBLE | AUX_DEPTH);
 auxInitWindow("Fogged Teapots");

 auxReshapeFunc(reshape_scene);
 auxIdleFunc(rotate_objects);

 auxMainLoop(draw_scene);
}

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Visual Effects:nBlending and Fog

http://www.itknowledge.com/reference/archive/1571690735/ch16/519-523.html [20-03-2000 21:40:25]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Other Types of Fog

For the other fog types, you’ll probably make the fog color white or some other light color. In
addition to the fog color, GL_EXP and GL_EXP2 fog types have an additional density parameter:

glFogf(GL_FOG_DENSITY, density);

The density parameter can be any number greater than 0.0, but typically you’ll keep it less than 0.1.
Figure 16-4 shows how the density of fog affects how much of the fog color is used.

Figure 16-4 Fog density over distance

Fog Distance

The fog distance is the transformed Z component of all glVertex calls. This Z coordinate lies in the
range 0.0 to 1.0 and is the same number that is stored in the depth buffer. The fog distance and
density determine how much fog color is mixed in, as shown here:

By default, fog is applied at all depths from 0.0 to 1.0. The GL_FOG_START and GL_FOG_END
parameters restrict the range of depth values used for fog calculations. This is typically used to more
accurately model fog density when the immediate area in front of the viewer is not covered (for
example, when flying through clouds, the breaks between clouds will not be as dense).

Revisiting the Terrain Viewing Program

Weather haze effects are the perfect addition to the terrain viewing program of Chapter 12. In Figure
16-5 you can see the fantastic improvement in image quality. This was achieved by adding the
following three lines of code:

glFogf(GL_FOG_DENSITY, 0.0025);
glFogi(GL_FOG_MODE, GL_EXP);
glFogfv(GL_FOG_COLOR, fogcolor);

Figure 16-5 Weather haze using glFog

The fog color in this case was defined as a solid white RGBA color (1.0, 1.0, 1.0, 1.0). To improve
the output even more at the expense of speed, we can also call

glHint(GL_FOG_HINT, GL_NICEST);

This forces fog to be evaluated at every pixel rather than every vertex. Unfortunately, for most scenes
this means 100 times as many calculations must be performed!

Now here is Listing 16-4, with the updated RepaintWindow function.

Listing 16-4 FOGSCENE.C: Updated RepaintWindow function using glFog for the terrain viewing
program

/*
 * 'RepaintWindow()' - Redraw the client area with our scene.
 */

void
RepaintWindow(RECT *rect) /* I - Client area rectangle */
{
 int i; /* Looping var */
 int x, y; /* Terrain (x,y) location */
 int last_type; /* Previous terrain type */
 int *type; /* Current terrain type */
 GLfloat *height, /* Current terrain height */
 (*n)[3]; /* Current terrain normal */
 static GLfloat sky_top[4][3] =
 { /* Sky coordinates */
 { -TERRAIN_EDGE, TERRAIN_SIZE * 0.8, -TERRAIN_EDGE },
 { TERRAIN_EDGE, TERRAIN_SIZE * 0.8, -TERRAIN_EDGE },
 { TERRAIN_EDGE, TERRAIN_SIZE * 0.8, TERRAIN_EDGE },
 { -TERRAIN_EDGE, TERRAIN_SIZE * 0.8, TERRAIN_EDGE }
 };
 static GLfloat sky_bottom[4][3] =
 {
 { -TERRAIN_EDGE, 0.0, -TERRAIN_EDGE },
 { TERRAIN_EDGE, 0.0, -TERRAIN_EDGE },
 { TERRAIN_EDGE, 0.0, TERRAIN_EDGE },
 { -TERRAIN_EDGE, 0.0, TERRAIN_EDGE }
 };
 static GLfloat sunpos[4] = { 0.0, 1.0, 0.0, 0.0 };
 static GLfloat suncolor[4] = { 64.0, 64.0, 64.0, 1.0 };
 static GLfloat sunambient[4] = { 0.001, 0.001, 0.001, 1.0 };
 static GLfloat fogcolor[4] = { 1.0, 1.0, 1.0, 1.0 };

 /*
 * Reset the viewport and clear the window to light blue…
 */

 glViewport(0, 0, rect->right, rect->bottom);

 glClearColor(0.5, 0.5, 1.0, 1.0);

 glEnable(GL_DEPTH_TEST);
 glEnable(GL_FOG);
 glFogf(GL_FOG_DENSITY, 0.0025);
 glFogi(GL_FOG_MODE, GL_EXP);
 glFogfv(GL_FOG_COLOR, fogcolor);

 if (Moving || Drawing)
 {
 /*
 * Don't texture while flying or drawing; it's too slow…
 * Also, draw to the back buffer for smooth animation.
 */

 glDisable(GL_TEXTURE_2D);
 glDrawBuffer(GL_BACK);
 }
 else
 {
 /*
 * Enable textures when we've stopped moving or drawing.
 * This generates a nice scene that we can print out or
 * save to a bitmap file…
 *
 * Because it takes longer, we draw to the front buffer
 * so the user can see some progress…
 */

 glEnable(GL_TEXTURE_2D);
 glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);
 glDrawBuffer(GL_FRONT);
 };

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 /*
 * Setup viewing transformations for the current position and
 * orientation…
 */

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(45.0, (float)rect->right / (float)rect->bottom,
 0.1, 1000.0);

 glMatrixMode(GL_MODELVIEW);
 glPushMatrix();
 glRotatef(Roll, 0.0, 0.0, 1.0);
 glRotatef(Pitch, -1.0, 0.0, 0.0);
 glRotatef(Heading, 0.0, 1.0, 0.0);
 glTranslatef(-Position[0],
 -Position[1],
 -Position[2]);
 glScalef(TERRAIN_SCALE, TERRAIN_SCALE, TERRAIN_SCALE);

 if (!(Moving || Drawing))
 {
 /*
 * Draw the sky…
 */

 glDisable(GL_LIGHTING);
 glCallList(SkyTexture);
 glBegin(GL_QUAD_STRIP);
 for (i = 0; i < 4; i ++)
 {
 glTexCoord2f((float)i, 0.0);
 glVertex3fv(sky_bottom[i]);

 glTexCoord2f((float)i, 0.8);
 glVertex3fv(sky_top[i]);
 };

 glTexCoord2f(4.0, 0.0);
 glVertex3fv(sky_bottom[0]);

 glTexCoord2f(4.0, 0.8);
 glVertex3fv(sky_top[0]);
 glEnd();

 glBegin(GL_TRIANGLE_FAN);
 glTexCoord2f(0.5, 1.0);
 glVertex3f(0.0, TERRAIN_SIZE, 0.0);

 for (i = 0; i < 4; i ++)
 {
 glTexCoord2f((float)i, 0.8);
 glVertex3fv(sky_top[i]);
 };

 glTexCoord2f(4.0, 0.8);
 glVertex3fv(sky_top[0]);
 glEnd();
 };

 /*
 * Setup lighting…
 */

 glEnable(GL_LIGHTING);
 glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);

 glEnable(GL_LIGHT0);
 glLightfv(GL_LIGHT0, GL_POSITION, sunpos);
 glLightfv(GL_LIGHT0, GL_DIFFUSE, suncolor);
 glLightfv(GL_LIGHT0, GL_AMBIENT, sunambient);

 if (Moving || Drawing)
 glEnable(GL_COLOR_MATERIAL);
 else
 glDisable(GL_COLOR_MATERIAL);

 /*
 * Then the terrain…
 */

 type = TerrainType[0];
 height = TerrainHeight[0];
 n = TerrainNormal[0];
 for (y = 0; y < (TERRAIN_SIZE - 1); y ++)
 {
 last_type = -1;

 for (x = 0; x < TERRAIN_SIZE; x ++, type ++, height ++, n ++)
 {
 if (last_type != *type)
 {
 /*
 * If the type of terrain changes, end any existing
 * strip of quads and reset color/texture parameters…
 */

 if (last_type != -1)
 glEnd();

 switch (*type)
 {
 case IDC_WATER :
 if (Moving || Drawing)
 glColor3f(0.0, 0.0, 0.5);
 else
 glCallList(WaterTexture);
 break;
 case IDC_GRASS :
 if (Moving || Drawing)
 glColor3f(0.0, 0.5, 0.0);
 else
 glCallList(GrassTexture);
 break;
 case IDC_ROCKS :
 if (Moving || Drawing)
 glColor3f(0.25, 0.25, 0.25);
 else
 glCallList(RocksTexture);
 break;
 case IDC_TREES :
 if (Moving || Drawing)
 glColor3f(0.0, 0.25, 0.0);
 else
 glCallList(TreesTexture);
 break;
 case IDC_MOUNTAINS :
 if (Moving || Drawing)
 glColor3f(0.2, 0.1, 0.05);
 else
 glCallList(MountainsTexture);
 break;
 };

 glBegin(GL_QUAD_STRIP);
 if (last_type != -1)
 {
 /*
 * Start from the previous location to prevent
 * holes…
 */

 glTexCoord2i(x * 2 - 2, y * 2);
 glNormal3fv(n[-1]);
 glVertex3f((GLfloat)(x - TERRAIN_EDGE - 1),
 height[-1],
 (GLfloat)(y - TERRAIN_EDGE));
 glTexCoord2i(x * 2 - 2, y * 2 + 2);
 glNormal3fv(n[TERRAIN_SIZE - 1]);
 glVertex3f((GLfloat)(x - TERRAIN_EDGE - 1),
 height[TERRAIN_SIZE - 1],
 (GLfloat)(y - TERRAIN_EDGE + 1));
 };

 last_type = *type;
 };

 glTexCoord2i(x * 2, y * 2);
 glNormal3fv(n[0]);
 glVertex3f((GLfloat)(x - TERRAIN_EDGE),
 height[0],
 (GLfloat)(y - TERRAIN_EDGE));
 glTexCoord2i(x * 2, y * 2 + 2);
 glNormal3fv(n[TERRAIN_SIZE]);
 glVertex3f((GLfloat)(x - TERRAIN_EDGE),
 height[TERRAIN_SIZE],
 (GLfloat)(y - TERRAIN_EDGE + 1));
 };

 glEnd();
 };
 glPopMatrix();

/*
 * While we fly or draw we're double-buffering. Swap buffers
 * as necessary…
 */

 glFinish();
 if (Moving || Drawing)
 SwapBuffers(SceneDC);
}

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Visual Effects:nBlending and Fog

http://www.itknowledge.com/reference/archive/1571690735/ch16/523-530.html [20-03-2000 21:40:41]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Summary

Blending and fog complete the OpenGL library and are yet another source
for making the images you generate more realistic. Blending provides
transparency effects and improves anti-aliasing of points, lines, and
polygons. Fog supports a variety of depth-cueing and weather effects that
make images look less exact and, ironically, more like the real world.

Reference Section

glBlendFunc
Purpose

Sets color blending functions.

Include File
<GL/gl.h>

Syntax
void glBlendFunc(GLenum sfactor, GLenum dfactor);

Description
This function sets the source and destination blending factors for
color blending. You must call glEnable(GL_BLEND) to enable color
blending. Blending is only available in RGBA drawing contexts. The
default settings for blending are glBlendFunc(GL_ONE, GL_ZERO).

Parameters
sfactor

GLenum: The source color’s blending function.

dfactor

GLenum: The destination pixel color’s blending function.

Returns
None.

Example
See the example in CH16\BLENDPOT.C on the CD.

glFog
Purpose

Specifies fog parameters.

Include File
<GL/gl.h>

Syntax
void glFogf(GLenum pname, GLfloat param);

void glFogfv(GLenum pname, GLfloat *params);

void glFogi(GLenum pname, GLint param);

void glFogiv(GLenum pname, GLint *params);

Description
The glFog functions set fog parameters. To draw using fog you must
call glEnable(GL_FOG).

Parameters
pname

GLenum: The parameter to set. Valid names are as follows:

GL_FOG_COLOR The color of the fog; must be an
array of 4 numbers representing the
RGBA color.

GL_FOG_DENSITY The fog density; a number greater
than 0.0. The density is only used
for the GL_EXP and GL_EXP2
fog modes.

GL_FOG_END The farthest distance to which the
fog is applied. This is a
transformed Z (depth) value from
0.0 to 1.0.

GL_FOG_MODE

The fog type; specifies the formula
used to render fog effects
(GL_LINEAR, GL_EXP, or
GL_EXP2).

GL_FOG_START The closest distance to which fog is
applied. This is a transformed Z
(depth) value from 0.0 to 1.0.

param

GLfloat, GLint: The parameter value.

params

GLfloat *, GLint *: A pointer to the parameter array.

Returns
None.

Example
See the example in CH16\FOGSCENE.C on the CD.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Visual Effects:nBlending and Fog

http://www.itknowledge.com/reference/archive/1571690735/ch16/530-532.html [20-03-2000 21:40:47]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Chapter 17
Curves and Surfaces: What the
#%@!&* Are NURBS?

What you’ll learn in this chapter:
How to… Functions You’ll Use

Use maps to render Bázier curves and
surfaces

glMap, glEvalCoord

Use evaluators to simplify surface mapping glMapGrid, glEvalMesh
Create NURBS surfaces gluNewNurbsRenderer,

gluBeginSurface,
gluNurbsSurface,
gluEndSurface,
gluDeleteNurbsRenderer

Create trimming curves gluBeginTrim, gluPwlCurve,
gluEndTrim

For most applications that make use of 3D graphics, you’ll need smooth
curves and surfaces. Making use of the techniques discussed elsewhere in
this book, you could divide such a surface into many smaller quads or
triangles, then calculate the normals at the various vertices, and apply
lighting—producing what appears to be a very smooth and flowing surface.
Or, with little more than basic algebra you could even write code that
evaluates an equation for a surface and uses something like triangle strips or
quads to generate a surface with either a fine or coarse visual resolution.

Suppose, however, you want to create a curve or surface and you don’t
have an algebraic equation to start with. It’s far from a trivial task to figure
it out in reverse, starting from what you visualize as the end result and
working down to a second- or third-order polynomial. Taking a rigorous
mathematical approach is time consuming and error prone, even with the
aid of a computer. And forget about doing it in your head.

Recognizing this fundamental need in the art of computer-generated
graphics, Pierre Bázier, an automobile designer for Renault in the 1970s,
created a set of mathematical models that could represent curves and
surfaces by specifying only a small set of control points. In addition to
simplifying the representation of curved surfaces, the models facilitated
interactive adjustments to the shape of the curve or surface..

Other types of curves and surfaces, and indeed a whole new vocabulary for
computer-generated surfaces soon evolved. The mathematics behind this
magic show are no more complex than the matrix manipulations in Chapter
7, and an intuitive understanding of these curves is easy to grasp. As we did
in Chapter 7, we will take the approach that you can do a lot with these
functions without a deep understanding of their mathematics.

Curves and Surfaces

A curve has a single starting point, a length, and an endpoint. It’s really just
a line that squiggles about in 3D space. A surface, on the other hand, has
width and length and thus a surface area. We’ll begin by showing you how
to draw some smooth curves in 3D space, and then extend this to surfaces.
But first let’s establish some common vocabulary and math fundamentals.

Parametric Representation

When you think of straight lines, you may think of this famous equation:

Y = mX + b

Here m equals the slope of the line, and b is the Y intercept of the line (the
place where the line crosses the y-axis). This may take you back to your
eighth-grade algebra class, where you also learned about the equations for
parabolas, hyperbolas, exponential curves, and so on. All of these equations
expressed Y (or X) in terms of some function of X (or Y).

Another way of expressing the equation for a curve or line is as a
parametric equation. A parametric equation expresses both X and Y in
terms of another variable that varies across some predefined range of
values, that is not explicitly a part of the geometry of the curve. Sometimes
in physics, for example, the X, Y, and Z coordinates of a particle may be in
terms of some functions of time, where time is expressed in seconds. In the
following, f(), g(), and h() are unique functions that vary with time (t):

 X = f(t)
 Y = g(t)
 Z = h(t)

When we define a curve in OpenGL, we will also define it as a parametric
equation. The parametric parameter of the curve, which we’ll call u, and its
range of values will be the domain of that curve. Surfaces will be described
using two parametric parameters: u and v. Figure 17-1 shows both a curve
and a surface defined in terms of u and v domains. The important thing to
realize here is that the parametric parameters (u and v) represent the extents
of the equations that describe the curve; they do not reflect actual
coordinate values.

Figure 17-1 Parametric representations of curves and surfaces

Control Points

Curves are represented by a number of control points that influence the
shape of the curve. For the Bázier curves, the first and last control points
are actually part of the curve. The other control points act as magnets,
pulling the curve towards them. Figure 17-2 shows some examples of this
concept, with varying numbers of control points.

Figure 17-2 How control points affect curve shape

The order of the curve is represented by the number of control points used
to describe its shape. The degree is one less than the order of the curve. The
mathematical meaning of these terms pertains to the parametric equations
that exactly describe the curve, with the order being the number of
coefficients, and the degree being the highest exponent of the parametric
parameter. If you want to read more about the mathematical basis of Bázier
curves, see Appendix B.

The curve in Figure 17-2(b) is called a quadratic curve (degree 2), and
Figure 17-2(c) is called a cubic (degree 3). Cubic curves are the most
typical. Theoretically, you could define a curve of any order, but
higher-order curves start to oscillate uncontrollably and can vary wildly
with the slightest change to the control points.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Curves and Surfaces: What the #%@!&* Are NURBS?

http://www.itknowledge.com/reference/archive/1571690735/ch17/535-538.html [20-03-2000 21:40:56]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Continuity

If two curves placed side by side share an endpoint (called the breakpoint), they together form a piecewise
curve. The continuity of these curves at this breakpoint describes how smooth the transition is between them.
The four categories of continuity are none (C0), positional (C1), tangential (C2), and curvature (C3).

As you can see in Figure 17-3, no continuity is when the two curves don’t meet at all. Positional continuity is
achieved when the curves at least meet and share a common endpoint. Tangential continuity occurs when the
two curves have the same tangent at the breakpoint. Finally, curvature continuity means the two curves’
tangents also have the same rate of change at the breakpoint (thus an even smoother transition).

Figure 17-3 Continuity of piecewise curves

When assembling complex surfaces or curves from many pieces, you will usually strive for C2 or C3
continuity. You’ll see later that some parameters for curve and surface generation can be chosen to produce
the desired continuity.

Evaluators

OpenGL contains several functions that make it very easy to draw Bázier curves and surfaces by specifying
the control points and the range for the parametric u and v parameters. Then, by calling the appropriate
evaluation function (the evaluator), the points that make up the curve or surface are generated. We’ll start with
a 2D example of a Bázier curve and then extend this to three dimensions to create a Bázier surface.

A 2D Curve

The best way to get started is with an example, explaining it line by line. Listing 17-1 shows some code from
the example program BEZIER in this chapter’s subdirectory on the CD. This program specifies four control
points for a Bázier curve and then renders the curve using an evaluator. The output from Listing 17-1 is shown
in Figure 17-4.

Figure 17-4 Output from the BEZIER example program

Listing 17-1 Code from BEZIER that draws a Bázier curve with four control points

// The number of control points for this curve
GLint nNumPoints = 4;

GLfloat ctrlPoints[4][3]= {{ -4.0f, 0.0f, 0.0f}, // Endpoint
 { -6.0f, 4.0f, 0.0f}, // Control Point
 { 6.0f, -4.0f, 0.0f}, // Control Point
 { 4.0f, 0.0f, 0.0f }}; // Endpoint
…
…

// This function is used to superimpose the control points over the curve
void DrawPoints(void)
 {
 int i; // Counting variable

 // Set point size larger to make more visible
 glPointSize(5.0f);

 // Loop through all control points for this example
 glBegin(GL_POINTS);
 for(i = 0; i < nNumPoints; i++)
 glVertex2fv(ctrlPoints[i]);
 glEnd();
 }

// Change viewing volume and viewport. Called when window is resized
void ChangeSize(GLsizei w, GLsizei h)
 {
 // Prevent a divide by zero
 if(h == 0)
 h = 1;

 // Set Viewport to window dimensions
 glViewport(0, 0, w, h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();

 gluOrtho2D(-10.0f, 10.0f, -10.0f, 10.0f);

 // Modelview matrix reset
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 }

// Called to draw scene
void RenderScene(void)
 {
 int i;

 // Clear the window with current clearing color
 glClear(GL_COLOR_BUFFER_BIT);

 // Sets up the Bzier
 // This actually only needs to be called once and could go in
 // the setup function
 glMap1f(GL_MAP1_VERTEX_3, // Type of data generated
 0.0f, // Lower u range
 100.0f, // Upper u range
 3, // Distance between points in the
 data
 nNumPoints, // Number of control points
 &ctrlPoints[0][0]); // Array of control points

 // Enable the evaluator
 glEnable(GL_MAP1_VERTEX_3);

 // Use a line strip to "connect the dots"
 glBegin(GL_LINE_STRIP);
 for(i = 0; i <= 100; i++)
 {
 // Evaluate the curve at this point
 glEvalCoord1f((GLfloat) i);
 }
 glEnd();

 // Draw the Control Points
 DrawPoints();

 // Flush drawing commands
 glFlush();
 }

The first thing we do in Listing 17-1 is define the control points for our curve:

// The number of control points for this curve
GLint nNumPoints = 4;

GLfloat ctrlPoints[4][3]= {{ -4.0f, 0.0f, 0.0f}, // Endpoint
 { -6.0f, 4.0f, 0.0f}, // Control Point
 { 6.0f, -4.0f, 0.0f}, // Control Point
 { 4.0f, 0.0f, 0.0f }}; // Endpoint

We defined global variables for the number of control points and the array of control points. To experiment,
you can change these by adding more control points, or just modifying the position of these points.

The function DrawPoints() is pretty straightforward. We call this function from our rendering code to display
the control points along with the curve. This also is very useful when you are experimenting with control-point
placement. Our standard ChangeSize() function establishes a 2D orthographic projection that spans from –10
to +10 in the x and y directions.

Finally, we get to the rendering code. The function RenderScene() first calls glMap1f (after clearing the
screen) to create a mapping for our curve:

// Called to draw scene
void RenderScene(void)
 {
 int i;

 // Clear the window with current clearing color
 glClear(GL_COLOR_BUFFER_BIT);

 // Sets up the Bzier
 // This actually only needs to be called once and could go in
 // the setup function
 glMap1f(GL_MAP1_VERTEX_3, // Type of data generated
 0.0f, // Lower u range
 100.0f, // Upper u range
 3, // Distance between points in the
 data
 nNumPoints, // Number of control points
 &ctrlPoints[0][0]); // Array of control points
 …
 …

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Curves and Surfaces: What the #%@!&* Are NURBS?

http://www.itknowledge.com/reference/archive/1571690735/ch17/538-542.html [20-03-2000 21:41:05]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The first parameter to glMap1f, GL_MAP1_VERTEX_3, sets up the evaluator to generate vertex coordinate
triplets (x, y, and z), as opposed to GL_MAP1_VERTEX_4 which would generate the coordinates and an
alpha component. You can also have the evaluator generate other values, such as texture coordinates and color
information. See the Reference Section for details.

The next two parameters specify the lower and upper bounds of the parametric u value for this curve. The
lower value specifies the first point on the curve, and the upper value specifies the last point on the curve. All
the values in between correspond to the other points along the curve. Here we set the range to 0–100.

The fourth parameter to glMap1f specifies the number of floating point values between the vertices in the
array of control points. Each vertex consists of three floating point values (for x, y, and z), so we set this value
to 3. This flexibility allows the control points to be placed in an arbitrary data structure, as long as they occur
at regular intervals.

The last parameter is a pointer to a buffer containing the control points used to define the curve. Here, we pass
a pointer to the first element of the array. Once the mapping for the curve is created, we enable the evaluator
to make use of this mapping. This is maintained through a state variable, and the following function call is all
that is needed to enable the evaluator to produce points along the curve:

// Enable the evaluator
glEnable(GL_MAP1_VERTEX_3);

The function glEvalCoord1f takes a single argument: a parametric value along the curve. This function then
evaluates the curve at this value and calls glVertex internally for that point. By looping through the domain of
the curve and calling glEvalCoord to produce vertices, we can draw the curve with a simple line strip:

// Use a line strip to "connect the dots"
glBegin(GL_LINE_STRIP);
 for(i = 0; i <= 100; i++)
 {
 // Evaluate the curve at this point
 glEvalCoord1f((GLfloat) i);
 }
glEnd();

Finally, we wish to display the control points themselves:

// Draw the Control Points
DrawPoints();

// Flush drawing commands
glFlush();
}

Evaluating a Curve

OpenGL can make things even easier than this. We set up a grid with the function glMapGrid, which tells
OpenGL to create an evenly spaced grid of points over the u domain (the parametric argument of the curve).
Then we call glEvalMesh to “connect the dots” using the primitive specified (GL_LINE or GL_POINTS). The
following two function calls:

// Use higher level functions to map to a grid, then evaluate the
// entire thing.

// Map a grid of 100 points from 0 to 100
glMapGrid1d(100,0.0,100.0);

// Evaluate the grid, using lines
glEvalMesh1(GL_LINE,0,100);

completely replace this code:

// Use a line strip to "connect-the-dots"
glBegin(GL_LINE_STRIP);
 for(i = 0; i <= 100; i++)
 {
 // Evaluate the curve at this point
 glEvalCoord1f((GLfloat) i);
 }
glEnd();

As you can see, this is more compact and efficient, but its real benefit comes when evaluating surfaces rather
than curves.

A 3D Surface

Creating a 3D Bázier surface is much like the 2D version. In addition to defining points along the u domain,
we must define them along the v domain as well.

Listing 17-2 is from our next example program, BEZ3D, and displays a wire mesh of a 3D Bázier surface. The
first change from the preceding example is that we have defined three more sets of control points for the
surface along the v domain. To keep this surface simple, the control points are the same except for the Z value.
This will create a uniform surface, as if we simply extruded a 2D Bázier along the Z axis.

Listing 17-2 BEZ3D code to create a Bázier surface

// The number of control points for this curve
GLint nNumPoints = 3;

GLfloat ctrlPoints[3][3][3]= {{{ -4.0f, 0.0f, 4.0f}, // V = 0
 { -2.0f, 4.0f, 4.0f},
 { 4.0f, 0.0f, 4.0f }},

 {{ -4.0f, 0.0f, 0.0f}, // V = 1
 { -2.0f, 4.0f, 0.0f},
 { 4.0f, 0.0f, 0.0f }},

 {{ -4.0f, 0.0f, -4.0f}, // V = 2
 { -2.0f, 4.0f, -4.0f},
 { 4.0f, 0.0f, -4.0f }}};
…
…

// Called to draw scene
void RenderScene(void)
 {
 //int i;

 // Clear the window with current clearing color
 glClear(GL_COLOR_BUFFER_BIT);

 // Save the modelview matrix stack
 glMatrixMode(GL_MODELVIEW);
 glPushMatrix();

 // Rotate the mesh around to make it easier to see
 glRotatef(45.0f, 0.0f, 1.0f, 0.0f);
 glRotatef(60.0f, 1.0f, 0.0f, 0.0f);

 // Sets up the Bzier
 // This actually only needs to be called once and could go in
 // the setup function
 glMap2f(GL_MAP2_VERTEX_3, // Type of data generated
 0.0f, // Lower u range
 10.0f, // Upper u range
 3, // Distance between points in the
 data
 3, // Dimension in u direction (order)
 0.0f, // Lower v range
 10.0f, // Upper v range
 9, // Distance between points in the
 data
 3, // Dimension in v direction (order)
 &ctrlPoints[0][0][0]); // array of control points

 // Enable the evaluator
 glEnable(GL_MAP2_VERTEX_3);

 // Use higher level functions to map to a grid, then evaluate the
 // entire thing.

 // Map a grid of 100 points from 0 to 100
 glMapGrid2f(10,0.0f,10.0f,10,0.0f,10.0f);

 // Evaluate the grid, using lines
 glEvalMesh2(GL_LINE,0,10,0,10);

 // Draw the Control Points
 DrawPoints();

 // Restore the modelview matrix
 glPopMatrix();

 // Flush drawing commands
 glFlush();
 }

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Curves and Surfaces: What the #%@!&* Are NURBS?

http://www.itknowledge.com/reference/archive/1571690735/ch17/542-544.html [20-03-2000 21:41:11]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Our rendering code is different now, too. In addition to rotating the figure for better effect, we call
glMap2f instead of glMap1f. This specifies control points along two domains (u and v) instead of just
one (u).

// Sets up the Bzier
// This actually only needs to be called once and could go in
// the setup function
glMap2f(GL_MAP2_VERTEX_3, // Type of data generated
0.0f, // Lower u range
10.0f, // Upper u range
3, // Distance between points in the data
3, // Dimension in u direction (order)
0.0f, // Lower v range
10.0f, // Upper v range
9, // Distance between points in the data
3, // Dimension in v direction (order)
&ctrlPoints[0][0][0]); // array of control points

We must still specify the lower and upper range for u; and the distance between points in the u domain is
still 3. Now, however, we must also specify the lower and upper range in the v domain. The distance
between points in the v domain is now 9 values, because we have a three-dimensional array of control
points, with each span in the u domain being three points of three values each (3 × 3 = 9). Then we tell
glMap2f how many points in the v direction are specified for each u division, followed by a pointer to
the control points themselves.

The two-dimensional evaluator is enabled just like the one-dimensional one, and we call glMapGrid2f
with the number of divisions in the u and v direction.

// Enable the evaluator
glEnable(GL_MAP2_VERTEX_3);

// Use higher level functions to map to a grid, then evaluate the
// entire thing.

// Map a grid of 10 points from 0 to 10
glMapGrid2f(10,0.0f,10.0f,10,0.0f,10.0f);

After the evaluator is set up, we can call the two-dimensional (meaning u and v) version of glEvalMesh
to evaluate our surface grid. Here we evaluate using lines, and specify the u and v domains values to
range from 0 to 10.

// Evaluate the grid, using lines
glEvalMesh2(GL_LINE,0,10,0,10);

The end result is shown in Figure 17-5.

Figure 17-5 Output from the BEZ3D program

Lighting and Normal Vectors

Another valuable features of evaluators is the automatic generation of surface normals. By simply
changing this code:

// Evaluate the grid, using lines
glEvalMesh2(GL_LINE,0,10,0,10);

to this:

// Evaluate the grid, using lines
glEvalMesh2(GL_FILL,0,10,0,10);

and then calling

glEnable(GL_AUTO_NORMAL);

in our initialization code, we enable easy lighting of surfaces generated by evaluators. Figure 17-6
shows the same surface as Figure 17-5, but with lighting enabled and automatic normalization turned on.
The code for this program is found in BEZLIT in the CD subdirectory for this chapter. The program is
only slightly modiied from BEZ3D.

Figure 17-6 Output from BEZLIT program

NURBS

You can use evaluators to your heart’s content to evaluate Bázier surfaces of any degree, but for more
complex curves you will have to assemble your Bázier’s piecewise. As you add more control points, it
becomes difficult to create a curve that has good continuity. A higher level of control is available
through the glu library’s NURBS functions. NURBS stands for non-uniform rational B-spline.
Mathematicians out there might know immediately that this is just a more generalized form of curves
and surfaces that can produce Bázier curves and surfaces, as well as some other kinds (mathematically
speaking). They allow you to tweak the influence of the control points you specified for the evaluators,
to produce smoother curves and surfaces with larger numbers of control points.

From Bázier to B-Splines

A Bázier curve is defined by two points that act as endpoints, and any number of other control points
that influence the shape of the curve. The three Bázier curves in Figure 17-7 have 3, 4, and 5 control
points specified. The curve is tangent to a line that connects the endpoints with their adjacent control
points. For quadratic (3 points) and cubic (4 points) curves, the resulting Báziers are quite smooth,
usually with a continuity of C3 (curvature). For higher numbers of control points, however, the
smoothness begins to break down as the additional control points pull and tug on the curve.

Figure 17-7 Bázier continuity as the order of the curve increases

B-splines (bi-cubic splines), on the other hand, work much as the Bázier curves do, but the curve is
broken down into segments. The shape of any given segment is influenced only by the nearest four
control points, producing a piecewise assemblage of a curve with each segment exhibiting
characteristics much like a fourth-order Bázier curve. This means a long curve with many control points
is inherently smoother, with the junction between each segment exhibiting C3 continuity. It also means
that the curve does not necessarily have to pass through any of the control points.

Knots

The real power of NURBS is that you can tweak the influence of the four control points for any given
segment of a curve to produce the smoothness needed. This control is done via a sequence of values
called knots.

Two knot values are defined for every control point. The range of values for the knots matches the u or v
parametric domain, and must be nondescending. This is because the knot values determine the influence
of the control points that fall within that range in u/v space. Figure 17-8 shows a curve demonstrating
the influence of control points over a curve having four units in the u parametric domain. Points in the
middle of the u domain have a greater pull on the curve, and only points between 0 and 3 have any effect
on the shape of the curve.

Figure 17-8 Control point influence along u parameter

The key here is that one of these influence curves exists at each control point along the u/v parametric
domain. The knot sequence then defines the strength of the influence of points within this domain. If a
knot value is repeated, then points near this parametric value have even greater influence. The repeating
of knot values is called knot multiplicity. Higher knot multiplicity decreases the curvature of the curve or
surface within that region.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Curves and Surfaces: What the #%@!&* Are NURBS?

http://www.itknowledge.com/reference/archive/1571690735/ch17/545-549.html [20-03-2000 21:41:25]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Creating a NURBS Surface

The glu NURBS functions provide a useful high-level facility for rendering surfaces. You don’t have to explicitly call
the evaluators or establish the mappings or grids. To render a NURBS, you first create a NURBS object that you will
reference whenever you call the NURBS-related functions to modify the appearance of the surface or curve.

The function gluNewNurbsRenderer creates a renderer for the NURB, and gluDeleteNurbsRenderer destroys it. The
following code fragments demonstrate these functions in use:

// NURBS object pointer
GLUnurbsObj *pNurb = NULL;
…
…

// Setup the NURBS object
 pNurb = gluNewNurbsRenderer();

…
// Do your NURBS things…
…
…

// Delete the NURBS object if it was created
if(pNurb)
 gluDeleteNurbsRenderer(pNurb);

NURBS Properties

Once you have created a NURBS renderer, you can set various high-level NURBS properties for the NURB, like this:

// Set sampling tolerance
gluNurbsProperty(pNurb, GLU_SAMPLING_TOLERANCE, 25.0f);

// Fill to make a solid surface (use GLU_OUTLINE_POLYGON to create a
// polygon mesh)
gluNurbsProperty(pNurb, GLU_DISPLAY_MODE, (GLfloat)GLU_FILL);

You will typically call these functions in your setup routine, rather than repeatedly in your rendering code. In this
example, the GLU_SAMPLING_TOLERANCE defines how fine the mesh that defines the surface is, and GLU_FILL
tells OpenGL to fill in the mesh instead of generating a wireframe.

Define the Surface

The surface definition is passed as arrays of control points and knot sequences to the gluNurbsSurface function. As
shown here, this function is also bracketed by calls to gluBeginSurface and gluEndSurface:

// Render the NURB
// Begin the NURB definition
gluBeginSurface(pNurb);

// Evaluate the surface
gluNurbsSurface(pNurb, // pointer to NURBS renderer
 8, Knots, // No. of knots and knot array u direction
 8, Knots, // No. of knots and knot array v direction
 4 * 3, // Distance between control points in u dir.
 3, // Distance between control points in v dir.
 &ctrlPoints[0][0][0], // Control points
 4, 4, // u and v order of surface
 GL_MAP2_VERTEX_3); // Type of surface

// Done with surface
gluEndSurface(pNurb);

You can make more calls to gluNurbsSurface to create any number of NURBS surfaces, but the properties you set for
the NURBS renderer will still be in effect. Often this is desired, anyway—you rarely want two surfaces (perhaps
joined) to have different fill styles (one filled, and one a wire mesh).

Using the control points and knot values shown in the next code segment, we produce the NURBS surface shown in
Figure 17-9. This NURBS program is found in this chapter’s subdirectory on the CD.

Figure 17-9 Output from the NURBS program

// Mesh extends four units -6 to +6 along x and y axis
// Lies in Z plane
// u v (x,y,z)
GLfloat ctrlPoints[4][4][3]= {{{ -6.0f, -6.0f, 0.0f}, // u = 0, v = 0
 { -6.0f, -2.0f, 0.0f}, // v = 1
 { -6.0f, 2.0f, 0.0f}, // v = 2
 { -6.0f, 6.0f, 0.0f}}, // v = 3

 {{ -2.0f, -6.0f, 0.0f}, // u = 1 v = 0
 { -2.0f, -2.0f, 8.0f}, // v = 1
 { -2.0f, 2.0f, 8.0f}, // v = 2
 { -2.0f, 6.0f, 0.0f}}, // v = 3

 {{ 2.0f, -6.0f, 0.0f }, // u =2 v = 0
 { 2.0f, -2.0f, 8.0f }, // v = 1
 { 2.0f, 2.0f, 8.0f }, // v = 2
 { 2.0f, 6.0f, 0.0f }}, // v = 3

 {{ 6.0f, -6.0f, 0.0f}, // u = 3 v = 0
 { 6.0f, -2.0f, 0.0f}, // v = 1
 { 6.0f, 2.0f, 0.0f}, // v = 2
 { 6.0f, 6.0f, 0.0f}}}; // v = 3

// Knot sequence for the NURB
GLfloat Knots[8] = {0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f};

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Curves and Surfaces: What the #%@!&* Are NURBS?

http://www.itknowledge.com/reference/archive/1571690735/ch17/549-550.html [20-03-2000 21:41:33]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Trimming

Trimming means creating cutout sections from NURBS surfaces. This is often used for literally trimming sharp
edges of a NURBS surface. You can also create holes in your surface just as easily. The output from the NURBT
program is shown in Figure 17-10. This is the same NURBS surface used in the preceding sample (without the
control points shown), with a triangular region removed. This program, too, is on the CD

Figure 17-10 Output from the NURBT program

Listing 17-3 is the code that was added to the NURBS example program to produce this trimming effect. Within the
gluBeginSurface/gluEndSurface delimiters, we call gluBeginTrim and specify a trimming curve with gluPwlCurve,
and finish the trimming curve with gluEndTrim.

Listing 17-3 Modifications to NURBS to produce trimming

// Outside trimming points to include entire surface
GLfloat outsidePts[5][2] = /* counter clockwise */
 {{0.0f, 0.0f}, {1.0f, 0.0f}, {1.0f, 1.0f}, {0.0f, 1.0f}, {0.0f, 0.0f}};

// Inside trimming points to create triangle shaped hole in surface
GLfloat insidePts[4][2] = /* clockwise */
 {{0.25f, 0.25f}, {0.5f, 0.5f}, {0.75f, 0.25f}, { 0.25f, 0.25f}};
…
…
…

// Render the NURB
// Begin the NURB definition
gluBeginSurface(pNurb);

// Evaluate the surface
gluNurbsSurface(pNurb, // pointer to NURBS renderer
 8, Knots, // No. of knots and knot array u direction
 8, Knots, // No. of knots and knot array v direction
 4 * 3, // Distance between control points in u dir.
 3, // Distance between control points in v dir.
 &ctrlPoints[0][0][0], // Control points
 4, 4, // u and v order of surface
 GL_MAP2_VERTEX_3); // Type of surface

// Outer area, include entire curve
gluBeginTrim (pNurb);
gluPwlCurve (pNurb, 5, &outsidePts[0][0], 2, GLU_MAP1_TRIM_2);
gluEndTrim (pNurb);

// Inner triangluar area
gluBeginTrim (pNurb);
gluPwlCurve (pNurb, 4, &insidePts[0][0], 2, GLU_MAP1_TRIM_2);
gluEndTrim (pNurb);

// Done with surface
gluEndSurface(pNurb);

Within the gluBeginTrim/gluEndTrim delimiters, you can specify any number of curves as long as they form a
closed loop in a piecewise fashion. You can also use gluNurbsCurve to define a trimming region or part of a
trimming region. These trimming curves must, however, be in terms of the unit parametric u and v space. This
means the entire u/v domain is scaled from 0.0 to 1.0.

The gluPwlCurve defines a piecewise linear curve—nothing more than a list of points connected end to end. In this
scenario, the inner trimming curve forms a triangle, but with many points you could create an approximation of any
curve needed.

Trimming a curve trims away surface area that is to the right of the curve’s winding. Thus a clockwise-wound
trimming curve will discard its interior. Typically an outer trimming curve is specified, which encloses the entire
NURBS parameter space. Then smaller trimming regions are specified within this region with clockwise winding.
Figure 17-11 illustrates this relationship.

Figure 17-11 Area inside clockwise-wound curves is trimmed away

Summary

This chapter could easily have been the most intimidating in the entire book. As you have seen, however, the
concepts that lie behind these curves and surfaces are not at all difficult to understand. Appendix B suggests further
reading if you want in-depth mathematical information.

The examples from this chapter give you a good starting point for experimenting with NURBS. Try adjusting the
control points and knot sequences to create warped or rumpled surfaces. Also try some quadratic surfaces and some
with higher order than the cubic surfaces. Additional examples can also be found on the accompanying CD.

Watch out—one pitfall to avoid as you play with these curves is trying too hard to create one complex surface out of
a single NURB. You’ll find greater power and flexibility if you compose complex surfaces out of several smaller
and easy-to-handle NURBS or Bázier surfaces.

Reference Section

glEvalCoord
Purpose

Evaluates 1D and 2D maps that have been previously enabled.

Include File
<gl.h>

Variations
void glEvalCoord1d(GLdouble u);

void glEvalCoord1f(GLfloat u);

void glEvalCoord2d(GLdouble u, GLdouble v);

void glEvalCoord2f(GLfloat u, GLfloat v);

void glEvalCoord1dv(const GLdouble *u);

void glEvalCoord1fv(const GLfloat *u);

void glEvalCoord2dv(const GLdouble *u);

void glEvalCoord2fv(const GLfloat *u);

Description
This function uses a previously enabled evaluator (set up with glMap) to produce vertex, color, normal, or
texture values based on the parametric u/v values. The type of data and function calls simulated are specified
by the glMap1 and glMap2 functions.

Parameters
u,v

These parameters specify the v and/or u parametric value that is to be evaluated along the curve or surface.

Returns
None.

Example

The following code from the BEZIER example program produces equivalent calls to glVertex3f each time
glEvalCoord1f is called. The exact vertex produced is from the equation for the curve at the parametric value i.

 // Use a line strip to "connect the dots"
 glBegin(GL_LINE_STRIP);
 for(i = 0; i <= 100; i++)
 {
 // Evaluate the curve at this point
 glEvalCoord1f((GLfloat) i);
 }
 glEnd();

See Also
glEvalMesh, glEvalPoint, glMap1, glMap2, glMapGrid

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Curves and Surfaces: What the #%@!&* Are NURBS?

http://www.itknowledge.com/reference/archive/1571690735/ch17/550-554.html [20-03-2000 21:41:46]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Chapter 18
Polygon Tessellation

What you’ll learn in this chapter:
How to… Functions You’ll Use

Use the OpenGL Utility library to draw
complex polygons

gluBegin/gluEnd

Use the OpenGL Utility library to draw
complex surfaces

gluNextContour

The OpenGL Utility library (glu32.lib) includes a robust polygon
tessellation interface that can handle rendering of complex polygons and
surfaces. What is tessellation, you ask? According to the American
Heritage Dictionary:

tes·sel·late verb, transitive

tes·sel·lat·ed, tes·sel·lat·ing, tes·sel·lates

To form into a mosaic pattern, as by using small squares of stone or glass.

te[sacute] sel·lá tion noun1

A computer graphics tessellator takes one or more connected sets of points
and forms a series of polygons that fill to form the described shape. In place
of stone and glass, it uses triangles and pixels. A polygon tessellator is
specially designed to manage the drawing of polygons that have unusual
attributes such as holes.

Complex Polygons

What makes polygons complex? Well, in OpenGL a complex polygon is
one that is either concave (the polygon contains a “dent”) or has holes in it.
Figure 18-1 contains some simple and complex polygons that you may need
to render at some time.

Figure 18-1 Simple and complex polygons

OpenGL’s GL_POLYGON primitive can only render simple, convex
polygons. A polygon is convex if no point lies inside a line between any
two vertices. That is, if you can draw a line between two vertices of a
polygon and the line goes into empty space outside the polygon edge, the
polygon is not convex; it is concave or complex.

Concave polygons are nonconvex polygons that have no unfilled holes in
their interiors. The top-right polygon in Figure 18-1 is concave, but the one
below it is not because it contains a hole in the middle of the filled area.

Complex polygons have holes or twists in them. The lower-right polygon in
Figure 18-1 is complex.

Drawing Concave Polygons

Drawing concave polygons with the glu is not difficult. The first thing you
must do is create a tessellator object, as shown here:

GLUtriangulatorObj *tess;

tess = gluNewTess();

The GLUtriangulatorObj structure contains state information that is used by
the tessellator to render the polygon.

Next, you call a sequence of gluBeginPolygon, gluTessVertex, and
gluEndPolygon to render the polygon:

GLdouble vertices[100][3];

gluBeginPolygon(tess);
 gluTessVertex(tess, vertices[0], NULL);
 gluTessVertex(tess, vertices[1], NULL);
 …
 gluTessVertex(tess, vertices[99], NULL);
gluEndPolygon(tess);

After the gluEndPolygon call, the tessellator does its work and generates a
series of triangles, triangle strips, and triangle fans. Because this process
can take a long time, it’s a good idea to put tessellated polygons into
display lists to improve display performance (see Chapter 10).

Drawing Complex Polygons

Drawing complex polygons is a little more involved than for concave
polygons but is not as hard as it would seem. Complex polygons can have
holes and twists in them, so the gluNextContour function is provided to
identify the type of path you are defining. Table 18-1 lists the path types for
gluNextContour.

Table 18-1 gluNextContour Path Types

Path Type Description

GLU_EXTERIOR The path lies on the exterior of the polygon.
GLU_INTERIOR The path lies on the interior of the polygon (hole).
GLU_UNKNOWN You don’t know what the path is; the library will

attempt to figure it out.
GLU_CCW This should only be used once and defines that

counterclockwise paths are exterior paths and
clockwise ones are interior.

GLU_CW This should only be used once and defines that
counterclockwise paths are exterior paths and
clockwise ones are interior.

For the example shown in Figure 18-2, we will define an exterior path for
the outline, and an interior path for the triangular hole in the middle (see
Figure 18-3).

Figure 18-2 The letter A as a complex polygon

Figure 18-3 Polygon paths for the letter A

To draw the letter A, we call gluNextContour only once before providing
the interior points. The example in Listing 18-1, LETTER.C, uses this code
to display a rotating A.

tess = gluNewTess();
gluBeginPolygon(tess);
 gluTessVertex(tess, outside[0], outside[0]);
 gluTessVertex(tess, outside[1], outside[1]);
 gluTessVertex(tess, outside[2], outside[2]);
 gluTessVertex(tess, outside[3], outside[3]);
 gluTessVertex(tess, outside[4], outside[4]);
 gluTessVertex(tess, outside[5], outside[5]);
 gluTessVertex(tess, outside[6], outside[6]);
gluNextContour(tess, GLU_INTERIOR);
 gluTessVertex(tess, inside[0], inside[0]);
 gluTessVertex(tess, inside[1], inside[1]);
 gluTessVertex(tess, inside[2], inside[2]);
gluEndPolygon(tess);
gluDeleteTess(tess);

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Polygon Tessellation

http://www.itknowledge.com/reference/archive/1571690735/ch18/575-580.html [20-03-2000 21:41:57]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Listing 18-1 LETTER.C: Tessellating the polygon for the letter A

/*
 * "letter.c" - A test program demonstrating the use of the GLU polygon
 * tessellator.
 */

#include <GL/glaux.h>

/*
 * These #define constants are provided for compatibility between MS
 * Windows and the rest of the world.
 *
 * CALLBACK and APIENTRY are function modifiers under MS Windows.
 */

#ifndef WIN32
define CALLBACK
define APIENTRY
#endif /* !WIN32 */

GLfloat rotation = 0.0;

/*
 * 'reshape_scene()' - Change the size of the scene…
 */

void CALLBACK
reshape_scene(GLsizei width, /* I - Width of the window in pixels */
 GLsizei height) /* I - Height of the window in pixels */
{
 /*
 * Reset the current viewport and perspective transformation…
 */

 glViewport(0, 0, width, height);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(22.5, (float)width / (float)height, 0.1, 1000.0);

 glMatrixMode(GL_MODELVIEW);
}

/*
 * 'draw_scene()' - Draw a scene containing the letter A.
 */

void CALLBACK
draw_scene(void)
{
 GLUtriangulatorObj *tess;
 static GLdouble outside[7][3] =
 {
 { 0.0, 1.0, 0.0 },
 { -0.5, -1.0, 0.0 },
 { -0.4, -1.0, 0.0 },
 { -0.2, -0.1, 0.0 },
 { 0.2, -0.1, 0.0 },
 { 0.4, -1.0, 0.0 },
 { 0.5, -1.0, 0.0 }
 };
 static GLdouble inside[3][3] =
 {
 { 0.0, 0.6, 0.0 },
 { -0.1, 0.1, 0.0 },
 { 0.1, 0.1, 0.0 }
 };
 static float red_light[4] = { 1.0, 0.0, 0.0, 1.0 };
 static float red_pos[4] = { 1.0, 1.0, 1.0, 0.0 };
 static float blue_light[4] = { 0.0, 0.0, 1.0, 1.0 };
 static float blue_pos[4] = { -1.0, -1.0, -1.0, 0.0 };

/*
 * Enable drawing features that we need…
 */

 glEnable(GL_DEPTH_TEST);
 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
 glEnable(GL_LIGHT1);

 glShadeModel(GL_SMOOTH);

 /*
 * Clear the color and depth buffers…
 */

 glClearColor(0.0, 0.0, 0.0, 0.0);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 /*
 * Draw the cube and sphere in different colors…
 *
 * We have positioned two lights in this scene. The first is red and
 * located above, to the right, and behind the viewer. The second is blue
 * and located below, to the left, and in front of the viewer.
 */

 glLightfv(GL_LIGHT0, GL_DIFFUSE, red_light);
 glLightfv(GL_LIGHT0, GL_POSITION, red_pos);

 glLightfv(GL_LIGHT1, GL_DIFFUSE, blue_light);
 glLightfv(GL_LIGHT1, GL_POSITION, blue_pos);

 glEnable(GL_COLOR_MATERIAL);

 glPushMatrix();
 glTranslatef(0.0, 0.0, -15.0);
 glRotatef(-rotation, 0.0, 1.0, 0.0);

 glColor3f(0.0, 1.0, 0.0);

 tess = gluNewTess();
 gluTessCallback(tess, GLU_BEGIN, glBegin);
 gluTessCallback(tess, GLU_VERTEX, glVertex3dv);
 gluTessCallback(tess, GLU_END, glEnd);
 gluBeginPolygon(tess);
 gluTessVertex(tess, outside[0], outside[0]);
 gluTessVertex(tess, outside[1], outside[1]);
 gluTessVertex(tess, outside[2], outside[2]);
 gluTessVertex(tess, outside[3], outside[3]);
 gluTessVertex(tess, outside[4], outside[4]);
 gluTessVertex(tess, outside[5], outside[5]);
 gluTessVertex(tess, outside[6], outside[6]);
 gluNextContour(tess, GLU_INTERIOR);
 gluTessVertex(tess, inside[0], inside[0]);
 gluTessVertex(tess, inside[1], inside[1]);
 gluTessVertex(tess, inside[2], inside[2]);
 gluEndPolygon(tess);
 gluDeleteTess(tess);
 glPopMatrix();

 auxSwapBuffers();
}

/*
 * 'rotate_objects()' - Rotate while we are idle…
 */

void CALLBACK
rotate_objects(void)
{
 rotation += 2.0;
 if (rotation >= 360.0)
 rotation -= 360.0;

 draw_scene();
}

/*
 * 'main()' - Initialize the window and display the scene until the user
 * presses the ESCape key.
 */

void
main(void)
{
 auxInitDisplayMode(AUX_RGB | AUX_DOUBLE | AUX_DEPTH);
 auxInitWindow("GLU Polygon Letter");

 auxReshapeFunc(reshape_scene);
 auxIdleFunc(rotate_objects);

 auxMainLoop(draw_scene);
}

Callback Functions

The glu defines several callback functions that can be used for special effects. The gluTessCallback function
allows you to change these functions to do something of your own. It takes three arguments:

void gluTessCallback(GLUtriangulatorObj *tobj, GLenum which, void (*fn)());

The which argument specifies the callback function to define and must be one of the arguments in Table 18-2.

Table 18-2 Tessellator Callback Functions

which argument Description

GLU_BEGIN Specifies a function that is called to begin a GL_TRIANGLES,
GL_TRIANGLE_STRIP, or GL_TRIANGLE_FAN primitive. The function
must accept a single GLenum parameter that specifies the primitive to be
rendered and is usually set to glBegin.

GLU_EDGE_FLAG Specifies a function that marks whether succeeding GLU_VERTEX callbacks
refer to original or generated vertices. The function must accept a single
GLboolean argument that is GL_TRUE for original and GL_FALSE for
generated vertices.

GLU_VERTEX Specifies a function that is called before every vertex is sent, usually with
glVertex3dv. The function receives a copy of the third argument to
gluTessVertex.

GLU_END Specifies a function that marks the end of a drawing primitive, usually glEnd. It
takes no arguments.

GLU_ERROR Specifies a function that is called when an error occurs. It must take a single
argument of type GLenum.

Normally, you will use the GLU_BEGIN, GLU_END, GLU_VERTEX, and GLU_ERROR callback.
GLU_BEGIN, GLU_END, and GLU_VERTEX correspond to glBegin, glEnd, and glVertex3dv, respectively.
A simple function to display errors sent from the tessellator is in Listing 18-2.

Listing 18-2 A simple tessllator error-callback function

void
tess_error_callback(GLenum error)
{
 MessageBeep(MB_ICONEXCLAMATION);
 MessageBox(NULL, gluErrorString(error), “GLU Error”, MB_OK |
 MB_ICONEXCLAMATION);
}

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Polygon Tessellation

http://www.itknowledge.com/reference/archive/1571690735/ch18/580-584.html [20-03-2000 21:42:03]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Summary

The OpenGL polygon tessellator can be used to render a variety of complex
polygons that OpenGL’s GL_POLYGON primitive just can’t handle.
Polygon tessellation does come at a price, and you will want to put these
tessellated polygons into display lists to get good performance from them.

The callback mechanism allows for some control over the generated results
but does not affect the tessellation algorithms used. Callback functions are
rarely used because of this.

Reference Section

gluBeginPolygon
Purpose

Starts tessellation of a complex polygon.

Include File
<GL/glu.h>

Syntax
void gluBeginPolygon(GLUtriangulator *tobj);

Description
This function starts tessellation of a complex polygon.

Parameters
tobj

GLUtriangulatorObj *: The tessellator object to use for the polygon.

Returns
None.

Example
See the example in CH18\LETTER.C on the CD.

See Also
gluEndPolygon, gluNextContour, gluTessVertex

gluDeleteTess
Purpose

Deletes a tessellator object.

Include File
<GL/glu.h>

Syntax
void gluDeleteTess(GLUtriangulatorObj *tobj);

Description
The gluDeleteTess function frees all memory associated with a
tessellator object.

Parameters
tobj

GLUtriangulatorObj *: The tessellator object to delete.

Returns
None.

Example
See the example in CH18\LETTER.C on the CD.

See Also
gluNewTess

gluEndPolygon
Purpose

Ends tessellation of a complex polygon and renders it.

Include File
<GL/glu.h>

Syntax
void gluEndPolygon(GLUtriangulator *tobj);

Description
This function ends tessellation of a complex polygon and renders the
final result.

Parameters
tobj

GLUtriangulatorObj *: The tessellator object to use for the polygon.

Returns
None.

Example
See the example in CH18\LETTER.C on the CD.

See Also
gluBeginPolygon, gluNextContour, gluTessVertex

gluNewTess
Purpose

Creates a tessellator object.

Include File
<GL/glu.h>

Syntax
GLUtriangulatorObj *gluNewTess(void);

Description
The gluNewTess function creates a tessellator object.

Parameters
None.

Returns
GLUtriangulatorObj *: The new tessellator object.

Example
See the example in CH18\LETTER.C on the CD.

See Also
gluDeleteTess

gluNextContour
Purpose

Specifies a new contour or hole in a complex polygon.

Include File
<GL/glu.h>

Syntax
void gluNextContour(GLUtriangulator *tobj, GLenum type);

Description
This function specifies a new contour or hole in a complex polygon.

Parameters
tobj

GLUtriangulatorObj *: The tessellator object to use for the polygon.

type

GLenum: The type of contour. Valid types are in Table 18-1 earlier
in chapter.

Returns
None.

Example
See the example in CH18\LETTER.C on the CD.

See Also
gluBeginPolygon, gluEndPolygon, gluTessVertex

gluTessCallback
Purpose

To specify a callback function for tessellation.

Include File
<GL/glu.h>

Syntax
void gluTessCallback(GLUtriangulator *tobj, GLenum which, void
(*fn)());

Description
This function specifies a callback function for various tesselation
functions. Callback functions do not replace or change the tessellator
performance. Rather, they provide the means to add information to
the tessellated output (such as color or texture coordinates).

Parameters
tobj

GLUtriangulatorObj *: The tessellator object to use for the polygon.

which

GLenum: The callback function to define. Valid functions are in
Table 18-2 earlier in chapter.

fn

void (*)(): The function to call.

Returns
None.

gluTessVertex
Purpose

Adds a vertex to the current polygon path.

Include File
<GL/glu.h>

Syntax
void gluTessVertex(GLUtriangulator *tobj, GLdouble v[3], void
*data);

Description
This function adds a vertex to the current tessellator path. The data
argument is passed through to the GL_VERTEX callback function..

Parameters
tobj

GLUtriangulatorObj *: The tessellator object to use for the polygon.

v

GLdouble[3]: The 3D vertex.

data

void *: A data pointer to be passed to the GL_VERTEX callback
function.

Returns
None.

Example
See the example in CH18\LETTER.C on the CD.

See Also
gluBeginPolygon, gluEndPolygon, gluNextContour

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Polygon Tessellation

http://www.itknowledge.com/reference/archive/1571690735/ch18/584-588.html [20-03-2000 21:42:09]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Chapter 19
Interactive Graphics

What you’ll learn in this chapter:
How to... Functions You’ll Use

Assign OpenGL selection names to primitives or
groups of primitives

glInitNames/glPushName/glPopName

Use selection to determine which objects are
under the mouse

glSelectBuffer/glRenderMode

Use feedback to get information about where
objects are drawn

glFeedbackBuffer/gluPickMatrix

Thus far you have learned to create some sophisticated 3D graphics using OpenGL, and
many applications do no more than generate these scenes. But many graphics
applications (notably, games) will require more interaction with the scene itself. In
addition to the menu and dialog boxes, you’ll need to provide a way for the user to
interact with a graphical scene. Under Windows, this is usually done with a mouse.

Selection, a very powerful feature of OpenGL, allows you to take a mouse click at some
position over a window and determine which of your objects are beneath it. The act of
selecting a specific object on the screen is called picking. With Open GL’s selection
feature, you can specify a viewing volume and determine which objects fall within that
viewing volume. A powerful utility function produces a matrix for you, based purely on
screen coordinates and the pixel dimensions you specify; you use this matrix to create a
smaller viewing volume placed beneath the mouse cursor. Then you use selection to test
this viewing volume to see which objects are contained by it.

Feedback allows you to get information from OpenGL about how your vertices are
transformed and illuminated when they are drawn to the framebuffer. You can use this
information to transmit rendering results over a network, send them to a plotter, or add
GDI graphics to your OpenGL scene that appear to interact with the OpenGL objects.
Feedback does not serve the same purpose as selection, but the mode of operation is
very similar and they work productively together. You’ll see this teamwork later in a
specific example.

Selection

Selection is actually a rendering mode, but in selection mode no pixels are actually
copied to the framebuffer. Instead, primitives that are drawn within the viewing volume
(and thus would normally appear in the framebuffer) produce “hit” records in a
selection buffer.

You must set up this selection buffer in advance, and name your primitives or groups of
primitives (your objects) so they can be identified in the selection buffer. You then
parse the selection buffer to determine which objects intersected the viewing volume.
This has marginal value unless you modify the viewing volume before entering
selection mode and calling your drawing code to determine which objects are in some
restricted area of your scene. In one common scenario, you specify a viewing volume
that corresponds to the mouse pointer, and then check to see which named objects the
mouse is pointing to.

Naming Your Primitives

You can name every single primitive used to render your scene of objects, but this is
rarely useful. More often you will name groups of primitives, thus creating names for
the specific objects or pieces of objects in your scene. Object names, like display list
names, are nothing more than unsigned integers.

The names list is maintained on the name stack. After you initialize the name stack, you
can push names on the stack or simply replace the name currently on top of the stack.
When a hit occurs during selection, all the names on the names stack are copied into the
selection buffer. Thus, a single hit can return more than one name if needed.

For our first example, we’ll keep things simple. We’ll create a simplified (and not to
scale) model of the inner planets of the solar system. When the left mouse button is
down, we’ll display a message box describing which planet was clicked on. Listing
19-1 shows some of the rendering code for our example program, PLANETS. We have
created macro definitions for the Sun, Mercury, Venus, Earth, and Mars.

Listing 19-1 Naming the Sun and planets in the PLANETS program

#define SUN 1
#define MERCURY 2
#define VENUS 3
#define EARTH 4
#define MARS 5

...

...
// Called to draw scene
void RenderScene(void)
 {
 // Clear the window with current clearing color
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Save the matrix state and do the rotations
 glMatrixMode(GL_MODELVIEW);
 glPushMatrix();

 // Translate the whole scene out and into view
 glTranslatef(0.0f, 0.0f, -300.0f);

 // Initialize the names stack
 glInitNames();
 glPushName(0);

 // Set material color, Yellow
 // Sun
 glRGB(255, 255, 0);
 glLoadName(SUN);
 auxSolidSphere(15.0f);

 // Draw Mercury
 glRGB(128,0,0);
 glPushMatrix();
 glTranslatef(24.0f, 0.0f, 0.0f);
 glLoadName(MERCURY);
 auxSolidSphere(2.0f);
 glPopMatrix();

 // Draw Venus
 glPushMatrix();
 glRGB(128,128,255);
 glTranslatef(60.0f, 0.0f, 0.0f);
 glLoadName(VENUS);
 auxSolidSphere(4.0f);
 glPopMatrix();

 ...
 ... Other planets
 ...

 // Restore the matrix state
 glPopMatrix(); // Modelview matrix

 // Flush drawing commands
 glFlush();
 }

In PLANETS, the glInitNames function initializes and clears the names stack, and
glPushName pushes 0 on the stack to put at least one entry on the stack. For the Sun and
each planet, we call glLoadName to name the object or objects about to be drawn. This
name, in the form of an unsigned integer, is not pushed on the name stack but rather
replaces the current name on top of the stack. Later we’ll discuss keeping an actual
stack of names. For now, we just replace the top name of the name stack each time we
draw an object (the Sun or a particular planet).

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Interactive Graphics

http://www.itknowledge.com/reference/archive/1571690735/ch19/591-593.html [20-03-2000 21:42:15]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Working with Selection Mode

As mentioned, OpenGL can operate in three different rendering modes. The default mode is
GL_RENDER, in which all the drawing actually occurs on screen. To use selection, we must change
the rendering mode to selection by calling the OpenGL function:

glRenderMode(GL_SELECTION);

When we actually want to draw again, we call

glRenderMode(GL_RENDER);

to place OpenGL back in rendering mode. The third rendering mode is GL_FEEDBACK, discussed
later in this chapter.

The naming code in Listing 19-1 has no effect unless we first switch the rendering mode to selection
mode. Most often, you will use the same function to render the scene in both GL_RENDER mode
and GL_SELECTION modes, as we have done here.

Listing 19-2 is the code that is triggered by the clicking of the left mouse button. This code gets the
mouse coordinates from lParam and passes them to ProcessSelection, which will process the mouse
click for this example.

Listing 19-2 Code that responds to the left mouse button click

case WM_LBUTTONDOWN:
 {
 int xPos = LOWORD(lParam); // horizontal position of cursor
 int yPos = HIWORD(lParam); // vertical position of cursor

 // Render in selection mode and display results
 ProcessSelection(xPos, yPos);
 }

The Selection Buffer

The selection buffer is filled with hit records during the rendering process. A hit record is generated
whenever a primitive or collection of primitives is rendered that would have been contained in the
viewing volume. Under normal conditions, this is simply anything that would have appeared on
screen.

The selection buffer is an array of unsigned integers, and each hit record occupies at least four
elements of the array. The first array index contains the number of names that are on the names stack
when the hit occurs. For the PLANETS example (Listing 19-1), this will always be 1. The next two
entries contain the minimum and maximum window z coordinates of all the vertices contained by the
viewing volume since the last hit record. This value, which ranges from [0,1], is scaled to the size of
an unsigned integer (2^32–1) for storage in the selection buffer. This pattern, illustrated in Figure
19-1, is then repeated for all the hit records contained in the selection buffer.

Figure 19-1 Hit record format of the selection buffer

The format of the selection buffer gives you no way of knowing how many hit records you will need
to parse. This is because the selection buffer is not actually filled until you switch the rendering mode
back to GL_RENDER. When you do this with the glRenderMode function, the return value of
glRenderMode returns the number of hit records copied.

Listing 19-3 shows the processing function called when a mouse click occurs for the PLANETS
example program. It shows the selection buffer being allocated and specified with glSelectBuffer.
This function takes two arguments: the length of the buffer and a pointer to the buffer itself.

Listing 19-3 Function to process the mouse click

// Process the selection, which is triggered by a right mouse
// click at (xPos, yPos).
#define BUFFER_LENGTH 64
void ProcessSelection(int xPos, int yPos)
 {
 // Space for selection buffer
 GLuint selectBuff[BUFFER_LENGTH];

 // Hit counter and viewport storage
 GLint hits, viewport[4];

 // Set up selection buffer
 glSelectBuffer(BUFFER_LENGTH, selectBuff);

 // Get the viewport
 glGetIntegerv(GL_VIEWPORT, viewport);

 // Switch to projection and save the matrix
 glMatrixMode(GL_PROJECTION);
 glPushMatrix();

 // Change render mode
 glRenderMode(GL_SELECT);

 // Establish new clipping volume to be unit cube around
 // mouse cursor point (xPos, yPos) and extending two pixels
 // in the vertical and horizontal direction
 glLoadIdentity();
 gluPickMatrix(xPos, yPos, 2,2, viewport);

 // Apply perspective matrix
 gluPerspective(45.0f, fAspect, 1.0, 425.0);

 // Draw the scene
 RenderScene();

 // Collect the hits
 hits = glRenderMode(GL_RENDER);

 // If a single hit occurred, display the info.
 if(hits == 1)
 ProcessPlanet(selectBuff[3]);

 // Restore the projection matrix
 glMatrixMode(GL_PROJECTION);
 glPopMatrix();

 // Go back to modelview for normal rendering
 glMatrixMode(GL_MODELVIEW);
 }

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Interactive Graphics

http://www.itknowledge.com/reference/archive/1571690735/ch19/594-596.html [20-03-2000 21:42:26]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Picking

Picking occurs when you use the mouse position to create and use a modified viewing volume
during selection. By creating a smaller viewing volume positioned in your scene under the mouse
position, only objects that would be drawn within that viewing volume will generate hit records. By
examining the selection buffer, you can then see which objects, if any, were clicked on by the
mouse.

The gluPickMatrix function is a handy utility that will create a matrix describing the new viewing
volume:

void gluPickMatrix(GLdouble x, GLdouble y, GLdouble width, GLdouble
height, GLint viewport[4]);

The x and y parameters are the center of the desired viewing volume in window coordinates. The
mouse position can be plugged in here, and the viewing volume will be centered directly underneath
the mouse. The width and height parameters then specify the dimensions of the viewing volume in
window pixels. For clicks near an object, use a large value; for clicks right next to the object or
directly on the object, use a smaller value. The viewport array contains the window coordinates of
the currently defined viewport. This can easily be obtained by calling

glGetIntegerv(GL_VIEWPORT, viewport);

To use gluPickMatrix, you should first save the current Projection matrix state (thus saving the
current viewing volume). Then call glLoadIdentity to create a unit-viewing volume. Calling
gluPickMatrix then translates this viewing volume to the correct location. Finally, you must apply
any further perspective projections you may have applied to your original scene; otherwise, you
won’t get a true mapping. Here’s how it’s done for the PLANETS example (from Listing 19-3):

// Switch to projection and save the matrix
glMatrixMode(GL_PROJECTION);
glPushMatrix();

// Change render mode
glRenderMode(GL_SELECT);

// Establish new clipping volume to be unit cube around
// mouse cursor point (xPos, yPos) and extending two pixels
// in the vertical and horizontal direction
glLoadIdentity();
gluPickMatrix(xPos, yPos, 2,2, viewport);

// Apply perspective matrix
gluPerspective(45.0f, fAspect, 1.0, 425.0);

// Draw the scene
RenderScene();

// Collect the hits
hits = glRenderMode(GL_RENDER);

In this segment, the viewing volume is saved first. Then selection mode is entered, the viewing
volume is modified to include only the area beneath the mouse cursor, and the scene is redrawn by
calling RenderScene. After the scene is rendered, we call glRenderMode again to place OpenGL
back into normal rendering mode and get a count of generated hit records.

In the next segment, if a hit occurred (for this example, there is either one hit or none), we pass the
entry in the selection buffer that contains the name of the object selected or our ProcessPlanet
function. Finally, we restore the Projection matrix (thus the old viewing volume is restored) and
switch the active matrix stack back to the Modelview matrix, which is usually the default.

// If a single hit occurred, display the info.
if(hits == 1)
 ProcessPlanet(selectBuff[3]);

// Restore the projection matrix
glMatrixMode(GL_PROJECTION);
glPopMatrix();

// Go back to modelview for normal rendering
glMatrixMode(GL_MODELVIEW);

The ProcessPlanet function simply displays a message box telling which planet was clicked on. This
code is not shown because it is fairly trivial, consisting of no more than a switch and some
message-box function calls.

The output from PLANETS is shown in Figure 19-2, where you can see the result of clicking on the
second planet from the Sun.

Figure 19-2 Output from PLANETS, after clicking on a planet

Hierarchical Picking

For the PLANETS example, we didn’t push any names on the stack, but rather just replaced the
existing one. This single name residing on the name stack was then the only name returned in the
selection buffer. We can also get multiple names when a selection hit occurs, by placing more than
one name on the name stack. This is useful, for instance, in drill-down situations when you need to
know not only that a particular bolt was selected, but that it belonged to a particular wheel, on a
particular car, and so forth.

To demonstrate multiple names being returned on the names stack, we will stick with the astronomy
theme of our previous example. Figure 19-3 shows two planets (okay, so use a little
imagination)—a large blue planet with a single moon, and a smaller red planet with two moons.

Figure 19-3 Two planets with their respective moons

Rather than just identify the planet or moon that’s clicked on, we want to also identify the planet
that is associated with the particular moon. The code in Listing 19-4 shows our new rendering code
for this scene. We push the names of the moons onto the names stack so that it will contain the
name of the planet as well as the name of the moon when selected.

Listing 19-4 Rendering code for the MOONS example program

#define EARTH 1
#define MARS 2
#define MOON1 3
#define MOON2 4

// Called to draw scene
void RenderScene(void)
 {
 // Clear the window with current clearing color
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Save the matrix state and do the rotations
 glMatrixMode(GL_MODELVIEW);
 glPushMatrix();

 // Translate the whole scene out and into view
 glTranslatef(0.0f, 0.0f, -300.0f);

 // Initialize the names stack
 glInitNames();
 glPushName(0);

 // Draw the Earth
 glPushMatrix();
 glRGB(0,0,255);
 glTranslatef(-100.0f,0.0f,0.0f);
 glLoadName(EARTH);
 auxSolidSphere(30.0f);

 // Draw the Moon
 glTranslatef(45.0f, 0.0f, 0.0f);
 glRGB(220,220,220);
 glPushName(MOON1);
 auxSolidSphere(5.0f);
 glPopName();
 glPopMatrix();

 // Draw Mars
 glRGB(255,0,0);
 glPushMatrix();
 glTranslatef(100.0f, 0.0f, 0.0f);
 glLoadName(MARS);
 auxSolidSphere(20.0f);

 // Draw Moon1
 glTranslatef(-40.0f, 40.0f, 0.0f);
 glRGB(220,220,220);
 glPushName(MOON1);
 auxSolidSphere(5.0f);
 glPopName();

 // Draw Moon2
 glTranslatef(0.0f, -80.0f, 0.0f);
 glPushName(MOON2);
 auxSolidSphere(5.0f);
 glPopName();
 glPopMatrix();

 // Restore the matrix state
 glPopMatrix(); // Modelview matrix

 // Flush drawing commands
 glFlush();
 }

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Interactive Graphics

http://www.itknowledge.com/reference/archive/1571690735/ch19/596-600.html [20-03-2000 21:42:35]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Now in our ProcessSelection function, we still call the ProcessPlanet function that we wrote, but this time we
pass the entire selection buffer:

// If a single hit occurred, display the info.
if(hits == 1)
 ProcessPlanet(selectBuff);

Listing 19-5 shows the more substantial ProcessPlanet function for this example. In this instance, the bottom
name on the names stack will always be the name of the planet because it was pushed on first. If a moon is
clicked on, it will also be on the names stack. This function displays the name of the planet selected, and if it
was a moon, that information is also displayed. A sample output is shown in Figure 19-4.

Figure 19-4 Sample output from the MOONS sample program

Listing 19-5 Code that parses the selection buffer for the MOONS sample program

// Parse the selection buffer to see which planet/moon was selected
void ProcessPlanet(GLuint *pSelectBuff)
 {
 int id,count;
 char cMessage[64];

// How many names on the name stack
count = pSelectBuff[0];

// Bottom of the name stack
id = pSelectBuff[3];

// Select on earth or mars, whichever was picked
switch(id)
 {
 case EARTH:
 strcpy(cMessage,"You clicked Earth.");

 // If there is another name on the name stack,
 // then it must be the moon that was selected
 // This is what was actually clicked on
 if(count == 2)
 strcat(cMessage,"\nSpecifically the moon.");
 break;

 case MARS:
 strcpy(cMessage,"You clicked Mars.");

 // We know the name stack is only two deep. The precise
 // moon that was selected will be here.
 if(count == 2)
 {
 if(pSelectBuff[4] == MOON1)
 strcat(cMessage,"\nSpecifically Moon #1.");
 else
 strcat(cMessage,"\nSpecifically Moon #2.");
 }
 break;
 // If nothing was clicked we shouldn't be here!
 default:
 strcpy(cMessage,"Error - Nothing was clicked on!");
 break;
 }

 // Display the message about planet and moon selection
 MessageBox(NULL,cMessage,"Selection Message",MB_OK);
 }

Feedback

Feedback, like selection, is a rendering mode that does not produce output in the form of pixels on the
screen. Instead, information is written to a feedback buffer about how the scene would have been rendered.
This information includes transformed vertex data in window coordinates, color data resulting from lighting
calculations, and texture data.

Feedback mode is entered just like selection mode, by calling glRenderMode with a GL_FEEDBACK
argument. You must reset the rendering mode to GL_RENDER to fill the feedback buffer and return to
normal rendering mode.

The Feedback Buffer

The feedback buffer is an array of floating point values specified with the glFeedback function:

void glFeedbackBuffer(GLsizei size, GLenum type, GLfloat *buffer);

This function takes the size of the feedback buffer, the type and amount of drawing information wanted, and
finally a pointer to the buffer itself.

Valid values for type are shown in Table 19-1. The type of data specifies how much data is placed in the
feedback buffer for each vertex. Color data (C) is represented by a single value in color index mode, or four
values for RGBA color mode.

Table 19-1 Feedback Buffer Types

Type Vertex
Coordinates

Color Data Texture Data Total Values

GL_2D x, y N/A N/A 2
GL_3D x, y, z N/A N/A 3
GL_3D_COLOR x, y, z C N/A 3 + C
GL_3D_COLOR_TEXTURE x, y, z C 4 7 + C
GL_4D_COLOR_TEXTURE x, y, z, w C 4 8 + C

Feedback Data

The feedback buffer contains a list of tokens followed by vertex data and possibly color and texture data.
You can parse for these tokens (see Table 19-2) to determine the types of primitives that would have been
rendered.

Table 19-2 Feedback Buffer Tokens

Token Primitive

GL_POINT_TOKEN Points
GL_LINE_TOKEN Line
GL_LINE_RESET_TOKEN Line segment when line stipple is reset
GL_POLYGON_TOKEN Polygon
GL_BITMAP_TOKEN Bitmap
GL_DRAW_PIXEL_TOKEN Pixel rectangle drawn
GL_COPY_PIXEL_TOKEN Pixel rectangle copied
GL_PASS_THROUGH_TOKEN User-defined marker

The point, bitmap, and pixel tokens are followed by data for a single vertex, and possibly color and texture
data. This depends on the data type from Table 19-1 specified in the call to glFeedbackBuffer. The line
tokens return two sets of vertex data, and the polygon token is immediately followed by the number of
vertices that follow. The user-defined marker (GL_PASS_THROUGH_TOKEN) is followed by a single
floating point value that is user defined. Figure 19-5 shows an example of a feedback buffer’s memory
layout if a GL_3D type were specified.

Figure 19-5 An example memory layout for a feedback buffer

PassThrough Markers

When your rendering code is executing, the feedback buffer is filled with tokens and vertex data as each
primitive is specified. Just as you can in selection mode, you can flag certain primitives by naming them. In
feedback mode you can set markers between your primitives, as well. This is done by calling glPassThrough:

void glPassThrough(GLfloat token);

This function places a GL_PASS_THROUGH_TOKEN in the feedback buffer, followed by the value you
specify when calling the function. This is somewhat similar to naming primitives in selection mode. It’s the
only way of labeling objects in the feedback buffer.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Interactive Graphics

http://www.itknowledge.com/reference/archive/1571690735/ch19/600-604.html [20-03-2000 21:42:46]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

An Example

An excellent use of feedback is to obtain window coordinate information regarding any objects that
you render. You can then use this information to place controls near the objects in the window, or
other windows around them.

To demonstrate feedback, we will use selection to determine which of two objects on the screen
have been clicked on by the user. Then we will enter feedback mode and render the scene again to
obtain the vertex information in window coordinates. Using this data, we will determine the
minimum and maximum x and y values for the object, and use those values to draw a focus
rectangle around the object. The end result is graphical selection and deselection of one or both
objects.

Label the Objects for Feedback

Listing 19-6 shows the rendering code for our example program, SELECT. Don’t confuse this with
a demonstration of selection mode! Even though selection mode is employed in our example to
select an object on the screen, we are demonstrating the process of getting enough information
about that object—using feedback—to draw a rectangle around it using normal Windows GDI
commands. Notice the use of glPassThrough to label the objects in the feedback buffer, right after
the calls to glLoadName to label the objects in the selection buffer.

Listing 19-6 Rendering code for the SELECT example program

#define CUBE1
#define SPHERE2

// Called to draw scene
void RenderScene(void)
 {
 // Clear the window with current clearing color
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Save the matrix state and do the rotations
 glMatrixMode(GL_MODELVIEW);
 glPushMatrix();

 // Translate the whole scene out and into view
 glTranslatef(-80.0f, 0.0f, -300.0f);

 // Initialize the names stack
 glInitNames();
 glPushName(0);

 // Set material color, Yellow
 // Cube
 glRGB(255, 255, 0);
 glLoadName(CUBE);
 glPassThrough((GLfloat)CUBE);
 auxSolidCube(75.0f);

 // Draw Sphere
 glRGB(128,0,0);
 glTranslatef(130.0f, 0.0f, 0.0f);
 glLoadName(SPHERE);
 glPassThrough((GLfloat)SPHERE);
 auxSolidSphere(50.0f);

 // Restore the matrix state
 glPopMatrix(); // Modelview matrix

 // Flush drawing commands
 glFlush();
 }

Step 1: Select the Object

Figure 19-6 shows the output from this rendering code, displaying a cube and a sphere. When the
user clicks on one of the objects, the function ProcessSelection is called (Listing 19-7). This is very
similar to the selection code in the previous two examples.

Figure 19-6 Output from the SELECT program after the sphere has been clicked

Listing 19-7 Selection processing for the SELECT example program

// Process the selection, which is triggered by a right mouse
// click at (xPos, yPos).
#define BUFFER_LENGTH 64
void ProcessSelection(int xPos, int yPos)
 {
 // Space for selection buffer
 GLuint selectBuff[BUFFER_LENGTH];

 // Hit counter and viewport storage
 GLint hits, viewport[4];

 // Set up selection buffer
 glSelectBuffer(BUFFER_LENGTH, selectBuff);

 // Get the viewport
 glGetIntegerv(GL_VIEWPORT, viewport);

 // Switch to projection and save the matrix
 glMatrixMode(GL_PROJECTION);
 glPushMatrix();

 // Change render mode
 glRenderMode(GL_SELECT);

 // Establish new clipping volume to be unit cube around
 // mouse cursor point (xPos, yPos) and extending two pixels
 // in the vertical and horizontal direction
 glLoadIdentity();
 gluPickMatrix(xPos, yPos, 2,2, viewport);

 // Apply perspective matrix
 gluPerspective(60.0f, fAspect, 1.0, 425.0);

 // Draw the scene
 RenderScene();

 // Collect the hits
 hits = glRenderMode(GL_RENDER);

 // Restore the projection matrix
 glMatrixMode(GL_PROJECTION);
 glPopMatrix();

 // Go back to modelview for normal rendering
 glMatrixMode(GL_MODELVIEW);

 // If a single hit occurred, display the info.
 if(hits == 1)
 MakeSelection(selectBuff[3]);
 }

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Interactive Graphics

http://www.itknowledge.com/reference/archive/1571690735/ch19/604-606.html [20-03-2000 21:42:54]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Step 2: Get Feedback on the Object

Now that we have determined which object was clicked on, we set up the feedback buffer, and render again in
feedback mode. Listing 19-8 is the code that sets up feedback mode for this example and calls RenderScene to
redraw the scene. This time, however, the glPassThrough functions put markers for the objects in the feedback
buffer.

Listing 19-8 Load and parse the feedback buffer

// Go into feedback mode and draw a rectangle around the object
#define FEED_BUFF_SIZE 4096
void MakeSelection(int nChoice)
 {
 // Space for the feedback buffer
 GLfloat feedBackBuff[FEED_BUFF_SIZE];

 // Storage for counters, etc.
 int size,i,j,count;

 // Min and max x and y values for 2D vertex positions
 float nMaxX,nMaxY,nMinX,nMinY;

 // Initial minimum and maximum values
 nMaxX = nMaxY = -999999.0f;
 nMinX = nMinY = 999999.0f;

 // Set the feedback buffer
 glFeedbackBuffer(FEED_BUFF_SIZE,GL_2D, feedBackBuff);

 // Enter feedback mode
 glRenderMode(GL_FEEDBACK);

 // Redraw the scene
 RenderScene();

 // Leave feedback mode
 size = glRenderMode(GL_RENDER);

 // Parse the feedback buffer and get the
 // min and max X and Y window coordinates
 i = 0;
 while(i < FEED_BUFF_SIZE)
 {
 // Search for appropriate token
 if(feedBackBuff[i] == GL_PASS_THROUGH_TOKEN)
 if(feedBackBuff[i+1] == (GLfloat)nChoice)
 {
 i+= 2;
 // Loop until next token is reached
 while(feedBackBuff[i] != GL_PASS_THROUGH_TOKEN)
 {
 // Just get the polygons
 if(feedBackBuff[i] == GL_POLYGON_TOKEN)
 {
 // Get all the values for this
 polygon
 // How many vertices
 count = (int)feedBackBuff[++i];
 i++;

 // Loop for each vertex
 for(j = 0; j < count; j++)
 {
 // Min and Max X
 if(feedBackBuff[i] > nMaxX)
 nMaxX = feedBackBuff[i];

 if(feedBackBuff[i] < nMinX)
 nMinX = feedBackBuff[i];

 i++;

 // Min and Max Y
 if(feedBackBuff[i] > nMaxY)
 nMaxY = feedBackBuff[i];

 if(feedBackBuff[i] < nMinY)
 nMinY = feedBackBuff[i];

 i++;
 }
 }
 else
 i++; // Get next index and keep
 looking
 }
 break;
 }
 i++;
 }
 // Draw focus rectangle
 HighLight((int)floor(nMinX+0.5), (int)floor(nMinY+0.5),
 (int)floor(nMaxX+0.5), (int)floor(nMaxY+0.5));
 }

Once the feedback buffer is filled, we search it for GL_PASS_THROUGH_TOKEN. When we find one, we
get the next value and determine if it is the one we are looking for. If so, the only thing that remains is to loop
through all the polygons for this object and get the minimum and maximum window x and y values. The
HighLight function uses the Win32 function DrawFocusRect to draw a rectangle around the outside of the
object that was clicked on. This function uses XOR drawing mode, so calling it twice causes the rectangle to
disappear. This allows you to select by clicking on an object, and deselect by clicking again.

Summary

Selection and feedback are two very powerful features of OpenGL that give you the ability to facilitate the
user’s active interaction with the scene. Selection and picking are used to identify an object or region of a
scene in OpenGL coordinates rather than just window coordinates. Feedback returns valuable information
about how an object or primitive is actually drawn in the window. You can use this information to supplement
OpenGL’s graphics with Windows-specific graphics and operations that appear to interact with your OpenGL
graphics.

Reference Section

glFeedbackBuffer
Purpose

Sets the feedback mode.

Include File
<gl.h>

Syntax
void glFeedbackBuffer(GLsizei size, GLenum type, GLfloat *buffer);

Description
This function establishes the feedback buffer and the type of vertex information desired. Feedback is a
rendering mode; rather than rendering to the framebuffer, OpenGL sends vertex data to the buffer
specified here. These blocks of data can include x, y, z, and w coordinate positions (in window
coordinates); color data for color index mode or RGBA color mode; and finally texture coordinates. The
amount and type of information desired is specified by the type argument.

Parameters
size

GLsizei: The maximum number of entries allocated for *buffer. If a block of data written to the
feedback would overflow the amount of space allocated, only the part of the block that will fit in the
buffer is written.

type

GLenum: Specifies the kind of vertex data to be returned in the feedback buffer. Each vertex generates a
block of data in the feedback buffer. For each of the following types, the block of data contains a
primitive token identifier followed by the vertex data. The vertex data specifically will include the
following:

GL_2D: x and y coordinate pairs.

GL_3D: x, y, and z coordinate triplets.

GL_3D_COLOR: x, y, z coordinates, and color data (one value for Color Index, four for RGBA).

GL_3D_COLOR_TEXTURE: x, y, z coordinates, color data (one or four values), and four texture
coordinates.

GL_4D_COLOR_TEXTURE: x, y, z, and w coordinates, color data (one or four values), and four
texture coordinates.

buffer

GLfloat*: Buffer where feedback data will be stored.

Returns
None.

Example

The following code from the SELECT sample program initializes the feedback buffer with glFeedbackBuffer,
then switches to feedback mode, renders the scene, and fills the feedback buffer by switching back to
rendering mode.

 #define FEED_BUFF_SIZE 4096
 ...
 ...

 // Space for the feedback buffer
 GLfloat feedBackBuff[FEED_BUFF_SIZE];

 ...
 ...

 // Set the feedback buffer
 glFeedbackBuffer(FEED_BUFF_SIZE,GL_2D, feedBackBuff);

 // Enter feedback mode
 glRenderMode(GL_FEEDBACK);

 // Redraw the scene
 RenderScene();

 // Leave feedback mode
 size = glRenderMode(GL_RENDER);

See Also
glPassThrough, glRenderMode, glSelectBuffer

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Interactive Graphics

http://www.itknowledge.com/reference/archive/1571690735/ch19/607-610.html [20-03-2000 21:43:00]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Chapter 20
OpenGL On The 'Net: VRML
OpenGL has been put to many uses. This chapter is about one use in
particular that has recently become widely popular: virtual reality.

OpenGL is ideally suited for a variety of graphical and modeling purposes,
and it is the enabling technology behind the pseudorealism of virtual reality.
These computer-generated “worlds,” in which many of the user’s senses
can be immersed, contain three-dimensional scenes that include sound and
sometimes feeling and resistance via tactile feedback mechanisms. Some
products offer technology as diverse as tactile feedback gloves,
three-dimensional goggles, and arcade-style computer games that allow
realistic movement in all directions.

The Internet, which is far more mature technologically than is virtual
reality, has recently become the popular playground of the modern
computer enthusiast—not to mention a necessity for the professional,
academic, and military users for which it was originally intended. Few of us
today are unfamiliar with the term cyberspace—a virtual world of its own
with many places to visit and people to meet—and most of us have spent at
least some time surfing this network of computers and information
resources.

In this chapter we will briefly discuss an implementation of virtual reality
over the Internet that has its origins in OpenGL. For the sake of brevity, we
will assume you have some familiarity with the Internet, the World Wide
Web (the Web or WWW), and the Web browsers that facilitate navigation
across the World Wide Web.

When Worlds Collide

It didn’t take long for someone to make the connection between cyberspace
and virtual reality. If in cyberspace you are traveling around the world,
visiting different places and accessing various types of information, it
makes sense to be able to do this in a visual environment rather than with
textual displays that are so hard to muddle through.

Graphical navigation of the Internet first began when Tim Berners-Lee at
the European Center for Nuclear Physics (CERN) in Geneva devised a set
of protocols that made it possible to easily encode the connection between
various files contained in FTP archives. These connections link documents
to other documents of interest, allowing navigation from one document to
another, even across directories, computers, and continents. These protocols
use Universal Resource Locators (URLs) to identify document locations
and were the genesis of the World Wide Web.

Soon thereafter, Marc Anderson (who later founded Netscape
Communications Corporation) created a Web browser that could mix
various kinds of files, including text and graphics, into a single
presentation. This browser was NCSA Mosaic, and it could represent the
relationships within a document to other documents, as well as provide a
protocol for formatting the documents with embedded images and different
types of text. The Internet hasn’t been the same since. In less than a year,
the Internet went from being a technical thing-a-ma-bob to something
anyone can use with point-and-click ease.

Two-Dimensional Navigation

Web pages comprise mostly text documents in a special format called
HTML (HyperText Markup Language). HTML documents can embed other
documents, graphics, even video and sound, as well as hypertext links to
other documents and Web sites. Figure 20-1 shows a typical Web home
page; this one belongs to Silicon Graphics and is fairly graphics heavy. By
clicking on a button for a subject of interest to you, or on a “hot spot” on
the larger image, you are transported to another page containing the linked
information of interest and/or a whole new set of categories and links to
other pages.

Figure 20-1 A typical Web home page with hypertext links

Enter VRML

The graphical yet two-dimensional method of Web navigation became
immensely popular in just a couple of years. “Navigating” through
cyberspace in this manner was very efficient as long as the information you
were seeking could be represented as a document. However, the world is
not a library, and Internet entrepreneurs were pushing the limits of what
could be accomplished effectively with two-dimensional document-centric
navigation.

Then in 1994 (not that long ago!), Mark Pesce and Tony Parisi created a
new type of Web document and browser that could navigate in three
dimensions. On Valentine’s Day 1994, the first virtual reality Web site was
up and running. It was three-dimensional, and it allowed you to navigate a
3D scene and click on objects of interest that were linked to other 3D
scenes or HTML Web pages.

These 3D files were modeled with a new scripting language, VRML
(originally meaning Virtual Reality Markup Language and eventually
Virtual Reality Modeling Language). Silicon Graphics (SGI), a world
leader in computer graphics technology, graciously placed their Open
Inventor scene-description language file format in the public domain, and it
became the basis for VRML version 1.0.

About Open Inventor
Open Inventor is a much higher-level interface for 3D modeling than is
provided by the OpenGL API alone. Open Inventor is actually a C++
class library built on top of OpenGL. Programmers use this library, or
tools that use the library, to create complex 3D scenes and objects that
often aren’t practical by hand, using OpenGL alone. Open Inventor
objects (in the C++ sense) have a feature called persistence that allows
them to be saved to disk and reloaded later. SGI provided the VRML
developer community with free source code. This was used to parse the
native scene-description script used by Open Inventor for persistent
storage of 3D scenes and objects (in binary), into more meaningful
information about the location and characteristics of the objects that
make up the scene. Open Inventor is discussed in more detail later in this
chapter.

Fueled by free source code from SGI, by April of 1995 VRML became the
darling of the popular Internet press. VRML browsers from multiple
vendors appeared on the market, for all of the popular platforms including
PCs. Now the technology existed for users to do more than just select items
from a menu. Now they could actually walk through a library or museum or
even a shopping mall, and pick up and examine items of interest.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:OpenGL on the 'Net:VRML

http://www.itknowledge.com/reference/archive/1571690735/ch20/619-623.html [20-03-2000 21:43:11]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

WebSpace

Silicon Graphics was naturally the first to have a fully compliant,
commercially available VRML Web browser. WebSpace was its name, and
it set the standard by which all other VRML browsers were to be compared.
WebSpace was developed to run on SGI’s own workstations, but a third
party, Template Graphics Software, has been allowed to develop a version
for Microsoft Windows and other platforms. All versions of this browser
now fully support the VRML 1.0 standard and make use of OpenGL to
render the scenes.

Installation

WebSpace can be installed as a helper application in most WWW browsers.
For installation instructions, see the README file for your browser.
WebSpace loads VRML files with a .wrl extension as well as Open
Inventor scene files with an .iv extension. In addition, the latest version of
WebSpace from Template Graphics will automatically load .wrl files that
have been compressed with gzip, a popular Internet file-compression
format. This makes for substantially smaller files and thus faster loading.

WebSpace on CD
A copy of Template Graphics’s Windows version of WebSpace is
available on this book’s CD in the Chapter 20 subdirectory. The software
and sample VRML scenes are courtesy of Silicon Graphics Inc. and
Template Graphics Software. These files are provided as shareware. If
you use this software for more than evaluation purposes, you should
register your copy. See the README file for licensing information.

The Walk Viewer

There are two modes of operation for navigation in WebSpace. The first is
the Walk Viewer, which lets you actually navigate through the model
presented, such as a museum or architectural model. The second is the
Examiner Viewer, which is used to examine objects in WebSpace, such as
an airplane, tool, or piece of furniture. You’ll see both of these modes in
action shortly.

Figure 20-2 shows WebSpace viewing a sample VRML scene in the Walk
Viewer mode. This mode is used when the browser is being used to travel
through a 3D scene. It could be a simple 3D terrain, an architectural view of
a building, a shopping mall, or even a small city area (as shown).

Figure 20-2 WebSpace in the Walk Viewer mode

Detailed Use Instructions
This chapter is an introduction to VRML and Virtual Reality on the
Internet. We used WebSpace as our baseline to demonstrate the concepts
of 3D Web navigation. For more detailed information on use and features
of the WebSpace browser, see the README and help files that
accompany the program.

Some objects in the scene may be hot-linked to other sites or to HTML
documents, just like a 2D Web page. The controls at the bottom of the
window are collectively called the Dashboard; they are used to navigate
throughout the scene. The diamond on the far left is the Seek tool; it helps
you rapidly navigate to a point of interest in the scene. To use the Seek
Tool, simply click on it to activate the Seek mode and then click anywhere
else in the scene. The navigator smoothly proceeds to that place without
your having to use any of the other navigation tools.

The tool on the far right is an Arrow Pad that is used to slide the view of the
scene vertically or horizontally. This view is only a translation along the x-
or y-axis (side-to-side or up-and-down). The camera point of view is not
tilted or rotated in any way.

Finally, in the center of the dashboard is the Joystick—used to move
forward and backward through the scene, turn left and right, and tilt the
view up and down. Simply click on the joystick and drag it up or down to
move forward or backwards, and left or right to twist the view to the left or
right.

3D Navigation
The 3D interface of WebSpace may seem somewhat primitive to
up-to-the-minute Internet users. It’s reminiscent of a flight simulator or
arcade game, and could use some improvement in its ease of use. You
can expect dramatic improvements in the coming years as more browsers
are introduced.

There is a red knob on the right side of the joystick, called the Tilt Knob,
that is used to tilt the view up or down. Click on the Tilt Knob and drag it
up or down to view the ceiling or floor, respectively. In Figure 20-3, the
Tilt Knob is being used to look up at the top of some buildings.

Figure 20-3 Using the Tilt Knob to look “up” at the rooftops

The Examiner Viewer

The Examiner Viewer mode is for exploring an object, rather than traveling
through a virtual scene. Figure 20-4 shows WebSpace examining a model
of the first Kitty Hawk airplane. Imagine walking through a virtual museum
in the Walk Viewer, then clicking on a small picture of the plane. When the
browser switches to the Examiner mode, you get a closer look at the plane.
In addition, there may be other hypertext links to a report about flight, or
the Wright brothers.

Figure 20-4 Examiner Viewer

You’ll notice the Dashboard in Figure 20-4 looks similar to that of the
Walk Viewer, but the joystick is now replaced by a Trackball and
Thumbwheel. The Thumbwheel lets you move the object closer or farther
away from the point of view. Click on the Thumbwheel and drag up to
move the object farther away, or down to move the object closer. Figure
20-5 shows the Kitty Hawk airplane at a greater distance.

Figure 20-5 The Examiner Viewer with the object at a greater distance
away from the viewer

With the Trackball you rotate the viewed object in any direction. Click
anywhere on the Trackball, and drag it to spin the object being viewed. If
you release the left mouse button while moving the mouse, the Trackball
will continue to spin the principle object.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:OpenGL on the 'Net:VRML

http://www.itknowledge.com/reference/archive/1571690735/ch20/623-626.html [20-03-2000 21:43:28]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Open Inventor and VRML

To understand the relationship between Open Inventor and VRML, you
may want a little more background on Open Inventor. This object-oriented
library and tool set is implemented using OpenGL. The programming
library is almost always used from C++, but C bindings exist, as well. This
object-oriented approach provides a much higher level of control over the
objects and scenes being composed.

When OpenGL is used to create a scene or object, each function and
command has an immediate effect on the frame buffer. Unless you are
using double buffering, the results of each action are immediately visible on
screen. This is known as immediate mode rendering.

Open Inventor, on the other hand, operates in what is sometimes called a
retained mode. In this mode you use various commands and functions to
compose a scene database. This database of objects and materials is then
rendered all at once to create the scene. The real power of retained mode is
that individual objects in the scene can be manipulated very easily
programmatically. Furthermore, relationships between objects can be
established that allow the manipulation of one object to affect other objects
(such as linked assemblages or mechanical models). Object engines can
also be used within the database to perform rotations, animations, and other
actions. This information is then embedded within the scene description,
and no further programming is necessary on the part of the developer.

The VRML 1.0 specification is based entirely on the Open Inventor 3D file
interchange format. This file format, which is nothing more than the scene
database in a standardized layout, allows 3D graphics designers to easily
exchange objects and scenes when using Open Inventor-based tools. It’s
easy to store a single object or an entire scene filled with objects, in a single
file.

Summary

WebSpace is not the only way to visit cyberspace in 3D. Many other
vendors (including Microsoft) have hopped on the bandwagon and
developed their own VRML viewers.. WebSpace does offer the unique
advantage of compatibility with nearly any Web browser and will load and
view both VRML and Open Inventor files, either uncompressed or
compressed.

Even as this chapter went to production, the battle was raging over who will
set the standards for VRML version 2.0. These newer versions will add new
features for animation and multimedia enhancements to 3D scenes viewed
over the Internet.

Is virtual reality over the Internet just a passing fad or the beginning of a
revolution? Only time will tell, but there is a universal law at play here:
“Demand will always consume available bandwidth,” whether it’s
processing power, communication speed, or graphics capabilities. As
computer networks manage more speed and work with better graphics
hardware, you can be reasonably certain that virtual reality is here to stay. It
is only going to get faster, more realistic, and more capable of simulating
the world in which we live.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:OpenGL on the 'Net:VRML

http://www.itknowledge.com/reference/archive/1571690735/ch20/626-628.html [20-03-2000 21:43:33]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Part IV
OpenGL with. . .

In the fourth and last part of this book, we are going to take a look at some general
programming issues that arise when using OpenGL. Two chapters will help C++ programmers
who are using the most popular C++ frameworks in use for Windows programmers, MFC and
OWL. We won’t be leaving out the 4GL and other visual programmers, either. In Chapter 23
we introduce you to an OpenGL OCX that will facilitate the use of OpenGL from almost any
32-bit Windows programming environment.

Finally, no book on Windows and OpenGL would be complete without addressing the
interaction of OpenGL with the other graphics APIs. In addition to GDI, this group includes the
DirectX architecture and 3DDDI.

Chapter 21
MFC-Based OpenGL Programming

What you’ll learn in this chapter:
How to… Functions You’ll Use

Set MFC window styles to support OpenGL PreCreateWindow
Create and set up the rendering context OnCreate
Clean up the rendering context when the program
terminates

OnDestroy

Place your projection and viewport code OnSize
Place your rendering code OnDraw
Prevent screen flicker between renderings OnEraseBkgnd
Place your palette management code OnQueryNewPalette, OnPaletteChanged

It is an undeniable fact that a large and growing number of developers are using C++ for
Windows development. Throughout this book, however, we have presented all our source code
in C. Fortunately, most C++ programmers can easily follow C source code. On the other hand,
unfortunately, the converse is not necessarily true (many C programmers cannot follow C++ as
easily). This is not to say that C++ is especially harder to grasp and use, but if you picked up
this book on graphics programming, you want to learn graphics programming, you probably
don’t want to have to learn some new syntax along the way as well.

Although any of the samples in this book can be compiled with a C++ compiler as well as a C
compiler, most C++ programmers developing for Windows are not writing C code. Most are
using a commercial C++ application framework package, or their own C++ class hierarchy.
The point is, most C++ applications don’t have windows procedures like the ones in this book,
nor do they have those “case statements from hell” that handle every conceivable message that
may be posted to a window.

The purpose of this short chapter is to give C++ programmers using a popular application
framework a starting place for their OpenGL programs. The application framework for this
chapter is the Microsoft Foundation Classes (MFC). The samples and screenshots for this
chapter were prepared using Microsoft’s Visual C++ 4.0. Other compilers and environments
that support MFC should work similarly.

Note: If you are using OWL (Borland’s Object Windows Library), coverage of it is included in
Chapter 22.

For the purposes of this chapter, we will assume that you are already familiar with the
following:

• Visual C++ and MFC for building Windows NT and Windows 95 applications

• Chapter 4 of this book, covering OpenGL for Windows and the creation and use of
rendering contexts

• The palette handling material in Chapter 8

Isolate Your OpenGL Code

For any application, it is good design practice to keep your source code as modular as possible.
By isolating functional pieces, it becomes much easier to reuse and maintain the code. By
isolating your “pure” OpenGL code into a separate module, you can efficiently replace this
module with specific code, while retaining the functionality of the rest of the application. Our
sample here makes it relatively simple to take any C program in this book and convert it to
C++, using MFC and our test application shell.

We start by declaring three functions in a C source file called glcode.c. The file glcode.h
contains the declarations for these functions and is included for access in our CView-derived
class file.

// glcode.h
// Declarations for external OpenGL module. These functions are
// defined in glcode.c and are called appropriately by the CView
// derived classes.

extern "C" {
 void GLSetupRC(void *pData);
 void GLRenderScene(void *pData);
 void GLResize(GLsizei h, GLsizei w);
 }

The GLSetupRC function is where we will place any code that does initialization for our
rendering context. This may be as simple as setting the clear color, or as complex as
establishing our lighting conditions. The GLRenderScene function will be called by the
OnDraw member function of our CView derived class to do the actual rendering. Finally,
GLResize will be called by the WM_SIZE handler, passing the new width and height of the
window client area. Here you can do any necessary recalculations to establish the viewing
volume and viewport.

Notice that the GLSetupRC and GLRenderScene functions take void pointers. This allows you
to pass data of any type to your rendering code without changing the interface. Although we
could have made the glcode file a C++ file instead of a C file, it’s easier to move existing C
code from any source and include it in the MFC program. Visual C++ will just compile this
module as a C file and link it into the rest of the application.

We don’t present the glcode.c file here because the code for our sample is quite lengthy, but
you can browse it from the CD to gain general familiarity. Also, we’ll reuse the same file for
our OWL sample in the next chapter.

Starting with AppWizard

Many an application written with Visual C++ started life with the AppWizard. The
document-view architecture can be compared favorably to the model-view architecture of other
object-oriented programming environments. Even for quick-and-dirty applications or
experimental projects, the AppWizard can provide a fully functional SDI (Single Document
Interface), MDI (Multiple Document Interface), or dialog-based application shell in less than a
minute. It makes sense to start here, building a sample SDI MFC application that uses OpenGL.
To create a sample OpenGL scene, we’ll add features and functionality to the CView class.
You can use the same methods to add OpenGL functionality to any CWnd-derived class.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:MFC-Based OpenGL Programming

http://www.itknowledge.com/reference/archive/1571690735/ch21/631-637.html [20-03-2000 21:43:39]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Build the Shell

We start by building an SDI shell application with AppWizard, skipping all the options for database access and
OLE functionality. Figure 21-1 shows the initial shell SDI application created by AppWizard.

Figure 21-1 Initial AppWizard SDI shell application

You might also want to turn off the option to add Print and Print Preview. OpenGL scenes can only be rendered
to a printer device context if the printer is a color printer supporting four or more bitplanes of color depth (16 or
more colors). Printing to a monochrome laser or dot-matrix printer is possible but cumbersome. See the
supplementary program GLPRINT in the \OpenGL11 subdirectory for an example of printing OpenGL scenes
using the new features in OpenGL version 1.1.

Add the Libraries

Before we start adding any OpenGL code to this shell, we have to add the OpenGL libraries to the project. You
do this by selecting Build/Settings from your main menu. The dialog in Figure 21-2 illustrates where to put the
OpenGL library names. You may have other libraries you will want to include, depending on your application.
These are only the libraries you’ll need for OpenGL.

Figure 21-2 Adding the OpenGL libraries to your Visual C++ project

You’ll also need to add the OpenGL header files to the project. The easiest place to put these (so you can then
just forget about them) is in stdafx.h. Just add the following two headers, and they will be included in the
precompiled header file as well:

#include <gl\gl.h> // OpenGL Libraries
#include <gl\glu.h> // GLU OpenGL Libraries

Get CView Ready for OpenGL

When you use the document-view architecture encouraged by AppWizard’s SDI application generation, you
end up with a class derived from CView that is responsible for the presentation layer of your application. In our
example, that class is named CMfcglView. It’s declared in the file mfcglView.h and implemented in the file
mfcglView.cpp.

The earliest requirement of any window that will be used for OpenGL is that the window styles
WS_CLIPCHILDREN and WS_CLIPSIBLINGS be set. We can do this easily in the virtual member function
PreCreateWindow of our derived CView class, which is already provided in the file mfcglView.cpp. This
function lets us modify the CREATESTRUCT information before the window is created. One of the members
of this structure contains the windows styles used on creation. We can simply add these style bits by performing
a logical OR, like this:

BOOL CMfcglView::PreCreateWindow(CREATESTRUCT& cs)
 {
 // Add Window styles required for OpenGL before window is created
 cs.style |= (WS_CLIPCHILDREN | WS_CLIPSIBLINGS | CS_OWNDC);

 return CView::PreCreateWindow(cs);
 }

Notice that we also set the style for CS_OWNDC, so the window can have its own private device context.
Although this is not strictly necessary, it saves time and works better with MFC. Some device context pointers
returned by MFC functions are temporary and cannot be stored for later use. It’s better to get it once and keep it.

Space in the CMfcglView class is allocated to store the device context and the rendering context, with the
following code from MfcglView.h:

public:
 HGLRC m_hRC; // Rendering Context
 HDC m_hDC; // Device Context

Pixel Format and Rendering Context

Now that we have a window with the correct styles necessary for OpenGL, we need to set the OpenGL pixel
format. Since the device context is required to create a pixel format, we’ll wait to do this until after the window
is created. We can use the Class Wizard to add a message map entry that will be called when the window
receives the WM_CREATE message. Figure 21-3 shows the relevant Class Wizard dialog, containing an entry
for WM_DESTROY, as well.

Figure 21-3 Adding the message maps for WM_CREATE and WM_DESTROY

Setting the pixel format within the WM_CREATE handler is relatively straightforward. Listing 21-1 shows our
message handler with the code that selects the pixel format for the device context.

Listing 21-1 WM_CREATE message handler that sets the Pixel Format

int CMfcglView::OnCreate(LPCREATESTRUCT lpCreateStruct)
 {
 if (CView::OnCreate(lpCreateStruct) == -1)
 return -1;

 int nPixelFormat; // Pixel format index
 m_hDC = ::GetDC(m_hWnd); // Get the device context

 static PIXELFORMATDESCRIPTOR pfd = {
 sizeof(PIXELFORMATDESCRIPTOR), // Size of this structure
 1, // Version of this
 structure
 PFD_DRAW_TO_WINDOW | // Draw to Window
 (not bitmap)
 PFD_SUPPORT_OPENGL | // Support OpenGL in window
 PFD_DOUBLEBUFFER, // Double-buffered mode
 PFD_TYPE_RGBA, // RGBA color mode
 24, // Want 24bit color
 0,0,0,0,0,0, // Not used to select mode
 0,0, // Not used to select mode
 0,0,0,0,0, // Not used to select mode
 32, // Size of depth buffer
 0, // Not used to select mode
 0, // Not used to select mode
 PFD_MAIN_PLANE, // Draw in main plane
 0, // Not used to select mode
 0,0,0 }; // Not used to select mode

// Choose a pixel format that best matches that described in pfd
nPixelFormat = ChoosePixelFormat(m_hDC, &pfd);

// Set the pixel format for the device context
VERIFY(SetPixelFormat(m_hDC, nPixelFormat, &pfd));

// Create the rendering context
m_hRC = wglCreateContext(m_hDC);

// Make the rendering context current, perform initialization, then
// deselect it
VERIFY(wglMakeCurrent(m_hDC,m_hRC));
GLSetupRC();
wglMakeCurrent(NULL,NULL);

return 0;
}

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:MFC-Based OpenGL Programming

http://www.itknowledge.com/reference/archive/1571690735/ch21/637-641.html [20-03-2000 21:43:51]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Notice that we store the device context and rendering contexts in the class variables m_hDC
and m_hRC. Immediately after creating the rendering context, we make it current and call the
external function GLSetupRC. This function will do any initialization we need for the
rendering context, after which we make it not current. This allows us to use more than one
rendering context in case we need multiple windows that use OpenGL. (We won’t for our
sample, but if you build on this, it’s wise to have the option for more than one OpenGL
window without the need to recode what you already have.)

Clean Up the Rendering Context

We should go ahead and add the code to clean up and delete the rendering context before we
forget. We do this in the WM_DESTROY handler, added in Figure 21-3. We also release the
device context obtained for the window.

// The window is being destroyed, delete the rendering context,
// and release the device context
void CMfcglView::OnDestroy()
 {
 wglDeleteContext(m_hRC);
 ReleaseDC(m_hWnd,m_hDC);

 CView::OnDestroy();
 }

Handling Window Resizing

When the window size changes, the WM_SIZE message is posted to the window. We add a
handler for this message with Class Wizard, and call the external function GLResize, passing
the new width and height of the window. The rendering context must be made current before
calling this function, or the OpenGL function calls in GLResize will have no effect on the
rendering context. Here’s the code:

void CMfcglView::OnSize(UINT nType, int cx, int cy)
 {
 CView::OnSize(nType, cx, cy);
 VERIFY(wglMakeCurrent(m_hDC,m_hRC));
 GLResize(cx, cy);
 VERIFY(wglMakeCurrent(NULL,NULL));
 }

Rendering the Scene

Now we are ready to add the code that actually draws the OpenGL scene. The member
function OnDraw is called whenever the window receives a WM_PAINT message. Here we
make the rendering context current and call the GLRenderScene function, which contains
only OpenGL function calls. Since we earlier requested a double-buffered window, we call
SwapBuffers afterward and then again make the rendering context not current.

// Called when window receives WM_PAINT, render our scene
void CMfcglView::OnDraw(CDC* pDC)
 {
 // Make the rendering context current
 wglMakeCurrent(m_hDC,m_hRC);

 // Call our external OpenGL code
 GLRenderScene(NULL);

 // Swap our scene to the front
 SwapBuffers(m_hDC);

 // Allow other rendering contexts to coexist
 wglMakeCurrent(m_hDC,NULL);
 }

Don’t Erase First

Whenever the window is resized or invalidated, MFC will erase the window background
before repainting. Since our OpenGL background is black, this erasing (which sets the
window to white) will cause a flicker every time OnDraw is called.

To keep the window from flickering, we override the default handling of
WM_ERASEBACKGROUND. Usually, the window is erased before being repainted after a
resize. If we return FALSE from this function, however, the window will never be erased
before a repaint and there won’t be any flicker. Usually this function returns
CView::OnEraseBkgnd(pDC), which implements the default behavior of erasing the
background, but you can just return FALSE to prevent this behavior.

// Override to keep the background from being erased every time
// the window is repainted
BOOL CMfcglView::OnEraseBkgnd(CDC* pDC)
 {
 return FALSE;
 }

CPalette Handling

Our finishing touch in the MFC sample is creating and realizing the RGB palette on devices
that use palettes (256 color cards). Instead of maintaining a handle to the palette as in Chapter
8, here we’ll create an MFC object of type CPalette.

For our function in Listing 21-2 we declare an instance of CPalette in mfcglView.h:

CPalette m_GLPalette; // Logical Palette

and then manually add a member function to CMfcGlView that initializes the palette. This
code is nearly identical to the function GetOpenGLPalette presented in Chapter 8, except that
a CPalette object is constructed instead of a handle to a palette returned.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:MFC-Based OpenGL Programming

http://www.itknowledge.com/reference/archive/1571690735/ch21/641-643.html [20-03-2000 21:43:58]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

So use the Class Wizard once again to add the two palette message handlers to the CMainFrame class.
These handlers simply find the active view and post the palette messages to it unchanged, allowing the
view to respond as needed. These message handlers are listed in Listing 21-4.

Listing 21-4 CMainFrame code to route palette-handling messages to the view

// Route message to CView-derived class
void CMainFrame::OnPaletteChanged(CWnd* pFocusWnd)
 {
 CView* pView = GetActiveView();
 if (pView)
 {
 // OnPaletteChanged is not public, so send a message.
 pView->SendMessage(WM_PALETTECHANGED,
 (WPARAM)(pFocusWnd->GetSafeHwnd()),
 (LPARAM)0);
 }
 }

// Route message to CView-derived class.
BOOL CMainFrame::OnQueryNewPalette()
 {
 CView* pView = GetActiveView();
 if (pView)
 {
 // OnQueryNewPalette is not public, so send a message.
 return pView->SendMessage(WM_QUERYNEWPALETTE,
 (WPARAM)0,
 (LPARAM)0);
 }

 return FALSE;
 }

We also added a WM_TIMER handler and created a timer in our view class to create an animated
OpenGL scene (Figure 21-4). The timer function simply invalidates the window, forcing a repaint. In
our glcode.c module the rendering function increments a rotation angle each time the screen is redrawn,
thus creating the animation effect. All of this code is in the \MFCGL directory on the CD.

Figure 21-4 Final animated output of our MFC sample

Summary

This chapter covered the specific mechanics of using OpenGL from an MFC-based program,
demonstrating where to set the Windows styles required for OpenGL, where and when to set the pixel
format, and creation of the rendering context. The example program also illustrates when and where to
make the rendering context current, and how to realize an MFC CPalette when needed.

You should be able to take the sample application from this chapter and easily add your own custom
OpenGL code. In addition, the framework—with all the OpenGL code in the glcode.c module—makes it
easy to port existing C/OpenGL samples to our MFC shell program. You can study additional examples
in many of the sample programs in this book, which are implemented in C, and in C++ using MFC and
OWL (see Chapter 22).

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:MFC-Based OpenGL Programming

http://www.itknowledge.com/reference/archive/1571690735/ch21/645-646.html [20-03-2000 21:44:07]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Chapter 22
OWL-Based OpenGL Programming

What you’ll learn in this chapter:
How to... Functions You’ll Use

Set OWL window styles to support OpenGL EvCreate
Create and set up the rendering context EvCreate
Clean up the rendering context when the program terminates EvDestroy
Place your projection and viewport code EvSize
Place your rendering code EvPaint
Prevent screen flicker between renderings EvEraseBkgnd
Place your palette-management code EvQueryNewPalette, EvPaletteChanged

It is an undeniable fact that a large and growing number of developers are using C++ for Windows
development. Throughout this book, however, we have presented all our source code in C. Fortunately,
most C++ programmers can easily follow C source code. On the other hand, if you picked up this book
to learn graphics programming, you probably don’t want to have to learn some new syntax along the
way.

Although any of the samples in this book can be compiled with a C++ compiler as well as a C compiler,
most C++ programmers developing for Windows are not writing C code. Most are using a commercial
C++ application framework package, or their own C++ class hierarchy. The point is, most C++
applications don’t have windows procedures like the ones in this book, nor do they have those “case
statements from hell” that handle every conceivable message that may be posted to a window. Instead,
there is a framework of classes that embody the Windows screen objects, with member functions
handling the processing of messages.

The purpose of this short chapter is to give C++ programmers using a popular application framework a
starting place for their OpenGL programs. The application framework for this chapter is Borland’s
Object Windows Library (OWL). The samples and screenshots for this chapter were prepared using
Borland C++ 5.0. If you are using MFC (Microsoft Foundation Classes), see Chapter 21.

For the purposes of this chapter, we will assume that you are already familiar with the following:

• Borland C++ and OWL for building Windows NT and Windows 95 applications

• Chapter 4 of this book, covering OpenGL for Windows and the creation and use of rendering
contexts

• The palette handling material in Chapter 8

Isolate Your OpenGL Code

For any application, it is good design practice to keep your source code as modular as possible. By
isolating functional pieces, it becomes much easier to reuse and maintain the code. By isolating your
“pure” OpenGL code into a separate module, you can efficiently replace this module with specific code,
while retaining the functionality of the rest of the application. Our sample here makes it relatively
simple to take any C program in this book and convert it to C++, using OWL and our test application
shell.

We start by declaring three functions in a C source file called glcode.c. The file glcode.h contains the
declarations for these functions and is included for access in our TWindowView-derived class file.

// glcode.h
// Declarations for external OpenGL module. These functions are
// defined in glcode.c and are called appropriately by the TWindowView
// derived classes.

extern "C" {
 void GLSetupRC(void *pData);
 void GLRenderScene(void *pData);
 void GLResize(GLsizei h, GLsizei w);
 }

The GLSetupRC function is where we will place any code that does initialization for our rendering
context. This may be as simple as setting the clear color, or as complex as establishing our lighting
conditions. The GLRenderScene function will be called by the WM_PAINT handler of our
TWindowView-derived class to do the actual rendering. Finally, GLResize will be called by the
WM_SIZE handler, passing the new width and height of the window client area. Here you can do any
necessary recalculations to establish the viewing volume and viewport.

Notice that the GLSetupRC and GLRenderScene functions take void pointers. This allows you to pass
data of any type to your rendering code without changing the interface. Although we could have made
the glcode file a C++ file instead of a C file, it’s easier to move existing C code from any source and
include it in the OWL program. Borland C++ will just compile this module as a C file and link it into the
rest of the application.

We don’t present the glcode.c file here because the code for our sample is quite lengthy, but we’ll use
basically the same file for both the OWL and MFC sample programs.

Starting with AppExpert

Many an application written with Visual C++ started life with the AppExpert. The document-view
architecture endorsed by AppExpert can be compared favorably to the model-view architecture of other
object-oriented programming environments. Even for quick-and-dirty applications or experimental
projects, the AppExpert can provide a fully functional SDI (Single Document Interface), MDI (Multiple
Document Interface), or dialog-based application shell in less than a minute. It makes sense to start here,
building a sample SDI OWL application that uses OpenGL. To create a sample OpenGL scene, we’ll
add features and functionality to the TWindowView class. You can use the same methods to add
OpenGL functionality to any TWindow-derived class.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:OWL-Based OpenGL Programming

http://www.itknowledge.com/reference/archive/1571690735/ch22/647-651.html [20-03-2000 21:44:16]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Build the Shell

We’ll start by building an SDI shell application with AppExpert, skipping most of
the options for OLE functionality, drag and drop, and so forth. Figure 22-1 shows
the first AppExpert dialog to create our shell OWL application.

Figure 22-1 Starting a new SDI application with AppExpert

You might also want to turn off the option to add Print and Print Preview.
OpenGL scenes can only be rendered to a printer device context if the printer is a
color printer supporting four or more bitplanes of color depth (16 or more colors).
Printing to a monochrome laser or dot-matrix printer is possible but cumbersome.
See the supplementary program GLPRINT in the \OpenGL11 subdirectory for an
example of printing OpenGL scenes using the new features in OpenGL version
1.1.

You can leave the Application options at their default values, or go in and
unselect the tool bars, status bars, and so forth. In addition, it’s important to select
the window styles for Clip Children and Clip Siblings (which are required for
OpenGL programs) in the MainWindow Basic Options page. Finally, select the
SDI Client page and specify that the main window be derived from
TWindowView, as shown in Figure 22-2.

Figure 22-2 Set the Client window to be derived from TWindowView

Figure 22-3 shows the shell application after it has been built.

Figure 22-3 AppExpert-generated vanilla SDI application shell

Add the Headers

Before we start adding any OpenGL code to this shell, we have to add the
OpenGL headers to the project. Add these two headers to the top of the
owlglapp.h header file:

#include <gl\gl.h> // OpenGL Libraries
#include <gl\glu.h> // GLU OpenGL Libraries

This will define the OpenGL functions and commands for all our OWL-based
files for this project.

As a general rule, Borland automatically links to an import library that contains
all the Win32 API functions. Sometimes these libraries will be out of sync with
later releases of the operating system, and you will need to create your own
import libraries and link to them. (See the discussion of Borland C++ in the
Introduction to the book.)

Add the Message Handlers

We finish fleshing out our OpenGL-capable shell with OWL by adding message
handlers for at least the first five of the messages listed in Table 22-1. These first
five are required for a well-behaved OpenGL Windows application. The palette
messages are only necessary if you are including palette-handling code so your
application can run on 8-bit color systems. The WM_TIMER message is optional,
as well, but is useful when you need to do timed events or animations. Our
example later in this chapter makes use of WM_TIMER to produce an animated
effect.

Table 22-1 Typical Messages Handled by an OpenGL Application

Message Purpose

WM_CREATE Window creation. Sets required window styles
and creates the rendering context.

WM_DESTROY Cleans up by deleting the rendering context.
WM_ERASEBKGND Tells Windows GDI not to erase the background

when the window needs to be redrawn.
WM_PAINT Handles any required painting or repainting of

window. Call the OpenGL rendering code here.
WM_SIZE Calls code to modify OpenGL viewport

information.
WM_QUERYNEWPALETTE Application gets the chance to realize its palette.
WM_PALETTECHANGED Application gets the chance to respond to palette

changes.
WM_TIMER For timed events such as animation.

Figure 22-4 shows the ClassExpert window being used to add these messages.

Figure 22-4 Adding message handlers with the class expert

Fleshing Out the Shell

At this point we have a complete skeleton application, with message handlers
defined for window initialization and cleanup, painting, resizing, and palette
handling. To this shell we will add the code that enables OpenGL to render in the
window. This is accomplished by calling the Win32 functions specific for
OpenGL, and then calling our OpenGL-specific code in the glcode.c module at
the appropriate places.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:OWL-Based OpenGL Programming

http://www.itknowledge.com/reference/archive/1571690735/ch22/651-654.html [20-03-2000 21:44:30]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Get TWindowView Ready for OpenGL

AppExpert generates a class, TOwlglWindowView, derived directly from TWindowView. This class is
responsible for the client window area of the application. In our example, that class is declared in the file
owlglwnv.h and implemented in the file owlglwnv.cpp.

Now we fill in the code for the WM_CREATE handler. As noted earlier in this Chapter, the first requirement
of any window that will be used for OpenGL is that the window styles WS_CLIPCHILDREN and
WS_CLIPSIBLINGS are set when the window is created. Since we have already set these styles in the
AppExpert before generating this program, we don’t need to do anything further for this requirement.
However, should you need to set this programatically, you can do it easily in the WM_CREATE handler, as
follows:

int TOwlglWindowView::EvCreate(CREATESTRUCT& cs)
 {
 int result;

 // Add Styles for OpenGL windows
 cs.style |= (WS_CLIPCHILDREN | WS_CLIPSIBLINGS | CS_OWNDC);
 result = TWindowView::EvCreate(cs);
 ...
 ...

Notice that we also set the style for CS_OWNDC, so the window can have its own private device context.
Although this is not strictly necessary, it saves time and works better with OWL. Some device context pointers
returned by OWL functions are temporary and cannot be stored for later use (this is also true for MFC, by the
way). So it’s better to get it once and keep it.

Space in the TOwlglWindowView class is allocated to store the device context, the rendering context, and the
palette, with the following code from owlglwnv.h:

public:
 HGLRC m_hRC; // Rendering context
 HDC m_hDC = NULL; // Device context
 TPalette *m_pPalette; // 3-3-2 Palette

Pixel Format and Rendering Context

In the remainder of our WM_CREATE handler, we will set the pixel format and create a rendering context for
the window. Since the device context is required to create a pixel format, we’ll wait to do this until after the
window is created. Setting the Pixel Format within the WM_CREATE handler is done the same way as for
any of the C program examples presented in this book after Chapter 3 (remember we ditched the AUX library
after this). Listing 22-1 shows our finished message handler, with the code that selects the pixel format for the
device context.

Listing 22-1 WM_CREATE message handler that sets the pixel format

// Handles WM_CREATE message
int TOwlglWindowView::EvCreate(CREATESTRUCT far& createStruct)
{
 int result;

 createStruct.style |= (WS_CLIPCHILDREN | WS_CLIPSIBLINGS | CS_OWNDC);

 result = TWindowView::EvCreate(createStruct);

 // Select pixel format/rendering context
 static PIXELFORMATDESCRIPTOR pfd = {
 sizeof(PIXELFORMATDESCRIPTOR), // Size of this structure
 1, // Version of this structure
 PFD_DRAW_TO_WINDOW | // Draw to window (not to bitmap)
 PFD_SUPPORT_OPENGL | // Support OpenGL calls in window
 PFD_DOUBLEBUFFER, // Double-buffered mode
 PFD_TYPE_RGBA, // RGBA color mode
 24, // Want 24-bit color
 0,0,0,0,0,0, // Not used to select mode
 0,0, // Not used to select mode
 0,0,0,0,0, // Not used to select mode
 32, // Size of depth buffer
 0, // Not used to select mode
 0, // Not used to select mode
 PFD_MAIN_PLANE, // Draw in main plane
 0, // Not used to select mode
 0,0,0 }; // Not used to select mode
 // Get the device context
 m_hDC = ::GetDC(this->GetHandle());

 // Choose a pixel format that best matches that described in pfd
 int nPixelFormat = ChoosePixelFormat(m_hDC, &pfd);

 // Set the pixel format for the device context
 SetPixelFormat(m_hDC, nPixelFormat, &pfd);

 // Create a 3-3-2 palette
 SetupPalette(m_hDC);

 // Create the rendering context
 m_hRC = wglCreateContext(m_hDC);

 // Make the rendering context current and perform initializion.
 wglMakeCurrent(m_hDC,m_hRC);
 GLSetupRC(m_hDC);

 // Set a timer for 200 milliseconds
 SetTimer(200,101,NULL);

 return result;
}

Immediately after creating the rendering context, we make it current and call the external function
GLSetupRC(). This function will do any initialization we need for the rendering context, after which we make
it not current.This allows us to use more than one rendering context in case we need multiple windows that use
OpenGL. (We won’t for our sample, but if you build on this, it’s wise to have the option for more than one
OpenGL window without the need to recode what you already have.)

Clean Up the Rendering Context

We should go ahead and add the code to clean up and delete the rendering context before we forget. We do
this in the WM_DESTROY handler, as shown in Listing 22-2.

Listing 22-2 WM_DESTROY handler cleans up rendering context

// Handles WM_DESTROY message
void TOwlglWindowView::EvDestroy()
{
// Kill the timer
KillTimer(101);

 // Free the rendering context
 wglMakeCurrent(NULL,NULL);
 wglDeleteContext(m_hRC);

 // Release the device context
 ::ReleaseDC(this->GetHandle(),m_hDC);

 TWindowView::EvDestroy();
}

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:OWL-Based OpenGL Programming

http://www.itknowledge.com/reference/archive/1571690735/ch22/654-657.html [20-03-2000 21:44:36]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Handling Window Resizing

When the window size changes, the WM_SIZE message is posted to the window. We added a handler for
this message with ClassExpert, and call the external function GLResize(), passing the new width and height
of the window. The rendering context must be made current before calling this function, or the OpenGL
function calls in GLResize will have no effect on the rendering context for this window. This code is in
Listing 22-3.

Listing 22-3 WM_SIZE handler that adjusts the OpenGL viewport

// Handles WM_SIZE message
void TOwlglWindowView::EvSize(uint sizeType, TSize& size)
{
 TWindowView::EvSize(sizeType, size);

 // Make the rendering context current, and call function
 // to make adjustments to OpenGL viewport
 wglMakeCurrent(m_hDC,m_hRC);
 GLResize(size.cx, size.cy);
 wglMakeCurrent(m_hDC,NULL);
}

Rendering the Scene

Now we are ready to add the code that actually draws the OpenGL scene. The member function EvPaint
was added by ClassExpert and is called whenever the window receives a WM_PAINT message. Here we
make the rendering context current and call the GLRenderScene function, which contains only OpenGL
function calls. The code for our EvPaint() function is in Listing 22-4.

Note that since we earlier requested a double-buffered window, we have to call SwapBuffers() afterward.
Also, any WM_PAINT handler needs to validate the window so that Windows knows you are finished
drawing in it. If you don’t do this, Windows will continually post WM_PAINT messages to your window.

Listing 22-4 Code for handling WM_PAINT for our OWL-based OpenGL sample

// Handles WM_PAINT message
void TOwlglWindowView::EvPaint()
{
 // Make the rendering context current, and call OpenGL Rendering
 code wglMakeCurrent(m_hDC,m_hRC);
 GLRenderScene(NULL);
 wglMakeCurrent(NULL,m_hRC);

 // Finally swap buffers since this rendering context is double
 buffered SwapBuffers(m_hDC);

 // Validate the window
 Validate();
}

No Flickering Allowed

Whenever the window is resized or invalidated, Windows will erase the window background before
repainting. Since our OpenGL background is black, this erasing (which sets the window to white) will
cause a flicker every time EvPaint is called. Even if that weren’t so, we are using SwapBuffer() to get our
image in the window, which updates the entire client region anyway.

To keep the window from flickering, we override the default handling of WM_ERASEBACKGROUND.
Usually, the window is erased before being repainted after a resize. If we return FALSE from this function,
however, the window will never be erased before a repaint, and there won’t be any flicker. Usually this
function returns TWindowView::EvEraseBkgnd(dc), but you can just return FALSE to get this behavior.
See Listing 22-5.

Listing 22-5 Preventing the window from being erased everytime it is redrawn

// Handles WM_ERASEBACKGROUND message
bool TOwlglWindowView::EvEraseBkgnd(HDC dc)
 {
 return FALSE;// Do not erase background
 }

Keep It Moving

Though certainly not a requirement, the example for this chapter uses a timer to invalidate the window
every 200 milliseconds (thus forcing a repaint from our OpenGL code). The code in glcode.c rotates a
figure every time it is called. This has the effect of displaying a smoothly rotating set of objects—in this
case, three particular 3D letters. Implementing a timer is simple: You set a timer in the EvCreate() function,
add a handler for WM_TIMER, and then kill the timer in the EvDestroy handler. This is standard Windows
programming, and the pertinent code is shown in Listing 22-6.

The output from our program thus far is shown in Figure 22-5.

Figure 22-5 Animated output from the OWL-based OpenGL program

Listing 22-6 Code that creates/destroys a timer to do some animation

// Handles WM_CREATE message
int TOwlglWindowView::EvCreate(CREATESTRUCT far& createStruct)
 {
 ...
 ...

 // Set a timer for 200 milliseconds
 SetTimer(200,101,NULL);
 ...
 ...

// Handles WM_TIMER message
void TOwlglWindowView::EvTimer(uint timerId)
 {
 TWindowView::EvTimer(timerId);

 // Force a repaint
 Invalidate();
 }

// Handles WM_DESTROY message
void TOwlglWindowView::EvDestroy()
 {
 // Kill the timer
 KillTimer(101);
 ...
 ...

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:OWL-Based OpenGL Programming

http://www.itknowledge.com/reference/archive/1571690735/ch22/657-660.html [20-03-2000 21:44:44]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

TPalette Handling

Our finishing touch for the OWL sample is creating and realizing the RGB palette on devices that use
palettes (256-color cards). Instead of maintaining a handle to the palette as in Chapter 8, here we’ll create an
OWL object of type TPalette.

We declare a pointer to a TPalette in owlglwnv.h:

TPalette *m_pPalette; // Logical Palette

and then manually add a member function to TOwlglWindowView that initializes the palette. This code,
shown in Listing 22-7, is nearly identical to the function GetOpenGLPalette presented in Chapter 8, except
that a TPalette object is constructed instead of a handle to a palette returned.

Listing 22-7 TPalette creation and initialization code

// Create the palette if necessary
void TOwlglWindowView::SetupPalette(HDC hDC)
 {
 PIXELFORMATDESCRIPTOR pfd; // Pixel format descriptor
 LOGPALETTE *pPal; // Pointer to memory for logical
 // palette
 int nPixelFormat; // Pixel format index
 int nColors; // Number of entries in palette
 int i; // Counting variable

 BYTE RedRange,GreenRange,BlueRange; // Range for each color
 entry
 // (7,7,and 3)
 // Get the pixel format index and retrieve the pixel format
 description
 nPixelFormat = GetPixelFormat(hDC);
 DescribePixelFormat(hDC, nPixelFormat,
 sizeof(PIXELFORMATDESCRIPTOR), &pfd);

 // Does this pixel format require a palette? If not, do not
 // create a palette and just return
 if(!(pfd.dwFlags & PFD_NEED_PALETTE))
 return;

 // Number of entries in palette. 8-bit yields 256 entries
 nColors = 1 << pfd.cColorBits;

 // Allocate space for a logical palette structure plus all the
 // palette entries
 pPal = (LOGPALETTE*)malloc(sizeof(LOGPALETTE)
 +nColors*sizeof(PALETTEENTRY));

 // Fill in palette header
 pPal->palVersion = 0x300; // Windows 3.0
 pPal->palNumEntries = nColors; // table size

 // Build mask of all 1's. This creates a number represented by
 // having the low-order x bits set, where x = pfd.cRedBits,
 pfd.cGreenBits,
 // and pfd.cBlueBits.
 RedRange = (1 << pfd.cRedBits) - 1;
 GreenRange = (1 << pfd.cGreenBits) - 1;
 BlueRange = (1 << pfd.cBlueBits) - 1;

 // Loop through all the palette entries
 for(i = 0; i < nColors; i++)
 {
 // Fill in the 8-bit equivalents for each component
 pPal->palPalEntry[i].peRed = (i >> pfd.cRedShift) &
 RedRange;
 pPal->palPalEntry[i].peRed = (unsigned char)(
 (double) pPal->palPalEntry[i].peRed * 255.0 /
 RedRange);

 pPal->palPalEntry[i].peGreen = (i >> pfd.cGreenShift) &
 GreenRange;
 pPal->palPalEntry[i].peGreen = (unsigned char)(
 (double)pPal->palPalEntry[i].peGreen * 255.0/
 GreenRange);

 pPal->palPalEntry[i].peBlue = (i >> pfd.cBlueShift) &
 BlueRange;
 pPal->palPalEntry[i].peBlue = (unsigned char)(
 (double)pPal->palPalEntry[i].peBlue * 255.0 /
 BlueRange);

 pPal->palPalEntry[i].peFlags = (unsigned char) NULL;
 }

 // Create the palette
 m_pPalette = new TPalette(pPal);

 // Go ahead and select and realize the palette for this device
 context
 if(SelectPalette(hDC,m_pPalette->GetHandle(),FALSE) == NULL)
 ::MessageBox(NULL,"Cannot select Palette in Palette
 Creation", "Error",MB_OK);

 if(RealizePalette(hDC) == NULL)
 ::MessageBox(NULL,"Cannot realize Palette in Palette
 Creation", "Error",MB_OK);

 // Free the memory used for the logical palette structure
 free(pPal);
 }

Don’t forget to call this function in the WM_CREATE handler. This should be done before the rendering
context is created:

// Set the pixel format for the device context
SetPixelFormat(m_hDC, nPixelFormat, &pfd);

// Create a 3-3-2 palette
SetupPalette(m_hDC);

// Create the rendering context
m_hRC = wglCreateContext(m_hDC);

Having used the ClassExpert to add message-response functions for WM_QUERYNEWPALETTE and
WM_PALETTECHANGED, our code to realize the palette is shown in Listing 22-8.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:OWL-Based OpenGL Programming

http://www.itknowledge.com/reference/archive/1571690735/ch22/660-662.html [20-03-2000 21:44:50]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Listing 22-8 Code to realize TPalette for the TWindowView class

// Handles WM_QUERYNEWPALETTE message
bool TOwlglWindowView::EvQueryNewPalette()
 {
 bool result;

 // Only if palette was created
 if(m_pPalette != NULL)
 {
 int nRet;

 // Select the palette into the current device context
 if(SelectPalette(m_hDC, m_pPalette->GetHandle(),FALSE)
 == NULL)
 ::MessageBox(NULL,"Cannot select Palette","Error",
 MB_OK);

 // Map entries from the currently selected palette to
 // the system palette. The return value is the number
 // of palette entries modified.
 nRet = RealizePalette(m_hDC);

 if(nRet == 0)
 ::MessageBox(NULL,"Cannot realize Palette",
 "Error",MB_OK);

 // Repaint, forces remap of palette in current window
 Invalidate();

 return nRet;
 }

 // Call default function
 result = TWindowView::EvQueryNewPalette();
 return result;
 }

// Handles WM_PALETTECHANGED message
void TOwlglWindowView::EvPaletteChanged(THandle hWndPalChg)
 {
 // Only if palette created, or not this window
 if((m_pPalette != NULL) && (hWndPalChg != this->HWindow))
 {
 // Select the palette into the device context
 ::SelectPalette(m_hDC,m_pPalette->GetHandle(),FALSE);

 // Map entries to system palette
 ::RealizePalette(m_hDC);

 // Remap the current colors to the newly realized palette
 ::UpdateColors(m_hDC);
 return;
 }

 // Call default handler
 TWindowView::EvPaletteChanged(hWndPalChg);
 }

The code to realize the palette is very much like that in Chapter 8. Here, though, Windows does not send these
messages to the TWindowView-derived class directly, but rather to the application’s class TDecoratedFrame
(SDIDecFrame, for our example). This is because Windows only sends palette messages to the application’s
main window. It is this window’s responsibility to route the messages to any child windows that need to be
notified.

So use the Class Expert once again to add the two palette messages to the SDIDecFrame class. These message
handlers, shown in Listing 22-9, simply find the child TWindowView and post the palette messages to it
unchanged, allowing the window to respond as needed.

Listing 22-9 CMainFrame code to route palette-handling messages to the view

// Route WM_QUERYNEWPALETTE to child
bool SDIDecFrame::EvQueryNewPalette()
 {
 bool result;
 TWindow *pGLWindow;

 // Get the child SDI window
 pGLWindow = GetClientWindow();

 // Send the message
 if(pGLWindow)
 pGLWindow->SendMessage(WM_QUERYNEWPALETTE,0,0);

 return TRUE;
 }

// Route the WM_PALETTECHANGES to child
void SDIDecFrame::EvPaletteChanged(THandle hWndPalChg)
 {
 TWindow *pGLWindow;

 // Get the child SDI window
 pGLWindow = GetClientWindow();

 // Send the message
 if(pGLWindow)
 pGLWindow->SendMessage(WM_PALETTECHANGED, (UINT)
 hWndPalChg, (UINT)0);
 }

Summary

This chapter covered the specific mechanics of using OpenGL from an OWL-based program, demonstrating
where to set the Windows styles required for OpenGL, where and when to set the pixel format, and creation of
the rendering context. The example program also illustrates when and where to make the rendering context
current, and how to realize an OWL TPalette when needed.

You should be able to take the sample application from this chapter and easily add your own custom OpenGL
code. In addition, the framework—with all the OpenGL code in the glcode.c module—makes it easy to port
existing C/OpenGL samples to our OWL shell program. You can study additional examples in many of the
sample programs in this book, which are implemented in C, and in C++ using OWL and MFC (see Chapter
21).

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:OWL-Based OpenGL Programming

http://www.itknowledge.com/reference/archive/1571690735/ch22/662-664.html [20-03-2000 21:44:56]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Chapter 23
Visual Basic and 4GL-Based OpenGL
Programming
Other than Chapters 21 and 22, this book has focused on the OpenGL API
from the standpoint of a C program. No consideration of Windows
programming is complete, however, without a discussion of the many 4GLs
and other visual environments popular today. In this chapter we will briefly
discuss the requirements of using the OpenGL API from some of these
environments. In addition, we will demonstrate an OpenGL OCX (OLE
custom control) that is included with this book for two widely used Win32
development environments: Microsoft’s Visual Basic 4.0 and Borland’s
Delphi 2.0.

For the purposes of this chapter we will assume you have a working
knowledge of your particular environment (Visual Basic or Delphi), and
how to use and call OCX methods. Even if you have no experience with
OCX controls, you may be surprised by how easy they are to use.

Low-Level Access Required

Any Windows development language or environment can make use of
OpenGL, provided it supports low-level access to the Win32 API and other
libraries contained in DLLs. Most environments and tools allow this in
order that applications can be integrated with other libraries, or simply so
that the developer can take advantage of new operating systems features
introduced after the tool is released.

The entire OpenGL API is contained in two DLLs: opengl32.dll and
glu32.dll. Just as most Win32 APIs are accessed directly from DLLs, such
as user32.dll, gdi32.dll, and others, you can also get to OpenGL functions
and commands from a high-level language environment. Each tool and
environment takes a different approach to accessing functions in external
DLLs. Usually, you need to specify the function name, its arguments, return
type, and in which DLL file the function is contained.

There are two disadvantages to using these methods for using OpenGL
from one of the aforementioned environments. First, it is extremely tedious!
Every OpenGL function needs to be defined and exported for a given
environment. In addition, the argument and return types must be mapped to
the native data types of the particular environment. Not only the functions
must be defined, but so must all those state variables and flags
(GL_ACCUM, GL_LOAD, and on and on) from the header files. This is
further compounded by the fact that you must do it for each and every
environment that would make use of OpenGL!

The second disadvantage is the requirement of Win32 that
OpenGL-enabled windows have the Windows styles WS_CLIPCHILDREN
and WS_CLIPSIBLINGS set. Some of these environments make it very
difficult to get to any low-level window styles unless they’re on a
proprietary check box somewhere. The worst case is that you may even
have to export CreateWindow from Windows itself and call it from within
your program.

If you’re going through all this trouble to use OpenGL from say, Visual
Basic, you might just as well write a DLL in C that does all your OpenGL
rendering, and then call into it from your high-level environment. This
answer, though it’s probably the most optimal in terms of performance, is
something of a cop-out that leaves non-C/C++ programmers out of the
picture.

But if you bought this book to learn about OpenGL, and you have been able
to follow the samples and function definitions, there is still hope!

The Magic of Objects

The term object oriented is perhaps, along with client/server, one of the
most abused and misused buzzwords of the 1990s. We want to avoid a
serious debate on this issue, but we think one important new technology
holds significant promise for code reuse.

That technology is OLE (Object Linking and Embedding)—or, more
importantly for this chapter, the OCX (OLE Custom Control). When
Microsoft introduced Visual Basic and made development of custom
controls possible through VBXs, a new industry was born almost overnight.
New companies and fortunes were made supplying Visual Basic developers
with new and interesting widgets. Soon competing environments
(PowerBuilder, Delphi, and others) allowed VBXs to be used for their
applications. This further fueled the fire of component reuse.

Plug and Play

These so-called plug-and-play software components revolutionized
application development for 16-bit Windows. The successor to VBXs was
the OCX, which makes use of OLE automation to create a framework for
highly portable and reusable software modules. Microsoft has of late made
OCX development possible for 16-bit Windows, but the original target was
the new generation of 32-bit Windows operating systems.

By packaging your code into an OCX, it can be used by any environment
that supports OCXs. This includes MFC-based C++ applications, as well as
Visual Basic 4.0, Borland’s Delphi 2.0, PowerBuilder, and others.
Furthermore, no special consideration is necessary for the host
environment. You just register the OCX with the operating system, and all
its methods are available. Code that interfaces with the OCX will, naturally,
be dependent on the syntax of the environment, but the control itself is
merely “installed” into your environment and is ready for use.

Wrap It Up

By wrapping the OpenGL API with an OCX control, we have effectively
solved both disadvantages of using OpenGL from a high-level visual
language. Now all the functions are defined for us, and we even have a
window readily available to do our drawing! Moreover, now we can use
OpenGL from any environment that supports OCX controls!

There is one caveat: The OpenGL functions that require callbacks such as
those used for NURBS and polygon tessellation cannot be supported here in
a manner that would work with all environments. Many environments are
not even compiled but rather are interpreted, and passing a pointer to a
function is just not possible. The exception may be environments that
produce true compiled code that is compatible with the C calling
conventions (such as Delphi).

See the document for your environment for details on accessing external
functions, as well as supplying C-callable routines from within the host
environment.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Visual Basic and 4GL-Based OpenGL Programming

http://www.itknowledge.com/reference/archive/1571690735/ch23/667-669.html [20-03-2000 21:45:03]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Use and Operation of WaiteGL.OCX

The OpenGL OCX is named WaiteGL.OCX and is in this chapter’s
subdirectory on the CD. Using this control is very easy. Follow the
directions in this chapter to register the control and install it into your
environment. Then just place the control on a form and start calling its
methods as if they were OpenGL functions and commands.

Each command is named just as it is in the OpenGL API, but with the
leading gl dropped. By naming your own control gl, your code will look
very much like C code that uses OpenGL. See the VB and Delphi examples
that follow for an example of this.

This OCX fires two events that you can catch from your application. The
first is SetupRC, which is called the first time the OCX tries to paint its
client area. At this point, the pixel format and rendering context has already
been created and set for the control. Here you can set up your lighting,
background colors, and so on. The second event is Render, which is called
every time the control needs to be painted. By placing your rendering code
here, you effectively draw in the client area with OpenGL.

There are a few other caveats to bear in mind as you use the OCX.

• Since you may wish to have more than one OpenGL control in
your application, the OCX cannot assume that the rendering context
for any specific control will always be current. Therefore, two
methods—MakeCurrent and MakeNotCurrent—are provided. All
your OpenGL calls must be placed within calls to these two
functions; this includes within SetupRC and Render.

• Furthermore, you may always call the OpenGL API directly when
you have made the rendering context for the OpenGL OCX current.
You can do this for performance reasons, or in case new functions
are added to later versions of OpenGL that aren’t included in the
OCX’s method list. The source is also included, so if you have Visual
C++ and the inclination, you can always make modifications in the
control yourself.

• A 3-3-2 palette is created for this control and is realized every time
the control fires the Render event. Trying to manipulate the palette
yourself can produce unexpected results.

• Finally, the control window is double buffered, so you will always
need to call the SwapBuffers method to see your image.

OpenGL Flags

It is impossible to make any use of the OpenGL functions and commands
without access to the many special flags and state variables. Each of these
flag’s values is available via a method by the same name as the flag itself.
The method name is in lowercase, however; having them match exactly
leads to problems with the real defines in the header files. Although it
would make sense for some of these state variables to be implemented as
properties, for others it wouldn’t. For consistency, then, the methods match
the OpenGL API as closely as possible.

Although many functions have several variations, they are only
implemented once as a method. This means functions such as

void glVertex2fv(const GLfloat *v);

would be implemented as a method as

Vertex2(float x, float y)

A help file is included (WaiteGL.hlp) that contains all the methods defined
for WaiteGL. They are organized by the three OpenGL libraries (gl, glu,
and glaux), and for all the constant macro definitions. To use the help file,
find the OpenGL function needed and then look for the WaiteGL OCX
method for that function.

Now let’s examine the specifics of setting up an OpenGL-enabled program
in the two most popular 4GL environments. The next section discusses
Visual Basic. If you are using Delphi 2.0 (the 32bit version), you can skip
to the following section.

Installing and Using WaiteGL from VB 4.0

To make use of WaiteGL.ocx, it must first be registered as an OCX by the
operating system (Windows NT or Windows 95). Copy the .ocx file into
your system directory and run the supplied ocxreg.exe program. In the
command line argument, specify the .ocx filename and either install or
uninstall. For example:

ocxreg.exe WaiteGL.ocx install

You will find this program (with source) provided on the CD under the
subdirectory for this chapter.

Installing the Control

Once the control has been registered with the operating system, it must be
installed into the Visual Basic tool palette. Select Tools from the main
menu, then Custom Controls. Choose the Waite Group OpenGL OCX from
the dialog as shown in Figure 23-1, and click OK. Now you can drag the
OpenGL control onto your forms, and size and place it accordingly.

Figure 23-1 Installing the WaiteGL OCX for use in Visual Basic

A Visual Basic Example

For our VB example, we placed our OpenGL control on a form and named
it gl. We have also placed a timer on the form with a time interval of 200
milliseconds. See Figure 23-2. You may notice that the control does not
paint or erase its client area. This is because the drawing code must be
written in Basic and placed in the Render event handler.

Figure 23-2 A VB form with the OpenGL OCX

As mentioned earlier, two events defined by the OCX must be supported in
our code. One is the SetupRC event. You put code here that initializes the
rendering context by setting up the initial viewing volume, setting the
background, and perhaps drawing colors and any lighting definitions you
may want. Listing 23-1 is the code for our rendering context setup. This
code simply sets the background and drawing color along with the viewing
volume.

Listing 23-1 Set up the rendering context from Visual Basic

Private Sub gl_SetupRC()
 Rem Make the rendering context current
 gl.MakeCurrent

 Rem Set the background color to black
 gl.ClearColor 0#, 0#, 0#, 1#

 Rem Establish the viewing volume
 gl.LoadIdentity
 gl.Ortho -100#, 100#, -100#, 100#, -100#, 100#

 Rem Set the drawing color, flush, and
 Rem make the rendering context not current
 gl.Color 0, 0, 255, 255
 gl.Flush
 gl.MakeNotCurrent
End Sub

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Visual Basic and 4GL-Based OpenGL Programming

http://www.itknowledge.com/reference/archive/1571690735/ch23/669-672.html [20-03-2000 21:45:14]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Painting the OpenGL Window

The other event you must support is the Render event. This event is fired by the
control whenever its window needs repainting. In this function you will place your
code that accesses the OCX’s methods to do the actual rendering. Listing 23-2 is the
Visual Basic code that draws a wireframe teapot from the AUX library.

Note that the rendering context is first made current, then made not current after the
drawing code. This is not strictly necessary if you have only one control and
rendering context, but it ensures that no code changes are needed later if you add
another control. After the rendering context is made not current, you must call
SwapBuffers to bring the image to the foreground.

Listing 23-2 Visual Basic code to draw the AUX library teapot

Private Sub gl_Render()
 Rem Make the rendering context current
 gl.MakeCurrent

 Rem Clear the screen and draw the aux lib teapot
 gl.Clear (gl.glColorBufferBit)
 gl.auxWireTeapot (55#)

 Rem Flush the commands, make rendering context
 Rem not current, and then finally swap buffers
 gl.Flush
 gl.MakeNotCurrent

 gl.SwapBuffers
End Sub

Now for Some Action

The code above is all that is needed to display our OpenGL images. For this
example, though, we have added some animation. We put a timer on the form shown
in Figure 23-2, and set the interval to 200 milliseconds. Every time this timer fires,
our function will make the rendering context for our OCX current, rotate the viewing
matrix by 5º, and then clean up by making the rendering context not current. Finally,
we tell the control to repaint, by calling the gl_Render function directly. See Listing
23-3.

Listing 23-3 Timer function that rotates the viewing volume by 5º

Private Sub Timer_Timer()
 Rem Make the rendering context current
 gl.MakeCurrent

 Rem Rotate 5 degrees
 gl.Rotate 5#, 0#, 1#, 0.5

 Rem Make rendering context not current, then
 Rem force a redraw
 gl.MakeNotCurrent
 gl_Render
End Sub

The completed Visual Basic program is shown running in Figure 23-3.

Figure 23-3 Output from the Visual Basic OpenGL program

Installing the OCX in Delphi 2.0

To make use of WaiteGL.ocx, it must first be registered as an OCX by the operating
system (Windows NT or Windows 95). Copy the .ocx file into your system directory
and run the supplied ocxreg.exe program. In the command line argument, specify the
.ocx filename and either install or uninstall. For example:

 ocxreg.exe WaiteGL.ocx install

You will find this program (with source) provided on the CD under the subdirectory
for this chapter.

Installing the Control

Once the control has been registered with the operating system, it must be installed
into the Delphi Tool palette. Select Component from the main menu, then Install.
Click the OCX button, and the dialog shown in Figure 23-4 will display a list of
registered OCX controls that can be installed.

Figure 23-4 Delphi Install OCX dialog

Select the Waite Group OpenGL OXC and then click on OK. This installs the OCX
into the Delphi tool palette for your use. Just drag the control onto your forms and
you will have a window for OpenGL rendering.

A Delphi Example

For our Delphi example, we start with a new form and place our OpenGL OCX in
the middle, taking up most of the client area. We’ll also put a timer on the form to do
some animation. Figure 23-5 shows the completed form. You may notice that the
control does not paint or erase its client area. This is because the drawing code must
be written in Pascal and placed in the OnRender event.

Figure 23-5 Delphi form with the OpenGL OCX

Our Object Inspector Events tab shown in Figure 23-6 shows two events that are
unique to this control: OnRender and OnSetupRC.

Figure 23-6 Object inspector showing available events for WaiteGL

Double-click on the OnSetupRC and the glSetupRC function is created. Your editor
is opened to allow this function to be defined. The code in Listing 23-4 shows the
setup, making the background color black and initializing an orthogonal viewing
volume.

Listing 23-4 Delphi code called in response to the SetupRC event from the OCX

procedure TMain.glSetupRC(Sender: TObject);
begin
 // Make the Rendering context current
 gl.MakeCurrent();

 // Set the clear color, and viewing volume
 gl.ClearColor(0.0, 0.0, 0.0, 1.0);
 gl.LoadIdentity();
 gl.Ortho(-100,100,-100,100,-100,100);

 // Flush the commands and make the rendering context
 // not current
 gl.Flush();
 gl.MakeNotCurrent();
end;

Painting the OpenGL Window

The glRender function is created in the same way, by double-clicking on the
OnSetupRC event. The code for drawing the wireframe teapot is shown in Listing
23-5. Note that the rendering context is first made current, then made not current
after the drawing code. This is not strictly necessary if you have only one control and
rendering context, but it ensures that no code changes are needed later if you add
another control. After the rendering context is made not current, you must call
SwapBuffers to bring the image to the foreground.

Listing 23-5 Delphi code called in response to the Render event from the OCX

procedure TMain.glRender(Sender: TObject);
begin
 // Make the rendering context current
 gl.MakeCurrent();

 // Clear the background, and draw a teapot
 gl.Clear(gl.glColorBufferBit());
 gl.Color(0, 0, 255, 255);

 gl.auxWireTeapot(55.0);

 // Flush commands, free rendering context, and
 // swap buffers
 gl.Flush();
 gl.MakeNotCurrent();
 gl.SwapBuffers();
end;

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Visual Basic and 4GL-Based OpenGL Programming

http://www.itknowledge.com/reference/archive/1571690735/ch23/672-677.html [20-03-2000 21:45:30]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Now for Some Action

The code above is all that is needed to display our OpenGL images. For this
example, though, we have added some animation. Recall that we put a
timer on the form in Figure 23-6, and set the interval to 200 milliseconds.
Every time this timer fires, our function will make the rendering context for
our OCX current, rotate the viewing matrix by 5º, and then clean up by
making the rendering context not current. Finally, we tell the control to
repaint, which we can do indirectly by calling the Delphi function
Invalidate(). In Delphi, because all OCXs are windows, any command or
message you can send a window can also easily be sent to an OCX. See
Listing 23-6.

Listing 23-6 Timer code to produce the rotating teapot

procedure TMain.Timer1Timer(Sender: TObject);
begin
 // Make rendering context current, then
 // rotate the scene somewhat
 gl.MakeCurrent();
 gl.Rotate(5.0,0.0,1.0,0.5);
 gl.MakeNotCurrent();

 // Repaint the OCX
 gl.Invalidate();
end;

Figure 23-7 shows the output from our OpenGL Delphi program.

Figure 23-7 Output from Delphi OpenGL program

Some Notes About the Source

The WaiteGL OCX was written with Visual C++ and uses MFC version
4.0. This new version of Visual C++ makes OCX development a breeze and
will likely spawn dozens of useful and reusable OLE custom controls. The
purpose of this chapter is not to explain how to develop OCX controls. We
wanted to present one that uses OpenGL, to let you do OpenGL graphics
from within Visual Basic, Delphi, or any other environment that supports
OCXs.

Nevertheless, the source code for this control is included on the CD in the
subdirectory for this chapter. The code was originally generated by the
Microsoft Control Wizard and is fully commented. In addition, the methods
and flags are separated into four source files to make maintenance easier.
The file ocxgl.cpp contains wrappers for all the gl library functions;
similarly, ocxgl contains the glu library functions. The file ocxaux.cpp also
contains wrappers for the AUX library wireframe and solid objects, such as
the teapot. Finally, ocxflags.cpp contains the access functions that retrieve
the OpenGL flags and other defines.

The main file of the project is WaiteGLCtl.cpp, which is the code
responsible for setting up the rendering context and firing the setup and
painting events. Also, any of the wiggle or OpenGL GDI-related functions
are wrapped here. In addition, there are accessor functions that will return
the device and rendering contexts directly, in case you need them for your
own low-level code.

Note that the OCX uses the DLL versions of MFC. For your convenience,
the redistributable portions are in the \REDIST subdirectory, as well.

Summary

In this chapter we have discussed the possibilities and challenges of using
OpenGL from some popular visual development environments. Although
direct low-level access to the API is certainly possible from any of these
environments, a much easier means of access is provided in the form of an
OCX control. Most of the sample programs from this book can easily be
implemented in a 4GL using this OCX, and for your benefit some are
provided in the supplementary examples.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Visual Basic and 4GL-Based OpenGL Programming

http://www.itknowledge.com/reference/archive/1571690735/ch23/677-679.html [20-03-2000 21:45:38]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

Chapter 24
The Future of OpenGL and Windows
This book is not just about OpenGL—more specifically, it’s about OpenGL
on Microsoft Windows. Let us look briefly at the current state of the art in
OpenGL and graphics implementation, and sketch out a picture of likely
developments in the near future.

OpenGL is essentially a software interface to 3D hardware. Although what
we call a “generic” or “software-only” implementation is available for both
Windows NT and Windows 95, 3D hardware for the PC is just beginning to
come of age. Naturally, it makes sense for OpenGL to make use of 3D
hardware (which is faster than 3D software) when it is available.

At the time this book was written, the 3D graphics acceleration market was
immature. Prices of OpenGL-specific accelerator boards for the PC are
beginning to come down, but the real driving force behind this market is
PC-based games. Video games require the fastest hardware available and/or
the most efficient coding. PCs make good gaming machines for a number
of reasons. With the right peripherals, you get a high-quality color monitor
that can produce higher resolution graphics than any TV set. You get sound,
and even wave table synthesis for realistic instrument sounds. In addition to
a joystick and a button or two, you also have a mouse and a whole
keyboard, opening up new options for game input. Add to this the massive
storage capabilities of CD-ROMs, plus the ability to store (and, let’s admit
it, copy) game programs on hard disks or floppies. Put it all together, and
you have a very expensive yet supremely capable gaming machine.

Few people can justify buying a PC just to play games (unless, of course,
they are educational games). But hey, let’s face it—if you already have a
PC for your home-based business or for telecommuting, you might as well
have a little fun with it, right? When Microsoft Windows grew more
dominant than DOS for business and productivity applications, many
people installed Windows for just that purpose. Nonetheless, until the last
year or so, game developers avoided Windows and kept right on writing
games for DOS.

The reason for this can be summed up in one word: performance. Windows
did make life easier for the applications developer because all graphics
commands acquired similar identities regardless of the underlying graphics
hardware. Want to draw a rectangle? Just call the rectangle function! You
don’t need to know how to convert row and column coordinates to a
memory address, and there’s no fussing with algorithms. All you needed for
your graphics hardware was a Windows driver that would translate GDI
calls into hardware instructions.

Unfortunately, this approach added many layers of code between the
programmer’s graphics instructions and the hardware that actually produced
the graphics on the screen. This generated a graphics phenomenon
commonly referred to as S-L-O-W. No sane games developer would
consider writing Windows-hosted video games, and for a good long while,
the most stunning examples of Windows-based games were Solitaire and
Reversi.

Hardware vendors seeking to capitalize on the emerging markets in desktop
publishing and Windows-based word processing started to bring out PC
graphics cards that had hardware acceleration of many common
Windows-based drawing commands. A flood of 2D accelerated graphics
cards filled the market with speedy Windows-based workstations, which
promised to make Windows-based games more practical. Developers have
a hard time resisting a sexy new graphical environment that just plain looks
cool in comparison to DOS’s text-mode interface. Slowly, card games,
strategy games, and even a few video games began to emerge into the
marketplace.

By the time nearly everyone recognized that Windows ruled the desktop,
most of the best games (particularly action games and vehicle simulators)
were still being written for DOS. Developers simply could not achieve the
frame rates and lightning-fast bitmap transfers under Windows that were
possible under DOS.

Microsoft’s first attempt to help game developers along was called the
WinG API. It was really little more than just a few new functions that
enabled very fast bitblts. The WinG API was a substantial improvement,
but it still wasn’t enough to woo the major players in the games market.

The release of Windows 95 proved to be a major turning point in this
chronology. Microsoft desperately wanted to establish Windows 95 as the
32-bit successor to DOS for home and corporate users. History would have
it that Windows NT actually got the major mind-share of corporate
America, and that Windows 95 found a cozy place at home. But even
before this became obvious, Microsoft wanted to make Windows 95 a
premium gaming platform. For that, Microsoft would need to spruce up the
multimedia capabilities of Windows 95 in a very big way.

To give game developers more direct access to hardware, Microsoft devised
a set of APIs now known as DirectX. This includes Direct Draw for fast
screen updates, Direct Sound for fast sound and MIDI streaming, Direct
Play for networked multiplayer games, and Direct Input for better
responsiveness to joysticks and other I/O devices. A new driver model rests
atop a very thin hardware abstraction layer and gives Windows game
developers unprecedented access to hardware—and thus unprecedented
speed.

The latest component added to the Direct X family is Direct 3D. Today’s
video games are no longer flat, two-dimensional space games. They are
highly complex flight simulators, and dungeon adventure games with
texture-mapped monsters, walls, and corridors. Direct 3D is tightly
integrated with Direct Draw and 3D accelerated hardware. If a feature does
not exist in hardware, it is emulated in software. This lets developers code
and test their applications and later seamlessly take advantage of extra
performance benefits provided by new hardware down the road.

What does all this have to do with OpenGL? Quite simply, what’s good for
the goose is good for the gander! Within one to two years of the printing of
this book, 3D accelerated graphics hardware will be practically ubiquitous.
There are many historical parallels that support this prediction. For
example, when CD-ROMs where first introduced they didn’t play music
CDs. Then someone had the bright idea that adding this capability would
differentiate them from the rest of the market. Who wouldn’t want to listen
to music while at their workstation? Now, of course, you can’t buy a new
CD-ROM that doesn’t play standard musical CDs.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:The Future of OpenGL and Windows

http://www.itknowledge.com/reference/archive/1571690735/ch24/381-685.html [20-03-2000 21:45:44]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Previous Table of Contents Next

The same was true of the original 2D graphics accelerators for Windows.
Accelerated boards quickly became affordable; it was virtually free to get
the extra speed boost. Finally, there’s the example of fax/modems. Go
ahead, try to find a modem (a new one, now) that won’t also work as a fax
board. The chip manufacturers put all the logic on one chip and
mass-produced standard modems right out of existence.

Clearly, 3D on the PC is here to stay, and it is only going to get better and
faster as time moves on. In early 1995, Microsoft purchased
RenderMorphics, Ltd., creators of the Reality Lab 3D API. This is a
high-performance 3D library for creating real-time 3D graphics on PC
hardware. The Reality Labs API is faster than OpenGL, but its performance
comes at the cost of some visual fidelity. In addition, not all of OpenGL’s
special effects and capabilities are present in the Reality Labs API. But it’s
still perfectly well-suited for PC-based games in which speed is more
important than absolute visual realism (for now!).

With the next release of the DirectX libraries, the Reality Labs API will be
folded into Direct 3D. There will be two modes of operation for Direct3D: a
retained mode, which is the original Reality Labs functionality; and an
immediate mode, which is a lower-level API that operates closer to the
hardware. The relationship between retained mode and immediate mode is
similar to that between Open Inventor and OpenGL. The retained mode is a
higher-level interface that simplifies scene creation and object
manipulation, and is actually built using the immediate mode API.

The good news for OpenGL developers is that OpenGL will be able to take
advantage of Direct 3D drivers that accelerate D3D immediate mode. Thus,
the accelerated gaming graphics cards are also going to accelerate OpenGL
performance. As PCs get even faster, as the competition among 3D
graphics board vendors produces faster accelerators with even more
features, the time will come when real-time OpenGL performance will be
available on ordinary PCs. This time is approaching, and developers
(maybe even you) will need to find other ways to distinguish their 3D
products besides brute speed.

OpenGL will be an excellent choice for producing visually stunning effects
and more realistic scenes and imagery. As fast 3D becomes a reality, your
investment in OpenGL will not go to waste. For the very near term, it’s
likely that the DirectX API will continue to dominate for fast games and
blood-splattering action on Windows. However, OpenGL is simply
unchallenged when it comes to realistic cross-platform effects. Currently
the hottest markets for OpenGL-based software are the entertainment
industry (movie and commercial special effects), scientific and educational
modeling, and simulation. In addition, many game developers are
discovering that they can use OpenGL to create their title screens,
background bitmaps, and textures, and even computer-generated animations
(.avi or .mpg files).

Conclusion

When 2D graphics acceleration first became available, it was only for the
few “power users” who really needed the extra boost in speed. Today, a
Windows accelerated graphics card is standard fare. Games may still be the
driving force behind 3D acceleration, but the development community is
ready to take advantage of 3D acceleration “as long as it’s there.”

You can be sure that the size, complexity, and functionality of software will
always grow to match or overcome capabilities of hardware. It’s hard to
imagine that color computers were once difficult to justify. Who remembers
when the 386 was hailed as a “high-end” processor intended only for
servers and scientific or engineering workstations? They said the same
thing about the 486, the Pentium, and now the Pentium Pro. Anyone with a
pulse and an IQ over 2 should be able to see a pattern here.

Soon everyday PC graphics cards will support both 3D and 2D acceleration
under Windows. Just as color computers evolved from their “games”
stereotyping, 3D gaming technology will also evolve into a real and
valuable feature that we will learn to take for granted. The difference
between hardware-accelerated 3D and software-only 3D is as dramatic as
the difference between making music with your PC speaker and having a
Sound Blaster. In the same way that sound cards are now becoming as
commonplace as color monitors, 3D acceleration will become just another
feature bullet on the sides of all those computer boxes in the electronics
section of your local discount department store.

Previous Table of Contents Next

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:The Future of OpenGL and Windows

http://www.itknowledge.com/reference/archive/1571690735/ch24/685-686.html [20-03-2000 21:45:50]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Table of Contents

Appendix A
Performance-Tuning OpenGL for
Windows
The object of this book is to explain OpenGL from a functional point of
view. If you’ve read the entire book, you’ve covered the entire breadth of
OpenGL from the standpoint of functions and commands. You’ve also
studied some techniques, such as shadows, that don’t map directly to a
specific function or set of functions. With this information you have a solid
foundation to carry you to new heights as you create applications that
require 3D rendering.

But “there’s more than one way to skin a cat!” Even if you’ve been
programming for only a week, you know this is true—especially of
software development. Any given problem can be solved in an almost
infinite number of ways. Strategies—from large-scale approaches such as
the choice of tools, to smaller details such as the use of specific
algorithms—can often vary to wide degrees and still accomplish a given
task. Your challenge as an accomplished software developer is to make
optimal choices to yield cost-effective and high-performance solutions for
your programming issues.

Now that you know how to program using OpenGL, we want to offer some
tips and hints for writing the most optimal OpenGL code possible. These
tips and hints are general recommendations and can be applied to your
programs regardless of the platform you are using.

Display Lists
• Use display lists whenever you will render the same object more
than once. Even on a software-only implementation, display lists can
significantly improve the performance.

• Try to embed expensive matrix transformations and state changes
in display lists—especially texture compositions. This includes the
Rotate, Translate, and Scale functions, as well.

• Some systems/graphics boards can take an OpenGL display list
directly (for instance, using DMA), so employing display lists will
improve CPU[rarr]graphics board communication speed. However,
operations such as glPushAttrib, glPopAttrib, glCallList, and
glCallLists can slow this process down because those parts of the
display list generally can’t be DMA’d. It might be better to call a
series of display lists rather than use nested lists.

Matrix Operations
• Use the native manipulation functions (glRotate, glTranslate,
glScale) rather than composing and multiplying your own matrices.
These functions are highly optimized, especially if rendering
hardware is present.

• Use glLoadIdentity to clear a matrix stack rather than loading your
own, for the same reason cited just above.

• Push and pop state variables (glPushAttrib/glPopAttrib), rather
than querying and setting individual state variables.

Lighting Operations
• If you don’t need smooth shading, use glShadeModel(GL_FLAT)
instead.

• Provide your own unit-length normals instead of making OpenGL
calculate them for you.

• Avoid using glScale when doing lighting calculations. It’s better to
scale your object manually before placing it in the scene.

• When possible, use glColorMaterial instead of glMaterial to vary
material properties. This is only practical when only one set of
material properties is changing.

Object Construction
• Use GL_TRIANGLES whenever possible. It is often faster to draw
two or more triangles than it is to draw a single GL_POLYGON. If
necessary, GL_QUADS is usually faster than GL_POLYGON and
sometimes as fast or faster than GL_TRIANGLES in software only
implementations.

• Stack similar primitives within a single pair of glBegin/glEnd
statements.

• Use the vector form of the vertex and other commands to transfer
as much data as possible in as few function calls as possible.

• When drawing or copying images, disable rasterization and
per-fragment operations; otherwise, OpenGL will apply textures to
pixel images.

• Use the stripped primitives (GL_QUAD_STRIPS, for instance)
when tessellating flat surfaces; this drastically reduces the software
computations involved in the rendering pipeline.

Miscellaneous Tips
• Do not make redundant mode changes, such as repeatedly setting
the same color or enabling a state flag.

• Manually cull your scene. Try not to draw objects that you know
will not appear in the scene (such as objects behind you). Do not
attempt to test every object for visibility, but structure your code so
that it’s easy to eliminate some obvious candidates (see the tank
simulator in Chapter 7).

• Under Windows, one of the biggest bottlenecks to performance is
swapping buffers. When only a small portion of your scene is
changing, use the glAddSwapHintRectWIN extension.

• Reduce the details of your drawings for better rendering speed. If
you have a hardware accelerator, you can increase the details for
better effects. Test for hardware acceleration by calling
DescribePixelFormat. In version 1.1 and later, test for the presence of
PFD_GENERIC_ACCELERATED in the dwFlags field of the
PIXELFORMATDESCRIPTOR structure.

• Use a 16-bit depth buffer unless your application needs the extra
precision. Not only does it save memory, but most of the low-end PC
accelerators do not support acceleration when a 32-bit depth buffer is
used.

Table of Contents

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Appendix A Performance-Tuning OpenGL for Windows

http://www.itknowledge.com/reference/archive/1571690735/appendix-a.html [20-03-2000 21:45:56]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Table of Contents

Appendix B
Further Reading
This appendix lists sources of supplementary information on OpenGL
programming. The books included here cover OpenGL programming issues
specifically. You’ll also find a few good books on Windows programming in
general, and a couple on advanced 3D graphics programming concepts. In
addition, we would be remiss if we neglected to provide you with a few hot
Internet sites that are packed with OpenGL programming information,
sample codes, and links to other sites of interest.

Books on Windows Programming
Windows 95 Win32 Programming API Bible

Richard J. Simon, with Michael Conker and Brian Barnes

Waite Group Press

Windows 95 Common Controls & Messages API Bible

Richard J. Simon

Waite Group Press

Windows 95 Multimedia & ODBC API Bible

Richard J. Simon

Waite Group Press

Programming Windows

Charles Petzold

Microsoft Press

32-Bit Windows Programming

Ben Ezzell

SAMS

Books and References on OpenGL
The OpenGL Programming Guide

Jackie Neider/OpenGL Architecture Review Board

OpenGL Reference Manual

OpenGL Architecture Review Board

Addison-Wesley

The Inventor Mentor

Josie Wernecke/Open Inventor Architecture Group

Addison-Wesley

The Inventor Toolmaker

Josie Wernecke

Addison-Wesley Publishing Company

3D Graphics Programming with Open GL

Clayton Walnum

QUE

Books and References on Graphics Programming (3D in
Particular)

Computer Graphics: Principles and Practice

Foley, van Dam, Feiner, and Hughes

Addison-Wesley

OpenGL-Related Web and FTP Sites
Company URL

Silicon Graphics http://www.sgi.com/

Silicon Graphics ftp://sgigate.sgi.com/

Silicon
Graphics/OpenGL
WWW Center

http://www.sgi.com/Technology/openGL/

Template
Graphics

http://www.cts.com/~template/

Microsoft http://www.microsoft.com/ntworkstation/opengl.htm

Viewpoint
Datalabs

http://www.viewpoint.com/

3D Accelerator
Information

http://www.cs.columbia.edu/~bm/3dcards/3d-cards1.html

Mark Kilgard’s
home page

http://reality.sgi.com/employees/mjk_asd/home.html

Silicon
Graphics/Mark
Kilgard

http://www.sgi.com/Technology/openGL/glut3.html

VRML Repositories

The VRML Repository http://www.sdsc.edu/vrml/

Paragraph International http://vrml.paragraph.com/

Silicon Graphics http://webspace.sgi.com/Repository/

Vertex International http://www.vrml.com:80/models/vertex/

The Geometry Center http://www.geom.umn.edu/~daeron/bin/legitlist.cgi

Ziff-Davis http://www.zdnet.com/zdi/vrml/

ORC http://www.ocnus.com/models/models.html

Table of Contents

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Appendix B Further Reading

http://www.itknowledge.com/reference/archive/1571690735/appendix-b.html [20-03-2000 21:46:03]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Table of Contents

Appendix C
OpenGL Version 1.1
In December 1995, during the writing of this book, the OpenGL
Architecture Review Board ratified and approved version 1.1 of the
OpenGL specification. With the release of Windows NT 4.0, Microsoft will
become one of the first, if not the first vendor to ship a full implementation
of the new OpenGL specification for a desktop operating system. In
addition to compliance with the new specification, Microsoft has enhanced
OpenGL’s performance and added a few new features and capabilities,
among them the ability to include OpenGL calls in enhanced metafiles, and
improved printing support.

Some highlights of OpenGL version 1.1 include the following:

• New Vertex Array features to allow faster transfer of vertex
positions, normals, colors and color indexes, texture coordinates, and
edge flags.

• Allowing logical operations in RGBA color mode instead of just in
color index mode.

• Many new and enhanced texturing features (these are probably the
most significant additions).

OpenGL support for Windows 95 will follow within a few months of the
shipment of NT 4.0, which isn’t due to ship until after the manuscript for
this book is finished. So that we could adequately cover the new specs and
the Microsoft enhancements, we have included a special directory on the
CD. This \OpenGL11 directory contains more complete documentation on
the new 1.1 features, plus any new goodies thrown in by Microsoft. Several
example programs are also provided.

Table of Contents

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Appendix C Version 1.1

http://www.itknowledge.com/reference/archive/1571690735/appendix-c.html [20-03-2000 21:46:08]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Table of Contents

Appendix D
Glossary
Alpha

A fourth color value added to provide a degree of transparency to the
color of an object. An alpha value of 0.0 would mean complete
transparency: 1.0 denotes no transparency (opaque).

Ambient light

Light in a scene that doesn’t come from any specific point source or
direction. Ambient light illuminates all surfaces evenly and on all
sides.

Anti-aliasing

A rendering method used to smooth lines and curves. This technique
averages the color of pixels adjacent to the line. It has the visual
effect of softening the transition from the pixels on the line and those
adjacent to the line, thus providing a smoother appearance.

Aspect ratio

The ratio of the width of a window to the height of the window
specifically, the width of the window in pixels divided by the height
of the window in pixels.

AUX library

A window system, independent utility library. Useful for quick and
portable OpenGL demonstration programs.

Bézier curve

A curve whose shape is defined by control points near the curve
rather than by the precise set of points that define the curve itself.

Bitplane

An array of bits mapped directly to screen pixels.

Buffer

An area of memory used to store image information. This may be
color, depth, or blending information. The red, green, blue, and alpha
buffers are often collectively referred to as the color buffers.

Cartesian

A coordinate system based on three directional axes placed at a 90º
orientation to one another. These coordinates are labeled x, y, and z.

Clipping

The elimination of a portion of a single primitive or group of
primitives. The points that would be rendered outside the clipping
region or volume are not drawn. The clipping volume is generally
specified by the projection matrix.

Color index mode

A color mode in which colors in a scene are selected from a fixed
number of colors available in a palette. These entries are referenced
by an index into the palette.

Convex

Refers to the shape of a polygon. A convex polygon has no
indentations; and no straight line can be drawn through the polygon
that will intersect it more than twice (once entering, once leaving).

Culling

Elimination of the front or back face of a primitive so that the face
isn’t drawn.

Display list

A compiled list of OpenGL functions and commands. When called, a
display list executes faster than would a manually called list of single
commands.

Dithering

A method used to simulate a wider range of color depth by placing
different-colored pixels together in patterns that give the illusion of
shading between the two colors.

Double buffered

A drawing technique used by OpenGL. The image to be displayed is
assembled in memory and then placed on the screen in a single
update operation, as opposed to building the image
primitive-by-primitive on the screen. Double buffering is a much
faster and smoother update operation and can produce animations.

Extruded

The process of taking a 2D image or shape and adding a third
dimension uniformly across the surface. This can transform 2D fonts
into 3D lettering.

Eye coordinates

The coordinate system based on the position of the viewer. The
viewer’s position is placed along the positive z-axis, looking down
the negative z-axis.

Frustum

A pyramid-shaped viewing volume that creates a perspective view
(near objects are large, far objects are small).

Immediate mode

A graphics rendering mode in which commands and functions have
an immediate effect on the state of the rendering engine.

Literal

A value, not a variable name. A specific string or numeric constant
embedded directly in source code.

Matrix

A 2D array of numbers. Matrices may be operated on mathematically
and are used to perform coordinate transformations.

Modelview matrix

The OpenGL matrix that transforms primitives to eye coordinates
from object coordinates.

Normal

A directional vector that points perpendicularly to a plane or surface.
When used, normals must be specified for each vertex in a primitive.

Normalize

Refers to the reduction of a normal to a unit normal. A unit normal is
a vector that has a length of exactly 1.0.

NURBS

An acronym for Non-Uniform Rational B-Spline. This is a method of
specifying parametric curves and surfaces.

Open Inventor

A C++ class library and toolkit for building interactive 3D
applications. Open Inventor is built on OpenGL.

Orthographic

A drawing mode in which no perspective or foreshortening takes
place. Also called parallel projection, the lengths and dimensions of
all primitives are undistorted regardless of orientation or distance
from the viewer.

Palette

A set of colors available for drawing operations. For 8-bit Windows
color modes, the palette contains 256 color entries, and all pixels in
the scene may only be colored from this set.

Parametric curve

A curve whose shape is determined by one (for a curve) or two (for a
surface) parameters. These parameters are used in separate equations
that yield the individual x, y, and z values of the points along the
curve.

Perspective

A drawing mode in which objects farther from the viewer appear
smaller than nearby objects.

Pixel

Condensed from the words picture element. This is the smallest
visual division available on the computer screen. Pixels are arranged
in rows and columns and are individually set to the appropriate color
to render any given image.

Polygon

A 2D shape drawn with any number of sides (must be at least three
sides).

Primitive

A 2D polygonal shape defined by OpenGL. All objects and scenes
are composed of various combinations of primitives.

Projection

The transformation of lines, points, and polygons from eye
coordinates to clipping coordinates on the screen.

Quadrilateral

A polygon with exactly four sides.

Rasterize

The process of converting projected primitives and bitmaps into pixel
fragments in the framebuffer.

Render

The conversion of primitives in object coordinates to an image in the
framebuffer. The rendering pipeline is the process by which OpenGL
commands and statements become pixels on the screen.

Spline

A general term used to describe any curve created by placing control
points near the curve, which have a pulling effect on the curve’s
shape. This is similar to the reaction of a piece of flexible material
when pressure is applied at various points along its length.

Stipple

A binary bit pattern used to mask out pixel generation in the
framebuffer. This is similar to a monochrome bitmap, but
one-dimensional patterns are used for lines, and two-dimensional
patterns are used for polygons.

Tessellation

The process of breaking down a complex polygon or analytic surface
into a mesh of convex polygons. This can also be applied to separate
a complex curve into a series of less complex lines.

Texel

Similar to pixel (picture element), a texel is a texture element. A texel
represents a color from a texture that will be applied to a pixel
fragment in the framebuffer.

Texture

An image pattern of colors applied to the surface of a primitive.

Texture mapping

The process of applying a texture image to a surface. The surface
does not have to be planar (flat). Texture mapping is often used to
wrap an image around a curved object or to produce patterned
surfaces such as wood or marble.

Transformation

The manipulation of a coordinate system. This can include rotation,
translation, scaling (both uniform and nonuniform), and perspective
division.

Translucence

A degree of transparency of an object. In OpenGL, this is represented
by an alpha value ranging from 1.0 (opaque) to 0.0 (transparent).

Vertex

A single point in space. Except when used for point and line
primitives, it also defines the point at which two edges of a polygon
meet.

Viewport

The area within a window that is used to display an OpenGL image.
Usually, this encompasses the entire client area. Stretched viewports
can produce enlarged or shrunken output within the physical window.

Viewing volume

The area in 3D space that can be viewed in the window. Objects and
points outside the viewing volume will be clipped (cannot be seen).

Wireframe

The representation of a solid object by a mesh of lines rather than
solid shaded polygons. Wireframe models are usually rendered faster
and can be used to view both the front and back of an object at the
same time.

Table of Contents

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Appendix D Glossary

http://www.itknowledge.com/reference/archive/1571690735/appendix-d.html [20-03-2000 21:46:15]

Brief Full
 Advanced

 Search
 Search Tips

To access the contents, click the chapter and section titles.

Open GL Super Bible
(Publisher: Macmillan Computer Publishing)
Author(s): Waite group Press
ISBN: 1571690735
Publication Date: 08/01/96

Search this book:

Table of Contents

Index

A
accelerated graphics, 7-11, 684-686

accumulation buffer, 473, 493-498

alpha (transparency), 41, 237, 384, 477, 505-511, 697, 700

alpha images, 511

ambient light, 18, 264-269, 271-274, 697

animation

bouncing square, 52-56, 86-92, 114-115

double buffering, 54-55, 67, 84, 91, 473, 477-478, 500, 698

flicker, 54, 84, 477-478, 642, 658

ANSI character set, 352

anti-aliasing, 115, 118, 137, 493, 497-498, 510-511, 697

APIs (Application Programming Interfaces)

Direct 3D, 685

Direct Draw, 7, 11, 685

Direct Input, 685

Direct Play, 685

Direct Sound, 685

DirectX, 7, 685-686

Windows graphics, 7, 10-11

ASCII character set, 352

aspect ratio, 49-50, 697

AUX (Auxiliary) library, 30-31, 34-35, 697

3D objects, 56, 63-71

animation program, 52-56

drawing program, 42-45

functions. See aux under functions

scale program, 47-51

simple program, 35-42

aux prefix, 30

axes, 19-20, 23-24, 50

B
B-splines (NURBS), 546-552

backface culling, 154-158, 172-173, 175, 304-305, 507, 698

benchmark, 331-334

Bázier curves/surfaces, 535-553, 697

bitmaps, 347-350

alignment, 349, 360

BMP file viewer, 361-372

character strings, 350-354

clipping, 350

colored (pixmaps), 350, 354-361

files, 362-367

fonts, 104-105, 350-354

functions

glBitmap, 348, 350

glRasterPos, 349

LoadDIBitmap, 363-365

PrintDIBitmap, 367-370

SaveDIBitmap, 365-367

StretchBlt, 368, 371

wglCreateFontBitmaps, 351

wglUseFontBitmaps, 351-352

bitplane, 697

blending, 505-519, 530

blur, motion, 493-497

BMP files, 361-372

border pixels, 385-386, 429

box, 63, 67-68

breakpoint, 538

buffers

accumulation, 473, 493-498

back, 396, 478, 500-501

color, 41, 71-72, 473, 477-478, 498-501, 697

configuring, 474-477

defined, 697

depth, 154, 465, 473, 479-488, 499, 501-502, 689

double-buffered window, 37, 55, 84, 91

double buffering, 54-55, 67, 84, 91, 473, 477-478, 500, 698

feedback, 602-604, 607-611

front, 396, 478, 500-501

functions, 480, 489

glAccum, 493-498

glClearColor, 498-499

glClearDepth, 481, 499

glClearIndex, 499

glClearStencil, 489, 500

glDepthFunc, 481-484, 501

glDepthRange, 480-481, 501-502

glDrawBuffer, 478, 485-488, 500-501

glStencilFunc, 489-493

glStencilMask, 489

glStencilOp, 489-493

SwapBuffers, 478

left-eye, 478

right-eye, 478

selection, 592, 594-596, 615-616

single-buffered window, 37

stencil buffer, 465, 473, 488-493, 500

stereo buffering, 478

swapping, 54-55, 67, 84, 91, 98-99, 478, 689

C
C++ programming

MFC (Microsoft Foundation Classes), 30, 635-646

OWL (Object Windows Library), 30, 649-664

callback functions, 43-44, 583-584,586-587, 669

CALLBACK statement, 43

Cartesian coordinates, 19-24, 50, 187, 697

character sets, 352

character strings, 350-354

clamp (color amplitude), 32, 72, 389, 429

clearing, 40-41

clipping (defined), 697

clipping area, 20-21, 24-25

clipping volume, 20-21, 24-25, 45-51,72-73, 697

clockwise winding, 146-148, 304-305

code examples. See examples

code indentation, 132

color, 18, 92

4-bit, 234, 243

8-bit, 234-235, 243-246

15-bit, 235, 242-243

16-bit, 235, 242-243, 383

24-bit, 235, 242-243, 383

32-bit, 235

color amplitude (clamp), 32, 72, 389, 429

color blending, 505-519, 530

color buffer, 41, 71-72, 473, 477-478,498-501, 697

color components

alpha (transparency), 41, 237, 384, 477,505-511, 697, 700

RGB (red green blue), 40-41, 230-231

RGB color cube, 236-243

RGBA (red green blue alpha), 267-268,271, 477

RGBA color mode, 37-38, 231, 249, 251-252, 255-256

color, composite, 229

color cycling, 252

color depth, 234-235. See also dithering

color, display modes, 37-38, 55, 58-59, 233-235

color, drawing, 146, 237-238

color, erasing with, 40-41

color functions

CreatePalette, 244, 247

GetOpenGLPalette, 249-250

glClearIndex, 255

glColor, 237-239, 242, 255-256, 272

glColorMask, 257

glColorMaterial, 272, 303-304

glIndex, 257-258

glIndexMask, 258

glLogicOp, 258-259

RealizePalette, 245

SelectPalette, 245

UpdateColors, 246

color hardware, 232-235

color index, 255, 257-258, 499

color index mode, 62-63, 231, 251-254, 302-303, 477, 505, 698

color lookup tables, 356-357, 374-375

color maps, 356-357, 374-375

color matching, 242-244

color modes

color index, 62-63, 231, 251-254, 302-303, 477, 505, 698

RGBA (red green blue alpha), 37-38, 231, 249, 251-252,
255-256

color, polygon, 153

color, remapping, 355-356

color, RGB color cube, 236-243

color, shading, 238-242, 260

color theory, 227-231

color tracking, 272, 282, 303

color, translucence, 41. See also alpha

color, true, 40, 235

color

See also light

See also materials

See also palettes

See also pixel

column-major order, 214, 218

commands. See functions

cone cells, 230

cones, 63, 68, 436, 449

console modes, 36

continuity, 538, 546

contour maps, 484

control points, 537, 541, 546-550

convex polygon, 698

coordinate systems, 19-24, 38-39, 50

coordinate transformations. See transformations

coordinates

Cartesian, 19-24, 50, 187, 697

color, 236

eye, 187-188, 698

generating, 390, 396-397, 426-427, 435

positional, 128

texture, 389-390, 396-397, 424-427, 435

vertex, 181-182, 542, 553-554

cosine, 134

counterclockwise winding, 146-148,278-279, 304

cube, 64, 68

cubic curve, 538, 547

culling, 154-158, 172-173, 507, 565-566, 689, 698

current rendering context, 81-83, 101-103

curved surface, 324-326

curves, 535-546. See also NURBS

cyberspace, 621-628

cylinders, 64, 68-69, 435-436, 449-450

D
data types, 31-32

degrees/radians, 134

Delphi programming, 667, 674-678

depth buffer, 154, 465, 473, 479-488, 499, 501-502, 689

depth comparisons, 480-481

depth cueing, 520-523

depth of field, 493, 498

depth, illusion of, 15-18

depth testing, 154-156, 501, 507

depth values, 480-481

device context, 78-81, 101

diffuse light, 264-269

Direct 3D, 685

Direct Draw, 7, 11, 685

Direct Input, 685

Direct Play, 685

Direct Sound, 685

DirectX, 7, 685-686

disk shapes, 436-437, 450-452

display lists, 103-105, 284, 315, 334-344, 388, 579, 688, 698

glCallList, 336, 338-339, 351

glCallLists, 339-340, 351, 353

glDeleteLists, 340, 352

glEndList, 335-336, 340-341

glGenLists, 341-342, 351

glIsList, 342

glListBase, 342-343, 351

glNewList, 335-336, 343-344

display modes, 37-38, 55, 58-59, 233-235

dithering, 234, 243-244, 698

dodecahedron, 64-65, 69

DOS games, 684

double buffering, 54-55, 67, 84, 91, 473, 477-478, 500, 698

doughnut shape, 67, 71

drawing color, 146, 237-238

drawing program, 42-45

drawing states, 464-465

drawing windows, 78-81

E
edge flag, 166-169, 173-174

error detection, 111-114, 116-119

error messages, 112-114, 116-119

evaluators, 538-546, 553-559

examples

atoms, 202-205

Bázier curves/surfaces, 539-545

bolt, 315-338

bouncing square, 52-56, 86-92, 114-115

campfire, 161-163

feedback, 604-608

friendly.c, 42-45

GLRect, 85-92

GLTell, 112-115

jet (lighting), 264-274, 281-288, 300-302

letter A tessellation, 580-583

moons, 599-602

objects construction, 315-338

pencil drawing, 438-449

planets, 592-598

scale.c, 47-51

shapes drawing, 42-45

shortest.c, 35-42

smiley face, 348-349, 355-356

teapots, 507-510, 520-523, 673-678

terrain viewing, 392-424, 524-529

three-D modeling, 315-338

wavy surface, 288-291

WinRect, 79-81

extension functions, 101-102, 115, 117, 119

extruded, 698

eye, and color, 230-231

eye coordinates, 187, 698

F
feedback, 591-592, 594, 602-610, 614

filters

minification, 386, 391, 429

magnification, 386, 429

texture, 386-387, 391-392, 429

flat shading, 153, 241, 260

flicker, 54, 84, 477-478, 642, 658

floating point values, 32-33

flushing, 41-42

fly through, 395-396, 398

fog, 115, 118, 505, 519-531

font bitmaps, 104-105, 350-354

font outlines, 105-106

foreshortening, 192, 207-208. See also perspective

fourth-generation language (4GL), 30, 667, 670

front facing, 148, 175, 304-305

frontface culling, 154-158, 172-173, 698

frustum, 25, 207, 698

function naming conventions, 32-33

functions

auxIdleFunc, 52, 57-58

auxInitDisplayMode, 37-38, 44, 55, 58-59

auxInitPosition, 38, 44, 46, 59

auxInitWindow, 38, 44, 59

auxKeyFunc, 60

auxMainLoop, 44, 60-61

auxMouseFunc, 61-62

auxReshapeFunc, 46, 62

auxSetOneColor, 62-63

auxSolidBox, 63

auxSolidCone, 63

auxSolidCube, 64

auxSolidCylinder, 64

auxSolidDodecahedron, 64-65

auxSolidIcosahedron, 65

auxSolidOctahedron, 65

auxSolidSphere, 65-66

auxSolidTeapot, 56, 66

auxSolidTetrahedron, 66

auxSolidTorus, 67

auxSwapBuffers, 55, 67

auxWireBox, 67-68

auxWireCone, 68

auxWireCube, 68

auxWireCylinder, 68-69

auxWireDodecahedron, 69

auxWireIcosahedron, 69

auxWireOctahedron, 70

auxWireSphere, 70

auxWireTeapot, 56, 70-71

auxWireTetrahedron, 71

auxWireTorus, 71

calcNormal, 281

ChangeSize, 46-47, 49, 90

ChoosePixelFormat, 85, 92-93, 476

CreateFont, 352

CreatePalette, 244, 247

DescribePixelFormat, 94-97, 246, 249

FontCreate (CreateFont), 352

FontCreateBitmaps, 351-352

FontDelete, 353

FontPrintf, 353-354

FontPuts, 353

GetOpenGLPalette, 92, 249-250

GetPixelFormat, 97-98

glAccum, 493-498

glAddSwapHintRectWIN, 689

glBegin, 130, 137, 171-172

glBitmap, 348, 350

glBlendFunc, 484, 505-508, 511-512, 530

glCallList, 336, 338-339, 351, 688

glCallLists, 339-340, 351, 353, 688

glClear, 41

glClearColor, 40, 71-72, 498-499

glClearDepth, 481, 499

glClearIndex, 255, 499

glClearStencil, 489, 500

glColor, 43, 237-239, 242, 255-256, 272

glColorMask, 257

glColorMaterial, 272, 303-304, 688

glCopyPixels, 361, 372-373

glCullFace, 172-173, 175, 304

glDeleteLists, 340, 352

glDepthFunc, 481-484, 501

glDepthRange, 480-481, 501-502

glDisable, 143, 461, 467-468

glDrawBuffer, 478, 485-488, 500-501

glDrawPixels, 354-355, 373-374, 512

glEdgeFlag, 166-169, 173-174

glEnable, 143, 461, 467-468

glEnd, 130, 137, 174-175

glEndList, 335-336, 340-341

glEvalCoord, 542, 553-554

glEvalMesh, 545, 554-555

glEvalPoint, 555

glFeedbackBuffer, 602-603, 609-610

glFlush, 41-42, 72

glFog, 519-520, 523-524, 530-531

glFrontFace, 148, 157-158, 172, 175, 304-305

glFrustum, 207, 216

glGenLists, 341-342, 351

glGetBoolean, 462

glGetDouble, 462

glGetError, 112-113, 116-117

glGetFloat, 462

glGetInteger, 353, 360, 462

glGetLight, 306-307

glGetMap, 555-557

glGetMaterial, 305-306

glGetPolygonStipple, 176

glGetString, 114-115, 117

glHint, 115-116, 118, 524

glIndex, 257-258

glIndexMask, 258

glInitNames, 593, 610

glIsDisabled, 462

glIsEnabled, 462, 468

glIsList, 342

glLight, 285, 292, 307-308

glLightModel, 271, 309-310

glLineStipple, 143, 176-177

glLineWidth, 141-142, 177-179

glListBase, 342-343, 351

glLoadIdentity, 47, 50-51, 128, 200, 216, 597, 616, 688

glLoadMatrix, 214, 217

glLoadName, 593, 604, 611

glLogicOp, 258-259

glMap, 542, 545, 557-559

glMapGrid, 543, 545, 559-560

glMaterial, 271-272, 310-311

glMaterial, 688

glMatrixMode, 128, 200, 214, 217-218

glMultMatrix, 218

glNewList, 335-336, 343-344

glNormal, 277, 311-312

glOrtho, 47, 50-51, 72-73, 128

glPassThrough, 604, 607, 611-612

glPixelMap, 355, 357, 374-375

glPixelStore, 162, 358, 375-376

glPixelTransfer, 355, 377-378

glPixelZoom, 357, 378

glPointSize, 135-137, 179-180

glPolygonMode, 158, 180-181

glPolygonStipple, 161, 181

glPopAttrib, 295, 353, 462-463, 469, 688

glPopMatrix, 130, 133, 202, 205, 219, 338-339

glPopName, 612

glPushAttrib, 295, 353, 462-464, 469, 688

glPushMatrix, 130, 133, 202, 204, 219, 338-339

glPushName, 593, 613

glRasterPos, 349

glReadPixels, 358, 361, 378-379, 484, 512

glRect, 43-44, 46, 73-74, 161

glRenderMode, 594-595, 597, 602, 613-615

glRotate, 56, 130, 133, 196, 205, 219-220, 688

glScale, 198, 205, 220-221, 688

glSelectBuffer, 595

glShadeModel, 153, 240-241, 260

glStencilFunc, 489-493

glStencilMask, 489

glStencilOp, 489-493

glTexCoord, 389, 396, 424-425

glTexEnv, 388, 425-426

glTexGen, 390, 397, 426-427

glTexImage1D, 385-386, 427-428

glTexImage2D, 387-388, 428-429

glTexParameter, 386-387, 429

glTranslate, 196, 205, 215, 221, 688

gluBeginCurve, 560-561

gluBeginPolygon, 578, 585

gluBeginSurface, 549-550, 561

gluBeginTrim, 551-552, 562

gluBuild1DMipmaps, 392

gluBuild2DMipmaps, 392

gluCylinder, 435-436, 449-450

gluDeleteNurbsRenderer, 549, 563

gluDeleteQuadric, 450

gluDeleteTess, 579, 585

gluDisk, 436-437, 450-451

gluEndCurve, 563

gluEndPolygon, 578-579, 585-586

gluEndSurface, 549-550, 564

gluEndTrim, 551-552, 564

gluErrorString, 113-114, 118-119

gluGetNurbsProperty, 564-565

gluGetString, 114-115, 119

gluLoadSamplingMatrices, 565-566, 571

gluLookAt, 215, 221-222

gluNewNurbsRenderer, 549, 566

gluNewQuadric, 434, 451

gluNewTess, 578, 586

gluNextContour, 579, 586

gluNurbsCallback, 567-568

gluNurbsCurve, 552, 569

gluNurbsProperty, 549, 569-571

gluNurbsSurface, 549-550, 571-572

gluPartialDisk, 437, 451-452

gluPerspective, 207

gluPickMatrix, 596-597, 616-617

gluPwlCurve, 551-552, 572-574

gluQuadricCallback, 452

gluQuadricDrawStyle, 434, 452-453

gluQuadricNormals, 434-435, 453

gluQuadricOrientation, 434-435, 453

gluQuadricTexture, 434-435, 454

gluSphere, 438, 454

gluTessCallback, 583-584, 586-587

gluTessVertex, 578-579, 587

glVertex, 130-132, 143, 181-182

glViewport, 47, 49, 73, 195

IdleFunction, 52, 90-91

InvalidateRect, 91

LoadDIBitmap, 363-365

MakeShadowMatrix, 299-301

PrintDIBitmap, 367-370

ReadDIBitmap, 358-360

RealizePalette, 245

ReduceToUnit, 279

RenderScene, 43-44, 91, 99

RepaintWindow, 371-372

SaveDIBitmap, 365-367

SelectPalette, 245

SetPixelFormat, 85, 98, 476

SetTimer, 90-91

StretchBlt, 368, 371

SwapBuffers, 91, 98-99, 478

UpdateColors, 246

ValidateRect, 91, 99

wglCreateContext, 81-83, 99-100

wglCreateFontBitmaps, 351

wglDeleteContext, 81-83, 100

wglGetCurrentContext, 101

wglGetCurrentDC, 101

wglGetCurrentProcAddress, 101-102

wglMakeCurrent, 81-83, 102-103

wglShareLists, 103-104

wglUseFontBitmaps, 104-105, 351-352

wglUseFontOutlines, 105-107

G
games programming, 683-686

gamma correction, 356-357

GDI (Graphical Device Interface), 78-81

gl prefix, 30

glossary, 697-700

glu prefix, 31

glu32.dll library, 31, 667-668

glue code, 77-78

graphics acceleration, 7-11, 684-686

graphics APIs, 7, 10-11, 685-686

graphics programming books, 692

H
haze effects, 519-530

HGLRC data type, 82, 100

hidden line removal, 17

hidden surface removal, 153-158, 480-481, 501

hit records, 592, 594-596, 615-616

HTML (HyperText Markup Language), 622

hypertext links, 622

I
icosahedron, 65, 69

identity matrix, 198-201, 216

glLoadIdentity, 47, 50-51, 128, 200, 216, 597, 616, 688

idle processing, 52, 57-58, 90-91

image mapping, 383-384

image textures. See texture

immediate mode, 627, 685, 698

indenting code, 132

initialization, 37-38, 44-45, 58-59

input events, 34-35, 57, 60-62

interactivity, 591-592

Internet, 621-628, 692-693

J
jitter, 497-498. See also anti-aliasing

K
keyboard input, 34-35, 57, 60

knots, 548-549

L
lamp (light source), 18, 274-284, 292-296

library

AUX. See AUX library

glu32.dll library, 31, 667-668

opengl32.dll, 30-31, 667-668

light, 18

absorption, 229

adding to scene, 270-274

ambient, 18, 264-269, 271-274, 697

color index mode, 302-303

and color theory, 227-231

diffuse, 264-269

functions

glColor, 272

glColorMaterial, 272, 303-304

glGetLight, 306-307

glGetMaterial, 305-306

glLight, 285, 292, 307-308

glLightModel, 271, 309-310

glMaterial, 271-272, 310-311

glNormal, 277, 311-312

light source, 18, 274-284, 292-296

materials, 267-269, 271-272, 282-283, 305-306, 310

normals, 275-281, 288-291, 465-466, 545-546, 688, 698

quadrics, 434-435, 453

optimizations, 688

reflection, 229

shading, 688

shadows, 296-302

spectrum, 228-229

specular, 264-269, 285-288

specular highlight, 266, 272, 284-288, 310

spotlights, 292-296

state variables, 295, 465-466

theory, 264-269

wavelength, 228-229

lighting. See light

line, 137-145, 171

line loops, 139-140, 171

line stippling, 143-145, 176-177

line strips, 139-141, 171

line width, 141-142, 177-179

listings. See examples

literal, 698

literal suffixes, 31-33

M
magnification filter, 386, 429

materials, 267-269, 271-272, 282-283, 305-306, 310, 688

math

curves/surfaces, 536-537

transformations, 186, 193-205

matrix (defined), 698

functions

glLoadIdentity, 47, 50-51, 128, 200, 216, 597, 616, 688

glLoadMatrix, 214, 217

glMatrixMode, 128, 200, 214, 217-218

glMultMatrix, 218

glPopMatrix, 130, 133, 202, 205, 219, 338-339

glPushMatrix, 130, 133, 202, 204, 219, 338-339

gluLoadSamplingMatrices, 565-566, 571

gluPickMatrix, 596-597, 616-617

MakeShadowMatrix, 299-301

identity matrix, 198-201, 216

loading, 214, 217

manipulation, 50-51

math, 186, 193-205, 214-215, 218

Modeling, 186, 189-191

Modelview, 187, 191, 193-198, 201-202, 211, 214-215, 698

optimizations, 688

Projection, 187, 192-195, 201-202, 205-215, 222-223

shadow, 298-301

stacks, 201-202, 214, 217, 219

Viewing, 186, 188-189, 191, 221-222

Viewport, 187, 193, 195

message handlers

WM_CREATE, 83, 89, 100, 251, 639-641, 653-656

WM_DESTROY, 83, 89, 100, 251, 641,653, 657

WM_ERASEBKGND, 653

WM_LBUTTONDOWN, 594

WM_PAINT, 80, 83-84, 89-91, 99, 333-334, 653, 658

WM_PALETTECHANGED, 92, 245-246, 644-645, 654,
662-663

WM_QUERYNEWPALETTE, 92, 245-246, 644-645, 654,
662-663

WM_SIZE, 89-90, 641, 654, 657

WM_TIMER, 89, 91, 645, 653-654, 658-660

MFC (Microsoft Foundation Classes)programming, 30, 635-646

minification filter, 386, 391, 429

mipmapped textures, 390-392

modeling example, 315-338

Modeling matrix, 186, 189-191

Modelview matrix, 187, 191, 193-198, 201-202, 211, 214-215, 698

mosaic (tessellation), 565, 570, 577-587

motion blur, 493-497

mouse input, 34-35, 57, 61-62

mouse interaction, 591-592, 594-596

multimedia, 684-685

multisampling, 493, 498

N
names stack, 592-593, 598-601, 610-613

navigation, cyberspace, 622-628

normal vector. See normals

normalization, 278-279, 311, 326, 466,546, 698

normals, 275-281, 311-312, 545-546, 688, 698

averaging, 288-291

lighting, 465-466

quadrics, 434-435, 453

unit normals, 698

NURBS (non-uniform rational B-splines), 546-552, 560-574, 698

O
objects, 668-669

construction example, 315-338

flattening, 296-299

optimizations, 688

solid, 150-158

three-D, 56, 63-71

octahedron, 65, 70

OCX control, 667-679

OLE (Object Linking and Embedding), 668

Open Inventor, 623-628, 699

OpenGL

basics, 7-12

commands. See functions

data types, 31-32

defined, 7-12

extensions, 101-102, 115, 117, 119

function naming conventions, 32-33

functions. See functions

future of, 683-686

libraries, 30-31

reference books, 692

State Machine, 135, 338, 461-469

Version 1.1, 695

Web sites, 692

opengl32.dll library, 30-31, 667-668

optimizations, 115-116, 118, 331-338, 684-685, 687-689

origin, 19

orthogonal projection, 316-317

orthographic projection, 25, 50, 72-73, 192-193, 205, 222, 699

OWL (Object Windows Library) programming, 30, 649-664

Open GL Super Bible:Index

http://www.itknowledge.com/reference/archive/1571690735/book-index.html (1 of 2) [20-03-2000 21:46:27]

P
paint program, 511-519

painting, 79-84

palette, 92, 231, 235, 242-251

3-3-2, 247-250

animation, 252

creation, 246-251

defined, 699

functions

CreatePalette, 244, 247

GetOpenGLPalette, 249-250

RealizePalette, 245

SelectPalette, 245

UpdateColors, 246

handling, 642-646, 660-663

index, 248-249

logical, 476-477

LOGPALETTE, 244, 247

realization, 245-246, 250

system, 244-245, 476

See also color

panning, pixmap, 358

parallel projection. See orthographic projection

parametric curve, 699

NURBS, 546-552, 560-574, 698

parametric equation, 536-537

passthrough markers, 604, 607-608, 611-612

performance enhancement, 115-116, 118, 331-338, 684-685, 687-689

persistence, 623

perspective, 17, 699

perspective projection, 25, 192-193, 205-211, 222-223

picking, 591, 596-602

piecewise curves, 538, 546, 548, 552, 572-574

pixel (defined), 699

border, 385-386, 429

format, 82, 84-86, 92-98, 246, 249

ChoosePixelFormat, 85, 92-93, 476

DescribePixelFormat, 94-97, 246, 249

GetPixelFormat, 97-98

PIXELFORMATDESCRIPTOR, 85-86, 93-97, 474-477

SetPixelFormat, 85, 98, 476

WM_CREATE, 639-641, 655-656

functions

glCopyPixels, 361, 372-373

glDrawPixels, 354-355, 373-374, 512

glPixelMap, 355, 357, 374-375

glPixelStore, 162, 358, 375-376

glPixelTransfer, 355, 377-378

glPixelZoom, 357, 378

glReadPixels, 358, 361, 378-379, 484, 512

operations, 258-259

pixmaps, 350, 354-361

states, 466

See also color

pixmaps, 350, 354-361

plane, coordinate, 20

platform independence, 34-35

plug and play, 668-669

point size, 135-137, 179-180

points, 128-137, 171

polygon modes, 158, 180-181

polygon tessellation, 565, 570, 577-587

polygons, 160, 172

complex, 577-583, 585-587

concave, 577-579

construction rules, 166

convex, 166-167, 578, 698

defined, 146, 699

edge flag, 166-169, 173-174

filled, 161-165

limitations, 166

planar, 166-167

primitives. See primitives

stippling, 161-165, 176, 181

textured, 388-390

See also individual shapes

pop, 201-202, 219, 462-463, 469

glPopAttrib, 295, 353, 462-463, 469, 688

glPopMatrix, 130, 133, 202, 205, 219, 338-339

glPopName, 612

primitives, 23, 128, 131, 699

line, 137-145, 171

line loop, 139-140, 171

line strip, 139-141, 171

point, 128-137, 171

polygon, 160, 172

quad (quadrilateral), 159, 172, 688

quad strip, 159, 172, 396

shape drawing program, 42-45

shapes, 3D, 56, 63-71. See also quadrics

triangle, 146-158, 171, 688

triangle fan, 149, 172

triangle strip, 148-149, 172

program examples. See examples

projection, 24-25, 699

matrix, 187, 192-195, 201-202, 205-215, 222-223

orthogonal, 316-317

orthographic, 25, 50, 72-73, 192-193,205, 222

perspective, 192-193, 205-211, 222-223

transformations, 187, 192-195, 201-202, 205-215, 222-223

push, 201-202, 219, 462-464, 469

glPushAttrib, 295, 353, 462-464, 469, 688

glPushMatrix, 130, 133, 202, 204, 219, 338-339

glPushName, 593, 613

Q
quad (quadrilateral), 159, 172, 688, 699

quad strip, 159, 172, 396

quadratic curve, 538, 547

quadrics, 433-435

cones, 436, 449

cylinders, 435-436, 449-450

disks, 436-437, 450-452

functions

gluCylinder, 435-436, 449-450

gluDeleteQuadric, 450

gluDisk, 436-437, 450-451

gluNewQuadric, 434, 451

gluPartialDisk, 437, 451-452

gluQuadricCallback, 452

gluQuadricDrawStyle, 434, 452-453

gluQuadricNormals, 434-435, 453

gluQuadricOrientation, 434-435, 453

gluQuadricTexture, 434-435, 454

gluSphere, 438, 454

lighting normals, 434-435, 453

spheres, 65-66, 70, 437-438, 454

textures, 434-438, 454

quality preference, 115-116, 118

R
radians/degrees, 134

raster graphics, 347. See also bitmaps

raster position, 349-350, 354

rasterization modes. See rendering modes

rasterize, defined, 699

raycasting, 383

rectangle, 43-44, 46, 73-74, 161

reflectance, 268-269, 285-286, 310

rendering, 43, 699

rendering context, 81-83, 99-103

rendering modes

feedback, 591-592, 594, 602-610, 614

immediate, 627, 685, 698

render, 594, 614

retained, 628, 685

selection, 591-602, 614

rendering state, 461-464

resizing, 45-51, 62, 90, 641, 657

retained mode, 628, 685

reusability, 319, 668

RGB (red green blue) components, 40-41, 230-231

RGB color cube, 236-243

RGBA (red green blue alpha) color mode, 37-38, 231, 249, 251-252,
255-256

RGBA components, 267-268, 271, 477

rotation, 189-190, 196-198, 205, 219-220

ROYGBIV (rainbow), 384, 389, 391

S
scaling, 189-190, 198, 205, 220-221

pixmap, 357, 361, 378

w coordinate, 130, 182, 194-195, 573

window, 45-51, 62, 90, 641, 657

scene cutaway, 484-488, 491-493

screen management, 34-35

screen resolution, 234

selection, 393, 591-602, 614-616

shading, 18, 238-242, 260, 688

flat, 153, 241, 260

smooth, 153, 239-241, 260

shading model, 153, 239-242, 260

shadows, 18, 296-302

stencil buffer, 488-493, 500

shapes

2D, 23, 128, 131. See also primitives

3D, 56, 63-71. See also quadrics

drawing program, 42-45

See also individual shapes

shininess, 266, 272, 284-288, 310

Silicon Graphics, Inc. (SGI), 7-9, 622-623

sine, 134

size changes, 45-51, 62, 90, 641, 657

smooth shading, 153, 239-241, 260

smoothing (anti-aliasing), 115, 118, 137, 493, 497-498, 510-511, 697

spectrum, 228-229

specular highlight, 266, 272, 284-288, 310

specular light, 264-269, 285-288

speed. See optimizations

speed preference, 115-116, 118

spheres, 65-66, 70, 437-438, 454

splines (NURBS), 546-552, 699

spotlights, 292-296

stacks

depth, 202

matrix, 201-202, 214, 217, 219

names, 592-593, 598-601, 610-613

overflow, 202

state, 462-464, 469

underflow, 202

Star Trek, 275

state variables. See states

states

depth buffer, 465

drawing, 464-465

functions

glDisable, 143, 461, 467-468

glEnable, 143, 461, 467-468

glIsDisabled, 462

glIsEnabled, 462, 468

glPopAttrib, 295, 353, 462-463, 469, 688

glPushAttrib, 295, 353, 462-464, 469, 688

lighting, 295, 465-466

OpenGL State Machine, 135, 338, 461-469

pixel, 466

quadric, 434

rendering, 462-464

stacks, 462-464, 469

stencil buffer, 465, 473, 488-493, 500

texturing, 466

stencil buffer, 465, 473, 488-493, 500

stereo buffering, 478

stippling, 699

line, 143-145, 176-177

polygon, 161-165, 176, 181

strings, character, 350-354

structure definitions

AUX_EVENTREC, 61-62

BITMAPFILEHEADER, 362

BITMAPINFOHEADER, 363

GLYPHMETRICSFLOAT, 106

LOGPALETTE, 247

PALETTEENTRY, 247

PIXELFORMATDESCRIPTOR, 85-86, 93-97, 474-477

POINTFLOAT, 106

suffixes, literals, 31-33

surface normals. See normals

surfaces, 535-538, 543-546, 549-553. See also NURBS

T
tank/robot simulation, 123, 169, 215, 338

teapot, 66, 70-71, 507-510, 520-523, 673-678

terrain viewing program, 392-424, 524-529

tessellation, 565, 570, 577-587, 689, 699

tetrahedron, 66, 71

texel, 700

texture (defined), 700

1D, 384-387, 427-428

2D, 384, 387-388, 428-429

3D, 384

coordinates, 389-390, 396-397, 424-427, 435

filters, 386-387, 391-392, 429

functions

glTexCoord, 389, 396, 424-425

glTexEnv, 388, 425-426

glTexGen, 390, 397, 426-427

glTexImage1D, 385-386, 427-428

glTexImage2D, 387-388, 428-429

glTexParameter, 386-387, 429

mapping, 161, 383-384, 700

matrix stack, 202, 214-215, 217

mipmapped, 390-392

modes, 388-389, 425-426

polygon, 388-390

quadrics, 434-438, 454

ROYGBIV (rainbow), 384, 389, 391

state variables, 466

terrain viewing program, 392-424, 524-529

volume, 384

threads, 81

three-dimensional (3D)

canvas, 128-130

Cartesian coordinates, 19-24, 50

graphics acceleration, 7-11, 684-686

graphics APIs, 7, 10-11, 685-686

graphics, basics, 15-26

modeling example, 315-338

objects, 56, 63-71

perception, 15-18

shapes. See quadrics

textures, 384

timer (WM_TIMER), 89, 90-91, 645, 653-654, 658-660

toolkit library. See AUX library

torus, 67, 71

transformations, 186, 700

functions

glRotate, 56, 130, 133, 196, 205, 219-220, 688

glScale, 198, 205, 220-221, 688

glTranslate, 196, 205, 215, 221, 688

matrix math, 186, 193-205, 214-215, 218

modeling, 186, 189-191

modelview, 187, 191, 193-198, 201-202, 211, 214-215

order of, 190

projection, 187, 192-195, 201-202, 205-215, 222-223

shadow matrix, 298-301

viewing, 186, 188-189, 191, 221-222

viewport, 187, 193, 195

translation, 189-190, 196, 205, 221

translucence (alpha), 41, 237, 700

transparency (alpha), 384, 505-510, 697, 700

triangle, 146-158, 171-172, 688

triangle fans, 149, 172

triangle strips, 148-149, 172

trimming, 550-552, 562, 564, 572-574

typeface (font), 104-105, 350-354

U
u parametric value, 537, 543, 548, 552

UNICODE character set, 352

unit normals, 278-279, 698

URL (Universal Resource Locator), 622

V
v parametric value, 537, 543, 548, 552

vanishing point, 192

vector, normal. See normals

vendor information, 112, 114-115, 117, 119

vendor specific behavior, 112, 114-115

version information, 112, 114-115, 117, 119

version specific behavior, 112, 114-115

vertex, 23, 130, 181-182, 700

vertex coordinates, 181-182, 542, 553-554

vertex order. See winding

VGA (Vector Graphics Array), 233-234

viewing transformations, 186, 188-189, 191, 221-222

viewing volume, 25, 128-130, 700

viewport, 21-23, 45-50, 73, 358, 360-361, 700

transformations, 187, 193, 195

virtual reality, 621-628

Visual Basic programming, 667, 670-673

volume textures, 384

VRML (Virtual Reality Modeling Language), 622-628, 693

W
w coordinate, 130, 182, 194-195, 573

WaiteGL OCX, 669-679

wavelength, 228-229

wavy surface, 288-291

weather effects, 519-530

Web browsers, 621-628

WebSpace browser, 624-626, 628

wgl prefix, 78

wiggle functions, 9, 78, 81-84, 99-107

wglCreateContext, 81-83, 99-100

wglCreateFontBitmaps, 351

wglDeleteContext, 81-83, 100

wglGetCurrentContext, 101

wglGetCurrentDC, 101

wglGetCurrentProcAddress, 101-102

wglMakeCurrent, 81-83, 102-103

wglShareLists, 103-104

wglUseFontBitmaps, 104-105, 351-352

wglUseFontOutlines, 105-107

winding, 146-148, 155-160, 278, 304-305, 552

window

clearing, 40-41

management, 34-35

position, 38

preparation, 84-86

size changes, 45-51, 62, 90, 641, 657

styles, 84, 639, 651, 655

Windows

GDI (Graphical Device Interface), 78-81

graphics APIs, 7, 10-11, 685-686

and OpenGL, 9-12, 77-78, 683-686

programming books, 691

WinG, 684

wireframe, defined, 700

WM_CREATE, 83, 89, 100, 251, 639-641, 653-656

WM_DESTROY, 83, 89, 100, 251, 641,653, 657

WM_ERASEBKGND, 653

WM_LBUTTONDOWN, 594

WM_PAINT, 80, 83-84, 89-91, 99, 333-334, 653, 658

WM_PALETTECHANGED, 92, 245-246, 644-645, 654, 662-663

WM_QUERYNEWPALETTE, 92, 245-246, 644-645, 654, 662-663

WM_SIZE, 89-90, 641, 654, 657

WM_TIMER, 89, 91, 645, 653-654, 658-660

wobbling, 153-154

World Wide Web, 621-628

wrapping, 669

X
x axis, 19-20, 23, 50

xy plane, 20

Y
y axis, 19-20, 23, 50

Z
z axis, 23, 50

z-order (depth comparison), 480-481

zoom, pixmap, 357, 361, 378

Table of Contents

Products | Contact Us | About Us | Privacy | Ad Info | Home

Use of this site is subject to certain Terms & Conditions, Copyright © 1996-2000 EarthWeb Inc.
All rights reserved. Reproduction whole or in part in any form or medium without express written permission of EarthWeb is
prohibited. Read EarthWeb's privacy statement.

Open GL Super Bible:Index

http://www.itknowledge.com/reference/archive/1571690735/book-index.html (2 of 2) [20-03-2000 21:46:27]

	itknowledge.com
	Open GL Super Bible - Table of Contents
	Open GL Super Bible:Introduction
	Open GL Super Bible:Foreword
	Open GL Super Bible:About The Authors
	Open GL Super Bible:What Is OpenGL
	Open GL Super Bible:What Is OpenGL
	Open GL Super Bible:3D Graphics Fundamentals
	Open GL Super Bible:3D Graphics Fundamentals
	Open GL Super Bible:3D Graphics Fundamentals
	Open GL Super Bible:Learning OpenGL with the AUX Library
	Open GL Super Bible:Learning OpenGL with the AUX Library
	Open GL Super Bible:Learning OpenGL with the AUX Library
	Open GL Super Bible:Learning OpenGL with the AUX Library
	Open GL Super Bible:Learning OpenGL with the AUX Library
	Open GL Super Bible:Learning OpenGL with the AUX Library
	Open GL Super Bible:Learning OpenGL with the AUX Library
	Open GL Super Bible:Learning OpenGL with the AUX Library
	Open GL Super Bible:Learning OpenGL with the AUX Library
	Open GL Super Bible:Learning OpenGL with the AUX Library
	Open GL Super Bible:Learning OpenGL with the AUX Library
	Open GL Super Bible:OpenGL for Windows: OpenGL + Win32 = Wiggle
	Open GL Super Bible:OpenGL for Windows: OpenGL + Win32 = Wiggle
	Open GL Super Bible:OpenGL for Windows: OpenGL + Win32 = Wiggle
	Open GL Super Bible:OpenGL for Windows: OpenGL + Win32 = Wiggle
	Open GL Super Bible:OpenGL for Windows: OpenGL + Win32 = Wiggle
	Open GL Super Bible:OpenGL for Windows: OpenGL + Win32 = Wiggle
	Open GL Super Bible:OpenGL for Windows: OpenGL + Win32 = Wiggle
	Open GL Super Bible:Errors and Other Messages from OpenGL
	Open GL Super Bible:Errors and Other Messages from OpenGL
	Open GL Super Bible:Errors and Other Messages from OpenGL
	Open GL Super Bible:Drawing in 3D: Lines, Points, and Polygons
	Open GL Super Bible:Drawing in 3D: Lines, Points, and Polygons
	Open GL Super Bible:Drawing in 3D: Lines, Points, and Polygons
	Open GL Super Bible:Drawing in 3D: Lines, Points, and Polygons
	Open GL Super Bible:Drawing in 3D: Lines, Points, and Polygons
	Open GL Super Bible:Drawing in 3D: Lines, Points, and Polygons
	Open GL Super Bible:Drawing in 3D: Lines, Points, and Polygons
	Open GL Super Bible:Drawing in 3D: Lines, Points, and Polygons
	Open GL Super Bible:Drawing in 3D: Lines, Points, and Polygons
	Open GL Super Bible:Drawing in 3D: Lines, Points, and Polygons
	Open GL Super Bible:Drawing in 3D: Lines, Points, and Polygons
	Open GL Super Bible:Drawing in 3D: Lines, Points, and Polygons
	Open GL Super Bible:Manipulating 3D Space: Coordinate Transformations
	Open GL Super Bible:Manipulating 3D Space: Coordinate Transformations
	Open GL Super Bible:Manipulating 3D Space: Coordinate Transformations
	Open GL Super Bible:Manipulating 3D Space: Coordinate Transformations
	Open GL Super Bible:Manipulating 3D Space: Coordinate Transformations
	Open GL Super Bible:Manipulating 3D Space: Coordinate Transformations
	Open GL Super Bible:Manipulating 3D Space: Coordinate Transformations
	Open GL Super Bible:Manipulating 3D Space: Coordinate Transformations
	Open GL Super Bible:Color and Shading
	Open GL Super Bible:Color and Shading
	Open GL Super Bible:Color and Shading
	Open GL Super Bible:Color and Shading
	Open GL Super Bible:Color and Shading
	Open GL Super Bible:Color and Shading
	Open GL Super Bible:Color and Shading
	Open GL Super Bible:Color and Shading
	Open GL Super Bible:Color and Shading
	Open GL Super Bible:Color and Shading
	Open GL Super Bible:Color and Shading
	Open GL Super Bible:Lighting and Lamps
	Open GL Super Bible:Lighting and Lamps
	Open GL Super Bible:Lighting and Lamps
	Open GL Super Bible:Lighting and Lamps
	Open GL Super Bible:Lighting and Lamps
	Open GL Super Bible:Lighting and Lamps
	Open GL Super Bible:Lighting and Lamps
	Open GL Super Bible:Lighting and Lamps
	Open GL Super Bible:Lighting and Lamps
	Open GL Super Bible:Lighting and Lamps
	Open GL Super Bible:Lighting and Lamps
	Open GL Super Bible:Lighting and Lamps
	Open GL Super Bible:Lighting and Lamps
	Open GL Super Bible:3D Modeling and Object Composition
	Open GL Super Bible:3D Modeling and Object Composition
	Open GL Super Bible:3D Modeling and Object Composition
	Open GL Super Bible:3D Modeling and Object Composition
	Open GL Super Bible:3D Modeling and Object Composition
	Open GL Super Bible:3D Modeling and Object Composition
	Open GL Super Bible:3D Modeling and Object Composition
	Open GL Super Bible:Raster Graphics in OpenGL
	Open GL Super Bible:Raster Graphics in OpenGL
	Open GL Super Bible:Raster Graphics in OpenGL
	Open GL Super Bible:Raster Graphics in OpenGL
	Open GL Super Bible:Raster Graphics in OpenGL
	Open GL Super Bible:Raster Graphics in OpenGL
	Open GL Super Bible:Raster Graphics in OpenGL
	Open GL Super Bible:Raster Graphics in OpenGL
	Open GL Super Bible:Raster Graphics in OpenGL
	Open GL Super Bible:Texture Mapping
	Open GL Super Bible:Texture Mapping
	Open GL Super Bible:Texture Mapping
	Open GL Super Bible:Texture Mapping
	Open GL Super Bible:Texture Mapping
	Open GL Super Bible:Texture Mapping
	Open GL Super Bible:Texture Mapping
	Open GL Super Bible:Quadrics: Spheres, Cylinders, and Disks
	Open GL Super Bible:Quadrics: Spheres, Cylinders, and Disks
	Open GL Super Bible:Quadrics: Spheres, Cylinders, and Disks
	Open GL Super Bible:Quadrics: Spheres, Cylinders, and Disks
	Open GL Super Bible:The OpenGL State Machine
	Open GL Super Bible:The OpenGL State Machine
	Open GL Super Bible:The OpenGL State Machine
	Open GL Super Bible:The OpenGL State Machine
	Open GL Super Bible:Buffers: Not Just for Animation
	Open GL Super Bible:Buffers: Not Just for Animation
	Open GL Super Bible:Buffers: Not Just for Animation
	Open GL Super Bible:Buffers: Not Just for Animation
	Open GL Super Bible:Buffers: Not Just for Animation
	Open GL Super Bible:Buffers: Not Just for Animation
	Open GL Super Bible:Buffers: Not Just for Animation
	Open GL Super Bible:Buffers: Not Just for Animation
	Open GL Super Bible:Visual Effects:nBlending and Fog
	Open GL Super Bible:Visual Effects:nBlending and Fog
	Open GL Super Bible:Visual Effects:nBlending and Fog
	Open GL Super Bible:Visual Effects:nBlending and Fog
	Open GL Super Bible:Visual Effects:nBlending and Fog
	Open GL Super Bible:Curves and Surfaces: What the #%@!&* Are NURBS?
	Open GL Super Bible:Curves and Surfaces: What the #%@!&* Are NURBS?
	Open GL Super Bible:Curves and Surfaces: What the #%@!&* Are NURBS?
	Open GL Super Bible:Curves and Surfaces: What the #%@!&* Are NURBS?
	Open GL Super Bible:Curves and Surfaces: What the #%@!&* Are NURBS?
	Open GL Super Bible:Curves and Surfaces: What the #%@!&* Are NURBS?
	Open GL Super Bible:Polygon Tessellation
	Open GL Super Bible:Polygon Tessellation
	Open GL Super Bible:Polygon Tessellation
	Open GL Super Bible:Interactive Graphics
	Open GL Super Bible:Interactive Graphics
	Open GL Super Bible:Interactive Graphics
	Open GL Super Bible:Interactive Graphics
	Open GL Super Bible:Interactive Graphics
	Open GL Super Bible:Interactive Graphics
	Open GL Super Bible:OpenGL on the 'Net:VRML
	Open GL Super Bible:OpenGL on the 'Net:VRML
	Open GL Super Bible:OpenGL on the 'Net:VRML
	Open GL Super Bible:MFC-Based OpenGL Programming
	Open GL Super Bible:MFC-Based OpenGL Programming
	Open GL Super Bible:MFC-Based OpenGL Programming
	Open GL Super Bible:MFC-Based OpenGL Programming
	Open GL Super Bible:OWL-Based OpenGL Programming
	Open GL Super Bible:OWL-Based OpenGL Programming
	Open GL Super Bible:OWL-Based OpenGL Programming
	Open GL Super Bible:OWL-Based OpenGL Programming
	Open GL Super Bible:OWL-Based OpenGL Programming
	Open GL Super Bible:OWL-Based OpenGL Programming
	Open GL Super Bible:Visual Basic and 4GL-Based OpenGL Programming
	Open GL Super Bible:Visual Basic and 4GL-Based OpenGL Programming
	Open GL Super Bible:Visual Basic and 4GL-Based OpenGL Programming
	Open GL Super Bible:Visual Basic and 4GL-Based OpenGL Programming
	Open GL Super Bible:The Future of OpenGL and Windows
	Open GL Super Bible:The Future of OpenGL and Windows
	Open GL Super Bible:Appendix A Performance-Tuning OpenGL for Windows
	Open GL Super Bible:Appendix B Further Reading
	Open GL Super Bible:Appendix C Version 1.1
	Open GL Super Bible:Appendix D Glossary
	Open GL Super Bible:Index

	KNHMCHCPEHIKJDHLJDMMLHGBMFAMCBLI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	CMPJLEOLPAODFCIKHHMDGLLMFMAHHMFOGD:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	EKOOODJBGAJENGNFIDPMCFDOOKFGDCFB:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	OHGMKEGEAJAOCDNIPCFOOKFOBEBNGIAN:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	LCEAPDKOCPKOFNIEIJNPEDGJGAPDEPIC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	GKENMLHBNLEBKMLOLNPFHMHOFMDALILKBF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	LNLCPCKJJEJPGFPLJHEGAPNKNKELJJKI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	IJLIGNFHKKKGHHIFAMCBBJKFOHOANDFMDA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	OPLLDMFKGOBNHFEBPBHGBLOKGIJANKPA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	DGLHPHFEBPNGAMGJAIKLEJGDGLFOOPPE:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	JHLDDOBKGJADLKOEOMJBHDKBNPCPMIEC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	IMDGPLLBKDJANICHAHENHLHKMECGOODH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	DKEBHMPPGDFFAKBLIPFOMAAOJJPALNKF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	AGHKLKOBLMJJAOHIPCFMFMELLBOKANOACG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	KMLNNJLEOHEKNDGHLIOJMMNOBKGHONLM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	FMFMFJNEBPBJJJPCFCOPEBHOHHEIOCKEOL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	GEPGNBIIBBGOBMHNFILPPCKLCPBOBPMI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	FOAEKOKGEGPOKGBBGNEGDEADFKLFGHID:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	KHDFDHNPCCCNECJOMFEMLJPNGLNCAGOI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	FFLLPPHMHAOEEMFJIOOHKPMGIBHONCPO:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	DHEBFICBJHCJMPIPNOMNFFCCCJDHKIOJ:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	NFGNGOFAPHBPELHABLPHGFFIBHONOFJD:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	MDDFCCLMMCDOJGEDIBJCIBCCILFPOGOA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	EHKGKEPBACFGHCBEAEFJHIDDDDMNCJDC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	CPCNBBHHPKGLINKPJMADJHBCINPNDDEB:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	HHDCMCMNNDHELDKOGNANAJODINIPCLIJ:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	GJOGEGINLCAMEEBOEILJPFFMAHBMACFJKM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	KPOGNLJOKHFGOOEEGNCCDHFFOHLDFNNL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	GIPJLPACDFABAKAIPPDDFAPCLMMGCFII:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	NOOIOFFEIFCCCIIGMCBGLEEBPIBLFNOM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	ECEEOPLKHKJGGJPPEDFNEICKBFJJJMPG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	GGBILCIKPLACMPAKDHKHAMNKGLKBFFFMDA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	NENOGEJACNLIEBALNGMGBEOPJCHFKJOA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	PGDPLBOFIIAIDIJPKGJHEKIIKLKGJKBK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	FBPCOICDIPFMFMOCDNEPDGIKLPKLNPHHOG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	ENCDOICKFJMEOALOAJPCMLABBEEJHCHN:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	AIBMIKBDEGKGMHLLKJJKGDBFDMBDCJFMDA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	OHEPDNGBEJLJGHCFJDOMHJFPPNEFPEGG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	MFBFHDMJFJEJDLKDGNOOIJOHGEDEDIJJ:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	IDHELADEIGKADHFAPIHELKMKGJHMNHEC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	KPGIGDMPEMJMANECLFFHOJAPLOAOOBFL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	ECFAFKEEBBIMIMCMPDPBFPLDBHFMAHAGPM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	OGAKDLNMGJPFDFLPHFBPLLCDGHBCKCEO:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	NIEEANCPPGCMIHOIHDAKDHAFFHLHFMDAKN:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	KCKPKFFMAHMCHOIBOCGFNKENKOKGBAAJCP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	LKCCEJNKOFEAINMPIJLDLEOHNAAJBJFJ:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	JOGBCCAFNGDEDCHHFHCNOFJNANLAHIHC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	HKADLONOJGECCCHHMKIOPFENACMDGLMD:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	EGECJDDJEPLKIJHMLNEDACFODOFOBPJK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	FAAJMDPOAHEPLFGLDIKNKKGJGLOPGOMM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	HHJFHNADKPGHMMCIDMGFOJADEGNHNHCN:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	IFGJLDBBEKKKIGBLBOBLOJCNMDCFPEDI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	EINBHNMLJPCFBKGFEMMGEANOOGPIEKEH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	GBDHNPPBIAKFGMPCFMAHCFDEIFAOGLBHIC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	FHHDEFIBJEKAFBMDCIBMBNPGCAFIMOKF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	MLILMJMKFDJFPHILGBGOBAJODPPDPLJD:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	NBJBKHGMCBCFNGGBHDJICBKNBLCEOAII:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	MJILLMMFMJCNDDABGLMFOMGEJMFILPFG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	FGCGOOPELELPPDDAGFMCGPJKFLLHCPBK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	NILJDIJJLPJDILFAINCMHPIFIOBHHLAJ:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	FMDAHNGDAPHILEOEMFFGNLLIGNNKDHLJAM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	IPHDHECFIFMMPFGKBKCKFJEJIOCPJNAF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	IBOGGPEHLEIAGOOOOGBJAIFHEMMNMNNA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	HKAKJLBHKEMFNMKBJOPPALBGOHIIPINN:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	EJGKLPBMGPJGBGKOIJMIAFDGDCMBDHEF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	BABICJIADDOGACOHEAMMBDLKEKAMJDIF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	MHCEFMAHIOJHKGMDBKOKMCEMCGHJDADCNL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	IPDGOAGLEEMCLBNIDHMLJLDOPLCDCLAB:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	AONLMDMBOPEFDLLCNFDDJCHKIMNCKDMA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	BAEAJNOAKMGBAJBAIEHLGCDGABPNBOHD:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	NAGGEMFPKFMAJNKNGBFKBOCLBKILJDPG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	DFLNDEDALIGOLOCAOMBNHCPDLGOGJDFMDA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	CILOFFKCBHOBHBLIKLLJELAPBIDMIMLA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	PODCHGIIIIENMNHDIOOMLCCPECDHMPJH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	NNDBAMCBBAEABPGBCNDMCIFNFAPHEGOK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	GEPNGOALHKMKKBNHBHILHFILNJNLLCFMFM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	HLHMPMGDMINJBEGOLHJLIKPENGLGBBLP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	MPHNCNIEEMGEPLDDFMFMLMOJMFDGPCOINP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	PPDNGDAICAFJKJFEMNDPALLGHMPJAHPC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	KDOCOIFMDACBHHBPCEBFLFFCILOPMLIGNI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	FMFMPBMGAOLGPIJEDJEPMIBJLGOOLMJOEE:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	PGDIAIPNJJNPGFAFBBHGDLKECJPDKNDC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	EEOLLDCMNNNPNDOKEJMGDOFJIGGOIIOG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	JKOELBFLKEBMODMNLILAAJDGBLEDGNDH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	IELDABLJGCICLFNKOMMOAICGFOPIJHFMAH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	LJJKHPIPHOCLIAAIJMFGFMDANHNEHIALOB:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	CPGLNGCKBCOOEFKILGPBDFOEENKMBLOG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	LMNEJIIGKCBMOOOAOPMDGKPMNLGMNMFJ:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	JGAGKLACEBJJECMMKEHICFFIMGNEJPOC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	MGBJIMEHLJAFFFMACHMICINKKJMDCNJL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	JGCPLHNIBOKJBFOMAMAILHDNFFBJOIHB:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	LPICDJHAPGFMDADKGPDBDHEPMIABAECFIA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	OEINHFJMFGMEEDKNFNAPNMDGBPNHMNEF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	KLCNDFINNJCDMNLKCKPFEGCPAKHMFGFI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	ECOFGONKMHMOMMBCKAIOIOABNGIKMPDM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	IIPELEIMBDIKGFHGKOPILJEALJDKDLEM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	PFILJNCCDMJGEJHEEBEMFEPBPGBLOKHA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	LIEPKDLENJLMNKKHEFNGELLAKEPMJKBP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	HDBIKOPJGPOAHMEJEIEOLLLJDJOAOMJA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	GDLFLCDFMODNCBGIJHLLPAHDFEHEAOLL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	PFFOELBNANKNKKAGKNGNLAKPJFPGJPLG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	KHJGJOIFDFMHFGGBKFFEDHLIIKEAOABM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	NBGHEOCMBDGKINLDBIABPAHAFGCJOCCI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	IJOCMGPEEELAGAHGNCDBAOACBDLEMDEL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	HFLBMFMMPBMFOICMEMJEJKAOACGNABAL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	DJEEPIBJIFNPBJGAEDMEHODCIKKNOKGF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	HMFHFMAHJDDEBGCGNKGDEHPGOKCHLOCIMO:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	BONNJMNBFFNPHPEFOEBMLOBPPKMIJLHI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	KPGLFJIGBMELICJCMGBGNODFGCFEABJG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	OKILNKIFIIEGAGDCNNIKGAPONPCPIBGJ:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	KCACKOKHGPEHIHKLPNCEHLBDHHOAODDE:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	FLKKLGMMDLDFFFLNKBECKJEAICPAJEFK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	IMJCDMGOLCOFIOKMKCCJPELCBOLKPMGE:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	BJFFDCNPNLDHICBKHKBHPCBKJOCCDJEO:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	EABLAJPDHEOOIFKNAIKNNMNODIAJLLEM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	OCLBJELAFKNJMPHHFECJJLEAPBBECNGF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	BADILDNNICCBGNBCGFNJLPCMPLEELDIO:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	AIKACIFGAKCKJEHMLKGLKDDECAPOJLEB:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	DIHAMMIPGJIKCFNHIOFLMFAKKFEMKPEG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	AKKCBBGIMEAHODAOODCFDCGOGNCLPJNB:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	PANMPKFEHDHNBPMAIHLFJFAOMCEJOMGL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	PLIEJCKJHFHDFMFMOMKFKJMEKNJHNBPONH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	OFBJGMKGOAJNFGEPMJGPMPEDBAHDBAMI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	FCKLGHNBDLMPEJGJGKIPBGKCFJLAGLFB:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	AOEAMIKFPLNLOIADPIGKLOMCDNGKCEBH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	BNCICFBPHMCBPODBBEBLGAMIDFMMDJPL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	EMLKBIOALFFDIFIMJPNBCNIFGHGEBIMP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	DFIJFFOEGOIIEJPCLGJDAFBNGOINEPGL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	PCBFHJCMJJJLHAJGABPFKLEPINKKCFNN:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	EEFGDEMJJKJOMOEFJGPCLHEHHAILOINC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	LCMNPAMHEBOHOLIFLIAOJNCNJFGBCKIG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	LDNGHCBCIJLCDIIFOABPBCDIJAEMOLOC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	EPDDEOAKLEEHIDICNDKPGINECLLIONNM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	KLGONMGLGBJFCKKLKCLEKHHEJDNKKGHG:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	FIBOJDICGKAHPENEKIIEKOOKPLGNFOAM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	OENAJAIEEEMNABLOJLGIGNJIKBELCBAH:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	AIAMJLKCKEBFFIMGMDBCGNEFHMKJEBAK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	HHCHGKHNKIHLPBEKBBBBEEGMBDMPEJNP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	MFJPFDHJPJEIBOCNGKNGOFHGBIDLHKAJ:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	LADDAFMEKPGILHBBCLOMLCCNOOIOKLKO:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	KLGHIPFIHKNCNFKAJJFEJBNLAEDKNHIC:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	DELHBGBPNACIIHBKDPFMDAPHAJLOGENAHL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	AJMKEBAPCACJEFJPFMAHHEALFMAHBCBBJEGA:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	FGAJEKAPDFFNDELJENHCHLECHFBGKOFE:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	LHLCBCDDACIAMKBOBJJOHFKFONPDIHNK:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	MDCFKCBCMOFPEOMJLADPAMAKOLBHLOLI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	DBGALFAHHMCLIOEKJPDDFMFMIBFGMNCKOJ:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	CFABLIKPKABPPNIHDHMKLEOOPIAJMFNJ:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	BIOGIKADEGLLMGNCJACEGOKJGLNKDLLI:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	CENAOMHPCNJDFHMLEJIIOAHKNKGDOBHD:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	FOCFELBLACJNCAJJNKBBDKODPOBIKHMP:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	OBDBGJJCKCPFGGLKNNHKDLOBHOMOEOHB:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	BHBCCMEHFHAOLGOKEKPGCEFJEHCHCJFO:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	INAOFKCPBDCMALGOKGLMGGAIOKEMNMLF:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	CDLNCEIFLDNIIFKPIPNKHKKMGPDEKIHB:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	CFANMBPLJOBINOBCLHEHFKIEMJBLJINL:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

	LNMGKLAFCDDLDPJELOPJDHBDPIEIGNFMFM:
	form1:
	x:
	f1: FilterSearch
	f2: ewfilter.hts
	f3: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f4: ITK
	f5: dummy
	f6: view.hts
	f7: on
	f8:
	f9: Go!
	f11: [keyword]
	f12: itk-brief.hts

	f10:

	form2:
	x:
	f1: []

	form3:
	x:
	f1: Search
	f2: http://search.earthweb.com/search97/samples/forms/srchdemo.htm
	f3: ITK
	f4: itk-simple-intrabook.hts
	f5: view.hts
	f6: on
	f7: http://www.itknowledge.com/reference/archive/1571690735/
	f8:
	f9: Go!

	f10:

