
The Art Of Disassembly

(C) The Reverse-Engineering-Network

18th November 2003
- ALPHA Release -



2



Contents

1 Preface 7

2 Disassembler Skeleton 9
2.1 What do we need in a disassembler? . . . . . . . . . . . . . . . . 10
2.2 What tools do we need? . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Constructing a simple skeleton . . . . . . . . . . . . . . . . . . . 10
2.4 Some changes in the code . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 In ( Skeleton.inc ) . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 In ( Skeleton.asm ) . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Final Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 In the next chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Bringing Life to the Skeleton 15
3.1 Handling our menu code . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Handling our DlgProc code . . . . . . . . . . . . . . . . . 16
3.1.2 Open menu item . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.3 Close menu item . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.4 Exit menu item . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Final Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 In the next chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 The ListView 23
4.1 What is a ListView ? . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Using the ListView control . . . . . . . . . . . . . . . . . . . . . 24
4.3 Final Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4 In the next chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Journey Inside The PE 31
5.1 What is the PE? . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Understanding the PE . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2.1 DOS MZ Header (IMAGE_DOS_HEADER) . . . . . . . 32
5.2.2 DOS Stub . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2.3 PE File Signature . . . . . . . . . . . . . . . . . . . . . . 33
5.2.4 PE Header (IMAGE_NT_HEADERS ) . . . . . . . . . . 34

5.3 Checking for a valid PE . . . . . . . . . . . . . . . . . . . . . . . 40
5.4 Getting the PE Sections . . . . . . . . . . . . . . . . . . . . . . . 41
5.5 What is the EP? . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.6 Getting the EP? . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3



4 CONTENTS

5.7 Converting from RVA to Offset . . . . . . . . . . . . . . . . . . . 43
5.8 What is the Import Table? . . . . . . . . . . . . . . . . . . . . . 44

5.8.1 The meaning of ’Import’ function . . . . . . . . . . . . . . 44
5.8.2 How can we access the Import Table? . . . . . . . . . . . 45
5.8.3 So what is the Import Table? . . . . . . . . . . . . . . . . 46

5.9 Getting the PE Imports . . . . . . . . . . . . . . . . . . . . . . . 48
5.10 Final Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.11 In the next chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Introduction to Opcodes 51
6.1 What Are Opcodes? . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.2 Getting Familiar With Opcodes . . . . . . . . . . . . . . . . . . . 53
6.3 One Opcode Means One Mnemonic? . . . . . . . . . . . . . . . . 54
6.4 More About Opcodes . . . . . . . . . . . . . . . . . . . . . . . . 56
6.5 Introduction To Intel Instruction Format . . . . . . . . . . . . . . 57

6.5.1 Prefix (Optional) . . . . . . . . . . . . . . . . . . . . . . . 57
6.5.2 Code (Not Optional) . . . . . . . . . . . . . . . . . . . . . 59
6.5.3 ModR/M (00:000:000b) . . . . . . . . . . . . . . . . . . . 59
6.5.4 SIB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.5.5 Displacement . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.5.6 Immediate . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.6 Final Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.7 In the next chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7 Everything about Prefixes 63
7.1 More About Prefixes . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.2 Segments Override Prefixes . . . . . . . . . . . . . . . . . . . . . 64
7.3 Operand-Size Prefix . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.3.1 What’s responsible for choosing the default Operand Size? 66
7.4 Address-Size Prefix . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.5 REP/REPNE Prefixes . . . . . . . . . . . . . . . . . . . . . . . . 68
7.6 Bus LOCK Prefix . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.7 Final Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.8 In the next chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8 Everything About [CODE] part I 71
8.1 Basics Of [CODE] Block . . . . . . . . . . . . . . . . . . . . . . . 72
8.2 Final Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
8.3 In the next chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 74

9 Everything About [CODE] part II 75
9.1 Playing with [CODE] Utility . . . . . . . . . . . . . . . . . . . . 77
9.2 Final Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
9.3 In the next chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 80

10 Everything about ModRM 81
10.0.1 When considered as Code extension . . . . . . . . . . . . 83
10.0.2 When considered as Reg field . . . . . . . . . . . . . . . . 84
10.0.3 More Info About ModRM . . . . . . . . . . . . . . . . . . 85

10.1 Playing With Our Tool . . . . . . . . . . . . . . . . . . . . . . . 85



10.2 View Some Examples For ModRM Byte . . . . . . . . . . . . . . 87
10.3 Final Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
10.4 In the next chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 91

11 Everything about SIB 93
11.1 What Does SIB Stand For? . . . . . . . . . . . . . . . . . . . . . 94
11.2 Playing With Our Tool . . . . . . . . . . . . . . . . . . . . . . . 95
11.3 Final Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
11.4 In the next chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 97

12 Everything About Displacement 99
12.1 Final Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
12.2 In the next chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 101

13 Everything About Immediates 103
13.1 Bit (s) : A New Special Bit . . . . . . . . . . . . . . . . . . . . . 104
13.2 Final Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
13.3 In the next chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 105

14 Final Words About The Intel Instruction Format 107
14.1 ModRM 16-Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
14.2 Final Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
14.3 In the next chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 109

15 Building The Decoding Engine Skeleton 111
15.1 Before Starting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
15.2 Constructing A Bytes-Parser . . . . . . . . . . . . . . . . . . . . 112

15.2.1 Understanding Of Old Code . . . . . . . . . . . . . . . . . 112
15.3 Idea Of A Real Engine Skeleton . . . . . . . . . . . . . . . . . . . 116
15.4 Final Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
15.5 In the next chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 117



6 CONTENTS



Chapter 1

Preface

7



8 CHAPTER 1. PREFACE

Welcome to "The Art Of Disassembly" - a free online ebook for writing a dis-
assembler in pure assembly. As you may notice the book is not finished yet.
The state of the ebook is ALPHA. So please be patient with us. We have in-
cluded now 14 chapters which provide you the basic knowledge you need for
understanding how a disassembler works. We work hard to finish this ebook
but you have to give us time - so please do not contact us with questions when
everything is finished.

As well we have added for each chapter a small source package which you can
use for playing with the code. This handbook was mainly written by CuteDevil
and checked for errors by Pegasus[REN] and Ben.

The book will be always for free and there is no intention to make it ever com-
mercial. If you have any comments or suggestions feel free to contact us over the
reverse-code-engineering community board at http://board.anticrack.de. For
the latest release please refer to http://aod.anticrack.de.

Why are we doing this project ? I don´t know. Knowledge increasing, fun,
time-wasting... Why are you interested in writing a disassembler ?

Zero - Publisher (Reverse-Engineering-Networks, REN)
CuteDevil - Main Author
Pegasus - Chief Corrector (Reverse-Engineering-Networks, REN)



Chapter 2

Disassembler Skeleton

9



10 CHAPTER 2. DISASSEMBLER SKELETON

2.1 What do we need in a disassembler?
If we take a look at any GUI disassembler (IDA, W32DASM, BDASM,...) we
will quickly notice the main parts of the disassembler structure:

• MENU:
To access the main features (File handling, Viewing, Searching,...)

• LISTVIEW:
the main view, to display (Opcodes, Mnemonics, Comments,...)

There are other subparts that we need:

• TOOLBAR:
To ease the access of the main features

• LISTVIEW:
To display the important events (Opening, Checking, Disassembling, other
info about the target file)

2.2 What tools do we need?
As mentioned before, we’ll use RadASM [3] (With MASM 7 [1]) as our IDE &
programming language.

2.3 Constructing a simple skeleton
Okay, let’s do it! Here’s what we’ll do..

1. Selecting a "‘New Project"’ from RadASM opens the Project Wizard for
us

2. Accept the default settings for (MASM as the assembler, Win32 App as
the project type)

3. For the project name we choose (Skeleton)

4. For the project description we choose (Simple Skeleton)

5. Choose the destination folder for the project

6. For the template we choose (Dialog application –> DialogApp.tpl)

7. We click ’Next’ and accept the default options



2.3. CONSTRUCTING A SIMPLE SKELETON 11

Now all the files needed for the project are included, so we compile the project
and run it.

Figure 2.1: The empty program after compiling and running resized.

Now, in the ’Resources’ section, we open the ’Skeleton.dlg’ to make the necessary
changes.

1. Change the size to a convenient one (600 X 600) for now

2. Change the name to IDD_MAIN

3. Disable the (MaxButton) for now

4. Disable the (SizeBorders) for now

5. Compile and run



12 CHAPTER 2. DISASSEMBLER SKELETON

Okay, the main dialog is now suitable, we add the needed resources for the
disassembler , so in order to do so, we have to step through the following points:

1. To add the menu, we add a new (Main.mnu) to the project, the ’Menu
Editor’ appears, we construct it so we will get a menu-entry "‘(File->
Open/Close/Exit)"’:

#define IDR_MENU 10000
#define IDM_FILE 10001
#define IDM_OPEN 10002
#define IDM_CLOSE 10003
#define IDM_EXIT 10004
IDR_MENU MENU
BEGIN
POPUP "&File"
BEGIN
MENUITEM "Open\tCtrl+O",IDM_OPEN
MENUITEM "Close",IDM_CLOSE
MENUITEM "Exit\tAlt+X",IDM_EXIT
END
END

2. From the ’IDD_MAIN Properties’ choose our ’Main.mnu’ as the default
MENU

3. We add a ’LISTVIEW’ control to be the main disassembler view

4. We add at the bottom a simple LISTBOX to display the important events
as they happen

5. We compile and run

Figure 2.2: The empty program after compiling and running resized - Part II.

Although it doesn’t look nice, we’ve made the first part. Next we’ll see how can
we (beautify) its look.



2.4. SOME CHANGES IN THE CODE 13

2.4 Some changes in the code

2.4.1 In ( Skeleton.inc )
.const
IDC_DASM equ 1001

and

.data?
hDsmList dd ? Handle of the main ListView
hWnd dd ? Handle of the main dialog

With IDC_DASM as constant for the main ListView. We need this constant
when we retrieves the handle of the ListView using GetDlgItem(). hDsmList
golds the handle of the main ListView because we need its value as we’ll see.
hWnd Holds the handle of the main dialog, we need this one too.

2.4.2 In ( Skeleton.asm )
.code
PrepareListView proc
;-----------------------------------------------------------------------;
; Prepare the main ListView and changes its color & style ;
;-----------------------------------------------------------------------;
Invoke GetDlgItem,hWnd,IDC_DASM ; Gets its hWnd
mov hDsmList, eax
invoke SendMessage, hDsmList, LVM_SETTEXTCOLOR, 0, 0FE7000h ; Sets its color
invoke SendMessage, hDsmList, LVM_SETEXTENDEDLISTVIEWSTYLE, 0,\ ; Sets its style
LVS_EX_FULLROWSELECT or \
LVS_EX_GRIDLINES + LVS_EX_FLATSB
ret
PrepareListView endp

This procedure mainly, sets the style needed for our disassembler, and sets the
background color too. We will not notice the difference before we insert some
text into the ListView, but this is another story... And another chapter...

Notice:
We also add this code, to invoke our code at the start of the program (initial-
ization):

.if eax==WM_INITDIALOG
invoke PrepareListView ; Prepare our ListView

.elseif eax==WM_COMMAND



14 CHAPTER 2. DISASSEMBLER SKELETON

2.5 Final Words
In this chapter we have not actually started. We have just prepared ourselves
and have become ready to go on our long journey in the disassembler project.

2.6 In the next chapter
We will:

• Write the menu handling code

• Know how to (Open/Map/Access/Close) Files

• Learn with example how does LISTVIEW work in assembly

• Much more!



Chapter 3

Bringing Life to the Skeleton

15



16 CHAPTER 3. BRINGING LIFE TO THE SKELETON

3.1 Handling our menu code
In the previous chapter we designed the skeleton, but we did not write the code
to handle anything. Now, we are going to write the menu handling part.

We designed our menu to consist of1:

• Open: To open the file we want to disassemble. Later we will invoke the
disassembling engine.

• Close: To close it.

• Exit: To exit the program..

The Open part will need the most of our work as it contains file handling and
other stuff as we will see.

3.1.1 Handling our DlgProc code
We know that when we press a menu item, it sends the message WM_COMMAND
to our program. And we need to handle this message. We also know that each
item has its own handle, which we can get using wParam. So first we add the
menu items constants to our Skeleton.inc:

IDM_OPEN equ 10002
IDM_CLOSE equ 10003
IDM_EXIT equ 10004

And in the ( Skeleton.asm ) in the DlgProc Section:

.elseif eax==WM_COMMAND
mov eax, wParam
.if ax==IDM_OPEN

; We put our code here
.elseif ax==IDM_CLOSE

; .......
.elseif ax==IDM_EXIT

; .......
.endif

.elseif eax==WM_CLOSE

Now we handled the code for our three menu items. We have time now to write
each ones code.

1More options will be added later.



3.1. HANDLING OUR MENU CODE 17

3.1.2 Open menu item
So, what do we really need to do here?

• A dialog box to allow user to choose the file

• Opening the file and Mapping it to memory

For displaying the the (Open File) dialog box we need to add some data to
(Skeleton.inc) first2:

ofn OPENFILENAME <>
buffer db 260 dup(0)
StrFilter db "Executable Files",0,"*.exe",0

db "Dynamic Link Libraries",0,"*.dll",0,0

You should now have a look at the supplied source code with this book.

Then, in order to use our OPENFILENAME structure we need to initialize
it first. In the DlgProc we need to add this code:

.if eax==WM_INITDIALOG
;-------------------------------------- Initializing our dialog --------

;===========================================
; Prepare our ListView
;===========================================

invoke PrepareListView

;===========================================
; Initialize the OPENFILENAME structure
;===========================================

mov ofn.lStructSize, SIZEOF ofn
push hWnd
pop ofn.hwndOwner

push hInstance
pop ofn.hInstance
mov ofn.lpstrFilter, OFFSET StrFilter ; ( *.exe & *.dll )
mov ofn.lpstrFile, OFFSET buffer ; ( Store the file name )
mov ofn.nMaxFile, 260

; ( File must exists/ Hide read only files)
mov ofn.Flags, OFN_FILEMUSTEXIST or \
OFN_PATHMUSTEXIST or OFN_LONGNAMES or\

OFN_EXPLORER or OFN_HIDEREADONLY

This code only initializes our structure so we put it in the WM_INITDIALOG
section. For popup the dialog box and to display it we need to invoke the func-
tion GetOpenFileName.

2For OPENFILENAME please refer to MSDN [6] for more details.



18 CHAPTER 3. BRINGING LIFE TO THE SKELETON

So back to WM_COMMAND we add this code:

.elseif eax==WM_COMMAND
mov eax, wParam
.if ax==IDM_OPEN
;------------------------------------- Open file -------------------
; Display the "Open File" dialog box
invoke GetOpenFileName, ADDR ofn

;---------------------------------------------------------------------

And finally we have a working OpenFile dialog box !

Figure 3.1: Bringing Life to the Skeleton.

After opening the dialog box we need to do a simple check to see if we really
chose a file or if we clicked cancel or something similar.

Right after the: invoke GetOpenFileName, ADDR ofn

We continue like this:

.if eax==TRUE
invoke CreateFile,ADDR buffer,\

GENERIC_READ or GENERIC_WRITE ,\
FILE_SHARE_READ or FILE_SHARE_WRITE,\
NULL,OPEN_EXISTING,FILE_ATTRIBUTE_ARCHIVE,\
NULL

mov hFile,eax ; Stores the handle of the file
.endif

Notice that we need to add this to the (Skeleton.inc):

hFile dd ?



3.1. HANDLING OUR MENU CODE 19

The function CreateFile returns the handle of the file and then we store it in
(hFile). After this we need to map the file to memory for the ease of access
using the function CreateFileMapping to create a file mapping object then use
the function MapViewOfFile to map the file to memory. But to use this last
function we need to get the size of the file we need to map so we will use Get-
FileSize to do the work for us.

So in short3 we do:

• Get file handle using CreateFile

• Create file mapping object using CreateFileMapping

• Get the file size using GetFileSize

• Map the file to memory using MapViewOfFile

We also check - after each function - for errors. If one happened then we should
display a message box. To declare these error messages we create a new file
called (Msgs.inc) containing all the error messages we need. Currently we need
only two messages.

Please check the sources now, or you will get lost!

After this we almost finished the code needed for the open file section. But
as you might have noticed the code is - though not much at all - long and for
the simplicity we need in our code we will move this code (File Open) into an
independent procedure. Let us call it (MnuFileOpen). We define it as:

MnuFileOpen proc
......
......
ret

MnuFileOpen endp

Hint: One nice feature of RadASM [3] is that you can (Collapse/Expand)
any procedure you want, so the code looks simpler!

And simply move our code for the (File opening) to this new procedure and
change the code to be like this:

.if ax==IDM_OPEN
invoke MnuFileOpen

.elseif ax==IDM_CLOSE

Now we can continue. We have finished the Open part - for this chapter - so
now let us continue to the Close part.

3Please check source code for all the details



20 CHAPTER 3. BRINGING LIFE TO THE SKELETON

3.1.3 Close menu item
What do we really need to do in this part? Remember that when we opened
the file and mapped it to memory it simply uses the memory. So we need to
free this memory before closing. We use UnmapViewOfFile to fully close the
mapped object and we must unmap all the mapped view. Additionally we use
CloseHandle to close the file mapping object. We need to write the code to free
the memory too.

So as we did above we will make an independent procedure called MnuFile-
Close and call it like this:

.elseif ax==IDM_CLOSE
invoke MnuFileClose

.elseif ax==IDM_EXIT

So what is actually in our MnuFileClose ? It is like this:

MnuFileClose proc
cmp hFileMapping, 0
jnz @f
ret
@@:
invoke UnmapViewOfFile, FileOffset
invoke CloseHandle, hFile
mov FileOffset, 0
mov hFile, 0
ret

MnuFileClose endp

What this procedure does is checking if there is a file mapped to memory4 and
if so then unmap it and close its handle.

Finally - for this chapter - we have to code the Exit part.

3.1.4 Exit menu item
The easiest one, we need to simply close the file (if still opened) and then exit
the program.

.elseif ax==IDM_EXIT
invoke MnuFileClose
invoke ExitProcess,0

.endif

This simply invokes the MnuFileClose procedure to make sure the file is closed
and unmapped before we close the program, then calls ExitProcess to exit the
program.

4check it´s handle



3.2. FINAL WORDS 21

The menu handling code is finished for this chapter. One more thing you should
notice in the source code:

• GetMenu: at the initialization of the dialog

• EnableMenuItem: at the (MnuFileClose/MnuFileOpen)

I think it does not need much to figure out what it is doing.

Included is a project file (MsgBox ) for a small program. You can test it with
our disassembler.

3.2 Final Words
In this chapter we wrote the code that handles the menu and saw how to open
the file and map it to memory. It was supposed that we will see how ListView
works, but I have decided to make it in an independent chapter so it can be
explained in details with examples.

3.3 In the next chapter
We will:

• Understand with example how ListView does work



22 CHAPTER 3. BRINGING LIFE TO THE SKELETON



Chapter 4

The ListView

23



24 CHAPTER 4. THE LISTVIEW

4.1 What is a ListView ?

A ListView is one of the windows common controls like RichEdit, ProgressBar,
TreeView and many others. In someway it is like the Listbox but with more
enhanced capabilities. ListView has four methods for viewing data - Icon, Small
Icon, List, Report - but we will only focus on the last method.

Figure 4.1: Example of a ListView.

4.2 Using the ListView control

In RadASM [3] we do this:

1. New Project: with project name (ListView) and template (DialogApp.tpl)

2. We change the caption to "‘ListView Example"’

3. In the (ListView.dlg) we draw a ListView control, and name it (IDC_DSM )

4. Choose Report as the ListView type

Compile the program and run it. Now we obviously have a nice empty ListView,
so how to fill it?

In the ListView (Report View) there are one or more columns and the arrange-
ment of data can be thought of as a table arranged in columns and rows. But
how can we add columns? We can do this by sending LVM_INSERTCOLUMN
message to our ListView control. So we need to know how to send this message
explicitly.

LVM_INSERTCOLUMN
wParam = iCol
lParam = pointer to a LV_COLUMN structure

And what is LV_COLUMN structure? Obviously it is a structure which con-
tains the information about the column we need to insert to our ListView.



4.2. USING THE LISTVIEW CONTROL 25

LV_COLUMN STRUCT
imask dd ?
fmt dd ?
lx dd ?
pszText dd ?
cchTextMax dd ?
iSubItem dd ?
iImage dd ?
iOrder dd ?

LV_COLUMN ENDS

Seems like we need some more details.

imask contains some flags that specify which members of the structure are valid,
because some members are not used every time, but only in some situations.

• LVCF_FMT: It means that (fmt) member is valid

• LVCF_SUBITEM: The iSubItem member is valid

• LVCF_TEXT: The pszText member is valid

• LVCF_WIDTH: The lx member is valid

fmt specifies the alignment of the item or subitem in the column. It can be one
of the following values

• LVCFMT_CENTER: Text is centered

• LVCFMT_RIGHT: Text is right-aligned

• LVCFMT_LEFT: Text is left-aligned

lx contains The width of the column (in pixels) (The width of the column can
be changed later in runtime using LVM_SETCOLUMNWIDTH message)

pszText is a pointer to the name of the column we want to insert. If the message
is sent to get properties of the column, this item contains a pointer to a large
buffer and the field cchTextMax must contain the size of the buffer.

cchTextMax contains the size (in bytes) of the buffer in the item (pszText)
above. This item is only used when we’re getting the properties of the column.

• iSubItem: index of the subitem that’s associated with the column.

• iImage: Index (zero-based) for an image in an image list. (not important
to us)

• iOrder: Zero-based column offset in a left-to-right order. (not important
to us)



26 CHAPTER 4. THE LISTVIEW

So basically after any ListView is created we should insert one or more columns
into it. We must do this, because we’ll use the report view for our ListView.
In order to do this, we need to construct a valid LV_COLUMN structure, fill
it with the necessary information and then send the structure to our ListView
using LVM_INSERTCOLUMN message.

As we will add more than one column, and we really need to make our pro-
gram as simple as we can, we will make a new procedure for adding columns to
the ListView :

InsertColumn proc pszHeading:DWORD, dwWidth:DWORD
;=========================================================
; pszHeading: Pointer to the name of the column
; dwWidth: Width of the column we want to insert
;=========================================================
LOCAL lvc:LV_COLUMN
mov lvc.imask, LVCF_TEXT + LVCF_WIDTH
push pszHeading
pop lvc.pszText
push dwWidth
pop lvc.lx
invoke SendMessage,hDsm, LVM_INSERTCOLUMN,dwIndex,addr lvc
inc dwIndex
ret

InsertColumn endp

What this procedure does, is simply constructing a LV_COLUMN structure,
and fill the necessary fields (Text & Width) and then send the message
LVM_INSERTCOLUMN to insert the column. This procedure takes two pa-
rameters, one is a pointer to the name of the column, the second is the width
of the column we want to insert.

Notice: The dwIndex is a counter to how many columns are there,
so the new columns is inserted on the right of the old column.

Notice: The message is sent to the ListView with the handle (hDsm)
so, we must get the handle of our ListView at the initialization time
of the dialog, using GetDlgItem and then store the handle to hDsm.

We can now insert any column we want to use:

invoke InsertColumn,addr TextOfTheColumn,WidthOfTheColumn

Please check the sources now, or you will get lost!

We now know how to add columns - but how to add data to each column?
First, we must know something about ListView. Items are the main entries in a
ListView. In the report view, there are items and subitems. Items are the items
in the leftmost column, while subitems are the items in the remaining columns.

Column1 Column2 Column3 Column4 Column5
Item1 Subitem1 Subitem2 Subitem3 Subitem4
Item2 Subitem1 Subitem2 Subitem3 Subitem4
Item3 Subitem1 Subitem2 Subitem3 Subitem4



4.2. USING THE LISTVIEW CONTROL 27

So how can we add items? For adding columns we need to fill a structure
(LV_ITEM ) and then send it using LVM_INSERTITEM message.

The LV_ITEM structure is defined as:

LV_ITEM STRUCT
imask dd ?
iItem dd ?
iSubItem dd ?
state dd ?
stateMask dd ?
pszText dd ?
cchTextMax dd ?
iImage dd ?
lParam dd ?
iIndent dd ?

LV_ITEM ENDS

More details:

• imask: Some flags that specify which members of the structure are valid,
similar to the imask above.

• iItem: Index (Zero-Based) for the item the structure is referring to. (Row
number)

• iSubItem: Index (Zero-Based) for the subitem associated with the item
specified by (iItem) above, it can be thought of as the field that contains
the column.

• state: Some flags that tell the status of the item (selected/highlighted/focused/..).
It can also contain an index (One-Based) for the overlay image or the state
of the image used by the item.

• stateMask: As we said state member can contain the state flag or the
overlay image index, we need to specify what value we’re interested in.

• pszText: As in LV_COLUMN structure.

• cchTextMax: As in LV_COLUMN structure

• iImage: Index into an imagelist containing the icon for the ListView con-
trol.

• lParam: A value used by the user to specify how to sort items in the
ListView.

• iIndent: We have nothing to do with it! Please see MSDN [6] for more
details!

Notice: To add an Item we use LVM_INSERTITEM but to add a Subitem we
use LVM_SETITEM and this is because subitems are considered properties of
items. It means, you can not have a subitem without an item that is associated
with it.



28 CHAPTER 4. THE LISTVIEW

InsertItem proc uses ecx Row:DWORD, Column:DWORD, pszCaption:DWORD
;===============================================================
; Row: Zero-Based Index (Row no. for the item)
; Column: Zero-Based Index (Column no. for the item)
; pszCaption: Pointer to the name of the item to insert
;===============================================================
LOCAL lvc:LV_ITEM
mov lvc.imask, LVCF_TEXT
push row
pop lvc.iItem
push Column
pop lvc.pszText
.if Column==0

invoke SendMessage,hDsm, LVM_INSERTITEM,0,addr lvc
.elseif

invoke SendMessage,hDsm, LVM_SETITEM,0,addr lvc
.endif
inc dwIndex
ret

InsertItem endp

What this procedure does is simply constructing a LV_ITEM structure and
fill the necessary fields (Row & Column & Text) and then send the message
LVM_INSERTITEM to insert an item. If the (Column) field is not 0 it means
we we need to insert a subitem so we send the message LVM_SETITEM instead.
This procedure takes three parameters, one is the row number (Zero-Based) the
second is the column number, the third n is a pointer to the text of the item
we wanna insert. We can now insert any item/subitem we want using:

invoke InsertItem,Row,Column,addr TextOfTheItem

Please check the sources now, or you will get lost!

After we learned how ListView work, and how to add column, items and
subitems, let’s do a quick change to the look of our ListView1. Let us do
this:

invoke SendMessage, hDsm, LVM_SETTEXTCOLOR, 0, 00E41030h
invoke SendMessage, hDsm, LVM_SETBKCOLOR,0,00DEF5F3h
invoke SendMessage, hDsm, LVM_SETTEXTBKCOLOR,0,00DEF5F3h
invoke SendMessage, hDsm, LVM_SETEXTENDEDLISTVIEWSTYLE, 0,\

LVS_EX_FULLROWSELECT or \
LVS_EX_GRIDLINES + LVS_EX_FLATSB

First, it sends a message changing the text color, and then changes the back
color for the ListView, and then change the back color for text. Make sure the
back color for the text is the same as the back color for the ListView. The last
message, change the extended ListView style, add Gridlines & Flat Scrollbars
& allow us to select the whole row instead of just the item.

1will improve it more later!



4.3. FINAL WORDS 29

4.3 Final Words
In this chapter we saw how ListView does work, and we saw a simple example
displaying almost most of the features we need (for now).

4.4 In the next chapter
We will:

• Go on a journey inside the PE

• Add the (Events-Reporter) code



30 CHAPTER 4. THE LISTVIEW



Chapter 5

Journey Inside The PE

31



32 CHAPTER 5. JOURNEY INSIDE THE PE

5.1 What is the PE?
A lot of tutorials are talking about PE, and a lot of them are good, but we must
go into this topic as it really concerns our project. We will be focused on the
PE from our view.

First we know the PE stands for Portable Executable. When we say this file
is a portable executable it means that any win32 platform will recognize and
uses this format regardless of the CPU platform. In other words, every win32
executable file1 uses this format.

5.2 Understanding the PE
Any PE file consists of:

• DOS MZ header

• DOS Stub

• PE File signature

• PE Header

• PE Optional header

• Sections (Section 1, Section 2, Section...., Section n)

That is the general layout of any PE. To get to know these stuff better, let us
first construct a simple program that loads any executable file the user select
by the menu, and map it to memory. Looks like we have already discussed how
to do it, so after combining the code from the previous chapters, we made a
small empty program - let us call it PEInfo - that does this job. You can find it
attached in the book sources. The file simply loads any file, map it to memory
and save the offset of the memory. So how can this help us understanding the
PE file?

5.2.1 DOS MZ Header (IMAGE_DOS_HEADER)
It is 64 bytes long header which is mainly used to enable the program to from
DOS and thus DOS can recognize it as a valid executable file and then run the
DOS STUB. It is the first component in the PE file.

1Except the VXD and the old 16-bit Dll.



5.2. UNDERSTANDING THE PE 33

The structure is defined as:

IMAGE_DOS_HEADER STRUCT
e_magic WORD ? // Magic number
e_cblp WORD ? // Bytes on last page of file
e_cp WORD ? // Pages in file
e_crlc WORD ? // Relocations
e_cparhdr WORD ? // Size of header in paragraphs
e_minalloc WORD ? // Min. extra paragraphs needed
e_maxalloc WORD ? // Max. extra paragraphs needed
e_ss WORD ? // Initial SS value
e_sp WORD ? // Initial SP value
e_csum WORD ? // Checksum of the file
e_ip WORD ? // Initial IP value
e_cs WORD ? // Initial CS value
e_lfarlc WORD ? // Address of relocation table
e_ovno WORD ? //
e_res WORD 4 dup (?); // Reserved words
e_oemid WORD ? // OEM identifier
e_oeminfo WORD ? // OEM information
e_res2 WORD 10 dup (?) // Reserved words
e_lfanew DWORD ? // File address of new exe header

IMAGE_DOS_HEADER ENDS

This is the structure of the DOS MZ Header. Actually the important things are
for us2:

• The e_magic WORD, which holds the Magic Number. This number is
used to identify the file type. All DOS compatible executable files have the
value of this field as 0x54AD which is in ASCII represents the characters
’MZ’ that’s why we call it (DOS MZ Header).

• The e_lfanew field. This field which is a 4-byte offset to the PE Header.
So, we use it to locate the PE Header.

5.2.2 DOS Stub
DOS Stub is actually a program that is used to run in MS-DOS. This program
typically does nothing but output a simple line of text telling us that the pro-
gram cannot be run in DOS. (though it is not our main interest, but actually
DOS Stub is a dos program called WINSTUB.EXE, when building a program
the compiler links this default stub to the main program. This behavior can be
overridden by the linker)

5.2.3 PE File Signature
PE File Signature (for win32 files) is a DWORD == IMAGE_NT_SIGNATURE
== 0x00004550 Which is represented in ASCII as ’PE’,0x00,0x00

So, for a valid PE we must find this signature which as the DWORD at (Off-
setOfFileInMem + e_lfanew).

2Notice: Offset of the mapped file + the value of e_lfanew == Start of the PE file header



34 CHAPTER 5. JOURNEY INSIDE THE PE

5.2.4 PE Header (IMAGE_NT_HEADERS)
Now, the time for PE Header. Let us refresh our memory, PE Header is located
at (e_lfanew Bytes) from the start of the PE. That’s cool, but what can we
know about this structure?

IMAGE_NT_HEADERS STRUCT
Signature dd ?
FileHeader IMAGE_FILE_HEADER <>
OptionalHeader IMAGE_OPTIONAL_HEADER32 <>

IMAGE_NT_HEADERS ENDS

Signature

We talked about about it (PE File Signature).

File Header (IMAGE_FILE_HEADER)

This structure - as we will see in details - contains general information about
the layout (physical layout) of the PE.

IMAGE_FILE_HEADER STRUCT
Machine WORD ? ; Machine type (Alpha/Motorola/...)

(0x014C == I386)
NumberOfSections WORD ? ; Number of sections in the file
TimeDateStamp dd ? ; The time that this file was created.

This field holds the number of seconds
since December 31st, 1969, at 4:00 P.M.

PointerToSymbolTable dd ? ; The file offset of the COFF symbol table.
This field is only used in OBJ files and
PE files with COFF debug information.

NumberOfSymbols dd ? ; The number of symbols in the
COFF symbol table

SizeOfOptionalHeader WORD ? ; Size of the OptionalHeader structure
Characteristics WORD ? ; flags of the file (exe/dll/system file/..)

IMAGE_FILE_HEADER ENDS

The NumberOfSections is important to us, because we must know this value
when we’re walking through the sections table. The section table is like an
array of structures, each one contains the information necessary for the section.
So, if there is n sections, there will be n members of the array.

OptionalHeader (IMAGE_OPTIONAL_HEADER32)

Well, first do not get deceived by the name (Optional), this header is not optional
in fact, it is there in every PE file. The optional header contains most of the
information we need about the executable image, such as the initial stack size,
the EP of the program, preferred base address, version of the operation system,
information about the alignment of the section, and so on.



5.2. UNDERSTANDING THE PE 35

IMAGE_OPTIONAL_HEADER32 STRUCT
Magic WORD ? ; 2 bytes identifying the state

of the file.
MajorLinkerVersion BYTE ? ; Linker major version number.
MinorLinkerVersion BYTE ? ; Linker minor version number.
SizeOfCode DWORD ? ; Size of the code section OR Sum of all

code sections (multiple sections).
SizeOfInitializedData DWORD ? ; Size of the initialized data OR ....

multiple data sections.
SizeOfUninitializedData DWORD ? ; Size of the uninitialized data section (BSS)

OR ... multiple BBS sections.
AddressOfEntryPoint DWORD ? ; Address of entry point (RVA of the

1st instruction to be executed)
BaseOfCode DWORD ? ; Address (RVA) of beginning of code section.
BaseOfData DWORD ? ; Address (RVA) of beginning of data section.
ImageBase DWORD ? ; The *preferred* load address of the file

(default is 0x00400000).
SectionAlignment DWORD ? ; Alignment (in bytes) of sections when

loaded into memory.
FileAlignment DWORD ? ; Alignment (in bytes) of sections in the

file (multiplies of 512 bytes).
MajorOperatingSystemVersion WORD ? ; Major version number of required OS.
MinorOperatingSystemVersion WORD ? ; Minor version number of required OS.
MajorImageVersion WORD ? ; Major version number of image.
MinorImageVersion WORD ? ; Minor version number of image.
MajorSubsystemVersion WORD ? ; Major version number of subsystem.
MinorSubsystemVersion WORD ? ; Minor version number of subsystem.
Win32VersionValue DWORD ? ; Dunno! But I guess for future use.
SizeOfImage DWORD ? ; Total size of the PE image in memory

(All Headers & Sections aligned to
SectionAlignment).

SizeOfHeaders DWORD ? ; Size of all headers & section table.
(The file offset of the first section
in the PE file)

CheckSum DWORD ? ; Image file checksum.
(computing algorithm is in IMAGHELP.DLL)

Subsystem WORD ? ; Target subsystem of the PE file.
(Mostly GUI & CUI)

DllCharacteristics WORD ? ; Flags used to indicate if a DLL image
includes EPs.

SizeOfStackReserve DWORD ? ; Size of stack to reserve.
SizeOfStackCommit DWORD ? ; Size of stack to commit.
SizeOfHeapReserve DWORD ? ; Size of local heap space to reserve.
SizeOfHeapCommit DWORD ? ; Size of local heap space to commit.
LoaderFlags DWORD ? ; Choose to (break/debug/run normally

(default)) on load.
NumberOfRvaAndSizes DWORD ? ; The length of the DataDirectory

array that follows.
DataDirectory IMAGE_DATA_DIRECTORY IMAGE_NUMBEROF_DIRECTORY_ENTRIES dup(<>)

IMAGE_OPTIONAL_HEADER32 ENDS



36 CHAPTER 5. JOURNEY INSIDE THE PE

You might feel confused here, but do not worry, the important pars will be dis-
cussed with more details, just relax, read slowly, see the code example (when it
is mentioned) and you will be fine.

First, we got to know about something very important.

RVA (Relative Virtual Address)

PE format uses this concept of the so-called RVA. So, what is RVA? RVA stands
for Relative Virtual Address, it is used to describe the memory address if you do
not know the base address. I assume that you know what offset means, RVA is
the same as an offset BUT it is relative to a point in the virtual address memory,
not a file.

Example:

Let’s say, a program loads at (ImageBase) 0x00400000 at the Virtual Address
(VA) memory, and start execution at the Virtual Address (VA) 0x00402000 then
we can say that this program starts execution at the RVA 0x2000. As its name,
RVA is Relative to the Virtual Address of the file. In other words, RVA is the
value we need to add to the ImageBase to get the memory address.

Example:

The Program loads with ImageBase = 0x00400000 and RVA == 0x1234 then the
actual execution of the program starts at (0x00400000 + 0x1234 == 0x00401234).

You may wonder why is this confusion? Well, because sections are not nec-
essarily aligned the same as the loaded image of the file is. Meaning, sections
of the file are aligned to 512-Byte multiplies (0x200) while the loaded image
is aligned to 4096-Byte multiplies (0x1000). (Depends on SectionAlignment &
FileAlignment). So, to get any information on specific RVA for a PE file, you
must calculate the offset like this:

Suppose u have the RVA 0x1234 and you need to know the offset in the file, you
check each section, so you find one section aligned to 0x1000 and 0x20000 bytes
long. So, the offset (in this section) would be:

RVA - SectionAlignment = 0x1234 - 0x1000 = 0x234

You will get used to this with more practice so do not worry if you are still
confused.

We stopped at this member of the IMAGE_OPTIONAL_HEADER this mem-
ber is really important. It contains an array (16 arrays) of the
IMAGE_DATA_DIRECTORY structure.

IMAGE_DATA_DIRECTORY STRUCT
VirtualAddress DWORD ? ; RVA of the location of the

directory.
isize DWORD ? ; Size of the directory.

IMAGE_DATA_DIRECTORY ENDS



5.2. UNDERSTANDING THE PE 37

Directories as defined in WINNT.H

// Directory Entries

// Export Directory
#define IMAGE_DIRECTORY_ENTRY_EXPORT 0
// Import Directory
#define IMAGE_DIRECTORY_ENTRY_IMPORT 1
// Resource Directory
#define IMAGE_DIRECTORY_ENTRY_RESOURCE 2
// Exception Directory
#define IMAGE_DIRECTORY_ENTRY_EXCEPTION 3
// Security Directory
#define IMAGE_DIRECTORY_ENTRY_SECURITY 4
// Base Relocation Table
#define IMAGE_DIRECTORY_ENTRY_BASERELOC 5
// Debug Directory
#define IMAGE_DIRECTORY_ENTRY_DEBUG 6
// Description String
#define IMAGE_DIRECTORY_ENTRY_COPYRIGHT 7
// Machine Value (MIPS GP)
#define IMAGE_DIRECTORY_ENTRY_GLOBALPTR 8
// TLS Directory
#define IMAGE_DIRECTORY_ENTRY_TLS 9
// Load Configuration Directory
#define IMAGE_DIRECTORY_ENTRY_LOAD_CONFIG 10
//
#define IMAGE_DIRECTORY_ENTRY_BOUND_IMPORT 11
//
#define IMAGE_DIRECTORY_ENTRY_IAT 12

Followed by a null IMAGE_DATA_DIRECTORY structure.

Sections (Header/Data)

One important thing to learn, is sections. Section table begins right after the
optional header. The section table is a collection of section headers each is 40
bytes long. The purpose of the section header is to tell the loader where data,
code, etc in the PE file should be mapped to memory. The number of sections in
the section table is defined in the PE Header at the member NumberOfSections.



38 CHAPTER 5. JOURNEY INSIDE THE PE

Each section consists of:

Header: Contains the section description and it is of the type
IMAGE_SECTION_HEADER.

IMAGE_SIZEOF_SHORT_NAME equ 8

IMAGE_SECTION_HEADER STRUCT
Name1 db IMAGE_SIZEOF_SHORT_NAME dup(?)
union Misc

PhysicalAddress dd ?
VirtualSize dd ?

ends
VirtualAddress dd ?
SizeOfRawData dd ?
PointerToRawData dd ?
PointerToRelocations dd ?
PointerToLinenumbers dd ?
NumberOfRelocations dw ?
NumberOfLinenumbers dw ?
Characteristics dd ?

IMAGE_SECTION_HEADER ENDS

• Name1 (name):
It’s simply the name of the section (ANSI Name). Length is 8 bytes. This
name is just a label, you can even leave it blank and it can be not null
terminated!

• PhysicalAddress:
Dunno exactly, some linkers just put 0 and the file works just fine!

• VirtualSize:
Size of the file when it’s mapped to memory. Must be multiple of 4096.

• VirtualAddress:
The RVA of the file where it should be mapped to memory. (If Image-
Base is 0x00400000 and this field is 0x1000 the file would be loaded at
0x0401000).

• SizeOfRawData:
The size of the section, rounded to the next multiply of the FileAlignment,
it’s used by the system to know how many bytes should it map to the
memory (multiple of 512).

• PointerToRawData:
The offset in the file of the beginning of the section.

• PointerToRelocations:
Not used.

• PointerToLinenumbers:
Not used.



5.2. UNDERSTANDING THE PE 39

• NumberOfRelocations:
Not used.

• NumberOfLinenumbers:
File-based offset of the line number table. It’s usually used for debugging
purposes and usually set to 0.

• Characteristics: Flags for section characteristics as follow:

0x00000020 Code section
0x00000040 Initialized data section
0x00000080 Uninitialized data section
0x04000000 Section cannot be cached
0x08000000 Section is not pageable
0x10000000 Section is shared
0x20000000 Executable section
0x40000000 Readable section
0x80000000 Writable section

Data: After the section header comes the section data, in the file, they are
aligned to the FileAlignment bytes, and in the order of their RVAs. While in
memory, the sections are aligned to the SectionAlignment bytes.

General Information: There are many kinds of sections, depending on what’s
they contain.

Code Section: The code section must have the (0x00000020) flag. The Ad-
dressOfEntryPoint points to a location somewhere in this section. The BaseOf-
Code points to the start of this section (or somewhere in it). Mostly, this code
contains nothing but executable code. Mostly, Code Section names are (’.text’
- ’.code’ - ’AUTO’).

Data Section: The initialized data section (the initialized static variables)
e.g. (static int a = 10), it should have the (0x00000040) flag also (0x40000000
& 0x80000000) flags as well . The section is in the range (BaseOfData + Size-
OfInitializedData). Mostly, Data Section names are (’.data’ - ’.idata’ - ’DATA’).

BSS Section: The uninitialized data section (the uninitialized static vari-
ables) e.g. (static int a), mostly like the the initialized data section except
its PointerToRawData should be 0 this tells that its content is not stored in
the file (not initialized). It also should have the (0x00000080) flag instead of
(0x00000040). The length should be ’SizeOfUninitializedData’. Mostly BSS
Section names are (’.bss’ - ’BSS’).

Imports Section: There is a LOT of things to say about this, so I put it in
an individual part.
I think this information about the PE is enough for now, as u will understand
more n more in the coming parts when we see how things work with exam-
ples. You should also read more tutorials if necessary, like Iczelion’s [2] and
Luevelsmeyer [4].



40 CHAPTER 5. JOURNEY INSIDE THE PE

5.3 Checking for a valid PE
Okay, now the fun part begins. How can we check for a valid PE? As we saw
above, a valid PE has two signatures that must be found on every PE, which
are the DOS Header Signature (’MZ’) and the PE Header Signature (’PE’,0,0).

• We load the file n map it to memory.

• Starting from the first byte of the mapped file, we check for the DOS
Header Signature.

mov esi, FileOffset
assume esi: ptr IMAGE_DOS_HEADER

; esi is a IMAGE_DOS_HEADER structure
;=========================================
; Check for valid ’MZ’ Signature
;=========================================
cmp word ptr [esi].e_magic, IMAGE_DOS_SIGNATURE
; Is ’MZ’ Signature Is Valid?
jz @f
mov eax, -1 ; return -1 (Err)
ret
@@:

I think the above code is straight and simple:

• esi points to the 1st byte of the mapped file

• Assume that esi is an IMAGE_DOS_HEADER structure

• check the member e_magic for the value of IMAGE_DOS_SIGNATURE
(’MZ’) if they are identical then we passed the first check.

;=========================================
; Check for valid ’PE’ Signature
;=========================================
add esi, [esi].e_lfanew
; esi = FileOffset + SizeOfDOSHeader == PE Header
mov NTHeaderOffset, esi
assume esi:ptr IMAGE_NT_HEADERS
cmp [esi].Signature, IMAGE_NT_SIGNATURE
; Is ’PE’ Signature Is Valid?
jz @f
mov eax, -1 ; return -1 (Err)
ret
@@:
xor eax, eax
ret



5.4. GETTING THE PE SECTIONS 41

As you now understand:

• esi (that held the offset of the 1st byte of the mapped file) get increased
by (e_lfanew) bytes, which means (Start of the file + SizeOfDOSHeader
== The start of the PE Header )

• Store the address of the PE Header for later access

• Assume that esi is an IMAGE_NT_HEADERS structure

• Check the member Signature for the value of IMAGE_NT_SIGNATURE
(’PE,0,0’) if they are identical then we passed the second check.

Now we know how to check for a valid PE file, see the source for more details.

5.4 Getting the PE Sections
As you know, sections are located right after the optional header (Right af-
ter the IMAGE_NT_HEADERS). It means, the first header should be located
at (Offset of IMAGE_NT_HEADERS + SIZEOF IMAGE_NT_HEADERS ).

So , simply you should get the NumberOfSections and then starting from the
IMAGE_SECTION_HEADER you loop through the sections, and getting each
one information. Something like this:

LOCAL pName:DWORD, dwVirtualAddress:DWORD, dwVirtualSize:DWORD, \
dwPhysicalAddress:DWORD,dwPhysicalSize:DWORD, \
dwCharacteristics:DWORD

These DWORDs are there to temporary the section information. Next we have
some more explanations.

mov esi, NTHeaderOffset ; esi points to the Offset
of IMAGE_NT_HEADER structure

assume esi: ptr IMAGE_NT_HEADERS
add esi, sizeof IMAGE_NT_HEADERS ; esi points to the first section
mov SectionsOffset, esi ; Save the 1st section offset
assume esi: ptr IMAGE_SECTION_HEADER
xor ecx, ecx
@@:

The above code as it shows, gets (and stores) the offset of the 1st section. And
this is done by getting the offset of the offset of IMAGE_NT_HEADERS and
adding the SIZEOF IMAGE_NT_HEADERS to it. Now we have the offset of
the 1st section. Let’s continue.



42 CHAPTER 5. JOURNEY INSIDE THE PE

xor ebx, ebx
mov bx, word ptr [esi].Misc.VirtualSize ; VirtualSize ( + 0x08 )
mov dwVirtualSize, ebx ;
mov bx, word ptr [esi].VirtualAddress ; VirtualAddress ( + 0x0C )
mov dwVirtualAddress, ebx ;
mov bx, word ptr [esi].SizeOfRawData ; PhysicalSize ( + 0x10 )
mov dwPhysicalAddress, ebx ;
mov bx, word ptr [esi].PointerToRawData ; PhysicalOffset ( + 0x14 )
mov dwPhysicalSize, ebx ;
mov ebx, [esi].Characteristics ; Characteristics
mov dwCharacteristics, ebx ;
lea ebx, [esi].Name1 ; Name of the section
mov pName, ebx ;
add esi, sizeof IMAGE_SECTION_HEADER ; Next Section
push ecx

Loop through the section header, save the important information for us (Vir-
tualSize & VirtualAddress & PhysicalSize & PhysicalOffset & Section Name).
After this, displaying the sections comes in place, before we talk about this
Please See The Source Code Now so you can see the procedure AddEvent

AddEvent proc pszEvent:DWORD
;=====================================================
; pszEvent: Pointer to the text we wanna insert
;======================================================
invoke SendMessage,hEventHandler,LB_ADDSTRING,0,pszEvent
ret

AddEvent endp

Simply takes one parameter, pointer to a string to be inserted at the ListBox at
the bottom, which we call (the ListBox) the EventHandler as it is the responsible
for displaying the events as they occur. Anyway, back to the main topic, after
getting the sections information it is time to display them on the screen, so
we use the (AddEvent procedure to display the sections information) (See The
Source Code For Details)

5.5 What is the EP?

EP or the Entry Point of the PE is simply the address where the execution of
the code starts. It means, the first byte of code that will run is the first byte at
the EP.

5.6 Getting the EP?

If you remember well AddressOfEntryPoint member is located at the Optional
Header. Which is actually the RVA of the Entry Point. We can easily get this
value, but wut if we want to get the offset in the file itself? Remember when we
talked about RVA? it is time to practice a little on that. First, to get the RVA
of the Entry Point:



5.7. CONVERTING FROM RVA TO OFFSET 43

GetEntryPointRVA proc
;=========================================================
; Gets the RVA of the EntryPoint (AddressOfEntryPoint)
;=========================================================

mov esi, NTHeaderOffset
assume esi: ptr IMAGE_NT_HEADERS
mov eax, [esi].OptionalHeader.AddressOfEntryPoint
mov EntryPointRVA, eax
ret

GetEntryPointRVA endp

Pretty straight code - let me add some comments. It starts at the PE Header
(IMAGE_NT_HEADERS), and access the member AddressOfEntryPoint at
the Optional Header and store this value for later access.

5.7 Converting from RVA to Offset
EP or the Entry Point of the PE is simply the address where the execution of
the code starts. It means, the first byte of code that will run is the first byte
at the EP. Now, let us get back to the RVA part. How can we convert RVA to
offset ? Let us have a look at the following code and then understand what it
does:

RVAToOffset proc RVA:DWORD
mov edx, SectionsOffset
assume edx: ptr IMAGE_SECTION_HEADER
mov ecx, NumOfSections
mov edi, RVA
.while ecx > 0 ; Loop through all the sections

.if edi >= [edx].VirtualAddress ;
mov eax,[edx].VirtualAddress ;
add eax,[edx].SizeOfRawData ;

.if edi<eax ; Is the address in this section?
mov eax,[edx].VirtualAddress ;
sub edi,eax ; edi == Section RVA - Our RVA
mov eax,[edx].PointerToRawData ;
add eax,edi ; eax == file offset
ret

.endif
.endif
add edx,sizeof IMAGE_SECTION_HEADER
dec ecx

.endw
mov eax,edi
ret

RVAToOffset endp



44 CHAPTER 5. JOURNEY INSIDE THE PE

The above function which takes a parameter (the RVA) and returns in eax the
offset. So how it works? First, starting at the first section (remember? Offset
of IMAGE_NT_HEADERS + SizeOf IMAGE_NT_HEADERS), and looping
through each section (As in NumOfSections or (NumberOfSections)), so in each
section:

• Compare the RVA we wanna convert with the VirtualAddress of the sec-
tion, if it is less then the RVA is not in this section, so it moves to the
next section. If the RVA is greater than or equal to the VirtualAddress of
the section, then it can be in this section, so continue.

• Compare the RVA with the sum of (VirtualAddress + SizeOfRawData of
the section), if the RVA is greater, then it cannot be in this section, so move
to the next section. If the RVA is less than the sum of the VirtualAddress
and SizeOfRawData, then we found the correct section.

• Simply we can say that we loop through each section and check for the
section that fulfill these conditions: (VirtualAddress + SizeOfRawData)
> RVA >= VirtualAddress

• We know now which section has this RVA, so to convert the RVA to offset
we do this. (Subtract the RVA from the VirtualAddress of the section)
(Add the PointerToRawData) This way we get the offset.
Offset = (RVA-VirtualAddress) + PointerToRawData

• Finally it returns the offset in eax

5.8 What is the Import Table?
Well actually this is not a simple question with a simple answer, we are going to
understand the Import Table in this topic, but take care as it needs attention
as it is long and not for beginners!

5.8.1 The meaning of ’Import’ function
First, let us stop at the word (Import).. What does it mean? Well, basically it
means it is a function which is somewhere (in a DLL) outside the callers exe-
cutable BUT called by it. When the compiler finds a call to such a function it
will actually know nothing about this function so it will normally just output a
normal (Call) instruction to its symbol (the address that the compiler will have
to fix later, as it usually does with any external symbol).

After that the linker uses a kind of an import library, to look up from which
DLL this symbol is imported, produces stubs for each imported function, each
one consists of a (Jmp) instruction that will jump to an address . In some other
basic words, you can say that it is an address of a function inside a DLL (export
directory) which is looked up and fixed by the linker.



5.8. WHAT IS THE IMPORT TABLE? 45

5.8.2 How can we access the Import Table?
Well, let us remember this:

IMAGE_NT_HEADERS STRUCT
Signature dd ?
FileHeader IMAGE_FILE_HEADER <>
OptionalHeader IMAGE_OPTIONAL_HEADER32 <>

IMAGE_NT_HEADERS ENDS

And the optional header:

IMAGE_OPTIONAL_HEADER32 STRUCT
.......
.......
.......
DataDirectory IMAGE_DATA_DIRECTORY

IMAGE_NUMBEROF_DIRECTORY_ENTRIES dup(<>)
IMAGE_OPTIONAL_HEADER32 ENDS

Can you see the point? As we said before, DataDirectory member is an array
of the IMAGE_DATA_DIRECTORY structure.

0 Export symbols
1 Import symbols
... ...

The Import symbols is the second entry of the DataDirectory, so how to get to
it? Actually how to get to any member of the DataDirectory array? Simply
you (starting from the PE Header) get the data directory address from the
OptionalHeader, add n( SizeOf IMAGE_DATA_DIRECTORY ) where (n) is
the index of member you want (e.g. 1 for Import Symbols), and you will be at
the start of the IMAGE_DATA_DIRECTORY structure for the data structure
you want. We said before that IMAGE_DATA_DIRECTORY structure:

IMAGE_DATA_DIRECTORY STRUCT
VirtualAddress DWORD ? ; RVA of the location of the directory.
isize DWORD ? ; Size of the directory.

IMAGE_DATA_DIRECTORY ENDS

Is 8 Bytes long structure, the first 4 bytes (DWORD) is the RVA of the directory
location, where the last 4 bytes (DWORD) are for the size of the directory. So,
by getting the RVA of the location of the (Import Symbols) directory, we can
land on the start of the Import Table.



46 CHAPTER 5. JOURNEY INSIDE THE PE

5.8.3 So what is the Import Table?
Actually, the import table is an array of IMAGE_IMPORT_DESCRIPTOR
structures, each of these structures has information about a DLL that the PE is
importing symbols from. Which means, if you have a program that is importing
functions from 5 different DLLs, there will be 5 arrays of this structure, and
at the end this array is terminated by an IMAGE_IMPORT_DESCRIPTOR
contains only zeros. Let us understand more.

IMAGE_IMPORT_DESCRIPTOR STRUCT
union

Characteristics dd ?
OriginalFirstThunk dd ?

ends
TimeDateStamp dd ?
ForwarderChain dd ?
Name1 dd ?

FirstThunk dd ?
IMAGE_IMPORT_DESCRIPTOR ENDS

• OriginalFirstThunk: RVA for a (0-terminated) array of RVAs each
points to a structure (IMAGE_THUNK_DATA), describing an imported
function.

• IMAGE_THUNK_DATA: (RVA of IMAGE_IMPORT_BY_NAME).
Hint: which is the index of the function in the export table of the DLL
though this value is not very important and can be ignored (some linkers
do).

• Name: The name of the of the import function.

• Name1: RVA to the name of the DLL (A pointer to the name of the
DLL) which is ASCII string.

• FirstThunk: It may confuse you but it is very similar to the Origi-
nalFirstThunk, contains RVA to an array of IMAGE_THUNK_DATA
structures (just notice, it is a DIFFERENT array).

Let us stop the confusion about the OriginalFirstThunk and the FirstThunk.
Imaging you have two arrays, filled with RVAs of IMAGE_THUNK_DATA (or
from now on IMAGE_IMPORT_BY_NAME), structures, and the both arrays
contain exactly the same RVAs (Like one is the copy of the other). Now, assign
the first RVA of the first array to the OriginalFirstThunk and the first RVA of
the second array to the FirstThunk. You should understand it now.



5.8. WHAT IS THE IMPORT TABLE? 47

Figure 5.1: This table is to help you understand the OriginalFirstThunk & the
FirstThunk

A silly3 question: Why are there two identical arrays of IMAGE_THUNK_DATAs
? At run time, programs do not need the names of the imported functions, but
actually they need the ADDRESSES of the functions. The loader will look
up each of the imported symbol at the export directory of the DLL, and then
replace the IMAGE_THUNK_DATA in the FirstThunk array, with the lin-
ear address of the DLL’s Entry Point. While the OriginalFirstThunk remains
untouched so we can look up the imported names via this list.

Figure 5.2: FirstThunk changed while OriginalFirstThunk is untouched

Well, if you are still confused, please read again, as we are not finished yet.
One thing to mention is, it is not necessary that all functions are imported by
their names! Some functions are imported by the ordinal only. That means
you can not call this function by the name but you can call them by posi-
tion. In such imports, there is no IMAGE_IMPORT_BY_NAME structure
for this function. And the IMAGE_THUNK_DATA will contain the ordinal
of the function in the low word and the most significant bit (MSB) is set to
1. (Micro$oft has come with the constant IMAGE_ORDINAL_FLAG32 =
0x80000000 which checks for the MSB in a DWORD. (e.g. test dwCheckMe,
IMAGE_ORDINAL_FLAG32). Practice will help you get used to it, so reading
the next part will be nice.

3It is not a silly question...



48 CHAPTER 5. JOURNEY INSIDE THE PE

5.9 Getting the PE Imports
This part should clarify things that were confusing to you. What should we do
to get a list of all the imports in a specific PE ? Basically what we should is:

• Go to the the first IMAGE_IMPORT_DESCRIPTOR structure

• Check the value of OriginalFirstThunk, if it is not zero, we get the RVA (in
the OriginalFirstThunk) to the RVAs array (of IMAGE_IMPORT_BY_NAME).
If it is zero, then we use the value of FirstThunk instead.

• Check every member in the array with the IMAGE_ORDINAL_FLAG32.
If the MSB is 1 then this function is exported by ordinal and thus we should
extract the ordinal of it from the low word of this member.

• If the MSB is 0 then this as an RVA to the IMAGE_IMPORT_BY_NAME,
we go to it, skip two bytes (the Hint) and we’ll be on the name of the func-
tion.

• Go to the next member at the array, get the name, and so on, till we get
to the end of the array (null terminated), and we finished all the functions
from one DLL.

• Go to the next IMAGE_IMPORT_DESCRIPTOR and do the same.
Loop, till we get to the end of the array (zero-member).

Let us dive into the code:

mov esi, ImportSection ; We’re at the first
; IMAGE_IMPORT_DESCRIPTOR structure

assume esi: ptr IMAGE_IMPORT_DESCRIPTOR
.while [esi].FirstThunk != 0

|| [esi].OriginalFirstThunk != 0
|| [esi].TimeDateStamp != 0 ; empty structure
|| [esi].ForwarderChain != 0 ; OR NULL structure

....

....

....
add esi, sizeof IMAGE_IMPORT_DESCRIPTOR

; Next IMAGE_IMPORT_DESCRIPTOR
.endw

First, we begin at the start of the Import Section and loop through each (IM-
AGE_IMPORT_DESCRIPTOR structure), checking if the structure is not
(zero filled) the end of the array. If this is not a zero-filled array then we
continue like this:

mov eax, [esi].Name1 ; Get the RVA of DLL name



5.9. GETTING THE PE IMPORTS 49

We save this for later use (see the code to know more how we used TreeView
control to insert data about imports).

.if [esi].OriginalFirstThunk == 0 ; Is OriginalFirstThunk = 0 ?
mov eax, [esi].FirstThunk ; Get FirstThunk

.else
mov eax, [esi].OriginalFirstThunk ; Get OriginalFirstThunk

.endif

Then we see if the OriginalFirstThunk is empty (zero) if so, we get the value of
FirstThunk4. And continue:

.while dword ptr [edx] != 0
test dword ptr [edx], IMAGE_ORDINAL_FLAG32 ; Imported By Ordinal?
.if ZERO?

invoke RVAToOffset, dword ptr [edx] ; If not by Ordinal
add eax, FileOffset
mov edi, eax
add edi, 2
mov pName, edi
....
....
add edx, 4

.else ; By Ordinal
mov eax, dword ptr [edx]
and eax, 0FFFFh ; Get the low WORD
....
....
add edx, 4

.endif
.endw

Check every RVA in the OriginalFirstThunk array if it is not zero check it
against (0x08000000 or IMAGE_ORDINAL_FLAG32) to c if the function is
imported by name or by ordinal. (check the MSB)

• If MSB = 0 (By Name) then the RVA is for an IMAGE_IMPORT_BY_NAME
structure, so we add 2 bytes to skip the (Hint) member, and we’re at the
first byte of the name of the function.

• if MSB = 1 (By Ordinal) then, we take the value make a logical ADD to
get only the low WORD of the DWORD, and we got the ordinal of the
function.

I hope it was not hard to understand, but please have a look at the code for
more details.

4But as a safe procedure we check the value of OriginalFirstThunk first



50 CHAPTER 5. JOURNEY INSIDE THE PE

5.10 Final Words
Well, this chapter was LONG and not so easy for newbies, I hope we learned
about about the PE. By this, I guess our disassembler is ready (for now) from
the GUI part. Next chapters are the REAL work.

5.11 In the next chapter
We will:

• Introduction to Opcodes



Chapter 6

Introduction to Opcodes

51



52 CHAPTER 6. INTRODUCTION TO OPCODES

6.1 What Are Opcodes?
First open the (Opcodes Sample - Part I) (OpcodesOne.exe) in your favorite
disassembler1 and let us take a look at what we see:

Figure 6.1: Opcodes in a disassembler

As you can see - at the leftmost column - there is the address of the byte disas-
sembled2. In the middle column, there are the Opcodes, the rightmost column
contains the instructions (Mnemonics). Each instruction (e.g. Push eax) is rep-
resented with a hex value (Opcode) in the file. When we are writing a program
we write something like this:

push eax
push ebx
pop eax
pop ebx

What we wrote is the instruction itself (the mnemonic) but when we open the
file in a hex viewer or in the disassembler, we do not find these instructions
as we wrote them! Actually, the processor does NOT know what (push eax)
means! But how can the processor understand our code?

The simple answer is: The assembler3 converts the instructions from the Mnemonic
to the Opcode4.

(Mnemonics --> Assembler --> Opcodes )
(e.g. Push eax --> Assembler --> 0x50)

So does it mean that each mnemonic is another form (Alias) for an Opcode?
Well. NO! For the specific case that (push eax) is ALIAS for 0x50 that is
correct, but it is not the same for each and every opcode as we will see later.
Actually, we will see later how a Mnemonic can have several Opcodes, an how
an Opcode can have several Mnemonics! Just do not get confused, we will
understand this later.

1We will use OllyDbg [7] for simplicity
2Starting from the EntryPoint
3e.g. ml.exe in MASM package [5]
4the hex values you see in the picture



6.2. GETTING FAMILIAR WITH OPCODES 53

6.2 Getting Familiar With Opcodes
Let us get more familiar with Opcodes and Mnemonics. Open the sample file
(NOP.exe) in your Opcodes Samples directory with OllyDbg. You will soon see
the following:

00401000 >/$ 90 NOP <--- EntryPoint/Start of the code
00401001 |. 90 NOP
00401002 |. 90 NOP
00401003 |. 90 NOP
00401004 |. 90 NOP
00401005 |. 90 NOP
00401006 |. 90 NOP
00401007 |. 90 NOP
00401008 \. C3 RETN

Now Double click on the first line5, a dialog will appear to you:

Figure 6.2: OpCode editor in OllyDbg

One of the nice features in OllyDbg is that assemble any mnemonic to opcode
via this dialog. So let us write:

push eax

and press the ’Assemble’ button or just press Enter and close the dialog. You
will see that OllyDbg recognized the mnemonic and converted it to the opcode.

00401000 >/$ 50 PUSH EAX

5or click assemble, or press space bar



54 CHAPTER 6. INTRODUCTION TO OPCODES

As you probably noticed 0x50 is the opcode for push eax. Now let us practice
the opposite thing. Converting from the Opcode to the Mnemonic. In OllyDbg
select the second line and press (CTRL + E/Binary Edit) the Binary Edit dialog
will appear to you:

Figure 6.3: Binary Edit Dialog in OllyDbg.

Now change the value in hex (0x90) to the opcode that we know (0x50) and
then press OK. Do you see what happend? OllyDbg recognized your Opcode and
converted it to Mnemonic.

00401001 |. 50 PUSH EAX

If you want practice on some other opcodes till you get familiar with opcodes
and mnemonics.

6.3 One Opcode Means One Mnemonic?
So is there only one mnemonic for an opcode? Well, remember the (NOP.exe)
which OllyDbg disassembled as:

00401000 >/$ 90 NOP
00401001 |. 90 NOP
00401002 |. 90 NOP
00401003 |. 90 NOP
00401004 |. 90 NOP
00401005 |. 90 NOP
00401006 |. 90 NOP
00401007 |. 90 NOP
00401008 \. C3 RETN



6.3. ONE OPCODE MEANS ONE MNEMONIC? 55

Now open the source of the program and check it for your self!

.386

.model flat, stdcall ;32 bit memory model
option casemap :none ;case sensitive

.code

start:
xchg eax, eax
nop
xchg eax, eax
nop
xchg eax, eax
nop
xchg eax, eax
nop
ret

end start

Surprised? Conclusion: Different Mnemonics can have the same Opcode! But
not enough. Let us open the program (Add eax, 1.exe) in OllyDbg:

00401000 >/$ 83C0 01 ADD EAX,1
00401003 |. 05 01000000 ADD EAX,1
00401008 \. C3 RETN

Another surprise? Conclusion: Different Opcodes can have the same Mnemonic6.

Another example:

00401000 >/$ 03C0 ADD EAX,EAX
00401002 |. 01C0 ADD EAX,EAX
00401004 |. 02C0 ADD AL,AL
00401006 |. 00C0 ADD AL,AL

Anyway, we understood the basics about what Opcodes/Mnemonics are. Let
us dig further.

6We will talk about structure groups later.



56 CHAPTER 6. INTRODUCTION TO OPCODES

6.4 More About Opcodes
Now, let us know more about Opcodes. Let us open OllyDbg and load any file
(e.g. NOP.exe), press space to open the assemble dialog. Let us enter:

• Add eax, 11223344

• Add eax, 12345678

We will see that OllyDbg disassembled these two instructions like this:

00401000 > $ 05 44332211 ADD EAX,11223344
00401005 . 05 78563412 ADD EAX,12345678

It seems that (05) is responsible for the instruction (Add eax, imm) and the
following (immediate) bytes, are the value to be added to eax. This imme-
diate value, is7 reversed. In other words, the bytes are ordered from right to
left, not from left to right. So if we want to put the value (a hundred mil-
lion times) in eax, we write (mov eax, 10000000) but the opcode generated is
(05 00000010).

Now go and practice for a while on the (immediate) data. Remember when
we said:

Different Opcodes can have the same Mnemonic.

So what makes a specific opcode be chosen for a specific Mnemonic? Meaning:
if we write a Mnemonic that can have more than one opcode, which opcode
would be chosen and why?

Well the simple answer is: It is the assembler (like ml.exe in MASM) that
does this job! It decides the optimal opcode and uses it, maybe it is not what
you want but you know you can always choose wut opcode you want to use, in
MASM you do this ( db 0x??, 0x??, 0x??, 0x??, ..... ).

7compared to the way we write it in our life



6.5. INTRODUCTION TO INTEL INSTRUCTION FORMAT 57

6.5 Introduction To Intel Instruction Format

We must learn about the Intel Instruction Format in order to go on with our
disassembler, so what is it? The General format for the instruction can be seen
in figure 6.4.

Figure 6.4: Intel Architecture Instruction Format

Intel instructions can vary in size8 but they still have the same six groups. We
need to understand each group first, and know it is purpose in order to be able
to learn the sizes of the different instructions. And all these parts are optional
except the opcode part.

6.5.1 Prefix (Optional)

The first part of Intel instruction, they change the behavior of the instruction
in many ways:

• Change the default segment of the instruction:

2EHCS segment override prefix.
36HSS segment override prefix.
3EHDS segment override prefix.
26HES segment override prefix.
64HFS segment override prefix.
65HGS segment override prefix.

• Override the default size (of the machine-word):

Operand-size override, 66H

• Control loops in string operations:

F0HLOCK
F2HREPNE/REPNZ (used only with string instructions).
F3HREP (used only with string instructions).
F3HREPE/REPZ (used only with string instructions).

8from 1 byte up to 14 bytes



58 CHAPTER 6. INTRODUCTION TO OPCODES

• Override the Address size:

Address-size override, 67H

Operand-Size Prefix: When executing any instruction, the processor can ad-
dress memory using either 16-bit or 32-bit address. Each instruction that access
memory addresses has associated with it, the address size attribute of either the
16 or 32 bits. This attribute is determined by the instruction prefixes (and for
other protected mode instructions bits in segment descriptor) .

Address-Size Prefix: Instructions that use the stack (e.g. push eax/pop eax)
have address-size prefix which decides the use of 16 bits or 32 bits .

Let us take the (Operand Size Override) for example and see what it does.
Open (Empty.exe) in OllyDbg, it is an empty program full of NOPs, open
binary change dialog and enter:

50:

Press enter, you will see in OllyDbg

00401000 50 PUSH EAX

Now in the new line enter:

6650:

Press enter:

00401001 66:50 PUSH AX

Obviously you can see the difference! The operand (eax in this case) size
changed from (32-Bit) to (16-Bit). Let us do one more example about prefixes
so you get more familiar with them. Let us take the (Repeat Prefix) as another
example and see what it does. Reload Empty.exe in OllyDbg (CTRL+F2), open
binary change dialog and enter:

AC:

Press enter, you’ll c in OllyDbg

00401003 |. AC LODS BYTE PTR DS:[ESI]

Now in the new line enter:

F2AC:

Press enter:

00401004 |. F2:AC REPNE LODS BYTE PTR DS:[ESI]

You can see the difference! Okay, now we know that if there is a Prefix then the
instruction still needs the Opcode part. So it becomes like this:

[Prefix] [Code]



6.5. INTRODUCTION TO INTEL INSTRUCTION FORMAT 59

6.5.2 Code (Not Optional)
The operation code, which is the main instruction part, it comes after the op-
tional prefixes. Actually, the code part is responsible for telling the processor
which instruction to execute. This filed (code) contain bit fields that describes
the size and the type of operand to expect. For example: The instruction (NOT).
This instruction has the code byte 1111011x where x is the bit responsible for
specifying whether the operand is a BYTE or a DWORD.

• If x == 1 ( the opcode is 11110111 == F7h )
Then: F7:D0 == NOT EAX (DWORD)

• If x == 0 ( the opcode is 11110110 == F6h )
Then: F6:D0 == NOT AL (BYTE)

So, how can we get (NOT AX) (WORD)? Try to guess your self. Yes, you are
right we must use Operand Size Prefix (66h):

66:F7D0 == NOT AX

Let us take another example. The instruction (OR) that we use a lot. This
instruction has the opcode (000010xy) where:

• The Bit (x) is responsible for specifying which which operands the source
and the destination are.

• The Bit (y) is responsible for specifying the size of the operand.

We will talk more about opcode encoding later. The Code field can have different
sizes. It can be one byte, two bytes or even 3 bytes9.

6.5.3 ModR/M (00:000:000b)
If the instruction needs it, this part (ModR/M) that comes after the opcode, tells
the processor which registers or memory locations to be used by the instruction.
This member consists of three parts. Actually most the instructions that refer
to an operand in memory have this prefix. The encoding of this prefix tells
whether there is a (SIB) prefix or not.

Mod field: Occupies the the two most significant bits (MSB). Combines with the
r/m field to form 32 possible values: eight registers and 24 addressing modes10.

9Some SSE (And SSE2) [Streaming SIMD Extensions] instructions, which is mainly used
in 3D-Graphics Modeling, can have code part more that two bytes! But we should not confuse
our selves with this for now

10Open ModRM I.exe and ModRM II.exe for some more details



60 CHAPTER 6. INTRODUCTION TO OPCODES

opcode/reg field: Occupies the next three bits after the Mod field. Specifies
either a register number or three more bits of opcode information. The purpose
of the reg/opcode field is specified in the primary opcode.

r/m field: Occupies the three least significant bits (LSB). Can specify a register
as an operand or can be combined with the mod field to encode an addressing
mode11.

6.5.4 SIB

SIB stands for (Scale - Index register - Base register):

Scale: Occupies the two most significant bits (6-7) and specifies the scale factor.

Index: Occupies the next three bits after the Scale field, specifies the regis-
ter number of the index register.

Base: Occupies the three least significant bits of the SIB byte, specifies the
register number of the base register.

The idea of the SIB byte is to generate the [Base + Scale * Index] which
can be added also to any displacement specified in the ModR/M Byte. In other
words, SIB byte enable the use of complicated addresses like:

mov eax, dword ptr esi +ebx*4+00401000

The SIB byte is usually not present, only when the instruction needs the ad-
dressing format (Base+Scale*Index).

6.5.5 Displacement

When the Mod field at the ModR/M Byte is either (01 or 10) the displacement
is part of the operand’s address. Displacement comes right after the ModR/M &
SIB byte. The size of the displacement depends on the ModR/M mod field.

6.5.6 Immediate

Immediate values are there when an instruction needs it as an operand, such as
(mov eax, 1000). The immediate value is the last part of the instruction, like
displacement, immediate value can be either a byte or a word.

11Open ModRM I.exe and ModRM II.exe for some more details



6.6. FINAL WORDS 61

6.6 Final Words
In this chapter we learned the basic stuff about Opcodes and IA (Intel Archi-
tecture) Format, it may have been confusing to some of you, but we will learn
more during the next chapters. In the next chapters we will understand each
part of the instruction format with more details and examples.

6.7 In the next chapter
We will read:

• Everything about Prefixes



62 CHAPTER 6. INTRODUCTION TO OPCODES



Chapter 7

Everything about Prefixes

63



64 CHAPTER 7. EVERYTHING ABOUT PREFIXES

7.1 More About Prefixes

In the previous chapter, we got introduced to the Intel Architecture Instruction
Format, now it’s time to really understand each part of the instruction and in
this chapter we’ll deal with Prefixes .Prefixes can be put in five groups depending
on how do they affect our apps:

• Prefixes that specify the segment (2E - 36 - 3E - 26 - 64 - 65)

• Prefix that changes the default operand size (66 )

• Prefix that changes the default address size ( 67 )

• Prefixes that change the string operation n loops ( F3 - F2 )

• Prefix that controls the processor BUS ( F0 )

Some Facts About Prefixes: Let’s know some facts about prefixes as this will
help us getting a better view for the IA (Intel Architecture) Instruction itself.

• One opcode can have several prefix ( Up to Four Prefixes )

• Each prefix is 1 byte size ( It means prefixes maybe up to four bytes)

• Sometimes (as we’ll c) may not be used by the instruction, in such cases
the prefix is just ignored.

Now, let’s understand each prefix type clearly.

7.2 Segments Override Prefixes

First let us quickly know what are segments. We know that everything we see
(and don’t see) is actually a sequence of bytes. The processor needs to organize
its access to memory so it can handle this huge sequence of bytes. So, whenever
a byte or more are being accessed, the processor uses a (byte address) to locate
the byte or bytes in memory. The space or the range of bytes that can be
addressed, is called the Address Space. Segments can be considered as a form
of addressing, where the program can have many independent address spaces,
these are called segments. The notation used to specify a byte address with the
use of segments is:

Segment Registers: CS : Code Segment
DS - ES - FS - GS: Data Segments
SS : Stack Segment)

Segment (Register) : Byte-Address

Example for this: CS:[123456] –> This segment address identifies the byte lo-
cated at the address 123456 in the segment that is pointed by the CS register.
Let us not get out of the subject, we now got a quick idea about segments, so
let us see what segments override prefixes do (it should be easy 2 guess).



7.3. OPERAND-SIZE PREFIX 65

-------------------------------------------------------------
00401000 >/$ 8B00 MOV EAX,DWORD PTR DS:[EAX]
00401002 |. 2E:8B00 MOV EAX,DWORD PTR CS:[EAX]
-------------------------------------------------------------
00401005 |. 8B00 MOV EAX,DWORD PTR DS:[EAX]
00401007 |. 36:8B00 MOV EAX,DWORD PTR SS:[EAX]
-------------------------------------------------------------
0040100A |. 8B00 MOV EAX,DWORD PTR DS:[EAX]
0040100C |. 3E:8B00 MOV EAX,DWORD PTR DS:[EAX]
-------------------------------------------------------------
0040100F |. 8B00 MOV EAX,DWORD PTR DS:[EAX]
00401011 |. 26:8B00 MOV EAX,DWORD PTR ES:[EAX]
-------------------------------------------------------------
00401014 |. 8B00 MOV EAX,DWORD PTR DS:[EAX]
00401016 |. 64:8B00 MOV EAX,DWORD PTR FS:[EAX]
-------------------------------------------------------------
00401019 |. 8B00 MOV EAX,DWORD PTR DS:[EAX]
0040101B |. 65:8B00 MOV EAX,DWORD PTR GS:[EAX]
-------------------------------------------------------------

You can see segment prefixes are responsible for choosing which segment register
we want to access, the prefixes is then followed by a ModR/M byte (More about
this in later chapter!) and a displacement (Later about this on a later chapter!).
Also notice this (third example from above):

-------------------------------------------------------------
00401005 |. 8B00 MOV EAX,DWORD PTR DS:[EAX]
00401007 |. 3E:8B00 MOV EAX,DWORD PTR DS:[EAX]
-------------------------------------------------------------

We can easily find that the prefix (3E) didn’t override the default prefix, and
this shows as we said at the first of this chapter that, if a prefix is not used (it’s
useless here) then it is just ignored by the processor. Please go and experience
the use of segment prefixes in OllyDbg, use various examples, like:

00401000 > $ AC LODS BYTE PTR DS:[ESI]
00401001 . 2E:AC LODS BYTE PTR CS:[ESI]

Try different opcodes, different sizes, and see how the prefixes can affect ur
opcodes. Also don’t forget to look at the Prefixes.exe file, included.

7.3 Operand-Size Prefix

Now, let’s talk about a more used prefix, the Operand-Size Prefix. Let’s first
talk about the default operand size. There’s is the 32-Bit operand size which
is the default and there’s the 16-bit operand size, these are the two default and
only operand sizes. The processor is designed to support both operand sizes 32-
bit and 16-bit, actually the only difference between the instruction that supports
both operand sizes, is the Operand-Size Prefix at the start of the instruction.
Operand size specifies the sizes of operands that the instruction will operate on.



66 CHAPTER 7. EVERYTHING ABOUT PREFIXES

So, when operand size is 16-bits, operands can be either 8-bits or 16-bits, when
operand size is 32-bits operands can be either 8-bits or 32-bits. In other words,
Operand Size Prefix 66h is used to choose the non-default operand size. Let’s
see some examples:

--------------------------------------
8BC0 MOV EAX,EAX
--------------------------------------

This simple instruction (mov eax, eax) uses operand size of the 32-Bit size
(as you can c it’s accessing a 32-bits register to a 16-bits one!). So, in this
instruction it means that the default operand size is the 32-bits size. Can you
guess what would be the effect of the Operand-Size Prefix? (Which convert from
32-Bits to 16-Bits and vice versa :P) .Let’s c if we add the 66h byte before this
instruction. But did u ask ur self wut decides it the instruction ( in operand-size
32-bits) will be either 8–bits or 32-bits? Well, to answer this we’ll have to talk
about opcode decoding which is not the time for it yet, so don’t worry about
this now.

-----------------------------------
66:8BC0 MOV AX, AX
-----------------------------------

Can you see what happened? The instruction is the same but in a different
operand size! Instead of the 32-Bits register (eax) there’s the 16-bits register
(ax). Please Have a look at (OperandSize.asm & OperandSize.exe) and of course
Prefixes.exe. You can skip to the next part (Address-Size Operand) Directly if
you don’t wanna confuse yourself.

7.3.1 What’s responsible for choosing the default Operand
Size?

If you wondered what specifies whether the default Operand Size is 32-Bit or
16-Bit, Here’s the answer, but u don’t need to bother ur self with it so much.
When we’re coding a Win32 program, u can know that the default operand
size is 32-Bit, U know why? That’s because in the protected mode (Where
Win32 Programs run) the Segment Descriptor defines the default operand (and
address) size, and it’s 32-Bit for Win32 Programs. How this default operand
size is controlled via the segment descriptor? It’s specified in the D (Default
Size) Flag. When this flag is set (1) then 32-Bit operand (and address) size is
selected, when the flag is cleared (0) then 16-Bit operand (and address) size is
selected.



7.4. ADDRESS-SIZE PREFIX 67

Figure 7.1: Segment Descriptor - (D) specifies the use of either 32-bit or 16-bit
Operand Size.

7.4 Address-Size Prefix
Another important prefix here, the Address-Size Prefix (67h). Let’s see this by
example, let’s see what the Address-Prefix do.

-----------------------------------------------------------------
00401000 >/$ 8B00 MOV EAX,DWORD PTR DS:[EAX]
00401002 |. 67:8B00 MOV EAX,DWORD PTR DS:[BX+SI]
00401005 |. 8B01 MOV EAX,DWORD PTR DS:[ECX]
00401007 |. 67:8B01 MOV EAX,DWORD PTR DS:[BX+DI]
0040100A |. 8B02 MOV EAX,DWORD PTR DS:[EDX]
0040100C |. 67:8B02 MOV EAX,DWORD PTR SS:[BP+SI]
0040100F |. 8B03 MOV EAX,DWORD PTR DS:[EBX]
00401011 |. 67:8B03 MOV EAX,DWORD PTR SS:[BP+DI]
-----------------------------------------------------------------

As you can see, the Address-Size is no more 32-bit (eax/ecx/edx/ebx) in-
stead, there’re (BS+SI/BX+DI/..) and so on. You must the ModR/M & SIB
parts before you go on in this part, so I’ll stop talking about the 67h (Address-
Size Prefix) for now, and we will continue it for sure in later chapter, when we
understand the necessary 2 instruction parts.



68 CHAPTER 7. EVERYTHING ABOUT PREFIXES

7.5 REP/REPNE Prefixes

If you have some experience with assembly especially with string operations/
instructions (e.g. movs/lods/scas/..), you’ll for sure know what are (REPeat
Prefixes). The REPeat Prefixes -if we can call them- can have three different
forms and yet still two prefixes only! Confused? let’s clarify it. Take a look at
this table:

Repeat Prefix Repeat Prefix Term. Cond. 1 Term. Cond. 2
REP F3 ECX=0 None
REPE/REPZ F3 ECX=0 ZF=0
REPNE/REPNZ F3 ECX=0 ZF=1

Table 7.1: REP/REPNE Prefixes

This table shows the difference three forms of the REPeat Prefixes, and shows
that they only can have only two hex values. REPeat prefixes actually do
nothing but repeat a string instruction till one of the condition (Look at the
table above) is met, depending on which REPeat prefix we are using.

• REP: This Prefix works with these next string instructions: (INS - MOVS
- OUTS - LODS - STOS)

• REPE: This Prefix works with these next string instructions: (CMPS -
SCAS)

• REPNE: This Prefix works with these next string instructions: (CMPS
- SCAS)

Now let’s take a look at a quick example:

00401000 >/$ AD LODS DWORD PTR DS:[ESI]
00401001 |. F3:AD REP LODS DWORD PTR DS:[ESI]
00401003 |. F2:AD REPNE LODS DWORD PTR DS:[ESI]

I think the example is obvious so no need to comment.
One more thing, let’s know what’s the difference between REPE & REPNE.

To know this, we should look at these two prefixes as 8-Bits not as 1-Byte as
well as understanding what (CMPS & SCAS) instructions do.

REPE (F3) ---> 1111 0011 Last Bit is (1)
REPNE (F2) ---> 1111 0010 Last Bit is (0)

Now leave this for now and let’s see how (CMPS & SCAS) instructions work.
The first one, compares a byte, word, dword in the source, with a byte, word,
dword in the destination, and then sets the status flags in the EFLAGS according
to the result. Similarly work the second one, but the destination is always
the value in AL, AX, or EAX. So both instructions sets the status flag in the
EFLAGS, and then the last bit of the REPeat Prefix is compared against this
flag (ZF) if they are not the same no more repetition, terminate the instruction.



7.6. BUS LOCK PREFIX 69

7.6 Bus LOCK Prefix
The last Prefix Bus LOCK Prefix (F0). Well, this prefix is not used a lot,
as it’s only used multiprocessor environment, it causes the processor’s signal
(LOCK#) to be asserted while executing an instruction, this signal (LOCK#)
makes sure that the processor will have the exclusive use of the shared memory
when the signal was asserted. The LOCK prefix works only on some instructions,
especially those that use memory operands. (ADD - ADC - AND - BTC - BTR
- BTS - CMPXCHG - DEC - INC - NEG - NOT - OR - SBB - SUB - XOR -
XADD - XCHG) Well, to be honest, i don’t have much info about the LOCK
Prefix, maybe cause as i said it’s only used in multiprocessor environment, but
anyway i think this is enough for this instruction as we won’t use it.

7.7 Final Words
In this chapter we -as I hope - could understand more about prefixes, it’s true
that we don’t know 100% about them yet, but there’re some few important
tings that we’ll know more in the next chapters, because i don’t wanna mess
the sequence of the tutorial.

7.8 In the next chapter
We will read:

• Everything about the [CODE] part in the Instruction format.



70 CHAPTER 7. EVERYTHING ABOUT PREFIXES



Chapter 8

Everything About [CODE]
part I

71



72 CHAPTER 8. EVERYTHING ABOUT [CODE] PART I

On this part, we’ll learn more about the [CODE] part in the IA32 Instruc-
tion Format, which -as we know- the second part of the instruction format. The
[CODE] is the main part of the instruction, it’s the only (Un-Optional) part of
the instruction. To know more about that, we will study some 1-Byte Instruc-
tions (1-Byte Instruction means, this instruction has no additional bytes more
than the [CODE] byte, e.g. No Prefix, No ModR/M, No SIB, and so on), but
before that, let’s know some -basic- info about [CODE] block.

8.1 Basics Of [CODE] Block
I assume by reading the tutorial till now that you’re familiar with Hexadecimal
& Binary Numbering systems, that’s why I’m not gonna deeply talk about
these two numbering systems. The reason why I’m talking about binary system
is that I will try to explain a little bit, how the processor actually decode the
instructions. The processor as we probably said doesn’t know anything about
what let’s say (Push eax) mean! Actually the processor doesn’t understand any
mnemonic, it simply understand the instruction by decoding it, and this works
like this:

• Most modern computers nowadays use the binary system

• The two values of binary system (0 & 1) are represented using two different
voltage levels (Usually they are: 0v & +5v)

• The processor (I’m talking about Intel here) has a built-in decoding table
which consists of a) The binary form of the instruction b) Rules of this
instruction (e.g. addressing mode/addressing size/...)

We said that the processor has a decoding table, that means it requires a -
signature- to be decoded. We can think about the [CODE] block as this sig-
nature, that tells the processor exactly what instruction to execute, and what
kinds of rules should the instruction have. Let’s have an example now, for one
of the 1-Byte Opcode [CODE] block. One of the commonly used instructions is
the (PUSH <reg>) instruction. Where <reg> can mean any of the 24 registers.

PUSH EAX --> Let’s study this instruction

The opcode for this mnemonic is 0x50, looking at the opcode as a single byte
doesn’t help us a lot, so let’s look at the binary form of this opcode.

0x50 == 01010000b

and then let’s make the 8-Bits look like this

--> 01010:000 == [CODE]<rrr>

What we’ve done is that we grouped the leftmost 5-Bits together (CODE) and
the the rightmost three bits together (register).

• The 5-Bits (01010) are the [CODE] block responsible for the instruction
(PUSH <reg>)

• The 3-Bits (000) are the <rrr> or the register code for the register (eax)



8.1. BASICS OF [CODE] BLOCK 73

Let’s have a look at the registers table that is used:

Register Table:
rrr 8bit 16bit 32bit
000 : AL : AX : EAX
001 : CL : CX : ECX
010 : DL : DX : EDX
011 : BL : BX : EBX
100 : AH : SP : ESP
101 : CH : BP : EBP
110 : DH : SI : ESI
111 : BH : DI : EDI

Let’s stick for now on the 32-Bit registers. We said that 01010:000 == PUSH
EAX because:

• 01010 is the [CODE] block for the instruction (PUSH <reg>)

• 000 is the 3-bit equal (eax) in the register table above

Let’s take a look at the following examples (we’re talking about 32-Bit Mode):

01010[111] == PUSH EDI == 0x57
01010[101] == PUSH EBP == 0x55
01010[011] == PUSH EBX == 0x53
01010[110] == PUSH ESI == 0x56

So far we’ve covered the 32-Bit size 8 registers, still 16 registers. So why I
kept on saying (we’re talking about the 32-Bit mode)? Remember the prefixes
chapter? When we talked about Operand-Size override prefix (0x66) the prefix
is responsible from switching from 32-Bit size to 16-Bit size mode. So the above
examples would be like this:

66:01010[111] == PUSH DI == 0x66:0x57
66:01010[101] == PUSH BP == 0x66:0x55
66:01010[011] == PUSH BX == 0x66:0x53
66:01010[110] == PUSH SI == 0x66:0x56

Now we’ve covered the 32-Bit size 8 registers + the 16-Bit size 8 registers, still
8 registers (later). Let’s take a look at another 1-Byte instruction to play with.

POP <Reg> 01011rrr
Code Block: 01011 == 0x5?
Reg: rrr
01011[111] == POP EDI == 0x5F
01011[101] == POP EBP == 0x5D
01011[011] == POP EBX == 0x5B
01011[110] == POP ESI == 0x5E



74 CHAPTER 8. EVERYTHING ABOUT [CODE] PART I

And the 16-Bit registers:

66:01011[111] == POP DI == 0x66:0x5F
66:01011[101] == POP BP == 0x66:0x5D
66:01011[011] == POP BX == 0x66:0x5B
66:01011[110] == POP SI == 0x66:0x5E

I hope you’ve understood something about the [CODE] block, still some other
stuff to learn about, but you must understand the above test before we get into
the next parts.

You can go practice on your own with other 1-Byte instructions, or use the
tool attached with this chapter. Still some -advanced- stuff about [CODE] we
gotta know, and we -hopefully- will know, in the next chapter. Just get don’t
move on till you’re finished with this chapter. I divided the [CODE] part into
two chapters for some reasons that I find important (like having a short chapter,
not to loose focus as we’ll talk -shortly- about ModR/M & SIB n for some other
reasons). So before you go on to the next chapter be sure you understand this
one well.

8.2 Final Words
I think the real fun starts from this chapter and the next chapters, this chapter
was like half-way in understanding the second part of the Intel Architecture
Instruction Format [CODE], I tried to make it as easy to understand as possible.

8.3 In the next chapter
We will read:

• Finishing the [CODE] part in the Instruction format.



Chapter 9

Everything About [CODE]
part II

75



76 CHAPTER 9. EVERYTHING ABOUT [CODE] PART II

In the previous chapter we learned the basics about the [CODE] part, and we
saw how 1-Byte instruction can be decoded into 5-Bits [CODE] block and 3-Bits
register (<reg>) code. In this chapter we’ll talk more about the decoding of
the [CODE] byte. Let’s take a look at this opcode (In Binary as usual):

00401000 >/$ F7:D0 not eax (F7h == 11110111)
00401000 >/$ F6:D0 not al (F6h == 11110110)

Can you see? There is no Operand-Size Prefix (Actually we’re dealing here with
8-Bit register ’al’ not 16-bit), there’s no change in the two above instructions but
the [CODE] bye itself! Let’s make things clear. In the previous chapter (Seven
I) we saw how instructions like (push <reg>/pop <reg>) can be decoded like
this: 00000 : 000 Leftmost 5-Bits are the instruction code, rightmost 3-bits are
the register code. This is not always the case. (e.g. only one bye opcode with
reg field can be decoded like this 5 : 3 ). The example above (not eax/not ax)
shows that the rightmost bit chooses the operand size to work on.

If Leftmost bit == 1 then we’re in 32-Bits mode
If leftmost bit == 0 then we’re in 8-bits mode

The above example can be decoded like this: 1111011w

Bit (w): Operand-Size (1= 32-Bit while 0=8-Bit)

One more thing to know in [CODE] block decoding, is another bit, the one
that’s right before the (w) bit. This bit (called d bit) chooses the direction. In
this chapter I’ll give you an example only about the (d) bit, before we show a
lot of examples in the next chapter (ModRM).

00401000 > A1 00000000 mov eax, dword ptr ds:[0]
00401000 > A3 00000000 mov dword ptr ds:[0], eax

the (00000000) dword doesn’t concert us now, we’ll talk about later in (chapter
ten: immediates), let’s focus on the first byte, the [CODE].

A1: In Binary format is: 10100001 (d bit == 0 == reg --> imm)
A3: In Binary format is: 10100011 (d bit == 1 == imm --> reg )

The above example show the decoding like this: 101000d1

I hope this shows what does the bit d do. Now let’s combine the both bits
(d & w).

00401000 > A0 00000000 mov al, byte ptr ds:[0] ( d = 0 / w = 0 )
00401000 > A1 00000000 mov eax, dword ptr ds:[0] ( d = 0 / w = 1 )
00401000 > A2 00000000 mov byte ptr ds:[0], al ( d = 1 / w = 0 )
00401000 > A3 00000000 mov dword ptr ds:[0], eax ( d = 1 / w = 1 )

One more thing. How many times did you look at the disassembly of a program
(let’s say in OllyDbg) and saw something like:

(... byte ptr [..] )
(... word ptr [..] )
(... dword ptr [..] )



9.1. PLAYING WITH [CODE] UTILITY 77

Bit 0 1
d reg –> imm imm –> reg
w Operand Size (8-Bits) Operand Size (32-Bits)

Table 9.1: Code Bits

Of course many times :) Now, we can say that in 32-Bit programs (most of the
time!) :

• In the case of bye ptr[]: The Bit (w) == 0

• In the case of word ptr[]: The Bit (w) == 1 and there’s an Operand-Size
Prefix (66h)

• In the case of dword ptr[]: The Bit (w) == 1 and there’s no Operand-Size
Prefix.

You should go now practice some more opcodes and also you should take a look
at the small utility included with this chapter.

9.1 Playing with [CODE] Utility
Let’s see if we understood the previous chapter or not. Open the utility (CODE
II) that’s included with the chapter.

Figure 9.1: utility (CODE II)

Let’s practice on an instruction from the above (MOV/ADD/SUB/..), let’s say
’MOV’

MOV reg, reg

Let’s change the ModRM Byte For the First Instruction to this:
The (111b) represents the register EDI in the ModRM Byte. Take a look at
this table:



78 CHAPTER 9. EVERYTHING ABOUT [CODE] PART II

Figure 9.2: ModRM For First Instruction

Figure 9.3: First Instruction Decoding

Let’s leave the First Instruction for now, and go play with the second instruction.
Let’s change the ModRM Byte to this:
Obviously you can see the difference. In the first instruction, [edi] is the destina-
tion register while [eax] is the source. E.g. ’MOV’ Instruction moves data from
eax to edi. In the second instruction we have the opposite thing. In the second
instruction, let’s change the Bit (d) (Direction Bit) and set it to 0 instead of 1:
Can you guess what will happen??

w=1 w=0
Reg Value Reg
EAX 000 AL
ECX 001 CL
EDX 010 DL
EBX 011 BL
ESP 100 AH
EBP 101 CH
ESI 110 DH
EDI 111 BH

Table 9.2: Values of the registers in ModRM Byte according to the Bit (w)



9.1. PLAYING WITH [CODE] UTILITY 79

Figure 9.4: ModRM For Second Instruction

Figure 9.5: Second Instruction Decoding

Figure 9.6: Second Instruction Decoding

Figure 9.7:

Figure 9.8:



80 CHAPTER 9. EVERYTHING ABOUT [CODE] PART II

Yes, the same mnemonics with different opcodes. In Hex (I decided not to show
the hex value so you can go make it manually and practice more) it would be:

First Instruction: 8BF8 mov edi, eax
Second Instruction: 89C7 mov edi, eax

Now, it’s time for you to go and practice! Please don’t move further if you
don’t fully understand this chapter, if you have any questions after you read
this chapter & followed the example, feel free to ask what you want.

9.2 Final Words
I guess we’ve learned the basics about [CODE] byte, things are getting more
fun.

9.3 In the next chapter
We will read:

• Every Thing About ModRM Byte



Chapter 10

Everything about ModRM

81



82 CHAPTER 10. EVERYTHING ABOUT MODRM

We saw together in the early chapters of this tutorial, the basics of ModRM
byte, in this chapter I hope we’ll learn together everything it, and how to de-
code it. Let’s quickly remember the basics of the structure of the ModRM Byte.

ModRM Byte, is decoded in a special way, in binary it’s something like this: xx
: xxx : xxx . 8 Bits are divided into three groups (2:3:3). Most of the time,
the bits -as we said- are divided in three groups. Let us understand each of them.

XX : xxx : xxx (Mod) Bits :

• 00: memory address (e.g. eax, [eax])

• 01: memory address with 1 byte displacement (e.g. [eax+00]) (1-Byte
[DISPLACEMENT])

• 10: memory address with 1 dword displacement (e.g. [eax+00000000])
(4-Byte [DISPLACEMENT])

• 11: both operands are memory (e.g. [eax, eax]

Let’s understand the above four forms, and look at the following examples.

00401000 8B:C0 [00:000:000] mov eax, eax
00401002 8B:00 [01:000:000] mov eax, dword ptr ds:[eax]
00401004 8B:40:01 [10:000:000] mov eax, dword ptr ds:[eax+00]
00401007 8B:80:00000001 [11:000:000] mov eax, dword ptr ds:[eax+0000000]

We can easily see that the [OPCODE] byte is not changed (8B) in each instruc-
tion, but the following byte (ModRM Byte) changes. And corresponding to its
encoding, we decide if there’s additional bytes (DISPLACEMENT) after the
ModRM byte. As In the third instruction, we have 1-byte displacement, while
in the last (fourth) instruction we have a 1-dword displacement. Let’s look at
the same four instructions above after we change the bit (d) in the [OPCODE]
byte as we practiced on the previous chapter.

00401000 89:C0 [11:000:000] mov eax, eax
00401002 89:00 [01:000:000] mov dword ptr ds:[eax], eax
00401004 89:40:10 [10:000:000] mov dword ptr ds:[eax+00], eax
00401007 89:80:00100000 [00:000:000] mov dword ptr ds:[eax+00000000], eax

We have the same four addressing modes but of course the direction is reversed
(bit d). So that was about 32-Bit size. Is is the same for 16-Bit size? Do we
still have the same four addressing mode?? Let’s see what will happen for the
same example if we were working with 16-bit operand size. We’ll use the same
four instructions with the Operand Size Prefix (66h) at the start of each of tem.

00401000 66:8B:C0 [11:000:000] mov ax, ax
00401002 66:8B:00 [01:000:000] mov ax, word ptr ds:[eax]
00401004 66:8B:40:01 [10:000:000] mov ax, word ptr ds:[eax+00]
00401007 66:8B:80:00000001 [00:000:000] mov ax, word ptr ds:[eax+0000000]



83

So far we talked about the four addressing modes in the ModRM byte for the
32-Bit & 16-Bit operand size, What about 8-bit size? Well, it’s quite different,
we’ll see that later on this chapter.

xx : XXX : xxx Code/Reg field Bits :
The middle 3-bits in the ModRM Byte are the Code/Reg field bits, they can
be decoded n treated like one of two things, Code Or Reg field. The processor
knows which is the right decoding for this field (Whether it’s Code or Reg field)
from the [OPCODE] Byte itself! Let’s see an example so, we don’t get confused.

10.0.1 When considered as Code extension
We should know that there are instructions that require 1-Operand and others
that require 2-Opernads. For example:

ADD: instruction requires 2-Operands (add eax, eax)
SUB: instruction requires 2-Operands (sub eax, eax)

While we have:

NOT: instruction requires only 1-Operand (not eax)
MUL: instruction requires only 1-Operand (mul eax)
DIV: instruction requires only 1-Operand (div eax)

11:010:000
11:100:000
11:110:000

If we’re working with an instruction that requires only 1-opernad (as MUL
instruction) then, the middle 3-Bits in the ModRM are 3-Code extension bits.
Like (NOT/MUL/DIV) instructions, they all have 0xF7 as the [OPCODE] byte,
while the difference is in ModRM byte.

00401009 F7D0 not eax
0040100B F7E0 mul eax
0040100D F7F0 div eax

They have the same [OPCODE] the difference is only in the Code/Reg 3-Bits
in the ModRM Byte, which in the previous instructions, are considered Code
extension and the lowest 3-Bits in ModRM byte are the operand that the in-
struction requires.



84 CHAPTER 10. EVERYTHING ABOUT MODRM

10.0.2 When considered as Reg field
In other instructions that require 2-opreands, the middle 3-bits in the ModRM
byte are considered as a reg value, the values are known to us, as we talked
about them before, you can look at the table below. Now let’s see an example.

00401025 33:83 78563412 xor eax, dword ptr ds:[ebx+12345678]
0040102B 33:8B 78563412 xor ecx, dword ptr ds:[ebx+12345678]
00401031 33:93 78563412 xor edx, dword ptr ds:[ebx+12345678]

Let’s see the decoding of the ModRM Byte.

83: [10:000:011] 10: == Addressing Mode | 000: == reg field (eax)
8B: [10:001:011] 10: == Addressing Mode | 001: == reg field (ecx)
93: [10:010:011] 10: == Addressing Mode | 010: == reg field (edx)

You may have noticed that 011 is the value for ebx.

xx : xxx : XXX reg/mem field Bits

Depending on the (Mode) Bits in the ModRM byte: In case of
(11) this field means --> registers we saw an example for this:

00401000 89:C0 [11:000:000] mov eax, eax

In case of (00, 01, 10):

• registers are pointers to memory

• There is a ’flag’ that memory operand is specified by SIB byte

• There is a ’flag’ that memory operand is specified by direct value

Mode == 00 :
If the reg/mem value == 101b & the mod == 00b then no register is used to
calculate address, instead the address is in the DWORD after ModRM Byte.

Example:

00401023 8B:05:67452301 mov eax, dword ptr ds:[1234567]

Note that 101b here, doesn’t not stand for (EBP). It’s a flag as we said that
no register will be used to calculate the address and that this address is the
DWORD right after the ModRM Byte. It means, we can’t use ( mov reg,
dword ptr [ebp] with only 1-byte opcode & 1-Byte ModRM ), anyway. If the
reg/mem value == 100b & the mod == 00b then there’s a SIB byte right after
the ModRM byte. And again, 100b here, doesn’t not mean (esp) it’s a flag to
indicate that there’s a SIB byte.

Mode == 01 :
If the reg/mem value == 100b & the mod == 01b then there’s a SIB byte right
after the ModRM byte. And again, 100b here, doesn’t not mean (esp) it’s a flag
to indicate that there’s a SIB byte.

Mode == 10 : If the reg/mem value == 100b & the mod == 10b then there’s
a SIB byte right after the ModRM byte. And again, 100b here, doesn’t not mean
(esp) it’s a flag to indicate that there’s a SIB byte.



10.1. PLAYING WITH OUR TOOL 85

10.0.3 More Info About ModRM

First, we should know this:

• ModRM (and SIB as we’ll see later) is used to specify operands.

• It may happen that an instruction have a ModRM byte

• It may happen that an instruction have a ModRM byte + SIB Byte (next
chapter)

• It may NOT happen that an instruction have a SIB Byte without a
ModRM byte (next chapter)

• We can say that SIB Byte is an extension of the ModRM Byte (next
chapter)

• The format of ModRM Byte (and also SIB Byte) is 2:3:3

10.1 Playing With Our Tool
Open the tool attached with this chapter (ModRM 32) . (I’m using here the
XP Version)

Figure 10.1: (ModRM Demonstrating Tool) -XP Version



86 CHAPTER 10. EVERYTHING ABOUT MODRM

Layout & Basic Overview Of The Utility:

You can find the default decoding options are like the following:

Default Instruction = ADD
Default State For Bit (d) = 1
Default State For Bit (w) = 1
Default Mode For ModRM Byte = 11b
Default reg1 Code For ModRM Byte = 000b
Default reg2 Code For ModRM Byte = 000b

Figure 10.2:

• Instruction: With these buttons, you can change the instruction to be
decoded.

• Bit (d): With this button, you can change the default state for Bit (d) in
the [CODE] byte.

• Bit (w): With this button, you can change the default state for Bit (w)
in the [CODE] byte.

• Decoding: This one display the hex value for the [CODE] byte, changes
depending on the above three options.

Figure 10.3:

• Mode: With these two buttons (2 Bits) you can change the default (11b)
decoding more for ModRM Byte.

• Code/Reg: With these three buttons (3 Bits) you can change the default
code for the Code/Reg.

• Reg/Mem: With these three buttons (3 Bits) you can change the default
code for the Reg/Mem.

• Decoding: This one display the hex value for the [ModRM] byte, changes
depending on the above three options.



10.2. VIEW SOME EXAMPLES FOR MODRM BYTE 87

Figure 10.4:

Figure 10.5:

This part is disabled in the default mode for ModRM (11b), but it’s enabled in
certain ModRM modes, as we’ll see shortly. The point is to manually write the
displacement (whether a DWORD or a BYTE) Bit by Bit.

The next one makes you able to set if the Operand-Size Prefix (0x66) is enabled
or not. This option makes you able to switch from 32-bit to 16-bit modes.

Figure 10.6:

This part as the name says, show the HEX decoding for the whole instruction.
The main part (well, at least it’s an important part). It shows the decoding for
the instruction.

10.2 View Some Examples For ModRM Byte
Default Example (03:C0)

Let’s look at the above example but of course as we used to look at it. Let’s
just ignore the first byte (the [CODE] byte) and just focus on the second byte
(ModRM Byte). 0xC0 is the ModRM byte. Let’s see it from the ModRM byte
decoding style.

11 : 000 : 000 b



88 CHAPTER 10. EVERYTHING ABOUT MODRM

Figure 10.7:

Highest two bits (11) are -as we should know- the Mode bits. 11b means, both
operands are registers. (e.g. [CODE] eax, eax). From decoding the Mode Bits,
we know that the following 6 bits (which are separated into two groups, each
consists of three bits), are two codes for registers, any of the 24 registers (8
registers * 3 Operand Sizes = 24). But how do we know which operand size are
we working with? Is it 32-Bit register? Maybe 16-Bit? Maybe it’s just 8-Bit
register?? Well, we should easily tell the answer, as we talked about this in
previous chapters. First we check if the Bit (w) in the [CODE] byte is zero. If
it is, then we’re in 8-bit size mode. If it’s not, then we’re whether in the 16-bit
or the 32-bit modes. To know which one of them, we check for the operand-size
prefix (66h) if it does exist, then we’re in the 16-bit mode, if it does NOT exist,
then we’re in the 32-bit mode. Next is a table showing the 24 registers, for the
three size modes.

(32-Bit) (16-Bit) (8-Bit)
Reg value Reg Reg
EAX 000 AX AL
ECX 001 CX CL
EDX 010 DX DL
EBX 011 BX BL
ESP 100 SP AH
EBP 101 BP CH
ESI 110 SI DH
EDI 111 DI BH

(24 registers/ 8 registers for each of the 3 size modes)

The [CODE] Byte (03) when decoded in binary format : (00000 : 11) as we can
see, Bit (w) is set, so we’re dealing with full operand size (32/16 Bit Registers)
and as there’s no operand size prefix (66h) before the [CODE] byte, we know
that we’re dealing with 32-Bit operand sizes. Now back to the ModRM Byte
(0xC0). The next three bits (Code/Reg Bits: 000) Are the register code to be
used. 000b (like you can see in the table above) is the code for eax. Next we
get the least significant three bits (Reg/Mem Bits: 000) which are also the code
for eax. As we can see by looking at the decoding of the [CODE] byte, direc-
tion bit (Bit (d) == 1) which means the destination is Code/Reg and source is
Reg/Mem.



10.2. VIEW SOME EXAMPLES FOR MODRM BYTE 89

So the final decoding will be: add eax, eax.

• We should check if a prefix (e.g. Operand Size Prefix (66h) is present

• We should know the decoding format for the current instruction we’re
decoding (in this example 00000:dw)

• We should extract both, Bit (d) & Bit (w)

• We should decode the following ModRM byte if exists (in the previous
case, it exists)

• We should extract the Mode Bits, to know the correct decoding for the
ModRM Byte

• We should decode the ModRM byte, depending on what ModRM mode
we’re dealing with

That’s what should be done for decoding the above example. Now, let’s take
another example, for another Mode for the ModRM byte.

Another Example (66:8B:97:21436587)

Figure 10.8: Example Two : Decoding The ModRM Byte



90 CHAPTER 10. EVERYTHING ABOUT MODRM

Now, let’s look at a more -advanced- example. Let’s see how can the ModRM
byte be decoded for the previous example.

Following the simple steps we’ve seen in the previous example, the first thing we
should do is checking if a prefix does exist. By looking at the first byte which
is (66h) and looping through the prefixes table, we could easily know that this
prefix is the Operand-Size prefix. That’s nice, we know that we won’t be dealing
with 32-Bit operand sizes. It’s 16-bit operand size, or 8-Bit operand size in case
the Bit (w) is not set (in this case the prefix will be ignored, but this is not the
case in our example, anyway).

As we said, a prefix (Operand-Size) does exists, we save this in memory for now,
and let’s move to the next step. Let’s look at the [CODE] byte, in this example
it’s 0x8A the decoding for this instruction is the same as the previous example
00000 : dw , let’s look at the byte in the binary format.

0x8A: 100010 : 11

The Five Most Significant Bits (100010b) are the code for the instruction ’MOV’,
next bit is the Bit (d), in this case it’s set, which mean, Code/Reg is the
destination register Reg/Mem is the source register. The least significant bit
is the Bit (w), we see that it is set, so we know that we’re working with full-
size operand size (32-Bit/16-Bit) but as we remember we found an operand-size
prefix, so we can say that we’ll be working with 16-Bit operand size. Next step
is to decode the ModRM byte (0x97), let’s look at this byte in the correct format
for a ModRM byte.

0x97 --> 10:010:111

We can see that the Mode is (10b) which means that registers here, are pointers
to memory, no direct registers access, only memory access. As we saw in the case
of (10b) as the Mode for a ModRM byte, we should check if the Reg/Mem value
is (100b). If it is, then we know there’s is a following SIB, but that’s not the case
here, as we’re not dealing with SIB yet. By checking the Reg/Mem value, we
see that it’s (111b) so we know that there’s no following SIB, instead we know
that there is following DWORD displacement. By Decoding the Code/Reg 3-
Bits, we see that it’s (010b) which is the code for DX (remember we’re working
with 16-Bit size registers), and then, we decode the Reg/Mem 3-Bits which are
(111b) which is the code for (edi), you can ask why it’s not only (di), the answer
is, edi here is a pointer to memory address, so it’s 32-Bit size. Last thing to do is
to decode the next DWORD, which is the displacement that should be decoded
for a ModRM byte with the mode (10). We can see that the next dword is
(0x21436587) which should be decoded as 87654321h. So, we by now decoded
the previous instruction. The decoding is like this:

MOV DX, WORD PTR [EDI+87654321]

Well, I hope this chapter with the two examples explained the ModRM byte
to you, of course practicing on your own is the best way to fully-understand
the ModRM Byte, so try playing with the ModRM byte utility that’s attached
with this chapter and also play with OllyDbg and try decoding several ModRM
bytes on your own.



10.3. FINAL WORDS 91

10.3 Final Words
Umm.. We’re getting closer to building our disassembler, so I hope you under-
stand everything we discussed in the previous chapters.

10.4 In the next chapter
We will read:

• Everything about SIB Byte



92 CHAPTER 10. EVERYTHING ABOUT MODRM



Chapter 11

Everything about SIB

93



94 CHAPTER 11. EVERYTHING ABOUT SIB

11.1 What Does SIB Stand For?
SIB (SS : III : BBB) Stands for (Scale : Index :Base). General Format Of The
SIB Byte ( Base + Index * Scale ). SS: Two most significant bits, are the code
for the (Scale) (which can be considered as the multiplier) of the index register.

00: = 2^0 = 1
01: = 2^1 = 2
10: = 2^2 = 4
11: = 2^3 = 8

Some examples for the Scale of an SIB byte:

00 : *** : *** ( mov reg, [reg*1] )
01 : *** : *** ( mov reg, [reg*2] )
10 : *** : *** ( mov reg, [reg*4] )
11 : *** : *** ( mov reg, [reg*8] )

III: Next three bits, are the the (Index register) bits. They can contain any
code for an index register, except the (esp register) we’ll know why later. Some
examples for the Index of an SIB byte:

00 : 000 : *** ( mov reg, [eax*1] )
01 : 001 : *** ( mov reg, [ecx*2] )
10 : 010 : *** ( mov reg, [edx*4] )
11 : 011 : *** ( mov reg, [ebx*8] )

BBB: The least three significant bits, are the (Base Register) code bits. Like
the III bits. Some example for the Base of an SIB byte:

00 : 000 : 001 ( mov reg, [ecx + eax*1] )
01 : 001 : 010 ( mov reg, [edx + ecx*2] )
10 : 010 : 011 ( mov reg, [ebx + edx*4] )
11 : 011 : 000 ( mov reg, [eax + ebx*8] )

Now let’s know why we can’t use (esp) as the Index Register. If you couldn’t
guess it your self, the reason is quite similar to the exception we made in the
ModRM Byte, simply the code for the register (esp) is used as a flag. Read
next:

• If Index register code is the code for (esp), then the index is IGNORED,
and in this case, the value of the scale is also IGNORED, and only the
Base field is used to calculate the address.

• If we need to encode an instruction like (add reg, [esp]) it can’t be done
with simply using an SIB byte. But it would be encoded like this: (add
reg, [esp + DISPLACEMENT])

– If ModRM Byte (mode) == 01b then the displacement is 1-Byte

– If ModRM Byte (mode) == 10b then the displacement is 1-Dword



11.2. PLAYING WITH OUR TOOL 95

11.2 Playing With Our Tool
Now, let’s see some examples, on how to decode the SIB byte. General Layout
Of The SIB Tool:

Figure 11.1: XP Version Of The SIB Tool

The layout is very similar to the ModRM Tool that we’ve played with in the
previous chapter, the only difference is the new SIB Group Box, so let’s get
more familiar with it.

Figure 11.2: SIB Group Box

(SIB Group Box)
The new SIB Group Box, enables us to encode any SIB byte that we want. It’s
divided into four main groups:

SCALE: The Scale (SS) Of The SIB Byte
INDEX: The Index Register (III)
BASE: The Base Register (BBB)
Decoding: Shows The HEX Value Of The SIB Byte



96 CHAPTER 11. EVERYTHING ABOUT SIB

An Example. Let’s say we want to decode this:

0040121C 66:2B84F9 BC6A3C89 sub ax, word ptr [ecx+edi*8+893C6ABC]

1. 66:2B84F9 BC6A3C89
First, we check for any prefix, in the previous case we find the Operand-
Size Prefix (66h), so we know we’re not working with 32-Bit operand size,
it’s whether 8-Bit or 16-Bit.

2. 66:2B84F9 BC6A3C89
0x2B is the [CODE] for the instruction ’SUB’ and it requires a ModRM
byte, so we know the following byte is a ModRM Byte. Also by decoding
this byte in the [CODE] format: (001010:11)

• Bit (d) == 1 : Now we know the direction of the instruction flow
(e.g. we know the Source/Destination)

• Bit (w) == 1: So, we know we’re in 16-Bit size mode.

3. 66:2B84F9 BC6A3C89
0x84 as we knew, is the ModRM Byte, so let’s decode it like a ModRM
Byte. 10 : 000 : 100b

• 10: Is The Mode, it means there will be a 32-BIT (DWORD) Dis-
placement.
The displacement follows the ModRM Byte if there’s no SIB byte,
else, it follows the SIB Byte.

• 000: Is The Code/Reg code, here, it’s the code for the register (AX)
(remember we’re working with 16-Bit Operand Size)

• 100: Is NOT the code for (esp). It is a special flag telling the proces-
sor that there will be another following SIB byte, so we know that
the following byte is an SIB byte.

• So The ModRM Byte Decoding Will Be (AX, WORD PTR [SIB+
DISP32])

4. 66:2B84F9 BC6A3C89
0xF9 as we knew, is the SIB Byte, let’s decode it as a SIB Byte: 11 : 111
: 001b

• 11: The Scale (3d) == (23 == 8)

• 111: The Index Register (EDI)

• 001: The Base Register (ECX)

• The decoding for the SIB Byte, would be (Base +Index*Scale) ==
(ECX+EDI*8)

• The decoding for the ModRM Byte & SIB Byte will be (AX WORD
PTR [ECX+EDI*8 + DISP32)

5. 66:2B84F9 BC6A3C89
0xBC6A3C89 Is the Displacement (we knew that from the ModRM Byte)
it’s decoded (little endian) like this (0x893C6ABC). So the complete de-
coding will be ( SUB AX WORD PTR [ECX+EDI*8 + 893C6ABC )



11.3. FINAL WORDS 97

I hope the example made you understand better the SIB byte decoding, the best
way to fully understand it, is by practicing. Use the tool included + OllyDbg,
and enjoy!

11.3 Final Words
So far, we’ve learned a lot about the Intel Instruction Format, we’ll finish it in
the next chapter, then we’ll start coding the engine for out disassembler.

11.4 In the next chapter
• Everything About the Displacement



98 CHAPTER 11. EVERYTHING ABOUT SIB



Chapter 12

Everything About
Displacement

99



100 CHAPTER 12. EVERYTHING ABOUT DISPLACEMENT

Displacement is sometimes required by some addressing forms, it comes right
after any ModRM Byte or SIB Byte (if present). Displacement can be 1,2 or 4
bytes. Look at the following tables from the Intel Manuals.

Figure 12.1: 16-Bit and 32-Bit Addressing Forms with the ModRM Byte

In the previous two tables, it shows when displacement is required, depending
on the ModRM and the addressing mode (remember address-size prefix?). Let’s
see few examples:

1. 32-Bit Addressing Mode

• 8B:05 00000010 [CODE][MODRM][DISP32] mov eax, dword ptr ds:[10000000]
[CODE] --> ’MOV’
[MODRM] --> 00:000:101 == [DISP32]
[DISP32] --> 00000010 == 10000000

• 8B:40 10 [CODE][MODRM][DISP32] mov eax, dword ptr ds:[10]
[CODE] --> ’MOV’
[MODRM] --> 01:000:000 == [EAX+DISP8]
[DISP8] --> 10 == 10

• 8B:80 00000010 [CODE][MODRM][DISP32] mov eax, dword ptr ds:[eax+10000000]
[CODE] --> ’MOV’
[MODRM] --> 10:000:000 == [EAX+DISP32]
[DISP32] --> 00000010 == 10000000



12.1. FINAL WORDS 101

2. 16-Bit Addressing Mode

• 67:8B06 1234 [PREFIX][CODE][MODRM][DISP16] mov eax, dword ptr ds:[3412]
[PREFIX] --> 16-Bit Addressing Mode
[CODE] --> ’MOV’
[MODRM] --> 00:000:110 == [DISP16]
[DISP16] --> 1234 == 3412

• 67:8B40 12 [PREFIX][CODE][MODRM][DISP8] mov eax, dword ptr ds:[bx+si+12]
[PREFIX] --> 16-Bit Addressing Mode
[CODE] --> ’MOV’
[MODRM] --> 01:000:000 == [DISP8]
[DISP8] --> 12 == 12

• 67:8B06 1234 [PREFIX][CODE][MODRM][DISP16] mov eax, dword ptr ds:[bx+si+3412]
[PREFIX] --> 16-Bit Addressing Mode
[CODE] --> ’MOV’
[MODRM] --> 10:000:000 == [DISP16]
[DISP16] --> 1234 == 3412

Well that’s it. I hope the previous examples (with previous chapters & previous
two tables) gave you all you need to understand what displacement is. Go and
practice now!

12.1 Final Words
This chapter was really short (The next chapter will be shorter!). There wasn’t
much to mention as we’ve already talked (maybe indirectly) about displacement
& saw how they work in the previous two chapters (ModRM & SIB).

12.2 In the next chapter
• Everything About Immediates



102 CHAPTER 12. EVERYTHING ABOUT DISPLACEMENT



Chapter 13

Everything About Immediates

103



104 CHAPTER 13. EVERYTHING ABOUT IMMEDIATES

Basically, immediate operand, is a value which is used (as-is) in the opcode.
This value can NOT be changed as a result from a previous instruction. This
value is NOT a memory address. This value is -if we can say- a constant value
which the instruction may use. To explain this more, read next. Please have a
look at the following instructions:

ADC:

0x14 ADC AL,imm8 ’ Add with carry
0x15 ADC EAX,imm32 ’ Add with carry

Example:
00401000 14 10 adc al, 10 (0x14: 000101:0:0)
00401002 15 00000010 adc eax, 10000000 (0x15: 000101:0:1)

ADD:

0x04 ADD AL,imm8 ’ Add
0x05 ADD EAX,imm32 ’ Add
00401000 04 10 add al, 10 (0x04: 000001:0:0)
00401002 05 00000010 add eax, 10000000 (0x05: 000001:0:1)

Looking the LSB, we can say (as we knew in the previous chapters) that this
bit is the (w) bit, which is responsible for the operand size (is it Full-Size (32-
Bit/16-Bit)or Partial Size (8-Bit). But what about the next bit? We saw this
bit (Bit[1]) in the previous chapters -for some 1-byte opcodes- as the Bit (d)
or the bit which is responsible for telling what operand is the source and what
is the destination. But if you had a look at the previous examples above, you
can see that we are dealing with an (immediate) value. Each instruction above
refers to an immediate value. It’s not a memory address, just a value. For
example ( add eax, [10000000]) is not the same as ( add eax, 10000000 ), the
first is adding the value in a memory address, the second as adding the value
itself. I think it’s pretty obvious. so, back to that bit ( Bit[1] ). When we’re
dealing with an instruction that uses an immediate value such as the example
above, do we expect to have a bit (d) that’s responsible for the direction of
Source/Destination ? Could we ever see something like:

(00401000 add 10000000, eax)

Is such an instruction valid? Of course NO! We can NOT have an immediate
value as the destination operand. And thus, instructions dealing with immediate
operands, does NOT need such a bit -Bit (d)- as the immediate operand is AL-
WAYS the source operand. Above examples were meant to make us understand
what the immediates are, and why there can’t be a bit (d) in an instruction
using an immediate operand. So, forget about the previous examples for now,
and go on.

13.1 Bit (s) : A New Special Bit
So is the bit [1] in an instruction using an immediate operand does have a special
name/meaning? Yes, it does. The bit[1] from now on will be referenced as Bit



13.2. FINAL WORDS 105

(S). Let’s understand what does it mean. The description of the Bit (S) from
the Intel Manuals:

Sign Extend (s) Bit: The sign-extend (s) bit occurs primarily
in instructions with immediate data fields that are being extended
from 8 bits to 16 or 32 bits. Table B-5 shows the encoding of the s
bit.

Bit (S) Effect on 8-Bit Immediate Data Effect on 16- or 32-Bit Immediate Data
0 None None
1 Sign-Extend to fill 16-Bit None

or 32-Bit destination

From the previous table, we can say that Bit (S) has no effect on a (16/32-Bit)
immediate operand. It only affects 8-Bit immediate operands. Well, not clear?
Let’s see the following example:

80D0 11 adc al,11 (100000:0:0 Bit (s) == 0 Bit (w) == 0)
81D0 11223344 adc eax,44332211 (100000:0:1 Bit (s) == 0 Bit (w) == 1)
82D0 11 adc al,11 (100000:1:0 Bit (s) == 1 Bit (w) == 0)
83D0 11 adc eax,11 (100000:1:1 Bit (s) == 1 Bit (w) == 1)

80 s = 0 , w = 0 (immsize = full, operand = byte)
81 s = 0 , w = 1 (immsize = full, operand = full)
82 s = 1 , w = 0 (immsize = sbyte, operand = byte)
83 s = 1 , w = 1 (immsize = sbyte, operand = full)

If you don’t understand this chapter, or you find any difficulty, it’s OK. Just
read it again, and then read next chapters, you’ll get more used to it in next
chapters.

13.2 Final Words
This chapter was the last part of the Intel Instruction Format. We should by now
know everything (at least most of the knowledge) about the Intel Instruction
Format. In the next chapter we’ll cover some few things that we didn’t mention,
about the Intel Instruction Format. After the next chapter, we’ll go into an
amazing journey, making our disassembler. We’ll have a great time coding our
disassembler, and watching how it really decodes the bytes :) But as a suggestion
from me, please don’t go on before you understand the previous chapters. If you
do have some questions that the previous chapters couldn’t answer, you know
where to ask us questions.

13.3 In the next chapter
• Final Words About The Intel Instruction Format



106 CHAPTER 13. EVERYTHING ABOUT IMMEDIATES



Chapter 14

Final Words About The Intel
Instruction Format

107



108CHAPTER 14. FINAL WORDS ABOUT THE INTEL INSTRUCTION FORMAT

14.1 ModRM 16-Bit
In the previous chapter we saw how to decode ModRM byte (and included a
tool) but only 32-Bit version. We didn’t talk about 16-Bit mode. In this chapter
we’ll see how to decode 16-Bit ModRM Byte. Let’s look at the following table
extracted from the Intel Manuals.

Figure 14.1: 16-Bit Addressing Forms with the ModR/M Byte

Decoding ModRM Byte in 16-Bit Addressing Mode, can be considered easier
than 32-Bit Mode, as there’re not much exceptions in decoding. You should
(as you’re reading chapter twelve) have knowledge for understanding what does
the previous table mean, and how to decode a ModRM byte in 16-Bit address
mode, by looking at the table only! Attached with this chapter is a tool, to help
you practicing with the decoding.



14.2. FINAL WORDS 109

14.2 Final Words
In this short chapter, we -almost- finished everything in the Intel Instruction
Format. It’s impossible not no forget something, but you can make sure that
if we did forget something it’ll be mentioned later in the real engine. Starting
from next chapter, the fun begins :)

14.3 In the next chapter
• Building The Decoding Engine Skeleton



110CHAPTER 14. FINAL WORDS ABOUT THE INTEL INSTRUCTION FORMAT



Chapter 15

Building The Decoding
Engine Skeleton

111



112 CHAPTER 15. BUILDING THE DECODING ENGINE SKELETON

15.1 Before Starting
Before starting I must say that the project is based on the (AoD Beta) project
we made in chapter four. I found it important to mention, so you don’t get
confused.

15.2 Constructing A Bytes-Parser
A Bytes-Parser -if we can call it- is the procedure that will loop through the
bytes we need to disassembler. Let’s understand the following procedure clearly
before we construct our Byte-Parser.

15.2.1 Understanding Of Old Code
Inside ( MenuHandling.inc ) : MnuFileOpen

The procedure starts by invoking the (GetOpenFileName) API, which is re-
sponsible for showing the ’Open File’ Dialog.

;------------------------------------- Open file -------------------
; Display the "Open File" dialog box

;-------------------------------------------------------------------

invoke GetOpenFileName, ADDR ofn

The return value is (TRUE) if we selected a file to open (e.g. didn’t click
’cancel’), else the return value is (FALSE). We need to check the return value
so we can decide, should we continue or not.

;--------------------------------------------------------------
.if eax==TRUE ; Didn’t click CANCEL

;--------------------------------------------------------------

After this, we can continue normally to load the file, map it to memory. After
successfully loading the file, we call the procedure (CheckSignatures) to check
whether the file is a valid PE file. If the file is a valid PE file, we continue by
calling the procedures (GetNumberOfSections - GetSections - GetEntryPoint ).
You should check the sources for full details.



15.2. CONSTRUCTING A BYTES-PARSER 113

Writing New Code:

So a Bytes-Parser will actually loop through the bytes of the code section. So,
we need to write a procedure that will get the code section, and it’s length so
we can -parse- its bytes. We can do this, by looping through the sections of the
loaded PE, and check them against the EntryPoint. Once a section that con-
tains the EntryPoint is found, we know that this is the code section we should
disassemble (We’re not dealing with any kind of packers in the current stage of
AoD). Let’s write the (GetCodeSection) procedure.

Inside ( PEStuff.inc ) : GetCodeSection

This procedure, uses the (RVAToOffset) to get the Code Section Index, and
then get its offset & its size. The offset & size are saved to (CodeStartRVA /
CodeStartOffset & CodeSize). We’ll need these values later in our parser. So
now, we have the start and the length of the code section. Let’s write a simple
(fake) parser. (What’s the use of such -fake- parser? Well, to simulate the
process of disassembling the code section, so the fake parser will just display all
the bytes in the code section only)



114 CHAPTER 15. BUILDING THE DECODING ENGINE SKELETON

Inside ( BytesParser.inc ) : ParseCodeSection

And Some Data For The Fake Parser



15.2. CONSTRUCTING A BYTES-PARSER 115

As I said, the previous procedure does nothing more than simulating a disas-
sembler parsing routine, and test our code that gets the code section offset &
size. It’s therefore not necessary to optimize it in anyway, as it’ll be changed -as
we’ll see next-. The output from the previous procedure (for the msgbox.exe
attached) would be like this:



116 CHAPTER 15. BUILDING THE DECODING ENGINE SKELETON

15.3 Idea Of A Real Engine Skeleton
Now instead of making a -fake- parser, let’s do the real engine. Let’s build a
skeleton for the decoding engine. To accomplish this, let’s put some points that
should be included in a real engine:

• Engine Initialize : Set the necessary initialization data

• Locates the code section

• Read 1-Byte

– Check for prefixes & save data for later use

– Get the [CODE] byte

– Use this byte to jump to the necessary procedure to decode this byte
(using a jump-table)

∗ The (jump-table) will -jump to the corresponding decoding pro-
cedure for each [CODE] byte

∗ Each decoding procedure will use (all/some) of the following pro-
cedures
· A procedure to extract bits from [CODE] byte. (e.g. Bit (d)

/ Bit (s) / Bit (w))
· A procedure to decode a ModRM byte.
· A procedure to decode an SIB byte. (We get this from the

previous procedure).
· A procedure to get the displacement/immediate value.

∗ Invoke the formatting procedure, which will join the result of all
previous procedures.

– Calculate the length of the whole instruction, and set the index to
the next instruction.

• Go to next byte to be decoded.

• Loop.

That was the layout of a real decoding engine. This is what we’re going to build
in the next chapter. Take a look at the picture for better understanding of the
layout.



15.4. FINAL WORDS 117

You should’ve got the idea now, on how our engine will work. This is the basic-
layout, in next chapters, there’ll be some changes, but the architecture remains
the same.

15.4 Final Words
In this chapter we saw what is a Byte-Parser. We coded a fake one, just to
see how to extract the bytes that need to be disassembled (code section) from
a PE file. And the most important thing, we talked about the idea of a real
decoding engine. In the next chapter, we’ll design the decoding engine, step-by-
step, based on the idea we talked about in this chapter. Obviously, it’s getting
more fun.

15.5 In the next chapter
We will read

• Designing The Engine



118 CHAPTER 15. BUILDING THE DECODING ENGINE SKELETON



Bibliography

[1] Hutch. hutch’s home page - masm32 download page.
http://www.movsd.com/ , http://www.masm32.com/, 2003.

[2] Iczelion. Iczelion. 2003.

[3] KetilO. Radasm c© win32 assembly ide for
masm/tasm/fasm/nasm/goasm/hla. http://radasm.visualassembler.com/,
2003.

[4] Luevelsmeyer. Luevelsmeyer. 2003.

[5] MASM. Masm. 2003.

[6] Microsoft(C). Msdn developer centers. http://msdn.microsoft.com/, 2003.

[7] OllyDbg. Ollydbg. 2003.

119


