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Preface

The present book is a completely rewritten version of the second edition of my
Introduction to Functional Programming using Haskell (Prentice Hall). The main
changes are: a reorganisation of some introductory material to reflect the needs of
a one or two term lecture course; a fresh set of case studies; and a collection of
over 100 exercises that now actually contain answers. As before, no knowledge of
computers or programming is assumed, so the material is suitable as a first course
in computing.

Every author has his or her own drum to beat when writing a textbook, and the
present one is no different. While there are now numerous books, tutorials, articles
and blogs devoted to Haskell, few of them emphasise what seems to me the main
reason why functional programming is the best thing since sliced bread: the ability
to think mathematically about functional programs. And the mathematics involved
is neither new nor difficult. Any student who has come to grips with, say, high-
school trigonometry and has applied simple trigonometric laws and identities to
simplify expressions involving sines and cosines (a typical example: express sin3α
in terms of sinα) will quickly appreciate that a similar activity is being proposed
for programming problems. And the payoff is there at the terminal: faster compu-
tations. Even after 30 years I still get a great deal of pleasure from writing down a
simple, obvious, but inefficient way to solve a problem, applying some well-known
equational laws, and coming up with another solution that is ten times faster. Well,
if I’m lucky.

If the message of the last paragraph turns you off, if you are perpetually running
away from the Mordor of Mathematics, then the present book is probably not for
you. Probably, but not necessarily so (nobody likes to lose customers). There is
still pleasure to be gained in learning a novel and exciting way to write programs.
Even programmers who for one reason or another do not or cannot use Haskell
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in their daily work, and certainly do not have the time to spend calculating better
answers to their problems, have still been inspired by the enjoyment of learning
Haskell and are hugely appreciative of its ability to express computational ideas
and methods simply and briefly. In fact, the ability to express programming ideas in
a purely functional style has been slowly incorporated into mainstream imperative
programming languages, such as Python, Visual Basic, and C#.

One final but important point: Haskell is a large language and this book by no
means covers all of it. It is not a reference guide to Haskell. Although details of
the language appear on almost every page, especially in the earlier chapters, my
primary intention is to convey the essence of functional programming, the idea of
thinking functionally about programs, not to dwell too much on the particulars of
one specific language. But over the years Haskell has absorbed and codified most
of the ideas of functional programming expressed in earlier functional languages,
such as SASL, KRC, Miranda, Orwell and Gofer, and it is difficult to resist the
temptation to explain everything in terms of this one super-cool language.

Most of the programs recorded in this book can be found on the website

www.cs.ox.ac.uk/publications/books/functional

It is hoped to add more exercises (and answers), suggestions for projects, and so
on, in due course. For more information about Haskell, the site www.haskell.org
should be your first port of call.
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Exercises

Exercise A

Express sin3α in terms of sinα .

Answers

Answer to Exercise A

sin3α
= {arithmetic}

sin(2α +α)

= {since sin(α +β ) = sinα cosβ + cosα sinβ}
sin2α cosα + cos2α sinα

= {since sin2α = 2sinα cosα}
2sinα cos2 α + cos2α sinα

= {since cos2α = cos2 α − sin2 α}
2sinα cos2 α +(cos2 α − sin2 α)sinα

= {since sin2 α + cos2 α = 1}
sinα(3−4sin2 α)

The above proof format was, I believe, invented by Wim Feijen. It will be used
throughout the book.





Chapter 1

What is functional programming?

In a nutshell:

• Functional programming is a method of program construction that emphasises
functions and their application rather than commands and their execution.

• Functional programming uses simple mathematical notation that allows prob-
lems to be described clearly and concisely.

• Functional programming has a simple mathematical basis that supports equa-
tional reasoning about the properties of programs.

Our aim in this book is to illustrate these three key points, using a specific func-
tional language called Haskell.

1.1 Functions and types

We will use the Haskell notation

f :: X -> Y

to assert that f is a function taking arguments of type X and returning results of
type Y. For example,

sin :: Float -> Float

age :: Person -> Int

add :: (Integer,Integer) -> Integer

logBase :: Float -> (Float -> Float)

Float is the type of floating-point numbers, things like 3.14159, and Int is the
type of limited-precision integers, integers n that lie in a restricted range such as
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−229 ≤ n < 229. The restriction is lifted with the type Integer, which is the type
of unlimited-precision integers. As we will see in Chapter 3, numbers in Haskell
come in many flavours.

In mathematics one usually writes f (x) to denote the application of the function
f to the argument x. But we also write, for example, sinθ rather than sin(θ). In
Haskell we can always write f x for the application of f to the argument x. The
operation of application can be denoted using a space. If there are no parentheses
the space is necessary to avoid confusion with multi-letter names: latex is a name
but late x denotes the application of a function late to an argument x.

As examples, sin 3.14 or sin (3.14) or sin(3.14) are three legitimate ways
of writing the application of the function sin to the argument 3.14.

Similarly, logBase 2 10 or (logBase 2) 10 or (logBase 2)(10) are all le-
gitimate ways of writing the logarithm to base 2 of the number 10. But the expres-
sion logBase (2 10) is incorrect. Parentheses are needed in writing add (3,4)

for the sum of 3 and 4 because the argument of add is declared above as a pair of
integers and pairs are expressed with parentheses and commas.

Look again at the type of logBase. It takes a floating point number as argument,
and returns a function as result. At first sight that might seem strange, but at second
sight it shouldn’t: the mathematical functions log2 and loge are exactly what is
provided by logBase 2 and logBase e.

In mathematics one can encounter expressions like logsinx. To the mathematician
that means log(sinx), since the alternative (logsin) x doesn’t make sense. But in
Haskell one has to say what one means, and one has to write log (sin x) because
log sin x is read by Haskell as (log sin) x. Functional application in Haskell
associates to the left in expressions and also has the highest binding power. (By
the way, log is the Haskell abbreviation for logBase e.)

Here is another example. In trigonometry one can write

sin2θ = 2sinθ cosθ .

In Haskell one has to write

sin (2*theta) = 2 * sin theta * cos theta

Not only do we have to make the multiplications explicit, we also have to put in
parentheses to say exactly what we mean. We could have added a couple more and
written

sin (2*theta) = 2 * (sin theta) * (cos theta)
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but the additional parentheses are not necessary because functional application
binds tighter than multiplication.

1.2 Functional composition

Suppose f :: Y -> Z and g :: X -> Y are two given functions. We can com-
bine them into a new function

f . g :: X -> Z

that first applies g to an argument of type X, giving a result of type Y, and then
applies f to this result, giving a final result of type Z. We always say that functions
take arguments and return results. In fact we have

(f . g) x = f (g x)

The order of composition is from right to left because we write functions to the
left of the arguments to which they are applied. In English we write ‘green pig’
and interpret adjectives such as ‘green’ as functions taking noun phrases to noun
phrases. Of course, in French . . .

1.3 Example: common words

Let us illustrate the importance of functional composition by solving a problem.
What are the 100 most common words in War and Peace? What are the 50 most
common words in Love’s Labours Lost? We will write a functional program to
find out. Well, perhaps we are not yet ready for a complete program, but we can
construct enough of one to capture the essential spirit of functional programming.

What is given? Answer: a text, which is a list of characters, containing visible char-
acters like 'B' and ',', and blank characters like spaces and newlines (' ' and
'\n'). Note that individual characters are denoted using single quotes. Thus 'f'
is a character, while f is a name. The Haskell type Char is the type of charac-
ters, and the type of lists whose elements are of type Char is denoted by [Char].
This notation is not special to characters, so [Int] denotes a list of integers, and
[Float -> Float] a list of functions.

What is wanted as output? Answer: something like

the: 154

of: 50
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a: 18

and: 12

in: 11

This display is also a list of characters, in fact it is the list

" the: 154\n of: 50\n a: 18\n and: 12\n in: 11\n"

Lists of characters are denoted using double quotes. More on this in the exercises.

So we want to design a function, commonWords say, with type

commonWords :: Int -> [Char] -> [Char]

The function commonWords n takes a list of characters and returns a list of the
n most common words in the list as a string (another name for a list of charac-
ters) in the form described above. The type of commonWords is written without
parentheses, though we can put them in:

commonWords :: Int -> ([Char] -> [Char])

Whenever two -> signs are adjacent in a type, the order of association is from right
to left, exactly the opposite convention of functional application. So A -> B -> C

means A -> (B -> C). If you want to describe the type (A -> B) -> C you
have to put in the parentheses. More on this in the next chapter.

Having understood precisely what is given and what is wanted, different people
come up with different ways of solving the problem, and express different worries
about various parts of the problem. For example, what is a ‘word’ and how do you
convert a list of characters into a list of words? Are the words "Hello", "hello"
and "Hello!" distinct words or the same word? How do you count words? Do
you count all the words or just the most common ones? And so on. Some find these
details daunting and overwhelming. Most seem to agree that at some intermediate
point in the computation we have to come up with a list of words and their frequen-
cies, but how do we get from there to the final destination? Do we go through the
list n times, extracting the word with the next highest frequency at each pass, or is
there something better?

Let’s start with what a word is, and just assert that a word is a maximal sequence
of characters not containing spaces or newline characters. That allows words like
"Hello!", or "3*4" or "Thelma&Louise" but never mind. In a text a word is
identified by being surrounded by blank characters, so "Thelma and Louise"

contains three words.
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We are not going to worry about how to split a text up into a list of its component
words. Instead we just assume the existence of a function

words :: [Char] -> [[Char]]

that does the job. Types like [[Char]] can be difficult to comprehend, but in
Haskell we can always introduce type synonyms:

type Text = [Char]

type Word = [Char]

So now we have words :: Text -> [Word], which is much easier on the brain.
Of course, a text is different from a word in that the former can contain blank
characters and the latter cannot, but type synonyms in Haskell do not support such
subtle distinctions. In fact, words is a library function in Haskell, so we don’t have
to define it ourselves.

There is still the issue of whether "The" and "the" denote the same or different
words. They really should be the same word, and one way of achieving this is to
convert all the letters in the text to lowercase, leaving everything else unchanged.
To this end, we need a function toLower :: Char -> Char that converts upper-
case letters to lowercase and leaves everything else unchanged. In order to apply
this function to every character in the text we need a general function

map :: (a -> b) -> [a] -> [b]

such that map f applied to a list applies f to every element of the list. So, convert-
ing everything to lowercase is done by the function

map toLower :: Text -> Text

Good. At this point we have words . map toLower as the function which con-
verts a text into a list of words in lowercase. The next task is to count the number
of occurrences of each word. We could go through the list of words, checking to
see whether the next word is new or has been seen before, and either starting a new
count for a new word or incrementing the count for an existing word. But there is
a conceptually simpler method, namely to sort the list of words into alphabetical
order, thereby bringing all duplicated words together in the list. Humans would not
do it this way, but the idea of sorting a list to make information available is proba-
bly the single most important algorithmic idea in computing. So, let us assume the
existence of a function

sortWords :: [Word] -> [Word]

that sorts the list of words into alphabetical order. For example,
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sortWords ["to","be","or","not","to","be"]

= ["be","be","not","or","to","to"]

Now we want to count the runs of adjacent occurrences of each word in the sorted
list. Suppose we have a function

countRuns :: [Word] -> [(Int,Word)]

that counts the words. For example,

countRuns ["be","be","not","or","to","to"]

= [(2,"be"),(1,"not"),(1,"or"),(2,"to")]

The result is a list of words and their counts in alphabetical order of the words.

Now comes the key idea: we want the information in the list to be ordered not by
word, but by decreasing order of count. Rather than thinking of something more
clever, we see that this is just another version of sorting. As we said above, sorting
is a really useful method in programming. So suppose we have a function

sortRuns :: [(Int,Word)] -> [(Int,Word)]

that sorts the list of runs into descending order of count (the first component of
each element). For example,

sortRuns [(2,"be"),(1,"not"),(1,"or"),(2,"to")]

= [(2,"be"),(2,"to"),(1,"not"),(1,"or")]

The next step is simply to take the first n elements of the result. For this we need a
function

take :: Int -> [a] -> [a]

so that take n takes the first n elements of a list of things. As far as take is
concerned it doesn’t matter what a ‘thing’ is, which is why there is an a in the type
signature rather than (Int,Word). We will explain this idea in the next chapter.

The final steps are just tidying up. We first need to convert each element into a string
so that, for example, (2,"be") is replaced by "be 2\n". Call this function

showRun :: (Int,Word) -> String

The type String is a predeclared Haskell type synonym for [Char]. That means

map showRun :: [(Int,Word)] -> [String]

is a function that converts a list of runs into a list of strings.

The final step is to use a function
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concat :: [[a]] -> [a]

that concatenates a list of lists of things together. Again, it doesn’t matter what the
‘thing’ is as far as concatenation is concerned, which is why there is an a in the
type signature.

Now we can define

commonWords :: Int -> Text -> String

commonWords n = concat . map showRun . take n .

sortRuns . countRuns . sortWords .

words . map toLower

The definition of commonWords is given as a pipeline of eight component functions
glued together by functional composition. Not every problem can be decomposed
into component tasks in quite such a straightforward manner, but when it can, the
resulting program is simple, attractive and effective.

Notice how the process of decomposing the problem was governed by the declared
types of the subsidiary functions. Lesson Two (Lesson One being the importance
of functional composition) is that deciding on the type of a function is the very first
step in finding a suitable definition of the function.

We said above that we were going to write a program for the common words prob-
lem. What we actually did was to write a functional definition of commonWords,
using subsidiary definitions that we either can construct ourselves or else import
from a suitable Haskell library. A list of definitions is called a script, so what we
constructed was a script. The order in which the functions are presented in a script
is not important. We could place the definition of commonWords first, and then de-
fine the subsidiary functions, or else define all these functions first, and end up with
the definition of the main function of interest. In other words we can tell the story
of the script in any order we choose. We will see how to compute with scripts later
on.

1.4 Example: numbers into words

Here is another example, one for which we will provide a complete solution. The
example demonstrates another fundamental aspect of problem solving, namely that
a good way to solve a tricky problem is to first simplify the problem and then see
how to solve the simpler problem.

Sometimes we need to write numbers as words. For instance
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convert 308000 = "three hundred and eight thousand"

convert 369027 = "three hundred and sixty-nine thousand and

twenty-seven"

convert 369401 = "three hundred and sixty-nine thousand

four hundred and one"

Our aim is to design a function

convert :: Int -> String

that, given a nonnegative number less than one million, returns a string that repre-
sents the number in words. As we said above, String is a predeclared type syn-
onym in Haskell for [Char].

We will need the names of the component numbers. One way is to give these as
three lists of strings:

> units, teens, tens :: [String]

> units = ["zero","one","two","three","four","five",

> "six","seven","eight","nine"]

> teens = ["ten","eleven","twelve","thirteen","fourteen",

> "fifteen","sixteen","seventeen","eighteen",

> "nineteen"]

> tens = ["twenty","thirty","forty","fifty","sixty",

> "seventy","eighty","ninety"]

Oh, what is the > character doing at the beginning of each line above? The answer
is that, in a script, it indicates a line of Haskell code, not a line of comment. In
Haskell, a file ending with the suffix .lhs is called a Literate Haskell Script and
the convention is that every line in such a script is interpreted as a comment unless
it begins with a > sign, when it is interpreted as a line of program. Program lines are
not allowed next to comments, so there has to be at least one blank line separating
the two. In fact, the whole chapter you are now reading forms a legitimate .lhs file,
one that can be loaded into a Haskell system and interacted with. We won’t carry
on with this convention in subsequent chapters (apart from anything else, it would
force us to use different names for each version of a function that we may want to
define) but the present chapter does illustrate literate programming in which we
can present and discuss the definitions of functions in any order we wish.

Returning to the task in hand, a good way to tackle tricky problems is to solve
a simpler problem first. The simplest version of our problem is when the given
number n contains only one digit, so 0 ≤ n < 10. Let convert1 deal with this
version. We can immediately define
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> convert1 :: Int -> String

> convert1 n = units!!n

This definition uses the list-indexing operation (!!). Given a list xs and an index
n, the expression xs!!n returns the element of xs at position n, counting from 0.
In particular, units!!0 = "zero". And, yes, units!!10 is undefined because
units contains just ten elements, indexed from 0 to 9. In general, the functions we
define in a script are partial functions that may not return well-defined results for
each argument.

The next simplest version of the problem is when the number n has up to two digits,
so 0 ≤ n < 100. Let convert2 deal with this case. We will need to know what the
digits are, so we first define

> digits2 :: Int -> (Int,Int)

> digits2 n = (div n 10, mod n 10)

The number div n k is the whole number of times k divides into n, and mod n k

is the remainder. We can also write

digits2 n = (n `div` 10, n `mod` 10)

The operators `div` and `mod` are infix versions of div and mod, that is, they
come between their two arguments rather than before them. This device is useful
for improving readability. For instance a mathematician would write x div y and
x mod y for these expressions. Note that the back-quote symbol ` is different from
the single quote symbol ' used for describing individual characters.

Now we can define

> convert2 :: Int -> String

> convert2 = combine2 . digits2

The definition of combine2 uses the Haskell syntax for guarded equations:

> combine2 :: (Int,Int) -> String

> combine2 (t,u)

> | t==0 = units!!u

> | t==1 = teens!!u

> | 2<=t && u==0 = tens!!(t-2)

> | 2<=t && u/=0 = tens!!(t-2) ++ "-" ++ units!!u

To understand this code you need to know that the Haskell symbols for equality
and comparison tests are as follows:
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== (equals to)
/= (not equals to)
<= (less than or equal to)

These functions have well-defined types that we will give later on.

You also need to know that the conjunction of two tests is denoted by &&. Thus
a && b returns the boolean value True if both a and b do, and False otherwise.
In fact

(&&) :: Bool -> Bool -> Bool

The type Bool will be described in more detail in the following chapter.

Finally, (++) denotes the operation of concatenating two lists. It doesn’t matter
what the type of the list elements is, so

(++) :: [a] -> [a] -> [a]

For example, in the equation

[sin,cos] ++ [tan] = [sin,cos,tan]

we are concatenating two lists of functions (each of type Float -> Float), while
in

"sin cos" ++ " tan" = "sin cos tan"

we are concatenating two lists of characters.

The definition of combine2 is arrived at by carefully considering all the possible
cases that can arise. A little reflection shows that there are three main cases, namely
when the tens part t is 0, 1 or greater than 1. In the first two cases we can give the
answer immediately, but the third case has to be divided into two subcases, namely
when the units part u is 0 or not 0. The order in which we write the cases, that is, the
order of the individual guarded equations, is unimportant as the guards are disjoint
from one another (that is, no two guards can be true) and together they cover all
cases.

We could also have written

combine2 :: (Int,Int) -> String

combine2 (t,u)

| t==0 = units!!u

| t==1 = teens!!u

| u==0 = tens!!(t-2)

| otherwise = tens!!(t-2) ++ "-" ++ units!!u
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but now the order in which we write the equations is crucial. The guards are evalu-
ated from top to bottom, taking the right-hand side corresponding to the first guard
that evaluates to True. The identifier otherwise is just a synonym for True, so
the last clause captures all the remaining cases.

There is yet another way of writing convert2:

convert2 :: Int -> String

convert2 n

| t==0 = units!!u

| t==1 = teens!!u

| u==0 = tens!!(t-2)

| otherwise = tens!!(t-2) ++ "-" ++ units!!u

where (t,u) = (n `div` 10, n `mod` 10)

This makes use of a where clause. Such a clause introduces a local definition
or definitions whose context or scope is the whole of the right-hand side of the
definition of convert2. Such clauses are very useful in structuring definitions and
making them more readable. In the present example, the where clause obviates the
need for an explicit definition of digits2.

That was reasonably easy, so now let us consider convert3 which takes a number
n in the range 0 ≤ n < 1000, so n has up to three digits. The definition is

> convert3 :: Int -> String

> convert3 n

> | h==0 = convert2 t

> | n==0 = units!!h ++ " hundred"

> | otherwise = units!!h ++ " hundred and " ++ convert2 t

> where (h,t) = (n `div` 100, n `mod` 100)

We break up the number in this way because we can make use of convert2 for
numbers that are less than 100.

Now suppose n lies in the range 0 ≤ n < 1,000,000, so n can have up to six digits.
Following exactly the same pattern as before, we can define

> convert6 :: Int -> String

> convert6 n

> | m==0 = convert3 h

> | h==0 = convert3 m ++ " thousand"

> | otherwise = convert3 m ++ " thousand" ++ link h ++

> convert3 h

> where (m,h) = (n `div` 1000,n `mod` 1000)
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There will be a connecting word ‘and’ between the words for m and h just in the
case that 0 < m and 0 < h < 100. Thus

> link :: Int -> String

> link h = if h < 100 then " and " else " "

This definition makes use of a conditional expression

if <test> then <expr1> else <expr2>

We could also have used guarded equations:

link h | h < 100 = " and "

| otherwise = " "

Sometimes one is more readable, sometimes the other. The names if, then and
else, along with some others, are reserved words in Haskell, which means that we
cannot use them as names for things we want to define.

Notice how the definition of convert6 has been constructed in terms of the simpler
function convert3, which in turn has been defined in terms of the even simpler
function convert2. That is often the way with function definitions. In this example
consideration of the simpler cases is not wasted because these simple cases can be
used in the final definition.

One more thing: we have now named the function we are after as convert6, but
we started off by saying the name should be convert. No problem:

> convert :: Int -> String

> convert = convert6

What we would like to do now is actually use the computer to apply convert to
some arguments. How?

1.5 The Haskell Platform

If you visit the site www.haskell.org, you will see how to download The Haskell
Platform. This is a large collection of tools and packages that can be used to run
Haskell scripts. The platform comes in three versions, one for each of Windows,
Mac and Linux. We deal only with the Windows version, the others being similar.

One of the tools is an interactive calculator, called GHCi. This is short for Glasgow
Haskell Compiler Interpreter. The calculator is available as a Windows system
called WinGHCi. If you open this window, you will get something like
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GHCi, version 7.6.3: http://www.haskell.org/ghc/ :? for help

Loading package ghc-prim ... linking ... done.

Loading package integer-gmp ... linking ... done.

Loading package base ... linking ... done.

Prelude>

The prompt Prelude> means that the standard library of prelude functions, pre-
declared types and other values is loaded. You can now use GHCi as a super-
calculator:

Prelude> 3^5

243

Prelude> import Data.Char

Prelude Data.Char> map toLower "HELLO WORLD!"

"hello world!"

Prelude Data.Char>

The function toLower resides in the library Data.Char. After importing this li-
brary you have access to the functions defined in the library. Note that the prompt
changes and now indicates the libraries that have been loaded. Such prompts can
grow in size very quickly. But we can always change the prompt:

Prelude> :set prompt ghci>

ghci>

For brevity we will use this prompt throughout the book.

You can load a script, Numbers2Words.lhs say, that contains the definition of
convert as follows:

ghci> :load "Numbers2Words.lhs"

[1 of 1] Compiling Main ( Numbers2Words.lhs, interpreted )

Ok, modules loaded: Main.

ghci>

We will explain what modules are in the next chapter. Now you can type, for ex-
ample,

ghci> convert 301123

"three hundred and one thousand one hundred and twenty-three"

ghci>

We end the chapter with some exercises. These contain additional points of interest
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and should be regarded as an integral part of the text. The same is true for all
subsequent chapters, so please read the questions even if you do not answer them.
The answers are given afterwards.

1.6 Exercises

Exercise A

Consider the function

double :: Integer -> Integer

double x = 2*x

that doubles an integer. What are the values of the following expressions?

map double [1,4,4,3]

map (double . double) [1,4,4,3]

map double []

Suppose sum :: [Integer] -> Integer is a function that sums a list of inte-
gers. Which of the following assertions are true and why?

sum . map double = double . sum

sum . map sum = sum . concat

sum . sort = sum

You will need to recall what the function concat does. The function sort sorts a
list of numbers into ascending order.

Exercise B

In Haskell, functional application takes precedence over every other operator, so
double 3+4 means (double 3)+4, not double (3+4). Which of the following
expressions is a rendering of sin2 θ into Haskell?

sin^2 theta sin theta^2 (sin theta)^2

(Exponentiation is denoted by (^).) How would you express sin2θ/2π as a well-
formed Haskell expression?

Exercise C

As we said in the text, a character, i.e. an element of Char, is denoted using sin-
gle quotes, and a string is denoted using double quotes. In particular the string
"Hello World!" is just a much shorter way of writing the list
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['H','e','l','l','o',' ','W','o','r','l','d','!']

General lists can be written with brackets and commas. (By the way, parentheses
are round, brackets are square, and braces are curly.) The expressions 'H' and "H"

therefore have different types. What are they? What is the difference between 2001
and "2001"?

The operation ++ concatenates two lists. Simplify

[1,2,3] ++ [3,2,1]

"Hello" ++ " World!"

[1,2,3] ++ []

"Hello" ++ "" ++ "World!"

Exercise D

In the common words example we started off by converting every letter in the
text to lowercase, and then we computed the words in the text. An alternative
is to do things the other way round, first computing the words and then con-
verting each letter in each word to lowercase. The first method is expressed by
words . map toLower. Give a similar expression for the second method.

Exercise E

An operator ⊕ is said to be associative if x⊕ (y⊕ z) = (x⊕ y)⊕ z. Is numerical
addition associative? Is list concatenation associative? Is functional composition
associative? Give an example of an operator on numbers that is not associative.

An element e is said to be an identity element of ⊕ if x⊕e= e⊕x= x for all x. What
are the identity elements of addition, concatenation and functional composition?

Exercise F

My wife has a book with the title

EHT CDOORRSSW AAAGMNR ACDIINORTY.

It contains lists of entries like this:

6-letter words

--------------

...

eginor: ignore,region

eginrr: ringer

eginrs: resign,signer,singer

...
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Yes, it is an anagram dictionary. The letters of the anagrams are sorted and the
results are stored in dictionary order. Associated with each anagram are the English
words with the same letters. Describe how you would go about designing a function

anagrams :: Int -> [Word] -> String

so that anagrams n takes a list of English words in alphabetical order, extracts
just the n-letter words and produces a string that, when displayed, gives a list of
the anagram entries for the n-letter words. You are not expected to be able to define
the various functions; just give suitable names and types and describe what each of
them is supposed to do.

Exercise G

Let’s end with a song:

One man went to mow

Went to mow a meadow

One man and his dog

Went to mow a meadow

Two men went to mow

Went to mow a meadow

Two men, one man and his dog

Went to mow a meadow

Three men went to mow

Went to mow a meadow

Three men, two men, one man and his dog

Went to mow a meadow

Write a Haskell function song :: Int -> String so that song n is the song
when there are n men. Assume n<10.

To print the song, type for example

ghci> putStrLn (song 5)

The function putStrLn will be explained in the following chapter. I suggest start-
ing with

song n = if n==0 then ""

else song (n-1) ++ "\n" ++ verse n

verse n = line1 n ++ line2 n ++ line3 n ++ line4 n
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This defines song recursively.

1.7 Answers

Answer to Exercise A

map double [1,4,4,3] = [2,8,8,6]

map (double . double) [1,4,4,3] = [4,16,16,12]

map double [] = []

You will gather from this that [] denotes the empty list.

All the following equations hold:

sum . map double = double . sum

sum . map sum = sum . concat

sum . sort = sum

In fact, each of these three equations are consequences of the three simpler laws:

a*(x+y) = a*x + a*y

x+(y+z) = (x+y)+z

x+y = y+x

Of course, we don’t know yet how to prove that the equations hold. (By the way,
to avoid fuss we will often use a typewriter = sign to denote the equality of two
Haskell expressions written in typewriter font. But a mathematical = sign is used
in equations such as sin2θ = 2sinθ cosθ .)

Answer to Exercise B

Both sin theta^2 and (sin theta)^2 are okay, but not sin^2 theta.

Here is the rendering of sin2θ/2π in Haskell:

sin (2*theta) / (2*pi)

Note that

sin (2*theta) / 2 * pi = (sin (2*theta) / 2) * pi

which is not what we want. The reason is that operators such as / and * at the same
level of precedence associate to the left in expressions. More on this in the next
chapter.
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Answer to Exercise C

'H' :: Char

"H" :: [Char]

2001 :: Integer

"2001" :: [Char]

By the way, '\' is used as an escape character, so '\n' is the newline character,
and '\t' is the tab character. Also, '\\' is the backslash character, and "\\n" is
a list of two characters, a backslash and the letter n. As a consequence, the file path
C:\firefox\stuff is written as the Haskell string "C:\\firefox\\stuff".

[1,2,3] ++ [3,2,1] = [1,2,3,3,2,1]

"Hello" ++ " World!" = "Hello World!"

[1,2,3] ++ [] = [1,2,3]

"Hello" ++ "" ++"World!" = "HelloWorld!"

If you got the last two right, you will have appreciated that [] is an empty list of
anything, but "" is an empty list of characters.

Answer to Exercise D

The clue is in the phrase ‘converting each letter in each word to lowercase’. Con-
verting each letter in a single word is expressed by map toLower, so the answer is
map (map toLower) . words. That means the following equation holds:

words . map toLower = map (map toLower) . words

Answer to Exercise E

Numerical addition, list concatenation and functional composition are all associa-
tive. But of course, numerical subtraction isn’t. Nor is exponentiation. The identity
element of addition is 0, the identity element of concatenation is the empty list, and
the identity element of functional composition is the identity function:

id :: a -> a

id x = x

Answer to Exercise F

This exercise follows Section 1.3 quite closely. One way of computing the function
anagrams n is as follows:

1. Extract the words of length n, using a function

getWords :: Int -> [Word] -> [Word]
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2. Take each word and add a label to it. The label consists of the characters of the
word, sorted into alphabetical order. For example, word is turned into the pair
("dorw","word") This labelling is achieved by the function

addLabel :: Word -> (Label,Word)

where

type Label = [Char]

3. Sort the list of labelled words into alphabetical order of label, using the function

sortLabels :: [(Label,Word)] -> [(Label,Word)]

4. Replace each group of adjacent labelled words with the same label with a single
entry consisting of a pair in which the first component is the common label and
the second component is a list of words with that label. This uses a function

groupByLabel :: [(Label,Word)] -> [(Label,[Word])]

5. Replace each entry by a string using a function

showEntry :: [(Label,[Word])] -> String

and concatenate the results.

That gives

anagrams n = concat . map showEntry . groupByLabel .

sortLabels . map addLabel . getWords n

Answer to Exercise G

One possible solution:

song n = if n==0 then ""

else song (n-1) ++ "\n" ++ verse n

verse n = line1 n ++ line2 n ++ line3 n ++ line4 n

line1 n = if n==1 then

"One man went to mow\n"

else

numbers!!(n-2) ++ " men went to mow\n"

line2 n = "Went to mow a meadow\n"

line3 n = if n==1 then

"One man and his dog\n"

else
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numbers!!(n-2) ++ " men, " ++ count (n-2)

++ "one man and his dog\n"

line4 n = "Went to mow a meadow\n\n"

count n = if n==0 then ""

else

numbs!!(n-1) ++ " men, " ++ count (n-1)

numbers = ["Two", "Three", "Four", "Five", "Six",

"Seven", "Eight", "Nine"]

numbs = ["two", "three", "four", "five", "six",

"seven", "eight"]

Notice that we have omitted to declare the types of the component functions and
values in this script. Although Haskell will infer the correct types, it is usually a
good idea to put them in for all functions and other values, however simple the
types may be. Scripts with explicit type signatures are clearer to read and provide
a useful check on the validity of definitions.

1.8 Chapter notes

If you are interested in the origins of Haskell, you should definitely read The His-
tory of Haskell, a copy of which is obtainable at

research.microsoft.com/~simonpj/papers/history-of-haskell

One of the abiding strengths of Haskell is that it wasn’t designed to be a closed
language, and researchers were encouraged to implement novel programming ideas
and techniques by building language extensions or libraries. Consequently, Haskell
is a large language and there are numerous books, tutorials and papers devoted to
various aspects of the subject, including the recent Parallel and Concurrent Pro-
gramming in Haskell by Simon Marlow (O’Reilly, 2013). Pointers to much of the
material can be found at www.haskell.org. But three books in particular were
open on my desk while writing this text. The first is Haskell 98, Languages and Li-
braries, The Revised Report (Cambridge University Press, 2003), edited by Simon
Peyton Jones. This is an indispensable aid in understanding the nitty-gritty of the
first standard version of Haskell, called Haskell 98. An online version of the report
is available at

www.haskell.org/onlinereport
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The present book mostly follows this standard, though it does not cover the whole
language by any means.

Since then a new standard, Haskell 2010, has been released; see

haskell.org/onlinereport/haskell2010/

One change is that module names are now hierarchical, so we write Data.List

rather than just List for the library of list utilities.

The second two are textbooks: Real World Haskell (O’Reilly, 2009) by Bryan
O’Sullivan, John Goerzen and Don Stewart; and Programming in Haskell (Cam-
bridge, 2007) by Graham Hutton. As its name implies, the former deals mostly with
highly practical applications, while the latter is another introductory text. Graham
Hutton did suggest to me, albeit with a grin, that my book should be called Ivory
Tower Haskell.

There is a fascinating history concerning the common words problem. Jon Bentley
invited one programmer, Don Knuth, to write a literate WEB program for the prob-
lem, and another programmer, Doug McIlroy, to write a literary review of it. The
result was published in Bentley’s Programming Pearls column in Communications
of the ACM, vol. 29, no. 6 (June 1986).



Chapter 2

Expressions, types and values

In Haskell every well-formed expression has, by definition, a well-formed type.
Each well-formed expression has, by definition, a value. Given an expression for
evaluation,

• GHCi checks that the expression is syntactically correct, that is, it conforms to
the rules of syntax laid down by Haskell.

• If it is, GHCi infers a type for the expression, or checks that the type supplied by
the programmer is correct.

• Provided the expression is well-typed, GHCi evaluates the expression by reduc-
ing it to its simplest possible form to produce a value. Provided the value is
printable, GHCi then prints it at the terminal.

In this chapter we continue the study of Haskell by taking a closer look at these
processes.

2.1 A session with GHCi

One way of finding out whether or not an expression is well-formed is of course
to use GHCi. There is a command :type expr which, provided expr is well-
formed, will return its type. Here is a session with GHCi (with some of GHCi’s
responses abbreviated):

ghci> 3 +4)

<interactive>:1:5: parse error on input `)'

GHCi is complaining that on line 1 the character ')' at position 5 is unexpected;
in other words, the expression is not syntactically correct.
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ghci> :type 3+4

3+4 :: Num a => a

GHCi is asserting that the type of 3+4 is a number. More on this below.

ghci> :type if 1==0 then 'a' else "a"

<interactive>:1:23:

Couldn't match expected type `Char' with actual type `[Char]'

In the expression: "a"

In the expression: if 1 == 0 then 'a' else "a"

GHCi expects the types of expr1 and expr2 in a conditional expression

if test then expr1 else expr2

to be the same. But a character is not a list of characters so the conditional expres-
sion, though conforming to the rules of Haskell syntax, is not well-formed.

ghci> sin sin 0.5

<interactive>:1:1:

No instance for (Floating (a0 -> a0))

arising from a use of `sin'

Possible fix: add an instance declaration for

(Floating (a0 -> a0))

In the expression: sin sin 0.5

In an equation for `it': it = sin sin 0.5

GHCi gives a rather opaque error message, complaining that the expression is not
well-formed.

ghci> sin (sin 0.5)

0.4612695550331807

Ah, GHCi is happy with this one.

ghci> :type map

map :: (a -> b) -> [a] -> [b]

GHCi returns the type of the function map.

ghci> map

<interactive>:1:1:

No instance for (Show ((a0 -> b0) -> [a0] -> [b0]))

arising from a use of `print'

Possible fix:

add an instance declaration for
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(Show ((a0 -> b0) -> [a0] -> [b0]))

In a stmt of an interactive GHCi command: print it

GHCi is saying that it doesn’t know how to print a function.

ghci> :type 1 `div` 0

1 `div` 0 :: Integral a => a

GHCi is asserting that the type of 1 `div` 0 is an integral number. The expression
1 `div` 0 is therefore well-formed and possesses a value.

ghci> 1 `div` 0

*** Exception: divide by zero

GHCi returns an error message. So what is the value of 1 `div` 0? The answer
is that it is a special value, written mathematically as ⊥ and pronounced ‘bottom’.
In fact, Haskell provides a predeclared name for this value, except that it is called
undefined, not bottom.

ghci> :type undefined

undefined :: a

ghci> undefined

*** Exception: Prelude.undefined

Haskell is not expected to produce the value ⊥. It may return with an error mes-
sage, or remain perpetually silent, computing an infinite loop, until we interrupt the
computation. It may even cause GHCi to crash. Oh, yes.

ghci> x*x where x = 3

<interactive>:1:5: parse error on input `where'

ghci> let x = 3 in x*x

9

A where clause does not qualify an expression in Haskell, but the whole of the
right-hand side of a definition. Thus the first example is not a well-formed expres-
sion. On the other hand, a let expression

let <defs> in <expr>

is well-formed, at least assuming the definitions in <defs> are and the expression
<expr> is. Let-expressions appear infrequently in what follows, but occasionally
they can be useful.
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2.2 Names and operators

As we have seen, a script is a collection of names and their definitions. Names
for functions and values begin with a lowercase letter, except for data constructors
(see later on) which begin with an uppercase letter. Types (e.g. Int), type classes
(e.g. Num) and modules (e.g. Prelude or Data.Char) also begin with an uppercase
letter.

An operator is a special kind of function name that appears between its (two) argu-
ments, such as the + in x + y or the ++ in xs ++ ys. Operator names begin with
a symbol. Any (non-symbolic) function of two arguments can be converted into
an operator by enclosing it in back quotes, and any operator can be converted to a
prefix name by enclosing it in parentheses. For example,

3 + 4 is the same as (+) 3 4

div 3 4 is the same as 3 `div` 4

Operators have different levels of precedence (binding power). For example,

3 * 4 + 2 means (3 * 4) + 2

xs ++ yss !! 3 means xs ++ (yss !! 3)

If in any doubt, add parentheses to remove possible ambiguity. By the way, we can
use any names we like for lists, including x, y, goodylist, and so on. But a simple
aid to memory is to use x for things, xs for lists of things, and xss for lists of lists
of things. That explains why we wrote yss in the expression yss !! 3 in the last
line above.

Operators with the same level of precedence normally have an order of association,
either to the left or right. For example, the usual arithmetic operators associate to
the left:

3 - 4 - 2 means (3 - 4) - 2

3 - 4 + 2 means (3 - 4) + 2

3 / 4 * 5 means (3 / 4) * 5

Functional application, which has higher precedence than any other operator, also
associates to the left:

eee bah gum means (eee bah) gum

eee bah gum*2 means ((eee bah) gum)*2

Some operators associate to the right:
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(a -> b) -> [a] -> [b] means (a -> b) -> ([a] -> [b])

x ^ y ^ z means x ^ (y ^ z)

eee . bah . gum means eee . (bah . gum)

Of course, if an operator, such as functional composition, is associative the order
has no effect on meaning (i.e. the value is the same). Again, one can always add
parentheses to remove possible ambiguity.

We can declare new operators; for example:

(+++) :: Int -> Int -> Int

x +++ y = if even x then y else x + y

The conditional expression has low binding power, so the expression above means

if even x then y else (x + y)

not (if even x then y else x) + y. Again, one can always use parentheses
to group differently.

If we like we can declare a precedence level and an order of association for (+++),
but we won’t spell out how.

Sections and lambda expressions

It is a matter of style, but in the main we prefer to write scripts in which all the
little helper functions are named explicitly. Thus if we need a function that adds 1
to a number, or doubles a number, then we might choose to name such functions
explicitly:

succ, double :: Integer -> Integer

succ n = n+1

double n = 2*n

However, Haskell provides alternative ways of naming these two functions, namely
(+1) and (2*). The device is called a section. In a section one of the arguments of
an operator is included along with the operator. Thus

(+1) n = n+1

(0<) n = 0<n

(<0) n = n<0

(1/) x = 1/x
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Sections are certainly attractive ways of naming simple helper functions and we
henceforth accept them onto our list of Good Things to Use in Moderation.

There is one important caveat about sections: although (+1) is the section that
adds 1 to a number, (-1) is not the section that subtracts 1. Instead (-1) is just the
number −1. Haskell uses the minus sign both as the binary operation of subtraction
and as a prefix to denote negative numbers.

Now suppose we want a function that doubles a number and then adds 1 to the an-
swer. This function is captured by the composition (+1) . (*2) of two sections.
But the result is unsatisfying because it looks a little abstruse; anyone reading it
would have to pause for a moment to see what it meant. The alternative seems to
be to give the function a name, but what would be a suitable name? Nothing helpful
really comes to mind.

The alternative is to use a lambda expression \n -> 2*n+1. It is called a lambda
expression because mathematically the function would be written as λn.2∗n+1.
Read the expression as ‘that function of n which returns 2∗n+1’. For example,

ghci> map (\n -> 2*n+1) [1..5]

[3,5,7,9,11]

Once in a while a lambda expression seems the best way to describe some func-
tion, but only once in a while and we will take them out of the box only on rare
occasions.

2.3 Evaluation

Haskell evaluates an expression by reducing it to its simplest possible form and
printing the result. For example, suppose we have defined

sqr :: Integer -> Integer

sqr x = x*x

There are basically two ways to reduce the expression sqr (3+4) to its simplest
possible form, namely 49. Either we can evaluate 3+4 first, or else apply the defi-
nition of sqr first:

sqr (3+4) sqr (3+4)

= sqr 7 = let x = 3+4 in x*x

= let x = 7 in x*x = let x = 7 in x*x

= 7*7 = 7*7

= 49 = 49
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The number of reduction steps is the same in each case, but the order of the reduc-
tion steps is slightly different. The method on the left is called innermost reduction
and also eager evaluation; the one on the right is called outermost reduction or lazy
evaluation. With eager evaluation arguments are always evaluated before a func-
tion is applied. With lazy evaluation the definition of a function is installed at once
and only when they are needed are the arguments to the function evaluated.

Doesn’t seem much of a difference, does it? But consider the following (slightly
abbreviated) evaluation sequences concerning the function fst that returns the first
element of a pair, so fst (x,y) = x:

fst (sqr 1,sqr 2) fst (sqr 1,sqr 2)

= fst (1*1,sqr 2) = let p = (sqr 1,sqr 2)

= fst (1,sqr 2) in fst p

= fst (1,2*2) = sqr 1

= fst (1,4) = 1*1

= 1 = 1

The point here is that under eager evaluation the value sqr 2 is computed, while
under lazy evaluation that value is not needed and is not computed.

Now suppose we add the definitions

infinity :: Integer

infinity = 1 + infinity

three :: Integer -> Integer

three x = 3

Evaluating infinity will cause GHCi to go into a long, silent think trying to
compute 1 + (1 + (1 + (1 + (1 + .... until eventually it runs out of space
and returns an error message. The value of infinity is ⊥.

Again there are two ways to evaluate three infinity:

three infinity three infinity

= three (1+infinity) = let x = infinity in 3

= three (1+(1+infinity)) = 3

= ...

Here eager evaluation gets stuck in a loop trying to evaluate infinity, while lazy
evaluation returns the answer 3 at once. We don’t need to evaluate the argument of
three in order to return 3.

One more definition, a version of the factorial function:
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factorial :: Integer -> Integer

factorial n = fact (n,1)

fact :: (Integer,Integer) -> Integer

fact (x,y) = if x==0 then y else fact (x-1,x*y)

This is another example of a recursive definition (the definition of infinity was
also recursive, and so was the function song in the previous chapter). Expressions
involving recursive functions are evaluated like any other definition.

Here the two evaluation schemes result in the following sequence of reduction steps
(we hide the steps involving simplification of the conditional expression to make
another point):

factorial 3 factorial 3

= fact (3,1) = fact (3,1)

= fact (3-1,3*1) = fact (3-1,3*1)

= fact (2,3) = fact (2-1,2*(3*1))

= fact (2-1,2*3) = fact (1-1,1*(2*(3*1)))

= fact (1,6) = 1*(2*(3*1))

= fact (1-1,1*6) = 1*(2*3)

= fact (0,6) = 1*6

= 6 = 6

The point to appreciate is that, while the number of reduction steps is basically
the same, lazy evaluation requires much more space to achieve the answer. The
expression 1*(2*(3*1)) is built up in memory before being evaluated.

The pros and cons of lazy evaluation are briefly as follows. On the plus side, lazy
evaluation terminates whenever any reduction order terminates; it never takes more
steps than eager evaluation, and sometimes infinitely fewer. On the minus side, it
can require a lot more space and it is more difficult to understand the precise order
in which things happen.

Haskell uses lazy evaluation. ML (another popular functional language) uses ea-
ger evaluation. Exercise D explores why lazy evaluation is a Good Thing. Lazy
evaluation is considered further in Chapter 7.

A Haskell function f is said to be strict if f undefined = undefined, and non-
strict otherwise. The function three is non-strict, while (+) is strict in both ar-
guments. Because Haskell uses lazy evaluation we can define non-strict functions.
That is why Haskell is referred to as a non-strict functional language.
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2.4 Types and type classes

Haskell has built-in (or primitive) types such as Int, Float and Char. The type
Bool of boolean values is defined in the standard prelude:

data Bool = False | True

This is an example of a data declaration. The type Bool is declared to have two
data constructors, False and True. The type Bool has three values, not two:
False, True and undefined :: Bool. Why do we need that last value? Well,
consider the function

to :: Bool -> Bool

to b = not (to b)

The prelude definition of not is

not :: Bool -> Bool

not True = False

not False = True

The definition of to is perfectly well-formed, but evaluating to True causes GHCi
to go into an infinite loop, so its value is ⊥ of type Bool. We will have much more
to say about data declarations in future chapters.

Haskell has built-in compound types, such as

[Int] a list of elements, all of type Int
(Int,Char) a pair consisting of an Int and a Char
(Int,Char,Bool) a triple
() an empty tuple
Int -> Int a function from Int to Int

The sole inhabitant of the type () is also denoted by (). Actually, there is a second
member of (), namely undefined :: (). Now we can appreciate that there is a
value ⊥ for every type.

As we have already said, when defining values or functions it is always a good idea
to include the type signature as part of the definition.

Consider next the function take n that takes the first n elements of a list. This
function made its appearance in the previous chapter. For example,

take 3 [1,2,3,4,5] = [1,2,3]

take 3 "category" = "cat"

take 3 [sin,cos] = [sin,cos]
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What type should we assign to take? It doesn’t matter what the type of the ele-
ments of the list is, so take is what is called a polymorphic function and we denote
its type by

take :: Int -> [a] -> [a]

The a is a type variable. Type variables begin with a lowercase letter. Type variables
can be instantiated to any type.

Similarly,

(++) :: [a] -> [a] -> [a]

map :: (a -> b) -> [a] -> [b]

(.) :: (b -> c) -> (a -> b) -> (a -> c)

The last line declares the polymorphic type of functional composition.

Next, what is the type of (+)? Here are some suggestions:

(+) :: Int -> Int -> Int

(+) :: Float -> Float -> Float

(+) :: a -> a -> a

The first two types seem too specific, while the last seems too general: we can’t
add two functions or two characters or two booleans, at least not in any obvious
way.

The answer is to introduce type classes:

(+) :: Num a => a -> a -> a

This declaration asserts that (+) is of type a -> a -> a for any number type a.
A type class, such as Num, has a collection of named methods, such as (+), which
can be defined differently for each instance of the type class. Type classes there-
fore provide for overloaded functions, functions with the same name but different
definitions. Overloading is another kind of polymorphism.

Numbers are rather complicated, and are explained in more detail in the following
chapter, so we illustrate type classes with a simpler type class

class Eq a where

(==),(/=) :: a -> a -> Bool

x /= y = not (x == y)

This introduces the Equality type class, members of which can use one and the
same equality test (==) and inequality test (/=). There is a default definition of
(/=) as part of the class, so we only have to provide a definition of (==).
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To become a member of the Eq club we have to define an instance. For example,

instance Eq Bool where

x == y = if x then y else not y

instance Eq Person where

x == y = (pin x == pin y)

If pin :: Person -> Pin then we need Eq Pin for the last instance to be cor-
rect. Of course, we don’t have to make Person a member of the Equality club; we
can always define

samePerson :: Person -> Person -> Bool

samePerson x y = (pin x == pin y)

But we can’t use (==) instead of samePerson unless we make an instance decla-
ration.

Here are simplified versions of two other type classes, Ord and Show:

class (Eq a) => Ord a where

(<),(<=),(>=),(>) :: a -> a -> Bool

x < y = not (x >= y)

x <= y = x == y || x < y

x >= y = x == y || x > y

x > y = not (x <= y)

class Show a where

show :: a -> String

The boolean operator (||) denotes disjunction: a || b is true only if at least one
of a and b is true. We can define this operator by

(||) :: Bool -> Bool -> Bool

a || b = if a then True else b

The default definitions of the Ord methods are mutually dependent, so one has to
provide a specific definition of at least one of them in any instance to break the
dependency (unlike Eq where only (/=) was given a default definition). The type
class Ord needs Eq as a superclass because it makes use of (==) in the default
definitions of the four comparison operations.

The type class Show is used for displaying results. Haskell cannot display the result
of a computation unless the type of the result is a member of Show. Let us explain
this in a little more detail.
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2.5 Printing values

We begin with a mystery:

ghci> "Hello ++"\n"++ "young" ++"\n"++ "lovers"

"Hello\nyoung\nlovers"

Oh. What we wanted was

Hello

young

lovers

Why didn’t Haskell print that?

The reason is that after evaluating a well-formed expression to produce a value,
Haskell applies show to the value to produce a string that can be printed at the
terminal. Applying show to a value v produces a string that when printed looks
exactly like v: Thus,

show 42 = "42"

show 42.3 = "42.3"

show 'a' = "'a'"

show "hello\n" = "\"hello\\n\""

Printing the result involves the use of a Haskell command

putStrLn :: String -> IO ()

The type IO a is a special type, the type of input–output computations that when
executed have some interaction with the outside world and return a value of type a.
If the return value is uninteresting, as with putStrLn, we use the null-tuple value
().

So, Haskell uniformly applies a show-and-put strategy to print values. Since the
greeting above is already a string, we really want to miss out the show step and go
straight to the put:

ghci> putStrLn ("Hello ++"\n"++ "young" ++"\n"++ "lovers")

Hello

young

lovers

Haskell provides many more commands for input–output, for reading and writing
to files, for displaying graphics, and so on. Such commands have to be sequenced
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correctly, and for this Haskell provides a special notation, called do-notation. Com-
mands are the subject of Chapter 10, and what follows is simply a foretaste of
things to come.

To see an example, consider the common words problem of the previous chapter.
There we defined a function

commonWords :: Int -> String -> String

such that commonWords n took a text string and returned a string giving a table of
the n most common words in the text. The following program reads the text from
a file, and writes the output to a file. The type FilePath is another synonym for a
list of characters:

cwords :: Int -> FilePath -> FilePath -> IO()

cwords n infile outfile

= do {text <- readFile infile;

writeFile outfile (commonWords n text);

putStrLn "cwords done!"}

Evaluating, for example

ghci> cwords 100 "c:\\WarAndPeace" "c:\\Results"

on a Windows platform will cause the file c:\WarAndPeace to be read, and the
results printed to c:\Results. The program also prints a message to the terminal.
The two component functions of the definition above have types

readFile :: FilePath -> IO String

writeFile :: FilePath -> String -> IO ()

Suppose that we didn’t want to call cwords from within an interactive session, but
to use it as a stand-alone program. Here is one way. We need to define a value for
an identifier main of type IO (). Here is such a program:

main

= do {putStrLn "Take text from where:";

infile <- getLine;

putStrLn "How many words:";

n <- getLine;

putStrLn "Put results where:";

outfile <- getLine;

text <- readFile infile;

writeFile outfile (commonWords (read n) text);

putStrLn "cwords done!" }
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For an explanation of read see Exercise H. Suppose the common words script is
stored in the file cwords.lhs. We can compile it with GHC, the Glasgow Haskell
Compiler:

$ ghc cwords.lhs

The compiled program will be stored in the file cwords.exe. To run the program
under Windows, type

$ cwords

and follow the instructions.

2.6 Modules

Suppose we thought that the function commonWords was sufficiently useful that we
wanted to incorporate it into other scripts. The way to do this is to turn the common
words script into a module. First, we rewrite the script in the following way:

module CommonWords (commonWords) where

import Data.Char (toLower)

import Data.List (sort,words)

...

commonWords :: Int -> String -> String

...

The module declaration is followed by the name of the module, which must be-
gin with a capital letter. Furthermore, the script has to be stored in a file called
CommonWords.lhs to enable Haskell to find the module (at least, if you are using
literate scripts; otherwise it would be CommonWords.hs). Following the name of
the module is a list of exports, the functions, types and other values you want to be
able to export to other scripts. The list of exports has to be enclosed in parentheses.
Here we just export one function, commonWords. The exports are the only things
defined in the module that are visible in other modules. Omitting the export list,
and the surrounding parentheses, means that everything in the module is exported.

We can then compile the module using GHC and then import it into other scripts
with the declaration

import CommonWords (commonWords)

There are two major advantages of Haskell modules. One is we can structure our
scripts into bite-sized chunks, separating out little groups of related functions into
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separate modules. The other advantage is that the functions in a compiled module
are much faster to evaluate because their definitions are compiled into machine-
specific code, leading to a much slicker reduction process. GHCi is an interpreter
rather than a compiler; it evaluates internal forms of expression that are much closer
to the source language of Haskell.

2.7 Haskell layout

The examples of do-notation used braces ({ and }) and semicolons; these are ex-
amples of explicit layout. Braces and semicolons are used only to control layout
and have no meaning as part of the language of Haskell expressions. We can use
them in other places too:

roots :: (Float,Float,Float) -> (Float,Float)

roots (a,b,c)

| a == 0 = error "not quadratic"

| disc < 0 = error "complex roots"

| otherwise = ((-b-r)/e, (-b+r)/e)

where {disc = b*b - 4*a*c; r = sqrt d; e = 2*a}

Here the where clause uses explicit braces and semicolons rather than appealing
to Haskell’s layout rules. Instead, we could have written

where disc = b*b - 4*a*c

r = sqrt d

e = 2*a

But we couldn’t have written

where disc = b*b - 4*a*c

r = sqrt d

e = 2*a

The layout (or offside) rule takes effect whenever the opening brace is omitted after
the keyword where or do (and also after let). When this happens the indentation
of the next item, whether or not on a new line, is remembered. For each subsequent
line, if it is indented more, then the previous line is continued; if it is indented the
same amount, then a new item begins; and if it is indented less, then the layout list
is ended. At least, that’s roughly the offside rule.

The offside rule explains why there is an indentation in the declarations of type
classes and instances:
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class Foo a where

I am part of the class declaration.

So am I.

Now the class declaration has ended.

You can always put in braces and semicolons if in any doubt. Actually the offside
rule can still cause confusion when used with do-notation. So the recommendation
is belts, braces and semicolons.

And you thought the football offside rule was complicated.

2.8 Exercises

Exercise A

On the subject of precedence, this question comes from Chris Maslanka’s puzzle
page in the Guardian newspaper:

‘Is a half of two plus two equal to two or three?’

Exercise B

Some of the following expressions are not syntactically correct, while others are
syntactically correct but do not have sensible types. Some are well-formed. Which
is which? In the case of a well-formed expression, give a suitable type. Assume
double :: Int -> Int. I suggest you don’t use a computer to check your an-
swers, but if you do, be prepared for some strange error messages.

The expressions are:

[0,1)

double -3

double (-3)

double double 0

if 1==0 then 2==1

"++" == "+" ++ "+"

[(+),(-)]

[[],[[]],[[[]]]]

concat ["tea","for",'2']

concat ["tea","for","2"]
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Exercise C

In the good old days, one could write papers with titles such as

‘The morphology of prex – an essay in meta-algorithmics’

These days, journals seem to want all words capitalised:

‘The Morphology Of Prex – An Essay In Meta-algorithmics’

Write a function modernise :: String -> String which ensures that paper
titles are capitalised as above. Here are some helpful questions to answer first:

1. The function toLower :: Char -> Char converts a letter to lowercase. What
do you think is the name of the prelude function that converts a letter to upper-
case?

2. The function words :: String -> [Word] was used in the previous chapter.
What do you think the prelude function

unwords :: [Word] -> String

does? Hint: which, if either, of the following equations should hold?

words . unwords = id

unwords . words = id

3. The function head :: [a] -> a returns the head of a nonempty list, and
tail :: [a] -> [a] returns the list that remains when the head is removed.
Suppose a list has head x and tail xs. How would you reconstruct the list?

Exercise D

Beaver is an eager evaluator, while Susan is a lazy one.1 How many times would
Beaver evaluate f in computing head (map f xs) when xs is a list of length n?
How many times would Susan? What alternative to head . map f would Beaver
prefer?

The function filter p filters a list, retaining only those elements that satisfy the
boolean test p. The type of filter is

filter :: (a -> Bool) -> [a] -> [a]

Susan would happily use head . filter p for a function that finds the first ele-
ment of a list satisfying p. Why would Beaver not use the same expression?

Instead, Beaver would probably define something like
1 If you don’t know, google ‘lazy susan’ to discover what a lazy susan is.
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first :: (a -> Bool) -> [a] -> a

first p xs | null xs = error "Empty list"

| p x = ...

| otherwise = ...

where x = head xs

The function null returns True on an empty list, and False otherwise. When
evaluated, the expression error message stops execution and prints the string
message at the terminal, so its value is ⊥. Complete the right-hand side of Beaver’s
definition.

What alternative might Beaver prefer to head . filter p . map f?

Exercise E

The type Maybe is declared in the standard prelude as follows:

data Maybe a = Nothing | Just a

deriving (Eq, Ord)

This declaration uses a deriving clause. Haskell can automatically generate in-
stances of some standard type classes for some data declarations. In the present
case the deriving clause means that we don’t have to go through the tedium of
writing

instance (Eq a) => Eq (Maybe a)

Nothing == Nothing = True

Nothing == Just y = False

Just x == Nothing = False

Just x == Just y = (x == y)

instance (Ord a) => Ord (Maybe a)

Nothing <= Nothing = True

Nothing <= Just y = True

Just x <= Nothing = False

Just x <= Just y = (x <= y)

The reason why Nothing is declared to be less than Just y is simply because the
constructor Nothing comes before the constructor Just in the data declaration for
Maybe.

The reason why the Maybe type is useful is that it provides a systematic way of
handling failure. Consider again the function
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first p = head . filter p

of the previous exercise. Both Eager Beaver and Lazy Susan produced versions of
this function that stopped execution and returned an error message when first p

was applied to the empty list. That’s not very satisfactory. Much better is to define

first :: (a -> Bool) -> [a] -> Maybe a

Now failure is handled gracefully by returning Nothing if there is no element of
the list that satisfies the test.

Give a suitable definition of this version of first.

Finally, count the number of functions with type Maybe a -> Maybe a.

Exercise F

Here is a function for computing x to the power n, where n ≥ 0:

exp :: Integer -> Integer -> Integer

exp x n | n == 0 = 1

| n == 1 = x

| otherwise = x*exp x (n-1)

How many multiplications does it take to evaluate exp x n?

Dick, a clever programmer, claims he can compute exp x n with far fewer multi-
plications:

exp x n | n == 0 = 1

| n == 1 = x

| even n = ...

| odd n = ...

Fill in the dots and say how many multiplications it takes to evaluate the expression
exp x n by Dick’s method, assuming 2p ≤ n < 2p+1.

Exercise G

Suppose a date is represented by three integers (day,month,year). Define a func-
tion showDate :: Date -> String so that, for example,

showDate (10,12,2013) = "10th December, 2013"

showDate (21,11,2020) = "21st November, 2020"

You need to know that Int is a member of the type class Show, so that show n

produces a string that is the decimal representation of the integer n.
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Exercise H

The credit card company Foxy issues cards with ten-digit card-identification num-
bers (CINs). The first eight digits are arbitrary but the number formed from the last
two digits is a checksum equal to the sum of the first eight digits. For example,
“6324513428” is a valid CIN because the sum of the first eight digits is 28.

Construct a function addSum :: CIN -> CIN that takes a string consisting of
eight digits and returns a string of ten digits that includes the checksum. Thus
CIN is a type synonym for String, though restricted to strings of digits. (Note that
Haskell type synonyms cannot enforce type constraints such as this.) You will need
to convert between a digit character and the corresponding number. One direction
is easy: just use show. The other direction is also fairly easy:

getDigit :: Char -> Int

getDigit c = read [c]

The function read is a method of the type class Read and has type

read :: Read a => String -> a

The type class Read is dual to Show and read is dual to show. For example,

ghci> read "123" :: Int

123

ghci> read "123" :: Float

123.0

The function read has to be supplied with the type of the result. One can always
add type annotations to expressions in this way.

Now construct a function valid :: CIN -> Bool that checks whether an iden-
tification number is valid. The function take might prove useful.

Exercise I

By definition a palindrome is a string that, ignoring punctuation symbols, blank
characters and whether or not a letter is in lowercase or uppercase, reads the same
forwards and backwards. Write an interactive program

palindrome :: IO ()

which, when run, conducts an interactive session, such as

ghci> palindrome

Enter a string:
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Madam, I'm Adam

Yes!

ghci> palindrome

Enter a string:

A Man, a plan, a canal - Suez!

No!

ghci> palindrome

Enter a string:

Doc, note I dissent. A fast never prevents a fatness.

I diet on cod.

Yes!

The function isAlpha :: Char -> Bool tests whether a character is a letter,
and reverse :: [a] -> [a] reverses a list. The function reverse is provided
in the standard prelude and isAlpha can be imported from the library Data.Char.

2.9 Answers

Answer to Exercise A

The answer to Maslanka’s puzzle is ‘Yes!’ This little puzzle has fooled a number
of distinguished computer scientists.

Answer to Exercise B

My GHCi session produced (with explanations added):

ghci> :type [0,1)

<interactive>:1:5: parse error on input `)'

GHCi knows that ')' is wrong, though it is not smart enough to suggest ']'.

ghci> :type double -3

<interactive>:1:9:

No instance for (Num (Int -> Int))

arising from the literal `3'

Possible fix: add an instance declaration for

(Num (Int -> Int))
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In the second argument of `(-)', namely `3'

In the expression: double - 3

The explanation of the error message is that numerical subtraction (-) has type
Num a => a -> a. For double - 3 to be well-formed (yes, it was typed as
double -3 but the spaces are not significant here), double has to be a number, so
the class instance Num (Int -> Int) is required. But there isn’t one: you cannot
sensibly subtract a number from a function.

ghci> double (-3)

-6

ghci> double double 0

<interactive>:1:1:

The function `double' is applied to two arguments,

but its type `Int -> Int' has only one

In the expression: double double 0

In an equation for `it': it = double double 0

Most of GHCi’s error message is clear.

ghci> if 1==0 then 2==1

<interactive>:1:18:

parse error (possibly incorrect indentation)

Conditional expressions are incomplete without an ‘else’ clause.

ghci> "++" == "+" ++ "+"

True

Both sides are well-formed and denote the same list.

ghci> [(+),(-)]

<interactive>:1:1:

No instance for (Show (a0 -> a0 -> a0))

arising from a use of `print'

Possible fix:

add an instance declaration for

(Show (a0 -> a0 -> a0))

In a stmt of an interactive GHCi command: print it

To display the value [(+),(-)] we have to be able to show its elements. But no
way of showing functions has been provided.

ghci> :type [[],[[]],[[[]]]]
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[[],[[]],[[[]]]] :: [[[[a]]]]

To explain, let the main list have type [b]. The first element is a list, so b=[c].
The second element is a list of lists, so c=[d]. The third element is a list of lists of
lists, so d=[a].

ghci> concat ["tea","for",'2']

<interactive>:1:21:

Couldn't match expected type `[Char]'

with actual type `Char'

In the expression: '2'

In the first argument of `concat',

namely `["tea", "for", '2']'

In the expression: concat ["tea", "for", '2']

The first two elements of the list have type [Char], but the last has type Char and
that is not allowed.

ghci> concat ["tea","for","2"]

"teafor2"

Answer to Exercise C

1. toUpper, of course.

2. Concatenates the words, putting a single space between them. We have

words . unwords = id

but not unwords . words = id.

3. [x] ++ xs.

modernise :: String -> String

modernise = unwords . map capitalise . words

capitalise :: Word -> Word

capitalise xs = [toUpper (head xs)] ++ tail xs

We will see another way of writing capitalise in Chapter 4.

Answer to Exercise D

Computing head (map f xs) takes n evaluations of f under eager evaluation,
but only one under lazy evaluation. Beaver would have to exploit the identity
head . map f = f . head.
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Instead of defining first p = head . filter p, Beaver might define

first :: (a -> Bool) -> [a] -> a

first p xs | null xs = error "Empty list"

| p x = x

| otherwise = first p (tail xs)

where x = head xs

Instead of defining first p f = head . filter p . map f, Beaver might
define

first :: (b -> Bool) -> (a -> b) -> [a] -> b

first p f xs | null xs = error "Empty list"

| p x = x

| otherwise = first p f (tail xs)

where x = f (head xs)

The point is that with eager evaluation most functions have to be defined using
explicit recursion, not in terms of useful component functions like map and filter.

Answer to Exercise E

Lazy Susan would probably write

first p xs = if null ys then Nothing

else Just (head ys)

where ys = filter p xs

As to the number of functions of type Maybe a -> Maybe a, there are just six.
Applied to Nothing the function can only return Nothing or undefined. Applied
to Just x the function can only return Nothing or Just x or undefined. The
point is that we know absolutely nothing about the underlying type, so no new
values can be invented. That makes six possible functions in all.

Answer to Exercise F

It takes n-1 multiplications to evaluate exp x n. Dick’s method is to exploit the
identities x2m = (x2)m and x2m+1 = x(x2)m to obtain a recursive definition:

exp x n | n == 0 = 1

| n == 1 = x

| even n = exp (x*x) m

| odd n = x*exp (x*x) (m-1)

where m = n `div` 2
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This is an example of a divide and conquer algorithm. Dick’s program takes p
multiplications, where 2p ≤ n < 2p+1. Thus p = �logn�, where �x� returns the floor
of a number, the greatest integer no bigger than the number. We will consider the
floor function in more detail in the following chapter.

Answer to Exercise G

showDate :: Date -> String

showDate (d,m,y) = show d ++ suffix d ++ " " ++

months !! (m-1) ++ ", " ++ show y

The function suffix computes the right suffix:

suffix d = if d==1 || d==21 || d==31 then "st" else

if d==2 || d==22 then "nd" else

if d==3 || d==23 then "rd" else

"th"

months = ["January",.......]

If you indulged in clever arithmetic to compute suffix, then you should realise
that Sometimes a Simple Solution is Best.

Answer to Exercise H

One solution is as follows:

addSum :: CIN -> CIN

addSum cin =

cin ++ show (n `div` 10) ++ show (n `mod` 10)

where n = sum (map fromDigit cin)

valid :: CIN -> Bool

valid cin = cin == addSum (take 8 cin)

fromDigit :: Char -> Int

fromDigit c = read [c]

The function fromDigit will return a numerical digit given a digit character.

Answer to Exercise I

Here is one solution:
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import Data.Char (toLower,isAlpha)

palindrome :: IO()

palindrome

= do {putStrLn "Enter a string:";

xs <- getLine;

if isPalindrome xs then putStrLn "Yes!"

else putStrLn "No!"}

isPalindrome :: String -> Bool

isPalindrome xs = (ys == reverse ys)

where ys = map toLower (filter isAlpha xs)

2.10 Chapter notes

The chapter has referred a number of times to the Haskell ‘standard prelude’. This
is a collection of basic types, type classes, functions and other values that are indis-
pensible in many programming tasks. For a complete description of the standard
prelude, see Chapter 8 of the Haskell report; alternatively, visit

www.haskell.org/onlinereport/standard-prelude.html

See www.haskell.org for more information on the implementation of functional
languages and of Haskell in particular. An older book, The Implementation of Func-
tional Programming Languages (Prentice Hall, 1987) by Simon Peyton Jones, is
no longer in print, but an online version can be found at

research.microsoft.com/~simonpj/papers/slpj-book-1987

Apart from GHC there are other maintained compilers for Haskell, including UHC,
the Utrecht Haskell Compiler. See the home page cs.uu.nl/wiki/UHC.

On the eager-versus-lazy evaluation debate, read Bob Harper’s blog article The
point of laziness, which can be found at

existentialtype.wordpress.com/2011/04/24/

In the blog Harper enumerates some of the reasons why he prefers a strict lan-
guage. But also read Lennart Augustsson’s reply to the post. Augustsson’s main
point, emphasised in Exercise D, is that under strict evaluation you are forced for
efficiency reasons to define most functions by explicit recursion, and therefore lose
the ability to build definitions out of simple standard functions. That undercuts our
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ability to reason about functions by applying general laws about their component
functions.

Bob Harper is one of the authors of The Definition of Standard ML (Revised) (MIT
Press, 1989). ML is a strict functional language. You can find an introduction to
ML at

www.cs.cmu.edu/~rwh/smlbook/book.pdf

Another increasingly popular language is Agda, which is both a dependently-typed
functional language and also a proof assistant; see the Agda home page

wiki.portal.chalmers.se/agda/pmwiki.php

Chris Maslanka writes a regular column in the Saturday edition of the Guardian
newspaper.



Chapter 3

Numbers

Numbers in Haskell are complicated because in the Haskell world there are many
different kinds of number, including:

Int limited-precision integers in at least the range
[−229,229). Integer overflow is not detected.

Integer arbitrary-precision integers
Rational arbitrary-precision rational numbers
Float single-precision floating-point numbers
Double double-precision floating-point numbers
Complex complex numbers (defined in Data.Complex)

Most programs make use of numbers in one way or another, so we have to get
at least a working idea of what Haskell offers us and how to convert between the
different kinds. That is what the present chapter is about.

3.1 The type class Num

In Haskell all numbers are instances of the type class Num:

class (Eq a, Show a) => Num a where

(+),(-),(*) :: a -> a -> a

negate :: a -> a

abs, signum :: a -> a

fromInteger :: Integer -> a

The class Num is a subclass of both Eq and Show. That means every number can
be printed and any two numbers can be compared for equality. Any number can
be added to, subtracted from or multiplied by another number. Any number can be
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negated. Haskell allows -x to denote negate x; this is the only prefix operator in
Haskell.

The functions abs and signum return the absolute value of a number and its sign.
If ordering operations were allowed in Num (and they aren’t because, for example,
complex numbers cannot be ordered), we could define

abs x = if x < 0 then -x else x

signum x | x < 0 = -1

| x == 0 = 0

| x > 0 = 1

The function fromInteger is a conversion function. An integer literal such as
42 represents the application of fromInteger to the appropriate value of type
Integer, so such literals have type Num a => a. This choice is explained further
below after we have considered some other classes of number and the conversion
functions between them.

3.2 Other numeric type classes

The Num class has two subclasses, the real numbers and the fractional numbers:

class (Num a,Ord a) => Real a where

toRational :: a -> Rational

class (Num a) => Fractional a where

(/) :: a -> a -> a

fromRational :: Rational -> a

Real numbers can be ordered. The only new method in the class Real, apart from
the comparison operations which are inherited from the superclass Ord, is a con-
version function from elements in the class to elements of Rational. The type
Rational is essentially a synonym for pairs of integers. The real number π is not
rational, so toRational can only convert to an approximate rational number:

ghci> toRational pi

884279719003555 % 281474976710656

Not quite as memorable as 22 % 7, but more accurate. The symbol % is used to
separate the numerator and denominator of a rational number.
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The fractional numbers are those on which division is defined. A complex number
cannot be real but it can be fractional. A floating-point literal such as 3.149 repre-
sents the application of fromRational to an appropriate rational number. Thus

3.149 :: Fractional a => a

This type and the earlier type Num a => a for 42 explains why we can form a
legitimate expression such as 42 + 3.149, adding an integer to a floating-point
number. Both types are members of the Num class and all numbers can be added.
Consideration of

ghci> :type 42 + 3.149

42 + 3.149 :: Fractional a => a

shows that the result of the addition is also a fractional number.

One of the subclasses of the real numbers is the integral numbers. A simplified
version of this class is:

class (Real a, Enum a) => Integral a where

divMod :: a -> a -> (a,a)

toInteger :: a -> Integer

The class Integral is a subclass of Enum, those types whose elements can be
enumerated in sequence. Every integral number can be converted into an Integer

through the conversion function toInteger. That means we can convert an inte-
gral number into any other type of number in two steps:

fromIntegral :: (Integral a, Num b) => a -> b

fromIntegral = fromInteger . toInteger

Application of divMod returns two values:

x `div` y = fst (x `divMod` y)

x `mod` y = snd (x `divMod` y)

The standard prelude functions fst and snd return the first and second components
of a pair:

fst :: (a,b) -> a

fst (x,y) = x

snd :: (a,b) -> b

snd (x,y) = y
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Mathematically, x div y = �x/y�. We will see how to compute �x� in the following
section. And x mod y is defined by

x = (x div y)∗ y+ x mod y

For positive x and y we have 0 ≤ x mod y < x.

Recall the function digits2 from the first chapter, where we defined

digits2 n = (n `div` 10, n `mod` 10)

It is more efficient to say digits2 n = n `divMod` 10 because then only one
invocation of divMod is required. Even more briefly, we can use a section and write
digits2 = (`divMod` 10).

There are also other numeric classes, including the subclass Floating of the class
Fractional that contains, among others, the logarithmic and trigonometric func-
tions. But enough is enough.

3.3 Computing floors

The value �x�, the floor of x, is defined to be the largest integer m such that
m≤ x. We define a function floor :: Float -> Integer for computing floors.
Haskell provides such a function in the standard prelude, but it is instructive to con-
sider our own version.

One student, call him Clever Dick, to whom this task was given came up with the
following solution:

floor :: Float -> Integer

floor = read . takeWhile (/= '.') . show

In words, the number is shown as a string, the string is truncated by taking only the
digits up to the decimal point, and the result is read again as an integer. We haven’t
met takeWhile yet, though Clever Dick evidently had. Clever Dick’s solution is
wrong on a number of counts, and Exercise D asks you to list them.

Instead we will find the floor of a number with the help of an explicit search, and
for that we will need a loop:

until :: (a -> Bool) -> (a -> a) -> a -> a

until p f x = if p x then x else until p f (f x)

The function until is also provided in the standard prelude. Here is an example:
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ghci> until (>100) (*7) 1

343

Essentially until f p x computes the first element y in the infinite list

[x, f x, f (f x), f (f (f x)), ...]

for which p y = True. See the following chapter where this interpretation of
until is made precise.

Thinking now about the design of floor it is tempting to start off with a case
analysis, distinguishing between the cases x < 0 and x ≥ 0. In the case x < 0 we
have to find the first number m in the sequence −1,−2, . . . for which m ≤ x. That
leads to – in the case of a negative argument –

floor x = until (`leq` x) (subtract 1) (-1)

where m `leq` x = fromInteger m <= x

There are a number of instructive points about this definition. Firstly, note the use
of the prelude function subtract whose definition is

subtract x y = y-x

We have to use subtract 1 because (-1) is not a section but the number −1
(look at the third argument of until).

Secondly, why have we used `leq` when the alternative (<=) seems perfectly
adequate? The answer is that (<=) has the type

(<=) :: Num a => a -> a -> Bool

In particular the two arguments of (<=) have to have the same type. But we want

leq :: Integer -> Float -> Bool

and the two arguments have different numeric types. We therefore need to convert
integers to floats using fromInteger. Appreciation of the need for conversion
functions in some situations is one of the key points to understand about Haskell
arithmetic.

Finally, note that (`leq` x) is not the same as (leq x):

(leq x) y = leq x y

(`leq` x) y = y `leq` x = leq y x

It is easy to make this mistake.

If you don’t like the subsidiary definition, you can always write
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floor x = until ((<=x) . fromInteger) (subtract 1) (-1)

In this version we have inlined the definition of (`leq` x).

We still have to deal with the case x ≥ 0. In this case we have to look for the first
integer n such that x < n+1. We can do this by finding the first integer n such that
x < n and subtracting 1 from the answer. That leads to

floor x = until (x `lt` ) (+1) 1 - 1

where x `lt` n = x < fromInteger n

Putting the two pieces together, we obtain

floor x = if x < 0

then until (`leq` x) (subtract 1) (-1)

else until (x `lt`) (+1) 1 - 1

(Question: why do we not have to write x < fromInteger 0 in the first line?)
The real problem with this definition, apart from the general ugliness of a case
distinction and the asymmetry of the two cases, is that it is very slow: it takes about
|x| steps (|x| is the mathematician’s way of writing abs x) to deliver the result.

Binary search

A better method for computing floor is to first find integers m and n such that
m ≤ x < n and then shrink the interval (m,n) to a unit interval (one with m+1 = n)
that contains x. Then the left-hand bound of the interval can be returned as the
result. That leads to

floor :: Float -> Integer

floor x = fst (until unit (shrink x) (bound x))

where unit (m,n) = (m+1 == n)

The value bound x is some pair (m,n) of integers such that m ≤ x < n. If (m,n) is
not a unit interval, then shrink x (m,n) returns a new interval of strictly smaller
size that still bounds x.

Let us first consider how to shrink a non-unit interval (m,n) containing x, so m ≤
x < n. Suppose p is any integer that satisfies m < p < n. Such a p exists since (m,n)
is not a unit interval. Then we can define

type Interval = (Integer,Integer)

shrink :: Float -> Interval -> Interval
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shrink x (m,n) = if p `leq` x then (p,n) else (m,p)

where p = choose (m,n)

How should we define choose?

Two possible choices are choose (m,n) = m+1 or choose (m,n) = n-1 for
both reduce the size of an interval. But a better choice is

choose :: Interval -> Integer

choose (m,n) = (m+n) `div` 2

With this choice the size of the interval is halved at each step rather than reduced
by 1.

However, we need to check that m < (m+n)div 2 < n in the case m+1 	= n. The
reasoning is:

m < (m+n)div 2 < n

≡ {ordering on integers}
m+1 ≤ (m+n)div 2 < n

≡ {since (m+n)div 2 = �(m+n)/2�}
m+1 ≤ (m+n)/2 < n

≡ {arithmetic}
m+2 ≤ n∧m < n

≡ {arithmetic}
m+1 < n

Finally, how should we define bound? We can start off by defining

bound :: Float -> Interval

bound x = (lower x, upper x)

The value lower x is some integer less than or equal to x, and upper x some
integer greater than x. Instead of using linear search to discover these values, it is
better to use

lower :: Float -> Integer

lower x = until (`leq` x) (*2) (-1)

upper :: Float -> Integer

upper x = until (x `lt`) (*2) 1
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For a fast version of bound it is better to double at each step rather than increase
or decrease by 1. For example, with x = 17.3 it takes only seven comparisons to
compute the surrounding interval (−1,32), which is then reduced to (17,18) in a
further five steps. In fact, evaluating both the upper and lower bounds takes time
proportional to log |x| steps, and the whole algorithm takes at most twice this time.
An algorithm that takes logarithmic time is much faster than one that takes linear
time.

The standard prelude defines floor in the following way:

floor x = if r < 0 then n-1 else n

where (n,r) = properFraction x

The function properFraction is a method in the RealFrac type class (a class we
haven’t discussed and whose methods deal with truncating and rounding numbers).
It splits a number x into its integer part n and its fractional part r, so x = n+ r. Now
you know.

3.4 Natural numbers

Haskell does not provide a type for the natural numbers, that is, the nonnegative
integers. But we can always define such a type ourselves:

data Nat = Zero | Succ Nat

This is an example of a data declaration. The declaration says that Zero is a value
of Nat and that Succ n is also a value of Nat whenever n is. Both Zero and Succ

are called data constructors and begin with a capital letter. The type of Zero is Nat
and the type of Succ is Nat -> Nat. Thus each of

Zero, Succ Zero, Succ (Succ Zero), Succ (Succ (Succ Zero))

is an element of Nat.

Let us see how to program the basic arithmetical operations by making Nat a fully
paid-up member of the Num class. First, we have to make Nat an instance of Eq and
Show:

instance Eq Nat where

Zero == Zero = True

Zero == Succ n = False

Succ m == Zero = False

Succ m == Succ n = (m == n)
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instance Show Nat where

show Zero = "Zero"

show (Succ Zero) = "Succ Zero"

show (Succ (Succ n)) = "Succ (" ++ show (Succ n) ++ ")"

These definitions make use of pattern matching. In particular, the definition of
show makes use of three patterns, Zero, Succ Zero and Succ (Succ n). These
patterns are different from one another and together cover all the elements of Nat
apart from ⊥.

Alternatively, we could have declared

data Nat = Zero | Succ Nat deriving (Eq,Ord,Show)

As we said in Exercise E of the previous chapter, Haskell is smart enough to con-
struct automatically instances of some standard classes, including Eq, Ord and
Show.

Now we can install Nat as a numeric type:

instance Num Nat where

m + Zero = m

m + Succ n = Succ (m+n)

m * Zero = Zero

m * (Succ n) = m * n + m

abs n = n

signum Zero = Zero

signum (Succ n) = Succ Zero

m - Zero = m

Zero - Succ n = Zero

Succ m - Succ n = m - n

fromInteger x

| x <= 0 = Zero

| otherwise = Succ (fromInteger (x-1))

We have defined subtraction as a total operation: m−n = 0 if m ≤ n. Of course, the
arithmetic operations on Nat are horribly slow. And each number takes up a lot of
space.
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Partial numbers

We have said that there is a value ⊥ of every type. Thus undefined :: a for all
types a. Since Succ is, by definition, a non-strict function, the values

undefined, Succ undefined, Succ (Succ undefined), ...

are all different and all members of Nat. To be honest, these partial numbers are
not very useful, but they are there. You can think of Succ undefined as being a
number about which we know only that it is at least 1:

ghci> Zero == Succ undefined

False

ghci> Succ Zero == Succ undefined

*** Exception: Prelude.undefined

There is also one further number in Nat:

infinity :: Nat

infinity = Succ infinity

Thus

ghci> Zero == infinity

False

ghci> Succ Zero == infinity

False

and so on.

In summary, the elements of Nat consist of the finite numbers, the partial numbers
and the infinite numbers (of which there is only one). We shall see that this is true
of other data types: there are the finite elements of the type, the partial elements
and the infinite elements.

We could have chosen to make the constructor Succ strict. This is achieved by
declaring

data Nat = Zero | Succ !Nat

The annotation ! is known as strictness flag. With such a declaration, we have for
example

ghci> Zero == Succ undefined

*** Exception: Prelude.undefined
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This time, evaluating the equality test forces the evaluation of both sides, and the
evaluation of Succ undefined raises an error message. Making Succ strict col-
lapses the natural numbers into just the finite numbers and one undefined number.

3.5 Exercises

Exercise A

Which of the following expressions denote 1?

-2 + 3, 3 + -2, 3 + (-2), subtract 2 3, 2 + subtract 3

In the standard prelude there is a function flip defined by

flip f x y = f y x

Express subtract using flip.

Exercise B

Haskell provides no fewer than three ways to define exponentiation:

(^) :: (Num a, Integral b) => a -> b -> a

(^^) :: (Fractional a, Integral b) => a -> b -> a

(**) :: (Floating a) => a -> a -> a

The operation (^) raises any number to a nonnegative integral power; (^^) raises
any number to any integral power (including negative integers); and (**) takes
two fractional arguments. The definition of (^) basically follows Dick’s method
of the previous chapter (see Exercise E). How would you define (^^)?

Exercise C

Could you define div in the following way?

div :: Integral a => a -> a -> a

div x y = floor (x/y)

Exercise D

Consider again Clever Dick’s solution for computing floor:

floor :: Float -> Integer

floor = read . (takeWhile (/= '.') . show
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Why doesn’t it work?

Consider the following mini-interaction with GHCi:

ghci> 12345678.0 :: Float

1.2345678e7

Haskell allows the use of so-called scientific notation, also called exponent nota-
tion, to describe certain floating-point numbers. For example the number above
denotes 1.2345678∗107. When the number of digits of a floating-point number is
sufficiently large, the number is printed in this notation. Now give another reason
why Clever Dick’s solution doesn’t work.

Exercise E

The function isqrt :: Float -> Integer returns the floor of the square root
of a (nonnegative) number. Following the strategy of Section 3.3, construct an im-
plementation of isqrt x that takes time proportional to logx steps.

Exercise F

Haskell provides a function sqrt :: Floating a => a -> a that gives a rea-
sonable approximation to the square root of a (nonnegative) number. But, let’s
define our own version. If y is an approximation to

√
x, then so is x/y. Moreover,

either y≤√
x≤ x/y or x/y≤√

x≤ y. What is a better approximation to
√

x than ei-
ther y or x/y? (Yes, you have just rediscovered Newton’s method for finding square
roots.)

The only remaining problem is to decide when an approximation y is good enough.
One possible test is |y2−x|< ε , where |x| returns the absolute value of x and ε is a
suitably small number. This test guarantees an absolute error of at most ε . Another
test is |y2−x|< ε ∗x, which guarantees a relative error of at most ε . Assuming that
numbers of type Float are accurate only to six significant figures, which of these
two is the more sensible test, and what is a sensible value for ε?

Hence construct a definition of sqrt.

Exercise G

Give an explicit instance of Nat as a member of the type class Ord. Hence construct
a definition of

divMod :: Nat -> Nat -> (Nat,Nat)
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3.6 Answers

Answer to Exercise A

All except 2 + -3 and 2 + subtract 3, neither of which are well-formed. We
have subtract = flip (-).

Answer to Exercise B

x ^^ n = if 0 <= n then x^n else 1/(x ^ (negate n))

Answer to Exercise C

No. You would have to write

div :: Integral a => a -> a -> a

div x y = floor (fromInteger x / fromInteger y)

Answer to Exercise D

Clever Dick’s function gives floor (-3.1) = -3 when the answer should be -4.
And if you tried to repair his solution by subtracting 1 if the solution was negative,
you would have floor (-3.0) = -4 when the answer should be -3. Ugh!

Also, Clever Dick’s solution has floor 12345678.0 = 1 because the argument
is shown as 1.2345678e7.

Answer to Exercise E

isqrt :: Float -> Integer

isqrt x = fst (until unit (shrink x) (bound x))

where unit (m,n) = (m+1 == n)

shrink :: Float -> Interval -> Interval

shrink x (m,n) = if (p*p) `leq` x then (p,n) else (m,p)

where p = (m+n) `div` 2

bound :: Float -> Interval

bound x = (0,until above (*2) 1)

where above n = x `lt` (n*n)

The functions `leq` and `lt` were defined in Section 3.3. Note the parentheses
in the expressions (p*p) `leq` x and x `lt` (n*n). We didn’t state an order
of association for `leq` and `lt`, so without parentheses these two expressions
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would have been interpreted as the ill-formed expressions p * (p `leq` x) and
(x `lt` n) * n. (I made just this mistake when first typing in the solution.)

Answer to Exercise F

A better approximation to
√

x than either y or x/y is (y+x/y)/2. The relative-error
test is the more sensible one, and the program is

sqrt :: Float -> Float

sqrt x = until goodenough improve x

where goodenough y = abs (y*y-x) < eps*x

improve y = (y+x/y)/2

eps = 0.000001

Answer to Exercise G

It is sufficient to define (<):

instance Ord Nat where

Zero < Zero = False

Zero < Succ n = True

Succ m < Zero = False

Succ m < Succ n = (m < n)

Now we can define

divMod :: Nat -> Nat -> (Nat,Nat)

divMod x y = if x < y then (Zero,x)

else (Succ q,r)

where (q,r) = divMod (x-y) y

3.7 Chapter notes

The primary source book for computer arithmetic is The Art of Computer Pro-
gramming, Volume 2: Semi-numerical Algorithms (Addison-Wesley, 1998) by Don
Knuth. The arithmetic of floors and other simple numerical functions is studied
in depth in Concrete Mathematics (Addison-Wesley, 1989) by Don Knuth, Ronald
Graham and Oren Patashnik.
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Lists

Lists are the workhorses of functional programming. They can be used to fetch and
carry data from one function to another; they can be taken apart, rearranged and
combined with other lists to make new lists. Lists of numbers can be summed and
multiplied; lists of characters can be read and printed; and so on. The list of useful
operations on lists is a long one. This chapter describes some of the operations that
occur most frequently, though one particularly important class will be introduced
only in Chapter 6.

4.1 List notation

As we have seen, the type [a] denotes lists of elements of type a. The empty list is
denoted by []. We can have lists over any type but we cannot mix different types
in the same list. As examples,

[undefined,undefined] :: [a]

[sin,cos,tan] :: Floating a => [a -> a]

[[1,2,3],[4,5]] :: Num a => [[a]]

["tea","for",2] not valid

List notation, such as [1,2,3], is in fact an abbreviation for a more basic form

1:2:3:[]

The operator (:) :: a -> [a] -> [a], pronounced ‘cons’, is a constructor for
lists. It associates to the right so there is no need for parentheses in the above
expression. It has no associated definition, which is why it is a constructor. In
other words, there are no rules for simplifying an expression such as 1:2:[]. The
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operator (:) is non-strict in both arguments – more precisely, it is non-strict and
returns a non-strict function. The expression

undefined : undefined

may not be very interesting, but we do know it is not the empty list. In fact, that is
the only thing we do know about it. Note that the two occurrences of undefined
have different types in this expression.

The empty list [] is also a constructor. Lists can be introduced as a Haskell data
type with the declaration

data List a = Nil | Cons a (List a)

The only difference is that List a is written [a], Nil is written [] and Cons is
written (:).

According to this declaration, every list of type [a] takes one of three forms:

• The undefined list undefined :: [a];

• The empty list [] :: [a];

• A list of the form x:xs where x :: a and xs :: [a].

As a result there are three kinds of list:

• A finite list, which is built from (:) and []; for example, 1:2:3:[]

• A partial list, which is built from (:) and undefined; for example, the list
filter (<4) [1..] is the partial list 1:2:3:undefined. We know there is
no integer after 3 that is less than 4, but Haskell is an evaluator, not a theorem
prover, so it ploughs away without success looking for more answers.

• An infinite list, which is built from (:) alone; for example, [1..] is the infinite
list of the nonnegative integers.

All three kinds of list arise in everyday programming. Chapter 9 is devoted to ex-
ploring the world of infinite lists and their uses. For example, the prelude function
iterate returns an infinite list:

iterate :: (a -> a) -> a -> [a]

iterate f x = x:iterate f (f x)

In particular, iterate (+1) 1 is an infinite list of the positive integers, a value
we can also write as [1..] (see the following section).

As another example,
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head (filter perfect [1..])

where perfect n = (n == sum (divisors n))

returns the first perfect number, namely 6, even though nobody currently knows
whether filter perfect [1..] is an infinite or partial list.

Finally, we can define

until p f = head . filter p . iterate f

The function until was used to compute floors in the previous chapter. As this ex-
ample demonstrates, functions that seem basic in programming are often composed
of even simpler functions. A bit like protons and quarks.

4.2 Enumerations

Haskell provides useful notation for enumerating lists of integers. When m and n
are integers we can write

[m..n] for the list [m,m+1, . . . ,n]
[m..] for the infinite list [m,m+1,m+2, . . .]
[m,n..p] for the list [m,m+(n−m),m+2(n−m), . . . ,p]
[m,n..] for the infinite list [m,m+(n−m),m+2(n−m), . . .]

The first two notations crop up frequently in practice, the second two less so. As
examples,

ghci> [0,2..11]

[0,2,4,6,8,10]

ghci> [1,3..]

[1,3,5,7,9,11 {Interrupted}

In the first example the enumeration stops at 10 because 11 isn’t even. In the second
example we quickly interrupted the evaluation of an infinite list.

As a matter of fact, enumerations are not restricted to integers, but to members of
yet another type class Enum. We won’t elaborate more on this class, except to say
that Char is also a member:

ghci> ['a'..'z']

"abcdefghijklmnopqrstuvwxyz"
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4.3 List comprehensions

Haskell provides another useful and very attractive piece of notation, called list
comprehensions, for constructing lists out of other lists. We illustrate with a few
examples:

ghci> [x*x | x <- [1..5]]

[1,4,9,16,25]

ghci> [x*x | x <- [1..5], isPrime x]

[4,9,25]

ghci> [(i,j) | i <- [1..5], even i, j <- [i..5]]

[(2,2),(2,3),(2,4),(2,5),(4,4),(4,5)]

ghci> [x | xs <- [[(3,4)],[(5,4),(3,2)]], (3,x) <- xs]

[4,2]

Here is another example. Suppose we wanted to generate all Pythagorean triads
in a given range. These are triples of numbers (x,y,z) such that x2 + y2 = z2 and
1 ≤ x,y,z ≤ n for some given n. We can define

triads :: Int -> [(Int,Int,Int)]

triads n = [(x,y,z) | x <- [1..n], y <- [1..n],

z <- [1..n], x*x+y*y==z*z]

Hence

ghci> triads 15

[(3,4,5),(4,3,5),(5,12,13),(6,8,10),

(8,6,10),(9,12,15),(12,5,13),(12,9,15)]

That’s probably not what we want: each essentially distinct triad is generated in two
different ways. Moreover, the list contains redundant triads consisting of multiples
of basic triads.

To improve the definition of triad we can restrict x and y so that x < y and x and
y are coprime, meaning they have no divisors in common. As mathematicians we
know that 2x2 cannot be the square of an integer, so the first restriction is valid. The
divisors of a number can be computed by

divisors x = [d | d <- [2..x-1], x `mod` d == 0]

Hence

coprime x y = disjoint (divisors x) (divisors y)

We will leave the definition of disjoint as an exercise.
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That means we can define

triads n = [(x,y,z) | x <- [1..n], y <- [x+1..n],

coprime x y,

z <- [y+1..n], x*x+y*y==z*z]

This definition is better than before, but let us try to make it a little faster, mainly to
illustrate an important point. Since 2x2 < x2 + y2 = z2 ≤ n2 we see that x < n/

√
2.

So x ≤ �n/√2�. That suggests we can write

triads n = [(x,y,z) | x <- [1..m], y <- [x+1..n],

coprime x y,

z <- [y+1..n], x*x+y*y==z*z]

where m = floor (n / sqrt 2)

But the expression for m is incorrect: n is an Int and we cannot divide integers.
We need an explicit conversion function, and the one to use is fromIntegral

(not fromInteger because n is an Int not an Integer). We need to replace the
definition of m by m = floor (fromIntegral n / sqrt 2). Once again we
have to be careful about what kinds of number we are dealing with and aware of
the available conversion functions between them.

List comprehensions can be used to define some common functions on lists. For
example,

map f xs = [f x | x <- xs]

filter p xs = [x | x <- xs, p x]

concat xss = [x | xs <- xss, x <- xs]

Actually, in Haskell it is the other way around: list comprehensions are translated
into equivalent definitions in terms of map, and concat. The translation rules are:

[e |True] = [e]

[e | q] = [e | q, True]

[e | b, Q] = if b then [e | Q] else []

[e | p <- xs, Q] = let ok p = [e | Q]

ok _ = []

in concat (map ok xs)

The definition of ok in the fourth rule uses a don’t care pattern, also called a wild
card. The p in the fourth rule is a pattern, and the definition of ok says that the
empty list is returned on any argument that doesn’t match the pattern p.

Another useful rule is
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[e | Q1, Q2] = concat [[e | Q2] | Q1]

4.4 Some basic operations

We can define functions over lists by pattern matching. For example,

null :: [a] -> Bool

null [] = True

null (x:xs) = False

The patterns [] and x:xs are disjoint and exhaustive, so we can write the two
equations for null in either order. The function null is strict because Haskell has
to know which equation to apply and that requires evaluation of the argument, at
least to the extent of discovering whether it is the empty list or not. (A question:
why not simply define null = (==[])?) We could also have written

null [] = True

null _ = False

This definition uses a don’t care pattern.

Here are two other definitions using pattern matching:

head :: [a] -> a

head (x:xs) = x

tail :: [a] -> [a]

tail (x:xs) = xs

There is no equation for the pattern [], so Haskell reports an error if we try to
evaluate head [] or tail [].

We can use [x] as shorthand for x:[] in a pattern:

last :: [a] -> a

last [x] = x

last (x:y:ys) = last (y:ys)

The first equation has a pattern that matches a singleton list; the second has a
pattern that matches a list that contains at least two elements. The standard prelude
definition of last is slightly different:

last [x] = x

last (_:xs) = last xs
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This definition uses a don’t care pattern. The two equations have to be written in
this order because x:[] matches both patterns.

4.5 Concatenation

Here is the definition of (++), the concatenation operation:

(++) :: [a] -> [a] -> [a]

[] ++ ys = ys

(x:xs) ++ ys = x:(xs ++ ys)

The definition uses pattern matching on the first argument but not on the second.
The second equation for (++) is very succinct and requires some thought, but
once you have got it, you have understood a lot about how lists work in functional
programming. Here is a simple evaluation sequence:

[1,2] ++ [3,4,5]

= {notation}
(1:(2:[])) ++ (3:(4:(5:[])))

= {second equation for ++}
1:((2:[]) ++ (3:(4:(5:[]))))

= {and again}
1:(2:([] ++ (3:(4:(5:[])))))

= {first equation for ++}
1:(2:(3:(4:(5:[]))))

= {notation}
[1,2,3,4,5]

As this example suggests, the cost of evaluating xs++ys is proportional to the
length of xs, where

length :: [a] -> Int

length [] = 0

length (x:xs) = 1 + length xs

Note also that

undefined ++ [1,2] = undefined

[1,2] ++ undefined = 1:2:undefined
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We know nothing about the first list, but we do know that the second list begins
with 1 followed by 2.

Concatenation is an associative operation. Thus

(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

for all lists xs, ys and zs. We will see how to prove assertions like these in Chap-
ter 6.

4.6 concat, map and filter

Three very useful list operations that we have met already are concat, map and
filter. Here are their definitions using pattern matching:

concat :: [[a]] -> [a]

concat [] = []

concat (xs:xss) = xs ++ concat xss

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = f x:map f xs

filter :: (a -> Bool) -> [a] -> [a]

filter p [] = []

filter p (x:xs) = if p x then x:filter p xs

else filter p xs

There is a common theme underlying these definitions that we will identify and
exploit in Chapter 6. An alternative definition of filter is

filter p = concat . map (test p)

test p x = if p x then [x] else []

With this definition, filter p is implemented by converting each element of the
list into a singleton list if it satisfies p, and the empty list otherwise. The results are
then concatenated.

Two basic facts about map are that

map id = id

map (f . g) = map f . map g



4.6 concat, map and filter 71

The first equation says that applying the identity function to each element of a list
leaves the list unchanged. The two occurrence of id in this law have different types:
on the left it is a -> a and on the right it is [a] -> [a]. The second equation says
that applying g to every element of a list, and then applying f to every element of
the result, gives the same list as applying f . g to every element. Read from right
to left, the equation says that two traversals of a list can be replaced by one, with a
corresponding gain in efficiency.

The two facts have a name: they are called the functor laws of map. The name is
borrowed from a branch of mathematics called Category Theory. In fact, Haskell
provides a type class Functor, whose definition is

class Functor f where

fmap :: (a -> b) -> f a -> f b

The method fmap is expected to satisfy exactly the same laws as map. The reason
for this type class is that the idea of mapping a function over a list can be gener-
alised to one of mapping a function over an arbitrary data structure, such as trees
of various kinds. For example, consider the type

data Tree a = Tip a | Fork (Tree a) (Tree a)

of binary trees with labels in their tips. Tree-structured data arise in a number of
places, for example with the syntax of expressions of various kinds. We can define
a mapping function over trees, but rather than calling it mapTree we can call it
fmap by making trees a member of the Functor class:

instance Functor Tree where

fmap f (Tip x) = Tip (f x)

fmap f (Fork u v) = Fork (fmap f u) (fmap f v)

In fact map is just a synonym for the instance fmap for lists:

ghci> fmap (+1) [2,3,4]

[3,4,5]

We mention the Functor type class here primarily to show that if ever you think
some function on lists can be usefully generalised to other kinds of data struc-
ture, the chances are good that the designers of Haskell have already spotted it and
introduced an appropriate type class. As we will see later on, and especially in
Chapter 12, the functor laws of map appear in many calculations.

There is another group of laws that involve map, all of which have a common theme.
Consider the equations
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f . head = head . map f

map f . tail = tail . map f

map f . concat = concat . map (map f)

The first equation holds only if f is a strict function, but the others hold for arbitrary
f. If we apply both sides of the equation to the empty list, we get

f (head []) = head (map f []) = head []

Since the head of an empty list is undefined, we require f to be strict to make the
equation true.

Each of the laws has a simple interpretation. In each case you can apply the oper-
ation (head, tail, and so on) to a list and then change each element, or you can
change each element first and then apply the operation. The common theme lies in
the types of the operations involved:

head :: [a] -> a

tail :: [a] -> [a]

concat :: [[a]] -> [a]

The point about the operations is that they do not depend in any way on the na-
ture of the list elements; they are simply functions that shuffle, discard or extract
elements from lists. That is why they have polymorphic types. And functions with
polymorphic types all satisfy some law that says you can change values before
or after applying the function. In mathematics such functions are called natural
transformations and the associated laws, naturality laws.

As another example, since reverse :: [a] -> [a] we would expect that

map f . reverse = reverse . map f

Indeed this is the case. Of course, this naturality law still has to be proved.

Another law is

concat . map concat = concat . concat

The two sides assert that two ways of concatenating a list of lists of lists (either do
the inner concatenations first, or do the outer concatenations first) give the same
result.

Finally, here is just one property of filter:

filter p . map f = map f . filter (p . f)
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We can prove this law by simple equational reasoning:

filter p . map f

= {second definition of filter}
concat . map (test p) . map f

= {functor property of map}
concat . map (test p . f)

= {since test p . f = map f . test (p . f)}
concat . map (map f . test (p . f))

= {functor property of map}
concat . map (map f) . map (test (p . f))

= {naturality of concat}
map f . concat . map (test (p . f))

= {second definition of filter}
map f . filter (p . f)

Laws like those above are not just of academic interest, but are deployed in finding
new and better ways of expressing definitions. That’s why functional programming
is the best thing since sliced bread.

4.7 zip and zipWith

Finally, to complete a simple toolbox of useful operations, we consider the func-
tions zip and zipWith. The definitions in the standard prelude are:

zip :: [a] -> [b] -> [(a,b)]

zip (x:xs) (y:ys) = (x,y): zip xs ys

zip _ _ = []

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys

zipWith f _ _ = []

A caring programmer (one who doesn’t like ‘don’t care’ patterns) would have writ-
ten

zip [] ys = []

zip (x:xs) [] = []



74 Lists

zip (x:xs) (y:ys) = (x,y):zip xs ys

Both definitions use pattern matching on both arguments. You have to know that
pattern matching is applied from top to bottom and from left to right. Thus

zip [] undefined = []

zip undefined [] = undefined

The definition of zip can be given another way:

zip = zipWith (,)

The operation (,) is a constructor for pairs: (,) a b = (a,b).

Here is one example of the use of zipWith. Suppose we want to determine whether
a list is in nondecreasing order. A direct definition would have:

nondec :: (Ord a) => [a] -> Bool

nondec [] = True

nondec [x] = True

nondec (x:y:xs) = (x <= y) && nondec (y:xs)

But another, equivalent and shorter definition is

nondec xs = and (zipWith (<=) xs (tail xs))

The function and is yet another useful function in the standard prelude. It takes a
list of booleans and returns True if all the elements are True, and False otherwise:

and :: [Bool] -> Bool

and [] = True

and (x:xs) = x && and xs

One final example. Consider the task of building a function position that takes a
value x and a finite list xs and returns the first position in xs (counting positions
from 0) at which x occurs. If x does not occur in the list, then −1 is returned. We
can define

position :: (Eq a) => a -> [a] -> Int

position x xs

= head ([j | (j,y) <- zip [0..] xs, y==x] ++ [-1])

The expression zip [0..] xs pairs each element of xs with its position in xs.
Although the first argument of zip is an infinite list, the result is a finite list when-
ever xs is. Observe that the problem is solved by first computing the list of all
positions at which x is found, and then taking the first element. Under lazy evalu-
ation it is not necessary to construct the value of every element of the list in order
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to calculate the head of the list, so there is no great loss of efficiency in solving
the problem this way. And there is a great deal of simplicity in defining one search
result in terms of all search results.

4.8 Common words, completed

Let’s now return to Section 1.3 and complete the definition of commonWords. Re-
call that we finished with

commonWords :: Int -> [Char] -> [Char]

commonWords n = concat . map showRun . take n .

sortRuns . countRuns . sortWords .

words . map toLower

The only functions we have still to give definitions for are

showRun countRuns sortRuns sortWords

All the others, including words, are provided in the standard Haskell libraries.

The first one is easy:

showRun :: (Int,Word) -> [Char]

showRun (n,w) = w ++ ": " ++ show n ++ "\n"

The second one can be defined by

countRuns :: [Word] -> [(Int,Word)]

countRuns [] = []

countRuns (w:ws) = (1+length us,w):countRuns vs

where (us,vs) = span (==w) ws

The prelude function span p splits a list into two, the first being the longest prefix
of the list all of whose elements satisfy the test p, and the second being the suffix
that remains. Here is the definition:

span :: (a -> Bool) -> [a] -> ([a],[a])

span p [] = ([],[])

span p (x:xs) = if p x then (x:ys,zs)

else ([],x:xs)

where (ys,zs) = span p xs

That leaves sortRuns and sortWords. We can import the function sort from
Data.List by the command
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import Data.List (sort)

Since sort :: (Ord a) => [a] -> [a] we can then define

sortWords :: [Word] -> [Word]

sortWords = sort

sortRuns :: [(Int,Word)] -> [(Int,Word)]

sortRuns = reverse . sort

To understand the second definition you have to know that Haskell automatically
defines the comparison operation (<=) on pairs by

(x1,y1) <= (x2,y2) = (x1 < x2) || (x1 == x2 && y1 <= y2)

You also have to know that sort sorts into ascending order. Since we want the
codes in descending order of count, we just sort into ascending order and reverse
the result. That, by the way, is why we defined frequency counts by having the
count before the word rather than afterwards.

Instead of relying on the library function for sorting, let us end by programming
a sorting function ourselves. One good way to sort is to use a divide and conquer
strategy: if the list has length at most one then it is already sorted; otherwise we can
divide the list into two equal halves, sort each half by using the sorting algorithm
recursively, and then merge the two sorted halves together. That leads to

sort :: (Ord a) => [a] -> [a]

sort [] = []

sort [x] = [x]

sort xs = merge (sort ys) (sort zs)

where (ys,zs) = halve xs

halve xs = (take n xs, drop n xs)

where n = length xs `div` 2

That leaves us with the definition of merge, which merges two sorted lists together
into one sorted list:

merge :: (Ord a) => [a] -> [a] -> [a]

merge [] ys = ys

merge xs [] = xs

merge (x:xs) (y:ys)

| x <= y = x:merge xs (y:ys)

| otherwise = y:merge (x:xs) ys
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In fact, many Haskell programmers wouldn’t write the last clause of merge in quite
this way. Instead they would write

merge xs'@(x:xs) ys'@(y:ys)

| x <= y = x:merge xs ys'

| otherwise = y:merge xs' ys

This definition uses an as-pattern. You can see the point: rather than deconstructing
a list and then reconstructing it again (a cheap but not free operation), it is better
to reuse the value that we matched with. True, but it does obscure a simple math-
ematical equation, and we will use such patterns only very sparingly in this book.

Both sort and merge are defined recursively and it is worthwhile pointing out
why the two recursions terminate. In the case of merge you have to see that one or
other of the two arguments of merge decreases in size at each recursive call. Hence
one of the base cases will eventually be reached. In the case of sort the critical
observation is that if xs has length at least two, then both ys and zs have length
strictly less than xs, and the same argument applies. But see what happens if we
had omitted the clause sort [x] = [x]. Since 1 div 2 = 0 we would have,

sort [x] = merge (sort []) (sort [x])

That means evaluation of sort [x] requires evaluation of sort [x], and the
whole definition of sort spins off into an infinite loop for nonempty arguments.
Checking that you have all the necessary base cases is one of the most important
parts of constructing a recursive function.

4.9 Exercises

Exercise A

Which of the following equations are true for all xs and which are false?

[]:xs = xs

[]:xs = [[],xs]

xs:[] = xs

xs:[] = [xs]

xs:xs = [xs,xs]

[[]] ++ xs = xs

[[]] ++ xs = [[],xs]

[[]] ++ [xs] = [[],xs]
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[xs] ++ [] = [xs]

By the way, why didn’t we define null = (==[])?

Exercise B

You want to produce an infinite list of all distinct pairs (x,y) of natural numbers.
It doesn’t matter in which order the pairs are enumerated, as long as they all are
there. Say whether or not the definition

allPairs = [(x,y) | x <- [0..], y <- [0..]]

does the job. If you think it doesn’t, can you give a version that does?

Exercise C

Give a definition of the function

disjoint :: (Ord a) => [a] -> [a] -> Bool

that takes two lists in ascending order, and determines whether or not they have an
element in common.

Exercise D

Under what conditions do the following two list comprehensions deliver the same
result?

[e | x <- xs, p x, y <- ys]

[e | x <- xs, y <- ys, p x]

Compare the costs of evaluating the two expressions.

Exercise E

When the great Indian mathematician Srinivasan Ramanujan was ill in a London
hospital, he was visited by the English mathematician G.H. Hardy. Trying to find a
subject of conversation, Hardy remarked that he had arrived in a taxi with the num-
ber 1729, a rather boring number it seemed to him. Not at all, Ramanujan instantly
replied, it is the first number that can be expressed as two cubes in essentially dif-
ferent ways: 13 +123 = 93 +103 = 1729. Write a program to find the second such
number.

In fact, define a function that returns a list of all essentially different quadruples
(a,b,c,d) in the range 0 < a,b,c,d ≤ n such that a3+b3 = c3+d3. I suggest using
a list comprehension, but only after thinking carefully about what it means to say
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two quadruples are essentially different. After all, a3 +b3 = c3 +d3 can be written
in eight different ways.

Exercise F

The dual view of lists is to construct them by adding elements to the end of the list:

data List a = Nil | Snoc (List a) a

Snoc is, of course, Cons backwards. With this view of lists [1,2,3] would be rep-
resented by

Snoc (Snoc (Snoc Nil 1) 2) 3

Exactly the same information is provided by the two views but it is organised differ-
ently. Give the definitions of head and last for the snoc-view of lists, and define
two functions

toList :: [a] -> List a

fromList :: List a -> [a]

for converting efficiently from one view of lists to the other. (Hint: reverse is
efficient, taking linear time to reverse a list.)

Exercise G

How much space is required to evaluate length xs? Consider the following alter-
native definition of length:

length :: [a] -> Int

length xs = loop (0,xs)

where loop (n,[]) = n

loop (n,x:xs) = loop (n+1,xs)

Does the space requirement change? Does it change if we switched to eager evalu-
ation? These questions are taken up in much more detail in Chapter 7.

Exercise H

The prelude function take n takes the first n elements of a list, while drop n

drops the first n elements. Give recursive definitions for these functions. What are
the values of

take 0 undefined take undefined []

according to your definition? A more tricky question: can you find a definition in
which both the above expressions have the value []? If not, why not?
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Which of the following equations are valid for all integers m and n? You don’t have
to justify your answers, just try to understand what they claim to say.

take n xs ++ drop n xs = xs

take m . drop n = drop n . take (m+n)

take m . take n = take (m `min` n)

drop m . drop n = drop (m+n)

The standard prelude function splitAt n can be defined by

splitAt n xs = (take n xs,drop n xs)

Though clear, the above definition is maybe a little inefficient as it involves pro-
cessing xs twice. Give a definition of splitAt that traverses the list only once.

Exercise I

Which of the following statements about the equation

map (f . g) xs = map f (map g xs)

do you agree with, and which do you disagree with (again, no justification is re-
quired)?

1. It’s not true for all xs; it depends on whether xs is a finite list or not.

2. It’s not true for all f and g; it depends on whether f and g are strict functions or
not.

3. It’s true for all lists xs, finite, partial or infinite, and for all f and g of the
appropriate type. In fact map (f . g) = map f . map g is a much neater
alternative.

4. It looks true, but it has to be proved so from the definition of map and the defi-
nition of functional composition.

5. Used right-to-left, it expresses a program optimisation: two traversals of a list
are replaced by one.

6. It’s not an optimisation under lazy evaluation because map g xs is not com-
puted in its entirety before evaluation of map f on the result begins.

7. Whether or not it is computed in pieces or as a whole, the right-hand side does
produce an intermediate list, while the left-hand side doesn’t. It is a rule for
optimising a program even under lazy evaluation.
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Exercise J

Here are some equations; at least one of them is false. Which are the true ones,
and which are false? Once again, you do not have to provide any justification for
your answers, the aim is just to look at some equations and appreciate what they
are saying.

map f . take n = take n . map f

map f . reverse = reverse . map f

map f . sort = sort . map f

map f . filter p = map fst . filter snd . map (fork (f,p))

filter (p . g) = map (invertg) . filter p . map g

reverse . concat = concat . reverse . map reverse

filter p . concat = concat . map (filter p)

In the fifth equation assume invertg satisfies invertg . g = id. The function
fork in the fourth equation is defined by

fork :: (a -> b,a -> c) -> a -> (b,c)

fork (f,g) x = (f x, g x)

Exercise K

Define unzip and cross by

unzip = fork (map fst, map snd)

cross (f,g) = fork (f . fst, g . snd)

What are the types of these functions?

Prove by simple equational reasoning that

cross (map f, map g) . unzip = unzip . map (cross (f,g))

You can use the functor laws of map and the following rules:

cross (f,g) . fork (h,k) = fork (f . h,g . k)

fork (f,g) . h = fork (f . h,g . h)

fst . cross (f,g) = f . fst

snd . cross (f,g) = g . snd

Exercise L

Continuing from the previous exercise, prove that

cross (f,g) . cross (h,k) = cross (f . h,g . k)
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We also have cross (id,id) = id (Why?). So it looks like cross has functor-
like properties, except that it takes a pair of functions. Yes, it’s a bifunctor. That
suggests a generalisation:

class Bifunctor p where

bimap :: (a -> b) -> (c -> d) -> p a c -> p b d

The arguments to bimap are given one by one rather than paired. Express cross
in terms of bimap for the instance Pair of Bifunctor, where

type Pair a b = (a,b)

Now consider the data type

data Either a b = Left a | Right b

Construct the instance Either of Bifunctor.

4.10 Answers

Answer to Exercise A

Only the following three equations are true:

xs:[] = [xs]

[[]] ++ [xs] = [[],xs]

[xs] ++ [] = [xs]

If we defined null by null = (==[]), then its type would have to be the more
restrictive

null :: (Eq a) => [a] -> Bool

That means you can only use an equality test on lists if the list elements can be
compared for equality. Of course, the empty list contains no elements, so (==) is
not needed.

Answer to Exercise B

No, allPairs produces the infinite list

allPairs = [(0,y) | y <- [0..]]

One alternative, which lists the pairs in ascending order of their sum, is

allPairs = [(x,d-x) | d <- [0..], x <- [0..d]]
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Answer to Exercise C

The definition is

disjoint xs [] = True

disjoint [] ys = True

disjoint xs'@(x:xs) ys'@(y:ys)

| x < y = disjoint xs ys'

| x == y = False

| x > y = disjoint xs' ys

We used an as-pattern, just to be clever.

Answer to Exercise D

They deliver the same result only if ys is a finite list:

ghci> [1 | x <- [1,3], even x, y <- undefined]

[]

ghci> [1 | x <- [1,3], y <- undefined, even x]

*** Exception: Prelude.undefined

ghci> [1 | x <- [1,3], even x, y <- [1..]]

[]

Prelude> [1 | x <- [1,3], y <- [1..], even x]

{Interrupted}

When they do deliver the same result, the former is more efficient.

Answer to Exercise E

One way of generating essentially different quadruples is to restrict the quadruple
(a,b,c,d) to values satisfying a ≤ b and c ≤ d and a < c. Hence

quads n = [(a,b,c,d) | a <- [1..n], b <- [a..n],

c <- [a+1..n],d <- [c..n],

a^3 + b^3 == c^3 + d^3]

The second such number is 4104 = 23 +163 = 93 +153.

Answer to Exercise F

head :: List a -> a

head (Snoc Nil x) = x

head (Snoc xs x) = head xs
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last :: List a -> a

last (Snoc xs x) = x

toList :: [a] -> List a

toList = convert . reverse

where convert [] = Nil

convert (x:xs) = Snoc (convert xs) x

fromList :: List a -> [a]

fromList = reverse . convert

where convert Nil = []

convert (Snoc xs x) = x:convert xs

Answer to Exercise G

It requires a linear amount of space since the expression

1 + (1 + (1 + ... (1 + 0)))

is built up in memory. The space requirement for the second definition of length
does not change under lazy evaluation since the expression

loop ((((0 + 1) + 1) + 1 ... +1),[])

is built up in memory. But under eager evaluation the length of a list can be com-
puted using constant extra space.

Answer to Exercise H

take, drop :: Int -> [a] -> [a]

take n [] = []

take n (x:xs) = if n==0 then [] else x:take (n-1) xs

drop n [] = []

drop n (x:xs) = if n==0 then x:xs else drop (n-1) xs

With this definition of take we have

take undefined [] = [] take 0 undefined = undefined

With the alternative

take n xs | n==0 = []

| null xs = []

| otherwise = head xs: take (n-1) (tail xs)

we have
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take undefined [] = undefined take 0 undefined = []

The answer to the tricky question is: no. Either argument n or argument xs has to
be examined and, whichever happens first, ⊥ is the result if ⊥ is the value of that
argument.

All four equations are valid for all lists xs and for all m,n 	=⊥, under either defini-
tion.

The function splitAt n can be defined by

splitAt :: Int -> [a] -> ([a],[a])

splitAt n [] = ([],[])

splitAt n (x:xs) = if n==0 then ([],x:xs) else (x:ys,zs)

where (ys,zs) = splitAt (n-1) xs

Answer to Exercise I

I would agree with (3), (4), (5) and (7).

Answer to Exercise J

The only false equation is map f . sort = sort . map f which is true only if
f is order-preserving, i.e. x ≤ y ≡ f x ≤ f y.

Answer to Exercise K

unzip :: [(a,b)] -> ([a],[b])

cross :: (a -> b, c -> d) -> (a,c) -> (b,d)

The calculation is

cross (map f, map g) . unzip

= {definition of unzip}
cross (map f, map g) . fork (map fst, map snd)

= {law of cross and fork}
fork (map f . map fst, map g . map snd)

= {law of map}
fork (map (f . fst), map (g . snd))
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We seem to be stuck, as no law applies. Try the right-hand side:

unzip . map (cross (f,g))

= {definition of unzip}
fork (map fst, map snd) . map (cross (f,g))

= {law of fork}
fork (map fst . map (cross (f,g)),

map snd . map (cross (f,g)))

= {law of map}
fork (map (fst . cross (f,g)),

map (snd . cross (f,g)))

= {laws of fst and snd}
fork (map (f . fst), map (g . snd))

Phew. Both sides have reduced to the same expression. That is often the way with
calculations: one side doesn’t always lead easily to the other, but both sides reduce
to the same result.

The calculations we have seen so far have all been carried out at the function level.
Such a style of definition and proof is called point-free (and also pointless by some
jokers). Point-free proofs are what the automatic calculator of Chapter 12 produces.
The point-free style is very slick, but it does necessitate the use of various plumbing
combinators, such as fork and cross, to pass arguments to functions. Plumbing
combinators push values around, duplicate them and even eliminate them. As an
example of the last kind,

const :: a -> b -> a

const x y = x

This little combinator is in the standard prelude and can be quite useful on occasion.

Two more plumbing combinators, also defined in the standard prelude, are curry
and uncurry:

curry :: ((a, b) -> c) -> a -> b -> c

curry f x y = f (x,y)

uncurry :: (a -> b -> c) -> (a,b) -> c

uncurry f (x,y) = f x y

A curried function is a function that takes its arguments one at a time, while a
non-curried function takes a single, tupled argument. The key advantage of curried
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functions is that they can be partially applied. For instance, take n is a perfectly
valid function in its own right, and so is map f. That is why we have used curried
functions from the start.

By the way, curried functions are named after Haskell B. Curry, an American logi-
cian. And, yes, that is where Haskell got its name.

Answer to Exercise L

cross (f,g) . cross (h,k)

= {definition of cross}
cross (f,g) . fork (h . fst, k . snd)

= {law of cross and fork}
fork (f . h . fst,g . k . snd)

= {definition of cross}
cross (f . h, g . k)

We have cross = uncurry bimap, where uncurry was defined in the previous
answer.

Here is the instance of Either:

instance Bifunctor Either where

bimap f g (Left x) = Left (f x)

bimap f g (Right y) = Right (g y)

4.11 Chapter notes

Most of the functions introduced in this chapter can be found in the Haskell stan-
dard prelude. Functors, bifunctors, and natural transformations are explained in
books about Category Theory. Two such are Basic Category Theory for Computer
Scientists (MIT Press, 1991) by Benjamin Pierce, and The Algebra of Programming
(Prentice Hall, 1997) by Richard Bird and Oege de Moor.

Also on the subject of laws, read Phil Wadler’s influential article Theorems for free!
which can be found at

homepages.inf.ed.ac.uk/wadler/papers/free/
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In mathematics, the so-called taxicab number taxicab(n) is the smallest number
that can be expressed as the sum of two positive cubes in n distinct ways. So 1729=
taxicab(2). Google ‘taxicab numbers’ for more information.



Chapter 5

A simple Sudoku solver

HOW TO PLAY: Fill in the grid so that every row,
every column and every 3×3 box contains the

digits 1–9. There’s no maths involved. You
solve the puzzle with reasoning and logic.

Advice on how to play Sudoku, the Independent

This chapter is devoted to an extended exercise in the use of lists to solve prob-
lems, and in the use of equational reasoning to reason about them and to improve
efficiency.

The game of Sudoku is played on a 9 by 9 grid, though other sizes are also possible.
Given a matrix, such as that in Figure 5.1, the idea is to fill in the empty cells with
the digits 1 to 9 so that each row, column and 3×3 box contains the numbers 1 to 9.
In general there may be any number of solutions, though in a good Sudoku puzzle
there should always be a unique solution. Our aim is to construct a program to
solve Sudoku puzzles. Specifically, we will define a function solve for computing
a list of all the ways a given grid may be completed. If only one solution is wanted,
then we can take the head of the list. Lazy evaluation means that only the first result
will then be computed.

We begin with a specification, then use equational reasoning to calculate a more
efficient version. There’s no maths involved, just reasoning and logic!

5.1 Specification

Here are the basic data types of interest, starting with matrices:

type Matrix a = [Row a]
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Figure 5.1 A Sudoku grid

type Row a = [a]

The two type synonyms say nothing more than that Matrix a is a synonym for
[[a]]. But the way it is said emphasises that a matrix is a list of rows; more
precisely, a m× n matrix is a list of m rows in which each row is a list with the
same length n. Haskell type synonyms cannot enforce such constraints, though
there are languages, called dependently-typed languages, that can.

A grid is a 9×9 matrix of digits:

type Grid = Matrix Digit

type Digit = Char

The valid digits are 1 to 9 with 0 standing for a blank:

digits :: [Char]

digits = ['1' .. '9']

blank :: Digit -> Bool

blank = (== '0')

Recall that Char is also an instance of the type class Enum, so ['1' .. '9'] is a
valid expression and does indeed return the list of nonzero digits.

We will suppose for simplicity that the input grid contains only digits and blanks,
so we do not have to check for the input being well-formed. But should we also
insist that no non-blank digit is repeated in any row, column or box? If there were
such repetitions there would be no solution. We postpone this decision until after
we see how the rest of the algorithm pans out.
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Now for the specification. The aim is to write down the simplest and clearest spec-
ification without regard to how efficient the result might be. That’s a key difference
between functional programming and other forms of program construction: we can
always begin with a clear and simple, though possibly extremely inefficient defi-
nition of solve, and then use the laws of functional programming to massage the
computation into one that takes acceptable time and space.

One possibility is first to construct a list of all possible correctly filled grids, a vastly
long but still finite list, and then to test the given grid against each of them to iden-
tify those whose entries match the given non-blank ones. Certainly that approach
takes the idea of an inefficient specification to the extreme. Another reasonable al-
ternative is to start with the given grid and to complete it by filling in every possible
choice for the blank entries. The result will be a list of filled grids. Then we can
filter this list for those that don’t contain duplicates in any row, box or column. This
specification is implemented by

solve :: Grid -> [Grid]

solve = filter valid . completions

where the subsidiary functions have types

completions :: Grid -> [Grid]

valid :: Grid -> Bool

Let us work on completions first and consider valid afterwards. One way of
defining completions is by a two-step process:

completions = expand . choices

where

choices :: Grid -> Matrix [Digit]

expand :: Matrix [Digit] -> [Grid]

The function choices installs the available digits for each cell:

choices = map (map choice)

choice d = if blank d then digits else [d]

If the cell is blank, then all digits are installed as possible choices; otherwise there is
only one choice and a singleton is returned. If we want to apply f to every element
of a matrix, then map (map f) is the function to use because, after all, a matrix is
just a list of lists.

After applying choices we obtain a matrix each of whose entries is a list of digits.
What we want to do next is to define expand to convert this matrix into a list of
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grids by installing all the choices in all possible ways. That seems a little difficult
to think about, so let’s consider a simpler problem first, namely when instead of a
9×9 matrix we have a list of length 3. Suppose we want to convert

[[1,2,3],[2],[1,3]]

into the list

[[1,2,1],[1,2,3],[2,2,1],[2,2,3],[3,2,1],[3,2,3]]

The second list of lists arises by taking, in all possible ways, one element from
the first list, one element from the second list and one element from the third list.
Let us call the function that does this cp (short for ‘cartesian product’, which is
exactly what a mathematician would call it). There doesn’t seem to be any clever
way of computing cp in terms of other functions, so we adopt the default strategy
of defining this function by breaking up its argument list into two possibilities, the
empty list [] and a nonempty list xs:xss. You might guess the definition of cp []

but you would probably be wrong; the better alternative is to think about the second
case first. Suppose we assume

cp [[2],[1,3]] = [[2,1],[2,3]]

How can we extend this definition to one for cp ([1,2,3]:[[2],[1,3]])? The
answer is to prefix 1 to every element of cp [[2],[1,3]], then to prefix 2 to every
element of the same list, and finally to prefix 3 to every element. That process can
be expressed neatly using a list comprehension:

cp (xs:xss) = [x:ys | x <- xs, ys <- cp xss]

In words, prefix every element of xs to every element of cp xss in all possible
ways.

If your nose is good at sniffing out inefficiencies, you might suspect that this one-
liner is not the best possible, and you would be right. We will return to this point
in Section 7.3, but let’s just say that a more efficient definition is

cp (xs:xss) = [x:ys | x <- xs, ys <- yss]

where yss = cp xss

This version guarantees that cp xss is computed just once.

Now, what is cp []? The answer is not [] but [[]]. To see why the first is wrong,
consider a little calculation:

cp [xs] = cp (xs:[])

= [x:ys | x <- xs, ys <- cp []]
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= [x:ys | x <- xs, ys <- []]

= []

In fact with cp [] = [] we can show that cp xss = [] for all lists xss. So that
definition is clearly wrong. You can check that the second alternative, [[]], does
give what is wanted.

Summarising, we can define cp by

cp :: [[a]] -> [[a]]

cp [] = [[]]

cp (xs:xss) = [x:ys | x <- xs, ys <- yss]

where yss = cp xss

For example,

ghci> cp [[1],[2],[3]]

[[1,2,3]]

ghci> cp [[1,2],[],[4,5]]

[]

In the second example there is no possible choice from the middle list, so the empty
list is returned.

But what about matrices and expand, which does the same thing on matrices as cp
does on lists? You will have to think a bit before seeing that what is wanted is

expand :: Matrix [Digit] -> [Grid]

expand = cp . map cp

That looks a little cryptic, but map cp returns a list of all possible choices for each
row, and so applying cp to the result installs each choice for the rows in all possible
ways. The general type of the right-hand side is

cp . map cp :: [[[a]]] -> [[[a]]]

and the declared type of expand is just a restricted version of this type. Note that
expand returns the empty list if any element in any row is the empty list.

Finally, a valid grid is one in which no row, column or box contains duplicates:

valid :: Grid -> Bool

valid g = all nodups (rows g) &&

all nodups (cols g) &&

all nodups (boxs g)
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The prelude function all is defined by

all p = and . map p

Applied to a finite list xs the function all p returns True if all elements of xs
satisfy p, and False otherwise. The function nodups can be defined by

nodups :: (Eq a) => [a] -> Bool

nodups [] = True

nodups (x:xs) = all (/=x) xs && nodups xs

Evaluation of nodups on a list of length n takes time proportional to n2. As an
alternative we could sort the list and check that it is strictly increasing. Sorting
can be done in time proportional to n logn steps. That seems a big saving over
n2. However, with n = 9, it is not clear that using an efficient sorting algorithm is
worthwhile. What would you prefer: 2n2 steps or 100n log2 n steps?

It remains to define rows, cols and boxs. If a matrix is given by a list of its rows,
then rows is just the identity function on matrices:

rows :: Matrix a -> Matrix a

rows = id

The function cols computes the transpose of a matrix. Thus if a matrix consists of
m rows, where each row has length n, the transpose is a list of n rows, where each
row has length m. Assuming both m and n are not zero, we can define

cols :: Matrix a -> Matrix a

cols [xs] = [[x] | x <- xs]

cols (xs:xss) = zipWith (:) xs (cols xss)

It is usual in matrix algebra to suppose that the matrix is nonempty, and that cer-
tainly suffices here, but it is interesting to consider what happens if we allow m or
n to be zero. This point is taken up in the exercises.

The function boxs is a little more interesting. We give the definition first and ex-
plain it afterwards:

boxs :: Matrix a -> Matrix a

boxs = map ungroup . ungroup .

map cols .

group . map group

The function group splits a list into groups of three:

group :: [a] -> [[a]]
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group [] = []

group xs = take 3 xs:group (drop 3 xs)

The function ungroup takes a grouped list and ungroups it:

ungroup :: [[a]] -> [a]

ungroup = concat

The action of boxs in the 4× 4 case, when group splits a list into groups of two
rather than three, is illustrated by the picture

⎛
⎜⎜⎝

a b c d
e f g h
i j k l
m n o p

⎞
⎟⎟⎠ −→

⎛
⎜⎜⎝

(
ab cd
ef gh

)
(

ij kl
mn op

)
⎞
⎟⎟⎠

↓⎛
⎜⎜⎝

a b e f
c d g h
i j m n
k l o p

⎞
⎟⎟⎠ ←−

⎛
⎜⎜⎝

(
ab ef
cd gh

)
(

ij mn
kl op

)
⎞
⎟⎟⎠

Grouping produces a list of matrices; transposing each matrix and ungrouping
yields the boxes, as a matrix whose rows are the boxes of the original matrix.

5.2 Lawful program construction

Observe that instead of thinking about matrices in terms of indices, and doing arith-
metic on indices to identify the rows, columns and boxes, we have gone for defi-
nitions of these functions that treat the matrix as a complete entity in itself. This
style has aptly been called wholemeal programming. Wholemeal programming is
good for you: it helps to prevent a disease called indexitis, and encourages lawful
program construction.

For example, here are three laws that are valid on Sudoku grids:

rows . rows = id

cols . cols = id

boxs . boxs = id

In other words, all three functions are involutions. The first two are valid on all
matrices, and the third is valid on arbitrary n2 × n2 matrices (provided we change
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the definition of group to group by n). Two are easy to prove, but one is more
difficult. The difficult law is not the one about boxs, as you might expect, but the
involution property of cols. Though it is intuitively obvious that transposing a
matrix twice gets you back to the original matrix, proving it from the definition of
cols is a little tricky and we won’t go into details, basically because we haven’t
yet discussed the tools available to do the job.

By contrast, here is the proof of the involution property of boxs. The proof is by
simple equational reasoning. It makes use of various laws, including the functor
laws of map, the fact that id is the identity element of composition, and the facts
that

ungroup . group = id

group . ungroup = id

The second equation is valid only on grouped lists, but that will be the case in the
calculation to come.

We will talk through the proof rather than lay everything out in a long chain. The
starting point is to use the definition of boxs to rewrite boxs . boxs:

map ungroup . ungroup . map cols . group . map group .

map ungroup . ungroup . map cols . group . map group

The middle expression map group . map ungroup simplifies to id using the
functor law of map and the property that group and ungroup are inverses. That
gives

map ungroup . ungroup . map cols . group .

ungroup . map cols . group . map group

An appeal to group . ungroup = id gets us to

map ungroup . ungroup . map cols .

map cols . group . map group

The functor law of map and the involution property of cols now gets us to

map ungroup . ungroup . group . map group

And the proof is finished off using ungroup . group = id twice more. As you
can see, it’s a very simple calculation.

Here are three more laws, valid on N2 ×N2 matrices of choices:

map rows . expand = expand . rows

map cols . expand = expand . cols
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map boxs . expand = expand . boxs

We will make use of these laws in a short while.

Finally, here are two laws about cp:

map (map f) . cp = cp . map (map f)

filter (all p) . cp = cp . map (filter p)

The first law, a naturality law, is suggested solely by the type of cp; we saw similar
laws in the previous chapter. The second law says that as an alternative to taking
the cartesian product of a list of lists, and then retaining only those lists all of
whose elements satisfy p, we can first filter the original lists to retain only those
elements that satisfy p and then take the cartesian product. As the previous sentence
illustrates, one equation can be worth a thousand words.

5.3 Pruning the matrix of choices

Summarising what we have at the moment,

solve :: Grid -> [Grid]

solve = filter valid . expand . choices

Though executable in theory, this definition of solve is hopeless in practice. As-
suming about 20 of the 81 entries are fixed initially, there are about 961, or

ghci> 9^61

16173092699229880893718618465586445357583280647840659957609

grids to check! We therefore need a better approach.

To make a more efficient solver, an obvious idea is to remove any choices from a
cell c that already occur as singleton entries in the row, column and box containing
c. A singleton entry corresponds to a fixed choice. We therefore seek a function

prune :: Matrix [Digit] -> Matrix [Digit]

so that

filter valid . expand = filter valid . expand . prune

How can we define prune? Well, since a matrix is a list of rows, a good place to
start is by pruning a single row. The function pruneRow is defined by

pruneRow :: Row [Digit] -> Row [Digit]

pruneRow row = map (remove fixed) row
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where fixed = [d | [d] <- row]

The fixed choices are the singleton entries in each row. The definition of fixed
uses a list comprehension involving a pattern: all elements of row that are not
singletons are discarded.

The function remove removes the fixed choices from any choice that is not fixed:

remove :: [Digit] -> [Digit] -> [Digit]

remove ds [x] = [x]

remove ds xs = filter (`notElem` ds) xs

The standard prelude function notElem is defined by

notElem :: (Eq a) => a -> [a] -> Bool

notElem x xs = all (/= x) xs

Here are a couple of examples of the use of pruneRow:

ghci> pruneRow [[6],[1,2],[3],[1,3,4],[5,6]]

[[6],[1,2],[3],[1,4],[5]]

ghci> pruneRow [[6],[3,6],[3],[1,3,4],[4]]

[[6],[],[3],[1],[4]]

In the first example, [6] and [3] are the fixed choices; removing these choices
from the other entries reduces the last entry to a fixed choice. In the second ex-
ample, removing the fixed choices reduces the second entry to the empty list of
choices.

The function pruneRow satisfies the equation

filter nodups . cp = filter nodups . cp . pruneRow

In words, this equation says that pruning a row will not throw away any list that
contains no duplicates. We will also make use of this law in a short while.

We are now nearly ready for a calculation that will determine the function prune.
Nearly, but not quite because we are going to need two more laws: If f . f = id,
then

filter (p . f) = map f . filter p . map f

filter (p . f) . map f = map f . filter p



5.3 Pruning the matrix of choices 99

The second law follows from the first (Why?). Here is the proof of the first law:

map f . filter p . map f

= {we proved in the previous chapter that
filter p . map f = map f . filter (p . f)}

map f . map f . filter (p . f)

= {functor law of map and f . f = id}
filter (p . f)

Now for the main calculation. The starting point is to use the definition of valid
to rewrite the expression filter valid . expand in the form

filter valid . expand

= filter (all nodups . boxs) .

filter (all nodups . cols) .

filter (all nodups . rows) . expand

The order in which the filters appear on the right is not important. The plan of
attack is to send each of these filters into battle with expand. For example, in the
boxs case we can calculate:

filter (all nodups . boxs) . expand

= {above law of filter, since boxs . boxs = id}
map boxs . filter (all nodups) . map boxs . expand

= {since map boxs . expand = expand . boxs}
map boxs . filter (all nodups) . expand . boxs

= {definition of expand}
map boxs . filter (all nodups) . cp . map cp . boxs

= {since filter (all p) . cp = cp . map (filter p)}
map boxs . cp . map (filter nodups) . map cp . boxs

= {functor law of map}
map boxs . cp . map (filter nodups . cp) . boxs

Now we use the property

filter nodups . cp = filter nodups . cp . pruneRow

to rewrite the final expression in the form

map boxs . cp . map (filter nodups . cp . pruneRow) . boxs
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The remaining steps essentially repeat the calculation above, but in the reverse
direction:

map boxs . cp . map (filter nodups . cp . pruneRow) .

boxs

= {functor law of map}
map boxs . cp . map (filter nodups) .

map (cp . pruneRow) . boxs

= {since cp . map (filter p) = filter (all p) . cp}
map boxs . filter (all nodups) . cp .

map (cp . pruneRow) . boxs

= {functor law of map}
map boxs . filter (all nodups) .

cp . map cp . map pruneRow . boxs

= {definition of expand}
map boxs . filter (all nodups) .

expand . map pruneRow . boxs

= {law of filter since boxs . boxs = id}
filter (all nodups . boxs) . map boxs .

expand . map pruneRow . boxs

= {since map boxs . expand = expand . boxs}
filter (all nodups . boxs) . expand .

boxs . map pruneRow . boxs

= {introducing pruneBy f = f . pruneRow . f}
filter (all nodups . boxs) . expand . pruneBy boxs

We have shown that

filter (all nodups . boxs) . expand

= filter (all nodups . boxs) . expand . pruneBy boxs

where pruneBy f = f . map pruneRow . f. Repeating the same calculation
for rows and columns, we obtain

filter valid . expand = filter valid . expand . prune

where

prune = pruneBy boxs . pruneBy cols . pruneBy rows
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In conclusion, the previous definition of solve can now be replaced with a new
one:

solve = filter valid . expand . prune . choices

In fact, rather than have just one prunewe can have as many prunes as we like. This
is sensible because after one round of pruning some choices may be resolved into
singleton choices and another round of pruning may remove still more impossible
choices.

So, let us define

many :: (Eq a) => (a -> a) -> a -> a

many f x = if x == y then x else many f y

where y = f x

and redefine solve once again to read

solve = filter valid . expand . many prune . choices

The simplest Sudoku problems are solved just by repeatedly pruning the matrix of
choices until only singleton choices are left.

5.4 Expanding a single cell

The result of many prune . choices is a matrix of choices that can be put into
one of three classes:

1. A complete matrix in which every entry is a singleton choice. In this case
expand will extract a single grid that can be checked for validity.

2. A matrix that contains the empty choice somewhere. In this case expand will
produce the empty list.

3. A matrix that does not contain the empty choice but does contain some entry
with two or more choices.

The problem is what to do in the third case. Rather than carry out full expansion,
a more sensible idea is to make use of a partial expansion that installs the choices
for just one of the entries, and to start the pruning process again on each result. The
hope is that mixing pruning with single-cell expansions can lead to a solution more
quickly. Our aim therefore is to construct a partial function

expand1 :: Matrix [Digit] -> [Matrix [Digit]]
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that expands the choices for one cell only. This function will return well-defined
results only for incomplete matrices, and on such matrices is required to satisfy

expand = concat . map expand . expand1

Actually this equality between two lists is too strong. We want to ensure that no
possible choice is lost by partial expansion, but do not really care about the precise
order in which the two sides deliver their results. So we will interpret the equation
as asserting the equality of the two sides up to some permutation of the answers.

Which cell should we perform expansion on? The simplest answer is to find the
first cell in the matrix with a non-singleton entry. Think of a matrix rows broken
up as follows:

rows = rows1 ++ [row] ++ rows2

row = row1 ++ [cs] ++ row2

The cell cs is a non-singleton list of choices in the middle of row, which in turn is
in the middle of the matrix rows.

Then we can define

expand1 :: Matrix [Digit] -> [Matrix [Digit]]

expand1 rows

= [rows1 ++ [row1 ++ [c]:row2] ++ rows2 | c <- cs]

To break up the matrix in this way, we use the prelude function break:

break :: (a -> Bool) -> [a] -> ([a],[a])

break p = span (not . p)

The function span was defined in Section 4.8. For example,

ghci> break even [1,3,7,6,2,3,5]

([1,3,7],[6,2,3,5])

We also need the standard prelude function any, defined by

any :: (a -> Bool) -> [a] -> Bool

any p = or . map p

where or takes a list of booleans and returns True if any element is True, and
False otherwise:

or :: [Bool] -> Bool

or [] = False

or (x:xs) = x || or xs
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Finally, the single test is defined (using don’t care patterns) by

single :: [a] -> Bool

single [_] = True

single _ = False

Now we can define

expand1 :: Matrix [Digit] -> [Matrix [Digit]]

expand1 rows

= [rows1 ++ [row1 ++ [c]:row2] ++ rows2 | c <- cs]

where

(rows1,row:rows2) = break (any (not . single)) rows

(row1,cs:row2) = break (not . single) row

The first where clause breaks a matrix into two lists of rows with the row at the
head of the second list being one that contains a non-singleton choice. A second
appeal to break then breaks this row into two lists, with the head of the second list
being the first non-singleton element. If the matrix contains only singleton entries,
then

break (any (not . single)) rows = [rows,[]]

and execution of expand1 returns an error message.

The problem with this definition of expand1 is that it can lead to wasted work. If
the first non-singleton entry found in this way happens to be the empty list, then
expand1 will return the empty list, but if such a list is buried deep in the matrix,
then expand1 will do a lot of useless calculation trying to find a solution that isn’t
there. It is arguable that a better choice of cell on which to perform expansion is
one with the smallest number of choices (not equal to 1 of course). A cell with no
choices means that the puzzle is unsolvable, so identifying such a cell quickly is a
good idea.

The change to expand1 to implement this idea is as follows:

expand1 :: Matrix [Digit] -> [Matrix [Digit]]

expand1 rows

= [rows1 ++ [row1 ++ [c]:row2] ++ rows2 | c <- cs]

where

(rows1,row:rows2) = break (any smallest) rows

(row1,cs:row2) = break smallest row

smallest cs = length cs == n

n = minimum (counts rows)
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The function counts is defined by

counts = filter (/= 1) . map length . concat

The value n is the smallest number of choices, not equal to 1, in any cell of the
matrix of choices. We will leave the definition of minimum as an exercise. The
value of n will be 0 if the matrix has an empty choice entry anywhere, and in this
case expand1 will return the empty list. On the other hand, if the matrix of choices
contains only singleton choices, then n is the minimum of the empty list, which is
the undefined value ⊥. In this case expand1 will also return ⊥, so we had better
ensure that expand1 is applied only to incomplete matrices. A matrix is incomplete
if it does not satisfy complete:

complete :: Matrix [Digit] -> Bool

complete = all (all single)

We can also usefully generalise valid to a test on matrices of choices. Suppose
we define safe by

safe :: Matrix [Digit] -> Bool

safe m = all ok (rows cm) &&

all ok (cols cm) &&

all ok (boxs cm)

ok row = nodups [x | [x] <- row]

A matrix is safe if none of the singleton choices in any row, column or box contain
duplicates. But a safe matrix may contain non-singleton choices. Pruning can turn
a safe matrix into an unsafe one, but if a matrix is safe after pruning it has to be
safe beforehand. In symbols, safe . prune = safe. A complete and safe matrix
yields a solution to the Sudoku problem, and this solution can be extracted by a
simplified version of expand:

extract :: Matrix [Digit] -> Grid

extract = map (map head)

Hence on a safe and complete matrix m we have

filter valid (expand m) = [extract m]

On a safe but incomplete matrix we have

filter valid . expand

= filter valid . concat . map expand . expand1

up to permutation of each side. Since
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filter p . concat = concat . map (filter p)

we obtain that filter valid . expand simplifies to

concat . map (filter p . expand) . expand1

And now we can insert a single prune to obtain

concat . map (filter p . expand . prune) . expand1

Hence, introducing

search = filter valid . expand . prune

we have, on safe but incomplete matrices, that

search = concat . map search . expand1 . prune

And now we can replace solve by a third version:

solve = search . choices

search cm

| not (safe pm) = []

| complete pm = [extract pm]

| otherwise = concat (map search (expand1 pm))

where pm = prune cm

This is our final simple Sudoku solver. We could replace prune in the last line by
many prune. Sometimes many prunes work faster than one prune; sometimes not.
Note that the very first safety test occurs immediately after one round of pruning
on the installed choices; consequently flawed input is detected quickly.

5.5 Exercises

Exercise A

How would you add 1 to every element in a given matrix of integers? How would
you sum the elements of a matrix? The function zipWith (+) adds two rows, but
what function would add two matrices? How would you define matrix multiplica-
tion?

Exercise B

What are the dimensions of the matrix [[],[]]? Of the matrix []?

The function cols (here renamed as transpose) was defined by
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transpose :: [[a]] -> [[a]]

transpose [xs] = [[x] | x <- xs]

transpose (xs:xss) = zipWith (:) xs (transpose xss)

Fill in the dots that would enable you to replace the first clause by

transpose [] = ...

The above definition of transpose proceeds row by row. Here is part of a defini-
tion that proceeds column by column:

transpose xss = map head xss:transpose (map tail xss)

Complete this definition.

Exercise C

Which of the following equations are true (no justification is necessary):

any p = not . all (not p)

any null = null . cp

Exercise D

Given a function sort :: (Ord a) => [a] -> [a] that sorts a list, construct a
definition of

nodups :: (Ord a) => [a] -> Bool

Exercise E

The function nub :: (Eq a) => [a] -> [a] removes duplicates from a list (a
version of this function is available in the library Data.List). Define nub. Assum-
ing the order of the elements in the result is not important, define

nub :: (Ord a) => [a] -> [a]

so that the result is a more efficient function.

Exercise F

The functions takeWhile and dropWhile satisfy

span p xs = (takeWhile p xs,dropWhile p xs)

Give direct recursive definitions of takeWhile and dropWhile.

Assuming whiteSpace :: Char -> Bool is a test for whether a character is
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white space (such as a space, a tab or a newline) or a visible character, construct a
definition of

words :: String -> [Word]

that breaks a string up into a list of words.

Exercise G

Define minimum :: Ord a => [a] -> a.

Exercise H

Why didn’t we define solve by the following?

solve = search . choices

search m

| not (safe m) = []

| complete m = [extract m]

| otherwise = process m

where process = concat . map search . expand1 . prune

5.6 Answers

Answer to Exercise A

Adding 1 to every matrix element is defined by map (map (+1)).

Summing a matrix is defined by sum . map sum, where sum sums a list of num-
bers. Alternatively, we could use sum . concat.

Matrix addition is defined by zipWith (zipWith (+)).

For matrix multiplication we first define

scalarMult :: Num a => [a] -> [a] -> a

scalarMult xs ys = sum (zipwith (*) xs ys)

Then we have

matMult :: Num a => Matrix a -> Matrix a -> Matrix a

matMult ma mb = [map (scalarMult row) mbt | row <- ma]

where mbt = transpose mb
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Answer to Exercise B

The matrix [[],[]] has dimensions 2× 0. The matrix [] has dimensions 0× n
for every n. The transpose of such a matrix therefore has to have dimensions n×0
for every n. The only reasonable possibility is to let n be infinite:

transpose :: [[a]] -> [[a]]

transpose [] = repeat []

transpose (xs:xss) = zipWith (:) xs (transpose xss)

where repeat x gives an infinite list of repetitions of x. Note that

transpose [xs] = zipWith (:) xs (repeat [])

= [[x] | x <- xs]

The alternative definition is

transpose ([]:xss) = []

transpose xss = map head xss:transpose (map tail xss)

The assumption in the first line is that if the first row is empty, then all the rows are
empty and the transpose is the empty matrix.

Answer to Exercise C

Both the equations are true.

Answer to Exercise D

nodups :: (Ord a) => [a] -> Bool

nodups xs = and (zipWith (/=) ys (tail ys))

where ys = sort xs

Answer to Exercise E

nub :: (Eq a) => [a] -> [a]

nub [] = []

nub (x:xs) = x:nub (filter (/= x) xs)

nub :: (Ord a) => [a] -> [a]

nub = remdups . sort

remdups [] = []

remdups (x:xs) = x:remdups (dropWhile (==x) xs)

The function dropWhile is defined in the next exercise.



5.7 Chapter notes 109

Answer to Exercise F

takeWhile, dropWhile :: (a -> Bool) -> [a] -> [a]

takeWhile p [] = []

takeWhile p (x:xs)

= if p x then x:takeWhile p xs else []

dropWhile p [] = []

dropWhile p (x:xs)

= if p x then dropWhile p xs else x:xs

The definition of words is

words :: String -> [Word]

words xs | null ys = []

| otherwise = w:words zs

where ys = dropWhile whiteSpace xs

(w,zs) = break whiteSpace ys

Answer to Exercise G

minimum :: Ord a => [a] -> a

minimum [x] = x

minimum (x:xs) = x `min` minimum xs

Note that the minimum of the empty list is undefined.

Answer to Exercise H

The suggested definition of solve would return the undefined value if the matrix
becomes complete after one round of pruning.

5.7 Chapter notes

The Independent newspaper no longer uses the rubric for Sudoku quoted at the
start of the chapter. The presentation follows that in my book Pearls of Functional
Algorithm Design (Cambridge, 2010). The site

haskell.org/haskellwiki/Sudoku

contains about 20 Haskell implementations of Sudoku, many of which use arrays
and/or monads. We will meet arrays and monads in Chapter 10.



Chapter 6

Proofs

We have seen a lot of laws in the previous two chapters, though perhaps the word
‘law’ is a little inappropriate because it suggests something that is given to us from
on high and which does not have to be proved. At least the word has the merit of
being short. All of the laws we have encountered so far assert the equality of two
functional expressions, possibly under subsidiary conditions; in other words, laws
have been equations or identities between functions, and calculations have been
point-free calculations (see Chapter 4, and the answer to Exercise K for more on
the point-free style). Given suitable laws to work with, we can then use equational
reasoning to prove other laws. Equational logic is a simple but powerful tool in
functional programming because it can guide us to new and more efficient def-
initions of the functions and other values we have constructed. Efficiency is the
subject of the following chapter. This one is about another aspect of equational
reasoning, proof by induction. We will also show how to shorten proofs by intro-
ducing a number of higher-order functions that capture common patterns of com-
putations. Instead of proving properties of similar functions over and over again,
we can prove more general results about these higher-order functions, and appeal
to them instead.

6.1 Induction over natural numbers

Consider the following definition of the exponential function:

exp :: Num a => a -> Nat -> a

exp x Zero = 1

exp x (Succ n) = x * exp x n

In the old days we could have written
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exp :: Num a => a -> Int -> a

exp x 0 = 1

exp x (n+1) = x * exp x n

but this precise form of definition using a (n+1)-pattern is no longer allowed in
the current standard version of Haskell, Haskell 2010.

Anyway, we would expect that the equation

exp x (m+n) = exp x m * exp x n

is true for all m and n. After all, xm+n = xmxn is a true equation of mathematics. But
how can we prove this law?

The answer, of course, is by induction. Every natural number is either Zero or of
the form Succ n for some natural number n. That is exactly what the definition

data Nat = Zero | Succ Nat

of the data type Nat tells us. So to prove that P(n) holds for all natural numbers n,
we can prove

1. P(0) holds;

2. For all natural numbers n, that P(n+1) holds assuming that P(n) does.

We have reverted to writing 0 for Zero and n+1 for Succ n, and we shall continue
to do so. In the second proof we can assume P(n) and use this assumption to prove
P(n+1).

As an example we prove that

exp x (m+n) = exp x m * exp x n

for all x, m and n by induction on m. We could also prove it by induction on n but
that turns out to be more complicated. Here is the proof:

Case 0

exp x (0 + n)

= {since 0 + n = n}
exp x n

exp x 0 * exp x n

= {exp.1}
1 * exp x n

= {since 1 * x = x}
exp x n
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Case m+1

exp x ((m + 1) + n))

= {arithmetic}
exp x ((m + n) + 1

= {exp.2}
x * exp x (m + n)

= {induction}
x * (exp x m * exp x n)

exp x (m+1) * exp x n

= {exp.2}
(x * exp x m) * exp x n

= {since * is associative}
x * (exp x m * exp x n)

The above format will be used in all induction proofs. The proof breaks into two
cases, the base case 0 and the inductive case n+ 1. Each case is laid out in two
columns, one for the left-hand side of the equation, and one for the right-hand side.
(When there is not enough space for two columns, we display one after the other.)
Each side is simplified until one can go no further, and the proof of each case
is completed by observing that each side simplifies to the same result. The hints
exp.1 and exp.2 refer to the first and second equations defining exp.

Finally, observe that the proof depends on three further laws, namely that

(m + 1) + n = (m + n) + 1

1 * x = x

(x * y) * z = x * (y * z)

If we were recreating all of arithmetic from scratch – and that would be a tedious
thing to do – we would also have to prove these laws. In fact, only the first can be
proved because it is entirely about natural numbers and we have defined the oper-
ation of addition on natural numbers. The second two rely on the implementation
of multiplication prescribed by Haskell for the various instances of the type class
Num.

In fact, the associative law breaks down for floating-point numbers:

ghci> (9.9e10 * 0.5e-10) * 0.1e-10 :: Float

4.95e-11

ghci> 9.9e10 * (0.5e-10 * 0.1e-10) :: Float

4.9499998e-11

Recall that in scientific notation 9.9e10 means 9.9 * 10^10. So, although our
proof was correct mathematically, one of the provisos in it wasn’t, at least in
Haskell.
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6.2 Induction over lists

We have seen that every finite list is either the empty list [] or of the form x:xs

where xs is a finite list. Hence, to prove that P(xs) holds for all finite lists xs, we
can prove:

1. P([]) holds;

2. For all x and for all finite lists xs, that P(x:xs) holds assuming P(xs) does.

As an example, recall the definition of concatenation (++):

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

We prove that ++ is associative:

(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

for all finite lists xs and for all lists ys and zs (note that neither of the last two is
required to be a finite list), by induction on xs:

Case []

([] ++ ys) ++ zs

= {++.1}
ys ++ zs

[] ++ (ys ++ zs)

= {++.1}
ys ++ zs

Case x:xs

((x:xs) ++ ys) ++ zs

= {++.2}
(x:(xs ++ ys)) ++ zs

= {++.2}
x:((xs ++ ys) ++ zs)

(x:xs) ++ (ys ++ zs)

= {++.2}
x:(xs ++ (ys ++ zs))

= {induction}
x:((xs ++ ys) ++ zs)

As another example, given the definition

reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

We prove that reverse is an involution:

reverse (reverse xs) = xs

for all finite lists xs. The base case is easy and the inductive case proceeds:
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Case x:xs

reverse (reverse (x:xs))

= {reverse.2}
reverse (reverse xs ++ [x])

= {????}
x:reverse (reverse xs)

= {induction}
x:xs

The right-hand column is omitted in this example, since it consists solely of x:xs.
But we got stuck in the proof halfway through. We need an auxiliary result, namely
that

reverse (ys ++ [x]) = x:reverse ys

for all finite lists ys. This auxiliary result is also proved by induction:

Case []

reverse ([] ++ [x])

= {++.1}
reverse [x]

= {reverse.2}
reverse [] ++ [x]

= {reverse.1 and ++.1}
[x]

x:reverse []

= {reverse.1}
[x]

Case y:ys

reverse ((y:ys) ++ [x])

= {++.2}
reverse (y:(ys ++ [x]))

= {reverse.2}
reverse (ys ++ [x]) ++ [y]

= {induction}
(x:reverse ys) ++ [y]

= {++.2}
x:(reverse ys ++ [y])

x:reverse (y:ys)

= {reverse.2}
x:(reverse ys ++ [y])
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The auxiliary result holds, and therefore so does the main result.

Induction over partial lists

Every partial list is either the undefined list or of the form x:xs for some x and
some partial list xs. Hence, to prove that P(xs) holds for all partial lists xs we can
prove that

1. P(undefined) holds;

2. P(x:xs) holds assuming P(xs) does, for all x and all partial lists xs.

As an example, we prove that

xs ++ ys = xs

for all partial lists xs and all lists ys:

Case undefined

undefined ++ ys

= {++.0}
undefined

Case x:xs

(x:xs) ++ ys

= {++.2}
x:(xs ++ ys)

= {induction}
x:xs

In each case the trivial right-hand column is omitted. The hint (++).0 refers to
the failing clause in the definition of (++): since concatenation is defined by pat-
tern matching on the left-hand argument, the result is undefined if the left-hand
argument is.

Induction over infinite lists

Proving that something is true of all infinite lists requires a bit of background
that we will elaborate on in a subsequent chapter. Basically an infinite list can
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be thought of as the limit of a sequence of partial lists. For example, [0..] is the
limit of the sequence

undefined, 0:undefined, 0:1:undefined, 0:1:2:undefined,

and so on. A property P is called chain complete if whenever xs0,xs1, . . . is a se-
quence of partial lists with limit xs, and P(xsn) holds for all n, then P(xs) also
holds.

In other words, if P is a chain complete property that holds for all partial lists (and
possibly all finite lists too), then it holds for all infinite lists.

Many properties are chain complete; for instance:

• All equations e1 = e2, where e1 and e2 are Haskell expressions involving uni-
versally quantified free variables, are chain complete.

• If P and Q are chain complete, then so is their conjunction P∧Q.

But inequalities e1 	= e2 are not necessarily chain complete, and neither are prop-
erties involving existential quantification. For example, consider the assertion

drop n xs = undefined

for some integer n. This property is obviously true for all partial lists, and equally
obviously not true for any infinite list.

Here is an example proof. Earlier we proved that

(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

for all finite lists xs and for all lists ys and zs. We can extend this chain complete
property to all lists xs by proving

Case undefined

(undefined ++ ys) ++ zs

= {++.0}
undefined ++ zs

= {++.0}
undefined

undefined ++ (ys ++ zs)

= {++.0}
undefined

Thus ++ is a truly associative operation on lists, independent of whether the lists
are finite, partial or infinite.

But we have to be careful. Earlier we proved
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reverse (reverse xs) = xs

for all finite lists xs. Can we extend this property to all lists by proving the follow-
ing additional case?

Case undefined

reverse (reverse undefined)

= {reverse.0}
undefined

That goes through but something is wrong: as a Haskell equation we have

reverse (reverse xs) = undefined

for all partial lists xs. What did we miss?

The answer is that in proving the involution property of reverse we made use of
an auxiliary result:

reverse (ys ++ [x]) = x:reverse ys

for all finite lists ys. This result is not true for all lists, indeed not true for any
partial list ys.

It follows that reverse . reverse is not the identity function on lists, A func-
tional equation f = g over lists asserts that f xs = g xs for all lists xs, finite,
partial and infinite. If the equation is true only for finite lists, we have to say so
explicitly.

6.3 The function foldr

All the following functions have a common pattern:

sum [] = 0

sum (x:xs) = x + sum xs

concat [] = []

concat (xs:xss) = xs ++ concat xss

filter p [] = []

filter p (x:xs) = if p x then x:filter p xs

else filter p xs
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map f [] = []

map f (x:xs) = f x:map f xs

Similarly, the proofs by induction of the following laws all have a common pattern:

sum (xs ++ ys) = sum xs + sum ys

concat (xss ++ yss) = concat xss ++ concat yss

filter p (xs ++ ys) = filter p xs ++ filter p ys

map f (xs ++ ys) = map f xs ++ map f ys

Can we not ensure that the functions above are defined as instances of a more
general function, and the laws above as instances of a more general law? That
would save a lot of repetitive effort.

The function foldr (fold from the right) is defined by

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f e [] = e

foldr f e (x:xs) = f x (foldr f e xs)

To appreciate this definition, consider

foldr (@) e [x,y,z] = x @ (y @ (z @ e))

[x,y,z] = x : (y : (z : []))

In other words, foldr (@) e applied to a list replaces the empty list by e, and
(:) by (@) and evaluates the result. The parentheses group from the right, whence
the name.

It follows at once that foldr (:) [] is the identity function on lists. Furthermore,

sum = foldr (+) 0

concat = foldr (++) []

filter p = foldr (\x xs -> if p x then x:xs else xs) []

map f = foldr ((:) . f) []

The following fact captures all the identities mentioned above:

foldr f e (xs ++ ys) = foldr f e xs @ foldr f e ys

for some operation (@) satisfying various properties. We prove this equation by
induction on xs. Along the way, we discover what properties of f, e and (@) we
need.



6.3 The function foldr 119

Case []

foldr f e ([] ++ ys)

= {++.1}
foldr f e ys

foldr f e [] @ foldr f e ys

= {foldr.1}
e @ foldr f e ys

Hence we need e @ x = x for all x.

Case x:xs

foldr f e ((x:xs) ++ ys)

= {++.2}
foldr f e (x:(xs ++ ys)

= {foldr.2}
f x (foldr f e (xs ++ ys))

= {induction}
f x (foldr f e xs @ foldr f e ys)

The right-hand side in this case simplifies to

f x (foldr f e xs) @ foldr f e ys

So, in summary, we require that

e @ x = x

f x (y @ z) = f x y @ z

for all x, y and z. In particular the two requirements are met if f = (@) and (@)

is associative with identity e. That immediately proves

sum (xs ++ ys) = sum xs + sum ys

concat (xss ++ yss) = concat xss ++ concat yss

For the map law, we require that

[] ++ xs = xs

f x:(xs ++ ys) = (f x:ys) ++ ys

Both immediately follow from the definition of concatenation.

For the law of filter we require that

if p x then x:(ys ++ zs) else ys ++ zs

= (if p x then x:ys else ys) ++ zs



120 Proofs

This is immediate from the definitions of concatenation and conditional expres-
sions.

Fusion

The most important property of foldr is the fusion law, which asserts that

f . foldr g a = foldr h b

provided certain properties of the ingredients hold. As two simple examples,

double . sum = foldr ((+) . double) 0

length . concat = foldr ((+) . length) 0

In fact, many of the laws we have seen already are instances of the fusion law for
foldr. In a word, the fusion law is a ‘pre-packaged’ form of induction over lists.

To find out what properties we need, we carry out an induction proof of the fusion
law. The law is expressed as a functional equation, so we have to show that it holds
for all finite and all partial lists:

Case undefined

f (foldr g a undefined)

= {foldr.0}
f undefined

foldr h b undefined

= {foldr.0}
undefined

So the first condition is that f is a strict function.

Case []

f (foldr g a [])

= {foldr.1}
f a

foldr h b []

= {foldr.1}
b

The second condition is that f a = b.

Case x:xs

f (foldr g a (x:xs))

= {foldr.2}
f (g x (foldr g a xs))

foldr h b (x:xs)

= {foldr.2}
h x (foldr h b xs)

= {induction}
h x (f (foldr g a xs))
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The third condition is met by f (g x y) = h x (f y) for all x and y.

Let us apply the fusion law to show that

foldr f a . map g = foldr h a

Recall that map g = foldr ((:) . g) []. Looking at the conditions of the fu-
sion law we have that

foldr f a undefined = undefined

foldr f a [] = a

So the first two fusion conditions are satisfied. The third one is

foldr f a (g x:xs) = h x (foldr f a xs)

The left-hand side simplifies to

f (g x) (foldr f a xs)

so we can define h x y = f (g x) y. More briefly, h = f . g. Hence we have
the useful rule:

foldr f a . map g = foldr (f . g) a

In particular,

double . sum = sum . map double

= foldr ((+) . double) 0

length . concat = sum . map length

= foldr ((+) . length) 0

Other simple consequences of the fusion law are explored in the exercises.

A variant

Sometimes having the empty list around is a pain. For example, what is the min-
imum element in an empty list? For this reason, Haskell provides a variant on
foldr, called foldr1, restricted to nonempty lists. The Haskell definition of this
function is

foldr1 :: (a -> a -> a) -> [a] -> a

foldr1 f [x] = x

foldr1 f (x:xs) = f x (foldr1 f xs)
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So we can define

minimum, maximum :: Ord a => [a] -> a

minimum = foldr1 min

maximum = foldr1 max

and avoid two other explicit recursions. Actually the Haskell definition of foldr1
is not as general as it should be, but we will leave that discussion to an exercise.

6.4 The function foldl

Recall that

foldr (@) e [w,x,y,z] = w @ (x @ (y @ (z @ e)))

Sometimes a more convenient pattern for the right-hand side is

(((e @ w) @ x) @ y) @ z

This pattern is encapsulated by a function foldl (fold from the left):

foldl :: (b -> a -> b) -> b -> [a] -> b

foldl f e [] = e

foldl f e (x:xs) = foldl f (f e x) xs

As an example, suppose we are given a string, such as 1234.567, representing a
real number and we want to compute its integer part and fractional part. We could
define

ipart :: String -> Integer

ipart xs = read (takeWhile (/= '.') xs) :: Integer

fpart :: String -> Float

fpart xs = read ('0':dropWhile (/= '.' xs) :: Float

This uses the function read of the type class Read. Note by the way that .567 is not
a well-formed literal in Haskell. It is necessary to include at least one digit before
and after the decimal point to ensure that the decimal point cannot be mistaken for
functional composition. For example,

ghci> :t 3 . 4

3 . 4 :: (Num (b -> c), Num (a -> b)) => a -> c

As an alternative, we can define
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parts :: String -> (Integer,Float)

parts ds = (ipart es,fpart fs)

where (es,d:fs) = break (== '.') ds

ipart = foldl shiftl 0 . map toDigit

where shiftl n d = n*10 + d

fpart = foldr shiftr 0 . map toDigit

where shiftr d x = (d + x)/10

toDigit d = fromIntegral (fromEnum d - fromEnum '0')

We have

1234 = 1*1000 + 2*100 + 3*10 + 4

= (((0*10 + 1)*10 + 2)*10 + 3)*10 + 4

0.567 = 5/10 + 6/100 + 7/1000

= (5 + (6 + (7 + 0)/10)/10)/10

so use of foldl for the integer part and foldr for the fractional part are both
indicated.

Here is another example. The function reverse was defined above by the equa-
tions

reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

We are wiser now and would now write

reverse = foldr snoc []

where snoc x xs = xs ++ [x]

But a little learning is a dangerous thing: both definitions of reverse are terrible
because they take of the order of n2 steps to reverse a list of length n. Much better
is to define

reverse = foldl (flip (:)) []

where flip f x y = f y x. The new version reverses a list in linear time:

foldl (flip (:)) [] [1,2,3]

= foldl (flip (:)) (1:[]) [2,3]

= foldl (flip (:)) (2:1:[]) [3]

= foldl (flip (:)) (3:2:1:[]) []

= 3:2:1:[]

That seems a bit of a trick, but there is a sound principle at work behind this new
definition that we will take up in the following chapter.
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As this example suggests, there are the following relationships between foldr and
foldl: for all finite lists xs we have

foldl f e xs = foldr (flip f) e (reverse xs)

foldr f e xs = foldl (flip f) e (reverse xs)

Proofs are left as an exercise. Note the restriction to finite lists, even though both
sides reduce to ⊥ when xs is ⊥. That means the proofs have to rely on a subsidiary
result that is true only for finite lists.

Here is another relationship between the two folds:

foldl (@) e xs = foldr (<>) e xs

for all finite lists xs, provided that

(x <> y) @ z = x <> (y @ z)

e @ x = x <> e

Again, the proof is left as an exercise. As one instructive application of this law,
suppose (<>) = (@) and (@) is associative with identity e. Then the two provisos
are satisfied and we can conclude that

foldr (@) e xs = foldl (@) e xs

for all finite lists xs whenever (@) is associative with identity e. In particular,

concat xss = foldr (++) [] xss = foldl (++) [] xss

for all finite lists xss. The two definitions are not the same if xss is an infinite list:

ghci> foldl (++) [] [[i] | i <- [1..]]

Interrupted.

ghci> foldr (++) [] [[i] | i <- [1..]]

[1,2,3,4,{Interrupted}

In response to the first expression, GHCi went into a long silence that was inter-
rupted by pressing the ‘Stop program execution’ button. In response to the second,
GHCi started printing an infinite list.

OK, so the definition in terms of foldr works on infinite lists, but the other one
doesn’t. But maybe the definition of concat in terms of foldl leads to a more
efficient computation when all the lists are finite? To answer this question, observe
that

foldr (++) [] [xs,ys,us,vs]

= xs ++ (ys ++ (us ++ (vs ++ [])))
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foldl (++) [] [xs,ys,us,vs]

= (((([] ++ xs) ++ ys) ++ us) ++ vs)

Let all the component lists have length n. The first expression on the right takes 4n
steps to perform all the concatenations, while the second takes 0+ n+(n+ n)+
(n+n+n) = 6n steps. Enough said, at least for now.

6.5 The function scanl

The function scanl f e applies foldl f e to each initial segment of a list. For
example

ghci> scanl (+) 0 [1..10]

[0,1,3,6,10,15,21,28,36,45,55]

The expression computes the running sums of the first ten positive numbers:

[0, 0+1, (0+1)+2, ((0+1)+2)+3, (((0+1)+2)+3)+4, ...]

The specification of scanl is

scanl :: (b -> a -> b) -> b -> [a] -> [b]

scanl f e = map (foldl f e) . inits

inits :: [a] -> [[a]]

inits [] = [[]]

inits (x:xs) = [] : map (x:) (inits xs)

For example

ghci> inits "barbara"

["","b","ba","bar","barb","barba","barbar","barbara"]

The function inits is in the library Data.List.

But this definition of scanl f involves evaluating f a total of

0+1+2+ · · ·+n = n(n+1)/2

times on a list of length n. Can we do better?

Yes, we can calculate a better definition by doing a kind of induction proof, except
that we don’t know what it is we are proving!
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Case []

scanl f e []

= {definition}
map (foldl f e) (inits [])

= {inits.1}
map (foldl f e) [[]]

= {map.1 and map.2}
[foldl f e []]

= {foldl.1}
[e]

Hence we have shown that scanl f e [] = [e]

Case x:xs

scanl f e (x:xs)

= {definition}
map (foldl f e) (inits (x:xs))

= {inits.2}
map (foldl f e) ([]:map (x:) (inits xs))

= {map.1 and map.2}
foldl f e []:map (foldl f e . (x:)) (inits xs)

= {foldl.1}
e:map (foldl f e . (x:)) (inits xs)

= {claim: foldl f e . (x:) = foldl f (f e x)}
e:map (foldl f (f e x)) (inits xs)

= {definition of scanl}
e:scanl f (f e x)

The claim is an easy consequence of the definition of foldl. Hence, in summary,
we have shown

scanl f e [] = [e]

scanl f e (x:xs) = e:scanl f (f e x) xs

This definition evaluates f only a linear number of times.
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What we have just done is an example of optimising a function by program cal-
culation. One of the exciting things about Haskell is that you can do this without
fuss. There is no need to bring in a totally different logical language to reason about
programs.

However, the prelude definition of scanl is a little different:

scanl f e xs = e : (case xs of

[] -> []

x:xs -> scanl f (f e x) xs)

Whereas for our version scanl f e undefined = undefined, the prelude ver-
sion has

scanl f e undefined = e:undefined.

The reason is that the right-hand sides of the two clauses defining scanl are both
lists that begin with e. We do not have to know anything about the left-hand sides
to determine this fact, and laziness dictates that we don’t ask.

The prelude version also uses a case expression. We won’t go into details since
such expressions are used rarely in this book. Haskell allows us many ways to say
the same thing.

6.6 The maximum segment sum

Here is another example of program calculation. The maximum segment sum prob-
lem is a famous one and its history is described in J. Bentley’s Programming Pearls
(1987). Given is a sequence of integers and it is required to compute the maximum
of the sums of all segments in the sequence. A segment is also called a contiguous
subsequence. For example, the sequence

[-1,2,-3,5,-2,1,3,-2,-2,-3,6]

has maximum sum 7, the sum of the segment [5,-2,1,3]. On the other hand,
the sequence [-1,-2,-3] has a maximum segment sum of zero, since the empty
sequence is a segment of every list and its sum is zero. It follows that the maximum
segment sum is always nonnegative.

Our problem is specified by

mss :: [Int] -> Int

mss = maximum . map sum . segments
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where segments returns a list of all segments of a list. This function can be defined
in a number of ways, including

segments = concat . map inits . tails

where tails is dual to inits and returns all the tail segments of a list:

tails :: [a] -> [[a]]

tails [] = [[]]

tails (x:xs) = (x:xs):tails xs

The definition of segments describes the process of taking all the initial segments
of all the tail segments. For example,

ghci> segments "abc"

["","a","ab","abc","","b","bc","","c",""]

The empty sequence appears four times in this list, once for every tail segment.

Direct evaluation of mss will take a number of steps proportional to n3 on a list
of length n. There are about n2 segments, and summing each of them will take n
steps, so in total it will take n3 steps. It is not obvious that we can do better than
cubic time for this problem.

However, let’s see where some program calculation leads us. We can start by in-
stalling the definition of segments:

maximum . map sum . concat . map inits . tails

Searching for a law we can apply, we spot that

map f . concat = concat . map (map f)

applies to the subterm map sum . concat. That gives

maximum . concat . map (map sum) . map inits . tails

Now we can use the law map f . map g = map (f . g) to give

maximum . concat . map (map sum . inits) . tails

Oh, we can also use the law

maximum . concat = maximum . map maximum

can’t we? No, not unless the argument to concat is a nonempty list of nonempty
lists, because the maximum of the empty list is undefined. In the present example
the rule is valid because both inits and tails return nonempty lists. That leads
to
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maximum . map (maximum . map sum . inits) . tails

The next step is to use the property of scanl described in the previous section,
namely

map sum . inits = scanl (+) 0

That leads to

maximum . map (maximum . scanl (+) 0) . tails

Already we have reduced a n3 algorithm to a n2 one, so we are making progress.
But now we appear stuck since there is no law in our armoury that seems to help.

The next step obviously concerns maximum . scanl (+) 0. So, let’s see what
we can prove about

foldr1 max . scanl (+) 0

This looks like a fusion rule, but can scanl (+) 0 be expressed as a foldr? Well,
we do have, for instance,

scanl (+) 0 [x,y,z]

= [0,0+x,(0+x)+y,((0+x)+y)+z]

= [0,x,x+y,x+y+z]

= 0:map (x+) [0,y,y+z]

= 0:map (x+) (scanl (+) 0 [y,z])

This little calculation exploits the associativity of (+) and the fact that 0 is the
identity element of (+). The result suggests, more generally, that

scanl (@) e = foldr f [e]

where f x xs = e:map (x@) xs

provided that (@) is associative with identity e. Let us take this on trust and move
on to the conditions under which

foldr1 (<>) . foldr f [e] = foldr h b

where f x xs = e:map (x@) xs

It is immediate that foldr1 (<>) is strict and foldr1 (<>) [e] = e, so we
have b = e. It remains to check the third proviso of the fusion rule: we require h

to satisfy

foldr1 (<>) (e:map (x@) xs) = h x (foldr1 (<>) xs)

for all x and xs. The left-hand side simplifies to
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e <> (foldr1 (<>) (map (x@) xs))

Taking the singleton case xs = [y], we find that

h x y = e <> (x @ y)

That gives us our definition of h, but we still have to check that

foldr1 (<>) (e:map (x@) xs) = e <> (x @ foldr1 (<>) xs)

Simplifying both sides, this equation holds provided

foldr1 (<>) . map (x@) = (x@) . foldr1 (<>)

This final equation holds provided (@) distributes over (<>); that is

x @ (y <> z) = (x @ y) <> (x @ z)

The proof is left as an exercise.

Does addition distribute over (binary) maximum? Yes:

x + (y `max` z) = (x + y) `max` (x + z)

x + (y `min` z) = (x + y) `min` (x + z)

Back to the maximum segment sum. We have arrived at

maximum . map (foldr (@) 0) . tails

where x @ y = 0 `max` (x + y)

What we have left looks very like an instance of the scanl rule of the previous
section, except that we have a foldr not a foldl and a tails not an inits. But
a similar calculation to the one about scanl reveals

map (foldr f e) . tails = scanr f e

where

scanr :: (a -> b -> b) -> b -> [a] -> [b]

scanr f e [] = [e]

scanr f e (x:xs) = f x (head ys):ys

where ys = scanr f e xs

The function scanr is also defined in the standard prelude. In summary,

mss = maximum . scanr (@) 0

where x @ y = 0 `max` (x + y)

The result is a linear-time program for the maximum segment sum.
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6.7 Exercises

Exercise A

In Chapter 3 we defined multiplication on natural numbers. The following defini-
tion is slightly different:

mult :: Nat -> Nat -> Nat

mult Zero y = Zero

mult (Succ x) = mult x y + y

Prove that mult (x+y) z = mult x z + mult y z. You can use only the facts
that x+0 = x and that (+) is associative. That means a long think about which
variable x, y or z is the best one on which to do the induction.

Exercise B

Prove that

reverse (xs ++ ys) = reverse ys ++ reverse xs

for all finite lists xs and ys. You may assume that (++) is associative.

Exercise C

Recall our friends Eager Beaver and Lazy Susan from Exercise D in Chapter 2.
Susan happily used the expression head . map f, while Beaver would probably
prefer f . head. Wait a moment! Are these two expressions equal? Carry out an
induction proof to check.

Exercise D

Recall the cartesian product function cp :: [[a]] -> [[a]] from the previous
chapter. Give a definition of the form cp = foldr f e for suitable f and e. You
can use a list comprehension for the definition of f if you like.

The rest of this exercise concerns the proof of the identity

length . cp = product . map length

where product returns the result of multiplying a list of numbers.

1. Using the fusion theorem, express length.cp as an instance of foldr.

2. Express map length as an instance of foldr.
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3. Using the fusion theorem again, express product . map length as an in-
stance of foldr.

4. Check that the two results are identical. If they aren’t, your definition of cp was
wrong.

Exercise E

The first two arguments of foldr are replacements for the constructors

(:) :: a -> [a] -> [a]

[] :: [a]

of lists. A fold function can be defined for any data type: just give replacements for
the constructors of the data type. For example, consider

data Either a b = Left a | Right b

To define a fold for Either we have to give replacements for

Left :: a -> Either a b

Right :: b -> Either a b

That leads to

foldE :: (a -> c) -> (b -> c) -> Either a b -> c

foldE f g (Left x) = f x

foldE f g (Right x) = g x

The type Either is not a recursive data type and foldE is not a recursive function.
In fact foldE is a standard prelude function, except that it is called either not
foldE.

Now define fold functions for

data Nat = Zero | Succ Nat

data NEList a = One a | Cons a (NEList a)

The second declaration introduces nonempty lists.

What is wrong with the Haskell definition of foldr1?

Exercise F

Prove that

foldl f e xs = foldr (flip f) e (reverse xs)

for all finite lists xs. Also prove that



6.7 Exercises 133

foldl (@) e xs = foldr (<>) e xs

for all finite lists xs, provided that

(x <> y) @ z = x <> (y @ z)

e @ x = x <> e

Exercise G

Using

foldl f e (xs ++ ys) = foldl f (foldl f e xs) ys

foldr f e (xs ++ ys) = foldr f (foldr f e ys) xs

prove that

foldl f e . concat = foldl (foldl f) e

foldr f e . concat = foldr (flip (foldr f)) e

Exercise H

Mathematically speaking, what is the value of

sum (scanl (/) 1 [1..]) ?

Exercise I

Calculate the efficient definition of scanr from the specification

scan r f e = map (foldr f e) . tails

Exercise J

Consider the problem of computing

mss :: [Int] -> Int

mss = maximum . map sum . subseqs

where subseqs returns all the subsequences of a finite list, including the list itself:

subseqs :: [a] -> [[a]]

subseqs [] = [[]]

subseqs (x:xs) = xss ++ map (x:) xss

where xss = subseqs xs

Find a more efficient alternative for mss.
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Exercise K

This question is in pieces.

1. The function takePrefix p applied to a list xs returns the longest initial seg-
ment of xs that satisfies p. Hence

takePrefix :: ([a] -> Bool) -> [a] -> [a]

What are the values of the following expressions?

takePrefix nondec [1,3,7,6,8,9]

takePrefix (all even) [2,4,7,8]

Complete the right-hand side of

takePrefix (all p) = ...

Give a definition of takePrefix in terms of standard functions, including
inits.

We will return to takePrefix in the final part of this question.

2. The functions one and none are defined by the equations

one x = [x]

none x = []

Complete the right-hand side of the following identities:

none . f = ...

map f . none = ...

map f . one = ...

3. Recall that fork (f,g) x = (f x,g x). Complete the identities

fst . fork (f,g) = ...

snd . fork (f,g) = ...

fork (f,g) . h = ...

4. Define

test p (f,g) x = if p x then f x else g x

Complete the right-hand sides of

test p (f,g) . h = ...

h . test p (f,g) = ...

The function filter can be defined by
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filter p = concat . map (test p (one,none))

Using the identities above, together with other standard identities, prove using
equational reasoning that

filter p = map fst . filter snd . map (fork (id,p))

(Hint: as always in calculations, start with the more complicated side.)

5. Recall the standard prelude functions curry and uncurry from the answer to
Exercise K in Chapter 4:

curry :: ((a,b) -> c) -> a -> b -> c

curry f x y = f (x,y)

uncurry :: (a -> b -> c) -> (a,b) -> c

uncurry f (x,y) = f x y

Complete the right-hand side of

map (fork (f,g)) = uncurry zip . (??)

6. Returning to takePrefix, use equational reasoning to calculate an efficient
program for the expression

takePrefix (p . foldl f e)

that requires only a linear number of applications of f .

6.8 Answers

Answer to Exercise A

The proof is by induction on y:

Case 0

mult (x+0) z

= {since x + 0=x}
mult x z

mult x z + mult 0 z

= {mult.1}
mult x z + 0

= {since x + 0 = x}
mult x z
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Case y+1

mult (x+(y+1)) z

= {as (+) is associative}
mult ((x+y)+1) z

= {mult.2}
mult (x+y) z + z

= {induction}
(mult x z + mult y z) + z

mult x z + mult (y+1) z

= {mult.2}
mult x z + (mult y z + z)

= {since (+) is associative}
(mult x z + mult y z) + z

Answer to Exercise B

The proof is by induction on xs:

Case []

reverse ([]++ys)

= {++.1}
reverse ys

reverse ys ++ reverse []

= {reverse.1}
reverse ys ++ []

= {since xs ++ [] = xs}
reverse ys

Case x:xs

reverse ((x:xs)++ys)

= {++.2}
reverse (x:(xs++ys))

= {reverse.2}
reverse (xs++ys) ++ [x]

= {induction}
(reverse ys ++ reverse xs) ++ [x]

and

reverse ys ++ reverse (x:xs)

= {reverse.2}
reverse ys ++ (reverse xs ++ [x])

= {since (++) is associative}
(reverse ys ++ reverse xs) ++ [x]
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Answer to Exercise C

We have to prove that

head (map f xs) = f (head xs)

for all lists xs, finite, partial or infinite. The case undefined and the inductive case
x:xs are okay, but the case [] gives

head (map f []) = head [] = undefined

f (head []) = f undefined

Hence the law holds only if f is a strict function. Eager Beaver is not bothered by
this since he can only construct strict functions.

Answer to Exercise D

We have

cp = foldr op [[]]

where op xs xss = [x:ys | x <- xs, ys <- xss]

1. length . cp = foldr h b provided length is strict (it is) and

length [[]] = b

length (op xs xss) = h xs (length xss)

The first equation gives b = 1 and as

length (op xs xss) = length xs * length xss

the second equation gives h = (*) . length.

2. map length = foldr f [], where f xs ns = length xs:ns. A shorter
definition is f = (:) . length.

3. product . map length = foldr h b provided product is strict (it is) and

product [] = b

product (length xs:ns) = h xs (product ns)

The first equation gives b = 1, and as

product (length xs:ns) = length xs * product ns

the second equation gives h = (*) . length.

4. The two definitions of h and b are identical.



138 Proofs

Answer to Exercise E

The definition of foldN is straightforward:

foldN :: (a -> a) -> a -> Nat -> a

foldN f e Zero = e

foldN f e (Succ n) = f (foldN f e n)

In particular,

m+n = foldN Succ m n

m*n = foldN (+m) Zero n

m^n = foldN (*m) (Succ Zero) n

For nonempty lists, the definition of foldNE is:

foldNE :: (a -> b -> b) -> (a -> b) -> NEList a -> b

foldNE f g (One x) = g x

foldNE f g (Cons x xs) = f x (foldNE f g xs)

To be a proper fold over nonempty lists, the correct definition of foldr1 should
have been

foldr1 :: (a -> b -> b) -> (a -> b) -> [a] -> b

foldr1 f g [x] = g x

foldr1 f g (x:xs) = f x (foldr1 f g xs)

The Haskell definition of foldr1 restricts g to be the identity function.

Answer to Exercise F

Write g = flip f for brevity. We prove that

foldl f e xs = foldr g e (reverse xs)

for all finite lists xs by induction:

Case []

foldl f e []

= {foldl.1}
e

foldl g e (reverse [])

= {reverse.1}
foldl g e []

= {foldl.1}
e
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Case x:xs

foldl f e (x:xs)

= {foldl.2}
foldl f (f e x) xs

= {induction}
foldr g (f e x) (reverse xs)

and

foldr g e (reverse (x:xs))

= {reverse.2}
foldr g e (reverse xs ++ [x])

= {claim: see below}
foldr g (foldr g e [x]) (reverse xs)

= {since foldr (flip f) e [x] = f e x}
foldr g (f e x) (reverse xs)

The claim is that

foldr f e (xs ++ ys) = foldr f (foldr f e ys) xs

We leave the proof to the reader. By the way, we have the companion result that

foldl f e (xs ++ ys) = foldl f (foldl f e xs) ys

Again, the proof is left to you.

We prove

foldl (@) e xs = foldr (<>) e xs

for all finite lists xs by induction. The base case is trivial. For the inductive case:

Case x:xs

foldl (@) e (x:xs)

= {foldl.2}
foldl (@) (e @ x) xs

= {given that e @ x = x <> e}
foldl (@) (x <> e) xs

foldr (<>) e (x:xs)

= {foldr.2}
x <> foldr (<>) e xs

= {induction}
x <> foldl (@) e xs
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The two sides have simplified to different results. We need another induction hy-
pothesis:

foldl (@) (x <> y) xs = x <> foldl (@) y xs

The base case is trivial. For the inductive case

Case z:zs

foldl (@) (x <> y) (z:zs)

= {foldl.2}
foldl (@) ((x <> y) @ z) zs

= {since (x <> y) @ z = x <> (y @ z)}
foldl (@) (x <> (y @ z)) zs

= {induction}
x <> foldl (@) (y @ z) zs

and

x <> foldl (@) y (z:zs)

= {foldl.2}
x <> foldl (@) (y @ z) zs

Answer to Exercise G

The proofs are by induction. The base cases are easy and the inductive cases are

foldl f e (concat (xs:xss))

= {definition of concat}
foldl f e (xs ++ concat xss)

= {given property of foldl}
foldl f (foldl f e xs) (concat xss)

= {induction}
foldl (foldl f) (foldl f e xs) xss

= {definition of foldl}
foldl (foldl f) e (xs:xss)
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and

foldr f e (concat (xs:xss))

= {definition of concat}
foldr f e (xs ++ concat xss)

= {given property of foldr}
foldr f (foldr f e (concat xss)) xs

= {using flip}
flip (foldr f) xs (foldr f e (concat xss))

= {induction}
flip (foldr f) xs (foldr (flip (foldr f)) e xss)

= {definition of foldr}
foldr (flip (foldr f)) e (xs:xss)

Answer to Exercise H

Mathematically speaking,

sum (scanl (/) 1 [1..]) = e

since ∑∞
n=0 1/n! = e. Computationally speaking, replacing [1..] by a finite list

[1..n] gives an approximation to e. For example,

ghci> sum (scanl (/) 1 [1..20])

2.7182818284590455

ghci> exp 1

2.718281828459045

The standard prelude function exp takes a number x and returns ex. By the way, the
prelude function log takes a number x and returns loge x. If you want logarithms
in another base, use logBase whose type is

logBase :: Floating a => a -> a -> a

Answer to Exercise I

We synthesise a more efficient definition by cases. The base case yields

scanr f e [] = [e]
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and the inductive case x:xs is:

scanr f e (x:xs)

= {specification}
map (foldr f e) (tails (x:xs))

= {tails.2}
map (foldr f e) ((x:xs):tails xs)

= {definition of map}
foldr f e (x:xs):map (foldr f e) (tails xs)

= {foldr.2 and specification}
f x (foldr f e xs):scan f e xs

= {claim: foldr f e xs = head (scanr f e xs)}
f x (head ys):ys where ys = scanr f e xs

Answer to Exercise J

Firstly,

subseqs = foldr op [[]]

where op x xss = xss ++ map (x:) xss

Appeal to the fusion law yields

map sum . subseqs = foldr op [0]

where op x xs = xs ++ map (x+) xs

A second appeal to fusion yields

maximum . map sum . subseqs = foldr op 0

where op x y = y `max` (x+y)

That will do nicely. Of course, sum . filter (>0) also does the job.

Answer to Exercise K

1. We have

takePrefix nondec [1,3,7,6,8,9] = [1,3,7]

takePrefix (all even) [2,4,7,8] = [2,4]

The identity is

takePrefix (all p) = takeWhile p
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The specification is

takePrefix p = last . filter p . inits

2. We have

none . f = none

map f . none = none

map f . one = one . f

3. We have

fst . fork (f,g) = f

snd . fork (f,g) = g

fork (f,g) . h = fork (f.h,g.h)

4. We have

test p (f,g) . h = test (p.h) (f . h, g . h)

h . test p (f,g) = test p (h . f, h . g)

The reasoning is:

map fst . filter snd . map (fork (id,p))

= {definition of filter}
map fst . concat . map (test snd (one,none)) .

map (fork (id,p))

= {since map f . concat = concat . map (map f)}
concat . map (map fst . test snd (one,none) .

fork (id,p))

= {second law of test; laws of one and none}
concat . map (test snd (one . fst,none) .

fork (id,p))

= {first law of test; laws of fork}
concat . map (test p (one . id, none . fork (id,p)))

= {laws of id and none}
concat . map (test p (one,none))

= {definition of filter}
filter p

5. We have
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map (fork (f,g)) = uncurry zip . fork (map f,map g)

6. We have

filter (p . foldl f e) . inits

= {derived law of filter}
map fst . filter snd .

map (fork (id, p . foldl f e)) . inits

= {law of zip}
map fst . filter snd . uncurry zip .

fork (id, map (p . foldl f e)) . inits

= {law of fork}
map fst . filter snd . uncurry zip .

fork (inits, map (p . foldl f e) . inits)

= {scan lemma}
map fst . filter snd . uncurry zip .

fork (inits, map p . scanl f e)

Hence

takePrefix (p.foldl f e)

= fst . last . filter snd . uncurry zip .

fork (inits,map p . scanl f e)

6.9 Chapter notes

Gofer, an earlier version of Haskell designed by Mark Jones, was so named because
it was GOod For Equational Reasoning. HUGS (The Haskell Users Gofer System)
was an earlier alternative to GHCi, and used in the second edition of the book on
which the current one is based, but is no longer maintained.

Many people have contributed to the understanding of the laws of functional pro-
gramming, too many to list. The Haskellwiki page

haskell.org/haskellwiki/Equational_reasoning_examples

contains examples of equational reasoning and links to various discussions about
the subject.

The fascinating history of the maximum segment sum problem is discussed in Jon
Bentley’s Programming Pearls (second edition) (Addison-Wesley, 2000).



Chapter 7

Efficiency

The question of efficiency has been an ever-present undercurrent in recent discus-
sions, and the time has come to bring this important subject to the surface. The best
way to achieve efficiency is, of course, to find a decent algorithm for the problem.
That leads us into the larger topic of Algorithm Design, which is not the primary
focus of this book. Nevertheless we will touch on some fundamental ideas later
on. In the present chapter we concentrate on a more basic question: functional pro-
gramming allows us to construct elegant expressions and definitions, but do we
know what it costs to evaluate them? Alan Perlis, a US computer scientist, once
inverted Oscar Wilde’s definition of a cynic to assert that a functional programmer
was someone who knew the value of everything and the cost of nothing.

7.1 Lazy evaluation

We said in Chapter 2 that, under lazy evaluation, an expression such as

sqr (sqr (3+4))

where sqr x = x*x, is reduced to its simplest possible form by applying reduc-
tion steps from the outside in. That means the definition of the function sqr is
installed first, and its argument is evaluated only when needed. The following eval-
uation sequence follows this prescription, but is not lazy evaluation:

sqr (sqr (3+4))

= sqr (3+4) * sqr (3+4)

= ((3+4)*(3+4)) * ((3+4)*(3+4))

= ...

= 2401
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The ellipsis in the penultimate line hides no fewer than four evaluations of 3+4 and
two of 7*7. Clearly the simple policy of substituting argument expressions into
function expressions is a very inefficient way of carrying out reduction.

Instead, lazy evaluation guarantees that when the value of an argument is needed, it
is evaluated only once. Under lazy evaluation, the reduction sequence would unfold
basically as follows:

sqr (sqr (3+4))

= let x = sqr (3+4) in x*x

= let y = 3+4 in

let x = y*y in x*x

= let y = 7 in

let x = y*y in x*x

= let x = 49 in x*x

= 2401

The expression 3+4 is evaluated only once (and so is 7*7). The names x and y have
been bound to expressions using let, though in the implementation of Haskell
these names are anonymous pointers to expressions. When an expression is re-
duced to a value, the pointer then points to the value and that value can then be
shared.

Even then, the headline ‘Under lazy evaluation arguments are evaluated only when
needed and then only once!’ doesn’t tell the full story. Consider evaluation of
sqr (head xs). In order to evaluate sqr we have to evaluate its argument, but
in order to evaluate head xs we do not have to evaluate xs all the way, but only
to the point where it becomes an expression of the form y:ys. Then head xs can
return y and sqr (head xs) can return y*y. More generally, an expression is said
to be in head normal form if it is a function (such as sqr) or if it takes the form of
a data constructor (such as (:)) applied to its arguments. Every expression in nor-
mal form (i.e. in fully reduced form) is in head normal form but not vice versa. For
example, (e1,e2) is in head normal form (because it is equivalent to (,) e1 e2,
where (,) is the data constructor for pairs), but is in normal form only if both e1

and e2 are. Of course, for numbers or booleans there is no distinction between the
two kinds of normal form.

‘Under lazy evaluation arguments are evaluated only when needed and then only
once, and then maybe only to head normal form’ is not as catchy a headline as
before, but it does tell a better story.

Next, consider the following two definitions of the inductive case of the function
subseqs that returns all the subsequences of a list:
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subseqs (x:xs) = subseqs xs ++ map (x:) (subseqs xs)

subseqs (x:xs) = xss ++ map (x:) xss

where xss = subseqs xs

In the first definition the expression subseqs xs appears twice on the right-hand
side, so it is evaluated twice when the subsequences of a given list are required. In
the second definition this duplication of effort has been recognised by the program-
mer and a where clause has been used to ensure that subseqs xs is evaluated only
once (we could also have used a let expression).

The important point is that you, the programmer, are in control of which defini-
tion you want. It is quite possible for Haskell to recognise the double occurrence
and to abstract it away using the equivalent of an internal let expression. This
is a well-known technique called common subexpression elimination. But Haskell
doesn’t do this, and for a very good reason: it can cause a space leak. The second
definition of subseqs (x:xs) has the following problem: the list subseqs xs is
constructed only once, but it is retained in its entirety in memory because its value
is used again, namely in the second expression map (x:) xss.

Look at it this way: the first definition takes longer because computation is dupli-
cated; the second definition is faster (though still exponential) but can rapidly run
out of available space. After all, there are 2n subsequences of a list of length n.
There is a fundamental dichotomy in programming we can never get away from: to
avoid doing something twice you have to use up space to store the result of doing
it once.

Here is a related example. Consider the following two definitions in a script:

foo1 n = sum (take n primes)

where

primes = [x | x <- [2..], divisors x == [x]]

divisors x = [d | d <- [2..x], x `mod` d == 0]

foo2 n = sum (take n primes)

primes = [x | x <- [2..], divisors x == [x]]

divisors x = [d | d <- [2..x], x `mod` d == 0]

The programmer who wrote foo1 decided to structure their script by making the
definitions of both primes and divisors local to the definition of foo1, presum-
ably because neither definition was used elsewhere in the script. The programmer
who wrote foo2 decided to allow these two subsidiary definitions to float to the
status of a global or top-level definition. You might think that doesn’t make any
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difference to the efficiency, but consider the following interaction with GHCi. (The
command :set +s turns on some statistics which are printed after an expression
is evaluated.)

ghci> :set +s

ghci> foo1 1000

3682913

(4.52 secs, 648420808 bytes)

ghci> foo1 1000

3682913

(4.52 secs, 648412468 bytes)

ghci> foo2 1000

3682913

(4.51 secs, 647565772 bytes)

ghci> foo2 1000

3682913

(0.02 secs, 1616096 bytes)

Why was the second evaluation of foo2 1000 so much faster than the first, while
the two evaluations of foo1 1000 took the same time?

The answer is that in the definition of foo2 the first 1000 elements of the list
primes is demanded, so after evaluation primes now points to a list in which the
first 1000 primes appear explicitly. The second evaluation of foo 1000 does not
require these primes to be computed again. Internally, the script has grown in size
because primes now occupies at least 1000 units of space.

Programmer Three chooses to write foo in the following way:

foo3 = \n -> sum (take n primes)

where

primes = [x | x <- [2..], divisors x == [x]]

divisors x = [d | d <- [2..x], x `mod` d == 0]

This uses a lambda expression to express foo3 at the function level, but otherwise
the definition is exactly the same as that of foo1. The alternative

foo3 = sum . flip take primes

also works but seems a little obscure. Now we have

ghci> foo3 1000

3682913

(3.49 secs, 501381112 bytes)
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ghci> foo3 1000

3682913

(0.02 secs, 1612136 bytes)

Again, the second evaluation is much faster than the first. Why is that?

To see what is going on, we can rewrite the two functions in the form

foo1 n = let primes = ... in

sum (take n primes)

foo3 = let primes = ... in

\n -> sum (take n primes)

Now you can appreciate that in the first definition primes is re-evaluated every
time foo1 1000 is called because it is bound to an application of foo1 not to
the function itself. It is theoretically possible that the local definitions in the first
definition depend on n, so any such definitions have to be re-evaluated for each n.
In the second definition the local definitions are bound to the function itself (and
can’t possibly depend on any argument to the function); consequently, they are
evaluated only once. Of course, after evaluating foo3 1000, the local definition of
primes will be expanded to an explicit list of 1000 elements followed by a recipe
for evaluating the rest.

7.2 Controlling space

Suppose we define sum by sum = foldl (+) 0. Under lazy evaluation the ex-
pression sum [1..1000] is reduced as follows

sum [1..1000]

= foldl (+) 0 [1..1000]

= foldl (+) (0+1) [2..1000]

= foldl (+) ((0+1)+2) [3..1000]

= ...

= foldl (+) (..((0+1)+2)+ ... +1000) []

= (..((0+1)+2)+ ... +1000)

= ...

= 500500

It requires 1000 units of space just to build up the arithmetic expression that sums
the first 1000 numbers before it pops to the surface and is finally evaluated.

Much better is to use a mixture of lazy and eager evaluation:
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sum [1..1000]

= foldl (+) 0 [1..1000]

= foldl (+) (0+1) [2..1000]

= foldl (+) 1 [2..1000]

= foldl (+) (1+2) [3..1000]

= foldl (+) 3 [3..1000]

= ...

= foldl (+) 500500 []

= 500500

While the list expression [1..1000] is evaluated lazily, the second argument of
foldl, the accumulated sum, is evaluated eagerly. The result of interleaving lazy
and eager evaluation steps is a sequence that uses a constant amount of space.

This suggests that it would be useful to have some way of controlling the reduction
order. Such a method is provided by a primitive function seq with type

seq :: a -> b -> b

Evaluation of x `seq` y proceeds by first evaluating x (to head normal form) and
then returning the result of evaluating y. If evaluation of x does not terminate, then
neither does x `seq` y. It’s not possible to define seq in Haskell; instead Haskell
provides it as a primitive function.

Now consider the following version foldl' of foldl that evaluates its second
argument strictly:

foldl' :: (b -> a -> b) -> b -> [a] -> b

foldl' f e [] = e

foldl' f e (x:xs) = y `seq` foldl' f y xs

where y = f e x

Haskell provides the function foldl' in the standard prelude (yes, with just this
unimaginative name). Now we can define sum = foldl' (+) 0, with the conse-
quence that evaluation proceeds in constant space. In fact, sum is another prelude
function with essentially this definition.

Is it the case that foldl is now redundant and can be replaced by the new improved
foldl'? The answer is in practice yes, but in theory no. It is possible to construct
f, e and xs such that

foldl f e xs 	= foldl' f e xs

However, when f is strict (recall that f is strict if f ⊥=⊥) the two expressions do
return the same result. The exercises go into details.
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Taking the mean

Armed with the above information, let’s now consider a very instructive example:
how to compute the average or mean of a list of numbers. Surely that is an easy
problem, you might think, just divide the sum of the list by the length of the list:

mean :: [Float] -> Float

mean xs = sum xs / length xs

There are lots of things wrong with this definition, not the least of which is that
the expression on the right is not well-formed! The function length in Haskell has
type [a] -> Int and we can’t divide a Float by an Int without performing an
explicit conversion.

There is a function in the standard prelude that comes to our aid:

fromIntegral :: (Integral a, Num b) => a -> b

fromIntegral = fromInteger . toInteger

Recall from Chapter 3 the two conversion functions

toInteger :: (Integral a) => a -> Integer

fromInteger :: (Num a) => Integer -> a

The first converts any integral type to an integer, and the second converts an integer
to a number. Their composition converts an integral number, such as Int, to a more
general kind of number, such as Float.

We can now rewrite mean to read

mean :: [Float] -> Float

mean xs = sum xs / fromIntegral (length xs)

The second thing wrong with this definition is that it silently ignores the case of the
empty list. What is 0/0? Either we should identify the failing case with an explicit
error message, or else adopt one common convention, which is to agree that the
mean of the empty list should be zero:

mean [] = 0

mean xs = sum xs / fromIntegral (length xs)

Now we are ready to see what is really wrong with mean: it has a space leak. Evalu-
ating mean [1..1000] will cause the list to be expanded and retained in memory
after summing because there is a second pointer to it, namely in the computation
of its length.
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We can replace the two traversals of the list by one, using a strategy of program
optimisation called tupling. The idea is simple enough in the present example:
define sumlen by

sumlen :: [Float] -> (Float,Int)

sumlem xs = (sum xs,length xs)

and then calculate an alternative definition that avoids the two traversals. It is easy
to carry out the calculation and we just state the result:

sumlen [] = (0,0)

sumlen (x:xs) = (s+x,n+1) where (s,n) = sumlen xs

The pattern of the definition of sumlen should be familiar by now. An alternative
definition is

sumlen = foldr f (0,0) where f x (s,n) = (s+x,n+1)

Even better, we can replace foldr f by foldl g, where

g (s,n) x = (s+x,n+1)

The justification of this step is the law in the previous chapter that said

foldr f e xs = foldl g e xs

for all finite lists xs, provided

f x (g y z) = g (f x y) z

f x e = g e x

The verification of these two conditions is left as an exercise.

And that means we can use foldl':

sumlen = foldl' g (0,0) where g (s,n) x = (s+x,n+1)

Now we can replace our heavily criticised definition of mean by

mean [] = 0

mean xs = s / fromIntegral n

where (s,n) = sumlen xs

Surely we have now achieved our goal of a constant-space computation for mean?

Unfortunately not. The problem is with sumlen and it is a little tricky to spot.
Expanding the definition out a little, we find
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foldl' f (s,n) (x:xs) = y `seq` foldl' f y xs

where y = (s+x,n+1)

Ah, but y `seq` z reduces y to head normal form and the expression (s+x,n+1)

is already in head normal form. Its two components are not evaluated until the end
of the computation. That means we have to dig deeper with our seqs and rewrite
sumlen in the following way:

sumlen = foldl' f (0,0)

where f (s,n) x = s `seq` n `seq` (s+x,n+1)

Finally, everything in the garden is rosy and we have a computation that runs in
constant space.

Two more application operators

Function application is the only operation not denoted by any visible sign. How-
ever, Haskell provides two more application operators, ($) and ($!):

infixr 0 $,$!

($),($!) :: (a -> b) -> a -> b

f $ x = f x

f $! x = x `seq` f x

The only difference between f x and f $! x is that in the second expression the
argument x is evaluated before f is applied. The only difference between f x and
f $ x is that ($) (and also ($!)) is declared to have the lowest binding power
of 0 and to associate to the right in expressions. That is exactly what the fixity
declaration in the first line provides. Why do we want that?

The answer is that we can now write, for example

process1 $ process2 $ process3 input

instead of having to write either of

process1 (process2 (process3 x))

(process1 . process2 . process3) x

It is undeniable that ($) can be quite useful on occasions, especially when submit-
ting expressions for evaluation with GHCi, so it’s worth mentioning its existence.
And the strict application operator ($!) is useful for the reasons discussed above.
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7.3 Controlling time

We have seen that having an ‘eager’ button on our dashboard is a very simple
way of controlling the space involved in driving a computation, but what about
time? Unfortunately there is no analogous button for speeding up computations;
instead we have to understand some of the things that can unintentionally slow
down a computation. The Haskell platform comes with documentation on GHC,
which contains useful advice on how to make your program run more quickly. The
documentation makes three key points:

• Make use of GHC’s profiling tools. There is no substitute for finding out where
your program’s time and space is really being used up. We will not discuss pro-
filing in this book, but it is important to mention that such tools are available.

• The best way to improve a program’s performance is to use a better algorithm.
We mentioned this point at the beginning of the chapter.

• It is far better to use library functions that have been Seriously Tuned by Some-
one Else, than to craft your own. You might be able to write a better sorting
algorithm than the one provided in Data.List, but it will take you longer than
just writing import Data.List (sort). This is particularly true when you
use GHCi because GHCi loads compiled versions of the functions in its stan-
dard libraries. Compiled functions typically run about an order of magnitude
faster than interpreted ones.

Much of the detailed advice in the GHC documentation is beyond the scope of this
book, but two tips can be explained here. Firstly, the management of lazy evaluation
involves more overheads than eager evaluation, so that if you know that a function’s
value will be needed, it is better to push the eager button. As the documentation
says: ‘Strict functions are your dear friends’.

The second piece of advice is about types. Firstly, Int arithmetic is faster than
Integer arithmetic because Haskell has to perform more work in handling po-
tentially very large numbers. So, use Int rather than Integer whenever it is safe
to do so. Secondly, there is less housekeeping work for Haskell if you tailor the
type of your function to the instance you want. For example, consider the type of
foo1, defined in Section 7.1. There we did not provide a type signature for foo1
(or indeed for any of the other related functions) and that was a mistake. It turns
out that

foo1 :: Integral a => Int -> a
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If we are really interested in the sum of the first n prime numbers, it is better to
declare the type of foo1 to be (say)

foo1 :: Int -> Integer

With this more specialised definition Haskell does not have to carry around a dic-
tionary of the methods and instances of the type class Integral, and that lightens
the load.

These pieces of advice can help shave off constant amounts of time and do not
affect asymptotic time complexity, the order of magnitude of the timing function.
But sometimes we can write code that is inadvertently less efficient asymptotically
than we intended. Here is an instructive example. Consider the cartesian product
function cp discussed in Chapter 5:

cp [] = [[]]

cp (xs:xss) = [x:ys | x <- xs, ys <- cp xss]

Pretty and clear enough you would think, but compare it with

cp' = foldr op [[]]

where op xs yss = [x:ys | x <- xs, ys <- yss]

The first version is a direct recursive definition, while the second uses foldr to
encapsulate the pattern of the recursion. The two ‘algorithms’ are the same, aren’t
they? Well,

ghci> sum $ map sum $ cp [[1..10] | j <- [1..6]]

33000000

(12.11 secs, 815874256 bytes)

ghci> sum $ map sum $ cp' [[1..10] | j <- [1..6]]

33000000

(4.54 secs, 369640332 bytes)

The expression sum $ map sum is there just to force complete evaluation of the
cartesian product. Why is the first computation three times slower than the second?

To answer this question, look at the translation that eliminates the list comprehen-
sion in the first definition:

cp [] = [[]]

cp (xs:xss) = concat (map f xs)

where f x = [x:ys | ys <- cp xss]

Now we can see that cp xss is evaluated each time f is applied to elements of
xs. That means, in the examples above, that cp is evaluated many more times in
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the first example than in the second. We cannot be more precise at this point, but
will be below when we develop a little calculus for estimating running times. But
the issue should be clear enough: the simple recursive definition of cp has led us
inadvertently into a situation in which more evaluations are carried out than we
intended.

One other way to get a more efficient cartesian product is to just write

cp [] = [[]]

cp (xs:xss) = [x:ys | x <- xs, ys <- yss]

where yss = cp xss

This definition has exactly the same efficiency as the one in terms of foldr. The
lesson here is that innocent-looking list comprehensions can hide the fact that some
expressions, though only written once, are evaluated multiple times.

7.4 Analysing time

Given the definition of a function f we will write T(f)(n) to denote an asymptotic
estimate of the number of reduction steps required to evaluate f on an argument of
‘size’ n in the worst case. Moreover, for reasons explained in a moment, we will
assume eager, not lazy, evaluation as the reduction strategy involved in defining T .

The definition of T requires some amplification. Firstly, T(f) refers to the com-
plexity of a given definition of f. Time complexity is a property of an expression,
not of the value of that expression.

Secondly, the number of reduction steps does not correspond exactly to the elapsed
time between submitting an expression for evaluation and waiting for the answer.
No account is taken of the time to find the next subexpression to be reduced in a
possibly large and complicated expression. For this reason the statistics facility of
GHCi does not count reduction steps, but produces a measure of elapsed time.

Thirdly, we do not formalise the notion of size, since different measures are ap-
propriate in different situations. For example, the cost of evaluating xs++ys is best
measured in terms of (m,n), a pair describing the lengths of the two lists. In the
case of concat xss we could take the length of concat xss as a measure of size,
but if xss is a list of length m consisting of lists all of length n, then (m,n) might
be a more suitable measure.

The fourth and crucial remark is that T(f)(n) is determined under an eager eval-
uation model of reduction. The reason is simply that estimating the number of
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reduction steps under lazy evaluation is difficult. To illustrate, consider the defini-
tion minimum = head . sort. Under eager evaluation, the time to evaluate the
minimum on a list of length n under this definition is given by

T(minimum)(n) = T(sort)(n)+T(head)(n).

In other words we first have to completely sort a list of length n and then take the
head of the result (presumably a constant-time operation). This equation does not
hold under lazy evaluation, since the number of reduction steps required to find the
head of sort xs requires only that sort xs be reduced to head normal form. How
long that takes depends on the precise algorithm used for sort. Timing analysis
under eager reduction is simpler because it is compositional. Since lazy evaluation
never requires more reduction steps than eager evaluation, any upper bound for
T(f)(n) will also be an upper bound under lazy evaluation. Furthermore, in many
cases of interest, a lower bound will also be a lower bound under lazy evaluation.

In order to give some examples of timing analyses we have to introduce a little
order notation. So far, we have used the awkward phrase ‘taking a number of steps
proportional to’ whenever efficiency is discussed. It is time to replace it by some-
thing shorter. Given two functions f and g on the natural numbers, we say that f
is of order g, and write f = Θ(g) if there are positive constants C1 and C2 and a
natural number n0 such that C1g(n)≤ f (n)≤ C2g(n) for all n > n0. In other words,
f is bounded above and below by some constant times g for all sufficiently large
arguments.

The notation is abused to the extent that one conventionally writes, for example,
f (n) = Θ(n2) rather than the more correct f = Θ(λn.n2). Similarly, one writes
f (n) = Θ(n) rather than f = Θ(id). The main use of Θ-notation is to hide constants;
for example, we can write

n

∑
j=1

j = Θ(n2) and
n

∑
j=1

j2 = Θ(n3)

without bothering about the exact constants involved. When Θ(g) appears in a
formula it stands for some unnamed function f satisfying f = Θ(g). In particular,
Θ(1) denotes an anonymous constant.

With that behind us, we give three examples of how to analyse the running time of
a computation. Consider first the following two definitions of concat:

concat xss = foldr (++) [] xss

concat' xss = foldl (++) [] xss

The two definitions are equivalent provided xss is a finite list. Suppose xss is a
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list of length m of lists all of length n. Then the first definition gives

T(concat)(m,n) = T(foldr (++) [])(m,n),

T(foldr (++) [])(0,n) = Θ(1),

T(foldr (++) [])(m+1,n) = T(++)(n,mn)+

T(foldr (++) [])(m,n).

The estimate T(++)(n,mn) arises because a list of length n is concatenated with a
list of length mn. Since T(++)(n,m) = Θ(n), we obtain

T(foldr (++) [])(m,n) =
m

∑
k=0

Θ(n) = Θ(mn).

For the second definition of concat we have

T(concat')(m,n) = T(foldl (++))(0,m,n),

T(foldl (++))(k,0,n) = O(1),

T(foldl (++))(k,m+1,n) = T(++)(k,n)+

T(foldl (++))(k+n,m,n).

The additional argument k refers to the length of the accumulated list in the second
argument of foldl. This time we obtain

T(foldl (++))(k,m,n) =
m−1

∑
j=0

Θ(k+ jn) = Θ(k+m2n).

Hence T(concat')(m,n) = Θ(m2n). The conclusion, which was anticipated in the
previous chapter, is that using foldr rather than foldl in the definition of concat
leads to an asymptotically faster program.

For the second example let us time the two programs for subseqs discussed in
Section 7.1, where we had either of the following two possibilities:

subseqs (x:xs) = subseqs xs ++ map (x:) (subseqs xs)

subseqs' (x:xs) = xss ++ map (x:) xss

where xss = subseqs' xs

Bearing in mind that (i) if xs has length n, then subseqs xs has length 2n; and (ii)
the time for both the concatenation and for applying map (x:) is therefore Θ(2n),
the two timing analyses give

T(subseqs)(n+1) = 2T(subseqs)(n)+Θ(2n),

T(subseqs')(n+1) = T(subseqs')(n)+Θ(2n)
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together with T(subseqs)(0) = Θ(1). We will just state the two solutions (which
can be proved by a simple induction argument):

T(subseqs)(n) = Θ(n2n),

T(subseqs')(n) = Θ(2n).

The latter is therefore asymptotically faster than the former by a logarithmic factor.

For the third example, let us time the two programs for cp discussed at the begin-
ning of this section. The first one was

cp [] = [[]]

cp (xs:xss) = [x:ys | x <- xs, ys <- cp xss]

Suppose once again that xss is a list of length m of lists all of length n. Then the
length of cp xss is nm. Then we have

T(cp)(0,n) = Θ(1),

T(cp)(m+1,n) = nT(cp)(m,n)+Θ(nm).

because it takes Θ(nm) steps to apply (x:) to every subsequence. The solution is

T(cp)(m,n) = Θ(mnm).

On the other hand, the definition of cp in terms for foldr gives

T(cp)(0,n) = Θ(1),

T(cp)(m+1,n) = T(cp)(m,n)+Θ(nm).

with solution T(cp)(m,n) =Θ(nm). The second version is therefore asymptotically
faster, again by a logarithmic factor.

7.5 Accumulating parameters

Sometimes we can improve the running time of a computation by adding an extra
argument, called an accumulating parameter, to a function. The canonical example
is the function reverse:

reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

With this definition we have T(reverse)(n) = Θ(n2). In search of a linear-time
program, suppose we define
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revcat :: [a] -> [a] -> [a]

revcat xs ys = reverse xs ++ ys

It is clear that reverse xs = revcat xs [], so if we can obtain an efficient
version of revcat we can obtain an efficient version of reverse. To this end we
calculate a recursive definition of revcat. The base case revcat [] ys = ys is
left as an exercise, and the inductive case is as follows:

revcat (x:xs) ys

= {definition of revcat}
reverse (x:xs) ++ ys

= {definition of reverse}
(reverse xs ++ [x]) ++ ys

= {associativity of (++)}
reverse xs ++ ([x] ++ ys)

= {definition of (:)}
reverse xs ++ (x:ys)

= {definition of revcat}
revcat xs (x:ys)

Hence

revcat [] ys = ys

revcat (x:xs) ys = revcat xs (x:ys)

As to the running time, T(revcat)(m,n) = Θ(m). In particular,

T(reverse(n) = T(revcat(n,0) = Θ(n)

That gives a linear-time computation for reversing a list.

Here is another example. The function length is defined by

length :: [a] -> Int

length [] = 0

length (x:xs) = length xs + 1

We have T(length)(n) = Θ(n), so there is no time advantage in calculating an-
other definition. Nevertheless, define lenplus by

lenplus :: [a] -> Int -> Int

lenplus xs n = length xs + n
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If we go through exactly the same calculation for lenplus as we did for revcat,
we arrive at

lenplus [] n = n

lenplus (x:xs) n = lenplus xs (1+n)

The reason the calculation goes through is that (+), like (++), is an associative
operation. The advantage of defining

length xs = lenplus xs 0 = foldl (\n x -> 1+n) 0 xs

is that, by using foldl' in place of foldl, the length of a list can be computed in
constant space. That indeed is how length is defined in Haskell’s prelude.

As the really astute reader might have spotted, there is actually no need to go
through the calculations above. Both the examples are, in fact, instances of a law
already described in the previous chapter, namely that

foldr (<>) e xs = foldl (@) e xs

for all finite lists xs provided

x <> (y @ z)= (x <> y) @ z

x <> e= e @ x

The two instances are:

foldr (\x n -> n+1) 0 xs = foldl (\n x -> 1+n) 0 xs

foldr (\x xs -> xs++[x]) [] xs

= foldl (\xs x -> [x]++xs) [] xs

We leave the detailed verification of these equations as an exercise.

For a final demonstration of the accumulating parameter technique we move from
lists to trees. Consider the data declaration

data GenTree a = Node a [GenTree a]

An element of this type is a tree consisting of a node with a label and a list of
subtrees. Such trees arise in problems that can be formulated in terms of positions
and moves. The label of a node specifies the current position, and the number of
subtrees corresponds to the number of possible moves in the current position. Each
subtree has a label that specifies the result of making the move, and its subtrees
describe the moves that can be made from the new position. And so on.

Here is a function for computing the list of labels in a tree:
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labels :: GenTree a -> [a]

labels (Node x ts) = x:concat (map labels ts)

The method is simple enough: compute the labels of each subtree, concatenate the
results, and stick the label of the tree at the front of the final list.

Let us analyse the running time of this program on a tree t. To keep things simple,
suppose that t is a perfect k-ary tree of height h. What that means is that if h = 1
then t has no subtrees, while if h > 1 then t has exactly k subtrees, each with height
h−1. The number s(h,k) of labels in such a tree satisfies

s(1, t) = 1,

s(h+1,k) = 1+ ks(h,k),

with solution s(h,k) = Θ(kh). Now we have

T(labels)(1,k) = Θ(1),

T(labels)(h+1,k) = Θ(1)+T(concat)(k,s)+T(map labels)(h,k),

where s = s(h,k). The term T(map labels)(h,k) estimates the running time of
applying map labels to a list of length k of trees all of height h. In general, given
a list of length k consisting of elements each of size n, we have

T(map f)(k,n) = kT(f)(n)+Θ(k).

Furthermore T(concat)(k,s) = Θ(ks) = Θ(kh+1). Hence

T(labels)(h+1,k) = Θ(kh+1)+ kT(labels)(h,k)

since Θ(1)+Θ(k) = Θ(k). The solution is given by

T(labels)(h,k) = Θ(hkh) = Θ(s logs).

In words, computing the labels of a tree using the definition above takes time that
is asymptotically greater than the size of the tree by a logarithmic factor.

Let us now see what an accumulating parameter can do. Define labcat by

labcat :: [GenTree a] -> [a] -> [a]

labcat ts xs = concat (map labels ts) ++ xs

As well as adding in a list xs we have also generalised the first argument from a
tree to a list of trees. We have labels t = labcat [t] [], so any improvement
on labcat leads to a corresponding improvement on labels.

We now synthesise an alternative definition for labcat. For the base case we obtain

labcat [] xs = xs
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For the inductive case we reason:

labcat (Node x us:vs) xs

= {definition}
concat (map labels (Node x us:vs)) ++ xs

= {definitions}
labels (Node x us) ++ concat (map labels vs) ++ xs

= {definition}
x:concat (map labels us) ++ concat (map labels vs) ++ xs

= {definition of labcat}
x:concat (map labels us) ++ labcat vs xs

= {definition of labcat (again)}
labcat us (labcat vs xs)

The result of this calculation is the following program for labels:

labels t = labcat [t] []

labcat [] xs = xs

labcat (Node x us:vs) = x:labcat us (labcat vs xs)

For the timing analysis, let T(labcat)(h,k,n) estimate the running time of

labcat ts xs

when ts is a list of length n of trees, each of which is a perfect k-ary tree of height
h (the size of xs is ignored since it doesn’t affect the estimate). Then

T(labcat)(h,k,0) = Θ(1),

T(labcat)(1,k,n+1) = Θ(1)+T(labcat)(1,k,n)),

T(labcat)(h+1,k,n+1) = Θ(1)+T(labcat)(h,k,k)+

T(labcat)(h+1,k,n).

Solving the first two equations gives T(labcat)(1,k,n) = Θ(n). An induction ar-
gument now shows T(labcat)(h,k,n) = Θ(khn). Hence

T(labels)(h,k) = T(labcat)(h,k,1) = Θ(kh) = Θ(s).

That means we can compute the labels of a tree in time proportional to the size of
the tree, a logarithmic improvement over our first version.
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7.6 Tupling

We met the idea of tupling two functions in the discussion of the function mean.
Tupling is sort of dual to the method of accumulating parameters: we generalise a
function not by including an extra argument but by including an extra result.

The canonical example of the power of tupling is the Fibonacci function:

fib :: Int -> Integer

fib 0 = 0

fib 1 = 1

fib n = fib (n-1) + fib (n-2)

The time to evaluate fib by these three equations is given by

T(fib)(0) = Θ(1),

T(fib)(1) = Θ(1),

T(fib)(n) = T(fib)(n−1)+T(fib)(n−2)+Θ(1).

The timing function therefore satisfies equations very like that of fib itself. In fact
T(fib)(n) = Θ(φ n), where φ is the golden ratio φ = (1+

√
5)/2. That means that

the running time to compute fib on an input n is exponential in n.

Now consider the function fib2 defined by

fib2 n = (fib n,fib (n+1))

Clearly fib n = fst (fib2 n). Synthesis of a direct recursive definition of
fib2 yields

fib2 0 = (0,1)

fib2 n = (b,a+b) where (a,b) = fib2 (n-1)

This program takes linear time. In this example the tupling strategy leads to a dra-
matic increase in efficiency, from exponential time to linear time.

It’s great fun to formulate general laws that encapsulate gains in efficiency. One
such law concerns the computation of

(foldr f a xs, foldr g b xs)

As expressed above, the two applications of foldr involve two traversals of the
list xs. There is a modest time advantage, and possibly a greater space advantage,
in formulating a version that traverses the list only once. In fact

(foldr f a xs, foldr g b xs) = foldr h (a,b) xs
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where

h x (y,z) = (f x y,g x z)

The result can be proved by induction and we leave details as an easy exercise.

As one more example, we again move from lists to trees. But this time we have a
different kind of tree, a leaf-labelled binary tree:

data BinTree a = Leaf a | Fork (BinTree a) (BinTree a)

In contrast to a GenTree discussed above, a BinTree is either a leaf, with an
associated label, or a fork of two subtrees.

Suppose we wanted to build such a tree with a given list as the labels. More pre-
cisely, we want to define a function build satisfying

labels (build xs) = xs

for all finite nonempty lists xs, where labels returns the labels of a binary tree:

labels :: BinTree a -> [a]

labels (Leaf x) = [x]

labels (Fork u v) = labels u ++ labels v

We are attuned now to possible optimisations, and the definition of labels suggest
that it could be improved with an accumulating parameter. So it can, but that is not
our primary interest here, and we leave the optimisation as an exercise.

One way to build a tree is to arrange that half the list goes into the left subtree, and
the other half into the right subtree:

build :: [a] -> BinTree a

build [x] = Leaf x

build xs = Fork (build ys) (build zs)

where (ys,zs) = halve xs

The function halve made an appearance in Section 4.8:

halve xs = (take m xs,drop m xs)

where m = length xs `div` 2

Thus halve splits a list into two approximately equal halves. The definition of
halve involves a traversal of the list to find its length, and two further (partial)
traversals to compute the two components. It is therefore a prime candidate for
applying the tupling strategy to get something better. But as with labels we are
going to ignore that particular optimisation for now. And we are also going to
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ignore the proof that this definition of build meets its specification. That’s three
calculations we are leaving as exercises in order to concentrate on a fourth.

Let’s time build:

T(build)(1) = Θ(1),

T(build)(n) = T(build)(m)+T(build)(n−m)+Θ(n)

where m = n div 2.

It takes Θ(n) steps to halve a list of length n, and then we recursively build two
subtrees from lists of length m and n−m, respectively. The solution is

T(build)(n) = Θ(n logn).

In words, building a tree by the above method takes longer than the length of the
list by a logarithmic factor.

Having established this fact, let us define build2 by

build2 :: Int -> [a] -> (BinTree a,[a])

build2 n xs = (build (take n xs),drop n xs)

This builds a tree from the first n elements, but also returns the list that is left. We
have

build xs = fst (build2 (length xs) xs)

so our original function can be determined from the tupled version.

Our aim now is to construct a direct recursive definition of build2. First of all, it
is clear that

build2 1 xs = (Leaf (head xs),tail xs)

For the recursive case we start with

build2 n xs = (Fork (build (take m (take n xs)))

(build (drop m (take n xs))),

drop n xs) where m = n `div` 2

This equation is obtained by substituting in the recursive case of build. It suggests
that the next step is to use some properties of take and drop. Here they are: if
m <= n then

take m . take n = take m

drop m . take n = take (n-m) . drop m

That leads to
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build2 n xs = (Fork (build (take m xs))

(build (take (n-m) (drop m xs))),

drop n xs) where m = n `div` 2

Using the definition of build2 we can rewrite the above as follows:

build2 n xs = (Fork u v, drop n xs)

where (u,xs') = build2 m xs

(v,xs'') = build2 (n-m) xs'

m = n `div` 2

But as a final step, observe that

xs'' = drop (n-m) xs'

= drop (n-m) (drop m xs)

= drop n xs

Hence we can rewrite build2 once again to read

build2 1 xs = (Leaf (head xs),tail xs)

build2 n xs = (Fork u v, xs'')

where (u,xs') = build2 m xs

(v,xs'') = build2 (n-m) xs'

m = n `div` 2

Timing this program yields

T(build2)(1) = Θ(1),

T(build2)(n) = T(build2)(m)+T(build2)(n−m)+Θ(1).

with solution T(build2)(n) = Θ(n). Using build2 as a subsidiary function has
therefore improved the running time of build by a logarithmic factor.

7.7 Sorting

Sorting is a big topic and one can spend many happy hours tinkering with dif-
ferent algorithms. Knuth devotes about 400 pages to the subject in Volume 3 of
his series The Art of Computer Programming. Even then some of his conclusions
have to be reformulated when sorting is considered in a purely functional setting.
Here we briefly consider two sorting algorithms, keeping an eye out for possible
optimisations.
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Mergesort

The sorting method called Mergesort made an appearance in Section 4.8:

sort :: (Ord a) => [a] -> [a]

sort [] = []

sort [x] = [x]

sort xs = merge (sort ys) (sort zs)

where (ys,zs) = halve xs

halve xs = (take m xs,drop m xs)

where m = length xs `div` 2

In fact there are a number of variants for sorting by merging, and the standard
prelude function sort uses a different variant than the one above.

As we said above, the definition of halve looks fairly inefficient in that it involves
multiple traversals of its argument. One way to improve matters is to make use of
the standard prelude function splitAt, whose specification is

splitAt :: Int -> [a] -> ([a],[a])

splitAt n xs = (take n xs,drop n xs)

The prelude version of this function is the result of a tupling transformation:

splitAt 0 xs = ([],xs)

splitAt n [] = ([],[])

splitAt n (x:xs) = (x:ys,zs)

where (ys,zs) = splitAt (n-1) xs

It is easy enough to calculate this definition using the two facts that

take n (x:xs) = x:take (n-1) xs

drop n (x:xs) = drop (n-1) xs

provided 0 < n. Now we have

halve xs = splitAt (length xs `div` 2) xs

There are still two traversals here of course.

Another way to improve sort is to define

sort2 n xs = (sort (take n xs),drop n xs)

We have sort xs = fst (sort2 (length xs) xs), so our original sorting
function can be retrieved from the general one. An almost exactly similar calcu-
lation to the one in the previous section leads to
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sort2 0 xs = ([],xs)

sort2 1 xs = ([head xs],tail xs)

sort2 n xs = (merge ys zs, xs'')

where (ys,xs') = sort2 m xs

(zs,xs'') = sort2 (n-m) xs'

m = n `div` 2

With this definition there are no length calculations and no multiple traversals of
xs.

Another way to optimise halve is to realise that no human would split up a list
in this way if forced to do so by hand. If asked to divide a list into two, you and I
would surely just deal out the elements into two piles:

halve [] = ([],[])

halve [x] = ([x],[])

halve (x:y:xs) = (x:ys,y:zs)

where (ys,zs) = halve xs

Of course, this definition returns a different result than the previous one, but the
order of the elements in the two lists does not matter if the result is to be sorted;
what is important is that the elements are all there.

That is a total of three ways to improve the performance of sort. However, it
turns out that none of them makes that much difference to the total running time. A
few per cent perhaps, but nothing substantial. Furthermore, if we are using GHCi
as our functional evaluator, none of the versions compares in performance to the
library function sort because that function is given to us in a compiled form, and
compiled versions of functions are usually about ten times faster. We can always
compile our functions using GHC of course.

Quicksort

Our second sorting algorithm is a famous one called Quicksort. It can be expressed
in just two lines of Haskell:

sort :: (Ord a) => [a] -> [a]

sort [] = []

sort (x:xs) = sort [y | y <- xs, y < x] ++ [x] ++

sort [y | y <- xs, x <= y]



170 Efficiency

That’s very pretty and a testament to the expressive power of Haskell. But the
prettiness comes at a cost: the program can be very inefficient in its use of space.
The situation is the same as with the program for mean seen earlier.

Before plunging into ways the code can be optimised, let’s compute T(sort). Sup-
pose we want to sort a list of length n+1. The first list comprehension can return a
list of any length k from 0 to n. The length of the result of the second list compre-
hension is therefore n−k. Since our timing function is an estimate of the worst-case
running time, we have to take the maximum of these possibilities:

T(sort)(n+1)

= max [T(sort)(k)+T(sort)(n−k) | k← [0 ..n]]+Θ(n).

The Θ(n) term accounts for both the time to evaluate the two list comprehensions
and the time to perform the concatenations. Note, by the way, the use of a list
comprehension in a mathematical expression rather than a Haskell one. If list com-
prehensions are useful notations in programming, they are useful in mathematics
too.

Although not immediately obvious, the worst case occurs when k = 0 or k = n.
Hence

T(sort)(0) = Θ(1),

T(sort)(n+1) = T(sort)(n)+Θ(n),

with solution T(sort)(n) = Θ(n2). Thus Quicksort is a quadratic algorithm in the
worst case. This fact is intrinsic to the algorithm and has nothing to do with the
Haskell expression of it. Quicksort achieved its fame for two other reasons, nei-
ther of which hold in a purely functional setting. Firstly, when Quicksort is imple-
mented in terms of arrays rather than lists, the partitioning phase can be performed
in place without using any additional space. Secondly, the average case perfor-
mance of Quicksort, under reasonable assumptions about the input, is Θ(n logn)
with a smallish constant of proportionality. In a functional setting this constant is
not so small and there are better ways to sort than Quicksort.

With this warning, let us now see what we can do to optimise the algorithm without
changing it in any essential way (i.e. to a completely different sorting algorithm).
To avoid the two traversals of the list in the partitioning process, define

partition p xs = (filter p xs, filter (not . p) xs)

This is another example of tupling two definitions to save on a traversal. Since
filter p can be expressed as an instance of foldr we can appeal to the tupling
law of foldr to arrive at
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partition p = foldr op ([],[])

where op x (ys,zs) | p x = (x:ys,zs)

| otherwise = (ys,x:zs)

Now we can write

sort [] = []

sort (x:xs) = sort ys ++ [x] ++ sort zs

where (ys,zs) = partition (<x) xs

But this program still contains a space leak. To see why, let us write the recursive
case in the equivalent form

sort (x:xs) = sort (fst p) ++ [x] ++ sort (snd p)

where p = partition (<x) xs

Suppose x:xs has length n+1 and is in strictly decreasing order, so x is the largest
element in the list and p is a pair of lists of length n and 0, respectively. Evaluation
of p is triggered by displaying the results of the first recursive call, but the n units
of space occupied by the first component of p cannot be reclaimed because there
is another reference to p in the second recursive call. Between these two calls fur-
ther pairs of lists are generated and retained. All in all, the total space required to
evaluate sort on a strictly decreasing list of length n+1 is Θ(n2) units. In practice
this means that evaluation of sort on some large inputs can abort owing to lack of
sufficient space.

The solution is to force evaluation of partition and, equally importantly, to bind
ys and zs to the components of the pair, not to p itself.

One way of bringing about a happy outcome is to introduce two accumulating
parameters. Define sortp by

sortp x xs us vs = sort (us ++ ys) ++ [x] ++

sort (vs ++ zs)

where (ys,zs) = partition (<x) xs

Then we have

sort (x:xs) = sortp x xs [] []

We now synthesise a direct recursive definition of sortp. The base case is

sortp x [] us vs = sort us ++ [x] ++ sort vs
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For the recursive case y:xs let us assume that y < x. Then

sortp x (y:xs) us vs

= {definition of sortp with (ys,zs) = partition (<x) xs}
sort (us ++ y:ys) ++ [x] ++ sort (vs ++ zs)

= {claim (see below)}
sort (y:us ++ ys) ++ [x] ++ sort (vs ++ zs)

= {definition of sortp}
sortp x (y:us) vs

The claim is that if as is any permutation of bs then sort as and sort bs return
the same result. The claim is intuitively obvious: sorting a list depends only on the
elements in the input not on their order. A formal proof is omitted.

Carrying out a similar calculation in the case that x <= y and making sortp local
to the definition of sort, we arrive at the final program

sort [] = []

sort (x:xs) = sortp xs [] []

where

sortp [] us vs = sort us ++ [x] ++ sort vs

sortp (y:xs) us vs = if y < x

then sortp xs (y:us) vs

else sortp xs us (y:vs)

Not quite as pretty as before, but at least the result has Θ(n) space complexity.

7.8 Exercises

Exercise A

One simple definition of sort is

sort [] = []

sort (x:xs) = insert x (sort xs)

insert x [] = [x]

insert x (y:ys)

= if x <= y then x:y:ys else y:insert x ys

This method is called insertion sort. Reduce sort [3,4,2,1] to head normal
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form under lazy evaluation. Now answer the following questions: (i) How long, as
a function of n, does it take to compute head . sort when applied to a list of
length n? (ii) How long does it take under eager evaluation? (iii) Does insertion
sort, evaluated lazily, carry out exactly the same sequence of comparisons as the
following selection sort algorithm?

sort [] = []

sort xs = y:sort ys where (y,ys) = select xs

select [x] = (x,[])

select (x:xs) | x <= y = (x,y:ys)

| otherwise = (y,x:ys)

where (y,ys) = select xs

Exercise B

Write down a definition of length that evaluates in constant space. Write a second
definition of length that evaluates in constant space but does not make use of the
primitive seq (either directly or indirectly).

Exercise C

Construct f, e and xs so that

foldl f e xs 	= foldl' f e xs

Exercise D

Would

cp [] = [[]]

cp (xs:xss) = [x:ys | ys <- cp xss, x <- xs]

be an alternative way of defining the function cp that is as efficient as the definition
in terms of foldr? Yes, No or Maybe?

Time for a calculation. Use the fusion law of foldr to calculate an efficient alter-
native to

fcp = filter nondec . cp

See Section 4.7 for a definition of nondec.
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Exercise E

Suppose

T(1) = Θ(1),

T(n) = T(n div 2)+T(n−n div 2)+Θ(n)

for 2 ≤ n. Prove that T(2k) = Θ(k2k). Hence prove T(n) = Θ(n logn).

Exercise F

Prove that

foldr (\x n -> n+1) 0 xs = foldl (\n x -> 1+n) 0 xs

foldr (\x xs -> xs++[x]) [] xs

= foldl (\xs x -> [x]++xs) [] xs

Exercise G

Prove that if h x (y,z) = (f x y,g x z), then

(foldr f a xs,foldr g b xs) = foldr h (a,b) xs

for all finite lists xs. A tricky question: does the result hold for all lists xs?

Now find a definition of h such that

(foldl f a xs,foldl g b xs) = foldl h (a,b) xs

Exercise H

Recall that

partition p xs = (filter p xs, filter (not . p) xs)

Express the two components of the result as instances of foldr. Hence use the
result of the previous exercise to calculate another definition of partition.

Define

part p xs us vs = (filter p xs ++ us,

filter (not . p) xs ++ vs)

Calculate another definition of partition that uses part as a local definition.

Exercise I

Recall that



7.9 Answers 175

labels :: BinTree a -> [a]

labels (Leaf x) = [x]

labels (Fork u v) = labels u ++ labels v

Compute T(labels)(n), where n is the number of leaves in the tree. Now use the
accumulating parameter technique to find a faster way of computing labels.

Prove that labels (build xs) = xs for all finite nonempty lists xs.

Exercise J

Define select k = (!!k) . sort, where sort is the original Quicksort. Thus
select k selects the kth smallest element of a nonempty finite list of elements,
the 0th smallest being the smallest element, the 1st smallest being the next smallest
element, and so on. Calculate a more efficient definition of select and estimate
its running time.

7.9 Answers

Answer to Exercise A

sort [3,4,1,2]

= insert 3 (sort [4,1,2])

= ...

= insert 3 (insert 4 (insert 1 (insert 2 [])))

= insert 3 (insert 4 (insert 1 (2:[])))

= insert 3 (insert 4 (1:2:[]))

= insert 3 (1:insert 4 (2:[]))

= 1:insert 3 (insert 4 (2:[]))

It takes Θ(n) steps to compute head . sort on a list of length n. Under eager
evaluation it takes about n2 steps. As to part (iii), the answer is yes. You may think
we have defined sorting by insertion, but under lazy evaluation it turns out to be
selection sort. The lesson here is that, under lazy evaluation, you don’t always get
what you think you are getting.

Answer to Exercise B

For the first part, the following does the job:

length = foldl' (\n x -> n+1) 0

For the second part, one solution is
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length = length2 0

length2 n [] = n

length2 n (x:xs) = if n==0 then length2 1 xs

else length2 (n+1) xs

The test n==0 forces evaluation of the first argument.

Answer to Exercise C

Take f n x = if x==0 then undefined else 0. Then

foldl f 0 [0,2] = 0

foldl' f 0 [0,2] = undefined

Answer to Exercise D

The answer is: maybe! Although the given version of cp is efficient, it returns the
component lists in a different order than any of the definitions in the text. That
probably doesn’t matter if we are only interested in the set of results, but it might
affect the running time and result of any program that searched cp to find some list
satisfying a given property.

According to the fusion rule we have to find a function g so that

filter nondec (f xs yss) = g xs (filter nondec yss)

where f xs yss = [x:ys | x <- xs, ys <- yss]. Then we would have

filter nondec . cp

= filter nondec . foldr f [[]]

= foldr g [[]]

Now

nondec (x:ys) = null ys || (x <= head ys && nondec ys)

That leads to

g xs [[]] = [[x] | x <- xs]

g xs yss = [x:ys | x <- xs, ys <- yss, x <= head ys]

Answer to Exercise E

For the first part, we have

T(2k) = 2T(2k−1)+Θ(2k).
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By induction we can show T(2k) = ∑i=0 kΘ(2k). The induction step is

T(2k) = 2
k−1

∑
i=0

Θ(2k−1)+Θ(2k)

=
k−1

∑
i=0

Θ(2k)+Θ(2k)

=
k

∑
i=0

Θ(2k).

Hence T(2k) = Θ(k2k). Now suppose 2k ≤ n < 2k+1, so

Θ(k2k) = T(2k)≤ T(n)≤ T(2k+1) = Θ((k+1)2k+1) = Θ(k2k).

Hence T(n) = Θ(k2k) = Θ(n logn).

Answer to Exercise F

Define x <> n = n+1 and n @ x = 1+n. We have

(x <> n) @ y = 1+(n+1) = (1+n)+1 = x <> (n @ y)

The second proof is similar.

Answer to Exercise G

The induction step is

(foldr f a (x:xs),foldr g b (x:xs)

= (f x (foldr f a xs),g x (foldr g b xs))

= h x (foldr f a xs,foldr g b xs)

= h x (foldr h (a,b) xs

= foldr h (a,b) (x:xs)

The answer to the tricky question is No. The values (⊥,⊥) and ⊥ are different in
Haskell. For example, suppose we define foo (x,y) = 1. Then

foo undefined = undefined

foo (undefined,undefined) = 1

For the last part, the definition of h is that

h (y,z) x = (f y x,g z x)

Answer to Exercise H

We have filter p = foldr (op p) [], where
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op p x xs = if p x then x:xs else xs

Now

(op p x ys,op (not . p) x zs)

= if p x then (x:ys,zs) else (ys,x:zs)

Hence

partition p xs = foldr f ([],[]) xs

where f x (ys,zs) = if p x

then (x:ys,zs)

else (ys,x:zs)

For the last part we obtain

partition p xs = part p xs [] []

part p [] ys zs = (ys,zs)

part p (x:xs) ys zs = if p x

then part p xs (x:ys) zs

else part p xs ys (z:zs)

Answer to Exercise I

Remember that T estimates the worst case running time. The worst case for labels
arises when every right subtree of the tree is a leaf. Then we have

T(labels)(n) = T(labels)(n−1)+Θ(n),

where Θ(n) accounts for the time to concatenate a list of length n−1 with a list of
length 1. Hence

T(labels)(n) = σ n
j=0Θ(n) = Θ(n2).

The accumulating parameter method yields

labels t = labels2 t []

labels2 (Leaf x) xs = x:xs

labels2 (Fork u v) xs = labels2 u (labels2 v xs)

and T(labels2)(n) = Θ(n). This improves the running time of labels from
quadratic to linear time.

The induction step in the proof that labels (build xs) = xs is to assume the
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hypothesis for all lists strictly shorter than xs:

labels (build xs)

= {assume xs has length at least two
and let (ys,zs) = halve xs}
labels (Fork (build ys) (build zs))

= {definition of labels}
labels (build ys) ++ labels (build zs)

= {induction, since ys and zs are strictly shorter than xs}
ys ++ zs

= {definition of halve xs}
xs

The induction here is general induction: in order to prove P(xs) for all finite lists
xs it is sufficient to prove that: (i) P([]); and (ii) P(xs) holds under the assumption
that P holds for all lists of length strictly less than xs.

Answer to Exercise J

One key property is that

(xs ++ [x] ++ ys)!!k | k < n = xs!!k

| k==n = x

| k > n = ys!!(n-k)

where n = length xs

The other key property is that sorting a list does not change the length of the list.
Hence

select k [] = error "list too short"

select k (x:xs) | k < n = select k ys

| k==n = x

| otherwise = select (n-k) zs

where ys = [y | y <- xs, y < x]

zs = [z | z <- xs, x <= z]

n = length ys

The worst-case running time for a list of length n occurs when k = 0 and the length
of ys is n−1, i.e. when x:xs is in strictly decreasing order. Thus

T(select)(0,n) = T(select)(0,n−1)+Θ(n),

with solution T(select)(0,n) = Θ(n2). But, assuming a reasonable distribution
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in which each permutation of the sorted result is equally likely as input, we have
T(select)(k,n) = Θ(n).

7.10 Chapter notes

There are many books on algorithm design, but two that concentrate on func-
tional programming are Algorithms: A Functional Programming Approach (second
edition) (Addison-Wesley, 1999) by Fethi Rabbi and Guy Lapalme, and my own
Pearls of Functional Algorithm Design (Cambridge, 2010).

Information about profiling tools comes with the documentation on the Haskell
Platform. The source book on sorting is Don Knuth’s The Art of Computer Pro-
gramming, Volume 3: Sorting and Searching (second edition) (Addison-Wesley,
1998).



Chapter 8

Pretty-printing

This chapter is devoted to an example of how to build a small library in Haskell.
A library is an organised collection of types and functions made available to users
for carrying out some task. The task we have chosen to discuss is pretty-printing,
the idea of taking a piece of text and laying it out over a number of lines in such
a way as to make the content easier to view and understand. We will ignore many
of the devices for improving the readability of a piece of text, devices such as a
change of colour or size of font. Instead we concentrate only on where to put the
line breaks and how to indent the contents of a line. The library won’t help you to
lay out bits of mathematics, but it can help in presenting tree-shaped information,
or in displaying lists of words as paragraphs.

8.1 Setting the scene

Let’s begin with the problem of displaying conditional expressions. In this book
we have used three ways of displaying such expressions:

if p then expr1 else expr2

if p then expr1

else expr2

if p

then expr1

else expr2

These three layouts, which occupy one, two or three lines, respectively, are consid-
ered acceptable, but the following two are not:
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if p then

expr1 else expr2

if p

then expr1 else expr2

The decision as to what is or is not acceptable is down to me, the author. You may
disagree with my choices (some do), and a flexible library should provide you with
the ability to make your own reasonable choices. In any case, two basic questions
have to be answered. Firstly, how can we describe the acceptable alternatives while
rejecting the unacceptable ones? Secondly, how do we choose between the accept-
able alternatives?

A quick answer to the second question is that the choice depends on the permitted
line width. For instance we might choose a layout with the fewest lines, subject to
the condition that each line fits within the allotted line width. Much more on this
later.

As to the first question, one answer is just to write out all the acceptable alterna-
tives. That’s going to involve a lot of writing. A better alternative is to provide the
user with a suitable layout description language. As a rough and ready guide we
might write something like

if p <0> then expr1 (<0> + <1>) else expr2 +

if p <1> then expr1 <1> else expr2

where <0> means a single space, <1> means a line break and + means ‘or’. The
expression above yields our three layouts described earlier. However, the danger
with providing the user with an unfettered choice of alternatives is that it becomes
difficult to make a decision about the best layout without exploring every possible
alternative, and that could take a long time.

Another possibility is to allow only restricted choice by forcing the user to describe
layouts in terms of certain functions and operations provided by the library. For
example, consider the description

group (group (if p <1> then expr1) <> <1> else expr2)

where group augments a set of layouts with one additional layout in which every
<1> is replaced by <0>, thereby flattening the layout to just one line, and (<>)

means concatenation lifted to sets of alternatives. For example,

group (if p <1> then expr1)

= {if p <0> then expr1, if p <1> then expr1}
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group (if p <1> then expr1) <> <1> else expr2

= {if p <0> then expr1 <1> else expr2,

if p <1> then expr1 <1> else expr2}

group (group (if p <1> then expr1) <> <1> else expr2)

= {if p <0> then expr1 <0> else expr2,

if p <0> then expr1 <1> else expr2,

if p <1> then expr1 <1> else expr2}

Thus our set of three acceptable layouts is captured by the above description which
contains two occurrences of group.

There is another aspect to the problem of displaying conditional expressions. What
if expr1 or expr2 are themselves conditional expressions? Here we might want to
allow a layout like

if p

then if q

then expr1

else expr2

else expr3

The point is that we should allow for indentation in our description language. In-
dentation means putting in a suitable number of spaces after each line break. This
idea can be captured by providing a function nest so that nest i x is a layout in
which each line break in layout x is followed by i spaces.

8.2 Documents

For the sake of a name let us agree to call a document some entity that represents
the set of possible layouts of a piece of text. Documents are given as elements of
the type Doc whose definition is left for later on. On the other hand, a layout is
simply a string:

type Layout = String

We are deliberately being cagey about what a document actually is because we
want to consider two representations of Doc. For now we concentrate on the oper-
ations on documents that our library might provide.

The first operation is a function

pretty :: Int -> Doc -> Layout



184 Pretty-printing

that takes a given line width and a document, and returns the best layout. How to
define this function efficiently is really the main concern of the chapter.

The second operation is a function

layouts :: Doc -> [Layout]

that returns the set of possible layouts as a list. Why should we want such a func-
tion when we have pretty? Well, it takes a little experimentation to find the defi-
nitions that describe the layouts we regard as acceptable. The way to experiment is
to formulate an initial definition and then rework it after inspecting all the result-
ing layouts on a small number of examples. That way we can see whether some
layouts should be excluded or others added. So, whatever our final representation
of documents turns out to be, we should provide layouts as a sensible diagnostic
tool for the user.

The remaining operations deal with constructing documents. First up is the opera-
tion of concatenating two documents to give a new one:

(<>) :: Doc -> Doc -> Doc

Document concatenation should surely be an associative operation so we require
of any implementation of (<>) that

(x <> y) <> z) = x <> (y <> z)

for all documents x, y and z.

Whenever there is an associative operation there is usually an identity element, so
we also provide an empty document

nil :: Doc

We require nil <> x = x and x <> nil = x for all documents x.

The next operation is a function

text :: String -> Doc

that takes a string not containing newlines into a document. To provide for docu-
ments containing more than one line, we can provide another basic document

line :: Doc

For example,

text "Hello" <> line <> text "World!"
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is a document with a single layout that consists of two lines. You might think that
line is unnecessary because we could always allow newline characters in text
strings, but to indent a document we would then have to inspect the contents of
every text. Far better is to have an explicit newline document; that way we know
where line breaks are.

Next, the function

nest :: Int -> Doc -> Doc

provides a way of nesting documents: nest i indents a document by inserting
i spaces after every newline. Note the emphasis: indentation is not done at the
beginning of a document unless it begins with a newline. The reason for this choice
is explained below.

Finally, to complete a library of eight operations, we have the function

group :: Doc -> Doc

This is the function that produces multiple layouts. The function group takes a
document and adds an extra layout, one that consists of a single line of text with
no line breaks.

We have named eight operations and given informal descriptions of what they are
intended to mean, but can we be more precise about their properties and the re-
lationships between them? An even more fundamental question is whether these
operations are sufficiently flexible to allow for a reasonable class of layouts.

Let’s first concentrate on what equational laws we might want. Finding such laws
can boost our confidence that we have in hand an adequate and smoothly integrated
box of tools, and that there isn’t some crucial gadget we have missed. Such laws
can also influence the meanings of operations and guide implementations. We have
already asserted that (<>) should be associative with identity element nil, but
what else should we require?

Well, for text we want the following properties:

text (s ++ t) = text s <> text t

text "" = nil

In mathematical language this asserts that text is a homomorphism from string
concatenation to document concatenation. An impressive (and possibly intimidat-
ing) name for something quite simple. Note that the associativity of string con-
catenation implies the associativity of document concatenation, at least for text
documents.
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For nest we require the following equations to hold:

nest i (x <> y) = nest i x <> nest i y

nest i nil = nil

nest i (text s) = text s

nest i line = line <> text (replicate i ' ')

nest i (nest j x) = nest (i+j) x

nest 0 x = x

nest i (group x) = group (nest i x)

All very reasonable (except possibly for the last), and we could give some of them
mathematical names (nest i distributes through concatenation, nest is a homo-
morphism from numerical addition to functional composition and nest i com-
mutes with group). The third law fails if nest were to indent from the beginning
of a document; and it would also fail if we allowed text strings to contain newline
characters. The last law holds because grouping adds a layout with no line breaks,
and nesting has no effect on such a layout. See Exercise D for a more precise argu-
ment.

Turning to the properties of layouts, we require that

layouts (x <> y) = layouts x <++> layouts y

layouts nil = [""]

layouts (text s) = [s]

layouts line = ["\n"]

layouts (nest i x) = map (nestl i) (layouts x)

layouts (group x) = layouts (flatten x) ++ layouts x

The operation (<++>) is lifted concatenation:

xss <++> yss = [xs ++ ys | xs <- xss, ys <- yss]

The function nestl :: Int -> Layout -> Layout is defined by

nestl i = concat (map indent i)

indent i c = if c=='\n' then c:replicate i ' ' else [c]

Finally, flatten :: Doc -> Doc is the function that converts a document into
one with a single layout in which each newline and its associated indentation is
replaced by a single space. This function is not provided in the public interface of
our documents library, though it will be needed internally. It is a missing gadget in
the sense that we need it to complete the description of the algebraic laws.

We require that flatten should satisfy the following conditions:
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flatten (x <> y) = flatten x <> flatten y

flatten nil = nil

flatten (text s) = text s

flatten line = text " "

flatten (nest i x) = flatten x

flatten (group x) = flatten x

That makes 24 laws in total (one for <>, two each for nil and text, seven for nest
and six each for layouts and flatten). Many of the laws look like constructive
Haskell definitions of functions over a data type in which nil, text and so on are
constructors. More on this is in Section 8.6.

The eight operations certainly seem reasonable enough, but do they give us suffi-
cient flexibility to describe the layouts we might want? The proof of the pudding
is in the eating, so in a moment we will pause to consider three examples. Before
doing so, some implementation of documents, however quick and dirty, will be
needed to test the examples.

8.3 A direct implementation

One obvious choice of representation is to identify a document with its list of lay-
outs:

type Doc = [Layout]

Such a representation is called a shallow embedding. With a shallow embedding,
the library functions are implemented directly in terms of the values of interest
(here, layouts). Later on we will abandon this representation in favour of a more
structured alternative, but it is the obvious one to try first.

Here are the definitions of the operations above (we will leave pretty until later):

layouts = id

x <> y = x <++> y

nil = [""]

line = ["\n"]

text s = [s]

nest i = map (nestl i)

group x = flatten x ++ x

flatten x = [flattenl (head x)]

We have already defined nestl, and flattenl is defined by
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flattenl :: Layout -> Layout

flattenl [] = []

flattenl (c:cs)

| c=='\n' = ' ':flattenl (dropWhile (== ' ') cs)

| otherwise = c:flattenl cs

Do the 24 laws hold for this implementation? Well, let’s go through them. Lifted
concatentation <++> is associative with [[]] as identity element, so the first three
laws are okay. The two laws of text are easy to check, and the six laws of layouts
are immediate. All but two laws of nest are routine. The remaining two, namely

nest i . nest j = nest (i+j)

nest i . group = group . nest i

involve a bit of work (see Exercises C and D). That leaves the laws of flatten.
Three are easy, and one can show

flatten . nest i = flatten

flatten . group = flatten

with a bit of work (see Exercises E and F). But the stumbling block is the law

flatten (x <> y) = flatten x <> flatten y

This one is false. Take x = line and y = text " hello". Then

flatten (x <> y) = ["hello"]

flatten x <> flatten y = [" hello"]

and the two results are different. The reason is that flatten removes the effect
of nesting, but does not remove spaces after newlines if they are present in an un-
nested document. On the other hand, flattenl removes spaces after every newline
in the document.

Rather than try to fix up this deficiency, we can accept the less than perfect imple-
mentation and move on. One can show that all layouts of a document flatten to the
same string (see the Answer to Exercise E). The shallow embedding also possesses
another property that we will exploit in the definition of pretty. To see what it is,
consider the function shape that returns the shape of a layout:

shape :: Layout -> [Int]

shape = map length . lines

The prelude function lines breaks up a string on newline characters, returning a
list of strings without newlines. Thus the shape of a layout is the list of lengths of
the lines that make up the layout. The crucial property of layouts is that the list
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of shapes of the layouts of a document is in lexicographically decreasing order. For
example, one of the documents described in the following section has 13 possible
layouts whose shapes are given by

[[94],[50,43],[50,28,19],[50,15,17,19],[10,39,43],

[10,39,28,19],[10,39,15,17,19],[10,28,15,43],

[10,28,15,28,19],[10,28,15,15,17,19],[10,13,19,15,43],

[10,13,19,15,28,19],[10,13,19,15,15,17,19]]

This list is in decreasing lexicographic order. The reason the property holds is that
layouts (group x) puts the flattened layout at the head of the list of layouts of
document x, and a flattened layout consists of a single line. Exercise G goes into
more details.

8.4 Examples

Our first example deals with laying out conditional expressions. For present pur-
poses a conditional expression can be represented as an element of the data type
CExpr, where

data CExpr = Expr String | If String CExpr CExpr

Here is a function cexpr that specifies the acceptable layouts described earlier:

cexpr :: CExpr -> Doc

cexpr (Expr p) = text p

cexpr (If p x y)

= group (group (text "if " <> text p <>

line <> text "then " <>

nest 5 (cexpr x)) <>

line <> text "else " <>

nest 5 (cexpr y))

This definition is similar to our previous version, except for the nesting of the
subexpressions.

For example, two of the 13 possible layouts for one particular expression are as
follows:

if wealthy

then if happy then lucky you else tough

else if in love then content else miserable
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if wealthy

then if happy

then lucky you

else tough

else if in love

then content

else miserable

You can see from the last expression why we have chosen an indentation of five
spaces. The 13 possible layouts for this particular conditional expression have the
shapes displayed in the previous section.

The second example concerns how to lay out general trees, trees with an arbitrary
number of subtrees:

data GenTree a = Node a [GenTree a]

Here is an example tree, laid out in two different ways:

Node 1

[Node 2

[Node 7 [],

Node 8 []],

Node 3

[Node 9

[Node 10 [],

Node 11 []]],

Node 4 [],

Node 5

[Node 6 []]]

Node 1

[Node 2 [Node 7 [], Node 8 []],

Node 3 [Node 9 [Node 10 [], Node 11 []]],

Node 4 [],

Node 5 [Node 6 []]]

The function gtree that produced these trees (coincidentally, also among a total
of 13 different ways) was defined as follows:

gtree :: Show a => GenTree a -> Doc

gtree (Node x [])

= text ("Node " ++ show x ++ " []")
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gtree (Node x ts)

= text ("Node " ++ show x) <>

group (nest 2 (line <> bracket ts))

The first clause says that a tree with no subtrees is always displayed on a single
line; the second clause says that a tree with at least one subtree is displayed either
on a single line or has its subtrees each displayed on a new line with an indentation
of two units. The function bracket is defined by

bracket :: Show a => [GenTree a] -> Doc

bracket ts = text "[" <> nest 1 (gtrees ts) <> text "]"

gtrees [t] = gtree t

gtrees (t:ts) = gtree t <> text "," <> line <> gtrees ts

To be honest, it took a little time and experimentation to find the definitions above
(for which the function layouts proved indispensable), and the result is certainly
not the only way to lay out trees.

Finally, here is a way of laying out a piece of text (a string of characters containing
spaces and newlines, not a document text) as a single paragraph:

para :: String -> Doc

para = cvt . map text . words

cvt [] = nil

cvt (x:xs)

= x <> foldr (<>) nil [group (line <> x) | x <- xs]

First, the words of the text are computed using the standard library function words,
a function we have encountered a number of times before. Then each word is con-
verted into a document using text. Finally, each word, apart from the first, is laid
out either on the same line or on a new line. If there are n+1 words in the text, and
so n inter-word spaces, the code above describes 2n possible layouts. We certainly
don’t want to examine all these layouts in computing one that will fit within a given
line width.

8.5 The best layout

As we said above, the best layout depends on the maximum permitted line width.
That’s a simple decision, but not the only one. In general a pretty layout of a nested
document will consist of a ribbon of text snaking across the page, and it is arguable
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that the width of the ribbon should also play a part in determining the best layout.
After all, is the best layout on an infinitely wide page one in which everything is
placed on one line? However, for simplicity we will ignore this very reasonable
refinement and take only the line width as the deciding factor.

There is also another decision to be made. Suppose we choose the best layout,
according to some criterion, among those layouts all of whose lines fit within the
given line width. That’s fine if there is at least one such layout, but what if there
isn’t? The two options are either to abandon the formatting process with a suitable
error message, or else to do the best we can, accepting that the width may be
exceeded.

Psychologically and practically the second option seems the better one, so let us
explore what it entails. We can start by comparing the first lines, �1 and �2, of two
layouts. We can decide that line �1 is better than �2 if: (i) both lines fit into width
w and �1 is longer than �2; (ii) �1 fits w but �2 doesn’t; or (iii) neither fits w and �1

is shorter than �2. The decision is a reasonable one because it should be capable of
being implemented by a greedy strategy: fill up the first line as much as possible
without exceeding the line width; and if that is not possible, stop as soon as the
width is exceeded.

The comparison test above doesn’t determine what should happen if the two lines
have the same length. But it is a consequence of the fact that all layouts flatten
to the same string that two first lines with the same length will be the same line.
Consequently, the first line is fixed and the comparison can pass to the second pair
of lines. And so on.

The second property about decreasing shapes can be used to simplify the compar-
ison test slightly because if layout lx precedes layout ly in the list of layouts, then
the first line of lx is known to be at least as long as the first line of ly. And if the
two lines are equally long, then the same statement is true of the second lines. And
so on.

Given our shallow embedding of documents, here is a simple implementation of
the function pretty that finds the best layout:

pretty :: Int -> Doc -> Layout

pretty w = fst . foldr1 choose . map augment

where

augment lx = (lx,shape lx)

choose alx aly

= if better (snd alx) (snd aly) then alx else aly

better [] ks = True
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better js [] = False

better (j:js) (k:ks) | j == k = better js ks

| otherwise = (j <= w)

Each layout is augmented with shape information to guide the choice of layout,
which is then determined by a simple search. The test better implements the
comparison operation described above. Finally, shape information is discarded.

This definition of pretty is hopelessly inefficient because every layout is com-
puted and examined. If there are n possible choices of whether to have a line break
or not, there are 2n layouts to be examined and pretty-printing will be very slow
indeed. For example,

ghci> putStrLn $ pretty 30 $ para pg

This is a fairly short

paragraph with just twenty-two

words. The problem is that

pretty-printing it takes time,

in fact 31.32 seconds.

(31.32 secs, 17650013284 bytes)

Ouch! What is worse, pretty-printing a longer paragraph will cause GHCi to crash
with an ‘out of memory’ message. An exponential time and space algorithm is not
acceptable.

What is wanted is an algorithm for pretty that can decide on which first line to
choose without looking ahead more than w characters. The algorithm should also
be efficient, taking linear time in the size of the document being pretty-printed.
Ideally the running time should be independent of w, but a running time that does
depend on w is acceptable if a faster one means a much more complicated program.

8.6 A term representation

The problem with identifying a document with its list of possible layouts is that
useful structure is lost. Rather than bring all the alternatives to the top level as a
list, we really want to bury them as deep as possible. For example, consider the
following two expressions for a document:

A<0>B<0>D + A<0>B<1>D + A<1>C<0>E + A<1>C<1>E

A(<0>B(<0>D + <1>D) + <1>C(<0>E + <1>E))



194 Pretty-printing

As before, <0> denotes a single space and <1> a single line break. The five letters
denote five nonempty texts. Since all four alternatives have to flatten to the same
document, we require that B<0>D = C<0>E. In the first expression (which is es-
sentially what is given by representing a document by its list of layouts) we have
four layouts to compare. In the second expression we can shortcut some of the
comparisons. For example, if we know that the common prefix A cannot fit in the
given width, the first two layouts can be thrown away without further comparisons.
Even better, if we choose between alternatives from the innermost to the outermost,
we can base the comparison test on just the first lines of layouts. For instance, if
we choose the better of C<0>E and C<1>E first, then that choice is not changed by
subsequent choices.

The way to maintain the structure of documents is to represent a document as a
tree:

data Doc = Nil

| Line

| Text String

| Nest Int Doc

| Group Doc

| Doc :<>: Doc

Note the use of an infix constructor in the last line. Haskell allows infix operators
as constructors, but they have to begin with a colon. They do not have to end with a
colon as well, but it seems more attractive if they do. This tree is called an abstract
syntax tree; each operation of the library is represented by its own constructor. An
implementation in terms of abstract syntax trees is known as a deep embedding.

We will not provide the user with the details of the data type Doc, just its name.
To explain why not, it is useful to insert a short digression about Haskell data
types. In Haskell the effect of a data declaration is to introduce a new data type by
describing how its values are constructed. Each value is named by an expression
built only from the constructors of the data type, in other words a term. Moreover,
different terms denote different values (provided there are no strictness flags). We
can define functions on the data type by pattern matching on the constructors. There
is therefore no need to state what the operations on the data type are – we can just
define them. Types in which the values are described, but the operations are not,
are called concrete types.

The situation is exactly the reverse with abstract data types. Here the operations are
named, but not how the values are constructed, at least not publicly. For example,
Float is an abstract data type; we are given the names of the primitive arithmetic
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and comparison operations, and also a way of displaying floating-point numbers,
but it is not stated how such numbers are actually represented. We cannot define
functions on these numbers by pattern matching, but only in terms of the given
operations. What can and should be stated publicly are intended meanings and the
algebraic properties of the operations. However, Haskell provides no means for
such descriptions beyond informal comments.

As it stands, Doc is a concrete type. But in our understanding of this type, different
terms do not denote different values. For instance, we intend each constructor to be
a replacement for the corresponding operation. Thus

nil = Nil

line = Line

text s = Text s

nest i x = Nest i x

group x = Group x

x <> y = x :<>: y

We also want to keep the algebraic properties of these operations, so equations such
as

(x :<>: y) :<>: z = x :<>: (y :<>: z)

Nest i (Nest j x) = Nest (i+j) x

should hold. But of course they do not. The solution is to use the module structure
to hide the constructors of Doc from the user and insist only that the laws are
‘observably’ true. For instance we require

layouts ((x :<>: y) :<>: z) = layouts (x :<>: (y :<>: z))

The only way we can observe documents is through layouts; from the user’s point
of view if two documents produce the same layouts, then they are essentially the
same document.

Let’s get back to programming. Here is one definition of layouts. It is just the laws
of layouts that we saw earlier, but now expressed as a proper Haskell definition:

layouts :: Doc -> [Layout]

layouts (x :<>: y) = layouts x <++> layouts y

layouts Nil = [""]

layouts Line = ["\n"]

layouts (Text s) = [s]

layouts (Nest i x) = map (nestl i) (layouts x)

layouts (Group x) = layouts (flatten x) ++ layouts x
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The function flatten is similarly defined by

flatten :: Doc -> Doc

flatten (x :<>: y) = flatten x :<>: flatten y

flatten Nil = Nil

flatten Line = Text " "

flatten (Text s) = Text s

flatten (Nest i x) = flatten x

flatten (Group x) = flatten x

With these definitions, our 24 laws are either true by definition, or are observably
true in the sense above.

The definition of layouts is simple enough, but it is unnecessarily inefficient.
There are two separate reasons why this is so. First, consider the function egotist

defined by

egotist :: Int -> Doc

egotist n | n==0 = nil

| otherwise = egotist (n-1) <> text "me"

The document egotist n is a very boring one, and its sole layout consists of a
string of n repetitions of me. By the way, we could have expressed the definition
using Nil, (:<>:) and Text but, as we have said, we are not going to make these
constructors public. As it stands, the definition of egotist could have been made
by a user of the library. Anyway, back to the main point, which is that the associ-
ation of the (<>) operations is to the left, and it takes Θ(n2) steps to compute its
layout(s). The (++) operations pile up to the left. The situation is entirely analo-
gous to the fact that concat defined in terms of foldl is an order of magnitude
less efficient than one defined in terms of foldr.

The second source of inefficiency concerns nesting. For example, consider the
function egoist defined by

egoist :: Int -> Doc

egoist n | n==0 = nil

| otherwise = nest 1 (text "me" <> egoist (n-1))

There are no line breaks in sight, so egoist n describes the same boring document
as egotist n. But although the concatenation associates to the right, it still takes
quadratic time to construct the layout. Each nesting operation is carried out by
running through the entire document. Try it and see.
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The way to solve the first problem is to delay concatenation, representing a con-
catenated document by a list of its component documents. The way to solve the
second problem is to delay nesting, representing a nested document by a pair con-
sisting of an indentation to be applied only when necessary and the document it is
to be applied to. Combining both solutions, we represent a document by a list of
indentation-document pairs. Specifically, consider the function toDoc defined by

toDoc :: [(Int,Doc)] -> Doc

toDoc ids = foldr (:<>:) Nil [Nest i x | (i,x) <- ids]

We can now calculate a definition of a function layr such that

layr = layouts . toDoc

and then define a new version of layouts based on layr. We leave the details as
an exercise, but here is the result:

layouts x = layr [(0,x)]

layr [] = [""]

layr ((i,x :<>: y):ids) = layr ((i,x):(i,y):ids)

layr ((i,Nil):ids) = layr ids

layr ((i,Line):ids) = ['\n':replicate i ' ' ++ ls

| ls <- layr ids]

layr ((i,Text s):ids) = [s ++ ls | ls <- layr ids]

layr ((i,Nest j x):ids) = layr ((i+j,x):ids)

layr ((i,Group x):ids) = layr ((i,flatten x):ids) ++

layr ((i,x):ids)

This definition takes linear time for each layout. Exactly the same template is used
for the function pretty, which chooses a single best layout:

pretty w x = best w [(0,x)]

where

best r [] = ""

best r ((i,x :<>: y):ids) = best r ((i,x):(i,y):ids)

best r ((i,Nil):ids) = best r ids

best r ((i,Line):ids) = '\n':replicate i ' ' ++

best (w-i) ids

best r ((i,Text s):ids) = s ++ best (r-length s) ids

best r ((i,Nest j x):ids) = best r ((i+j,x):ids)

best r ((i,Group x):ids) = better r

(best r ((i,flatten x):ids))

(best r ((i,x):ids))
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The first argument of best is the remaining space available on the current line.
This function is made local to the definition of pretty to avoid having to carry
around the maximum line width w as an additional argument.

That leaves us with the problem of computing better r lx ly. Here we can
make use of the fact that the first line of lx is guaranteed to be at least as long as
the first line of ly. Thus it suffices to compare the length of the first line of lx with
r. If the former fits within the latter, we choose lx; otherwise we choose ly. We
therefore define

better r lx ly = if fits r lx then lx else ly

But we don’t want to compute the length of the whole of the first line of lx since
that looks ahead too far. Instead, we take a more miserly approach:

fits r _ | r<0 = False

fits r [] = True

fits r (c:cs) = if c == '\n' then True

else fits (r-1) cs

For exactly the same reason it is essential that the second and third arguments to
better are computed lazily, that is, the two layouts are evaluated just enough to
determine which is the better one, and no further.

Let’s revisit our troublesome paragraph:

ghci> putStrLn $ pretty 30 $ para pg

This is a fairly short

paragraph with just twenty-two

words. The problem is that

pretty-printing it takes time,

in fact 31.32 seconds.

(0.00 secs, 1602992 bytes)

Much better. Exercise L discusses what we can say about the running time of
pretty.

The final task is to put our small library together as a module. Here is the main
declaration:

module Pretty

(Doc, Layout,

nil, line, text,

nest, (<>), group,

layouts, pretty, layout) where
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The module name is Pretty and the file containing the above declaration and the
definitions of the library functions has to be saved in a file called Pretty.lhs.

The module exports 11 entities. Firstly, there is the name Doc of the abstract type
of documents. The constructors of this type are not exported. (By the way, if we did
want to export all the constructors we can write Doc () in the export list, and if we
wanted just, say, Nil and Text, we can write Doc (Nil, Text).) Secondly, there
is the name Layout which is just a synonym for String. The next eight constants
and functions are the ones we have defined above. The final function layout is
used for printing a layout:

layout :: Layout -> IO ()

layout = putStrLn

And that’s it. Of course, in a really useful library a number of additional combina-
tors could be provided. For example, we could provide

(<+>),(<|>) :: Doc -> Doc -> Doc

x <+> y = x <> text " " <> y

x <|> y = x <> line <> y

spread,stack :: [Doc] -> Doc

spread = foldr (<+>) nil

stack = foldr (<|>) nil

No doubt the reader can think of many others.

8.7 Exercises

Exercise A

A picky user of the library wants just three layouts for a certain document:

A B C A B A

C B C

Can the user do it with the given functions?

Exercise B

The layouts of a document are given as a list. But are they all different? Either
prove that they are or give a counterexample.
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By the way, is it obvious from the laws that each document has a nonempty set of
layouts?

Exercise C

The next four exercises refer to the shallow embedding of Section 8.3. Prove, by
equational reasoning, that

nest i . nest j = nest (i + j)

You will need a subsidiary result about nestl, which you don’t have to prove.

Exercise D

Continuing on from the previous question, prove that

nest i (group x) = group (nest i x)

by equational reasoning (at the point level). Again, you will need a subsidiary re-
sult.

Exercise E

Continuing on, prove that flatten . group = flatten. You will need a sub-
sidiary result.

Exercise F

The final law is flatten . nest i = flatten. And, yes, you will need yet
another subsidiary result.

Exercise G

We said in the text that the prelude function lines breaks up a string on new-
line characters. In fact, lines treats a newline as a terminator character, so both
lines "hello" and lines "hello\n" return the same result. It is arguable that
a better definition treats newlines as separator characters, so there is always one
more line than there are newlines. Define a function lines that has this behaviour.
We will need the new definition below.

Now, the proof that map shape applied to the layouts of a document returns a
lexicographically decreasing sequence of list of integers can be structured into the
following steps. First, define

msl = map shape . layouts

shape = map length . lines
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where lines refers to the revised version above. We have to prove that msl returns
a decreasing sequence on every document. To this end, we can define functions
nesty and groupy so that

nesty i . msl = msl . nest i

groupy . msl = msl . group

and an operation <+> so that

msl x <+> msl y = msl (x <> y)

(It is this equation that requires the revised definition of lines.) The proof is then
completed by showing that if xs and ys are decreasing, then so are nesty i xs

and groupy xs and xs <+> ys. All this exercise asks though is that you construct
definitions of nesty, groupy and <+>.

Exercise H

Write a function doc :: Doc -> Doc that describes how to lay out elements of
Doc where Doc is the abstract syntax tree representation in Section 8.6.

Exercise I

Consider a function prettybad that chooses a best layout from the list layouts
by taking the first layout all of whose lines fit within the given width, and the last
layout if this is not possible. Does prettybad always compute the same layout as
pretty? (Hint: think about paragraphs.)

Exercise J

Using the algebraic properties of the constructors of Doc, calculate the efficient
version of layouts.

Exercise K

We have designed pretty w to be optimal, meaning that it chooses line breaks to
avoid overflowing lines if at all possible. We also have that pretty w is bounded,
meaning that it can make the choice about the next line break without looking at
more than the next w characters of the input. Given that, what do you expect GHCi’s
response would be to the commands

layout $ pretty 5 $ para pg

layout $ pretty 10 $ cexpr ce

where
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pg = "Hello World!" ++ undefined

ce = If "happy" (Expr "great") undefined

Exercise L

We cannot relate the cost of pretty w x to the size of x without saying what the
size of a document is. Here is a reasonable measure:

size :: Doc -> Int

size Nil = 1

size Line = 1

size (Text s) = 1

size (Nest i x) = 1 + size x

size (x :<>: y) = 1 + size x + size y

size (Group x) = 1 + size x

Under this definition both the documents

nest 20 (line <> text "!")

nest 40 (line <> text "!")

have size two. But it takes twice as long to produce the second layout, so the cost
of pretty cannot be linear in the document size.

Instead of having pretty produce the final layout, a string, we can interpose an
additional data type of layouts:

data Layout = Empty

| String String Layout

| Break Int Layout

and define layout :: Layout -> String by

layout Empty = ""

layout (String s x) = s ++ layout x

layout (Break i x) = '\n':replicate i ' ' ++ layout x

We have

pretty w = layout . prettyl w

where the new function prettyl produces a Layout rather than a string. Define
prettyl.

A fairer question to ask is whether prettyl w x takes linear time in the size of x.
Does it?
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8.8 Answers

Answer to Exercise A

No. There is no way of allowing both A<0>B<1>C and A<1>B<0>C without also
having both of A<0>B<0>C and A<1>B<1>C. These four are given by the expression

group (A <> line <> B) <> group (line <> C)

Answer to Exercise B

The layouts of a document are not necessarily all different. For example

layouts (group (text "hello")) = ["hello","hello"]

Yes, it is obvious that each document has a nonempty set of layouts. Look at the
laws of layouts. The basic documents have a nonempty list of layouts and this
property is preserved by the other operations.

Answer to Exercise C

The calculation is:

nest i . nest j

= {definition of nest}
map (nestl i) . map (nestl j)

= {functor law of map}
map (nestl i . nestl j)

= {claim}
map (nestl (i+j))

= {definition of nest}
nest (i+j)

The claim is that nestl i . nestl j = nestl (i+j), which follows – after a
short calculation – from

indent (i+j) = concat . map (indent i) . indent j

We omit the proof.
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Answer to Exercise D

We reason:

nest i (group x)

= {definition of group}
nest i (flatten x ++ x)

= {since nest i = map (nestl i)}
nest i (flatten x) ++ nest i x

= {claim}
flatten (nest i x) ++ nest i x

= {definition of group}
group (nest i x)

The claim follows from

nest i . flatten

= {since there are no newlines in flatten x}
flatten

= {since flatten . nest i = flatten (Exercise F)}
flatten . nest i

Answer to Exercise E

We reason:

flatten . group

= {definition of flatten and group}
one . flattenl . flattenl . head

= {claim}
one . flattenl . head

= {definition of flatten}
flatten

The claim is that flattenl is idempotent:

flattenl . flattenl = flattenl

This follows because flattenl returns a layout with no newlines.
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By the way, it is the idempotence of flattenl that ensures all layouts of a docu-
ment flatten to the same string. The only function that introduces multiple layouts
is group, whose definition is

group x = flatten x ++ x

We have therefore to show that flattening the first element of this list gives the same
string as flattening the second element. Thus we need to show

flattenl . head . flatten = flattenl . head

This follows at once from the definition of flatten and the idempotence of the
function flattenl.

Answer to Exercise F

We reason:

flatten . nest i

= {definitions}
one . flattenl . head . map (nestl i)

= {since head . map f = f . head}
one . flattenl . nestl i . head

= {claim}
one . flattenl . head

= {definition of flatten}
flatten

The claim is that flattenl . nestl i = flattenl.

Answer to Exercise G

We can define

lines xs = if null zs then [ys]

else ys:lines (tail zs)

where (ys,zs) = break (=='\n') xs

The function groupy is defined by

groupy :: [[Int]] -> [[Int]]

groupy (xs:xss) = [sum xs + length xs - 1]:xs:xss

The function nesty is defined by
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nesty :: :: Int -> [[Int]] -> [[Int]]

nesty i = map (add i)

where add i (x:xs) = x:[i+x | x <- xs]

The function (<+>) is defined by

(<+>) :: [[Int]] -> [[Int]] -> [[Int]]

xss <+> yss = [glue xs ys | xs <- xss, ys <- yss]

where glue xs ys = init xs ++ [last xs + head ys] ++

tail ys

Answer to Exercise H

One possibility, which no doubt can be improved on:

doc :: Doc -> Doc

doc Nil = text "Nil"

doc Line = text "Line"

doc (Text s) = text ("Text " ++ show s)

doc (Nest i x) = text ("Nest " ++ show i) <>

group (nest 2 (line <> paren (doc x)))

doc (x :<>: y) = doc x <> text " :<>:" <>

group (line <> nest 3 (doc y))

doc (Group x) = text "Group " <>

group (nest 2 (line <> paren (doc x)))

paren x = text "(" <> nest 1 x <> text ")"

Answer to Exercise I

No. Consider a paragraph whose longest word is one character longer than the
line width. In this case, prettybad will lay out each word on a single line, while
pretty will still fill lines with groups of words provided they fit. For example:

ghci> putStrLn $ pretty 11 $ para pg4

A lost and

lonely

hippopotamus

went into a

bar.
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Answer to Exercise J

First we show layouts x = layr [(0,x)]:

layr [(0,x)]

= {definition of layr}
layouts (toDoc [(0,x)])

= {definition of toDoc}
layouts (Nest 0 x :<>: Nil)

= {laws of Doc}
layouts x

It remains to give a recursive definition of layr. We will just give two clauses:

toDoc ((i,Nest j x):ids)

= {definition of toDoc}
Nest i (Nest j x) :<>: toDoc ids

= {laws}
Nest (i+j) x :<>: toDoc ids

= {definition of toDoc}
toDoc ((i+j x):ids)

Hence layr ((i,Nest j x):ids) = layr ((i+j x):ids). Next:

toDoc ((i,x:<>:y):ids)

= {definition of toDoc}
Nest i (x :<>: y) <> toDoc ids

= {laws}
Nest i x :<>: Nest i y :<>: toDoc ids

= {definition of toDoc}
toDoc ((i,x):(i,y):ids)

Hence layr ((i,x:<>:y):ids) = layr ((i,x):(i,y):ids).

Answer to Exercise K

ghci> layout $ pretty 5 $ para pg

Hello

World1*** Exception: Prelude.undefined
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ghci> layout $ pretty 10 $ cexpr ce

if happy

then great

else *** Exception: Prelude.undefined

Answer to Exercise L

The definition is

prettyl :: Int -> Doc -> Layout

prettyl w x = best w [(0,x)]

where

best r [] = Empty

best r ((i,Nil):ids) = best r ids

best r ((i,Line):ids) = Break i (best (w-i) ids)

best r ((i,Text s):ids) = String s (best (r-length s) ids)

best r ((i,Nest j x):ids) = best r ((i+j,x):ids)

best r ((i,x :<>: y):ids) = best r ((i,x):(i,y):ids)

best r ((i,Group x):ids) = better r

(best r ((i,flatten x):ids))

(best r ((i,x):ids))

where better is changed to read

better r lx ly = if fits r (layout lx) then lx else ly

The number of steps required to evaluate better r is proportional to r and thus
at most w.

Now, prettyl takes linear time if best does. The second argument of best is a
list of indentation-document pairs, and we can define the size of this list by

isize ids = sum [size x | (i,x) <- ids]

For each of the inner five clauses in the definition of best, the size decreases by 1.
For instance

isize ((i,x :<>: y):ids)

= size (x :<> y) + isize ids

= 1 + size x + size y + isize ids

= 1 + isize ((i,x):(i,y):ids)

It follows that if we let T(s) denote the running time of best r on an input of size
s, then T(0) = Θ(1) from the first clause of best, and T(s+1) = Θ(1)+T(s) for
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each of the five inner clauses, and

T(s+1) = Θ(w)+maximum [T(k)+T(s−k)|k← [1 .. s−1]]

for the last clause. And now we can deduce that T(s) = Θ(ws).

In conclusion, our algorithm for pretty is linear, though not independently of w.

8.9 Chapter notes

We referred to pretty-printing as a library, but another name for it is an embedded
domain specific language (EDSL). It is a language for pretty-printing documents
embedded in the host language Haskell. Many people believe that the growing
success of Haskell is due to its ability to host a variety of EDSLs without fuss.

The detailed material in this chapter has been based closely on work by Philip
Wadler, see ‘A prettier printer’, Chapter 11 in The Fun of Programming in Corner-
stones of Computing Series (Palgrave MacMillan, 2003). The main difference is
that Wadler used an explicit alternation operator in the term representation of Doc
(though it was hidden from the user) rather than the constructor Group. Jeremy
Gibbons suggested that the latter was a better fit with the idea of a deep embed-
ding.

An earlier functional pretty-printing library based on a different set of combinators
was described by John Hughes, ‘The design of a pretty-printer library’, in Johan
Jeuring and Erik Meijer, editors, Advanced Functional Programming, volume 925
of LNCS, Springer, 1995. Hughes’ library was later reworked by Simon Peyton
Jones and installed as a Haskell library

Text.PrettyPrint.HughesPJ

Another pretty-printing library, in an imperative rather than functional style, was
constructed 30 years ago by Derek Oppen, ‘Pretty-printing’. ACM Transactions
on Programming Languages and Systems 2(4), 465–483, 1980 and is widely used
as the basis of pretty-printing facilities in a number of languages. More recently,
efficient pretty-printing algorithms in a functional style have been described by
Olaf Chitil, ‘Pretty printing with lazy dequeues’, ACM Transactions on Program-
ming Languages and Systems 27(1),163–184, 2005, and by Olaf Chitil and Doaitse
Swierstra, ‘Linear, bounded, functional pretty-printing’, Journal of Functional Pro-
gramming 19(1), 1–16, 2009. These algorithms are considerably more complicated
than the one described in the text.



Chapter 9

Infinite lists

We have already met infinite lists in Chapter 4 and even given an induction princi-
ple for reasoning about them in Chapter 6. But we haven’t really appreciated what
can be done with them. In this chapter we want to explain in more detail exactly
what an infinite list is, and how they can be represented by cyclic structures. We
also describe another useful method for reasoning about infinite lists, and discuss
a number of intriguing examples in which infinite and cyclic lists can be used to
good effect.

9.1 Review

Recall that [m..] denotes the infinite list of all integers from m onwards:

ghci> [1..]

[1,2,3,4,5,6,7,{Interrupted}

ghci> zip [1..] "hallo"

[(1,'h'),(2,'a'),(3,'l'),(4,'l'),(5,'o')]

It would take forever to print [1..], so we interrupt the first computation. The
second example illustrates a simple but typical use of infinite lists in finite compu-
tations.

In Haskell, the arithmetic expression [m..] is translated into enumFrom m, where
enumFrom is a method in the Enum class, and defined by

enumFrom :: Integer -> [Integer]

enumFrom m = m:enumFrom (m+1)
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Thus [m..] is defined as an instance of a recursively defined function. The com-
putation makes progress because (:) is non-strict in its second argument.

It is important to bear in mind that infinite lists in computing do not have the same
properties as infinite sets do in mathematics. For example, in set theory

{x | x ∈ {1,2,3, . . .}, x2 < 10}
denotes the set {1,2,3}, but

ghci> [x | x <- [1..], x*x < 10]

[1,2,3

After printing the first three values the computer gets stuck in an infinite loop look-
ing for the next number after 3 whose square is less than 10. The value of the
expression above is the partial list 1:2:3:undefined.

It is possible to have an infinite list of infinite lists. For example,

multiples = [map (n*) [1..] | n <- [2..]]

defines an infinite list of infinite lists of numbers, the first three being

[2,4,6,8,...] [3,6,9,12,...] [4,8,12,16,...]

Suppose we ask whether the above list of lists can be merged back into a single
list, namely [2..]. We can certainly merge two infinite lists:

merge :: Ord a => [a] -> [a] -> [a]

merge (x:xs) (y:ys) | x<y = x:merge xs (y:ys)

| x==y = x:merge xs ys

| x>y = y:merge (x:xs) ys

This version of merge removes duplicates: if the two arguments are in strictly
increasing order, so is the result. Note the absence of any clauses of merge men-
tioning the empty list. Now it seems that, if we define

mergeAll = foldr1 merge

then mergeAll multiples will return the infinite list [2..]. But it doesn’t. What
happens is that the computer gets stuck in an infinite loop attempting to compute
the first element of the result, namely

minimum (map head multiples)

It is simply not possible to compute the minimum element in an infinite list. Instead
we have to make use of the fact that map head multiples is in strictly increasing
order, and define



212 Infinite lists

mergeAll = foldr1 xmerge

xmerge (x:xs) ys = x:merge xs ys

With this definition, mergeAll multiples does indeed return [2..].

Finally, recall the induction principle described in Chapter 6 for proving facts about
infinite lists. Provided P is a chain-complete assertion, we can prove that P(xs)
holds for all infinite lists xs by showing that: (i) P(undefined) holds; and (ii)
P(xs) implies P(x:xs) for all x and xs. Using this principle, we proved in Chap-
ter 6 that xs++ys = xs for all infinite lists xs. But it’s not immediately clear how
induction can be used to prove, for example,

map fact [0..] = scanl (*) 1 [1..]

The obvious result to prove is

map fact [0..n] = scanl (*) 1 [1..n]

for all n, but can one then assert the first identity holds?

9.2 Cyclic lists

Data structures, like functions, can be defined recursively. For instance

ones :: [Int]

ones = 1:ones

This is an example of a cyclic list, a list whose definition is recursive. Contrast this
definition with ones = repeat 1, where

repeat x = x:repeat x

This definition of ones creates an infinite, not a cyclic list. We could define

repeat x = xs where xs = x:xs

Now the function repeat is defined in terms of a cyclic list. The second definition
(call it repeat2) is faster to evaluate than the first (call it repeat1) because there
is less overhead:

ghci> last $ take 10000000 $ repeat1 1

1

(2.95 secs, 800443676 bytes)

ghci> last $ take 10000000 $ repeat2 1

1
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(0.11 secs, 280465164 bytes)

As another example, consider the following three definitions of the standard pre-
lude function iterate:

iterate1 f x = x:iterate1 f (f x)

iterate2 f x = xs where xs = x:map f xs

iterate3 f x = x:map f (iterate3 f x)

All three functions have type (a -> a) -> a -> [a] and produce an infinite
list of the iterates of f applied to x. The three functions are equal, but the induction
principle reviewed earlier doesn’t seem to be applicable in proving this assertion
because there is no obvious argument on which to perform the induction. More on
this later. The first definition is the one used in the standard prelude, but it does
not create a cyclic list. The second definition does, and the third is obtained from
the second by eliminating the where clause. Assuming f x can be computed in
constant time, the first definition takes Θ(n) steps to compute the first n elements
of the result, but the third takes Θ(n2) steps:

iterate3 (2*) 1

= 1:map (2*) (iterate3 (2*1))

= 1:2:map (2*) (map (2*) (iterate3 (2*1)))

= 1:2:4:map (2*) (map (2*) (map (2*) (iterate3 (2*1))))

Evaluating the nth element requires n applications of (2*), so it takes Θ(n2) to
produce the first n elements.

That leaves the second definition. Does it take linear or quadratic time? The evalu-
ation of iterate2 (2*) 1 proceeds as follows:

xs where xs = 1:map (2*) xs

= 1:ys where ys = map (2*) (1:ys)

= 1:2:zs where zs = map (2*) (2:zs)

= 1:2:4:ts where ts = map (2*) (4:ts)

Each element of the result is produced in constant time, so iterate2 (2*) 1

takes Θ(n) steps to produce n elements.

Let us now develop a cyclic list to generate an infinite list of all the primes. To start
with we define

primes = [2..] \\ composites

composites = mergeAll multiples

multiples = [map (n*) [n..] | n <- [2..]]
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where (\\) subtracts one strictly increasing list from another:

(x:xs) \\ (y:ys) | x<y = x:(xs \\ (y:ys))

| x==y = xs \\ ys

| x>y = (x:xs) \\ ys

Here, multiples consists of the list of all multiples of 2 from 4 onwards, all
multiples of 3 from 9 onwards, all multiples of 4 from 16 onwards, and so on.
Merging the list gives the infinite list of all the composite numbers, and taking
its complement with respect to [2..] gives the primes. We saw the definition of
mergeAll in the previous section.

So far, so good. But the algorithm can be made many times faster by observing
that too many multiples are being merged. For instance, having constructed the
multiples of 2 there is no need to construct the multiples of 4, or of 6, and so on.
What we really would like to do is just to construct the multiples of the primes.
That leads to the idea of ‘tying the recursive knot’ and defining

primes = [2..] \\ composites

where

composites = mergeAll [map (p*) [p..] | p <- primes]

What we have here is a cyclic definition of primes. It looks great, but does it
work? Unfortunately, it doesn’t: primes produces the undefined list. In order to
determine the first element of primes the computation requires the first element of
composites, which in turn requires the first element of primes. The computation
gets stuck in an infinite loop. To solve the problem we have to pump-prime (!)
the computation by giving the computation the first prime explicitly. We have to
rewrite the definition as

primes = 2:([3..] \\ composites)

where

composites = mergeAll [map (p*) [p..] | p <- primes]

But this still doesn’t produce the primes! The reason is a subtle one and is quite
hard to spot. It has to do with the definition

mergeAll = foldr1 xmerge

The culprit is the function foldr1. Recall the Haskell definition:

foldr1 :: (a -> a -> a) -> [a] -> a

foldr1 f [x] = x

foldr1 f (x:xs) = f x (foldr1 xs)
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The order of the two defining equations is significant. In particular,

foldr1 f (x:undefined) = undefined

because the list argument is first matched against x:[], causing the result to be
undefined. That means

mergeAll [map (p*) [p..] | p <- 2:undefined] = undefined

What we wanted was

mergeAll [map (p*) [p..] | p <- 2:undefined] = 4:undefined

To effect this change we have to define mergeAll differently:

mergeAll (xs:xss) = xmerge xs (mergeAll xss)

Now we have

mergeAll [map (p*) [p..] | p <- 2:undefined]

= xmerge (map (2*) [2..]) undefined

= xmerge (4:map (2*) [3..]) undefined

= 4:merge (map (2*) [3..]) undefined

= 4:undefined

This version of mergeAll behaves differently on finite lists from the previous one.
Why?

With this final change we claim that primes does indeed get into gear and pro-
duces the primes. But how can the claim be proved? To answer this question we
need to know something about the semantics of recursively defined functions and
other values in Haskell, and how infinite lists are defined as limits of their partial
approximations.

9.3 Infinite lists as limits

In mathematics, certain values are defined as limits of infinite sequences of approx-
imations of simpler values. For example, the irrational number

π = 3.14159265358979323846 · · ·
can be defined as the limit of the infinite sequence of rational approximations

3, 3.1, 3.14, 3.141, 3.1415, . . .
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The first element of the sequence, 3, is a fairly crude approximation to π . The next
element, 3.1, is a little better; 3.14 is better still, and so on.

Similarly, an infinite list can also be regarded as the limit of a sequence of approx-
imations. For example, the infinite list [1..] is the limit of the infinite sequence of
partial lists

⊥, 1 :⊥, 1 : 2 :⊥, 1 : 2 : 3 :⊥, . . .

Again, the sequence consists of better and better approximations to the intended
limit. The first term, ⊥, is the undefined element, and thus a very crude approxi-
mation: it tells us nothing about the limit. The next term, 1 :⊥, is a slightly better
approximation: it tells us that the limit is a list whose first element is 1, but says
nothing about the rest of the list. The following term, 1 : 2 :⊥, is a little better still,
and so on. Each successively better approximation is derived by replacing ⊥ with
a more defined value, and thus gives more information about the limit.

Here is another sequence of approximations whose limit is [1..]:

⊥, 1 : 2 :⊥, 1 : 2 : 3 : 4 :⊥, 1 : 2 : 3 : 4 : 5 : 6 :⊥, . . .

This sequence is a subsequence of the one above but it converges to the same limit.

Here is a sequence of approximations that does not converge to a limit:

⊥, 1 :⊥, 2 : 1 :⊥, 3 : 2 : 1 :⊥, . . .

The problem with this sequence is that it gives conflicting information: the second
term says that the limit begins with 1. However, the third term says that the limit
begins with 2, and the fourth term says that it begins with 3, and so on. No ap-
proximation tells us anything about the intended limit and the sequence does not
converge.

It should not be thought that the limit of a sequence of lists is necessarily infinite.
For example, the sequence

⊥, 1 :⊥, 1 : [ ], 1 : [ ], . . .

in which every element after the first two is [1], is a perfectly valid sequence with
limit [1]. Similarly,

⊥, 1 :⊥, 1 : 2 :⊥, 1 : 2 :⊥, . . .

is a sequence with limit 1 : 2 :⊥. Finite and partial lists are limits of sequences
possessing only a finite number of distinct elements.

The way to formalise the property that an infinite sequence of partial lists con-
verges to a limit is to introduce the notion of an approximation ordering � on the
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elements of each type. The assertion x � y means that x is an approximation to y.
The ordering � will be reflexive (x � x), transitive (x � y and y � z implies x � z),
and anti-symmetric (x � y and y � x implies x = y). However, it is not the case that
every pair of elements have to be comparable by �. Thus � is what is known as a
partial ordering. Note that � is a mathematical operator (like =), and not a Haskell
operator returning boolean results.

The approximation ordering for numbers, booleans, characters and any other enu-
merated type, is defined by

x � y ≡ (x =⊥)∨ (x = y).

The first clause says that ⊥ is an approximation to everything. In other words, ⊥ is
the bottom element of the ordering. This explains why ⊥ is pronounced ‘bottom’.
The value ⊥ is the bottom element of � for every type. The above ordering is flat.
With a flat ordering one either knows everything there is to know about a value, or
one knows absolutely nothing.

The approximation ordering on the type (a,b) is defined by ⊥� (x,y) and

(x,y)� (x′,y′)≡ (x � x′)∧ (y � y′).

The occurrences of � on the right refer to the orderings on the types a and b,
respectively. The ordering � on (a,b) is not flat, even when the component order-
ings are. For example, in (Bool,Bool) we have the following chain of distinct
elements:

⊥� (⊥,⊥) � (⊥,False) � (True,False).

Note that in Haskell the pair (⊥,⊥) is distinct from ⊥:

ghci> let f (a,b) = 1

ghci> f (undefined,undefined)

1

ghci> f undefined

*** Exception: Prelude.undefined

The ordering � on [a] is defined by ⊥� xs and (x:xs) 	� [] and

[]� xs≡ xs= [],

(x:xs)� (y:ys)≡ (x� y)∧ (xs� ys).

These equations should be read as an inductive definition of a mathematical asser-
tion, not as a Haskell definition. The second condition says that [] approximates
only itself, and the third condition says that (x:xs) is an approximation to (y:ys)
if and only if x is an approximation to y and xs is an approximation to ys. The first
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occurrence of � on the right-hand side refers to the approximation ordering on the
type a.

As two examples, we have

[1,⊥,3] � [1,2,3] and 1 : 2 :⊥� [1,2,3].

However, 1 : 2 :⊥ and [1,⊥,3] are not related by �.

The approximation ordering for each type T is assumed to have another property
in addition to those described above: each chain of approximations x0 � x1 �. . .
has to possess a limit which is also a member of T . The limit, which we denote by
limn→∞ xn, is defined by two conditions:

1. xn � limn→∞ xn for all n. This condition states that the limit is an upper bound
on the sequence of approximations.

2. If xn � y for all n, then limn→∞ xn � y. This condition states that the limit is the
least upper bound.

The definition of the limit of a chain of approximations applies to every type. Par-
tial orderings possessing this property are called complete, and every Haskell type
is a complete partial ordering (CPO for short). In particular, the property, intro-
duced in Chapter 6, of a mathematical assertion P being chain complete can now
be formalised as

(∀n : P(xn))⇒ P( lim
n→∞

xn).

In words, P holds in the limit if it holds for each approximation to the limit.

For lists there is a useful Haskell function approx, which produces approximations
to a given list. The definition is

approx :: Integer -> [a] -> [a]

approx n [] | n>0 = []

approx n (x:xs) | n>0 = x:approx (n-1) xs

The definition of approx is very similar to that of take except that, by case ex-
haustion, we have approx 0 xs = undefined for all xs. For example,

approx 0 [1] = undefined

approx 1 [1] = 1:undefined

approx 2 [1] = 1:[]

The crucial property of approx is that

lim
n→∞

approx n xs = xs
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for all lists xs, finite, partial or infinite. The proof, an induction on xs, is left as an
exercise.

It follows that if approx n xs = approx n ys for all natural numbers n, then
xs= ys. Thus we can prove that

iterate f x = x:map f (iterate f x)

by showing

approx n (iterate f x) = approx n (x:map f (iterate f x))

for all natural numbers n. And, of course, we can use induction over the natural
numbers to establish this fact. The details are left as an easy exercise.

As another example, consider the value primes defined in the previous section.
Suppose we define

prs n = approx n primes

We would like to show that prs n = p1 : p2 : · · ·pn :⊥, where pj is the jth prime.
We claim that

prs n = approx n (2:([3..] \\ crs n))

crs n = mergeAll [map (p*) [p..] | p <- prs n]

Given this, it is sufficient to show that crs n= c1 : c2 : · · ·cm :⊥, where cj is the jth
composite number (so c1 = 4) and m = p2

n. Then the proof is completed by using
the fact that pn+1 < p2

n, which is a non-trivial result in Number Theory. Details are
in the exercises.

Computable functions and recursive definitions

One can describe many functions in mathematics, but only some of them are com-
putable. There are two properties of computable functions not shared by arbitrary
functions. Firstly, a computable function f is monotonic with respect to the approx-
imation ordering. In symbols,

x � y ⇒ f (x)� f (y)

for all x and y. Roughly speaking, monotonicity states that the more information
you supply about the argument, the more information you get as a result. Secondly,
a computable function f is continuous, which means that

f ( lim
n→∞

xn) = lim
n→∞

f (xn)
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for all chains of approximations x0 � x1 � . . .. Roughly speaking, continuity states
that there are no surprises on passing to the limit.

Continuity appears similar to chain completeness but differs in two respects. One
is that the chain completeness of P does not imply the converse property that if P
is false for all approximations, then P is false for the limit. In other words, it does
not imply that ¬P is chain complete. Secondly, P is a mathematical assertion, not
a Haskell function returning a boolean value.

Although we won’t prove it, every monotonic and continuous function f has a least
fixed point. A fixed point of a function f is a value x such that f (x) = x. And x
is a least fixed point if x � y for any other fixed point y. The least fixed point of
a monotonic and continuous function f is given by limn→∞ xn where x0 =⊥ and
xn+1 = f (xn). In functional programming, recursive definitions are interpreted as
least fixed points.

Here are three examples. Consider the definition ones = 1:ones. This definition
asserts that ones is a fixed point of the function (1:). Haskell interprets it as
the least fixed point, so ones = limn→∞ onesn, where ones0 =⊥ and onesn+1 =

1:onesn. It is easy to see that onesn is the partial list consisting of n ones, so the
limit is indeed an infinite list of ones.

Second, consider the factorial function

fact n = if n==0 then 1 else n*fact (n-1)

We can rewrite this definition in the equivalent form

fact = (\f n -> if n==0 then 1 else n*f(n-1)) fact

Again, this definition asserts that fact is a fixed point of a function. Here we have

fact0 n =⊥
fact1 n = if n==0 then 1 else ⊥
fact2 n = if n<=1 then 1 else ⊥

and so on. The value of factk n is the factorial of n if n is less than k, and ⊥
otherwise.

Finally, consider the list primes once again. Here we have

primes0 = ⊥
primesn+1 = 2:([3..] \\

mergeAll [map (p*) [p..] | p <- primesn])



9.4 Paper–rock–scissors 221

It is not the case that primesn = approx n primes. In fact,

primes1 = 2 :⊥
primes2 = 2 : 3 :⊥
primes3 = 2 : 3 : 5 : 7 :⊥
primes4 = 2 : 3 : 5 : 7 : · · · : 47 :⊥

The partial list primes2 produces all the primes less than 4, primes3 all the primes
less than 9, and primes4 all the primes less than 49. And so on.

9.4 Paper–rock–scissors

Our next example of infinite lists is entertaining as well as instructive. Not only
does it introduce the idea of using potentially infinite lists to model a sequence of
interactions between processes, it also provides another concrete illustration of the
necessity for formal analysis.

The paper–rock–scissors game is a familiar one to children, though it is known
by different names in different places. The game is played by two people facing
one another. Behind their backs, each player forms a hand in the shape of either
a rock (a clenched fist), a piece of paper (a flat palm) or a pair of scissors (two
fingers extended). At a given instant, both players bring their hidden hand forward.
The winner is determined by the rule ‘paper wraps rock, rock blunts scissors, and
scissors cut paper’. Thus, if player 1 produces a rock and player 2 produces a pair
of scissors, then player 1 wins because rock blunts scissors. If both players produce
the same object, then the game is a tie and neither wins. The game continues in this
fashion for a fixed number of rounds agreed in advance.

Our objective in this section is to write a program to play and score the game. We
begin by introducing the types

data Move = Paper | Rock | Scissors

type Round = (Move,Move)

To score a round we define

score :: Round -> (Int,Int)

score (x,y) | x `beats` y = (1,0)

| y `beats` x = (0,1)

| otherwise = (0,0)

where
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Paper `beats` Rock = True

Rock `beats` Scissors = True

Scissors `beats` Paper = True

_ `beats` _ = False

Each player in the game will be represented by a certain strategy. For instance, one
simple strategy is, after the first round, always to produce what the opposing player
showed in the previous round. This strategy will be called copy. Another strategy,
which we will call smart, is to determine a move by analysing the number of times
the opponent has produced each of the three possible objects, and calculating an
appropriate response based on probabilities.

We will consider the details of particular strategies, and how they can be repre-
sented, in a moment. For now, suppose the type Strategy is given in some way.
The function

rounds :: (Strategy,Strategy) -> [Round]

takes a pair of strategies and returns the infinite list of rounds that ensue when each
player follows his or her assigned strategy. The function

match :: Int -> (Strategy,Strategy) -> (Int,Int)

match n = total . map score . take n . rounds

where total rs = (sum (map fst rs),sum (map snd rs))

determines the total score after playing a given number of rounds.

The instructive aspect of the game is how to represent strategies. We are going to
consider two ways, calling them Strategy1 and Strategy2. The obvious idea is
to take

type Strategy1 = [Move] -> Move

Here, a strategy is a function which takes the (finite) list of moves made by the
opponent so far and returns an appropriate move for the subsequent round. For
efficiency in processing lists, we suppose that the list of moves is given in reverse
order, with the last move first.

For example, the copy1 strategy is implemented by

copy1 :: Strategy1

copy1 ms = if null ms then Rock else head ms

The first move is an arbitrary choice of Rock, The second strategy smart1 is im-
plemented by
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smart1 :: Strategy1

smart1 ms = if null ms then Rock

else pick (foldr count (0,0,0) ms)

count :: Move -> (Int,Int,Int) -> (Int,Int,Int)

count Paper (p,r,s) = (p+1,r,s)

count Rock (p,r,s) = (p,r+1,s)

count Scissors (p,r,s) = (p,r,s+1)

pick :: (Int,Int,Int) -> Move

pick (p,r,s)

| m < p = Scissors

| m < p+r = Paper

| otherwise = Rock

where m = rand (p+r+s)

This strategy counts the number of times each move has been made, and uses the
results to pick a move. The value of rand applied to n is some integer m in the
range 0 ≤ m < n. (Note that rand is never applied to the same integer.) Thus the
choice of move depends on whether m falls in one of the three ranges

0 ≤ m < p or p ≤ m < p+ r or p+ r ≤ m < p+ r+ s.

For example, if p is large, then Scissors will be chosen with high probability
(because scissors cuts paper); and if r is large, then Paper will be chosen with
high probability (because paper wraps rock); and so on.

To define rand we can make use of two functions in the library System.Random:

rand :: Int -> Int

rand n = fst $ randomR (0,n-1) (mkStdGen n)

The function mkStdGen takes an integer and returns a random number generator,
likely to be different for different integers. The choice of argument to mkStdGen

is arbitrary, and we have simply chosen n. The function randomR takes a range
(a,b) and a random number generator, and returns a pseudo-random integer r in
the range a ≤ r ≤ b and a new random number generator.

We can now define rounds1:

rounds1 :: (Strategy1,Strategy1) -> [Round]

rounds1 (p1,p2)

= map head $ tail $ iterate (extend (p1,p2)) []

extend (p1,p2) rs = (p1 (map snd rs),p2 (map fst rs)):rs
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The function extend adds a new pair of moves to the front of the list of existing
rounds, and rounds1 generates the infinite list of rounds by repeatedly applying
extend to the initially empty list. It is more efficient to add something to the front
of a list than to the end, which is why we keep the list of moves in reverse order.

Nevertheless rounds1 is inefficient. Suppose a strategy takes time proportional to
the length of its input to compute the next move. It follows that extend takes Θ(n)
steps to update a game of n rounds with a new round. Therefore, it takes Θ(N2)

steps to compute a game of N rounds.

For comparison, let’s consider another way we might reasonably represent strate-
gies. This time we take

type Strategy2 = [Move] -> [Move]

In the new representation, a strategy is a function that takes the potentially infi-
nite list of moves made by the opponent and returns the potentially infinite list of
replies. For example, the copy strategy is now implemented by

copy2 :: Strategy2

copy2 ms = Rock:ms

This strategy returns Rock the first time, and thereafter returns just the move made
by the opponent in the previous round. The smart strategy is reprogrammed as

smart2 :: Strategy2

smart2 ms = Rock:map pick (stats ms)

where stats = tail . scanl (flip count) (0,0,0)

The function stats computes the running counts of the three possible moves. This
strategy, like copy2, is also efficient in that it produces each successive output with
constant delay.

With this new model of strategies we can redefine the function rounds:

rounds2 :: (Strategy2,Strategy2) -> [Round]

rounds2 (p1,p2) = zip xs ys

where xs = p1 ys

ys = p2 xs

Here, xs is the list of replies computed by the first player in response to the list
ys which, in turn, is the list of replies made by the second player in response
to the list of moves xs. Thus rounds2 is defined by two cyclic lists and we are
obliged to show that it does indeed generate an infinite list of well-defined moves.
More on this below. If the two players do encapsulate legitimate strategies, then
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rounds2 computes the first n moves of the game in Θ(n) steps, assuming that both
players compute each new move with constant delay. Thus the second method for
modelling strategies leads to a more efficient program than the earlier one.

Unfortunately, there is a crucial flaw with the second representation of strategies:
it offers no protection against someone who cheats! Consider the strategy

cheat ms = map trump ms

trump Paper = Scissors

trump Rock = Paper

trump Scissors = Rock

The first reply of cheat is the move guaranteed to beat the opponent’s first move;
similarly for subsequent moves. To see that cheat cannot be prevented from sub-
verting the game, consider a match in which it is played against copy2, and let
xs = cheat ys and ys = copy2 xs. The lists xs and ys are the limits of the two
chains {xsn | 0 ≤ n} and {ysn | 0 ≤ n}, where xs0 = ⊥ and xsn+1 = cheat ysn,
and ys0 = ⊥ and ysn+1 = copy2 xsn. Now, we have

xs1 = cheat ⊥ = ⊥
ys1 = copy2 ⊥ = Rock: ⊥
xs2 = cheat (Rock: ⊥ ) = Paper:⊥
ys2 = copy2 ⊥ = Rock:⊥
xs3 = cheat (Rock: ⊥ ) = Paper:⊥
ys3 = copy2 (Paper: ⊥ ) = Rock:Paper:⊥

Continuing in this way, we see that the limits of these sequences are indeed infinite
lists of well-defined moves. Moreover, cheat always triumphs. Another cheating
strategy is given by

devious :: Int -> Strategy2

devious n ms = take n (copy2 ms) ++ cheat (drop n ms)

This strategy behaves like copy for n moves then starts to cheat.

Can we find a way to protect against cheats? To answer this question, we need
to take a closer look at what constitutes an honest strategy. Informally speaking,
a strategy is honest if its first move is computed in the absence of any informa-
tion about the opponent’s first move, the second move is computed without any
information about the opponent’s second move, and so on. Moreover, each of these
moves should be well-defined, given that the opponent’s moves are well-defined.
More precisely, let wdf (n,ms) denote the assertion that the first n elements in the
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(possibly partial) list of moves ms are well-defined. Then a strategy f is honest if

wdf (n,ms)⇒ wdf (n+1, f (ms))

for all n and ms. It is easy to show that copy2 is honest. On the other hand, cheat
is not honest because wdf (0,⊥) is true but wdf (1,cheat ⊥) is false. The strategy
dozy, where

dozy ms = repeat undefined

is also dishonest according to this definition although it doesn’t actually cheat.

Having identified the source of criminal or lackadaisical behaviour, can we ensure
that only honest strategies are admitted to the game? The answer is a qualified
yes: although it is not possible for a mechanical evaluator to recognise cheating
(in the same way that it is not possible to recognise ⊥, or strategies that do not
return well-defined moves), it is possible to define a function police so that if
p is an honest player and ms is an infinite sequence of well-defined moves, then
police p ms = p ms. On the other hand, if p is dishonest at some point, then
the game ends at that point in ⊥. Operationally speaking, police works by forcing
p to return the first (well-defined!) element of its output before it gives p the first
element of its input. Similarly for the other elements. The definition is

police p ms = ms' where ms' = p (synch ms ms')

synch (x:xs) (y:ys) = (y `seq` x):synch xs ys

Recall from Chapter 7 that x `seq` y evaluates x before returning the value of
y. The proof that this implementation meets its specification is rather involved, so
we are not going into details. It follows from the above analysis that to prevent
cheating we must rewrite the definition of rounds2 to read

rounds2 (p1,p2) = zip xs ys

where xs = police p1 ys

ys = police p2 xs

9.5 Stream-based interaction

In the paper–rock–scissors game we modelled interaction by a function that took
an infinite list of moves and returned a similar list. The same idea can be used
to provide a simple model of input–output interaction. It’s called stream-based
interaction because infinite lists are also called streams. Haskell provides a function

interact :: ([Char] -> [Char]) -> IO ()
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for interacting with the world. The argument to interact is a function that takes
a potentially infinite list of characters from the standard input channel, and returns
a potentially infinite list of characters to be typed on the standard output channel.

For example,

ghci> import Data.Char

ghci> interact (map toUpper)

hello world!

HELLO WORLD!

Goodbye, cruel world!

GOODBYE, CRUEL WORLD!

{Interrupted}

We imported the library Data.Char to make toUpper available, and then created
an interaction that capitalised each letter. Each time a line of input was typed (and
echoed) the interaction produced the same line in capital letters. The process con-
tinues until we interrupt it.

We can also design an interactive program that terminates. For example,

interact (map toUpper . takeWhile (/= '.'))

will interact as above but terminate as soon as a line containing a period is typed:

ghci> interact (map toUpper . takeWhile (/= '.'))

Goodbye. Forever

GOODBYE

Finally, here is a stand-alone program that takes a literate Haskell file as input
and returns a file in which all nonempty lines not beginning with > are removed.
The remaining lines are modified by removing the > character, so the result is a
legitimate .hs file (a Haskell script not using the literate style):

main = interact replace

replace = unlines . map cleanup . filter code . lines

code xs = null xs || head xs == '>'

cleanup xs = if null xs then [] else tail xs

The program is the computation associated with the identifier main, and there al-
ways has to be a definition associated with this name if we want to compile a pro-
gram. The function lines splits a text into lines, and unlines reassembles the text
by putting a single newline between lines. If we store the program in lhs2hs.lhs,
we can compile it and then run it:
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$ ghc lhs2hs.lhs

$ lhs2hs <myscript.lhs >myscript.hs

In the second line, the input is taken from myscript.lhs and the output is directed
to myscript.hs.

Stream-based interaction was the main method for interacting with the outside
world in early versions of Haskell. However, the model presented above is too
simple for most practical purposes. In a serious application one wants to do other
things than reading and printing characters to a screen. For example, one also wants
to open and read files, to write to or delete files, and in general to interact with all
the mechanisms that are available in the world outside the confines of a functional
programming language. Interaction takes place in time, and the order in which
events occur has to be managed correctly by the programmer. In the stream-based
approach, this ordering of events is represented by the order of the elements in a
list; in other words, it is represented in the data and not reflected primarily in the
way the program is composed. In the following chapter we will consider another
approach to interaction, indeed, a general method for writing programs that have to
control an orderly sequence of events. In this approach, the order is made explicit
in the way the program is composed.

9.6 Doubly-linked lists

We end with another application of cyclic lists. Imagine reading a book consisting
of a nonempty list of pages. To navigate around the book we need some way of
moving on to the next page and moving back to the previous page. Other navigation
tools would be useful, but we’ll stick with these two. Here is an interactive session
with a particularly boring book book consisting of three pages:

ghci> start book

"Page 1"

ghci> next it

"Page 2"

ghci> prev it

"Page 1"

ghci> next it

"Page 2"

ghci> next it

"Page 3"
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In GHCi the variable it is bound to the expression just typed at the prompt. We
started a book and what was printed was the first page. We turned to the next
page, and then returned to the previous one. The interesting question is what should
happen when we turn to the next page after the last one. Should the navigation
report an error, just deliver the last page again or go to the first page? Suppose we
decide on the last alternative, namely that the next page after the last one should be
the first page, and the previous page before the first one should be the last page. In
other words, our book is an instance of a cyclic doubly-linked list.

Here is the relevant datatype declaration:

data DList a = Cons a (DList a) (DList a)

elem :: DList a -> a

elem (Cons a p n) = a

prev,next :: DList a -> DList a

prev (Cons a p n) = p

next (Cons a p n) = n

We print a doubly-linked list by displaying the current entry:

instance Show a => Show (DList a)

where show d = show (elem d)

Our book is then a list [p1,p2,p3] of three pages, where

p1 = Cons "Page 1" p3 p2

p2 = Cons "Page 2" p1 p3

p3 = Cons "Page 3" p2 p1

This example suggests that the function mkCDList :: [a] -> DList a for con-
verting a (nonempty) list as into a doubly-linked list can be specified as the first
element in a finite list xs of doubly-linked lists satisfying the following three prop-
erties:

map elem xs = as

map prev xs = rotr xs

map next xs = rotl xs

Here, rotr and rotl (short for rotate right and rotate left), are defined by

rotr xs = [last xs] ++ init xs

rotl xs = tail xs ++ [head xs]
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Observe now that for any list xs of doubly-linked lists we have

xs = zipWith3 Cons

(map elem xs) (map prev xs) (map next xs)

where zipWith3 is like zipWith except that it takes three lists instead of two. The
standard prelude definition is:

zipWith3 f (x:xs) (y:ys) (z:zs)

= f x y z : zipWith3 f xs ys zs

zipWith3 _ _ _ _ = []

We will see another definition in a moment. We can prove the claim above by
induction. It clearly holds for the undefined and empty lists. For the inductive case
we reason:

x:xs

= {since xs is a doubly-linked list}
Cons (elem x) (prev x) (next x):xs

= {induction}
Cons (elem x) (prev x) (next x):

(zipWith3 Cons

(map elem xs) (map prev xs) (map next xs))

= {definition of zipWith3 and map}
zipWith3 Cons

(map elem (x:xs)) (map prev (x:xs)) (map next (x:xs)

Putting this result together with our specification of doubly-linked lists, we arrive
at

mkCDList as = head xs

where xs = zipWith3 Cons as (rotr xs) (rotl xs)

This definition involves a cyclic list xs. Does it work? The answer is: No, it doesn’t.
The reason is that zipWith3 as defined above is too eager. We need to make it
lazier by not demanding the values of the second two lists until they are really
needed:

zipWith3 f (x:xs) ys zs

= f x (head ys) (head zs):

zipWith3 f xs (tail ys) (tail zs)

zipWith3 _ _ _ _ = []
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An equivalent way to define this function is to make use of Haskell’s irrefutable
patterns:

zipWith3 f (x:xs) ~(y:ys) ~(z:zs)

= f x y z : zipWith3 f xs ys zs

zipWith3 _ _ _ _ = []

An irrefutable pattern is introduced using a tilde, and ~(x:xs) is matched lazily,
meaning that no matching is actually performed until either x or xs is needed.

Just to convince ourselves that the above definition of mkCDList with the revised
definition of zipWith3 does make progress, let xs0 =⊥ and

xsn+1 = zipWith3 Cons "A" (rotr xsn) (rotl xsn)

Then xs1 is given by

zipWith3 Cons "A" ⊥ ⊥
= [Cons ’A’ ⊥ ⊥ ]

and xs2 by

zipWith3 Cons "A"

[Cons ’A’ ⊥ ⊥ ] [Cons ’A’ ⊥ ⊥ ]

= [Cons ’A’ (Cons ’A’ ⊥ ⊥ ) (Cons ’A’ ⊥ ⊥ )]

and so on.

9.7 Exercises

Exercise A

Given three lists xs, ys and zs in strictly increasing order, we have

merge (merge xs ys) zs} = merge xs (merge ys zs)

Thus merge is associative. Assuming in addition that the first elements of xs, ys
and zs are in strictly increasing order, we also have

xmerge (xmerge xs ys) zs = xmerge xs (xmerge ys zs)

Does it follow that in the expression foldr1 xmerge multiples we could re-
place foldr1 by foldl1?
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Exercise B

The standard prelude function cycle :: [a] -> [a] takes a list xs and returns
a list consisting of an infinite number of repetitions of the elements of xs. If xs is
the empty list, then cycle [] returns an error message. For instance

cycle "hallo" = "hallohallohallo...

Define cycle using a cyclic list. Ensure that your definition works on empty, finite
and infinite lists.

Exercise C

The fibonacci function is defined by

fib 0 = 0

fib 1 = 1

fib n = fib (n-1) + fib (n-2)

Write down a one-line definition of the list fibs that produces the infinite list of
Fibonacci numbers.

Exercise D

A well-known problem, due to the mathematician W.R. Hamming, is to write a
program that produces an infinite list of numbers with the following properties: (i)
the list is in strictly increasing order; (ii) the list begins with the number 1; (iii) if
the list contains the number x, then it also contains the numbers 2x, 3x and 5x; (iv)
the list contains no other numbers. Thus, the required list begins with the numbers

1,2,3,4,5,6,8,9,10,12,15,16, . . .

Write a definition of hamming that produces this list.

Exercise E

Prove that approx n xs� xs for all n. Now prove that if approx n xs� ys for
all n, then xs� ys. Hence conclude that

lim
n→∞

approx n xs = xs.

Exercise F

Give a counter-example to the claim that xs=ys if xs!!n=ys!!n for all n.
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Exercise G

Prove that iterate f x = x: map f (iterate f x).

Exercise H

In the definition of primes as a cyclic list, could we have defined

mergeAll = foldr xmerge []

as an alternative to the definition in the text?

Exercise I

Recall that

prs n = approx n (2:([3..] \\ crs n))

crs n = mergeAll [map (p*) [p..] | p <- prs n]

Given that prs n=p1 : p2 : · · ·pn :⊥, where pj is the jth prime, sketch how to show
that crs n=c1 : c2 : · · ·cm :⊥, where cj is the jth composite number (so c1=4) and
m=p2

n. Hence show that primes does produce the infinite list of primes.

We said in the text that it is not the case that the nth approximation primesn of
primes is equal to approx n primes. In fact

primes4 = 2 : 3 : 5 : 7 : · · · : 47 :⊥
What list does primes5 produce?

Exercise J

Another way of generating the primes is known as the Sieve of Sundaram, after its
discoverer S.P. Sundaram in 1934:

primes = 2:[2*n+1 | n <- [1..] \\ sundaram]

sundaram = mergeAll [[i+j+2*i*j | j <- [i..]] | i <- [1..]]

To show that the list comprehension in the definition of primes generates exactly
the odd primes, it is sufficient to prove that the term 2*n+1 is never composite,
which is to say that it never factorises into (2*i+1)*(2*j+1) for positive integers
i and j. Why is this so?

Exercise K

Is the function f , defined by f (⊥) = 0 and f (x) = 1 for x 	=⊥, computable? How
about the function that returns ⊥ on all finite or partial lists, and 1 on all infinite
lists?
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Exercise L

By definition, a torus is a doubly-cyclic, doubly-doubly-linked list. It is a cyclic
doubly-linked list in the left/right direction, and also in the up/down direction.
Given a matrix represented as a list of length m of lists, all of length n, construct a
definition of

mkTorus :: Matrix a -> Torus a

where

data Torus a = Cell a (Torus a) (Torus a)

(Torus a) (Torus a)

elem (Cell a u d l r) = a

up (Cell a u d l r) = u

down (Cell a u d l r) = d

left (Cell a u d l r) = l

right (Cell a u d l r) = r

That looks tricky, but the answer is short enough to be tweeted.

9.8 Answers

Answer to Exercise A

No, since foldl1 f xs = undefined for any infinite list xs.

Answer to Exercise B

The definition is

cycle [] = error "empty list"

cycle xs = ys where ys = xs ++ ys

Note that if xs is infinite, then xs ++ ys = xs, so cycle is the identity function
on infinite lists.

Answer to Exercise C

The one-liner is:

fibs :: [Integer]

fibs = 0:1:zipWith (+) fibs (tail fibs)
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Answer to Exercise D

hamming :: [Integer]

hamming = 1: merge (map (2*) hamming)

(merge (map (3*) hamming)

(map (5*) hamming))

Answer to Exercise E

The proof of approx n xs � xs is by induction on n. The base case is easy but
the induction step involves a sub-induction over xs. The base cases (the empty list
and the undefined list) of the sub-induction are easy and the inductive case is

approx (n+1) (x:xs)

= {definition}
x:approx n xs

� {induction and monotonicity of (x:)}
x:xs.

The proof of

(∀n : approx n xs� ys)⇒ xs� ys

is by induction on xs. The claim is immediate for the undefined and empty lists,
and for the inductive case we have

(∀n : approx n (x:xs)� ys)

⇒ xs� head ys∧ (∀n : approx n xs� tail ys)

by the definitions of approx and the approximation ordering on lists. By induction
we therefore have

x:xs� head ys:tail ys= ys.

It follows that

lim
n→∞

approx n xs = xs

by the definition of limit.

Answer to Exercise F

The two lists repeat undefined and undefined are not equal, but

(repeat undefined)!!n = undefined!!n

for all n because both sides are ⊥.
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Answer to Exercise G

We have to show that

approx n (iterate f x) = approx n (x:map f (iterate f x))

for all natural numbers n. This claim follows from

approx n (iterate f (f x))

= approx n (map f (iterate f x))

which we establish by induction on n. For the inductive step we simplify each side.
For the left-hand side:

approx (n+1) (iterate f (f x))

= {definition of iterate}
approx (n+1) (f x:iterate f (f (f x)))

= {definition of approx}
f x: approx n (iterate f (f (f x)))

= {induction}
f x: approx n (map f (iterate f (f x)))

For the right-hand side:

approx (n+1) (map f (iterate f x))

= {definition of iterate and map}
approx (n+1) (f x:map f (iterate f (f x)))

= {definition of approx}
f x: approx n (map f (iterate f (f x)))

Answer to Exercise H

Yes, since

foldr xmerge [] (xs:undefined) = xmerge xs undefined

and the right-hand side begins with the first element of xs.

Answer to Exercise I

The proof is by induction. We have first to show that crs (n+1) is the result
of merging c1 : c2 : · · ·cm :⊥, where m = p2

n with the infinite list of multiples
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pn+1pn+1,pn+1(pn+1+1), . . . of pn+1. That gives the partial list of all composite
numbers up to p2

n+1. Finally, we need the result that pn+2 < p2
n+1.

The partial list primes5 produces all the primes smaller than 2209 = 47×47.

Answer to Exercise J

Because an odd integer is excluded from the final list if it takes the form 2n+ 1
where n is of the form i+j+2ij. But

2(i+j+2ij)+1 = (2i+1)(2j+1).

Answer to Exercise K

No, f is not monotonic: ⊥� 1 but f (⊥) 	� f (1). For the second function (call it g)
we have xs� ys implies g(xs)� g(ys), so g is monotonic. But g is not continuous,
so it’s not computable.

Answer to Exercise L

The definition is

mkTorus ass = head (head xss)

where xss = zipWith5 (zipWith5 Cell)

ass (rotr xss) (rotl xss)

(map rotr xss) (map rotl xss)

Whereas rotr and rotl rotate the rows of a matrix, map rotr and map rotl

rotate the columns. The definition of zipWith5 has to be made non-strict in its last
four arguments.

9.9 Chapter notes

Melissa O’Neill has written a nice pearl on sieve methods for generating primes;
see ‘The genuine sieve of Eratosthenes’, Journal of Functional Programming 19
(1), 95–106, 2009. Ben Sijtsma’s thesis Verification and derivation of infinite-list
programs (University of Groningen, the Netherlands, 1988) studies various aspects
of infinite-list programs and gives a number of techniques for reasoning about
them. One chapter is devoted to the proof of fairness in the paper–rock–scissors
game.

My paper, ‘On building cyclic and shared data structures in Haskell’, Formal As-
pects of Computing 24(4–6), 609–621, July 2012, contains more examples of the
uses of infinite and cyclic lists. See also the article on ‘Tying the knot’ at
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haskell.org/haskellwiki/Tying_the_Knot

Hamming’s problem has been used as an illustration of cyclic programs since the
early days of functional programming.



Chapter 10

Imperative functional programming

Back in Chapter 2 we described the function putStrLn as being a Haskell com-
mand, and IO a as being the type of input–output computations that interact with
the outside world and deliver values of type a. We also mentioned some syntax,
called do-notation, for sequencing commands. This chapter explores what is really
meant by these words, and introduces a new style of programming called monadic
programming. Monadic programs provide a simple and attractive way to describe
interaction with the outside world, but are also capable of much more: they provide
a simple sequencing mechanism for solving a range of problems, including excep-
tion handling, destructive array updates, parsing and state-based computation. In a
very real sense, a monadic style enables us to write functional programs that mimic
the kind of imperative programs one finds in languages such as Python or C.

10.1 The IO monad

The type IO a is an abstract type in the sense described in the previous chapter, so
we are not told how its values, which are called actions or commands, are repre-
sented. But you can think of this type as being

type IO a = World -> (a,World)

Thus an action is a function that takes a world and delivers a value of type a and
a new world. The new world is then used as the input for the next action. Having
changed the world with an input–output action, you can’t go back to the old world.
You can’t duplicate the world or inspect its components. All you can do is oper-
ate on the world with given primitive actions, and put such actions together in a
sequence.
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One primitive action is to print a character:

putChar :: Char -> IO ()

When executed, this action prints a character on the standard output channel, usu-
ally the computer screen. For example,

ghci> putChar 'x'

xghci>

The character x is printed, but nothing else, so the next GHCi prompt follows
without additional spaces or newlines. Performing this action produces no value of
interest, so the return value is the null tuple ().

Another primitive action is done :: IO (), which does nothing. It leaves the
world unchanged and also returns the null tuple ().

One simple operation to sequence actions is denoted by (>>) and has type

(>>) :: IO () -> IO () -> IO ()

Given actions p and q, the action p >> q first performs action p and then performs
action q. For example,

ghci> putChar 'x' >> putChar '\n'

x

ghci>

This time a newline is printed. Using (>>) we can define the function putStrLn:

putStrLn :: String -> IO ()

putStrLn xs = foldr (>>) done (map putChar xs) >>

putChar '\n'

This action prints all the characters in a string, and then finishes up with an addi-
tional newline character. Note that map putChar xs is a list of actions. We are still
in the universe of functional programming and its full expressive power, including
uses of map and foldr, is still available to us.

Here is another primitive action:

getChar :: IO Char

When performed, this operation reads a character from the standard input channel.
This channel is fed by you typing at the keyboard, so getChar returns the first
character you type. For example,
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ghci> getChar

x

'x'

After typing getChar and pressing return, GHCi waits for you to type a charac-
ter. We typed the character 'x' (and what we typed was echoed), and then that
character was read and printed.

The generalisation of done is an action that does nothing and returns a named
value:

return :: a -> IO a

In particular, done = return (). The generalisation of (>>) has type

(>>) :: IO a -> IO b -> IO b

Given actions p and q, the action p >> q first does p, and then throws the return
value away, and then does q. For example,

ghci> return 1 >> return 2

2

It is clear that this action is useful only when the value returned by p is not interest-
ing since there is no way that q can depend on it. What is really wanted is a more
general operator (>>=) with type

(>>=) :: IO a -> (a -> IO b) -> IO b

The combination p >>= f is an action that, when performed, first does p, returning
a value x of type a, then does action f x returning a final value y of type b. It is easy
to define (>>) in terms of (>>=) and we leave this as an exercise. The operator
(>>=) is often referred to as bind, though one can also pronounce it as ‘then apply’.

Using (>>=), we can define a function getLine for reading a line of input, more
precisely, the list of characters up to but not including the first newline character:

getLine :: IO String

getLine = getChar >>= f

where f x = if x == '\n' then return []

else getLine >>= g

where g xs = return (x:xs)

This has a straightforward reading: get the first character x; stop if x is a newline
and return the empty list; otherwise get the rest of the line and add x to the front.
Though the reading is straightforward, the use of nested where clauses makes the
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definition a little clumsy. One way to make the code smoother is to use anonymous
lambda expressions and instead write:

getLine = getChar >>= \x ->

if x == '\n'

then return []

else getLine >>= \xs ->

return (x:xs)

Another, arguably superior solution is to use do-notation:

getLine = do x <- getChar

if x == '\n'

then return []

else do xs <- getLine

return (x:xs)

The right-hand side makes use of the Haskell layout convention. Note especially
the indentation of the conditional expression, and the last return to show it is part
of the inner do. Better in our opinion is to use braces and semicolons to control the
layout explicitly:

getLine = do {x <- getChar;

if x == '\n'

then return []

else do {xs <- getLine;

return (x:xs)}}

We return to do-notation below.

The Haskell library System.IO provides many more actions than just putChar
and getChar, including actions to open and read files, to write and close files, to
buffer output in various ways and so on. We will not go into details in this book.
But perhaps two more things need to be said. Firstly, there is no function of type
IO a -> a 1. Once you are in a room performing input–output actions, you stay
in the room and can’t come out of it. To see one reason this has to be the case,
suppose there is such a function, runIO say, and consider

int :: Int

int = x - y

where x = runIO readInt

y = runIO readInt

1 Actually there is, and it’s called unsafePerformIO, but it is a very unsafe function.
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readInt = do {xs <- getLine; return (read xs :: Int)}

The action readInt reads a line of input and, provided the line consists entirely
of digits, interprets it as an integer. Now, what is the value of int? The answer
depends entirely on which of x and y gets evaluated first. Haskell does not prescribe
whether or not x is evaluated before y in the expression x-y. Put it this way: input–
output actions have to be sequenced in a deterministic fashion, and Haskell is a
lazy functional language in which it is difficult to determine the order in which
things happen. Of course, an expression such as x-y is a very simple example
(and exactly the same undesirable phenomenon arises in imperative languages) but
you can imagine all sorts of confusion that would ensue if we were provided with
runIO.

The second thing that perhaps should be said is in response to a reader who casts a
lazy eye over an expression such as

undefined >> return 0 :: IO Int

Does this code raise an error or return zero? The answer is: an error. IO is strict in
the sense that IO actions are performed in order, even though subsequent actions
may take no heed of their results.

To return to the main theme, let us summarise. The type IO a is an abstract type
on which the following operations, at least, are available:

return :: a -> IO a

(>>=) :: IO a -> (a -> IO b) -> IO b

putChar :: Char -> IO ()

getChar :: IO Char

The second two functions are specific to input and output, but the first two are not.
Indeed they are general sequencing operations that characterise the class of types
called monads:

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

The two monad operations are required to satisfy certain laws, which we will come
to in due course. As to the reason for the name ‘monad’, it is stolen from philos-
ophy, in particular from Leibniz, who in turn borrowed it from Greek philosophy.
Don’t read anything into the name.
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10.2 More monads

If that’s all a monad is, then surely lots of things form a monad? Yes, indeed. In
particular, the humble list type forms a monad:

instance Monad [] where

return x = [x]

xs >>= f = concat (map f xs)

Of course, we don’t yet know what the laws governing the monad operations are,
so maybe this instance isn’t correct (it is), but at least the operations have the right
types. Since do-notation can be used with any monad we can, for example, define
the cartesian product function cp :: [[a]] -> [[a]] (see Section 7.3) using
the new notation:

cp [] = return []

cp (xs:xss) = do {x <- xs;

ys <- cp xss;

return (x:ys)}

Comparing the right-hand side of the second clause to the list comprehension

[x:ys | x <- xs, ys <- cp xss]

one can appreciate that the two notations are very similar; the only real difference
is that with do-notation the result appears at the end rather than at the beginning. If
monads and do-notation had been made part of Haskell before list comprehensions,
then maybe the latter wouldn’t have been needed.

Here is another example. The Maybe type is a monad:

instance Monad Maybe where

return x = Just x

Nothing >>= f = Nothing

Just x >>= f = f x

To appreciate what this monad can bring to the table, consider the Haskell library
function

lookup :: Eq a => a -> [(a,b)] -> Maybe b

The value of lookup x alist is Just y if (x,y) is the first pair in alist with
first component x, and Nothing if there is no such pair. Imagine looking up x in
alist, then looking up the result y in a second list blist, and then looking up
the result z in yet a third list clist. If any of these lookups return Nothing, then
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Nothing is the final result. To define such a function we would have to write its
defining expression as something like

case lookup x alist of

Nothing -> Nothing

Just y -> case lookup y blist of

Nothing -> Nothing

Just z -> lookup z clist

With a monad we can write

do {y <- lookup x alist;

z <- lookup y blist;

return (lookup z clist)}

Rather than having to write an explicit chain of computations, each of which may
return Nothing, and explicitly passing Nothing back up the chain, we can write a
simple monadic expression in which handling Nothing is done implicitly under a
monadic hood.

do-notation

Just as list comprehensions can be translated into expressions involving map and
concat, so do-expressions can be translated into expressions involving return and
bind. The three main translation rules are:

do {p} = p

do {p;stmts} = p >> do {stmts}

do {x <- p;stmts} = p >>= \x -> do {stmts}

In these rules p denotes an action, so the first rule says that a do round a single
action can be removed. In the second and third rules stmts is a nonempty sequence
of statements, each of which is either an action or a statement of the form x <- p.
The latter is not an action; consequently an expression such as

do {x <- getChar}

is not syntactically correct. Nor, by the way, is an empty do-expression do { }.
The last statement in a do-expression must be an action.

On the other hand, the following two expressions are both fine:

do {putStrLn "hello "; name <- getLine; putStrLn name}

do {putStrLn "hello "; getLine; putStrLn "there"}
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The first example prints a greeting, reads a name and completes the greeting. The
second prints a greeting, reads a name but immediately forgets it, and then com-
pletes the greeting with a ‘there’. A bit like being introduced to someone in real
life.

Finally, there are two rules that can be proved from the translation rules above:

do {do {stmts}} = do {stmts}

do {stmts1; do {stmts2}} = do {stmts1; stmts2}

But one has to be careful; the nested dos in

do {stmts1;

if p

then do {stmts2}

else do {stmts3}}

are necessary if stmts2 and stmts3 contain more than one action.

Monad laws

The monad laws say nothing much more than that expressions involving return

and (>>=) simplify in just the way one would expect. There are three laws and we
are going to state them in three different ways. The first law states that return is
a right identity element of (>>=):

(p >>= return) = p

In do-notation the law reads:

do {x <- p; return x} = do {p}

The second law says that return is also a kind of left identity element:

(return e >>= f) = f e

In do-notation the law reads:

do {x <- return e; f x} = do {f e}

The third law says that (>>=) is kind of associative:

((p >>= f) >>= g) = p >>= (\x -> (f x >>= g))

In do-notation the law reads:
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do {y <- do {x <- p; f x}; g y}

= do {x <- p; do {y <- f x; g y}}

= do {x <- p; y <- f x; g y}

The last line makes use of the un-nesting property of do-notation.

For the third way of stating the monad laws, consider the operator (>=>) defined
by

(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> (a -> m c)

(f >=> g) x = f x >>= g

This operator is just like function composition except that the component functions
each have type x -> m y for appropriate x and y, and the order of composition is
from left to right rather than from right to left. This operator, which is called (left to
right) Kleisli composition, is defined in the Haskell library Control.Monad. There
is a dual version, (right to left) Kleisli composition,

(<=<) :: Monad m => (b -> m c) -> (a -> m b) -> (a -> m c)

whose definition we leave as an easy exercise.

The point is that we can define (>>=) in terms of (>=>):

(p >>= f) = (id >=> f) p

More briefly, (>>=) = flip (id >=>). We also have the leapfrog rule:

(f >=> g) . h = (f . h) >=> g

The proof is left as an exercise.

In terms of (>=>) the three monad laws say simply that (>=>) is associative with
identity return. Any set of values with an associative binary operation and an
identity element is called a monoid, and the word ‘monad’ was probably adopted
because of the pun with monoid. Be that as it may, this is certainly the shortest way
of stating the monad laws.

One additional and instructive way of describing the monad laws is considered in
the exercises.

10.3 The State monad

If it wasn’t for the problem of how to sequence input–output actions correctly,
monads probably wouldn’t have appeared in Haskell. But once it was appreciated
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what they could do, all kinds of other uses quickly followed. We have seen with
the Maybe monad how chains of computations that involve passing information
back up the chain can be simplified with monadic notation. Another primary use
of monads is a way to handle mutable structures, such as arrays, that rely for their
efficiency on being able to update their values, destroying the original structure in
the process.

Mutable structures are introduced through the State-Thread monad ST s which we
will consider in a subsequent section. Before getting on to the particular proper-
ties of this monad, we start by considering a simpler monad, called State s, for
manipulating an explicit state s. You can think of the type State s a as being

type State s a = s -> (a,s)

An action of type State s a takes an initial state and returns a value of type
a and a new state. It is tempting, but wrong, to think of IO a as synonymous
with State World a. The state component s in State s a can be exposed and
manipulated, but we can’t expose and manipulate the world.

Specifically, as well as the monad operations return and (>>=), five other func-
tions are provided for working with the state monad:

put :: s -> State s ()

get :: State s s

state :: (s -> (a,s)) -> State s a

runState :: State s a -> (s -> (a,s))

evalState :: State s a -> s -> a

The function put puts the state into a given configuration, while get returns the
current state. Each of these two operations can be defined in terms of state:

put s = state (\_ -> ((),s))

get = state (\s -> (s,s))

On the other hand, state can also be defined using put and get:

state f = do {s <- get; let (a,s') = f s;

put s'; return a}

Haskell permits an abbreviated form of let expressions in do expressions (and
also in list comprehensions). We have

do {let decls; stmts} = let decls in do {stmts}

The function runState is the inverse of state: it takes both an action and an
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initial state and returns the final value and the final state after performing the action
(something the IO monad cannot do). The function evalState is defined by

evalState m s = fst (runState m s)

and returns just the value of the stateful computation.

Here is an example of the use of State. In Section 7.6 we constructed the following
program for building a binary tree out of a given nonempty list of values:

build :: [a] -> BinTree a

build xs = fst (build2 (length xs) xs)

build2 1 xs = (Leaf (head xs),tail xs)

build2 n xs = (Fork u v, xs'')

where (u,xs') = build2 m xs

(v,xs'') = build2 (n-m) xs'

m = n `div` 2

The point to appreciate here is that build2 is essentially a function that manipu-
lates a state of type [a], returning elements of BinTree a as its result. Another
way of writing build is as follows:

build xs = evalState (build2 (length xs)) xs

build2 :: Int -> State [a] (BinTree a)

build2 1 = do {x:xs <- get;

put xs;

return (Leaf x)}

build2 n = do {u <- build2 m;

v <- build2 (n-m);

return (Fork u v)}

where m = n `div` 2

All the work in manipulating the state explicitly is done when building a leaf.
The state is accessed and its first element is chosen as the label associated with a
Leaf; the remaining list then is installed as the new state. Whereas the first version
of build2 n threads the state explicitly, the second version hides this machinery
under a monadic hood.

Notice in the first line of build2 we have a statement x:xs <- get in which the
left-hand side is a pattern rather than a simple variable. If the current state happens
to be the empty list, the action fails with a suitable error message. For example,

ghci> runState (do {x:xs <- get; return x}) ""



250 Imperative functional programming

*** Exception: Pattern match failure in do expression ...

Of course this behaviour cannot arise with build2 1 because the definition only
applies when the state is a singleton list. We leave it as an exercise to say what
build [] does.

As another example, consider the problem of producing a pseudo-random integer
in a specified interval. Imagine we have a function

random :: (Int,Int) -> Seed -> (Int,Seed)

that takes a pair of integers as the specified interval and then a seed, and calculates a
random integer and a new seed. The new seed is used for obtaining further random
values. Rather than be explicit about what a seed is, suppose there is a function

mkSeed :: Int -> Seed

that makes a seed from a given integer. Now if we wanted to roll a pair of dice, we
could write

diceRoll :: Int -> (Int,Int)

diceRoll n = (x,y)

where (x,s1) = random (1,6) (mkSeed n)

(y,s2) = random (1,6) s1

But we could also write

diceRoll n = evalState (

do {x <- randomS (1,6);

y <- randomS (1,6);

return (x,y)}

) (mkSeed n)

where randomS = state . random

The function randomS :: (Int,Int) -> State Seed Int takes an interval
and returns an action. The second version of diceRoll is a little longer than the
first, but is arguably more easy to write. Imagine that instead of two dice we had
five, as in liar dice. The first method would involve a chain of where-clauses ex-
pressing the linkage between five values and five seeds, something that would be
easy to mistype, but the second version is easily extended and harder to get wrong.

One final point. Consider

evalState (do {undefined; return 0}) 1

Does this raise an exception, or does it return zero? In other words, is the monad
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State strict, as the IO monad is, or is it lazy? The answer is that it can be both.
There are two variants of the state monad, one of which is lazy and the other of
which is strict. The difference lies in how the operation (>>=) is implemented.
Haskell provides the lazy variant by default, in Control.Monad.State.Lazy,
but you can ask for the strict variant, in Control.Monad.State.Strict if you
want.

10.4 The ST monad

The state-thread monad, which resides in the library Control.Monad.ST, is a dif-
ferent kettle of fish entirely from the state monad, although the kettle itself looks
rather similar. Like State s a you can think of this monad as the type

type ST s a = s -> (a,s)

but with one very important difference: the type variable s cannot be instantiated
to specific states, such as Seed or [Int]. Instead it is there only to name the state.
Think of s as a label that identifies one particular state thread. All mutable types
are tagged with this thread, so that actions can only affect mutable values in their
own state thread.

One kind of mutable value is a program variable. Unlike variables in Haskell, or
mathematics for that matter, program variables in imperative languages can change
their values. They can be thought of as references to other values, and in Haskell
they are entities of type STRef s a. The s means that the reference is local to
the state thread s (and no other), and the a is the type of value being referenced.
There are operations, defined in Data.STRef, to create, read from and write to
references:

newSTRef :: a -> ST s (STRef s a)

readSTRef :: STRef s a -> ST s a

writeSTRef :: STRef s a -> a -> ST s ()

Here is an example. Recall Section 7.6 where we gave the following definition of
the Fibonacci function:

fib :: Int -> Integer

fib n = fst (fib2 n)

fib2 0 = (0,1)

fib2 n = (b,a+b) where (a,b) = fib2 (n-1)
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Evaluating fib takes linear time, but the space involved is not constant (even ig-
noring the fact that arbitrarily large integers cannot be stored in constant space):
each recursive call involves fresh variables a and b. By contrast, here is a definition
of fib in the imperative language Python:

def fib (n):

a,b = 0,1

for i in range (0,n):

a,b = b,a+b

return a

The definition manipulates two program variables a and b, and runs in constant
space (at least, for small integers). We can translate the Python code almost directly
into Haskell:

fibST :: Int -> ST s Integer

fibST n = do {a <- newSTRef 0;

b <- newSTRef 1;

repeatFor n

(do {x <- readSTRef a;

y <- readSTRef b;

writeSTRef a y;

writeSTRef b $! (x+y)});

readSTRef a}

Note the use of the strict application operator ($!) to force evaluation of the sum.
The action repeatFor repeats an action a given number of times:

repeatFor :: Monad m => Int -> m a -> m ()

repeatFor n = foldr (>>) done . replicate n

All well and good, but we end up with an action ST s Integer when what we
really want is an integer. How do we escape from the monad back into the world
of Haskell values?

The answer is to provide a function similar to runState for the state monad, Here
it is, with its type:

runST :: (forall s. ST s a) -> a

This type is unlike any other Haskell type we have met so far. It is what is called
a rank 2 polymorphic type, while all previous polymorphic types have had rank
1. What it says is that the argument of runST must be universal in s, so it can’t
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depend on any information about s apart from its name. In particular, every STRef

declared in the action has to carry the same thread name s.

To amplify a little on rank 2 types, consider the difference between the two lists

list1 :: forall a. [a -> a]

list2 :: [forall a. a -> a]

The type of list1 is just what we would have previously written as [a -> a]

because in ordinary rank 1 types universal quantification at the outermost level
is assumed. For example, [sin,cos,tan] is a possible value of list1 with the
instantiation Float for a. But there are only two functions that can be elements of
list2, namely id and the undefined function undefined, because these are the
only two functions with type forall a. a -> a. If you give me an element x of
a type a about which absolutely nothing is known, the only things I can do if I have
to give you back an element of a, is either to give you x or ⊥.

Why have a rank 2 type for runST? Well, it prevents us from defining things like

let v = runST (newSTRef True)

in runST (readSTRef v)

This code is not well-typed because

newSTRef True :: ST s (STref s Bool)

and in the expression runST (newSTRef Bool) the Haskell type checker can-
not match STRef s a with a, the expected result type of runST. Values of type
STRef s a cannot be exported from ST s, but only entities whose types do not
depend on s. If the code were allowed, then the reference allocated in the first
runST would be usable inside the second runST. That would enable reads in one
thread to be used in another, and hence the result would depend on the evaluation
order used to execute the threads, leading to mayhem and confusion. It is just the
same problem that we prevented from occurring in the IO monad.

But we can safely define

fib :: Int -> Integer

fib n = runST (fibST n)

This version of fib runs in constant space.

For our purposes the main use of the ST monad resides in its ability to handle
mutable arrays. The whole question of arrays deserves a section to itself.
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10.5 Mutable arrays

It sometimes surprises imperative programmers who meet functional programming
for the first time that the emphasis is on lists as the fundamental data structure rather
than arrays. The reason is that most uses of arrays (though not all) depend for their
efficiency on the fact that updates are destructive. Once you update the value of an
array at a particular index the old array is lost. But in functional programming, data
structures are persistent and any named structure continues to exist. For instance,
insert x t may insert a new element x into a tree t, but t continues to refer to
the original tree, so it had better not be overwritten.

In Haskell a mutable array is an entity of type STArray s i e. The s names
the state thread, i the index type and e the element type. Not every type can be
an index; legitimate indices are members of the type class Ix. Instances of this
class include Int and Char, things that can be mapped into a contiguous range of
integers.

Like STRefs there are operations to create, read from and write to arrays. Without
more ado we consider an example, explaining the actions as we go along. Recall
the Quicksort algorithm from Section 7.7:

qsort :: (Ord a) => [a] -> [a]

qsort [] = []

qsort (x:xs) = qsort [y | y <- xs, y < x] ++ [x] ++

qsort [y | y <- xs, x <= y]

There we said that when Quicksort is implemented in terms of arrays rather than
lists, the partitioning phase can be performed in place without using any additional
space. We now have the tools to write just such an algorithm. We begin with

qsort :: (Ord a) => [a] -> [a]

qsort xs = runST $

do {xa <- newListArray (0,n-1) xs;

qsortST xa (0,n);

getElems xa}

where n = length xs

First we create a mutable array with bounds (0,n-1) and fill it with the elements
of xs. Sorting the array is done with the action qsortST xa (0,n). At the end,
the list of elements of the sorted array is returned. In the code above, the action
newListArray has type

Ix i => (i, i) -> [e] -> ST s (STArray s i e)
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and getElems has type

Ix i => STArray s i e -> ST s [e]

The first constructs a mutable array from a list of elements, and the second returns
a list of the elements in a mutable array.

The purpose of qsortST xa (a,b) is to sort the elements in the sub-array of xa
in the interval (a,b), where by definition such an interval includes the lower bound
but excludes the upper bound; in other words [a .. b-1]. Choosing intervals that
are closed on the left but open on the right is almost always the best policy when
processing arrays. Here is the definition of qsortST:

qsortST :: Ord a => STArray s Int a ->

(Int,Int) -> ST s ()

qsortST xa (a,b)

| a == b = return ()

| otherwise = do {m <- partition xa (a,b);

qsortST xa (a,m);

qsortST xa (m+1,b)}

If a==b we have an empty interval and there is nothing to do. Otherwise we rear-
range the array so that for some suitable element x in the array all elements in the
interval (a,m) are less than x, and all elements in the interval (m+1,b) are at least
x. The element x itself is placed in the array at position m. Sorting is then completed
by sorting both sub-intervals.

It remains to define partition. The only way to find a suitable definition is by
formal development using pre- and post-conditions and loop invariants. But this is
a book on functional programming, not on the formal development of imperative
programs, so we are going to cop out and just record one version:

partition xa (a,b)

= do {x <- readArray xa a;

let loop (j,k)

= if j==k

then do {swap xa a (k-1);

return (k-1)}

else do {y <- readArray xa j;

if y < x then loop (j+1,k)

else do {swap xa j (k-1);

loop (j,k-1)}}

in loop (a+1,b)}
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The action swap is defined by

swap :: STArray s Int a -> Int -> Int -> ST s ()

swap xa i j = do {v <- readArray xa i;

w <- readArray xa j;

writeArray xa i w;

writeArray xa j v}

Here is a brief and certainly inadequate explanation of how partition works. We
begin by taking the first element x in the interval (a,b) as pivot. We then enter
a loop that processes the remaining interval (a+1,b), stopping when the interval
becomes empty. We pass over elements that are less than x, shrinking the interval
from the left. Encountering a y not less than x, we swap it with the element at
the rightmost position in the interval, shrinking the interval from the right. When
the interval becomes empty, we place the pivot in its final position, returning that
position as a result.

Note that loop is defined as a local procedure within the monad. We could have
defined it as a global procedure, though we would have had to add three extra
parameters, namely the array xa, the pivot x and the starting position a.

Hash tables

A purely functional Quicksort has the same asymptotic time efficiency as one based
on mutable arrays, but there are one or two places where mutable arrays seem to
play a crucial role in achieving an asymptotically faster algorithm. One such place
is the use of hash tables for an efficient representation of sets.

But let us approach the use of hash tables in the context of a particular problem.
Consider a typical puzzle defined in terms of two finite sets, a set of positions and
a set of moves. Given are the following functions:

moves :: Position -> [Move]

move :: Position -> Move -> Position

solved :: Position -> Bool

The function moves describes the set of possible moves that can be made in a given
position, move makes a move, and solved determines those positions that are a
solution to the puzzle. Solving the puzzle means finding some sequence of moves,
preferably a shortest such sequence, that leads from a given starting position to a
solved position:
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solve :: Position -> Maybe [Move]

The value solve p is Nothing if there is no sequence of moves starting in position
p that leads to a solved position, and Just ms otherwise, where

solved (foldl move p ms)

We are going to implement solve by carrying out a breadth-first search. What this
means is that we examine all positions one move away from the starting position
to see if there is a solution, then all positions two moves away, and so on. Breadth-
first will therefore find a shortest solution if one exists. To implement the search
we need

type Path = ([Move],Position)

type Frontier = [Path]

A path consists of a sequence of moves made from the starting position (in reverse
order), and the position that results after making the moves. A frontier is a list
of paths waiting to be extended into longer paths. A breadth-first search is then
implemented by

solve p = bfs [] [([],p)]

bfs :: [Position] -> Frontier -> Maybe [Move]

bfs ps [] = Nothing

bfs ps ((ms,p):mps)

| solved p = Just (reverse ms)

| p `elem` ps = bfs ps mps

| otherwise = bfs (p:ps) (mps ++ succs (ms,p))

succs :: Path -> [Path]

succs (ms,p) = [(m:ms,move p m) | m <- moves p]

The first argument ps of bfs represents the set of positions that have already been
explored. The second argument is the frontier, which is managed in a queue-like
fashion to ensure that paths of the same length are inspected before their successors.
Inspecting a path means accepting it if the final position is a solution, rejecting it
if the end position has already been explored, and otherwise adding its successors
to the end of the current frontier for future exploration. The moves in a successful
path are reversed before being returned as the final result of bfs simply because,
for efficiency, succs adds a new move to the front of the list rather than at the end.

There are two major sources of inefficiency with bfs, one concerning the use of
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(++) and the other concerning elem. Firstly, the size of a frontier can grow expo-
nentially and so concatenating successors to the end of the frontier is slow. Better
is the following alternative to bfs:

bfs :: [Position] -> Frontier -> Frontier ->

Maybe [Move]

bfs ps [] [] = Nothing

bfs ps [] mqs = bfs ps mqs []

bfs ps ((ms,p):mps) mqs

| solved p = Just (reverse ms)

| p `elem` ps = bfs ps mps mqs

| otherwise = bfs (p:ps) mps (succs (ms,p) ++ mqs)

The additional argument is a temporary frontier used to store successors. When the
first frontier is exhausted the contents of the temporary frontier are installed as the
new frontier. Adding successors to the front of the temporary frontier takes time
proportional to the number of successors, not to the size of the frontier, and that
leads to a faster algorithm. On the other hand, the new version of bfs is not the
same as the old one because successive frontiers are traversed alternately from left
to right and from right to left. Nevertheless a shortest solution will still be found if
one exists.

The second source of inefficiency is the membership test. Use of a list to store
previously explored positions is slow because the membership test can take time
proportional to the number of currently explored positions. It would all be easier
if positions were integers in the range [0 .. n−1] for some n, for then we could
use a boolean array with bounds (0,n−1) to tick off positions as they arise. The
membership test would then consist of a single array lookup.

One can imagine coding positions as integers, but not as integers in an initial seg-
ment of the natural numbers. For instance, a Sudoku position (see Chapter 5) can
be expressed as an integer consisting of 81 digits. So suppose we have a function

encode :: Position -> Integer

that encodes positions as integers. To reduce the range we can define

hash :: Position -> Int

hash p = fromInteger (encode p) `mod` n

for some suitable n :: Int. The result of hash is then an integer in the range
[0..n-1].

The one hitch, and it’s a big one, is that two distinct positions may hash to the
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same integer. To solve this problem we abandon the idea of having an array of
booleans, and instead have an array of lists of positions. The positions in the array
at index k are all those whose hash value is k. There is no guarantee that any of this
will improve efficiency in the worst case, but if we allow n to be reasonably large,
and trust that the hash function assigns integers to positions in a reasonably evenly
distributed way, then the complexity of a membership test is reduced by a factor of
n.

With this hashing scheme the revised code for solve is:

solve :: Maybe [Move]

solve = runST $

do {pa <- newArray (0,n-1) [];

bfs pa [([],start)] []}

bfs :: STArray s Int [Position] -> Frontier ->

Frontier -> ST s (Maybe [Move])

bfs pa [] [] = return Nothing

bfs pa [] mqs = bfs pa mqs []

bfs pa ((ms,p):mps) mqs

= if solved p then return (Just (reverse ms))

else do {ps <- readArray pa k;

if p `elem` ps

then bfs pa mps mqs

else

do {writeArray pa k (p:ps);

bfs pa mps (succs (ms,p) ++ mqs)}}

where k = hash p

10.6 Immutable arrays

We cannot leave the subject of arrays without mentioning a very nice Haskell li-
brary Data.Array that provides purely functional operations on immutable arrays.
The operations are implemented using mutable arrays, but the interface is purely
functional.

The type Array i e is an abstract type of arrays with indices of type i and ele-
ments of type e. One basic operation for constructing arrays is

array :: Ix i => (i,i) -> [(i,e)] -> Array i e
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This function take a pair of bounds, the lowest and highest indices in the array,
and a list of index-element pairs specifying the array entries. The result is an array
with the given bounds and entries. Any entry missing from the association list is
deemed to be the undefined entry. If two entries have the same index, or one of the
indices is out of bounds, the undefined array is returned. Because of these checks,
array construction is strict in the indices, though lazy in the elements. Building the
array takes linear time in the number of entries.

A simple variant of array is listArray which takes just a list of elements:

listArray :: Ix i => (i,i) -> [e] -> Array i e

listArray (l,r) xs = array (l,r) (zip [l..r] xs)

Finally, there is another way of building arrays called accumArray whose type
appears rather daunting:

Ix i => (e -> v -> e) -> e -> (i,i) -> [(i,v)] -> Array i e

The first argument is an ‘accumulating’ function for transforming array entries
and new values into new entries. The second argument is an initial entry for each
index. The third argument is a pair of bounds, and the fourth and final argument is
an association list of index–value pairs. The result is an array built by processing
the association list from left to right, combining entries and values into new entries
using the accumulating function. The process takes linear time in the length of the
association list, assuming the accumulating function takes constant time.

That’s what accumArray does in words. In symbols,

elems (accumArray f e (l,r) ivs)

= [foldl f e [v | (i,v) <- ivs, i==j] | j <- [l..r]]

where elems returns the list of elements of an array in index order. Well, the iden-
tity above is not quite true: there is an additional restriction on ivs, namely that
every index should lie in the specified range. If this condition is not met, then the
left-hand side returns an error while the right-hand side does not.

Complicated as accumArray seems, it turns out to be a very useful tool for solving
certain kinds of problem. Here are two examples. First, consider the problem of
representing directed graphs. Directed graphs are usually described in mathematics
in terms of a set of vertices and a set of edges. An edge is an ordered pair (j,k) of
vertices signifying that the edge is directed from j to k. We say that k is adjacent to
j. We will suppose that vertices are named by integers in the range 1 to n for some
n. Thus

type Vertex = Int
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type Edge = (Vertex,Vertex)

type Graph = ([Vertex],[Edge])

vertices g = fst g

edges g = snd g

In computing, directed graphs are often described in terms of adjacency lists:

adjs :: Graph -> Vertex -> [Vertex]

adjs g v = [k | (j,k) <- edges g, j==v]

The problem with this definition of adjs is that it takes time proportional to the
number of edges to compute the adjacency list of any particular vertex. Better is to
implement adjs as an array:

adjArray :: Graph -> Array Vertex [Vertex]

Then we have

adjs g v = (adjArray g)!v

where (!) denotes the operation of array-indexing. For reasonably sized arrays
this operation takes constant time.

The specification of adjArray is that

elems (adjArray g)

= [[k | (j,k) <- edges g, j==v] | v <- vertices g]

Using this specification we can calculate a direct definition of adjArray. To keep
each line short, abbreviate edges g to es and vertices g to vs, so

elems (adjArray g) = [[k | (j,k) <- es, j==v] | v <- vs]

Concentrating on the right-hand side, the first step is to rewrite it using the law
foldr (:) [] = id. That gives the expression

[foldr (:) [] [k | (j,k) <- es, j==v] | v <- vs]

Next we use the law foldr f e xs = foldl (flip f) e (reverse xs) for
all finite lists xs. Abbreviating flip (:) to (@), we obtain

[foldl (@) [] (reverse [k | (j,k) <- es, j==v]) | v <- vs]

Distributing reverse we obtain the expression

[foldl (@) [] [k | (j,k) <- reverse es, j==v] | v <- vs]

Next we use swap (j,k) = (k,j) to obtain



262 Imperative functional programming

[foldl (@) [] [j | (k,j) <- es', j==v] | v <- vs]

where es' = map swap (reverse es). Finally, using n = length vs and the
specification of accumArray, we obtain

elems (adjArray g)

= elems (accumArray (flip (:)) [] (1,n) es')

That means we can define

adjArray g = accumArray (flip (:)) [] (1,n) es

where n = length (vertices g)

es = map swap (reverse (edges g))

This definition of adjArray g computes the successors in time proportional to the
number of edges.

Here is the second example of the use of accumArray. Suppose we are given a list
of n integers, all in the range (0,m) for some m. We can sort this list in Θ(m+n)
steps by counting the number of times each element occurs:

count :: [Int] -> Array Int Int

count xs = accumArray (+) 0 (0,m) (zip xs (repeat 1))

The value repeat 1 is an infinite list of 1s. Counting takes Θ(n) steps. Having
counted the elements, we can now sort them:

sort xs = concat [replicate c x

| (x,c) <- assocs (count xa)]

The function assocs is yet another library function and returns the list of index–
element pairs of an array in index order. The sorting is completed in Θ(m) steps.

As well as the above operations Data.Array contains one or two more, including
the update operation (//):

(//) :: Ix i => Array i e -> [(i,e)] -> Array i e

For example, if xa is an n×n matrix, then

xa // [((i,i),0) | i <- [1..n]]

is the same matrix except with zeros along the diagonal. The downside of (//) is
that it takes time proportional to the size of the array, even for an update involving
a single element. The reason is that a completely new array has to be constructed
because the old array xa continues to exist.

We have ended the chapter back in the world of pure functional programming,
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where equational reasoning can be used both to calculate definitions and to opti-
mise them. Although the monadic style is attractive to programmers who are used
to imperative programming, there remains the problem of how to reason about
monadic programs. True, equational reasoning is still possible in certain situtations
(see Exercise F for an example), but it is not so widely applicable as it is in the pure
functional world (witness the correctness of the partition phase of Quicksort). Im-
perative programmers have the same problem, which they solve (if they bother
to) by using predicate calculus, preconditions, postconditions and loop invariants.
How to reason directly with monadic code is still a topic of ongoing research.

Our best advice is to use the monadic style sparingly and only when it is really
useful; otherwise the most important aspect of functional programming, the ability
to reason mathematically about its constructs, is lost.

10.7 Exercises

Exercise A

Recall that

putStr = foldr (>>) done . map putChar

What does

foldl (>>) done . map putChar

do? Justify your answer by expressing (>>) in terms of (>>=) and appealing to
the monad laws.

Exercise B

Using a pattern-matching style, define a function

add3 :: Maybe Int -> Maybe Int -> Maybe Int -> Maybe Int

that adds three numbers, provided all of them exist. Now rewrite add3 using the
Maybe monad.

Exercise C

The monadic definition of cp in Section 10.1 is still inefficient. We might prefer to
write
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cp (xs:xss) = do {ys <- cp xss;

x <- xs;

return (x:ys)}

By definition a commutative monad is one in which the equation

do {x <- p; y <- q; f x y}

= do {y <- q; x <- p; f x y}

holds. The IO monad is certainly not commutative, while some other monads are.
Is the Maybe monad commutative?

Exercise D

Every monad is a functor. Complete the definition

instance Monad m => Functor m where

fmap :: (a -> b) -> m a -> m b

fmap f = ...

Currently Haskell does not insist that the Monad class should be a subclass of
Functor, though there are plans to change this in future releases. Instead, Haskell
provides a function liftM equivalent to fmap for monads. Give a definition of
liftM in terms of return and >>=.

The function join :: m (m a) -> m a flattens two layers of monadic structure
into one. Define join in terms of >>=. What familiar functions do join and liftM
give for the list monad?

Finally, using join and liftM, define (>>=). It follows that instead of defining
monads in terms of return and >>=, we can also define them in terms of return,
liftM and join.

Exercise E

A number of useful monadic functions are provided in the Control.Monad library.
For instance:

sequence_ :: Monad m => [m a] -> m ()

sequence_ = foldr (>>) done

(The underscore convention is used in a number of places in Haskell to signify that
the result of the action is the null tuple.) Define the related function

sequence :: Monad m => [m a] -> m [a]

Using these two functions, define
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mapM_ :: Monad m => (a -> m b) -> [a] -> m ()

mapM :: Monad m => (a -> m b) -> [a] -> m [b]

Also, define

foldM :: Monad m => (b -> a -> m b) -> b -> [a] -> m b

In the text we made use of a function repeatFor n that repeated an action n times.
Generalise this function to

for_ :: Monad m => [a] -> (a -> m b) -> m ()

Exercise F

Here is an exercise in monadic equational reasoning. Consider the function

add :: Int -> State Int ()

add n = do {m <- get; put (m+n)}

The task is to prove that

sequence_ . map add = add . sum

where sequence_ was defined in the previous exercise and sum sums a list of
integers. You will need the fusion law of foldr, some simple laws of put and
get, and the monad law

do {stmts1} >> do {stmts2} = do {stmts1;stmts2}

which is valid provided the variables in stmts1 and stmts2 are disjoint.

Exercise G

Prove the leapfrog rule: (f >=> g) . h = (f . h) >=> g.

Using this rule, prove: (return . h) >=> g = g . h.

Exercise H

Prove that

liftM f = id >=> (return . f)

join = id >=> id

A fourth way of describing the monad laws is in terms of the two functions liftM
and join of Exercise D. There are seven laws governing these two functions, all
of which have a familiar ring:
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liftM id = id

liftM (f . g) = liftM f . liftM g

liftM f . return = return . f

liftM f . join = join . liftM (liftM f)

join . return = id

join . liftM return = id

join . liftM join = join . join

Prove the fourth rule.

Exercise I

What does build [] do (see Section 10.3)?

Exercise J

Write an interactive program to play hangman. An example session:

ghci> hangman

I am thinking of a word:

-----

Try and guess it.

guess: break

-a---

guess: parties

Wrong number of letters!

guess: party

-appy

guess: happy

You got it!

Play again? (yes or no)

no

Bye!

Assume that a list of secret words is stored in a file called Words, so that the
action xs <- readFile "Words" reads the file as a list of characters. By the
way, readFile is lazy in that its contents are read on demand.

Exercise K

Write another version of fib in terms of a fibST that uses a single STRef.
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Exercise L

One way of defining the greatest common divisor (gcd) of two positive integers is:

gcd (x,y) | x==y = x

| x<y = gcd (x,y-x)

| x>y = gcd (x-y,y)

Translate this definition into two other programs, one of which uses the State

monad and the other the ST monad.

Exercise M

Here is a concrete puzzle you can solve using breadth-first search. A cut-down
version of Sam Loyd’s famous 15 puzzle is the 8 puzzle. You are given a 3× 3
array containing tiles numbered from 1 to 8 and one blank space. You move by
sliding an adjacent tile into the blank space. Depending on where the blank space
is, you can slide tiles upwards, downwards, to the left or to the right. At the start
the blank space is in the top left corner and the tiles read from 1 to 8. At the end
the blank space is in the bottom right corner, but the tiles are still neatly arranged
in the order 1 to 8.

Your mission, should you choose to accept it, is to settle on a suitable representation
of positions and moves, and to define the functions moves, move, solved and
encode.

10.8 Answers

Answer to Exercise A

We claim that (>>) :: IO () -> IO () -> IO () is associative with identity
element done. That means

putStr xs = foldl (>>) done (map putChar xs)

for all finite strings xs

We concentrate on the proof of associativity. Firstly, for actions in IO () we have

p >> q = p >>= const q
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where const x y = x. Now we can reason:

(p >> q) >> r

= {definition of (>>)}
(p >>= const q) >>= const r

= {third monad law}
p >>= const (q >>= const r)

= {definition of (>>)}
p >>= const (q >> r)

= {definition of (>>)}
p >> (q >> r)

Answer to Exercise B

The direct version uses pattern matching with a wild-card:

add3 Nothing _ _ = Nothing

add3 (Just x) Nothing _ = Nothing

add3 (Just x) (Just y) Nothing = Nothing

add3 (Just x) (Just y) (Just z) = Just (x+y+z)

This definition ensures that add Nothing undefined = Nothing.

The monadic version reads:

add3 mx my mz

= do {x <- mx; y <- my; z <- mz;

return (x + y + z)}

Answer to Exercise C

Yes. The commutative law states that

p >>= \x -> q >>= \y -> f x y

= q >>= \y -> p >>= \x -> f x y

In the Maybe monad there are four possible cases to check. For example, both
sides simplify to Nothing if p = Nothing and q = Just y, . The other cases
are similar.

Answer to Exercise D

We have
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fmap f p = p >>= (return . f)

join p = p >>= id

For the list monad we have liftM = map and join = concat.

In the other direction

p >>= f = join (liftM f p)

Answer to Exercise E

The function sequence is defined by

sequence :: Monad m => [m a] -> m [a]

sequence = foldr k (return [])

where k p q = do {x <- p; xs <- q; return (x:xs)}

The two new map functions are:

mapM_ f = sequence_ . map f

mapM f = sequence . map f

The function foldM is defined by

foldM :: Monad m => (b -> a -> m b) ->

b -> [a] -> m b

foldM f e [] = return e

foldM f e (x:xs) = do {y <- f e x; foldM f y xs}

Note that foldM is analogous to foldl in that it works from left to right. Finally
for = flip mapM_.

Answer to Exercise F

The first thing to note is that

sequence_ . map add

= foldr (>>) done . map add

= foldr ((>>) . add) done

using the fusion law of foldr and map given in Section 6.3. Moreover,

((>>) . add) n p = add n >> p

Since sum = foldr (+) 0 that means we have to prove

foldr (\ n p -> add n >> p) = add . foldr (+) 0
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That looks like an instance of the fusion law of foldr. We therefore have to show
that add is strict (which it is), and

add 0 = done

add (n + n') = add n >> add n'

Here goes:

add 0

= {definition}
do {m <- get; put (m+0)}

= {arithmetic}
do {m <- get; put m}

= {simple law of put and get}
done

That disposes of the first condition. For the second we start with the more compli-
cated side and reason:

add n >> add n’

= {definition}
do {l <- get; put (l + n) } >>

do {m <- get; put (m + n’)}
= {monad law}
do {l <- get; put (l + n); m <- get; put (m + n’)}

= {simple law of put and get}
do {l <- get; put ((l + n) + n’)}

= {associativity of (+); definition of add}
add (n + n’)

Answer to Exercise G

We can reason:

(f >=> g) (h x)

= {definition of (>=>)}
f (h x) >>= g

= {definition of (>=>)}
(f . h >=> g) x



10.8 Answers 271

For the second part:

(return . h) >=> g

= {leapfrog rule}
(return >=> g) . h

= {monad law}
g . h

Answer to Exercise H

For the fourth rule we simplify both sides. For the left-hand side:

liftM f . join

= {definitions}
(id >=> (return . f)) . (id >=> id)

= {leapfrog rule and id . f = f}
(id >=> id) >=> (return . f)

For the right-hand side:

join . liftM (liftM f)

= {definitions}
(id >=> id) . (id >=> return . (id >=> (return . f)))

= {leapfrog rule, and associativity of (>=>)}
id >=> (return . (id >=> (return . f))) >=> id

= {since (return . h) >=> g = g . h}
id >=> id >=> (return . f)

The two sides are equal because (>=>) is associative.

Answer to Exercise I

build [] causes an infinite loop, so its value is ⊥.

Answer to Exercise J

For the main function we can define

hangman :: IO ()

hangman = do {xs <- readFile "Words";

play (words xs)}
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The function play plays as many rounds of the game as desired with different
words from the file (which we quietly suppose always has enough words):

play (w:ws)

= do {putStrLn "I am thinking of a word:";

putStrLn (replicate (length w) '-');

putStrLn "Try and guess it.";

guess w ws}

The function guess deals with a single guess, but keeps the remaining words for
any subsequent round of play:

guess w ws

= do {putStr "guess: ";

w' <- getLine;

if length w' /= length w then

do {putStrLn "Wrong number of letters!";

guess w ws}

else if w' == w

then

do {putStrLn "You got it!";

putStrLn "Play again? (yes or no)";

ans <- getLine;

if ans == "yes"

then play ws

else putStrLn "Bye!"}

else do {putStrLn (match w' w);

guess w ws}}

Finally we program match:

match w' w = map check w

where

check x = if x `elem` w' then x else '-'

Answer to Exercise K

The following program is correct but doesn’t run in constant space:

fib n = fst $ runST (fibST n)

fibST :: Int -> ST s (Integer,Integer)

fibST n = do {ab <- newSTRef (0,1);
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repeatFor n

(do {(a,b) <- readSTRef ab;

writeSTRef ab $! (b,a+b)});

readSTRef ab}

The reason is that (b,a+b) is already in head-normal form, so strict-apply has no
effect. The penultimate line needs to be changed to

b `seq` (a+b) `seq` writeSTRef ab (b,a+b)

in order to force evaluation of the components.

Answer to Exercise L

The version that uses the State monad:

gcd (x,y) = fst $ runState loop (x,y)

loop :: State (Int,Int) Int

loop = do {(x,y) <- get;

if x == y

then return x

else if x < y

then do {put (x,y-x); loop}

else do {put (x-y,y); loop}}

The version that uses the ST monad:

gcd (x,y) = runST $

do {a <- newSTRef x;

b <- newSTRef y;

loop a b}

loop :: STRef s Int -> STRef s Int -> ST s Int

loop a b

= do {x <- readSTRef a;

y <- readSTRef b;

if x==y

then return x

else if x<y

then do {writeSTRef b (y-x);loop a b}

else do {writeSTRef a (x-y);loop a b}}
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Answer to Exercise M

There are, of course, many possible answers. The one I chose was to represent the
array of tiles by a list of nine digits [0 .. 8] with zero representing the space. To
avoid recalculation, a position is represented by a pair (j,ks) with j as the position
of the zero in ks, where ks was some permutation of [0 ..8]. Thus:

type Position = (Int,[Int])

data Move = Up | Down | Left | Right

encode :: Position -> Integer

encode (j,ks) = foldl op 0 ks

where op x d = 10*x + fromIntegral d

start :: Position

start = (0,[0..8])

The function moves can be defined by

moves :: Position -> [Move]

moves (j,ks)

= [Up | j `notElem` [6,7,8]] ++

[Down | j `notElem` [0,1,2]] ++

[Left | j `notElem` [2,5,8]] ++

[Right | j `notElem` [0,3,6]]

Up moves are allowed except for a blank in the bottom row; down moves except
for a blank in the top row, left moves except for a blank in the rightmost column,
and right moves except for a blank in the leftmost column.

The function move can be defined by:

move :: Position -> Move -> Position

move (j,ks) Up = (j+3,swap (j,j+3) ks)

move (j,ks) Down = (j-3,swap (j-3,j) ks)

move (j,ks) Left = (j+1,swap (j,j+1) ks)

move (j,ks) Right = (j-1,swap (j-1,j) ks)

swap (j,k) ks = ks1 ++ y:ks3 ++ x:ks4

where (ks1,x:ks2) = splitAt j ks

(ks3,y:ks4) = splitAt (k-j-1) ks2

Finally,
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solved :: Position -> Bool

solved p = p == (8,[1,2,3,4,5,6,7,8,0])

My computer produced:

ghci> solve start

Just [Left,Up,Right,Up,Left,Left,Down,

Right,Right,Up,Left,Down,Down,Left,

Up,Up,Right,Right,Down,Left,Left,Up]

(4.84 secs, 599740496 bytes)

10.9 Chapter notes

Read The History of Haskell to see how monads came to be an integral part of
Haskell, and why this idea has been mainly responsible for the increasing use of
Haskell in the real world. Monads are used to structure GHC, which itself is written
in Haskell. Each phase of the compiler uses a monad for book-keeping information.
For instance, the type checker uses a monad that combines state (to maintain a
current substitution), a name supply (for fresh type variable names) and exceptions.

Use of do-notation in preference to (>>=) was suggested by John Launchbury in
1993 and was first implemented by Mark Jones in Gofer.

The number of tutorials on monads has increased steadily over the years; see

haskell.org/haskellwiki/Monad_tutorials

for a reasonably comprehensive list.

The example (in Exercise F) of monadic equational reasoning can be found in the
paper ‘Unifying theories of programming with monads’, (UTP Symposium, Au-
gust 2012) by Jeremy Gibbons. For additional material on reasoning equationally
with monads, read ‘Just do it: simple monadic equational reasoning’ by Jeremy
Gibbons and Ralf Hinze, which appeared in the proceedings of the 2011 Interna-
tional Conference of Functional Programming. Both papers can be found at

www.cs.ox.ac.uk/people/jeremy.gibbons/publications/
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Parsing

A parser is a function that analyses a piece of text to determine its logical struc-
ture. The text is a string of characters describing some value of interest, such as an
arithmetic expression, a poem or a spreadsheet. The output of a parser is a repre-
sentation of the value, such as a tree of some kind for an arithmetic expression, a
list of verses for a poem, or something more complicated for a spreadsheet. Most
programming tasks involve decoding the input in some way, so parsing is a per-
vasive component of computer programming. In this chapter we will describe a
monadic approach to parsing, mainly designing simple parsers for expressions of
various kinds. We will also say a little more about the converse process of encoding
the output as a string; in other words, more about the type class Show. This material
will be used in the final chapter.

11.1 Parsers as monads

Parsers return different values of interest, so as a first cut we can think of a parser
as a function that takes a string and returns a value:

type Parser a = String -> a

This type is basically the same as that of the standard prelude function

read :: Read a => String -> a

Indeed, read is a parser, though not a very flexible one. One reason is that all the
input must be consumed. Thus:

ghci> read "123" :: Int

123
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ghci> read "123+51" :: Int

*** Exception: Prelude.read: no parse

With read there is no obvious way of reading two or more things in sequence. For
example, in a parser for arithmetic expressions we may want to look in the input
stream for a numeral, then an operator and then another numeral. The first parser
for a numeral will consume some prefix of the input, the parser for an operator
some prefix of the remaining input, and the third parser yet more input. A better
idea is to define a parser as a function that consumes a prefix of the input and
returns both a value of interest and the unconsumed suffix:

type Parser a = String -> (a,String)

We are not quite there yet. It can happen that a parser may fail on some input.
It is not a mistake to construct parsers that can fail. For example, in a parser for
arithmetic expressions, we may want to look for either a numeral or an opening
parenthesis. One or either of these subsidiary parsers will certainly fail. Failure
should not be thought of as an error that terminates the parsing process; rather it
acts like an identity element for an operation that chooses between alternatives.
More generally, a parser may find a number of different ways that some prefix of
the input can be structured. Failure then corresponds to the particular case of the
empty sequence of parses. In order to handle these various possibilities, we change
our definition yet again and define

type Parser a = String -> [(a,String)]

The standard prelude provides exactly this type synonym, except that it is called
ReadS, not Parser. And it also provides a function

reads :: Read a => ReadS a

as a subsidiary method in the type class Read. For example,

ghci> reads "-123+51" :: [(Int,String)]

[(-123,"+51")]

ghci> reads "+51" :: [(Int,String)]

[]

As with the function read you have to tell reads the type you are expecting.
The second example fails, returning no parses, because a Haskell integer can be
preceded by an optional minus sign but not by an optional plus sign. By definition,
a parser is deterministic if it returns an empty or singleton list of parses in all
possible cases. In particular, instances of reads ought to be deterministic parsers.
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There is one further change we have to make to the definition of Parser. We would
like to install this type as an instance of the Monad class, but that is not possible. The
reason is that Parser is declared as a type synonym, and type synonyms cannot be
made members of any type class: they inherit whatever instances are declared for
the underlying type. A type synonym is there simply to improve readability in type
declarations; no new types are involved and we cannot construct two different type
class instances for what is essentially the same type.

One way to construct a new type is by a data declaration:

data Parser a = Parser (String -> [(a,String)])

The identifier Parser on the right is a constructor, while on the left it is the name
of a new type. Most people are happy with the pun; others would rename the con-
structor as something like MkParser or just P.

There is a better way to create a new type for Parser and that is to use a newtype
declaration:

newtype Parser a = Parser (String -> [(a,String)])

We have not needed newtype declarations up to now, so let us digress a little to
explain them. The price paid for using a data declaration for Parser is that op-
erations to examine parsers have to be constantly unwrapped and rewrapped with
the constructor Parser, and this adds to the running time of parser operations. In
addition there is an unwanted element of Parser, namely Parser undefined.
In other words, Parser a and String -> [(a,String)] are not isomorphic
types. Recognising this, Haskell allows a newtype declaration for types defined
with a single constructor taking a single argument. It differs from a type synonym
in that it creates a genuinely new type whose values must be expressed using the
Parser wrapper. But these coercions, though they have to appear in the program
text, do not add to the execution time of the program because the Haskell compiler
eliminates them before evaluation begins. The values of the new type are systemat-
ically replaced by the values in the underlying type. Consequently, Parser a and
String -> [(a,String)] describe isomorphic types, and Parser undefined

and undefined are isomorphic values sharing the same representation. New types,
as distinct from synonym types, can be made members of type classes in different
ways from the underlying type.

With either kind of declaration we have to provide some way of applying the pars-
ing function, so we define

apply :: Parser a -> String -> [(a,String)]

apply (Parser p) s = p s
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The functions apply and Parser are mutual inverses and witness the isomor-
phism.

We also define

parse :: Parser a -> String -> a

parse p = fst . head . apply p

The function parse p returns the first object of the first parse, causing an error if
the parser p fails. This is the only place an error might occur.

Now we can define

instance Monad Parser where

return x = Parser (\s -> [(x,s)])

p >>= q = Parser (\s -> [(y,s'')

| (x,s') <- apply p s,

(y,s'') <- apply (q x) s'])

In the definition of p >>= q the parser p is applied to an input string, producing a
list of possible parses each of which is paired with the corresponding unconsumed
portion of the input. The parser q is then applied to each parse to produce a list of
results whose concatenation provides the final answer. One should also show that
the three monad laws hold, a task we will leave as an exercise.

11.2 Basic parsers

Perhaps the simplest basic parser is

getc :: Parser Char

getc = Parser f

where f [] = []

f (c:cs) = [(c,cs)]

This parser returns the first character of the input if there is one. It plays exactly the
same role for parsers as getChar does for the input–output monad of the previous
chapter.

Next, here is a parser for recognising a character that satisfies a given condition:

sat :: (Char -> Bool) -> Parser Char

sat p = do {c <- getc;

if p c then return c

else fail}
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where fail is defined by

fail = Parser (\s -> [])

The parser fail is another basic parser that returns no parses. The parser sat p

reads a character and, if it satisfies p, returns the character as the result. The defini-
tion of sat can be written more briefly by using a little combinator called guard:

sat p = do {c <- getc; guard (p c); return c}

guard :: Parser ()

guard True = return ()

guard False = fail

To see that these two definitions are the same, observe that if p c is false, then

guard (p c) >> return c = fail >> return c = fail

Note the use of the law fail >> p = fail, whose proof we leave as an exercise.
If p c is true, then

guard (p c) >> return c

= return () >> return c

= return c

Using sat we can define a number of other parsers; for instance

char :: Char -> Parser ()

char x = do {c <- sat (==x); return ()}

string :: String -> Parser ()

string [] = return ()

string (x:xs) = do {char x; string xs; return ()}

lower :: Parser Char

lower = sat isLower

digit :: Parser Int

digit = do {d <- sat isDigit; return (cvt d)}

where cvt d = fromEnum d - fromEnum '0'

The parser char x looks for the specific character x as the next item in the in-
put string, while string xs looks for a specific string; both parsers return () if
successful. For example,
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ghci> apply (string "hell") "hello"

[((),"o")]

The parser digit looks for a digit character and returns the corresponding integer
if successful. The parser lower looks for a lowercase letter, returning such a letter
if found.

11.3 Choice and repetition

In order to define more sophisticated parsers we need operations for choosing be-
tween alternative parsers and for repeating parsers. One such alternation operator
is (<|>), defined by

(<|>) :: Parser a -> Parser a -> Parser a

p <|> q = Parser f

where f s = let ps = apply p s in

if null ps then apply q s

else ps

Thus p <|> q returns the same parses as p unless p fails, in which case the parses
of q are returned. If both p and q are deterministic, then so is p <|> q. For another
choice of <|> see the exercises. We claim that <|> is associative with fail as its
identity element, but again we relegate the proof as an exercise.

Here is a parser for recognising a string of lowercase letters:

lowers :: Parser String

lowers = do {c <- lower; cs <- lowers; return (c:cs)}

<|> return ""

To see how this parser works, suppose the input is the string ‘Upper’. In this case
the parser on the left of <|> fails because ‘U’ is not a lowercase letter. However,
the parser on the right succeeds, so

ghci> apply lowers "Upper"

[("","Upper")]

With input string ‘isUpper’, the left-hand parser succeeds, so

ghci> apply lowers "isUpper"

[("is","Upper")]
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Use of the choice operator <|> requires care. For example, consider a very simple
form of arithmetic expression that consists of either a single digit or a digit followed
by a plus sign followed by another digit. Here is a possible parser:

wrong :: Parser Int

wrong = digit <|> addition

addition :: Parser Int

addition = do {m <- digit; char '+'; n <- digit;

return (m+n)}

We have

ghci> apply wrong "1+2"

[(1,"+2")]

The parser digit succeeds, so addition is not invoked. But what we really
wanted was to return [(3,"")], absorbing as much of the input as possible. One
way to correct wrong is to rewrite it in the form

better = addition <|> digit

Then on 1+2 the parser addition succeeds, returning the result we want. What
is wrong with better is that it is inefficient: applied to the input 1 it parses the
digit but fails to find a subsequent plus sign, so parser addition fails. As a result
digit is invoked and the input is parsed again from scratch. Not really a problem
with a single digit, but the repetition of effort could be costly if we were parsing
for a numeral that could contain many digits.

The best solution is to factor the parser for digits out of the two component parsers:

best = digit >>= rest

rest m = do {char '+'; n <- digit; return (m+n)}

<|> return m

The argument to rest is just an accumulating parameter. We saw essentially the
same solution in the chapter on pretty-printing. Factoring parsers to bring out com-
mon prefixes is a Good Idea to improve efficiency.

Generalising from the definition of lowers, we can define a parser combinator that
repeats a parser zero or more times:

many :: Parser a -> Parser [a]

many p = do {x <- p; xs <- many p; return (x:xs)}

<|> none
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none = return []

The value none is different from fail (why?). We can now define

lowers = many lower

In many applications, so-called white space (sequences of space, newline and tab
characters) can appear between tokens (identifiers, numbers, opening and closing
parentheses, and so on) just to make the text easier to read. The parser space

recognises white space:

space :: Parser ()

space = many (sat isSpace) >> return ()

The function isSpace is defined in the library Data.Char. The function

symbol :: String -> Parser ()

symbol xs = space >> string xs

ignores white space before recognising a given string. More generally we can de-
fine

token :: Parser a -> Parser a

token p = space >> p

for ignoring white space before invoking a parser. Note that

token p <|> token q = token (p <|> q)

but the right-hand parser is more efficient as it does not look for white space twice
if the first parser fails.

Sometimes we want to repeat a parser one or more times rather than zero or more
times. This can be done by a combinator which we will call some (it is also called
many1 in some parser libraries):

some :: Parser a -> Parser [a]

some p = do {x <- p; xs <- many p; return (x:xs)}

This definition repeats that of the first parser in the definition of many, a fact we
can take into account by redefining many in terms of some:

many :: Parser a -> Parser [a]

many p = optional (some p)

optional :: Parser [a] -> Parser [a]

optional p = p <|> none
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The parsers many and some are now mutually recursive.

Here is a parser for natural numbers, one that allows white space before the number:

natural :: Parser Int

natural = token nat

nat = do {ds <- some digit;

return (foldl1 shiftl ds)}

where shiftl m n = 10*m+n

The subsidiary parser nat does not allow white space before the number.

Consider now how to define a parser for an integer numeral, which by definition is
a nonempty string of digits possibly prefixed by a minus sign. You might think that
the parser

int :: Parser Int

int = do {symbol "-"; n <- natural; return (-n)}

<|> natural

does the job, but it is inefficient (see Exercise H) and may or may not be what we
want. For example,

ghci> apply int " -34"

[(-34,"")]

ghci> apply int " - 34"

[(-34,"")]

Whereas we are quite happy with white space before a numeral, we may not want
any white space to appear between the minus sign and the ensuing digits. If that is
the case, then the above parser will not do. It is easy to modify the given definition
of int to give what we want:

int :: Parser Int

int = do {symbol "-"; n <- nat; return (-n)}

<|> natural

This parser is still inefficient, and a better alternative is to define

int :: Parser Int

int = do {space; f <- minus; n <- nat; return (f n)}

where

minus = (char '-' >> return negate) <|> return id

The parser minus returns a function, either negate if the first symbol is a minus
sign, or the identity function otherwise.
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Next, let us parse a list of integers, separated by commas and enclosed in square
brackets. White space is allowed before and after commas and brackets though not
of course between the digits of the integers. Here is a very short definition:

ints :: Parser [Int]

ints = bracket (manywith (symbol ",") int)

The subsidiary parser bracket deals with the brackets:

bracket :: Parser a -> Parser a

bracket p = do {symbol "[";

x <- p;

symbol "]";

return x}

The function manywith sep p acts a bit like many p but differs in that the in-
stances of p are separated by instances of sep whose results are ignored. The defi-
nition is

manywith :: Parser b -> Parser a -> Parser [a]

manywith q p = optional (somewith q p)

somewith :: Parser b -> Parser a -> Parser [a]

somewith q p = do {x <- p;

xs <- many (q >> p);

return (x:xs)}

For example,

ghci> apply ints "[2, -3, 4]"

[([2,-3,4],"")]

ghci> apply ints "[2, -3, +4]"

[]

ghci> apply ints "[]"

[([],"")]

Integers cannot be preceded by a plus sign, so parsing the second expression fails.

11.4 Grammars and expressions

The combinators described so far are sufficiently powerful for translating a struc-
tural description of what is required directly into a functional parser. Such a struc-
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tural description is provided by a grammar. We will illustrate some typical gram-
mars by looking at parsers for various kinds of arithmetic expression.

Let us start by building a parser for the type Expr, defined by

data Expr = Con Int | Bin Op Expr Expr

data Op = Plus | Minus

Here is a grammar for fully parenthesised expressions, expressed in what is known
as Backus-Naur form, or BNF for short:

expr ::= nat | '(' expr op expr ')'

op ::= '+' | '-'

nat ::= {digit}+

digit ::= '0' | '1' | ... | '9'

This grammar defines four syntactic categories. Symbols enclosed in quotes are
called terminal symbols and describe themselves; these are symbols that actually
occur in the text. There are ten possible characters for a digit, and a nat is defined
as a sequence of one or more digits. The meta-symbol {-}+ describes a non-zero
repetition of a syntactic category. Note that we do not allow an optional minus
sign before a sequence of digits, so constants are natural numbers, not arbitrary
integers. The grammar states that an expression is either a natural number or else
a compound expression consisting of an opening parenthesis, followed by an ex-
pression, followed by either a plus or minus sign, followed by another expression,
and finally followed by a closing parenthesis. It is implicitly understood in the de-
scription that white space is ignored between terminal symbols except between the
digits of a number. The grammar translates directly into a parser for expressions:

expr :: Parser Expr

expr = token (constant <|> paren binary)

constant = do {n <- nat; return (Con n)}

binary = do {e1 <- expr;

p <- op;

e2 <- expr;

return (Bin p e1 e2)}

op = (symbol "+" >> return Plus) <|>

(symbol "-" >> return Minus)

For readability we have made use of a subsidiary parser binary; the parser paren
is left as an exercise.

Now suppose we want a parser that also works for expressions that are not fully
parenthesised, things like 6-2-3 and 6-(2-3) and (6-2)-3. In such a case, (+)
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and (-) should associate to the left in expressions, as is normal with arithmetic.
One way to express such a grammar in BNF is to write

expr ::= expr op term | term

term ::= nat | '(' expr ')'

This grammar says that an expression is a sequence of one or more terms separated
by operators. A term is either a number or a parenthesised expression. In particular,
6-2-3 will be parsed as the expression 6-2 followed by a minus operator, followed
by the term 3. In other words, the same as (6-2)-3, as required. This grammar also
translates directly into a parser:

expr = token (binary <|> term)

binary = do {e1 <- expr;

p <- op;

e2 <- term;

return (Bin p e1 e2)}

term = token (constant <|> paren expr)

However, there is a fatal flaw with this parser: it falls into an infinite loop. After
ignoring initial white space the first action of expr is to invoke the parser binary,
whose first action is to invoke the parser expr again. Whoops!

Furthermore, it will not do to rewrite expr as

expr = token (term <|> binary)

because, for example,

Main*> apply expr "3+4"

[(Con 3,"+4")]

Only the first term is parsed. The problem is called the left recursion problem and
is a difficulty with all recursive parsers, functional or otherwise.

One solution is to rewrite the grammar in the following equivalent form:

expr ::= term {op term}*

The meta-symbol {-}* indicates a syntactic category that can be repeated zero or
more times. The new parser then takes the form

expr = token (term >>= rest)

rest e1 = do {p <- op;

e2 <- term;

rest (Bin p e1 e2)} <|> return e1
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The parser rest corresponds to the category {op term}* and takes an argument
(an accumulating parameter) whose value is the expression parsed so far.

Finally, let us design a parser for arithmetic expressions that may contain multipli-
cation and division, changing the definition of Op to

data Op = Plus | Minus | Mul | Div

The usual rules apply in that multiplication and division take precedence over ad-
dition and subtraction, and operations of the same precedence associate to the left.
Here is a grammar:

expr ::= term {addop term}*

term ::= factor {mulop factor}*

factor ::= nat | '(' expr ')'

addop ::= '+' | '-'

mulop ::= '*' | '/'

And here is the parser:

expr = token (term >>= rest)

rest e1 = do {p <- addop;

e2 <- term;

rest (Bin p e1 e2)}

<|> return e1

term = token (factor >>= more)

more e1 = do {p <- mulop;

e2 <- factor;

more (Bin p e1 e2)}

<|> return e1

factor = token (constant <|> paren expr)

The definitions of addop and mulop are left as exercises.

11.5 Showing expressions

Our final question is: how can we install Expr as a member of the type class Show
so that the function show is the inverse of parsing? More precisely, we want to
define show so that

parse expr (show e) = e

Recall that parse p extracts the first parse returned by apply p.



11.5 Showing expressions 289

As a warm-up, here is the instance of Show when expr is the parser for fully
parenthesised expressions involving addition and subtraction only:

instance Show Expr where

show (Con n) = show n

show (Bin op e1 e2) =

= "(" ++ show e1 ++

" " ++ showop op ++

" " ++ show e2 ++ ")"

showop Plus = "+"

showop Minus = "-"

Clear enough, but there is a problem with efficiency. Because (++) has time com-
plexity linear in the length of its left argument, the cost of evaluating show is, in
the worst case, quadratic in the size of the expression.

The solution, yet again, is to use an accumulating parameter. Haskell provides a
type synonym ShowS:

type ShowS = String -> String

and also the following subsidiary functions

showChar :: Char -> ShowS

showString :: String -> ShowS

showParen :: Bool -> ShowS -> ShowS

These functions are defined by

showChar = (:)

showString = (++)

showParen p x = if b then

showChar '(' . p . showChar ')'

else p

Now we can define show for expressions by

show e = shows e ""

where

shows (Con n) = showString (show n)

shows (Bin op e1 e2)

= showParen True (shows e1 . showSpace .

showsop op . showSpace . shows e2)

showsop Plus = showChar '+'

showsop Minus = showChar '-'
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showSpace = showChar ' '

This version, which contains no explicit concatenation operations, takes linear time
in the size of the expression.

Now suppose we want to display expressions that are not fully parenthesised. There
is no need for parentheses around left-hand expressions, but we do need parenthe-
ses around right-hand expressions. That leads to

show = shows False e ""

where

shows b (Con n) = showString (show n)

shows b (Bin op e1 e2)

= showParen p (shows False e1 . showSpace .

showsop op . showSpace . shows True e2)

This definition takes no account of associativity; for example, 1+(2+3) is not
shown as 1+2+3.

Finally, let’s tackle expressions involving all four arithmetic operations. The dif-
ference here is that:

1. With expressions e1 + e2 or e1 - e2 we will never need parentheses around
e1 (just as above), nor will we need parentheses around e2 if e2 is a compound
expression with a multiplication or division at the root.

2. On the other hand, with expressions e1 * e2 or e1 / e2 we will need paren-
theses around e1 if e1 is a compound expression with a plus or minus at the
root, and we will always need parentheses around e2.

One way to codify these rules is to introduce precedence levels (for another way,
see Exercise L). Define

prec :: Op -> Int

prec Mul = 2

prec Div = 2

prec Plus = 1

prec Minus = 1

Consider now how to define a function showsPrec with type

showsPrec :: Int -> Expr -> ShowS

such that showsPrec p e shows the expression e assuming that the parent of e is
a compound expression with an operator of precedence p. We will define show by
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show e = showsPrec 0 e ""

so the enclosing context of e is an operator with fictitious precedence 0. We can at
once define

showsPrec p (Con n) = showString (show n)

because constants are never enclosed in parentheses. The interesting case is when
we have a compound expression. We give the definition first and explain it after-
wards:

showsPrec p (Bin op e1 e2)

= showParen (p>q) (showsPrec q e1 . showSpace .

showsop op . showSpace . showsPrec (q+1) e2)

where q = prec op

We put parentheses around an expression if the parent operator has greater prece-
dence than the current one. To display the expression e1 it is therefore sufficient to
pass the current precedence as the new parent precedence. But we need parentheses
around e2 if the root operator of e2 has precedence less than or equal to q; so we
have to increment q in the second call.

Admittedly, the above definition of showsPrec requires a little thought, but there
is a payoff. The type class Show has a second method in it, namely showsPrec.
Moreover, the default definition of show is just the one above. So to install expres-
sions as a member of Show we merely have to give the definition of showsPrec.

11.6 Exercises

Exercise A

Consider the synonym

type Angle = Float

Suppose we want to define equality on angles to be equality modulo a multiple of
2π . Why can’t we use (==) for this test? Now consider

newtype Angle = Angle Float

Install Angle as a member of Eq, thereby allowing (==) as an equality test between
angles.
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Exercise B

We could have defined

newtype Parser a = Parser (String -> Maybe (a,String))

Give the monad instance of this kind of parser.

Exercise C

Prove that fail >> p = fail.

Exercise D

Could we have defined <|> in the following way?

p <|> q = Parser (\s -> parse p s ++ parse q s)

When is the result a deterministic parser? Define a function

limit :: Parser a -> Parser a

such that limit (p <|> q) is a deterministic parser, even if p and q are not.

Exercise E

Parsers are not only instances of monads, they can also be made instances of a
more restricted class, called MonadPlus, a class we could have introduced in the
previous chapter. Basically, these are monads that support choice and failure. The
Haskell definition is

class Monad m => MonadPlus m where

mzero :: m a

mplus :: m a -> m a -> m a

As examples, both [] and Maybe can be made members of MonadPlus:

instance MonadPlus [] where

mzero = []

mplus = (++)

instance MonadPlus Maybe where

mzero = Nothing

Nothing `mplus` y = y

Just x `mplus` y = Just x

Install Parser as an instance of MonadPlus.
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Exercise F

Continuing from the previous exercise, the new methods mzero and mplus are
expected to satisfy some equational laws, as is usually the case with the methods
of a type class. But currently the precise set of rules that these methods should obey
is not agreed on by the Haskell designers! Uncontroversial are the laws that mplus
should be associative with identity element mzero. That’s three equations. Another
reasonable law is the left-zero law

mzero >>= f = mzero

The corresponding right-zero law, namely

p >> mzero = mzero

can also be imposed. Does the MonadPlus instance of the list monad satisfy these
five laws? How about the Maybe monad?

Finally, the really contentious law is the following one:

(p `mplus` q) >>= f = (p >>= f) `mplus` (q >>= f)

This law is call the left-distribution law. Why can’t Maybe be installed as a member
of MonadPlus if the left-distribution is imposed?

Exercise G

Design a parser for recognising Haskell floating-point numbers. Bear in mind that
.314 is not a legitimate number (no digits before the decimal point) and that
3 . 14 is not legitimate either (because no spaces are allowed before or after the
decimal point).

Exercise H

Why are the first and second definitions of int given in the text inefficient, com-
pared to the third definition?

Exercise I

Is "(3)" a fully parenthesised expression? Is it a non-fully parenthesised expres-
sion? Haskell allows parenthesised constants:

ghci> (3)+4

7

Design a parser for fully parenthesised expressions that allows parentheses around
constants.
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Exercise J

Consider the grammar expr ::= term {op term}*. Define pair and shunt so
that the following parser is legitimate:

expr = do {e1 <- term;

pes <- many (pair op term);

return (foldl shunt e1 pes)}

Exercise K

Define the parsers addop and mulop.

Exercise L

Consider again the showing of expressions with all four arithmetic operations. The
rules for putting in parentheses come down to: we need parentheses around e1 in
e1 op e2 if op is a multiplication operator, and the root of e1 isn’t. Dually we
will need parentheses around e2 if either op is a multiplication operator or the root
of e2 isn’t. Defining

isMulOp Mul = True

isMulOp Div = True

isMulOp _ = False

construct an alternative definition of show involving a subsidiary function

showsF :: (Op -> Bool) -> Expr -> ShowS

11.7 Answers

Answer to Exercise A

Because (==) is the equality test on floating-point numbers, and different numbers
cannot be equal.

instance Eq Angle where

Angle x == Angle y = reduce x == reduce y

where

reduce x | x<0 = reduce (x + r)

| x>r = reduce (x - r)

| otherwise = x

where r = 2*pi
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Answer to Exercise B

instance Monad Parser where

return x = Parser (\s -> Just (x,s))

P >>= q = Parser (\s -> case apply p s of

Nothing -> apply q s

Just (x,s') -> Just (x,s'))

Answer to Exercise C

fail >> p

= fail >>= const p

= fail

The fact that fail >>= p = fail is immediate from the definition of fail and
the definition of p >>= q.

Answer to Exercise D

Yes, but the result is only a deterministic parser when either p or q is fail. The
function limit can be defined by

limit p = Parser (take 1 . apply p)

Answer to Exercise E

mzero = fail

mplus = (<|>)

Answer to Exercise F

Yes, both the list monad and the Maybe monad satisfy the five laws. For example,
in the list monad

mzero >>= f = concat (map f []) = [] = mzero

xs >> mzero = concat (map (const []) xs) = [] = mzero

With Maybe the left-distribution law doesn’t hold. We have

(Just x `mplus` q) >>= (\x -> Nothing)

= Just x >>= (\x -> Nothing)

= Nothing

but
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(Just x >> \x -> Nothing) `mplus`

(q >>= \x -> Nothing)

= Nothing `mplus` (q >>= \x -> Nothing)

= q >>= \x -> Nothing

The two resulting expressions are not equal (take q = undefined).

Answer to Exercise G

float :: Parser Float

float = do {ds <- some digit;

char '.';

fs <- some digit;

return (foldl shiftl 0 ds +

foldr shiftr 0 fs)}

where shiftl n d = 10*n + fromIntegral d

shiftr f x = (fromIntegral f+x)/10

The parser digit returns an Int, which has to be converted to a number (in this
case a Float).

Answer to Exercise H

White space is parsed twice. For example, calling the first version int1 and the
third int3 we have

ghci> apply int3 $ replicate 100000 ' ' ++ "3"

[(3,"")]

(1.40 secs, 216871916 bytes)

ghci> apply int1 $ replicate 100000 ' ' ++ "3"

[(3,"")]

(2.68 secs, 427751932 bytes)

Answer to Exercise I

No, according to the first grammar for expr, only binary expressions can be paren-
thesised. Yes, according to the second grammar as arbitrary expressions can be
parenthesised.

The revised grammar is

expr ::= term | '(' expr op expr ')'

term ::= nat | '(' expr ')'

The corresponding parser is
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expr = token (term <|> paren binary)

where

term = token (constant <|> paren expr)

binary = do {e1 <- expr;

p <- op;

e2 <- expr;

return (Bin p e1 e2)}

Answer to Exercise J

pair :: Parser a -> Parser b -> Parser (a,b)

pair p q = do {x <- p; y <- q; return (x,y)}

shunt e1 (p,e2) = Bin p e1 e2

Answer to Exercise K

addop = (symbol "+" >> return Plus) <|>

(symbol "-" >> return Minus)

mulop = (symbol "*" >> return Mul) <|>

(symbol "/" >> return Div)

Answer to Exercise L

show e = showsF (const False) e ""

where

showsF f (Con n) = showString (show n)

showsF f (Bin op e1 e2)

= showParen (f op) (showsF f1 e1 . showSpace .

showsop op . showSpace . showsF f2 e2)

where f1 x = isMulOp op && not (isMulOp x)

f2 x = isMulOp op || not (isMulOp x)

11.8 Chapter notes

The design of functional parsers in a monadic setting has long been a favourite
application of functional programming. Our presentation follows that of ‘Monadic
parsing in Haskell’ by Graham Hutton and Erik Meijer, which appears in The Jour-
nal of Functional Programming 8(4), 437–144, 1998.



Chapter 12

A simple equational calculator

This final chapter is devoted to a single programming project, the design and im-
plementation of a simple calculator for carrying out point-free equational proofs.
Although the calculator provides only a small subset of the facilities one might
want in an automatic proof assistant, and is highly restrictive in a number of other
ways, it will nevertheless be powerful enough to prove many of the point-free laws
described in previous chapters – well, provided we are prepared to give it a nudge
in the right direction if necessary. The project is also a case study in the use of
modules. Each component of the calculator, its associated types and functions, is
defined in an appropriate module and linked to other modules through explicit im-
port and export lists.

12.1 Basic considerations

The basic idea is to construct a single function calculate with type

calculate :: [Law] -> Expr -> Calculation

The first argument of calculate is a list of laws that may be applied. Each law
consists of a descriptive name and an equation. The second argument is an expres-
sion and the result is a calculation. A calculation consists of a starting expression
and a sequence of steps. Each step consists of the name of a law and the expression
that results by applying the left-hand side of the law to the current expression. The
calculation ends when no more laws can be applied, and the final expression is the
conclusion. The entire process is automatic, requiring no intervention on the part
of the user.
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Laws, expressions and calculations are each elements of appropriate data types to
be defined in the following sections. But for now let us plunge straight in with an
example to show the framework we have in mind.

Here are some laws (we use a smaller font to avoid breaking lines):

definition filter: filter p = concat . map (box p)
definition box: box p = if p one nil

if after dot: if p f g . h = if (p . h) (f . h) (g . h)
dot after if: h . if p f g = if p (h . f) (h . g)

nil constant: nil . f = nil
map after nil: map f . nil = nil
map after one: map f . one = one . f

map after concat: map f . concat = concat . map (map f)

map functor: map f . map g = map (f . g)
map functor: map id = id

Each law consists of a name and an equation. The name of the law is terminated by
a colon sign, and an equation consists of two expressions separated by an equals
sign. Each expression describes a function; our calculator will be one that simplifies
functional expressions only (yes, it’s a pointless calculator). Expressions are built
from constants, like one and map, and variables, like f and g. The precise syntax
will be given in due course. Note that there are no conditional laws, equations that
are valid only if some subsidiary conditions are met. That will limit what we can
do with the calculator, but it still leaves enough to be interesting.

Suppose we want to simplify the expression filter p . map f. Here is one pos-
sible calculation:

filter p . map f
= {definition filter}
concat . map (box p) . map f

= {map functor}
concat . map (box p . f)

= {definition box}
concat . map (if p one nil . f)

= {if after dot}
concat . map (if (p . f) (one . f) (nil . f))

= {nil constant}
concat . map (if (p . f) (one . f) nil)

The steps of the calculation are displayed in the conventional format with the name
of the law being invoked printed in braces between the two expressions to which
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it applies. No more laws apply to the final expression, so that is the result of the
calculation. It is certainly not simpler than the expression we started out with.

The calculator could have applied some of the laws in a different order; for exam-
ple, the definition of box could have been applied at the second step rather than at
the third. But the conclusion would have been the same. It is also possible, though
not with this particular set of laws, that an expression could be simplified to dif-
ferent conclusions by different calculations. However, at the outset we make the
decision that calculate returns just one calculation, not a tree of possible calcu-
lations.

Notice what is happening at each step. Some left-hand side of some law is matched
against some subexpression of the current expression. If a match is successful the
result is a substitution for the variables occurring in the law. For example, in the
second step, the subexpression map (box p) . map f is successfully matched
with the first map functor law, resulting in a substitution in which the variable f of
the functor law is bound to the expression box p, and the variable g is bound to f.
The result of the step involves rewriting the subexpression with the corresponding
instance of the right-hand side of the law in which each variable is replaced by
its binding expression. Matching, substitutions and rewriting are all fundamental
components of the calculator.

Now suppose that with the same set of laws as above we want to simplify the
expression map f . filter (p . f). Here is the calculation:

map f . filter (p . f)
= {definition filter}
map f . concat . map (box (p . f))

= {map after concat}
concat . map (map f) . map (box (p . f))

= {map functor}
concat . map (map f . box (p . f))

= {definition box}
concat . map (map f . if (p . f) one nil)

= {dot after if}
concat . map (if (p . f) (map f . one) (map f . nil))

= {map after nil}
concat . map (if (p . f) (map f . one) nil)

= {map after one}
concat . map (if (p . f) (one . f) nil)

Again, some of the laws could have been applied in a different order. No more laws
apply to the final expression so that is the result of the calculation.

The point about these two calculations is that the two final expressions are the
same, so we have proved
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filter p . map f = map f . filter (p . f)

This is the way we will conduct equational proofs, simplifying both sides to the
same conclusion. Rather than show two calculations, one after the other, the two
results can be pasted together by recording the first calculation and then appending
the steps of the second calculation in reverse. The main advantage of this scheme
is simplicity; we do not have to invent a new format for proofs, and we do not have
to apply laws from right to left in order to reach the desired goal. Accordingly, we
will also define a function

prove :: [Law] -> Equation -> Calculation

for proving equations.

Further considerations

It is a basic constraint of our calculator that laws are applied in one direction only,
namely from left to right. This is primarily to prevent calculations from looping.
If laws could be applied in both directions, then the calculator could oscillate by
applying a law in one direction and then immediately applying it in the reverse
direction.

Even with a left-to-right rule, some laws can lead to infinite calculations. Typically,
these laws are the definitions of recursive functions. For example, consider the
definition of iterate:

defn iterate: iterate f = cons . fork id (iterate f . f)

This is the definition of iterate expressed in point-free form. The functions cons
and fork are defined by

cons (x,xs) = x:xs

fork f g x = (f x,g x)

We have met fork before in the exercises in Chapters 4 and 6, except that we
wrote fork (f,g) instead of fork f g. In what follows, all our functions will
be curried. The appearance of the term iterate f on both sides of the law means
that any calculation that can apply the definition of iterate once can, potentially,
apply it infinitely often. But not necessarily. Here is a calculation (produced by the
calculator) that avoids infinite regress:

head . iterate f
= {defn iterate}
head . cons . fork id (iterate f . f)
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= {head after cons}
fst . fork id (iterate f . f)

= {fst after fork}
id

The calculation makes use of the two laws:

head after cons: head . cons = fst
fst after fork: first . fork f g = f

The reason non-termination is avoided is that these two laws are given preference
over definitions in calculations, a wrinkle that we will elaborate on below.

In order to appreciate just what the calculator can and cannot do, here is another
example of rendering a recursive definition into point-free form. Consider the def-
inition of concatenation:

[] ++ ys = ys

(x:xs) ++ ys = x:(xs ++ ys)

We will use cat to stand for (++). We will also need nil, cons and the function
cross (f,g), which we will now write as f * g. Thus,

(f * g) (x,y) = (f x, g y)

Finally we will need a combinator assocr (short for ‘associate-right’), defined by

assocr ((x,y),z) = (x,(y,z))

Here are the translations of the two defining equations of cat in point-free form:

cat . (nil * id) = snd

cat . (cons * id) = cons . (id * cat) . assocr

We cannot prove that cat is associative with our calculator, for that would involve
a proof by induction, but we can state it as a law:

cat associative: cat . (cat * id) = cat . (id * cat) . assocr

Continuing with this example for a bit longer, here are the two bifunctor laws of
(*):

bifunctor *: id * id = id
bifunctor *: (f * g) . (h * k) = (f . h) * (g . k)

And here is a law about assocr:

assocr law: assocr . ((f * g) * h) = (f * (g * h)) . assocr
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Now for the point of the example: our calculator cannot perform the following
valid calculation:

cat . ((cat . (f * g)) * h)
= {identity law, in backwards direction}
cat . ((cat . (f * g)) * (id . h))

= {bifunctor *, in backwards direction}
cat . (cat * id) . ((f * g) * h)

= {cat associative}
cat . (id * cat) . assocr . ((f * g) * h)

= {assoc law}
cat . (id * cat) . (f * (g * h)) . assocr

= {bifunctor *}
cat . ((id . f) * (cat . (g * h))) . assocr

= {identity law}
cat . (f * (cat . (g * h))) . assocr

The problem here is that we have to apply the identity and bifunctor laws in both
directions, and the calculator is simply not up to the task. Observe that the essence
of the proof is the simplification of the expression

cat . (id * cat) . assocr . ((f * g) * h)

in two different ways, one by using the associativity of cat, written in the form

cat associative: cat . (id * cat) . assocr = cat . (cat * id)

and one by using the assocr law. Even if we generalised calculate to return a
tree of possible calculations, it would not be obvious what expression we would
have to start out with in order to achieve the calculation above, so we abandon any
attempt to get the calculator to produce it.

It is not just the functor laws that sometimes have to be applied in both directions.
For an example, see Section 12.8. Sometimes we can get around the problem by
stating a law in a more general form than necessary, sometimes by using a hack,
and sometimes not at all. As we said at the outset, our calculator is a limited one.

In the scheme of automatic calculation that we are envisaging there are only two
degrees of freedom: the choice of which law to apply, and the choice of which
subexpression to be changed. The first degree of freedom can be embodied in the
order in which laws are presented to the calculator: if two different laws are appli-
cable, then the one earlier in the list is chosen.

Certainly some laws should be tried before others; these are laws that reduce the
complexity of intermediate expressions. Good examples are the laws f.id = f

and id.f = f. The naive definition of complexity is that there are fewer compo-
sitions on the right than on the left. It is unlikely to be a mistake to apply these
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laws as soon as the opportunity arises. Indeed the fact that id is the identity ele-
ment of composition can and will be built into the calculator, so the two identity
laws will be taken care of automatically. Similarly, early application of laws like
nil.f = nil and map f.nil = nil (and indeed the two laws used in the cal-
culation about iterate), all of which reduce the number of compositions, help
to reduce the sizes of intermediate expressions. For the sake of a word, let us call
these the simple laws.

On the other hand, some laws should be applied only as a last resort. Typically,
these laws are definitions, such as the definition of filter or iterate. For exam-
ple, in the expression

map f . concat . map (filter p)

we really don’t want to apply the definition of filter too early; rather we would
prefer to apply the map after concat law first, and only apply the definition of
filter later on if and when it becomes necessary. Apart from anything else, in-
termediate expressions will be shorter.

In summary it looks sensible to sort our laws into the simple laws, followed the
non-simple laws that are not definitions, followed by the definitions.

The second degree of freedom is represented by the order in which the subex-
pressions of a given expression are presented as candidates for instances of laws: if
laws are applicable to two different subexpressions, then the subexpression coming
earlier in the enumeration is chosen.

That still leaves open the decision whether to give preference to laws or to subex-
pressions in calculations. Do we start with a subexpression and try every law in
turn, or start with a law and see if it applies anywhere? Does it really matter which
of these alternatives is chosen? While it is true that, having applied some law at
some subexpression, the next law to be applied is likely to be at a ‘nearby’ ex-
pression, it is not clear how to formalise this notion of nearness, nor is it clear
whether it would contribute significantly to the efficiency of calculations, either in
the computation time or in the length of the result.

12.2 Expressions

At the heart of the calculator is the data type Expr of expressions. Most of the
components of the calculator are concerned with analysing and manipulating ex-
pressions in one way or the other. Expressions are built from (function) variables
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and constants, using functional composition as the basic combining form. Vari-
ables take no arguments, but constants can take any number of arguments, which
are themselves expressions. We will suppose all functions are curried and there
are no tuples; for example we write pair f g instead of pair (f,g). There is
no particular reason for avoiding tuples, it is just that most functions we have dis-
cussed in the book are curried and we don’t really need both.

To compensate, we will also allow ourselves binary infix operators, writing, for
example, f * g instead of cross f g. Except for functional composition we will
not assume any order of precedence or association between binary operators, in-
sisting that expressions involving such operators be fully parenthesised. That still
leaves open the question of the precedence of composition. Does f * g . h mean
(f * g) . h or f * (g . h)? Haskell puts composition at a high level of prece-
dence and we will adopt the same convention. Thus f * g . h will be parsed as
f * (g . h). But we will always write such expressions using parentheses to
avoid ambiguity.

Here is the proposed BNF grammar for expressions:

expr ::= simple {op simple}

simple ::= term {'.' term}*

term ::= var | con {arg}* | '(' expr ')'

arg ::= var | con | '(' expr ')'

var ::= letter {digit}

con ::= letter letter {letter | digit}*

op ::= {symbol}+

Variable names consist of single letters only, possibly followed by a single digit.
Thus f and f1 are legitimate variable names. Constant names are sequences of
at least two alphanumeric characters beginning with two letters, such as map or
lhs2tex, while operator names are nonempty sequences of non-alphanumeric
symbols, such as * and <+>. The first line says that an expression is a simple
expression, possibly followed by an operator and another simple expression. Sim-
ple expressions are compositions of terms. The remaining lines are, we trust, self-
explanatory.

Here is the definition of Expr we will use:

newtype Expr = Compose [Atom] deriving Eq

data Atom = Var VarName | Con ConName [Expr]

deriving Eq

type VarName = String

type ConName = String
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Expressions and atoms are declared to be members of the class Eq because we
will need to test expressions for equality. Later on we will install expressions as an
instance of Show for printing them at the terminal.

Here are some examples of expressions and their representations:

f . g . h => Compose [Var "f",Var "g",Var "h"]
id => Compose []
fst => Compose [Con "fst" []]
fst . f => Compose [Con "fst" [],Var "f"]
(f * g) . h => Compose [Con "*" [Var "f",Var "g"],Var "h"]
f * g . h => Compose [Con "*" [Compose [Var "f"],

Compose [Var "g",Var "h"]]]

The fact that composition is an associative operation is built into the design of
Expr. The particular constant id is reserved and will always be interpreted as the
identity element of composition.

The parsing combinators described in the previous chapter enable us to parse ex-
pressions. Following the BNF, we start with

expr :: Parser Expr

expr = simple >>= rest

where

rest s1 = do {op <- operator;

s2 <- simple;

return (Compose [Con op [s1,s2]])}

<|> return s1

An operator is a sequence of one or more operator symbols, as long as it is neither
the composition operator nor an equals sign:

operator :: Parser String

operator = do {op <- token (some (sat symbolic));

Parsing.guard (op /= "." && op /= "=");

return op}

symbolic = (`elem` opsymbols)

opsymbols = "!@#$%&*+./<=>?\\^|:-~"

The function Parsing.guard is an example of a qualified name. The Haskell
Prelude also provides a function guard, but we want the function of the same
name from a module Parsing that includes all our parsing functions. A qualified
name consists of a module name followed by a period followed by the name of the
qualified value.
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A simple expression is a sequence of one or more terms separated by composition:

simple :: Parser Expr

simple = do {es <- somewith (symbol ".") term;

return (Compose (concatMap deCompose es))}

The function concatMap f as an alternative to concat . map f is provided in
the standard prelude, and deCompose is defined by

deCompose :: Expr -> [Atom]

deCompose (Compose as) = as

Next, a term is an identifier, either a variable or a constant, possibly with arguments,
or a parenthesised expression:

term :: Parser Expr

term = ident args <|> paren expr

args = many (ident none <|> paren expr)

The parser ident takes a parser for a list of expressions and returns a parser for
expressions:

ident :: Parser [Expr] -> Parser Exp

ident args

= do {x <- token (some (sat isAlphaNum));

Parsing.guard (isAlpha (head x));

if isVar x

then return (Compose [Var x])

else if (x == "id")

then return (Compose [])

else

do {as <- args;

return (Compose [Con x as])}}

The test for being a variable is implemented by

isVar [x] = True

isVar [x,d] = isDigit d

isVar _ = False

Note that any identifier consisting entirely of alphanumeric characters and begin-
ning with a letter and which is not a variable is a constant.

Next, we make Expr and Atom instances of Show. As in the previous chapter we
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will do this by defining showsPrec p for each type. A little thought reveals that
we need three values for p:

• At top level, there is no need for parentheses. For example, we write all of
map f . map g, foo * baz, and bar bie doll without parentheses. We as-
sign p=0 to this case.

• When an expression is a composition of terms, or an operator expression, oc-
curring as an argument to a constant, we need to parenthesise it. For example,
parentheses are necessary in the expression

map (f . g) . foo f g . (bar * bar)

But we don’t have to parenthesise the middle term. We assign p=1 to this case.

• Finally, p=2 means we should parenthesise compositions of terms, operator ex-
pressions and curried functions of at least one argument, as in

map (f . g) . foo (foldr f e) g . (bar * bar)

Here goes. We start with

instance Show Expr where

showsPrec p (Compose []) = showString "id"

showsPrec p (Compose [a]) = showsPrec p a

showsPrec p (Compose as)

= showParen (p>0) (showSep " . " (showsPrec 1) as)

The last line makes use of the function showSep, defined by

showSep :: String -> (a -> ShowS) -> [a] -> ShowS

showSep sep f

= compose . intersperse (showString sep) . map f

The utility function compose is defined by compose = foldr (.) id. The func-
tion intersperse :: a -> [a] -> [a] can be found in Data.List and inter-
sperses its first argument between elements of its second. For example,

intersperse ',' "abcde" == "a,b,c,d,e"

The two occurrences of showsPrec on the right-hand sides of the second two
clauses of showsPrec refer to the corresponding function for atoms:

instance Show Atom where

showsPrec p (Var v) = showString v

showsPrec p (Con f []) = showString f

showsPrec p (Con f [e1,e2])
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| isOp f = showParen (p>0) (showsPrec 1 e1 . showSpace .

showString f . showSpace . showsPrec 1 e2)

showsPrec p (Con f es)

= showParen (p>1) (showString f . showSpace .

showSep " " (showsPrec 2) es)

isOp f = all symbolic f

The value p=2 is needed in the final clause because we want parentheses in, for ex-
ample, foo (bar bie) doll. Variables and nullary constants never need paren-
theses.

A module structure

The final step is to install these definitions, and possibly others, in a module for
expressions. Such a module will include all the functions specifically related to
expressions.

Creating such a module is not immediate because we do not yet know what other
functions on expressions we may need in other modules, modules that deal with
laws, calculations and so on. But for the moment we declare

module Expressions

(Expr (Compose), Atom (Var,Con),

VarName, ConName, deCompose, expr)

where

import Parsing

import Data.List (intersperse)

import Utilities (compose)

import Data.Char (isAlphaNum,isAlpha,isDigit)

The module Expressions has to be stored in a file Expressions.lhs to enable
Haskell to find out where it resides. It exports the types Expr and Atom along with
their constructors. It also exports the type synonyms VarName and ConName, as
well as the functions deCompose and expr, all of which are likely to be needed in
the module that deals with laws. Later on we might add more functions on expres-
sions to this export list.

Next comes the imports. We import the module Parsing that contains the parsing
functions, and also some functions from Data.List and Data.Char. We will also
set up a module Utilities containing general utility functions. A good example
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of a utility function is compose, defined above. It is not specific to expressions and
may be needed in other places, so we put it into the utilities module.

12.3 Laws

We define laws in the following way:

data Law = Law LawName Equation

type LawName = String

type Equation = (Expr,Expr)

A law consists of a descriptive name and an equation. To parse a law we define:

law :: Parser Law

law = do {name <- upto ':';

eqn <- equation;

return (Law name eqn)}

The parsing function upto c returns the string up to but not including the character
c, and then discards c if found. It wasn’t included among the parsing functions of
the previous chapter, but we will put it into the module Parsing to avoid breaking
the parser abstraction. One definition is:

upto :: Char -> Parser String

upto c

= Parser (\s ->

let (xs,ys) = break (==c) s in

if null ys then []

else [(xs,tail ys)])

The parser equation is defined by

equation :: Parser Equation

equation = do {e1 <- expr;

symbol "=";

e2 <- expr;

return (e1,e2)}

We probably don’t need to show laws, but here is the definition anyway:

instance Show Law where

showsPrec _ (Law name (e1,e2))

= showString name .
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showString ": " .

shows e1 .

showString " = " .

shows e2

The precedence number is not needed to define showPrec so it is made a don’t care
pattern. Recall that shows takes a printable value, here an expression, and returns
a function of type ShowS, a synonym for String -> String.

Finally we sort the laws:

sortLaws :: [Law] -> [Law]

sortLaws laws = simple ++ others ++ defns

where

(simple,nonsimple) = partition isSimple laws

(defns,others) = partition isDefn nonsimple

This definition makes use of a Data.List function partition that partitions a
list:

partition p xs = (filter p xs, filter (not . p) xs)

The various tests are defined by

isSimple (Law _ (Compose as1,Compose as2))

= length as1 > length as2

isDefn (Law _ (Compose [Con f es], _))

= all isVar es

isDefn _ = False

isVar (Compose [Var _]) = True

isVar _ = False

The test isVar also appears in the module Expressions though with a different
definition. There is no problem though since that function is not exported from the
expressions module.

Here is the module declaration for laws:

module Laws

(Law (Law), LawName, law, sortLaws,

Equation, equation)

where

import Expressions

import Parsing

import Data.List (partition)
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Having shown how to parse and print expressions and laws, we can now define two
functions, one a version of calculate that consumes strings rather than laws and
expressions:

simplify :: [String] -> String -> Calculation

simplify strings string

= let laws = map (parse law) strings

e = parse expr string

in calculate laws e

In a similar vein we can define

prove :: [String] -> String -> Calculation

prove strings string

= let laws = map (parse law) strings

(e1,e2) = parse equation string

in paste (calculate laws e1) (calculate laws e2)

These two functions can be put in a module Main. We put paste and calculate

into a module concerned solely with calculations, and we turn to this module next.

12.4 Calculations

Calculations are defined by

data Calculation = Calc Expr [Step]

type Step = (LawName,Expr)

Let’s begin with the key definition of the calculator, that of calculate:

calculate :: [Law] -> Expr -> Calculation

calculate laws e = Calc e (manyStep rws e)

where rws e = [(name,e')

| Law name eqn <- sortedlaws,

e' <- rewrites eqn e,

e' /= e]

sortedlaws = sortLaws laws

The function rewrites :: Equation -> Expr -> [Expr] returns a list of all
the possible ways of rewriting an expression using a given equation, a function that
will be defined in a separate module. It may be the case that an expression can
be rewritten to itself (see Exercise H), but such rewrites are disallowed because
they would lead to infinite calculations. The function rws :: Expr -> [Step]
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returns a list of all the single steps, leading to new expressions, that can arise by
using the laws in all possible ways. This list is defined by taking each law in turn
and generating all the rewrites associated with the law. That means we give pref-
erence to laws over subexpressions in calculations, resolving one of the issues we
worried about in the first section. Only experimentation will show if we have made
the right decision.

The function manyStep uses rws to construct as many steps as possible:

manyStep :: (Expr -> [Step]) -> Expr -> [Step]

manyStep rws e

= if null steps then []

else step : manyStep rws (snd step)

where steps = rws e

step = head steps

The calculation ends if rws e is the empty list; otherwise the head of the list is
used to continue the calculation.

The remaining functions of the calculations module deal with showing and pasting
calculations. We show a calculation as follows:

instance Show Calculation where

showsPrec _ (Calc e steps)

= showString "\n " .

shows e .

showChar '\n' .

compose (map showStep steps)

Each individual step is shown as follows:

showStep :: Step -> ShowS

showStep (why,e)

= showString "= {" .

showString why .

showString "}\n " .

shows e .

showChar '\n'

In order to paste two calculations together we have to reverse the steps of a calcu-
lation. For example, the calculation

Calc e0 [(why1,e1),(why2,e2),(why3,e3)]

has to be turned into
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Calc e3 [(why3,e2),(why2,e1),(why1,e0)]

In particular, the conclusion of a calculation is the first expression in the reversed
calculation. Here is how to reverse a calculation:

reverseCalc :: Calculation -> Calculation

reverseCalc (Calc e steps)

= foldl shunt (Calc e []) steps

where shunt (Calc e1 steps) (why,e2)

= Calc e2 ((why,e1):steps)

In order to paste two calculations together we first have to check that their con-
clusions are the same. If they are not, then we go ahead and paste the calculations
anyway with an indication of failure:

conc1

= {... ??? ...}

conc2

If the two conclusions are the same, we can be a little smarter than just stitch-
ing the calculations together. If the penultimate conclusion of one calculation also
matches the penultimate conclusion of the other, then we can cut out the final steps
altogether. And so on. Here, then, is how we paste two calculations:

paste :: Calculation -> Calculation -> Calculation

paste calc1@(Calc e1 steps1) calc2

= if conc1 == conc2

then Calc e1 (prune conc1 rsteps1 rsteps2)

else Calc e1 (steps1 ++ (gap,conc2):rsteps2)

where Calc conc1 rsteps1 = reverseCalc calc1

Calc conc2 rsteps2 = reverseCalc calc2

gap = "... ??? ..."

The function prune is defined by:

prune :: Expr -> [Step] -> [Step] -> [Step]

prune e ((_,e1):steps1) ((_,e2):steps2)

| e1==e2 = prune e1 steps1 steps2

prune e steps1 steps2 = rsteps ++ steps2

where Calc _ rsteps = reverseCalc (Calc e steps1)

Finally, here is the module declaration of Calculations:

module Calculations

(Calculation (Calc), Step, calculate, paste)
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where

import Expressions

import Laws

import Rewrites

import Utilities (compose)

The exports are those types and functions needed to define simplify and prove

in the main module.

12.5 Rewrites

The sole purpose of the module Rewrites is to provide a definition of the function
rewrites that appears in the definition of calculate. Recall that the expression
rewrites eqn e returns a list of all expressions that can arise by matching some
subexpression of e against the left-hand expression of eqn and replacing the subex-
pression with the appropriate instance of the right-hand expression of eqn.

The fun is in figuring out how to define rewrites. Suppose we construct a list
of all possible subexpressions of an expression. We can match the given equation
against each subexpression, get the substitutions that do the matching (of which
there may be none, one or more than one; see the section on matching below) and
compute the new subexpressions. But how do we replace an old subexpression with
a new one in the original expression? The simple answer is that we can’t, at least
not without determining alongside each subexpression its context or location in the
original expression. The new subexpression can then be inserted at this location.

Rather than introducing contexts explicitly, we take another approach. The idea
is to burrow into an expression, applying a rewrite to some subexpression at some
point, and then to build the rewritten expression as we climb back out of the burrow.
We will need a utility function anyOne that takes a function yielding a choice of
alternatives, and a list, and installs a single choice for one of the elements. The
definition is

anyOne :: (a -> [a]) -> [a] -> [[a]]

anyOne f [] = []

anyOne f (x:xs) = [x':xs | x' <- f x] ++

[x:xs' | xs' <- anyOne f xs]

For example, if f 1 = [-1,-2] and f 2 = [-3,-4], then

anyOne f [1,2] = [[-1,2],[-2,2],[1,-3],[1,-4]]
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Either one of the choices for the first element is installed, or one of the choices for
the second, but not both at the same time.

Here is our definition of rewrites:

rewrites :: Equation -> Expr -> [Expr]

rewrites eqn (Compose as) = map Compose (

rewritesSeg eqn as ++ anyOne (rewritesA eqn) as)

rewritesA eqn (Var v) = []

rewritesA eqn (Con k es)

= map (Con k) (anyOne (rewrites eqn) es)

In the first line we concatenate the rewrites for a segment of the current expression
with the rewrites for any one of its proper subexpressions. Only constants with
arguments have subexpressions. Note that the two uses of anyOne have different
types, one taking a list of atoms, and one taking a list of expressions.

It remains to define rewritesSeg:

rewritesSeg :: Equation -> [Atom] -> [[Atom]]

rewritesSeg (e1,e2) as

= [as1 ++ deCompose (apply sub e2) ++ as3

| (as1,as2,as3) <- segments as,

sub <- match (e1,Compose as2)]

The function segments splits a list into segments:

segments as = [(as1,as2,as3)

| (as1,bs) <- splits as,

(as2,as3) <- splits bs]

The utility function splits splits a list in all possible ways:

splits :: [a] -> [([a],[a])]

splits [] = [([],[])]

splits (a:as) = [([],a:as)] ++

[(a:as1,as2) | (as1,as2) <- splits as]

For example,

ghci> splits "abc"

[("","abc"),("a","bc"),("ab","c"),("abc","")]

The remaining functions apply and match have types

apply :: Subst -> Expr -> Expr
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match :: (Expr,Expr) -> [Subst]

Each will be defined in their own modules, Substitutions and Matchings. Fi-
nally, here is the module declaration for Rewrites:

module Rewrites (rewrites)

where

import Expressions

import Laws (Equation)

import Matchings (match)

import Substitutions (apply)

import Utilities (anyOne, segments)

12.6 Matchings

The sole purpose of the module Matchings is to define the function match. This
function takes two expressions and returns a list of substitutions under which the
first expression can be transformed into the second. Matching two expressions pro-
duces no substitutions if they don’t match, but possibly many if they do. Consider
matching the expression foo (f . g) against foo (a . b . c). There are four
substitutions that do the trick: f may be bound to any of the expressions

id, a, a . b, a . b . c

with four corresponding bindings for g. Although the calculator will select a sin-
gle substitution at each step, it is important to take account of multiple substi-
tutions in the process of obtaining the valid matchings. For example, in matching
foo (f . g) . bar g against foo (a . b . c) . bar c, the subexpression
f . g is matched against a . b . c, resulting in four possible substitutions.
Only when bar g is matched against bar c are three of the substitutions rejected.
A premature commitment to a single substitution for the first match may result in
a successful match being missed.

The most straightforward way of defining match (e1,e2) is to first line up the
atoms of e1 with a partition of the atoms of e2; the first atom is associated with the
first segment of the partition, the second with the second segment, and so on. The
function alignments has type

alignments :: (Expr,Expr) -> [[(Atom,Expr)]]

and does the alignments. To define it we need a function parts that partitions a list
into a given number of segments:
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parts :: Int -> [a] -> [[[a]]]

parts 0 [] = [[]]

parts 0 as = []

parts n as = [bs:bss

| (bs,cs) <- splits as,

bss <- parts (n-1) cs]

The interesting clauses are the first two: there is one partition of the empty list into
0 segments, namely the empty partition, but there are no partitions of a nonempty
list into 0 segments. For example,

ghci> parts 3 "ab"

[["","","ab"],["","a","b"],["","ab",""],

["a","","b"],["a","b",""],["ab","",""]]

Now we can define

alignments (Compose as,Compose bs)

= [zip as (map Compose bss) | bss <- parts n bs]

where n = length as

Having aligned each atom with a subexpression, we define matchA that matches
atoms with expressions:

matchA :: (Atom,Expr) -> [Subst]

matchA (Var v,e) = [unitSub v e]

matchA (Con k1 es1,Compose [Con k2 es2])

| k1==k2 = combine (map match (zip es1 es2))

matchA _ = []

Matching a variable always succeeds and results in a single substitution. Matching
two constants succeeds only if the two constants are the same. In all other cases
matchA returns an empty list of substitutions. The function matchA depends on
match, which we can now define by

match :: (Expr,Expr) -> [Subst]

match = concatMap (combine . map matchA) . alignments

The final ingredient is the function combine :: [[Subst]] -> [Subst]. Each
component list of substitutions in the argument of combine represents alternatives,
so combine has to combine alternatives by selecting, in all possible ways, one sub-
stitution from each list and then unifying the result. We will return to this function
in the module for substitutions. This completes the definition of matches. The
module declaration is
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module Matchings (match)

where

import Expressions

import Substitutions (Subst, unitSub, combine)

import Utilities (parts)

We place parts in the utilities module because it is not specific to expressions.

12.7 Substitutions

A substitution is a finite mapping associating variables with expressions. A simple
representation as an association list suffices:

type Subst = [(VarName,Expr)]

The empty and unit substitutions are then defined by

emptySub = []

unitSub v e = [(v,e)]

We can apply a substitution to an expression to get another expression by defining

apply :: Subst -> Expr -> Expr

apply sub (Compose as)

= Compose (concatMap (applyA sub) as)

applyA sub (Var v) = deCompose (binding sub v)

applyA sub (Con k es) = [Con k (map (apply sub) es)]

The function binding looks up a nonempty substitution for the binding for a vari-
able:

binding :: Subst -> VarName -> Expr

binding sub v = fromJust (lookup v sub)

The function lookup is supplied in the Haskell Prelude and returns Nothing if no
binding is found, and Just e if v is bound to e. The function fromJust is in the
library Data.Maybe and removes the wrapper Just.

Next we tackle combine. This function has to combine alternative substitutions by
selecting, in all possible ways, one substitution from each component list and then
unifying each resulting list of substitutions:

combine = concatMap unifyAll . cp
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The utility function cp, which we have seen many times before, computes the carte-
sian product of a list of lists.

The function unifyAll takes a list of substitutions and unifies them. To define it
we first show how to unify two substitutions. The result of unification is either the
union of the two substitutions if they are compatible, or no substitution if they are
incompatible. To handle the possibility of failure, we can use the Maybe type, or
simply return either an empty list or a singleton list. We choose the latter simply
because in the following section we are going to calculate another version of the
calculator, and it is simplest to stick with list-based functions:

unify :: Subst -> Subst -> [Subst]

unify sub1 sub2 = if compatible sub1 sub2

then [union sub1 sub2]

else []

In order to define compatible and union we will suppose that substitutions are
maintained as lists in lexicographic order of variable name. Two substitutions are
incompatible if they associate different expressions with one and the same variable:

compatible [] sub2 = True

compatible sub1 [] = True

compatible sub1@((v1,e1):sub1') sub2@((v2,e2):sub2')

| v1<v2 = compatible sub1' sub2

| v1==v2 = if e1==e2 then compatible sub1' sub2'

else False

| v1>v2 = compatible sub1 sub2'

The union operation is defined in a similar style:

union [] sub2 = sub2

union sub1 [] = sub1

union sub1@((v1,e1):sub1') sub2@((v2,e2):sub2')

| v1<v2 = (v1,e1):union sub1' sub2

| v1==v2 = (v1,e1):union sub1' sub2'

| v1>v2 = (v2,e2):union sub1 sub2'

The function unifyAll returns either an empty list or a singleton list:

unifyAll :: [Subst] -> [Subst]

unifyAll = foldr f [emptySub]

where f sub subs = concatMap (unify sub) subs

That completes the definitions we need. Here is the module declaration:
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module Substitutions

(Subst, unitSub, combine, apply)

where

import Expressions

import Utilities (cp)

import Data.Maybe (fromJust)

That makes nine modules in total for our calculator.

12.8 Testing the calculator

How useful is the calculator in practice? The only way to answer this question
is to try it out on some examples. We are going to record just two. The first is
the calculation we performed in Chapter 5 about pruning the matrix of choices in
Sudoku. In effect we want to prove

filter (all nodups . boxs) . expand . pruneBy boxs
= filter (all nodups . boxs) . expand

from the laws

defn pruneBy: pruneBy f = f . map pruneRow . f
expand after boxs: expand . boxs = map boxs . expand
filter with boxs: filter (p . boxs)

= map boxs . filter p . map boxs
boxs involution: boxs . boxs = id
map functor: map f . map g = map (f.g)
map functor: map id = id
defn expand: expand = cp . map cp
filter after cp: filter (all p) . cp = cp . map (filter p)
law of pruneRow: filter nodups . cp . pruneRow

= filter nodups . cp

Here is the calculation exactly as performed by the calculator, except that we have
broken some expressions across two lines, a task that should be left to a pretty-
printer. Don’t bother to study it in detail, just note the important bit towards the
end:

filter (all nodups . boxs) . expand . pruneBy boxs
= {filter with boxs}
map boxs . filter (all nodups) . map boxs . expand .
pruneBy boxs

= {defn pruneBy}
map boxs . filter (all nodups) . map boxs . expand .
boxs . map pruneRow . boxs

= {expand after boxs}
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map boxs . filter (all nodups) . map boxs . map boxs .
expand . map pruneRow . boxs

= {map functor}
map boxs . filter (all nodups) . map (boxs . boxs) . expand .
map pruneRow . boxs

= {boxs involution}
map boxs . filter (all nodups) . map id . expand .
map pruneRow . boxs

= {map functor}
map boxs . filter (all nodups) . expand . map pruneRow . boxs

= {defn expand}
map boxs . filter (all nodups) . cp . map cp . map pruneRow . boxs

= {map functor}
map boxs . filter (all nodups) . cp . map (cp . pruneRow) . boxs

= {filter after cp}
map boxs . cp . map (filter nodups) . map (cp . pruneRow) . boxs

= {map functor}
map boxs . cp . map (filter nodups . cp . pruneRow) . boxs

= {law of pruneRow}
map boxs . cp . map (filter nodups . cp) . boxs

= {... ??? ...}
map boxs . filter (all nodups) . map boxs . cp . map cp

= {defn expand}
map boxs . filter (all nodups) . map boxs . expand

= {filter with boxs}
filter (all nodups . boxs) . expand

Yes, the calculation fails. The reason is not hard to spot: we need to apply the law

expand after boxs: expand . boxs = map boxs . expand

in both directions, and the calculator simply cannot do that.

The solution is a hack. We add in the extra law

hack: map boxs . cp . map cp = cp . map cp . boxs

which is just the expand after boxs law written in the opposite direction and with
expand replaced by its definition. Then the calculator is happy, producing the con-
clusion

....
map boxs . cp . map (filter nodups . cp) . boxs

= {map functor}
map boxs . cp . map (filter nodups) . map cp . boxs

= {filter after cp}
map boxs . filter (all nodups) . cp . map cp . boxs

= {hack}
map boxs . filter (all nodups) . map boxs . cp . map cp

= {defn expand}
map boxs . filter (all nodups) . map boxs . expand
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= {filter with boxs}
filter (all nodups . boxs) . expand

In both cases the calculations were performed in a fraction of a second, so effi-
ciency does not seem to be an issue. And, apart from the hack, the calculations
pass muster, being almost exactly what a good human calculator would produce.

Improving the calculator

Our second example is more ambitious: we are going to use the calculator to derive
another version of the calculator. Look again at the definition of match. This relies
on combine, which in turn involves a messy appeal to the unification of two sub-
stitutions, with all the paraphernalia of having to test them for compatibility and
computing the union. A better idea is to compute the union of two substitutions
only when one of them is a unit substitution. Then everything becomes simpler
and probably faster. And the technique which describes this optimisation? Yes, it’s
another example of accumulating parameters. Just as an accumulating parameter
can avoid expensive uses of ++ operations, our hope is to avoid expensive unify

operations.

First of all, here is the definition of match again, written with a couple of new
subsidiary functions:

match = concatMap matchesA . alignments

matchesA = combine . map matchA

matchA (Var v,e) = [unitSub v e]

matchA (Con k1 es1,Compose [Con k2 es2])

| k1==k2 = matches (zip es1 es2)

matchA _ = []

matches = combine . map match

Note the cycle of dependencies of these functions:

match --> matchesA --> matchA --> matches --> match

These four functions are generalised as follows:

xmatch sub = concatMap (unify sub) . match

xmatchA sub = concatMap (unify sub) . matchA

xmatches sub = concatMap (unify sub) . matches

xmatchesA sub = concatMap (unify sub) . matchesA

The additional argument in each case is an accumulating parameter. Our aim will
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be to obtain new versions of these definitions, whose cycle of dependencies is the
same as the one above:

For the first calculation, we want to rewrite match in terms of xmatch, thereby
linking the two groups of definitions. To save a lot of ink, we henceforth abbreviate
concatMap to cmap. The three laws we need are

defn xmatch: xmatch s = cmap (unify s) . match
unify of empty: unify emptySub = one
cmap of one: cmap one = id

In the first law we have to write s rather than sub (why?); the second two laws are
the pointless versions of the facts that

unify emptySub sub = [sub]

cmap one xs = concat [[x] | x <- xs] = xs

The calculator is hardly stretched to give:

xmatch emptySub
= {defn xmatch}
cmap (unify emptySub) . match

= {unify of empty}
cmap one . match

= {cmap of one}
match

Let us next deal with xmatchA. Because of the awkward pattern-matching style of
definition of matchA, we simply record the following result of an easy (human)
calculation:

xmatchA sub (Var v,e) = concat [unify sub (unitSub v e)]

xmatchA sub (Con k1 es1,Compose [Con k2 es2])

| k1==k2 = xmatches sub (zip es1 es2)

xmatchA _ = []

If we introduce

extend sub v e = concat [unify sub (unitSub v e)]

then it is easy to derive

extend sub v e

= case lookup v sub of

Nothing -> [(v,e):sub]

Just e' -> if e==e' then [sub]

else []
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No elaborate compatibility test, and no general union of two substitutions. Instead,
as we promised earlier, we unify substitutions only with unit substitutions.

Having disposed of xmatchA we concentrate on the other three members of the
quartet. Just as xmatchA is defined in terms of xmatches, so xmatch can be de-
fined in terms of xmatchesA. Specifically, we want to prove that

xmatch s = cmap (xmatchesA s) . alignments

Here are the laws we need:

defn match: match = cmap matchesA . alignments
defn xmatch: xmatch s = cmap (unify s) . match
defn xmatchesA: xmatchesA s = cmap (unify s) . matchesA
cmap after cmap: cmap f . cmap g = cmap (cmap f . g)

The last, purely combinatorial law is new; we leave verification as an exercise. The
calculator produces:

xmatch s
= {defn xmatch}
cmap (unify s) . match

= {defn match}
cmap (unify s) . cmap matchesA . alignments

= {cmap after cmap}
cmap (cmap (unify s) . matchesA) . alignments

= {defn xmatchesA}
cmap (xmatchesA s) . alignments

So far, so good. That leaves us with the two remaining members of the quartet,
xmatches and xmatchesA. In each case we want to obtain recursive definitions,
ones that do not involve unify. The two functions are defined in a very similar
way, and it is likely that any calculation about one can be adapted immediately to
the other. This kind of meta-calculational thought is, of course, beyond the reaches
of the calculator.

Let us concentrate on xmatchesA. We first make xmatchesA entirely pointless,
removing the parameter s in the definition above. The revised definition is:

xmatchesA :: (Subst,[(Atom,Expr)]) -> Subst

xmatchesA = cup . (one * matchesA)

cup = cmap unify . cpp

where the combinator cpp is defined by

cpp (xs,ys) = [(x,y) | x <- xs, y <- ys]

Thus
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xmatchesA (sub,aes)

= cup ([sub],aes)

= concat [unify (s,ae) | s <- [sub],ae <- matchesA aes]

= concat [unify (sub,ae) | ae <- matchesA aes]

Apart from the fact that unify is now assumed to be a non-curried function, this is
a faithful rendition of the definition of xmatchesA in pointless form.

The new function cup has type [Subst] -> [Subst] -> [Subst]. Later on we
will exploit the fact that cup is an associative function, something that unify could
never be (why not?). As we saw in Chapter 7 the accumulating parameter technique
depends on the operation of interest being associative.

The first thing to check is that the previous calculation is still valid with the new
definitions. Suppose we set up the laws

defn match: match = cmap matchesA . alignments
defn xmatch: xmatch = cup . (one * match)
defn xmatchesA: xmatchesA = cup . (one * matchesA)

The calculator then produces

xmatch
= {defn xmatch}
cup . (one * match)

= {defn match}
cup . (one * (cmap matchesA . alignments))

= {... ??? ...}
cmap (cup . (one * matchesA)) . cpp . (one * alignments)

= {defn xmatchesA}
cmap xmatchesA . cpp . (one * alignments)

Ah, it doesn’t go through. Inspecting the gap in the calculation, it seems we need
both the bifunctor law of * and a claim relating cmap and cup:

cross bifunctor: (f * g) . (h * k) = (f . h) * (g . k)
cmap-cup: cmap (cup . (one * g)) . cpp = cup . (id * cmap g)

The calculator is then happy:

xmatch
= {defn xmatch}
cup . (one * match)

= {defn match}
cup . (one * (cmap matchesA . alignments))

= {cross bifunctor}
cup . (id * cmap matchesA) . (one * alignments)

= {cmap-cup}
cmap (cup . (one * matchesA)) . cpp . (one * alignments)

= {defn xmatchesA}
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cmap xmatchesA . cpp . (one * alignments)

That still leaves us with the claim; apart from the fact that it works we have no
reason to suppose it is true. However, we can get the calculator to prove it by using
another law that is not specific to matching. We leave the proof as Exercise M.
Define the additional laws

defn cup: cup = cmap unify . cpp
cmap-cpp: cmap (cpp . (one * f)) . cpp = cpp . (id * cmap f)

The calculator then produces

cmap (cup . (one * g)) . cpp
= {defn cup}
cmap (cmap unify . cpp . (one * g)) . cpp

= {cmap after cmap}
cmap unify . cmap (cpp . (one * g)) . cpp

= {cmap-cpp}
cmap unify . cpp . (id * cmap g)

= {defn cup}
cup . (id * cmap g)

Good. It seems that the cmap-cup law is valid, and it even might be useful again
later on. Now let us return to the main point, which is to express xmatchesA re-
cursively by two equations of the form

xmatchesA . (id * nil) = ...

xmatchesA . (id * cons) = ...

The hope is that such a definition will not involve unify.

It is not at all clear what laws we need for this purpose. Instead, we will write down
every law we can think of that might prove useful. The first group consists of our
main definitions:

defn match: match = cmap matchesA . alignments
defn matchesA: matchesA = combine . map matchA
defn xmatch: xmatch = cup . (one * match)
defn xmatchesA: xmatchesA = cup . (one * matchesA)
defn xmatchA: xmatchA = cup . (one * matchA)
defn combine: combine = cmap unifyAll . cp

The second group are some new laws about cmap:

cmap after map: cmap f . map g = cmap (f . g)
cmap after concat: cmap f . concat = cmap (cmap f)
cmap after nil: cmap f . nil = nil
cmap after one: cmap f . one = f

The third group are some new laws about map:
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map after nil: map f . nil = nil
map after one: map f . one = one . f
map after cons: map f . cons = cons . (f * map f)
map after concat: map f . concat = concat . map (map f)

The fourth group concerns cup:

cup assoc: cup . (id * cup) = cup . (cup * id) . assocl
cup ident: cup . (f * (one . nil)) = f . fst
cup ident: cup . ((one . nil) * g) = g . snd
assocl: assocl. (f * (g * h)) = ((f * g) * h) . assocl

Finally we add in various other definitions and laws:

cross bifunctor: (f * g) . (h * k) = (f . h) * (g . k)
cross bifunctor: (id * id) = id
defn cp: cp . nil = one . nil
defn cp: cp . cons = map cons . cpp . (id * cp)
defn unifyAll: unifyAll . nil = one . nil
defn unifyAll: unifyAll . cons = cup . (one * unifyAll)
unify after nil: unify . (id * nil) = one . fst

That’s a total of 30 laws (including the two map functor laws and three laws about
cmap that we haven’t repeated). We cross our fingers and hope:

xmatchesA . (id * nil)
= {defn xmatchesA}
cup . (one * matchesA) . (id * nil)

= {cross bifunctor}
cup . (one * (matchesA . nil))

= {defn matchesA}
cup . (one * (combine . map matchA . nil))

= {map after nil}
cup . (one * (combine . nil))

= {defn combine}
cup . (one * (cmap unifyAll . cp . nil))

= {defn cp}
cup . (one * (cmap unifyAll . one . nil))

= {cmap after one}
cup . (one * (unifyAll . nil))

= {defn unifyAll}
cup . (one * (one . nil))

= {cup ident}
one . fst

That’s gratifying. We have shown that xmatchesA sub [] = [sub]. However,
the recursive case cannot be established so easily. Instead we have to guess the
result and then try to prove it. Here is the desired result, first expressed in pointed
form and then in pointless form:

xmatchesA sub (ae:aes)
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= concat [xmatchesA sub' aes | sub' <- xmatchA sub ae]

xmatchesA . (id * cons)

= cmap xmatchesA . cpp . (xmatchA * one) . assocl

We can perform simplification with the right-hand side (we temporarily remove the
definitions of xmatchA and matchesA from laws2):

cmap xmatchesA . cpp . (xmatchA * one) . assocl
= {defn xmatchesA}
cmap (cup . (one * matchesA)) . cpp . (xmatchA * one) . assocl

= {cmap-cup}
cup . (id * cmap matchesA) . (xmatchA * one) . assocl

= {cross bifunctor}
cup . (xmatchA * (cmap matchesA . one)) . assocl

= {cmap after one}
cup . (xmatchA * matchesA) . assocl

Now we would like to show

xmatchesA . (id * cons)

= cup . (xmatchA * matchesA) . assocl

But unfortunately the calculator can’t quite make it. The gap appears here:

cup . ((cup . (one * matchA)) * matchesA)
= {... ??? ...}
cup . (one * (cup . (matchA * matchesA))) . assocl

The gap is easily eliminable by hand:

cup . ((cup . (one * matchA)) * matchesA)
= {cross bifunctor (backwards)}
cup . (cup * id) . ((one * matchA) * matchesA)

= {cup assoc}
cup . (id * cup) . assocl . ((one * matchA) * matchesA)

= {assocl}
cup . (id * cup) . (one * (matchA * matchesA)) . assocl

= {cross bifunctor}
cup . (one * (cup . (matchA * matchesA))) . assocl

Once again, the inability to apply laws in both directions is the culprit. Instead of
trying to force the laws into a form that would be acceptable to the calculator, we
leave it here with the comment ‘A hand-finished product!’.

To round off the example, here is the program we have calculated:

match = xmatch emptySub

xmatch sub (e1,e2)

= concat [xmatchesA sub aes | aes <- alignments (e1,e2)]
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xmatchesA sub [] = [sub]

xmatchesA sub (ae:aes)

= concat [xmatchesA sub' aes | sub' <- xmatchA sub ae]

xmatchA sub (Var v,e) = extend sub v e

xmatchA sub (Con k1 es1,Compose [Con k2 es2])

| k1==k2 = xmatches sub (zip es1 es2)

xmatchA _ = []

The missing definition is that of xmatches. But exactly the same treatment for
xmatchesA goes through for matches, and we end up with

xmatches sub [] = [sub]

xmatches sub ((e1,e2):es)

= concat [xmatches sub' es | sub' <- xmatch sub (e1,e2)]

Conclusions

The positive conclusion of these two exercises is that one can indeed get the calcu-
lator to assist in the construction of formal proofs. But there remains the need for
substantial human input to the process, to set up appropriate laws, to identify sub-
sidiary claims and to control the order in which calculations are carried out. The
major negative conclusion is that it is a significant failing of the calculator to be
unable to apply laws in both directions. The functor laws are the major culprits, but
there are others as well (see the exercises for some examples). The calculator can
be improved in a number of ways, but we leave further discussion to the exercises.

There are three other aspects worth mentioning about the calculator. Firstly, the
complete calculator is only about 450 lines of Haskell, and the improved version
is even shorter. That alone is a testament to the expressive power of functional
programming. Secondly, it does seem a viable approach to express laws as purely
functional equations and to use a simple equational logic for conducting proofs. To
be sure, some work has to be done to express definitions in point-free form, but
once this is achieved, equational logic can be surprisingly effective.

The third aspect is that, apart from parsing, no monadic code appears in the calcu-
lator. In fact, earlier versions of the calculator did use monads, but gradually they
were weeded out. One reason was that we found the code became simpler with-
out monads, without significant loss of efficiency; another was that we wanted to
set things up for the extended exercise in improving the calculator. Monads are
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absolutely necessary for many applications involving interacting with the world,
but they can be overused in places where a purely functional approach would be
smoother.

On that note, we end.

12.9 Exercises

Exercise A

Suppose we did want calculate to return a tree of possible calculations. What
would be a suitable tree to use?

Exercise B

Why should the laws

map (f . g) = map f . map g

cmap (f . g) = cmap f . map g

never be used in calculations, at least if they are given in the form above?

Exercise C

Here is a calculation, as recorded by the calculator

map f . map g h

= {map functor}

map (f . g)

Explain this strange and clearly nonsensical result. What simple change to the cal-
culator would prevent the calculation from being valid?

Exercise D

On the same general theme as the previous question, one serious criticism of the
calculator is that error messages are totally opaque. For example, both

parse law "map f . map g = map (f . g)"

parse law "map functor: map f . map g map (f . g)"

cause the same cryptic error message. What is it? What would be the effect of using
the law

strange: map f . map g = map h
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in a calculation?

Again, what change to the calculator would prevent such a law from being accept-
able?

Exercise E

The definition of showsPrec for atoms makes use of a fact about Haskell that we
haven’t needed before. And the same device is used in later calculator functions
that mix a pattern-matching style with guarded equations. What is the fact?

Exercise F

Define

e1 = foo (f . g) . g

e2 = bar f . baz g

List the expressions that rewrites (e1,e2) produces when applied to the ex-
pression foo (a . b . c) . c. Which one would the calculator pick?

Exercise G

Can the calculator successfully match foo f . foo f with the expression

foo (bar g h) . foo (bar (daz a) b) ?

Exercise H

It was claimed in the text that it is possible to apply a perfectly valid non-trivial law
that will leave some expressions unchanged. Give an example of such a law and an
expression that is rewritten to itself.

Exercise I

The function anyOne used in the definition of rewrites installs a single choice,
but why not use everyOne that installs every choice at the same time? Thus if
f 1 = [-1,-2] and f 2 = [-3,-4], then

everyOne f [1,2] = [[-1,-3],[-1,-4],[-2,-3],[-3,-4]]

Using everyOne instead of anyOne would mean that a rewrite would be applied to
every possible subexpression that matches a law. Give a definition of everyOne.
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Exercise J

How many segments of a list of length n are there? The definition of rewritesSeg
is inefficient because the empty segment appears n+1 times as the middle compo-
nent of the segments of a list of length n. That means matching with id is performed
n+1 times instead of just once. How would you rewrite segments to eliminate
these duplicates?

Exercise K

Prove that cmap f . cmap g = cmap (cmap f . g). The laws needed are:

defn cmap: cmap f = concat . map f
map functor: map f . map g = map (f.g)
map after concat: map f . concat = concat . map (map f)
concat twice: concat . concat = concat . map concat

Exercise L

The cmap-cpp law is as follows:

cmap (cpp . (one * f)) . cpp = cpp . (id * cmap f)

Prove it from the laws

cmap after cmap: cmap f . map g = cmap (f . g)
cmap after cpp: cmap cpp . cpp = cpp . (concat * concat)
cross bifunctor: (f * g) . (h * k) = (f . h) * (g . k)
map after cpp: map (f * g) . cpp = cpp . (map f * map g)
defn cmap: cmap f = concat . map f
concat after id: concat . map one = id

Can a calculator conduct the proof?

12.10 Answers

Answer to Exercise A

We would want expressions as labels of nodes and law names as labels of edges.
That gives

type Calculation = Tree Expr LawName

data Tree a b = Node a [(b,Tree a b)]
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Answer to Exercise B

They would both cause the calculator to spin off into an infinite calculation. For
example,

map foo
= {map functor}
map foo . map id

= {map functor}
map foo . map id . map id

and so on.

Answer to Exercise C

The expression map f . map g h is perfectly valid by the rules of syntax, but of
course it shouldn’t be. The evaluator does not force the restriction that each appear-
ance of one and the same constant should possess the same number of arguments.
The reason the functor law can be matched successfully against the expression is
that in the definition of matchA the function zip truncates the two arguments to
the second map to one. A better calculator should check that each constant has a
fixed arity.

Answer to Exercise D

The cryptic message is ‘head of empty list’. The first parse fails because the law is
missing its name, and the second is missing an equals sign. Use of the strange law
would cause the calculator to fall over because pattern-matching with the left-hand
side would not bind h to any expression, causing an error when the binding for h is
requested. The calculator should have checked that every variable on the right-hand
side of a law appears somewhere on the left-hand side.

Answer to Exercise E

The code for showsPrec takes the form

showsPrec p (Con f [e1,e2])

| isOp f = expression1 e1 e2

showsPrec p (Con f es)

= expression2 es

A more ‘mathematical’ style would have been to write

showsPrec p (Con f [e1,e2])

| isOp f = expression1 e1 e2

| otherwise = expression2 [e1,e2]
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showsPrec p (Con f es) = expression2 es

The point is this: in a given clause if a pattern does not match the argument, or if
it does but the guard fails to be true, the clause is abandoned and the next clause is
chosen.

Answer to Exercise F

There are two rewrites, not one:

bar (a . b . c) . baz id . c

bar (a . b) . baz c

The calculator would pick the first subexpression that matches, and that means the
first rewrite is chosen. Perhaps it would be better to arrange that rewritesSeg is
applied to longer segments before shorter ones.

Answer to Exercise G

No, not with our definition of match. They can be matched by binding f to the
expression bar (daz a) b provided g is bound to daz a and h to b, but our
definition of match does not perform full unification.

Answer to Exercise H

To take just one example out of many, consider the law

if p f g . h = if (p . h) (f . h) (g . h)

The left-hand side matches if a b c with h bound to id, and the result is again
the same expression.

Answer to Exercise I

The temptation is to define

everyOne f = cp . map f

but that doesn’t work if f returns no alternatives for some element. Instead we have
to define

everyOne :: (a -> [a]) -> [a] -> [[a]]

everyOne f = cp . map (possibly f)

possibly f x = if null xs then [x] else xs

where xs = f x

In this version, f returns a nonempty list of alternatives.
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Answer to Exercise J

There are (n+1)(n+2)/2 segments of a list of length n. The improved definition is

segments xs = [([],[],xs] ++

[(as,bs,cs)

| (as,ys) <- splits xs,

(bs,cs) <- tail (splits ys)]

Answer to Exercise K

The calculator produced:

cmap f . cmap g
= {defn cmap}
concat . map f . cmap g

= {defn cmap}
concat . map f . concat . map g

= {map after concat}
concat . concat . map (map f) . map g

= {map functor}
concat . concat . map (map f . g)

= {concat after concat}
concat . map concat . map (map f . g)

= {map functor}
concat . map (concat . map f . g)

= {defn cmap}
concat . map (cmap f . g)

= {defn cmap}
cmap (cmap f . g)

Answer to Exercise L

The human proof is:

cmap (cpp . (one * g)) . cpp
= {cmap after cmap (backwards)}
cmap cpp . map (one * g) . cpp

= {map after cpp}
cmap cpp . cpp . (map one * map g)

= {cmap after cpp}
cpp . (concat * concat) . (map one * map g)

= {cross bifunctor}
cpp . ((concat . map one) * concat (map g))

= {defn cmap (backwards)}
cpp . ((concat . map one) * cmap g)

= {concat after id}
cpp . (id * cmap g)

No, the calculation cannot be performed automatically. The cmap after cmap
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law cannot be installed in the backwards direction without causing the calculator
to loop (see Exercise B).

12.11 Chapter notes

The calculator in this chapter is based on an undocumented theorem prover by
Mike Spivey, a colleague at Oxford. Ross Paterson of City University, London, has
produced a version with built-in functor laws that can be applied in both directions
when necessary.

One state-of-the-art proof assistant is Coq; see http://coq.inria.fr/.
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