How the BigDecimal class
helps Java get
its arithmetic right

When you use Java for simple business arithmetic, you may be surprised to
discover that Java doesn’t always produce the right answers. If, for example,
you use the double data type for an invoice’s subtotal, sales tax, and total, your
arithmetic expressions may deliver inaccurate results. I’ll illustrate this in a
moment.

The problem is that floating-point numbers can’t represent all decimal
numbers with complete accuracy. Then, when you round the results to two
decimal places, you can get errors. The best solution in a case like this is to
use Java’s BigDecimal class, and that’s what you’ll learn to do in this
document.

An Invoice appliCationcccccerrirmmrrnisme s ————— 2
The code for the aPPICALIONc..iiiiiiiiieiieieete ettt sttt e s e neees 2
The math problems in the Invoice appliCAtioONcccvevuiriieriirieiieieeee e 4
How to use the BigDecimal Classc.ccccumirvmmmmnssmsnnnsmssmnsessnssssssssssnnens 6
The constructors and methods of the BigDecimal classcocovererenenenencnenenieieeee 6
How to use BigDecimal arithmetic in the Invoice application..........cccceeeeerererererenenenenenne 8
L0 0 = 10

This article has been excerpted from Murach’s Java SE 6, a book
by Joel Murach and Andrea Steelman. One of the unique features of
that book is its “paired pages” presentation method in which each topic
is presented in two pages, with a text page on the left and the related
figure page on the right.

To get the most from this “paired pages” method as you read this
article, please place the left and right pages side-by-side, whether you
view them in the Adobe Reader or print them out. You’ll soon find that
this approach not only helps you learn faster but also works great for
reference.

Then, to learn more about this book, please go to our web site.
There, you can find out how this book differs from other Java books,
view the table of contents, download sample applications, and more.

lll MIKE MURACH & ASSOCIATES, INC.

1-800-221-5528 * (559) 440-9071 * Fax: (559) 440-0963
murachbooks @murach.com ¢« www.murach.com
Copyright © 2007 Mike Murach & Associates. All rights reserved.

http://www.murach.com/books/jse6/index.htm
http://www.murach.com/books/jse6/index.htm
http://www.murach.com/books/jse6/toc.htm
http://www.murach.com/books/jse6/download.htm
mailto:murachbooks@murach.com
http://www.murach.com

Excerpt from Murach’s Java SE 6

An Invoice application

To illustrate the math problems that are common when floating-point values
are used for business applications, figure 1 presents a simple console application
that calculates several values after the user enters an invoice subtotal. You can
see the results for one user entry in this figure. This time, the arithmetic is
correct.

The code for the application

Figure 1 also presents all of the Java code for this application. Here, the
shaded code identifies the double values and arithmetic expressions that are
used to do the math that this application requires. After those statements are
executed, the results are given percent and currency formats, which round the
results. Then, the results are displayed on the console.

You might notice that this application uses the Scanner class that became
available with Java 1.5. You might also notice that this application doesn’t
provide for the exception that’s thrown if the user doesn’t enter a valid number
at the console. Even in this simple form, though, the application will illustrate
the math problems that are common with floating-point arithmetic.

How the BigDecimal class helps Java get its arithmetic right

The console for the formatted Invoice application

(N\
Enter subtotal: 150.50
Discount percent: 10%
Discount amount: $15.05
Total before tax: $135.45
Sales tax: $6.77
Invoice total: $142.22
i ? .
L Continue? (y/n):)

The code for the formatted Invoice application

import java.util.Scanner;
import java.text.NumberFormat;

public class InvoiceApp

percent.format (discountPercent) + "\n"
currency. format (discountAmount) + "\n"
currency.format (totalBeforeTax) + "\n"
currency.format (salesTax) + "\n"

{
public static void main(String[] args)
{
// create a Scanner object and start while loop
Scanner sc = new Scanner (System.in);
String choice = "y";
while (choice.equalsIgnoreCase("y"))
{
// get the input from the user
System.out.print ("Enter subtotal: ");
double subtotal = sc.nextDouble();
// calculate the results
double discountPercent = 0.0;
if (subtotal >= 100)
discountPercent = .1;
else
discountPercent = 0.0;
double discountAmount = subtotal * discountPercent;
double totalBeforeTax = subtotal - discountAmount;
double salesTax = totalBeforeTax * .05;
double total = totalBeforeTax + salesTax;
// format and display the results
NumberFormat currency = NumberFormat.getCurrencyInstance() ;
NumberFormat percent = NumberFormat.getPercentInstance() ;
String message =
"Discount percent: " +
+ "Discount amount: " +
+ "Total before tax: " +
+ "Sales tax: L
+ "Invoice total: L

currency. format (total) + "\n";

System.out.println (message) ;

// see if the user wants to continue
System.out.print ("Continue? (y/n): ");

choice = sc.next();
System.out.println() ;

}
Figure 1

An Invoice application that will illustrate some arithmetic problems

Excerpt from Murach’s Java SE 6

The math problems in the Invoice application

The console at the top of figure 2 shows more output from the Invoice
application in figure 1. But wait! The results for a subtotal entry of 100.05 don’t
add up. If the discount amount is $10.00, the total before tax should be $90.05,
but it’s $90.04. Similarly, the sales tax for a subtotal entry of .70 is shown as
$0.03, so the invoice total should be $0.73, but it’s shown as is $0.74. What’s
going on?

To analyze data problems like this, you can add debugging statements like
the ones in this figure. These statements display the unformatted values of the
result fields so you can see what they are before they’re formatted and rounded.
This is illustrated by the console at the bottom of this figure, which shows the
results for the same entries as the ones in the console at the top of this figure.

If you look at the unformatted results for the first entry (100.05), you can
easily see what’s going on. Because of the way NumberFormat rounding works,
the discount amount value of 10.005 and the total before tax value of 90.045
aren’t rounded up. However, the invoice total value of 94.54725 is rounded up.
With this extra information, you know that everything is working the way it’s
supposed to, even though you’re not getting the results you want.

Now, if you look at the unformatted results for the second entry (.70), you
can see another type of data problem. In this case, the sales tax is shown as
.034999999999999996 when it should be .035. This happens because floating-
point numbers aren’t able to exactly represent some decimal fractions. As a
result, the formatted value is $0.03 when it should be rounded up to $0.04.
However, the unformatted invoice total is correctly represented as 0.735, which
is rounded to a formatted $0.74. And here again, it looks like Java can’t add.

Although trivial errors like these are acceptable in many applications, they
are unacceptable in most business applications. And for those applications, you
need to provide solutions that deliver the results that you want. (Imagine getting
an invoice that didn’t add up!)

One solution is to write your own code that does the rounding so you don’t
need to use the NumberFormat class to do the rounding for you. However, that
still doesn’t deal with the fact that some decimal fractions can’t be accurately
represented by floating-point numbers. To solve that problem as well as the
other data problems, the best solution is to use the BigDecimal class that you’ll
learn about next.

How the BigDecimal class helps Java get its arithmetic right

Output data that illustrates a problem with the Invoice application
(Enter subtotal: 100.05)
Discount percent: 10%

Discount amount: $10.00

Total before tax: $90.04

Sales tax: $4.50

Invoice total: $94.55

Continue? (y/n): y

Enter subtotal: .70
Discount percent: 0%
Discount amount: $0.00
Total before tax: $0.70
Sales tax: $0.03
Invoice total: $0.74

Continue? (y/n):
\ Y J

Statements that you can add to the program to help analyze this problem

// debugging statements that display the unformatted fields
// these are added before displaying the formatted results

String debugMessage = "\nUNFORMATTED RESULTS\n"
+ "Discount percent: " + discountPercent + "\n"
+ "Discount amount: " + discountAmount + "\n"
+ "Total before tax: " + totalBeforeTax + "\n"
+ "Sales tax: " + salesTax + "\n"
+ "Invoice total: " + total + "\n"

+ "\nFORMATTED RESULTS";
System.out.println(debugMessage) ;

The unformatted and formatted output data

(N\
Enter subtotal: 100.05

UNFORMATTED RESULTS
Discount percent: 0.1
Discount amount: 10.005
Total before tax: 90.045
Sales tax: 4.50225
Invoice total: 94.54725

FORMATTED RESULTS
Discount percent: 10%
Discount amount: $10.00
Total before tax: $90.04
Sales tax: $4.50
Invoice total: $94.55

Continue? (y/n): y
Enter subtotal: .70

UNFORMATTED RESULTS
Discount percent: 0.
Discount amount: 0.
Total before tax: 0.7

Sales tax: 0.034999999999999996
Invoice total: 0.735

0
0

FORMATTED RESULTS
Discount percent: 0%
Discount amount: $0.00
Total before tax: $0.70
Sales tax: $0.03
Invoice total: $0.74

Continue? (y/n):
\. J

Figure 2 The math problems in the Invoice application

Excerpt from Murach’s Java SE 6

How to use the BigDecimal class

The BigDecimal class is designed to solve two types of problems that are
associated with floating-point numbers. First, the BigDecimal class can be used
to exactly represent decimal numbers. Second, it can be used to work with
numbers that have more than 16 significant digits. If you haven’t ever used this
class, it’s one that you should master and use for many business applications.

The constructors and methods of the BigDecimal
class

Figure 3 summarizes a few of the constructors that you can use with the
BigDecimal class. These constructors accept an int, double, long, or string
argument and create a BigDecimal object from it. Because floating-point
numbers are limited to 16 significant digits and because these numbers don’t
always represent decimal numbers exactly, it’s often best to construct
BigDecimal objects from strings rather than doubles.

Once you create a BigDecimal object, you can use its methods to work with
the data. In this figure, for example, you can see some of the BigDecimal
methods that are most useful in business applications. Here, the add, subtract,
multiply, and divide methods let you perform those operations. The compareTo
method lets you compare the values in two BigDecimal objects. And the
toString method converts the value of a BigDecimal object to a string.

This figure also includes the setScale method, which lets you set the number
of decimal places (scale) for the value in a BigDecimal object as well as the
rounding mode. For example, you can use the setScale method to return a
number that’s rounded to two decimal places like this:

salesTax = salesTax.setScale(2, RoundingMode.HALF UP) ;

In this example, RoundingMode.HALF_UP is a value in the RoundingMode
enumeration that’s summarized in this figure. The scale and rounding mode
arguments work the same for the divide method.

In case you aren’t familiar with enumerations, they are similar to classes.
For our purposes right now, you can code the rounding mode as HALF_UP
because it provides the type of rounding that is normal for business applications.
However, you need to import the RoundingMode enumeration at the start of the
application unless you want to qualify the rounding mode like this:

java.math.RoundingMode.HALF UP

If you look at the API documentation for the BigDecimal class, you’ll see
that it provides several other methods that you may want to use. This class also
provides many other features that you may want to become more familiar with.
But the constructors and methods in this figure will get you started right.

How the BigDecimal class helps Java get its arithmetic right

The BigDecimal class

java.math.BigDecimal

Constructors of the BigDecimal class

Constructor Description

BigDecimal (int) Creates a new BigDecimal object with the specified int value.

BigDecimal (double) Creates a new BigDecimal object with the specified double value.

BigDecimal (long) Creates a new BigDecimal object with the specified long value.

BigDecimal (String) Creates a new BigDecimal object with the specified String object. Because
of the limitations of floating-point numbers, it’s often best to create
BigDecimal objects from strings.

Methods of the BigDecimal class

Methods Description

add (value) Returns the value of this BigDecimal object after the specified BigDecimal
value has been added to it.

compareTo (value) Compares the value of the BigDecimal object with the value of the
specified BigDecimal object and returns -1 if less, 0 if equal, and 1 if
greater.
divide(value, scale, Returns the value of this BigDecimal object divided by the value of the
rounding-mode) specified BigDecimal object, sets the specified scale, and uses the specified

rounding mode.

multiply (value) Returns the value of this BigDecimal object multiplied by the specified
BigDecimal value.

setScale(scale, Sets the scale and rounding mode for the BigDecimal object.
rounding-mode)

subtract (value) Returns the value of this BigDecimal object after the specified BigDecimal
value has been subtracted from it.

toString () Converts the BigDecimal value to a string.

The RoundingMode enumeration

java.math.RoundingMode

Two of the values in the RoundingMode enumeration

Description

HALF_ UP Round towards the “nearest neighbor” unless both neighbors are
equidistant, in which case round up.

HALF_EVEN Round towards the “nearest neighbor” unless both neighbors are
equidistant, in which case round toward the even neighbor.

Description

e The BigDecimal class provides a way to perform accurate decimal calculations in Java.
It also provides a way to store numbers with more than 16 significant digits.

e You can pass a BigDecimal object to the format method of a NumberFormat object, but
NumberFormat objects limit the results to 16 significant digits.

Figure 3 The constructors and methods for the BigDecimal class

Excerpt from Murach’s Java SE 6

How to use BigDecimal arithmetic in the Invoice
application

Figure 4 shows how you can use BigDecimal arithmetic in the Invoice
application. To start, look at the console output when BigDecimal is used. As
you can see, this solves both the rounding problem and the floating-point
problem so it now works the way you want it to.

To use BigDecimal arithmetic in the Invoice application, you start by
coding an import statement that imports all of the classes and enumerations of
the java.math package. This includes both the BigDecimal class and the
RoundingMode enumeration. Then, you use the constructors and methods of the
BigDecimal class to create the BigDecimal objects, do the calculations, and
round the results when necessary.

In this figure, the code starts by constructing BigDecimal objects from the
subtotal and discountPercent variables, which are double types. To avoid
conversion problems, though, the toString method of the Double class is used to
convert the subtotal and discountPercent values to strings that are used in the
BigDecimal constructors.

Since the user may enter subtotal values that contain more than two decimal
places, the setScale method is used to round the subtotal entry after it has been
converted to a BigDecimal object. However, since the discountPercent variable
only contains two decimal places, it isn’t rounded. From this point on, all of the
numbers are stored as BigDecimal objects and all of the calculations are done
with BigDecimal methods.

In the statements that follow, only discount amount and sales tax need to be
rounded. That’s because they’re calculated using multiplication, which can
result in extra decimal places. In contrast, the other numbers (total before tax
and total) don’t need to be rounded because they’re calculated using subtraction
and addition. Once the calculations and rounding are done, you can safely use
the NumberFormat objects and methods to format the BigDecimal objects for
display.

When working with BigDecimal objects, you may sometimes need to create
one BigDecimal object from another BigDecimal object. However, you can’t
supply a BigDecimal object to the constructor of the BigDecimal class. Instead,
you need to call the toString method from the BigDecimal object to convert the
BigDecimal object to a String object. Then, you can pass that String object as
the argument of the constructor as illustrated by the last statement in this figure.

Is this a lot of work just to do simple business arithmetic? Relative to some
other languages, you would have to say that it is. In fact, it’s fair to say that this
is a weakness of Java when it is compared to languages that provide a decimal
data type. Once you get the hang of working with the BigDecimal class, though,
you should be able to solve all of your floating-point and rounding problems
with relative ease.

How the BigDecimal class helps Java get its arithmetic right

The Invoice application output when BigDecimal arithmetic is used
[Enter subtotal: 100.05)

Subtotal: $100.05

Discount percent: 10%

Discount amount: $10.01

Total before tax: $90.04

Sales tax: $4.50

Invoice total: $94.54

Continue? (y/n): y

Enter subtotal: .70

Subtotal: $0.70
Discount percent: 0%

Discount amount: $0.00
Total before tax: $0.70
Sales tax: $0.04
Invoice total: $0.74

Continue? (y/n):
_ y/ J

The import statement that’s required for BigDecimal arithmetic

import java.math.*; // imports all classes and enumerations in java.math

The code for using BigDecimal arithmetic in the Invoice application

// convert subtotal and discount percent to BigDecimal
BigDecimal decimalSubtotal = new BigDecimal (Double.toString(subtotal)) ;
decimalSubtotal = decimalSubtotal.setScale(2, RoundingMode.HALF UP) ;
BigDecimal decimalDiscountPercent =

new BigDecimal (Double.toString(discountPercent)) ;

// calculate discount amount
BigDecimal discountAmount =

decimalSubtotal.multiply (decimalDiscountPercent) ;
discountAmount = discountAmount.setScale(2, RoundingMode.HALF UP);

// calculate total before tax, sales tax, and total

BigDecimal totalBeforeTax = decimalSubtotal.subtract (discountAmount) ;
BigDecimal salesTaxPercent = new BigDecimal (".05");

BigDecimal salesTax = salesTaxPercent.multiply(totalBeforeTax) ;
salesTax = salesTax.setScale(2, RoundingMode.HALF UP) ;

BigDecimal total = totalBeforeTax.add(salesTax) ;

How to create a BigDecimal object from another BigDecimal object
BigDecimal total2 = new BigDecimal (total.toString()):;

Description

e With this code, all of the result values are stored in BigDecimal objects, and all of the
results have two decimal places that have been rounded correctly when needed.

e Once the results have been calculated, you can use the NumberFormat methods to format
the values in the BigDecimal objects without any fear of rounding problems. However,
the methods of the NumberFormat object limits the results to 16 significant digits.

Figure 4 How to use BigDecimal arithmetic in the Invoice application

10 Excerpt from Murach’s Java SE 6

Summary

If you haven’t used the BigDecimal class before, I hope this article has
demonstrated the need for it and will get you started using it. Also, if you like
this article and our “paired pages” presentation method, I hope it will encourage
you to review our Java SE 6 book or some of our other books.

Unlike many Java books, Murach’s Java SE 6 is designed to teach you the
essential skills for developing business applications. That’s why it shows you
how to use the BigDecimal class, which isn’t even mentioned in many
competing books. That’s also why it shows you how to do data validation at a
professional level and how to develop three-tier database applications, two more
essentials that are commonly omitted or neglected in competing books.

http://www.murach.com/books/jse6/index.htm

