
i

TRAINING & REFERENCE

MIKE MURACH & ASSOCIATES, INC.
1-800-221-5528 • (559) 440-9071 • Fax: (559) 440-0963
murachbooks@murach.com • www.murach.com
Copyright © 2008 Mike Murach & Associates. All rights reserved.

murach’s
Javaservlets and

JSP 2ND EDITION

(Chapter 11)

Thanks for downloading this chapter from Murach’s Java Servlets and JSP (2nd Edition). We
hope it will show you how easy it is to learn from any Murach book, with its paired-pages
presentation, its “how-to” headings, its practical coding examples, and its clear, concise style.

To view the full table of contents for this book, you can go to our web site. From there, you can
read more about this book, you can find out about any additional downloads that are available,
and you can review our other books for professional developers.

Thanks for your interest in our books!

http://www.murach.com/books/jsp2/index.htm
http://www.murach.com/books/jsp2/toc.htm
mailto:murachbooks@murach.com
http://www.murach.com

i

Contents
Introduction xvii

Section 1 Introduction to servlet and JSP programming

Chapter 1 An introduction to web programming with Java 3
Chapter 2 How to install and use Tomcat 29
Chapter 3 How to use the NetBeans IDE 61

Section 2 Essential servlet and JSP skills

Chapter 4 A crash course in HTML 105
Chapter 5 How to develop JavaServer Pages 137
Chapter 6 How to develop servlets 173
Chapter 7 How to structure a web application with the MVC pattern 201
Chapter 8 How to work with sessions and cookies 243
Chapter 9 How to use standard JSP tags with JavaBeans 287

Chapter 10 How to use the JSP Expression Language (EL) 311
Chapter 11 How to use the JSP Standard Tag Library (JSTL) 337
Chapter 12 How to use custom JSP tags 375

Section 3 Essential database skills

Chapter 13 How to use MySQL as the database management system 415
Chapter 14 How to use JDBC to work with a database 441

Section 4 Advanced servlet and JSP skills

Chapter 15 How to use JavaMail to send email 487
Chapter 16 How to use SSL to work with a secure connection 513
Chapter 17 How to restrict access to a web resource 531
Chapter 18 How to work with HTTP requests and responses 555
Chapter 19 How to work with listeners 583
Chapter 20 How to work with filters 599

Section 5 The Music Store web site

Chapter 21 An introduction to the Music Store web site 623
Chapter 22 The Download application 649
Chapter 23 The Cart application 661
Chapter 24 The Admin application 683

Resources

Appendix A How to set up your computer for this book 703
Index 719

Judy
Highlight

Chapter 11 How to use the JSP Standard Tag Library (JSTL) 337

11

How to use the JSP
Standard Tag Library (JSTL)
In chapter 10, you learned how to use the Expression Language (EL) that was
introduced with JSP 2.0 to reduce the amount of scripting in your applications.
Now, in this chapter, you’ll learn how to use the JSP Standard Tag Library
(JSTL) to further reduce the amount of scripting in your applications. In fact,
for most applications, using JSTL and EL together makes it possible to remove
all scripting.

An introduction to JSTL... 338
The JSTL libraries .. 338
How to make the JSTL JAR files available to your application 338
How to code the taglib directive ... 338
How to code a JSTL tag ... 338
How to view the documentation for a library ... 340

How to work with the JSTL core library 342
How to use the url tag ... 342
How to use the forEach tag .. 344
How to use the forTokens tag ... 346
Four more attributes for looping ... 348
How to use the if tag ... 350
How to use the choose tag .. 352
How to use the import tag .. 354
Other tags in the JSTL core library .. 356

The Cart application ... 358
The user interface ... 358
The code for the business classes ... 360
The code for the servlets and JSPs ... 364

Perspective .. 372

338 Section 2 Essential servlet and JSP skills

An introduction to JSTL

The JSP Standard Tag Library (JSTL) provides tags for common tasks that
need to be performed in JSPs.

The JSTL libraries

Figure 11-1 shows the five tag libraries that are included with JSTL 1.1. In
this chapter, you’ll learn the details for working with the common tags in the
core library. This library contains tags that you can use to encode URLs, loop
through collections, and code if/else statements. If you use the MVC pattern, the
tags in the core library are often the only JSTL tags you’ll need as you develop
your JSPs. If necessary, though, you can use the other four libraries to work
with internationalization, databases, XML, or strings.

How to make the JSTL JAR files available to your
application

Before you can use JSTL tags within an application, you must make the
jstl.jar and standard.jar files available to the application. With the NetBeans
IDE, for example, you can add the JSTL 1.1 library to the application as shown
in figure 3-17 in chapter 3. Then, the jstl.jar and standard.jar files will be shown
beneath the Libraries folder in the Projects window.

How to code the taglib directive

Before you can use JSTL tags within a JSP, you must code a taglib directive
to specify the URI and prefix for the JSTL library. In this figure, for example,
the taglib directive specifies the URI for the JSTL core library with a prefix of c,
which is the prefix that’s typically used for this library. In fact, all of the ex-
amples in this chapter assume that the page includes a taglib directive like this
one before the JSTL tags are used. Although you can use different prefixes than
the ones in this figure, we recommend using the standard prefixes.

How to code a JSTL tag

Once you’ve added the appropriate JAR files to your application and used
the taglib directive to identify a library, you can code a JSTL tag. In this figure,
for example, the url tag is used to encode a URL that refers to the index.jsp file
in the web applications root directory. Note how the prefix for this tag is c. Also
note how this tag looks more like an HTML tag, which makes it easier to code
and read than the equivalent JSP script, especially for web designers and other
nonprogrammers who are used to HTML syntax.

Chapter 11 How to use the JSP Standard Tag Library (JSTL) 339

The primary JSTL libraries
Name Prefix URI Description

Core c http://java.sun.com/jsp/jstl/core Contains the core tags for common
tasks such as looping and if/else
statements.

Formatting fmt http://java.sun.com/jsp/jstl/fmt Provides tags for formatting numbers,
times, and dates so they work correctly
with internationalization (i18n).

SQL sql http://java.sun.com/jsp/jstl/sql Provides tags for working with SQL
queries and data sources.

XML x http://java.sun.com/jsp/jstl/xml Provides tags for manipulating XML
documents.

Functions fn http://java.sun.com/jsp/jstl/functions Provides functions that can be used to
manipulate strings.

The NetBeans IDE after the JSTL 1.1 library has been added

The taglib directive that specifies the JSTL core library
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

An example that uses JSTL to encode a URL
JSP code with JSTL
<a href="<c:url value='/index.jsp' />">Continue Shopping

Equivalent script
<a href="<%=response.encodeURL("index.jsp")%>">Continue Shopping

Description
• The JSP Standard Tag Library (JSTL) provides tags for common JSP tasks.

• Before you can use JSTL tags within an application, you must make the jstl.jar and
standard.jar files available to the application. To do that for NetBeans, you can add the
JSTL 1.1 class library to your project as in figure 3-17 in chapter 3. Otherwise, you can
consult the documentation for your IDE.

• Before you can use JSTL tags within a JSP, you must code a taglib directive that identi-
fies the JSTL library and its prefix.

Figure 11-1 An introduction to JSTL

340 Section 2 Essential servlet and JSP skills

How to view the documentation for a library

As you progress through this chapter, you’ll learn how to code the tags in
the JSTL core library that you’ll use most of the time. If necessary, though, you
can view the documentation for any of the tags in this library as shown in figure
11-2.

If, for example, you want to learn more about the url tag in the core library,
you can click on the “JSTL core” link in the upper left window. Then, you can
click on the “c:url” link in the lower left window to display the documentation
for this tag in the window on the right. This documentation provides a general
description of the tag, a list of all available attributes for the tag, and detailed
information about each of these attributes.

You can also use this documentation to learn more about the JSTL libraries
that aren’t covered in this chapter. If, for example, you want to learn more about
the formatting library for working with internationalization, you can click on the
“JSTL fmt” link in the upper left window. Then, you can click on the tags in the
lower left window to display information in the window on the right. Inciden-
tally, i18n is sometimes used as an abbreviation for internationalization because
internationalization begins with an i, followed by 18 letters, followed by an n.

Chapter 11 How to use the JSP Standard Tag Library (JSTL) 341

The URL for the JSTL 1.1 documentation
http://java.sun.com/products/jsp/jstl/1.1/docs/tlddocs/index.html

A browser that displays the JSTL documentation

Description
• To view the documentation for the JSTL 1.1 library, use your browser to visit the URL

shown above. Then, you can use the upper left window to select the JSTL library, the
lower left window to select the tag, and the window on the right to get information about
the tag.

Figure 11-2 How to view the documentation for a library

342 Section 2 Essential servlet and JSP skills

How to work with the JSTL core library

Now that you have a general idea of how JSTL works, you’re ready to learn
the details for coding the most commonly used JSTL tags. All of these tags are
available from the JSTL core library.

How to use the url tag

In chapter 8, you learned how to encode the URLs that are returned to the
client so your application can track sessions even if the client doesn’t support
cookies. Since you usually want your application to do that, you typically
encode the URLs in your applications. Without JSTL, though, this requires
calling the encodeURL method of the response object from a script within a
JSP. With JSTL, you can use the url tag to encode URLs without using script-
ing.

Figure 11-3 shows how to use the url tag. Here, the first example shows the
same url tag that’s presented in figure 11-1. This url tag encodes a relative URL
that refers to the index.jsp file in the root directory for the web application. Its
value attribute is used to specify the URL.

When you specify JSTL tags, you need to be aware that they use XML
syntax, not HTML syntax. As a result, you must use the exact capitalization
shown in this example for the name of the tag and its attributes. In addition,
attributes must be enclosed in either single quotes or double quotes. In this
figure, I have used both single and double quotes to differentiate between the
href attribute of the A tag (which uses double quotes), and the value attribute of
the url tag (which uses single quotes). I think this improves the readability of
this code.

The second example shows how to use the url tag to encode a URL that
includes a parameter named productCode with a hard-coded value of 8601.
Then, the third example shows how to use the url tag to encode a URL that
includes a parameter named productCode with a value that’s supplied by an EL
expression. Here, the EL expression gets the code property of a Product object
named product.

The third example also shows how you can code a JSTL param tag within a
url tag to specify the name and value for a parameter. The benefit of using this
tag is that it automatically encodes any unsafe characters in the URL, such as
spaces, with special characters, such as plus signs.

If you compare the url tags in these examples with the equivalent scripting,
I think you’ll agree that the JSTL tags are easier to code, read, and maintain. In
addition, the syntax is closer to HTML than scripting, which makes it easier for
web designers and other nonprogrammers to use.

Chapter 11 How to use the JSP Standard Tag Library (JSTL) 343

An example that encodes a URL
JSP code with JSTL
<a href="<c:url value='/index.jsp' />">Continue Shopping

Equivalent scripting
<a href="<%=response.encodeURL("index.jsp")%>">Continue Shopping

An example that adds a parameter to the URL
JSP code with JSTL
<a href="<c:url value='/cart?productCode=8601' />">
 Add To Cart

Equivalent scripting
<a href="<%=response.encodeURL("cart?productCode=8601")%>">
 Add To Cart

An example that uses EL to specify the value of a parameter value
JSP code with JSTL
<a href="<c:url value='/cart?productCode=${product.code}' />">
 Add To Cart

The same code with the JSTL param tag
<a href="
 <c:url value='/cart'>
 <c:param name='productCode' value='${product.code}' />
 </c:url>
">Add To Cart

Equivalent scripting
<%@ page import="business.Product" %>
<%
 Product product = (Product) session.getAttribute("product");
 String cartUrl = "cart?productCode=" + product.getCode();
%>
<a href="<%=response.encodeURL(cartUrl)%>">Add To Cart

Description
• You can use the url tag to encode URLs within your web application. This tag will

automatically rewrite the URL to include a unique session ID whenever the client
doesn’t support cookies.

• You can use the JSTL param tag if you want to automatically encode unsafe characters
such as spaces with special characters such as plus signs.

Figure 11-3 How to use the url tag

344 Section 2 Essential servlet and JSP skills

How to use the forEach tag

You can use the forEach tag to loop through items that are stored in most
collections, including arrays. For example, figure 11-4 shows how to use the
forEach tag to loop through the LineItem objects that are available from the
items property of the cart attribute. Here, the var attribute specifies a variable
name of item to access each item within the collection. Then, the items attribute
uses EL to specify the collection that stores the data. In this case, the collection
is the ArrayList<LineItem> object that’s returned by the getItems method of the
Cart object for the current session. This Cart object has been stored as an
attribute with a name of cart.

Within the forEach loop, the JSP code creates one row with four columns
for each item in the cart. Here, each column uses EL to display the data that’s
available from the LineItem object. In particular, the first column displays the
quantity, the second column displays the product description, the third column
displays the price per item, and the fourth column displays the total amount
(quantity multiplied by price). Note that the LineItem object includes code that
applies currency formatting to the price and amount.

If you have trouble understanding the examples in this figure, you may want
to study the code for the Cart, LineItem, and Product objects that are presented
in figure 11-12. In particular, note how a Cart object can contain multiple
LineItem objects and how a LineItem object must contain one Product object.
Also, note how the appropriate get methods are provided for all of the properties
that are accessed by EL. For example, the Cart class provides a method named
getItems that returns an ArrayList of LineItem objects. As a result, with EL, you
can use the items property of the cart attribute to get this ArrayList object.

If necessary, you can nest one forEach tag within another. For example, if
you wanted to display several Invoice objects on a single web page, you could
use an outer forEach tag to loop through the Invoice objects. Then, you could
use an inner forEach tag to loop through the LineItem objects within each
invoice. However, for most JSPs, you won’t need to nest forEach statements.

If you compare the JSTL tags shown in this figure with the equivalent
scripting, I think you’ll agree that the benefits of the JSTL tags are even more
apparent in this figure than in the last one. In particular, the JSP code that uses
JSTL is much shorter and easier to read than the equivalent scripting. As a
result, it’s easier for web designers and other nonprogrammers to work with this
code.

Chapter 11 How to use the JSP Standard Tag Library (JSTL) 345

An example that uses JSTL to loop through a collection
JSP code with JSTL
 <c:forEach var="item" items="${cart.items}">
 <tr valign="top">
 <td>${item.quantity}</td>
 <td>${item.product.description}</td>
 <td>${item.product.priceCurrencyFormat}</td>
 <td>${item.totalCurrencyFormat}</td>
 </tr>
 </c:forEach>

The result that’s displayed in the browser for a cart that has two items

Equivalent scripting
<%@ page import="business.*, java.util.ArrayList" %>
<%
 Cart cart = (Cart) session.getAttribute("cart");
 ArrayList<LineItem> items = cart.getItems();
 for (LineItem item : items)
 {
%>
 <tr valign="top">
 <td><%=item.getQuantity()%></td>
 <td><%=item.getProduct().getDescription()%></td>
 <td><%=item.getProduct().getPriceCurrencyFormat()%></td>
 <td><%=item.getTotalCurrencyFormat()%></td>
 </tr>
<% } %>

Description
• You can use the forEach tag to loop through most types of collections, including arrays.

• You can use the var attribute to specify the variable name that will be used to access each
item within the collection.

• You can use the items attribute to specify the collection that stores the data.

• If necessary, you can nest one forEach tag within another.

Figure 11-4 How to use the forEach tag

346 Section 2 Essential servlet and JSP skills

How to use the forTokens tag

You can use the forTokens tag to loop through items that are stored in a
string as long as the items in the string are separated by one or more delimiters,
which are characters that are used to separate the items. For instance, the string
in the first example in figure 11-5 uses a comma as the delimiter. As a result,
this string can be referred to as a comma-delimited string.

The first example in this figure also shows how to use the forTokens tag to
loop through the four product codes that are stored in the string. Here, the var
attribute specifies a variable name of productCode to identify each product code
in the list. Then, the items attribute uses EL to specify the productCodes at-
tribute as the string that stores the items. Finally, the delims attribute specifies
the comma as the delimiter.

To keep this example simple, the servlet code creates the productCodes
attribute by storing a hard-coded list of four product codes that are separated by
commas. In a more realistic example, of course, the servlet code would dynami-
cally generate this list.

The second example works similarly to the first example, but it uses two
delimiters instead of one. In particular, the delims attribute specifies the at
symbol (@) as the first delimiter and the period (.) as the second delimiter. As a
result, the loop processes three items, one for each part of the email address.

If necessary, you can nest one forTokens tag within another. Or, you can
nest a forTokens tag within a forEach tag. However, since you’ll rarely need to
nest forTokens tags, this technique isn’t illustrated in this figure.

Chapter 11 How to use the JSP Standard Tag Library (JSTL) 347

An example that uses JSTL to loop through a comma-delimited string
Servlet code
session.setAttribute("productCodes", "8601,pf01,pf02,jr01");

JSP code
<p>Product codes

<c:forTokens var="productCode" items="${productCodes}" delims="," >
 ${productCode}
</c:forTokens>
</p>

The result that’s displayed in the browser

An example that uses JSTL to parse a string
Servlet code
session.setAttribute("emailAddress", "jsmith@gmail.com");

JSP code
<p>Email parts

<c:forTokens var="part" items="${emailAddress}" delims="@.">
 ${part}
</c:forTokens>
</p>

The result that’s displayed in the browser

Description
• You can use the forTokens tag to loop through delimited values that are stored in a string.

• You can use the var attribute to specify the variable name that will be used to access each
delimited string.

• You can use the items attribute to specify the string that stores the data.

• You can use the delims attribute to specify the character or characters that are used as the
delimiters for the string.

• If necessary, you can nest one forTokens tag within another.

Figure 11-5 How to use the forTokens tag

348 Section 2 Essential servlet and JSP skills

Four more attributes for looping

When working with collections, the servlet code typically creates a collec-
tion and passes it to the JSP so the collection can be displayed to the user. Then,
the JSP uses the forEach tag to loop through the collection and display it to the
user as shown in figure 11-4.

However, there may be times when the JSP will need to do some additional
processing. For example, the JSP may need to know whether the item is the first
or last item, so it can apply special formatting to that item. Or, the JSP may
need to know the item number, so it can apply shading to alternating items. In
that case, you can use the attributes described in figure 11-6. These attributes
work the same for the forEach and the forTokens tags.

The example in this figure shows how to work with the begin, end, and step
attributes that are available for the forEach and forTokens tags. Here, the begin
attribute specifies the starting index for the loop; the end attribute specifies the
last index for the loop; and the step attribute specifies the amount to increment
the index each time through the loop. If you understand how a for loop works in
Java, you shouldn’t have much trouble understanding these attributes. In this
example, these attributes are used to print the first 10 numbers that are stored in
an array of 30 int values.

This example also shows how to use the varStatus attribute. This attribute
specifies the name of a variable that can be used to get information about the
status of the loop. In particular, this variable provides four properties named
first, last, index, and count that you can use within the body of a loop. For
example, you can use the first and last properties to return a Boolean value that
indicates whether the item is the first or last item in the collection. Or, you can
use the index and count properties to return an integer value for the item. Note,
however, that the index property returns an integer value that’s one less than the
count value. That’s because the index property starts at 0 while the count
property starts at 1.

Chapter 11 How to use the JSP Standard Tag Library (JSTL) 349

Attributes that you can use for advanced loops
Attribute Description

begin Specifies the first index for the loop.

end Specifies the last index for the loop.

step Specifies the amount to increment the index each time through the loop.

varStatus Specifies the name of a variable that can be used to get information about the status of the
loop. This variable provides the first, last, index, and count properties.

An example that uses all four attributes
Servlet code
int[] numbers = new int[30];
for (int i = 0; i < 30; i++)
{
 numbers[i] = i+1;
}
session.setAttribute("numbers", numbers);

JSP code
<p>Numbers

<c:forEach items="${numbers}" var="number"
 begin="0" end="9" step="1"
 varStatus="status">
 ${number} | First: ${status.first} | Last: ${status.last} |
 Index: ${status.index} | Count: ${status.count}
</c:forEach>
</p>

The result that’s displayed in the browser

Description
• The begin, end, step, and varStatus attributes work for both the forEach and forTokens

tags.

Figure 11-6 Four more attributes for looping

350 Section 2 Essential servlet and JSP skills

How to use the if tag

When coding a JSP, you may need to perform conditional processing to
change the appearance of the page depending on the values of the attributes that
are available to the page. To do that, you can use the if tag as shown in figure
11-7.

To start, you code an opening if tag that includes the test attribute. In the
example in this figure, this test attribute uses EL to get the count property of the
cart attribute, which indicates the number of items that are in the cart. Then, the
code within the opening and closing if tags displays a message that’s appropri-
ate for the number of items in the cart. In particular, the first if tag displays a
message if the cart contains 1 item, and the second if tag displays a message if
the cart contains more than one item. The main difference between the two
messages is that the second message uses the plural (items) while the first uses
the singular (item).

If necessary, you can use the var and scope attributes to expose the Boolean
condition in the test attribute as a variable with the specified scope. Then, you
can reuse the Boolean condition in other if statements. This works similarly to
the set tag that’s briefly described later in this chapter. However, since you’ll
rarely need to use these attributes, they aren’t illustrated in this figure.

As with the forEach and forTokens tags, you can nest one if tag within
another. Or, you can nest an if tag within a forEach or forTokens tag. In short, as
you might expect by now, you can usually nest JSTL tags within one another
whenever that’s necessary.

Chapter 11 How to use the JSP Standard Tag Library (JSTL) 351

An example that uses JSTL to code an if statement
JSP code with JSTL
<c:if test="${cart.count == 1}">
 <p>You have 1 item in your cart.</p>
</c:if>
<c:if test="${cart.count > 1}">
 <p>You have ${cart.count} items in your cart.</p>
</c:if>

The result that’s displayed in the browser for a cart that has two items

Equivalent scripting
<%@ page import="business.Cart, java.util.ArrayList" %>
<%
 Cart cart = (Cart) session.getAttribute("cart");
 if (cart.getCount() == 1)
 out.println("<p>You have 1 item in your cart.</p>");
 if (cart.getCount() > 1)
 out.println("<p>You have " + cart.getCount() +
 " items in your cart.</p>");
%>

Description
• You can use the if tag to perform conditional processing that’s similar to an if statement

in Java.

• You can use the test attribute to specify the Boolean condition for the if statement.

• If necessary, you can nest one if tag within another.

Figure 11-7 How to use the if tag

352 Section 2 Essential servlet and JSP skills

How to use the choose tag

In the last figure, you learned how to code multiple if tags. This is the
equivalent of coding multiple if statements in Java. However, there are times
when you will need to code the equivalent of an if/else statement. Then, you can
use the choose tag as described in figure 11-8.

To start, you code the opening and closing choose tags. Within those tags,
you can code one or more when tags. For instance, in the example in this figure,
the first when tag uses the test attribute to check if the cart contains zero items.
Then, the second tag uses the test attribute to check if the cart contains one item.
In either case, the when tag displays an appropriate message.

After the when tags but before the closing choose tag, you can code a single
otherwise tag that’s executed if none of the conditions in the when tags evaluate
to true. In this example, the otherwise tag displays an appropriate message if the
cart doesn’t contain zero or one items. Since the number of items in a cart can’t
be negative, this means that the otherwise tag uses EL to display an appropriate
message whenever the cart contains two or more items.

Chapter 11 How to use the JSP Standard Tag Library (JSTL) 353

An example that uses JSTL to code an if/else statement

JSP code with JSTL
<c:choose>
 <c:when test="${cart.count == 0}">
 <p>Your cart is empty.</p>
 </c:when>
 <c:when test="${cart.count == 1}">
 <p>You have 1 item in your cart.</p>
 </c:when>
 <c:otherwise>
 <p>You have ${cart.count} items in your cart.</p>
 </c:otherwise>
</c:choose>

The result that’s displayed in the browser for a cart that has two items

Equivalent scripting
<%@ page import="business.Cart, java.util.ArrayList" %>
<%
 Cart cart = (Cart) session.getAttribute("cart");
 if (cart.getCount() == 0)
 out.println("<p>Your cart is empty.</p>");
 else if (cart.getCount() == 1)
 out.println("<p>You have 1 item in your cart.</p>");
 else
 out.println("<p>You have " + cart.getCount() +
 " items in your cart.</p>");
%>

Description
• You can use the choose tag to perform conditional processing similar to an if/else

statement in Java. To do that, you can code multiple when tags and a single otherwise tag
within the choose tag.

• You can use the test attribute to specify the Boolean condition for a when tag.

• If necessary, you can nest one choose tag within another.

Figure 11-8 How to use the choose tag

354 Section 2 Essential servlet and JSP skills

How to use the import tag

In chapter 7, you learned two ways to work with includes. The import tag
shown in figure 11-9 provides another way to work with includes, and it works
like the standard JSP include tag. In other words, it includes the file at runtime,
not at compile-time.

Neither the standard JSP include tag or the JSTL import tag uses scripting.
As a result, it usually doesn’t matter which tag you use. However, the JSTL
import tag does provide one advantage: it lets you include files from other
applications and web servers.

For instance, the second last example in this figure shows how to use the
import tag to include the footer.jsp file that’s available from the musicStore
application that’s running on the same local server as the current web applica-
tion. Then, the last example shows how to use the import tag to include the
footer.jsp file that’s available from the remote server for the www.murach.com
web site.

Chapter 11 How to use the JSP Standard Tag Library (JSTL) 355

An example that imports a header file
JSP code with JSTL
<c:import url="/includes/header.html" />

Equivalent standard JSP tag
<jsp:include page="/includes/header.html" />

An example that imports a footer file
JSP code with JSTL
<c:import url="/includes/footer.jsp" />

Equivalent standard JSP tag
<jsp:include page="/includes/footer.jsp" />

An example that imports a file from another application
<c:import url="http://localhost:8080/musicStore/includes/footer.jsp" />

An example that imports a file from another web server
<c:import url="www.murach.com/includes/footer.jsp" />

Description
• The import tag includes the file at runtime, not at compile-time, much like the standard

JSP include tag described in chapter 7.

• One advantage of the import tag over the standard JSP include tag is that it lets you
include files from other applications and web servers.

Figure 11-9 How to use the import tag

356 Section 2 Essential servlet and JSP skills

Other tags in the JSTL core library

Figure 11-10 shows six more tags in the JSTL core library. However, if you
use the MVC pattern, you probably won’t need to use these tags. As a result, I’ve
only provided brief examples to give you an idea of how these tags work. If you
do need to use them, though, you can look them up in the documentation for the
JSTL core library as described in figure 11-2.

If you need to be able to display special characters in your JSPs, you can use
the out tag as illustrated by the first example in this figure. Then, this tag auto-
matically handles any special characters before they are displayed on the JSP. If,
for example, you try to use EL by itself to display a string that contains the left
and right angle brackets (< >), the JSP interprets those brackets as an HTML tag
and the string isn’t displayed correctly. However, if you use the out tag, these
characters display correctly on the JSP.

If you need to set the value of an attribute in a scope, you can use the set tag.
For instance, the second example in this figure shows how to set an attribute
named message with a value of “Test message” in session scope.

You can also use the set tag if you need to set the value of a property of an
attribute within a specified scope. However, instead of using the var attribute to
specify the name of the attribute, you use the target attribute to specify the
attribute that contains the property. To do that, you use EL within the target
attribute to specify a reference to the attribute. This is illustrated by the third
example.

The fourth example shows how to use the remove tag to remove an attribute
from a scope. When you use this tag, you use the var attribute to specify the name
of the attribute that you want to remove, and you use the scope attribute to
specify the scope that contains the attribute.

If your JSP includes code that may cause an exception to be thrown, you can
use the catch tag to catch the exceptions. This is illustrated by the fifth example.
Here, the opening and closing catch tags are coded around a Java scriptlet that
causes an ArithmeticException to be thrown due to a divide by zero error. Then,
when the exception is thrown, execution jumps over the Java expression that
displays the result of the calculation. However, the catch tag also exposes the
exception as a variable named e. As a result, the if tag that follows the catch tag is
able to display an appropriate error message.

Of course, if you edit the Java scriptlet that’s in the catch tag so it performs a
legal calculation, no exception will be thrown. In that case, the result of the
calculation will be displayed and the error message won’t be displayed.

The sixth example shows how to use the redirect tag to redirect a client to a
new URL. In this case, the redirect tag is coded within an if tag so the client isn’t
redirected unless the condition in the if statement is true.

Although this figure doesn’t include an example of the param tag, figure 11-3
does illustrate the use of this tag within the url tag. If you read through the
documentation for the param tag, you’ll find that you can also use it with other
tags such as the import tag.

Chapter 11 How to use the JSP Standard Tag Library (JSTL) 357

Other tags in the JSTL core library
Tag name Description

out Uses EL to display a value, automatically handling most special characters such as the left
angle bracket (<) and right angle bracket (>).

set Sets the value of an attribute in a scope.

remove Removes an attribute from a scope.

catch Catches any exception that occurs in its body and optionally creates an EL variable that
refers to the Throwable object for the exception.

redirect Redirects the client browser to a new URL.

param Adds a parameter to the parent tag.

An out tag that displays a message
Using the Value attribute
<c:out value="${message}" default="No message" />

Using the tag’s body
<c:out value="${message}">
 No message
</c:out>

A set tag that sets a value in an attribute
<c:set var="message" scope="session" value="Test message" />

A set tag that sets a value in a JavaBean
JSP code with JSTL
<c:set target="${user}" property="firstName" value="John" />

Equivalent standard JSP tag
<jsp:setProperty name="user" property="firstName" value="John"/>

A remove tag that removes an attribute
<c:remove var="message" scope="session" />

A catch tag that catches an exception
<c:catch var="e">
 <% // this scriptlet statement will throw an exception
 int i = 1/0;
 %>
 <p>Result: <%= i %></p>
</c:catch>
<c:if test="${e != null}">
 <p>An exception occurred. Message: ${e.message}</p>
</c:if>

A redirect tag that redirects to another page
<c:if test="${e != null}">
 <c:redirect url="/error_java.jsp" />
</c:if>

Figure 11-10 Other tags in the JSTL core library

358 Section 2 Essential servlet and JSP skills

The Cart application

Now that you’ve learned the details for coding JSTL tags, you’re ready to
see how they’re used within the context of an application. To show that, this
chapter finishes by showing a Cart application that maintains a simple shopping
cart for a user. Since this application uses the MVC pattern, the JSPs don’t
require extensive use of JSTL tags. However, the url tag is needed to encode
URLs, and the forEach tag is needed to display the items in the user’s cart.

The user interface

Figure 11-11 shows the user interface for the Cart application. From the
Index page, you can click on the Add To Cart link for any of the four CDs to
add the CD to your cart. Then, the Cart page will display all of the items that
have been added to your cart.

On the Cart page, you can update the quantity for an item by entering a new
quantity in the Quantity column and clicking on the Update button. Or, you can
remove an item from the cart by clicking on its Remove Item button. Finally,
you can return to the Index page by clicking on the Continue Shopping button,
or you can begin the checkout process by clicking on the Checkout button.

Chapter 11 How to use the JSP Standard Tag Library (JSTL) 359

The Index page

The Cart page

Figure 11-11 The user interface for the Cart application

360 Section 2 Essential servlet and JSP skills

The code for the business classes

Figure 11-12 shows the three business classes for the Cart application.
These classes are the Model in the MVC pattern. All of these classes follow the
rules for creating a JavaBean and implement the Serializable interface as
described in chapter 9.

Part 1 shows the Product class. This class stores information about each
product that’s available from the web site. In particular, it provides get and set
methods for the code, description, and price fields for the product. In addition,
this class provides the getPriceCurrencyFormat method, which gets a string for
the price after the currency format has been applied to the price. For example,
for a double value of 11.5, this method returns a string of “$11.50”, which is
usually the format that you want to display on a JSP.

Part 2 shows the LineItem class. This class stores information about each
line item that’s stored in the cart. To do that, this class uses a Product object as
one of its instance variables to store the product information for the line item. In
addition, this class always calculates the value of the total field by multiplying
the product price by the quantity. As a result, there’s no need to provide a set
method for this field. Finally, this class provides a getTotalCurrencyFormat
method that applies currency formatting to the double value that’s returned by
the getTotal method.

Part 3 shows the Cart class. This class stores each line item that has been
added to the cart. To do that, the Cart class uses an ArrayList to store zero or
more LineItem objects. When you use the constructor to create a Cart object,
the constructor initializes the ArrayList object. Then, you can use the addItem
method to add an item, or you can use the removeItem method to remove an
item. In addition, you can use the getItems method to return the ArrayList
object, or you can use the getCount method to get the number of items that are
stored in the cart.

Chapter 11 How to use the JSP Standard Tag Library (JSTL) 361

The code for the Product class
package business;

import java.io.Serializable;
import java.text.NumberFormat;

public class Product implements Serializable
{
 private String code;
 private String description;
 private double price;

 public Product()
 {
 code = "";
 description = "";
 price = 0;
 }

 public void setCode(String code)
 {
 this.code = code;
 }

 public String getCode()
 {
 return code;
 }

 public void setDescription(String description)
 {
 this.description = description;
 }

 public String getDescription()
 {
 return description;
 }

 public void setPrice(double price)
 {
 this.price = price;
 }

 public double getPrice()
 {
 return price;
 }

 public String getPriceCurrencyFormat()
 {
 NumberFormat currency = NumberFormat.getCurrencyInstance();
 return currency.format(price);
 }
}

Figure 11-12 The code for the business classes (part 1 of 3)

362 Section 2 Essential servlet and JSP skills

The code for the LineItem class
package business;

import java.io.Serializable;
import java.text.NumberFormat;

public class LineItem implements Serializable
{
 private Product product;
 private int quantity;

 public LineItem() {}

 public void setProduct(Product p)
 {
 product = p;
 }

 public Product getProduct()
 {
 return product;
 }

 public void setQuantity(int quantity)
 {
 this.quantity = quantity;
 }

 public int getQuantity()
 {
 return quantity;
 }

 public double getTotal()
 {
 double total = product.getPrice() * quantity;
 return total;
 }

 public String getTotalCurrencyFormat()
 {
 NumberFormat currency = NumberFormat.getCurrencyInstance();
 return currency.format(this.getTotal());
 }
}

Figure 11-12 The code for the business classes (part 2 of 3)

Chapter 11 How to use the JSP Standard Tag Library (JSTL) 363

The code for the Cart class
package business;

import java.io.Serializable;
import java.util.ArrayList;

public class Cart implements Serializable
{
 private ArrayList<LineItem> items;

 public Cart()
 {
 items = new ArrayList<LineItem>();
 }

 public ArrayList<LineItem> getItems()
 {
 return items;
 }

 public int getCount()
 {
 return items.size();
 }

 public void addItem(LineItem item)
 {
 String code = item.getProduct().getCode();
 int quantity = item.getQuantity();
 for (int i = 0; i < items.size(); i++)
 {
 LineItem lineItem = items.get(i);
 if (lineItem.getProduct().getCode().equals(code))
 {
 lineItem.setQuantity(quantity);
 return;
 }
 }
 items.add(item);
 }

 public void removeItem(LineItem item)
 {
 String code = item.getProduct().getCode();
 for (int i = 0; i < items.size(); i++)
 {
 LineItem lineItem = items.get(i);
 if (lineItem.getProduct().getCode().equals(code))
 {
 items.remove(i);
 return;
 }
 }
 }
}

Figure 11-12 The code for the business classes (part 3 of 3)

364 Section 2 Essential servlet and JSP skills

The code for the servlets and JSPs

Figure 11-13 shows the one servlet and two JSPs for the Cart application.
Here, the servlet is the Controller and the two JSPs are the View in the MVC
pattern.

Part 1 shows the JSP code for the Index page that’s displayed when the Cart
application first starts. This page includes a taglib directive that imports the
JSTL core library. Then, this page displays a table where there is one row for
each product. Here, each product row includes an Add To Cart link that uses the
JSTL url tag to encode the URL that’s used to add each product to the cart. This
code works because the CartServlet shown in part 2 of this figure has been
mapped to the “/cart” URL.

Although these four rows are hard-coded for this page, the product data
could also be read from a database and stored in an ArrayList. Then, you could
use a forEach tag to display each product in the ArrayList. The technique for
doing this is similar to the technique for displaying each line item in the cart as
shown in figure 11-4.

Chapter 11 How to use the JSP Standard Tag Library (JSTL) 365

The code for the index.jsp file
<!doctype html public "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>
<head>
 <title>Murach's Java Servlets and JSP</title>
</head>
<body>

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<h1>CD list</h1>

<table cellpadding="5" border=1>

 <tr valign="bottom">
 <td align="left">Description</td>
 <td align="left">Price</td>
 <td align="left"></td>
 </tr>

 <tr valign="top">
 <td>86 (the band) - True Life Songs and Pictures</td>
 <td>$14.95</td>
 <td><a href="<c:url value='/cart?productCode=8601' />">
 Add To Cart</td>
 </tr>

 <tr valign="top">
 <td>Paddlefoot - The first CD</td>
 <td>$12.95</td>
 <td><a href="<c:url value='/cart?productCode=pf01' />">
 Add To Cart</td>
 </tr>

 <tr valign="top">
 <td>Paddlefoot - The second CD</td>
 <td>$14.95</td>
 <td><a href="<c:url value='/cart?productCode=pf02' />">
 Add To Cart</td>
 </tr>

 <tr valign="top">
 <td>Joe Rut - Genuine Wood Grained Finish</td>
 <td>$14.95</td>
 <td><a href="<c:url value='/cart?productCode=jr01' />">
 Add To Cart</td>
 </tr>

</table>

</body>
</html>

Figure 11-13 The code for the servlets and JSPs (page 1 of 4)

366 Section 2 Essential servlet and JSP skills

Part 2 shows the servlet code for the CartServlet. To start, this code gets the
value of the productCode parameter from the request object. This parameter
uniquely identifies the Product object. Then, this code gets the value of the
quantity parameter if there is one. However, unless the user clicked on the
Update button from the Cart page, this parameter will be equal to a null value.

After getting the parameter values from the request, this servlet uses the
getAttribute method to get the Cart object from a session attribute named cart. If
this method returns a null value, this servlet creates a new Cart object.

After the Cart object has been retrieved or created, this servlet sets the value
of the quantity variable. To do that, it starts by setting the quantity variable to a
default value of 1. Then, if the quantityString variable contains an invalid
integer value, such as a null value, the parseInt method of the Integer class will
throw an exception. This also causes the quantity to be set to 1. However, if the
user enters a valid integer such as 0 or 2 or -2, the quantity will be set to that
value. Finally, if the quantity is a negative number, the quantity will be set to 1.

After the quantity variable has been set, this servlet uses the getProduct
method of the ProductIO class to read the Product object that corresponds with
the productCode variable from a text file named products.txt that’s stored in the
application’s WEB-INF directory. To do that, this code specifies the
productCode variable as the first argument of the getProduct method. Although
this application stores data in a text file to keep things simple, a more realistic
application would probably read this data from a database as described in
section 3 of this book.

After the Product object has been read from the text file, this servlet creates
a LineItem object and sets its Product object and quantity. Then, if the quantity
is greater than 0, this code adds the LineItem object to the Cart object. However,
if the quantity is 0, this code removes the item from the Cart object.

Finally, this servlet sets the Cart object as a session attribute named cart.
Then, it forwards the request and response to the Cart page.

As you review this code, you may notice that the CartServlet only provides
an HTTP Get method. As a result, you can’t use the HTTP Post method to call
this servlet. However, this servlet doesn’t write any data to the server, and a user
can request this servlet multiple times in a row without causing any problems.
As a result, you don’t need to implement the HTTP Post method for this servlet.

Chapter 11 How to use the JSP Standard Tag Library (JSTL) 367

The code for the CartServlet class
package cart;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

import business.*;
import data.*;

public class CartServlet extends HttpServlet
{
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 String productCode = request.getParameter("productCode");
 String quantityString = request.getParameter("quantity");

 HttpSession session = request.getSession();
 Cart cart = (Cart) session.getAttribute("cart");
 if (cart == null)
 cart = new Cart();

 int quantity = 1;
 try
 {
 quantity = Integer.parseInt(quantityString);
 if (quantity < 0)
 quantity = 1;
 }
 catch(NumberFormatException nfe)
 {
 quantity = 1;
 }

 ServletContext sc = getServletContext();
 String path = sc.getRealPath("WEB-INF/products.txt");
 Product product = ProductIO.getProduct(productCode, path);

 LineItem lineItem = new LineItem();
 lineItem.setProduct(product);
 lineItem.setQuantity(quantity);
 if (quantity > 0)
 cart.addItem(lineItem);
 else if (quantity == 0)
 cart.removeItem(lineItem);

 session.setAttribute("cart", cart);
 String url = "/cart.jsp";
 RequestDispatcher dispatcher =
 getServletContext().getRequestDispatcher(url);
 dispatcher.forward(request, response);
 }
}

Figure 11-13 The code for the servlets and JSPs (page 2 of 4)

368 Section 2 Essential servlet and JSP skills

Part 3 shows the JSP code for the Cart page. Like the Index page, this page
uses the taglib directive to import the JSTL core library. Then, it uses a table to
display one row for each item in the cart. To do that, it uses a forEach tag to
loop through each LineItem object in the ArrayList that’s returned by the items
property of the cart attribute, and it uses EL to display the data for each line
item.

At first glance, the code for this row seems complicated because the first
and last columns contain HTML forms that include text boxes, hidden text
boxes, and buttons. For example, the first column contains a form that includes
a hidden text box that sets the productCode parameter for the form, a text box
that allows the user to enter a quantity for the form, and a button that submits
the form to the CartServlet. Similarly, the last column contains a hidden text
box that sets the productCode parameter for the form, another hidden text box
that sets the quantity parameter to 0 (which causes the item to be removed from
the cart), and a button that submits the form to the CartServlet. However, if you
study this code, you shouldn’t have much trouble understanding how it works.

Chapter 11 How to use the JSP Standard Tag Library (JSTL) 369

The code for the cart.jsp file Page 1
<!doctype html public "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>
<head>
 <title>Murach's Java Servlets and JSP</title>
</head>
<body>

<h1>Your cart</h1>

<table border="1" cellpadding="5">
 <tr>
 <th>Quantity</th>
 <th>Description</th>
 <th>Price</th>
 <th>Amount</th>
 </tr>

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<c:forEach var="item" items="${cart.items}">

 <tr valign="top">
 <td>
 <form action="<c:url value='/cart' />">
 <input type="hidden" name="productCode"
 value="${item.product.code}">
 <input type=text size=2 name="quantity"
 value="${item.quantity}">
 <input type="submit" value="Update">
 </form>
 </td>
 <td>${item.product.description}</td>
 <td>${item.product.priceCurrencyFormat}</td>
 <td>${item.totalCurrencyFormat}</td>
 <td>
 <form action="<c:url value='/cart' />">
 <input type="hidden" name="productCode"
 value="${item.product.code}">
 <input type="hidden" name="quantity"
 value="0">
 <input type="submit" value="Remove Item">
 </form>
 </td>
 </tr>

</c:forEach>

 <tr>
 <td colspan="3">
 <p>To change the quantity, enter the new quantity
 and click on the Update button.</p>
 </td>
 </tr>

</table>

Figure 11-13 The code for the servlets and JSPs (page 3 of 4)

370 Section 2 Essential servlet and JSP skills

Part 4 shows the rest of the JSP code for the Cart page. This code contains
two forms where each form contains a single button. The button on the first
form displays the Index page, and the button on the second form displays the
Checkout page (which isn’t shown or described in this chapter).

If you review the use of the JSTL and EL code in the Index and Cart pages,
you’ll see that the url tag is used to encode all of the URLs. As a result, the Cart
application will be able to track sessions even if the user has disabled cookies.
You’ll also see that the only other JSTL tag that’s used is the forEach tag in the
Cart page. Finally, you’ll see that EL is used to display the nested properties
that are available from the Product, LineItem, and Cart objects. This is a typical
JSTL and EL usage for applications that use the MVC pattern.

Chapter 11 How to use the JSP Standard Tag Library (JSTL) 371

The code for the cart.jsp file Page 2

<form action="<c:url value='/index.jsp' />" method="post">
 <input type="submit" value="Continue Shopping">
</form>

<form action="<c:url value='/checkout.jsp' />" method="post">
 <input type="submit" value="Checkout">
</form>

</body>
</html>

Note
• In the web.xml file, the CartServlet class is mapped to the “/cart” URL.

Figure 11-13 The code for the servlets and JSPs (page 4 of 4)

372 Section 2 Essential servlet and JSP skills

Perspective

The goal of this chapter has been to show you how to use JSTL with EL to
eliminate or reduce scripting from your JSPs. However, it isn’t always possible to
remove all scripting from your applications by using JSTL. In that case, you may
occasionally want to use scripting. Another option, though, is to create and use
custom tags that are stored in a custom tag library as described in the next chapter.

Summary

• The JSP Standard Tag Library (JSTL) provides tags for common tasks that need to
be performed in JSPs.

• Before you can use JSTL tags, you must make the jstl.jar and standard.jar files
available to the application.

• Before you can use JSTL tags in a JSP, you must code a taglib directive for the
library that you want to use.

• You can use a web browser to view the documentation for JSTL.

• You can use the url tag to encode URLs so the application can track sessions even
if the client browser has cookies disabled.

• You can use the forEach tag to loop through most types of collections, including
regular arrays.

• You can use the forTokens tag to loop through items in a delimited string.

• You can use the if tag to code the equivalent of a Java if statement.

• You can use the choose tag to code the equivalent of a Java if/else statement.

• You can use the import tag to include files at runtime. This works like the standard
JSP include tag, but it can be used to include files from other web applications
even when they’re running on remote web servers.

Chapter 11 How to use the JSP Standard Tag Library (JSTL) 373

Exercise 11-1 Use JSTL in the Download
application

In this exercise, you’ll enhance the Download application that you used in
exercise 10-2 of the last chapter.

1. Open the ch11download project in the ex_starts directory. Then, run the
application to refresh your memory about how it works.

2. Use your IDE to add the JSTL library to this project. With NetBeans, you can do
that by right-clicking on the Libraries folder for the project and selecting the
Add Libraries command from the resulting menu.

3. Open the JSPs for this project. Then, add the taglib directive for the core JSTL
library to the beginning of these pages. Finally, use the url tag to encode all the
URLs in this application.

4. Test the application to make sure it works correctly.

5. Open the index.jsp file. Then, modify it so it uses the if tag to only display the
welcome message if the cookie for the first name doesn’t contain a null value.

6. Test the application to make sure it works correctly.

Exercise 11-2 Use JSTL in the Cart application
In this exercise, you’ll use JSTL to loop through an array list of Product objects.

1. Open the ch11cart project in the ex_starts directory.

2. Open the web.xml file. Note that the ProductsServlet class is called when this
application starts. This means that the browser will issue an HTTP Get request
for the ProductsServlet class so its doGet method will be called.

3. Open the ProductsServlet.java file. Note how this servlet uses the
processRequest method to read an ArrayList of Product objects from the
projects.txt file and store them as an attribute of the session object. Note too that
this method is called from both the doGet and doPost methods.

4. Test the application to make sure it works correctly.

5. Add the JSTL library to this project. Then, open the index.jsp file, and add the
taglib directive that imports the core JSTL library.

6. In the index.jsp file, add a forEach tag that loops through the ArrayList of
Product objects and displays one row for each product. To do that, you can use
EL to display the properties of each Product object. (Be sure to delete any old
code that you no longer need.)

7. Test the application to make sure that it works correctly.

