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Introduction

Today's Internet websites have millions of users. With the success of Web

2.0 Internet sites, the databases storing data on the web servers have grown

in size dramatically, to accommodate both the growing number of users

and the growing volume of data that is posted by these users.

Scientific applications have also experienced a data explosion. Sensors used

in these scientific applications, such as meteorology or fluid mechanics, are

becoming more precise at the same time they are getting cheaper. More

and more sensors are being used, and application programs have to man

age more and more data.

Programs that handle and manipulate this ever-increasing amount of data

need to use algorithms that are well-designed and efficient so that they

minimize waiting time for users. Two programs that solve the same prob

lem by using two different algorithms can result in two completely different

levels of performance—everything else, in particular the hardware plat

form, being equal. For example, two search engines performing the same

search could run at two different speeds: one could return results in tenths

of a second while the other could take several seconds to return results.

Most programmers tend to disregard speed and space (memory utilization)

issues when writing code. They rely on increasing hardware performance to

solve speed problems and the decreasing cost of memory to solve space prob

lems. However, with the data explosion and the resulting data processing

issues that we are experiencing today across many industries, designing effi

cient algorithms has become more and more important. In this chapter, we

will focus on algorithms' speed performance rather than space utilization.

When we measure the performance of an algorithm, we use the expression

running time. We cannot predict a single, precise running time for many

algorithms, because the amount of processing depends in large part on the

number of inputs and the values of those inputs. So we express the running

time of an algorithm as a mathematical function of its inputs. This allows

us to compare the relative performance of multiple algorithms. For exam

ple, the running time for computing the factorial of an integer varies

according to the value for which we are computing the factorial. Factorials

of larger numbers require more processing to compute than factorials of

smaller numbers. If we can express the running time of multiple algo-
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rithms that compute a factorial as a function of their input, then we can

compare the relative efficiency of each algorithm. In other cases, such as

sorting an array of integers, the running time depends on the number of

array elements. Similarly, if we express the running time as a function of

the number of elements in the array, we can compare the relative efficiency

of multiple sorting algorithms.

The input value or number of inputs for an algorithm represents the size of

the problem for which we are trying to compute the running time. We will

call that number n. We are interested in relative time, independently of the

hardware platform used, not absolute time. Furthermore, we are typically

interested in the order of magnitude of the algorithm, rather than a precise

mathematical expression as a function of n. Indeed, if n is very large (for

example, 1 million or more), performance does not vary noticeably if the

algorithm takes n steps or n + 17 steps to complete.

However, if an algorithm has a running time expressed as n2, then the num

ber of inputs has a big impact on performance. For example, we can predict

that 10 inputs will require the execution of 100 statements and 1,000 inputs

will require the execution of 1 million statements.

The objectives of this chapter are:

■ To be able to evaluate the running time of a given algorithm through var

ious methods

■ To understand that how we code an algorithm directly impacts its run

ning time

15.1 Orders of Maqnitude and Biq-Oh Notation

Table 15.1 shows examples of various orders of magnitude for an algorithm

as a function of the number of inputs n, along with the corresponding

number of statement executions for different values of n.

Let's look at an example to see how you can use these values. Sequential

Search has a running time of n, and Binary Search has a running time of log

n. Thus, if we are searching an array of 1 million users for a particular user

name, a Sequential Search will take, on average, the execution of an order of

1 million statements, while a Binary Search will require the execution of
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TABLE 15.1 Comparisons of Various Functions Reoresentinq I

Order of Magnitude

log/7

n

n\oqn

n2

n3

T

n = 10

2.23

10

22.3

100

1,000

1,024

Number of Statements Executed

n = 20

3.23

20

64.6

400

8,000

Approx.106

n = 1,000

Approx.10

1000

Approx. 10,000

106

109

Approx.10300

0=1 million

Approx. 20

106

Approx.20*106

1012

1018

Approx.10300000

MR REFERENCE POINT

Sequential Search and

Binary Search are

explained in Chapter 8.

only 20 statements. Remember, however, that for a Binary Search to work,

the array must already be sorted. Later in this chapter, we will discuss how

to compute these running times.

As you can see from the table, algorithms that have a running time where n

is the exponent of the function, such as 2", take a very large number of

statement executions and are very slow; they should be used only if no bet

ter algorithm can be found.

Running times of algorithms are often represented using the Big-Oh or the

Big-Theta notation, as in O(n) or ®(n2), for example. The mathematical

definition of Big-Theta is as follows:

A function /(«) is Big-Theta of another function g(n), or O(g(n)), if and

only if:

1. /(«) is Big-Omega of g(n), or Q,(g(n)), i.e., there exist two positive

constants, n\ and cl, such that for any n >= nl,f(n) >= cl * gin).

In other words, for n sufficiently big, g{n) is a lower bound of/(«);

that is, g{n) is smaller than/(n), if we ignore the constants.

and

2. f(n) is Big-Oh of g(n), or O(#(m)), i.e., there exist two positive con

stants, nl and c2, such that for any n >= n2,f(n) <= c2 * gyn).

In other words, for n sufficiently big, g{n) is an upper bound off(n);

that is, g{n) is bigger than/(n), if we ignore the constants.
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It has become common in the industry to say Big-Oh instead of Big-Theta.

Indeed, we are really interested in an upper bound running time (Big-Oh),

and as tight an upper bound as possible (Big-Theta).

Although the preceding definition may sound a bit complex, when trying

to estimate the Big-Oh of a particular function representing a running

time, the following rules can be used:

■ Keep only the dominant term, i.e., the term that grows the fastest as

n grows.

■ Ignore the coefficient of the dominant term.

Table 15.2 shows a few examples illustrating these rules.

As an example, we will show that the function f(n) = 3 * n2 +6 * n + 12 is

0 (n2).

First we show that/(«) is Q(n2):

For n >= 0,

/(«) = 3 * n2 + 6 * n + 12 >= 3 * n2

So if we choose n\ = 0 and c\ = 3, we just proved by definition that/(«) is

Q {n2).

Now we show that the same function /(«) is O(n2).

For n >= 1, we can rewrite /(«) as

f(n) = n2* (3 + 6/ n+ U I n2)

TABLE 15.2 Examples of Functions Representing Running Times and Their

Respective Big-Oh

fin)

2*n + 19

n +9* n +5* n + 2

3*2" + 5*/)3 + 3*n + 7

n +1 * log n

2*/j*logn + 8*/? + logfl +

3 * log /? + 35

Dominant Term

2*n

3*n2

3*2"

n

i 2*n*logn

3 * log n

Big-Oh

w

3(n2)

0(2")

m

0(n * log n)

0(logn)
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For n >= 6, we have

6 / n <= 1 and 12 / n2 < 1

therefore,

/(«)<= n2*(3+ 1 + l) = 5*n2

So if we choose n2 = 6 and c2 = 5, we just proved by definition that/(n) is

O(n2).

Since/(«) is both Big-Omega(«2) and Big-Oh(«2), then/(n) is Big-

Theta(n2).

To show that a polynomial function is Big-Oh of its most dominant term,

we simply factor by the most dominant term as follows:

For n > 0,

f(n) = apnp + a^ nP~l + ... + a2n2 + axn+ % where ap is strictly

positive

f(n) = apnP(l + (ap_l/ap)l/n + ...+ (a21 ap) 1 / n^2 + {ax I ap) 1 /

f(n) <= ap nP (1 + l(fl^ / ap)\ I / n +... + \(a21 ap)\ 1 / n^2 + !(«, / a

All a,'s are constants; let Mbe the maximum of all \(at I ap)\.

Thus,

/(«) <= ap nP (1 + M1 / n + ... + M1 / nP~2 + M1 / n ^ + M1 / «P)

f(n)<=apnP(l +M(l/ n + ... + \ I nP~2 + \ I nP~l + \ I nP))

f{n)<=apnP{\ + M{-\ + \ + \ I n + ... + \ I nP~2 + 11 nP~l + \ I nP))

since we know mathematically that

1 + a+ fl2 + ... + a^ = Xa' from z = Oto pis equal to (1 - ap + l) I (1 - a)

for a different from 1.

Using a = l/n, we get

/(«) <= ap nP (1 + M (-1 + (1 - 1 / nP+') / (1 - 1 / «)))

Thus,

f(n)<=apnP(l+M(l/(n-l)))

Thus,

/(n) <= flp nP (1 + Af) for n >= 2
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choosing n0 = 2 and c0 = ap (1 + M).

For n >= n0, we have

f(n)<=cQnP

and therefore,

f(n) is O(np), i.e.,/(n) is Big-Oh of its most dominant term.

15.2 Runnina Time Analysis of Algorithms: Counting Statements

One simple method to analyze the running time of a code sequence or a

method is simply to count the number of times each statement is executed

and to calculate a total count of statement executions.

Example 15.1 is a method that calculates the total value of all the elements

of an array of size n and returns the sum.

public static int addElements( int [ ] arr )

int sum =0;

int 1=0;

while ( i < arr.length )

{

sum += arr[i];

return sum;

EXAMPLE 15.1 A Singl

// ( 1 )

// ( 2 )

// ( 3 )

// ( 4 )

// ( 5 )

// ( 6 )

Let's count how many times each statement is executed.

Assuming the array has n elements, we can develop the following analysis:

Statement

(1)

(2)

(3)

(4)

(5)

(6)

# Times Executed

1

1

ft+1

n

n

1
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REFERENCE POINT

Multidimensional arrays

are explained in Chapter 9.

Note that the loop condition, i < arr.length, is executed one more time than

each statement of the loop body: when i is equal to arr.length, we evaluate

the loop condition, but we exit the loop and thus do not execute the two

statements in the loop body. Thus, the total number of statements exe

cuted, T(n), is equal to:

T(n) = l + l + (n+l) + «+n+l

= 3« + 4

= O(n)

So we can say that the running time of the addElements method is O(n). Note

that in the end, we do not need an exact count of the statements executed,

since we are really interested in the Big-Oh running time of the function.

Example 15.2 is a method that determines the maximum value in a two-

dimensional array of ints.

public static int calculateMaximum( int [ ][ ] arr )

{

int maximum = arr[0][0]; // ( 1 )

for ( int i = 0; i < arr.length; i++ ) // ( 2 )

{

for ( int j = 0; j < arr[i].length; j++ ) // ( 3 )

if ( maximum < arr[i][j] )

maximum = arr[i] [j];

// ( 4 )

// ( 5 )

return maximum; // ( 6 )

EXAMPLE 15.2 A Double Loop

Let's count how many times each statement is executed. Assuming the array

has n rows and each row has n columns, we can develop the following analysis:

Statement # Times Executed

(1) 1

(2)

(3)

(4)

(5) between 0 and n*n

(6) 1

n*n = n2



15.2 Running Time Analysis of Algorithms: Counting Statements 1125

Statement (2) actually contains three statements: int / = 0 is executed 1

time, i < arr.length is executed (n + 1) times as i goes from 0 to n, and i++ is

executed n times as i is incremented n times.

In evaluating the number of times statements (3), (4), and (5) will be exe

cuted, we first note that we will enter the outer loop n times. Statement (3)

also contains three statements: intj = 0 is executed each time we enter the

outer loop, or n times; j < arr.length[i] is executed (« + 1) times each time

we enter the outer loop, or n * (n + 1) times, as; goes from 0 to n; and;'++

is executed n times each time we enter the outer loop, or n * n times.

Since we enter the outer loop n times and for each outer loop iteration, we

enter the inner loop n times, statement (4) will be executed n * n times. As

for statement (5), it will be executed once each time the Boolean expression

maximum < arr[i] [j] evaluates to true. We cannot tell how many times that

will happen, but we can tell that it will happen no more than n * n times.

We will call this unknown value x.

Thus, the total number of statements executed, T(n), is equal to:

T(n) = l + (2* n + 2) + (2* n2+ 2* n) + {n2) + x+ 1

= 3* n2 +4*n + 4 + x

with x <= n * n

Furthermore, since the value of x is between 0 and n2,

3*n2+4*n + 4<= T(n) <=3*n2+4*n + 4 + n2

3* n2 +4*n + 4<= T(n) <=4* n2 +4* n + 4

since T(n) has both lower and upper bounds that are O(n2), T(n) is O(n2).

For our third example, let's compute the running time of a Sequential

Search, implemented by the code shown in Example 15.3.

public int sequential Search( int [ ] array, int key )

for ( int i = 0; i < array.length;

if ( array[ i ] == key )

return i;

return -1;

// ( 1 )
// ( 2 )

// ( 3 )

// ( 4 )

1 REFERENCE POINT

Sequential Search is

explained in Chapter 8.

EXAMPLE 15.3 Sequential Search Algorithm
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Let's count how many times each statement is executed. Assuming the array

has n elements, we can develop the following analysis:

Statement

(D

(2)

(3)

(4)

# Times Executed

1 + (between 1 and (n +1)) + (between 0 and n)

between 1 and n

0or1

1 orO

Thus, if T(n) represents the total number of statements executed, we can

say that

l + (l) + (0) + l + l <= T(n) <= l + (n+ l) + n+n+ 1

4 <= T{n) <= 3n + 3

T(n) <= 3n + 3 shows that T(n) is O(n).

However, we cannot really tell, from the coding of the function, how many

statements will be executed as a function of n. In these situations, it is inter

esting to consider three running times:

■ the worst-case running time

■ the best-case running time

■ the average-case running time

In the worst case, where the search key is not found in the array or it is

found in the last element, T(n) = 3n + 3, and therefore T{n) is O(n), as

mentioned earlier.

In the best case, the element we are looking for is at index 0 of the array and

only four statements will be executed, independently of the value of n.

Thus, the best-case running time is O( 1) since we do not take the multiply

ing constant into consideration when we compute a Big-Oh.

In the average case, we find the element we are looking for in the middle of

the array, and the value of T( n) will be

1{n) = 1 + (n + l)/2 + nil + nil + 1

= 3n/2 + 2Yi
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15.3 Running Time Analysis of Algorithms and Impact of Coding:

Evaluating Recursive Methods

In this section, we will learn how to compute the running time of a recur

sive method. We will also look at how coding a method has a direct impact

on its running time.

Consider coding a recursive method that takes one parameter, n, and

returns 2". There are several ways to code that method, and we will consider

two of them here so that we can assess which algorithm is more efficient.

Our first method, powerOf2A, is designed using these two facts:

• when n = 0, 2° = 1. This is our base case.

• 2" = 2*2"~1. This is our general case.

This first problem formulation results in the method shown in Example 15.4.

public static int power0f2A( int n ) // n >= 0

{

if ( n == 0 )

return 1;

else

return 2 * power0f2A( n - 1 );

REFERENCE POINT

Recursion is explained in

Chapter 13.

EXAMPLE 15.4 First Recursive Formulation of 2"

Our second method, powerOf2B, is designed using these two facts:

• when n = 0, 2° = 1. This is our base case.

■ 2" = 2"~l + 2"-\ This is our general case.

This second problem formulation results in the method shown in Example 15.5.

public static int power0f2B( int n ) // n >= 0

{

if ( n == 0 )

return 1;

else

return power0f2B( n - 1 ) + power0f2B( n - 1 );

}

EXAMPLE 15.5 Second Recursive Formulation of 2"



1128 Running Time Analysis

Let's compute the running time of powerOf2A as a function of the input n\

we will call it 71 (n).

In the base case (n is equal to 0), powerOf2A makes only one comparison

and returns l.Thus,

71(0)= 1

Generally, since it takes 71 (n) to compute and return powerOf2A(n), then

it takes 71 (n - 1) to compute and return powerOf2A(n - 1).

Thus, in the general case, the comparison in the i/statement will cost us

1 instruction; computing and returning powerOf2A{n - 1) will cost us

71 (n - 1); and multiplying that result by 2 will cost us 1 instruction. Thus,

the total time 71 (n) can be expressed as follows:

71(n) = 1 + 71(n-l) + 1

= 71(n-l) + 2 //Equation 15.1

The preceding equation, which we will call Equation 15.1, is called a recur

rence relation between 71 (n) and 71 (n- 1) because 71 (n) is expressed as a

function of 71 (n - 1).

From there, we can use a number of techniques to compute the value of

71 (n) as a function of n.

Handwaving Method

This method is called handwaving because it is more an estimation

method, rather than a method based on strict mathematics.

From the preceding recurrence relation, we can say that it costs us two

instructions to go down one step (from n to n - 1). Therefore, to go down n

steps will cost us 2 * n instructions. We then add one instruction for T(0),

and get

71(n) = 2* n+ 1

Iterative Method

This method involves iterating several times, starting with the recurrence

relation until we can identify a pattern. In general, we can say that

71 (x) = 71 (x- 1) + 2, where x is some integer // Equation 15.2
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We call this Equation 15.2, which is the same as Equation 15.1, except that

x has been substituted for n.

We now want to express T(n) as a function of T(n - 2); thus, we want to

replace T(n- 1) in Equation 15.1 by an expression using T(n- 2).

Substituting n - 1 for x in Equation 15.2, we get

ri(«-i) = ri(n-2) + 2

Plugging in the value of 71 (rc - 1) into Equation 15.1, we get

= Tl(n-2) + 2* 2 //Equation 15.3

Note that in Equation 15.3, we do not simplify 2*2. In this way, we are try

ing to let a pattern develop so we can easily identify it.

Using x = n - 2 in Equation 15.2, we get

T1(h-2) = 71(n-3) + 2

Plugging in the value of Tl{n - 2) into Equation 15.3, we get

Tl(n) = 71(w-3) + 2 + 2*2

= 71(«-3) + 2*3 //Equation 15.4

Using x = n - 3 in Equation 15.2, we get

Tl(n-3) = 71(tt-4) + 2

Plugging in the value of 71 (h - 3) into Equation 15.4, we get

71(m) = 71(m-4) + 2 + 2*3

n SOFTWARE

BBi ENGINEERING TIP
When trying to develop

and identify a pattern

using iteration, do not pre

cisely compute all the

terms. Instead, leave them

as patterns.

Now we can see the pattern as follows:

71 (n) = 71 (n — k) + 2 * k, where k is an integer between 1 and n

II Equation 15.5

Plugging in k = n in Equation 15.5, we get

71(rc) = 71(0) + 2*n=l+2*« = 2*n +1
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Proof by Induction Method

If we can guess the value of 71 (n) as a function of n, then we can use a

proof by induction in order to prove that our guess is correct. We can use

the preceding iteration method to come up with a guess for 71 (n).

Generally, a proof by induction works as follows:

■ Verify that our statement (equation in this case) is true for a base case.

■ Assume that out statement is true up to n.

* Prove that it is true for n + 1.

Let's go through the induction steps with our guess that Tl(n) = 2 * n + 1,

which we may have generated from our iterative or handwaving method.

Step 1: Verify that the value that our guess gives to Tl(O) is correct.

71(0) = 2*0+1

= 1

Thus, our guess is correct for 71(0).

Step 2: Assume that 71(n) = 2 * n+ 1.

Step 3: Prove that 71(n + 1) = 2 * {n + 1) + 1.

Plugging in x = n + 1 in Equation 15.2, we get

n(n+l) = 71(n) + 2

Then, using our assumption and replacing 71 (n) by 2 * n + 1, we get

71(n+ l) = 2*fl+ 1 +2

=2*n+2+1

= 2* (n+ 1) + 1

Thus, we just proved, by induction, that our guess 71(n) = 2*n+lis correct.

Other Methods

Another method is to use the Master Theorem, but that is beyond the scope

of this book.

So the running time of powerOf2A(n) is 2 * n + 1, or O(n).

Let's now compute the running time of powerOf2B as a function of the

input n. We will call it T2(n).

In the base case (n is equal to 0), powerOf2B takes only one comparison to

return 1. Thus,

T2(0)= 1
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Generally, since it takes T2(n) to compute and return powerOf2B(n), then

it takes T2(n - 1) to compute and return powerOf2B(n - 1). Thus, in the

general case, the comparison in the if statement will cost us one instruc

tion; computing and returning powerOf2B(n - 1) will cost us T2(n - 1);

doing it a second time will cost us another T2(n - 1); and adding the two

and returning the sum as the result will cost us one instruction. Thus, the

total time T2(n) can be expressed as follows:

T2(n) = 1 + T2(n- 1) + T2(n-l) + 1

= 2* T2{n-l) + 2 //Equation 15.6

From there, we will use the iteration method in order to compute the value

of T2(n) as a function of n.

Substituting x for n, we can rewrite Equation 15.6 as follows:

T2{x) = 2* T2(x-l) + 2 II Equation 15.7

Usingx-n- 1 in Equation 15.7, we get

T2(n-l) = 2*T2{n-2) + 2

Plugging in the value of T2(n - 1) into Equation 15.6, we get

T2(n) = 2*(2* T2{n-2) + 2) + 2

= 22* T2(n-2) + 22 + 2 //Equation 15.8

Again, we leave 22 + 2 as an expression to try to let a pattern develop.

Using x = n - 2 in Equation 15.7, we get

T2(n-2) = 2* T2(n-3) + 2

Plugging in the value of T2(n-2) into Equation 15.8, we get

T2(n) = 22 * (2 * T2(n- 3) + 2) + 22 + 2

= 23 * T2(n - 3) + 23 + 22 + 2 // Equation 15.9

Using x = n - 3 in Equation 15.7, we get

T2(n-3) = 2* T2(n-4) + 2

Plugging in the value of T2(n - 3) into Equation 15.9, we get

T2(n) = 23 * (2 * T2(n- 4) + 2) + 23 + 22 + 2

= 24 * T2(n - 4) + 24 + 23 + 22 + 2 // Equation 15.10
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Now we can see the pattern as follows:

T2(n) = 2k* T2(n-k) + 2k + 2k~l + ... +22 + 2, where kis an integer

between 1 and n II Equation 15.11

Noting that

2k + 2k~l + ... + 22 + 2 = -1+ 2k + 2k~x + ... + 22 + 2 + 1

Equation 15.11 becomes

T2(n) = 2k* T2{n- k) + 2k+l - 2, where k is an integer between 1 and n

II Equation 15.12

Plugging in k = n in Equation 15.12 in order to reach the base case of

72(0), we get

T2(«)=2"* T2(0) + 2"+1 - 2

I REFERENCE POINT

Selection Sort is explained

in Chapter 8.

= 3*2"-2

= O(2")

Thus, powerOf2A runs in O(n) while powerOf2B runs in O(2"), although

they perform the same function.

As a result, computing 220 using powerOf2A will cost 20 statement execu

tions while computing 220 using powerOf2B will cost 1 million statement

executions.

This simple example shows that how we code a method can have a signifi

cant impact on its running time.

15.4 Programming Activity: Tracking How Many Statements

Are Executed by a Method

In this activity, you will work with a variable-size integer array. Specifically,

you will perform the following operations:

1. Write code to keep track of the number of statement executions dur

ing a selection sort.

2. Run a simulation to compute the number of statements executed as a

function of the number of elements in the array.
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1 Evaluating Selection Sc

UJtart SH- cnmi Sort

Your current counter value: 50

Correct counter value: 50

■■■ mil
59 41 65 50 44 43 37 38 44 39 65 75 86 96 97

Figure 15.1

Animation of the Pro

gramming Activity

3. Estimate the running time of Selection Sort as a function of n, the

number of elements in the array being sorted.

The framework for this Programming Activity will animate your algorithm

so that you can perform a simulation on the number of statement execu

tions inside the selectionSort method compared to the number of elements

in the array that is sorted. For example, Figure 15.1 shows the current num

ber of statement executions for an array of 15 elements.

At this point, the application has executed 50 statements.

Instructions

In the Chapter 15 Programming Activity directory on the CD-ROM

accompanying this book, you will find the source files needed to complete

this activity. Copy all the files to a directory on your computer. Note that all

files should be in the same directory.

Open the RunningTimePractice.java source file. Searching for five asterisks

(*****) in the source code will position you at the sample method where you

will add your code. In this task, you will fill in the code for the selectionSort
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method in order to keep track of the number of statement executions needed

to sort an array using the Selection Sort algorithm. You should not instantiate

the array; we have done that for you. Example 15.6 shows the section of the

RunningTimePractice source code where you will add your code.

Note that we provide a dummy return statement {return 0;). We do this so

that the source code will compile. Just replace the dummy return statement

with the appropriate return statement for the method.

i_ ***** student writes this method

Sorts arr in ascending order using the selection sort algorithm

Adds a counter to count the number of statement executions

/**

*

7

public int selectionSort(

// Note: To count the number of statement executions, use a counter

// The variable counter has been declared and initialized for you

// at the beginning of this method

// Inside the body of the inner loop, increment the counter

// Replace the return statement so that this method returns the value of

// the counter. To slow down or accelerate the animation, modify the

// argument of Pause.wait in the animate method

int counter = 0;

int temp, indexOfMax;

for ( int i = 0; i < size; i++ )

{

// find index of largest value in the subarray

indexOfMax ■ 0;

animate( i, 0, counter );

for ( int j = 1; j < arr.length - i; j++ )

if ( arr[j] > arr [indexOfMax] )

indexOfMax = j;

animate( i, j, counter );

}

// swap arr[index0fMax] and arr[arr.length - i]

temp = arr [indexOfMax];
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arr[indexOfMax] = arrfarr.length - i - 1];

arr[arr.length -1-1] = temp;

}

return 0;

} // end of selectionSort

EXAMPLE 15.6 Location of Student Code in RunningTimePractice

Our framework will animate your algorithm so that you can watch your

code work. If you want to accelerate or slow down the animation, modify

the argument of Pause.wait in the animate method.

To test your code, compile and run the RunningTimePractice source code.

When the program begins, you will be prompted for the number of ele

ments in the array. Because the values of the array are randomly generated,

the values will be different each time the program runs.

Troubleshooting

If the animation is incorrect, and you think your method does return a cor

rect value for the counter, verify that you correctly incremented the counter

inside the inner loop.

In order to derive a closed-end expression for the number of statement exe

cutions as a function of the size of the array, follow these tips:

■ If n is the size of the array, compare n, n2, n3, n4, ..., 2", to the value

of the counter.

■ When doing the preceding, divide n, n2, n3, n4,..., 2" by the num

ber of statements executed.

1. What is the value of the counter with the following array sizes: 5,10,15,20,25?

2. In relation ton, the size of the array, what is the value of the counter?

3. What is the running time of Selection Sort in Big-Oh notation?

4. If the array is already sorted in either the correct or opposite order, does that make a

difference in the number of statement executions? What can you say about the

worst-case and best-case running times?

DISCUSSION QUESTIONS
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15.5 Runninq Time Analysis of Searching and Sortina Alaorithms

In studying the running time of various searching and sorting algorithms,

we will look at the following scenarios:

■ best case

■ worst case

• average case

Some methods have a very efficient running time. We mentioned earlier

that the running time of Binary Search was log n. Thus, searching a sorted

array of 1 billion items using Binary Search will only take 30 statement exe

cutions since log (1 billion) is approximately 30.

Example 15.7 shows the code of the recursive binary search method intro

duced in Chapter 13.

public static int recursiveBinarySearch

( int [ ] arr, int key, int start, int end )

{

if ( start <= end )

{

// look at the middle element of the subarray

int middle = ( start + end ) / 2;

if ( arr[middle] == key ) // found key, base case

return middle;

else if ( arr[middle] > key ) // look lower

return recursiveBinarySearch( arr, key, start, middle - 1 );

else // look higher

return recursiveBinarySearch( arr, key, middle + 1, end );

else

return -1;

// key not found, base case

EXAMPLE 15.7 Recursive Binary Search

In the best-case scenario, we will find the search value exactly in the middle

of the array, at the array index we check first. Thus, the best-case running

time of Binary Search is O(l). In the worst-case scenario, we will not find

the search value in the array. Let's compute the running time of the worst-

case scenario.
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In the general case, the comparison of the first ifstatement will cost us one

instruction; the assignment statement will cost us two instructions; the

comparison in the second if statement will cost us one instruction; the

comparison in the else/ifstatement will also cost us one instruction; com

puting and returning recursiveBinarySearch(arr, key, start, middle - 1) or

recursiveBinarySearch(arr, key, middle + 1, end) will cost us T(n/2 - 1) or

T{n/2) instructions. Note that only one recursive call will be made. Thus,

the total time T(n) can be expressed as follows:

T(n) = 1 + 2 + 1 + 1 + T{nl2)

= T(n/2) + 5 //Equation 15.13

In the base case (n is equal to 1), recursiveBinarySearch makes only the first

comparison, one addition, one division, the second comparison, and then

returns the index of the found element or -1. Thus,

From there, we will use the iteration method in order to compute the value

of T2(n) as a function of n.

Substituting x for n, we can rewrite Equation 15.13 as follows:

T{x) = T(x I 2) + 5 // Equation 15.14

Using x = n 12 in Equation 15.14, we get

T(n/2) = T((n/2)/2) + 5

= T(n/22) + 5

Plugging in the value of T(n I 2) into Equation 15.13, we get

T(n) = (T(n I 22) + 5) + 5

= T(n I 22) + 5 * 2 // Equation 15.15

Using x = n I22 in Equation 15.14, we get

T(«/22) = r((«/22)/2) + 5

= T(n/23) + 5

Plugging in the value of T(n/22) into Equation 15.15, we get

= T(n/23) + 5*3 //Equation 15.16

Using x = n I 23 in Equation 15.14, we get

T(«/23) = T((n / 23) / 2) + 5

= T(n/24) + 5
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Plugging in the value of T(n I 23) into Equation 15.16, we get

REFERENCE POINT

Insertion Sort is explained

in Chapter 8.

= T(n I 24) + 5 * 4 // Equation 15.17

Now we can see the pattern as follows:

T{n) - T(n I 2k) + 5 * k,

where k is an integer between 1 and n II Equation 15.18

We now want to choose k such that n I 2k is equal to 1 in order to reach our

base case. If n I2k = 1, then n = 2k, and taking the log of each side:

log n = log 2k

= Hog2

= k

Plugging in k = log n in Equation 15.18, we get

T(n) = T(l) + 5 * log n

= 2 + 5 * log n

= O(log n)

Thus, Binary Search is O(log n) in the worst case. Note that the value of the

original constant, here 5, does not impact the order of magnitude of the

running time.

In the average case, we will find the search value after performing half the

number of comparisons as in the worst-case scenario. Thus, the average

running time of binary search is also O(log n).

Now, let's calculate the running time of Insertion Sort as a function of n,

the number of elements in the array. From Chapter 8, the code of the Inser

tion Sort method is shown in Example 15.8.

/** Performs an Insertion Sort on an integer array

* @param array array to sort

V
public static void insertionSort( int [ ] array )

int j, temp;

for ( int i = 0; i < array.length; i++ )
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j = i;

temp = array[i];

while ( j != 0 && array [j - 1] > temp )

{

array[j] = array[j - 1];

j--;

array [j] = temp;

EXAMPLE 15.8 Insertion Sor

The for loop header will execute n + 1 times. We will execute the body of the

for loop n times.

In the best case, the array is already sorted. In this case, the while loop

condition will always evaluate to false, and we will never execute the

while loop body. So inside the for loop, the three statements and the

loop condition will each execute once for each iteration of the for loop,

thus executing a total of 4 * n times. Therefore, the best-case running

time is O(n).

In the worst case, the array is sorted in the opposite order. In this case, the

while loop condition will always be true for its first evaluation, and we will

enter the while loop every time we iterate the for loop. Thus, the two state

ments inside the while loop will each execute (1 + 2 + 3 + 4 + .. . + (n- 1))

times. Since (1 + 2 + 3 + 4 + ... + («- 1)) = «*(«- 1) / 2, the worst-case

running time of insertion sort is O(n2).

In the average case, we will enter the while loop half the times we try. The

average case is still O(n2).

Bubble Sort, presented in Programming Activity 2 of Chapter 8, like Inser

tion Sort, is implemented with a double loop and also is O(n2).

Merge Sort and Quick Sort are two sorting algorithms implemented

recursively.
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The pseudocode for Merge Sort, which is the subject of the Group Project

of Chapter 13, is as follows:

■ If the array has only one element, it is already sorted, thus do noth

ing; otherwise:

• Merge sort the left half of the array.

■ Merge sort the right half of the array.

■ Merge the two sorted half-arrays into one in a sorted manner.

The last operation involves looping through all the elements of the two

half-arrays; it takes O(n); thus, we can derive the following recursive for

mulation for its running time of Merge Sort:

T(n) = T{n/2) + T(n/2) + n

= 2T(n/2) + n

Using derivation, we get

T(n) = 2T(n/2) + n

= 2(2T(n/22) + n/2) + n

= 22 T(n I 22) + 2n

Continuing to iterate,

T(n) = 22 T(n / 22) + 2n

= 22(2 T(n/23) + n/22) + 2n

= 23T(n/23) + 3n

= 23(2

= 24T(«/24) + 4n

Thus, we identify the general pattern

T(n) = 2k T(n I 2k) + kn

Choosing k so that n I 2k = 1 in order to reach the base case, i.e., n = 2k,

k = log n, we get

T(n) = nT{\) + nlogn

= O(n log n)

So Merge Sort is O(« log n), better than Insertion Sort, Bubble Sort, and Selec

tion Sort. It is the same for best-case, worst-case, and average-case scenarios.
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The analysis of the running time of Quick Sort is the subject of the Group

Project for this chapter.

1141

CODE IN ACTION

On the CO-ROM included with this book, you will find a Flash movie with a step-by-step illustration

of how to compute running times for various methods. Click on the link for Chapter 15 to start

the movie.

Skill Practice
with these end-of-chapter questions

15.7.1 Multiple Choice Exercises

Questions 1,2,3,4,5,6,7,8,9,10

15.7.2 Compute the Running Time of a Method

Questions 11,12,13,14,15,16,17,18

15.7.4 Technical Writing

Question 27

15.6 Chapter Summar

" The running time of an algorithm is expressed as a function of its

inputs or its number of inputs.

■ Orders of magnitude are, in increasing order of execution time:

constant, log, polynomial, and exponential. Exponential running

times are undesirable.

" Big-Oh notation is the industry standard notation for running

times.

■ Considering a mathematical function that represents a running time

of an algorithm, that function is Big-Oh of its most dominant term.

■ The coding of a method directly impacts its running time.
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Exercises. Problems, and Projects

15.7.1 Multiple Choice Exercises

1. What is the Big-Oh of this function:

T(n) = n2 - 2 n + 99

□ O(n2)

□ O(99)

□ O(n)

□ O(l)

2. What is the Big-Oh of this function:

T(n) = n3 + 10 n2 + 20 n + 30

□ O(n3)

□ O(n2)

□ O(n)

□ 0(1)

3. What is the Big-Oh of this function:

T(n) =n2 + n*logn + 12n + 5

□ O(rc*logn)

□ O(n2)

□ OO(n)

□ 0(1)

4. We have the following recurrence relation representing the running

time of a function; what is the running time of that function?

T(n) - T(n - 1) + 1

□ O(2")

□ O(«*logn)

□ O(n2)

□ O(n)
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5. Which of these running times is the worst?

□ O(n5)

□ O(2")

□ O(«*log«)

□ O(n)

6. Look at the following method:

public static int fool( int n )

{

if ( n > 1 )

return ( 2 * fool( n / 4 ) );

else

return 1;

}

What recurrence formulation best illustrates the running time of the

preceding method?

□ T(n) = T{n*4) + 3

□ T(n) = T(rc/4) + 3

□ T{n) = T(n-4) + 3

□ T(n) = T(n + 4) + 3

7. What is X i for i = 1 to n equal to?

□ n2

□ n*(n+ l)/2

□ In

□ n

8. What is E 1 for i = 1 to n equal to?

□ n2

□ n

□ n*(n+l)/2

□ i
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9. What is the running time of the foo2 method?

public static void foo2( int n )

{

for ( int i = n; i > 0; i- )

{

for ( int j = 0; j < n; j++ )

System.out.println( "Hello" );

}

}

□ O(«4)

□ O(n3)

□ O(«2)

□ O(n)

10. What is the running time of the foo3 method?

public static void foo3( int n )

{

for ( int i = 0; i < n; i++ )

{

for ( int j = 0; j < i; j++ )

System.out.println( "Hello" );

}

}

□ O(n4)

□ O(«3)

□ O(n2)

□ O(«)

15.7.2 Compute the Running Time of a Method

11. What is the running time of the foo4 method (assume that the

parameter arris a two-dimensional array of n rows and n columns)?

public static void foo4( int [ ][ ] arr )

{

for ( int i = 0; i < arr.length; i++ )

{

for ( int j = arr[i].length - 1; j >= 0; j++ )

System.out.println( "Hello world" );
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12. What is the running time of the foo5 method (assume that the

parameter arr is a three-dimensional array where each dimension has

exactly n elements)?

public static void foo5( int [][][] arr )

{

for ( int i = 0; i < arr.length; i++ )

{

for ( int j = 0; j < arr[i].length; j++ )

{

for ( int k = 0; k < arr[i] [j] .length; k++ )

System.out.println( "Hello world" );

13. What is the running time of the foo6 method?

public static void foo6( int n )

{

if ( n <= 0 )

System.out.println( "Hello world" );

else

foo6( n - 1 );

}

14. What is the running time of the foo7 method?

public static int foo7( int n )

{

// n is guaranteed to be >= 0

if ( n == 0 )

return 0;

else

return ( n + foo7( n - 1 ) );

}

15. What is the running time of the foo8 method?

public static int foo8( int n )

{

// n is guaranteed to be >= 1

if ( n == 1 || n == 2 )

return 1;

else

return ( foo8( n - 1 ) + foo8( n - 2 ) );

}

Hint: Note that T(n-2) <= T(n- 1).
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16. What is the running time of the foo9 method?

public static void foo9( int n )

// n is guaranteed to be >■ 0

if ( n == 0 )

System.out.println( "done" );

else

foo9( n / 2 );

17. What is the running time of the foo10 method as a function of n

andp?

public static void foolO( int n, int p )

// n and p are guaranteed to be >= 1

if ( p >= n )

System.out.println( "done" );

else

foolO( n, 2 * p );

18. What is the running time of the fool 1 method?

public static void fooll( int n )

// n is guaranteed to be >- 0

If ( n " 0 )

return 0;

else

return ( 5 + 2 * fooll( n - 1 ) );

15.7.3 Programming Projects

19. Write a program that includes a method taking a single-dimensional

array of ints as its only parameter, and returning the average of all the

elements of the array. Add the necessary code to count how many

statements are executed in the innermost loop. Run several simula

tions depending on the number of elements in the parameter integer

array. What is the running time of that method as a function of the

number of elements of the parameter array?
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20. Write a program that includes a method converting a two-dimen

sional array of ints to a two-dimensional array of boolean values. If

the integer value is greater than or equal to 0, then the corresponding

boolean value is true; otherwise it is false. Add the necessary code to

count how many statements are executed in the innermost loop. Run

several simulations depending on the number of rows and columns in

the argument integer array. What is the running time of that method

as a function of the number of rows and columns of the parameter

array? (You should assume that each row has the same number of

columns.)

21. Write a program that includes a method computing the largest ele

ment of a given column (represented by a parameter of the method)

of a two-dimensional array of ints. Add the necessary code to count

how many statements are executed in the innermost loop. Run several

simulations depending on the number of rows and columns in the

parameter integer array, as well as the index of the column for which

the method calculates the largest element. Does the running time of

the method depend on the column index? the number of rows? the

number of columns? What is the running time of that method as a

function of the number of rows and columns of the parameter array

and the column index? (You should assume that each row has the

same number of columns.)

22. Write a program that includes a method taking a two-dimensional

array of ints as its only parameter, and returning a single dimensional

array of ints such that each element of the returned array is the sum

of the corresponding row in the parameter array. Add the necessary

code to count how many statements are executed in the innermost

loop. Run several simulations depending on the number of rows and

columns in the parameter integer array. What is the running time of

that method as a function of the number of rows and columns of the

parameter array? (You should assume that each row has the same

number of columns.)

23. Write a program that implements a recursive Binary Search, and add

the necessary code to count how many times binarySearchRecursive is

being called. Run several simulations on arrays of 32, 64, and 128 ele

ments. How many times is the method called in the best-case scenario

and worst-case scenario? Does that match our analysis in the chapter?
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24. Write a program that implements the recursive method to compute

the factorial of a number from Chapter 13 and add the necessary code

to count how many times the method is being called. Run several

simulations depending on the value of n. How many times is the

method called? What is the running time of this method?

25. Write a program that includes a method converting a String of Os and

Is to its equivalent decimal number and add the necessary code to

count how many times the method is being called. Run several simu

lations depending on the length of the input String. How many times

is the method called? What is the running time of that method?

26. Write a program that includes a method converting a decimal num

ber to its equivalent binary number represented by a String of Os and

Is and add the necessary code to count how many times the method

is being called. Run several simulations depending on the decimal

number. How many times is the method called? What is the running

time of that method?

15.7.4 Technical Writing

27. Explain why it is important to consider running time when coding

algorithms. Use an example to illustrate your point. Your example,

web-based or not, should deal with a lot of data.

15.7.5 Group Project (for a group of 1,2, or 3 students)

28. Write a class with an int array as its only instance variable. Write a

recursive method that uses the Quick Sort algorithm in order to sort

the array. (Quick Sort is explained below.) You will then add the

appropriate code and perform the appropriate simulations to evaluate

the running time of the method as a function of the number of ele

ments in the array.

Here is how Quick Sort works:

□ Partition the array so that all the elements to the left of a cer

tain index are smaller than the element at that index and all

the elements to the right of that index are greater than or equal

to the element at that index. You should code a separate

method to partition the array. (See explanation that follows.)
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□ Sort the left part of the array using Quick Sort (this is a recur

sive call).

□ Sort the right part of the array using Quick Sort (this is

another recursive call).

To partition the array elements in the manner previously explained,

you should code another method (this one nonrecursive) as

explained as follows:

□ Choose an element of the array (for example, the first ele

ment). We call this element pivot.

□ This method partitions the array elements so that all the ele

ments left of pivot are less than pivot, and all the element right

of pivot are greater than or equal to pivot.

□ This method returns an int representing the array index of

pivot (after the elements have been partitioned in the order

described previously).

□ In order to rearrange the array elements as previously

described, implement the following pseudocode.

The following is pseudocode to partition a subarray whose lower

index is low and higher index is high:

Assign element at index low to pivot

Initialize j to low

Loop from (low + 1) to high with variable i

If (array element at index i is smaller than pivot)

Increase j by 1

Swap array elements at indexes i and j

Swap array elements at index low and j

Return j

Using a counter, keep track of the number of statement executions

performed when using Quick Sort to sort an array of n elements. In

particular, you should run simulation runs on these two situations:

□ The array is not sorted

□ The array is presorted in the correct order

You should perform a mathematical analysis of the running time of

Quick Sort in the average case based on its recursive formulation

(using iteration, as we did in the chapter examples).




