
Hacking	with	Python

The	Ultimate	Beginner’s	Guide

Introduction
	
This	book	will	show	you	how	to	use	Python,	create	your	own	hacking	tools,	and	make	the	most
out	of	available	resources	that	are	made	using	this	programming	language.
	
If	you	do	not	have	experience	in	programming,	don’t	worry	–	this	book	will	show	guide	you
through	understanding	the	basic	concepts	of	programming	and	navigating	Python	codes.
	
This	book	will	also	serve	as	your	guide	in	understanding	common	hacking	methodologies	and	in
learning	how	different	hackers	use	them	for	exploiting	vulnerabilities	or	improving	security.	You
will	also	be	able	to	create	your	own	hacking	scripts	using	Python,	use	modules	and	libraries	that
are	available	from	third-party	sources,	and	learn	how	to	tweak	existing	hacking	scripts	to	address
your	own	computing	needs.
	
	
	
Thank	you	and	I	hope	you	enjoy	it!

 	Copyright	2017	by	Steve	Tale	All	rights	reserved.

	
This	document	is	geared	towards	providing	exact	and	reliable	information	in	regards	to	the	topic
and	 issue	 covered.	 The	 publication	 is	 sold	 with	 the	 idea	 that	 the	 publisher	 is	 not	 required	 to
render	accounting,	officially	permitted,	or	otherwise,	qualified	services.	 If	advice	 is	necessary,
legal	or	professional,	a	21practiced	individual	in	the	profession	should	be	ordered.
	
-	From	a	Declaration	of	Principles	which	was	accepted	and	approved	equally	by	a	Committee	of
the	American	Bar	Association	and	a	Committee	of	Publishers	and	Associations.
	
In	 no	 way	 is	 it	 legal	 to	 reproduce,	 duplicate,	 or	 transmit	 any	 part	 of	 this	 document	 in	 either
electronic	means	or	in	printed	format.	Recording	of	this	publication	is	strictly	prohibited	and	any
storage	of	 this	document	 is	not	 allowed	unless	with	written	permission	 from	 the	publisher.	All
rights	reserved.
	
The	 information	 provided	 herein	 is	 stated	 to	 be	 truthful	 and	 consistent,	 in	 that	 any	 liability,	 in
terms	of	inattention	or	otherwise,	by	any	usage	or	abuse	of	any	policies,	processes,	or	directions
contained	 within	 is	 the	 solitary	 and	 utter	 responsibility	 of	 the	 recipient	 reader.	 Under	 no
circumstances	 will	 any	 legal	 responsibility	 or	 blame	 be	 held	 against	 the	 publisher	 for	 any
reparation,	damages,	or	monetary	loss	due	to	the	information	herein,	either	directly	or	indirectly.
	
Respective	authors	own	all	copyrights	not	held	by	the	publisher.
	
The	information	herein	is	offered	for	informational	purposes	solely,	and	is	universal	as	so.	The
presentation	of	the	information	is	without	contract	or	any	type	of	guarantee	assurance.
	
The	 trademarks	 that	 are	 used	 are	without	 any	 consent,	 and	 the	 publication	 of	 the	 trademark	 is
without	 permission	 or	 backing	 by	 the	 trademark	 owner.	All	 trademarks	 and	 brands	within	 this
book	are	for	clarifying	purposes	only	and	are	the	owned	by	the	owners	themselves,	not	affiliated
with	this	document.

Table	of	contents
Chapter	1:	Preparation	For	Hacking

Chapter	2:	Python	Basics

Chapter	3:	Writing	Python	Programs

Chapter	5:	Operators	and	Expressions

Chapter	6:	Functions	and	Modules

Chapter	7:	Setting	Up	for	Hacking

Chapter	8:	Network	Hacking

Chapter	9:	Hacks	for	the	Web

Chapter	10:	Understanding	Attacks	Using	Python

Chapter	11:	Other	Nifty	Hacks	to	Try

Conclusion

Bonus:	Preview	Of	‘Introduction	to	Python	3

	

Chapter	1:	Preparation	for	hacking
	
Every	aspiring	hacker	should	learn	how	to	use	a	programming	language	in	order	to	discover	and
exploit	weaknesses	in	a	computer.	While	there	is	nothing	wrong	with	using	resources	that	are
already	made	available,	you	will	want	to	develop	better	tools	that	can	allow	you	to	make	better
use	of	your	own	computer.	Because	you	are	the	best	judge	when	it	comes	to	understanding	your
own	needs,	you	are	aware	that	many	of	the	existing	tools	available	online	or	in	the	market	lack
some	of	the	features	that	you	may	need	to	make	your	computer	perform	just	the	way	you	want	it.

The	computing	world	changes	every	day	–	new	hacks	are	developed	by	the	hour	and	you	can	also
expect	that	different	security	experts	discover	them.	If	you	are	stuck	on	using	old	hacking	tools	to
either	perform	reconnaissance	or	protect	yourself	from	a	possibility	of	an	attack,	then	you	are
likely	to	run	into	some	trouble.	For	example,	launching	a	malware	on	a	targeted	machine	that	has
already	improved	its	security	system	will	not	only	cause	your	attack	to	fail	–	the	likelihood	of	the
attack	being	traced	back	to	you	is	also	high.

Learning	a	programming	language	will	also	allow	you	to	increase	your	probability	of	hacking
success	and	decrease	the	likelihood	of	getting	detected	by	IDS	(intrusion	detection	systems),
antivirus	software,	or	tools	that	are	used	by	law	enforcement.	If	you	are	learning	how	to	be	a
white	hat	hacker	by	learning	how	criminal	hackers	act	and	develop	their	own	tools	for	system
exploitation	and	manipulation,	then	you	will	definitely	be	able	to	use	updated	security	codes	to
combat	new	cracking	programs	that	are	developed	every	day.	By	being	able	to	code	programs	on
the	go,	you	will	also	be	able	to	detect	and	prevent	attacks	as	they	happen.

Being	able	to	code	your	own	hacking	tools	will	also	allow	you	to	contribute	to	the	community	of
hackers	that	are	sharing	their	resources	with	you	–	by	discovering	a	better	way	to	perform	an
attack,	do	a	countermeasure	against	an	illegal	hack,	or	update	security	protocols	or	abilities	of	a
known	tool,	you	will	be	able	to	do	your	share	in	making	the	computing	world	a	more	secure	place
to	be	in.

What	is	Python?
Python	is	considered	an	open	source	language,	which	means	that	you	can	download	it	from	the
python.org’s	website	free	of	charge.	This	high-level	language	has	been	around	since	the	late	‘80s,
but	has	definitely	survived	the	test	of	time	–	it	is	still	used	today	to	create	GUIs,	web	apps,
games,	and	more	importantly,	hacking	exploits	and	intrusion	mitigation.

If	you	are	migrating	from	another	programming	language,	you	will	be	able	to	easily	learn	Python
thanks	to	its	easy	readability.	Most	of	the	commands	use	typical	English	statements	which	will
allow	you	to	immediately	understand	their	purpose	even	if	it	is	the	first	time	that	you	have
encountered	this	language.	Python	codes	are	also	so	much	shorter	and	simpler	compared	to	other
high-level	languages	such	as	Java,	and	comes	with	a	library	and	features	that	are	already	built-in,
as	well	as	access	to	third-party	modules	and	libraries.	Its	robust	integrated	libraries	and	the
availability	of	resources	that	are	compiled	by	other	users	make	it	one	of	the	favorite	programming
languages	of	hackers.

Here’s	an	example:	if	you	want	to	perform	the	classic	Print	command	to	type	out	“Hello,	World!”
using	Java,	you	will	have	to	type	out	the	following:

	

However,	Python	will	just	require	you	to	key	in	the	following:

At	this	point,	you	get	the	idea	that	a	complete	hacking	script	will	be	much	simpler	and	shorter
using	Python,	compared	to	other	high-level	languages	that	are	typically	used	for	creating
programs.

If	you	are	a	first-time	programmer,	you	will	find	Python	to	be	relatively	easy	to	learn,	thanks	to	its
simpler	codes	and	syntax.	You	will	also	be	able	to	run	your	codes	on	different	types	of	devices
and	operating	systems,	such	as	Android,	Windows,	Linux,	and	Mac	OS	X.	If	you	are	interested	in
jumping	right	into	hacking,	you	will	definitely	have	endless	fun	discovering	what	you	can
manipulate	with	your	own	programs	–	Python	does	not	only	allow	you	to	exploit	and	manipulate
laptops,	smartphones,	and	desktops,	but	also	allow	you	to	run	your	programs	on	microcontrollers
that	are	found	in	toys,	remote	controls,	appliances,	and	virtually	any	device	that	has	a	computer	in
it.

Starting	with	Python
If	you	are	using	a	recent	Linux	or	UNIX	distribution,	you	probably	have	the	Python	installed
already.	Some	Windows	users,	particularly	HP	computer	owners,	may	also	have	it	installed	in
their	computers.	However,	if	you	need	a	fresh	install	of	the	package,	you	can	download	it	from
www.python.org.

Normally,	you	would	want	to	get	the	latest	version,	which	is	3.5.2,	but	you	may	also	want	to	get
the	latest	release	of	Python	2,	which	is	2.7.11,	if	it	is	more	compatible	with	the	hacking	projects
that	you	have	in	mind.	While	Python	3	may	be	the	future	of	this	programming	language,	certain
factors	such	as	compatibility	with	your	computer	or	using	third	party	services	may	make	you
download	Python	2	instead.

Windows	Installation
After	you	have	downloaded	the	installation	package	from	the	Linux	website,	decompress	it	and
run	the	.exe	file	to	proceed	with	the	setup.	You	should	be	able	to	get	pip,	documentation,	and
IDLE	when	you	go	with	the	standard	installation.

Note:	See	to	it	that	you	have	checked	this	option:

If	you	want	to	change	the	location	for	your	installation,	simply	click	on

																				

and	then	hit	Next.	Afterwards,	use	the	path	c:\python35	as	your	install	location.	If	you	have
installed	Python	in	the	correct	path,	go	to:

You	can	also	run	Python	from	the	command	prompt	if	you	have	correctly	set	the	PATH	variable
upon	installation.	If	you	are	running	Python	for	the	first	time	in	Windows,	type	cmd	in	the	Run
dialog	box	(click	on	Start	button	to	locate	this	command).	Once	you	have	the	command	prompt
pulled	up,	key	in	“python”	to	launch	the	program.

Mac	OS	X	Installation
You	can	download	the	installer	from	Python’s	website	or	you	can	use	Homebrew	to	get	the	install
package.	If	you	do	not	have	Homebrew	installed	yet,	pull	up	a	terminal	(press	the	Command	key	+
Spacebar	to	launch	Spotlight	search,	and	then	key	in	Terminal)	and	enter	this	command:

/usr/bin/ruby	-e	"$(curl	-fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)"													

After	Homebrew	is	installed,	it	will	prompt	you	about	how	it	will	proceed	with	the	installation.
Hit	Enter	and	then	provide	your	user	password	in	order	to	proceed.	Once	installed,	you	can	now
use	the	“brew”	command	from	the	terminal	to	install	packages	for	OS	X.

To	install	the	Python	package,	pull	up	a	fresh	Terminal	and	key	in:

http://www.python.org

	

Installing	on	Linux
If	your	operating	system	is	GNU/Linux,	you	can	use	Ubuntu	or	Debian	distribution	manager	to
install	Python.	To	do	that,	simply	key	in	this	command:

Once	you	are	able	to	install	the	program,	run	it	by	typing	“python”	on	the	terminal.

Interacting	with	the	Python	Language
Now	that	you	have	installed	Python,	the	next	thing	that	you	need	to	do	is	to	learn	how	you	can	use
it	to	explore	features	or	to	test	a	code.	You	can	use	Python	using	the	script	mode	if	you	want	to	see
how	entire	files	or	applications	are	interpreted.

To	interact	using	Python,	you	can	use	the	IDLE	(Integrated	Development	Environment),	which
will	pull	up	the	Python	shell	window,	or	the	command	line	in	Windows.

Interacting	Using	the	Command	Prompt
The	Windows	command	line	(or	the	Terminal	in	Linux	and	Mac	OS	X)	is	the	simplest	and
straightforward	way	to	start	using	Python.	With	this	tool,	you	will	be	able	to	see	how	Python
operates	based	on	how	it	reacts	to	every	command	that	you	enter	on	the	>>>	prompt,	which	is
also	known	as	the	interpreter	prompt.

Take	note	that	this	might	not	be	the	most	preferred	way	by	hackers	when	it	comes	to	interacting
with	this	programming	language,	but	this	method	will	allow	you	to	easily	explore	Python’s
features.

To	explore	how	Python	operates,	take	a	look	at	how	the	print	command	can	be	used	to	display
“Python	is	for	hacking.”

Pull	up	the	Python	command	line.

Once	you	see	the	>>>	prompt,	key	in:

print(“Python	is	for	hacking.”)

Hit	Enter	to	end	the	command.	Right	after	that,	Python	will	display	your	requested	text	on
the	following	line.

What	will	happen	if	you	did	something	wrong	with	your	command?	If	you	used	a	faulty	syntax,
such	as	an	incomplete	statement	or	a	misspelled	command,	you	will	get	a	display	error	that	looks
like	this:

	

How	to	Exit	Python
If	you	want	to	quit	the	Python	prompt,	use	any	of	these	commands:

Ctrl	+	Z,	and	then	hit	Enter

Key	in	“quit()”

Key	in	“exit()”

	

Interacting	Using	the	IDLE

When	you	are	using	a	programming	language,	such	as	Python,	you	will	need	to	develop	your	code
using	an	integrated	development	environment	or	IDE.	An	IDE	is	an	application	that	will	provide
you	all	the	tools	that	you	need	to	develop	a	software.	Usually,	these	tools	are	a	text	editor	that
will	help	you	tweak	the	source	code	that	you	are	working	on,	a	debugger,	and	a	set	of	tools	for
build	automation	which	you	can	use	through	a	GUI	(graphical	user	interface).	IDEs	will	also
allow	you	to	use	integration	with	version	control	libraries	that	you	can	source	from	third	parties,
which	means	that	you	can	pull	up	codes	that	are	created	by	others	and	then	mix	and	match	them
with	your	own	code	to	get	the	results	that	you	want.

You	can	get	your	preferred	IDE	from	a	third-party	source,	such	as	educational	sites	for
programming	languages,	or	from	the	developers	of	the	language	themselves.	Python.org,	for
example,	provides	you	a	free	IDE	that	you	can	use	as	a	starting	point	to	development,	if	you	are
not	sure	which	IDE	will	work	best	with	your	coding	style.

The	IDLE	tool	that	comes	with	your	installation	package	serves	as	a	platform	where	you	can
efficiently	key	in	your	codes	and	interact	with	Python.	You	can	easily	pull	up	IDLE	by	clicking	on
its	icon	on	your	desktop,	the	Start	Menu	or	locating	it	on	the	install	folder.

IDLE	allows	you	to	use	these	features:

The	Python	shell	window	which	allows	you	to	make	use	of	color-coded	code	input	and
output	and	get	error	messages	if	you	input	a	wrong	statement.

A	debugger	that	comes	with	stepping,	local	and	global	namespace	viewing,	and	persistent
breakpoints

Browsers	and	configuration

A	text	editor	that	allows	you	to	use	multiple	windows,	colorizing	for	Python,	auto-
completion,	undo,	and	other	features

Using	IDLE	will	allow	you	to	use	two	windows	(the	Shell	and	the	Editor)	which	you	can	use
simultaneously.	You	can	also	have	output	windows	that	have	a	different	context	menu	and	title.

The	menus	that	you	can	use	in	IDLE	will	change	depending	on	the	window	that	you	have	selected.
The	options	that	belong	to	each	menu	are	straightforward,	which	means	that	you	will	not	have	a
hard	time	understanding	what	each	of	them	do	even	if	you	are	new	to	programming.

Here	are	the	menus	and	the	window	that	they	are	associated	with.

File	(for	Editor	and	Shell	windows)

This	menu	contains	the	following	options:

1.	 New

2.	 Open

3.	 Recent	Files

4.	 Open	Module

5.	 Class	Browser

6.	 Path	Browser

7.	 Save

8.	 Save	As

9.	 Save	Copy	As

10.	 Print	Window

11.	 Close

12.	 Exit

Edit	(for	Editor	and	Shell)

This	menu	contains	the	following	options:

1.	 Undo

2.	 Redo

3.	 Cut

4.	 Copy

5.	 Paste

6.	 Select	All

7.	 Find

8.	 Find	Again

9.	 Find	Selection

10.	 Find	in	Files

11.	 Replace

12.	 Go	to	Line

13.	 Show	Completions

14.	 Expand	Word

15.	 Show	Call	Tip

16.	 Show	Surrounding	Parens

Format	(Editor	Window)

1.	 Indent	Region

2.	 Dedent	Region

3.	 Comment	Out	Region

4.	 Uncomment	Region

5.	 Tabify	Region

6.	 Untabify	Region

7.	 Toggle	Tabs

8.	 New	Indent	Width

9.	 Format	Paragraph

10.	 Strip	Trailing	Whitespace

Run	(Editor	window)

1.	 Python	Shell

2.	 Check	Module

3.	 Run	Module

Shell	Menu	(Shell	window)
View	Last	Restart

Restart	Shell

Interrupt	Execution

	

Debug	(Shell	window)

1.	 Go	to	File/Lie

2.	 Debugger

3.	 Stack	Viewer

4.	 Auto-Open	Stack	Viewer

	

Options	(Editor	and	Shell	windows)

1.	 Configure	IDLE

2.	 Code	Context	(available	only	in	Editor)

Windows

1.	 Zoom	Height

Help

1.	 About	IDLE

2.	 IDLE	Help

3.	 Python	Docs

4.	 Turtle	Demo

Other	Things	You	Can	Use
You	can	write	your	codes	in	other	IDEs	or	text	editors	other	than	IDLE,	depending	on	your	needs.
There	is	no	real	guideline	in	choosing	where	you	should	type	out	and	save	your	codes	–	as	long	as
the	editor	that	you	are	using	helps	you	code	comfortably	and	comes	with	syntax	highlighting	which
will	help	you	visualize	your	code,	then	you	will	be	able	to	achieve	your	hacking	goals	and	create
the	code	that	you	want	to	use	in	the	future.

Here	are	other	editors	and	their	features	that	you	might	want	to	check	out:

PyCharm	Educational	Edition

If	you	want	to	focus	on	learning	Python	instead	of	concentrating	on	how	you	should	be
navigating	your	windows,	then	this	is	the	editor	for	you.	You	can	pull	up	existing	codes	in
the	editor	to	learn	how	certain	programs	are	written,	or	learn	using	the	tutorial	that	comes
with	it.

You	can	download	this	free	editor	from	www.jetbrains.com.

Sublime	Text

Sublime	Text	allows	you	to	use	a	package	manager,	which	essentially	works	for	any
person	that	is	used	to	typing	in	word	processors.	It	also	comes	with	features	such	as	code
folding,	which	hides	lines	of	codes	that	you	are	not	working	on.

Take	note	that	this	is	not	a	free	software,	but	it	does	come	with	a	trial	period	that	does	not
have	a	time	limit.

	

VIM

This	free	software	will	allow	you	to	do	lots	of	customizing,	which	is	great	if	you	are	an
experienced	programmer	that	wants	to	work	using	settings	that	you	are	most	comfortable
with.	Another	plus	factor	to	this	software	is	that	it	has	an	extended	history	of	usage,
which	means	that	you	have	a	community	of	users	that	you	can	easily	tap	when	you	need
some	help.

If	you	are	new	to	programming,	this	might	feel	like	a	daunting	text	editor	to	use,	but	the
steep	learning	curve	will	pay	off	in	the	end.	By	learning	how	to	code	through	hacking
right	away,	you	will	be	able	to	get	a	good	grasp	of	Python	as	you	experience	it	using
different	tools	that	were	already	made	by	other	hackers.

Coda

This	software	comes	with	a	free	trial	for	a	week	and	then	will	cost	$99	afterwards.	Coda

is	not	a	text	editor	that	is	devoid	of	bells	and	whistles	–	it	comes	with	features	like	SSH
connectivity,	code	controls	to	connect	automatically	to	a	hub,	and	a	Terminal	interface.	If
you	are	gunning	to	develop	a	web	app	for	your	hacks,	then	this	is	probably	the	IDE	that
will	work	best	for	you.

	

Now	that	you	have	your	development	environment	setup,	it’s	time	for	you	to	start	learning	about
Python’s	basic	concepts.

	

Chapter	2:	Python	Basics
Your	goal,	of	course,	is	to	make	Python	go	beyond	printing	a	text.	To	do	that,	you	will	need	to
learn	other	concepts	that	are	essential	in	a	Python	script.	You	will	also	want	to	create	a	script	that
is	easy	for	you	to	understand	and	review	in	the	future,	just	in	any	case	you	want	to	improve	it	and
turn	it	into	a	working	tool	for	your	hacks.

In	order	to	take	inputs	and	manipulate	them	in	order	to	get	certain	results,	you	will	first	need	to
learn	how	variables	and	constants	work	in	this	programming	language.

Comments
These	are	statements	that	come	after	the	#	symbol.	These	pieces	of	texts	allow	you	to:

Explain	the	problems	that	you	are	aiming	to	overcome	or	solve	in	your	program

Take	note	of	the	important	assumptions,	details,	and	decisions	that	you	want	to	perform
in	the	code

Making	notes	in	your	code	does	not	only	remind	you	what	you	want	to	achieve	in	your	code,	but
also	help	readers	that	will	be	using	your	program	understand	what	lines	of	code	are	supposed	to
do.

Literal	Constants
Literal	constants	are	named	as	such	because	you	take	these	pieces	of	text	for	their	literal	value.
These	constants	can	be:

Numbers

They	can	be	integers	(plain	whole	numbers)	or	floats	(numbers	that	have	decimal	points)

Strings

These	are	sequences	of	characters,	which	you	can	specify	using	single	quote,	double
quotes,	or	triple	quotes.	Take	note	that	single	and	double	quotes	function	similarly	in
Python,	and	that	you	can	express	them	freely	inside	triple	quotes.	Here	is	an	example:

Strings	are	also	immutable,	which	means	that	you	cannot	change	a	string	once	you	have
created	it.

How	to	Format	Strings
There	are	instances	in	which	you	will	want	to	construct	strings	from	a	different	piece	of
information.	To	do	this,	you	will	need	to	use	the	 method.	Take	a	look	at	this
example:

Once	you	are	done,	save	this	piece	of	code	as	str_format.py.	This	is	how	it’s	going	to
look	like	when	you	run	the	program:

The	format	method	allows	you	to	use	an	argument	value	to	take	the	place	of	a	particular
specification.	Take	a	look	at	this	example:

This	piece	of	code	will	give	you	this	result:

	

	

	

Variables
Because	there	will	be	multiple	instance	wherein	you	will	need	to	store	information	in	your	code
and	then	manipulate	them,	you	will	need	to	have	some	variables.	Just	like	what	the	name	means,
variables	have	varying	values,	such	as	real	numbers,	strings,	Booleans,	dictionaries,	or	lists,
which	you	can	access	through	certain	methods.	Take	a	look	at	this	sample	code:

In	this	example,	you	are	able	to	define	the	variable	named	port,	which	is	going	to	be	used	to	store
the	integer	21,	and	the	variable	named	banner,	which	is	going	to	hold	a	string.	In	order	to	combine
these	variables	together	as	a	single	string,	you	will	need	to	use	the	variable	port	through	the	use	of
the	str()	function.

Since	you	need	to	quickly	access	the	data	you	stored,	you	need	to	assign	names	to	variables.	This
is	where	identifiers	come	to	play.	Identifiers	work	like	code	names	that	you	use	to	point	out	to
something	that	you	have	used	in	your	code	or	program.	Here	are	some	rules	that	you	need	to
follow	when	assigning	them:

The	initial	character	should	be	a	letter	of	the	alphabet	or	an	underscore.

The	remaining	characters	should	consist	of	underscores,	letters,	or	digits

They	are	case-sensitive,	which	means	that	mycode	and	myCode	do	not	call	out	the	same
value	and	not	interchangeable	when	you	assign	them	as	an	identifier.

Objects
Things	that	are	referred	to	as	anything	in	the	code	that	exists	in	Python	are	called	objects.	If	you
are	migrating	to	Python	from	another	programming	language,	you	need	to	take	note	that	everything
in	Python,	including	string,	numbers,	and	functions,	is	classified	as	an	object.

Lists
Python	allows	you	to	make	use	of	a	list	data	structure	which	is	extremely	useful	when	it	comes	to
storing	collections	of	objects.	As	a	programmer,	you	can	create	lists	that	contain	different	types	of
data.	At	the	same	time,	you	can	also	make	use	of	several	built-in	techniques	in	Python	that	will
allow	you	to	insert,	index,	count,	sort,	append,	remove,	pop,	and	even	reverse	items	in	a	list.	Take
a	look	at	this	example:

Using	the	above	code,	you	were	able	to	create	a	list	through	the	method	append(),	print	all	the
specified	items,	and	then	manage	to	sort	the	items	before	you	asked	the	program	to	print	them
again.	You	were	also	able	to	find	an	item’s	index	and	also	remove	particular	items.

Dictionaries
Python’s	dictionary	structure	allows	you	to	make	use	of	a	hash	table	that	can	be	used	to	store
virtually	any	amount	of	objects.	The	program’s	dictionary	contains	a	pair	of	items	which	consists
of	a	key	and	its	corresponding	value.

Dictionaries	are	extremely	helpful	in	creating	hacking	scripts.	For	example,	you	can	create	a
scanner	that	is	designed	to	exploit	vulnerabilities	of	a	particular	system,	such	as	open	TCP	ports.
If	you	have	a	dictionary	that	will	display	service	names	for	corresponding	ports	that	you	want	to
exploit.	For	example,	you	can	create	a	dictionary	that	will	allow	you	to	look	up	the	ftp	key,	and
then	provide	you	an	output	of	21,	which	corresponds	to	a	port	that	you	may	want	to	test.	You	can
also	use	dictionaries	to	perform	brute	force	attacks	to	crack	an	encrypted	password.	What	makes
Python	even	better	is	that	you	can	code	your	own	dictionaries	and	use	them	in	other	scripts	that
you	may	want	to	develop	in	the	future.

When	you	create	a	dictionary,	keys	should	be	separated	from	their	corresponding	value	with	a
colon,	and	the	items	should	be	separated	using	commas.	In	the	following	example,	you	will	be
able	to	use	the	.keys()	method	to	give	you	a	list	of	all	the	available	keys	in	the	dictionary,	and	the
.items()	method	that	will	provide	you	all	the	items	that	the	dictionary	contains.	Take	a	look	at	this
example:

	

Now	that	you	know	the	basic	concepts	that	make	Python	scripts	perform	tasks,	you	are	now	ready
to	start	using	them	in	your	own	script.	In	the	next	chapter,	you	will	learn	how	a	readable	Python
script	should	look	like.

Chapter	3:	Writing	Python	Programs
Now	that	you	are	aware	of	some	basic	concepts	that	you	need	to	grasp	in	Python,	it’s	time	to	learn
some	guidelines	that	you	need	to	remember	when	it	comes	to	writing	a	Python	program.	In	this
chapter,	you	will	learn	how	to	use	some	of	the	most	basic	concepts	to	run	simple	commands	and
format	your	Python	codes	in	such	a	way	that	it	will	be	easier	for	you	to	understand	and	document
them	later.

How	to	Use	Literal	Constants	and	Variables
	

Pull	up	your	text	editor	and	run	the	following:

Your	output	should	look	like	this:

What	happened	in	this	program	is	that	you	assigned	a	literal	value	of	5	to	the	given	variable	i
through	an	assignment	operator,	which	is	the	=	sign.	That	entire	line	is	considered	a	statement
because	it	indicated	that	something	should	be	done,	which	is	connecting	the	said	variable	to	a
numerical	value.	Afterwards,	you	printed	out	the	value	of	i	by	using	the	print	command.

Afterwards,	you	added	1	to	the	given	value	that	you	stored	in	the	variable	i,	and	then	you	saved	it.
When	you	use	the	print	statement	again,	you	get	the	value	of	6.

At	the	same	time,	you	also	assigned	a	literal	string	to	the	variable	s	and	then	proceeded	to	use	the
print	statement.

Physical	and	Logical	Lines
What	you	see	when	you	type	out	a	program	is	called	a	physical	line.	What	Python	gets	when	you
type	a	statement	is	called	the	logical	line.	With	this	said,	this	programming	language	assumes	that
every	physical	line	that	you	see	corresponds	to	a	given	logical	line.

While	you	can	use	more	than	one	logical	line	on	a	physical	line	by	using	the	semicolon	(;)
symbol,	Python	encourages	that	programmers	like	you	input	a	single	statement	in	order	to	make
your	codes	more	readable.	This	way,	you	will	be	able	to	see	lines	that	you	are	working	on	and
avoid	possible	confusion	when	you	are	working	on	two	different	logical	lines	and	get	lost	on
what	you	are	supposed	to	work	on.

Indentation
Python	is	one	of	the	programming	languages	out	there	where	white	space,	especially	the	space	at
the	beginning	of	each	line	of	code	is	important.	By	using	indentation,	you	can	group	together
blocks,	or	statements	that	belong	together.	As	a	rule	of	thumb,	see	to	it	that	you	are	using	the	same
indentation	when	you	are	working	on	similar	statements.	Also	remember	that	using	the	wrong
indentation	can	make	your	code	prone	to	error.	Take	a	look	at	this	example:

When	you	run	this	code,	you	will	get	this	result:

Python	recommend	that	you	use	four	spaces	for	your	indentations.	Typical	good	text	editors	will
do	this	for	you.	As	long	as	you	are	consistent	with	the	spaces	that	you	are	using,	you	will	be	able
to	avoid	unexpected	results	in	your	code.

Now	that	you	know	the	basics,	you	can	now	start	learning	the	more	interesting	stuff!

Chapter	5:	Operators	and	Expressions
Most	of	the	statements	(also	called	logical	lines)	that	you	will	be	writing	in	your	code	will
include	expressions.	Expressions	are	divided	into	operands	and	operators.

Operators	are	essentially	functions	that	do	something	in	your	code,	which	are	represented	by
symbols	or	keywords.	They	usually	require	pieces	on	information	that	they	can	work	on,	which
are	called	operands.	For	example,	if	you	have	the	expression	4	+	5,	the	plus	(+)	sign	is	the
operator,	and	the	numbers	4	and	5	are	operands.

Python	Operators
Take	a	look	at	how	expressions	look	like	in	an	interpreter	prompt:

When	you	evaluate	expressions	in	an	interpreter	prompt	and	you	used	the	right	syntax,	you	will	be
able	to	see	the															result	that	you	are	expecting	right	after	the	logical	line.	Since	you	will	be
producing	codes	for	your	own	hacking	tools,	you	will	need	to	memorize	how	operators	are	used
in	a	code.

Also	take	note	that	Python	uses	the	operators	according	to	precedence.	That	means	that	when	you
ask	your	code	to	perform	certain	operations	that	have	higher	precedence.	For	example,	Python
will	always	perform	operations	that	require	it	to	divide	or	multiply	variables	over	operations	that
require	it	to	add	or	subtract.	If	two	operators	have	the	same	value	of	precedence,	then	Python	will
evaluate	them	from	left	to	right.

Here	is	a	list	of	the	operators	that	are	available	in	Python.

Plus	(+)

Adds	two	objects.

For	example:

4	+	5	will	give	you	9,	and	‘e’	+	‘j’	gives	you	‘ab’

Minus	(-)

Subtracts	one	number	from	another	number.	In	case	that	the	first	operand	in	the	equation	is
absent,	Python	assumes	that	it	is	zero.

For	example:

-87	will	give	you	a	negative	number,	and	80	–	40	gives	you	40.

Multiply	(8)

Multiplies	to	numbers	or	repeats	a	string	a	certain	number	of	times.

For	example:

2*5	gives	you	10,	and	‘ha’	*	3	will	give	you	‘hahaha’

Power	(**)

Raises	a	certain	number	to	the	power	of	the	next	operand.

For	example:

3	**	3	will	give	you	9	(this	is	computed	as	3	*	3	*	3)

Divide	(/)

Divides	the	first	operand	with	the	next	one.

For	example:

4	/	2	gives	2

Divide	and	floor	(//)

Divides	the	first	operand	with	the	next	one,	and	then	rounds	the	result	to	the	nearest
number.

For	example:

5	//	2	gives	you	2

Modulo	(%)

Gives	you	the	remainder	of	a	division

For	example:

13	%	3	will	give	you	1

Less	than	(<)

Gives	you	a	result	of	whether	the	first	operand	is	less	than	the	next	one.	The	comparison
operator	will	say	whether	it	is	TRUE	or	FALSE.

For	example:

3	<	9	returns	gives	you	TRUE

Greater	than	(>)

Gives	you	a	result	of	whether	the	first	operand	is	greater	than	the	next	one.	The	operator
will	also	say	whether	it	is	TRUE	or	FALSE.

For	example:

9	>	3	gives	you	TRUE

Less	than	or	equal	to	(<=)

Gives	you	a	result	of	whether	the	first	operand	is	less	than	or	equal	to	the	next	one.

For	example:

x	=	6;	y	=	9;	x	<=	y	gives	you	TRUE

Greater	than	or	equal	to	(>=)

Gives	you	a	result	of	whether	the	first	operand	is	greater	than	or	equal	the	next	one

For	example:

x	=	6;	y	=	3;	x	>=	y	gives	you	TRUE

Equal	to	(==)

Tells	you	if	to	operands	are	equal.

For	example:

x	=	3;	y	=	3;	x	==	y	gives	you	TRUE

Not	equal	to	(!=)

Tells	you	if	the	operands	are	not	equal

For	example:

x	=	3;	y	=	4;	x	!=	y	gives	you	TRUE

Expressions
Expressions	are	combinations	of	operators	and	values	in	your	code.	You	can	think	of	it	as
anything	that	“expresses”	something	that	has	a	value.	For	example,	if	you	use	the	function	eval(1	+
1),	you	will	get	a	result	that	provides	you	the	value	of	these	two	numbers	added	together.

Take	a	look	at	this	example:

Save	this	as	expression.py	and	then	run	it	at	the	interpreter	prompt.	You	should	be	able	to	get	this
output:

As	you	may	have	noticed,	Python	stored	values	in	the	variables	‘length’	and	‘breadth’,	and	you
are	able	to	calculate	the	perimeter	and	the	area	of	a	rectangle	using	these	expressions.	You	are
also	able	to	store	the	value	of	the	expression	length	*	breadth	in	another	variable,	which	is	named
area,	and	then	displayed	it	using	the	print	function.

Now	that	you	are	aware	of	how	you	can	use	the	building	blocks	of	a	programming	language,	you
can	now	ready	to	learn	how	you	can	use	them	in	a	code!

	

Chapter	6:	Functions	and	Modules
Writing	a	code	for	hacking	can	be	tedious	when	you	are	limited	to	using	operations	–	just	imagine
having	to	write	an	operation	and	then	repeat	that	over	and	over	again	throughout	your	script	in
order	for	your	code	to	do	something.	It	is	a	good	thing	that	Python	allows	you	to	make	use	of
functions	and	modules	that	will	allow	you	to	repeat	certain	actions	within	your	code	and	in	other
scripts	that	you	will	be	building	in	the	future.

In	this	chapter,	you	will	learn	how	to	create	and	make	use	of	functions	and	modules.	You	will	also
learn	how	to	iterate	commands	that	you	have	issued	in	your	script	in	order	to	repeat	certain
actions	for	different	elements,	and	handle	errors	that	you	may	encounter	in	your	script.

Functions
In	Python,	a	function	allows	you	to	create	a	block	of	code	that	will	be	able	to	do	an	action.	They
are	also	reusable,	which	means	that	you	can	provide	a	name	to	that	statement	block	and	then	run
this	block	using	the	name	that	you	assigned	it	anywhere	in	the	program	that	you	are	building
without	any	limit.	In	Python	terms,	this	is	called	“calling	the	function”.

Functions	are	probably	the	most	important	component	of	a	programming	language.	In	Python,	they
are	usually	defined	using	the	keyword	def,	followed	by	an	identifier	name	for	the	function	that	you
want	to	use.	Take	a	look	at	this	example:

Save	this	as	function1.py,	and	then	run	it	at	the	interpreter	prompt.	You	should	see	this	output	after
doing	so:

What	happened	here	is	that	you	are	able	to	define	the	function	say_hello,	which	has	no
parameters,	which	is	the	reason	why	there	is	no	value	stated	inside	the	parentheses.	Parameters
are	indicated	in	functions	in	order	to	include	an	input	that	you	can	use	to	pass	different	values	to
the	function	and	get	a	specific	result	that	you	have	in	mind.

Also	notice	that	you	have	managed	to	call	the	function	two	times	in	this	exercise,	which	means
that	you	did	not	have	to	write	the	entire	code	again	for	Python	to	repeat	a	particular	action.

Function	Parameters
Functions	are	able	to	take	in	values	that	they	will	be	able	to	use,	which	are	called	parameters.
Parameters	act	similarly	to	variables,	except	that	you	are	defining	their	values	whenever	you	call
the	function	and	that	you	have	already	assigned	values	to	them	once	you	run	the	function.

Parameters	are	specified	within	a	pair	of	parentheses	when	you	are	defining	the	function	and	are
separated	using	commas.	If	you	need	to	call															the	function	in	your	code,	you	will	need	to
supply	the	values	in	the	same	way.	Also	take	note	that	when	you	are	supplying	value	to	your
function	while	you	are	naming	it,	these	values	are	called	parameters;	but	when	you	are	supplying
values	as	you	call	the	function,	these	values	are	called	arguments.	Take	a	look	at	this	example:

Save	this	as	function_param.py	and	then	run	it	at	the	interpreter	prompt.	You	should	get	this
output:

Keyword	Arguments
There	will	be	instances	as	you	code	wherein	you	have	too	many	parameters	in	your	function	–	if
you	want	to	specify	some	of	them,	then	you	can	use	keyword	arguments	in	order	to	give	values	for
some	of	the	parameters.	Doing	so	will	give	you	the	advantage	of	easily	using	the	function	without
having	to	worry	about	the	arguments’	order,	and	that	you	can	assign	values	to	the	parameters	that
you	want	to	use,	especially	when	the	other	parameters	that	are	available	already	contains
argument	values	that	are	set	in	default.

Take	a	look	at	this	sample	code:

Save	this	code	as	function_keyword.py,	and	then	run	it	at	the	interpreter	prompt.	You	should	get
the	following	output:

The	return	Statement
If	you	want	to	break	out	of	the	function,	or	if	you	want	to	return	a	value	from	the	function,	then	this
statement	will	prove	to	be	helpful.	Take	a	look	at	this	example:

Save	this	code	as	function_return.py	and	then	run	it	at	the	interpreter	prompt.	You	should	get	the
following	output:

	

DocStrings
Python	comes	with	a	cool	feature	called	docstrings,	which	is	a	tool	that	you	can	use	to	document
the	code	that	you	are	creating	and	make	it	easier	to	understand.	You	can	also	get	a	docstring	from
a	function	while	the	code	is	already	running.	Take	a	look	at	this	example:

Save	this	code	as	function_docstring.py	and	then	run	it	on	the	interpreter	prompt.	You	should	get
the	following	output:

What	happened	here	is	that	you	are	able	to	view	the	docstring	for	the	function	that	you	have	used,
which	is	the	first	string	on	the	initial	logical	line.	Take	note	that	docstrings	can	also	be	used	in
classes	and	modules.

Iteration
There	are	some	instances	wherein	you	may	find	it	to	redundant	to	write	the	same	code	multiple
times	to	do	a	similar	function,	such	as	checking	different	IP	addresses	or	analyze	different	ports.
For	this	reason,	you	may	want	to	use	a	for-loop	instead	to	iterate	the	same	code	for	different
elements.	For	example,	if	you	wish	to	iterate	a	code	for	the	subnet	of	IP	addresses	from
192.168.0.1	through	192.168.0.254,	you	can	use	a	for-loop	that	contains	a	range	of	1	to	255	to
display	the	entire	subnet.	Take	a	look	at	this	sample	code	to	see	how	it	is	done:

If	you	want	to	iterate	the	same	code	through	a	list	of	known	ports	to	analyze	a	system’s
vulnerabilities,	you	can	iterate	through	a	list	of	elements	that	you	want	to	check	instead.	Take	a
look	at	this	example:

Exception	Handling
Even	if	you	are	already	able	to	write	a	program	with	correct	syntax,	you	may	still	go	through
some	errors	upon	execution	or	runtime.	For	example,	when	you	divide	anything	by	zero,	you	are
likely	to	experience	a	runtime	error	because	Python	knows	that	it	is	impossible	to	do	so.	When
you	attempt	to	perform	this	action,	Python	might	return	with	this	output:

If	you	want	to	fix	the	error	while	you	are	already	running	your	code,	Python’s	ability	to	perform
exception	handling	will	come	in	handy.	Using	the	example	above,	you	can	use	the	try	or	except
statement	in	order	to	make	use	of	the	exception	handling	so	that	when	the	error	happens,	the
exception	handling	feature	will	catch	the	error	and	then	print	the	message	on	the	screen.	Take	a
look	at	this	example:

If	you	want	to	see	where	the	error	specifically	happened	in	your	script,	you	can	use	the	following
code	instead:

Modules
If	you	want	to	make	use	of	the	functions	that	you	have	already	created	from	another	program	to
another,	instead	of	having	to	rewrite	the	entire	code,	then	you	can	use	of	modules.

The	simplest	way	to	make	modules	is	to	create	a	file	that	contains	all	the	variables	and	functions
that	you	may	need	to	use	in	a	future	program	and	then	save	it	as	a	.py	file.	Alternatively,	you	can
also	create	your	modules	in	a	language	in	which	the	Python	interpreter	is	written,	such	as	the	C
language.	You	can	also	have	a	module	imported	by	another	program	and	use	all	the	functionality
saved	in	there,	which	is	the	same	as	you	use	the	standard	libraries	that	you	use	in	Python.

Take	a	look	at	how	you	can	use	a	standard	library	module	through	this	example:

Save	this	code	as	module_using_sys.py	an	then	run	it	on	the	interpreter	prompt.	You	should	get
this	output:

What	happened	here	is	that	you	first	imported	the	sys	module.	By	using	the	import	statement,	you
are	able	to	tell	python	that	you	want	to	use	a	module	that	contains	the	functionality	that	is	related
to	the	Python	environment.	When	this	programming	language	executes	the	statement,	it	will	then
look	for	the	.sys	module.	Since	this	is	a	built-in	module,	Python	knows	the	location	where	it	can
be	found.

In	any	case	you	are	trying	to	import	a	module	written	in	Python,	the	interpreter	will	then	search	all
directories	that	are	listed	in	the	variable	sys.path.	Once	it	is	found,	the	statements	found	in	that
module	will	be	run,	making	it	available	for	you	to	use.	This	initialization	process	only	takes	place
the	first	time	you	import	a	module.

Sys	Module
Python	has	a	built-in	module	that	provides	you	access	to	all	objects	that	the	programming
language’s	interpreter	maintains	or	uses.	Called	the	sys	module,	this	module	includes	command
line	arguments,	maximum	size	of	integers	that	can	be	used,	flags,	path	hooks,	as	well	as	other
available	modules.

Being	able	to	interact	with	the	sys	module	will	allow	you	to	create	different	scripts	that	you	can
use	for	different	hacking	purposes.	For	example,	you	may	want	to	analyze	different	command	line
arguments	during	runtime.	If	you	are	going	to	build	a	scanner	to	discover	system	vulnerabilities,
you	may	want	to	pass	a	filename	as	a	command	line	argument,	which	can	be	done	by	using	the	list
sys.argv	which	is	comprised	of	all	the	command	line	arguments.	Take	a	look	at	this	sample	code
to	see	how	this	module	is	used:

When	you	run	this	piece	of	code,	you	will	see	that	the	command	line	argument	has	been	analyzed
and	then	Python	prints	out	the	results	on	the	screen.	The	output	will	look	like	this:

OS	Module
Python’s	OS	module	provides	a	great	deal	of	routines	for	different	operating	systems,	such	as
Mac,	Posix,	and	NT.	Using	this	module,	you	can	allow	the	programming	language	to	interact	on	its
own	with	the	file-system,	permissions,	user	database,	and	different	OS	environment.

Using	the	previous	example,	you,	the	user,	submitted	a	text	file	as	a	command	line	argument.
However,	it	will	also	be	of	value	if	you	can	check	if	the	file	that	you	have	passed	exists	and	the
current	user	of	the	machine	you	are	targeting	have	the	necessary	permissions	to	read	that	file.	To
determine	this,	you	can	create	a	code	that	will	display	an	error	message	if	either	one	of	the
condition	is	not	met.	You	can	use	this	code	to	do	that:

To	check	your	code,	you	can	attempt	to	read	a	file	that	is	not	available	in	the	system,	which	will
cause	the	script	you	just	typed	in	to	display	the	error.	Afterwards,	you	can	enter	a	filename	that
will	be	successfully	read.	Finally,	you	can	create	permission	restrictions	and	see	that	the	script
that	you	have	created	print	out	a	conventional	Access	Denied	message:

The	Python	Standard	Library
Python’	library	is	pretty	much	the	collection	of	almost	every	element	there	is	in	this	programming
language.	This	extensive	collection	contains	several	built-in	modules	that	allow	you	to	access
different	functionalities	in	the	system.	The	Pythons	standard	library	is	also	responsible	for
providing	you	access	to	modules,	which	are	designed	to	enhance	Python’s	inherent	portability.
This	means	that	you	are	able	to	deal	away	with	platforms	when	it	comes	to	creating	your	codes.

If	you	are	running	Python	from	a	Windows	machine,	you	are	likely	to	have	the	entire	standard
library	included	in	your	installation.	If	you	are	operating	using	UNIX	or	any	similar	operating
system,	you	may	need	to	use	the	packaging	tools	available	in	your	operating	system	if	you	want	to
get	some	of	the	optional	components.

At	this	point,	you	already	know	the	essentials	in	Python.	As	you	create	your	own	codes	for
hacking	or	import	modules	from	libraries,	you	will	be	able	to	discover	more	functionalities	and
learn	what	they	are	for.

Since	you	are	learning	how	to	code	in	order	to	hack,	the	best	way	for	you	to	pick	up	your	pace	is
to	learn	as	you	create	tools	that	you	can	use	for	hacking.	This	means	that	it	is	time	for	you	to	do
the	exciting	stuff!													

Chapter	7:	Setting	Up	for	Hacking
	
At	this	point,	you	have	a	basic	idea	of	how	Python	works	and	how	programs	were	created	using
this	 programming	 language.	 Now,	 you	 are	 ready	 to	 learn	 how	 you	 can	 use	 Python	 scripts	 to
compromise	websites,	networks,	and	more.

Learning	how	 to	hack	entails	being	able	 to	 setup	 the	 right	environment	 that	you	can	work	 in	 in
order	 to	develop	your	own	exploitation	 tools.	Since	you	have	already	 installed	Python	and	 the
standard	 library	 that	comes	with	 it,	you	are	pretty	much	set	up	 for	hacking.	All	you	need	 to	do
now	is	to	install	other	tools	and	libraries	that	you	can	use	for	the	exploits	that	will	be	detailed	in
this	book.

Installing	Third	Party	Libraries
Third	party	libraries	are	essentially	libraries	that	do	not	come	native	with	your	installation	of
Python.	All	you	need	to	do	to	get	them	is	to	download	them	from	a	targeted	source,	perform
uncompressing	on	the	package	that	you	just	downloaded,	and	then	change	into	the	target	directory.

As	you	might	have	already	guessed,	third	party	libraries	are	extremely	useful	when	it	comes	to
developing	your	own	tools	out	of	the	resources	that	are	already	created	by	someone	else.	Since
Python	is	a	highly	collaborative	programming	language,	you	can	use	libraries	that	you	may	find
from	website	sources	such	as	GitHub	or	the	Python	website	and	incorporate	them	into	your	code.
There

Once	you	are	inside	the	directory,	you	can	install	the	downloaded	package	using	the	command
python	setup.py	install.	Take	a	look	at	this	example	to	see	how	it	is	done:

What	just	happened	here	is	that	you	were	able	to	install	a	package	that	will	allow	you	to	parse

nmap	results	by	downloading	the	python-nmap	package.

Tip:	If	you	want	to	establish	your	development	environment	faster,	you	may	want	to	get	a	copy	of
the	BackTrack	Linux	Penetration	Distribuion,	which	essentially	allows	you	to	get	access	to	tools
that	are	used	for	forensics,	network	analysis,	penetration	testing,	and	wireless	attacks.

Your	First	Python	Program:	A	Password	Cracker
Python’s	strength	lies	in	the	robust	libraries	that	you	can	use	when	creating	your	own	programs.
This	Python	program	will	not	only	teach	you	how	you	can	crack	passwords,	but	also	help	you
learn	how	to	embed	a	library	in	your	code	and	get	results	that	you	want.

To	write	this	password	cracker,	you	will	need	to	have	a	crypt()	algorithm	that	will	allow	you	to
hash	passwords	that	are	in	the	UNIX	format.	When	you	launch	the	Python	interpreter,	you	will
actually	see	that	the	crypt	library	that	you	need	for	this	code	is	already	right	in	the	standard
library.	Now,	to	compute	for	an	encrypted	hash	of	a	UNIX	password,	all	you	need	to	do	is	to	call
the	function	crypt.crypt()	and	then	set	password	and	salt	as	parameters.	The	code	should	return
with	a	string	that	contains	the	hashed	password.

Here	is	how	it	should	be	done:

Now,	you	can	try	hashing	a	target’s	password	with	the	function	crypt().	Once	you	are	able	to
import	the	necessary	library,	you	can	now	send	the	parameters	salt	“HX”	and	the	password	“egg”
to	the	function.	When	you	run	the	code,	you	will	get	a	hashed	password	that	contains	the	string
“HX9LLTdc/jiDE”.	This	is	how	the	output	should	look	like:

When	that	happens,	you	can	simply	write	a	program	that	uses	iteration	throughout	an	entire
dictionary,	which	will	try	against	each	word	that	will	be	possibly	yield	the	word	used	for	the
password.

Now,	you	will	need	to	create	two	functions	that	you	can	use	in	the	program	that	you	are	going	to
write,	which	are	testPass	and	main.	The	main	function	will	pull	up	the	file	that	contains	the
encrypted	password,	which	is	password.txt,	and	will	then	read	all	the	contents	in	the	lines	that	the
password	file	contains.	Afterwards,	it	will	then	split	the	lines	into	the	hashed	password	and	its

corresponding	username.	After	that,	the	main	function	will	call	the	testPass	function	to	test	the
hashed	passwords	against	the	dictionary.

The	testPass	function	will	take	the	password	that	is	still	encrypted	as	a	parameter	and	then	will
return	after	exhausting	the	words	available	in	the	dictionary	or	when	it	has	successfully	decrypted
the	password.	This	is	how	the	program	will	look	like:

	
	

	

	

	

	

	

	

	
When	you	run	this	code,	you	will	be	able	to	see	this	output:

Judging	from	these	results,	you	will	be	able	to	deduce	that	the	password	for	the	username	‘victim’
is	right	in	the	dictionary	that	you	have	available.	However,	the	password	for	the	username	‘root’
is	a	word	that	your	dictionary	does	not	contain.	This	means	that	the	administrator’s	password	in
the	system	that	you	are	trying	to	exploit	is	more	sophisticated,	but	can	possibly	be	contained	in
another	dictionary	type.

At	this	point,	you	are	now	able	to	set	up	an	ideal	hacking	environment	for	Python	and	learn	how	to
make	use	of	available	resources	from	other	hackers.	Now	that	you	are	able	to	create	your	first
hacking	tool,	it’s	time	for	you	to	discover	how	you	can	make	your	own	hacking	scripts!

Chapter	8:	Network	Hacking
	

A	network	attack	is	any	process	or	tactic	that	will	allow	a	hacker	to	compromise	a	network’s
security.	When	you	are	able	to	perform	a	network	attack,	you	can	use	a	user’s	account	and	the
privileges	that	are	attached	to	it,	steal	or	modify	stored	data,	run	a	code	to	corrupt	a	system	or
data,	or	prevent	an	authorized	user	from	accessing	a	service.

In	this	chapter,	you	will	learn	how	to	attack	a	network	using	some	third-party	tools	and	codes	that
you	can	write	using	Python.	At	the	same	time,	you	will	also	gain	better	awareness	on	how	hackers
gain	information	about	their	target	and	perform	attacks	based	on	the	vulnerabilities	that	they	were
able	to	discover.

Reconaissance:	The	Opening	Salvo	to	Your	Attack
Hacking	a	system	begins	with	reconnaissance,	which	is	the	discovery	of	strategic	vulnerabilities
in	network	before	launching	any	cyber-attack.	You	can	think	of	this	as	a	hacker’s	research	about
their	targets	–	the	more	information	they	know	about	the	network	that	they	want	to	hack,	the	more
ideas	they	can	gather	about	the	best	tools	that	they	can	use	in	order	to	launch	attacks	that	are	most
likely	to	become	undetected	by	the	targeted	user	while	causing	the	most	damage	possible.

Take	note	that	everyone	can	be	a	hacker’s	target,	which	means	that	learning	how	hackers	perform
reconnaissance	means	being	able	to	protect	your	own	system	as	well.	Whenever	you	connect	to
the	internet	and	send	data	over	the	web,	you	are	leaving	behind	footprints	that	hackers	can	trace
back	to	you.	When	that	happens,	it	is	possible	that	hackers	will	want	to	study	your	activities	over
your	 network	 and	 discover	 vulnerabilities	 in	 your	 system	 that	 will	make	 it	 easier	 for	 them	 to
infiltrate	and	steal	data	that	can	be	of	value	to	them.

In	this	section,	you	will	learn	how	to	build	simple	scripts	that	will	allow	you	to	scan	your	target’s
vulnerable	TCP	ports.	In	order	to	interact	with	this	open	ports,	you	will	also	need	to	create	TCP
sockets.

Python	is	one	of	the	modern	programming	languages	that	allows	you	to	gain	access	to	BSD	socket
interfaces.	If	you	are	new	to	this	concept,	BSD	sockets	give	you	an	interface	that	will	allow	you
to	write	applications	so	that	you	can	do	communications	with	a	network	right	in	between	hosts.
By	doing	a	series	of	socket	API	utilities,	you	will	be	able	to	connect,	listen,	create,	bind,	or	send
traffic	on	a	target’s	TCP/IP	sockets.

What	happens	when	you	are	able	to	exploit	a	target’s	TCP?	If	you	are	able	to	know	the	IP	address
and	the	TCP	ports	that	are	associated	with	the	service	that	you	want	to	target,	then	you	can	better
plan	your	 attack.	Most	 of	 the	 time,	 this	 information	 is	 available	 to	 system	administrators	 in	 an
organization	and	 this	data	 is	also	something	 that	admins	need	 to	hide	 from	any	attacker.	Before
you	can	launch	any	attack	on	any	network,	you	will	need	to	gain	this	information	first.

Making	Your	Port	Scanner
	

Port	scanning	is	a	method	in	which	you	can	assess	which	of	the	ports	in	a	targeted	computer	is
open,	and	what	kind	of	service	is	running	on	that	specific	port.	Since	computers	are	operating	to
communicate	with	other	devices	and	perform	a	function	by	opening	a	port	to	send	and	receive
data,	open	ports	can	be	a	vulnerability	that	hackers	will	want	to	exploit.	Think	of	an	open	port	to
be	similar	to	an	open	window	to	a	burglar	–	these	open	ports	serve	as	a	free	passage	to	any
hacker	that	will	want	to	steal	data	or	set	up	shop	inside	a	computer	to	exploit	its	weaknesses	for
an	extended	amount	of	time.

Take	note	that	port	scanning	is	not	an	illegal	activity	to	do	–	in	fact,	network	security	personnel
scan	the	ports	of	client	computers	in	order	to	learn	about	their	vulnerabilities	and	apply	the
security	protocol	needed.	However,	port	scanning	is	also	the	best	way	for	any	hacker	to	discover
new	victims	and	find	out	the	best	way	to	hack	their	system.	At	the	same	time,	repetitive	port	scans
can	also	cause	a	denial	of	service,	which	means	that	a	legitimate	user	may	not	be	able	to	use	a

particular	networking	service	due	to	the	ports	exhausting	their	resources.

A	port	scanner	will	allow	you	to	look	at	the	hosts	and	the	services	that	are	attached	to	them.	They
essentially	This	section	will	enable	to	write	your	own	program	for	a	TCP	port	scanner	that	will
be	able	to	do	a	full	connect	scan	to	the	target’s	TCP	in	order	to	identify	the	hosts	that	you	may
want	to	exploit	in	the	future	using	the	socket	built-in	module,	which	in	turn	gives	you	access	to	the
BSD	socket	interface.

As	you	may	have	already	guessed,	sockets	are	behind	mostly	anything	that	involves	network
communications.	When	you	pull	up	a	web	browser,	your	computer	opens	a	socket	in	order	to
communicate	to	a	web	server.	The	same	thing	happens	when	you	communicate	to	other	computers
online,	or	send	a	request	to	your	printer	over	your	Wi-Fi.

Take	a	look	at	some	of	the	socket	functions	that	you	are	going	to	use:

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

With	this	information,	you	can	create	a	simple	port	scanner	that	will	allow	you	to	connect	to	every
port	that	you	are	able	to	define	that	corresponds	to	a	particular	host.	Pull	up	your	text	editor	and
then	save	the	following	code	as	portscanner.py:

When	you	run	this	program	at	the	interpreter	prompt,	this	is	how	the	output	should	look	like:

Using	the	Mechanize	Library	to	Perform	Anonymous	Reconnaissance
Most	computer	users	use	a	web	browser	to	navigate	websites	and	view	content	over	the	Internet.
Each	website	has	a	different	features,	but	will	usually	read	a	particular	text	document,	analyze	it,
and	then	display	it	to	a	user,	just	like	the	way	a	source	file	interacts	with	the	Python	interpreter.

Using	Python,	you	can	browse	the	internet	by	getting	and	parsing	the	HTML	source	code	of	a
website.	There	are	different	libraries	that	come	with	this	programming	language	that	can	handle
web	content,	but	for	this	hack,	you	will	be	using	Mechanize,	which	includes	the	primary	class
called	Browser.	Take	a	look	at	this	sample	script	that	will	show	you	how	to	get	a	source	code	of
a	website:

When	you	run	this	script,	you	will	see	syngress.com’s	HTML	code	for	their	index	page,	which
will	look	like	this:

Ensuring	Anonymity	While	Browsing
Now	that	you	know	how	to	get	a	webpage,	you	will	want	to	create	a	script	that	will	allow	you	to
anonymously	retrieve	information	from	a	website.	As	you	may	already	know,	web	servers	see	to
it	that	they	log	the	IP	addresses	of	different	users	that	view	their	websites	in	order	to	identify
them.	This	can	usually	be	prevented	by	using	a	VPN	(virtual	private	network),	or	by	using	Tor.
What	happens	when	you	use	a	VPN	is	that	all	traffic	gets	routed	to	the	private	network
automatically.	With	this	concept,	you	get	the	idea	that	you	can	use	Python	to	connect	to	the	proxy
servers	instead,	which	will	give	your	program	an	added	layer	of	anonymity.

You	can	use	the	Browser	class	to	specify	a	proxy	server	that	will	be	used	by	a	particular
program.	For	this	script,	you	can	use	the	HTTP	proxy	provided	by	www.hidemyass.com.	Just	in
any	case	this	proxy	is	not	available	to	be	used	anymore,	you	can	simply	go	to	the	website	and
select	an	HTTP	proxy	that	you	can	use.	You	can	also	get	other	great	proxies	for	your	codes	at
http://rmccurdy.com/scripts/proxy/good.txt.

You	will	then	see	that	the	website	you	are	trying	to	access	believes	that	you	are	using	the
216.155.139.115	IP	address,	which	is	actually	the	IP	address	that	your	proxy	provided	you.	Now,
continue	building	your	script:

At	this	point,	your	browser	already	contains	a	single	layer	of	anonymity.	However,	websites	do
use	a	string	called	user-agent	in	order	to	identify	unique	users	that	log	in	to	their	site.	This	string
will	usually	allow	the	website	to	get	useful	information	about	a	user	in	order	to	provide	a	tailored
HTML	code,	which	then	provides	a	better	user	experience.	However,	malicious	websites	can
also	use	that	information	to	exploit	the	browser	that	is	being	used	by	a	targeted	user.	For	example,
there	are	certain	user-agent	strings	that	some	travel	websites	use	to	detect	users	that	browse	using
Macbooks,	which	then	proceed	to	give	these	users	more	expensive	options.

Since	you	are	using	Mechanize,	you	can	change	the	user-agent	string	just	like	how	you	change	the
proxy.	You	can	make	use	of	available	user-agent	strings	from
http://www.useragentstring.com/pages/useragentstring.php	that	you	can	use	for	the	next	function
that	you	are	going	to	make.	Now,	you	will	be	creating	a	script	that	will	allow	you	to	test	a	change
on	your	user-agent	string	to	the	Netscape	browser:

http://www.hidemyass.com
http://rmccurdy.com/scripts/proxy/good.txt
http://www.useragentstring.com/pages/useragentstring.php

When	you	run	this	code,	you	will	be	able	to	see	that	you	are	able	to	browse	a	webpage	using	a
false	user-agent	string.	The	website	that	you	are	browsing	now	thinks	that	you	are	using	a
Netscape	6.01	browser	instead	of	simply	using	Python	to	fetch	the	page.

What	happens	after	is	that	websites	that	you	are	going	to	visit	will	attempt	to	present	cookies	that
they	can	use	as	a	unique	identifier	in	order	to	identify	you	as	a	repeat	visitor	when	you	go	back	to
their	site	the	next	time.	To	prevent	these	websites	from	identifying	you,	you	will	need	to	see	to	it
that	you	clear	all	the	cookies	from	your	browser	whenever	you	perform	functions	that	you	want	to
be	anonymous.	Another	built-in	library	in	Python,	called	the	Cookelib,	will	allow	you	to	make
use	of	various	container	types	that	will	allow	you	to	deal	with	cookies	that	website	present	you.
For	this	script,	you	will	be	using	a	container	type	that	will	allow	you	to	save	cookies	to	disk,	and
then	print	out	the	cookies	that	you	received	during	your	session:

When	you	run	this	script,	you	will	see	your	session	ID	cookie	for	browsing	the	Syngress	site:

Finalize	Your	Anonymous	Browser	into	a	Python	Class
At	this	point,	you	have	an	idea	of	all	the	functions	that	you	want	to	include	in	your	anonymous
browser,	and	that	in	order	to	make	the	entire	process	of	importing	all	these	functions	to	all	files
that	you	will	be	creating	in	the	future,	you	will	need	to	turn	that	into	a	class.	This	will	allow	you
to	simply	call	the	class	using	a	browser	object	in	the	future.	This	script	will	help	you	do	this:

This	class	now	contains	user-agents	list,	as	will	as	proxy	server	list	that	you	may	want	to	use
when	you	browse.	It	also	contains	the	functions	that	you	were	able	to	create	earlier,	which	you
can	call	individually	or	all	at	once	using	the	anonymize	function.	The	anonymize	function	will
also	allow	you	to	select	the	option	to	wait	for	60	seconds	which	will	increase	the	time	of	requests
that	you	send.	While	this	will	not	change	anything	in	the	information	that	you	submit	to	the
website,	this	step	will	decrease	the	chance	that	the	websites	that	you	are	visiting	will	recognize
that	the	information	being	sent	to	them	comes	from	a	single	source.	You	will	also	notice	that	the
file	anonBrowser.py	includes	this	class,	and	should	be	saved	in	a	local	directory	containing
scripts	that	will	call	it.

Now,	you	can	write	a	script	where	you	can	use	the	class	that	you	have	just	created.	In	this
example,	you	will	be	entering	votes	for	an	online	competition	on	the	website	kittenwar.com
where	you	have	to	vote	for	kittens	based	on	their	cuteness.	Because	the	votes	on	the	website	will
be	tabulated	according	to	a	user’s	session,	you	will	need	to	have	unique	visits	to	the	website	in

order	for	your	votes	to	be	counted.	Using	this	script,	you	should	be	able	to	visit	the	targeted
website	anonymously	five	times,	which	will	allow	you	to	enter	five	votes	using	the	same
computer:

After	running	this	script,	you	will	be	able	to	fetch	the	targeted	web	page	using	five	different
unique	sessions,	which	means	that	you	are	using	different	cookies	every	time	you	visit.

	

Wireless	Attack:	Dnspwn	Attack
This	attack	is	created	by	using	the	airpwn	tool,	which	is	a	framework	for	packet	injection	for
wireless	802.11.	This	tool	is	created	to	listen	to	incoming	packets	and	then	injects	content	to	the
access	point	when	the	incoming	data	matches	a	pattern	that	is	specified	in	the	config	file.	To	your
target,	your	airpwn	looks	and	behaves	like	the	server	that	he	is	trying	to	communicate	to.	This	tool
was	first	created	to	target	HTTP,	but	it	can	also	be	used	to	exploit	DNS.

In	an	essence,	using	a	dnspwn	attack	entails	luring	your	target	to	visit	a	malicious	webpage	that
will	install	malware	to	your	target	through	download,	or	to	spoof	a	particular	website	to	steal
your	target’s	credential.	To	perform	this	attack,	you	will	need	to	have	Backtrack	or	Kali	Linux
installed	in	your	computer,	as	well	as	a	wireless	card	adapter.

Follow	these	steps:

1.	 Setup	your	wireless	monitor

In	order	to	sniff	your	target’s	wireless	activity,	you	will	need	to	setup	your	wireless	card
adapter	to	monitor	mode.	To	do	this,	pull	up	airmon-ng	from	Kali	Linux	and	then	enter	the
following	command.

	

Now,	you	will	be	able	to	capture	data	right	in	the	demo_insecure	(target)	network.

Once	you	have	a	monitor	up	and	running,	you	can	start	creating	the	code	for	your	attack.

2.	 Create	your	code.

You	will	need	to	make	use	of	the	scapy	module	in	order	to	perform	the	dnspwn	attack.	To
do	this,	you	will	need	to	sniff	all	the	UDP	packets	that	comes	with	the	port	53	destination
and	then	send	the	packet	to	the	send_response	function	that	you	will	create	later.

Now	that	you	have	the	scapy	module,	we	can	now	make	the	function	that	will	allow	you
to	construe	the	request	for	the	needed	information	and	then	do	response	injection.	You	can
do	this	by	working	up	the	following	layers:

802.11	Frame	–	switch	the	“to-ds”	to	“from-ds”	flag,	which	will	make	it	seem
like	the	requests	that	you	are	making	are	coming	from	the	access	point

802.11	Frame	–	change	the	Mac	addresses	of	the	destination	and	source

IP	layer	–	change	the	IP	addresses	of	the	destination	and	source

UDP	layer	–	change	the	ports	of	the	destination	and	source

DNS	layer	–	Put	in	the	“answer”	flag,	and	then	add	the	answer	that	you	have
spoofed.

The	scape	module	makes	the	entire	process	simple	by	removing	away	a	lot	of	details	that
you	do	not	need	to	be	concerned	about.	Once	the	other	details	has	been	abstracted	away
by	scapy,	you	can	use	the	following	code:

At	this	point,	you	have	all	the	flags	set	for	your	attack.	The	next	step	is	to	make	and	add
the	DNS	answer:

Finally,	inject	the	response	that	you	have	spoofed:

Kick	a	User	Out	of	Your	Network
	

This	hack	is	a	solution	that	you	might	have	been	dreaming	of,	especially	if	you	are	using	a
network	that	has	a	lot	of	other	users	in	it.	As	you	may	have	noticed,	there	is	a	certain	limit	when	it
comes	to	sending	and	receiving	data	through	the	network	and	your	own	networking	interfaces.	The
reason	for	this	limit	is	the	amount	of	bandwidth	that	you	have,	and	if	other	users	are	not	hogging
the	bandwidth,	the	faster	your	connections	will	be.

When	all	the	bandwidth	that	should	be	available	to	you,	you	are	experiencing	a	DoS	(Denial	of
Service).	You	can	actually	force	a	DoS	to	another	user	by	searching	and	manipulating	a	remote
host’s	service.	Once	you	already	found	that	service,	you	can	make	the	program	behave	in	a	way
that	it	is	not	supposed	to	do,	which	will	cause	the	remote	host	to	take	up	all	its	available
resources	and	then	take	it	offline.	Alternatively,	you	can	also	cause	a	UDP	flood,	which	is	done
by	sending	a	huge	quantity	of	UDP	packets	to	several	ports	on	your	target’s	remote	host.	This	will
cause	the	host	to	ignore	any	application	that	are	listening	to	that	particular	host	and	then	reply
with	a	packet	that	says	ICMP	Destination	Unreachable.

To	do	this,	all	you	need	to	do	is	to	pull	up	your	text	editor	and	input	the	following	code:

Save	this	code	as	udpflood.py,	and	then	select	all	file	options	upon	saving.	To	run	the	code,	pull
up	IDLE	and	then	execute	the	program,	which	will	prompt	you	to	enter	all	the	other	information
that	you	need.	Take	note	that	this	hack	is	directed	to	only	one	port,	but	if	you	want	to	exploit	all
other	65,535	ports	that	are	available.

	

Chapter	9:	Hacks	for	the	Web
	
You	may	be	wondering	how	to	get	past	certain	website	protection	policies	in	order	to	get	a	file
that	you	want,	browse	anonymously,	or	get	more	information	about	the	website	that	you	want	to
penetrate	 to	 launch	a	massive	attack.	In	this	chapter,	you	will	 learn	how	you	can	perform	Creat
hacks	on	a	website	using	some	programs	that	you	can	create	using	Python.

Creating	an	SSH	Botnet
Now	 that	 you	 know	 how	 to	 create	 a	 port	 scanner	 and	 you	 are	 aware	 of	 how	 you	 can	 find
vulnerable	 targets,	you	can	now	proceed	 to	exploit	 their	vulnerabilities.	One	of	 the	ways	 to	do
this	is	to	exploit	the	Secure	Shell	protocol	(SSH)	in	order	to	get	login	credentials	from	clients.

What	 is	a	botnet?	Bots,	as	 the	name	implies,	are	 incredibly	useful	when	it	comes	to	automating
services	in	practically	any	device.	Botnets,	on	the	other	hand,	is	a	group	of	bots	that	are	joined
together	by	a	network	which	allows	system	administrators	e	to	efficiently	do	automated	tasks	over
an	entire	system	of	users	that	are	connected	together	by	a	server	or	a	local	network.	While	botnets
are	essentially	tools	for	easy	managing	of	several	computers,	they	can	also	be	tools	that	you	can
use	for	unintended	purposes,	such	as	creating	a	DoS	or	DDoS	(Distributed	Denial	of	Service)	that
may	cause	a	website	to	load	multiple	times	in	a	session	or	for	commenting	on	social	media	sites
continuously.

Here	 is	 a	program	 that	will	 allow	you	 to	create	your	own	botnet	using	another	popular	Python
library	called	Fabric,	which	will	enable	you	to	create	an	application	called	C&C	(command	and
control)	that	will	allow	you	to	manage	multiple	infected	hosts	over	a	secure	shell	host.

Creating	the	C&C
Assuming	that	you,	as	the	attacker,	already	managed	to	compromise	the	SSH	and	already	have
access	to	them.	Assuming	that	the	hosts	credentials	are	stored	in	a	file	that	has	this	format:
username@hostname:port	password.

Now	that	you	have	these	credentials,	you	will	need	to	consider	the	functions	that	you	need	to
create.	This	may	mean	that	you	need	to	run	a	status	check	to	see	running	hosts,	make	an	interactive
shell	session	to	communicate	with	a	targeted	host,	and	perform	a	command	on	selected	hosts.

To	begin,	you	will	need	to	import	every	member	of	the	namespace	fabric.api:

After	that,	you	will	need	to	have	the	environment	variables,	env.passwords	(maps	the	host	strings
and	the	passwords	that	you	can	use)	and	env.hosts	(manages	the	hosts’	master	list),	to	be	able	to
manage	all	the	hosts	that	you	want	to	target.	Once	you	have	these	setup,	you	will	not	have	to	enter
each	password	for	each	new	connection.

Now	that	you	have	this	setup,	you	can	now	proceed	to	running	the	commands.	Here	are	the
functions	that	you	can	use	to	can	use:

local(command)	–	runs	a	command	on	the	targeted	local	system

sudo(command)	–	performs	a	shell	command	remotely	using	superuser	(or	admin)
privileges

put(local_path,	remote_path)	–	uploads	files	remotely

open_shell()	–	pulls	up	an	interactive	shell	remotely

run(command)	–	performs	a	shell	command	remotely

get(remote_path,	local_path)	–	downloads	files	remotely

You	can	now	create	a	function	that	will	allow	you	to	create	a	command	string,	and	then	run	it.
Here’s	the	code	to	create	the	run_command:

	

	

	

	

Now,	you	can	create	a	task	that	will	allow	you	to	make	use	of	the	run_command	function,	which
will	enable	you	to	check	which	hosts	are	active	by	executing	the	command	called	uptime:

To	perform	the	other	tasks,	you	will	want	to	check	which	hosts	you	would	want	to	give	the	other
commands	or	to	create	a	shell	session	to.	To	be	able	to	do	this,	you	will	need	to	create	a	menu
that	will	enable	you	execute	the	other	tasks	with	the	specified	hosts	using	the	execute	function	of
Fabric.	Here	is	how	this	part	of	the	code	should	look	like:

Save	the	code	as	fabfile.py	and	then	run	it	on	the	interpreter	prompt.	This	is	s	what	the	entire	code
looks	when	you	run	it:

	
You	will	see	that	you	were	able	to	gain	control	of	all	the	machines	that	you	have	access	to.

Scraping	Websites	that	Needs	Login	Credentials
If	you	want	to	mine	data	from	a	website,	you	will	find	that	you	will	first	need	to	log	in	before
being	able	to	access	any	information	that	you	want.	This	means	that	in	order	to	get	the	data	that
you	need,	you	will	first	need	to	extract	all	the	details	that	you	need	to	login	to	your	targeted
website.

Studying	the	Target	Website
Here’s	the	scenario:	you	want	to	scrape	data	from	the	bitbucket	site,	which	you	can	access	by
logging	in	to	bitbucket.org/account/signin.	Since	it	is	prompting	you	to	supply	user	credentials,
you	are	unable	to	go	into	the	website	and	mine	the	information	that	you	want.	As	you	may	have
guessed,	you	will	have	to	build	a	dictionary	that	will	allow	you	to	put	in	details	for	the	log	in.

In	order	to	find	out	what	you	need	to	input	the	credentials	that	you	need,	you	will	need	to	inspect
the	elements	of	the	field	“username	or	email”.	You	can	do	this	by	right-clicking	on	the	field	and
then	selecting	on	“inspect	element”.

Do	the	same	for	the	password	field:

Now,	you	are	aware	that	you	should	be	be	using	“username”	and	“password”	as	keys	in	your
dictionary,	which	should	give	you	the	corresponding	credentials	as	value.

Next,	search	for	an	input	tag	that	is	hidden	in	the	page	source	that	is	labeled
“csrfmiddlewaretoken”,	which	will	provide	you	the	key	and	value:

	

Create	Your	Code
Now	that	you	know	the	requirements,	you	can	now	create	the	program	that	you	need	to	build	your
dictionary:

	

Save	this	as	login_scraper.py	and	then	run	it	on	the	interpreter	prompt	to	get	the	credentials	that
you	need.

Chapter	10:	Understanding	Attacks	Using	Python
	

Hacking	is	not	all	about	launching	attacks	–	understanding	how	black	hat	hackers	launch	target
and	penetrate	their	target	systems	will	make	you	understand	how	you	can	use	your	newfound
knowledge	to	prevent	your	own	system	from	being	vulnerable	to	them.

Knowing	User	Locations	Out	of	Tweets
If	you	have	been	using	Twitter,	you	may	think	that	you	are	tweeting	your	updates	from	sheer
randomness;	however,	the	truth	is	that	you	are	following	an	informal	formula	for	the	tweets	that
you	compose.	Generally,	this	formula	includes	another	Twitter	user’s	name	which	tells	to	whom
your	tweet	is	directed	to,	the	text	of	your	tweet,	and	your	choice	of	hash	tag.	There	are	other	data
included	in	your	tweet,	which	may	not	be	visible	in	the	body	of	your	tweet,	such	as	an	image	that
you	want	to	share	or	a	location.	To	a	hacker,	all	the	information	in	your	tweet	contains	something
that	will	be	important	in	writing	an	attack	–	when	you	think	about	it,	you	are	giving	away
information	about	the	person	that	you	are	interested	in,	links	that	you	and	your	friend	are	likely	to
be	interested	in,	and	trends	that	you	might	want	to	learn	about.	The	pictures,	especially	an	image
of	a	location,	become	added	details	to	a	user’s	profile,	which	for	example	may	indicate	where	a
targeted	person	is	likely	to	go	to	eat	breakfast.

If	you	want	to	get	details	anonymously	to	retrieve	all	these	information,	you	can	use	the	following
code:

Now,	you	can	test	this	script	by	creating	a	list	of	cities	that	host	major	league	teams.	After	that	you
can	scrape	Twitter	accounts	for	Washington	Nationals	and	the	Boston	Red	Sox.	Your	script	will
look	like	this:

When	your	script	returns	with	the	above	results,	you	are	likely	to	deduce	that	the	these	teams	are
tweeting	live	from	where	they	are.	From	this	output,	you	may	deduce	that	the	Red	Sox	are	playing
in	Toronto,	while	the	Nationals	are	in	Denver.

	

Matching	an	IP	Address	to	a	Physical	Location
Most	of	the	time,	people	are	willing	to	post	what	is	on	their	mind	on	social	media	sites,	or
perform	attacks	that	they	find	using	online	tools	that	they	can	download,	thinking	that	they	will
never	have	to	face	the	consequences	of	their	actions.	While	most	bullheaded	yet	inexperienced
hackers	and	online	trolls	think	that	they	can	hide	behind	a	fake	account	to	conceal	their	identity,
you	can	prove	that	these	people	are	not	as	anonymous	as	they	think	they	are.	In	fact,	there	are
several	ways	to	use	libraries	and	third-party	modules	in	Python	to	unmask	the	location	and
identity	of	a	user	based	on	his	or	her	IP	address.

For	example,	you	suspect	that	your	system	is	being	targeted	by	another	hacker	and	you	notice	that
your	open	ports	are	being	sniffed	by	a	particular	IP	address.	What	you	will	want	to	do	once	you
realize	this	potential	attack	is	to	identify	that	IP	address’	location	and	report	it	to	the	authorities.
Python	can	help	you	do	that	using	a	script	that	is	similar	to	what	is	going	to	be	discussed	in	this
section.

In	this	example,	you	will	be	using	the	freely	available	database	that	can	be	found	in
http://www.maxmind.com/app/geolitecity.	Using	this	free	database,	you	will	aim	to	write	a	code
that	will	match	the	IP	addresses	found	on	their	list	to	cities.	To	do	that,	download	the	free
database,	decompress	it,	and	send	it	to	the	location	/opt/GeoIP/Geo.dat.

Once	you	are	able	to	download	the	GeoCityLite	database,	you	will	be	able	to	analyze	the	IP
addresses	down	to	locating	the	country	name,	state,	postal	code,	and	a	general	longitude	and
latitude.	To	make	the	job	easier,	you	can	use	a	Python	library	created	to	analyze	this	database.

When	you	run	this	script,	you	will	be	able	to	see	data	that	looks	like	this:

	

	

http://www.maxmind.com/app/geolitecity

Parse	Packets	with	Dpkt
At	this	point,	you	understand	how	important	it	is	to	analyze	packets	–	you	will	not	only	want	to
analyze	the	packets	that	are	coming	from	another	computer	to	understand	another	user’s	activities,
but	also	understand	what	other	people	are	going	to	do	with	the	packets	that	they	are	observing
from	your	computer.	In	this	hack,	you	will	learn	how	to	analyze	a	network	capture,	and	examine
the	protocol	layer	of	each	packet	using	the	tool	called	Dpkt.

	

	

	

	

When	you	run	this	script,	you	will	be	able	to	find	both	the	source	and	destination	IP	addresses:

The	next	thing	that	you	will	want	to	do	is	to	match	these	IP	addresses	with	a	physical	location.
You	can	improve	the	script	that	you	have	just	created	by	creating	an	additional	function
retGeoStr(),	which	will	give	you	a	physical	location	for	the	IP	address	that	your	code	is	able	to
locate.	For	this	example,	you	will	be	able	to	find	the	three-digit	country	code	and	the	city	for	each
IP	address	and	then	have	the	code	display	this	information.	Just	in	any	case	the	function	prompts
you	with	an	exception,	handle	it	by	providing	a	message	that	indicates	that	the	address	is	not
registered.	This	will	allow	you	to	handle	all	addresses	that	are	not	included	in	the	GeoLiteCity

database	that	you	downloaded	earlier	or	instances	of	private	addresses.

	

	

	

	

Once	you	are	able	to	add	the	function	retGeostr	to	the	script	that	you	were	able	to	produce	earlier,
you	will	be	able	to	create	a	good	packet	analysis	toolkit	that	will	allow	you	to	view	the	physical
destinations	of	packets	that	you	want	to	study.	This	is	how	your	final	code	should	look	like:

	

	

	

	

	

	

	

	

This	is	how	your	script	will	look	like	in	action:

	

Based	on	these	results,	you	know	that	the	traffic	that	you	are	analyzing	is	routed	to	different	parts
of	the	world.	Now	that	you	are	aware	that	your	data	is	possibly	being	routed	to	too	many	different
computers,	you	get	the	idea	that	you	need	to	improve	your	security	by	securing	your	ports.

	

ARP	Poisoning	Using	Python
If	you	are	a	hacker,	one	of	the	things	that	you	will	want	to	ensure	is	your	anonymity.	You	will	want
to	make	sure	that	your	location	is	untraceable,	and	that	is	because	of	a	good	number	or	reasons.
For	the	sake	of	practicing	white	hat	hacking,	you	will	want	to	learn	how	programmers	are	able	to
mask	their	location	especially	when	they	perform	reconnaissance	attacks	or	DoS	attacks,	which
makes	use	of	the	Internet	Protocol	and	see	to	it	that	you	check	your	traffic	from	time	to	time	to	see
if	your	activities	are	being	listened	to	by	an	unknown	IP	address.	At	the	same	time,	you	may	also
want	to	protect	yourself	from	being	targeted	by	black	hat	hackers	by	hiding	your	location.

To	black	hat	hackers,	IP	spoofing	essentially	lets	them	conceal	their	identity	and	location
whenever	they	perform	their	attack.	Doing	so	will	also	allow	them	to	impersonate	another
computer	system	and	defeat	existing	security	measures	which	may	require	authentication	based	on
their	IP	addresses.

One	of	the	attacks	that	makes	use	of	using	falsified	IP	is	called	ARP	spoofing,	which	involves
sending	a	false	Address	Resolution	Protocol	(ARP)	message	over	a	targeted	local	area	network.
When	done	successfully,	an	attacker’s	MAC	address	gains	the	IP	address	of	an	authorized
computer	over	the	targeted	network.	This	will	allow	an	attacker	to	modify	or	stop	all	traffic,	or
intercept	data	sent	over	the	network.		Using	the	following	code,	you	can	catch	all	packets	that	are
routed	towards	a	targeted	machine,	which	entails	being	able	to	see	all	the	information	that	a
targeted	user	sends	out,	which	allows	you	to	view	private	communication	that	is	not	protected	by
any	form	of	encryption.

Find	Information	About	the	Targeted	Machine
To	find	out	how	you	can	hack	your	target,	you	will	need	to	check	the	ARP	cache	on	the	machine
that	you	want	to	attack.	To	inspect	for	the	ARP	cache	on	a	Windows	machine,	take	a	look	at	this
example:

You	will	notice	that	the	target’s	default	gateway	IP	address	is	at	172.16.1.254	and	has	an	ARP
cache	entry	with	the		MAC	address	3c-ea-4f-2b-41-f9.	Take	note	of	this	to	check	the	ARP	cache
while	you	have	an	ongoing	attack	and	verify	that	you	have	changed	the	MAC	address	that
corresponds	to	the	gateway.

Code	the	Attack
Now	that	you	know	the	target’s	IP	address	and	the	gateway,	you	can	now	create	your	code.	Your
code	should	look	like	this:

Code	the	Poisoning
The	code	above	sets	up	your	attack	by	inputting	the	target	IP	address	and	the	MAC	address	that
goes	with	it	using	the	get_mac	function.	You	have	also	setup	a	packet	sniffer	that	will	capture
traffic	for	your	targeted	machine.	All	that	is	left	for	you	to	do	is	to	write	these	packets	out	to	a
PCAP	file	that	you	can	pull	up	later	using	the	Wireshark	tool,	or	use	an	image	carving	script.
Once	that	is	done,	you	can	call	the	function	restore_target,	which	will	allow	you	to	put	the
network	back	to	its	original	form	before	the	attack	happened.

Now	that	you	are	able	to	setup	the	hack,	you	are	now	ready	to	code	the	ARP	poisoning.	Put	the
following	code	above	the	code	block	that	you	read	earlier:

	

	

Chapter	11:	Other	Nifty	Hacks	to	Try

Prevent	Detection	by	Antivirus
An	antivirus	software	is	designed	to	detect	suspicious	files	in	your	system,	such	as	viruses	and
malwares.	However,	being	able	to	modify	the	contents	of	a	malware	will	enable	you	to	bypass
antivirus	detection.

In	this	hack,	you	will	be	able	to	learn	how	to	create	a	malicious	code	using	a	Kali	Linux
component	called	Metasploit.	This	program	can	generate	malware,	but	most	of	the	antivirus
companies	can	easily	recognize	content	written	by	this	software	when	they	are	released	into	a
computer	as	they	are	written	originally.	In	order	to	create	an	antivirus-proof	malware,	you	will
need	to	tweak	the	malware	that	you	will	create	using	software.

Create	Your	Malicious	Program
Pull	up	Kali	Linux	and	launch	a	terminal.	Run	this	command:

mfspayload	-1	|	more

Doing	so	will	display	exploits	that	are	available	for	you	to	use,	such	as	the	following:

If	you	want	to	bind	a	shell	in	order	to	create	a	port	listener,	execute	a	command	in	a	targeted	port,
and	create	your	own	remote	control,	enter	these	commands	in	the	Kali	Linux	terminal:

msfpayload	windows/shell_bind_tcp	X	>	shell.exe

ls	-l	shell.exe

You	will	get	the	following	output,	which	shows	that	Metasploit	has	created	an	executable	file
named	shell.exe,	which	is	your	malware:

Of	course,	any	sensible	antivirus	software	will	realize	that	this	is	an	insecure	file	which	may
compromise	a	target’s	computer.

Test	Your	Malware
To	see	that	the	.exe	file	that	you	have	created	is	recognized	as	a	malware,	transfer	it	to	another
computer	that	has	an	antivirus	program	via	a	USB,	email,	or	drag	it	onto	the	desktop	to	copy.
Almost	immediately,	the	antivirus	installed	will	catch	it,	and	detect	it	like	this:

	

Now,	if	you	are	going	to	turn	off	the	antivirus	software	and	run	the	malware,	the	command	line
will	display	something	like	this:

When	this	happens,	you	can	actually	control	the	Windows	machine	where	the	malware	is	installed
using	another	computer.

To	stop	the	malware,	end	the	shell.exe	file	in	Task	Manager	or	restart	the	PC.

Edit	the	Malware	Using	Python
Since	your	antivirus	program	can	detect	the	malware	you	created,	you	need	to	edit	the	malware
code	in	order	for	it	to	bypass	your	computer’s	security.	To	do	that,	pull	up	Kali	Linux	and	type
this	command	string	in	the	terminal:

mfspayload	windows/shell_bind_tcp	C

You	will	see	the	code	for	the	exploit	that	you	previously	ran	to	be	in	hexadecimal	code.	What	you
need	to	do	is	to	compile	this	code	into	an	.exe	file.	To	do	this,	all	you	need	to	do	is	input	this
command	string	in	a	Kali	Linux	terminal:

mfspayload	windows/shell_bind_tcp	C	>	shell

ls	-l	shell.py

Upon	entering	this	code,	Kali	Linux	will	generate	a	file	which	looks	like	this:

This	code	is	in	C	language,	which	means	that	you	will	need	to	add	some	lines.	To	do	that,	enter
this	command	string	in	the	Kali	Linux	terminal:

nano	shell.py

You	will	get	a	text	editor	with	this	code:

	

Import	the	system’s	library	code	that	will	enable	you	to	run	C	programs	from	Python.	To	do	that,
add	the	following	line	at	the	beginning	of	the	code:

from	ctypes	import	*

Add	the	following	to	the	beginning	of	the	initial	hecadecimal	code	line:

shellcode	=	(

After	that,	remove	the	following	line:

Unsigned	char	buf[]

Your	code	in	the	nano	text	editor	should	appear	like	this:

Scroll	down	and	find	the	semicolon	located	near	the	end	of	the	script.	Add	a	closing	parenthesis
before	it.	After	doing	so,	add	the	following	lines	at	the	end	of	the	code:

You	should	see	this	on	your	screen	after	doing	so:

To	save	your	file,	press	Ctrl	+	X,	and	then	press	Y	at	the	prompt.	Enter	to	proceed	saving	your
modified	file.

Compile	the	Malware	and	Run	It
In	order	to	run	the	modified	malware,	you	will	need	to	compile	it	first.	To	do	that,	pull	up	a

command	prompt	and	then	run	this	command	string:

pyinstaller	--onefile	--noconsole	shell.py

This	will	create	a	new	folder	that	is	named	“dist”.	This	folder	will	have	the	modified	malware
inside	it	named	as	shell.exe.	To	run	the	malware,	all	you	need	is	to	open	the	folder	and	double-
click	on	the	shell.exe	file.

The	Windows	Firewall	might	block	some	of	the	program’s	features	since	it	will	attempt	to
connect	to	a	remote	server.	Bypass	that	by	selecting	Allow	Access.	After	doing	so,	pull	up	the
command	prompt	and	then	run:

netstat	-an	|	findstr	4444

This	will	pull	up	a	listening	port,	which	looks	like	this:

To	stop	the	listener,	simply	pull	up	the	Task	Manager	and	end	the	processes	named	shell.exe.

Check	with	your	antivirus	if	the	malware	that	you	have	just	created	can	still	be	detected.	It	should
bypass	most	of	the	known	antivirus	programs	out	there.

Retrieve	Deleted	Items	in	Recycle	Bin
As	you	already	know,	the	Recycle	Bin	in	Windows	OS	is	used	as	a	special	folder	that	serves	as
storage	for	files	that	a	user	deletes.	These	files	are	marked	to	be	erased	from	the	hard	drive,	but
they	are	not	actually	removed.	In	older	Windows	operating	systems	(Windows	98	and	older),
these	files	are	stored	in	the	directory	C:\Recycled,	and	subsequent	operating	systems	until
Windows	XP	store	these	files	in	a	directory	named	C:\Recycler.	If	you	are	using	Windows	7	and
Vista,	your	files	are	stored	at	a	directory	named	C:\$Recycle.Bin.

If	you	empty	your	Recycle	Bin,	you	may	think	that	all	the	files	that	are	moved	there	are	completely
gone.	However,	there	are	situations	wherein	you	may	want	to	recover	files	that	you	accidentally
deleted	from	the	Recycled	Bin,	or	you	may	want	to	go	dumpster	diving	and	recover	important
documents	that	were	deleted	from	a	target	computer.	This	code	will	help	you	do	all	these	things.

Create	a	Module	To	Help	Find	Deleted	Files
Of	course,	you	will	want	to	write	a	script	that	will	be	independent	of	the	operating	system,	which
will	make	it	useful	to	hack	a	different	operating	system.	To	do	that,	you	will	want	to	write	a
function	that	will	run	a	test	against	all	possible	directories	that	contains	delete	files	in	an
operating	system,	and	then	return	with	the	information	that	contains	the	directory	that	exists	on	the
operating	system	that	you	wish	to	exploit:

Once	you	manage	to	find	the	targeted	Recycle	Bin	directory,	the	next	thing	that	you	want	to	do	is
to	look	at	the	contents.	Take	a	look	at	the	found	directory:

You	will	notice	the	strings	S-1-5-21-1275210071-1715567821-725345543-	which	ends	with
either	500	or	1005.	These	strings	represent	the	user	accounts	on	the	targeted	machine.	Now,	you
will	want	to	identify	these	user	accounts	and	find	out	which	of	the	user	accounts	you	will	want	to
retrieve	the	deleted	items	from.

Check	the	User	ID
To	decode	the	SID	string	that	you	found	earlier,	you	will	need	to	access	the	Windows	Registry
and	match	the	string	with	a	username.	You	will	find	the	information	with	this	registry	key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows	NT\CurrentVersion\ProfileList\
<SID>\ProfileImagePath

Pull	up	your	command	prompt,	and	type	in	“reg	query”.	This	will	come	up	with	this	result:

Adter	decoding	the	user	name,	you	will	need	to	create	a	function	that	will	translate	the	SID	into
the	user’s	name.	Doing	so	will	allow	you	to	get	more	useful	information	when	you	recover	items
that	were	deleted	from	the	Recyle	Bin.

This	function	will	pull	up	the	registry	to	check	the	ProfileImagePath	Key,	search	for	the	value	and
then	send	back	with	the	name	that	is	found	right	after	the	backslash	in	the	target	userpath.

Now,	it’s	time	to	put	the	entire	code	together	that	will	reveal	all	the	files	that	are	still	in	the
Recycle	Bin.	This	is	how	the	complete	code	will	look	like:

When	you	run	this	code	inside	the	targeted	machine	in	the	example,	you	will	notice	that	the	script
has	found	two	users,	the	Administrator	and	alex.	You	will	also	be	able	to	see	some	of	the	files
that	were	deleted	that	you	may	want	to	retrieve:

Create	a	Keylogger	Using	Python
Keylogging,	also	known	as	keyboard	capturing	or	keystroke	logging,	is	a	trick	used	by	hackers	to
record	the	keys	that	are	pressed	on	a	keyboard	without	the	victim	knowing	that	he	is	being
recorded.	By	being	able	to	record	these	key	strokes,	any	hacker	will	be	able	to	decipher	how	the
targeted	user	interacts	with	his	computer.	This	means	that	with	a	keylogger,	you	essentially	have
access	to	practically	everything	that	the	victim	has	typed	on	his	keyboard,	which	includes
sensitive	data	such	as	usernames,	passwords,	credit	card	numbers,	and	so	on.	Creating	an
efficient	keylogger	will	enable	you	to	conveniently	steal	someone	else’s	identity,	especially	when
your	logger	remains	to	be	undetected.

Despite	the	huge	danger	that	keyloggers	may	pose	to	any	user,	they	are	remarkably	easy	to	make
using	Python.	The	code	that	will	be	taught	in	this	section	is	a	keylogger	that	does	not	rely	on
hardware	and	will	continue	to	run	in	the	background,	which	prevents	the	targeted	user	from
noticing	it.

Pull	up	Your	Editor
Open	IDLE,	or	any	text	editor	of	your	choice.	Once	you	are	on	a	new	script	window,	input	the
following	code:

Test	the	Created	File
Save	the	code	as	keylogger.py,	and	then	run	the	file	by	pressing	Ctrl	+	R.	The	keylogger	will
proceed	running	in	the	background	and	will	log	the	keystrokes	on	the	keyloggeroutput.txt	file.

To	end	logging,	pull	up	Task	Manager	and	end	all	running	Python	tasks	and	programs.

	

	

Conclusion
	

At	this	point,	you	may	have	had	some	idea	on	how	you	can	make	your	own	computer	system	and
network	more	 secure	 –	 simply	performing	 some	of	 the	 codes	 that	 are	 given	 in	 this	 book	 as	 an
example	will	give	you	the	idea	that	there	are	just	too	many	exploits	out	there	that	are	available	to
criminal	hackers	and	are	used	to	compromise	targeted	computers.	However,	your	new	knowledge
can	prevent	you	from	falling	victim	to	these	hackers	and	allow	you	to	think	ten	steps	ahead.	Since
you	already	are	done	reading	a	beginner’s	guide	to	hacking	with	Python,	the	only	next	steps	that
you	need	 to	do	 is	 to	hone	your	 skills	by	 improving	open-source	 scripts	 and	creating	your	own
programs	that	you	can	share	to	other	people	that	are	interested	in	information	security.

Now	that	you	have	better	knowledge	about	how	criminal	hackers	hack	using	Python,	you	can	fine
tune	that	knowledge	into	developing	programs	that	will	mitigate	these	attacks.	Take	note	that	the
hacking	 tools	 that	 were	 discussed	 here	 are	 also	 tools	 that	 can	 help	 you	 discover	 your	 own
vulnerabilities	 that	 hackers	 can	 exploit.	 Since	 you	 are	 capable	 of	 using	 the	 same	programming
language	 that	many	 sophisticated	hackers	use	nowadays,	 you	have	 the	opportunity	 to	 stop	 them
with	better	scripts	and	programs	that	you	can	also	share	to	your	network.

If	 you	 have	 enjoyed	 reading	 this	 book	 and	 you	 believe	 that	 you	 have	 become	 a	 better	 hacker
because	of	it,	please	take	the	time	to	share	this	book	to	fellow	hackers	and	tell	other	readers	about
it	on	Amazon.com.	I	am	excited	to	hear	from	you	soon!

Bonus:	Preview	Of	‘Introduction	to	Python	3
	
Python	is	a	programming	language	used	for	 interactive,	portable	and	flexible	programs.	It	has	a
syntax	 that	can	easily	 interface	with	other	 systems.	 	 It’s	object-oriented,	meaning,	 it	 focuses	on
object-oriented	data,	modules	and	classes.	You	can	use	it	for	general	purposes	in	programming.	It
has	also	a	broad	range	of	standard	library	that	allows	you	to	work	quickly	and	more	reliably.

The	first	versions	of	Python	are	the	2x	series,	which	is	still	very	useful	even	with	the	advent	of
the	3x	series,	because	its	features	are	compatible	with	more	applications	and	systems.	Because	of
some	updates,	the	Python	3	series	is	still	not	accepted	by	other	devices.	There	are	some	systems
that	are	not	adjusted	to	Python	3.

Nevertheless,	Python	3	is	the	latest	series	of	the	Python	programming	language.	Just	like	Python	2,
it’s	easier	to	learn	than	most	programming	languages	because	its	syntax	is	clear	and	simple	and
not	difficult,	unlike	the	statically	typed	languages.

Python	has	 also	 an	 interactive	 interpreter,	 such	 as	 IDLE	 to	 allow	 learners	 to	 code	quickly	 and
check	-at	the	moment	-	if	their	syntaxes	are	correct.

For	this	book,	we	will	be	focusing	on	the	Python	3	series.

Click	here	to	check	out	the	rest	on	Amazon.

https://www.amazon.com/Steve-Tale/e/B01M8LQART
https://www.amazon.com/Steve-Tale/e/B01M8LQART

	Chapter 1: Preparation For Hacking
	Chapter 2: Python Basics
	Chapter 3: Writing Python Programs
	Chapter 5: Operators and Expressions
	Chapter 6: Functions and Modules
	Chapter 7: Setting Up for Hacking
	Chapter 8: Network Hacking
	Chapter 9: Hacks for the Web
	Chapter 10: Understanding Attacks Using Python
	Chapter 11: Other Nifty Hacks to Try
	Conclusion
	Bonus: Preview Of ‘Introduction to Python 3

