

MongoDB and Python

Niall O’Higgins

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

MongoDB and Python
by Niall O’Higgins

Copyright © 2011 Niall O’Higgins. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Shawn Wallace
Production Editor: Jasmine Perez
Proofreader: O’Reilly Production Services

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. MongoDB and Python, the image of a dwarf mongoose, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-31037-0

[LSI]

1315837615

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Table of Contents

Preface . v

1. Getting Started . 1
Introduction 1
Finding Reference Documentation 2
Installing MongoDB 3
Running MongoDB 5
Setting up a Python Environment with MongoDB 6

2. Reading and Writing to MongoDB with Python . 9
Connecting to MongoDB with Python 10
Getting a Database Handle 11
Inserting a Document into a Collection 12
Write to a Collection Safely and Synchronously 13
Guaranteeing Writes to Multiple Database Nodes 14
Introduction to MongoDB Query Language 15
Reading, Counting, and Sorting Documents in a Collection 15
Updating Documents in a Collection 18
Deleting Documents from a Collection 20
MongoDB Query Operators 21
MongoDB Update Modifiers 22

3. Common MongoDB and Python Patterns . 23
A Uniquely Document-Oriented Pattern: Embedding 23
Fast Lookups: Using Indexes with MongoDB 29
Location-based Apps with MongoDB: GeoSpatial Indexing 33
Code Defensively to Avoid KeyErrors and Other Bugs 37
Update-or-Insert: Upserts in MongoDB 39
Atomic Read-Write-Modify: MongoDB’s findAndModify 40
Fast Accounting Pattern 41

iii

4. MongoDB with Web Frameworks . 45
Pylons 1.x and MongoDB 45
Pyramid and MongoDB 49
Django and MongoDB 51
Going Further 53

iv | Table of Contents

Preface

I’ve been building production database-driven applications for about 10 years. I’ve
worked with most of the usual relational databases (MSSQL Server, MySQL,
PostgreSQL) and with some very interesting nonrelational databases (Freebase.com’s
Graphd/MQL, Berkeley DB, MongoDB). MongoDB is at this point the system I enjoy
working with the most, and choose for most projects. It sits somewhere at a crossroads
between the performance and pragmatism of a relational system and the flexibility and
expressiveness of a semantic web database. It has been central to my success in building
some quite complicated systems in a short period of time.

I hope that after reading this book you will find MongoDB to be a pleasant database
to work with, and one which doesn’t get in the way between you and the application
you wish to build.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

v

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “MongoDB and Python by Niall O’Higgins.
Copyright 2011 O’Reilly Media Inc., 978-1-449-31037-0.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

vi | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/0636920021513

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
I would like to thank Ariel Backenroth, Aseem Mohanty and Eugene Ciurana for giving
detailed feedback on the first draft of this book. I would also like to thank the O’Reilly
team for making it a great pleasure to write the book. Of course, thanks to all the people
at 10gen without whom MongoDB would not exist and this book would not have been
possible.

Preface | vii

http://www.oreilly.com/catalog/0636920021513
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Getting Started

Introduction
First released in 2009, MongoDB is relatively new on the database scene compared to
contemporary giants like Oracle which trace their first releases to the 1970’s. As a
document-oriented database generally grouped into the NoSQL category, it stands out
among distributed key value stores, Amazon Dynamo clones and Google BigTable re-
implementations. With a focus on rich operator support and high performance Online
Transaction Processing (OLTP), MongoDB is in many ways closer to MySQL than to
batch-oriented databases like HBase.

The key differences between MongoDB’s document-oriented approach and a tradi-
tional relational database are:

1. MongoDB does not support joins.

2. MongoDB does not support transactions. It does have some support for atomic
operations, however.

3. MongoDB schemas are flexible. Not all documents in a collection must adhere to
the same schema.

1 and 2 are a direct result of the huge difficulties in making these features scale across
a large distributed system while maintaining acceptable performance. They are trade-
offs made in order to allow for horizontal scalability. Although MongoDB lacks joins,
it does introduce some alternative capabilites, e.g. embedding, which can be used to
solve many of the same data modeling problems as joins. Of course, even if embedding
doesn’t quite work, you can always perform your join in application code, by making
multiple queries.

The lack of transactions can be painful at times, but fortunately MongoDB supports a
fairly decent set of atomic operations. From the basic atomic increment and decrement
operators to the richer “findAndModify”, which is essentially an atomic read-modify-
write operator.

1

It turns out that a flexible schema can be very beneficial, especially when you expect
to be iterating quickly. While up front schema design—as used in the relational model
—has its place, there is often a heavy cost in terms of maintenance. Handling schema
updates in the relational world is of course doable, but comes with a price.

In MongoDB, you can add new properties at any time, dynamically, without having to
worry about ALTER TABLE statements that can take hours to run and complicated
data migration scripts. However, this approach does come with its own tradeoffs. For
example, type enforcement must be carefully handled by the application code. Custom
document versioning might be desirable to avoid large conditional blocks to handle
heterogeneous documents in the same collection.

The dynamic nature of MongoDB lends itself quite naturally to working with a dynamic
language such as Python. The tradeoffs between a dynamically typed language such as
Python and a statically typed language such as Java in many respects mirror the trade-
offs between the flexible, document-oriented model of MongoDB and the up-front and
statically typed schema definition of SQL databases.

Python allows you to express MongoDB documents and queries natively, through the
use of existing language features like nested dictionaries and lists. If you have worked
with JSON in Python, you will immediately be comfortable with MongoDB documents
and queries.

For these reasons, MongoDB and Python make a powerful combination for rapid, iter-
ative development of horizontally scalable backend applications. For the vast majority
of modern Web and mobile applications, we believe MongoDB is likely a better fit than
RDBMS technology.

Finding Reference Documentation
MongoDB, Python, 10gen’s PyMongo driver and each of the Web frameworks men-
tioned in this book all have good reference documentation online.

For MongoDB, we would strongly suggest bookmarking and at least skimming over
the official MongoDB manual which is available in a few different formats and con-
stantly updated at http://www.mongodb.org/display/DOCS/Manual. While the manual
describes the JavaScript interface via the mongo console utility as opposed to the Python
interface, most of the code snippets should be easily understood by a Python program-
mer and more-or-less portable to PyMongo, albeit sometimes with a little bit of work.
Furthermore, the MongoDB manual goes into greater depth on certain advanced and
technical implementation and database administration topics than is possible in this
book.

2 | Chapter 1: Getting Started

http://www.mongodb.org/display/DOCS/Manual

For the Python language and standard library, you can use the help() function in the
interpreter or the pydoc tool on the command line to get API documentation for any
methods or modules. For example:

pydoc string

The latest Python language and API documentation is also available for online browsing
at http://docs.python.org/.

10gen’s PyMongo driver has API documentation available online to go with each re-
lease. You can find this at http://api.mongodb.org/python/. Additionally, once you have
the PyMongo driver package installed on your system, a summary version of the API
documentation should be available to you in the Python interpreter via the help()
function. Due to an issue with the virtualenv tool mentioned in the next section, “py-
doc” does not work inside a virtual environment. You must instead run python -m pydoc
pymongo.

Installing MongoDB
For the purposes of development, it is recommended to run a MongoDB server on your
local machine. This will permit you to iterate quickly and try new things without fear
of destroying a production database. Additionally, you will be able to develop with
MongoDB even without an Internet connection.

Depending on your operating system, you may have multiple options for how to install
MongoDB locally.

Most modern UNIX-like systems will have a version of MongoDB available in their
package management system. This includes FreeBSD, Debian, Ubuntu, Fedora, Cen-
tOS and ArchLinux. Installing one of these packages is likely the most convenient ap-
proach, although the version of MongoDB provided by your packaging vendor may lag
behind the latest release from 10gen. For local development, as long as you have the
latest major release, you are probably fine.

10gen also provides their own MongoDB packages for many systems which they update
very quickly on each release. These can be a little more work to get installed but ensure
you are running the latest-and-greatest. After the initial setup, they are typically trivial
to keep up-to-date. For a production deployment, where you likely want to be able to
update to the most recent stable MongoDB version with a minimum of hassle, this
option probably makes the most sense.

In addition to the system package versions of MongoDB, 10gen provide binary zip and
tar archives. These are independent of your system package manager and are provided
in both 32-bit and 64-bit flavours for OS X, Windows, Linux and Solaris. 10gen also
provide statically-built binary distributions of this kind for Linux, which may be your
best option if you are stuck on an older, legacy Linux system lacking the modern libc

Installing MongoDB | 3

http://docs.python.org/
http://api.mongodb.org/python/

and other library versions. Also, if you are on OS X, Windows or Solaris, these are
probably your best bet.

Finally, you can always build your own binaries from the source code. Unless you need
to make modifications to MongoDB internals yourself, this method is best avoided due
to the time and complexity involved.

In the interests of simplicity, we will provide the commands required to install a stable
version of MongoDB using the system package manager of the most common UNIX-
like operating systems. This is the easiest method, assuming you are on one of these
platforms. For Mac OS X and Windows, we provide instructions to install the binary
packages from 10gen.

Ubuntu / Debian:

sudo apt-get update; sudo apt-get install mongodb

Fedora:

sudo yum install mongo-stable-server

FreeBSD:

sudo pkg_add -r mongodb

Windows:

Go to http://www.mongodb.org and download the latest production release zip file for
Windows—choosing 32-bit or 64-bit depending on your system. Extract the contents
of the zipfile to a location like C:\mongodb and add the bin directory to your PATH.

Mac OS X:

Go to http://www.mongodb.org and download the latest production release compressed
tar file for OS X—choosing 32-bit or 64-bit depending on your system. Extract the
contents to a location like /usr/local/ or /opt and add the bin directory to your $PATH.
For exmaple:

cd /tmp
wget http://fastdl.mongodb.org/osx/mongodb-osx-x86_64-1.8.3-rc1.tgz
tar xfz mongodb-osx-x86_64-1.8.3-rc1.tgz
sudo mkdir /usr/local/mongodb
sudo cp -r mongodb-osx-x86_64-1.8.3-rc1/bin /usr/local/mongodb/
export PATH=$PATH:/usr/local/mongodb/bin

4 | Chapter 1: Getting Started

http://www.mongodb.org
http://www.mongodb.org

Install MongoDB on OS X with Mac Ports
If you would like to try a third-party system package management system on Mac OS
X, you may also install MongoDB (and Python, in fact) through Mac Ports. Mac Ports
is similar to FreeBSD ports, but for OS X.

A word of warning though: Mac Ports compiles from source, and so can take consid-
erably longer to install software compared with simply grabbing the binaries. Futher-
more, you will need to have Apple’s Xcode Developer Tools installed, along with the
X11 windowing environment.

The first step is to install Mac Ports from http://www.macports.org. We recommend
downloading and installing their DMG package.

Once you have Mac Ports installed, you can install MongoDB with the command:

sudo port selfupdate; sudo port install mongodb

To install Python 2.7 from Mac Ports use the command:

sudo port selfupdate; sudo port install python27

Running MongoDB
On some platforms—such as Ubuntu—the package manager will automatically start
the mongod daemon for you, and ensure it starts on boot also. On others, such as Mac
OS X, you must write your own script to start it, and manually integrate with launchd
so that it starts on system boot.

Note that before you can start MongoDB, its data and log directories must exist.

If you wish to have MongoDB start automatically on boot on Windows, 10gen have a
document describing how to set this up at http://www.mongodb.org/display/DOCS/
Windows+Service

To have MongoDB start automatically on boot under Mac OS X, first you will need a
plist file. Save the following (changing db and log paths appropriately) to /Library/
LaunchDaemons/org.mongodb.mongod.plist:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/
PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>RunAtLoad</key>
 <true/>
 <key>Label</key>
 <string>org.mongo.mongod</string>
 <key>ProgramArguments</key>
 <array>
 <string>/usr/local/mongodb/bin/mongod</string>
 <string>--dbpath</string>

Running MongoDB | 5

http://www.macports.org
http://www.mongodb.org/display/DOCS/Windows+Service
http://www.mongodb.org/display/DOCS/Windows+Service

 <string>/usr/local/mongodb/data/</string>
 <string>--logpath</string>
 <string>/usr/local/mongodb/log/mongodb.log</string>
 </array>
</dict>
</plist>

Next run the following commands to activate the startup script with launchd:

sudo launchctl load /Library/LaunchDaemons/org.mongodb.mongod.plist
sudo launchctl start org.mongodb.mongod

A quick way to test whether there is a MongoDB instance already running on your local
machine is to type mongo at the command-line. This will start the MongoDB admin
console, which attempts to connect to a database server running on the default port
(27017).

In any case, you can always start MongoDB manually from the command-line. This is
a useful thing to be familiar with in case you ever want to test features such as replica
sets or sharding by running multiple mongod instances on your local machine.

Assuming the mongod binary is in your $PATH, run:

mongod --logpath <path/to/mongo.logfile> --port <port to listen on> --dbpath <path/to/
data directory>

Setting up a Python Environment with MongoDB
In order to be able to connect to MongoDB with Python, you need to install the Py-
Mongo driver package. In Python, the best practice is to create what is known as a
“virtual environment” in which to install your packages. This isolates them cleanly
from any “system” packages you have installed and yields the added bonus of not
requiring root privileges to install additional Python packages. The tool to create a
“virtual environment” is called virtualenv.

There are two approaches to installing the virtualenv tool on your system—manually
and via your system package management tool. Most modern UNIX-like systems will
have the virtualenv tool in their package repositories. For example, on Mac OS X with
Mac Ports, you can run sudo port install py27-virtualenv to install virtualenv for
Python 2.7. On Ubuntu you can run sudo apt-get install python-virtualenv. Refer
to the documentation for your OS to learn how to install it on your specific platform.

In case you are unable or simply don’t want to use your system’s package manager, you
can always install it yourself, by hand. In order to manually install it, you must have
the Python setuptools package. You may already have setuptools on your system. You
can test this by running python -c import setuptools on the command line. If nothing
is printed and you are simply returned to the prompt, you don’t need to do anything.
If an ImportError is raised, you need to install setuptools.

6 | Chapter 1: Getting Started

To manually install setuptools, first download the file http://peak.telecommunity.com/
dist/ez_setup.py

Then run python ez_setup.py as root.

For Windows, first download and install the latest Python 2.7.x package from http://
www.python.org. Once you have installed Python, download and install the Windows
setuptools installer package from http://pypi.python.org/pypi/setuptools/. After instal-
ling Python 2.7 and setuptools, you will have the easy_install tool available on your
machine in the Python scripts directory—default is C:\Python27\Scripts\.

Once you have setuptools installed on your system, run easy_install virtualenv as
root.

Now that you have the “virtualenv” tool available on your machine, you can create
your first virtual Python environment. You can do this by executing the command
virtualenv --no-site-packages myenv. You do not need—and indeed should not want
—to run this command with root privileges. This will create a virtual environment in
the directory “myenv”. The --no-site-packages option to the “virtualenv” utility in-
structs it to create a clean Python environment, isolated from any existing packages
installed in the system.

You are now ready to install the PyMongo driver.

With the “myenv” directory as your working directory (i.e. after “cd myenv”), simply
execute bin/easy_install pymongo. This will install the latest stable version of PyMongo
into your virtual Python environment. To verify that this worked successfully, execute
the command bin/python -c import pymongo, making sure that the “myenv” directory
is still your working directory, as with the previous command.

Assuming Python did not raise an ImportError, you now have a Python virtualenv with
the PyMongo driver correctly installed and are ready to connect to MongoDB and start
issuing queries!

Setting up a Python Environment with MongoDB | 7

http://peak.telecommunity.com/dist/ez_setup.py
http://peak.telecommunity.com/dist/ez_setup.py
http://www.python.org
http://www.python.org
http://pypi.python.org/pypi/setuptools/

CHAPTER 2

Reading and Writing
to MongoDB with Python

MongoDB is a document-oriented database. This is different from a relational database
in two significant ways. Firstly, not all entries must adhere to the same schema. Sec-
ondly you can embed entries inside of one another. Despite these major differences,
there are analogs to SQL concepts in MongoDB. A logical group of entries in a SQL
database is termed a table. In MongoDB, the analogous term is a collection. A single
entry in a SQL databse is termed a row. In MongoDB, the analog is a document.

Table 2-1. Comparison of SQL/RDBMS and MongoDB Concepts and Terms

Concept SQL MongoDB

One User One Row One Document

All Users Users Table Users Collection

One Username Per User (1-to-1) Username Column Username Property

Many Emails Per User (1-to-many) SQL JOIN with Emails Table Embed relevant email doc in User
Document

Many Items Owned by Many Users (many-to-
many)

SQL JOIN with Items Table Programmatically Join with Items
Collection

Hence, in MongoDB, you are mostly operating on documents and collections of docu-
ments. If you are familiar with JSON, a MongoDB document is essentially a JSON
document with a few extra features. From a Python perspective, it is a Python diction-
ary.

Consider the following example of a user document with a username, first name, sur-
name, date of birth, email address and score:

from datetime import datetime
user_doc = {
 "username" : "janedoe",
 "firstname" : "Jane",

9

 "surname" : "Doe",
 "dateofbirth" : datetime(1974, 4, 12),
 "email" : "janedoe74@example.com",
 "score" : 0
}

As you can see, this is a native Python object. Unlike SQL, there is no special syntax to
deal with. The PyMongo driver transparently supports Python datetime objects. This
is very convenient when working with datetime instances—the driver will transparently
marshall the values for you in both reads and writes. You should never have to write
datetime conversion code yourself.

Instead of grouping things inside of tables, as in SQL, MongoDB groups them in col-
lections. Like SQL tables, MongoDB collections can have indexes on particular docu-
ment properties for faster lookups and you can read and write to them using complex
query predicates. Unlike SQL tables, documents in a MongoDB collection do not all
have to conform to the same schema.

Returning to our user example above, such documents would be logically grouped in
a “users” collection.

Connecting to MongoDB with Python
The PyMongo driver makes connecting to a MongoDB database quite straight forward.
Furthermore, the driver supports some nice features right out of the box, such as con-
nection pooling and automatic reconnect on failure (when working with a replicated
setup). If you are familiar with more traditional RDBMS/SQL systems—for example
MySQL—you are likely used to having to deploy additional software, or possibly even
write your own, to handle connection pooling and automatic reconnect. 10gen very
thoughtfully relieved us of the need to worry about these details when working with
MongoDB and the PyMongo driver. This takes a lot of the headache out of running a
production MongoDB-based system.

You instantiate a Connection object with the necessary parameters. By default, the
Connection object will connect to a MongoDB server on localhost at port 27017. To
be explicit, we’ll pass those parameters along in our example:

""" An example of how to connect to MongoDB """
import sys

from pymongo import Connection
from pymongo.errors import ConnectionFailure

def main():
 """ Connect to MongoDB """
 try:
 c = Connection(host="localhost", port=27017)
 print "Connected successfully"
 except ConnectionFailure, e:
 sys.stderr.write("Could not connect to MongoDB: %s" % e)

10 | Chapter 2: Reading and Writing to MongoDB with Python

 sys.exit(1)

if __name__ == "__main__":
 main()

As you can see, a ConnectionFailure exception can be thrown by Connection instan-
tiation. It is usually a good idea to handle this exception and output something infor-
mative to your users.

Getting a Database Handle
Connection objects themselves are not all that frequently used when working with
MongoDB in Python. Typically you create one once, and then forget about it. This is
because most of the real interaction happens with Database and Collection objects.
Connection objects are just a way to get a handle on your first Databse object. In fact,
even if you lose reference to the Connection object, you can always get it back because
Database objects have a reference to the Connection object.

Getting a Database object is easy once you have a Connection instance. You simply
need to know the name of the database, and the username and password to access it if
you are using authorization on it.

""" An example of how to get a Python handle to a MongoDB database """
import sys

from pymongo import Connection
from pymongo.errors import ConnectionFailure

def main():
 """ Connect to MongoDB """
 try:
 c = Connection(host="localhost", port=27017)
 except ConnectionFailure, e:
 sys.stderr.write("Could not connect to MongoDB: %s" % e)
 sys.exit(1)
 # Get a Database handle to a database named "mydb"
 dbh = c["mydb"]

 # Demonstrate the db.connection property to retrieve a reference to the
 # Connection object should it go out of scope. In most cases, keeping a
 # reference to the Database object for the lifetime of your program should
 # be sufficient.

 assert dbh.connection == c
 print "Successfully set up a database handle"

if __name__ == "__main__":
 main()

Getting a Database Handle | 11

Inserting a Document into a Collection
Once you have a handle to your database, you can begin inserting data. Let us imagine
we have a collection called “users”, containing all the users of our game. Each user has
a username, a first name, surname, date of birth, email address and a score. We want
to add a new user:

""" An example of how to insert a document """
import sys

from datetime import datetime
from pymongo import Connection
from pymongo.errors import ConnectionFailure

def main():
 try:
 c = Connection(host="localhost", port=27017)
 except ConnectionFailure, e:
 sys.stderr.write("Could not connect to MongoDB: %s" % e)
 sys.exit(1)
 dbh = c["mydb"]
 assert dbh.connection == c
 user_doc = {
 "username" : "janedoe",
 "firstname" : "Jane",
 "surname" : "Doe",
 "dateofbirth" : datetime(1974, 4, 12),
 "email" : "janedoe74@example.com",
 "score" : 0
 }

 dbh.users.insert(user_doc, safe=True)
 print "Successfully inserted document: %s" % user_doc

if __name__ == "__main__":
 main()

Note that we don’t have to tell MongoDB to create our collection “users” before we
insert to it. Collections are created lazily in MongoDB, whenever you access them. This
has the advantage of being very lightweight, but can occasionally cause problems due
to typos. These can be hard to track down unless you have good test coverage. For
example, imagine you accidentally typed:

dbh.usrs is a typo, we mean dbh.users! Unlike an RDBMS, MongoDB won't
protect you from this class of mistake.
dbh.usrs.insert(user_doc)

The code would execute correctly and no errors would be thrown. You might be left
scratching your head wondering why your user document isn’t there. We recommend
being extra vigilant to double check your spelling when addressing collections. Good
test coverage can also help find bugs of this sort.

12 | Chapter 2: Reading and Writing to MongoDB with Python

Another feature of MongoDB inserts to be aware of is primary key auto-generation. In
MongoDB, the _id property on a document is treated specially. It is considered to be
the primary key for that document, and is expected to be unique unless the collection
has been explcitly created without an index on _id. By default, if no _id property is
present in a document you insert, MongoDB will generate one itself. When MongoDB
generates an _id property itself, it uses the type ObjectId. A MongoDB ObjectId is a
96-bit value which is expected to have a very high probability of being unique when
created. It can be considered similar in purpose to a UUID object as defined by RFC
4122. MongoDB ObjectIds have the nice property of being almost-certainly-unique
upon generation, hence no central coordination is required.

This contrasts sharply with the common RDBMS idiom of using auto-increment pri-
mary keys. Guaranteeing that an auto-increment key is not already in use usually re-
quires consulting some centralized system. When the intention is to provide a hori-
zontally scalable, de-centralized and fault-tolerant database—as is the case with Mon-
goDB—auto-increment keys represent an ugly bottleneck.

By employing ObjectId as your _id, you leave the door open to horizontal scaling via
MongoDB’s sharding capabilities. While you can in fact supply your own value for the
_id property if you wish—so long as it is globally unique—this is best avoided unless
there is a strong reason to do otherwise. Examples of cases where you may be forced
to provide your own _id property value include migration from RDBMS systems which
utilized the previously-mentioned auto-increment primary key idiom.

Note that an ObjectId can be just as easily generated on the client-side, with PyMongo,
as by the server. To generate an ObjectId with PyMongo, you simply instantiate
pymongo.objectid.ObjectId.

Write to a Collection Safely and Synchronously
By default, the PyMongo driver performs asynchronous writes. Write operations in-
clude insert, update, remove and findAndModify.

Asynchronous writes are unsafe in the sense that they are not checked for errors and
so execution of your program could continue without any guarantees of the write hav-
ing completed successfully. While asynchronous writes improve performance by not
blocking execution, they can easily lead to nasty race conditions and other nefarious
data integrity bugs. For this reason, we recommend you almost always use safe, syn-
chronous, blocking writes. It seems rare in practice to have truly “fire-and-forget” writes
where there are aboslutely no consequences for failures. That being said, one common
example where asynchronous writes may make sense is when you are writing non-
critical logs or analytics data to MongoDB from your application.

Write to a Collection Safely and Synchronously | 13

Unless you are certain you don’t need synchronous writes, we recom-
mend that you pass the “safe=True” keyword argument to inserts, up-
dates, removes and findAndModify operations:

safe=True ensures that your write
will succeed or an exception will be thrown
dbh.users.insert(user_doc, safe=True)

Guaranteeing Writes to Multiple Database Nodes
The term node refers to a single instance of the MongoDB daemon process. Typically
there is a single MongoDB node per machine, but for testing or development cases you
can run multiple nodes on one machine.

Replica Set is the MongoDB term for the database’s enhanced master-slave replication
configuration. This is similar to the traditional master-slave replication you find in
RDBMS such as MySQL and PostgreSQL in that a single node handles writes at a given
time. In MongoDB master selection is determined by an election protocol and during
failover a slave is automatically promoted to master without requiring operator inter-
vention. Furthermore, the PyMongo driver is Replica Set-aware and performs auto-
matic reconnect on failure to the new master. MongoDB Replica Sets, therefore, rep-
resent a master-slave replication configuration with excellent failure handling out of
the box. For anyone who has had to manually recover from a MySQL master failure in
a production environment, this feature is a welcome relief.

By default, MongoDB will return success for your write operation once it has been
written to a single node in a Replica Set.

However, for added safety in case of failure, you may wish your write to be committed
to two or more replicas before returning success. This can help ensure that in case of
catastrophic failure, at least one of the nodes in the Replica Set will have your write.

PyMongo makes it easy to specify how many nodes you would like your write to be
replicated to before returning success. You simply set a parameter named “w” to the
number of servers in each write method call.

For example:

w=2 means the write will not succeed until it has
been written to at least 2 servers in a replica set.
dbh.users.insert(user_doc, w=2)

Note that passing any value of “w” to a write method in PyMongo im-
plies setting “safe=True” also.

14 | Chapter 2: Reading and Writing to MongoDB with Python

Introduction to MongoDB Query Language
MongoDB queries are represented as a JSON-like structure, just like documents. To
build a query, you specify a document with properties you wish the results to match.
MongoDB treats each property as having an implicit boolean AND. It natively supports
boolean OR queries, but you must use a special operator ($or) to achieve it. In addition
to exact matches, MongoDB has operators for greater than, less than, etc.

Sample query document to match all documents in the users collection with firstname
“jane”:

q = {
 "firstname" : "jane"
}

If we wanted to retrieve all documents with firstname “jane” AND surname “doe”, we
would write:

q = {
 "firstname" : "jane",
 "surname" : "doe"
}

If we wanted to retrieve all documents with a score value of greater than 0, we would
write:

q = {
 "score" : { "$gt" : 0 }
}

Notice the use of the special “$gt” operator. The MongoDB query language provides
a number of such operators, enabling you to build quite complex queries.

See the section on MongoDB Query Operators for details.

Reading, Counting, and Sorting Documents in a Collection
In many situations, you only want to retrieve a single document from a collection. This
is especially true when documents in your collection are unique on some property. A
good example of this is a users collection, where each username is guaranteed unique.

Assuming we already have a database handle in scope named dbh
find a single document with the username "janedoe".
user_doc = dbh.users.find_one({"username" : "janedoe"})
if not user_doc:
 print "no document found for username janedoe"

Notice that find_one() will return None if no document is found.

Now imagine you wish to find all documents in the users collection which have a
firstname property set to “jane” and print out their email addresses. MongoDB will
return a Cursor object for us, to stream the results. PyMongo handles result streaming

Reading, Counting, and Sorting Documents in a Collection | 15

as you iterate, so if you have a huge number of results they are not all stored in memory
at once.

Assuming we already have a database handle in scope named dbh
find all documents with the firstname "jane".
Then iterate through them and print out the email address.
users = dbh.users.find({"firstname":"jane"})
for user in users:
 print user.get("email")

Notice in the above example that we use the Python dict class’ get method. If we were
certain that every single result document contained the “email” property, we could
have used dictionary access instead.

for user in users:
 print user["email"]

If you only wish to retrieve a subset of the properties from each document in a collection
during a read, you can pass those as a dictionary via an additional parameter. For
example, suppose that you only wish to retrieve the email address for each user with
firstname “jane”:

Only retrieve the "email" field from each matching document.
users = dbh.users.find({"firstname":"jane"}, {"email":1})
for user in users:
 print user.get("email")

If you are retrieving a large result set, requesting only the properties you need can reduce
network and decoding overhead, potentially increasing performance.

Sometimes you are not so interested in the query results themselves, but are looking to
find the size of the result set for a given query. A common example is an analytics
situation where you want a count of how many documents are in your users’ collections.
MonogDB supports efficient server-side counting of result sets with the count() method
on Cursor objects:

Find out how many documents are in users collection, efficiently
userscount = dbh.users.find().count()
print "There are %d documents in users collection" % userscount

MongoDB can also perform result sorting for you on the server-side. Especially if you
are sorting results on a property which has an index, it can sort these far more efficiently
than your client program can. PyMongo Cursor objects have a sort() method which
takes a Python 2-tuple comprising the property to sort on, and the direction. The Py-
Mongo sort() method is analogous to the SQL ORDER BY statement. Direction can
either be pymongo.ASCENDING or pymongo.DESCENDING. For example:

Return all user with firstname "jane" sorted
in descending order by birthdate (ie youngest first)
users = dbh.users.find(
 {"firstname":"jane"}).sort(("dateofbirth", pymongo.DESCENDING))
for user in users:
 print user.get("email")

16 | Chapter 2: Reading and Writing to MongoDB with Python

In addition to the sort() method on the PyMongo Cursor object, you may also pass
sort instructions to the find() and find_one() methods on the PyMongo Collection
object. Using this facility, the above example may be rewritten as:

Return all user with firstname "jane" sorted
in descending order by birthdate (ie youngest first)
users = dbh.users.find({"firstname":"jane"},
 sort=[("dateofbirth", pymongo.DESCENDING)])
for user in users:
 print user.get("email")

Another situation you may encounter—especially when you have large result sets—is
that you wish to only fetch a limited number of results. This is frequently combined
with server-side sorting of results. For example, imagine you are generating a high score
table which displays only the top ten scores. PyMongo Cursor objects have a limit()
method which enables this. The limit() method is analogous to the SQL LIMIT state-
ment.

Return at most 10 users sorted by score in descending order
This may be used as a "top 10 users highscore table"
users = dbh.users.find().sort(("score", pymongo.DESCENDING)).limit(10)
for user in users:
 print user.get("username"), user.get("score", 0)

If you know in advance that you only need a limited number of results from a query,
using limit() can yield a performance benefit. This is because it may greatly reduce the
size of the results data which must be sent by MongoDB. Note that a limit of 0 is
equivalent to no limit.

Additionally, MongoDB can support skipping to a specific offset in a result set through
the Cursor.skip() method provided by PyMongo. When used with limit() this enables
result pagination which is frequently used by clients when allowing end-users to browse
very large result sets. skip() is analogous to the SQL OFFSET statement. For example,
imagine a Web application which displays 20 users per page, sorted alphabetically by
surname , and needs to fetch the data to build the second page of results for a user. The
query used by the Web application might look like this:

Return at most 20 users sorted by name,
skipping the first 20 results in the set
users = dbh.users.find().sort(
 ("surname", pymongo.ASCENDING)).limit(20).skip(20)

Finally, when traversing very large result sets, where the underlying documents may be
modified by other programs at the same time, you may wish to use MongoDB’s Snap-
shot Mode. Imagine a busy site with hundreds of thousands of users. You are devel-
oping an analytics program to count users and build various statistics about usage
patterns and so on. However, this analytics program is intended to run against the live,
production database. Since this is such a busy site, real users are frequently performing
actions on the site which may result in modifications to their corresponding user docu-
ments—while your analytics program is running. Due to quirks in MongoDB’s cur-

Reading, Counting, and Sorting Documents in a Collection | 17

soring mechanism, in this kind of situation your program could easily see duplicates
in your query result set. Duplicate data could throw off the accuracy of your analysis
program, and so it is best avoided. This is where Snapshot Mode comes in.

MongoDB’s Snapshot Mode guarantees that documents which are modified during the
lifetime of a query are returned only once in a result set. In other words, duplicates are
eliminated, and you should not have to worry about them.

However, Snapshot Mode does have some limitations. Snapshot Mode
cannot be used with sorting, nor can it be used with an index on any
property other than _id.

To use Snapshot Mode with PyMongo, simply pass “snapshot=True” as a parameter
to the find() method:

Traverse the entire users collection, employing Snapshot Mode
to eliminate potential duplicate results.
for user in dbh.users.find(snapshot=True):
 print user.get("username"), user.get("score", 0)

Updating Documents in a Collection
Update queries in MongoDB consist of two parts: a document spec which informs the
database of the set of documents to be updated, and the update document itself.

The first part, the document spec, is the same as the query document which you use
with find() or find_one().

The second part, the update document, can be used in two ways. The simplest is to
supply the full document which will replace the matched document in the collection.
For example, suppose you had the following document in your users collection:

user_doc = {
 "username" : "janedoe",
 "firstname" : "Jane",
 "surname" : "Doe",
 "dateofbirth" : datetime(1974, 4, 12),
 "email" : "janedoe74@example.com",
 "score" : 0
}

Now let’s say you wish to update the document with username “janedoe” to change
the email address to “janedoe74@example2.com”. We build a completely new docu-
ment which is identical to the original, except for the new email address.

18 | Chapter 2: Reading and Writing to MongoDB with Python

first query to get a copy of the current document
import copy
old_user_doc = dbh.users.find_one({"username":"janedoe"})
new_user_doc = copy.deepcopy(old_user_doc)
modify the copy to change the email address
new_user_doc["email"] = "janedoe74@example2.com"
run the update query
replace the matched document with the contents of new_user_doc
dbh.users.update({"username":"janedoe"}, new_user_doc, safe=True)

Building the whole replacement document can be cumbersome, and worse, can intro-
duce race conditions. Imagine you want to increment the score property of the “jane-
doe” user. In order to achieve this with the replacement approach, you would have to
first fetch the document, modify it with the incremented score, then write it back to
the database. With that approach, you could easily lose other score changes if some-
thing else were to update the score in between you reading and writing it.

In order to solve this problem, the update document supports an additional set of
MongoDB operators called “update modifiers”. These update modifiers include oper-
ators such as atomic increment/decrement, atomic list push/pop and so on. It is very
helpful to be aware of which update modifiers are available and what they can do when
designing your application. Many of these will be described in their own recipes
throughout this book.

To illustrate usage of “update modifiers”, let’s return to our original example of chang-
ing only the email address of the document with username “janedoe”. We can use the
$set update modifier in our update document to avoid having to query before updating.
$set changes the value of an individual property or a group of properties to whatever
you specify.

run the update query, using the $set update modifier.
we do not need to know the current contents of the document
with this approach, and so avoid an initial query and
potential race condition.
dbh.users.update({"username":"janedoe"},
 {"$set":{"email":"janedoe74@example2.com"}}, safe=True)

You can also set multiple properties at once using the $set update modifier:

update the email address and the score at the same time
using $set in a single write.
dbh.users.update({"username":"janedoe"},
 {"$set":{"email":"janedoe74@example2.com", "score":1}}, safe=True)

At the time of writing, the PyMongo driver, even if you specify a docu-
ment spec to the update method which matches multiple documents in
a collection, only applies the update to the first document matched.

Updating Documents in a Collection | 19

In other words, even if you believe your update document spec matches every single
document in the collection, your update will only write to one of those documents.

For example, let us imagine we wish to set a flag on every document in our users col-
lection which has a score of 0:

even if every document in your collection has a score of 0,
only the first matched document will have its "flagged" property set to True.
dbh.users.update({"score":0},{"$set":{"flagged":True}}, safe=True)

In order to have your update query write multiple documents, you must
pass the “multi=True” parameter to the update method.

once we supply the "multi=True" parameter, all matched documents
will be updated
dbh.users.update({"score":0},{"$set":{"flagged":True}}, multi=True, safe=True)

Although the default value for the multi parameter to the update method
is currently False—meaning only the first matched document will be
updated—this may change. The PyMongo documentation currently
recommends that you explicitly set multi=False if you are relying on this
default, to avoid breakage in future. Note that this should only impact
you if you are working with a collection where your documents are not
unique on the property you are querying on in your document spec.

Deleting Documents from a Collection
If you wish to permanently delete documents from a collection, it is quite easy to do
so. The PyMongo Collection object has a remove() method. As with reads and updates,
you specify which documents you want to remove by way of a document spec. For
example, to delete all documents from the users collection with a score of 1, you would
use the following code:

Delete all documents in user collection with score 1
dbh.users.remove({"score":1}, safe=True)

Note that the remove() method takes a safe parameter. As mentioned in the earlier
section “Write to a Collection Safely and Synchronously”, it is recommended to set the
safe parameter to True on write methods to ensure the operation has completed. It is
also worth noting that remove() will not raise any exception or error if no documents
are matched.

20 | Chapter 2: Reading and Writing to MongoDB with Python

Finally, if you wish to delete all documents in a collection, you can pass None as a
parameter to remove():

Delete all documents in user collection
dbh.users.remove(None, safe=True)

Clearing a collection with remove() differs from dropping the collection via drop_col
lection() in that the indexes will remain intact.

MongoDB Query Operators
As mentioned previously, MongoDB has quite a rich set of query operators and pred-
icates. In Table 2-2 we provide a table with the meaning of each one, along with a
sample usage and the SQL equivalent where applicable.

Table 2-2. MongoDB query operators

Operator Meaning Example SQL Equivalent

$gt Greater Than “score”:{"$gt”:0} >

$lt Less Than “score”:{"$lt”:0} <

$gte Greater Than or Equal “score”:{"$gte”:0} >=

$lte Less Than or Equal “score”:{"$lte”:0} ⇐
$all Array Must Contain All “skills”:{"$all”:["mongodb”,"python"]} N/A

$exists Property Must Exist “email”:{"$exists”:True} N/A

$mod Modulo X Equals Y “seconds”:{"$mod”:[60,0]} MOD()

$ne Not Equals “seconds”:{"$ne”:60} !=

$in In “skills”:{"$in”:["c”,"c++"]} IN

$nin Not In “skills”:{"$nin”:["php”,"ruby”,"perl"]} NOT IN

$nor Nor “$nor”:[{"language”:"english"},{"coun-
try”:"usa"}]

N/A

$or Or “$or”:[{"language”:"english"},{"coun-
try”:"usa"}]

OR

$size Array Must Be Of Size “skills”:{"$size”:3} N/A

If you do not fully understand the meaning or purpose of some of these operators
immediately do not worry. We shall discuss the practical use of some of the more
advanced operators in detail in Chapter 3.

MongoDB Query Operators | 21

MongoDB Update Modifiers
As mentioned in the section “Updating Documents in a Collection”, MongoDB comes
with a set of operators for performing atomic modifications on documents.

Table 2-3. MongoDB update modifiers

Modifier Meaning Example

$inc Atomic Increment “$inc”:{"score”:1}

$set Set Property Value “$set”:{"username”:"niall"}

$unset Unset (delete) Property “$unset”:{"username”:1}

$push Atomic Array Append (atom) “$push”:{"emails”:"foo@example.com"}

$pushAll Atomic Array Append (list) “$pushall”:{"emails”:["foo@example.com”,"foo2@ex-
ample.com"]}

$addToSet Atomic Append-If-Not-Present “$addToSet”:{"emails”:"foo@example.com"}

$pop Atomic Array Tail Remove “$pop”:{"emails”:1}

$pull Atomic Conditional Array Item
Removal

“$pull”:{"emails”:"foo@example.com"}

$pullAll Atomic Array Multi Item Re-
moval

“$pullAll”:{"emails”:["foo@example.com”, “foo2@ex-
ample.com"]}

$rename Atomic Property Rename “$rename”:{"emails”:"old_emails"}

As with the MongoDB query operators listed earlier in this chapter, this table is mostly
for your reference. These operators will be introduced in greater detail in Chapter 3.

22 | Chapter 2: Reading and Writing to MongoDB with Python

CHAPTER 3

Common MongoDB and
Python Patterns

After some time working with MongoDB and Python to solve different problems, var-
ious patterns and best practices begin to emerge. Just as with any programming lan-
guage and database system, there are established approaches for modeling data along
with known methods for answering queries as quickly and efficiently as possible.

While there are myriad sources of such knowledge for traditional RDBM systems like
MySQL, there are far fewer resources available for MongoDB. This chapter is an at-
tempt to address this.

A Uniquely Document-Oriented Pattern: Embedding
While the ability of MongoDB documents to contain sub-documents has been men-
tioned previously in this book, it has not been explored in detail. In fact, embedding is
an extremely important modeling technique when working with MongoDB and can
have important performance and scalability implications. In particular, embedding can
be used to solve many data modeling problems usually solved by a join in traditional
RDBMS. Furthermore, embedding is perhaps more intuitive and easier to understand
than a join.

What exactly is meant by embedding? In Python terms, when the value of a key in a
dictionary is yet another dictionary, we say that you are embedding the latter in the
former. For example:

my_document = {
 "name":"foo document",
 "data":{"name":"bar document"}
}

Here, “data” is a sub-document embedded in the top-level document “my_document”.

23

Embedding sub-documents can be a useful, natural technique to reduce clutter or
namespace collisions. For example consider the case where a “user” document should
reference Facebook, Twitter and IRC account usernames, passwords and associated
details—in addition to storing a “username” property native to your applicaton:

user_doc = {
 "username":"foouser",
 "twitter":{
 "username":"footwitter",
 "password":"secret",
 "email":"twitter@example.com"
 },
 "facebook":{
 "username":"foofacebook",
 "password":"secret",
 "email":"facebook@example.com"
 },
 "irc":{
 "username":"fooirc",
 "password":"secret",
 }
}

Note that in MongoDB documents—just as in Python dictionaries—
property names (a.k.a. keys) are unique. In other words, a single docu-
ment can only ever have one “username” property. This rule also applies
to properties in embedded sub-documents. This uniqueness constraint
can actually be exploited and enable some useful patterns. Specifically,
see the section titled “Fast Accounting Pattern”.

Of course, embedded sub-documents can be queried against just like their top-level
counterparts. For example, it would be completely legal to attempt to query for the
above document in a collection called “users” with the following statement:

user_doc = dbh.users.find_one({"facebook.username":"foofacebook"})

As you can see, the dot (“.”) is used to denote keys in an embedded sub-document.
This should be familiar to anybody who has worked with objects in JavaScript, where
object-style access via the dot notation can be used in parallel with dictionary-style
access via square brackets. As MongoDB uses JavaScript heavily internally, this choice
of notation is unsurprising. JSON is JavaScript Object Notation, afterall. The dot no-
tation can also be used in update statements with update modifiers such as $set to set
the value of an individual sub-property:

update modifiers such as $set also support the dot notation
dbh.users.update({"facebook.username":"foofacebook"},
 {"$set":{"facebook.username":"bar"}}, safe=True)

This use of embedded sub-documents is useful, but perhaps even more useful is to
embed multiple sub-documents under a single key. In other words, a property whose

24 | Chapter 3: Common MongoDB and Python Patterns

value is a list or array of sub-documents. In MongoDB, this is a legal and very useful
construct. This is a very natural way to model one-to-many relationships, or parent-
child relationships. Consider the example of a “user” document which can reference
multiple email addresses for that user. In the relational model, this would typically be
achieved with two tables—one for users, and one for the email addresses associated
with each user. A join query could then be used to retrieve a user along which each of
its email addresses.

In MongoDB, a natural approach to model a one-to-many relationship would be to
simply have a property “emails” on the user document, the value of which is an array
containing sub-documents, each representing an associated email account. For exam-
ple:

A user document demonstrating one-to-many relationships using embedding
Here we map multiple email addresses (along with whether or not the email
is the user's primary email address) to a single user.
user_doc = {
 "username":"foouser",
 "emails":[
 {
 "email":"foouser1@example.com",
 "primary":True
 },
 {
 "email":"foouser2@example2.com",
 "primary":False
 },
 {
 "email":"foouser3@example3.com",
 "primary":False
 }
]
}

Not only does this work, but MongoDB has some specific features to help working
with this type of embedded structure. Just as you can query for documents by the value
of sub-documents directly embedded in the top-level document, documents can also
be located by the value of sub-documents embedded in arrays. To do this, simply use
the same dot (“.”) notation, as described earlier in this section. MongoDB transparently
searches through arrays for sub-documents.

Returning to our earlier example of a single user with multiple email addresses, consider
the following code:

A user document demonstrating one-to-many relationships using embedding
user_doc = {
 "username":"foouser",
 "emails":[
 {
 "email":"foouser1@example.com",
 "primary":True
 },

A Uniquely Document-Oriented Pattern: Embedding | 25

 {
 "email":"foouser2@example2.com",
 "primary":False
 },
 {
 "email":"foouser3@example3.com",
 "primary":False
 }
]
}
Insert the user document
dbh.users.insert(user_doc, safe=True)
Retrieve the just-inserted document via one of its many email addresses
user_doc_result = dbh.users.find_one({"emails.email":"foouser1@example.com"})
Assert that the original user document and the query result are the same
assert user_doc == user_doc_result

In addition to MongoDB understanding lists of sub-documents to enable querying for
embedded values via the dot notation, there are also useful update modifiers. $pull,
$push and their variants are the most helpful, enabling atomic append and removal of
sub-documents to and from embedded lists. Consider the case where a user no longer
wishes a particular email address to be linked to his or her account. The naive way to
remove that email address from their user document would be to first query for their
user document, modify it in your application code so it no longer contains the removed
email address, and then send an update query to the database. Not only is this cum-
bersome, it also introduces a race condition, as the underlying user document may have
been modified by another process in between your read and write:

Naive method to remove an email address from a user document
Cumbersome and has a race condition
user_doc = {
 "username":"foouser",
 "emails":[
 {
 "email":"foouser1@example.com",
 "primary":True
 },
 {
 "email":"foouser2@example2.com",
 "primary":False
 },
 {
 "email":"foouser3@example3.com",
 "primary":False
 }
]
}
Insert the user document
dbh.users.insert(user_doc, safe=True)
Retrieve the just-inserted document via username
user_doc_result = dbh.users.find_one({"username":"foouser"})
Remove the "foouser2@example2.com" email address sub-document from the embedded list
del user_doc_result["emails"][1]

26 | Chapter 3: Common MongoDB and Python Patterns

Now write the new emails property to the database
May cause data to be lost due to the race between read and write
dbh.users.update({"username":"foouser"},{"$set":{"emails":user_doc_result}},
safe=True)

The three most common operations on sub-documents embedded in a list property
are: Deletion, insertion and modification. Each of these can be performed atomically
with the provided update modifiers. First let’s demonstrate the use of $pull to remove
the sub-document matching “foouser2@example2.com” in a simple and race-free way:

Atomically remove an email address from a user document race-free using the
$pull update modifier
user_doc = {
 "username":"foouser",
 "emails":[
 {
 "email":"foouser1@example.com",
 "primary":True
 },
 {
 "email":"foouser2@example2.com",
 "primary":False
 },
 {
 "email":"foouser3@example3.com",
 "primary":False
 }
]
}
Insert the user document
dbh.users.insert(user_doc, safe=True)
Use $pull to atomically remove the "foouser2@example2.com" email sub-document
dbh.users.update({"username":"foouser"},
 {"$pull":{"emails":{"email":"foouser2@example2.com"}}}, safe=True)

In this example, $pull is used to match an embedded document with
"email":"foouser2@example2.com" in the “emails” field. $pull will remove the entire
document from the array in an atomic fashion, meaning there is no opportunity for a
race condition. You can also use query modifiers with $pull, for example to remove all
sub-documents with a “primary” value that is not equal to True, you could write the
following:

Use $pull to atomically remove all email sub-documents with primary not equal to True
dbh.users.update({"username":"foouser"},
 {"$pull":{"emails":{"primary":{"$ne":True}}}, safe=True)

The full range of query modifiers (see table in Chapter 2) are available for use, including
$gt, $lt and so on. Additionally, $pull can be used with arrays containing atoms (num-
bers, strings, dates, ObjectIDs etc). In other words, $pull doesn’t work only with em-
bedded documents—if you store a list of primitive types in an array, you can remove
elements atomically with $pull too.

A Uniquely Document-Oriented Pattern: Embedding | 27

The $push update modifier is used to atomically append an element to an array. At the
time of writing, $push can only support adding items to the end of the array—there is
no update modifier to add an element to the beginning of an array, or to insert it at an
arbitrary index. $push is simple to use, because, unlike $pull, it does not take any field
match or conditional arguments.

For example, to atomically add a new email address to our user document, we could
use the following query:

Use $push to atomically append a new email sub-document to the user document
new_email = {"email":"fooemail4@exmaple4.com", "primary":False}
dbh.users.update({"username":"foouser"},
 {"$push":{"emails":new_email}}, safe=True)

The final case is updating an existing sub-document in-place. This can be achieved
using what is called the “positional” operator. The positional operator is represented
by the dollar sign (“$”). Basically, it is replaced by the server with the index of the item
matched by the document spec. For example, suppose we wish to make our user docu-
ment’s “foouser2@example2.com” email address primary. We could issue the follow-
ing update query to modify it in-place:

Demonstrate usage of the positional operator ($) to modify
matched sub-documents in-place.
user_doc = {
 "username":"foouser",
 "emails":[
 {
 "email":"foouser1@example.com",
 "primary":True
 },
 {
 "email":"foouser2@example2.com",
 "primary":False
 },
 {
 "email":"foouser3@example3.com",
 "primary":False
 }
]
}
Insert the user document
dbh.users.insert(user_doc, safe=True)
Now make the "foouser2@example2.com" email address primrary
dbh.users.update({"emails.email":"foouser2@example2.com"},
 {"$set":{"emails.$.primary":True}}, safe=True)
Now make the "foouser1@example.com" email address not primary
dbh.users.update({"emails.email":"foouser1@example.com"},
 {"$set":{"emails.$.primary":False}}, safe=True)

Note that the $ operator cannot be used with upserts (see section on
upserts later in this chapter) additionally it only works with the first
matched element.

28 | Chapter 3: Common MongoDB and Python Patterns

When working with embedding, it is important to be aware of the performance char-
acteristics of documents and sub-documents in MongoDB. First and foremost, when
a document is fetched from the database to answer a query, the entire document—
including any and all embedded sub-documents—is loaded into memory. This means
that there is no extra cost (aside from the additional network and decode/encode CPU
overhead incurred by a larger result set) to fetch embedded data. Once the top-level
document has been retrieved, its sub-documents are immediately avaialble, too. Con-
trast this with a relational schema design utilizing joins, where the database may need
to read from one or more additional tables to fetch associated data. Depending on the
situation, these joins could impact query performance considerably.

Secondly, it is also very important to be aware that there is a size limit on documents
in MongoDB. Additionally, the document size limit has been increased over successive
major MongoDB releases. In MongoDB 1.4.x and 1.6.x, the maximum document size
was 4MB but in 1.8.x it was increased to 16MB. One can expect that this limit may
continue to increase—perhaps eventually to be arbitrarily large—but for now, keep in
mind that documents have a finite size when modeling your data.

In practice, it is rare to reach even a 4MB document size, unless the design is such that
documents continue to grow over time. For example, a scenario where new properties
are created on an hourly or daily basis. In such cases, it is wise to ensure there is some
application logic to handle purging old/expired embedded sub-documents to prevent
the limit being hit.

Another example would be building a document publishing platform which embedded
every single document posted by a user as a sub-document inside of the user document.
While performance would be excellent since a single query for the user document could
retieve all their published documents in a single shot, it is quite likely that some users
would eventually publish more than 16MB of content.

Hence there is often a judgement call to be made when designing MongoDB schemas:
To embed, or not to embed.

The alternative to embedding is storing the documents in a separate collection and
performing a join in your own application code, by querying twice or more. Usually
many-to-many relationships are modeled in this way, while one-to-many relationships
are embedded.

Fast Lookups: Using Indexes with MongoDB
The role of indexes in MongoDB is very similar to their role in traditional RDBMS such
as MySQL, PostgreSQL, etc. MongoDB offers two kinds of indexes out-of-the-box:
Btree indexes and geospatial indexes. The btree indexes in MongoDB are much the
same as the equivalents in MySQL or PostgreSQL. When in a relational system you
would put an index on a column to get fast lookups on that field, you do an analogous
thing in MongoDB by placing an index on a particular property in a collection. Just as

Fast Lookups: Using Indexes with MongoDB | 29

with an RDBMS, MongoDB indexes can span multiple fields (a.k.a. compound indexes)
—useful if you know in advance that you will be querying based on the value of more
than a single property. A compound index would be useful for example if you were
querying documents by first name and last name. In MongoDB, btree indexes can have
a “direction”. This direction is only useful in the case of compound indexes, where the
index direction should match the sort direction or range query direction for optimal
performance. For example, if you are querying a range (say, A through C) on first name
and last name and then sorting in ascending order on last name, your compound index
direction should also be ascending.

Using a btree index will incur a performance hit on writes, as the database must now
update the index in addition to the data. For this reason, it is wise to choose your indexes
carefully. Avoid superfluous indexes if at all possible. Indexes also take up valuable
storage—not so much of an issue with on-disk space today given the low price-per-
terrabyte—but in memory, too. Your database will run fastest when it resides entirely
in memory, and indexes can considerably add to its size. It is a classic Computer Science
time vs. space tradeoff scenario.

MongoDB btree indexes can also be used to enforce a unique constraint on a particular
property in a collection. By default, the _id primary key property has a unique index
created in MongoDB. The unique constraint will prevent the protected property from
ever having a duplicate value within the collection. This can be useful for values which
are expected to be globally unique in the collection—a common example being user-
names. Beware of over-reliance on this feature, however, as in the current implemen-
tation of sharding, unique indexes are supported only on the _id property—otherwise
they are not enforced globally across the cluster.

Btree indexes also transparently support indexing multi-value properties, that is, prop-
erties where the value is an array. Each item in the array will be properly stored in the
index to enable fast retrieval of the parent document. This can be useful for performant
implementations of tagging, where each tag is stored as a string inside a “tags” list
property on the document. Lookups for documents matching one or more of those tags
(potentially using the $in query operator) will then be looked up in the “tags” index.
Furthermore, btree indexes are equally well supported when placed on embedded sub-
documents. If, for example, you store email addresses as embedded sub-documents,
and you wish to be able to look up by the value of the email address using an index,
MongoDB allows this. Hence the following document and query could take advantage
of an index:

user_doc = {
 "username":"foouser",
 "emails":[
 {
 "email":"foouser1@example.com",
 "primary":True
 },
 {
 "email":"foouser2@example2.com",

30 | Chapter 3: Common MongoDB and Python Patterns

 "primary":False
 },
 {
 "email":"foouser3@example3.com",
 "primary":False
 }
]
}

dbh.users.insert(user_doc)
If we place an index on property "emails.email",
e.g. dbh.users.create_index("emails.email")
this find_one query can use a btree index
user = dbh.users.find_one({"emails.email":"foouser2@example2.com"})

Btree indexes in MongoDB are also important when performing server-side sorting of
results. Without an index on the property you are sorting by, MongoDB will run out
of memory when trying to sort anything greater than a relatively small results set (ap-
prox. 4Mb at time of writing). If you expect that you will be sorting result sets larger
than 4Mb, you should specify an index on the sort key. It is easy to underestimate this
and find exceptions are being raised on queries against larger, real-world data which
were not anticipated during development.

To create an index with the PyMongo driver, use the Collection.create_index()
method. This method can create single-key indexes or compound indexes. For a single-
key index, only the key needs to be provided. A compound index is slightly more com-
plicated—a list of 2-tuples (key, direction) must be supplied.

For example to create an index on the username property of a collection called users,
you could write the following:

Create index on username property
dbh.users.create_index("username")

To create a compound index, for example on the first_name and last_name, with an
ascending direction, you could specify:

Create a compound index on first_name and last_name properties
with ascending index direction
dbh.users.create_index([("first_name", pymongo.ASCENDING), ("last_name",
pymongo.ASCENDING)])

Indexes in MongoDB each have names. By default, MongoDB will generate a name,
but you may wish to give a custom name—particularly for compound indexes where
the generated names are not especially readable by humans. To give a custom name
during creation, supply the name=<str> parameter to the create_index() method:

Create a compound index called "name_idx" on first_name and last_name properties
with ascending index direction
dbh.users.create_index([
 ("first_name", pymongo.ASCENDING),
 ("last_name", pymongo.ASCENDING)
],
 name="name_idx")

Fast Lookups: Using Indexes with MongoDB | 31

It should be noted that index creation locks the database by default. For large collec-
tions, index creation can be time consuming. To help mitigate the impact of these
operations on live, production databases, MongoDB is capable of building indexes in
the background, without blocking database access. Building an index in the back-
ground may take slightly longer, and will still cause additional load on the system, but
the database should otherwise remain available.

To specify that an index should be built in the background, pass the background=True
parameter to the create_index() method:

Create index in the background
Database remains usable
dbh.users.create_index("username", background=True)

As mentioned earlier in this section, MongoDB btree indexes can be used to enforce a
uniqueness constraint on a particular property. Unique constraints can be applied to
both single-key indexes and compound indexes. To create an index with a unique
constraint, simply pass the unique=True parameter to the create_index() method:

Create index with unique constraint on username property
dbh.users.create_index("username", unique=True)

Be aware that unique indexes in MongoDB do not function exactly the same as indexes
in RDBMS systems. In particular, a document with a missing property will be added
to the index as if it the value of that property were null. This means that when a unique
constraint is added to a btree index in MongoDB, the database will prevent you from
having multiple documents in the collection which are missing the indexed property.
For example, if you have created a unique index for the username property in a users
collection, only one document in that collection may be permitted to lack a username
property. Writes of additional documents without a username property will raise an
exception. If you try to add a unique index to a collection which already contains
duplicates on the specified property, MongoDB will (unsurprisingly) raise an exception.
However, if you don’t mind throwing away duplicate data, you can instruct MongoDB
to drop all but the first document it finds using the dropDups or drop_dups parameter:

Create index with unique constraint on username property
instructing MongoDB to drop all duplicates after the first document it finds.
dbh.users.create_index("username", unique=True, drop_dups=True)
Could equally be written:
dbh.users.create_index("username", unique=True, dropDups=True)

Over time, your schema may evolve and you may find that a particular index is no
longer needed. Fortunately, indexes are easy to remove in MongoDB. The Collec
tion.drop_index() method deletes one index at a time. If you created your index with
a custom name (as described above), you must supply this same name to the
drop_index() method in order to delete it. For example:

Create index on username property called "username_idx"
dbh.users.create_index("username", name="username_idx")
Delete index called "username_idx"
dbh.users.drop_index("username_idx")

32 | Chapter 3: Common MongoDB and Python Patterns

If, on the other hand, you did not give your index a custom name, you can delete by
passing the original index specifier. For example:

Create a compound index on first_name and last_name properties
with ascending index direction
dbh.users.create_index([("first_name", pymongo.ASCENDING), ("last_name",
pymongo.ASCENDING)])
Delete this index
dbh.users.drop_index([("first_name", pymongo.ASCENDING), ("last_name",
pymongo.ASCENDING)])

All indexes in a collection can be dropped in a single statement using the Collec
tion.drop_indexes() method.

If you wish to programatically inspect the indexes on your collections from Python,
you can use the Collection.index_information() method. This returns a dictionary in
which each key is the name of an index. The value associated with each key is an
additional dictionary. These second-level dictionaries always contain a special key
called key, which is an entry containing the original index specifier—including index
direction. This original index specifier was the data passed to the create_index()
method when the index was first created. The second-level dictionaries may also con-
tain additional options such as unique constraints and so on.

Location-based Apps with MongoDB: GeoSpatial Indexing
As mentioned in the previous section on indexes, MongoDB has support for two kinds
of index: Btree and geospatial. Btree indexes have been covered quite thoroughly in the
preceeding section, however we have not yet described GeoSpatial indexes.

First of all, let us discuss why geospatial indexing might be useful at all. Many apps
today are being built with the requirement of location-awareness. Typically this trans-
lates into features where points of interest (POI) near a particular user location may be
rapidly retrieved from a database. For example, a location-aware mobile app might
wish to quickly fetch a list of nearby coffeeshops, based upon the current GPS co-
ordinates. The complicating issue, fundamentally, is that the world is both quite large
and quite full of interesting points—and so to try to answer such a query by iterating
through the entire list of all POIs in the world to find ones which are nearby would take
an unacceptably long time. Hence the need for some sort of GeoSpatial indexing, to
speed up these searches.

Fortunately for anybody tasked with building location-aware applications, MongoDB
is one of the rare few databases with out-of-the-box support for geospatial indexing.
MongoDB uses geohashing, a public domain algorithm developed by Gustavo Nie-
meyer, which translates geographic proximity into lexical proximity. Hence, a database
supporting range queries (such as MongoDB) can be efficiently used to query for points
near and within bounds.

Location-based Apps with MongoDB: GeoSpatial Indexing | 33

It should be noted that at present, MongoDB’s geospatial indexing support is limited
purely to point-based querying. The supplied operators can only be used for finding
individual points—not routes or sub-shapes.

MongoDB provides the $near and $within operators which constitute the primary
means for performing geospatial queries in the system. Using $near, you can efficiently
sort documents in a collection by their proximity to a given point. The $within operator
allows you to specify a bounds for the query. Supported boundary definitions include
$box for a rectangular shape, $circle for a circle. In MongoDB 1.9 and up, the $poly
gon operator allows for convex and concave polygon boundaries.

Before you can use the geospatial queries, you must have a geospatial index. In Mon-
goDB versions up to and including 1.8.x, geospatial indexes are limited to a single index
per collection. This means that each document can have only one location property
queried efficiently by MongoDB. This can have some important implications for
schema design which is why it is good to know from the outset.

Geospatial indexes by default limit acceptable values for the location
property on documents to those within GPS. That is, co-ordinates must
be in the range -180 .. +180. If you have co-ordinates outside of this
range, MongoDB will raise an exception when you attempt to create the
geospatial index on the colleciton. If you wish to index values outside
of the range of regular GPS, you can specify this at index creation time.

The location property on your documents must be either an array or sub-document
where the first two items are the x and y co-ordinates to be indexed. The order of the
co-ordinates (whether x,y or y,x) does not matter so long as it is consistent on all docu-
ments. For example, your document could look like any of the following:

location property is an array with x,y ordering
user_doc = {
 "username":"foouser",
 "user_location":[x,y]
}

location property is an array with y,x ordering
user_doc = {
 "username":"foouser",
 "user_location":[y,x]
}

import bson
location property is a sub-document with y,x ordering
loc = bson.SON()
loc["y"] = y
loc["x"] = x
user_doc = {
 "username":"foouser",
 "user_location":loc
}

34 | Chapter 3: Common MongoDB and Python Patterns

import bson
location property is a sub-document with x,y ordering
loc = bson.SON()
loc["x"] = x
loc["y"] = y
user_doc = {
 "username":"foouser",
 "user_location":loc
}

Note that in Python the default dictionary type (dict class), order is not
preserved. When using location in a sub-document from Python, use a
bson.SON object instead. bson.SON comes with the PyMongo driver, and
is used in exactly the same way as Python’s dict class.

Once the documents in your collection have their location properties correctly formed,
we can create the geospatial index. As with btree indexes, geospatial indexes in Mon-
goDB are created with PyMongo’s Collection.create_index() method. Due to the one-
geospatial-index-per-collection limitation in MongoDB versions up to and including
1.8.x, if you are planning to query by other properties in addition to the location prop-
erty, you can make your geospatial index a compound index. For exmaple, if you know
that you will be searching your collection by both “username” and “user_location”
properties, you could create a compound geo index across both fields. This can help
to work around the single geospatial index limitation in many cases.

Returning to our example of documents in a collection called “users” with the location
property being “user_location”, we would create a geospatial index with the following
statement:

Create geospatial index on "user_location" property.
dbh.users.create_index([("user_location", pymongo.GEO2D)])

To create a compound geospatial index which would let us query efficiently on location
and username, we could issue this statement:

Create geospatial index on "user_location" property.
dbh.users.create_index([("user_location", pymongo.GEO2D), ("username",
pymongo.ASCENDING)])

Now that we have geospatial indexes available, we can try out some efficient location-
based queries. The $near operator is pretty easy to understand, so we shall start there.
As has already been explained, $near will sort query results by proximity to specified
point. By default, $near will try to find the closest 100 results.

An important performance consideration which is not mentioned clearly in the official
MongoDB documentation is that when using $near, you will almost always want to
specify a maximum distance on the query. Without a clamp on the maximum distance,
in order to return the specified number of results (default 100) MongoDB has to search
through the entire database. This takes a lot of time. In most cases, a max distance of

Location-based Apps with MongoDB: GeoSpatial Indexing | 35

around 5 degrees should be sufficient. Since we are using decimal degrees (a.k.a GPS)
co-ordinates, the units of max distance is degrees. 1 degree is roughly 69 miles. If you
only care about a relatively small set of results (for example, the nearest 10 coffee shops),
limiting the query to 10 results should also aid performance.

Let’s start with an example of finding the nearest 10 users to the point 40, 40 limiting
to a max distance of 5 degrees:

Find the 10 users nearest to the point 40, 40 with max distance 5 degrees
nearest_users = dbh.users.find(
 {"user_location":
 {"$near" : [40, 40],
 "$maxDistance":5}}).limit(10)
Print the users
for user in nearest_users:
 # assume user_location property is array x,y
 print "User %s is at location %s,%s" %(user["username"], user["user_location"][0],
 user["user_location"[1])

Next let us try using the $within geospatial operator to find points within a certain
boundary. This can be useful when searching for POI’s in a specific county/city or even
well-defined neighbourhood within a city. In the real world, these boundaries are fuzzy
and changing constantly, however there are good enough databases available for them
to be useful.

To specify a rectangle to search within, you simply provide the lower-left and top-right
co-ordinates as elements in an array. For example:

box = [[50.73083, -83.99756], [50.741404, -83.988135]]

We could query for points within this bound by using the following geospatial query:

box = [[50.73083, -83.99756], [50.741404, -83.988135]]
users_in_boundary = dbh.users.find({"user_location":{"$within": {"$box":box}}})

To specify a citcle to search within, you just supply the center point and the radius. As
with $maxDistance mentioned previously, the units of the radius are degrees. Here is
how we could make a geospatial lookup for 10 users within a radius of 5 degress cen-
tered at the point 40, 40:

users_in_circle = dbh.users.find({"user_location":{"$within":{"$center":[40, 40,
5]}}}).limit(10)

Notice that with the circle boundary using $center, we pass an array, the first two values
of which are the co-ordinates of the center and the third parameter is the radius (in
degrees).

All the queries we’ve mentioned so far which make use of a geospatial index actually
are not entirely accurate. This is because they use a flat earth model where each arc
degree of latitude and longitude translates to the same distance everywhere on the earth.
In reality, the earth is a sphere and so these values differ depending upon where you
are. Fortunately, MongoDB in 1.8.x and up implements a spherical model of the earth
for geospatial queries.

36 | Chapter 3: Common MongoDB and Python Patterns

The new spherical model can be used by employing the $nearSphere and $circle
Sphere variants on the $near and $circle operators. MongoDB’s spherical model has a
few extra caveats. First and foremost, you must use (longitude, latitude) ordering of
your co-ordinates. While there are many other application and formats which use the
(latitude, longitude) ordering, you should be careful to re-order to use with MongoDB’s
spherical model. Secondly, unlike the $near and $center operators we just described,
the units for distances with $nearSphere and $centerSphere are always expressed in
radians. This includes when using $maxDistance with $nearSphere or $centerSphere.
Luckily, it is not difficult to convert from a more humanly-understandable unit such
as kilometers to radians. To translate from kilometers to radians, simply divide the
kilometer value by the radius of the earth which is approximately 6371 km (or 3959
miles). To demonstrate, let’s try our earlier example of finding the 10 users nearest to
the point 40,40 with a max distance of 5 km—but this time using the spherical model:

Find the 10 users nearest to the point 40, 40 with max distance 5 degrees
Uses the spherical model provided by MongoDB 1.8.x and up

earth_radius_km = 6371.0
max_distance_km = 5.0
max_distance_radians = max_distance_km / earth_radius_km
nearest_users = dbh.users.find(
 {"user_location":
 {"$nearSphere" : [40, 40],
 "$maxDistance":max_distance_radians}}).limit(10)
Print the users
for user in nearest_users:
 # assume user_location property is array x,y
 print "User %s is at location %s,%s" %(user["username"], user["user_location"][0],
 user["user_location"[1])

Code Defensively to Avoid KeyErrors and Other Bugs
One of the tradeoffs of a document-oriented database versus a relational database is
that the database does not enforce schema for you. For this reason, when working with
MongoDB you must be vigilant in your handling of database results. Do not blindly
assume that results will always have the properties you expect.

Check for their presence before accessing them. Although Python will generally raise
a KeyError and stop execution, depending on your application this still may result in
loss of data integrity. Consider the case of updating every document in a collection one-
by-one—a single unforeseen KeyError could leave the database in an inconsistent state,
with some documents having been updated and others not.

For example,

all_user_emails = []
for username in ("jill", "sam", "cathy"):
 user_doc = dbh.users.find_one({"username":username})
 # KeyError will be raised if any of these does not exist
 dbh.emails.insert({"email":user_doc["email"]})

Code Defensively to Avoid KeyErrors and Other Bugs | 37

Sometimes you will want to have a default fallback to avoid KeyErrors should a docu-
ment be returned which is missing a property required by your program. The Python
dict class’ get method easily lets you specify a default value for a property should it be
missing.

Often it makes sense to use this defensively. For example, imagine we have a collection
of user documents. Some users have a “score” property set to a number, while others
do not. It would be safe to have a default fallback of zero (0) in the case that no score
property is present. We can take a missing score to mean a zero score. The dict class’s
get method lets us do this easily:

total_score = 0
for username in ("jill", "sam", "cathy"):
 user_doc = dbh.users.find_one({"username":username})
 total_score += user_doc.get("score", 0)

This approach can also work well when looping over embedded lists. For example, to
defensively handle the case where a document representing a particular product does
not yet have a list of suppliers embedded (perhaps because it is not yet on the market,
or is no longer being produced) you might write code like this:

Email each supplier of this product.
Default value is the empty list so no special casing
is needed if the suppliers property is not present.
for supplier in product_doc.get("suppliers", []):
 email_supplier(supplier)

MongoDB also makes no guarantees about the type of a property’s value on a given
document.

In most RDBMS implementations (the notable exception I’m aware of being SQLite)
the database will quite rigorously enforce column types. If you try to insert a string into
an integer column, the database will reject the write.

MongoDB, on the other hand, will only in exceptional circumstances reject such writes.
If you set the value of a property on one document to be a string and on another docu-
ment in the same collection set the value of that property to a number, it will very
happily store that.

Perfectly legal insert - MongoDB will not complain
dbh.users.insert({"username":"janedoe"})
Also perfectly legal - MongoDB will not complain
dbh.users.insert({"username":l337})

When you couple this with Python’s willingness to let you forgo explicitly typing your
variables, you can soon run into trouble. Perhaps the most common scenario is when
writing inputs from Web applications to the database. Most WSGI-based Python
frameworks will send you all HTTP POST and GET parameter values as strings—
regardless of whether or not they are in fact strings.

Thus it is easy to insert or update a numeric property with a value that is a string. The
best way, of course, to avoid errors of this nature is to prevent the wrong type of data

38 | Chapter 3: Common MongoDB and Python Patterns

ever being written to the database in the first place. Thus, in the context of a Web
application, validating and/or coercing the types of any inputs to write queries before
issuing them is strongly advised. You may consider using the FormEncode or Colander
Python libraries to help with such validation.

Update-or-Insert: Upserts in MongoDB
A relatively common task in a database-powered application is to update an existing
entry, or if not found insert it as a new record. MongoDB conveniently supports this
as a single operation, freeing you from having to implement your own “if-exists-update-
else-insert” logic. 10gen refer to this type of write operation as an “upsert”.

In PyMongo, there are three possible methods one can use to perform an upsert. These
are Collection.save(), Collection.update() and Collection.find_and_modify(). We
shall start by describing Collection.save() as it is the most straight forward method.

In the earlier section “Inserting a Document into a Collection” we used the Collec
tion.insert() method to write a new document to the collection. However, we could
have just as easily used the save() method. save() offers almost identical functionality
to insert() with the following exceptions: save() can perform upserts and save() can-
not insert multiple documents in a single call.

save() is quite easy to understand. If you pass it a document without an _id property
it will perform an insert(), creating a brand new document. If, on the other hand, you
pass it a document which contains an _id property it will update the existing document
corresponding to that _id value, overwriting the already-present document with the
document passed to save().

This is the essence of an upsert: If a document already exists, update it. Otherwise
create a new document.

save() can be useful because it supports both writing new documents and modifying
existing documents, most likely ones retrieved from MongoDB via a read query. Having
a single method which is capable of both modes of operation reduces the need for
conditional handling in your client code, thus simplifying your program.

More useful, perhaps, is the “upsert=True” parameter which may be passed to Collec
tion.update(). As has been discussed in the section “Updating Documents in a Col-
lection” and is further described in the section “MongoDB Update Modifiers”, the
update() method supports the use of “update modifiers”. These rich operators enable
you to perform writes more complex than the basic “overwrite but keep existing _id”
semantics of the save() method.

For example, imagine you are writing a method, edit_or_add_session(). This method
either edits an existing document, or inserts a new one. Furthermore, semantics of the
method dictate that the method will always be called with a session_id, but that the
session_id may or may not already be present in the database. The naive implementa-

Update-or-Insert: Upserts in MongoDB | 39

tion would first query to see whether a session document already existed, then condi-
tionally either insert a new session document or update the existing document:

Naive, bad implementation without upsert=True
def edit_or_add_session(description, session_id):
 # We must query first, becase we don't know whether this session_id already exists.
 # If we attempt to update a non-existent document, no write will occur.
 session_doc = dbh.sessions.find_one({"session_id":session_id})
 if session_doc:
 dbh.sessions.update({"session_id":session_id},
 {"$set":{"session_description":description}}, safe=True)
 else:
 dbh.sessions.insert({"session_description":description,
"session_id":session_id},
 safe=True)

However, by employing the upsert feature of Collection.update(), this can be imple-
mented in a single method call—simplifying the code considerably and eliminating the
need for an extra read query:

Good implementation using upsert=True
def edit_or_add_session(description, session_id):
 dbh.sessions.update({"session_id":session_id},
 {"$set":{"session_description":description}}, safe=True, upsert=True)

Note that we could not have implemented the above semantics using Cursor.save()
because we are testing for existence on the property “session_id” rather than “_id”.
Recall that the save() upsert method only works with “_id”.

The trick to understanding upserts with the update() method is to consider the two
execution cases seperately. In the case that the document already exists, then the update
document will be processed normally—just as with a regular update() call without the
“upsert=True” parameter. However, in the case that the document does not already
exist, the document written (upserted) will match both the document spec supplied as
the first argument to the update() call and the update document with any modifiers it
contains. In other words, the observed behaviour is that the document is first created
with the properties specified in the document spec—in this case, "session_id":ses
sion_id—and then the update document is executed against that. That may not accu-
rately reflect what is happening internally in the daemon or driver, but that is equivalent
to whatever does go on.

Atomic Read-Write-Modify: MongoDB’s findAndModify
We’ve already introduced the atomic update modifiers supported by MongoDB. These
are very powerful and enable race-free write operations of many kinds—including array
manipulation and increment/decrement. However, it is often necessary to be able to
modify the document atomically, and also return the result of the atomic operation—
in a single step.

40 | Chapter 3: Common MongoDB and Python Patterns

For example, imagine a billing system. Each user document has an “account_balance”
property. There may be writes which alter the account balance—let’s say an account
top-up event which adds money to the account, and a purchase action which takes
money from the account. Consider the following implementation:

User X adds $20 to his/her account, so we atomically increment
account_balance
dbh.users.update({"username":username}, {"$inc":{"account_balance":20}}, safe=True)
Fetch the updated account balance to display to user
new_account_balance = dbh.users.find_one({"username":username},
 {"account_balance":1})["account_balance"]

This will work fine assuming no other writes to the account balance occur between the
write and read operations. There is an obvious race condition. If a purchase action were
to take place between the balance update and the balance read, the user may be dis-
pleased to be presented with a post-payment balance of less than what they expected!

User X adds $20 to his/her account, so we atomically increment
account_balance
dbh.users.update({"username":username}, {"$inc":{"account_balance":20}}, safe=True)

In the meantime, in another thread or process, there is a payment operation,
which decrements the account balance:
dbh.users.update({"username":username}, {"$dec":{"account_balance":5}}, safe=True)

Fetch the updated account balance to display to user
new_account_balance = dbh.users.find_one({"username":username},
 {"account_balance":1})["account_balance"]

What you want in this kind of situation is a way to update the account balance and
return the new value in a single, atomic operation. MongoDB’s findAndModify com-
mand allows you to do just this. PyMongo provides a wrapper around findAndModify
in the Collection.find_and_modify() method. Using this method, we can rewrite the
code to a single, atomic operation:

User X adds $20 to his/her account, so we atomically increment
account_balance and return the resulting document
ret = dbh.users.find_and_modify({"username":username},
 {"$inc":{"account_balance":20}}, safe=True, new=True)
new_account_balance = ret["account_balance"]

Fast Accounting Pattern
Many of the applications people are building today are realtime with very large data
sets. That is to say, users expect changes they make to be reflected within the application
instantly. For example if a user wins a new high score in a multiplayer game, they expect
the high score table in the game to be updated immediately. However, it may not be a
single high score table which must be updated. Perhaps you are also ranking by high
score this week, or this month, or even this year. Furthermore, as the application de-
veloper you may wish to keep a detailed log of each change—including when it occured,

Fast Accounting Pattern | 41

what the client IP address was, the software version of the client, etc.—per user for
analytics purposes.

This pattern isn’t limited to high scores. Similar high performance accounting require-
ments exist for in-app social activity feeds, billing systems which charge per byte, and
so on. Not only do these counts need to be fast to read from the database, they needs
to be quick to write. Additionally, with potentially millions of users, the data set can
grow very large, very quickly.

You might be tempted to keep only a detailed log, with one document per change.
Totals for the various time periods can then be calculated by an aggregate query across
the collection. This may work well initially, with only hundreds or thousands of docu-
ments to be aggregated to compute the result. However when the number of these
documents grows into the millions or even billions—which they may easily do in a
successful application—this approach will quickly become intractable.

Of course, as with many problems in Computer Science, the solution is ultimately a
form of caching. MongoDB and its document-oriented data model gives us a nice idiom
for this kind of period-based accounting, however. Given that we are counting on a
per-user basis, we can utilize embedded sub-documents containing property names
derived from time period. Consider for example a high score table supporting resolu-
tions of week, month and total (across all time).

For the weekly resolution score counts, we can name the properties after the current
week number. To disambiguate over multiple years, we can include the four-digit year
in the key:

Store weekly scores in sub-document
user_doc = {
 "scores_weekly":{
 "2011-01":10,
 "2011-02":3,
 "2011-06":20
 }
}

To fetch the score for this week, we simply execute the following simple dictionary
lookup:

Fetch the score for the current week
import datetime
now = datetime.datetime.utcnow()
current_year = now.year
current_week = now.isocalendar()[1]
Default missing keys to a score of zero
user_doc["scores_weekly"].get("%d-%d" %(current_year, current_week), 0)

Such a lookup is incredibly fast. There is no aggregation to perform whatsoever. With
this pattern, we can also write very quickly and safely. Because we are counting, we can
take advantage of MongoDB’s atomic increment and decrement update modifiers,
$inc and $dec. Atomic update operators are great because they ensure the underlying

42 | Chapter 3: Common MongoDB and Python Patterns

data is in a consistent state and help to avoid nasty race conditions. Especially when
dealing with billing, accurate counts are very important.

Imagine we wish to increment the user’s score for this week by 24. We can do so with
the following query:

Update the score for the current week
import datetime
username = "foouser"
now = datetime.datetime.utcnow()
current_year = now.year
current_week = now.isocalendar()[1]
Use atomic update modifier to increment by 24
dbh.users.update({"username":username},
 {"$inc":{"scores_weekly.%s-%s" %(current_year, current_week):24}},
 safe=True)

If the application needs to track multiple time-periods, these can be represented as
additional sub-documents:

Store daily, weekly, monthly and total scores in user document
user_doc = {
 "scores_weekly":{
 "2011-01":10,
 "2011-02":3,
 "2011-06":20
 },
 "scores_daily":{
 "2011-35":2,
 "2011-59":7,
 "2011-83":15
 },
 "scores_monthly":{
 "2011-09":30,
 "2011-10":43,
 "2011-11":24
 },
 "score_total":123
}

Of course, in your writes, you should increment the counts for each time period:

Update the score for the current week
import datetime
username = "foouser"
now = datetime.datetime.utcnow()
current_year = now.year
current_month = new.month
current_week = now.isocalendar()[1]
current_day = now.timetuple().tm_yday
Use atomic update modifier to increment by 24
dbh.users.update({"username":username},
 {"$inc":{
 "scores_weekly.%s-%s" %(current_year, current_week):24,
 "scores_daily.%s-%s" %(current_year, current_day):24,
 "scores_monthly.%s-%s" %(current_year, current_month):24,

Fast Accounting Pattern | 43

 "score_total":24,
 }
 },
 safe=True)

In cases where you want to report the count immediately after the update, that can be
achieved by using the findAndModify command (described in previous section) to re-
turn the new document after the update has been applied.

This pattern can help greatly with high speed counting. If more detailed logs are still
needed—such as when each action took place—feel free to maintain those in a separate
collection. This summary data is most useful for extremely fast reads and writes.

44 | Chapter 3: Common MongoDB and Python Patterns

CHAPTER 4

MongoDB with Web Frameworks

While MongoDB can be used in all sorts of applications, its most obvious role is as the
database backend for a web application. These days, a great many mobile and tablet
applications are functioning as “fat clients” to the same HTTP-based API’s as browser-
based web applications; hence mobile and tablet apps need the same sort of backend
database infrastructure as more traditional web apps.

Many organizations and engineers are finding the advantages of MongoDB’s docu-
ment-oriented architecture compelling enough to migrate parts or even entire applica-
tions from traditional RDBMS such as MySQL to MongoDB. Numerous well-known
companies have built their whole application from the ground up on MongoDB.

It is my opinion that for the vast majority of web, mobile and tablet applications, Mon-
goDB is a better starting point than RDBMS technology such as MySQL. This chapter
is an attempt to get you off the ground using MongoDB with three common Python
web frameworks: Pylons, Pyramid and Django.

Pylons 1.x and MongoDB
Pylons is one of the older WSGI-based Python web frameworks, dating back to Sep-
tember 2005. Pylons reached version 1.0 in 2010 and is considered very stable at this
point. In fact, not much development is planned for Pylons 1.x any more; all new
development is happening in Pyramid (see “Pyramid and MongoDB” on page 49 for
details). The Pylons philosophy is the precise opposite of “one-size-fits-all.” Applica-
tion developers are free to choose from the various database, templating, session store
options available. This kind of framework is excellent when you aren’t exactly sure
what pieces you will need when you are starting work on your application. If it turns
out you need to use an XML-based templating system, you are free to do so.

The existence of Pyramid aside, Pylons 1.x is a very capable and stable framework. As
Pylons is so modular, it is easy to add MongoDB support to it.

45

First you need to create a virtual environment for your project. These instructions as-
sume you have the virtualenv tool installed on your system. Install instructions for the
virtualenv tool are provided in the first chapter of this book.

To create the virtual environment and install Pylons along with its dependencies, run
the following commands:

virtualenv --no-site-packages myenv
cd myenv
source bin/activate
easy_install pylons

Now we have Pylons installed in a virtual environment. Create another directory named
whatever you like in which to create your Pylons 1.x project, change your working
directory to it, then execute:

paster create -t pylons

You will be prompted to enter a name for your project, along with which template
engine you want to use and whether or not you want the SQLAlchemy Object-Rela-
tional Mapper (ORM). The defaults (“mako” for templating engine, False to SQLAl-
chemy) are fine for our purposes—not least since we are demonstrating a NoSQL da-
tabase!

After I ran the paster create command, a “pylonsfoo” directory (I chose “pylonsfoo”
as my project name) was created with the following contents:

MANIFEST.in
README.txt
development.ini
docs
ez_setup.py
pylonsfoo
pylonsfoo.egg-info
setup.cfg
setup.py
test.ini

Next you need to add the PyMongo driver as a dependency for your project. Change
your working directory to the just-created directory named after your project. Open
the setup.py file present in it with your favourite editor. Change the
install_requires list to include the string pymongo. Your file should look something
like this:

try:
 from setuptools import setup, find_packages
except ImportError:
 from ez_setup import use_setuptools
 use_setuptools()
 from setuptools import setup, find_packages

setup(
 name='pylonsfoo',
 version='0.1',

46 | Chapter 4: MongoDB with Web Frameworks

 description='',
 author='',
 author_email='',
 url='',
 install_requires=[
 "Pylons>=1.0", "pymongo",
],
 setup_requires=["PasteScript>=1.6.3"],
 packages=find_packages(exclude=['ez_setup']),
 include_package_data=True,
 test_suite='nose.collector',
 package_data={'pylonsfoo': ['i18n/*/LC_MESSAGES/*.mo']},
 #message_extractors={'pylonsfoo': [
 # ('**.py', 'python', None),
 # ('templates/**.mako', 'mako', {'input_encoding': 'utf-8'}),
 # ('public/**', 'ignore', None)]},
 zip_safe=False,
 paster_plugins=['PasteScript', 'Pylons'],
 entry_points="""
 [paste.app_factory]
 main = pylonsfoo.config.middleware:make_app

 [paste.app_install]
 main = pylons.util:PylonsInstaller
 """,
)

Now you need to fetch the PyMongo driver into your virtual environment. It is easy to
do this by executing:

python setup.py develop

Your Pylons app is now ready to be configured with a MongoDB connection. First, we
shall create a config file for development

cp development.ini.sample development.ini

Next open the file development.ini in your favourite editor. Underneath the section
[app:main] add the following two variables, changing the URI and database names to
whatever works for your set up:

mongodb.url = mongodb://localhost
mongodb.db_name = mydb

You can now try starting your project with the following command:

paster serve --reload development.ini

You should see the following output:

Starting subprocess with file monitor
Starting server in PID 82946.
serving on http://127.0.0.1:5000

If you open the URL http://localhost:5000/ in a web browser, you should see the default
Pylons page. This means that you have correctly set up your project. However, we do
not yet have a way to talk to MongoDB.

Pylons 1.x and MongoDB | 47

http://localhost:5000/

Now that the configuration is in place, we can tell Pylons how to connect to MongoDB
and where to make the PyMongo connection available to our application. Pylons pro-
vides a convenient place for this in <project_name>/lib/app_globals.py. Edit this file
and change the contents to the following:

from beaker.cache import CacheManager
from beaker.util import parse_cache_config_options
from pymongo import Connection
from pylons import config

class Globals(object):
 """Globals acts as a container for objects available throughout the
 life of the application

 """

 def __init__(self, config):
 """One instance of Globals is created during application
 initialization and is available during requests via the
 'app_globals' variable

 """
 mongodb_conn = Connection(config['mongodb.url'])
 self.mongodb = mongodb_conn[config['mongodb.db_name']]
 self.cache = CacheManager(**parse_cache_config_options(config))

Once this has been set up, a PyMongo Database instance will be available to your Pylons
controller actions through the globals object. To demonstrate, we will create a new
controller named “mongodb” with the following command:

paster controller mongodb

You should see a file named mongodb.py in the <project_name>/controllers directory.
For demonstration purposes, we shall modify it to increment a counter document in
MongoDB every time the controller action is run.

Open this file with your editor. Modify it to look like the following (remembering to
change the from pylonsfoo import line into whatever you named your project):

import logging

from pylons import app_globals as g, request, response, session, tmpl_context as c, url
from pylons.controllers.util import abort, redirect

from pylonsfoo.lib.base import BaseController, render

log = logging.getLogger(__name__)

class MongodbController(BaseController):

 def index(self):
 new_doc = g.mongodb.counters.find_and_modify({"counter_name":"test_counter"},
 {"$inc":{"counter_value":1}}, new=True, upsert=True , safe=True)
 return "MongoDB Counter Value: %s" % new_doc["counter_value"]

48 | Chapter 4: MongoDB with Web Frameworks

Once you have saved these changes, in a web browser open the URL http://localhost:
5000/mongodb/index. Each time you load this page, you should see a document in the
counters collection be updated with its counter_value property incremented by 1.

Pyramid and MongoDB
Pyramid is an unopinionated web framework which resulted from the merge of the
repoz.bfg framework into the Pylons umbrella project (not to be confused with Pylons
1.x, the web framework). Pyramid can be considered to be a bit like a Pylons 2.0; it is
a clean break, a completely new codebase with no code-level backwards compatibility
with Pylons 1.x.

However, many of the concepts are very similar to the older Pylons 1.x. Pyramid is
where all the new development is happening, and it has fantastic code test coverage
and documentation. This section is only intended to be a brief introduction to setting
up a Pyramid project with a MongoDB connection. To learn more, refer to the excellent
Pyramid book and other resources available free online at http://docs.pylonsproject.org/.

On its own, Pyramid is just a framework, a set of libraries you can use. Projects are
most easily started from a what is known as a scaffold. A scaffold is like a project
skeleton which sets up plumbing and placeholders for your code.

A number of different scaffolds are included with Pyramid, offering different persistence
options, URL mappers and session implementations. Conveniently enough, there is a
scaffold called pyramid_mongodb which will build out a skeleton project with MongoDB
support for you. pyramid_mongodb eliminates the need for you to worry about writing
the glue code to make a MongoDB connection available for request processing in Pyr-
amid.

As with Pylons 1.x, to start using Pyramid you first need to create a virtual environment
for your project. These instructions assume you have the virtualenv tool installed on
your system. Install instructions for the virtualenv tool are provided in the first chapter
of this book.

To create the virtual environment and install Pyramid and its dependencies, run the
following commands:

virtualenv --no-site-packages myenv
cd myenv
source bin/activate
easy_install pyramid

Take note of the line sourcing the bin/activate script. It is important to remember to
do this once in every shell to make the virtual environment active. Without this step,
your default system Python install will be invoked, which does not have Pyramid in-
stalled.

Pyramid and MongoDB | 49

http://localhost:5000/mongodb/index
http://localhost:5000/mongodb/index
http://docs.pylonsproject.org/

Now your virtual environment has Pyramid and all its dependencies installed. How-
ever, you still need pyramid_mongodb and its dependencies like PyMongo etc. Run the
following command to install pyramid_mongodb in your virtual environment:

easy_install pyramid_mongodb

With Pyamid and pyramid_mongodb installed in your virtual environment, you are ready
to create a Pyramid project with MongoDB support. Decide upon a project directory
and a project name. From that project directory execute in the shell:

paster create -t pyramid_mongodb <project_name>

After I ran the paster create command, a “mongofoo” directory (I chose “mongofoo”
as my project name) was created with the following contents:

README.txt
development.ini
mongofoo
mongofoo.egg-info
production.ini
setup.cfg
setup.py

The default configuration files tell Pyramid to connect to a MongoDB server on local
host, and a database called “mydb”. If you need to change that, simply edit the mon
godb.url and mongodb.db_name settings in the INI-files. Note that if you do not have a
MongoDB server running at the address configured in the INI-file, your Pyramid project
will fail to start.

Before you can run or test your app, you need to execute:

python setup.py develop

This will ensure any additional dependencies are installed. To run your project in debug
mode, simply execute:

paster serve --reload development.ini

If all went well, you should see output like the following:

Starting subprocess with file monitor
Starting server in PID 54019.
serving on 0.0.0.0:6543 view at http://127.0.0.1:6543

You can now open http://localhost:6543/ in a web browser and see your Pyramid
project, with the default template. If you made it this far, Pyramid is correctly installed
and pyramid_mongodb was able to successfully connect to the configured MongoDB
server.

The pyramid_mongodb scaffold sets up your Pyramid project in such a way that there is
a PyMongo Database object attached to each request object. To demonstrate how to
use this, open the file <project_name>/views.py in your favourite editor. There should
be a skeletal Python function named my_view:

50 | Chapter 4: MongoDB with Web Frameworks

http://localhost:6543/

def my_view(request):
 return {'project':'mongofoo'}

This is a very simple Pyramid view callable. Pyramid view callables are similar to con-
troller actions in Pylons 1.x, and are where much of the application-defined request
processing occurs. Since view callables are passed an instance of a request object, which
in turn has a property containing the PyMongo Database object, this is an ideal place
to interact with MongoDB.

Imagine a somewhat contrived example whereby we wish to insert a document into a
collection called “page_hits” each time the my_view view callable is executed. We could
do the following:

import datetime
def my_view(request):
 new_page_hit = {"timestamp":datetime.datetime.utcnow(), "url":request.url}
 request.db.page_hits.insert(new_page_hit, safe=True)
 return {"project":"mongofoo"}

If you now reload the web page at http://localhost:6543 you should see a collection
called “page_hits” in the MongoDB database you configured in your INI-file. In this
collection there should be a single document for each time the view has been called.

From here, you should be well on your way to building web applications with Pyramid
and MongoDB.

Django and MongoDB
Django is proabably the most widely-used Python web framework. It has an excellent
community and many plugins and extension modules. The Django philosophy is the
opposite of Pylons or Pyramid; it offers one well-integrated package including its own
database and ORM layer, templating system, URL mapper, admin interface and so on.

There are a number of options for running Django with MongoDB. Since the Django
ORM is such an integral part of Django, there is a project known as Django MongoDB
Engine which attempts to provide a MongoDB backend for the Django ORM. However,
this approach heavily abstracts the underlying query language and data model, along
with many of the low-level details discussed in the course of the book. If you are already
familiar with the Django ORM, enjoy using it, and are willing to use a fork of Django,
Django MongoDB Engine is worth a look. You can find more information at the website
http://django-mongodb.org/.

Our recommended approach for now is to use the PyMongo driver directly with
Django. Be aware, however, that with this method, the Django components which
depend on the Django ORM (admin interface, session store etc) will not work with
MongoDB. There is another project called Mango which attempts to provide Mon-
goDB-backed session and authentication support for Django. You can find Mango at
https://github.com/vpulim/mango.

Django and MongoDB | 51

http://localhost:6543
http://django-mongodb.org/
https://github.com/vpulim/mango

10gen have made a sample Django app with PyMongo integration available. This sam-
ple app can be found at https://github.com/mdirolf/DjanMon. We shall step through
running the sample Django + MongoDB app on your local machine, and examine how
it sets up the MongoDB connection.

First, download the sample Django project. If you already have the git command line
tools installed, you can run git clone https://github.com/mdirolf/DjanMon.git. Oth-
erwise, simply click the “Download” button at https://github.com/mdirolf/DjanMon.

In order to successfully run the sample app, you will need to build a Python virtual
environment with Django, pymongo and PIL installed. As with Pylons and Pyramid,
you will first need to have the virtualenv tool installed on your system—details on how
to do this are covered in the first chapter of this book. Once you have virtualenv
installed, chose a directory in which to store virtual env, then execute the following
shell commands in it:

virtualenv --no-site-packages djangoenv
cd djangoenv
source bin/activate
pip install django pymongo PIL

This will create your virtual environment, activate it and then install Django, the Py-
Mongo driver and the PIL image manipulation library (required by the demo app) into
it. Assuming this all succeeded, you are ready to start the sample app development
server. Note that the sample app expects a MongoDB server to be running on localhost.

Now we can run 10gen’s Django demonstration app. Change your current working
directory to your copy of the “DjanMon” project. There should be a file called man
age.py in the current working directory. The app can be run with the Django develop-
ment server with the command:

python manage.py runserver

You should see output on the console like the following:

Validating models...

0 errors found
Django version 1.3, using settings 'DjanMon.settings'
Development server is running at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

Now you can open a web browser and visit http://localhost:8000/ and see the demon-
stration app! The app lets you create simple messages (optionally with attached images)
which are persisted in MongoDB.

Let us examine how the sample app works. Take a look at the file status/view.py. This
is where the MongoDB connection is created, and where most of the application logic
is stored. In their Django + MongoDB integration example, 10gen take a different ap-
proach from the others outlined in this chapter. They create a PyMongo Database in

52 | Chapter 4: MongoDB with Web Frameworks

https://github.com/mdirolf/DjanMon
https://github.com/mdirolf/DjanMon.git
https://github.com/mdirolf/DjanMon
http://localhost:8000/

the global scope of the views module, rather than attaching it to request objects as in
Pyramid or making it a framework-wide global as in Pylons 1.x:

import datetime
import string
import random
import mimetypes
import cStringIO as StringIO

from PIL import Image
from django.http import HttpResponse
from django.http import HttpResponseRedirect
from django.shortcuts import render_to_response
from pymongo.connection import Connection
from pymongo import DESCENDING
import gridfs

db = Connection().sms

This approach is simple and works fine for a demo. However, in larger Django projects
with multiple installed applications (in this sample, there is a single installed app—it
is named “status”) this would require a separate PyMongo connection pool to be main-
tained for each app. This results in wasted MongoDB connections and duplicated code.
Instead, it would be recommended to create the connection in a single place and import
it in any other modules which need access.

This should be enough information to get you started building your Django MongoDB
application.

Going Further
In this book we have tried to give you a solid grasp of how to leverage MongoDB in
real-world applications. You should have a decent understanding of how to go about
modeling your data, writing effective queries and avoiding concurrency problems such
as race conditions and deadlocks. There are a number of other advanced topics which
we didn’t have space for in this book but are nonetheless worth looking into as you
build your application. Notably, map-reduce enables computing aggregates efficiently.
Sharding permits you to scale your application beyond the available memory of a single
machine. GridFS allows you to store binary data in MongoDB. Capped Collections are
a special type of collection, which look like a circular buffer and are great for log data.
With these features at your disposal, Python and MongoDB are extremely powerful
tools to have in your toolbox when developing an application.

Going Further | 53

About the Author
Niall O’Higgins is a software consultant specializing in mobile, tablet, and cloud com-
puting. His accomplishments include designing and implementing the Catch.com plat-
form backend using MongoDB, Python, and Pylons. Catch is one of the most popular
apps on Android. Prior to Catch, he was a software engineer at Metaweb Technologies,
where he worked on Freebase.com (now owned by Google). He is the founder and
organizer of both the San Francisco Python Web Technology Meet-up, PyWebSF, and
the Bay Area Tablet Computing Group, We Have Tablets. He has published quite a
bit of Open Source software—contributing to OpenBSD among others—and fre-
quently speaks at conferences and events. You can find him on Twitter as @niallohig-
gins.

	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Getting Started
	Introduction
	Finding Reference Documentation
	Installing MongoDB
	Running MongoDB
	Setting up a Python Environment with MongoDB

	Chapter 2. Reading and Writing to MongoDB with
 Python
	Connecting to MongoDB with Python
	Getting a Database Handle
	Inserting a Document into a Collection
	Write to a Collection Safely and Synchronously
	Guaranteeing Writes to Multiple Database Nodes
	Introduction to MongoDB Query Language
	Reading, Counting, and Sorting Documents in a Collection
	Updating Documents in a Collection
	Deleting Documents from a Collection
	MongoDB Query Operators
	MongoDB Update Modifiers

	Chapter 3. Common MongoDB and Python
 Patterns
	A Uniquely Document-Oriented Pattern: Embedding
	Fast Lookups: Using Indexes with MongoDB
	Location-based Apps with MongoDB: GeoSpatial Indexing
	Code Defensively to Avoid KeyErrors and Other Bugs
	Update-or-Insert: Upserts in MongoDB
	Atomic Read-Write-Modify: MongoDB’s findAndModify
	Fast Accounting Pattern

	Chapter 4. MongoDB with Web Frameworks
	Pylons 1.x and MongoDB
	Pyramid and MongoDB
	Django and MongoDB
	Going Further

