Full Grammar specification 3.7.1

This is the full Python grammar, as it is read by the parser generator and used to parse Python source files:

single input: NEWLINE | simple stmt | compound stmt NEWLINE
file input: (NEWLINE | stmt)* ENDMARKER
eval input: testlist NEWLINE* ENDMARKER

decorator: dotted name [[arglist]] NEWLINE
decorators: decorator+
decorated: decorators (classdef | funcdef | async funcdef)
async_funcdef: funcdef
funcdef: NAME parameters [test] suite
parameters: [typedargslist]
typedargslist: (tfpdef [test] (tfpdef [test])* [[
[tfpdef] (tfpdef [test])* [[tfpdef [111
| tfpdef [111
| [tfpdef] (tfpdef [test])* [[tfpdef [111
| tfpdef | 1)
tfpdef: NAME [test]
varargslist: (vfpdef [test] (vipdef [test])* [[
[vipdef] (vipdef [test])* [[vipdef [1711
| vipdef [111
| [vipdef] (vipdef [test])* [[vipdef [111
| vipdef [','])
vipdef: NAME
stmt: simple stmt | compound stmt
simple stmt: small stmt (small stmt)* [] NEWLINE
small stmt: (expr stmt | del stmt | pass stmt | flow stmt |
import stmt | global stmt | nonlocal stmt | assert stmt)
expr stmt: testlist star expr (annassign | augassign (yield expr|testlist) |
((yield expr|testlist star expr))™*)
annassign: test [test]
testlist star expr: (test|star expr) ((test|star expr))* []
augassign: (| | \ | | | | |
| | \)
del stmt: exprlist
pass_stmt:
flow stmt: break stmt | continue stmt | return stmt | raise stmt | yield stmt

break stmt:
continue stmt:

return stmt: [testlist]
yield stmt: yield expr
raise stmt: [test [test]]
import stmt: import name | import from
import name: dotted as names
import from: (((|) * dotted name | (|) +)
(\ import as names | import as names))
import as name: NAME [NAME]
dotted as name: dotted name [NAME]
import as names: import as name (import as name)* []
dotted as names: dotted as name (dotted as name) *
dotted name: NAME (NAME) *
global stmt: NAME (NAME) *
nonlocal stmt: NAME (NAME) *
assert stmt: test | test]
compound stmt: if stmt | while stmt | for stmt | try stmt | with stmt | funcdef |
classdef | decorated | async stmt

async stmt: (funcdef | with stmt | for stmt)

if stmt: 'if' test ':' suite ('elif' test ':' suite)* ['else' ':' suite]
while stmt: 'while' test ':' suite ['else' ':' suite]
for stmt: 'for' exprlist 'in' testlist ':' suite ['else' ':' suite]
try stmt: ('try' ':' suite
((except clause ':' suite)+
'else' ':' suite]
'"finally' ':' suite] |
inally' ':' suite))
with stmt: 'with' with item (',' with item)* ':' suite
with item: test ['as' expr]
NB compile.c makes sure that the default except clause is last
except clause: 'except' [test ['as' NAME]]
suite: simple stmt | NEWLINE INDENT stmt+ DEDENT
test: or test ['if' or test 'else' test] | lambdef
test nocond: or test | lambdef nocond
lambdef: 'lambda' [varargslist] ':' test
lambdef nocond: 'lambda' [varargslist] ':' test nocond
or test: and test ('or' and test)?*
and test: not test ('and' not test)*
not test: 'not' not test | comparison
comparison: expr (comp op expr)*
<> isn't actually a valid comparison operator in Python. It's here for the
sake of a future import described in PEP 401 (which really works :-)

[
[

comp op: '<'['>'|'=='['>='|["'<='|['<>'"['"!='"|"in'|'not' 'in'|'is'|'is' 'not'
star expr: '*' expr
expr: xor expr ('|' xor expr)*
xor expr: and expr ('”' and expr)*
and expr: shift expr ('&' shift expr)*
shift expr: arith expr (('<<'|'>>") arith expr)?*
arith expr: term (('+'['-") term)*
term: factor (('*'['@"["'/'['S'|"'//") factor)*
factor: ('+'|'-"|'~") factor | power
power: atom expr ['**' factor]
atom expr: ['await'] atom trailer*
atom: (' (' [yield expr|testlist comp] ')' |
"['" [testlist comp] ']' |
'"{'" [dictorsetmaker] '}' |
NAME | NUMBER | STRING+ | '"...' | "None' | '"True' | 'False')
testlist comp: (test|star expr) (comp for | (',' (test|star expr))* [','])
trailer: ' (' [arglist] '")' | '"[' subscriptlist '|]' | '.' NAME
subscriptlist: subscript (',' subscript)* [', ']
subscript: test | [test] ':' [test] [sliceop]
sliceop: ':' [test]
exprlist: (expr|star expr) (',' (expr|star expr))* [',']
testlist: test (',' test)* [',']
dictorsetmaker: (((test ':' test | '**' expr)
(comp for | (',"' (test ':' test | "**' expr))* [',"'])) |
((test | star expr)
(comp_ for | (',' (test | star expr))* [','])))
classdef: 'class' NAME [' (' [arglist] ')'] ':' suite
arglist: argument (',' argument)* [, "1
The reason that keywords are test nodes instead of NAME is that using NAME
results in an ambiguity. ast.c makes sure it's a NAME.
"test '=' test" is really "keyword '=' test", but we have no such token.
These need to be in a single rule to avoid grammar that is ambiguous
to our LL(1) parser. Even though 'test' includes '*expr' in star expr,
we explicitly match '*' here, too, to give it proper precedence.
Illegal combinations and orderings are blocked in ast.c:
multiple (test comp for) arguments are blocked; keyword unpackings
that precede iterable unpackings are blocked; etc.
argument: (test [comp for] | test '=' test | '**' test | '*' test)
comp iter: comp for | comp if
sync_comp for: 'for' exprlist '"in' or test [comp iter]
comp for: ['async'] sync comp for
comp if: 'if' test nocond [comp iter]

not used in grammar, but may appear in "node" passed from Parser to Compiler
encoding decl: NAME

yield expr: 'yield' [yield arg]

yield arg: 'from' test | testlist

© Copyright 2001-2018, Python Software Foundation.
Last updated on Oct 25, 2018

https://docs.python.org/3/copyright.html

