

N O S T A R C H P R E S S
E A R LY A C C E S S P R O G R A M :

F E E D B A C K W E L C O M E !

The Early Access program lets you read significant portions of an upcoming
book while it’s still in the editing and production phases, so you may come
across errors or other issues you want to comment on. But while we sincerely
appreciate your feedback during a book’s EA phase, please use your best dis-
cretion when deciding what to report.

At the EA stage, we’re most interested in feedback related to content—
general comments to the writer, technical errors, versioning concerns, or
other high-level issues and observations. As these titles are still in draft
form, we already know there may be typos, grammatical mistakes, miss-
ing images or captions, layout issues, and instances of placeholder text. No
need to report these—they will all be corrected later, during the copyedit-
ing, proofreading, and typesetting processes.

If you encounter any errors (“errata”) you’d like to report, please fill
out this Google form so we can review your comments.

https://docs.google.com/forms/d/e/1FAIpQLSfjCqdOzGOdoe7m1Rgqfo-dqvz85Gqe8758jwUD9mpFYiSjGA/viewform?fbzx=-3092278227089906900

 W I N D O W S S E C U R I T Y I N T E R N A L S
 W I T H P O W E R S H E L L

J a m e s F o r s h a w
Early Access edition, 08/02/23

Copyright © 2024 by James Forshaw.

ISBN 13: 978-1-7185-0198-0 (print)
ISBN 13: 978-1-7185-0199-7 (ebook)

Publisher: William Pollock
Managing Editor: Jill Franklin
Production Manager: Sabrina Plomitallo-González
Developmental Editor: Frances Saux

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press,
Inc. Other product and company names mentioned herein may be the trademarks of their
respective owners. Rather than use a trademark symbol with every occurrence of a trade-
marked name, we are using the names only in an editorial fashion and to the benefit of the
trademark owner, with no intention of infringement of the trademark.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any informa-
tion storage or retrieval system, without the prior written permission of the copyright owner
and the publisher.

The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of this work, neither the author nor No Starch
Press, Inc. shall have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the information contained in it.

C O N T E N T S

Introduction

Chapter 1: Setting Up a PowerShell Testing Environment

PART I: An Overview of the Windows Operating System
Chapter 2: The Windows Kernel
Chapter 3: User-Mode Applications

PART II: The Windows Security Reference Monitor
Chapter 4: Security Access Tokens
Chapter 5: Security Descriptors
Chapter 6: Reading and Assigning Security Descriptors
Chapter 7: Access Checking
Chapter 8: Other Access Checking Use Cases
Chapter 9: Security Auditing

PART III: The Local Security Authority and Authentication
Chapter 10: Local Authentication
Chapter 11: Active Directory
Chapter 12: Interactive Authentication
Chapter 13: Network Authentication
Chapter 14: Kerberos Authentication
Chapter 15: Negotiate Authentication and Other Security Packages

Appendix A: Building a Windows Domain Network for Testing
Appendix B: SDDL SID Constants

The chapters in red are included in this Early Access PDF.

1
S E T T I N G U P A P O W E R S H E L L

T E S T I N G E N V I R O N M E N T

In this chapter, you’ll configure PowerShell so you can
work through the code examples presented in the rest of
the book. Then, we’ll walk through a very quick
overview of the PowerShell language, including its
types, variables, and expressions. We’ll also cover how
to execute its commands, how to get help, and how to
export data for later use.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Choosing a PowerShell Version

The most important tool you’ll need to use this book
effectively is PowerShell, which has been installed in the
Windows operating system by default since Windows 7.
However, there are many different versions of this tool. The
version installed by default on currently supported versions of
Windows is 5.1, which is suitable for our purposes, even though
Microsoft no longer fully supports it. The most recent version,
PowerShell 7, is now open source.

All of the code presented in this book will run in both
PowerShell 5.1 and the latest open source version, so it doesn’t
matter which you choose. If you want to use the open source
version of PowerShell, visit the project’s linked GitHub page at
https://github.com/PowerShell/PowerShell to find installation
instructions for your version of Windows.

Configuring PowerShell

The first thing we need to do in PowerShell is set the script
execution policy, which determines what types of scripts
PowerShell can execute. For Windows clients running
PowerShell 5.1, the default is Restricted, which blocks all
scripts from running unless they are signed with a trusted
certificate. As the scripts in this book are unsigned, we’ll change
the execution policy to RemoteSigned. This execution policy
allows us to run unsigned PowerShell scripts if they’re created
locally but will not allow us to execute unsigned scripts
downloaded in a web browser or attached to emails. Run the
following command to set the execution policy:

PS> Set-ExecutionPolicy -Scope CurrentUser -ExecutionPolicy RemoteSigned -
Force

The command changes the execution policy for the current
user only, not the entire system. If you want to change it for all
users, you’ll need to start PowerShell as an administrator, then re-
run the command, removing the Scope parameter.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

If you’re using the open source version of PowerShell or
version 5.1 on Windows Server, then the default script execution
policy is RemoteSigned and you do not need to change
anything.

Now that we can run unsigned scripts, we can install the
PowerShell module we’ll be using for this book. A PowerShell
module is a package of scripts and .NET binaries that export
PowerShell commands. Every installation of PowerShell comes
pre-installed with several modules for tasks ranging from
configuring your applications to setting up Windows Update. You
can install a module manually by copying files, but the easiest
approach is to use the PowerShell Gallery
(https://www.powershellgallery.com), an online repository of
modules.

To install a module from the PowerShell Gallery, we use
PowerShell’s Install-Module command. For this book, we
need to install the NtObjectManager module using the
following command:

PS> Install-Module NtObjectManager -Scope CurrentUser -Force

Make sure to say yes if the installer asks you any questions
(after you’ve read and understood the question, of course). If you
have the module installed already, you can check that you have
the latest version by using the Update-Module command:

PS> Update-Module NtObjectManager

Once it’s installed, you can load the module using the
Import-Module command:

PS> Import-Module NtObjectManager

If you see any errors after importing the module, double-
check that you’ve correctly set the execution policy; that’s the
most common reason for the module not loading correctly. As a
final test, let’s run a command that comes with the module to
ensure it’s working. Execute the command in Listing 1-1 and
verify that the output matches what you see in the PowerShell
console. We’ll describe the purpose of this command in a later
chapter.

PS> New-NtSecurityDescriptor

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Owner DACL ACE Count SACL ACE Count Integrity Level
----- -------------- -------------- ---------------
NONE NONE NONE NONE

Listing 1-1 Testing that the NtObjectManager module is working

If everything is working, you can move on to the rest of the
book. However, if you need a quick refresher on the PowerShell
language, keep reading.

An Overview of the PowerShell Language

This book can’t teach you how to use PowerShell from
scratch. However, this section touches on various language
features that will ensure that you can use this book most
effectively.

Understanding Types, Variables, and Expressions

PowerShell supports many different types, from basic integers
and strings to complex objects. Table 1-1 shows common built-in
types, along with the underlying .NET runtime type and some
simple examples.

Table 1-1 Common Basic PowerShell Types with .NET Types and Examples

Type .NET type Examples
int System.Int32 142, 0x8E, 0216
long System.Int64 142L, 0x8EL, 0216L
string System.String “Hello”, ‘World!’
double System.Double 1.0, 1e10
bool System.Boolean $true, $false
array System.Object[] @(1, “ABC”, $true)
hashtable System.Collections.Hashtable @{A=1; B=”ABC”}

To perform calculations on basic types, we can use well-
known operators such as +, -, *, and /. These operators can be
overloaded; for example, + is used for addition as well as for
concatenating strings and arrays. Table 1-2 shows a list of
common operators, with simple examples and their results. You
can test the examples yourself to check the output of the operator.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Table 1-2 Common Operators with Examples

Operator Name Examples Result
+ Addition/concatenation 1 + 2, “Hello” + “World!” 3, “HelloWorld!”
- Subtraction 2 – 1 1
* Multiplication 2 * 4 8
/ Division 8 / 4 2
% Modulus 6 % 4 2
[] Index @(3, 2, 1, 0)[1] 2
-f String formatter “0x{0:X} {1}” -f 42, 123 “0x2A 123”
-band Bitwise AND 0x1FF -band 0xFF 255
-bor Bitwise OR 0x100 -bor 0x20 288
-bxor Bitwise XOR 0xCC -bxor 0xDD 17
-bnot Bitwise NOT -bnot 0xEE -239
-and Boolean AND $true -and $false $false
-or Boolean OR $true -or $false $true
-not Boolean NOT -not $true $false
-eq Equals “Hello” -eq “Hello” $true
-ne Not equals “Hello” -ne “Hello” $false
-lt Less than 4 -lt 10 $true
-gt Greater than 4 -gt 10 $false

You can assign values to variables using the assignment
operator, =. A variable has an alphanumeric name prefixed with
the $ character. For example, you can capture an array and use
the indexing operator to lookup a value, as in Listing 1-2.

PS> $var = 3, 2, 1, 0
PS> $var[1]
2

Listing 1-2 Capturing an array in a variable and indexing it via the variable name

You can enumerate all variables using the Get-Variable
command. There are also some pre-defined variables we’ll use in
the rest of this book. These variables are:

$null
Represents the NULL value, which indicates the absence of a
value in comparisons

$pwd
Contains the current working directory

$pid
Contains the process ID of the shell

$env

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Accesses the process environment (for example, $env:WinDir
to get the Windows directory)

In Table 1-1, you might have noticed that there were two
string examples, one with a double quote and one with a single
quote. Is there any difference between the two? The double
quoted string can perform string interpolation, in which you
specify a variable name to insert into the string. Listing 1-3 shows
examples of string interpolation.

PS> $var = 42
PS> "The magic number is $var"
The magic number is 42
PS> 'It is not $var'
It is not $var

Listing 1-3 Examples of string interpolation

We define a variable with the value 42 to insert into a string
and then create a double quoted string with the variable name
inside of it. We can see that the result is the string with the
variable name replaced by its value formatted as string. If you
want more control over the formatting, you should use the format
operator defined in Table 1-2.

To demonstrate the different behavior of a single quoted
string, we define one with the variable name inline. We can
observe that the variable name is copied verbatim and is not
replaced by the value.

Another difference is that the double quoted string can
contain character escapes that are ignored in single quoted strings.
These escapes use a similar syntax to those of the C programming
language, but instead of a backslash character \, PowerShell uses
the backtick `. This is because Windows uses the backslash as a
path separator, and writing out filepaths would be very annoying
if you had to escape every backslash. Table 1-3 gives a list of
character escapes you can use in PowerShell.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Table 1-3 String Character Escapes

Character escape Name
`0 NUL character, with a value of zero
`a Bell
`b Backspace
`n Line feed
`r Carriage return
`t Horizontal tab
`v Vertical tab
`` Backtick character

You might notice that Table 1-3 has a NUL character. As
PowerShell uses the .NET string type, it can contain embedded
NUL characters. Unlike the C language, adding the NUL will not
terminate the string prematurely.

As all values are .NET types, you can invoke methods and
access properties on an object. For example, the following calls
the ToCharArray method on a string to convert it to an array of
single characters:

PS > "Hello".ToCharArray()
H
e
l
l
o

We can use PowerShell to construct almost any .NET type.
The simplest way to construct a type is to cast a value to that type
by specifying the .NET type in brackets. When casting,
PowerShell will try to find a suitable constructor for the type to
invoke. For example, the following command will convert a
string to a System.Guid object; PowerShell will find a
constructor that accepts a string and call it:

PS> [System.Guid]"6c0a3a17-4459-4339-a3b6-1cdb1b3e8973"

You can also call a constructor explicitly by calling the new
method on the type. The previous example can be rewritten as
follows:

PS> [System.Guid]::new("6c0a3a17-4459-4339-a3b6-1cdb1b3e8973")

This syntax can also be used to invoke static methods on the
type. For example, the following calls the NewGuid static
method to create a new random GUID:

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

PS> [System.Guid]::NewGuid()

You can also create new objects using the New-Object
command:

PS> New-Object -TypeName Guid -ArgumentList "6c0a3a17-4459-4339-a3b6-
1cdb1b3e8973"

This example is equivalent to the call to the static new
function:

Executing Commands

Almost all commands in PowerShell are named using a
common pattern: a verb and a noun separated by a dash. For
example, consider the command Get-Item: the Get verb
implies retrieving an existing resource, while Item is the type of
resource to return.

Each command can accept a list of parameters that controls
the behavior of the command. For example, the Get-Item
command accepts a Path parameter, which indicates the existing
resource to retrieve, as shown below:

PS> Get-Item -Path "C:\Windows"

The Path parameter is also a positional parameter. This
means that you can omit the name of the parameter, and
PowerShell will do its best to select the best match. For example,
the previous command can also be written as the following:

PS> Get-Item "C:\Windows"

If a parameter takes a string value, and the string does not
contain any special characters or whitespace, then you do not
need to use quotes around the string. For example, the Get-
Item command would also work with the following:

PS> Get-Item C:\Windows

The output of a single command is zero or more values, and
could be basic or complex object types. You can pass the output
of one command to another as input using a pipeline, which is
represented by a vertical bar character, |. We’ll see examples of
using a pipeline when we discuss filtering, grouping, and sorting.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

You can capture the result of an entire command or pipeline
into a variable, then interact with the results. For example, the
following captures the result of the Get-Item command and
queries for the FullName property:

PS> $var = Get-Item -Path “C:\Windows”
PS> $var.FullName
C:\Windows

If you don’t want to capture the result in a variable, you can
enclose the command in parentheses and directly access its
properties and methods, as shown below:

PS> (Get-Item -Path "C:\Windows").FullName
C:\Windows

The length of a command line is effectively infinite.
However, you’ll want to try to split up long lines to make the
command more readable. The shell will automatically split a link
on the pipe character. If you need to split a long line with no
pipes, you can use the backtick character, then start a new line.
The backtick must be the last character on the line; otherwise, an
error will occur when the script is parsed.

Discovering Commands and Getting Help

A default installation of PowerShell has hundreds of
commands to choose from. This means that finding a command to
perform a specific task can be difficult, and even if you find a
command, it might not be clear how to use it. To help, you can
use two built-in commands, Get-Command and Get-Help.

The Get-Command command can be used to enumerate all
the commands available to you. In its simplest form, you can
execute it without any parameters and it will print all commands
from all modules. However, it’s probably more useful to filter on
a specific word you’re interested in. For example, Listing 1-4 will
list only the commands with the word SecurityDescriptor
in their names.

PS> Get-Command -Name *SecurityDescriptor*
CommandType Name Version Source
----------- ---- ------ ------
Function Add-NtSecurityDescriptorControl 1.1.28
NtObjectManager

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Function Add-NtSecurityDescriptorDaclAce 1.1.28
NtObjectManager
Function Clear-NtSecurityDescriptorDacl 1.1.28
NtObjectManager
Function Clear-NtSecurityDescriptorSacl 1.1.28
NtObjectManager
--snip--

Listing 1-4 Using Get-Command to enumerate commands with the word SecurityDescriptor in
them

This command uses wildcard syntax to list only commands
whose names include the specified word. Wildcard syntax uses a
* character to represent any character or series of characters.
Here, we’ve put the * on either side of SecurityDescriptor
to indicate that any text can come before or after it.

You can also list the commands available in a module. For
example, Listing 1-5 will list only the commands that are both
exported by the NtObjectManager module and begin with the
verb Start.

PS> Get-Command -Module NtObjectManager -Name Start-*
CommandType Name Version Source
----------- ---- ------- ------
Function Start-AccessibleScheduledTask 1.1.28 NtObjectManager
Function Start-NtFileOplock 1.1.28 NtObjectManager
Function Start-Win32ChildProcess 1.1.28 NtObjectManager
Cmdlet Start-NtDebugWait 1.1.28 NtObjectManager
Cmdlet Start-NtWait 1.1.28 NtObjectManager

Listing 1-5 Using Get-Command to enumerate Start commands in the NtObjectManager
module

Once you’ve found a command that looks promising, you can
use the Get-Help command to inspect its parameters and get
some usage examples. Let’s take the Start-NtWait command
from Listing 1-5 and pass it to Get-Help in Listing 1-6.

PS> Get-Help Start-NtWait
NAME
 1 Start-NtWait
SYNOPSIS
 2 Wait on one or more NT objects to become signaled.
SYNTAX
 3 Start-NtWait [-Object] <NtObject[]> [-Alertable <SwitchParameter>]
 [-Hour <int>] [-MilliSecond <long>]
 [-Minute <int>] [-Second <int>] [-WaitAll <SwitchParameter>]

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

 [<CommonParameters>]

 Start-NtWait [-Object] <NtObject[]> [-Alertable <SwitchParameter>]
 [-Infinite <SwitchParameter>] [-WaitAll <SwitchParameter>]
 [<CommonParameters>]
 4 DESCRIPTION
 This cmdlet allows you to issue a wait on one or more NT
 objects until they become signaled.
--snip--

Listing 1-6 Displaying help for the Start-NtWait command

By default, Get-Help outputs the name of the command 1, a
short synopsis 2, the syntax of the command 3, and a more in-
depth description 4. In the command syntax section, you can see
its multiple possible modes of operation, in this case either
specifying a time broken up in hours, minutes, seconds, and
milliseconds or specifying Infinite to wait indefinitely.

When any part of the syntax is shown in square brackets, [],
that means it’s optional. For example, the only required parameter
is Object, which takes an array of NtObject values. Even the
name of this parameter is optional, as -Object is in brackets.
You can get some more detail about a parameter by using the
Parameter command. Listing 1-7 shows the details for the
Object parameter.

PS> Get-Help Start-NtWait -Parameter Object
-Object <NtObject[]>
 Specify a list of objects to wait on.

 Required? true
 Position? 0
 Default value
 Accept pipeline input? true (ByValue)
 Accept wildcard characters? False

Listing 1-7 Querying the Object parameter details

Specify a wildcard for the parameter name to select a group of
similar parameter names. For example, if you specify Obj*, then
you’ll get information about any parameters that start with the
Obj prefix. If you want usage examples, then use the Examples
parameter, as shown in Listing 1-8.

PS> Get-Help Start-NtWait -Examples
--snip--

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

 ---------- EXAMPLE 1 ----------
 1 $ev = Get-NtEvent \BaseNamedObjects\ABC
 Start-NtWait $ev -Second 10

 2 Get an event and wait for 10 seconds for it to be signaled.
--snip--

Listing 1-8 Showing examples for Start-NtWait

Each example should show a one- or two-line snippet of
PowerShell script 1 and a description of the example 2. You can
also see the full help output for the command by specifying the
Full parameter. To view this output in a GUI, use the
ShowWindow parameter. For example, try running this
command:

PS> Get-Help Start-NtWait -ShowWindow

You should see the dialog shown in Figure 1-1.

Figure 1-1 A dialog to view help information produced by using the ShowWindow parameter for Get-
Help

One final topic to mention about commands is that you can
setup aliases, alternative names for the commands. For example,

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

you can use an alias to make commands shorter to type.
PowerShell comes with many aliases pre-defined, and you can
display these using the Get-Alias command. You can also
define your own using the New-Alias command. For example,
we can set the Start-NtWait command to have the alias swt
by doing the following:

PS> New-Alias -Name swt -Value Start-NtWait

We’ll avoid using aliases unnecessarily through this book, as
it can make the scripts more confusing if you don’t know what
the alias represents.

Defining Functions

As with all programming languages, it pays to reduce
complexity in PowerShell. One way of reducing complexity is to
combine common code into a function. Once a function is
defined, the PowerShell script can call the function rather than
needing to repeat the same code in multiple places. The basic
function syntax in PowerShell is simple; Listing 1-9 shows an
example.

PS> function Get-NameValue {
>> param(
>> [string]$Name = "",
>> $Value
>>)
>> return "We've got $Name with value $Value"
>> }

PS> Get-NameValue -Name "Hello" -Value "World"
We've got Hello with value World

PS> Get-NameValue "Goodbye" 12345
We've got Goodbye with value 12345

Listing 1-9 Defining a simple PowerShell function called Get-NameValue

The syntax for defining a function starts with the keyword
function followed by the name of the function you want to
define. While it’s not required to use the standard PowerShell
naming convention, it pays to do so, as it makes it clear to the
user what your function does.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

The function then defines some named parameters. This
definition follows the normal variable syntax: using a name
prefixed with $, as you can see in Listing 1-9. You can specify a
type in brackets; in this case, $Name is a string type. However,
you don’t need to specify a type; here, the $Value parameter
can take any value from the caller. You also don’t need to specify
named parameters. If no param block is specified, then any
passed arguments are placed in the $args array. The first
parameter is located at $args[0], the second at $args[1],
and so on.

The body of this function takes the parameters and builds a
string using string interpolation. The function returns the string
using the return keyword, which also immediately finishes the
function. You can omit the return keyword in this case, as
PowerShell will return any values uncaptured in variables.

After defining the function, we invoke it. You can specify the
parameter names explicitly. However, if the call is unambiguous,
then specifying the parameter names is not required. In Listing 1-
9, we show both approaches.

If you want to run a small block of code without defining a
function, you can create a script block. A script block is one or
more statements enclosed in braces, {}. This block can be
assigned to a variable and executed when needed using the
Invoke-Command command or the & operator (Listing 1-10).

PS> $script = { Write-Output "Hello" }
PS> & $script
Hello

Listing 1-10 Creating a script block and executing it

Here, we create a script block, assign it to a variable, and
execute it.

Displaying and Manipulating Objects

If you execute a command and do not capture the results in a
variable, the results are passed to the PowerShell console. The
console will use a formatter to display the result, either in a table

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

or in list format. The format is chosen automatically depending
on the type of objects in the result. It’s also possible to specify
custom formatters. For example, if you use the built-in Get-
Process command, PowerShell uses a custom formatter to
display the entries as a table, as shown in Listing 1-11.

PS> Get-Process
Handles NPM(K) PM(K) WS(K) CPU(s) Id SI ProcessName
------- ------ ----- ----- ------ -- -- -----------
 476 27 25896 32044 2.97 3352 1 ApplicationFrameHost
 623 18 25096 18524 529.95 19424 0 audiodg
 170 8 6680 5296 0.08 5192 1 bash
 557 31 23888 332 0.59 10784 1 Calculator
--snip--

Listing 1-11 Outputting the process list as a table

If you want to reduce the number of columns in the output,
you can use the Select-Object command to select only the
properties you need. For example, Listing 1-12 selects the Id and
ProcessName properties.

PS> Get-Process | Select-Object Id, ProcessName
 Id ProcessName
 -- -----------
3352 ApplicationFrameHost
19424 audiodg
 5192 bash
10784 Calculator
--snip--

Listing 1-12 Selecting only Id and ProcessName properties

You can change the default behavior of the output by using
the Format-Table or Format-List commands, which will
force table or list formatting, respectively. For example, Listing
1-13 shows how to use the Format-List command to change
the output to a list.

PS> Get-Process | Format-List
Id : 3352
Handles : 476
CPU : 2.96875
SI : 1
Name : ApplicationFrameHost
--snip--

Listing 1-13 Using Format-List to show processes in a list view

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

To find the names of the available properties, you can use the
Get-Member command on one of the process objects. For
example, Listing 1-14 lists the properties for the process object.

PS> Get-Process | Get-Member -Type Property
 TypeName: System.Diagnostics.Process
Name MemberType Definition
---- ---------- ----------
BasePriority Property int BasePriority {get;}
Container Property System.ComponentModel.IContainer Container
{get;}
EnableRaisingEvents Property bool EnableRaisingEvents {get;set;}
ExitCode Property int ExitCode {get;}
ExitTime Property datetime ExitTime {get;}
--snip--

Listing 1-14 Listing all properties of the Process object

You might notice that there are other properties not included
in the output. To display them, you need to override the custom
formatting. The simplest way to do that is to use Select-
Object to select the properties or explicitly specify them on
Format-Table or Format-List. You can even use * to
show all properties, as in Listing 1-15.

PS> Get-Process | Format-List *
Name : ApplicationFrameHost
Id : 3352
PriorityClass : Normal
FileVersion : 10.0.18362.1 (WinBuild.160101.0800)
HandleCount : 476
WorkingSet : 32968704
PagedMemorySize : 26517504
--snip--

Listing 1-15 Showing all the properties of the Process object in a list

Many objects also have methods you can call to modify the
object or perform some action. Listing 1-16 shows how you can
use Get-Member to query for methods.

PS> Get-Process | Get-Member -Type Method
 TypeName: System.Diagnostics.Process

Name MemberType Definition
---- ---------- ----------
BeginErrorReadLine Method void BeginErrorReadLine()
BeginOutputReadLine Method void BeginOutputReadLine()
CancelErrorRead Method void CancelErrorRead()

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

CancelOutputRead Method void CancelOutputRead()
Close Method void Close()
--snip--

Listing 1-16 Displaying the methods on a Process object

If the output from a command is too long, you can page the
output so that it will wait for you to press a key to continue. You
add paging by piping the output to the Out-Host command,
specifying the Paging parameter, or by using the more
command. Listing 1-17 shows an example.

PS> Get-Process | Out-Host -Paging
Handles NPM(K) PM(K) WS(K) CPU(s) Id SI ProcessName
------- ------ ----- ----- ------ -- -- -----------
 476 27 25896 32044 2.97 3352 1 ApplicationFrameHost
 623 18 25096 18524 529.95 19424 0 audiodg
 170 8 6680 5296 0.08 5192 1 bash
 557 31 23888 332 0.59 10784 1 Calculator
<SPACE> next page; <CR> next line; Q quit

Listing 1-17 Paging output using Out-Host

You can directly write to the console window using the
Write-Host command in your own scripts. This is appealing,
as you can change the colors of the output to suit your tastes. This
also has the advantage of not inserting objects into the pipeline by
default. However, that also means that, by default, you can’t
redirect the output to a file or into a pipeline, as shown below:

PS> $output = Write-Host "Hello"
Hello

However, you can redirect the host output by redirecting its
stream to the standard output stream using the following
command:

PS> $output = Write-Host "Hello" 6>&1
PS> $output
Hello

PowerShell also supports a basic GUI to display tables of
objects. To access it, use the Out-GridView command. Note
that the custom formatting will still restrict what columns
PowerShell displays. If you want to view other columns, use
Select-Object in the pipeline to select out the properties.
The following example displays all properties in the Grid View:

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

PS> Get-Process | Select-Object * | Out-GridView

Running this command should show a dialog like Figure 1-2.

Figure 1-2 Showing process objects in a grid view

You can filter and manipulate the data in the Grid View GUI.
Try playing around with the controls. You can also specify the
PassThru parameter to Out-GridView. This parameter
causes the command to wait for you to click the OK button on the
GUI. Any rows in the view that were selected when you clicked
OK will be written to the command pipeline.

Filtering, Ordering, and Grouping Objects

A traditional shell passes raw text between commands;
PowerShell passes objects. Passing objects lets you access
individual properties of the objects and trivially filter the pipeline.
You can even order and group the objects easily.

You can filter objects using the Where-Object command,
which has the aliases Where and ?. The simplest filter is to
check for the value of a parameter, as shown in Listing 1-18,
where we filter the output from the built-in Get-Process
command to find the explorer process.

PS> Get-Process | Where-Object ProcessName -EQ "explorer"
Handles NPM(K) PM(K) WS(K) CPU(s) Id SI ProcessName
------- ------ ----- ----- ------ -- -- -----------
 2792 130 118152 158144 624.83 6584 1 explorer

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Listing 1-18 Filtering a list of processes using Where-Object

In Listing 1-18, we pass through only Process objects
where the ProcessName equals (-EQ) "explorer". There
are numerous operators you can use for filtering, some of which
are shown in the Table 1-4.

Table 1-4 Some Common Operators for Where-Object

Operator Example Description
-EQ ProcessName -EQ "explorer" Equal to the value
-ME ProcessName -NE "explorer" Not equal to the value
-Match ProcessName -Match "ex.*" Matches string against a regular

expression
-NotMatch ProcessName -NotMatch "ex.*" Inverse of the -Match operator
-Like ProcessName -Like "ex*" Matches string against a wildcard
-NotLike ProcessName -NotLike "ex*" Inverse of the -Like operator
-GT ProcessName -GT "ex" Greater than comparison
-LT ProcessName -LT "ex” Less than comparison

You can investigate all of the supported operators by using
Get-Help on the Where-Object command. If the condition
to filter on is more complex than a simple comparison, you can
use a script block. The script block should return True to keep
the object in the pipeline or False to filter it. For example,
Listing 1-18 could also be written as the following:

PS> Get-Process | Where-Object { $_.ProcessName -eq "explorer" }

The $_ variable passed to the script block represents the
current object in the pipeline. By using a script block, you can use
the entire language in your filtering, including calling functions.

To order objects, use the Sort-Object command. If the
objects can be ordered, as in the case of strings or numbers, then
you just need to pipe the objects into the command. Otherwise,
you’ll need to specify a property to sort on. For example, you can
sort the process list by its handle count, represented by the
Handles property, as shown in Listing 1-19.

PS> Get-Process | Sort-Object Handles
Handles NPM(K) PM(K) WS(K) CPU(s) Id SI ProcessName
------- ------ ----- ----- ------ -- -- -----------
 0 0 60 8 0 0 Idle
 32 9 4436 6396 1032 1 fontdrvhost
 53 3 1148 1080 496 0 smss
 59 5 804 1764 908 0 LsaIso

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

--snip--

Listing 1-19 Sorting processes by the number of handles

To sort in descending order instead of ascending order, use
the Descending parameter, as shown in Listing 1-20.

PS> Get-Process | Sort-Object Handles -Descending
Handles NPM(K) PM(K) WS(K) CPU(s) Id SI ProcessName
------- ------ ----- ----- ------ -- -- -----------
 5143 0 244 15916 4 0 System
 2837 130 116844 156356 634.72 6584 1 explorer
 1461 21 11484 16384 1116 0 svchost
 1397 52 55448 2180 12.80 12452 1 Microsoft.Photos

Listing 1-20 Sorting processes by the number of handles in descending order

It’s also possible to filter out duplicate entries at this stage by
specifying the Unique parameter to Sort-Object.

Finally, we can group objects based on a property name using
the Group-Object command. Listing 1-21 shows that this
command returns a list of objects, each with Count, Name and
Group properties.

PS> Get-Process | Group-Object ProcessName
Count Name Group
----- ---- -----
 1 ApplicationFrameHost {System.Diagnostics.Process
(ApplicationFrameHost)}
 1 Calculator {System.Diagnostics.Process (Calculator)}
 11 conhost {System.Diagnostics.Process (conhost)...}
--snip--

Listing 1-21 Grouping Process objects by ProcessName

Alternatively, you could use all of these commands together
in one pipeline, as shown in Listing 1-22.

PS> Get-Process | Group-Object ProcessName |
>> Where-Object Count -GT 10 | Sort-Object Count
Count Name Group
----- ---- -----
 11 conhost {System.Diagnostics.Process (conhost),...}
 83 svchost {System.Diagnostics.Process (svchost),...}

Listing 1-22 Combining Where-Object, Group-Object and Sort-Object

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

This listing combines the Where-Object, Group-
Object, and Sort-Object commands.

Exporting Data

Once you’ve got the perfect set of objects you want to inspect,
you might want to persist that information to a file on disk.
PowerShell provides numerous options for this, and I’ll discuss
only a few of them. The first option is to output the objects as text
to a file using Out-File. This command captures the formatted
text output and writes it to a file. You can use the Get-
Content to read the file back in again, as shown in Listing 1-23.

PS> Get-Process | Out-File processes.txt
PS> Get-Content processes.txt
Handles NPM(K) PM(K) WS(K) CPU(s) Id SI ProcessName
------- ------ ----- ----- ------ -- -- -----------
 476 27 25896 32044 2.97 3352 1 ApplicationFrameHost
 623 18 25096 18524 529.95 19424 0 audiodg
 170 8 6680 5296 0.08 5192 1 bash
 557 31 23888 332 0.59 10784 1 Calculator
--snip--

Listing 1-23 Writing content to a text file and reading it back in again

You can also use the greater-than operator to send the output
to a file, as in other shells. This is shown below:

PS> Get-Process > processes.txt

If you want a more structured format, you can use Export-
Csv to convert the object to a comma-separated value (CSV)
table format. You could then import this file into a spreadsheet
program to analyze offline. The example in Listing 1-24 selects
some properties of the Process object and exports them to the
CSV file processes.csv.

PS> Get-Process | Select-Object Id, ProcessName |
>> Export-Csv processes.csv -NoTypeInformation
PS> Get-Content processes.csv
"Id","ProcessName"
"3352","ApplicationFrameHost"
"19424","audiodg"
"5192","bash"
"10784","Calculator"
--snip--

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Listing 1-24 Exporting objects to a CSV

It’s possible to reimport the CSV using the Import-Csv
command. However, if you expect to export the data and then
reimport it later, you’ll probably prefer the CLI XML format.
This format includes the object structure and types of the original
object, which allows you to reconstruct it when you import the
data. Listing 1-25 shows how you can use the Export-CliXml
and Import-CliXml commands to export objects in this
format and then reimport them.

PS> Get-Process | Select-Object Id, ProcessName | Export-Clixml processes.xml
PS> Get-Content processes.xml
<Objs Version="1.1.0.1"
xmlns="http://schemas.microsoft.com/powershell/2004/04">
 <Obj RefId="0">
 <TNRef RefId="0" />
 <MS>
 <I32 N="Id">3352</I32>
 <S N="ProcessName">ApplicationFrameHost</S>
 </MS>
 </Obj>
--snip--
</Objs>
PS> $ps = Import-Clixml processes.xml
PS> $ps[0]
 Id ProcessName
 -- -----------
3352 ApplicationFrameHost

Listing 1-25 Exporting and importing CLI XML files

This concludes our discussion about using the PowerShell
language. If you’re a little rusty, I recommend picking up a good
book on the topic, such as PowerShell for Sysadmins by Adam
Bertram.

Wrapping Up

This chapter provided a short overview of setting up your
PowerShell environment so that you can run the code examples
included throughout this book. We discussed configuring
PowerShell to run scripts and installing necessary external
PowerShell modules.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

We then provided a bit of background on the PowerShell
language. This included the basics of PowerShell syntax, as well
as discovering commands using Get-Command, getting help
using Get-Help, and displaying, filtering, grouping, and
exporting PowerShell objects.

With the basics of PowerShell out of the way, we can start to
dive into the inner workings of the Windows operating system. In
the next chapter, we’ll discuss the Windows kernel and how you
can interact with it using PowerShell.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

2
T H E W I N D O W S K E R N E L

Windows is a secure, multi-user operating system.
However, it’s also one of the most challenging modern
operating systems to understand in detail. Before we
can delve into the intricacies of its security, we’ll
provide you with an overview of the operating system’s
structure. We’ll also take this opportunity to understand
how to use the PowerShell modules that will form the
core of this book.

We’ll consider the two parts of the running operating system:
the kernel and the user-mode applications. The kernel makes the
security decisions that determine what a user can do on the
system. However, most of the applications you use on a Windows

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

machine run in user mode. This chapter will focus on the kernel;
the next chapter will focus on user-mode applications.

In the following sections, we’ll define the various subsystems
that make up the Windows kernel. For each subsystem, we’ll
explain its purpose and how it’s used. We’ll begin with the object
manager, where we’ll also detail system calls, which allow a user-
mode application to access kernel objects. We’ll then discuss the
input/output (I/O) manager, how applications are created through
the process and thread manager, and how memory is represented
with the memory manager. Throughout, we’ll outline how you
can inspect the behavior of these subsystems using PowerShell.

The Windows Kernel Executive

The Windows NTOS kernel executive, or kernel for short, is
the heart of Windows. It provides all the operating system’s
privileged functionality, as well as interfaces through which the
user applications can communicate with the hardware. The kernel
is split into multiple subsystems, each with a dedicated purpose.
Figure 2-1 shows a diagram of the components in which we’ll be
most the interested in this book.

Figure 2-1 The Windows kernel executive modules

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Each subsystem in the kernel executive exposes APIs for
other subsystems to call. If you are looking at kernel code, you
can quickly determine what subsystem each API belongs to using
its two-character prefix. The prefixes for the subsystems in Figure
2-1 are shown in Table 2-1.

Table 2-1 API Prefixes to Subsystem

Prefix Subsystem Example
Nt or Zw System call interface NtOpenFile/ZwOpenFile
Se Security reference

monitor
SeAccessCheck

Ob Object manager ObReferenceObjectByHandle
Ps Process and thread

manager
PsGetCurrentProcess

Cm Configuration manager CmRegisterCallback
Mm Memory manager MmMapIoSpace
Io Input/output manager IoCreateFile
Ci Code integrity CiValidateFileObject

We’ll detail these subsystems in the sections that follow.

The Security Reference Monitor

For the purposes of this book, the Security Reference Monitor
(SRM) is the most important subsystem in the kernel. It
implements the security mechanisms that restrict which users can
access what resources. Without the SRM, you wouldn’t be able to
prevent other users from accessing your files. Figure 2-2 shows
the SRM and its related system components.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Figure 2-2 Components of the security reference monitor

The SRM defines the identity of a user by assigning an access
token to every process running on the system. Using an access
token, the SRM can then perform an operation called an access
check. This operation queries a resource’s security descriptor,
compares it to the current access token, and either calculates the
level of granted access or indicates that access is denied to the
caller. In essence, the SRM determines the level of access a
process has to a resource.

The SRM is also responsible for auditing events, which an
administrator can configure to generate whenever a user accesses
a resource. This auditing information can be used to identify
malicious behavior on a system as well as to diagnose security
misconfigurations.

The SRM expects users and groups to be represented as
binary structures called security identifiers (SIDs). However,
passing around raw binary SIDs isn’t very convenient for users,
who normally refer to users and groups by meaningful names (for
example, the user Bob or the Users group). This name needs to be
converted to a SID before the SRM can use it. The task of name–
SID conversion is handled by the Local Security Authority
Subsystem (LSASS), which runs inside a privileged process
independent from any logged in users.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

It’s infeasible to represent every possible SID as a name, so
Microsoft defines the Security Descriptor Definition Language
(SDDL) format to represent an SID as a string. SDDL can
represent the entire security descriptor of a resource; for now,
we’ll just use it to represent the SID. In Listing 2-1, we use
PowerShell to look up the Users group name using the Get-
NtSid command; this should retrieve the SDDL string for the
SID.

PS> Get-NtSid -Name "Users"
Name Sid
---- ---
BUILTIN\Users S-1-5-32-545

Listing 2-1 Querying for the Users group using Get-NtSid

We pass the name of the Users group to Get-NtSid, which
returns the fully qualified name, with the local domain BUILTIN
attached. The BUILTIN\Users SID is always the same between
different Windows system. The output also contains the SID in
SDDL format, which can be broken down as follows:

• The S character prefix. This indicates that what follows is an
SDDL SID.

• The version of the SID structure in decimal. This has the fixed
value 1.

• The security authority. In this example, it’s authority 5, which
indicates the built-in NT authority.

• Two relative identifiers (RID) 32 and 545, in decimal. These
represent the NT authority group.

We can also use Get-NtSid to perform the reverse
operation: converting an SDDL SID back to a name (Listing 2-2).

PS> Get-NtSid -Sddl "S-1-5-32-545"
Name Sid
---- ---
BUILTIN\Users S-1-5-32-545

Listing 2-2 Parsing an SDDL SID

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

I’ll describe the SRM and its functions in much greater depth
in Chapters 4 through 9, and we’ll revisit the SID structure in
Chapter 6, when we discuss security descriptors. For now,
remember that SIDs represent users and groups and that we can
represent them as strings in SDDL form. Let’s move on to
another of the core Windows kernel executive subsystems, the
object manager.

The Object Manager

On Unix-like operating systems, everything is a file. On
Windows, everything is an object, meaning that every file,
process, and thread is represented in kernel memory as an object
structure. Importantly for security, these objects can have an
assigned security descriptor, which restricts which users can
access the object and determines the type of access they have (for
example, read or write).

The object manager is the component of the kernel
responsible for managing these resource objects, their memory
allocations, and their lifetimes. In this section, we’ll first discuss
the types of objects the object manager supports. Then, we’ll
show how kernel objects can be opened through a naming
convention and called by the kernel using a system call. Finally,
we’ll detail how to use a handle to access the object once the
system call has finished.

Object Types

The kernel maintains a list of all the types of objects it
supports. This is necessary, as each object type has different
operations and security properties. Listing 2-3 shows how to use
the Get-NtType command to list all supported types in
PowerShell.

PS> Get-NtType
Name

Type
Directory
SymbolicLink

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Token
Job
Process
Thread
--snip--

Listing 2-3 Executing Get-NtType

I’ve truncated the list of types; the machine I’m using
supports 67 of them. However, we can already see some
interesting type names. The first entry in the generated list is
Type; even the list of kernel types is built from objects. Other
interesting types are Process and Thread, which, perhaps
unsurprisingly, represent the kernel object for a process and
thread, respectively. We’ll describe other object types in more
detail later in this chapter.

Each type entry returns additional useful information, and
we’ll come back to some of it soon. (If you want to start now, you
can display all properties of a type by passing it to the Format-
List command.) The next question is how to access each of
these types. To answer it, we’ll need to talk about the object
manager namespace.

The Object Manager Namespace

As a user of Windows, you typically see just your filesystem
drives in Explorer. But underneath the user interface is a whole
additional filesystem just for kernel objects. Access to this
filesystem, referred to as the object manager namespace (OMNS),
isn’t very well documented or exposed to most developers, which
makes it even more interesting.

The OMNS is built out of Directory object types. The
object directories act as if they were in a filesystem: each
directory contains other objects, which you can consider to be
files. However, they are separate from the file directories you’re
used to.

Each directory is configured with a security descriptor that
determines which users can list its contents and which users can

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

create new sub-directories and objects. You can specify the full
path to an object with a backslash-separated string. We can
enumerate the OMNS in using a drive provider that is part of this
book’s PowerShell module. As shown in Listing 2-4, this exposes
the OMNS as if it’s a filesystem by listing the NtObject drive.

PS> ls NtObject:\ | Sort-Object Name
Name TypeName
---- --------
ArcName Directory
BaseNamedObjects Directory
BindFltPort FilterConnectionPort
Callback Directory
CLDMSGPORT FilterConnectionPort
clfs Device
CsrSbSyncEvent Event
Device Directory
Dfs SymbolicLink
DosDevices SymbolicLink
--snip--

Listing 2-4 Listing the root OMNS directory

Listing 2-4 shows a short snippet of the root OMNS directory.
By default, this output includes the name of each object and its
type. We can see a few Directory objects; you can list them if
you have permission to do so. We can also see another important
type, SymbolicLink. You can use symbolic links to redirect
one OMNS path to another. A SymbolicLink object contains a
SymbolicLinkTarget property, which itself contains the
target that the link should open. For example, Listing 2-5 shows
the target for a symbolic link in the root of the OMNS:

PS> ls NtObject:\Dfs | Select-Object SymbolicLinkTarget
SymbolicLinkTarget

\Device\DfsClient

PS> Get-Item NtObject:\Device\DfsClient | Format-Table
Name TypeName
---- --------
DfsClient Device

Listing 2-5 Showing the target of a symbolic link

We list the \Dfs OMNS path, then extract the
SymbolicLinkTarget property to get the real target. Next,

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

we check the target path, \Device\DfsClient, to show it’s a
Device type, which is what the symbolic link can be used to
access. Windows pre-configures several important object
directories, shown in Table 2-2.

Table 2-2 Well-Known Object Directories and Descriptions

Path Description
\BaseNamedObjects Global directory for user objects
\Device Directory containing devices such as mounted filesystems
\GLOBAL?? Global directory for symbolic links, including drive mappings
\KnownDlls Directory containing special, known DLL mappings
\ObjectTypes Directory containing named object types
\Sessions Directory for separate console sessions
\Windows Directory for objects related to the Window Manager
\RPC Control Directory for Remote Procedure Call endpoints

The first directory in Table 2-2, BaseNamedObjects (BNO) is
important in the context of the object manager. It’s a directory
that allows any user to create named kernel objects. This single
directory allows the sharing of resources between different users
on the local system. Note that you don’t have to create objects in
the BNO directory; it’s only a convention.

We’ll describe the other object directories in more detail later
in this chapter. For now, you can list them in PowerShell by
prefixing the path with NtObject: as I’ve shown in Listing 2-
5.

System Calls

How can we access the named objects in the OMNS from a
user-mode application? Well, if we’re in a user-mode application,
then we need the kernel to access the object, and we can call
kernel-mode code in a user-mode application using the system
call interface. Most system calls perform some operation on a
specific type of kernel object exposed by the object manager. For
example, the NtCreateMutant system call creates a Mutant
object, a mutual exclusion primitive used for locking and thread
synchronization.

The name of a system call follows a common pattern. It starts
with either Nt or Zw. For user-mode callers, the two prefixes are

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

equivalent; however, if the system call is invoked by code
executing in the kernel, the Zw changes the security checking
process. We’ll come back to the implications of the Zw prefix in
Chapter 7, when we talk about access modes.

After the prefix comes the operation’s verb: Create, in the
case of NtCreateMutant. The rest of the name relates to the
kernel object type the system call operates on. Common system
call verbs that perform an operation on a kernel object include:

Create
Creates a new object. Maps to New-Nt<Type> PowerShell
commands.

Open
Opens an existing object. Maps to Get-Nt<Type>

PowerShell commands.

QueryInformation

Queries object information and properties.

SetInformation

Sets object information and properties.

Certain system calls perform type-specific operations. For
example, NtQueryDirectoryFile is used to query the
entries in a File object directory. Let’s look at the C-language
prototype for the NtCreateMutant system call to understand
what parameters need to be passed to a typical call. As shown in
Listing 2-6, the NtCreateMutant system call creates a new
Mutant object.

NTSTATUS NtCreateMutant(
 HANDLE* FileHandle,
 ACCESS_MASK DesiredAccess,
 OBJECT_ATTRIBUTES* ObjectAttributes,
 BOOLEAN InitialOwner
);

Listing 2-6 The C Prototype for NtCreateMutant

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

The first parameter for the system call is an outbound pointer
to a HANDLE. Common in many system calls, this parameter is
used to retrieve an opened handle to the object (in this case, a
Mutant) when the function succeeds. We use handles along with
other system calls to access properties and perform operations. In
the case of our Mutant object, the handle allows us to acquire
and release the lock to synchronize threads.

Next is DesiredAccess, which represents the operations
the caller wants to be able to perform on the Mutant using the
handle. For example, we could request access that allows us to
wait for the Mutant to be unlocked. If we didn’t request that
access, any application that tried to wait on the Mutant would
immediately fail. The access granted depends on the results of the
SRM’s access check. We’ll discuss handles and
DesiredAccess in more detail in the next section.

Third is the ObjectAttributes parameter, which defines
the attributes for the object to open or create. The
OBJECT_ATTRIBUTES structure is defined as shown in Listing
2-7.

struct OBJECT_ATTRIBUTES {
 ULONG Length;
 HANDLE RootDirectory;
 UNICODE_STRING* ObjectName;
 ULONG Attributes;
 PVOID SecurityDescriptor;
 PVOID SecurityQualityOfService;
}

Listing 2-7 The OBJECT_ATTRIBUTES structure

This C language structure starts with Length, which
represents the length of the structure. Specifying the structure
length at the start is a common C style idiom to ensure that the
correct structure has been passed to the system call.

Next come RootDirectory and ObjectName. These are
taken together, as they indicate how the system call should look
up the resource being accessed. The RootDirectory is a
handle to an opened kernel object to use as the base for looking
up the object. The ObjectName field is a pointer to a

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

UNICODE_STRING structure. This is a counted string, defined in
Listing 2-8 as a C language structure.

struct UNICODE_STRING {
 USHORT Length;
 USHORT MaximumLength;
 WCHAR* Buffer;
};

Listing 2-8 The UNICODE_STRING structure

The structure references the string data through Buffer,
which is a pointer to an array of 16-bit Unicode characters. The
string is represented in UCS-2 encoding; Windows predates many
of the changes to Unicode, such as UTF-16 or UTF-8.

The UNICODE_STRING structure also contains two length
fields, Length and MaximumLength. The first length field
represents the total valid length of the string in bytes (not in
Unicode characters) pointed to by Buffer. If you’re coming
from a C programming background, this length does not include
any NUL terminating character. In fact, a NUL character is
permitted in object names.

The second length field represents the maximum length of the
string data in bytes pointed to by Buffer. Because the structure
has two separate lengths, it’s possible to allocate an empty string
with a large maximum length and a zero valid length, then update
the string value using the Buffer pointer. Note that the lengths
are stored as USHORT values, which are unsigned 16-bit integers.
Coupled with the length-representing bytes, this means a string
can be at most 32,767 characters long.

To specify the name of an object, you could either, for
example, set ObjectName to an absolute path of
\BaseNamedObjects\ABC, or set RootDirectory to a
Directory object for \BaseNamedObjects and then pass ABC
as the ObjectName. These two actions would open the same
object.

Return to Listing 2-7. After the ObjectName comes
Attributes, which is a set of flags to modify the object name

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

lookup process or change the returned handle’s properties. Table
2-3 shows the valid values for the Attributes field.

Table 2-3 Object Attribute Flags and Descriptions

PowerShell name Description
Inherit Marks the handle as inheritable.
Permanent Marks the handle as permanent.
Exclusive Marks the handle as exclusive if creating a new object. Only the

same process can open a handle to the object.
CaseInsensitive Looks up the object name in a case insensitive manner.
OpenIf If using a create call, opens a handle to an existing object if

available.
OpenLink Opens the object if it’s a link to another object; otherwise, follows the

link. Used only by the configuration manager.
KernelHandle Opens the handle as a kernel handle when used in kernel mode. This

prevents user-mode applications from accessing the handle directly.
ForceAccessCheck When used in kernel mode, ensures all access checks are

performed, even if calling the Zw version of the system call.
IgnoreImpersonatedDeviceMa
p

Disables the device map when impersonating. We will discuss this
value in more detail in Chapter 5.

DontReparse Indicates not to follow any path that contains a symbolic link.

The final two fields in the OBJECT_ATTRIBUTES structure
allow the caller to specify the Security Quality of Service (SQoS)
and security descriptor for the object. We’ll come back to SQoS
in Chapter 4 and the security descriptor in Chapter 5.

Next in the NtCreateMutant system call in Listing 2-6,
the InitialOwner Boolean parameter is specific to the type.
In this case, it represents whether the created Mutant is owned
by the caller or not. Many other system calls, especially for files,
have more complex parameters, which we’ll discuss in more
detail later in the book.

NTSTATUS Codes

All system calls return a 32-bit NTSTATUS code. This status
code is composed of multiple components packed into the 32-bits,
as shown in Figure 2-3.

Figure 2-3 The NT status code structure

The most significant two bits (31 and 30) indicate the severity
of the status code. Table 2-4 shows the available values.

Table 2-4 NT Status Severity Codes

Severity name Value
STATUS_SEVERITY_SUCCESS 0
STATUS_SEVERITY_INFORMATIONAL 1
STATUS_SEVERITY_WARNING 2
STATUS_SEVERITY_ERROR 3

If the severity is a warning or an error, then bit 31 of the
status code will be set to 1. If the status code is treated as a signed
32-bit integer, this bit represents a negative value. It’s common
coding practice to assume that, if the status code is negative, then
the code represents an error, and if it is positive, it represents a
success. As we can see from the table, this assumption isn’t
completely true, as the negative status code could also be a
warning, but it works well enough in practice.

The next component in Figure 2-3, CC, is the customer code.
This is a single-bit flag that indicates whether the status code is
defined by Microsoft (a value of 0) or defined by a third party (a
value of 1). Third parties are not obliged to follow this
specification, so don’t treat it as fact.

Following the customer code is R, which for an NT status
code is a reserved bit that must be set to 0.

After R comes Facility, which indicates the component
or subsystem associated with the status code. Microsoft has pre-
defined around 50 facilities for its own purposes. Third parties
should define their own facility and combine it with the customer
code to distinguish themselves from Microsoft. Table 2-5 shows a
few commonly encountered facilities:

Table 2-5 Common Status Facility Values

Facility name Value Description
FACILITY_DEFAULT 0 The default used for common status codes
FACILITY_DEBUGGER 1 Used for codes associated with the debugger
FACILITY_NTWIN32 7 Used for codes that originated from the Win32 APIs

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

The final component, Status Code, is a 16-bit number
chosen to be unique for the facility. It’s up to the implementer to
define what each number means. The PowerShell module
contains a list of known status codes, which we can query using
the Get-NtStatus command with no parameters (Listing 2-9).

PS> Get-NtStatus
Status StatusName Message
------ ---------- -------
00000000 STATUS_SUCCESS STATUS_SUCCESS
00000001 STATUS_WAIT_1 STATUS_WAIT_1
00000080 STATUS_ABANDONED_WAIT_0 STATUS_ABANDONED_WAIT_0
000000C0 STATUS_USER_APC STATUS_USER_APC
000000FF STATUS_ALREADY_COMPLETE The requested action was completed
by...
00000100 STATUS_KERNEL_APC STATUS_KERNEL_APC
00000101 STATUS_ALERTED STATUS_ALERTED
00000102 STATUS_TIMEOUT STATUS_TIMEOUT
00000103 STATUS_PENDING The operation that was requested is
p...
--snip--

Listing 2-9 Example output from Get-NtStatus

Notice how, in Listing 2-9, some status values, such as
STATUS_PENDING, have a human readable message. This
message isn’t embedded in the PowerShell module; instead, it’s
stored inside a Windows library and can be extracted at runtime.

When we call a system call via a PowerShell command, its
status code is surfaced through a .NET exception. For example, if
we try an open a Directory object that doesn’t exist, we’ll see
the exception shown in Listing 2-10 displayed in the console.

PS> Get-NtDirectory \THISDOESNOTEXIST
1 Get-NtDirectory : (0xC0000034) - Object Name not found.

--snip--

PS> Get-NtStatus 0xC0000034 | Format-List
Status : 3221225524

2 StatusSigned : -1073741772
StatusName : STATUS_OBJECT_NAME_NOT_FOUND
Message : Object Name not found.
Win32Error : ERROR_FILE_NOT_FOUND
Win32ErrorCode : 2
Code : 52
CustomerCode : False
Reserved : False

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Facility : FACILITY_DEFAULT
Severity : STATUS_SEVERITY_ERROR

Listing 2-10 An NTSTATUS exception generated when trying to open a nonexistent directory

In Listing 2-10, we use Get-NtDirectory to open the
nonexistent path \THISDOESNOTEXIST. This generates the
NTSTATUS 0xC0000034 exception, shown here along with
the decoded message 1. If you want more information about the
status code, you can pass it to Get-NtStatus and format it as a
list to view all of its properties, including its Facility and
Severity. The NT status code is an unsigned integer value;
however, it’s common to also see it printed as a signed value
incorrectly 2.

Object Handles

The object manager deals with pointers to kernel memory. A
user-mode application cannot directly read or write to kernel
memory, so how can it access an object? The application can use
the handle returned by a system call, as discussed in the previous
section. Each running process has an associated handle table
containing three pieces of information:

• A handle’s numeric identifier.

• The granted access to the handle, for example read or write.

• The pointer to the object structure in kernel memory.

Before the kernel can use a handle, the system call
implementation must look up the kernel object pointer from the
handle table using a kernel API such as
ObReferenceObjectByHandle. By providing this handle
indirectly, a kernel component can return the handle number to
the user-mode application without exposing the kernel object
directly. Figure 2-4 shows the handle lookup process.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Figure 2-4 The handle table lookup process

In Figure 2-4, the user process is trying to perform some
operation on a Mutant object. When a user process wants to use
a handle, it must first pass the handle’s value to the system call
we defined in the previous section 1. The system call
implementation then calls a kernel API to convert the handle to a
kernel pointer by referencing the handle’s numeric value in the
process’s handle table 2.

To determine whether to grant the access, the conversion API
considers the type of access that the user has requested for the
system call’s operation, as well as the type of object being
accessed. If the requested access doesn’t match the granted access
recorded in the handle table entry, the API will return
STATUS_ACCESS_DENIED and the conversion operation will
fail. Likewise, if the object types don’t match 3, the API will
return STATUS_OBJECT_TYPE_MISMATCH.

These two checks are crucial for security. The access check
ensures that the user can’t perform an operation on a handle to
which they don’t have access (for example, writing to a file for
which they have only read access). The type check ensures the

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

user hasn’t passed an unrelated kernel object type, which might
result in a type confusion in the kernel, causing security issues
such as memory corruption. If the conversion succeeds, the
system call now has a kernel pointer to the object, which it can
use to perform the user’s requested operation.

Access Masks

The granted access value in the handle table is 32-bit bitfield
called an access mask. This is the same bitfield used for the
DesiredAccess parameter specified in the system call. We’ll
discuss how the DesiredAccess and the access check process
determines the granted access in more detail in Chapter 7. An
access mask is composed of four bitfields, as shown in Figure 2-
5.

Figure 2-5 The structure of access mask bitfields

The most important component of the access mask is the 16-
bit type specific access, a set of bits that grant operations defined
for particular kernel object types. For example, a File object
might have a separate bit to specify reading (ReadData) and
writing to the file (WriteData). Alternatively, a
synchronization Event might have only Signal event access.

The standard access component of the access mask grants
operations that can apply to any object type. These operations
include the following:

Delete
Removes the object, for example by deleting it from disk or from
the registry

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

ReadControl
Reads the security descriptor information for the object

WriteDac
Writes the security descriptor’s discretionary access control
(DAC) to the object

WriteOwner
Writes the owner information to the object

Synchronize
Waits on the object; for example, waits for a process to exit or a
mutant to be unlocked

We’ll cover the security-related access in more detail in
Chapter 4 and 5.

Next, the access mask contains reserved and special access
bits. Most of these bits are reserved, but they include two access
values:

AccessSystemSecurity
Reads or writes auditing information on the object

MaximumAllowed
Requests the maximum access to an object when performing an
access check

We’ll cover AccessSystemSecurity in Chapter 8 and
MaximumAllowed in Chapter 7.

The final component of the access mask is generic access.
These access bits allow an application to request access to a
kernel object using the system call’s DesiredAccess
parameter. There are four broad categories of access:
GenericRead, GenericWrite, GenericExecute, and
GenericAll.

When you request one of these generic access rights, the SRM
will first convert the access into the corresponding type-specific
access. This means you’ll never receive access to a handle with

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

GenericRead; instead, you’ll be granted access to the specific
access mask that represents read operations for the type. To
facilitate the conversion each type contains a generic mapping
table, which maps GenericRead, GenericWrite,
GenericExecute and GenericAll to type-specific access.
We can display the mapping table using Get-NtType, as shown
in Listing 2-11.

PS> Get-NtType | Select-Object Name, GenericMapping
Name GenericMapping
---- --------------
Type R:00020000 W:00020000 E:00020000 A:000F0001
Directory R:00020003 W:0002000C E:00020003 A:000F000F
SymbolicLink R:00020001 W:00020000 E:00020001 A:000F0001
Token R:0002001A W:000201E0 E:00020005 A:000F01FF
--snip--

Listing 2-11 Displaying the generic mapping table for object types

The type data doesn’t provide names for each specific access
mask. However, for all common types, the PowerShell module
provides an enumerated type that represents the type-specific
access. We can access this type through the Get-
NtTypeAccess command. Listing 2-12 shows an example for
the File type.

PS> Get-NtTypeAccess -Type File
Mask Value GenericAccess
---- ----- -------------
00000001 ReadData Read, All
00000002 WriteData Write, All
00000004 AppendData Write, All
00000008 ReadEa Read, All
00000010 WriteEa Write, All
00000020 Execute Execute, All
00000040 DeleteChild All
00000080 ReadAttributes Read, Execute, All
00000100 WriteAttributes Write, All
00010000 Delete All
00020000 ReadControl Read, Write, Execute, All
00040000 WriteDac All
00080000 WriteOwner All
00100000 Synchronize Read, Write, Execute, All

Listing 2-12 Displaying the access mask for the File object type

The output of the Get-NtTypeAccess command shows
the access mask value, the name of the access as known to the

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

PowerShell module, and the generic access from which it will be
mapped. Note how some access types are granted only to All;
this means that even if you requested generic read, write, and
execute access, you wouldn’t be granted access to those rights.

SOFTWARE DEVELOPMENT KIT NAMES

To improve usability, the PowerShell module has modified the original names of the access rights
found in the Windows software development kit (SDK). You can view the equivalent SDK names using
the SDKName property with the Get-NtTypeAccess command:

PS> Get-NtTypeAccess -Type File | Select SDKName, Value
SDKName Value
------- -----
FILE_READ_DATA ReadData
FILE_WRITE_DATA WriteData
FILE_APPEND_DATA AppendData
--snip--

These name mappings are useful for porting native code to PowerShell.

You can convert between a numeric access mask and specific
object types using the Get-NtAccessMask command, as
shown in Listing 2-13.

PS> Get-NtAccessMask -FileAccess ReadData, ReadAttributes, ReadControl
Access

00020081

PS> Get-NtAccessMask -FileAccess GenericRead
Access

80000000

PS> Get-NtAccessMask -FileAccess GenericRead -MapGenericRights
Access

00120089

PS> Get-NtAccessMask 0x120089 -AsTypeAccess File
ReadData, ReadEa, ReadAttributes, ReadControl, Synchronize

Listing 2-13 Converting access masks using Get-NtAccessMask

In Listing 2-13, we first request the access mask from a set of
File access names and receive the numeric access mask in
hexadecimal. Next, we get the access mask for the
GenericRead access; as you can see, the value returned is just

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

the numeric value of GenericRead. Next, we request the
access mask for GenericRead but specify that we want to map
the generic access to a specific access by using the
MapGenericRights parameter. As we’ve specified the access
for the File type, this command uses the File type’s generic
mapping to convert to the specific access mask. We can then
convert a raw access mask back to a type access using the
AsTypeAccess parameter and specify the kernel type to use.

You can query an object handle’s granted access mask
through the PowerShell object’s GrantedAccess property.
This returns the enumerated type format for the access mask. To
retrieve the numeric value, use the GrantedAccessMask
property, shown in Listing 2-14.

PS> $mut = New-NtMutant
PS> $mut.GrantedAccess
QueryState, Delete, ReadControl, WriteDac, WriteOwner, Synchronize

PS> $mut.GrantedAccessMask
Access

001F0001

Listing 2-14 Displaying the numeric value of the access mask using GrantedAccessMask

The kernel provides a facility to dump all handle table entries
on the system through the NtQuerySystemInformation
system call. We can access the handle table from PowerShell
using the Get-NtHandle command (Listing 2-15).

PS> Get-NtHandle -ProcessId $pid
ProcessId Handle ObjectType Object GrantedAccess
--------- ------ ---------- ------ -------------
22460 4 Process FFFF800224F02080 001FFFFF
22460 8 Thread FFFF800224F1A140 001FFFFF
22460 12 SymbolicLink FFFF9184AC639FC0 000F0001
22460 16 Mutant FFFF800224F26510 001F0001
--snip--

Listing 2-15 Displaying the handle table for the current process using Get-NtHandle

Each handle entry in Listing 2-15 contains the type of the
object, the address of the kernel object in kernel memory, and the
granted access mask.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Once an application has finished with a handle, it can be
closed using the NtClose API. If you’ve received a PowerShell
object from a Get and New call, then you can call the Close
method on the object to close the handle. You can also close an
object automatically in PowerShell by using the Use-
NtObject command to invoke a script block and that closes
once finishes.

If you do not close handles manually, they will be closed
automatically by the .NET garbage collector if the handle object
is not referenced (for example, held in a PowerShell variable).
You should get into the habit of manually closing handles, as the
garbage collector could run at any time, and you might have to
wait a long time for the resources to be released. Listing 2-16
provides an example of manually closing objects.

PS> Use-NtObject($m = New-NtMutant \BaseNamedObjects\ABC) {
 $m.FullPath
}
\BaseNamedObjects\ABC
PS> $m.IsClosed
True

PS> $m = New-NtMutant \BaseNamedObjects\ABC
PS> $m.IsClosed
False
PS> $m.Close()
PS> $m.IsClosed
True

Listing 2-16 Closing an object handle

If the kernel object structure is no longer referenced, either
through a handle or by a kernel component, then this object will
also be destroyed. Once an object is destroyed, all of its allocated
memory is cleaned up, and if it exists, its name in the OMNS is
removed. However, File and Key objects have permanent
names; to remove them, you must explicitly delete them.

PERMANENT OBJECTS

It is possible to get the kernel to mark an object as permanent, preventing the object from being
destroyed when all handles close and allowing its name to remain in the OMNS. To make an object
permanent, you need to either specify the Permanent attribute flag when creating the object or use the
system call NtMakePermanentObject, which is mapped to the MakePermanent call on any handle

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

object returned by the Get or New commands. You need a special privilege,
SeCreatePermanentPrivilege, to do this; we’ll discuss privileges in Chapter 4.

The reverse operation, NtMakeTemporaryObject (or the MakeTemporary method in
PowerShell), removes the permanent setting and allows an object to be destroyed. The destruction
won’t happen until all handles to the object have closed. This operation doesn’t require any special
privilege, but it does require Delete access on the object to succeed.

Handle Duplication

We can duplicate handles using the NtDuplicateObject
system call. The primary reason you might want to do this is to
allow a process to take an additional reference to a kernel object.
The kernel object won’t be destroyed until all handles to it are
closed, so creating a new handle maintains the kernel object.

Handle duplication can additionally be used to transfer
handles between processes if the source and destination process
handles have DupHandle access. You can also use handle
duplication to reduce the access rights on a handle. For example,
when you pass a file handle to a new process, you could grant
only read access right, preventing the new process from writing to
the object. However, you should rely on reducing the handle’s
granted access for security; if the process with the handle has
access to the resource, they can just reopen it to get write access.

Listing 2-17 shows some examples of using the Copy-
NtObject command, which wraps NtDuplicateObject, to
perform some duplication in the same process. We’ll come back
to process duplication and security checks in Chapter 6.

1 PS> $mut = New-NtMutant "\BaseNamedObjects\ABC"
PS> $mut.GrantedAccess
QueryState, Delete, ReadControl, WriteDac, WriteOwner, Synchronize

2 PS> Use-NtObject($dup = Copy-NtObject $mut) {
 $mut
 $dup
 Compare-NtObject $mut $dup
}
Handle Name NtTypeName Inherit ProtectFromClose
------ ---- ---------- ------- ----------------
1616 ABC Mutant False False
2212 ABC Mutant False False
True

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

3 PS> $mask = Get-NtAccessMask -MutantAccess QueryState
PS> Use-NtObject($dup = Copy-NtObject $mut -DesiredAccessMask $mask) {
 $dup.GrantedAccess
 Compare-NtObject $mut $dup
}

4 QueryState
True

Listing 2-17 Using Copy-NtObject to duplicate handles

We create a new Mutant object to test handle duplication.
We then extract the current granted access, which shows six
access rights 1. For the first duplication, we’ll keep the same
granted access 2. You can see in the first column of the output
that the handles are different. We call Compare-NtObject to
determine whether the two handles are the same underlying
kernel object, which returns True. Next, we get an access mask
for Mutant QueryState access 3 and duplicate the handle
requesting that access. We can see in the output the granted
access is now only QueryState 4. However, the Compare-
NtObject return still indicates the handles refer to the same
object.

Also relevant to handle duplication are the handle attributes
Inherit and ProtectFromClose. Setting Inherit allows
a new process to inherit the handle when it’s created. This allows
you to pass handles to a new process to perform tasks such as
redirecting console output text to a file. We’ll cover handle
inheritance later in this chapter.

On the other hand, ProtectFromClose does what is says:
it protects the handle from being closed. You can set the
ProtectFromClose attribute by setting the
ProtectFromClose property. Listing 2-18 shows an example
of ProtectFromClose.

PS> $mut = New-NtMutant
PS> $mut.ProtectFromClose = $true
PS> Close-NtObject -SafeHandle $mut.Handle -CurrentProcess
STATUS_HANDLE_NOT_CLOSABLE

Listing 2-18 Testing the ProtectFromClose handle attribute

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Any attempt to close the handle will fail with a
STATUS_HANDLE_NOT_CLOSEABLE status code, and the
handle will stay open.

Query and Set Information System Calls

A kernel object typically stores information about its state.
For example, a Process object stores the command line it was
created with. To allow us to retrieve or set this information, the
kernel could have implemented a specific “get process command
line” system call; however, due to the volume of stored
information, this approach would quickly become unworkable.

For that reason, the kernel implements generic Query and
Set information system calls whose parameters follow a
common pattern for all kernel object types. Listing 2-19 shows
the Query information system call’s pattern.

NTSTATUS NtQueryInformationProcess(
 HANDLE Handle,
 PROCESS_INFORMATION_CLASS InformationClass,
 PVOID Information,
 ULONG InformationLength,
 PULONG ReturnLength)

Listing 2-19 An example Query information system call for the Process type

Here, we’ve used the Process type as an example, but the
system call follows the same pattern for all types; just replace
Process with the name of the kernel type.

All Query information system calls take an object handle as
the first parameter. The second parameter,
InformationClass, describes the type of process
information to query. The information class is an enumerated
value; the SDK specifies the names of the information classes,
which we can extract and implement in PowerShell. Querying
certain kinds of information might require special privileges or
administrator access.

For every information class, we need to specify an opaque
buffer to receive the queried information, as well as the length of

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

buffer. The system call also returns a length value, which serves
two purposes: It indicates how much of the buffer was populated
if the system call was a success, and if the system call failed, it
indicates how big the buffer needs to be with
STATUS_INFO_LENGTH_MISMATCH or
STATUS_BUFFER_TOO_SMALL.

Unfortunately, you can’t rely on this automatic sizing
behavior. Some information classes and types will return data
only if the requested length exactly matches the size of the data to
return from the kernel. This makes it difficult to query data
without knowing its format in advance. Even the SDK rarely
documents the exact sizes required.

The Set information call is almost the same as that for
Query, except the buffer is now an input to the system call rather
than an output. Also, since we no longer need a return length
parameter, this parameter has been removed, as shown in Listing
2-20.

NTSTATUS NtSetInformationProcess(
 HANDLE Handle,
 PROCESS_INFORMATION_CLASS InformationClass,
 PVOID Information,
 ULONG InformationLength)

Listing 2-20 An example Set information system call for the Process type

In the PowerShell module, you can query a type’s information
class names using the Get-NtObjectInformationClass
command, shown in Listing 2-21. Bear in mind that some
information class names might be missing from the list, as
Microsoft doesn’t always document them.

PS> Get-NtObjectInformationClass Process
Key Value
--- -----
ProcessBasicInformation 0
ProcessQuotaLimits 1
ProcessIoCounters 2
ProcessVmCounters 3
ProcessTimes 4
--snip--

Listing 2-21 Listing the information classes for the Process type

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

To call the Query information system call, use Get-
NtObjectInformation, specifying an open object handle
and the information class. To call SetInformation, use
Set-NtObjectInformation. Listing 2-22 shows an
example of how to use Get-NtObjectInformation.

PS> $proc = Get-NtProcess
1 PS> Get-NtObjectInformation $proc ProcessTimes

Get-NtObjectInformation : (0xC0000023) - {Buffer Too Small}
The buffer is too small to contain the entry. No information has been written
to the buffer.
--snip--

2 PS> Get-NtObjectInformation $proc ProcessTimes -Length 32
43
231
39
138
--snip--

3 PS> Get-NtObjectInformation $proc ProcessTimes -AsObject
CreateTime ExitTime KernelTime UserTime
---------- -------- ---------- --------
132480295787554603 0 35937500 85312500

Listing 2-22 Querying a Process object for basic information

The Process type doesn’t set the return length for the
ProcessTimes information class, so you if you don’t specify
any length, the operation generates the
STATUS_BUFFER_TOO_SMALL error 1. However, through
inspection or brute force, you can discover that the length of the
data is 32 bytes. Specifying this value using the -Length
parameter allows the query to succeed 2 and return the data as an
array of bytes.

For many information classes, the Get-
NtObjectInformation command knows the size and
structure of the query data. If you specify the AsObject
parameter, you can get a preformatted object rather than an array
of bytes 3.

Also, the handle object for many information classes already
exposes properties and methods to set or query values. The value
will be decoded into a usage format; for example, in Listing 2-15,

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

the times are in an internal format. The CreationTime
property on the object will take this internal format and convert it
to a human-readable date and time.

You can easily inspect properties by accessing them on the
object or using the Format-List command. For example,
Listing 2-23 lists all the properties on a Process object, then
queries for the formatted CreationTime.

PS> $proc | Format-List
SessionId : 2
ProcessId : 5484
ParentProcessId : 8108
PebAddress : 46725963776
--snip--

PS> $proc.CreationTime
Saturday, October 24, 17:12:58

Listing 2-23 Querying a handle object for properties and inspecting the CreationTime

The QueryInformation and SetInformation classes
for a type typically have the same enumerated values. The kernel
can restrict the information class’s enumerated values to one type
of operation, returning the STATUS_INVALID_INFO_CLASS
status code if it’s not a valid value. For some types, such as
registry keys, the information class differs between querying and
setting, as you can see in Listing 2-24.

PS> Get-NtObjectInformationClass Key
Key Value
--- -----
KeyBasicInformation 0
--snip--

PS> Get-NtObjectInformationClass Key -Set
Key Value
--- -----
KeyWriteTimeInformation 0
--snip--

Listing 2-24 Inspecting the QueryInformation and SetInformation classes for the Key type

Calling Get-NtObjectInformationClass with just
the type name returns the QueryInformation class. If you
specify the type name and the Set parameter, you get the
SetInformation class. Notice the how the two entries shown

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

have different names and therefore represent different
information.

The Input/Output Manager

The input/output (I/O) manager provides access to I/O devices
through device drivers. The primary purpose of these drivers is to
implement a filesystem. For example, when you open a document
on your computer, the file is made available through a filesystem
driver. The I/O manager supports other kinds of drivers, for
devices such as keyboards and video cards, but these other drivers
are really just filesystem drivers in disguise.

We can manually load a new driver through the
NtLoadDriver system call or do so automatically using the
Plug and Play (PnP) manager. For every driver, the I/O manager
creates an entry in the \Driver directory. You can list the contents
of this directory only if you’re an administrator. Fortunately, as a
normal user, you don’t need to access anything in the \Driver
directory. Instead, you can interact with the driver through a
Device object, normally created in the \Device directory.

Drivers are responsible for creating new Device objects
using the IoCreateDevice API. A driver can have more than
one device object associated with it; it may also have zero device
objects if it doesn’t require user interaction. We can list the
contents of the \Device directory as a normal user through the
OMNS (Listing 2-25).

PS> ls NtObject:\Device
Name TypeName
---- --------
_HID00000034 Device
DBUtil_2_3 Device
000000c7 Device
000000b3 Device
UMDFCtrlDev-0f8ff736-55d7-11ea-b5d8-2... Device
0000006a Device
--snip--

Listing 2-25 Displaying the Device objects

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

In the output, we can see that the objects’ type names are all
Device. However, if you go looking for a system call with
Device in the name, you’ll come up empty. That’s because we
don’t interact with the I/O manager using dedicated system calls;
rather, we use File object system calls such as
NtCreateFile. We can access these system calls through
New-NtFile and Get-NtFile, which create and open files,
respectively, as shown in Listing 2-26.

PS> Use-NtObject($f = Get-NtFile "\SystemRoot\notepad.exe") {
 $f | Select-Object FullPath, NtTypeName
}
FullPath NtTypeName
-------- ----------

1 \Device\HarddiskVolume3\Windows\notepad.exe File

PS> Get-Item NtObject:\Device\HarddiskVolume3
Name TypeName
---- --------
HarddiskVolume3 Device

Listing 2-26 Opening a device object and displaying its volume path

In this example, we open notepad.exe from the \Windows
folder. The \SystemRoot symbolic link points to the Windows
directory on the system drive. As the \SystemRoot symbolic link
is part of the OMNS, the OMNS initially handles file access .
With an open handle, we can select the full path to the file and the
type name.

Looking at the result, we can see that the full path starts with
\Device\HarddiskVolume3, followed by Windows\notepad.exe 1.
If we try to display the device, we find it’s of type Device. Once
the object manager finds the Device object, it hands off
responsibility for the rest of the path to the I/O manager, which
calls an appropriate method inside the kernel driver.

We can list the drivers loaded into the kernel using the Get-
NtKernelModule command (Listing 2-27).

PS> Get-NtKernelModule
Name ImageBase ImageSize
---- --------- ---------
ntoskrnl.exe FFFFF8053BEAA000 11231232
hal.dll FFFFF8053BE07000 667648

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

kd.dll FFFFF8053B42E000 45056
msrpc.sys FFFFF8053B48E000 393216
ksecdd.sys FFFFF8053B45E000 172032
--snip--

Listing 2-27 Enumerating all loaded kernel drivers

Unlike other operating systems such as Linux, Windows does
not implement core network protocols like TCP/IP using built-in
system calls. Instead, Windows has an I/O manager driver, the
Ancillary Function Driver (AFD), which provides access to
networking services for an application. You don’t need to deal
with the driver directly; Win32 provides a BSD sockets-style
API, called WinSock, to handle access to it. In addition to the
standard internet protocol suite, such as TCP/IP, AFD also
implements other network socket types, such as Unix sockets and
bespoke Hyper-V sockets for communication with virtual
machines.

That’s all we’ll say for now about the I/O manager. We’ll
discuss kernel drivers and their security in more detail in Chapter
16. For now, let’s turn to another important subsystem.

The Process and Thread Manager

All user-mode code lives in the context of a process, each of
which has one or more threads that control the execution of the
code. Processes and threads are both securable resources. This
makes sense: if you could access a process, you could modify its
code and execute it in the context of a different user identity. So,
unlike most other kernel objects, you can’t open a process or
thread by name. Instead, you must open them via a unique,
numeric process ID (PID) or thread ID (TID).

Because processes and threads don’t have names and are
securable resource, it can be difficult to list the ones running on a
system. You could brute-force the ID space, but that would take a
while. Fortunately, the NtQuerySystemInformation
system call provides the SystemProcessInformation

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

information class, which lets us enumerate processes and threads
without having access to the process object.

We can access the list of processes and threads using the
built-in Get-NtProcess and Get-NtThread commands
and passing them the -InfoOnly parameter (Listing 2-28). You
can also use the built-in Get-Process command to produce a
similar output. Each of the returned objects has a Threads
property that you can query for the thread information.

PS> Get-NtProcess -InfoOnly
PID PPID Name SessionId
--- ---- ---- ---------
0 0 Idle 0
4 0 System 0
128 4 Secure System 0
192 4 Registry 0
812 4 smss.exe 0
920 892 csrss.exe 0
--snip--

PS> Get-NtThread -InfoOnly
TID PID ProcessName StartAddress
--- --- ----------- ------------
0 0 Idle FFFFF8004C9CAFD0
0 0 Idle FFFFF8004C9CAFD0
--snip--

Listing 2-28 Displaying processes and threads without high privilege

The first two processes listed in the output are special. The
first is the Idle process, with PID 0. This process contains
threads that execute when the operating system is idle, hence its
name. It’s not a process you’ll need to deal with regularly. The
System process, PID 4, is important, as it runs entirely in kernel
mode. When the kernel or a driver needs to execute a background
thread, the thread is associated with the System process.

To open processes and threads, we can pass Get-
NtProcess or Get-NtThread the PID or TID we want to
open. The command will return a Process or Thread object
we can then interact with. For example, Listing 2-29 shows how
to query the command line and executable path of the current
process.

PS> $proc = Get-NtProcess -ProcessId $pid

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

PS> $proc.CommandLine
"C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe"
PS> $proc.Win32ImagePath
C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe

Listing 2-29 Opening the current process by its process ID

When you open a Process or Thread object using its ID,
you’ll receive a handle. For convenience, the kernel also supports
two pseudo handles that refer to the current process and the
current thread. The current process pseudo handle is the value -1
converted to a handle, and for the current thread, it’s -2. You can
access these pseudo handles by passing the -Current parameter
instead of an ID to the Get-NtProcess and Get-
NtThread commands.

Note that the security of a process and its threads is
independent. If you know the ID of a thread, it’s possible to
access the thread handle inside a process even if you can’t access
the process itself.

The Memory Manager

Every process has its own virtual memory address space for a
developer to use as they see fit. A 32-bit process can access up to
2GB of virtual memory address space (4GB on 64-bit Windows),
while a 64-bit process can access up to 128TB. The kernel’s
memory manager subsystem which controls the allocation of this
address space.

You’re unlikely to have 128TB of physical memory in your
computer, but the memory manager has ways of making it look
like you have more physical memory than you do. For example, it
can use a dedicated file on your filesystem, called a pagefile, to
temporarily store memory when it’s not currently needed. As
your filesystem’s available storage space is much larger than
physical memory, this can provide the appearance of a large
amount of memory.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

The virtual memory space is shared by memory allocations,
and it stores each process’s running state as well as its executable
code. Each memory allocation can have a range of protection
states, such as ReadOnly or ReadWrite, which must be set
according to the memory’s purpose. For example, for code to be
executed, the memory must have an Execute protection.

You can query all memory status information for a process if
you have the QueryLimitedInformation access right on
the process handle and call NtQueryVirtualMemory.
However, reading or writing the memory data requires the
VmRead and VmWrite access rights, respectively, and a call to
NtReadVirtualMemory and NtWriteVirtualMemory.

It’s possible to allocate new memory and free memory in a
process using NtAllocateVirtualMemory and
NtFreeVirtualMemory, which both require the
VmOperation access right. Finally, you can change the
executable protection on memory using
NtProtectVirtualMemory, which also requires
VmOperation access.

The NtVirtualMemory Commands

PowerShell wraps these system calls using the Get-, Add-,
Read-, Write-, Remove-, and Set-NtVirtualMemory
commands. Note that these commands all accept an optional
Process parameter that lets you access memory in a different
process from the current one. Listing 2-30 shows the commands
in action.

PS> Get-NtVirtualMemory
Address Size Protect Type State Name
------- ---- ------- ---- ----- ----
000000007FFE0000 4096 ReadOnly Private Commit
000000007FFEF000 4096 ReadOnly Private Commit
000000E706390000 241664 None Private Reserve
000000E7063CB000 12288 ReadWrite, Guard Private Commit
000000E7063CE000 8192 ReadWrite Private Commit
--snip--

PS> $addr = Add-NtVirtualMemory -Size 1000 -Protection ReadWrite
PS> Get-NtVirtualMemory -Address $addr

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Address Size Protect Type State Name
------- ---- ------- ---- ----- ----
000002624A440000 4096 ReadWrite Private Commit

PS> Read-NtVirtualMemory -Address $addr -Size 4 | Out-HexDump
00 00 00 00
PS> Write-NtVirtualMemory -Address $addr -Data @(1,2,3,4)
4
PS> Read-NtVirtualMemory -Address $addr -Size 4 | Out-HexDump
01 02 03 04

PS> Set-NtVirtualMemory -Address $addr -Protection ExecuteRead -Size 4
ReadWrite
PS> Get-NtVirtualMemory -Address $addr
Address Size Protect Type State Name
------- ---- ------- ---- ----- ----
000002624A440000 4096 ExecuteRead Private Commit

PS> Remove-NtVirtualMemory -Address $addr
PS> Get-NtVirtualMemory -Address $addr
Address Size Protect Type State Name
------- ---- ------- ---- ----- ----
000002624A440000 196608 NoAccess None Free

Listing 2-30 Performing various memory operations on a process

Here, we perform several operations. First, we use Get-
NtVirtualMemory to list all the memory regions being used
by the current process 1. The returned list will be large, but the
excerpt shown here should give you a rough idea of how the
information is presented. It includes the address of the memory
region, its size, its protection, and its state. There are three
possible state values:

Commit
Indicates that the virtual memory region is allocated and available
for use

Reserve
Indicates that the virtual memory region has been allocated but
there is currently no backing memory. Using a reserved memory
region will cause a crash.

Free
Indicates that the virtual memory is unused. Using a free memory
region will cause a crash.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

What’s the difference between Reserve and Free, if using
either memory region would cause a crash? The Reserve state
allows you to reserve virtual memory regions for later use so that
nothing else can allocate memory within that range of memory
addresses. You can later convert the Reserve state to Commit
by re-calling NtAllocateVirtualMemory. Free memory
is just that; regions freely available for allocation. We’ll cover
what the Type and Name columns indicate later in this section.

Next, we allocate a 1,000-byte read/write region and capture
the address in a variable. Passing the address to Get-
NtVirtualMemory allows us to query only that specific
virtual memory region. You might notice that although we
requested a 1,000-byte region, but the size of the region returned
is 4,096 bytes. This is because all virtual memory allocations on
Windows have a minimum allocation size; on the system I’m
using, the minimum is 4,096 bytes. It’s therefore not possible to
allocate a smaller region. For this reason, these system calls are
not particularly useful for general program allocations; rather,
they’re primitives on which “heap” memory managers are built,
such as malloc from the C library.

Next, we read and write to the memory region we just
allocated. First, we us Read-NtVirtualMemory to read out
four bytes of the memory region and find that the bytes are all
zeros. Next, we write the bytes 1, 2, 3, and 4 to the memory
region using Write-NtVirtualMemory. We read the bytes
to confirm that the write operation succeeded; the two values
should match, as shown in the output.

With the memory allocated, we can change the protection
using Set-NtVirtualMemory. In this case, we make the
allocated memory executable by specifying the protection as
ExecuteRead. If we query the current state of the memory
region using the Get-NtVirtualMemory command, we find
that the protection has changed from ReadWrite to
ExecuteRead. Also notice that although we requested to
change the protection of only four bytes, the entire 4,096-byte
region is now executable. This is again due to the minimum
memory allocation size.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Finally, we free the memory using Remove-
NtVirtualMemory and verify that the memory is now in the
Free state. Memory allocated using
NtAllocateVirtualMemory is considered private, as
indicated by the value of the Type property shown in Listing 2-
30.

Section Objects

Another way of allocating virtual memory is through
Section objects. A Section object is a kernel type that
implements memory-mapped files. We can use Section objects
for two related purposes:

• Reading or writing a file as if it were all read into memory.

• Sharing memory between processes so that the modification
of one process is reflected in the other.

We can create a Section object via the
NtCreateSection system call or the New-NtSection
PowerShell command. We must specify the size of the mapping,
the protection for the memory, and an optional file handle; in
return, we get a handle to the section.

However, creating the section doesn’t automatically allow us
to access the memory; we first need to map it into the virtual
memory address space using NtMapViewOfSection or Add-
NtSection. Listing 2-21 provides an example in which we
create an anonymous section and map it into memory.

PS> $s = New-NtSection -Size 4096 -Protection ReadWrite
PS> $m = Add-NtSection -Section $s -Protection ReadWrite
PS> Get-NtVirtualMemory $m.BaseAddress 3

Address Size Protect Type State Name
------- ---- ------- ---- ----- ----
000001C3DD0E0000 4096 ReadWrite Mapped Commit

PS> Remove-NtSection -Mapping $m 4
PS> Get-NtVirtualMemory -Address 0x1C3DD0E0000
Address Size Protect Type State Name
------- ---- ------- ---- ----- ----
000001C3DD0E0000 4096 NoAccess None Free

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

PS> Add-NtSection -Section $s -Protection ExecuteRead 5

Exception calling "Map" with "9" argument(s):
 "(0xC000004E) - A view to a section specifies a protection which is
 incompatible with the initial view's protection."

Listing 2-31 Creating a section and mapping it into memory

We first need to create the Section object with a size of
4,096 bytes and protection of ReadWrite. We didn’t specify a
-File parameter, which means it’s anonymous and not backed
by any file. If we gave the Section object an OMNS path, other
processes could be open it, and the handle could be duplicated to
another process.

We then map the Section into memory using Add-
NtSection, specifying the protection we want for the memory.
We query the mapped address to verify that the operation
succeeded; note that the Type is set to Mapped. When we’re
done with the mapping, we can call Remove-NtSection to
un-map the section and then verify that it’s now free.

Finally, we demonstrate that we can’t map a section with
different protection than granted when we created the Section
object. When we try to map the section with read/execute
permissions, which aren’t compatible, we see an exception. The
protection you’re allowed to use to map a Section object into
memory depends on two things. The first is the protection
specified when the Section object was created. For example, if
the section was created with ReadOnly protection, you can
never map it to be writeable.

The second dependency is the access granted to the Section
handle you’re mapping. If you want to map the section as
readable, then the handle must have MapRead access. To map it
to be writeable, you need both MapRead and MapWrite. (And,
of course, having just MapWrite access isn’t sufficient to map
the section as writeable if the original Section was not
specified with a writeable protection.)

It’s possible to map a section into another process by
specifying a process handle to Add-NtSection. We do not

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

need to specify the process to Remove-NtSection, as the
mapping object knows what process it was mapped in. In the
memory information output, the Name column would be
populated by the name of the backing file, if it exists.

The section we created was anonymous, so we don’t see
anything in the Name column, but we can perform a query to find
mapped sections that are backed by files using the command
shown in Listing 2-32.

PS> Get-NtVirtualMemory -Type Mapped | Where-Object Name -ne ""
Address Size Protect Type State Name
------- ---- ------- ---- ----- ----
000001760DB90000 815104 ReadOnly Mapped Commit locale.nls
000001760DC60000 12288 ReadOnly Mapped Commit powershell.exe.mui
000001760DEE0000 20480 ReadOnly Mapped Commit winnlsres.dll
000001760F720000 3371008 ReadOnly Mapped Commit SortDefault.nls
--snip--

Listing 2-32 Listing mapped files with names

In addition to the anonymous and mapped types, there is a
third section Type, the Image type. When provided with a
File handle to a Windows executable, the kernel will
automatically parse the format and generate multiple subsections
that represent the various components of the executable. To create
a mapped image from a file, you need only Execute access on
the File handle; the file doesn’t need to be readable for us.

Windows uses image sections extensively to simplify the
mapping of executables into memory. We can specify an image
section by passing the Image flag when creating the Section
object or using the New-NtSectionImage command, as
shown in Listing 2-33.

PS> $sect = New-NtSectionImage -Win32Path "c:\windows\notepad.exe"
1 PS> $map = Add-NtSection -Section $sect -Protection ReadOnly
2 PS> Get-NtVirtualMemory -Address $map.BaseAddress

Address Size Protect Type State Name
------- ---- ------- ---- ----- ----
00007FF667150000 4096 ReadOnly Image Commit notepad.exe

3 PS> Get-NtVirtualMemory -Type Image -Name "notepad.exe"
Address Size Protect Type State Name
------- ---- ------- ---- ----- ----
00007FF667150000 4096 ReadOnly Image Commit notepad.exe

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

00007FF667151000 135168 ExecuteRead Image Commit notepad.exe
00007FF667172000 36864 ReadOnly Image Commit notepad.exe
00007FF66717B000 12288 WriteCopy Image Commit notepad.exe
00007FF66717E000 4096 ReadOnly Image Commit notepad.exe
00007FF66717F000 4096 WriteCopy Image Commit notepad.exe
00007FF667180000 8192 ReadOnly Image Commit notepad.exe

4 PS> Out-HexDump -Buffer $map -ShowAscii -Length 128
4D 5A 90 00 03 00 00 00 04 00 00 00 FF FF 00 00 - MZ..............
B8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 -@.......
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 -
00 00 00 00 00 00 00 00 00 00 00 00 F8 00 00 00 -
0E 1F BA 0E 00 B4 09 CD 21 B8 01 4C CD 21 54 68 -!..L.!Th
69 73 20 70 72 6F 67 72 61 6D 20 63 61 6E 6E 6F - is program canno
74 20 62 65 20 72 75 6E 20 69 6E 20 44 4F 53 20 - t be run in DOS
6D 6F 64 65 2E 0D 0D 0A 24 00 00 00 00 00 00 00 - mode....$.......

Listing 2-33 Mapping notepad.exe and viewing the loaded image

As you can see, we don’t need to specify an executable
protection when mapping the image section. Any protection,
including ReadOnly, will work 1. When we get the memory
information for a map-based address, we see that there is no
executable memory there, and that the allocation is only 4,096 2.
This seems far too small for notepad.exe but occurs because the
section is made up of multiple smaller mapped regions. We can
filter out the memory information for the mapped name, as shown
at 3. Using the Out-HexDump command, we can print the
contents of the mapped file buffer 4.

We’ll revisit the topic of memory management when we talk
about memory protections and mitigations in later chapters.

Code Integrity

One important security task is ensuring that the code running
on your computer is the same code that the manufacturer intended
you to run. If a malicious user has modified operating system
files, you might encounter security issues such as the leaking of
private data.

Microsoft considers the integrity of code running on Windows
to be so important there is an entire subsystem to deal with it.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

This code integrity subsystem verifies and restricts what files can
execute in the kernel, and optionally in user-mode, by checking
the code’s integrity. The memory manager can consult with the
code integrity subsystem when it loads image files if it needs to
check whether the executable is correctly signed.

Almost every executable on a Windows installation, if
provided by Microsoft, is signed using a mechanism called
Authenticode. This mechanism allows a cryptographic signature
to be embedded in the executable file or collected inside a catalog
file. The code integrity component can read this signature, verify
that it’s valid, and make trust decisions based on it.

We can query the signing status of an executable using the
Get-AuthenticodeSignature command, as shown in
Listing 2-34.

PS> Get-AuthenticodeSignature "$env:WinDir\system32\notepad.exe" | Format-List
SignerCertificate : [Subject]
 CN=Microsoft Windows, O=Microsoft Corporation, L=Redmond, S=Washington,
C=US
--snip--
Status : Valid
StatusMessage : Signature verified.
Path : C:\WINDOWS\system32\notepad.exe
SignatureType : Catalog
IsOSBinary : True

Listing 2-34 Displaying the Authenticode signature for a kernel driver

We query the signing status of the notepad.exe executable
file, formatting its output as a list. The output starts with
information about the signer’s X.509 certificate. Here, I’ve shown
only the subject name, which clearly indicates that this file is
signed by Microsoft.

Next is the status of the signature; in this case, the status
indicates that the file is valid and that the signature has been
verified. It’s possible to have a signed file whose signature is
invalid. This can occur when the certificate has been revoked. In
that case, the status is likely to show an error, such as
NotSigned.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

The next property shows that this signature was based on a
catalog file rather than being embedded in the file. We can also
see that this file is an operating system binary, as determined by
information embedded in the signature.

The most common trust decision that code integrity makes is
to check whether a kernel driver can load. Each driver file must
have a signature that derives its trust from a Microsoft-issued key.
If the signature is invalid or doesn’t derive from the Microsoft
issued key, then the kernel can reject the loading of the driver to
preserve system integrity.

Advanced Local Procedure Call

The advanced local procedure call (ALPC) subsystem
implements local, cross-process communication. At a basic level,
the ALPC port allows the secure transmission of discrete
messages between a server and a client. ALPC provides the
underlying transport for local remote procedure call APIs
implemented in Windows.

To use ALPC, you must first create a server ALPC port using
the NtCreateAlpcPort system call and specify a name for it
inside the OMNS. A client can then use this name by calling the
NtConnectAlpcPort system call to connect to the server
port.

The Configuration Manager

The configuration manager, known more commonly as the
registry, is an important component for configuring the operating
system. It stores a variety of configuration information, ranging
from the system-critical list of available I/O manager device
drivers to the (less critical) last position on screen of your text
editor’s window.

You can think of the registry as a filesystem in which keys are
like folders and values are like files. You can access it through

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

the OMNS, although you must use registry-specific system calls.
The root of the registry is the OMNS path \REGISTRY. You can
list the registry in PowerShell using the NtObject drive, as
shown in Listing 2-35.

PS> ls NtObject:\REGISTRY
Name TypeName
---- --------
A Key
MACHINE Key
USER Key
WC Key

Listing 2-35 Enumerating the registry root key

You can replace NtObject:\REGISTRY in Listing 2-35 with
NtKey:\ to make accessing the registry simpler.

The kernel pre-creates the four keys shown here when it
initializes. Each of the keys is a special attachment point at which
you can attach a registry hive. A hive is a hierarchy of Key
objects underneath a single root key. An administrator can load
new hives from a file and attach them to these pre-existing keys.

Note that PowerShell already comes with a drive provider that
you can use to access the registry. However, this drive provider
exposes only the Win32 view of the registry, which hides the
internal details about the registry from view. We’ll cover the
Win32 view of the registry separately in Chapter 3.

We can interact with the registry directly using the Get-
NtKey and New-NtKey commands to open or create key
objects. You can also use Get-NtKeyValue and Set-
NtKeyValue to get or set key values. To remove keys or
values, use Remove-NtKey or Remove-NtKeyValue.
Listing 2-36 show these commands in action.

PS> $key = Get-NtKey \Registry\Machine\SOFTWARE\Microsoft\.NETFramework
PS> Get-NtKeyValue -Key $key
Name Type DataObject
---- ---- ----------
Enable64Bit Dword 1
InstallRoot String C:\Windows\Microsoft.NET\Framework64\
UseRyuJIT Dword 1
DbgManagedDebugger String "C:\Windows\system32\vsjitdebugger.exe" ...

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

DbgJITDebugLaunchSetting Dword 16

Listing 2-36 Opening a registry key and querying its values

We open a Key object using the Get-NtKey command. We
can then query the values stored in the Key object using the
Get-NtKeyValue command. Each entry in the output shows
the name of the value, the type of data stored, and a string
representation of the data.

Worked Examples

Using PowerShell, you can easily to change this book’s
example scripts to do many different things. To encourage
experimentation, each chapter wraps up with worked examples
repurposing the various commands you’ve learned.

In these examples, I’ll also highlight times where I’ve
discovered security vulnerabilities using this tooling. This should
give you a clear indication of what to look for in Microsoft or
third-party applications if you’re a security researcher; likewise,
for developers, it will help you avoid certain pitfalls.

Finding Open Handles by Name

The objects returned by the Get-NtHandle command have
additional properties that allow you to query the name and the
security descriptor of the object. These properties are not shown
by default, as they’re expensive to lookup; doing so requires first
opening the process containing the handle for DupHandle
access, duplicating the handle back to the caller PowerShell
instance, and finally querying the property.

If performance doesn’t matter to you, then you can use the
code in Listing 2-37 to find all open files matching a specific
filename.

PS> $hs = Get-NtHandle -ObjectType File | Where-Object Name -Match Windows
PS> $hs | Select-Object ProcessId, Handle, Name
ProcessId Handle Name
--------- ------ ----

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

 3140 64 \Device\HarddiskVolume3\Windows\System32
 3140 1628 \Device\HarddiskVolume3\Windows\System32\en-
US\KernelBase.dll.mui
 3428 72 \Device\HarddiskVolume3\Windows\System3
 3428 304 \Device\HarddiskVolume3\Windows\System32\en-
US\svchost.exe.mui
 3428 840 \Device\HarddiskVolume3\Windows\System32\en-
US\crypt32.dll.mui
 3428 1604 \Device\HarddiskVolume3\Windows\System32\en-
US\winnlsres.dll.mui
--snip--

Listing 2-37 Finding File object handles, which match a specific name

This script queries for all File object handles and filters
them to only the ones with the string Windows in the Name
property, which represents the file path. Once the Name property
has been queried, it’s cached so you can then display it to the
console with a custom selection.

Note that, because it duplicates the handle from the process,
this script can only show handles in processes the caller can open.
To get the best results, run it as an administrator user who can
open the maximum number of processes.

Finding Shared Objects

When you query the list of handles using the Get-
NtHandle command, you also get the address of the object in
kernel memory. When you open the same kernel object, you’ll get
different handles, but they will still point to the same kernel
object address.

You can use the object address to find processes that share
handles. This can be interesting for security in cases when an
object is shared between two processes at different privileges.
The low-privileged process might be able to modify the
properties of the object to bypass security checks in the higher
privileged process, enabling it to gain additional privileges.

In fact, I used this technique to find the security issue CVE-
2019-0943 in Windows. At the root of the issue was a privileged
process, the Windows Font Cache, which shared Section

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

handles with a low-privileged process. The low-privileged
process could map the shared Section to be writeable and
modify contents that the privileged process assumed couldn’t be
modified. This resulted in the low privileged process being able
to modify arbitrary memory in the privileged process, resulting in
privileged code execution.

Listing 2-38 gives an example of finding writeable Section
objects shared between two processes.

1 PS> $ss = Get-NtHandle -ObjectType Section -GroupByAddress
| Where-Object ShareCount -eq 2
PS> $mask = Get-NtAccessMask -SectionAccess MapWrite

2 PS> $ss = $ss | Where-Object { Test-NtAccessMask $_.AccessIntersection $mask }
PS> foreach($s in $ss) {

3 $count = ($s.ProcessIds | Where-Object {
 Test-NtProcess -ProcessId $_ -Access DupHandle
 }).Count
 if ($count -eq 1) {
 $s.Handles | Select ProcessId, ProcessName, Handle
 }
}
ProcessId ProcessName Handle
--------- ----------- ------
 9100 Chrome.exe 4400
 4072 audiodg.exe 2560

Listing 2-38 Finding shared Section handles

We first get the handles, specifying the GroupByAddress
parameter 1. Instead of returning a list of handles, it returns a list
of groups organized based on the kernel object address.

You can also group handles using the built-in Group-
Object command; however, the groups returned by
GroupByAddress have additional properties, including
ShareCount, which indicates the number of unique processes
an object is shared with. We filter to include only handles that are
shared between two processes.

Next, we want to find Section objects that can be mapped
as writeable. We first check that all the handles have MapWrite
access. As mentioned earlier, the Section object protection
must be also be writeable for us to be able to map it as writeable,
but checking for MapWrite access is the simple proxy, as oddly,

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

you can’t query for the original protection that was assigned when
the Section was created. We use the
AccessIntersection property, which contains the granted
access rights shared between all the handles 2.

Now that we have potential candidates for shared sections, we
need to work out which meet the criteria: that we can access only
one of the processes containing the Section handle. We’re
make another assumption: if we can open only one of the two
processes that share the handle for DupHandle access, then
we’ve got a Section shared between a privileged and a low-
privileged process 3. After all, if you had DupHandle to both
processes, you could already compromise the processes by
stealing all their handles or duplicating their process handle, and
if you couldn’t get DupHandle to either process, then you
couldn’t get access to the Section handle at all.

The result shown in Listing 2-38 is a shared section between
Chrome and the Audio Device Graph process. The shared section
is used to play audio from the browser, and it’s probably not a
security issue. However, if you run the script on your own
system, you might find shared sections that are.

Note that once the Section object is mapped into memory,
the handle is no longer required. Therefore, you might miss some
shared sections that were mapped when the original handle
closed. It’s also highly likely you’ll get false positives, such as
Section objects that are intentionally writeable by everyone.
The goal here is to find a potential attack surface on Windows.
You must then go and inspect the handles to see if sharing them
has introduced a security issue.

Modifying a Mapped Section

If you find an interesting Section object to modify, you can
map it into memory using Add-NtSection. But how do you
modify the mapped memory? The simplest approach from the
command line is to use the Write-NtVirtualMemory
command, which supports passing a mapped section and an array

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

of bytes to write. Listing 2-39 demonstrates this technique by
assuming you have a handle of interest in the $handle variable.

1 PS> $sect = $handle.GetObject()
PS> $map = Add-NtSection -Section $sect -Protection ReadWrite

2 PS> $random = Get-RandomByte -Size $map.Length
PS> Write-NtVirtualMemory -Mapping $map -Data $random
4096

3 PS> Out-HexDump -Buffer $map -Length 16 -ShowAddress -ShowHeader

 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
--
000001811C860000: DF 24 04 E1 AB 2A E1 76 EB 19 00 8D 79 28 9C BA

Listing 2-39 Mapping and modifying a Section object

We can call the GetObject method on the handle to
duplicate it into the current process and return a Section object
1. For this to succeed, the process in which you’re running this
command must be able to access the process with the handle. We
then map the handle as read-write into the current process’s
memory.

We can now create a random array of bytes up to the size of
the mapped section and write them to the memory region using
Write-NtVirtualMemory 2. This is a quick and dirty fuzzer
for the shared memory. The hope is that by modifying the
memory, the privileged process will mishandle the contents of the
memory region. If the privileged process were to crash, we should
investigate it to determine whether we could control the crash
using a more targeted modification of the shared memory.

Of course, you can display the memory using Out-HexDump
3. One of the useful features of this command over the built-in
Format-Hex is that it’ll print the address in memory based on
the mapped file, whereas Format-Hex just prints an offset
starting at 0.

You can also create a GUI hex-editor using the Show-
NtSection command and passing it a section object to edit. As
the section can be mapped into any process, writing it in the
GUID hex-editor will also modify all other mappings of that
section. Here is the command to display the hex-editor:

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

PS> Show-NtSection -Section $sect
Figure 2-6 shows an example of the editor generated by

running the previous command.

Figure 2-6 The section editor GUI

The GUI shown in Figure 2-6 maps the section into memory
and then displays it in a hex editor form. If the section is
writeable, you can modify the contents of the memory through
the editor.

Finding Writeable and Executable Memory

In the chapter’s final worked example, we’ll find memory that
is both writeable and executable. In Windows, for a process to
execute instructions, the memory must be marked as executable.
However, it’s also possible to map the memory as both writeable
and executable. Malware sometimes uses this combination of
permissions to inject shell code into a process and run malicious
code using the host process’s identify.

Finding executable and writeable memory, as we do in Listing
2-40, might indicate that something malicious is going on,
although in most cases, this memory will be benign. For example,

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

the .NET runtime creates writeable and executable memory to
perform just-in-time (JIT) compilation of the .NET byte code into
native instructions.

PS> $proc = Get-NtProcess -ProcessId $pid -Access QueryLimitedInformation
PS> Get-NtVirtualMemory -Process $proc | Where-Object {
 $_.Protect -band "ExecuteReadWrite"
}
Address Size Protect Type State Name
------- ---- ------- ---- ----- ----
0000018176450000 4096 ExecuteReadWrite Private Commit
0000018176490000 8192 ExecuteReadWrite Private Commit
0000018176F60000 61440 ExecuteReadWrite Private Commit
--snip--
PS> $proc.Close()

Listing 2-40 Finding executable and writeable memory in a process.

We start by opening a process for
QueryLimitedInformation access, which is all we need to
enumerate the virtual memory regions. Here, we’re opening the
current PowerShell process; as PowerShell is .NET, we know it
will have some writeable and executable memory regions, but the
process you open can be anything you want to check.

We then enumerate all the memory regions using Get-
NtVirtualMemory and filter on the ExecuteReadWrite
protection type. We need to use a bitwise AND operation as there
are additional flags that can be added to the protection, such as
Guard, which creates a guard page that prevents doing a direct
equality check.

Wrapping Up

This chapter provided a tour through the Windows kernel and
its internals. The kernel consists of many separate subsystems,
such as the security reference monitor, the object manager, the
configuration manager (or registry), the I/O manager, and the
process and thread manager.

You learned about how the object manager manages kernel
resources and types, how to access kernel resources through
system calls, and how handles are allocated with specific access

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

rights. You also accessed object manager resources through the
NtObject drive provider as well as through individual
commands.

I then discussed the basics of process and thread creation and
demonstrated the use of commands such as Get-NtProcess to
query for process information on the system. I explained how to
inspect the virtual memory of a process, as well as some of the
individual memory types.

A user doesn’t directly interact with the kernel; instead, user-
mode applications power the user experience. In the next chapter,
we’ll discuss the user-mode components in more detail.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

3
U S E R - M O D E A P P L I C A T I O N S

In the previous chapter, we discussed the Windows
kernel. But a user doesn’t typically interact directly
with the kernel. Instead, they interact with user-facing
applications, such as word processors and file
managers. This chapter will detail how these user-mode
applications are created and how they interact with the
kernel to provide services to the user.

We’ll start by discussing the Win32 application programming interfaces
(APIs) designed for user-mode application development and how they relate to
the design of the Windows operating system. Then, we’ll cover the structure of
the Windows user interface and how you can inspect it programmatically.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Multiple users of a Windows system can all access a user interface at the same
time; we’ll cover how console sessions can isolate one user’s interface and
application resources from those of other users on the same system.

To understand how user-mode applications function, it’s also important to
understand how the provided APIs interface with the underlying kernel system
call interface. We’ll look at this, along with the conversion process that
filepaths must undergo to become compatible with the kernel. We’ll then
consider how Win32 handles process and thread creation and describe some
important system processes.

Win32 and the User-Mode Windows APIs

Most of the code that runs on Windows does not directly interact with
system calls. This is an artifact of the Windows NT operating system’s original
design. Microsoft initially developed Windows NT as an updated version of
IBM’s OS/2 operating system, intending it to have multiple subsystems that
implemented different APIs. At various times, it supported POSIX, OS/2, and
the Win32 APIs.

Eventually, Microsoft’s relationship with IBM went sour, and Microsoft
took the API set it had developed for Windows 95, Win32, then built a
subsystem to implement it. The largely unloved OS/2 subsystem was removed
in Windows 2000, while POSIX survived until Windows 8.1. By Windows 10,
Win32 was the only remaining subsystem (though Microsoft subsequently
implemented Linux compatibility layers, such as Windows Subsystem for
Linux, that don’t use the old subsystem extension points).

To allow for these multiple APIs, the Windows kernel implements a
generic set of system calls. It’s the responsibility of each subsystem’s specific
libraries and services to convert their APIs to the low-level system call
interface. Figure 3-1 shows an overview of the Win32 subsystem API libraries.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Figure 3-1 The Win32 API modules

As you can see, the core of the Win32 APIs is implemented in the
KERNEL32 and KERNELBASE libraries. These libraries then call methods in
the system-provided NT Layer library (NTDLL), which implements system call
dispatches, as well as a copy of the kernel runtime library APIs.

Most user-mode applications do not directly contain the implementation of
the Windows APIs. Instead, NTDLL includes the dynamic link library (DLL)
loader, which loads new libraries on demand. The loading process is mostly
opaque to the developer: when building a program, you will link against a set
of libraries, and the compiler and toolchain will automatically add an import
table to your executable file to reflect your dependencies. The DLL loader will
then inspect the import table, automatically load any dependent libraries, and
resolve the imports. You can also specify exported functions from your
application so that other code can rely on your APIs.

Loading a New Library

It’s possible to access exported functions manually at runtime without
needing an import table entry. You can load a new library using the
LoadLibrary Win32 API, which is exposed to PowerShell using the
Import-Win32Module command. To find the memory address of a
function exported by a DLL, use the Win32 API GetProcAddress, exposed
with the PowerShell Get-Win32ModuleExport command (Listing 3-1).

1 PS> $lib = Import-Win32Module -Path "kernel32.dll"
PS> $lib
Name ImageBase EntryPoint

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

---- --------- ----------
2 KERNEL32.DLL 00007FFA088A0000 00007FFA088B7C70

3 PS> Get-Win32ModuleExport -Module $lib

Ordinal Name Address
------- ---- -------
1 AcquireSRWLockExclusive NTDLL.RtlAcquireSRWLockExclusive
2 AcquireSRWLockShared NTDLL.RtlAcquireSRWLockShared
3 ActivateActCtx 0x7FFA088BE640
4 ActivateActCtxWorker 0x7FFA088BA950
--snip--

4 PS> "{0:X}" -f (Get-Win32ModuleExport -Module $lib -ProcAddress
"AllocConsole")
7FFA088C27C0

Listing 3-1 Exports for the KERNEL32 library

In Listing 3-1, we use PowerShell to load the KERNEL32 library and
enumerate the exported and imported APIs. To do this, we first need to ensure
it’s loaded into memory 1 using Import-Win32Module. The KERNEL32
library is always loaded, so this command will just return the existing loaded
address; for other libraries, however, the load will cause the DLL to be mapped
into memory and initialized.

WARN I N G The Import-Win32Module command will load a DLL into memory and
potentially execute code. In this example, this is acceptable, as NTDLL is part of
the trusted system libraries. However, do not use the command on an untrusted
DLL, especially if you’re analyzing malware, as it might result in malicious code
execution. To be safe, always perform malware analysis on a segregated system
dedicated to that purpose.

Once it’s loaded into memory, we can display some properties for the
library 2. These include the name of the library, as well as the loaded memory
address and the address of the EntryPoint. A DLL can optionally define a
function, DllMain, to run when the DLL is loaded. The EntryPoint
address is the first instruction in memory to execute when the DLL is loaded.

Next, we can dump all exported functions from the DLL 3. In this case,
we see three pieces of information: Ordinal, Name, and Address. The
Ordinal is a small number that uniquely identifies the exported function in
the DLL. It’s possible to import an API by its ordinal number, which means
there is no need to export a name; you’ll see certain names missing from
export tables in DLLs whenever Microsoft doesn’t want to officially support
the function as a public API.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

The Name is just the name of the exported function. It doesn’t need to
match what the function was called in the original source code, although
typically it does. Finally, Address is the address in memory of the function’s
first instruction. You’ll notice that the first two exports have a string instead of
an address. This is a case of export forwarding; it allows a DLL to export a
function by name and have the loader automatically redirect it to another DLL.
In this case, AcquireSRWLockExclusive is implemented as
RtlAcquireSRWLockExclusive in NTDLL. We can also use Get-
Win32ModuleExport to lookup a single exported function using the
GetProcAddress API 4.

Viewing Imported APIs

In a similar fashion, we can view the APIs that an executable has imported
from other DLLs using the Get-Win32ModuleImport command, as
shown in Listing 3-2.

PS> Get-Win32ModuleImport -Path "kernel32.dll"
DllName FunctionCount DelayLoaded
------- ------------- -----------
api-ms-win-core-rtlsupport-l1-1-0.dll 13 False
ntdll.dll 378 False
KERNELBASE.dll 90 False
api-ms-win-core-processthreads-l1-1-0.dll 39 False
--snip--

PS> Get-Win32ModuleImport -Path "kernel32.dll" -DllName "ntdll.dll" |
Where-Object Name -Match "^Nt"
Name Address
---- -------
NtEnumerateKey 7FFA090BC6F0
NtTerminateProcess 7FFA090BC630
NtMapUserPhysicalPagesScatter 7FFA090BC110
NtMapViewOfSection 7FFA090BC5B0
--snip--

Listing 3-2 Enumerating imports for the KERNEL32 library

Listing 3-2 starts by calling Get-Win32ModuleImport and specifying
the KERNEL32 DLL as the path. When you specify a path, the command will
call Import-Win32Module for you and display all imports, each of which
includes the name of the DLL to load and the number of functions imported.
The final column indicates whether the DLL is delay loaded. This is a
performance optimization; it allows a DLL to be loaded at the point when one
of its exported functions is used. This delay avoids loading all DLLs into
memory during initialization if they are rarely accessed.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Next, we dump the imported functions for a DLL. As the executable can
import code from multiple libraries, we specify the one we want using the
DllName property. We then filter to all imported functions starting with the
Nt prefix; this allows us to see exactly what system calls KERNEL32 imports
from NTDLL.

API SETS

You might notice something odd in the list of imported DLL names in Listing 3-2. If you search your
filesystem for the api-ms-win-core-rtlsupport-l1-1-0.dll file, you won’t find it. This is because the DLL
name refers to an API set name. API sets were introduced in Windows 7 to modularize the system
libraries, and they abstract from the name of the set to the DLL that exports the API.

API sets allow an executable to run on multiple different versions of Windows, such as a client, a
server, or an embedded version, and change its functionality at runtime based on what libraries are
available. When the DLL loader encounters one of these API set names, it consults a table loaded into
every process, sourced from the file apisetschema.dll, that maps the name to the real DLL:

PS> Get-NtApiSet api-ms-win-core-rtlsupport-l1-1-0.dll
Name HostModule Flags
---- ---------- -----
api-ms-win-core-rtlsupport-l1-1-1 ntdll.dll Sealed

PS> Get-Win32ModuleImport -Path "kernel32.dll" -ResolveApiSet
DllName FunctionCount DelayLoaded
------- ------------- -----------
ntdll.dll 392 False
KERNELBASE.dll 867 False
ext-ms-win-oobe-query-l1-1-0.dll 1 True
RPCRT4.dll 10 True

You can query the details for an API set by using the Get-NtApiSet command and specifying the
name of the API set 1. We can see that in this case the API set resolves to the NTDLL library. You can
also specify the ResolveApiSet parameter to the Get-Win32ModuleImport command to group the
imports based on the real DLLs.

If you compare the output in Listing 3-2 to that of the same command shown here, you’ll notice that
the resolved imports is much shorter, and that the core libraries have gained additional function imports.
Also notice the unresolved API set name, ext-ms-win-oobe-query-l1-1-0.dll. Any API set with the prefix
api should always be present, whereas one with the prefix ext might not be. In this case, the API set
is not present, and trying to call the imported function will fail. However, because the function is marked
as delay loaded, an executable can check whether the API set is available before calling the function by
using the IsApiSetImplemented Win32 API.

Searching for DLLs

When loading a DLL, the loader creates an image section object from the
executable file and maps it into memory. The kernel is responsible for mapping
the executable memory; however, user-mode code still needs to parse the
import and export tables.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Let’s say you pass the string ABC.DLL to the LoadLibrary API. How
does the API know where to find that DLL? If the file hasn’t been specified as
an absolute path, the API implements a path-searching algorithm. The
algorithm, as originally implemented in Windows NT 3.1, searches for files in
the following order:

1. The same directory as the current process’s executable file

2. The current working directory

3. The Windows SYSTEM32 directory

4. The WINDOWS directory

5. Each semicolon-separated location in the PATH environment variable

The problem with this load order is that it can lead to a privileged process
loading a DLL from an insecure location. For example, if a privileged process
changed its current working directory using the SetCurrentDirectory
API to a location a less-privileged user could write to, the DLL would be
loaded from that location before any DLL from the SYSTEM32 directory. This
attack is called DLL hijacking, and it’s a persistent problem on Windows.

Vista changed the default load order to the following, which is safer:

1. The same directory as the current process’s executable file

2. The Windows SYSTEM32 directory

3. The WINDOWS directory

4. The current working directory

5. Each semicolon-separated location in the PATH environment variable

Here, we no longer load from the current working directory before the
SYSTEM32 or WINDOWS folders. However, if an attacker could write to the
executable’s directory, a DLL hijack could still take place. Therefore, if an
executable run as a privileged process, only administrators should be able to
modify its directory to prevent a DLL hijack from occurring. If an application
tries to load a DLL that doesn’t exist, it could still potentially load code from
the current working directory or the PATH.

THE DLL FILE EXTENSION

A separate loading quirk involves the handling of file extensions in a DLL’s filename. If no
extension is specified, the DLL loader will automatically add a .DLL extension. If any extension is
specified, the filename is treated as-is. Finally, if the extension consists of a single period (for example

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

LIB.), the loader removes the period and tries to load the file LIB.
This file extension behavior can introduce mismatches between the DLL an application is trying to

load and its filename. For example, an application might check that the file LIB is valid (that is, correctly
cryptographically signed); however, the DLL loader would then load LIB.DLL, which was not checked.
This can result in security vulnerabilities if you can trick a privileged application into loading the wrong
DLL into memory, as the entry point will execute in the privileged context.

While the DLL loader will normally turn to the disk to retrieve a library,
some libraries are used so often that it makes sense to pre-initialize them. This
improves performance and prevents the DLLs from being hijacked. Two
obvious examples are KERNEL32 and NTDLL.

Before any user applications start on Windows, the system configures a
KnownDlls OMNS directory containing a list of pre-loaded image sections.
A KnownDlls section object’s name is just the filename of the library. The
DLL loader can check KnownDlls first before going to the disk. We can list
the object directory using the NtObject drive, as shown in Listing 3-4.

PS> ls NtObject:\KnownDlls
Name TypeName
---- --------
kernel32.dll Section
kernel.appcore.dll Section
windows.storage.dll Section
ucrtbase.dll Section
MSCTF.dll Section
--snip--

Listing 3-3 Listing the contents of the KnownDlls object directory

We’ve covered the basics of the Win32 subsystem and how it uses
libraries to implement the APIs that a user-mode application can use to
interface with the operating system. We’ll come back to the Win32 APIs later,
but first, we must discuss the Window’s user interface, which is inextricably
linked to how the Win32 subsystem functions.

The Win32 GUI

The name “Windows” refers to the structure of the operating system’s
GUI. This GUI consists of one or more windows that the user can interact with
using controls such as buttons and text input. Since Windows 1.0, the GUI has
been the most important feature of the operating system, so it should come as
no surprise that its model is complex. The implementation of the GUI is split
between the kernel and user mode, as shown in Figure 3-2.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Figure 3-2 The Win32 GUI modules

You might notice that the left-hand side of Figure 3-2 looks a lot like
Figure 3-1, which showed the modules for the normal Win32 APIs. Instead of
NTDLL, however, there is WIN32U, which implements system call stubs for
the kernel to call. Two libraries call WIN32U: USER32 and GDI32. USER32
implements the window UI elements and generally manages the GUI, whereas
GDI32 implements drawing primitives, like fonts and shapes.

One big difference between Figure 3-2 and Figure 3-1 is that the GUI is
not actually implemented inside the main NTOS kernel executive. Instead, its
system calls are implemented in the WIN32K driver, which interfaces with the
object manager, the kernel, and the display drivers to handle user interactions
and display the results. The WIN32K driver also implements a system call table
that is separate from the kernel’s.

N O T E In versions of Windows prior to 10, the system call dispatch code in WIN32U was
embedded directly inside the user-mode DLLs. This made it hard for an
application to directly call WIN32K system calls without writing assembly
language.

The GUI APIs also interact with a special privileged process: the Client
Server Runtime Subsystem (CSRSS). The CSRSS process is responsible for
handling certain privileged operations for lower-privileged clients, such as
configuring per-user drive mappings, process management, and error handling.
Prior to Windows NT 4, CSRSS was much more important: almost all the GUI
code was implemented in user-mode. But, for the hardware available in the
early 1990s, running everything in user-mode wasn’t very performant. To

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

improve performance, the GUI code was split between the WIN32K kernel
driver and some vestigial components left inside CSRSS.

GUI Kernel Resources

The GUI is made up of four types of kernel resources:

Window Stations
Objects that represent the connection to the screen and the user interface, such
as the keyboard and mouse

Windows
GUI elements for interacting with the user, accepting input, and displaying a
result

Desktops
Objects that represent the visible desktop and act as a host for windows

Drawing Resources
Bitmaps, fonts, or anything else that needs to be displayed to the user

While the Win32 kernel and user components handle the windows, the
window stations and desktops are accessible through the object manager. There
is a kernel object type for window stations and desktops, as shown in Listing 3-
5.

PS> Get-NtType WindowStation,Desktop
Name

WindowStation
Desktop

Listing 3-4 Showing the WindowStation and Desktop type objects

A window station is assigned to a process either at process startup or using
the NtUserSetProcessWindowStation API. Desktops are assigned on
a per-thread basis using NtUserSetThreadDesktop. We can query the
names of the window stations and desktops with the commands in Listing 3-5.

1 PS> Get-NtWindowStationName
WinSta0
Service-0x0-b17580b$

2 PS> Get-NtWindowStationName -Current
WinSta0

3 PS> Get-NtDesktopName
Default

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

WinLogon
4 PS> Get-NtDesktopName -Current
Default

Listing 3-5 Displaying all window stations, the current window station, and the desktops

We start by querying the names of all available window stations 1. In this
example, there are two: the default WinSta0 windows station and
Service-0x0-b17580b$, which another process has created. The ability
to create separate window stations allows a process to isolate its GUI
interactions from other processes running at the same time. However,
WinSta0 is special, as it is the only object connected to the user’s console.

Next, we check what our current window station name is by using the -
Current parameter 2. We can see we’re on WinSta0.

We can then query for the names of the desktops on our current window
station 3. We see only two desktops: Default and WinLogon. The
WinLogon desktop will be visible only if you run the Get-
NtDesktopName command as an administrator, as it’s used solely to display
the login screen, which a normal user application shouldn’t be able to access.
Desktop objects must be opened relative to a window station path; there isn’t
a specific object directory for desktops. Therefore, the name of the desktop
reflects the name of the window station object.

Finally, we can check the name of the current thread’s desktop 4. The
desktop we’re attached to is shown as Default, as that’s the only desktop
available to normal user applications. We can enumerate the windows created
in a desktop using Get-NtDesktop and Get-NtWindow (Listing 3-6).

PS> $desktop = Get-NtDesktop -Current
PS> Get-NtWindow -Desktop $desktop
Handle ProcessId ThreadId ClassName
------ --------- -------- ---------
66104 11864 12848 GDI+ Hook Window Class
65922 23860 18536 ForegroundStaging
65864 23860 24400 ForegroundStaging
65740 23860 20836 tooltips_class32
--snip--

Listing 3-6 Enumerating windows for the current desktop

As you can see, each window has a few properties. First is its handle,
which is unique to the desktop. This is not the same type of handle we
discussed in the last chapter for kernel objects; instead, it’s a value allocated by
the WIN32 subsystem.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

To function, a window receives messages from the system. For example,
when you click a mouse button on a window, the system will send a message
to notify the window of the click and what mouse button was pressed. The
window can then handle the message and change its behavior accordingly. You
can also manually send messages to a window using the SendMessage or
PostMessage APIs.

A windows message consists of a numeric identifier—such as 0x10, which
represents the message WM_CLOSE to close a window—and two additional
parameters. The meaning of the two parameters depends on the message. For
example, if the message is WM_CLOSE, then neither parameter is used; for
other messages, they might represent pointers to strings or integer values.

Messages can be sent or posted. The difference between sending and
posting a message is that sending waits for the window to handle message and
return a value, while posting just sends the message to the window and returns
immediately.

In Listing 3-6, the ThreadId identifies the thread that created the
windows using an API such as CreateWindowEx. A window has what’s
called thread affinity, which means that only the creating thread can
manipulate the state of the window and its handle messages. However, any
thread can send messages to the window. To handle messages, the creating
thread must run a message loop, which calls the GetMessage API to receive
the next available message and then dispatches it to the Window’s message
handler callback function using the DispatchMessage API. When an
application is not running the loop, you might see Windows applications
hanging, as without the loop, the GUI cannot be updated.

The final column in Listing 3-6 is the ClassName. This is the name of a
window class, which acts as a template for a new window. When
CreateWindowEx is called, the ClassName is specified and the window is
initialized with default values from the template, such as the style of the border
or a default size. It’s common for an application to register its own classes to
handle unique windows. Alternatively, it can use system-defined classes for
things like buttons and other common controls.

Window Messages

Let’s see a simple example in which we send a windows message to a
window. Before running the code in Listing 3-7, make sure there is at least one
copy of Notepad running.

1 PS> $top = Get-NtWindow | Where-Object ClassName -eq "Notepad" |
Select-Object -First 1

2 PS> $edit = Get-NtWindow -Children -Parent $top |

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Where-Object ClassName -eq "Edit"
PS> $top, $edit | Out-Host
Handle ProcessId ThreadId ClassName
------ --------- -------- ---------

3 1509748 16128 20152 Notepad
917770 16128 20152 Edit

4 PS> while($true) {
 $len = Send-NtWindowMessage -Window $edit -Message 0xE -Wait
 Start-Sleep -Seconds 1
 Write-Host "Length: $len"
}
Length: 0
Length: 5
--snip--

Listing 3-7 Sending the WM_GETTEXTLENGTH message to the notepad edit window

Listing 3-7 starts by finding a window with the ClassName of Notepad
1. This is a window class that Notepad creates when it starts up, and it’s used
as the template for Notepad’s main window. The notepad.exe executable is
fundamentally a wrapper around the system edit control, which is created as a
child window of the main window; we can get it by using the Children
parameter, passing the main window handle and retrieving the Edit class 2.

If there’s a copy of notepad.exe running on the current desktop, you
should see the output 3, although the handle and ID values will be different. In
a loop, we send the WM_GETTEXTLENGTH message (which is message
number 0xE) to the edit window 4. The edit window will handle the message,
returning the number of characters we enter in the edit window. While the loop
is running, try typing some more characters into notepad’s window; you should
see the length change. You could also use WM_GETTEXT message to query or
WM_SETTEXT to set the text contents of the edit box, but that’s perhaps more
advanced than necessary here.

There is much more to explore in the windowing system, but those details
are outside the scope of this book. I recommend Charles Petzold’s seminal
work on the topic, Programming Windows (5th Edition) if you want to know
more about the development of Win32 applications. Next, we need to describe
how multiple users can use their own user interfaces on the same system
through the creation of console sessions.

Console Sessions

The first version of Windows NT allowed multiple users to be
authenticated at the same time and each run processes. However, before the
introduction of Remote Desktop Services (RDS), it wasn’t possible for different

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

interactive desktops to run multiple user accounts concurrently on the same
machine. All authenticated users needed to share a single physical console.
Windows NT 4 introduced multiple-console support as an optional, server-only
feature before it became standard in Windows XP.

RDS is a service on Windows workstations and servers that allows you to
remotely connect to the GUI and interact with the system. It’s used for remote
administrators but also to provide shared hosting for multiple users on the
same network-connected system. Moreover, its functionality has been
repurposed to support a mechanism that can switch between users on the same
system without having to log users out.

To prepare for a new user login to Windows, the session manager service
creates a new session on the console. This session is used to organize a user’s
window station and desktop objects so that they’re separate from those
belonging to any other user authenticated at the same time. The kernel creates
a Session object to keep track of resources, and a named reference to the
object is stored in the KernelObjects OMNS directory. However, the
Session object is usually only exposed to the user as an integer. There’s no
randomness to the integer; it’s just incremented as each new console session is
created.

The session manager starts several processes in this new session before
any user logs in. These include a dedicated copy of CSRSS and the
WinLogon process, which display the credentials user interface and handle
the authentication of the new user. We’ll dig into the authentication process
more in Chapter 10.

The console session that a process belongs to is assigned when the process
starts. (Technically, the console session is specified in the access token, but
that’s a topic for Chapter 4.) We can observe the processes running in each
session by running some PowerShell commands, as shown in Listing 3-8.

PS> Get-NtProcess -InfoOnly | Group-Object SessionId
Count Name Group
----- ---- -----
 156 0 {, System, Secure System, Registry...}
 1 1 {csrss.exe}
 1 2 {csrss.exe}
 113 3 {csrss.exe, winlogon.exe, fontdrvhost.exe, dwm.exe...}

Listing 3-8 Displaying a process’s console sessions using Get-NtProcess

Windows has only one physical console, which is connected to the
keyboard, mouse, and monitor. However, it’s possible to create a new remote
desktop over the network by using a client that communicates using the remote
desktop protocol (RDP).

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

It’s also possible to switch the user logged on to the physical console; this
is used for Windows’ fast user switching feature. When the physical console
switches to a new user, the previous user is still logged on and running in the
background, but you cannot interact with that user’s desktop.

Each console session has its own special kernel memory region. Having
duplicated resources ensures that the console sessions are separated; this acts
as a security boundary. Session number 0 is special, in that it’s only for
privileged services and system management. It’s normally not possible to use a
GUI with processes running in this session.

SHATTER ATTACKS

Prior to Windows Vista, both services and the physical console ran in session 0. As any process
was able to send window messages to any other process in the same session, this introduces a
security weakness called a shatter attack.

A shatter attack occurs when a normal user can send a window message to a more privileged
application in the same session to elevate privileges. For example, the WM_TIMER message could
accept an arbitrary function pointer that the more privileged application would call when it received the
message. A normal user could send this message with a carefully chosen function pointer and get
arbitrary code execution in the context of the privileged application.

Windows Vista mitigates shatter attacks with two related security features that are still present in
the latest versions of Windows. The first is Session 0 Isolation, which was moved the physical console
from session 0 so that a normal user application could not send messages to services.

The second feature is User Interface Privilege Isolation (UIPI). UIPI prevents lower-privileged
processes from interacting with windows at higher privileges. Therefore, even if a service created a
window on the user’s desktop, the system would reject any messages sent by the user to a privileged
service.

Another important feature associate with the console sessions is the
separation of named objects. In the previous chapter, we discussed the BNO
directory, a global location for named objects. However, if multiple users can
logged into the system at the same time, you could easily get name conflicts.
Windows solves the name-conflict problem by creating a per-console session
directory for the BNO under the directory \Sessions\<N>\BaseNamedObjects,
where <N> is the console session ID. The \Sessions directory also contains a
directory for the window stations, under \Sessions\<N>\Windows, which
ensures that window resources, too, are separated. You can list the BNO of the
current console session with the NtObjectSession drive, as shown in Listing 3-
10.

PS> ls NtObjectSession:\ | Group-Object TypeName
Count Name Group
----- ---- -----
 246 Semaphore {SM0:10876:304:WilStaging_02_p0h...}
 263 Mutant {SM0:18960:120:WilError_02,...}
 164 Section {fd8HWNDInterface:3092e,...}

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

 159 Event {BrushTransitionsCom... }
 4 SymbolicLink {AppContainerNamedObjects, Local, Session,
Global}
 1 ALPC Port {SIPC_{2819B8FF-EB1C-4652-80F0-7AB4EFA88BE4}}
 2 Job {WinlogonAccess, ProcessJobTracker1980}
 1 Directory {Restricted}

Listing 3-9 Enumerating the contents of a session’s BNO directory and grouping items by TypeName

There is no per-console session BNO for session 0; it uses the global BNO
directory.

THE ORIGINS OF REMOTE DESKTOP SERVICES

The RDS feature didn’t originate at Microsoft. Rather, a company called Citrix developed the
technology for Windows and licensed it to Microsoft for use in NT 4. The technology was originally
called Terminal Services, so it’s common to sometime see it referred to using that name. To this day,
it’s possible to buy a Citrix version of RDS that uses a different network protocol, Independent
Computing Architecture (ICA), instead of Microsoft’s RDP.

Comparing Win32 APIs and System Calls

As a case study, let’s compare a Win32 API and its equivalent system call.
Not all system calls are directly exposed through Win32, and in some cases,
the Win32 API reduces the functionality of exposed system calls. However,
it’s worth describing common differences between a system call and its Win32
API equivalent.

We’ll pick the CreateMutexEx API, as it’s the Win32 version of
NtCreateMutant system call we described in the last chapter. The API has
the C prototype shown in Listing 3-10.

HANDLE CreateMutexEx(
 SECURITY_ATTRIBUTES* lpMutexAttributes,
 const WCHAR* lpName,
 DWORD dwFlags,
 DWORD dwDesiredAccess
);

Listing 3-10 The prototype for the CreateMutexEx Win32 API

Compare it to the NtCreateMutant prototype, shown in Listing 3-11:
NTSTATUS NtCreateMutant(
 HANDLE* MutantHandle,
 ACCESS_MASK DesiredAccess,
 OBJECT_ATTRIBUTES* ObjectAttributes,
 BOOLEAN InitialOwner

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

);

Listing 3-11 The prototype for the NT system call NtCreateMutant

The first difference between the prototypes is that the Win32 API returns a
handle to the kernel object, while the system call returns an NTSTATUS code
(and receives the handle instead via a pointer as the first parameter).

You might wonder: how do errors get propagated back to an API’s caller,
if not via an NTSTATUS code? In this respect, the Win32 APIs are not always
consistent. If the API returns a handle, then it’s common to return a value of
NULL. However, some APIs, such as the file APIs, return the value -1 instead.
If a handle it not returned, it’s common to return a Boolean value, with TRUE
indicating success and FALSE indicating an error.

We can retrieve the error status for the current thread using the
GetLastError API, which returns an error code. Unlike the NTSTATUS
code, this error code doesn’t have any structure; it’s just a number. The
CreateMutexEx API converts the NTSTATUS code to the error using the
RtlNtStatusToDosError API from NTDLL, which also sets the current
thread’s last error value so it can be queried. We can look up error codes in
PowerShell using Get-Win32Error, as shown in Listing 3-12.

PS> Get-Win32Error 5
ErrorCode Name Message
--------- ---- -------
 5 ERROR_ACCESS_DENIED Access is denied.

Listing 3-12 Looking up Win32 error code 5

The second big change between the system call and Win32 API is that the
API does not take the OBJECT_ATTRIBUTES structure. Instead, it splits the
attributes between two parameters: lpName, used to specify the object’s
name, and lpMutexAttributes, which is a pointer to a
SECURITY_ATTRIBUTES structure.

The lpName parameter is a 16-bit character-size Unicode NUL-
terminated string. Even though the object manager uses the counted
UNICODE_STRING, the Win32 API uses a C-style terminated string. This
means that while the NUL character is a valid character for an object name, it’s
impossible to specify using the Win32 API.

Another difference is that the name is not a full path to the OMNS location
for the object; instead, it’s relative to the current session’s BNO. This means
that if the name is ABC, then the final path used is
\Sessions\<N>\BaseNamedObjects\ABC, where <N> is the console session ID.
If you want to create an object in the global BNO, you can prefix the name

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

with Global (for example, Global\ABC). This works because Global is a
symbolic link to \BaseNamedObjects, which is automatically created
along with the per-session BNO directory. If you want to simulate this
behavior using the Get and Set PowerShell commands, pass them the -
Win32Path option, as shown in Listing 3-13.

PS> $m = New-NtMutant ABC -Win32Path
PS> $m.FullPath
\Sessions\2\BaseNamedObjects\ABC

Listing 3-13 Create a new Mutant with -Win32 Path

Listing 3-14 shows the SECURITY_ATTRIBUTES structure.
struct SECURITY_ATTRIBUTES {
 DWORD nLength;
 VOID* lpSecurityDescriptor;
 BOOL bInheritHandle;
};

Listing 3-14 The SECURITY_ATTRIBUTES structure

The SECURITY_ATTRIBUTES structure allows you to specify the
security descriptor of the new object, as well as whether the handle should be
inheritable. The CreateMutexEx Win32 API exposes no other options from
OBJECT_ATTRIBUTES.

On to the final two parameters in Listing 3-10: dwDesiredAccess
directly maps to DesiredAccess, and the native InitialOwner
parameter is specified through dwFlags with the
CREATE_MUTEX_INITIAL_OWNER flag. If you try to look up the
CreateMutexEx export in KERNEL32, you might get a surprise (Listing 3-
15).

PS> Get-Win32ModuleExport "kernel32.dll" -ProcAddress CreateMutexEx
Exception calling "GetProcAddress" with "2" argument(s):
"(0x8007007F) - The specified procedure could not be found."

Listing 3-15 Getting CreateMutexEx from KERNEL32

If you run the command in Listing 3-15, you’ll notice you don’t receive
the address; instead, you get an exception. Did we pick the wrong library?
Let’s try to find the API by dumping all exports and filtering them by name, as
shown in Listing 3-16.

PS> Get-Win32ModuleExport "kernel32.dll" | Where-Object Name -Match
CreateMutexEx

Ordinal Name Address
------- ---- -------

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

217 CreateMutexExA 0x7FFA088C1EB0
218 CreateMutexExW 0x7FFA088C1EC0

Listing 3-16 Find the CreateMutexEx API by listing all exports

As you can see, the CreateMutexEx API is there not once, but twice.
Each function has a suffix, either A or W. This is because Windows 95 (where
most of the APIs were initially created) didn’t natively support Unicode
strings, so the APIs used single-character strings in the current text encoding.
With the introduction of Windows NT, the kernel became 100 percent
Unicode, but it provided two APIs for a single function to enable older
Windows 95 applications.

One API, with the A suffix, accepts single-character strings, or ANSI
strings. These APIs convert their strings into Unicode strings to pass to the
kernel, and convert them back again if a string needs to be returned.
Applications built for Windows NT, on the other hand, can use the API with
the W suffix, or wide string, which doesn’t need to do any string conversions.
Which API you get when you build a native application depends on your build
configuration and is a topic for a completely different book.

Win32 Registry Paths

In Chapter 2, you learned the basics of how to access the registry by using
native system calls to retrieve them from the OMNS. The Win32 APIs used to
access the registry, such as RegCreateKeyEx, do not expose this native
path. Instead, you can access registry keys relative to pre-defined root keys.
You’ll be familiar with these keys if you’re ever used the Windows regedit
application, shown in Figure 3-3.

Figure 3-3 The main view of regedit utility

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

The handle values displayed in Figure 3-3 are shown in Table 3-1, along
with their corresponding OMNS paths.

Table 3-1 Pre-Defined Registry Handles and Their Native Equivalent

Pre-defined handle
name

OMNS path

HKEY_LOCAL_MACHINE \REGISTRY\MACHINE
HKEY_CURRENT_CONFIG \REGISTRY\MACHINE\SYSTEM\CurrentControlSet\Hardware

Profiles\Current
HKEY_USERS \REGISTRY\USER
HKEY_CURRENT_USER \REGISTRY\USER\<SDDL SID>
HKEY_CLASSES_ROOT Merged view of \REGISTRY\MACHINE\SOFTWARE\Classes and

\REGISTRY\USER\<SDDL SID>_Classes

The first three pre-defined handles, HKEY_LOCAL_MACHINE,
HKEY_USERS, and HKEY_CURRENT_CONFIG, are not particularly special;
they directly map to a single OMNS registry key path. The next handle,
HKEY_CURRENT_USER, is more interesting; it maps to a hive loaded for the
currently authenticated user. The name of the hive’s key is the SDDL string of
the user’s SID.

The final key, HKEY_CLASSES_ROOT, which stores information such as
file extension mappings, is a merged view of a user’s classes hive and the
machine’s hive. The user’s hive takes precedence over the machine hive,
allowing the user to change their file extensions without needing an
administrator.

Opening Keys

When using the Get-NtKey and New-NtKey commands, you can
specify a Win32 path by using the Win32Path parameter (Listing 3-17).

PS> Use-NtObject($key = Get-NtKey \REGISTRY\MACHINE\SOFTWARE) {
 $key.Win32Path
}
HKEY_LOCAL_MACHINE\SOFTWARE

PS> Use-NtObject($key = Get-NtKey -Win32Path "HKCU\SOFTWARE") {
 $key.FullPath
}
\REGISTRY\USER\S-1-5-21-818064985-378290696-2985406761-1002\SOFTWARE

Listing 3-17 Interacting with the registry using Win32 paths

We start by opening a Key object using the Get-NtKey command. We
use the OMNS path to open the key, then convert the path to its Win32 version
using the Win32Path property. In this case, we see that

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

\REGISTRY\MACHINE\SOFTWARE is mapped to
HKEY_LOCAL_MACHINE\SOFTWARE.

We then do the reverse and open a key using a Win32 name by specifying
the Win32Path parameter and printing its native OMNS path. Here, we use
the current user’s hive. Notice we’re using a shortened form of the pre-defined
key name: HKCU, instead of HKEY_CURRENT_USER. All of the other pre-
defined keys have similar shortened forms. For example, HKLM refers to
HKEY_LOCAL_MACHINE.

In the output, you can see the SDDL SID string, which represents the
current user. As we’ve demonstrated, using the Win32 path to access the
current user’s hive is much simpler than looking up the current user’s SID and
opening it with the OMNS path.

Listing the Registry’s Contents

In the previous chapter, we showed how to list the registry’s contents
using the NtObject or NtKey drive provider paths. For the Win32 registry, you
have a few additional options. To simplify accessing the current user’s hive,
you can use NtKeyUser. For example, you can list the current user’s
software key with the following.

PS> ls NtKeyUser:\SOFTWARE

PowerShell also comes with built-in drives, HKLM and HKCU, for the local
machine and current user hives, respectively. For example, the equivalent to
previous command is the following:

PS> ls HKCU:\SOFTWARE

Why would you use one of these drive providers over another? Well, the
PowerShell module’s drive provider allows you to view the entire registry. It
also uses the native APIs, which use counted strings, and supports the use of
NUL characters in the names of the registry keys and values, while the Win32
APIs uses NUL-terminated C-style strings, which cannot handle embedded
NUL characters. Therefore, if a NUL is embedded into a name, it’s impossible
for the built-in provider to access that key or value. Listing 3-18 demonstrates
this.

1 PS> $key = New-NtKey -Win32Path "HKCU\ABC`0XYZ"
2 PS> Get-Item "NtKeyUser:\ABC`0XYZ"

Name TypeName
---- --------
ABC XYZ Key

3 PS> Get-Item "HKCU:\ABC`0XYZ"
Get-Item : Cannot find path 'HKCU:\ABC XYZ' because it does not exist.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

PS> Remove-NtKey $key
PS> $key.Close()

Listing 3-18 Adding and accessing a registry key with a NUL character

We start by creating a new key with a NUL character in the name,
indicated by the `0 escape 1. If you access this path via the NtKeyUser drive,
you can successfully retrieve the key 2. However, doing the same with the
built-in drive provider doesn’t work; it can’t find the registry key 3.

This behavior of the Win32 APIs can lead to security issues. For example,
it’s possible for malicious code to hide registry keys and values from any
software that uses the Win32 APIs. This can prevent the malicious code from
being detected. We’ll see how to detect the use of this hiding technique in
“Listing the Registry’s Contents” on page XX.

It’s also possible to get a mismatch if some software uses the native
system calls and other software uses the Win32 APIs. For example, if some
code checks the ABC`0XYZ path to ensure it has been correctly set up, then
hands this to another application, which uses the path with the Win32 APIs, the
new application will instead access the unrelated ABC key, which hasn’t been
checked. This could lead to information disclosure issues if the contents of
ABC were returned to the caller.

The built-in registry provider does have an advantage: it can be used
without the installation of an external module. It also allows you to create new
keys and add values, which the module’s provider does not allow you to do.

DOS Device Paths

Another big difference between the Win32 APIs and the native system
calls is how they handle filepaths. In the previous chapter, you saw that we can
access a mounted filesystem using a \Device\VolumeName path. However, we
can’t specify this native path using the Win32 APIs. Instead, we’ll use well-
known paths, such as C:\Windows, that have drive letters. Because the drive
letter paths are a vestige of MS-DOS, we call them DOS device paths.

Of course, the Win32 API needs to pass the system call a native path for
the system call to work correctly. The NTDLL API
RtlDosPathNameToNtPathName handles this conversion process. This
API takes a DOS device path and returns the fully converted native path. The
simplest conversion occurs when the caller has supplied a full drive path: for
example, C:\Windows. In these cases, the conversion process merely prefixes

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

the path with the pre-defined path component \?? to get the result
\??\C:\Windows.

The \?? Path, also called the DOS device map prefix, indicates that the
object manager should use a two-step lookup process to find the drive letter.
The object manager will first check a per-user DOS device map directory, in
the path \Sessions\0\DosDevices\<AUTHID>. Because the object manager
checks a per-user location first, the user can create their own drive mappings.
The AUTHID component is related to the authentication session of the caller’s
Token, which I’ll described in Chapter 4, but for now, it’s enough to know
that its value is unique for each user. Note that the use of 0 for the console
session ID is not a typo: all DOS device mappings are placed in a single
location, regardless of which console session the user’s logged in to.

If the drive letter is not found in the per-user location, the object manager
will check a global directory, \GLOBAL??. If it’s not found there, then the file
lookup fails. The drive letter is an object manager symbolic link that points to
the mounted volume device. We can see this in action by using the Get-
NtSymbolicLink command to open the drive letters and display their
properties (Listing 3-19).

PS> Use-NtObject($cdrive = Get-NtSymbolicLink "\??\C:") {
 $cdrive | Select-Object FullPath, Target
}
FullPath Target
-------- ------

1 \GLOBAL??\C: \Device\HarddiskVolume3

2 PS> Add-DosDevice Z: C:\Windows

PS> Use-NtObject($zdrive = Get-NtSymbolicLink "\??\Z:") {
 $zdrive | Select-Object FullPath, Target
}
FullPath Target
-------- ------
\Sessions\0\DosDevices\00000000-011b224b\Z: \??\C:\windows

3 PS> Remove-DosDevice Z:

Listing 3-19 Displaying the symbolic links for the C: and Z: drives

We open the C: drive symbolic link and display its FullPath and
Target properties. The full path is in the \GLOBAL?? directory, and the
target is the volume path 1. We then create a new Z: drive using the Add-
DosDevice command, pointing the drive to the Windows directory 2. Note,
that the Z: drive is accessible in any user application, not just in PowerShell.
By displaying the Z: drive properties, we can see that it’s in the per-user DOS
device map, and that the target is the native path to the Windows directory. The

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

shows that the target of a drive letter doesn’t have to point directly to a volume
if it gets there eventually (in this case, after following the C: drive symbolic
link). Finally, for completeness, we remove the Z: drive with Remove-
DosDevice 3.

Path Types

Table 3-2 shows several different path types that the Win32 APIs
supports, along with an example native path after conversion.

Table 3-2 Win32 Path Types

DOS Path Native Path Description
some\path \??\C:\ABC\some\path Relative path to current directory
C:\some\path \??\C:\some\path Absolute path
C:some\path \??\C:\ABC\some\path Drive relative path
\some\path \??\C:\some\path Rooted to current drive.
\\.\C:\some\..\path \??\C:\path Device path, canonicalized
\\?\C:\some\..\path \??\C:\some\..\path Device path, non-canonicalized
\??\C:\some\path \??\C:\some\path Device path, non-canonicalized
\\server\share\path \??\UNC\server\share\path UNC path to share on server

Due to the way DOS paths are specified, multiple DOS paths might
represent the same native path. To ensure the final native path is correct, the
DOS path must go through a canonicalization process to convert these
different representations into the same canonical form.

One simple operation undertaken in canonicalization is the handling of
path separators. For native paths, there is only one path separator, the
backslash (\) character. If you use a forward slash (/), the object manager will
treat it as just another filename character. However, DOS paths support both
forward slashes and backslashes as path separators. The canonicalization
process takes care of this by ensuring all forward slashes are converted to back
slashes. Therefore, C:\Windows and C:/Windows are equivalent.

Another canonicalization operation is the resolving of parent directory
references. When writing a DOS path, you might specify a filename with one
dot (.) or two dots (..), each of which has a special meaning. A single dot refers
to the current directory, and the canonicalization process will remove it from
the path. A double dot refers to the parent, so the parent directory will be
removed. Therefore, the path C:\ABC\.\XYZ will get converted to C:\ABC\XYZ,
and C:\ABC\..\XYZ will get converted to C:\XYZ. As with the forward slash,
the native APIs do not know about these special filenames, and will assume
that they’re the names of the file to look up.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

N O T E Most other operating systems, such as Linux, handle this canonicalization process
in the kernel. However, due to the subsystem model. Windows must do the path
canonicalization in user mode, inside the subsystem-specific library. This is to
support any differences in behavior in OS/2 or POSIX environments.

If the DOS path is prefixed with \\?\ or \??\, then the path is not
canonicalized and is instead used verbatim, including any parent directory
references or forward slashes. In some cases, the \??\ prefix can confuse the
Win32 APIs with a current drive-rooted path, resulting in the opening of a path
such as \??\C:\??\Path. It’s unclear why Microsoft added this DOS path type,
considering its potential for confusion.

You can manually convert a Win32 path to a native path using the Get-
NtFilePath command. You can also check the path type using the Get-
NtFilePathType command. Listing 3-20 shows some examples of using
the Get-NtFilePath and Get-NtFilePathType:

PS> Set-Location $env:SystemRoot
PS C:\Windows> Get-NtFilePathType "."
Relative
PS C:\Windows> Get-NtFilePath "."
\??\C:\Windows
PS C:\Windows> Get-NtFilePath "..\"
\??\C:\

PS C:\Windows> Get-NtFilePathType "C:ABC"
DriveRelative
PS C:\Windows> Get-NtFilePath "C:ABC"
\??\C:\Windows\ABC

PS C:\Windows> Get-NtFilePathType "\\?\c:\abc/..\xyz"
LocalDevice
PS C:\Windows> Get-NtFilePath "\\?\c:\abc/..\xyz"
\??\c:\abc/..\xyz

Listing 3-20 Examples of Win32 file path conversion

If you’re using the Get-NtFile or New-NtFile commands, you can
use the Win32Path property to treat the path as a Win32 path and
automatically convert it.

Maximum Path Lengths

The maximum filename supported by Windows is limited by the
maximum number of characters in a UNICODE_STRING (namely, 32,767
characters). However, Win32 APIs have a stricter requirement. By default,
passing a path longer than the value of MAX_PATH, defined as 260 characters,

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

will fail. This behavior is implemented inside the NTDLL API
RtlDosPathNameToNtPathName when converting the path from Win32
to native format, as shown in Listing 3-21.

PS> $path = "C:\$('A'*256)"
PS> $path.Length
259
PS> Get-NtFilePath -Path $path
\??\C:\AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA...

PS> $path += "A"
PS> $path.Length
260
PS> Get-NtFilePath -Path $path
Get-NtFilePath : "(0xC0000106) - A specified name string is too long..."

PS> $path = "\\?\" + $path
PS> $path.Length
264
PS> Get-NtFilePath -Path $path
\??\C:\AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA...

Listing 3-21 Testing the Win32 MAX_PATH path limit

We call the RtlDosPathNameToNtPathName API via the Get-
NtFilePath command. The first path we create is 259 characters long,
which we can successfully convert to a native path. We then add one more
character to the path, making the path 260 characters long; now, it fails with
the error STATUS_NAME_TOO_LONG. If MAX_PATH is 260, shouldn’t 259-
character-long path succeed? Unfortunately, no: the APIs include the NUL-
terminating character as part of the path’s length, so the maximum path length
is really only 259 characters.

Listing 3-21 also shows a way of bypassing this limitation. By adding the
device prefix \\?\ to the path, the conversion succeeds even though the length
of the path is now 264 characters. This is because the prefix is replaced with
the DOS device prefix \??\, and the remaining path is left verbatim. While this
technique works, note that it also disables useful features, such as path
canonicalization. In current versions of Windows, there is a way of opting into
long filenames, shown in Listing 3-22.

PS> $path = "HKLM\SYSTEM\CurrentControlSet\Control\FileSystem"
PS> Get-NtKeyValue -Win32Path $path -Name "LongPathsEnabled"
Name Type DataObject
---- ---- ----------
LongPathsEnabled Dword 1

PS> (Get-Process -Id $pid).Path | Get-ExecutableManifest |
Select-Object LongPathAware
LongPathAware

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

 1 True

2 PS> $path = "C:\$('A'*300)"
PS> $path.Length
303
PS> Get-NtFilePath -Path $path
\??\C:\AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA...

Listing 3-22 Checking and testing long, path-aware applications

The first thing we do in Listing 3-22 is verify that the
LongPathsEnabled registry value is set to the value 1. The value must be
set to 1 before the process starts, as it will be read only once during process
initialization. However, just enabling the long path feature isn’t sufficient, the
process’s executable file must opt-in by specifying a manifest property. We
can query this property using the Get-ExecutableManifest command
and selecting LongPathAware. Fortunately, PowerShell has this manifest
option enabled 1. We can now convert much larger paths successfully, as
shown with a 303-character path 2.

Are long paths a security issue? It’s common for security issues to be
introduced in places where there is an interface boundary. In this case, the fact
that a filesystem can support exceptionally long paths could lead to the
incorrect assumption that a filepath can never be longer than 260 characters. A
possible issue might occur when an application queries the full path to a file
and then copies that path into a memory buffer with a fixed size of 260
characters. If the length of the filepath is not first checked, this operation could
result in the corruption of memory after the buffer, which might allow an
attacker to gain control of the application’s execution.

Process Creation

Processes are the main way to execute user-mode components and isolate
them for security purposes, so it’s important that we explore how to create
them in detail. In the previous chapter, I mentioned that you can create a
process using the NtCreateUserProcess system call. However, most
processes won’t be created directly using this system call; rather, they’ll be
created with the Win32 CreateProcess API.

The system call isn’t often used directly, because CreateProcess
needs to interact with other user-mode components, especially CSRSS, to
correctly initialize the process for use on the user’s desktop. We won’t discuss
process and thread creation in great detail in this book. In this section, we’ll

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

give a quick overview of the New-Win32Process PowerShell command,
which calls CreateProcess under the hood.

Command Line Parsing

The simplest way to create a new process is to specify a command line
string representing the executable to run. The CreateProcess API will
then parse the command line to find the executable file to pass to the kernel.

To test this command line parsing, let’s create a new process using the
New-Win32Process PowerShell command, which executes
CreateProcess under the hood. We could use a built-in command such as
Start-Process to do this, but New-Win32Process is useful because it
exposes the full set of the CreateProcess APIs functionality. You can start
a process using the following command:

PS> $proc = New-Win32Process -CommandLine "notepad test.txt"

We provide a command line containing the name of the executable to run,
Notepad, and the name of a file to open, test.txt. This string doesn’t necessarily
need to provide a full path to the executable, The New-Win32Process
command will parse the command line to try and distinguish the name of the
initial executable image file from the file to open. That’s not as simple of a
process as it sounds.

The first thing New-Win32Process will do is parse the command line
using an algorithm that splits on whitespace, unless that whitespace is enclosed
in double quotes. In this case, it will parse the command line into two strings,
notepad and test.txt. The command then takes the first string and tries
to find a matching process; however, there’s a slight complication: there is no
notepad executable file, only notepad.exe. Though it’s not required, Windows
executables commonly have an .exe extension, so the search algorithm will
automatically append this extension if one doesn’t already exist.

The command will then search the following locations for the executable,
much like the DLL path searching we previously discussed. Note that the
executable search path is the same as the unsafe DLL search path:

1. The same directory as the current process’s executable file

2. The current working directory

3. The Windows SYSTEM32 directory

4. The Windows directory

5. Each semicolon-separated location in the PATH environment variable

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

If New-Win32Process can’t find notepad.exe, it will next try to find
the file notepad test.txt, in case that’s what you meant. As the filename has an
extension already, it won’t replace it with .exe. If New-Win32Process can’t
find the file, it returns an error. Note that if we passed notepad surrounded
by double quotes, as in "notepad" test.txt, then New-
Win32Process would search for notepad.exe only and never fall back to
trying all combinations of the name with the whitespace.

This command line parsing behavior has two security implications. Firstly,
if the process is being created by a more privileged process and a less
privileged user can write a file to a location earlier in the path search list, then
the process could be hijacked. For example, if the privileged process’s current
directory is set to a directory the user can write to, then any process it creates
that is not an executable directly would be searched first.

The second security implication is that the path-searching algorithm
changes if the first value contains a path separator. In this case, instead of
using the path-searching rules, New-Win32Process splits the path by
whitespace and then tries each component as if it’s a path, searching for the
name either with the .exe extension or without. Let’s look at an example. If we
specify a command line of C:\Program Files\abc.exe, then the
following paths would be searched for the executable file:

• C:\Program

• C:\Program.exe

• C:\Program Files\abc.exe

• C:\Program Files\abc.exe.exe

If the user could write the file C:\Program or C:\Program.exe, then they
could hijack execution. Fortunately, on a default installation of Windows, a
normal user can’t write files to the root of system drive; however,
configuration changes sometimes allow this writing. Also, the executable path
might be on a different drive that does allow writing to the root.

To avoid both security implications, the caller can specify the executable’s
full path name by setting the ApplicationName property when calling
New-Win32Process:

PS> $proc = New-Win32Process -CommandLine "notepad test.txt"
-ApplicationName "c:\windows\notepad.exe"

If we specify the path, the command will pass it verbatim to the new
process.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Shell APIs

If you double-click a non-executable filetype, such as a text document, in
Explorer, it will helpfully start an editor for you. However, if you try to run a
document with New-Win32Process, you’ll get the error shown below:

PS> New-Win32Process -CommandLine "document.txt"
Exception calling "CreateProcess": "%1 is not a valid Win32 application"

This error indicates that the text file is not a valid Win32 application.

The reason Explorer can start the editor is that it doesn’t use the
underlying CreateProcess API directly; instead, it uses a shell API. The
main shell API used to start the editor for a file is ShellExecuteEx,
implemented in the SHELL32 library. This API, and its simpler sibling
ShellExecute, are much too complex to cover into detail here. Instead,
we’ll give just a brief overview of them.

For our purposes, we need to specify three parameters to
ShellExecuteEx:

• The path to the file to execute

• The verb to use on the file

• Any additional arguments

The first thing ShellExecute does is look up the handler for the
extension of the file to execute. For example, if the file is test.txt, then it needs
to lookup the handler for the .txt extension. The handlers are registered in the
registry under the HKEY_CLASSES_ROOT key, which, as we saw in Chapter
2, is a merged view of parts of the machine software and the user’s registry
hive. In Listing 3-23, we query the handler:

PS> $base_key = "NtKey:\MACHINE\SOFTWARE\Classes"
1 PS> Get-Item "$base_key\.txt" | Select-Object -ExpandProperty Values

Name Type DataObject
---- ---- ----------
Content Type String text/plain
PerceivedType String text
 2 String txtfile

3 PS> Get-ChildItem "$base_key\txtfile\Shell" | Format-Table
Name TypeName
---- --------
open Key
print Key
printto Key

4 PS> Get-Item "$base_key\txtfile\Shell\open\Command" |

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Select-Object -ExpandProperty Values | Format-Table
Name Type DataObject
---- ---- ----------
 5 ExpandString %SystemRoot%\system32\NOTEPAD.EXE %1

Listing 3-23 Querying the shell handler for .txt files

We start by querying the machine class’s key for the .txt extension 1.
Although we could have checked for a user-specific key, checking the machine
class’s key ensures that we inspect the system default. The .txt registry key
doesn’t directly contain the handler. Instead, the default value, represented by
an empty name, refers to another key, in this case the txtfile 2. We then list
the subkeys of txtfile and find three keys: open, print, and printto 3 We
can pass these verbs by name to ShellExecute.

Each of these verb keys can have a subkey, called Command, that contains
a command line to execute 4. We can see that the default for a .txt file is to
open Notepad 5; the %1 is replaced with the path to the file being executed.
(The command could also contain %*, which includes any additional
arguments passed to ShellExecute.) The CreateProcess API can now
start the executable and handle the file.

There are many different standard verbs you can pass to
ShellExecute. Table 3-3 shows a list of common ones you’ll encounter.

Table 3-3 Common Shell Verbs and Descriptions

Verb Description
Open Open the file; this is typically the default.
Edit Edit the file.
Print Print the file.
Printto Print to a specified printer.
Explore Explore a directory; this is used to open a directory in an Explorer window.
Runas Open the file as an Administrator. Typically, defined for executables only.
runasuser Open the file as another user. Typically, defined for executables only.

You might find it odd that there is both an open and an edit verb. If you
opened a .txt file, for example, the file would open in Notepad, and you’d be
able to edit it. But the distinction is useful for files such as batch files, where
the open verb would execute the file and edit would open it in a text editor.

To use ShellExecute from PowerShell, you can run the Start-
Process command. By default, ShellExecute will use the open verb, but
you can specify your own verb using the Verb parameter. Below, we print a
.txt file as an administrator using the print verb:

PS> Start-Process "test.txt" -Verb "print"

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Verb configurations can also to improve security. For example,
PowerShell scripts with a .ps1 extension have the open verb registered.
However, clicking a script will open the script file in Notepad rather than
executing the script. Therefore, if you double-click the script file in Explorer, it
won’t execute. Instead, you must right-click the file and explicitly choose Run
with PowerShell.

The full details of the shell APIs are out of scope for this book; as you
might expect, the full picture is not quite as simple as I’ve shown here.

System Processes

Throughout this chapter, I’ve alluded to various processes, such as
LSASS, that run with high privileges. This is because, even when no user is
logged in to the operating system, the system still needs to perform tasks like
waiting for authentication, managing hardware, and communicating over the
network.

The kernel could perform some of these tasks. However, writing kernel
code is more difficult for a number of reasons: the kernel doesn’t have as wide
a range of APIs available; it’s resource constrained, especially in terms of
memory; and any coding mistake could result in the system crashing or being
exposed to a security vulnerability.

To avoid these challenges, Windows runs a variety of processes outside of
kernel mode, with a high-privilege level, to provide important facilities. We’ll
go through some of these special processes in this section.

The Session Manager

The session manager (SMSS) is the first user-mode process started by the
kernel after boot. It’s responsible for setting up the working environment for
subsequent processes. Some of its responsibilities include:

• Loading known DLLs and creating the section objects

• Starting subsystem processes such as CSRSS

• Initializing base DOS devices such as serial ports

• Running automatic disk-integrity checks

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

The Windows Logon Process

The windows logon process is responsible for setting up a new console
session, as well as displaying the Logon user interface (primarily through the
LogonUI application). It’s also responsible for starting the user-mode font
driver (UMFD) process, which renders fonts to the screen, and starting the
desktop window manager (DWM) process, which performs desktop
compositing operations to allow for fancy, transparent windows and modern
GUI touches.

The Local Security Authority Subsystem

We’ve already mentioned LSASS in the context of the SRM. However,
it’s worth stressing its important role in authentication. Without LSASS, a user
would not be able to log on to the system. We’ll cover LSASS’s roles and
responsibilities in much more detail in Chapter 10.

The Service Control Manager

The service control manager (SCM) is responsible for starting most
privileged system processes on Windows. It manages these processes, referred
to as services, and can start and stop them as needed. For example, the SCM
could start a service based on certain conditions, such as a network becoming
available.

Each service is a securable resource with fine-grained controls
determining which users can manipulate its state. By default, only an
administrator can manipulate a service. I’ll note some of the most important
services running on any Windows system:

Remote Procedure Call Subsystem (RPCSS)
The RPCSS service manages the registration of remote procedure call
endpoints, exposing the registration to local clients as well as over the network.
This service is essential to a running system; in fact, if this process crashes, it
will force Windows to reboot.

DCOM Server Process Launcher
The DCOM Server Process Launcher is a counterpart to RPCSS (and used to
be part of the same service). It’s used to start Component Object Model
(COM) server processes on behalf of local or remote client.

Task Scheduler
Being able to schedule an action to run at a specific time and date is a useful
feature of an operating system. For example, perhaps you want to ensure that

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

you delete unused files on a specific schedule. You could set up an action with
the task scheduler service to run a cleanup tool on that schedule.

Windows Installer
This service can be used to install new programs and features. By running as a
privileged service, it permits installation and modification in normally
protected locations on the filesystem.

Windows Update
Having a fully up-to-date operating system is crucial to the security of your
Windows system. When Microsoft releases new security fixes, they should be
installed as soon as possible. To avoid requiring the user to check for updates,
this service runs in the background, waking up periodically to check the
internet for new patches.

Application Information
This service provides a mechanism for a user to switch between an
administrator and non-administrator user on the same desktop. This feature is
usually referred to as user account control (UAC). You can start an
administrator process by using the runas verb with the shell APIs. We’ll
cover how UAC works under the hood in the next chapter.

We can query the status of all services controlled by the SCM using
various tools. PowerShell has the built-in Get-Service command; however,
the modules used in this book provide a more comprehensive command, Get-
Win32Service, which can inspect the configured security of a service as
well as additional properties not exposed using the default command. Listing
3-24 shows how to query for all current services.

PS> Get-Win32Service
Name Status ProcessId
---- ------ ---------
AarSvc Stopped 0
AESMService Running 7440
AJRouter Stopped 0
ALG Stopped 0
AppIDSvc Stopped 0
Appinfo Running 8460
--snip--

Listing 3-24 Displaying all services using Get-Win32Service

The output shows the name of the service, its status, either Stopped or
Running, and if it’s running, the process ID of the service process. If you list
the service’s properties using Format-List, you’ll also be able to see
additional information, such as a full description of the service.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Worked Examples

Let’s walk through some worked examples to practice using the various
commands covered in this chapter for security research or systems analysis.

Finding Executables That Import Specific APIs

We saw earlier how to use the Get-Win32ModuleImport command
to extract an executable file’s imported APIs. One use for this command that I
find especially helpful when I’m trying to track down security issues is
identifying all the executables that use a particular API, such as
CreateProcess, and then using this list to reduce the files I need to reverse
engineer. You can perform such a search with the basic PowerShell script
shown in Listing 3-25.

PS> $imps = ls "$env:WinDir*.exe" | ForEach-Object {
 Get-Win32ModuleImport -Path $_.FullName
}
PS> $imps | Where-Object Names -Contains "CreateProcessW" |
Select-Object ModulePath
ModulePath

C:\WINDOWS\explorer.exe
C:\WINDOWS\unins000.exe

Listing 3-25 Finding executables that import CreateProcess

We start by enumerating all .exe files in the Windows directory. For every
executable file, we call the Get-Win32ModuleImport command. This will
load the module and parse its imports. The process of loading each executable
and parsing its imports can be time consuming, so it’s best to capture the
results into a variable, as we do here.

Next, we select out only the imports that contain the CreateProcessW
API. The Names property is a list containing the imported names for a single
DLL. To get the resulting list of executable files that import a specific API, we
can select the ModulePath property, which contains the original loaded path
name.

You can use the same technique to enumerate DLL files or drivers and
quickly discover targets for reverse engineering.

Finding Hidden Registry Keys or Values

Earlier in this chapter, we mentioned that one of the big advantages of
using the native system calls over the Win32 APIs to interact with the registry

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

is that you can access keys and values with NUL characters in the name. It
would be useful to be able to find these keys and values so you can try to
detect software on your system that is actively trying to hide registry keys or
values from the user. Some malware families, such as Kovter and Poweliks,
use this technique of hiding keys. Let’s start by finding keys with NUL
characters in the name (Listing 3-27).

PS> $key = New-NtKey -Win32Path "HKCU\SOFTWARE\`0HIDDENKEY"
PS> ls NtKeyUser:\SOFTWARE -Recurse | Where-Object Name -Match "`0"
Name TypeName
---- --------
SOFTWARE\ HIDDENKEY Key

PS> Remove-NtKey $key
PS> $key.Close()

Listing 3-26 Finding hidden registry keys

We first create a key in the current user’s hive with a NUL character in it.
If you try to find this key using the built-in registry provider, it will fail. We do
a recursive listing of the current user’s hive and select any keys that have a
NUL character in the name. In the output, you can see that the hidden key was
discovered.

To find hidden values, you can query the list of values on a key by
enumerating its Values property. Each value contains the name of the key
and the data value (Listing 3-27).

1 PS> $key = New-NtKey -Win32Path "HKCU\SOFTWARE\ABC"
PS> Set-NtKeyValue -Key $key -Name "`0HIDDEN" -String "HELLO"

2 PS> function Select-HiddenValue {
 [CmdletBinding()]
 param(
 [parameter(ValueFromPipeline)]
 $Key
)

 Process {
 3 foreach($val in $Key.Values) {
 if ($val.Name -match "`0") {
 [PSCustomObject]@{
 RelativePath = $Key.RelativePath
 Name = $val.Name
 Value = $val.DataObject
 }
 }
 }
 }
}

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

4 PS> ls -Recurse NtKeyUser:\SOFTWARE | Select-HiddenValue | Format-Table

RelativePath Name Value
------------ ---- -----
SOFTWARE\ABC HIDDEN HELLO

PS> Remove-NtKey $key
PS> $key.Close()

Listing 3-27 Finding hidden registry values

We start by creating a normal key, then adding a value with a NUL
character in the name 1. We then define a function, Select-HiddenValue
2, that will check keys in the pipeline and select any value with a NUL
character in the name, returning a custom object to the pipeline 3.

We then recursively enumerate the current user’s hive and filter the keys
through the Select-HiddenValue function 4. You can see in the output
that we discovered the hidden value.

Wrapping Up

This chapter provided a quick tour through the Windows user-mode
components. We started with a dive into Win32 APIs and the loading of DLLs.
Understanding this topic is important, as it reveals how user-mode applications
communicate with the kernel and implement common features.

Next, I provided an overview of Win32 GUI, including a description of
the separate system call table used for WIN32K, which is the kernel-mode
component of the WIN32 subsystem. I introduced the window station and
desktop object types and outlined the purpose of the console session, as well as
how it corresponds to the desktop you see as a user.

I then returned to the topic of Win32 APIs by detailing the differences and
similarities between a Win32 API, in this case CreateMutexEx, and the
underlying system call, NtCreateMutant. This discussion should have
given you a better understanding of how the Win32 APIs interact with the rest
of the operating system. I also introduced the differences between DOS device
paths and native paths as understood by a system call, a topic that is important
for understanding how user-mode applications interact with the filesystem.

I concluded with a description of several topics related to Win32 processes
and threads: the APIs used to create processes directly or through the shell, as
well as an overview of well-known system processes. In later chapters, we’ll

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

revisit many of these topics in more depth. In the next three chapters, we’ll
focus on how Windows implements security through the SRM.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

4
S E C U R I T Y A C C E S S T O K E N S

The security access token, or token for short, is at the
heart of Windows security. The SRM uses tokens to
represent identities, such as user accounts, and then
grant or deny them access to resources. Windows
represents tokens with Token kernel objects, which
contain, at a minimum, the specific identity they
represent, any security groups the identity belongs to,
and the special privileges the identity has been granted.

Like other kernel objects, tokens support Query and Set
information system calls, which allow the user to inspect the
properties of a token and set certain properties. Though less
commonly used, some Win32 APIs also expose these Set and

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Query system calls: for example, GetTokenInformation
and SetTokenInformation.

Let’s start with an overview of the two main types of tokens
you’ll encounter when analyzing a Windows system’s security.
We’ll then detail many of the important properties a token
contains. You’ll need to understand these before we can discuss
access checking in Chapter 7.

Primary Tokens

Every process has an assigned token that describes its identity
for any resource-access operation. When the SRM performs an
access check, it will query the process’s token and use it to
determine what kind of access to grant. When a token is used for
a process, it’s called a primary token.

You can open a process’s token using the
NtOpenProcessToken system call, which will return a
handle that you can use to query token information. Because the
Token object is a securable resource, the caller needs to pass an
access check to get the handle. Note you also need a handle to the
process with QueryLimitedInformation access to be able
to query the token.

When opening a Token object, you can request the following
access rights:

AssignPrimary
Assigns the Token object as a primary token

Duplicate
Duplicates the Token object

Impersonate
Impersonates the Token object

Query
Queries the properties of the Token object, such as its groups
and privileges

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

QuerySource
Queries the source of the Token object

AdjustPrivileges
Adjusts a Token object’s privilege list

AdjustGroups
Adjust a Token object’s group list

AdjustDefault
Adjusts properties of a Token object not covered by the other
access rights

AdjustSessionId
Adjusts the Token object’s session ID

We can see a list of accessible processes and their tokens by
running the PowerShell command Show-NtToken -All. This
should open the Token Viewer application, as in Figure 4-1.

Figure 4-1 The Token Viewer, which lists all accessible processes and their tokens

The list view provides only a simple overview of the available
tokens. If you want to see more information, double-click one of
the process entries to bring up a detailed view of the token, as
shown in Figure 4-2.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Figure 4-2 The detailed view for a process’s Token object

Let’s highlight a few important pieces of information in the
token view shown in Figure 4-2. At the top 1 is the user’s name
and SID. The Token object stores only the SID. However, the
view will display the name if it’s available.

Next is an indication of the type of token 2. As we’re
inspecting a primary token, the Token Type is set to
Primary. The impersonation level is used only for
impersonation tokens, which we’ll discuss in the next section. It’s
not needed for primary tokens, so it’s set to N/A.

In the middle of the dialog is a list of four 64-bit integer
identifiers 3:

Token Identifier
A unique value assigned when the Token object was created.

Authentication Identifier

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

A value that indicates the logon session the token belongs to.

Origin Login Identifier
The authentication identifier of the parent logon session.

Modified Identifier
A unique value that is updated when certain token values are
modified.

The LSASS creates a logon session when a user authenticates
to a Windows machine. The logon session tracks authentication-
related resources for a user; for example, it stores a copy of the
user’s credentials so that they can be reused. During the logon
session creation process, the SRM generates a unique
authentication identifier value used to reference the correct logon
session. Therefore, for a given logon session, all user tokens will
have the same authentication identifier. If a user authenticates
twice to the same machine, the SRM will generate different
authentication identifiers.

The origin login identifier indicates who created the token’s
logon session. If you authenticate a different user on your desktop
(by calling the LogonUser API with a username and password,
for example), then the origin login identifier will serve as the
calling token’s authentication identifier. Notice that this field in
Figure 4-2 shows the value 00000000-000003E7, one of four
fixed authentication identifiers defined by the SRM. In this case,
it indicates the SYSTEM logon session. Table 4-1 shows these
fixed values, along with the SID for the user account associated
with the session:

Table 4-1 Authentication Identifiers and User SIDs for Fixed Logon Sessions

Authentication
identifier

User SID Logon session username

00000000-000003E4 S-1-5-20 NT AUTHORITY\NETWORK SERVICE

00000000-000003E5 S-1-5-19 NT AUTHORITY\LOCAL SERVICE

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

00000000-000003E6 S-1-5-7 NT AUTHORITY\ANONYMOUS LOGON

00000000-000003E7 S-1-5-18 NT AUTHORITY\SYSTEM

After the identifiers in Figure 4-2 is the integrity level of the
token 4. Windows Vista first added the integrity level to
implement a simple mandatory access control mechanism,
whereby systemwide policies enforce access to resources, rather
than allowing an individual resource to specify its access. We’ll
discuss integrity levels later in this chapter in “Token Groups” on
page XX.

The final highlighted value in Figure 4-2 is the session ID 5, a
number assigned to the console session the process is attached to.
Even though the console session is a property of the process, the
value is specified in the process’s token.

LOCALLY UNIQUE IDENTIFIERS (LUIDS)

I mentioned that a token’s identifiers are 64-bit integers. Technically, they’re really Locally Unique
Identifier (LUID) structures. LUID structures contain two 32-bit values put together, turning them into
one 64-bit integer. LUIDs are a common system type, and the SRM uses them often when it needs a
unique value. For example, they’re used to uniquely identify privilege values.

You can allocate your own LUID by calling the NtAllocateLocallyUniqueId system call or the
Get-NtLocallyUniqueId PowerShell command. When you use a system call, Windows ensures it
has a central authority for generating the next unique ID; reusing a value might be catastrophic. For
instance, if an LUID is reused for a token’s authentication ID, it might overlap with one of the system’s,
defined in Table 4-1. The reuse could trick the system into thinking a more privileged user is accessing
a resource, resulting in privilege escalation.

The Token Viewer GUI is great if you want to manually
inspect a token’s information. For programmatic access, we can
open a Token object in PowerShell using the Get-NtToken
command. Use the following to get the current process’s token:

PS> $token = Get-NtToken

If you want to open the token for a specific process, you can
use the following command, replacing <PID> with the process
ID of the target process:

PS> $token = Get-NtToken -ProcessId <PID>

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

The result of the Get-NtToken command is a Token
object whose properties you can query. For example, you can
display the token’s user, as shown in Listing 4-1.

PS> $token.User
Name Attributes
---- ----------
GRAPHITE\user None

Listing 4-1 Displaying the user via a Token object’s properties

Use the Format-NtToken command to output basic
information to the console, as shown in Listing 4-2.

PS> Format-NtToken $token -All
USER INFORMATION

Name Attributes
---- ----------
GRAPHITE\user None

GROUP SID INFORMATION

Name Attributes
---- ----------
GRAPHITE\None Mandatory, EnabledByDefault
Everyone Mandatory, EnabledByDefault
--snip--

Listing 4-2 Displaying properties of a token using Format-NtToken

You can pass the opened Token object to Show-NtToken
to display the same GUI shown in Figure 4-2.

Impersonation Tokens

The other type of token you’ll encounter is the impersonation
token. Impersonation tokens are most important for system
services, as they allow a process with one identity to temporarily
impersonate another identity for the purposes of an access check.
For example, a service might need to open a file belonging to
another user while performing some operation. By allowing that
service to impersonate the calling user, the system grants the
service access to the file, even if the service couldn’t open the file
directly.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Impersonation tokens are assigned to threads, not processes.
This means that only the code running in that thread will take on
the impersonated identity. There are three ways an impersonation
token can be assigned to a thread:

• By explicitly granting a Token object Impersonate
access and a Thread object SetThreadToken access

• By explicitly granting a Thread object
DirectImpersonation access

• Implicitly, by impersonating a remote procedure call (RPC)
request

You’re most likely to encounter implicit token assignment, as
it’s the most common case for system services, which expose
RPC mechanisms. For example, if a service creates a named pipe
server, it can impersonate clients that connect to the pipe using
the ImpersonateNamedPipe API. When a call is made on
the named pipe, the kernel captures an impersonation context
based on the calling thread and process. This impersonation
context is used to assign an impersonation token to the thread that
calls ImpersonateNamedPipe. The impersonation context
can be based on either an existing impersonation token on the
thread or a copy of the process’s primary token.

Security Quality of Service

What if you don’t want to give the service the ability to
impersonate your identity? The SRM supports a feature called
Security Quality of Service (SQoS) that enables you to control
this. When you open a named pipe using the filesystem APIs, you
can pass a SECURITY_QUALITY_OF_SERVICE structure in
the SecurityQualityOfService field of the
OBJECT_ATTRIBUTES structure. The SqoS structure contains
three configuration values: the impersonation level, the context
tracking mode, and the effective token mode.

The impersonation level in the SqoS is the most important
field for controlling what the server can do with your identity. It
defines the level of access granted to the service when it

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

implicitly impersonates the caller. The level can be one of four
values, in ascending order of privilege:

Anonymous is the lowest level. It prevents the service
opening the Token object and querying the user’s identity.
Only a limited set of services would function if the caller
specified this level.

Identification allows the service to open the Token object
and query the user’s identity, groups, and privileges.
However, the thread cannot open any secured resources while
impersonating the user.

Impersonation allows the service to fully exercise the
user’s identity on the local system. The service can open local
resources secured by the user and manipulate them. It can also
access remote resources for the user if the user has locally
authenticated to the system. However, if the user
authenticated over a network connection, such as SMB, then
the service can’t use the Token object to access remote
resources.

Delegation is the highest level, enabling the service to
open all local and remote resources as if they were the user.
To access a remote resource from network-authenticated
users, however, it’s not enough to have this impersonation
level. The Windows domain must also be configured to allow
it. We’ll discuss this impersonation level more in Chapter 14
on Kerberos authentication.

You can specify the impersonation level in the SqoS either
when calling a service or when creating a copy of an existing
token. To restrict what a service can do, specify the Identification
or Anonymous levels. As a result, the service won’t be able to
access any resources, although at Identification level, the server
will still be able to access the token and perform operations on the
caller’s behalf.

Let’s run a test using the Invoke-NtToken PowerShell
command. In Listing 4-3, we impersonate a token at a specified
level and execute a script that opens a secured resource. We

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

specify the impersonation level using the
ImpersonationLevel property.

PS> $token = Get-NtToken
PS> Invoke-NtToken $token {
 Get-NtDirectory -Path “\”
} -ImpersonationLevel Impersonation
Name NtTypeName
---- ----------
 Directory
PS> Invoke-NtToken $token {
 Get-NtDirectory -Path “\”
} -ImpersonationLevel Identification
Get-NtDirectory : (0xC00000A5) — A specified impersonation level is invalid.
--snip—

Listing 4-3 Impersonating a token at different levels and opening a secured resource

The first command we execute gets a handle to the current
process’s primary token. We then call Invoke-NtToken to
impersonate the token at the Impersonation level and run a script
that calls Get-NtDirectory to open the root OMNS
directory. The open operation succeeds, and we print the
directory object to the console.

We repeat the operation, now at the Identification level, and
receive the error 0xC00000A5, or
STATUS_BAD_IMPERSONATION_LEVEL. Note that the open
operation doesn’t return an “access denied” error because the
SRM doesn’t get far enough to check whether the impersonated
user can access the resource. Now you’ll know the reason for this
error if you see it when developing an application or using the
system.

ANONYMOUS USERS

The Anonymous impersonation level is not the same as the anonymous logon user referenced in
Table 4-1. It’s possible to run with an anonymous user identity and be granted access to a resource by
an access check, whereas an Anonymous-level token cannot pass any access check, regardless of
how the resource’s security is configured.

The kernel implements the NtImpersonateAnonymousToken system call, which will
impersonate the anonymous user on a specified thread. You can also access the anonymous user
token using Get-NtToken:

PS> Get-NtToken -Anonymous | Format-NtToken
NT AUTHORITY\ANONYMOUS LOGON

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

The other two fields in the SqoS are used less frequently, but
they’re still important. The context tracking mode determines
whether to statically capture the user’s identity when a connection
is made to the service. If the identity is not statically captured,
then if the caller impersonates another user before calling the
service, the new impersonated identity will become available to
the service, not to the process identity. Note that the impersonated
identity can be passed to the service only if it’s at the
Impersonation or Delegation levels. If the impersonated token is
at the Identification or Anonymous levels, the SRM generates a
security error and rejects the impersonation operation.

Effective token mode changes the token passed to the server in
a different way. It’s possible to disable groups and privileges
before making a call, and if effective token mode is disabled, the
server can re-enable those groups and privileges and use them.
However, if effective token mode is enabled, the SRM will strip
out the groups and privileges so that the server can’t re-enable
them or use them.

By default, if no SqoS structure is specified when opening the
IPC channel, the caller’s level is Impersonation with static
tracking and a non-effective token. If an impersonation context is
captured and the caller is already impersonating, then the
impersonation level of the thread token must be greater or equal
to the Impersonation level; otherwise, the capture will fail. This is
enforced even if the SqoS requests the Identification level. This is
an important security feature; it prevents a caller at Identification
level and below from calling over an RPC channel and pretending
to be another user.

N O T E I’ve described how SqoS is specified at the native system call level,
as the SECURITY_QUALITY_OF_SERVICE structure is not
exposed through the Win32 APIs directly. Instead, it’s usually
specified using additional flags; for example, CreateFile
exposes SqoS by specifying the SECURITY_SQOS_PRESENT flag.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Explicitly Impersonating a Token

There are two ways to impersonate a token explicitly. If you
have an impersonation Token object handle with
Impersonate access, you can assign it to a thread using the
NtSetInformationThread system call and the
ThreadImpersonationToken information class.

If, instead, you have a thread you want to impersonate with
DirectImpersonation access, you can use the other
mechanism. With the handle to a source thread, you can call the
NtImpersonateThread system call and assign an
impersonation token to another thread. Using
NtImpersonateThread is a mix between explicit and
implicit impersonation. The kernel will capture an impersonation
context as if the source thread has called over a named pipe. You
can even specify the SqoS structure to the system call.

You might be thinking that impersonation surely opens up a
giant security backdoor. If I set up my own named pipe and
convince a privileged process to connect to me, and the caller
doesn’t set SqoS to limit access, couldn’t I gain elevated
privileges? We’ll come back to how this is prevented later in this
chapter in “Token Assignment” on page XX.

Converting Between Token Types

You can convert between the two token types using
duplication. When you duplicate a token, the kernel creates a new
Token object and makes a deep copy of all the object’s
properties. While the token is duplicating, you can change its
type.

This duplication operation differs from the handle duplication
we discussed in Chapter 3, as duplicating a handle to a token
would merely create a new handle pointing to the same Token
object. To duplicate the actual Token object, you need to have
Duplicate access rights on the handle.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

You can then use either the NtDuplicateToken system
call or the Copy-NtToken PowerShell command to duplicate
the token. For example, to create an impersonation token at the
Delegation level based on an existing token, use the script in
Listing 4-4.

PS> $imp_token = Copy-NtToken -Token $token -ImpersonationLevel Delegation
PS> $imp_token.ImpersonationLevel
Delegation
PS> $imp_token.TokenType
Impersonation

Listing 4-4 Duplicating a token to create an impersonation token using Copy-NtToken

We can convert the impersonation token back to a primary
token using Copy-NtToken again, as shown in Listing 4-5.

PS> $pri_token = Copy-NtToken -Token $imp_token -Primary
PS> $pri_token.TokenType
Primary
PS> $pri_token.ImpersonationLevel
Delegation

Listing 4-5 Converting an impersonation token to a primary token

Note something interesting in the output: the new primary
token has the same impersonation level as the original token. This
is because the SRM considers only the TokenType property; if
the token is a primary token, the impersonation level is ignored.

Seeing as we can convert an impersonation token back to a
primary token, you might be wondering: could we convert an
Identification-level or Anonymous-level token back to a primary
token, create a new process, and bypass the SqoS settings? Let’s
try it in Listing 4-6.

PS> $imp_token = Copy-NtToken -Token $token -ImpersonationLevel Identification
PS> $pri_token = Copy-NtToken -Token $imp_token -Primary
Exception: "(0xC00000A5) - A specified impersonation level is invalid.

Listing 4-6 Duplicating an Identification-level token back to a primary token

Listing 4-6 shows that we can’t duplicate an Identification-
level token back to a primary token, as the second line causes an
exception. The operation would break a security guarantee of the

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

SRM (specifically, that the SQoS allows the caller to control how
its identity is used).

A final note: if you’re opening a token using Get-NtToken,
you can perform the duplication operation in one step by
specifying the -Duplicate command.

Pseudo Token Handles

To access a token, you must open a handle to the Token
object, then remember to close the handle after use. Windows 10
introduced three pseudo handles that allow you to query token
information without opening a full handle to a kernel object. Here
are those three handles, with their handle values parentheses:

Primary (-4)
The primary token for the current process

Impersonation (-5)
The impersonation token for the current thread; fails if the thread
is not impersonating

Effective (-6)
The impersonation token, if it is impersonating; otherwise, the
primary token

Unlike the current process/thread pseudo handles, you can’t
duplicate these token handles; you can use them for certain
limited uses only, such as querying information or performing
access checks. The Get-NtToken command can return these
handles if you specify the Pseudo parameter, as shown in
Listing 4-7.

PS> Invoke-NtToken -Anonymous {Get-NtToken -Pseudo -Primary | Get-NtTokenSid}
Name Sid
---- ---

1 GRAPHITE\user S-1-4-21-2318445812-3516008893-216915059-1002

PS> Invoke-NtToken -Anonymous {Get-NtToken -Pseudo -Impersonation | Get-
NtTokenSid}
Name Sid
---- ---

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

2 NT AUTHORITY\ANONYMOUS LOGON S-1-4-7

PS> Invoke-NtToken -Anonymous {Get-NtToken -Pseudo -Effective | Get-
NtTokenSid}
Name Sid
---- ---

3 NT AUTHORITY\ANONYMOUS LOGON S-1-4-7

PS> Invoke-NtToken -Anonymous {Get-NtToken -Pseudo -Effective} | Get-
NtTokenSid
Name Sid
---- ---

4 GRAPHITE\user S-1-4-21-2318445812-3516008893-216915059-1002

Listing 4-7 Querying pseudo tokens

We’ve queried the three types of pseudo tokens while
impersonating the anonymous user. The first command queries
the primary token and extracts its user SID 1. The next command
queries the impersonation token, which returns the anonymous
user SID 2. We then query the effective token, and as we’re
impersonating the anonymous user, and return the anonymous
user SID 3. Finally, we query the effective token again, but this
time, wait until after the script block has executed to extract the
user SID. This operation returns the primary token’s user SID 4,
demonstrating that the pseudo token is context sensitive.

Token Groups

If administrators had to secure every resource for each
possible user, identity security would become too unwieldy to
manage. Groups allow users to share a broader security identity.
Most of the access control operations on Windows grant access to
groups rather than individual users.

From the SRM’s perspective, a group is just another SID that
could potentially define access to a resource. We can display the
groups in the PowerShell console using the Get-
NtTokenGroup command, as shown in Listing 4-8.

PS> Get-NtTokenGroup $token
Name Attributes
---- ----------
GRAPHITE\None Mandatory, EnabledByDefault, Enabled

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Everyone Mandatory, EnabledByDefault, Enabled
BUILTIN\Users Mandatory, EnabledByDefault, Enabled
BUILTIN\Performance Log Users Mandatory, EnabledByDefault, Enabled
NT AUTHORITY\INTERACTIVE Mandatory, EnabledByDefault, Enabled
--snip--

Listing 4-8 Querying the current token’s groups

You can also use Get-NtTokenGroup to filter for specific
attribute flags by specifying the Attributes parameter. Table
4-2 shows the possible attribute flags you can pass the command.

Table 4-2 Group Attributes, in SDK and PowerShell Format

SDK attribute name PowerShell attribute name
SE_GROUP_ENABLED Enabled
SE_GROUP_MANDATORY Mandatory
SE_GROUP_ENABLED_BY_DEFAULT EnabledByDefault
SE_GROUP_LOGON_ID LogonId
SE_GROUP_OWNER Owner
SE_GROUP_USE_FOR_DENY_ONLY UseForDenyOnly
SE_GROUP_INTEGRITY Integrity
SE_GROUP_INTEGRITY_ENABLED IntegrityEnabled
SE_GROUP_RESOURCE Resource

The following sections describe what each of these flags
means.

Enabled, EnabledByDefault, and Mandatory

The most important flag is Enabled. When it’s set, the SRM
considers the group during the access-check process; otherwise, it
will ignore the group. Any group with the
EnabledByDefault attribute set is automatically enabled.

It’s possible to disable a group using the
NtAdjustGroupsToken system call if you have
AdjustGroups access on the token handle; the Set-
NtTokenGroup PowerShell command exposes this system call.
However, you can’t disable groups that have the Mandatory
flag set.

While all groups in a normal user’s token have the
Mandatory flag, certain system tokens have non-mandatory
groups. If a group is disabled when you pass an impersonation

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

token over RPC and the effective token flag is set in SQoS, the
impersonation token will delete the group.

LogonId

The LogonId flag identifies any SID that is granted to all
tokens on the same desktop. For example, if you run a process as
a different user using the runas utility, the new process’s token
will have the same logon SID as the caller, even though it’s a
different identity. This behavior allows the SRM to grant access
to session-specific resources, such as the session object directory.
The SID is always in the format S-1-4-4-X-Y, where X and Y
are the two 32-bit values of a LUID that was allocated when the
authentication session was created. We’ll come back to the logon
SID and where it applies in the next chapter.

Owner

All securable resources on the system belong to either a group
SID or a user SID. Tokens have an Owner property that contains
a SID to use as the default owner when creating a resource. The
SRM allows only a specific set of the users’ SIDs to be specified
in the Owner property: either the user’s SID, or any group SID
that is marked with the Owner flag.

You can get or set the token’s current Owner property using
the Get-NtTokenSid command. For example, Listing 4-9 gets
the owner SID from the current token, then tries to set the owner.

PS> Get-NtTokenSid $token -Owner
Name Sid
---- ---
GRAPHITE\user S-1-4-21-818064984-378290696-2985406761-1002

PS> Set-NtTokenSid -Owner -Sid "S-1-2-3-4"
Exception setting "Owner": "(0xC000005A) - Indicates a particular Security ID
may not be assigned as the owner of an object.

Listing 4-9 Getting and setting the token’s owner SID

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

In the second command we run, we try to set the Owner
property to the SID S-1-2-3-4. As this SID isn’t our current
user SID or in our list of groups, it fails with an exception.

UseForDenyOnly

The SRM’s access check either allows or denies access to a
SID. But when a SID is disabled, it will no longer participate in
allow or deny checks, which can result in incorrect access
checking.

Let’s give a simple example. Imagine there are two groups,
Employee and Remote Access. A user creates a document that
they want all employees to read except for those remotely
accessing the system, as the content of the document is sensitive,
and the user doesn’t want it to leak. The document is configured
to grant all members of the Employee group access but to deny
access to users in the Remote Access group.

Now imagine that a user belonging to both those groups could
disable a group when accessing a resource; they could simply
disable Remote Access to be granted access to the document
based on the Employee group, trivially circumventing the access
restrictions.

For this reason, a user will rarely be allowed to disable
groups. However, in certain cases, such as sandboxing, you’ll
want to be able to disable a group so that it can’t be used to
access a resource. The UseForDenyOnly flag solves the
problem. When a SID is marked with this flag, it won’t be
considered when checking for allow access but will still be
considered in deny-access checks. A user can mark their own
groups as UseForDenyOnly by filtering their token and using
it to create a new process. We’ll discuss token filtering later in
this chapter, when we describe restricted tokens in “Sandbox
Tokens” on page XX.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Integrity and IntegrityEnabled

The Integrity and IntegrityEnabled attribute flags
indicate that a SID represents the token’s integrity level and is
enabled. Group SIDs marked with the Integrity attribute flag
store this integrity level as a 32-bit number in their final RID. The
integrity SID is issued by the label security authority, which has
the value 16. The RID can be any arbitrary value; however, there
are seven pre-defined levels in the SDK, as shown in Table 4-3.
Only the first six are in common use and accessible from a user
process:

Table 4-3 Pre-Defined Integrity Level Values

Integrity
Level

SDK Name PowerShell Name

0 SECURITY_MANDATORY_UNTRUSTED_RID Untrusted
4096 SECURITY_MANDATORY_LOW_RID Low
8192 SECURITY_MANDATORY_MEDIUM_RID Medium
8448 SECURITY_MANDATORY_MEDIUM_PLUS_RID MediumPlus
12288 SECURITY_MANDATORY_HIGH_RID High
16384 SECURITY_MANDATORY_SYSTEM_RID System
20480 SECURITY_MANDATORY_PROTECTED_PROCESS_RID ProtectedProcess

The default level for a user is Medium. Administrators are
usually assigned High, and services are assigned System. We
can query a token’s integrity level SID using Get-
NtTokenSid, as shown in Listing 4-11.

PS> Get-NtTokenSid $token -Integrity
Name Sid
---- ---
Mandatory Label\Medium Mandatory Level S-1-16-8192

Listing 4-10 Getting the token’s integrity level SID

We can also set a new token integrity level if it’s less than or
equal to the current value. It’s possible to increase it, but this
requires special privileges and having SeTcbPrivilege
enabled. While you can set the entire SID, it’s usually more
convenient to set just the value. For example, the script in Listing
4-11 will set the current token’s integrity level to the Low level.

PS> Set-NtTokenIntegrityLevel Low -Token $token
PS> Get-NtTokenSid $token -Integrity
Name Sid

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

---- ---
Mandatory Label\Low Mandatory Level S-1-16-4096

Listing 4-11 Setting token integrity level to Low

If you run the script, you might find that you start to get errors
in your PowerShell console due to blocked file access. We’ll
discuss why file access is blocked when we cover mandatory
integrity control in Chapter 7.

Resource

The final attribute flag deserves only a passing mention. The
Resource attribute indicates that the group SID is a domain
local SID. We’ll come back to this SID type in Chapter 10.

Device Groups

A token can also have a separate list of device groups. These
group SIDs are added when a user authenticates to a server over a
network in an enterprise environment, as shown in Listing 4-12.

PS> Get-NtTokenGroup -Device
Name Attributes
---- ----------
BUILTIN\Users Mandatory, EnabledByDefault, Enabled
AD\CLIENT1$ Mandatory, EnabledByDefault, Enabled
AD\Domain Computers Mandatory, EnabledByDefault, Enabled
NT AUTHORITY\Claims Value Mandatory, EnabledByDefault, Enabled
--snip--

Listing 4-12 Displaying device groups using Get-NtTokenGroup

 You can query the groups on the token by using Get-
NtTokenGroup and passing the Device parameter.

Privileges

Groups allow system administrators to control a user’s access
to specific resources. Privileges, in contrast, are granted to a user
to allow them to short-circuit certain security checks for all types
of resources, such as by bypassing an access check. A privilege

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

can also apply to certain privileged actions, like changing the
system’s clock. You can view a token’s privileges in the console
using Get-NtTokenPrivilege (Listing 4-13).

PS> Get-NtTokenPrivilege $token
Name Luid Enabled
---- ---- -------
SeShutdownPrivilege 00000000-00000013 False
SeChangeNotifyPrivilege 00000000-00000017 True
SeUndockPrivilege 00000000-00000019 False
SeIncreaseWorkingSetPrivilege 00000000-00000021 False
SeTimeZonePrivilege 00000000-00000022 False

Listing 4-13 Listing token privileges using Get-NtTokenPrivilege

The output is split into three columns. The first column is the
privilege’s common name. As with SIDs, the SRM does not use
this name directly; instead, it uses the privilege’s LUID value,
which we can see in the second column. The last column
indicates whether the privilege is currently enabled. Privileges
can be in an enabled or disabled state.

Any check for a privilege should make sure that the privilege
is enabled and not just present. In certain circumstances, such as
sandboxing, a token might have a privilege listed, but the sandbox
restrictions might prevent it from being marked as enabled. The
Enabled flag is really a set of attribute flags, like the attributes
for the group SIDs. We can view these attributes by formatting
the privileges as a list (Listing 4-14).

PS> Get-NtTokenPrivilege $token -Privileges SeChangeNotifyPrivilege | Format-
List
Name : SeChangeNotifyPrivilege
Luid : 00000000-00000017
Attributes : EnabledByDefault, Enabled
Enabled : True
DisplayName : Bypass traverse checking

Listing 4-14 Display all properties of the SeChangeNotifyPrivilege privilege

In the output, we can now see the attributes, which include
both Enabled and EnabledByDefault. The
EnabledByDefault attribute specifies whether the default
state of the privilege is to be enabled. We also now see an

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

additional DisplayName property, used to provide additional
information to a user.

To modify the state of a token’s privileges, you need
AdjustPrivileges access on the token handle; then, you can
use the NtAdjustPrivilegesToken system call to adjust
the attributes and enable or disable a privilege. The Enable-
NtTokenPrivilege and Disable-NtTokenPrivilege
PowerShell commands expose this system call, as shown in
Listing 4-15.

PS> Enable-NtTokenPrivilege SeTimeZonePrivilege -Token $token -PassThru
Name Luid Enabled
---- ---- -------
SeTimeZonePrivilege 00000000-00000022 True

PS> Disable-NtTokenPrivilege SeTimeZonePrivilege -Token $token -PassThru
Name Luid Enabled
---- ---- -------
SeTimeZonePrivilege 00000000-00000022 False

Listing 4-15 Enabling and disabling the SeTimeZonePrivilege

Using the NtAdjustPrivilegesToken API, it’s also
possible to remove a privilege entirely by specifying the Remove
attribute, which you can accomplish with the Remove-
NtTokenPrivilege PowerShell command. Removing a
privilege ensures that the token can never use it again. If you only
disable the privilege, then it could be re-enabled inadvertently.
Listing 4-16 shows how to remove a privilege.

PS> Get-NtTokenPrivilege $token -Privileges SeTimeZonePrivilege
Name Luid Enabled
---- ---- -------
SeTimeZonePrivilege 00000000-00000022 False

PS> Remove-NtTokenPrivilege SeTimeZonePrivilege -Token $token
PS> Get-NtTokenPrivilege $token -Privileges SeTimeZonePrivilege
WARNING: Couldn't get privilege SeTimeZonePrivilege

Listing 4-16 Removing a privilege from a token

To check privileges, a user application can call the
NtPrivilegeCheck system call, while kernel code can call
the SePrivilegeCheck API. You might be wondering
whether we couldn’t just manually test whether a privilege is

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

enabled rather than using a dedicated system call. In this instance,
yes; however, it’s always worth using system facilities where
possible in case you make a mistake in your implementation or
haven’t considered some edge case. The Test-
NtTokenPrivilege PowerShell command wraps the system
call, as shown in Listing 4-17.

PS> Set-NtTokenPrivilege SeChangeNotifyPrivilege
PS> Set-NtTokenPrivilege SeTimeZonePrivilege -Disable

PS> Test-NtTokenPrivilege SeChangeNotifyPrivilege
True

PS> Test-NtTokenPrivilege SeTimeZonePrivilege, SeChangeNotifyPrivilege -All
False

PS> Test-NtTokenPrivilege SeTimeZonePrivilege, SeChangeNotifyPrivilege
-All -PassResult
EnabledPrivileges AllPrivilegesHeld
----------------- -----------------
{SeChangeNotifyPrivilege} False

Listing 4-17 Performing privilege checks

Listing 4-17 shows some example privilege checks using
Test-NtTokenPrivilege. We start by enabling
SeChangeNotifyPrivilege and disabling
SeTimeZonePrivilege . These are common privileges
granted to all users, but you might need to change the example if
your token doesn’t have them. We then test for just
SeChangeNotifyPrivilege; it’s enabled, so it returns
True. Next, we check for both SeTimeZonePrivilege and
SeChangeNotifyPrivilege; we can see that we don’t have
all the privileges, so it returns False. Finally, we run the same
command but specify the -PassResult option to return the full
check result. We can see in the EnabledPrivileges column
that only SeChangeNotifyPrivilege is enabled.

The following are some of the privileges available on the
system:

SeChangeNotifyPrivilege
This privilege name is misleading. It allows a user to receive
notifications of changes to the filesystem or registry, but it’s also

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

used to bypass traversal checking. We’ll discuss traversal
checking in Chapter 8.

SeAssignPrimaryTokenPrivilege and
SeImpersonatePrivilege
These privileges allow the user to bypass the assigning primary
token and impersonation checks, respectively. Unlike most
privileges on this list, these must be enabled on the current
process’s primary token, not on an impersonation token.

SeBackupPrivilege and SeRestorePrivilege
These privileges allow the user to bypass the access check when
opening specific resources, like files or registry keys. This lets the
user back up and restore resources without needing to be granted
access to them explicitly. These privileges have also been
repurposed for other users: for example, the restore privilege
allows a user to load arbitrary registry hives.

SeSecurityPrivilege and SeAuditPrivilege
The first of these privileges allows a user to be granted the
AccessSystemSecurity access right on a resource. This
allows the user to modify the resource’s auditing configuration.
The SeAuditPrivilege privilege allows a user to generate
arbitrary object audit messages from a user application. We’ll
discuss auditing in Chapter 5 and 6.

SeCreateTokenPrivilege
This privilege should be given to only a very select group of
users, as it grants the ability to craft arbitrary tokens using the
NtCreateToken system call.

SeDebugPrivilege
The name of this privilege implies that it’s necessary for

debugging processes. However, that’s not really the case, as
it’s possible to debug a process without it. The privilege does
allow the user to bypass any access check when opening a
process or thread object.

SeTcbPrivilege
The name of this privilege comes from trusted computing base

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

(TCB), a term used to refer to the privileged core of the Windows
operating system, including the kernel. The privilege is a catch-all
for privileged operations not covered by a more specific privilege.
For example, it allows users to bypass the check for increasing
the integrity level of a token (up to the limit of the System
level), but also to specify a fallback exception handler for a
process, two operations that have little in common.

SeLoadDriverPrivilege
We can load a new kernel driver through the NtLoadDriver
system call, although it’s more common to use the SCM. This
privilege is required to successfully execute that system call. Note
that having this privilege doesn’t allow you circumvent kernel
driver checks such as code signing.

SeTakeOwnershipPrivilege and
SeRelabelPrivilege
These privileges have the same immediate effect: they allow a
user to be granted WriteOwner access to a resource, even if the
normal access control wouldn’t allow it.
SeTakeOwnershipPrivilege allows a user to take
ownership of a resource, as having WriteOwner is necessary
for that purpose. SeRelabelPrivilege bypasses checks on
the mandatory label of a resource; normally, you can only set a
label to be equal or lower than the caller’s integrity level. Setting
the mandatory label also requires WriteOwner access on a
handle, as we’ll see in Chapter 6.

We’ll show specific examples of these privileges’ uses in later
chapters, when we discuss security descriptors and access checks.
For now, let’s turn to ways of restricting access through
sandboxing.

Sandbox Tokens

In our connected world, we must process a lot of untrusted
data. Attackers might craft data for malicious purposes, such as to
exploit a security vulnerability in a web browser or a document
reader. To counter this threat, Windows provides a method of

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

restricting the resources a user can access by placing any
processes of theirs that handle untrusted data into a sandbox. If
the process is compromised, the attacker will have only a limited
view of the system won’t be able to access the user’s sensitive
information. Windows implements sandboxes through three
special token types: restricted tokens, write-restricted tokens, and
lowbox tokens.

Restricted Tokens

The restricted token type is the oldest sandbox token in
Windows. It was introduced as a feature in Windows 2000 but not
used widely as a sandbox until the introduction of the Google
Chrome web browser. Other browsers, such as Firefox, have
since replicated Chrome’s sandbox implementation, as have
document readers such as Adobe Reader.

You can create a restricted token using the
NtFilterToken system call or the
CreateRestrictedToken Win32 API, which let you specify
a list of restricted SIDs to limit the resources the token will be
permitted to access. The SIDs do not have to already be available
in the token. For example, Chrome’s most restrictive sandbox
specifies the NULL SID (S-1-0-0) as the only restricted SID.
The NULL SID is never granted to a token as a normal group.

Any access check must allow both the normal list of groups as
well as the list of restricted SIDs; otherwise, the user will be
denied access, as we’ll discuss in detail in Chapter 7. The
NtFilterToken system call can also mark normal groups with
the UseForDenyOnly attribute flag and delete privileges. We
can combine the ability to filter a token with restricted SIDs or
use it on its own, to create a lesser-privileged token without more
comprehensive sandboxing.

It’s easy to build a restricted token that can’t access any
resources. Such a restriction produces a good sandbox but also
makes it impossible to use the token as a process’s primary token,
as the process won’t be able to start. This puts a serious limitation
on how effective a sandbox using restricted tokens can be. Let’s

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

create a restricted token and extract the results with the script in
Listing 4-18.

PS> $token = Get-NtToken -Filtered -RestrictedSids RC -SidsToDisable WD
-Flags DisableMaxPrivileges

PS> Get-NtTokenGroup $token -Attributes UseForDenyOnly
Name Attributes
---- ----------
Everyone UseForDenyOnly

PS> Get-NtTokenGroup $token -Restricted
Name Attributes
---- ----------
NT AUTHORITY\RESTRICTED Mandatory, EnabledByDefault, Enabled

PS> Get-NtTokenPrivilege $token
Name Luid Enabled
---- ---- -------
SeChangeNotifyPrivilege 00000000-00000017 True

PS> $token.Restricted
True

Listing 4-18 Creating a restricted token and displaying groups and privileges

We start by creating a restricted token using the Get-
NtToken command. We specify one restricted SIDs: RC, which
maps to a special NT AUTHORITY\RESTRICTED SID that is
commonly configured for system resources to permit read access.
We also specify that we want to convert the Everyone group
(WD) to UseForDenyOnly. Finally, we specify a flag to disable
the maximum number of privileges.

Next, we display the properties of the token, starting with all
normal groups, using the UseForDenyOnly attribute. The
output shows that only the Everyone group has the flag set. We
then display the restricted SIDs list, which shows the NT
AUTHORITY\RESTRICTED SID. Finally, we display the
privileges.

Note that even though we’ve asked to disable the maximum
privileges, the SeChangeNotifyPrivilege is still there.
This privilege is not deleted, as it can become very difficult to
access resources without it. If you really want to get rid of it, you

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

can specify it explicitly to NtFilterToken or delete it after the
token has been created.

Finally, we query the token property that indicates whether
it’s a restricted token.

INTERNET EXPLORER PROTECTED MODE

The first sandboxed web browser on Windows was Internet Explorer 7, introduced in Windows
Vista. Internet Explorer 7 used the ability to lower the integrity level of a process’s token to restrict the
resources the browser could write to. Windows 8 ultimately replaced this simple sandbox, called
protected mode, with a new type of token, the lowbox token, which we’ll describe in “AppContainer and
Lowbox Tokens” on page XX. The lowbox token provided greater isolation (called enhanced protected
mode). It’s interesting to note that Microsoft didn’t use restricted tokens even though they had been
available since Windows 2000.

Write-Restricted Tokens

A write-restricted token prevents write access to a resource
but allows read and execute access. You can create a write-
restricted token by passing the WRITE_RESTRICTED flag to
NtFilterToken.

Windows XP SP2 introduced this token type to harden system
services. It is much easier to use as a sandbox than restricted
tokens, as you don’t need to worry about the token not being able
to read critical resources such as DLLs. However, it creates a less
useful sandbox. For example, if you can read files for a user, you
might be able to steal their private information, such as passwords
stored by a web browser, without needing to escape the sandbox.

For completeness, let’s create a write-restricted token and
view its properties (Listing 4-19).

PS> $token = Get-NtToken -Filtered -RestrictedSids WR -Flags WriteRestricted
PS> Get-NtTokenGroup $token -Restricted
Name Attributes
---- ----------
NT AUTHORITY\WRITE RESTRICTED Mandatory, EnabledByDefault, Enabled

PS> $token.Restricted
True

PS> $token.WriteRestricted

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

True

Listing 4-19 Creating a write-restricted token

We start by creating a write-restricted token using the Get-
NtToken command. We specify one restricted SID, WR, which
maps to a special NT AUTHORITY\WRITE RESTRICTED SID
that is equivalent to NT AUTHORITY\RESTRICTED but
assigned to write access on specific system resources. We also
specify the WriteRestricted flag to make a write-restricted
token rather than a normal restricted token.

Next, we display the token’s properties. In the list of restricted
SIDs, we see NT AUTHORITY\WRITE RESTRICTED. If we
display the Restricted property, we find that the token is
considered restricted. However, it’s also marked as
WriteRestricted.

AppContainer and Lowbox Tokens

Windows 8 introduced the AppContainer sandbox to protect a
new Windows application model. AppContainer implements its
security using a lowbox token. You can create a lowbox token
from an existing token with the NtCreateLowBoxToken
system call. There is no direct equivalent Win32 API for this
system call, but you can create an AppContainer process using
the CreateProcess API. We won’t go into more detail here
on how to create a process using this API; instead, we’ll focus
only on the lowbox token.

When creating a lowbox token, you need to specify a package
SID and a list of capability SIDs. Both SID types are issued by
the package authority (which has the value of 15) You can
distinguish between package SIDs and capability SIDS by
checking their first RID, which should be 2 and 3, respectively.
The package SID works like the user’s SID in the normal token,
whereas the capability SIDs act like restricted SIDs. We’ll leave
the actual details of how these affect an access check to Chapter
7.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Capability SIDs modify the access check process but can
mean something in isolation. For example, there’s capabilities to
allow network access that are handled specially by the Windows
Firewall even through that’s not directly related to access
checking. There are two types of capability SIDs:

Legacy. A small set of predefined SIDs introduced in
Windows 8.

Named
The SID’s RIDs, derived from a textual name

Appendix A contains a more comprehensive list of named
capability SIDs. Table 4-4 shows the legacy capabilities.

Table 4-4 Legacy Capability SIDs

Capability name SID
Your Internet connection S-1-15-3-1

Your Internet connection, including incoming connections from the Internet S-1-15-3-2

Your home or work networks S-1-15-3-3

Your pictures library S-1-15-3-4

Your videos library S-1-15-3-5

Your music library S-1-15-3-6

Your documents library S-1-15-3-7

Your Windows credentials S-1-15-3-8

Software and hardware certificates or a smart card S-1-15-3-9

Removable storage S-1-15-3-10

Your Appointments S-1-15-3-11

Your Contacts S-1-15-3-12

Internet Explorer S-1-15-3-
4096

We can use Get-NtSid to query for package and capability
SIDs (Listing 4-20).

PS> Get-NtSid -PackageName 'my_package' -ToSddl
1 S-1-15-2-4047469452-4024960472-3786564613-914846661-3775852572-3870680127-

2256146868

2 PS> Get-NtSid -PackageName 'my_package' -RestrictedPackageName "CHILD" -ToSddl
S-1-15-2-4047469452-4024960472-3786564613-914846661-3775852572-3870680127-
2256146868-951732652-158068026-753518596-3921317197

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

PS> Get-NtSid -KnownSid CapabilityInternetClient -ToSddl

3 S-1-15-3-1

4 PS> Get-NtSid -CapabilityName registryRead -ToSddl
S-1-15-3-1024-1065365936-1281604716-3511738428-1654721687-432734479-
3232135806-4053264122-3456934681

5 PS> Get-NtSid -CapabilityName registryRead -CapabilityGroup -ToSddl
S-1-5-32-1065365936-1281604716-3511738428-1654721687-432734479-3232135806-
4053264122-3456934681

Listing 4-20 Creating package and capability SIDs

We create two package SIDs and two capability SIDs. We
generate the first package SID by specifying its name to Get-
NtSid and receive the resulting SID 1. This package SID is
derived from the lowercase form of the name hashed with the
SHA256 digest algorithm. The 256-bit digest is broken up into
seven 32-bit chunks that act as the RIDs. The final 32-bit value of
the digest is discarded.

Windows also supports a restricted package SID. This
restricted package SID is designed to allow a package to create
new secure child packages that can’t interact with each other. The
classic Edge web browser used this feature to separate internet-
and intranet-facing children so that if one was compromised, it
couldn’t access data in the other. To create the child, you use the
original package family name plus a child identifier 2. The
created SID extends the original package SID with another four
RIDs, as you can see in the output.

The first capability SID 3 is a legacy capability for internet
access. Note that the resulting SDDL SID has one additional RID
value (1). The second SID is derived from a name 4, in this case
the name registryRead, which is used to allow read access to
a group of system registry keys. Like the package SID, the named
capability RIDs are generated from the SHA256 hash of the
lowercase name. To differentiate between legacy and named
capability SIDs, the second RID is set to 1024 followed by the
SHA256 hash. You can generate your own capability SIDs using
this method, although there’s not much you can do with the
capability unless some resource is configured to use it.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Windows also supports a capability group, a group SID that
can be added to the normal list of groups 5. A capability group
sets the first RID to 32 and the rest of the RIDs to the same
SHA256 hash that was derived from the capability name. Now
that we’ve got the SIDs, we can create a lowbox token using
Get-NtToken (Listing 4-21).

1 PS> $token = Get-NtToken -LowBox -PackageSid 'my_package'
-CapabilitySid "registryRead", "S-1-15-3-1"

2 PS> Get-NtTokenGroup $token -Capabilities | Select-Object Name
Name

NAMED CAPABILITIES\Registry Read
APPLICATION PACKAGE AUTHORITY\Your Internet connection

3 PS> $package_sid = Get-NtTokenSid $token -Package -ToSddl
PS> $package_sid
S-1-15-2-4047469452-4024960472-3786564613-914846661-3775852572-3870680127-
2256146868

4 PS> Get-NtTokenIntegrityLevel $token
Low

PS> $token.Close()

Listing 4-21 Creating an AppContainer token and listing its properties

Let’s go through each of these steps. First, we call Get-
NtToken, passing it the package name (though the SID as
SDDL would also work). We also pass it the list of capabilities to
assign to the lowbox token 1. We can then query for the list of
capabilities 2. Notice that the names of the two capability SIDs
are different: the SID derived from a name is prefixed with the
NAMED CAPABILITIES. There’s no way of converting a
named capability SID back to the name it was derived from; the
PowerShell module must generate the name based on a large list
of known capabilities. The second SID is a legacy SID, so
LSASS can resolve it back to a name.

Next, we query the package SID 3. As the package SID is
derived from a name using SHA256, it’s not possible to resolve
back to the package name. Again, the PowerShell module has a
list of names that it can use to work out what the original name
was.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

An lowbox token is always set to the Low integrity level 4. In
fact, if a privileged user changes the integrity level to Medium or
above, all lowbox properties, such as package SIDs and capability
SIDs, are removed, and the token reverts non-sandbox token.

We’ve covered making a user less privileged by converting
their token into a sandbox token. We’ll now go to the other side,
and look at what makes a user privileged enough to administrate
the Windows system.

What Makes an Administrator User?

If you come from a Unix background, you’ll know user ID 0
as the administrator account, or root. As root, you can access any
resource and configure the system however you’d like. When you
install Windows, the first account you configure will also be an
administrator. However, unlike root, the account won’t have
special SID that the system treats differently. So, what makes an
administrator account on Windows?

The basic answer is that Windows is configured to give
certain groups and privileges special access. Administrator access
is inherently discretionary, meaning it’s possible to be an
administrator but still be locked out of resources; there is no real
equivalent of a root account (although the SYSTEM user comes
close).

Administrators generally have three characteristics. First,
when you configure a user to be an administrator, you typically
add them to the BUILTIN\Administrators group, then
configure Windows to allow access to the group when performing
an access check. For example, the system folders, such as
C:\Windows, are configured to allow the group to create new files
and directories.

Second, administrators are granted access to “God”
privileges, which effectively circumvent the system’s security
controls. For example, SeDebugPrivilege allows a user to
get full access to any other process or thread on the system, no

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

matter what security it has been assigned. With access to a
process, it’s possible inject code into it and run as a different user,
even if that other user is an administrator.

Third, administrators run at an integrity level above Medium.
An administrator runs at the High level, whereas system services
run at the System level. By increasing the administrator’s
integrity level, we make it harder to accidentally leave
administrator resources, especially processes and threads,
accessible to non-administrators. A common misconfiguration is
granting weak access control to a resource; however, if the
resource is also marked with an integrity level above Medium,
then non-administrator users won’t be able to write to the
resource.

A quick way to check whether a token is an administrator is to
the check the Elevated property on the Token object. This
property indicates whether the token has certain groups and
available privileges found in a fixed list in the kernel. Listing 4-
23 shows an example for a non-administrator.

PS> $token = Get-NtToken
PS> $token.Elevated
False

Listing 4-22 The elevated property for a non-administrator

If the token has one of the following “God” privileges, it’s
automatically considered elevated.

• SeCreateTokenPrivilege

• SeTcbPrivilege

• SeTakeOwnershipPrivilege

• SeLoadDriverPrivilege

• SeBackupPrivilege

• SeRestorePrivilege

• SeDebugPrivilege

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

• SeImpersonatePrivilege

• SeRelabelPrivilege

• SeDelegateSessionUserImpersonatePrivilege

The privilege doesn’t have to be enabled, just available in the
token.

For elevated groups, the kernel doesn’t have a fixed list of
SIDs; instead, it inspects only the last RID of the SID. If the RID
is set to one of the following values, then the SID is considered
elevated: 114, 498, 512, 516, 517, 518, 519, 520, 521, 544, 547,
548, 549, 550, 551, 553, 554, 556, and 569. For example, the
BUILTIN\Administrators group is S-1-4-32-544. As
544 is in this list, the SID is considered elevated. (Note that the
SID S-1-1-2-3-4-544 would also be considered elevated,
even though there is nothing special about it.)

HIGH INTEGRITY LEVEL DOESN’T EQUAL ADMINISTRATOR

It’s a common misconception that if a token has a High integrity level, it’s an administrator token.
However, the Elevated property doesn’t check a token’s integrity level, just its privileges and groups.
The BUILTIN\Administrators group would still function with a lower integrity level, allowing access
to resources such as the Windows filesystem directory. The only restriction is that “God” privileges can’t
be enabled if the integrity level is less than High.

It is also possible for a non-administrator to run with a High integrity level, as in the case of UI
access processes, which sometimes run at a High integrity level but are not granted any special
privileges or groups to make them an administrator.

User Account Control

I mentioned that when you install a new copy of Windows,
the first user you create is always an administrator. It’s important
to configure the user in this way; otherwise, it would be
impossible to modify the system and install new software.

However, prior to Windows Vista, this default behavior was a
massive security liability, because average consumers would
install the default account and likely never change it. This meant
that most people used a full administrator account for everyday
activities like surfing the web. If a malicious attacker were able to

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

exploit a security issue in the user’s browser, the attacker would
get full control over the Windows machine. In the days prior to
widespread sandboxing, this threat proved serious.

In Vista, Microsoft changed this default behavior by
introducing User Account Control (UAC) and the split-token
administrator. In this model the default user remains an
administrator; however, by default, all programs run with a token
whose administrator groups and privileges have been removed.
When a user needs to perform an administrative task, the system
elevates a process to a full administrator and shows a prompt, like
the one in Figure 4-3, requesting the user’s confirmation before
continuing.

Figure 4-3 The User Account Control consent dialog for privilege elevation

To make using Windows easier for users, you can configure a
program to force this elevation when it’s started. A program’s
elevation property is stored in a manifest XML file embedded in
the executable image. Run the example in Listing 4-23 to get the
manifest information for all the executables in the SYSTEM32
directory.

PS> ls c:\windows\system32*.exe | Get-ExecutableManifest
Name UiAccess AutoElevate ExecutionLevel
---- -------- ----------- --------------
aitstatic.exe False False asInvoker
alg.exe False False asInvoker
appidcertstorecheck.exe False False asInvoker
appidpolicyconverter.exe False False asInvoker
ApplicationFrameHost.exe False False asInvoker

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

appverif.exe False False highestAvailable
--snip—

Listing 4-23 Querying executable manifest information

If it’s a special, Microsoft-approved program, the manifest
can specify whether the program should be automatically, and
silently, elevated, as indicated by the AutoElevate column.
The manifest also indicates whether the process can run with UI
access, a topic we’ll discuss later in “User Account Control” on
page XX. There are three possible values for the
ExecutionLevel column:

asInvoker
Run the process as the user who created it. This is the default
setting.

highestAvailable
If the user is a split-token administrator, then force elevation to
the administrator token. If not, then run as the user who created
the process.

requireAdministrator
Whether the user is a split-token administrator or not, elevation
will be forced. If the user’s not an administrator, they’ll be
prompted for a password for an administrator account.

When something creates an executable with an elevated
execution level, the application information service calls the RPC
method RAiLaunchAdminProcess. This method checks the
manifest and starts the elevation process, including showing the
consent dialog. It’s also possible to manually elevate any
application using the ShellExecute API and requesting the
runas operation. PowerShell exposes this behavior using the
Start-Process command, as shown below:

PS> Start-Process notepad -Verb runas
When you run this command, you should see the UAC

prompt. If you click the yes button on the prompt, notepad.exe
should run as an administrator on the desktop.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Linked Tokens and Elevation Type

When an administrator authenticates to the desktop, the
system tracks two tokens for the user:

Limited
The unelevated token used for most running processes

Full
The full administrator token, used only after elevation

The name split-token administrator comes from these two
tokens, as the user’s granted access is split between the limited
and full tokens.

Where does the system keep track of the two tokens? The
Token object has a field used to link the tokens together, and we
can query it as a normal user with
NtQueryInformationToken and the
TokenLinkedToken information class. Querying the linked
token for a Limited token returns the Full token, and vice-
versa. In Listing 4-24.

1 PS> Use-NtObject($token = Get-NtToken -Linked) {
 Format-NtToken $token -Group -Privilege -Integrity -Information
}
GROUP SID INFORMATION

Name Attributes
---- ----------

2 BUILTIN\Administrators Mandatory, EnabledByDefault, Enabled, Owner
--snip--

PRIVILEGE INFORMATION

Name Luid Enabled
---- ---- -------
SeIncreaseQuotaPrivilege 00000000-00000005 False

3 SeSecurityPrivilege 00000000-00000008 False
SeTakeOwnershipPrivilege 00000000-00000009 False
--snip--

INTEGRITY LEVEL

4 High

TOKEN INFORMATION

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

5 Type : Impersonation

Imp Level : Identification
Auth ID : 00000000-0009361F

6 Elevated : True
7 Elevation Type: Full

Flags : NotLow

Listing 4-24 Displaying properties of the linked token

We first access the linked token by passing the Linked
parameter to Get-NtToken 1. We then format the token to
display its groups, privileges, integrity level, and token
information. In the groups, we can see the
BUILTIN\Administrators group enabled 2. In the
privileges, we find some “God” privileges, such as
SeSecurityPrivilege 3. The combination of the groups
and privileges confirm this is an administrator token.

The integrity level of the token is set to High 4, which, as we
discussed earlier, prevents the token from accidentally leaving
sensitive resources accessible to the non-administrator user. In the
token information, one interesting result is an impersonation
token at Identification level 5. To get a token that can create a
new process, the caller needs SeTcbPrivilege, which means
only system services, such as the application information service,
can get the token. Finally, we can see that the token is marked as
elevated 6, and the that the token elevation type indicates this is
the full token 7. Let’s compare it with the limited token in Listing
4-25.

1 PS> Use-NtObject($token = Get-NtToken) {
 Format-NtToken $token -Group -Privilege -Integrity -Information
}
GROUP SID INFORMATION

Name Attributes
---- ----------

2 BUILTIN\Administrators UseForDenyOnly
--snip--

PRIVILEGE INFORMATION

Name Luid Enabled
---- ---- -------

3 SeShutdownPrivilege 00000000-00000013 False

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

SeChangeNotifyPrivilege 00000000-00000017 True
SeUndockPrivilege 00000000-00000019 False
SeIncreaseWorkingSetPrivilege 00000000-00000021 False
SeTimeZonePrivilege 00000000-00000022 False

INTEGRITY LEVEL

4 Medium

TOKEN INFORMATION

Type : Primary
Auth ID : 00000000-0009369B

5 Elevated : False
6 Elevation Type: Limited
7 Flags : VirtualizeAllowed, IsFiltered, NotLow

Listing 4-25 Displaying properties of the limited token

We get a handle to the current token and format it with the
same formatting we used in Listing 4-24 1. We can see that the
BUILTIN\Administrators group has been converted to a
UseForDenyOnly group 2. Any other group that would match
the elevated RID check would be converted in the same way.

Next, the output shows only five privileges 3. These are the
only five privileges that the limited token can have. Even if a
privilege isn’t considered a “God” privilege such as the
SeIncreaseQuotaPrivilege we saw in Listing 4-24, it
will be removed from the limited token. The integrity level of the
token is set to Medium, from High in the full token 4. In the
token information, the token is not elevated 5, and the elevation
type indicates that this is the limited token 6.

Finally, the flags contain the value IsFiltered 7. This flag
indicates the token has been filtered using the NtFilterToken
system call. This is because, to create the limited token, LSASS
will first create a new full token so that its authentication ID has a
unique value. (If you compare the Auth ID values in Listing 4-
24 and 4-25, you’ll notice they’re indeed different.) This allows
the SRM to consider the two tokens to be in separate logon
sessions.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

LSASS then passes the token to NtFilterToken with the
LuaToken parameter flag to convert any elevated group to
UseForDenyOnly and delete all privileges other than the five
permitted ones. NtFilterToken does not drop the integrity
level from High to Medium—that must be done separately.
Then, LSASS calls NtSetInformationToken to link the
two tokens together using the TokenLinkedToken
information class.

There is a third type of elevation, default, used for any token
not associated with a split-token administrator:

PS> Use-NtObject($token = Get-NtToken -Anonymous) { $token.ElevationType }
Default

In this example, the anonymous user’s token is not a split-
token administrator, so it has the default token elevation type.

UI Access

One of the other security features introduced in Windows
Vista is User Interface Privilege Isolation (UIPI), which prevents
a lower-privileged process from programmatically interacting
with the user interface of a more privileged process. This is
enforced using integrity levels, and it’s another reason UAC
administrators run at a High integrity level.

But UIPI presents a problem for applications that are designed
to interact with the user interface, such as screen readers and
touch keyboards. To get around this limitation without granting
the process too much privilege, a token can set a UI access flag.
Whether a process is granted UI access depends on the
uiAccess setting in the executable’s manifest file.

This UI access flag signals to the desktop environment that it
should disable the UIPI checks. In Listing 4-26, we query for this
flag in a suitable process, the On-Screen Keyboard (OSK).

PS> $process = Start-Process "osk.exe" -PassThru
PS> $token = Get-NtToken -ProcessId $process.Id
PS> $token.UIAccess
True

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Listing 4-26 Querying the UI access flag in the On-Screen Keyboard primary token

We start the OSK and open its Token object to query the UI
access flag. To set this flag, the caller needs the
SeTcbPrivilege privilege. The only way to create a UI
access process as a normal user is to use the UAC service.
Therefore, any UI access process needs to be started with
ShellExecute, which is why we used Start-Process in
Listing 4-26. This all happens behind the scenes when you create
the UI access application.

Virtualization

Another problem introduced in Vista because of UAC is the
question of how to handle legacy applications, which expect to be
able to write to administrator-only locations such as the Windows
folder or the Local Machine Registry Hive. Vista implemented a
special workaround: if a virtualization flag is enabled on the
primary token, it will silently redirect writes from these locations
to a per-user store. This made it seem to the process as if it had
successfully added resources to secure locations.

By default, the virtualization flag is enabled on legacy
applications automatically. However, you can specify it manually
by setting a property on the primary token. Run the commands in
Listing 4-27 in a non-administrator shell.

1 PS> $file = New-NtFile -Win32Path c:\windows\hello.txt -Access GenericWrite
New-NtFile : (0xC0000022) - {Access Denied}
A process has requested access to an object, but has not been granted those
access rights.

PS> $token = Get-NtToken

2 PS> $token.VirtualizationEnabled = $true
3 PS> $file = New-NtFile -Win32Path c:\windows\hello.txt -Access GenericWrite
4 PS> $file.Win32PathName

C:\Users\user\AppData\Local\VirtualStore\Windows\hello.txt

Listing 4-27 Enabling virtualization on the Token object and creating a file in C:\Windows

In Listing 4-27, we first try to create a writeable file,
c:\windows\hello.txt 1. This operation fails with an access denied
exception. We then get the current primary token and set the

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

VirtualizationEnabled property to True 2. When we
repeat the file creation, it now succeeds 3. If we query the
location of the file, we find it’s under the user’s directory in a
virtual store 4. Only normal, unprivileged tokens can enable
virtualization; system service or administrators tokens have
virtualization disabled. You can learn whether virtualization is
permitted by querying the VirtualizationAllowed
property on the Token.

Security Attributes

A token’s security attributes are a list of name-value pairs that
provide arbitrary data. There are three types of security attributes
associated with a token: local, user claims, and device claims.
Each security attribute can have one or more values, which must
all be of the same type. Table 4-5 shows the valid types for a
security attribute.

Table 4-5 Security Attribute Types

Type name Description
Int64 Signed 64-bit integer

UInt64 Unsigned 64-bit integer
String A Unicode string

Fqbn A fully qualified binary name. Contains a version number and a Unicode string.
Sid A SID
Boolean A true or false value, stored as an Int64, with 0 being false and 1 being true
OctetString An arbitrary array of bytes

A set of flags can be assigned to the security attribute to
change aspects of its behavior, such as whether new tokens can
inherit it. Table 4-6 shows the defined flags.

Table 4-6 Security Attribute Flags

Flag name Description
NonInheritable The security attribute can’t be inherited by a child process token
CaseSensitive If the security attribute contains a string value, the comparison should be

case-sensitive
UseForDenyOnly The security attribute is used only when checking for denied access

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

DisabledByDefault The security attribute is disabled by default
Disabled The security attribute is disabled

Mandatory The security attribute is mandatory
Unique The security attribute should be unique on the local system

InheritOnce The security attribute can be inherited once by a child, then should be set
NonInheritable

Almost every process token has the TSA://ProcUnique
security attribute. This security attribute contains a unique LUID
allocated during process creation. We can display its value for the
effective token using Show-NtTokenEffective (Listing 4-
28).

PS> Show-NtTokenEffective -SecurityAttributes
SECURITY ATTRIBUTES

Name Flags ValueType Values
---- ----- --------- ------
TSA://ProcUnique NonInheritable, Unique UInt64 {133, 1592482}

Listing 4-28 Querying the security attributes for the current process

From the output, we can see that the name of the attribute is
TSA://ProcUnique. It has two UInt64 values, which form
a LUID when combined. Finally, it has two flags:
NonInheritable, which means the security attribute won’t be
passed to new process tokens, and Unique, which means the
kernel shouldn’t try to merge the security attribute with any other
attribute on the system with the same name.

To set local security attributes, the caller needs the
SeTcbPrivilege privilege before calling
NtSetInformationToken. User and device claims must be
set during token creation, which we discuss in the next section.

Creating Tokens

Typically, LSASS creates tokens when a user authenticates to
the computer. However, it can also create tokens for users who
don’t exist, such as virtual accounts used for services. These
tokens might be interactive, for use in a console session, or they
could be network tokens for use over the local network. A locally

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

authenticated user can create another user’s token by calling a
Win32 API such as LogonUser, which calls into LSASS to
perform the token creation.

We won’t discuss LSASS at length until Chapter 10.
However, it’s worth understanding how LSASS creates tokens.
To do so, LSASS calls the NtCreateToken system call. As I
mentioned earlier, this system call requires the
SeCreateTokenPrivilege privilege, which is granted to a
limited number of processes. This privilege is about as privileged
as it gets, as you can use it to create arbitrary tokens with any
group or user SID and access any resource on the local machine.

While you won’t often have to call NtCreateToken from
PowerShell, you can do so through the New-NtToken command
so long as you have SeCreateTokenPrivilege enabled.
The NtCreateToken system call takes the following
parameters:

Token Type
Either primary or impersonation

Authentication ID
The LUID authentication ID; can be set to any value you’d like

Expiration Time
Allows the token to expire after a set period

User
The user SID

Groups
The list of group SIDs

Privileges
The list of privileges

Owner
The owner SID

Primary Group

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

The primary group SID

Source
The source information name

In addition, Windows 8 introduced new features to the system
call, which you can access though the NtCreateTokenEx
system call:

Device Group
A list of additional SIDs for the device

Device Claim Attributes
A list of security attributes to define device claims

User Claim Attributes
A list of security attributes to define user claims

Mandatory Policy
A set of flags that indicate the token’s mandatory integrity policy

Anything not in these two lists can be configured only by
calling NtSetInformationToken after the new token has
been created. Depending on what token property is being set, you
might need a different privilege, such as SeTcbPrivilege.
Let’s demonstrate how to create a new token using the script in
Listing 4-29, which you must run as an administrator.

PS> Set-NtTokenPrivilege SeDebugPrivilege
1 PS> $imp = Use-NtObject($p = Get-NtProcess -Name lsass.exe) {

 Get-NtToken -Process $p -Duplicate
}

2 PS> Set-NtTokenPrivilege SeCreateTokenPrivilege -Token $imp
3 PS> $token = Invoke-NtToken $imp {

 New-NtToken -User "S-1-0-0" -Group "S-1-1-0"
}
PS> Format-NtToken $token -User -Group
USER INFORMATION

Name Sid
---- ---

4 NULL SID S-1-0-0

GROUP SID INFORMATION

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Name Attributes
---- ----------

5 Everyone Mandatory, EnabledByDefault, Enabled
Mandatory Label\System Mandatory Level Integrity, IntegrityEnabled

Listing 4-29 Creating a new token

A normal administrator does not have
SeCreateTokenPrivilege by default. Therefore, we’ll
need to borrow a token from another process that does. In most
cases, the easiest process to borrow from is LSASS. We open the
LSASS process and its token, duplicating it to an impersonation
token 1. Next, we ensure that SeCreateTokenPrivilege is
enabled on the token 2. We can then impersonate the token and
call New-NtToken, passing it a SID for the user and a single
group 3. Finally, we can print out the details for the new token,
including its user SID set 4 and group set 5. The New-NtToken
command also adds a default system integrity level SID that you
can see in the group list.

Token Assignment

If a normal user account could assign arbitrary primary or
impersonation tokens, it could elevate its privileges to access the
resources of other users. This is especially problematic when it
comes to impersonation, as another user account need only open a
named pipe to inadvertently allow the server to get an
impersonation token.

For that reason, the SRM imposes limits on what a normal
user can do without the privileges
SeAssignPrimaryTokenPrivilege or
SeImpersonationPrivilege. Let’s go into the criteria
necessary to assign a token for a normal user.

Assigning a Primary Token

A new process can be assigned a primary token in one of
three ways:

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

• It can inherit the token from the parent process.

• The token can be assigned during process creation (for
example, using the CreateProcessAsUser API).

• The token can be set after process creation using
NtSetInformationProcess, before the process starts.

Inheriting the token from the parent is by far the most
common means of token assignment. For example, when you
start an application from the Windows Start Menu, the new
process will inherit the token from the Explorer process.

If a process does not inherit a token from its parent, the
process will be passed the token as a handle that must have the
AssignPrimary access right. If the access to the Token
object is granted, the SRM imposes further criteria on the token to
prevent the assignment of a more privileged token (unless the
caller’s primary token has
SeAssignPrimaryTokenPrivilege enabled).

The kernel function SeIsTokenAssignableToProcess
imposes the token criteria. First, it checks that the assigned token
must have an integrity level less than or equal to that of the
current process’s primary token. If that criterion is met, it then
checks whether the token meets either of the criteria shown in
Figure 4-4: that the token is either a child of the caller’s primary
token or a sibling of the primary token.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Figure 4-4 The SeIsTokenAssignableToProcess primary token assignment criteria

Let’s first cover the case of a child token. A user process can
create a new token based on an existing one. When this occurs,
the ParentTokenId property in the new token’s kernel object
is set to the ID of the parent token. If the new token’s
ParentTokenId matches the current primary token’s ID value,
then the assignment is granted. Restricted tokens are examples of
child tokens; when you create a restricted token using
NtFilterToken, the new token’s parent token ID is set to the
ID of the original token.

A sibling token is a token created as part of the same
authentication session as the existing token. To test this criterion,
the function compares the parent token ID and the authentication
ID of the two tokens. If both fields are equal, then the token can
be assigned. This check also tests whether the authentication
sessions are special sibling sessions set by the kernel (a rare
configuration). Common examples of a sibling token include
tokens duplicated from the current process token and lowbox
tokens.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Note that the function doesn’t checks the user that the token
represents, and if the token matches one of the criteria, it’s
possible to assign it to a new process. If the criteria don’t match,
then the STATUS_PRIVILEGE_NOT_HELD error will be
returned during token assignment.

How does the runas utility creates a new process as a
normal user with these restrictions? It uses the
CreateProcessWithLogon API, which authenticates a user
and starts the process from a system service that has the required
privileges to bypass these checks.

If we try to assign a process token, we’ll see how easily the
operation can fail, even when we’re assigning tokens for the same
user. Run the code in Listing 4-30 as a non-administrator user.

PS> $token = Get-NtToken -Filtered -Flags DisableMaxPrivileges
1 PS> Use-NtObject($proc = New-Win32Process notepad -Token $token) {

 $proc | Out-Host
}
Process : notepad.exe
Thread : thread:11236 - process:9572
Pid : 9572
Tid : 11236
TerminateOnDispose : False
ExitStatus : 259
ExitNtStatus : STATUS_PENDING

2 PS> $token = Get-NtToken -Filtered -Flags DisableMaxPrivileges -Token $token
PS> $proc = New-Win32Process notepad -Token $token

3 Exception calling "CreateProcess" with "1" argument(s): "A required privilege
is not held by the client"

Listing 4-30 Creating a process using restricted tokens

We create two restricted tokens and use them to create an
instance of Notepad. In the first attempt, we create the token
based on the current primary token 1. The parent token ID field in
the new token will be set to the primary token’s ID, and when we
use the token during process creation, the operation succeeds.

In the second attempt, we create another token 2, but base it
on the one we created previously. Creating a process with this
token fails with a privilege error 3. This is because the second
token’s parent token ID is set to the ID of the crafted token, not

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

the primary token. As the token doesn’t meet either the child or
sibling criteria, it will fail during assignment.

You can set the token after creating the process by using the
NtSetInformationProcess system call or
ProcessAccessToken, which PowerShell exposes with the
Set-NtToken command, used in Listing 4-31.

PS> $proc = Get-NtProcess -Current
PS> $token = Get-NtToken -Duplicate -TokenType Primary
PS> Set-NtToken -Process $proc -Token $token
Set-NtToken : (0xC00000BB) - The request is not supported.

Listing 4-31 Setting an access token after a process has started

As you can see, this operation does not circumvent any of the
assignment checks we’ve discussed. Once the process’s initial
thread starts executing, the option to set the primary token is
disabled, so when we try to set the token on a started process, we
get the STATUS_UNSUPPORTED error.

Assigning an Impersonation Token

As with primary tokens, the SRM requires that an assigned
impersonation token meet a specific set of criteria; otherwise, it
will reject the assignment of the token to a thread. Interestingly,
the criteria are not the same as those for the assignment of
primary tokens. This can lead to situations in which it’s possible
to assign an impersonation token but not a primary token, and
vice versa.

If the token is specified explicitly, then the handle must have
the Impersonate access right. If the impersonation happens
implicitly, then the kernel is already maintaining the token, and it
requires no specific access right.

The SeTokenCanImpersonate function in the kernel
handles the check for the impersonation criteria. As shown in
Figure 4-5, this check significantly more complex than that for
assigning primary tokens.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Figure 4-5 The SeTokenCanImpersonate impersonation token checks

Let’s walk through each check and describe what it considers
on both the impersonation and the primary token. Note that,
because it’s possible to assign an impersonation token to a thread
in another process (if you have an appropriate handle to that
thread), the primary token being checked is the one assigned to
the process that encapsulates the thread, and not the primary
token of the calling thread:

Checks for an Identification or Anonymous impersonation
level. The first check tests whether the impersonation token
has an impersonation level of Identification or Anonymous. If
so, assigning it to the thread isn’t a security risk, and the SRM
immediately allows the assignment. This check also checks
the token’s authentication ID to see whether it is the
ANONYMOUS LOGON token.

Checks for the impersonate privilege. The next check
determines whether the primary token has
SeImpersonatePrivilege enabled. If so, the SRM
again immediately allows the assignment.

Compares integrity levels. The SRM compares integrity level
of the primary token to that of the impersonation token. If the
primary token’s integrity level is less than that of the
impersonation token, the assignment is denied. If it’s greater
or equal, the checks continue.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Checks that the authentication ID equals the origin ID. If the
origin logon ID of the impersonation token equals the
authentication ID of the primary token, the SRM allows the
assignment. Otherwise, it continues making checks.

Note that there is an interesting consequence of this check.
As discussed earlier in this chapter, the origin logon ID of
normal user tokens is set to the authentication identifier of the
SYSTEM user. This is because the authenticating process runs
as the SYSTEM user. As a consequence, the SYSTEM user can
impersonate any other token on the system if it meets the
integrity level requirement, even if
SeImpersonatePrivilege is not available.

Checks that user SIDs are equal. If the primary token’s user
SID does not equal the impersonation token’s user SID, the
SRM denies the assignment. Otherwise, it continues making
checks. This criterion allows a user to impersonate their own
user account but blocks them from impersonating another user
unless they have the other user’s credentials. When
authenticating the other user, LSASS returns an
impersonation token with the origin logon ID set to the
caller’s authentication ID, so the token will pass the previous
check, and the user SIDs will never be compared.
Checks for the elevated flag. This check ensures that the caller
can’t impersonate a more privileged token for the same user.
If the impersonation token has the Elevated flag set but the
primary token does not, the impersonation will be denied.
This check wasn’t always in place; versions of Windows prior
to 10 did not perform this check, so it was possible to
impersonate a UAC administrator token if you first reduced
the integrity level.

Checks for sandboxing. This check ensures that the caller
can’t impersonate a less-sandboxed token. To impersonate a
lowbox token, the new token must either match the package
SID or be a restricted package SID of the primary token;
otherwise, impersonation will be denied. No check is made on
the list of capabilities. For a restricted token, it’s enough that
the new token is also a restricted token, even if the list of

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

restricted SID list is different. The same applies to write-
restricted tokens. The SRM has various hardening
mechanisms to make it difficult to get ahold of a more
privileged sandbox token.
Checks the console session. The final check is whether the
console session is session 0 or not. This prevents a user from
impersonating a token in session 0, which can grant elevated
privileges, such as being able to create global Section
objects.
You might assume that, if the function denies the assignment,

it would return a STATUS_PRIVILEGE_NOT_HELD error, but
that is not the case: instead, the SRM duplicates the
impersonation token as an Identification-level token and assigns
it. This means that even if the impersonation assignment fails, the
thread can still inspect the properties of the token.

We can check whether you can impersonate a token using the
Test-NtTokenImpersonation PowerShell command. This
command impersonates the token and then reopens it from the
thread. It then compares the impersonation level of the original
token and the reopened token and returns a Boolean result. In
Listing 4-32, we run through a simple example that would fall
foul of the integrity level check.

PS> $token = Get-NtToken -Duplicate
PS> Test-NtTokenImpersonation $token
True

PS> Set-NtTokenIntegrityLevel -IntegrityLevel Low
PS> Test-NtTokenImpersonation $token
False

PS> Test-NtTokenImpersonation $token -ImpersonationLevel Identification
True

Listing 4-32 Checking token impersonation

These checks are quite simple. First, we get a duplicate of the
current process token and pass it to Test-
NtTokenImpersonation. The result is True, indicating that
we could impersonate the token at Impersonation level. For the
next check, we lower the integrity level of the current process’s

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

primary token to Low and run the test again. (It’s best not to run
this script in a PowerShell process you care about, as you won’t
be able to restore the original integrity level.) This check now
returns False, as it’s no longer possible to impersonate the
token at the Impersonation level. Finally, we check if we can
impersonate the token at the Identification level, which returns
True.

Worked Examples

Let’s walk through some worked examples so you can see
how to use the various commands presented in this chapter for
security research or systems analysis.

Finding UI Access Processes

It’s sometimes useful to enumerate all the processes you can
access and check the properties of their primary token. This could
help you find processes running as specific users or with certain
properties. For example, you could identify processes with the UI
access flag set. Earlier in this chapter, we discussed how to check
the UI access flag in isolation. In Listing 4-33, we’ll perform the
check for all processes we can access.

PS> $ps = Get-NtProcess -Access QueryLimitedInformation -FilterScript {
 Use-NtObject($token = Get-NtToken -Process $_ -Access Query) {
 $token.UIAccess
 }
}
PS> $ps
Handle Name NtTypeName Inherit ProtectFromClose
------ ---- ---------- ------- ----------------
3120 ctfmon.exe Process False False
3740 TabTip.exe Process False False

PS> $ps.Close()

Listing 4-33 Finding processes with UI access

We start by calling the Get-NtProcess command to open
all processes with QueryLimitedInformation access. We

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

also provide a filter script. If the script returns True, the
command will return the process; otherwise, it will close the
handle to the process.

In the script, we open the process’s token for Query access
and return the UIAccess property. The result filters the process
list to only processes running with UI access tokens. We display
the processes we’ve found.

Finding Tokens Handles to Impersonate

There are several official ways of getting access to a token to
impersonate, such as using an RPC call or opening the process’s
primary token. However, another approach is to find existing
handles to Token objects that you can duplicate and use for
impersonation.

This technique can be useful if you’re running as a user with
SeImpersonatePrivilege but not as an administrator, as in
the case of a service account such as LOCAL SERVICE. It could
also be used to evaluate the security of a sandbox, to make sure
the sandbox can’t open and impersonate a more privileged token.

Thirdly, you could use the technique to access another user’s
resources by waiting for them to connect to the Windows
machine, such as over the network. If you grab their token, you
can reuse their identity without needing to know their password.
Listing 4-34 shows a simple implementation of the idea.

function Get-ImpersonationTokens {
 1 $hs = Get-NtHandle -ObjectType Token
 foreach($h in $hs) {
 try {
 2 Use-NtObject($token = Copy-NtObject -Handle $h) {
 3 if (Test-NtTokenImpersonation -Token $token) {
 Copy-NtObject -Object $token
 }
 }
 } catch {
 }
 }
}

4 PS> $tokens = Get-ImpersonationTokens
5 PS> $tokens | Where-Object Elevated

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Listing 4-34 Finding elevated Token handles to impersonate

We get a list of all handles of type Token using the Get-
NtHandle command 1. Then for each handle, we try to
duplicate the handle to the current process using the Copy-
NtObject command 2. If this succeeds, we test whether we can
successfully impersonate the token; if so, we make another copy
of the token, so it doesn’t get closed 3.

Running the Get-ImpersonationTokens function
returns all accessible token handles that can be impersonated 4.
With these token objects, we can query for properties of interest.
For example, we can check whether the token is elevated or not 5,
which might indicate that we could use the token to gain
additional privileged groups through impersonation.

Removing Administrator Privileges

One thing you might want to do while running a program as
an administrator is temporarily drop your privileges so that you
can perform some operation without risking damaging the
computer, such as accidentally deleting system files. You can use
the same approach that UAC uses to create a filtered, lower-
privileged token, and use it to perform the operation. Run the
code in Listing 4-35 as an administrator.

PS> $token = Get-NtToken -Filtered -Flags LuaToken
PS> Set-NtTokenIntegrityLevel Medium -Token $token
w PS> $token.Elevated
False
PS> "Admin" > "$env:windir\admin.txt"
PS> Invoke-NtToken $token { "User" > "$env:windir\user.txt" }
out-file : Access to the path 'C:\WINDOWS\user.txt' is denied.
PS> $token.Close()

Listing 4-35 Removing administrator privileges

We start by filtering the current token and specifying the
LuaToken flag. This flag removes all administrator groups and
the “God” privileges described in this chapter. The LuaToken
flag does not lower the integrity level of the token, so we must set
it to Medium manually. We can verify the token is no longer

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

consider an administrator by checked that the Elevated
property is False.

We can now write a file to an administrator-only location,
such as the Windows directory. If we first run it under the current
process token, it will succeed. However, if we try to perform the
same file write while impersonating the token, it will fail with an
access denied error. You could also use the token with the New-
Win32Process PowerShell command to start a new process
with the lower-privileged token.

Wrapping Up

In this chapter, we first discussed the two main types of
tokens, primary and impersonation. Primary tokens are associated
with a process. Impersonation tokens are associated with a thread
and allow a process to temporarily impersonate a different user.

For both types of tokens, we discussed their important
properties, such as groups, privileges, and integrity levels, and
how those properties affect the security identity that the token
exposes. We then discussed the two types of sandbox tokens,
restricted and lowbox, which applications such as web browsers
and document readers use to limit the damage of a potential
remote code execution exploit.

Next, we considered how tokens are used to represent
administrator privilege, including how Windows implements
User Account Control and split-token administrators for normal
desktop users. This includes discussing the specifics of what the
operating system considers to be an administrator or elevated
token.

Finally, we discussed the steps involved in assigning tokens to
processes and threads. We defined the specific criteria that need
to be met for a normal user to assign a token and how the checks
for primary tokens and impersonation tokens differ.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

5

S E C U R I T Y D E S C R I P T O R S

In the last chapter, we discussed the security access
token, which describes the user’s identity to the SRM.
In this chapter, you’ll learn how security descriptors
define a resource’s security. A security descriptor does
several things. It specifies the owner of a resource,
allowing the SRM to grant specific rights to users who
are accessing their own data. It also contains the
discretionary access control (DAC) and mandatory
access control (MAC), which grant or deny access to
users and groups. Finally, it can contain entries that

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

generate auditing events. Almost every kernel resource
has a security descriptor, and user-mode applications
can implement their own access control through
security descriptors without needing to create a kernel
resource.

Understanding the structure of security descriptors is crucial
to understanding the security of Windows, as they’re used to
secure every kernel object and many user-mode components,
such as services. You’ll even find security descriptors used across
network boundaries to secure remote resources. While developing
a Windows application or researching Windows security, you’ll
inevitably have to inspect or create a security descriptor, so
having a clear understanding of what a security descriptor
contains will save you a lot of time. Let’s start this chapter by
describing the structure of a security descriptor in more detail.

The Structure of a Security Descriptor

Windows stores security descriptors as binary structures on
disk or in memory. While you’ll rarely have to manually parse
that structure, it’s worth understanding what it contains. A
security descriptor consists of the following seven components:

• The revision

• Optional resource manager flags

• Control flags

• An optional owner SID

• An optional group SID

• An optional discretionary access control list (DACL)

• An optional system access control list (SACL)

The first component of any security descriptor is the revision,
which indicates the version of the security descriptor’s binary

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

format. There is only one version, so the revision is always set to
the value 1. Next is an optional set of flags for use by a resource
manager. You’ll almost certainly never need to use these flags, so
I won’t document them further.

The following sections of a security descriptor are the control
flags. The control flags have three uses. First, they define which
optional components of the security descriptor are valid. Second,
they define how the security descriptors and components were
created. Finally, they define how to process the security
descriptor when applying it to an object. Table 5-1 shows the list
of valid flags and their descriptions.

Table 5-1 Valid Control Flags and Their Descriptions

Name Value Description
OwnerDefaulted 0x0001 The owner SID was assigned through a default method.
GroupDefaulted 0x0002 The group SID was assigned through a default method.
DaclPresent 0x0004 A DACL is present in the security descriptor.
DaclDefaulted 0x0008 The DACL was assigned through a default method.
SaclPresent 0x0010 The SACL is present in the security descriptor.
SaclDefaulted 0x0020 The SACL was assigned through a default method.
DaclUntrusted 0x0040 When combined with ServerSecurity, the DACL is

untrusted.
ServerSecurity 0x0080 The DACL is replaced with a server ACL (more on the use

of this in Chapter 6).
DaclAutoInheritReq 0x0100 DACL auto-inheritance for child objects is requested.
SaclAutoInheritReq 0x0200 SACL auto-inheritance for child objects is requested.
DaclAutoInherited 0x0400 The DACL supports auto-inheritance.
SaclAutoInherited 0x0800 The SACL supports auto-inheritance.
DaclProtected 0x1000 The DACL is protected from inheritance.
SaclProtected 0x2000 The SACL is protected from inheritance.
RmControlValid 0x4000 The resource manager flags are valid.
SelfRelative 0x8000 The security descriptor is in a relative format.

In the next chapter, we’ll cover many of the terms in Table 5-
1, such as inheritance, in more detail.

After the control flags comes the owner SID, which represents
the owner of the resource. This is typically the user’s SID;
however, it can also be assigned to a group, such as the
administrators SID. Being the owner of a resource grants you
certain privileges, including the ability to modify the resource’s
security descriptor. By allowing the owner to always modify their

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

resource’s security descriptor, the system prevents a user from
locking themselves out of their own resources.

The group SID is like the owner SID, but it’s rarely used. It
exists is primarily to ensure POSIX compatibility in the days
when Windows still had a POSIX subsystem, and takes no part in
access control for Windows applications.

The most important part of the security descriptor is the
discretionary access control list (DACL). The DACL contains a
list of access control entries (ACEs), which define what access an
SID is given. It’s considered discretionary because the user or
system administrator can choose the level of access granted.
There are many different types of ACEs, and we discuss these in
“Access Control Lists and Access Control Entries” on page XX.
For now, the basic information in each ACE includes the
following:

• The SID of the user or group to which the ACE applies

• The type of ACE (for example, access allowed or access
denied)

• The access mask to which the SID will be allowed or denied
access

The final component of the security descriptor is the SACL,
which stores auditing rules. Like the DACL, it contains a list of
ACEs, but rather than determining access based on whether a
defined SID matches the current user’s, it determines the rules for
generating audit events when the resource is accessed. Since
Windows Vista, the SACL has also been the preferred location in
which to store additional, non-auditing ACEs, such as the
resource’s mandatory label.

Two final elements to point out in the DACL and SACL are
the DaclPresent and SaclPresent control flags. These
flags indicate that the DACL and SACL, respectively, are present
in the security descriptor. Using flags rather than just the presence
of an ACL allows for the setting of a NULL ACL, where the
present flag is set but no value has been specified for the ACL

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

field in the security descriptor. A NULL ACL indicates that no
security for that ACL has been defined, and causes the SRM to
effectively ignore it. This is distinct from an empty ACL, where
the present flag is set and a value for the ACL is specified but the
ACL contains no ACEs.

The Structure of a SID

Until now, we’ve talked about SIDs as opaque binary values
or strings of numbers. Let’s gain a better understanding of what a
SID contains. The diagram in Figure 5-1 shows a SID as it’s
stored in memory.

Figure 5-1 The security identifier (SID) structure in memory

There are four components to a binary SID:

The Revision
A value that is always set to 1, as there is no other defined version
number

The Relative Identifier (RID) Count
The number of relative identifiers in the SID

The Security Authority
A value representing the party that issued the SID

Relative Identifiers (RIDs)
Zero or more 32-bit numbers that represent the user or group

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

The security authority can be any value, but Windows has
pre-defined some commonly used ones. All well-known
authorities start with five zero bytes followed by a value from
Table 5-2.

Table 5-2 Well-Known Authorities and Their Values

Name Final
Value

Example name

Null 0 NULL SID
World 1 Everyone
Local 2 CONSOLE LOGON
Creator 3 CREATOR OWNER
Nt 5 BUILTIN\Users
Package 15 APPLICATION PACKAGE AUTHORITY\Your Internet

connection
MandatoryLabel 16 Mandatory Label\Medium Mandatory Level
ScopedPolicyId 17 N/A
ProcessTrust 19 TRUST LEVEL\ProtectedLight-Windows

After the security authority come the relative identifiers
(RIDs). An SID can contain one or more RIDs. This list of RIDs
is usually split into two parts: the domain RIDs, followed by the
user RIDs.

Let’s walk through how the SID is constructed for a well-
known group, BUILTIN\Users. When writing the group, we
separate the domain component from the group name with a
backslash. In this case, the domain is BUILTIN. This is a pre-
defined domain, represented by a single RID, 32. Listing 5-1
constructs the domain SID for the BUILTIN domain using the
Get-NtSid PowerShell command.

PS> $domain_sid = Get-NtSid -SecurityAuthority Nt -RelativeIdentifier 32
PS> Get-NtSidName $domain_sid
Domain Name Source NameUse Sddl
------ ---- ------ ------- ----
BUILTIN BUILTIN Account Domain S-1-5-32

Listing 5-1 A query for the BUILTIN domain SID

The BUILTIN domain’s SID is a member of the Nt security
authority. We specify this security authority using the
SecurityAuthority parameter and specify the single RID
using the RelativeIdentifier parameter.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

We then pass the SID to the Get-NtSidName command to
retrieve the account name for the SID. The output contains a
retrieved domain name and the name of SID. In this case, those
values are the same; this is just a quirk of the BUILTIN domain’s
registration.

The next column indicates the location from which the name
was retrieved. In this example, the source Account indicates
that the name was retrieved from LSASS. If the source were
WellKnown, this would indicate that PowerShell knew the name
ahead of time and didn’t need to query LSASS. The fourth
column, NameUse, indicates the SID’s type. In this case, it’s
Domain, which we might have expected. The final column is the
SID in its SDDL format.

Any RIDs specified for SIDs following the domain SID
identify a particular user or group. For the Users group, we use a
single RID with the value 545; Windows pre-defines this
number. Listing 5-2 creates a new SID by adding an additional
545 RID to the base domain’s SID.

PS> $user_sid = Get-NtSid -BaseSid $domain_sid -RelativeIdentifier 545
PS> Get-NtSidName $user_sid
Domain Name Source NameUse Sddl
------ ---- ------ ------- ----
BUILTIN Users Account Alias S-1-5-32-545

PS> $user_sid.Name
BUILTIN\Users

Listing 5-2 Constructing an SID from security authority and RIDs

In the output, we receive the Users group inside of the
BUILTIN domain. The NameUse in this case is set to Alias.
This indicates that the SID represents a local, built-in group, as
distinct from Group, which represents a user-defined group.
When we print the Name property on the SID, it outputs the fully
qualified name, with the domain and the name separated by a
backslash.

You can find lists of known SIDs on the Microsoft Developer
Network (MSDN) and other websites. However, Microsoft
sometimes add SIDs without documenting them. Therefore, I

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

encourage you to test multiple security authority and RID values
to see what other users and groups you can find. Merely checking
for different SIDs won’t cause any damage. For example, try
replacing the user RID in Listing 5-2 with 544. This new SID
represents the BUILTIN\Administrators, as shown in Listing 5-3.

PS> Get-NtSid -BaseSid $domain_sid -RelativeIdentifier 32, 544
Name Sid
---- ---
BUILTIN\Administrators S-1-5-32-544

Listing 5-3 Querying the administrators group SID using Get-NtSid

Remembering the RIDs for a specific SID can be tricky, and
you might not recall the exact name to look up with LSASS.
Therefore, Get-NtSid implements a mode that can create a SID
from a known set of SIDs. For example, to create the
administrators group, you can use the command shown in Listing
5-4.

PS> Get-NtSid -KnownSid BuiltinAdministrators
Name Sid
---- ---
BUILTIN\Administrators S-1-5-32-544

Listing 5-4 Querying the known administrators group SID using Get-NtSid

You’ll find SIDs used throughout the Windows operating
system. It’s crucial that you understand how they’re structured, as
this will allow you to quickly assess what a SID might represent.
For example, if you identify a SID with the Nt security authority
and its first RID is 32, you can be sure it’s representing a built-in
user or group. Knowing the structure also allows you to identify
and extract SIDs from crash dumps or memory in cases when
better tooling isn’t available.

Absolute and Relative Security Descriptors

The kernel supports two security descriptor formats: absolute
and relative. Each format has its advantages and disadvantages,
and we’ll consider both formats so you can understand what those
are.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

The formats start with the same three values: the revision, the
resource manager flags, and the control flags. The
SelfRelative flag in the control flags determines which
format to use, as shown in Figure 5-2.

Figure 5-2 Selecting the security descriptor format based on the SelfRelative control flag

The total size of the security descriptor’s header is 32-bits,
split between two 8-bit values, Revision and Sbz1, and the
16-bit Control flags. The security descriptor’s resource
manager flags are stored in Sbz1, and are only valid if the
RmControlValid control flag is set, although the value will be
present in either case. The rest of the security descriptor is then
stored immediately after the header.

The simplest format, the absolute security descriptor, is used
when the SelfRelative flag is not set. After the common
header, the absolute format defines four pointers to reference in
memory: the owner SID, the group SID, the DACL, and the
SACL, in that order, as shown in Figure 5-3.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Figure 5-3 The structure of the absolute security descriptor

Each pointer references an absolute memory address at which
the data is stored. The size of the pointer therefore depends on
whether the application is 32- or 64-bit. It’s also possible to
specify a NULL value for the pointer to indicate that the value is
not present. The owner and group SID values are stored using the
binary format we defined in “The Structure of a SID” on page
XX.

When the SelfRelative flag is set, the security descriptor
instead follows the relative format. Instead of referencing its
values using absolute memory addresses, relative security
descriptor instead stores these locations as positive offsets relative
to the start of its header. Figure 5-4 shows an example of a
relative security descriptor.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Figure 5-4 An example of a relative security descriptor

These values are stored in contiguous memory. The ACL
format is already a relative format and therefore doesn’t require
any special handling when used in a relative security descriptor.
(The next section will specify the details of an ACL’s structure.)
Each offset is always 32 bits long, regardless of the system’s bit
size. If an offset is set to 0, the value doesn’t exist, as in the case
of NULL for an absolute security descriptor.

The main advantage of an absolute security descriptor is that
you can easily update its individual components. For example, to
replace the Owner SID, you’d allocate a new SID in memory and
assign its memory address to the Owner pointer. In comparison,
modifying a relative security descriptor in the same way might
require adjusting its allocated memory if the new Owner SID
structure is larger than the old one.

On the other hand, the big advantage of the relative security
descriptor is that it can be built in a single contiguous block of
memory. This allows you to serialize the security descriptor to a
persistent format, such as to a file or a registry key. When you’re
trying to determine the security of a resource, you might need to
extract its security descriptor from memory or a persistent store.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

By understanding the two formats, you can determine how to read
the security descriptor into something you can view or
manipulate.

Most APIs and system calls accept either security descriptor
format, determining how to handle a security descriptor
automatically by checking the value of the SelfRelative flag.
However, you’ll find some exceptions in which an API takes only
one format or another; in that case, if you pass the API a security
descriptor in the wrong format, you’ll typically receive an error
such as STATUS_INVALID_SECURITY_DESCR. Security
descriptors returned from an API will almost always be in relative
format due to the simplicity of their memory management. The
system provides the APIs
RtlAbsoluteToSelfRelativeSD and
RtlSelfRelativeToAbsoluteSD to convert between the
two formats if needed.

The PowerShell module handles all security descriptors using
a SecurityDescriptor object, regardless of format. This
object is written in .NET and converts to a relative or absolute
security descriptor only when it’s required to interact with native
code. You can determine whether a SecurityDescriptor
object was generated from a relative security descriptor by
inspecting the SelfRelative property.

Access Control Lists and Access Control Entries

The DACL and SACL make up most of data in a security
descriptor. While these elements have different purposes, they
share the same basic structure. In this section, we cover how
they’re arranged in memory, leaving the details of how they
contribute to the access-checking process to Chapter 6.

The Header

All ACLs consists of an ACL header followed by a list of
zero or more ACEs in one contiguous block of memory. Figure 5-
5 shows this top-level format.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Figure 5-5 A top-level overview of the ACL structure

The ACL header contains a revision, the total size of the ACL
in bytes, and the number of ACE entries that follow the header.
Figure 5-6 shows the header structure.

Figure 5-6 The ACL header

The ACL header also contains two reserved fields, Sbz1 and
Sbz2, which should always be zero. They serve no purpose in
modern versions of Windows and are there in case the ACL
structure needs to be extended. Currently, the revision field can
have one of three values; these determine the ACL’s valid ACEs.
If the ACL uses an ACE that the revision doesn’t support, the
ACL won’t be considered valid. Windows supports the following
revisions:

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Revision 2
The lowest currently supported ACL revision. Supports all the
basic ACE types, such as Allowed and Denied.

Revision 3
Adds support for compound ACEs.

Revision 4
Adds support for object ACEs.

The ACE List

Following the ACL header is the list of ACEs, which
determines what access the SID has. Each ACE has a variable
length but always starts with a header that contains the type of
ACE, additional flags, and the ACE’s total size. The header is
followed by data specific to the ACE type. Figure 5-7 shows this
structure.

Figure 5-7 The ACE header

The ACE header is common to all ACE types. This allows an
application to safely access the header when processing an ACL.
The ACE type value can then be used to determine the exact
format of the ACE’s type-specific data. If the application doesn’t
understand the particular ACE type, it can use the size field to
skip the ACE entirely. We’ll discuss how types affect access
checking in Chapter 7. Windows supports the ACE types shown

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

in Table 5-3, which included the ACL locations for which they’re
valid.

Table 5-3 Names of ACE Types, Their Minimum ACL Revisions, and Their Locations

ACE Type Value ACL Description
Allowed 0x0 DACL Grants access to a resource

Denied 0x1 DACL Denies access to a resource
Audit 0x2 SACL Audits access to a resource

Alarm 0x3 SACL Alarms upon access to a resource; unused
AllowedCompound

0x4
DACL Grants access to a resource during

impersonation
AllowedObject 0x5 DACL Grants access to a resource with an object type
DeniedObject 0x6 DACL Denies access to a resource with an object type

AuditObject 0x7 SACL Audits access to a resource with an object type
AlarmObject 0x8 SACL Alarms with an object type; unused

AllowedCallback 0x9 DACL Grants access to a resource with a callback
DeniedCallback 0xA DACL Denies access to a resource with a callback
AllowedCallbackObject

0xB
DACL Grants access with a callback and an object

type
DeniedCallbackObject

0xC
DACL Denies access with a callback and an object

type
AuditCallback 0xD SACL Audits access with a callback
AlarmCallback 0xE SACL Alarms access with a callback; unused
AuditCallbackObject

0xF
SACL Audits access with a callback and an object

type
AlarmCallbackObject

0x10
SACL Alarms access with a callback and an object

type; unused
MandatoryLabel 0x11 SACL Specifies the mandatory label/integrity level
ResourceAttribute 0x12 SACL Specifies attributes for the resource
ScopedPolicyId

0x13
SACL Specifies a central access policy ID for the

resource
ProcessTrustLabel

0x14
SACL Specifies a process trust label to limit resource

access
AccessFilter 0x15 SACL Specifies an access filter for the resource

While Windows officially supports all of these ACE types,
the kernel does not use the alarm types. User applications can
specify their own ACE types, but various APIs in user and kernel
mode check for valid types and will generate an error if the ACE
type isn’t known.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

An ACE’s type-specific data falls primary into one of three
formats: normal ACEs, such as allow and deny; compound ACEs;
and object ACEs. A normal ACE contains the following fields
after the header, with the field’s size is indicated in parentheses:

Access Mask (32-bit)
The access mask to be granted or denied based on the ACE type

SID (Variable)
The SID, in the binary format described earlier in this chapter

System services use the compound ACE during
impersonation, and the only valid type for this ACE is
AllowedCompound. The ACE can grant access to both the
impersonated caller and the service user at the same time. Even
though the latest version of Windows still supports compound
ACEs, they’re effectively undocumented and presumably
deprecated. I’ve included them in this book for completeness.
Their format is as follows:

Access Mask (32-bit)
The access mask to be granted

Compound ACE Type (16-bit)
Set to 1, which means the ACE is used for impersonation

Reserved (16-bit)
Always 0

Server SID (Variable)
The server SID in binary format; matches the service user

SID (Variable)
The SID in a binary format; matches the impersonated user

Microsoft introduced the object ACE format to support access
control for Active Directory Services. Active Directory uses a
128-bit globally unique ID (GUID) to represent a Directory
Services object type; the object ACE determines access for
specific types of objects, such as computers or users. For
example, using a single security descriptor, a directory could

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

grant a SID the access needed to create a computer object but not
access to a user. The object ACE format is as follows:

Access Mask (32-bit)
The access mask to be granted or denied based on the ACE type

Flags (32-bit)
Indicate which of the following GUIDs are present

Object type (16-bytes)
The object type GUID; present only if the flag in bit 0 is set

Inherited object type (16-bytes)
The inherited object GUID; present only if the flag in bit 1 is set

SID (Variable)
The SID in a binary format

ACEs can be larger than their types’ defined structure, and
may use additional space to stored unstructured data. Most
commonly, they use this unstructured data for the callback ACE
types, such as AllowedCallback, which define a conditional
expression that determines whether the ACE should be active
during an access check. We can inspect the data that would be
generated from a conditional expression using the
ConvertFrom-NtAceCondition PowerShell command,
shown in Listing 5-5.

PS> ConvertFrom-NtAceCondition 'WIN://TokenId == "XYZ"' | Out-HexDump -ShowAll
 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F - 0123456789ABCDEF

00000000: 61 72 74 78 F8 1A 00 00 00 57 00 49 00 4E 00 3A - artx.....W.I.N.:
00000010: 00 2F 00 2F 00 54 00 6F 00 6B 00 65 00 6E 00 49 - ././.T.o.k.e.n.I
00000020: 00 64 00 10 06 00 00 00 58 00 59 00 5A 00 80 00 - .d......X.Y.Z...

Listing 5-5 Parsing a conditional expression and displaying binary data

We refer to these ACEs as callback ACEs because, prior to
Windows 8, an application needed to call the
AuthzAccessCheck API to handle them. The API accepted a
callback function that would be invoked to determine whether to
include a callback ACE in the access check. Since Windows 8,
the kernel access check has built-in support for conditional ACEs

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

in the format shown in Listing 5-5, although a user application is
free to specify their own format and handle these ACEs manually.

The primary use of the ACE flags is to specify inheritance
rules for the ACE. The inheritance flags take up only the lower
five bits leaving the top three bits for ACE-specific flags. Table
5-4 shows the defined ACE flags.

Table 5-4 ACE flags with values and descriptions

ACE Flag Value Description
ObjectInherit 0x1 The ACE can be inherited by an object.

ContainerInherit 0x2 The ACE can be inherited by a container.
NoPropagateInherit 0x4 The ACE’s inheritance flags are not propagated to children.

InheritOnly 0x8 The ACE is used only for inheritance, and not for access
checks.

Inherited 0x10 The ACE was inherited from a parent container.

Critical 0x20 The ACE is critical and can’t be removed. Applies only to allow
ACEs.

SuccessfulAccess 0x40 An audit event should be generated for a successful access.

FailedAccess 0x80 An audit event should be generated for a failed access.
TrustProtected 0x40 When used with an AccessFilter ACE, this flag prevents

modification.

Constructing and Viewing Security Descriptors

Now that we’ve described the structure of a security
descriptor, let’s construct and manipulate them using PowerShell.
By far the most common reason to construct and manipulate
security descriptors is to view its contents so you can understand
the access is applied to a resource. Another important use case is
if you need to construct a security descriptor to lock down a
resource. The PowerShell module used in this book aims to make
constructing and viewing security descriptors as simple as
possible.

Creating a New Security Descriptor

To create a new security descriptor, you can use the New-
NtSecurityDescriptor command. By default, it creates a
new SecurityDescriptor object with no owner, group,

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

DACL, or SACL set. You can use the command’s parameters to
add these parts of the security descriptor, as shown in Listing 5-6.

PS> $world = Get-NtSid -KnownSid World
PS> $sd = New-NtSecurityDescriptor -Owner $world -Group $world -Type File
PS> $sd | Format-Table
Owner DACL ACE Count SACL ACE Count Integrity Level
----- -------------- -------------- ---------------
Everyone NONE NONE NONE

Listing 5-6 Creating a new security descriptor with a specified owner

We first get a SID object for the World group to use as the
Owner and Group fields. When calling New-
NtSecurityDescriptor to create a new security descriptor,
we use this SID object to specify its Owner and Group. We also
specify the name of the kernel object type this security descriptor
will be associated with; this step makes some of the later
commands easier to use. In this case, we’ll assume it’s a File
object’s security descriptor.

We then format the security descriptor as a table. In the
output, we can see the Owner field is set to Everyone. The
Group value isn’t printed by default, as it’s not as important.
Neither the DACL not the SACL are currently present in the
security descriptor, and there is no integrity level specified.

To add some ACEs, we can use the Add-
NtSecurityDescriptorAce command. For normal ACEs,
we need to specify the ACE type, the SID, and the access mask.
Optionally you can also specify the ACE flags. The script in
Listing 5-7 adds some ACEs to our new security descriptor.

1 PS> $user = Get-NtSid
2 PS> Add-NtSecurityDescriptorAce $sd -Sid $user -Access WriteData, ReadData

PS> Add-NtSecurityDescriptorAce $sd -KnownSid Anonymous -Access GenericAll
-Type Denied
PS> Add-NtSecurityDescriptorAce $sd -Name "Everyone" -Access ReadData

3 PS> Add-NtSecurityDescriptorAce $sd -KnownSid World -Access Delete
-Type Audit -Flags FailedAccess

4 PS> Set-NtSecurityDescriptorIntegrityLevel $sd Low

5 PS> Set-NtSecurityDescriptorControl $sd DaclAutoInherited, SaclProtected

6 PS> $sd | Format-Table

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Owner DACL ACE Count SACL ACE Count Integrity Level
----- -------------- -------------- ---------------
Everyone 3 2 Low

7 PS> Get-NtSecurityDescriptorControl $sd
DaclPresent, SaclPresent, DaclAutoInherited, SaclProtected

8 PS> Get-NtSecurityDescriptorDacl $sd | Format-Table
Type User Flags Mask
---- ---- ----- ----
Allowed GRAPHITE\user None 00000003
Denied NT AUTHORITY\ANONYMOUS LOGON None 10000000
Allowed Everyone None 00000001

9 PS> Get-NtSecurityDescriptorSacl $sd | Format-Table
Type User Flags Mask
---- ---- ----- ----
Audit Everyone FailedAccess 00010000
MandatoryLabel Mandatory Label\Low Mandatory Level None 00000001

Listing 5-7 Adding ACEs to the new security descriptor

We start by getting the SID of the current user using Get-
NtSid 1. We use this SID to add a new Allowed ACE 2 to the
DACL. We also add a Denied ACE for the anonymous user by
specifying the Type parameter. Finally, we add another
Allowed ACE for the Everyone group. We then modify the
SACL to add an audit ACE 3 and set the mandatory label to a low
integrity level 4. To finish creating the security descriptor, we set
the DaclAutoInherited and SaclProtected control
flags.

We can now print details about the security descriptor we’ve
just created. When displaying the security descriptor itself, we
can see that the DACL now contains three ACEs, the SACL 2,
and an integrity level of Low 6. We also display the control flags
7, and the list of ACEs in the DACL 8 and SACL 9.

Ordering the ACEs

Because of how access checking works, there is a canonical
ordering to the ACEs in an ACL. All Denied ACEs should
come before Allowed ACEs; otherwise, the system might grant
access to a resource based on which ACEs come first. The SRM
doesn’t enforce this canonical ordering; it trusts that any

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

application has correctly ordered the ACEs before passing them
for an access check. A canonical ACE orders its ACEs according
to the following rules:

1. All Denied-type ACEs must come before Allowed types.

2. The Allowed ACEs must come before Allowed object
ACEs.

3. The Denied ACEs must come before Denied object ACEs.

4. All non-inherited ACEs must come before ACEs with the
Inherited flag set.

In Listing 5-7, we added a Denied ACE to the DACL after
we added an Allowed ACE, failing the second order rule. We
can ensure the DACL is canonicalized by using the Edit-
NtSecurity command with the CanonicalizeDacl
parameter. You can also test whether it’s already canonical by
using the Test-NtSecurityDescriptor PowerShell
command with the DaclCanonical parameter, as in Listing
5-8.

PS> Test-NtSecurityDescriptor $sd -DaclCanonical
False
PS> Edit-NtSecurityDescriptor $sd -CanonicalizeDacl
PS> Test-NtSecurityDescriptor $sd -DaclCanonical
True
PS> Get-NtSecurityDescriptorDacl $sd | Format-Table
Type User Flags Mask
---- ---- ----- ----
Denied NT AUTHORITY\ANONYMOUS LOGON None 10000000
Allowed GRAPHITE\user None 00000003
Allowed Everyone None 00000001

Listing 5-8 Canonicalizing the DACL

If you compare the list of ACEs in Listing 5-8 with the list in
Listing 5-7, you’ll notice that the Denied ACE has been moved
from the middle to the start of the ACL. This ensures that it will
be processed before any Allowed ACEs.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Formatting Security Descriptors

We can print the values in the security descriptor manually,
though the Format-Table command, but this is time
consuming. Another problem with manual formatting is that the
access masks won’t be decoded, so instead of ReadData, for
example, you’ll see 00000001. It would be nice to have a
simple way of printing out the details of a security descriptor and
formatting them based on the object type. That’s what Format-
NtSecurityDescriptor is for. You can pass it a security
descriptor, and the command will print it to the console. Listing
5-9 provides an example.

PS> Format-NtSecurityDescriptor $sd -ShowAll
Type: File
Control: DaclPresent, SaclPresent

<Owner>
 - Name : Everyone
 - Sid : S-1-1-0

<Group>
 - Name : Everyone
 - Sid : S-1-1-0

<DACL> (Auto Inherited)
- Type : Denied
 - Name : NT AUTHORITY\ANONYMOUS LOGON
 - SID : S-1-5-7
 - Mask : 0x10000000
 - Access: GenericAll
 - Flags : None

 - Type : Allowed
 - Name : GRAPHITE\user
 - SID : S-1-5-21-2318445812-3516008893-216915059-1002
 - Mask : 0x00000003
 - Access: ReadData|WriteData
 - Flags : None

 - Type : Allowed
 - Name : Everyone
 - SID : S-1-1-0
 - Mask : 0x00000001
 - Access: ReadData
 - Flags : None

<SACL> (Protected)
 - Type : Audit

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

 - Name : Everyone
 - SID : S-1-1-0
 - Mask : 0x00010000
 - Access: Delete
 - Flags : FailedAccess

<Mandatory Label>
 - Type : MandatoryLabel
 - Name : Mandatory Label\Low Mandatory Level
 - SID : S-1-16-4096
 - Mask : 0x00000001
 - Policy: NoWriteUp
 - Flags : None

Listing 5-9 Displaying the security descriptor using Format-NtSecurityDescriptor

First, we call Format-NtSecurityDescriptor,
passing it the opened security descriptor we generated 1. We also
pass the ShowAll parameter to ensure we display the entire
contents of the security descriptor; by default, Format-
NtSecurityDescriptor won’t output the SACL or less
common ACEs, such as ResourceAttribute. Note that the
output kernel object type matches the File type we specified
when creating the security descriptor in Listing 5-6. Specifying
the kernel object type allows the formatter to print the decoded
access mask for the type rather than a generic hex value.

The next line in the output shows the current control flags.
These control flags are calculated on the fly based on the current
state of the security descriptor; later, we’ll discuss how to change
these flags to change the security descriptor’s behavior. Next
come the owner and group SIDs, respectively.

The DACL takes up the majority of the output. Any DACL-
specific flags appear next to the header; in this case, these
indicate that we set the DaclAutoInherited flag. Next, the
output prints each of the ACEs in the ACL in order, starting with
the type of ACE. Because the command knows the object type, it
prints the decoded access for the type, as well as the original
access mask in hexadecimal.

Next is the SACL, which shows our single audit ACE as well
as the SaclProtected flag. The final component shown is the

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

mandatory label. The access mask for a mandatory label is the
mandatory policy, and it’s decoded differently from the rest of the
ACEs that use the type-specific access rights. The mandatory
policy can be set to one or more of the bit flags shown in Table 5-
5.

Table 5-5 Mandatory Policy Values

Name Value Description
NoWriteUp 0x00000001 A lower-integrity-level caller can’t write to this resource.
NoReadUp 0x00000002 A lower-integrity-level caller can’t read this resource.
NoExecuteUp 0x00000004 A lower-integrity-level caller can’t execute this

resource.

By default, Format-NtSecurityDescriptor can be a
bit verbose. To shorten its output, specify the Summary
parameter, which will remove as much data as possible while
keeping the important information (Listing 5-10).

PS> Format-NtSecurityDescriptor $sd -ShowAll -Summary
<Owner> : Everyone
<Group> : Everyone
<DACL>
<DACL> (Auto Inherited)
NT AUTHORITY\ANONYMOUS LOGON: (Denied)(None)(GenericAll)
GRAPHITE\user: (Allowed)(None)(ReadData|WriteData)
Everyone: (Allowed)(None)(ReadData)
<SACL> (Protected)
Everyone: (Audit)(FailedAccess)(Delete)
<Mandatory Label>
Mandatory Label\Low Mandatory Level: (MandatoryLabel)(None)(NoWriteUp)

Listing 5-10 Displaying the security descriptor in summary format

I mentioned in Chapter 2 that the PowerShell module used in
this book uses simple names for most common flags, for ease of
use. However, you could display the full SDK names if you
prefer (for example, to compare the output with native code). To
display SDK names, use the SDKName property, as shown in
Listing 5-11.

PS> Format-NtSecurityDescriptor $sd -SDKName -SecurityInformation Dacl
Type: File
Control:
SE_DACL_PRESENT|SE_SACL_PRESENT|SE_DACL_AUTO_INHERITED|SE_SACL_PROTECTED
<DACL> (Auto Inherited)
 - Type : ACCESS_DENIED_ACE_TYPE
 - Name : NT AUTHORITY\ANONYMOUS LOGON

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

 - SID : S-1-5-7
 - Mask : 0x10000000
 - Access: GENERIC_ALL
 - Flags : NONE

 - Type : ACCESS_ALLOWED_ACE_TYPE
 - Name : GRAPHITE\user
 - SID : S-1-5-21-2318445812-3516008893-216915059-1002
 - Mask : 0x00000003
 - Access: FILE_READ_DATA|FILE_WRITE_DATA
 - Flags : NONE

 - Type : ACCESS_ALLOWED_ACE_TYPE
 - Name : Everyone
 - SID : S-1-1-0
 - Mask : 0x00000001
 - Access: FILE_READ_DATA
 - Flags : NONE

Listing 5-11 Formatting a security descriptor with SDK names

One quirk of File objects: their access mask has two naming
conventions, one for files and one for directories. You can request
that Format-NtSecurityDescriptor print the directory
version of the access mask by using the Container parameter,
or more generally, by setting the Container property of the
security descriptor object to True. Listing 5-12 shows the impact
of setting the Container parameter on the output.

PS> Format-NtSecurityDescriptor $sd -ShowAll -Summary -Container
<Owner> : Everyone
<Group> : Everyone
<DACL>
NT AUTHORITY\ANONYMOUS LOGON: (Denied)(None)(GenericAll)

1 GRAPHITE\user: (Allowed)(None)(ListDirectory|AddFile)
Everyone: (Allowed)(None)(ListDirectory)
--snip--

Listing 5-12 Formatting the security descriptor as a container

Note how the output line at 1 has changed from
ReadData|WriteData to ListDirectory|AddFile
when we’ve formatted it as a container. The File type is the
only object type with this behavior in Windows. This is important
to security, as you could easily misinterpret File access rights if
you formatted the security descriptor for a directory as a file, and
vice-versa.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

If a GUI is more your thing, you can start a viewer using the
following Show-NtSecurityDescriptor command:

PS> Show-NtSecurityDescriptor $sd

Running the command should open the dialog shown in
Figure 5-8.

Figure 5-8 A GUI displaying the security descriptor

The dialog summarizes the security descriptor’s important
data. At the top 1 are the owner and group SIDs resolved into
names, as well as the security descriptor’s integrity level and
mandatory policy. These match the values we specified when
creating the security descriptor. In the middle 2 is the list of ACEs
in the DACL, with the ACL flags at the top. Each entry in the list
includes the type of ACE, the SID, the access mask in generic
form and the ACE flags. At the bottom 3 is the decoded access.
The list populates when you select an ACE in ACL list. You can
also select the SACL by choosing the other tab, where we can see
our audit entry, as well the mandatory label 4.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Converting Between Absolute and Relative Security
Descriptors

We can convert the security descriptor to a relative security
descriptor using the ConvertFrom-
NtSecurityDescriptor command. We can then format its
bytes to the console to see what the underlying structure really is
(Listing 5-13).

PS> $ba = ConvertFrom-NtSecurityDescriptor $sd
PS> $ba | Out-HexDump -ShowAll
 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F - 0123456789ABCDEF

00000000: 01 00 14 A4 98 00 00 00 A4 00 00 00 14 00 00 00 -
00000010: 44 00 00 00 02 00 30 00 02 00 00 00 02 80 14 00 - D.....0.........
00000020: 00 00 01 00 01 01 00 00 00 00 00 01 00 00 00 00 -
00000030: 11 00 14 00 01 00 00 00 01 01 00 00 00 00 00 10 -
00000040: 00 10 00 00 02 00 54 00 03 00 00 00 01 00 14 00 -T.........
00000050: 00 00 00 10 01 01 00 00 00 00 00 05 07 00 00 00 -
00000060: 00 00 24 00 03 00 00 00 01 05 00 00 00 00 00 05 - ..$.............
00000070: 15 00 00 00 F4 AC 30 8A BD 09 92 D1 73 DC ED 0C -0.....s...
00000080: EA 03 00 00 00 00 14 00 01 00 00 00 01 01 00 00 -
00000090: 00 00 00 01 00 00 00 00 01 01 00 00 00 00 00 01 -
000000A0: 00 00 00 00 01 01 00 00 00 00 00 01 00 00 00 00 -

Listing 5-13 Converting a security descriptor to a relative security descriptor and displaying its bytes

You can convert the byte array back to an security descriptor
object using New-NtSecurityDescriptor and the Byte
parameter:

PS> New-NtSecurityDescriptor -Byte $ba

As an exercise, I’ll leave it to you to pick apart the hex output
to find the various structures of the security descriptor based on
the descriptions provided in this chapter. To get you started,
Figure 5-9 highlights the major structures.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Figure 5-9 An outline of the major structures in the self-relative security descriptor hex output

You’ll need to refer to the layout of the ACL and SID
structures to manually decode the rest.

The Security Descriptor Definition Language

In Chapter 2, we discussed the basics of the security
descriptor definition language (SDDL) format for representing
SIDs. The SDDL format can represent the entire security
descriptor, too. As the SDDL version of a security descriptor uses
ASCII text, it’s somewhat human readable and it can be easily
copied, unlike the binary data we showed in Listing 5-13.
Because it’s common to see SDDL strings used throughout
Windows, let’s describe how to represent a security descriptor in
SDDL and how you can read it.

You can convert a security descriptor to the SDDL format by
specifying the ToSddl parameter to Format-
NtSecurityDescriptor, as shown in Listing 5-14, where
we pass the security descriptor we built in the previous section.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

You can also create a security descriptor from an SDDL string
using New-NtSecurityDescriptor with the –Sddl
parameter.

PS> $sddl = Format-NtSecurityDescriptor $sd -ToSddl -ShowAll
PS> $sddl
O:WDG:WDD:AI(D;;GA;;;AN)(A;;CCDC;;;S-1-5-21-2318445812-3516008893-216915059-
1002)(A;;CC;;;WD)S:P(AU;FA;SD;;;WD)(ML;;NW;;;LW)

Listing 5-14 Converting a security descriptor to SDDL

The SDDL version of the security descriptor contains four
optional components. You can identity the start of each
component by a letter followed by a colon:

O
Owner SID

G
Group SID

D
DACL

S
SACL

In Listing 5-15, we split the output from Listing 5-14 into its
components to make it easier to read.

PS> $sddl -split "(?=O:)|(?=G:)|(?=D:)|(?=S:)|(?=\()"
O:WD
G:WD
D:AI
 (D;;GA;;;AN)
 (A;;CCDC;;;S-1-5-21-2318445812-3516008893-216915059-1002)
 (A;;CC;;;WD)
S:P
 (AU;FA;SD;;;WD)
 (ML;;NW;;;LW)

Listing 5-15 Splitting up the SDDL components

The first two lines represent the owner and group SIDs in
SDDL format. You might notice that these don’t look like the
SDDL SIDs we’re used to seeing, as they don’t start with S-1-.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

That is because these strings are two-character aliases that
Windows uses for well-known SIDs to reduce the size of an
SDDL string. For example, the owner string is WD, which we
could convert back to the full SID using Get-NtSid (Listing 5-
16).

PS> Get-NtSid -Sddl "WD"
Name Sid
---- ---
Everyone S-1-1-0

Listing 5-16 Converting an alias to a name and SID

As you can see, the WD alias represents the Everyone group.
Table 5-6 shows the aliases for a few well-known SIDs. You can
find a more comprehensive list of all supported SDDL aliases in
Appendix B.

Table 5-6 Examples of Well-Known SIDs and Their Aliases

SID Alias Name SDDL SID
AU NT AUTHORITY\Authenticated Users S-1-5-11
BA BUILTIN\Administrators S-1-5-32-544
IU NT AUTHORITY\INTERACTIVE S-1-5-4
SY NT AUTHORITY\SYSTEM S-1-5-18
WD Everyone S-1-1-0

If a SID has no alias, Format-NtSecurityDescriptor
will emit the SID in the SDDL format, as shown in Listing 5-15.
Even SIDs without aliases can have names defined by LSASS. For
example, the SID in Listing 5-15 belongs to the current user, as
shown in Listing 5-17.

PS> Get-NtSid -Sddl "S-1-5-21-2318445812-3516008893-216915059-1002" -ToName
GRAPHITE\user

Listing 5-17 Looking up the name of the SID

Next in Listing 5-15 is the representation of the DACL. After
the D: prefix, the ACL in SDDL format looks as follows:

ACLFlags(ACE0)(ACE1)…(ACEn)

The ACL flags are optional; the DACL’s are set to AI and the
SACL’s are set to P. These values map to security descriptor
control flags and can be one or more of the strings in Table 5-7.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Table 5-7 ACL Flag Strings Mapped to Security Descriptor Control Flags

ACL flag string DACL control flag SACL control flag
P DaclProtected SaclProtected
AI DaclAutoInherited SaclAutoInherited
AR DaclAutoInheritReq SaclAutoInheritReq

We’ll describe the uses of these three control flags in Chapter
6. Each ACE is enclosed in parentheses and is made up of
multiple strings separated by semicolons, following this general
format:

(Type;Flags;Access;ObjectType;InheritedObjectType;SID[;ExtraData])

The Type is a short string that maps to an ACE type. Table 5-
8 shows these mappings. Note that SDDL format does not
support certain ACE types, so they’re omitted from the table.

Table 5-8 Mappings of Type Strings to ACE Types

ACE type string ACE type
A Allowed

D Denied

AU Audit

AL Alarm

OA AllowedObject

OD DeniedObject

OU AuditObject

OL AlarmObject

XA AllowedCallback

XD DeniedCallback

ZA AllowedCallbackObject

XU AuditCallback

ML MandatoryLabel

RA ResourceAttribute

SP ScopedPolicyId

TL ProcessTrustLabel

FL AccessFilter

The next component is Flags, which represents the ACE
flags. The audit entry in the SACL from Listing 5-15 shows the
flag string FA, which represents FailedAccess. Table 5-9
shows other mappings.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Table 5-9 Mappings of Flag Strings to ACE Flags

ACE flag string ACE flag
OI ObjectInherit

CI ContainerInherit

NP NoPropagateInherit

IO InheritOnly

ID Inherited

CR Critical

SA SuccessfulAccess

FA FailedAccess

TP TrustProtected

Next is Access, which represents the access mask in the
ACE. This can be a number in hexadecimal (0x1234), octal
(011064), or decimal (4660) format, or a list of short access
strings. If no string is specified, the access mask is set to 0. Table
5-10 shows the access strings.

Table 5-10 Mappings of Access Strings to Access Masks

Access string Access name Access mask
GR Generic Read 0x80000000

GW Generic Write 0x40000000
GX Generic Execute 0x20000000

GA Generic All 0x10000000
WO Write Owner 0x00080000
WD Write DAC 0x00040000
RC Read Control 0x00020000
SD Delete 0x00010000
CR Control Access 0x00000100
LO List Object 0x00000080

DT Delete Tree 0x00000040
WP Write Property 0x00000020

RP Read Property 0x00000010
SW Self Write 0x00000008

LC List Children 0x00000004
DC Delete Child 0x00000002

CC Create Child 0x00000001

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Note that the available access strings do not cover the entire
access mask range. This is because SDDL was designed to
represent the masks for directory service objects, which don’t
define access mask values outside of a limited range. This is also
why the names of the rights are slightly confusing; for example,
Delete Child does not necessarily map to an arbitrary object
type’s idea of deleting a child, and you can see in Listing 5-15
that the File type’s specific access maps to directory service
object access, even though it’s got nothing to do with Active
Directory.

To better support other types, the SDDL format provide
access strings for common file and registry key access masks, as
shown in Table 5-11.

Table 5-11 Access Strings for File and Registry Key Types

Access string Access name Access mask
FA File All Access 0x001F01FF
FX File Execute 0x001200A0

FW File Write 0x00120116
FR File Read 0x00120089

KA Key All Access 0x000F003F
KR Key Read 0x00020019

KX Key Execute 0x00020019
KW Key Write 0x00020006

If the available access strings can’t represent the entire mask,
the only option is to represent it as a number. For example, we
represent the ObjectType and InheritedObjectType
components, used with object ACEs, as the string forms of
GUIDs. The GUIDs can be any value. For example, Table 5-12
contains a few well-known ones used by Active Directory.

Table 5-12 Well-Known Object Type GUIDs Used in Active Directory

GUID Directory object
19195a5a-6da0-11d0-afd3-00c04fd930c9 Domain
bf967a86-0de6-11d0-a285-00aa003049e2 Computer
bf967aba-0de6-11d0-a285-00aa003049e2 User
bf967a9c-0de6-11d0-a285-00aa003049e2 Group

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Here is an example ACE string for an AllowedObject
ACE with the ObjectType set:

(OA;;CC;2f097591-a34f-4975-990f-00f0906b07e0;;WD)

After the InheritedObjectType component in the ACE
is the SID. As detailed earlier in this chapter, this can be a short
alias if it’s a well-known SID, or the full SDDL format if not.

In the final component, which is optional for most ACE types,
you can specify a conditional expression if using a callback ACE
or a security attribute if using a ResourceAttribute ACE.
The conditional expression defines a Boolean expression that
compares token security attributes values. When evaluated, the
result of the expression should be true or false. We saw a simple
example in Listing 5-4, WIN://TokenId == "XYZ", which
compares the value of the security attribute WIN://TokenId
with the string value XYZ; if they’re equal, the expression
evaluates to true. The SDDL expression syntax has four different
attribute-name formats for the security attribute you want to refer
to:

Simple
Used for local security attributes; for example,
WIN://TokenId

@Device
Used for device claims; for example, @Device.ABC

@User
Used for user claims; for example, @User.XYZ

@Resource
User for resource attributes; for example, @Resource.QRS

The comparison value in the conditional expression can
accept several different types, as well. When converting from
SDDL to a security descriptor, the condition expression will be
parsed, but because the type of the security attribute won’t be
known at this time, no validation of the value’s type can occur.
Table 5-13 shows examples for each conditional expression type.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Table 5-13 Example Values for Each Conditional Expression Type

Type Examples
Number	 Decimal: 100, -100, Octal: 0100, Hexadecimal: 0x100

String		 "ThisIsAString"

Fully	qualified	binary	name	 {"O=MICROSOFT CORPORATION, L=REDMOND,
S=WASHINGTON",1004}

SID		 SID(BA), SID(S-1-0-0)

Octet	string	 #0011223344

The syntax then defines operators to evaluate an expression,
starting with unary operators in Table 5-14.

Table 5-14 Unary Operators for Conditional Expressions

Operator Description
Exists ATTR Checks whether the security attribute ATTR exists
Not_Exists ATTR Inverse of Exists
Member_of {SIDLIST} Checks whether the token groups contain all SIDs in list
Not_Member_of {SIDLIST} Inverse of Member_of
Device_Member_of {SIDLIST} Checks whether the token device groups contain all SIDs in

list
Not_Device_Member_of {SIDLIST} Inverse of Device_Member_of
Member_of_Any {SIDLIST} Checks whether the token groups contain any SIDs in list
Not_Member_of_Any {SIDLIST} Inverse of Not_Member_of_Any
Device_Member_of_Any {SIDLIST} Checks whether the token device groups contain any SIDs

in list
Not_Device_Member_of_Any
{SIDLIST}

Inverse of Device_Member_of_Any

!(EXPR) The logical not of an expression

In Table 5-14, ATTR is the name of an attribute to test,
SIDLIST is a list of SID values enclosed in braces {}, and
EXPR is another conditional sub-expression. Table 5-15 shows
the infix operators.

Table 5-15 Infix Operations for Conditional Expressions

Operator Description

ATTR Contains VALUE Checks whether the security attribute contains the value

ATTR Not_Contains VALUE Inverse of Contains

ATTR Any_of {{VALUELIST} Checks whether the security attribute contains any of the values

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

ATTR Not_Any_of {VALUELIST} Inverse of Any_of

ATTR == VALUE Checks whether the security attribute equals the value

ATTR != VALUE Checks whether the security attribute does not equal the value

ATTR < VALUE Checks whether the security attribute is less than the value

ATTR <= VALUE Checks whether the security attribute is less than or equal to the
value

ATTR > VALUE Checks whether the security attribute is greater than the value

ATTR >= VALUE Checks whether the security attribute is greater than or equal to
the value

EXPR && EXPR Logical AND between two expressions

EXPR || EXPR Logical OR between two expressions

In Table 5-15, VALUE can be either a single value from Table
5-13 or a list of values enclosed in braces. The
Any_of/Not_Any_of operators work only on lists, and the
conditional expression must always be placed in parentheses in
the SDDL ACE. For example, if you wanted to use the
conditional expression shown back in Listing 5-4 with an
AccessCallback ACE, the ACE string would be as follows:

(ZA;;GA;;;WD;(WIN://TokenId == "XYZ"))

The final component represents a security attribute for the
ResourceAttribute ACE. Its general format is as follows:

"AttrName",AttrType,AttrFlags,AttrValue(,AttrValue...)

The AttrName value is the name of the security attribute,
AttrFlags is a hexadecimal number that represents the
security attribute flags, and AttrValue is one or more values
specific to AttrType separated by commas. The AttrType is
a short string that indicates the type of data contained in the
security attribute. Table 5-16 shows the strings with examples.

Table 5-16 Security Attribute SDDL Type Strings

Attribute type Type name Example Value

TI Int64 Decimal: 100, -100, Octal: 0100, Hexadecimal: 0x100

TU UInt64 Decimal: 100, Octal: 0100, Hexadecimal: 0x100

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

TS String "XYZ"

TD SID BA, S-1-0-0

TB Boolean 0, 1

RX OctetString #0011223344

To give an example, the following SDDL string represents a
ResourceAttribute ACE with the name
Classification. It contains two string values, TopSecret
and MostSecret, and has the CaseSensitive and
NonInheritable flags set:

S:(RA;;;;;WD;("Classification",TS,0x3,"TopSecret","MostSecret"))

The last field to define in Listing 5-15 is the SACL. The
structure is the same as that described for the DACL, although the
types of ACEs supported differ. If you try to use an type that is
not allowed in the specific ACL, parsing the string will fail. In the
SACL example in Listing 5-15, the only ACE is the mandatory
label. The mandatory label ACE has its own access strings used
to represent the mandatory policy, as shown in the Table 5-17.

Table 5-17 Mandatory Label Access Strings

Access String Access Name Access Mask
NX No Execute Up 0x00000004
NR No Read Up 0x00000002

NW No Write Up 0x00000001

The SID represents the integrity level of the mandatory label;
again, special SID aliases are defined. Anything outside the list
shown in Table 5-18 needs to be represented as a full SID.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Table 5-18 Mandatory Label Integrity Level SIDs

SID Alias Name SDDL SID

LW Low integrity level S-1-16-4096

ME Medium integrity level S-1-16-8192

MP Medium Plus integrity level S-1-16-8448

HI High integrity level S-1-16-12288

SI System integrity level S-1-16-16384

The SDDL format doesn’t preserve all information you can
store in a security descriptor. For example, the SDDL format
can’t represent the OwnerDefaulted or GroupDefaulted
control flags, so these are discarded. SDDL also doesn’t support
some ACEs types, so I omitted these from Table 5-8.

If an unsupported ACE type is encountered while we’re
converting a security descriptor to SDDL, the conversion process
will fail. For this reason, the ConvertFrom-
NtSecurityDescriptor PowerShell command can convert
a security descriptor in relative format to base64. Using base64
preserves the entire security descriptor and allows it to be copied
easily, as shown in Listing 5-18.

PS> ConvertFrom-NtSecurityDescriptor $sd -AsBase64 -InsertLineBreaks
AQAUpJgAAACkAAAAFAAAAEQAAAACADAAAgAAAAKAFAAAAAEAAQEAAAAAAAEAAAAAEQAUAAEAAAAB
AQAAAAAAEAAQAAACAFQAAwAAAAEAFAAAAAAQAQEAAAAAAAUHAAAAAAAkAAMAAAABBQAAAAAABRUA
AAD0rDCKvQmS0XPc7QzqAwAAAAAUAAEAAAABAQAAAAAAAQAAAAABAQAAAAAAAQAAAAABAQAAAAAA
AQAAAAA=

Listing 5-18 Converting a security descriptor to a base64 representation

To retrieve the security descriptor, you can pass New-
NtSecurityDescriptor the Base64 parameter.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Worked Examples

Let’s finish this chapter with some worked examples that use
the commands you’ve learned about in this chapter.

Manually Parsing a Binary SID

The PowerShell module comes with commands you can use
to parse SIDs that are structured in various forms. One of those
forms is a raw byte array. You can convert an existing SID to a
byte array using the ConvertFrom-NtSid command:

PS> $ba = ConvertFrom-NtSid -Sid "S-1-1-0"

You can also convert the byte array back to a SID using the
Byte parameter on the Get-NtSid command, as shown below.
The module will parse the byte array and return the SID:

PS> Get-NtSid -Byte $ba

Although PowerShell can perform these conversions for you,
you’ll find it valuable to understand how the data is structured at
a low level. For example, you might identify code that parses
SIDs incorrectly, which could lead to memory corruption;
through this discovery, you might find a security vulnerability.

The best way to learn how to parse a binary structure is to
write a parser, as we do in Listing 5-19.

1 PS> $sid = Get-NtSid -SecurityAuthority Nt -RelativeIdentifier 100, 200, 300
PS> $ba = ConvertFrom-NtSid -Sid $sid
PS> $ba | Out-HexDump -ShowAll
 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F - 0123456789ABCDEF

00000000: 01 03 00 00 00 00 00 05 64 00 00 00 C8 00 00 00 -d.......
00000010: 2C 01 00 00 - ,...

2 PS> $stm = [System.IO.MemoryStream]::new($ba)
PS> $reader = [System.IO.BinaryReader]::new($stm)

3 PS> $revision = $reader.ReadByte()
PS> if ($revision -ne 1) {
 throw "Invalid SID revision"
}

4 PS> $rid_count = $reader.ReadByte()
5 PS> $auth = $reader.ReadBytes(6)

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

PS> if ($auth.Length -ne 6) {
 throw "Invalid security authority length"
}

PS> $rids = @()

6 PS> while($rid_count -gt 0) {
 $rids += $reader.ReadUInt32()
 $rid_count--
}

7 PS> $new_sid = Get-NtSid -SecurityAuthorityByte $auth -RelativeIdentifier
$rids
PS> $new_sid -eq $sid
True

Listing 5-19 Manually parsing a binary SID

For demonstration purposes, we start by creating an arbitrary
SID and converting it to a byte array 1. Typically, though, you’ll
receive a SID to parse in some other way, such as from the
memory of a process. We also print the SID as hex. (If you refer
to the SID structure shown in Figure 5-1, you might already be
able to pick out its various components.)

Next, we create a BinaryReader to parse the byte array in
a structured form 2. Using the reader, we first check whether the
revision value is set to 1 3; if it isn’t, we throw an error. Next in
the structure is the RID count as a byte 5, followed by the six-byte
security authority 5. The ReadBytes method can return a short
reader, so you’ll want to check that you read all six bytes.

We now enter a loop to read the RIDs from the binary
structure and append them to an array 6. Next, using the security
authority and the RIDs, we can run Get-NtSid to construct a
new SID object 7 and verify that the new SID matches the one we
started with.

This should have given you an example of how to manually
parse a SID (or, in fact, any binary structure) using PowerShell. If
you’re adventurous, you could implement your own parser for the
binary security descriptor formats, but that is outside the scope of
this book. It’s simpler to use the New-
NtSecurityDescriptor command to do the parsing for
you.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Enumerating SIDs

The LSASS service does not provide a publicly exposed
method for querying every SID-to-name mapping it knows about.
While documentation such as MSDN provides a list of known
SIDs, these aren’t always up to date and won’t include the SIDs
specific to a computer or enterprise network. However, we can try
to enumerate the mappings using brute force. Listing 5-20 defines
a function, Get-AccessSids, to brute force a list of the SIDs
for which LSASS has a name.

PS> function Get-AccountSids {
 param(
 [parameter(Mandatory)]
 $BaseSid,
 [int]$MinRid = 0,
 [int]$MaxRid = 256
)

 $i = $MinRid

 while($i -lt $MaxRid) {
 $sid = Get-NtSid -BaseSid $BaseSid -RelativeIdentifier $i
 $name = Get-NtSidName $sid
 1 if ($name.Source -eq "Account") {
 [PSCustomObject]@{
 Sid = $sid;
 Name = $name.QualifiedName;
 Use = $name.NameUse
 }
 }
 $i++
 }
}

2 PS> $sid = Get-NtSid -SecurityAuthority Nt
PS> Get-AccountSids -BaseSid $sid
Sid Name Use
---- ---- ---
S-1-5-1 NT AUTHORITY\DIALUP WellKnownGroup
S-1-5-2 NT AUTHORITY\NETWORK WellKnownGroup
S-1-5-3 NT AUTHORITY\BATCH WellKnownGroup
--snip--

3 PS> $sid = Get-NtSid -BaseSid $sid -RelativeIdentifier 32
PS> Get-AccountSids -BaseSid $sid -MinRid 512 -MaxRid 1024
Sid Name Use
---- ---- ---
S-1-5-32-544 BUILTIN\Administrators Alias
S-1-5-32-545 BUILTIN\Users Alias

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

S-1-5-32-546 BUILTIN\Guests Alias
--snip--

Listing 5-20 Brute forcing known SIDs

The function accepts a base SID and the range of RID values
to test. It then creates each SID in the list and queries for its
name. If the name’s source is Account, which indicates the
name was retrieved from LSASS, we output the SID’s details 1.

To test the function, we call it with the base SID, which
contains the Nt authority but no RIDs 2. We get the list of
retrieved names and SIDs from LSASS. Notice that the SIDs in
the output are not domain SIDs, as you might expect, but
WellKnownGroup SIDs. For our purposes, the distinction
between WellKnownGroup, Group, and Alias is not
important; they’re all groups.

We can repeat the brute force with the BUILTIN domain SID
3. In this case, we’ve changed the RID range based on our pre-
existing knowledge of the valid range, but you’re welcome to try
any other range you like. Note that you could automate the
search, by inspecting the NameUse property in the returned
objects and calling Get-AccountsSids when its value is
Domain. I leave this as an exercise for the reader.

Wrapping Up

We started this chapter by delving into the structure of the
security descriptor. We detailed its binary structures, such as
SIDs, but also its access control lists (ACL) and access control
entries (ACE), which make up the discretionary and system
ACLs. We then discussed the differences between absolute and
relative security descriptors and why the two formats exist.

Next, we described the use of the New-
NtSecurityDescriptor and Add-
NtSecurityDescriptorAce commands to create and
modify a security descriptor so that it contains whatever entries
we require. We also displayed security descriptors in a convenient

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

form using the Format-NtSecurityDescriptor
command.

Finally, we covered the SDDL format used for representing
security descriptors. We discussed how to represent the various
types of security descriptor values, such as ACEs, and how you
can write your own. Some tasks we haven’t yet covered are how
to query a security descriptor from a kernel object and assign a
new one. We’ll cover these topics in the next chapter.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

6
R E A D I N G A N D A S S I G N I N G
S E C U R I T Y D E S C R I P T O R S

In the previous chapter, we discussed the various
structures that make up a security descriptor. You also
learned how to manipulate security descriptors in
PowerShell and how to represent them using the SDDL
format. In this chapter, we’ll discuss how to read
security descriptors from kernel objects, as well as the
more complex process of assigning security descriptors
to these objects.

Note that we’ll focus our discussion on the security
descriptors assigned to kernel objects. However, it’s possible to

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

store a security descriptor in persistent storage, such as in a file or
as a registry key value. In this case, the security descriptor must
be stored in the relative format and read as a stream of bytes
before we can convert it into a format we can inspect.

Reading Security Descriptors

To access a kernel object’s security descriptor, you can call
the NtQuerySecurityObject system call. This system call
accepts a handle to the kernel object, as well as a set of flags that
describe the components of the security descriptor you want to
access. The SecurityInformation enumeration represents
these flags.

Table 6-1 shows the list of available flags on the latest
Windows, as well as the location of the information in the
security descriptor and the handle access required to query it.

Table 6-1 The SecurityInformation Flags and Their Required Access

Flag Name Description Location Handle Access Required
Owner Query the owner SID Owner ReadControl
Group Query the group SID Group ReadControl
Dacl Query the DACL DACL ReadControl
Sacl Query the SACL (auditing ACEs

only)
SACL AccessSystemSecurity

Label Query the mandatory
label/integrity level

SACL ReadControl

Attribute Query the System Resource
Attribute

SACL ReadControl

Scope Query the Scoped Policy ID SACL ReadControl
ProcessTrustLabel Query the Process Trust Label SACL ReadControl
AccessFilter Query the Access Filter SACL ReadControl
Backup Query everything except

ProcessTrustLabel and
AccessFilter

All ReadControl and
AccessSystemSecurity

You need only ReadControl access to read most of this
information, with the exception of the auditing ACEs from the
SACL, which require AccessSystemSecurity. (Other
ACEs stored in the SACL need only ReadControl access.)

The only way to get AccessSystemSecurity access is to
first enable the SeSecurityPrivilege privilege, then

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

explicitly request the access when opening a kernel object.
Listing 6-1 shows this behavior. You must run these commands
as an administrator.

PS> $dir = Get-NtDirectory "\BaseNamedObjects" -Access AccessSystemSecurity
Get-NtDirectory : (0xC0000061) - A required privilege is not held by the
client.
--snip--

PS> Enable-NtTokenPrivilege SeSecurityPrivilege
PS> $dir = Get-NtDirectory "\BaseNamedObjects" -Access AccessSystemSecurity
PS> $dir.GrantedAccess
AccessSystemSecurity

Listing 6-1 Requesting AccessSystemSecurity access and enabling SeSecurityPrivilege

We first try to open the BNO directory for
AccessSystemSecurity without having
SeSecurityPrivilege and receive an error. Next, we
enable the SeSecurityPrivilege and try again. This time,
we successfully open the BNO directory and print its granted
access to confirm we’ve been granted
AccessSystemSecurity.

It’s not entirely clear why the designers of Windows made the
decision to guard the reading of audit information with
SeSecurityPrivilege. While we should consider the
modifying or removing of auditing information to be privileged
actions, there is no obvious reason that reading that information
should be. Unfortunately, we’re stuck with this design.

You can query an object’ s security descriptor using the Get-
NtSecurityDescriptor PowerShell command, which calls
NtQuerySecurityObject. The system call returns the
security descriptor in the relative format as a byte array, which
the PowerShell command parses into a
SecurityDescriptor object and returns to the caller. The
command accepts either an object or a path to the resource you
want to query, as shown in Listing 6-2, which displays the
security descriptor of the BNO directory.

PS> Use-NtObject($d = Get-NtDirectory "\BaseNamedObjects" -Access ReadControl)
{
 Get-NtSecurityDescriptor -Object $d

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

}
Owner DACL ACE Count SACL ACE Count Integrity Level
----- -------------- -------------- ---------------
BUILTIN\Administrators 4 1 Low

Listing 6-2 Querying the security descriptor for BNO directory

We open the BNO directory with ReadControl access,
then use Get-NtSecurityDescriptor to query the security
descriptor from the open Directory object.

By default, the command queries for the owner, group,
DACL, mandatory label, and process trust label. If you want to
query any other field (or omit some of the returned information),
you need to specify it through the SecurityInformation
parameter, which accepts the values in Table 6-1. For example,
Listing 6-3 uses a path instead of an object and requests only the
owner field.

PS> Get-NtSecurityDescriptor "\BaseNamedObjects" -SecurityInformation Owner
Owner DACL ACE Count SACL ACE Count Integrity Level
----- -------------- -------------- ---------------
BUILTIN\Administrators NONE NONE NONE

Listing 6-3 Querying the owner of the BNO directory

In the output, you can see that only the Owner column
contains valid information; all other columns now have the value
NONE, which indicates that no value is present, because we
haven’t requested that information.

Assigning Security Descriptors

Reading a security descriptor is easy; you just need the correct
access to a kernel resource and the ability to parse the relative
security descriptor format returned from the
NtQuerySecurityObject system call. Assigning a security
descriptor is a more complex operation. The security descriptor
assigned to a resource depends on multiple factors:

• Is the resource being created?

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

• Has the creator specified a security descriptor during
creation?

• Is the new resource stored in a container, such as a file
directory or registry key?

• Is the new resource a container or an object?

• What control flags are set on the parent or current security
descriptor?

• What user principal is assigning the security descriptor?

• What ACEs does the existing security descriptor contain?

• What kernel object type is being assigned?

As you can see from the list, this process involves many
variables and is one of the big reasons Windows security can be
so complex.

We can assign a resource’s security at creation time or via an
open handle. Let’s start with the more complex case first:
assignment at creation time.

Assigning a Security Descriptor During Resource
Creation

When creating a new resource, the kernel needs to assign it a
security descriptor. Also, it must store the security descriptor
differently depending on the kind of resource being created. For
example, object manager resources are ephemeral, so the kernel
will store their security descriptors in memory. In contrast, a
filesystem driver’s security descriptor must be persisted to the
disk; otherwise, it will disappear when you reboot your computer.

While the mechanism to store the security descriptor might
differ, the kernel must still follow many common procedures
when handling it, such as enforcing the rules of inheritance. To
provide a consistent implementation, the kernel exports a couple
of APIs that calculate the security descriptor to assign to a new
resource. The most used of these APIs is

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

SeAssignSecurityEx, which takes the following seven
parameters:

Creator Security Descriptor
An optional security descriptor on which to base the new,
assigned security descriptor

Parent Security Descriptor
An optional security descriptor for the new resource’s parent
object

Object Type
An optional GUID that represents the type of object being created

Container
A Boolean value indicating whether the new resource is a
container

Auto-Inherit
A set of bit flags that define the auto-inheritance behavior

Token
A handle to the token to use as the creator’s identity

Generic Mapping
A mapping from generic access to specific access rights for the
kernel type

Based on these parameters, the API calculates a new security
descriptor and returns it to the caller. By investigating how these
parameters interact, we can understand how the kernel assigns
security descriptors to new objects.

Let’s consider this assignment process for a Mutant object.
(This object will delete once the PowerShell instance closes,
ensuring that we don’t accidentally leave unnecessary files or
registry keys around.) Table 6-2 provides an example of how we
might set the parameters when creating a new Mutant object
with NtCreateMutant.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Table 6-2 Parameters Passed to SeAssignSecurityEx When Creating a Mutant
Object

Parameter Setting Value
Creator Security
Descriptor

The value of the SecurityDescriptor field in the Object Attributes structure

Parent Security
Descriptor

The security descriptor of the parent Directory; if not set, an unnamed
Mutant

Object Type Not set
Container Set to false, as a Mutant isn’t a container
Auto-Inherit Set to AutoInheritDacl if the parent security descriptor’s control flags have

the DaclAutoInherited flag and the creator DACL is missing or there is no
creator security descriptor
Set to AutoInheritSacl if the parent security descriptor’s control flags have
the SaclAutoInherited flag and creator SACL is missing or there is no
creator security descriptor

Token If the caller is impersonating, set to an impersonation token; otherwise, the
primary token of the caller’s process

Generic Mapping Set to the generic mapping for the Mutant type

You might be wondering why the object type isn’t set in
Table 6-2. Well, the API supports the parameter, but neither the
object manager nor NTFS use it. Its primary purpose is to let
Active Directory control inheritance, so we’ll discuss it separately
later in this chapter in “Determining Object Inheritance” on page
XX.

Table 6-2 shows only two possible auto-inherit flags, but we
can pass many others to the API. Table 6-3 lists the available
auto-inherit flags, some of which we’ll encounter in this chapter’s
examples.

Table 6-3 The Auto-Inherit Flags

Flag name Description
DaclAutoInherit Auto-inherit the DACL

SaclAutoInherit Auto-inherit the SACL
DefaultDescriptorForObject Use the default security descriptor for the new security

descriptor
AvoidPrivilegeCheck Don’t check for privileges when setting the mandatory label or

SACL
AvoidOwnerCheck Avoid checking whether the owner is valid for the current token

DefaultOwnerFromParent Copy the owner SID from the parent security descriptor
DefaultGroupFromParent Copy the group SID from the parent security descriptor

MaclNoWriteUp Auto-inherit the mandatory label with the NoWriteUp policy
MaclNoReadUp Auto-inherit the mandatory label with the NoReadUp policy

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

MaclNoExecuteUp Auto-inherit the mandatory label with the NoExecuteUp policy
AvoidOwnerRestriction Ignore restrictions placed on the new DACL by the parent

security descriptor
ForceUserMode Enforce all checks as if called from user-mode; only applicable

for kernel callers

The most important SeAssignSecurityEx parameters to
consider are the values assigned to the parent and creator security
descriptors. Let’s go through various configurations of these two
security descriptor parameters to understand the different
outcomes.

Setting Only the Creator Security Descriptor

In the first configuration we’ll consider, we call
NtCreateMutant with the object attribute’s
SecurityDescriptor field set to a valid security descriptor.
If the new Mutant object is not given a name, it will be created
without a parent directory, and the corresponding parent security
descriptor won’t be set. If there is no parent security descriptor,
the auto-inherit flags won’t be set, either.

Let’s test this behavior to see the security descriptor generated
when we create a new Mutant object. Rather than creating the
object itself, we’ll use the user-mode implementation of
SeAssignSecurityEx, which NTDLL exports as
RtlNewSecurityObjectEx. We can access
RtlNewSecurityObjectEx using the New-
NtSecurityDescriptor PowerShell command, as shown in
Listing 6-4.

PS> $creator = New-NtSecurityDescriptor -Type Mutant
1 PS> Add-NtSecurityDescriptorAce $creator -Name "Everyone" -Access GenericRead
2 PS> Format-NtSecurityDescriptor $creator

Type: Mutant
Control: DaclPresent
<DACL>
 - Type : Allowed
 - Name : Everyone
 - SID : S-1-1-0
 - Mask : 0x80000000
 - Access: GenericRead
 - Flags : None

PS> $token = Get-NtToken -Effective -Pseudo

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

3 PS> $sd = New-NtSecurityDescriptor -Token $token -Creator $creator -Type
Mutant
PS> Format-NtSecurityDescriptor $sd
Type: Mutant
Control: DaclPresent

4 <Owner>
 - Name : GRAPHITE\user
 - Sid : S-1-5-21-2318445812-3516008893-216915059-1002

5 <Group>
 - Name : GRAPHITE\None
 - Sid : S-1-5-21-2318445812-3516008893-216915059-513

<DACL>
 - Type : Allowed
 - Name : Everyone
 - SID : S-1-1-0
 - Mask : 0x00020001

6 - Access: QueryState|ReadControl
 - Flags : None

Listing 6-4 Creating a new security descriptor from a creator security descriptor

We build a creator security descriptor with only a single ACE,
granting the Everyone group GenericRead access 1. By
formatting the security descriptor 2, we can confirm that only the
DACL is present in the formatted output. Next, using the creator
security descriptor, we call the New-
NtSecurityDescriptor command 3, passing the current
effective token and specifying the final object type as Mutant.
This object type determines the generic mapping. Finally, we
format the new security descriptor.

You might notice that the security descriptor has changed
during the creation process. First, it gained Owner 4 and Group
values 5. Also, the specified access mask has gone from
GenericRead to QueryState|ReadControl 6.

Let’s start by considering where those new owner and group
values come from. When we don’t specify an Owner or Group
value, the creation process copies these from the supplied token’s
Owner and PrimaryGroup SIDs. We can confirm this by
checking the Token object’s properties using the Format-
NtToken PowerShell command (Listing 6-5).

PS> Format-NtToken $token -Owner -PrimaryGroup

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

OWNER INFORMATION

Name Sid
---- ---
GRAPHITE\user S-1-5-21-2318445812-3516008893-216915059-1002

PRIMARY GROUP INFORMATION

Name Sid
---- ---
GRAPHITE\None S-1-5-21-2318445812-3516008893-216915059-513

Listing 6-5 Displaying the Owner and PrimaryGroup SIDs for the current effective token

If you compare the output in Listing 6-5 with the security
descriptor values in Listing 6-4, you can see that the owner and
group SIDs match.

In Chapter 4, you learned that it’s not possible to set an
arbitrary owner SID on a token; this value must be either the
user’s SID or an SID marked with the Owner flag. You might
wonder: as the token’s SID is being used to set the security
descriptor’s default owner, could we use this behavior to specify
an arbitrary owner SID in the security descriptor? Let’s check. In
Listing 6-6, we first set the security descriptor to the SYSTEM
user SID, then try to create the security descriptor again.

PS> Set-NtSecurityDescriptorOwner $creator -KnownSid LocalSystem
PS> New-NtSecurityDescriptor -Token $token -Creator $creator -Type Mutant
New-NtSecurityDescriptor : (0xC000005A) - Indicates a particular Security ID
may not be assigned as the owner of an object.

Listing 6-6 Setting the SYSTEM user as the Mutant object’s security descriptor owner

This time, the creation fails with an exception and the status
code STATUS_INVALID_OWNER. This is because the API
checks whether the owner SID being assigned is valid for the
supplied token. This SID doesn’t have to be the Token object’s
owner SID, but it must be either the user’s SID or a group SID
with the Owner flag set.

You can set an arbitrary owner SID only when the token used
to create the security descriptor has the
SeRestorePrivilege enabled. Note that this token doesn’t
necessarily have to belong to the caller of the

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

SeAssignSecurityEx API. You can also disable the owner
check by specifying the AvoidOwnerCheck auto-inherit flag;
however, the kernel will never specify this flag when creating a
new object, so it will always enforce the owner check.

This is not to say that there’s no way to set a different owner
as a normal user. However, any method of setting an arbitrary
owner that you discover is a security vulnerability that Microsoft
will likely fix. An example of such a bug is CVE-2018-0748,
which allowed users to set an arbitrary owner when creating a
file. The user had to create the file via a local filesystem share,
causing the owner check to be bypassed.

There are no restrictions on the value of the group SID, as the
group doesn’t contribute to the access check. However,
restrictions apply to the SACL. If you specify any audit ACEs in
the SACL as part of the creator security descriptor, the kernel will
require SeSecurityPrivilege.

Remember that, when we created the security descriptor, the
access mask went from GenericRead to
QueryState|ReadControl. This is because the security
descriptor assignment process maps all generic access rights in
the access mask to type-specific access using the object type’s
generic mapping information. In this case, the Mutant type’s
GenericRead mapping converts the access mask to
QueryState|ReadControl. There is one exception to this
rule: if the ACE has the InheritOnly flag set, then generic
access rights won’t be mapped. You’ll understand why the
exception exists in a moment, when we discuss inheritance.

We can confirm this mapping behavior by using New-
NtSecurityDescriptor to create an unnamed Mutant
object, as shown in Listing 6-7.

PS> $creator = New-NtSecurityDescriptor -Type Mutant
PS> Add-NtSecurityDescriptorAce $creator -Name "Everyone" -Access GenericRead
PS> Use-NtObject($m = New-NtMutant -SecurityDescriptor $creator){
 Format-NtSecurityDescriptor $m
}
Type: Mutant
Control: DaclPresent

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

<Owner>
 - Name : GRAPHITE\user
 - Sid : S-1-5-21-2318445812-3516008893-216915059-1002

<Group>
 - Name : GRAPHITE\None
 - Sid : S-1-5-21-2318445812-3516008893-216915059-513

<DACL>
 - Type : Allowed
 - Name : Everyone
 - SID : S-1-1-0
 - Mask : 0x00020001
 - Access: QueryState|ReadControl
 - Flags : None

Listing 6-7 Verifying security descriptor assignment rules by creating a Mutant object

As you can see, the output security descriptor is the same as
the one created in Listing 6-4.

Setting Neither the Creator Nor the Parent Security
Descriptor

Let’s explore another simple case. In this scenario, neither the
creator nor the parent security descriptor is set. This case
corresponds to calling NtCreateMutant without a name or a
specified SecurityDescriptor field. The script to test this
case is even simple than the previous, as shown in Listing 6-8.

PS> $token = Get-NtToken -Effective -Pseudo
1 PS> $sd = New-NtSecurityDescriptor -Token $token -Type Mutant

PS> Format-NtSecurityDescriptor $sd -HideHeader
2 <Owner>

 - Name : GRAPHITE\user
 - Sid : S-1-5-21-2318445812-3516008893-216915059-1002

<Group>
 - Name : GRAPHITE\None
 - Sid : S-1-5-21-2318445812-3516008893-216915059-513

3 <DACL>
 - Type : Allowed
 - Name : GRAPHITE\user
 - SID : S-1-5-21-2318445812-3516008893-216915059-1002
 - Mask : 0x001F0001
 - Access: Full Access
 - Flags : None

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

 - Type : Allowed
 - Name : NT AUTHORITY\SYSTEM
 - SID : S-1-5-18
 - Mask : 0x001F0001
 - Access: Full Access
 - Flags : None

 - Type : Allowed
 - Name : NT AUTHORITY\LogonSessionId_0_137918
 - SID : S-1-5-5-0-137918
 - Mask : 0x00120001
 - Access: QueryState|ReadControl|Synchronize
 - Flags : None

Listing 6-8 Creating a new security descriptor with no creator or parent security descriptor

This call to New-NtSecurityDescriptor requires only
the token and kernel object type 1. The Owner and Group fields
in the final security descriptor are set to default values based on
the token’s Owner and PrimaryGroup properties 2.

But where did the DACL 3 come from? We haven’t specified
either a parent or a creator security descriptor, so it couldn’t have
come from either of those. Instead, the DACL comes from the
Token object’s default DACL, an ACL stored in the token that
acts as a fallback when there is no other DACL specified. You
can display a token’s default DACL by passing the token to
Format-NtToken with the DefaultDacl parameter, as in
Listing 6-9.

PS> Format-NtToken $token -DefaultDacl
DEFAULT DACL

GRAPHITE\user: (Allowed)(None)(GenericAll)
NT AUTHORITY\SYSTEM: (Allowed)(None)(GenericAll)
NT AUTHORITY\LogonSessionId_0_137918:
(Allowed)(None)(GenericExecute|GenericRead)

Listing 6-9 Displaying the token’s default DACL

Other than its Mutant-specific access rights, the DACL in
Listing 6-9 matches the one in Listing 6-8. We can conclude that,
if we specify neither the parent nor the creator security descriptor
during creation, we’ll create a new security descriptor based on
the token’s owner, primary group, and default DACL. However,

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

just to be certain, let’s verify this behavior by creating an
unnamed Mutant with no security descriptor (Listing 6-10).

PS> Use-NtObject($m = New-NtMutant) {
 Format-NtSecurityDescriptor $m
}
Type: Mutant
Control: None
<NO SECURITY INFORMATION>

Listing 6-10 Creating an unnamed Mutant to verify the default security-descriptor creation behavior

You can see that the new Mutant object has no security
information at all! This is not what we expected.

The kernel allows certain object types to have no security
when the object doesn’t have a name. You can learn whether an
object requires security by using the SecurityRequired
property (Listing 6-11).

PS> Get-NtType "Mutant" | Select-Object SecurityRequired
SecurityRequired

 False

Listing 6-11 Querying for the Mutant type’s SecurityRequired property

As you can see, the Mutant type doesn’t require security.
So, if we specify neither the creator nor parent security descriptor
when creating an unnamed Mutant object, the kernel won’t
generate a default security descriptor.

Why would the kernel support the ability to create an object
without a security descriptor? Well, if applications won’t share
that object with each other, the security descriptor would serve no
purpose; it would only use up additional kernel memory. If you
assigned the object a name later, the kernel would upgrade it to
requiring security so it could be shared.

DUPLICATING UNNAMED OBJECT HANDLES

You can duplicate a handle to the unmanned resource and share it with another process without
giving the resource a name. However, this should be done with care. While handle duplication allows
you to remove access from a handle if the object has no security descriptor, the receiving process can
easily reduplicate the handle to retrieve the access that was removed.

Prior to Windows 8, there was no way assign security to an unnamed object that had

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

SecurityRequired set to False. This has changed, and if you specify a security descriptor during
creation, you’ll assign it to the resulting object. Windows 8 also introduced a new, undocumented flag to
NtDuplicateObject to separately deal with the issue. Specifying the NoRightsUpgrade flag while
duplicating a handle tells the kernel to deny any further duplication operations that request additional
access rights.

To verify the generation of a default security descriptor, let’s
now create an object that requires security, such as a
Directory object (Listing 6-12).

PS> Get-NtType Directory | Select-Object SecurityRequired
SecurityRequired

 True

PS> Use-NtObject($dir = New-NtDirectory) {
 Format-NtSecurityDescriptor $dir -Summary
}
GRAPHITE\user: (Allowed)(None)(Full Access)
NT AUTHORITY\SYSTEM: (Allowed)(None)(Full Access)
NT AUTHORITY\LogonSessionId_0_137918:
(Allowed)(None)(Query|Traverse|ReadControl)

Listing 6-12 Creating an unnamed directory to verify the default security descriptor

Listing 6-12 shows that the default security descriptor
matches our assumptions.

Setting Only the Parent Security Descriptor

The next case we’ll consider is much more complex. Say we
call NtCreateMutant with a name but without specifying the
SecurityDescriptor field. Because a named Mutant must
be live within a Directory object (which, as we’ve just seen,
requires security), the parent security descriptor will be set.

Yet when we specify a parent security descriptor, we also
bring something else into play: inheritance, a process by which
the new security descriptor copies a part of the parent security
descriptor. Inheritance rules determine which parts of the parent
get passed to the new security descriptor, and we call a parent
security descriptor whose parts can be inherited inheritable.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

The purpose of inheritance is to define a hierarchical security
configuration for a tree of resources. Without inheritance, we
would have to explicitly assign a security descriptor for each new
object in the hierarchy, which would become unmanageable
rather quickly. It would also makes the resource tree impossible
to manage, as each application might choose to behave
differently.

Let’s test the inheritance rules that apply when we create new
kernel resources. We’ll focus on the DACL, but these concepts
apply to the SACL, as well. To minimize code duplication,
Listing 6-13 defines a few functions that run a test with the parent
security descriptor and implement various options.

PS> function New-ParentSD($AceFlags = 0, $Control = 0) {
 $owner = Get-NtSid -KnownSid BuiltinAdministrators
1 $parent = New-NtSecurityDescriptor -Type Directory -Owner $owner -Group
$owner
2 Add-NtSecurityDescriptorAce $parent -Name "Everyone" -Access GenericAll
 Add-NtSecurityDescriptorAce $parent -Name "Users" -Access GenericAll
-Flags $AceFlags
3 Add-NtSecurityDescriptorControl $parent -Control $Control
4 Edit-NtSecurityDescriptor $parent -MapGeneric
 return $parent
}

PS> function Test-NewSD($AceFlags = 0,
 $Control = 0,
 $Creator = $null,
 [switch]$Container) {
 $parent = New-ParentSD -AceFlags $AceFlags -Control $Control
 Write-Output "-= Parent SD =-"
 Format-NtSecurityDescriptor $parent -Summary

 if ($Creator -ne $null) {
 Write-Output "`r`n-= Creator SD =-"
 Format-NtSecurityDescriptor $creator -Summary
 }

5 $auto_inherit_flags = @()
 if (Test-NtSecurityDescriptor $parent -DaclAutoInherited) {
 $auto_inherit_flags += "DaclAutoInherit"
 }
 if (Test-NtSecurityDescriptor $parent -SaclAutoInherited) {
 $auto_inherit_flags += "SaclAutoInherit"
 }
 if ($auto_inherit_flags.Count -eq 0) {
 $auto_inherit_flags += "None"
 }

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

 $token = Get-NtToken -Effective -Pseudo
 $sd = New-NtSecurityDescriptor -Token $token -Parent $parent -Creator
$creator
5 -Type Mutant -Container:$Container -AutoInherit $auto_inherit_flags
 Write-Output "`r`n-= New SD =-"
 Format-NtSecurityDescriptor $sd -Summary
}

Listing 6-13 Test function definitions for New-ParentSD and Test-NewSD

We define two functions, New-ParentSD and Test-
NewSD. The New-ParentSD function creates a new security
descriptor with the Owner and Group fields set to the
Administrators group 1. This will allow us to check for any
inheritance of the Owner or Group fields in any new security
descriptor we create from this parent. We also set the Type to
Directory, as expected for the object manager. We add two
Allow ACEs, one for the Everyone group and one for the
Users group 2, differentiated by their SIDs. We assign both
ACEs GenericAll access, but add extra flags for the Users
ACE only.

The function then sets some optional security descriptor
control flags 3. Normally. when we assign a security descriptor to
a parent, the generic access rights get mapped to type-specific
access rights. Here, we use Edit-NtSecurityDescriptor
with the MapGeneric parameter to do this mapping for us 4.

In the Test-NewSD function, we create the parent security
descriptor and then calculate any auto-inherit flags 5. Finally, we
create a new security descriptor, setting the Container
property if required, as well as the auto-inherit flags we
calculated 6. You can specify a creator security descriptor for this
function to use to create the new security descriptor. For now,
we’ll leave this value as $null, but we’ll come back to it in the
next section. We print the parent, the creator (if specified), and
new security descriptors to the console to verify the input and
output.

Let’s start by testing the default case: running the Test-
NewSD command with no additional parameters. The command

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

will create a parent security descriptor with no control flags set,
so there should be no auto-inherit flags present in the call to
SeAssignSecurityEx (Listing 6-14).

1 PS> Test-NewSD
-= Parent SD =-
<DACL>
Everyone: (Allowed)(None)(Full Access)
BUILTIN\Users: (Allowed)(None)(Full Access)

-= New SD =-

2 <Owner> : GRAPHITE\user
<Group> : GRAPHITE\None
<DACL>

3 GRAPHITE\user: (Allowed)(None)(Full Access)
NT AUTHORITY\SYSTEM: (Allowed)(None)(Full Access)
NT AUTHORITY\LogonSessionId_0_137918:
(Allowed)(None)(ModifyState|ReadControl|...)

Listing 6-14 Creating a new security descriptor with a parent security descriptor and no creator security
descriptor

We call Test-NewSD with no parameters 1. We can see that
the Owner and Group do not derive from the parent security
descriptor 2; instead, they’re the defaults we observed earlier in
this chapter. This makes sense: the caller, and not the user who
created the parent object, should own the new resource.

However, the new DACL doesn’t look as we might have
expected 3. It’s set to the default DACL we saw earlier, and bears
no relation to the DACL we built in the parent security descriptor.
The reason we didn’t get any ACEs from the parent’s DACL is
that we did not specify the ACEs as inheritable. To do so, you
need to set one or both of the ObjectInherit and
ContainerInherit ACE flags. The former flag applies only
to non-container objects such as Mutant objects, while the latter
applies to container objects such as Directory objects. The
distinction between the two types is important, because they
affect how the inherited ACEs propagate to child objects.

The Mutant object is a non-container, so let’s add the
ObjectInherit flag to the ACE in the parent security
descriptor (Listing 6-15).

1 PS> Test-NewSD -AceFlags "ObjectInherit"

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

-= Parent SD =-
<Owner> : BUILTIN\Administrators
<Group> : BUILTIN\Administrators
<DACL>
Everyone: (Allowed)(None)(Full Access)
BUILTIN\Users: (Allowed)(ObjectInherit)(Full Access)

-= New SD =-

2 <Owner> : GRAPHITE\user
<Group> : GRAPHITE\None

3 <DACL>
BUILTIN\Users:
(Allowed)(None)(ModifyState|Delete|ReadControl|WriteDac|WriteOwner)

Listing 6-15 Adding an ObjectInherit ACE to the parent security descriptor

We specify the ObjectInherit ACE flag to the test
function 1. Observe that the Owner and Group fields have not
changed 2 but that the DACL is no longer the default 3. Instead, it
contains a single ACE that grants the Users group
ModifyState|Delete|ReadControl|WriteDac|Writ
eOwner access. This is the ACE that we set to be inherited.

However, you might notice a problem: the parent security
descriptor’s ACE was granted Full Access, while the new
security descriptor’s ACE is not. Why has the access mask
changed? In fact, it hasn’t; the inheritance process has merely
taken the raw Directory access mask for the parent security
descriptor’s ACE, (the value 0x000F000F) and copied it to the
inherited ACE. A Mutant object’s valid access bits are
0x001F0001. Therefore, the inheritance process uses the
closest mapping, 0x000F0001, as shown in Listing 6-16.

PS> Get-NtAccessMask (0x0001F0001 -band 0x0000F000F) -ToSpecificAccess Mutant
ModifyState, Delete, ReadControl, WriteDac, WriteOwner

Listing 6-16 Checking the inherited access mask

This is a pretty serious issue. Notice, for example, that the
Mutant type is missing the Synchronize access right, which
it needs for a caller to wait on the lock. Without this access, the
Mutant object would be useless to an application.

We can solve this access mask problem by specifying a
generic access mask in the ACE. This generic access will map to

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

a type-specific access when the new security descriptor is created.
There is only one complication: we’ve taken the parent security
descriptor from an existing object, so the generic access was
already mapped when the security descriptor was assigned. We
simulated this behavior in our test function with Edit-
NtSecurityDescriptor call.

To resolve this issue, the ACE can set the InheritOnly
flag. As a result, any generic access will remain untouched during
the initial assignment. The InheritOnly flag marks the ACE
for inheritance only, which prevent the generic access from being
an issue for access checking. In Listing 6-17, we check this
behavior by modifying the call to the test function.

1 PS> Test-NewSD -AceFlags "ObjectInherit, InheritOnly"
-= Parent SD =-
<Owner> : BUILTIN\Administrators
<Group> : BUILTIN\Administrators
<DACL>
Everyone: (Allowed)(None)(Full Access)

2 BUILTIN\Users: (Allowed)(ObjectInherit, InheritOnly)(GenericAll)

-= New SD =-
<Owner> : GRAPHITE\user
<Group> : GRAPHITE\None
<DACL>

3 BUILTIN\Users: (Allowed)(None)(Full Access)

Listing 6-17 Adding an InheritOnly ACE

We change the ACE flags to ObjectInherit and
InheritOnly 1. In the parent security descriptor’s output, we
can see that the access mask is no longer mapped from
GenericAll 2. As a result, the inherited ACE is now granted
Full Access, as we require.

Presumably, the ContainerInherit flag works in the
same way as ObjectInherit, right? Not quite. We test its
behavior in Listing 6-18.

1 PS> Test-NewSD -AceFlags "ContainerInherit, InheritOnly" -Container
-= Parent SD =-
<Owner> : BUILTIN\Administrators
<Group> : BUILTIN\Administrators
<DACL>
Everyone: (Allowed)(None)(Full Access)

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

BUILTIN\Users: (Allowed)(ContainerInherit, InheritOnly)(GenericAll)

-= New SD =-
<Owner> : GRAPHITE\user
<Group> : GRAPHITE\None
<DACL>

2 BUILTIN\Users: (Allowed)(None)(Full Access)
3 BUILTIN\Users: (Allowed)(ContainerInherit, InheritOnly)(GenericAll)

Listing 6-18 Creating a new security descriptor with the ContainerInherit flag

We add the ContainerInherit and InheritOnly
flags to the ACE and then pass the function the Container
parameter 1. Unlike in the ObjectInherit case, we now end
up with two ACEs in the DACL. The first ACE 2 grants access to
the new resource based on the inheritable ACE. The second 3 is a
copy of the inheritable ACE, with GenericAll access.

N O T E You might wonder how we can create a security descriptor for a
Container type when we’re using the Mutant type. The answer
is that the API it doesn’t care about the final type, as it uses only the
generic mapping, but when creating a real Mutant object, the
kernel would never specify the container flag.

The ACE’s automatic propagation is useful, as it allows you
to build a hierarchy of containers without needing to manually
grant them access rights. However, you might sometimes want to
disable this automatic propagation by specifying the
NoPropagateInherit ACE flag (Listing 6-19).

PS> $ace_flags = "ContainerInherit, InheritOnly, NoPropagateInherit"
PS> Test-NewSD -AceFlags $ace_flags -Container
--snip--
-= New SD =-
<Owner> : GRAPHITE\user
<Group> : GRAPHITE\None
<DACL>

1 BUILTIN\Users: (Allowed)(None)(Full Access)

Listing 6-19 Using NoPropagateInherit to prevent the automatic inheritance of ACE

When we specify this flag, the ACE that grants access to the
resource remains present, but the inheritable ACE disappears 1.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Let’s try another ACE flag configuration to see what happens
to ObjectInherit ACEs when they’re inherited by a
container (Listing 6-20).

PS> Test-NewSD -AceFlags "ObjectInherit" -Container
--snip—
-= New SD =-
<Owner> : GRAPHITE\user
<Group> : GRAPHITE\None
<DACL>

1 BUILTIN\Users: (Allowed)(ObjectInherit, InheritOnly)(ModifyState|…)

Listing 6-20 Testing the ObjectInherit flag on a container

You might not expect the container to inherit the ACE at all,
but in fact, it receives the ACE with the InheritOnly flag
automatically set 1. This allows the container to pass the ACE to
non-container child objects.

Table 6-4 summarizes the inheritance rules for container and
non-container objects based on the parent ACE flags.

Table 6-4 The Parent ACE Flags and Flags Set on the Inherited ACEs

Parent ACE flags Non-container object Container object
None No inheritance No inheritance

ObjectInherit None InheritOnly
ObjectInherit

ContainerInherit No inheritance ContainerInherit

ObjectInherit
NoPropagateInherit

None No inheritance

ContainerInherit
NoPropagateInherit

No inheritance None

ContainerInherit
ObjectInherit

None ContainerInherit
ObjectInherit

ContainerInherit
ObjectInherit
NoPropagateInherit

None None

Finally, consider auto-inherit flags. If you return to Table 6-3,
you can see that if the DACL has the DaclAutoInherited
control flag set, the kernel will pass the DaclAutoInherit
flag to SeAssignSecurityEx, as there is no creator security
descriptor. (The SACL has a corresponding
SaclAutoInherit flag, but we’ll focus on the DACL here.)

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

What does the DaclAutoInherit flag do? In Listing 6-21, we
perform a test to find out.

PS> $ace_flags = "ObjectInherit, InheritOnly"
1 PS> Test-NewSD -AceFlags $ace_flags -Control "DaclAutoInherited"

-= Parent SD =-
<Owner> : BUILTIN\Administrators
<Group> : BUILTIN\Administrators

2 <DACL> (Auto Inherited)
Everyone: (Allowed)(None)(Full Access)
BUILTIN\Users: (Allowed)(ObjectInherit, InheritOnly)(GenericAll)

-= New SD =-
<Owner> : GRAPHITE\user
<Group> : GRAPHITE\None

3 <DACL> (Auto Inherited)
4 BUILTIN\Users: (Allowed)(Inherited)(Full Access)

Listing 6-21 Setting the DaclAutoInherited control flag in the parent security descriptor

We set the parent security descriptor’s control flags to contain
the DaclAutoInherited flag 1, and confirm that it is set by
looking at the formatted DACL 2. As a consequence, the new
security descriptor contains flag as well 3. Also, the inherited
ACE has the Inherited flag 4.

How do the auto-inherit flags differ from the inheritance flags
we discussed earlier? Microsoft conserves both inheritance types
for compatibility reasons (as it didn’t introduce the Inherited
flag until Windows 2000). From the kernel’s perspective, the two
types of inheritance are not very different other than determining
whether the new security has the DaclAutoInherited flag
set and whether any inherited ACE gets the Inherited flag.
But from a user-mode perspective, this inheritance model
indicates which parts of the DACL were inherited from a parent
security descriptor. That’s important information, and various
Win32 APIs use it, as we’ll discuss in “Win32 APIs” on page
XX.

Setting Both the Creator and Parent Security
Descriptors

In the final case, we call NtCreateMutant with a name
and specify the SecurityDescriptor field, setting both the

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

creator and parent security descriptor parameters. To witness the
resulting behavior, let’s define some test code. Listing 6-22 writes
a function to generate a creator security descriptor. We’ll reuse
the Test-NewSD function we wrote earlier to run the test.

PS> function New-CreatorSD($AceFlags = 0, $Control = 0, [switch]$NoDacl) {
 1 $creator = New-NtSecurityDescriptor -Type Mutant
 2 if (!$NoDacl) {
 3 Add-NtSecurityDescriptorAce $creator -Name "Network" -Access GenericAll
 Add-NtSecurityDescriptorAce $creator -Name "Interactive"
-Access GenericAll -Flags $AceFlags
 }
 Add-NtSecurityDescriptorControl $creator -Control $Control
 Edit-NtSecurityDescriptor $creator -MapGeneric
 return $creator
}

Listing 6-22 The New-CreatorSD test function

This function differs from the New-ParentSD function
created in Listing 6-13 in the following ways: we use the
Mutant type when creating the security descriptor 1, we allow
the caller to not specify a DACL 2, and we set a different SID for
the DACL if it is used 3. These changes will allow us to
distinguish the parts of a new security descriptor that come from
the parent and those that come from the creator.

In some simple cases, the parent security descriptor has no
inheritable DACL, and the API follows the same rules it uses
when only the creator security descriptor is set. In other words, if
the creator specifies the DACL, the new security descriptor will
use it. Otherwise, it will use the default DACL.

If the parent security descriptor contains an inheritable
DACL, the new security descriptor will inherit it, unless the
creator security descriptor also has a DACL. Even an empty or
NULL DACL will override the inheritance from the parent.

In Listing 6-23, we verify this behavior.
1 PS> $creator = New-CreatorSD -NoDacl
2 PS> Test-NewSD -Creator $creator -AceFlags "ObjectInherit, InheritOnly"

-= Parent SD =-
<Owner> : BUILTIN\Administrators
<Group> : BUILTIN\Administrators
<DACL>

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Everyone: (Allowed)(None)(Full Access)
3 BUILTIN\Users: (Allowed)(ObjectInherit, InheritOnly)(GenericAll)

-= Creator SD =-

4 <NO SECURITY INFORMATION>

-= New SD =-
<Owner> : GRAPHITE\user
<Group> : GRAPHITE\None
<DACL>

5 BUILTIN\Users: (Allowed)(None)(Full Access)

Listing 6-23 Testing parent DACL inheritance with no creator DACL

We build a creator security descriptor with no DACL 1, then
run the test with an inheritable parent security descriptor 2. In the
output, we confirm the inheritable ACE for the Users group 3 and
that the creator has no DACL set 4. When we create the new
security descriptor, it receives the inheritable ACE 5.

Let’s also check what happens when we set a creator DACL
(Listing 6-24).

1 PS> $creator = New-CreatorSD
2 PS> Test-NewSD -Creator $creator -AceFlags "ObjectInherit, InheritOnly"

-= Parent SD =-
<Owner> : BUILTIN\Administrators
<Group> : BUILTIN\Administrators
<DACL>
Everyone: (Allowed)(None)(Full Access)
BUILTIN\Users: (Allowed)(ObjectInherit, InheritOnly)(GenericAll)

-= Creator SD =-
<DACL>
NT AUTHORITY\NETWORK: (Allowed)(None)(Full Access)
NT AUTHORITY\INTERACTIVE: (Allowed)(None)(Full Access)

-= New SD =-
<Owner> : GRAPHITE\user
<Group> : GRAPHITE\None
<DACL>

3 NT AUTHORITY\NETWORK: (Allowed)(None)(Full Access)
NT AUTHORITY\INTERACTIVE: (Allowed)(None)(Full Access)

Listing 6-24 Testing the overriding of the parent DACL inheritance by the creator DACL

We build the creator security descriptor with a DACL 1 and
keep the same inheritable parent security descriptor as in Listing

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

6-23 2. In the output, we see that the ACEs from the creator’s
DACL have been copied to the new security descriptor 3.

The previous two tests haven’t specified any auto-inherit
flags. If we specify the DaclAutoInherited control flag on
the parent security descriptor but include no creator DACL, then
the inheritance proceeds in the same way as in Listing 6-24,
except that it sets the inherited ACE flags.

However, something interesting happens if we specify both a
creator DACL and the control flag (Listing 6-25).

1 PS> $creator = New-CreatorSD -AceFlags "Inherited"
PS> Test-NewSD -Creator $creator -AceFlags "ObjectInherit, InheritOnly"

2 -Control "DaclAutoInherited"
-= Parent SD =-
<Owner> : BUILTIN\Administrators
<Group> : BUILTIN\Administrators
<DACL> (Auto Inherited)
Everyone: (Allowed)(None)(Full Access)
BUILTIN\Users: (Allowed)(ObjectInherit, InheritOnly)(GenericAll)

-= Creator SD =-
<DACL>
NT AUTHORITY\NETWORK: (Allowed)(None)(Full Access)
NT AUTHORITY\INTERACTIVE: (Allowed)(Inherited)(Full Access)

-= New SD =-
<Owner> : GRAPHITE\user
<Group> : GRAPHITE\None
<DACL> (Auto Inherited)

3 NT AUTHORITY\NETWORK: (Allowed)(None)(Full Access)
4 BUILTIN\Users: (Allowed)(Inherited)(Full Access)

Listing 6-25 Testing the parent DACL inheritance when the creator DACL and DaclAutoInherited
control flag are set

We build a creator security descriptor and set one of the
ACE’s flags to include the Inherited flag 1. Next, we run the
test with the DaclAutoInherited control flag on the parent
security descriptor 2. In the output, notice that there are two
ACEs. The first ACE was copied from the creator 3, while the
second is the inherited ACE from the parent 4. Figure 6-1 shows
this auto-inheritance behavior.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Figure 6-1 The auto-inheritance behavior when the parent and creator security descriptors are both set

When DaclAutoInherit is set, the new security
descriptor’s DACL merges the non-inherited ACEs from the
creator security descriptor with the inheritable ACEs from the
parent. This auto-inherit behavior allows you to rebuild a child’s
security descriptor based on its parent without losing any ACEs
that the user has explicitly added to the DACL. Additionally, the
automatic setting of the Inherited ACE flag lets us
differentiate between these explicit and inherited ACEs.

Note that normal operations in the kernel do not set the
DaclAutoInherit flag, which is enabled only if the parent
security descriptor has the DaclAutoInherited control flag
and the DACL isn’t present. In our test, we specified a DACL, so
the auto-inherit flag was not set. The Win32 APIs use this
behavior, as we’ll discuss later in this chapter.

If you want to suppress the merging of the explicit ACEs and
the parent ’s inheritable ACEs, you can set the
DaclProtected or SaclProtected security descriptor
control flags. If a protected control flag is set, the inheritance
rules leave the DACL alone, other than setting the
AutoInherited control flag for the ACL and clearing any
inherited ACE flags. In Listing 6-26, we test this behavior.

1 PS> $creator = New-CreatorSD -AceFlags "Inherited" -Control "DaclProtected"
PS> Test-NewSD -Creator $creator -AceFlags "ObjectInherit, InheritOnly"

2 -Control "DaclAutoInherited"
-= Parent SD =-

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

<Owner> : BUILTIN\Administrators
<Group> : BUILTIN\Administrators
<DACL> (Auto Inherited)
Everyone: (Allowed)(None)(Full Access)
BUILTIN\Users: (Allowed)(ObjectInherit, InheritOnly)(GenericAll)

-= Creator SD =-
<DACL> (Protected)
NT AUTHORITY\NETWORK: (Allowed)(None)(Full Access)
NT AUTHORITY\INTERACTIVE: (Allowed)(Inherited)(Full Access)

-= New SD =-
<Owner> : GRAPHITE\user
<Group> : GRAPHITE\None
<DACL> (Protected, Auto Inherited)

3 NT AUTHORITY\NETWORK: (Allowed)(None)(Full Access)
NT AUTHORITY\INTERACTIVE: (Allowed)(None)(Full Access)

Listing 6-26 Testing the DaclProtected control flag

We start by generating a creator security descriptor with the
DaclProtected flag, and set one of the ACE’s flags to
Inherited 1. We then create a new security descriptor with an
auto-inherited parent 2. Without the DaclProtected flag, the
new security descriptor’s DACL would have been a merged
version of the creator DACL and the inheritable ACEs from the
parent. Instead, we see only the creator DACL’s ACEs. Also, the
Inherited flag on the second ACE has been cleared 3.

What if we don’t know whether the parent security descriptor
will have inheritable ACEs, and we don’t want to end up with the
default DACL? This might be important for permanent objects,
such as files or keys, as the default DACL contains the ephemeral
logon SID, which shouldn’t really be persisted to disk. After all,
reusing the logon SID could end up granting access to an
unrelated user.

In this scenario, we can’t set a DACL in the creator security
descriptor; according to inheritance rules, this would overwrite
any inherited ACEs. Instead, we can handle this scenario using
the DaclDefaulted security descriptor control flag. This flag
indicates that the provided DACL is a default, and Listing 6-27
demonstrates its use.

PS> $creator = New-CreatorSD -Control "DaclDefaulted"

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

PS> Test-NewSD -Creator $creator -AceFlags "ObjectInherit, InheritOnly"
= Parent SD =-
<Owner> : BUILTIN\Administrators
<Group> : BUILTIN\Administrators
<DACL>
Everyone: (Allowed)(None)(Full Access)
BUILTIN\Users: (Allowed)(ObjectInherit, InheritOnly)(GenericAll)

-= Creator SD =-
<DACL> (Defaulted)
NT AUTHORITY\NETWORK: (Allowed)(None)(Full Access)
NT AUTHORITY\INTERACTIVE: (Allowed)(None)(Full Access)

-= New SD =-
<Owner> : GRAPHITE\user
<Group> : GRAPHITE\None
<DACL>
BUILTIN\Users: (Allowed)(None)(Full Access)

PS> Test-NewSD -Creator $creator
-= Parent SD =-
<Owner> : BUILTIN\Administrators
<Group> : BUILTIN\Administrators
<DACL>
Everyone: (Allowed)(None)(Full Access)
BUILTIN\Users: (Allowed)(None)(Full Access)

-= Creator SD =-
<DACL> (Defaulted)
NT AUTHORITY\NETWORK: (Allowed)(None)(Full Access)
NT AUTHORITY\INTERACTIVE: (Allowed)(None)(Full Access)

-= New SD =-
<Owner> : GRAPHITE\user
<Group> : GRAPHITE\None
<DACL>
NT AUTHORITY\NETWORK: (Allowed)(None)(Full Access)
NT AUTHORITY\INTERACTIVE: (Allowed)(None)(Full Access)

Listing 6-27 Testing the DaclDefaulted flag

If the parent does not contain any inheritable DACL ACEs,
the new security descriptor will use creator’s DACL instead of
the default. If the parent does contain inheritable ACEs, the
inheritance process will overwrite the DACL, following as the
rules we’ve already outlined.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

To implement similar behavior for the SACL, you can use the
SaclDefaulted control flag. However, tokens don’t contain
any default SACL, so this flag is somewhat less important.

Replacing the Creator Owner and Creator Group SIDs

We’ve seen that, during inheritance, the inherited ACE retains
the same SID as the original. In some scenarios, this isn’t
desirable. For example, you might have a shared directory that
allows any user to create a child directory. What security
descriptor could you set on this shared directory so that only the
creator of the child directory has access to it?

One solution would be to remove all inheritable ACEs. As a
result, the new directory would use the default DACL. This
would almost certainly secure the directory to prevent other users
from accessing it. However, the default DACL is designed for
ephemeral resources, such as those in the object manager.
Persistent security descriptors shouldn’t use it.

To accommodate features such as shared directories, the
inheritance implementation supports four special creator SIDs.
When a security descriptor inherits an ACE with any of these
SIDs, the inheritance implementation will replace the creator SID
with a specific SID from the creator’s token:

CREATOR OWNER (S-1-3-0)
Replaced by the token’s owner

CREATOR GROUP (S-1-3-1)
Replaced by the token’s primary group

CREATOR OWNER SERVER (S-1-3-2)
Replaced by the server’s owner

CREATOR GROUP SERVER (S-1-3-3)
Replaced by the server’s primary group

We use the server SIDs only when creating a server security
descriptor, which we’ll discuss in “Server Security Descriptors

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

and Compound ACEs” on page XX. The conversion from the
creator SID to a specific SID is a one-way process: once the SID
has been replaced, you can’t tell it apart from a SID you set
explicitly. However, if a container has inherited the ACE, it will
keep the creator SID in the InheritOnly ACE. Listing 6-28
provides an example.

PS> $parent = New-NtSecurityDescriptor -Type Directory
PS> Add-NtSecurityDescriptorAce $parent -KnownSid CreatorOwner
-Flags ContainerInherit, InheritOnly -Access GenericWrite
PS> Add-NtSecurityDescriptorAce $parent -KnownSid CreatorGroup
-Flags ContainerInherit, InheritOnly -Access GenericRead
PS> Format-NtSecurityDescriptor $parent -Summary -SecurityInformation Dacl
<DACL>

1 CREATOR OWNER: (Allowed)(ContainerInherit, InheritOnly)(GenericWrite)
CREATOR GROUP: (Allowed)(ContainerInherit, InheritOnly)(GenericRead)

PS> $token = Get-NtToken -Effective -Pseudo

2 PS> $sd = New-NtSecurityDescriptor -Token $token -Parent $parent
-Type Directory -Container
PS> Format-NtSecurityDescriptor $sd -Summary -SecurityInformation Dacl
<DACL>

3 GRAPHITE\user: (Allowed)(None)(CreateObject|CreateSubDirectory|ReadControl)
CREATOR OWNER: (Allowed)(ContainerInherit, InheritOnly)(GenericWrite)

4 GRAPHITE\None: (Allowed)(None)(Query|Traverse|ReadControl)
CREATOR GROUP: (Allowed)(ContainerInherit, InheritOnly)(GenericRead)

Listing 6-28 Testing creator SIDs during inheritance

We add two ACEs with the CREATOR OWNER and
CREATOR GROUP SIDs to a parent security descriptor, and give
the ACES different levels of access, to make them easy to
distinguish 1. We then create a new security descriptor based on
the parent, specifying that we’ll use it for a container 2. In the
formatted output, we see that the user’s SID has replaced the
CREATOR OWNER SID. This SID is based on the owner SID in
the token 3.

As we’ve created the security descriptor for a container, we
also see that there are two InheritOnly ACEs whose creator
SID has not been changed. This behavior allows the creator SID
to propagate to any future children.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Assigning Mandatory Labels

The mandatory label ACE contains the integrity level of a
resource. But when we create a new security descriptor using
creator’s token whose integrity level is greater than or equal to
Medium, the new security descriptor won’t receive a mandatory
label by default. This behavior explains why we haven’t seen any
mandatory label ACE in our tests so far.

If the token’s integrity level is less than Medium, however,
this label is automatically assigned to the new security descriptor,
as shown in Listing 6-29.

PS> $token = Get-NtToken -Duplicate -IntegrityLevel Low
PS> $sd = New-NtSecurityDescriptor -Token $token -Type Mutant
PS> Format-NtSecurityDescriptor $sd -SecurityInformation Label -Summary
<Mandatory Label>
Mandatory Label\Low Mandatory Level: (MandatoryLabel)(None)(NoWriteUp)
PS> $token.Close()

Listing 6-29 Assigning the mandatory label of the creator’s token

We duplicate the current token and assign it a Low integrity
level. When we create a new security descriptor based on the
token, we see that it has a mandatory label with the same integrity
level.

An application can set a mandatory label ACE explicitly
when creating a new resource through the creator security
descriptor. However, the integrity level in the mandatory label
ACE must be less than or equal to the token’s integrity level;
otherwise, the creation will fail, as shown in Listing 6-30.

PS> $creator = New-NtSecurityDescriptor -Type Mutant
PS> Set-NtSecurityDescriptorIntegrityLevel $creator System
PS> $token = Get-NtToken -Duplicate -IntegrityLevel Medium
 PS> New-NtSecurityDescriptor -Token $token -Creator $creator -Type Mutant

1 New-NtSecurityDescriptor : (0xC0000061) - A required privilege is not held by
the client.

2 PS> $sd = New-NtSecurityDescriptor -Token $token -Creator $creator -Type
Mutant
-AutoInherit AvoidPrivilegeCheck
PS> Format-NtSecurityDescriptor $sd -SecurityInformation Label -Summary
<Mandatory Label>
Mandatory Label\System Mandatory Level: (MandatoryLabel)(None)(NoWriteUp)
PS> $token.Close()

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Listing 6-30 Assigning a mandatory label based on the creator security descriptor

We attempt to create a new security descriptor and add a
mandatory label with the System integrity level to it. We then
get the caller’s token and set its integrity level to Medium.
Because the System integrity level is greater than Medium,
creating the new security descriptor fails with a
STATUS_PRIVILEGE_NOT_HELD error 1.

To set a higher integrity level, you either need to have
SeRelabelPrivilege enabled on the creator token or
specify the AvoidPrivilegeCheck auto-inherit flag, as
shown at 2. The creation will now succeed, and we can see the
mandatory label in the formatted output.

We can make the mandatory label ACE inheritable by setting
its ObjectInherit or ContainerInherit flags. It’s also
possible to specify its InheritOnly flag, which prevents the
integrity level from being used as part of an access check,
reserving it for inheritance only.

Keep in mind, though, that integrity-level restrictions apply to
inherited mandatory label ACEs, too. The inherited ACE must
have an integrity level that is less than or equal to the token’s;
otherwise, the security descriptor assignment will fail. We can
bypass this restriction with either the SeRelabelPrivilege
or the AvoidPrivilegeCheck auto-inherit flags. Listing 6-31
shows an example in which a security descriptor inherits the
mandatory label ACE.

PS> $parent = New-NtSecurityDescriptor -Type Mutant
1 PS> Set-NtSecurityDescriptorIntegrityLevel $parent Low -Flags ObjectInherit

PS> $token = Get-NtToken -Effective -Pseudo
PS> $sd = New-NtSecurityDescriptor -Token $token -Parent $parent -Type Mutant
PS> Format-NtSecurityDescriptor $sd -SecurityInformation Label -Summary

2 <Mandatory Label>
Mandatory Label\Low Mandatory Level: (MandatoryLabel)(Inherited)(NoWriteUp)

Listing 6-31 Assigning a mandatory label from a parent security descriptor through inheritance

First, we create a parent security descriptor and assign it a
mandatory label ACE with a Low integrity level and the
ObjectInherit flag set 1. We then create a new security

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

descriptor using the parent. The new security descriptor inherits
the mandatory label 2, as indicated by the Inherited flag.

Certain kernel object types might receive the mandatory label
automatically, even if the caller’s token has an integrity level
greater than or equal to Medium. Using auto-inherit flags, you
can also configure various kernel types to use a specific integrity
level when you’re creating a new security descriptor for the
resource. These flags include MaclNoWriteUp,
MaclNoReadUp, and MaclNoExecuteUp, which auto-inherit
the token’s integrity level and set the mandatory policy to
NoWriteUp, NoReadUp, and NoExecuteUp, respectively. By
combining these flags, you can get the desired mandatory policy.

On the latest version of Windows, only four types are
registered to use these auto-inherit flags, as shown in Table 6-5.

Table 6-5 Types with the Integrity-Level Auto-Inherit Flags Enabled

Type name Auto-inherit flags
Process MaclNoWriteUp, MaclNoReadUp
Thread MaclNoWriteUp, MaclNoReadUp
Job MaclNoWriteUp
Token MacNoWriteUp

We can test the behavior of these auto-inherit flags by
specifying them when we create a security descriptor. In Listing
6-32, we specify the MaclNoReadUp and MaclNoWriteUp
auto-inherit flags.

PS> $token = Get-NtToken -Effective -Pseudo
PS> $sd = New-NtSecurityDescriptor -Token $token -Type Mutant
-AutoInherit MaclNoReadUp, MaclNoWriteUp
PS> Format-NtSecurityDescriptor $sd -SecurityInformation Label -Summary
<Mandatory Label>
Mandatory Label\Medium Mandatory Level:
(MandatoryLabel)(None)(NoWriteUp|NoReadUp)

Listing 6-32 Assigning a mandatory label auto-inherit flag

In the output, we can see a mandatory label ACE with a
Medium integrity level, even though we mentioned at the start of
this section that the Medium level wouldn’t normally be
assigned. We can also see that the mandatory policy has been set

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

to NoWriteUp|NoReadUp, which matches the auto-inherit
flags we specified.

Determining Object Inheritance

When we specify an object ACE type, such as
AllowedObject, in a parent security descriptor, the
inheritance rules change slightly. This is because each object
ACE can contain two optional GUIDs: ObjectType, used for
access checking, and InheritedObjectType, used for
inheritance.

The SeAssignSecurityEx API uses the
InheritedObjectType GUID in an ACE to calculate
whether a new security descriptor should inherit that ACE. If this
GUID exists and its value matches the ObjectType GUID, the
new security descriptor will inherit the ACE. By contrast, if the
values don’t match, the ACE won’t be copied. Table 6-6 shows
the possible combinations of the ObjectType parameter and
InheritedObjectType and whether the ACE is inherited.

Table 6-6 Whether to Inherit the ACE Based on InheritedObjectType

ObjectType parameter
specified?

InheritedObjectType in
ACE?

Inherited

No No Yes
No Yes No
Yes No Yes
Yes Yes (and the values match) Yes
Yes Yes (and the values don’t match) No

I’ve bolded the cases in Table 6-6 where inheritance doesn’t
happen. Note that this doesn’t supersede any other inheritance
decision: the flags must have ObjectInherit or
ContainerInherit to be considered for inheritance.

In Listing 6-33, we verify this behavior by adding some
object ACEs to a security descriptor and using it as the parent.

PS> $owner = Get-NtSid -KnownSid BuiltinAdministrators
PS> $parent = New-NtSecurityDescriptor -Type Directory -Owner $owner -Group
$owner

1 PS> $type_1 = New-Guid

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

PS> $type_2 = New-Guid

2 PS> Add-NtSecurityDescriptorAce $parent -Name "SYSTEM" -Access GenericAll
-Flags ObjectInherit -Type AllowedObject -ObjectType $type_1

3 PS> Add-NtSecurityDescriptorAce $parent -Name "Everyone" -Access GenericAll
-Flags ObjectInherit -Type AllowedObject -InheritedObjectType $type_1

4 PS> Add-NtSecurityDescriptorAce $parent -Name "Users" -Access GenericAll
-Flags ObjectInherit -InheritedObjectType $type_2 -Type AllowedObject
PS> Format-NtSecurityDescriptor $parent -Summary -SecurityInformation Dacl
<DACL>
NT AUTHORITY\SYSTEM:
(AllowedObject)(ObjectInherit)(GenericAll)(OBJ:f5ee1953...)
Everyone: (AllowedObject)(ObjectInherit)(GenericAll)(IOBJ:f5ee1953...)
BUILTIN\Users: (AllowedObject)(ObjectInherit)(GenericAll)(IOBJ:0b9ed996...)

PS> $token = Get-NtToken -Effective -Pseudo
PS> $sd = New-NtSecurityDescriptor -Token $token -Parent $parent

5 -Type Directory -ObjectType $type_2
PS> Format-NtSecurityDescriptor $sd -Summary -SecurityInformation Dacl
<DACL>

6 NT AUTHORITY\SYSTEM: (AllowedObject)(None)(Full Access)(OBJ:f5ee1953...)
7 BUILTIN\Users: (Allowed)(None)(Full Access)

Listing 6-33 Verifying the behavior of the InheritedObjectType GUID

We first generate a couple of random GUIDs to act as our
object types 1. Next, we add three inheritable AllowedObject
ACEs to the parent security descriptor. In the first ACE, we set
ObjectType to the first GUID we created 2. This ACE
demonstrates that the ObjectType GUID is not considered
when inheriting the ACE. The second ACE sets the
InheritedObjectType to the first GUID 3. The final ACE
uses the second GUID 4.

We then create a new security descriptor, passing the second
GUID to the ObjectType parameter 5. When we check the new
security descriptor, we can see that it inherited the ACE without
the InheritedObjectType 6. The second ACE in the output
is a copy of the ACE with an InheritedObjectType GUID
that matches 7. Notice that, based on the output, the
InheritedObjectType has been removed, as the ACE is no
longer inheritable.

Having a single ObjectType GUID parameter is somewhat
inflexible, so Windows provides the SeAssignSecurityEx2
kernel API and the

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

RtlNewSecurityObjectWithMultipleInheritance
user-mode API. These APIs takes a list of GUIDs rather than a
single GUID. Any ACE with the InheritedObjectType in
the list will be inherited; otherwise, the inheritance rules are
basically the same as those covered here.

This concludes our discussion on assigning security
descriptors during creation. As you’ve seen, the assignment
process is complex, especially with regards to inheritance. We’ll
now discuss assigning a security descriptor to an existing
resource, a considerably simpler process.

Assigning a Security Descriptor to an Existing
Resource

If a resource already exists, it’s not possible to set the security
descriptor by calling a creation system call such as
NtCreateMutant and specifying the
SecurityDescriptor field in the object attributes. Instead,
you need to open a handle to the resource with one of three access
rights, depending on what part of the security descriptor you want
to modify. Once you have this handle, you can call the
NtSetSecurityObject system call to set specific security
descriptor information. Table 6-7 shows the access rights needed
to set each security descriptor field based on the
SecurityInformation enumeration.

Table 6-7 SecurityInformation Flags and Required Access for Security Descriptor
Creation

Flag name Description Location Handle access required
Owner Set the owner SID Owner WriteOwner

Group Set the group SID Group WriteOwner
Dacl Set the DACL DACL WriteDac
Sacl Set the SACL; for auditing ACEs

only
SACL AccessSystemSecurity

Label Set the mandatory label SACL WriteOwner

Attribute Set a system resource attribute SACL WriteDac
Scope Set a scoped policy ID SACL AccessSystemSecurity

ProcessTrustLabel Set the process trust label SACL WriteDac
AccessFilter Set an access filter SACL WriteDac

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Backup Set everything except
ProcessTrustLabel and
AccessFilter

All WriteDac, WriteOwner,
and	
AccessSystemSecurity

You might notice that the handle access required for setting
this information is more complex than the access needed to
merely query it, as it is split across three access rights instead of
two. Instead of trying to memorize these access rights, you can
retrieve them using the Get-NtAccessMask PowerShell
command, specifying the parts of the security descriptor you want
to set with the SecurityInformation parameter, as shown
in Listing 6-34.

PS> Get-NtAccessMask -SecurityInformation AllBasic -ToGenericAccess
ReadControl

PS> Get-NtAccessMask -SecurityInformation AllBasic -ToGenericAccess -
SetSecurity
WriteDac, WriteOwner

Listing 6-34 Discovering the access mask needed to query or set specific security descriptor information

To set a security descriptor, the NtSetSecurityObject
system call invokes a type-specific security function. This type-
specific function allows the kernel to support the different storage
requirements for security descriptors; for example, a file must
persist its security descriptor to disk, while the object manager
can store a security descriptor in memory.

These type-specific functions eventually call the
SeSetSecurityDescriptorInfoEx kernel API to build
the updated security descriptor. User mode exports this kernel
API as RtlSetSecurityObjectEx. Once the security
descriptor has been updated, the type-specific function can store it
using its preferred mechanism.

The SeSetSecurityDescriptorInfoEx API accepts
five parameters and returns a new security descriptor:

Modification Security Descriptor
A new security descriptor passed to NtSetSecurityObject

Object Security Descriptor

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

The current security descriptor for the object being updated

Security Information
Flags to specify what parts of the security descriptor to update,
described in Table 6-7

Auto-Inherit
A set of bit flags that define the auto-inheritance behavior

Generic Mapping
The generic mapping for the type being created

No kernel code uses the auto-inherit flags; therefore, the
behavior of this API is simple. It merely copies the parts of the
security descriptor that we’ve specified in the security
information parameter to the new security descriptor. It also maps
any generic access to the type-specific access using the generic
mapping, excluding InheritOnly ACEs.

Some security descriptor control flags introduce special
behavior. For example, it’s not possible to explicitly set
DaclAutoInherited. However, you can specify it along with
DaclAutoInheritReq to set it on the new security
descriptor.

We can test out the RtlSetSecurityObjectEx API
using the Edit-NtSecurityDescriptor command, as
shown in Listing 6-35.

PS> $owner = Get-NtSid -KnownSid BuiltinAdministrators
PS> $obj_sd = New-NtSecurityDescriptor -Type Mutant -Owner $owner -Group
$owner
PS> Add-NtSecurityDescriptorAce $obj_sd -KnownSid World -Access GenericAll
PS> Format-NtSecurityDescriptor $obj_sd -Summary -SecurityInformation Dacl
<DACL>
Everyone: (Allowed)(None)(Full Access)

PS> Edit-NtSecurityDescriptor $obj_sd -MapGeneric
PS> $mod_sd = New-NtSecurityDescriptor -Type Mutant
PS> Add-NtSecurityDescriptorAce $mod_sd -KnownSid Anonymous -Access
GenericRead
PS> Set-NtSecurityDescriptorControl $mod_sd DaclAutoInherited,
DaclAutoInheritReq
PS> Edit-NtSecurityDescriptor $obj_sd $mod_sd -SecurityInformation Dacl
PS> Format-NtSecurityDescriptor $obj_sd -Summary -SecurityInformation Dacl

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

<DACL> (Auto Inherited)
NT AUTHORITY\ANONYMOUS LOGON: (Allowed)(None)(QueryState|ReadControl)

Listing 6-35 Using Edit-NtSecurityDescriptor to modify an existing security descriptor

You can set the security for a kernel object using the Set-
NtSecurityDescriptor command. The command can
accept either an object handle with the required access or an
OMNS path to the resource. For example, the following
commands will try to modify the object \BasedNamedObject\ABC
by setting a new DACL.

PS> $new_sd = New-NtSecurityDescriptor -Sddl "D:(A;;GA;;;WD)"
PS> Set-NtSecurityDescriptor -Path "\BaseNamedObjects\ABC"
-SecurityDescriptor $new_sd -SecurityInformation Dacl

Even if you can open a resource with the required access to
set a security descriptor component, such as WriteOwner
access, this doesn’t mean the kernel will let you do it. The same
rules regarding owner SIDs and mandatory labels apply here as
when assigning a security descriptor at creation time.

The SeSetSecurityDescriptorInfoEx API enforces
these rules. If no object security descriptor is specified, then the
API returns the STATUS_NO_SECURITY_ON_OBJECT status
code. Therefore, you can’t set the security descriptor for a type
with SecurityRequired set to false; that object won’t have a
security descriptor, so any attempt to modify it causes the error.

N O T E One ACE flag I haven’t mentioned yet is Critical. The Windows
kernel contains code to check the Critical flag and block the
removal of ACEs that have the flag set. However, which ACEs to
deem Critical is up to the code assigning the new security
descriptor, and APIs such as SeSetSecurityInformationEx
do not enforce it. Therefore, do not rely on the Critical flag to do
anything specific. If you’re using security descriptors in user mode,
you can handle the flag any way you like.

What happens if you change the inheritable ACEs on a
container? Will the changes in the security descriptor propagate
to all existing children? In a word, no. Technically, a type could
implement this automatic propagation behavior, but none do.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Instead, it’s up to the user-mode components to handle it. Let’s
now look at the user-mode Win32 APIs that implement this
propagation.

Win32 Security APIs

Most applications don’t directly call the kernel system calls to
read or set security descriptors. Instead, they’ll use a range of
Win32 APIs. While we won’t discuss every API you could use,
we’ll cover some of the additional functionality added by the
APIs to the underlying system calls.

Win32 implements the GetKernelObjectSecurity and
SetKernelObjectSecurity APIs, which wrap
NtQuerySecurityObject and NtSetSecurityObject.
Likewise, the CreatePrivateObjectSecurityEx and
SetPrivateObjectSecurityEx Win32 APIs wrap
RtlNewSecurityObjectEx and
RtlSetSecurityObjectEx, respectively. Every property of
the native APIs discussed in this chapter applies equally to these
Win32 APIs.

However, Win32 also provides some higher-level APIs: most
notably, GetNamedSecurityInfo and
SetNamedSecurityInfo. These APIs allow an application
to query or set a security descriptor by providing a path and the
type of resource that path refers to, rather than a handle. The use
of a path and type allows the function to be more general; for
example, the API supports getting and setting the security of files
and registry keys but also services, printers, and Active Directory
DS entries.

To query or set the security descriptor, the API must open the
specified resource and then call the appropriate API to perform
the operation. For example, to query a file’s security descriptor,
the API would open the file using the CreateFile Win32 API
and then call the NtQuerySecurityObject system call.
However, to query a printer’s security descriptor, it needs to open
the printer using the OpenPrinter print spooler API and then

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

call the GetPrinter API on the opened printer handle to query
the security descriptor.

PowerShell already uses the GetNamedSecurityInfo
API through the Get-Acl command; however, the built-in
command doesn’t support reading certain security descriptor
ACEs, such as mandatory labels. Therefore, the
NtObjectManager module implements Get-
Win32SecurityDescriptor, which calls
GetNamedSecurityInfo and returns a
SecurityDescriptor object.

If you merely want to display the security descriptor, you can
use the Format-Win32SecurityDescriptor command,
which takes the same parameters but doesn’t return a
SecurityDescriptor object. Listing 6-36 provides a couple
of examples of commands that leverage the underlying Win32
security APIs.

PS> Get-Win32SecurityDescriptor "$env:WinDir"
Owner DACL ACE Count SACL ACE Count Integrity Level
----- -------------- -------------- ---------------
NT SERVICE\TrustedInstaller 13 NONE NONE

PS> Format-Win32SecurityDescriptor "MACHINE\SOFTWARE" -Type RegistryKey -
Summary
<Owner> : NT AUTHORITY\SYSTEM
<Group> : NT AUTHORITY\SYSTEM
<DACL> (Protected, Auto Inherited)
BUILTIN\Users: (Allowed)(ContainerInherit)(QueryValue|...)
--snip--

Listing 6-36 An example usage of Get-Win32SecurityDescriptor and Format-
Win32SecurityDescriptor

We start by using Get-Win32SecurityDescriptor to
query the security descriptor for the Windows folder, in this case
$env:WinDir. Note that we don’t specify the type of resource
we want to query, as it defaults to a file. In the second example,
we use Format-Win32Security to display the security
descriptor for the MACHINE\SOFTWARE key. This key path
corresponds to the Win32
HKEY_LOCAL_MACHINE\SOFTWARE key path. We need to
indicate that we’re querying a registry key by specifying the

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Type parameter; otherwise, the command will try to open the
path as a file, which is unlikely to work.

N O T E To find the path format for every supported type, consult the API
documentation for GetNamedSecurityInfo and
SetNamedSecurityInfo, which provides numerous examples.

The SetNamedSecurityInfo API is more complex, as it
implements auto-inheritance across hierarchies (for example,
across a file directory tree). As we discussed earlier, if you use
the NtSetSecurityObject system call to set a file’s security
descriptor, any new inheritable ACEs won’t get propagated to any
existing children.

If you set a security descriptor on a file directory with
SetNamedSecurityInfo, the API will enumerate all child
files and directories and attempt to update each child’s security
descriptor. The API generates the new security descriptor by
querying the child security descriptor and using it as the creator
security descriptor in a call to RtlNewSecurityObjectEx,
taken the parent security descriptor from the parent directory. The
DaclAutoInherit and SaclAutoInherit flags are
always set, to merge any explicit ACEs in the creator security
descriptor into the new security descriptor.

PowerShell exposes the SetNamedSecurityInfo API
through the Set-Win32SecurityDescriptor command,
shown in Listing 6-37.

PS> $path = Join-Path "$env:TEMP" "TestFolder"
1 PS> Use-NtObject($f = New-NtFile $path -Win32Path -Options DirectoryFile

-Disposition OpenIf) {
 Set-NtSecurityDescriptor $f "D:AIARP(A;OICI;GA;;;WD)" Dacl
}

PS> $item = Join-Path $path test.txt
PS> "Hello World!" | Set-Content -Path $item
PS> Format-Win32SecurityDescriptor $item -Summary -SecurityInformation Dacl
<DACL> (Auto Inherited)

2 Everyone: (Allowed)(Inherited)(Full Access)

PS> $sd = Get-Win32SecurityDescriptor $path
PS> Add-NtSecurityDescriptorAce $sd -KnownSid Anonymous -Access GenericAll

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

-Flags ObjectInherit,ContainerInherit,InheritOnly
3 PS> Set-Win32SecurityDescriptor $path $sd Dacl

PS> Format-Win32SecurityDescriptor $item -Summary -SecurityInformation Dacl
<DACL> (Auto Inherited)
Everyone: (Allowed)(Inherited)(Full Access)

4 NT AUTHORITY\ANONYMOUS LOGON: (Allowed)(Inherited)(Full Access)

Listing 6-37 Testing auto-inheritance with Set-Win32SecurityDescriptor

Listing 6-37 demonstrates the auto-inheritance behavior of
SetNamedSecurityInfo for files. We first create the
TestFolder directory in the root of the system drive, then set the
security descriptor so that it contains one inheritable ACE for the
Everyone group and has the DaclAutoInherited and
DaclProtected flags set 1. Next, we create a text file inside
the directory and print its security descriptor 2. The DACL
contains the single ACE inherited from the parent by the text file.

We then get the security descriptor from the directory and add
a new inheritable ACE to it for the Anonymous user. We use this
security descriptor to set the DACL of the parent using Set-
Win32SecurityDescriptor 3. Printing the text file’s
security descriptor again, we now see that it’s got two ACEs, as
the Anonymous user ACE has been added. If we had used Set-
NtSecurityDescriptor to set the parent directory’s
security descriptor, this inheritance would not have taken place.

As SetNamedSecurityInfo always uses auto-
inheritance, applying a protected security descriptor control flag,
such as DaclProtected or SaclProtected, becomes an
important way to block the automatic propagation of ACEs.

Oddly, the API doesn’t allow you to specify the
DaclProtected and SaclProtected control flags directly
in the security descriptor you specify. Instead, it introduces some
additional SecurityInformation flags to handle setting and
unsetting the control flags. To set a protected security descriptor
control flag, you can use the ProtectedDacl and
ProtectedSacl flags for SecurityInformation. To
remove a flag, use UnprotectedDacl and
UnprotectedSacl. Listing 6-38 provides examples of setting
and unsetting the protected control flag for the DACL.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

PS> $path = Join-Path "$env:TEMP\TestFolder" "test.txt"
1 PS> $sd = New-NtSecurityDescriptor "D:(A;;GA;;;AU)"

PS> Set-Win32SecurityDescriptor $path $sd Dacl,ProtectedDacl
PS> Format-Win32SecurityDescriptor $path -Summary -SecurityInformation Dacl
<DACL> (Protected, Auto Inherited)
NT AUTHORITY\Authenticated Users: (Allowed)(None)(Full Access)

2 PS> Set-Win32SecurityDescriptor $path $sd Dacl,UnprotectedDacl
PS> Format-Win32SecurityDescriptor $path -Summary -SecurityInformation Dacl
<DACL> (Auto Inherited)
NT AUTHORITY\Authenticated Users: (Allowed)(None)(Full Access)
Everyone: (Allowed)(Inherited)(Full Access)
NT AUTHORITY\ANONYMOUS LOGON: (Allowed)(Inherited)(Full Access)

Listing 6-38 Testing the ProtectedDacl and UnprotectedDacl SecurityInformation flag

This script assumes you’ve run Listing 6-37 already, as we
reuse the file we created there. We create a new security
descriptor with a single ACE for the Authenticated Users group
and assign it to the file with the ProtectedDacl and Dacl
flags. As a result, the protected control flag for the DACL is now
set on the file 1. Note that the inherited ACEs from Listing 6-37
have been removed; only the new, explicit ACE is left.

Finally, if we assign the security descriptor again with the
UnprotectedDacl flag, the new security descriptor no longer
has the protected control flag set 2. Also, the API restores the
inherited ACEs from the parent directory and merges them with
the explicit ACE for the Authenticated Users group.

The behavior of the command when we specify the
UnprotectedDacl flag shows you how you can restore the
inherited ACEs for any file. If you specify an empty DACL, so
that no explicit ACEs will be merged, and additionally specify the
UnprotectedDacl flag, you’ll reset the security descriptor to
the version based on its parent. To simplify this operation, the
PowerShell module contains the Reset-
Win32SecurityDescriptor command (Listing 6-39).

PS> $path = Join-Path "$env:TEMP\TestFolder" "test.txt"
1 PS> Reset-Win32SecurityDescriptor $path Dacl

PS> Format-Win32SecurityDescriptor $path -Summary -SecurityInformation Dacl
<DACL> (Auto Inherited)
Everyone: (Allowed)(Inherited)(Full Access)
NT AUTHORITY\ANONYMOUS LOGON: (Allowed)(Inherited)(Full Access)

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Listing 6-39 Resetting the security of a directory using Reset-Win32SecurityDescriptor

In Listing 6-39, we call Reset-
Win32SecurityDescriptor with the path to the file, and
request that the DACL be reset 1. When we display the security
descriptor of the file, we now find that it’s been reset based on the
parent directory’s security descriptor, in Listing 6-37.

THE DANGERS OF AUTO-INHERITANCE

The auto-inheritance features of the Win32 security APIs are convenient for applications, which
can merely set an inheritable security descriptor to apply it to any child resources. However, auto-
inheritance introduces a security risk, especially if used by privileged applications or services.

The risk occurs if the privileged application can be tricked into resetting the inherited security for a
hierarchy when a malicious user has control over the parent security descriptor. For example, CVE-
2018-0983 was a security vulnerability in the privileged storage service: it called
SetNamedSecurityInfo to reset the security of a file with the path specified by the user. By using
some filesystem tricks, an attacker could link the file being reset to a system file that was writeable by
an administrator only. However, the SetNamedSecurityInfo API thought the file was in a directory
controlled by the user, so it reset the security descriptor based on that directory’s security descriptor,
granting the malicious user full access to the system file.

Microsoft has fixed this issue, and Windows no longer supports the filesystem tricks necessary to
exploit it. However, there are other potential ways for a privileged service to be tricked. Therefore, if
you’re writing code to set or reset the security descriptor of a resource, pay careful attention to where
the path comes from. If it’s from an unprivileged user, make sure you impersonate the caller before
calling any of the Win32 security APIs.

One final API to cover is GetInheritanceSource,
which allows you to identify the source of a resource’s inherited
ACEs. One reason the inherited ACEs are marked with the
Inherited flag is to facilitate the analysis of inherited ACEs.
Without the flag, the API would have no way of distinguishing
between inherited and non-inherited ACEs.

Based on the state of the Inherited ACE flag, the API
works its way up the parent hierarchy until it finds an inheritable
ACE that doesn’t have the Inherited flag set but contains the
same SID and access mask. Of course, there is no guarantee that
the found ACE is the actual source of the inherited ACE, which
could potentially live multiple levels down the hierarchy from the
parent. Thus, treat the output of GetInheritanceSource as
purely informational, and don’t use it for security-critical
decisions.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

As with the other Win32 APIs, GetInheritanceSource
supports different types. However, it’s limited to resources that
have a child-parent relationship, such as files, registry keys, and
DS objects. You can access the API through the Search-
Win32SecurityDescriptor command (Listing 16-40).

PS> $path = Join-Path "$env:TEMP" "TestFolder"
1 PS> Search-Win32SecurityDescriptor $path | Format-Table

Name Depth User Access
---- ----- ---- ------
 0 Everyone GenericAll
 0 NT AUTHORITY\ANONYMOUS LOGON GenericAll

PS> $path = Join-Path $path "new.txt"
PS> "Hello" | Set-Content $path

2 PS> Search-Win32SecurityDescriptor $path | Format-Table
Name Depth User Access
---- ----- ---- ------
C:\Temp\TestFolder\ 1 Everyone GenericAll
C:\Temp\TestFolder\ 1 NT AUTHORITY\ANONYMOUS LOGON GenericAll

Listing 6-40 Enumerating inherited ACEs using Search-Win32SecurityDescriptor

We call Search-Win32SecurityDescriptor with the
path to the directory we created in Listing 6-38 1. The output is a
list of the ACEs in the resource’s DACL, including the name of
the resource from which the ACE was inherited and the depth of
the hierarchy. We set two explicit ACEs on the directory. The
output reflects this as a Depth value of 0, which indicates that
the ACE wasn’t inherited. Also, the name column is empty.

In contrast, if we create a new file in the directory and rerun
the command, we get different output 2. As you might have
expected, the ACEs show that they were both inherited from the
parent folder, with a depth of 1.

We’ve covered the basics of the Win32 APIs. Keep in mind
that there are clear differences in behavior between the low-level
system calls and these Win32 APIs, especially regarding
inheritance. When you interact with the security of resources via
a GUI, it’s almost certainly calling one of these APIs.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Server Security Descriptors and Compound ACEs

Let’s finish this chapter with a topic we briefly mentioned
when we discussed creator SIDs: server security descriptors. The
kernel supports two, very poorly documented security descriptor
control flags for servers: ServerSecurity and
DaclUntrusted. We use these flags only when generating a
new security descriptor, either at object creation time or when
assigning a security descriptor explicitly. The main control flag,
ServerSecurity, indicates to the security descriptor
generation code that the caller is expecting to impersonate
another user.

When a new security descriptor is created during
impersonation, the owner and group SIDs will default to the
values from the impersonation token. This might not be desirable,
as being the owner of a resource can grant a caller additional
access to it. However, the caller can’t set the owner to an arbitrary
SID, because the SID must be able to pass the owner check,
which is based on the impersonation token.

This is where ServerSecurity control flag comes in. If
you set the flag on the creator security descriptor when creating a
new security descriptor, the owner and group SIDs default to the
primary token of the caller, and not to the impersonation token.
This flag also replaces all Allowed ACEs in the DACL with
AllowedCompound ACEs, the structure of which we defined
back in Chapter 5. In the compound ACE, the server SID is set to
the owner SID from the primary token. Listing 6-41 shows an
example.

1 PS> $token = Get-NtToken -Anonymous
PS> $creator = New-NtSecurityDescriptor -Type Mutant
PS> Add-NtSecurityDescriptorAce $creator -KnownSid World -Access GenericAll
PS> $sd = New-NtSecurityDescriptor -Token $token -Creator $creator
PS> Format-NtSecurityDescriptor $sd -Summary -SecurityInformation
Owner,Group,Dacl

2 <Owner> : NT AUTHORITY\ANONYMOUS LOGON
<Group> : NT AUTHORITY\ANONYMOUS LOGON
<DACL>
Everyone: (Allowed)(None)(Full Access)

3 PS> Set-NtSecurityDescriptorControl $creator ServerSecurity

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

PS> $sd = New-NtSecurityDescriptor -Token $token -Creator $creator
PS> Format-NtSecurityDescriptor $sd -Summary -SecurityInformation
Owner,Group,Dacl

4 <Owner> : GRAPHITE\user
<Group> : GRAPHITE\None
<DACL>

5 Everyone: (AllowedCompound)(None)(Full Access)(Server:GRAPHITE\user)

Listing 6-41 Testing the ServerSecurity security descriptor control flag

We first create a new security descriptor using the
Anonymous user token 1. This initial test doesn’t set the
ServerSecurity flag. As expected, the Owner and Group
default to values based on the Anonymous user token, and the
single ACE we added remains intact 2. Now we add the
ServerServer control flag to the creator security descriptor 3.
After calling New-NtSecurityDescriptor again, we now
find that the Owner and Group are set to the defaults for the
primary token, not to those of the Anonymous user token 4.
Also, the single ACE has been replaced with a compound ACE,
whose server SID is set to the primary token owner SID 5. We’ll
discuss how changes to compound ACEs impacts access checking
in Chapter 7.

The DaclUntrusted control flags works in combination
with ServerSecurity. By default, ServerSecurity
assumes that any compound ACE in the DACL is trusted and will
copy it verbatim into the output. When the DaclUntrusted
control flag is set, all compounds ACEs instead have their server
SID values set to the primary token owner SID.

If the ServerSecurity control flag is set on the creator
security descriptor and the new security descriptor inherits ACEs
from a parent, we can convert the CREATOR OWNER SERVER
and CREATOR GROUP SERVER SIDs to their respective
primary token values. Also, any inherited Allowed ACEs will
be converted to compound ACEs, except for those of the default
DACL.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

A Summary of Inheritance Behavior

As inheritance is a very important topic to understand, Table
6-8 summarizes the ACL inheritance rules we’ve discussed in this
chapter, to help you make sense of them.

Table 6-8 Summary of Inheritance Rules for the DACL

Parent ACL Creator ACL AutoInherit Set AutoInherit Not Set
None None Default Default
None Present Creator Creator
Non-inheritable None Default Default
Inheritable None Parent Parent
Non-inheritable Present Creator Creator
Inheritable Present Parent and Creator Creator
Non-inheritable Protected Creator Creator
Inheritable Protected Creator Creator
Non-inheritable Defaulted Creator Creator
Inheritable Defaulted Parent Parent

Table 6-8 includes four columns: the state of the parent ACL,
the creator ACL, and two columns describing the resulting ACL,
depending on whether the DaclAutoInherit and
SaclAutoInherit auto-inherit flags were set or not. There
are six ACL types to consider:

None
The ACL isn’t present in the security descriptor

Present
The ACL is present in the security descriptor (even if it is a
NULL or empty ACL)

Non-Inheritable
The ACL has no inheritable ACEs

Inheritable
The ACL has one or more inheritable ACEs

Protected
The security descriptor has the DaclProtected or
SaclProtect control flag set

Defaulted

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

The security descriptor has the DaclDefaulted or
SaclDefaulted control flag set

Additionally, there are four possible resulting ACLs:

Default
The default DACL from the token, or nothing in the case of a
SACL

Creator
All ACEs from the creator ACL

Parent
The inheritable ACEs from the parent ACL

Parent and Creator
The inheritable ACEs from the parent and explicit ACEs from the
creator

When the auto-inherit flag is set, the new security descriptor
will have the DaclAutoInherited or
SaclAutoInherited control flag set. Also, all ACEs that
were inherited from the parent ACL will have the Inherited
ACE flag set. Note that this table doesn’t consider the behavioral
changes due to object ACEs, mandatory labels, server security,
and creator SIDs, which add more complexity.

Worked Examples

Let’s walk through some worked examples that use the
commands you’ve learned about in this chapter.

Finding Object Manager Resource Owners

As you’ve seen in this chapter, the owner of a resource’s
security descriptor is usually the user SID of the resource’s
creator. For administrators, however, it’s typically the built-in
Administrators group. The only way to set a different owner SID
is to use another token group SID that has the Owner flag set, or

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

to enable SeRestorePrivilege. Neither option is available
to non-administrator users.

Thus, knowing the owner of a resource can indicate whether a
more privileged user created and used the resource. This could
help you identify potential misuses of the Win32 security APIs in
privileged applications, or find shared resources that a lower-
privileged user might write to; a privileged user could mishandle
these, causing a security issue.

Listing 6-42 shows a simple example: finding object manager
resources whose owner SID differs from the caller’s.

1 PS> function Get-NameAndOwner {
 [CmdletBinding()]
 param(
 [parameter(Mandatory, ValueFromPipeline)]
 $Entry,
 [parameter(Mandatory)]
 $Root
)

 begin {
 2 $curr_owner = Get-NtSid -Owner
 }

 process {
 3 $sd = Get-NtSecurityDescriptor -Path $Entry.Name -Root $Root
-TypeName $Entry.NtTypeName -ErrorAction SilentlyContinue
 if ($null -ne $sd -and $sd.Owner.Sid -ne $curr_owner) {
 [PSCustomObject] @{
 Name = $Entry.Name
 NtTypeName = $Entry.NtTypeName
 Owner = $sd.Owner.Sid.Name
 SecurityDescriptor = $sd
 }
 }
 }
}

4 PS> Use-NtObject($dir = Get-NtDirectory \BaseNamedObjects) {
 Get-NtDirectoryEntry $dir | Get-NameAndOwner -Root $dir
}
Name NtTypeName Owner
SecurityDescriptor
---- ---------- ----- --------------

CLR_PerfMon_DoneEnumEvent Event NT AUTHORITY\SYSTEM
O:SYG:SYD:(A;;...

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

WAMACAPO;3_Read Event BUILTIN\Administrators
O:SYG:SYD:(A;;...
WAMACAPO;8_Mem Section BUILTIN\Administrators
O:SYG:SYD:(A;;...
--snip--

Listing 6-42 Finding objects in BaseNamedObjects that are owned by a different user

We first define a function to query the name and owner of an
object manager directory entry 1. The function initializes the
$curr_owner variable with the owner SID of the caller’s token
2. We’ll compare this SID with the owner of a resource to return
only resources owned by a different user.

For each directory entry, we query its security descriptor
using the Get-NtSecurityDescriptor command 3. We
can specify a path and a root Directory object to the command
to avoid having to manually open the resource. If we successfully
query the security descriptor, and if the owner SID does not
match the current user’s owner SID, we return the resource’s
name, object type, and owner SID.

To test the new function, we open a directory (in this case, the
global base-named objects 4), and use Get-
NtDirectoryEntry to query for all entries, piping them
through the function we defined. We receive a list of resources
not owned by the current user.

For example, the output includes the WAMACAPO;8_Mem
object, which is a shared memory Section object. If a normal
user can write to this Section object, we should investigate it
further, as it might be possible to trick a privileged application
into performing an operation that would elevate a normal user’s
privileges.

We can test our ability to get write access on the Section
object by using the Get-NtGrantedAccess command with
the SecurityDescriptor property of the object, as shown in
Listing 6-43.

PS> $entry
Name NtTypeName Owner SecurityDescriptor
---- ---------- ----- ------------------

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

WAMACAPO;8_Mem Section BUILTIN\Administrators O:SYG:SYD:(A;;...

PS> Get-NtGrantedAccess -SecurityDescriptor $entry.SecurityDescriptor
Query, MapWrite, MapRead, ReadControl

Listing 6-43 Getting the granted access for a Section object

The $entry variable contains the object we want to inspect.
We pass its security descriptor to the Get-NtGrantedAccess
command to return the maximum granted access for that resource.
In this case, we can see that MapWrite is present, which
indicates that the Section object could be mapped as writeable.

The example I’ve shown in Listing 6-42 should provide you
with an understanding of how to query for any resource. You can
replace the directory with a file or registry key, then call Get-
NtSecurityDescriptor with the path and the root object to
query the owner for each of these resource types.

For the object manager and registry, however, there is a much
simpler way of finding the owner SID. For the registry, we can
look up the security descriptor for the entries returned from the
NtObject drive provider using the SecurityDescriptor
property. For example, we can select the name and owner SID
fields for the root registry key using the following script:

PS> ls NtKey:\ | Select Name, {$_.SecurityDescriptor.Owner.Sid}

You can also specify the Recurse parameter to perform the
check recursively.

If you want to query the owner SIDs of files, you can’t use
this technique, as the file provider does not return the security
provider in its entries. Instead, you need to use the built-in Get-
Acl command. Here, for example, we query a file’s ACL:

PS> ls c:\ | Get-Acl | Select Path, Owner

The Get-Acl command returns the owner as a username,
not a SID. You’ll have to look up the SID manually using the
Get-NtSid command and the Name parameter if you need it.
Alternatively, you can convert the output of the Get-Acl
command to a SecurityDescriptor object used in the
NtObjectManager module, as shown in Listing 6-44.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

PS> (Get-Acl c:\ | ConvertTo-NtSecurityDescriptor).Owner.Sid
Name Sid
---- ---
NT SERVICE\TrustedInstaller S-1-5-80-956008885-3418522649-1831038044-...

Listing 6-44 Converting Get-Acl output to a SecurityDescriptor object

We use the ConvertTo-NtSecurityDescriptor
PowerShell command to perform the conversion.

Changing the Ownership of a Resource

Administrators commonly take ownership of resources. This
allows them to easily modify a resource’s security descriptor and
gain full access to it. Windows comes with several tools for doing
this, such as takeown.exe, which sets the owner of a file to the
current user. However, you’ll find it instructive to go through the
process of changing the owner manually, so you can understand
exactly how it works. Run the commands in Listing 6-45 as an
administrator.

PS> $new_dir = New-NtDirectory "ABC" -Win32Path
PS> Get-NtSecurityDescriptor $new_dir | Select {$_.Owner.Sid.Name}
$_.Owner.Sid.Name

BUILTIN\Administrators

 PS> Set-NtTokenPrivilege SeRestorePrivilege
PS> Use-NtObject($dir = Get-NtDirectory "ABC" -Win32Path -Access WriteOwner) {
 $sid = Get-NtSid -KnownSid World
 $sd = New-NtSecurityDescriptor -Owner $sid
 Set-NtSecurityDescriptor $dir $sd -SecurityInformation Owner
}

PS> Get-NtSecurityDescriptor $new_dir | Select {$_.Owner.Sid.Name}
$_.Owner.Sid.Name

Everyone

PS> $new_dir.Close()

Listing 6-45 Setting an arbitrary owner for a Directory object

We start by creating a new Directory object on which to
perform the operations. (We’ll avoid modifying an existing
resource, which risks breaking your system.) We then query the

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

resource’s current owner SID. In this case, because we’re running
this script as an administrator, it’s set to the Administrators group.

Next, we enable the SeRestorePrivilege privilege. We
need to do this only if we want to set an arbitrary owner SID. If
we want to set a permitted SID, we can skip this line. We then
open the Directory again, but only for WriteOwner access.

We can now create a security descriptor with just the owner
SID set to the World SID. To do this, we call the Set-
NtSecurityDescriptor PowerShell command, specifying
only the Owner flag. If you haven’t enabled
SeRestorePrivilege, this operation will fail with a
STATUS_INVALID_OWNER status code. To confirm that we’ve
changed the owner SID, we query it again, which confirms that
it’s now set to Everyone (the name of the World SID).

You can apply this same set of operations to any resource
type, including registry keys and files. Simply change the
command used to open the resource. Whether you’ll be granted
WriteOwner access depends on the specifics of the access-
check process. In Chapter 7, you’ll learn about a few cases in
which the access check automatically grants WriteOwner
access based on certain criteria.

Wrapping Up

We started this chapter by giving an overview of how to read
the security descriptor of an existing kernel resource using the
Get-NtObjectSecurity command. We covered the security
information flags that define what parts of the security descriptors
the command should read and outlined the special rules for
accessing audit information stored in the SACL.

We then discussed how we can assign security descriptors to
resources, either during the resource creation process or by
modifying an existing resource. In the process, you learned about
ACL inheritance and auto-inheritance. We also discussed the
behavior of the Win32 APIs, specifically

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

SetNamedSecurityInfo, and how the API implements auto-
inheritance even though the kernel doesn’t explicitly implement
it. We concluded with an overview of the poorly documented
server security descriptor and compound ACEs. In the next
chapter, we’ll (finally) discuss how Windows combines the token
and security descriptor to check whether a user can access a
resource.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

7
A C C E S S C H E C K I N G

We’ve covered the first two components of the SRM:
the security access token and the security descriptor.
Now, we’ll define its final component: the access-check
process, which accepts the token and the security
descriptor and applies a fixed set of rules to determine
whether an application can access a resource.

In this chapter, we’ll start by discussing the APIs you can call
to perform an access check. Then, we’ll take a deep dive into the
implementation of the access check inside of the Windows kernel,
detailing how the access check processes the different parts of the
security descriptor and Token object to generate a final granted
access value for the resource. In doing so, we’ll develop our own

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

basic implementation of the access-check process using a
PowerShell script.

Running an Access Check

When a caller attempts to open a resource, the kernel
performs an access check based on the caller’s identity. The API
used to run an access check depends on whether it’s being called
from kernel mode or user mode. Let’s start by describing the
kernel-mode API.

Kernel-Mode Access Checks

The SeAccessCheck API implements the access-check
process in kernel mode. It accepts the following parameters:

Security Descriptor
The security descriptor to use for the check; must contain both
owner and group SIDs

Security Subject Context
The primary and impersonation tokens for the caller

Desired Access
An access mask for the access requested by the caller

Access Mode
The caller’s access mode, set to either UserMode or
KernelMode

Generic Mapping
The type-specific generic mapping

The API returns four values:

Granted Access
An access mask for the access the user was granted

Access Status Code

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

An NT status code indicating the result of the access check

Privileges
Any privileges used during the access check

Success Code
A Boolean value; if true, the access check succeeded

If the access check succeeds, the API will set the granted
access to the desired access parameter, the success code to true,
and the access status code to STATUS_SUCCESS. However, if
any bit in the desired access is not granted, it will set the granted
access to 0, the success code to false, and the access status code
to STATUS_ACCESS_DENIED.

You might wonder why the API bothers returning the granted
access value if all bits in the desired access must be granted for
this value to indicate a success. The reason is that this behavior
supports the MaximumAllowed access mask bit, which the
caller can set in the desired access parameter. If the bit is set and
the access check grants at least one access, the API returns
STATUS_SUCCESS, setting the granted access to the maximum
allowed access.

The security subject context parameter is a pointer to a
SECURITY_SUBJECT_CONTEXT structure containing the
caller’s primary token and any impersonation token of the caller’s
thread. Typically, kernel code will use the kernel API
SeCaptureSubjectContext to initialize the structure and
gather the correct tokens for the current caller. If the
impersonation token is captured, it must be at Impersonation level
or above; if it’s not at this level, the API will fail, and the access
status code will be set to
STATUS_BAD_IMPERSONATION_LEVEL.

Note that the call to SeAccessCheck might not occur in
the thread that made the original resource request. For example,
the check might have been delegated to a background thread in
the System process. The kernel can capture the subject context
from the original thread, then pass that context to the thread that

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

calls SeAccessCheck, to ensure that the access check uses the
correct identity.

The Access Mode

The access mode parameter has two possible values,
UserMode and KernelMode. If you pass UserMode to this
parameter, all access checks will continue as normal. However, if
you pass KernelMode, the kernel will disable all access checks.
Why would you want to call SeAccessCheck without
enforcing any security? Well, usually, you won’t directly call the
API with the KernelMode value. Instead, the parameter will be
set to the value of the calling thread’s PreviousMode value,
which is stored in the thread’s kernel object structure. When you
call a system call from a user-mode application, the
PreviousMode value is set to UserMode and passed to any
API that needs the AccessMode set.

Therefore, the kernel normally enforces all access checks.
Figure 7-1 shows the described behavior with a user-mode
application calling the NtCreateMutant system call.

Figure 7-1 A thread’s PreviousMode value when calling the NtCreateMutant system call

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Even though the thread calling SeAccessCheck in Figure
7-1 is executing kernel code, the thread’s PreviousMode value
reflects the fact that the call was started from UserMode.
Therefore, the AccessMode parameter specified to
SeAccessCheck will be UserMode, and the kernel will
enforce the access check.

The most common way of transitioning the thread’s
PreviousMode value from UserMode to KernelMode is for
existing kernel code to call a system call via its Zw form, for
example ZwCreateMutant. When such a call is made, the
system call dispatch correctly identifies that the previous
execution occurred in the kernel and sets PreviousMode to
KernelMode. Figure 7-2 shows the transition of the thread’s
PreviousMode from UserMode to KernelMode.

Figure 7-2 A thread’s PreviousMode value being set to KernelMode after a call to
ZwCreateMutant

In Figure 7-2, the user-mode application calls a hypothetical
kernel system call, NtSomeOtherCall, that internally calls
ZwCreateMutant. The code executing in the
NtSomeOtherCall function runs with the PreviousMode
value set to UserMode. However, once it calls
ZwCreateMutant, the mode changes to KernelMode for the
duration of the system call. Because ZwCreateMutant would
call SeAccessCheck to determine whether the caller had
access to a Mutant object, the API would receive the
AccessMode set to KernelMode, disabling access checking.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

This behavior could introduce a security issue if the
hypothetical NtSomeOtherCall allowed the user-mode
application to influence where the Mutant object was created.
Once the access check is disabled, it might be possible to create
or modify the Mutant in a location that the user would not
normally be allowed to access.

Memory Pointer Checking

The access mode parameter has a second purpose: when
UserMode is specified, the kernel will check any pointers passed
as parameters to a kernel API to ensure that they do not point to
kernel memory locations. This is an important security restriction:
it prevents an application in user-mode from forcing a kernel API
to read or write to kernel memory it should not have access to.

Specifying KernelMode disables these pointer checks at the
same time as it disables the access checking. This mixing of
behavior can introduce security issues; a kernel-mode driver
might want to disable only pointer checking but inadvertently
disable access checking as well.

How a caller can indicate these different uses of the access
mode parameter depends on the kernel APIs being used. For
example, you can sometimes specify two AccessMode values,
one for the pointer checking and one for the access checking. A
more common method is to specify a flag to the call; for example,
the OBJECT_ATTRIBUTES structure passed to system calls has
a flag, ForceAccessCheck, that disables pointer checking but
leaves access checking enabled.

If you’re analyzing a kernel driver, it’s worth paying attention
to the use of Zw APIs in which the ForceAccessCheck flag is
not set. If a non-administrator user can control the target object
manager path for the call, then there’s likely to be a security
vulnerability. For example, CVE-2020-17136 is a vulnerability in
a kernel driver responsible for implementing the Microsoft
OneDrive remote filesystem. The issue occurred because the API
that the driver exposed to the Explorer shell did not set the
ForceAccessCheck flag when creating a cloud-based file.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Because of that, a user calling these same APIs could create an
arbitrary file anywhere they wanted on the filesystem, allowing
them to gain administrator privileges.

User-Mode Access Checks

To support user-mode applications, the kernel exposes its
access check implementation through the NtAccessCheck
system call. This system call uses the same access check
algorithm as the SeAccessCheck API; however, it’s tailored to
the unique behavior of user-mode callers. The parameters for the
system call are as follows:

Security Descriptor
The security descriptor to use for the check; must contain owner
and group SIDs

Client Token
A handle to an impersonation token for the caller

Desired Access
An access mask for the access requested by the caller

Generic Mapping
The type-specific generic mapping

The API returns four values:

Granted Access
An access mask for the access the user was granted

Access Status Code
An NT status code indicating the result of the access check

Privileges
Any privileges used during the access check

NT Success Code
A separate NT status code indicating the status of the system call

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Some of the parameters present in the kernel API are missing
here. For example, there is no reason to specify the access mode,
as it will always be set to the caller’s mode (UserMode, for a
user-mode caller). Also, the caller’s identity is now a handle to an
impersonation token rather than a subject context. This handle
must have Query access to be used for the access check. If you
want to perform the access check against a primary token, you’ll
need to duplicate that token to an impersonation token first.

Another difference is that the impersonation token used in
user-mode can be as low as Identification level. The reason for
this disparity in impersonation level is that the system call is
designed for user services that want to check a caller’s
permissions, and it’s possible that the caller granted access to an
Identification-level token only, which must be accounted for.

The system call returns an additional NT status code instead
of the Boolean value returned by the kernel API. The return value
indicates whether there was a problem with the parameters passed
to the system call. For example, if the security descriptor doesn’t
have the owner or group SIDs set, the system call will return
STATUS_INVALID_SECURITY_DESCR.

The NtAccessCheck PowerShell Command

Let’s use NtAccessCheck from PowerShell to determine
the caller’s granted access based on a security descriptor and an
access token. The PowerShell module wraps the call to
NtAccessCheck with the Get-NtGrantedAccess
command, shown in Listing 7-1.

PS> $sd = New-NtSecurityDescriptor -EffectiveToken -Type Mutant
PS> Format-NtSecurityDescriptor $sd -Summary
<Owner> : GRAPHITE\user
<Group> : GRAPHITE\None
<DACL>
GRAPHITE\user: (Allowed)(None)(Full Access)
NT AUTHORITY\SYSTEM: (Allowed)(None)(Full Access)
NT AUTHORITY\LogonSessionId_0_795805: (Allowed)(None)(ModifyState|...)

PS> Get-NtGrantedAccess $sd -AsString
Full Access
PS> Get-NtGrantedAccess $sd -Access ModifyState -AsString

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

ModifyState

PS> Clear-NtSecurityDescriptorDacl $sd
PS> Format-NtSecurityDescriptor $sd -Summary
<Owner> : GRAPHITE\user
<Group> : GRAPHITE\None
<DACL> - <EMPTY>

PS> Get-NtGrantedAccess $sd -AsString
ReadControl|WriteDac

Listing 7-1 Using the Get-NtGrantedAccess command

We start by creating the default security descriptor using the
EffectiveToken parameter, and confirm that it is correct by
formatting it. In simplistic terms, the system call will check this
security descriptor’s DACL for an Allowed ACE that matches
one of the token’s SIDs; if such an ACE exists, it will grant the
access mask. As the first ACE in the DACL grants the User SID
Full Access, we’d expect the result of the check to also grant
Full Access.

We specify the security descriptor to Get-
NtGrantedAccess. By not specifying an explicit token, we
use the current effective token. We also do not specify an access
mask, which means that the command checks
MaximumAllowed access, converting the result to a string. The
result is Full Access, as we expected based on the DACL.

We also test the command when supplied an explicit access
mask using the Access parameter. The command will work out
the access mask enumeration for the security descriptor’s type to
allow us to specify type-specific values. We requested to check
for ModifyState, so receive only that access. For example, if
we were opening a handle to a Mutant object, then the handle’s
access mask would grant only ModifyState.

To test an Access Denied case, we next removed all the ACEs
from the DACL. If there is no Allowed ACE, then no access
should be granted. But when we re-run Get-
NtGrantedAccess, we get a surprise: we were granted
ReadControl and WriteDac instead of nothing. To
understand why we received these access levels, we need to dig

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

into the internals of the access check process. We do so in the
next section.

Implementing the Access-Check Process in PowerShell

The access-check process in Windows has changed
substantially since the first version of Windows NT. This has
resulted in a complex set of algorithms that calculate what access
a user is granted based on the combination of the security
descriptor and the token. The flowchart in Figure 7-3 shows the
major components of the access-check process.

Figure 7-3 The access-check process

The access-check process starts by combining the token, the
security descriptor, and the desired access mask. It then uses this

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

information in the following three main checks to determine
whether access should be granted or denied:

Mandatory Access
Denies access to resources when the token does not meet a set
policy

Token Access
Grants access based on the token’s owner and privileges

Discretionary Access
Grants or denies access based on the DACL

To explore these steps in more detail, let’s write a basic
implementation of the access-check process in PowerShell. This
PowerShell implementation won’t replace the Get-
NtGrantedAccess command, as, for simplicity, it won’t
check for maximum allowed access and might not include newer
features. Even so, having an implementation that you can analyze
and debug can help you gain a greater understanding of the
access-check process.

The implementation of the access check is quite complex;
therefore, we’ll build it in stages. You can access the full
implementation in the chapter7_access_check_impl.psm1 script
included with the book’s example code. To use the script, import
it as a module with this command:

PS> Import-Module .\chapter7_access_check_impl.psm1

Let’s begin by defining the function to perform the access-
check process.

Defining the Access-Check Function

The module exports a single top-level access-check function,
Get-PSGrantedAccess, shown in Listing 7-2.

function Get-PSGrantedAccess {
 param(
 $Token = (Get-NtToken -Effective -Pseudo),
 $SecurityDescriptor,
 $GenericMapping,

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

 $DesiredAccess
)

 1 $context = @{
 Token = $Token
 SecurityDescriptor = $SecurityDescriptor
 GenericMapping = $GenericMapping
 RemainingAccess = Get-NtAccessMask $DesiredAccess
 Privileges = @()
 }

 ## Test-MandatoryAccess defined below
 2 if (!(Test-MandatoryAccess $context)) {
 return Get-AccessResult STATUS_ACCESS_DENIED
 }

 ## Get-TokenAccess defined below
 3 Resolve-TokenAccess $context
 4 if (Test-NtAccessMask $context.RemainingAccess -Empty) {
 return Get-AccessResult STATUS_SUCCESS $context.Privileges
$DesiredAccess
 }

 5 if (Test-NtAccessMask $context.RemainingAccess AccessSystemSecurity) {
 return Get-AccessResult STATUS_PRIVILEGE_NOT_HELD
 }

 6 Get-DiscretionaryAccess $context
 if (Test-NtAccessMask $context.RemainingAccess -Empty) {
 return Get-AccessResult STATUS_SUCCESS $context.Privileges
$DesiredAccess
 }

 7 return Get-AccessResult STATUS_ACCESS_DENIED
}

Listing 7-2 The top-level access-check function

The function accepts the four parameters we defined earlier in
the chapter: a token, the security descriptor, the type’s generic
mapping, and the desired access. If the caller doesn’t specify a
token, we’ll use their effective token for the rest of the access
check.

The first task tackled in the function is building a context that
represents the current state of the access check process 1. The
most important property used here is RemainingAccess. We
initially set this property is to the DesiredAccess parameter,

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

then remove bits from the property as they’re granted during the
access-check process.

The rest of the function follows the flowchart in Figure 7-3.
First, it makes the mandatory access check 2. We’ll describe what
this check does in the next section. If the check fails, then the
function completes with STATUS_ACCESS_DENIED. To
simplify the code, the full script defines a helper function, Get-
AccessResult to build the result of the access check. Listing
7-3 shows this function definition.

function Get-AccessResult {
 param(
 $Status,
 $Privileges = @(),
 $GrantedAccess = 0
)

 $props = @{
 Status = Get-NtStatus -Name $Status -PassStatus
 GrantedAccess = $GrantedAccess
 Privileges = $Privileges
 }
 return [PSCustomObject]$props
}

Listing 7-3 Implementing Get-AccessResult helper function

Next, the token access check will update the
RemainingAccess property in the context 3. If
RemainingAccess becomes empty, then we can conclude
we’ve been granted all access rights and can return
STATUS_SUCCESS 4.

We must now make a second check: if the caller requested
AccessSystemSecurity and the token check didn’t grant
that right, we need to fail 5. Finally, we perform the discretionary
access check. As with the token access check, we check the
RemainingAccess property: if it’s empty, the caller has
received all the accesses they’ve requested 6. Otherwise, they’ve
been denied access 8. Let’s delve into the details of each check in
turn.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Performing the Mandatory Access Check

Windows Vista introduced a feature called mandatory
integrity control (MIC) that uses the token’s integrity level, as
well as the mandatory label ACE, to control resource access
based on a general policy. MIC is a type of mandatory access
check (MAC). The key behavior of a MAC is that it cannot grant
access to resource; it can only deny access. If the caller requests
more access than the policy permits, the access check will
immediately deny access, and if the MAC denies access, the
DACL will never be checked. Because there is no way for a non-
privileged user to circumvent the check, it’s considered
mandatory.

In the latest version of Windows, the access-check process
performs two additional checks along with the MIC. These
checks implement similar behavior, and so we’ll group them
together. Listing 7-4 define the Test-MandatoryAccess
function we called in Listing 7-2.

function Test-MandatoryAccess {
 param($Context)

 ## Test-ProcessTrustLevel is defined below.
 if (!(Test-ProcessTrustLevel $Context)) {
 return $false
 }

 ## Test-ProcessTrustLevel is defined below.
 if (!(Test-AccessFilter $Context)) {
 return $false
 }

 ## Test-ProcessTrustLevel is defined below.
 if (!(Test-MandatoryIntegrityLevel $Context)) {
 return $false
 }

 return $true
}

Listing 7-4 Implementing the Test-MandatoryAccess function

This function performs three checks: Test-
ProcessTrustLevel, Test-AccessFilter, and Test-
MandatoryIntegrityLevel. If any of these checks fail,

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

then the entire access-check process fails, returning
STATUS_ACCESS_DENIED. Let’s detail each check in turn.

The Process Trust Level Check

Windows Vista introduced protected processes, which are
processes that even an administrator can’t manipulate and
compromise. The original purpose of protected processes was to
protect media content. However, Microsoft has since expanded
them to cover a range of uses, such as protecting anti-virus
services and virtual machines.

A token can be assigned a process trust-level SID. This SID
depends on the protection level of a protected process and is
assigned when such a process is created. To restrict access to a
resource, the access-check process consults a defined order of
these process trust-level SIDs. When one SID is considered more
trusted than another, it’s said to dominate.

To check whether one process trust-level SID dominates
another, you can call the RtlSidDominatesForTrust API
or the Compare-NtSid command with the Dominates
parameter. Listing 7-5 translates the algorithm for checking the
process trust label into PowerShell.

function Test-ProcessTrustLevel {
 param($Context)

 1 $trust_level = Get-NtTokenSid $Token -TrustLevel
 if ($null -eq $trust_level) {
 $trust_level = Get-NtSid -TrustType None -TrustLevel None
 }

 2 $access = Get-NtAccessMask 0xFFFFFFFF
 $sacl = Get-NtSecurityDescriptorSacl $Context.SecurityDescriptor
 foreach($ace in $sacl) {
 3 if (!$ace.IsProcessTrustLabelAce -or $ace.IsInheritOnly) {
 continue
 }

 4 if (!(Compare-NtSid $trust_level $ace.Sid -Dominates)) {
 $access = Get-NtAccessMask $ace
 }
 break
 }

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

 $access = Grant-NtAccessMask $access AccessSystemSecurity
 5 return Test-NtAccessMask $access $Context.RemainingAccess -All
}

Listing 7-5 The process trust-level checking algorithm

To check the process trust level, we need to query the SID for
the current token 1. If the token does not have a trust-level SID,
then we define the lowest possible SID. Next, we initialize an
access mask to all bits set 2.

We then enumerate the values in the SACL, checking any
process trust-label ACE other than InheritOnly 3. When we
find a relevant ACE, we compare its SID to the SID queried for
the token 4. If the ACE SID dominates, then the token has a lower
protection level, and the access mask is set to the value from the
ACE.

Finally, we compare the access mask to the remaining access
the caller requested 5. If the access mask doesn’t contain all
remaining access, then the function returns False, which
indicates that the process trust-level check failed. Note that the
check always adds AccessSystemSecurity, regardless of
the mask in the ACE.

Let’s test the behavior of the process trust-label ACE. Rather
than create a new protected process, we’ll use the process trust-
level SID of the anonymous user’s token for the access check. To
simplify testing, we’ll define a helper function that we can reuse.
This function in Listing 7-6 will create a default security
descriptor that grants access to both the current user and the
anonymous user. Whenever we need a security descriptor for a
test, we can call this function and use the returned value.

PS> function New-BaseSD {
 $owner = Get-NtSid -KnownSid LocalSystem
 $sd = New-NtSecurityDescriptor -Owner $owner -Group $owner -Type Mutant
 Add-NtSecurityDescriptorAce $sd -KnownSid Anonymous -Access GenericAll
 $sid = Get-NtSid
 Add-NtSecurityDescriptorAce $sd -Sid $sid -Access GenericAll
 Set-NtSecurityDescriptorIntegrityLevel $sd Untrusted
 Edit-NtSecurityDescriptor $sd -MapGeneric
 return $sd

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

}

Listing 7-6 Defining a helper function for testing

The New-BaseSD function creates a basic security
descriptor with the owner and group set to the SYSTEM user. It
then adds an Allowed ACE for the anonymous and current user
SIDs, granting them full access. It also sets the mandatory label to
the Untrusted integrity level; you’ll learn why the integrity
level is important in “The Mandatory Integrity Level Check” on
page XX. Finally, it maps any generic access to Mutant type-
specific access. Let’s now test the process trust label using the
code in Listing 7-7.

1 PS> $sd = New-BaseSD
PS> $trust_sid = Get-NtSid -TrustType ProtectedLight -TrustLevel Windows
PS> Add-NtSecurityDescriptorAce $sd -Type ProcessTrustLabel -Access
ModifyState
2 -Sid $trust_sid
PS> Get-NtGrantedAccess $sd -AsString

3 ModifyState

PS> $token = Get-NtToken -Anonymous
PS> $anon_trust_sid = Get-NtTokenSid -Token $token -TrustLevel

x PS> Compare-NtSid $anon_trust_sid $trust_sid -Dominates

True
PS> Get-NtGrantedAccess $sd -Token $token -AsString

y Full Access

Listing 7-7 Testing the process trust label ACE

The first thing we do is create our base security descriptor 1
and add a process trust label, granting ModifyState access
only to tokens whose process trust level does not dominate the
process trust label 2. When we run the access check, we see that
the effective token, which doesn’t have any process trust level,
gets ModifyState access only 3, indicating that the process
trust label is being enforced.

Now, using Get-NtToken, we can get a handle to an
anonymous user’s token, query its process trust-level SID, and
compare it to the SID we added to the security descriptor 4. The
call to Compare-NtSid returns True, which indicates the
token’s process trust level SID dominates the one in the security
descriptor. To confirm this, we run the access check and find that

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

the anonymous user’s token is granted Full Access, which
means the process trust label did not limit its access 5.

You might wonder whether you could impersonate the
anonymous token to bypass the process trust label. Remember
that, in user-mode, we’re calling NtAccessCheck, which takes
only a single Token handle, but that the kernel’s
SeAccessCheck takes both a primary token and an
impersonation token. Before the kernel verifies the process trust
label, it checks both tokens and chooses the one with the lower
trust level. Therefore, if the impersonation token is trusted but
your primary token is untrusted, the effective trust level will be
untrusted.

Windows applies a secondary security check when assigning
the process trust-label ACE to a resource. While you need only
WriteDac access to set the process trust label, you cannot
change or remove the ACE if your effective trust level does not
dominate the label’s trust level. This prevents you from setting a
new, arbitrary process trust-label ACE. Microsoft uses this ability
to check certain files related to Windows applications for
modifications and verify that the files were created by a protected
process.

The Access Filter ACE

The second mandatory access check is the access filter ACE.
It works in a manner similar to the process trust label, except that
instead of using a process trust level to determine whether to
apply a restricting access mask, it uses a conditional expression
that evaluates to either True or False. If the conditional
evaluates to False, the ACE’s access mask limits the maximum
granted access for the access check; if it evaluates to True, the
access filter is ignored.

You can have multiple access filter ACEs in the SACL. Every
conditional expression that evaluates to False removes more of
the access mask. Therefore, if you match one ACE, but don’t
match a second ACE that restricts to GenericRead, you’ll get a

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

maximum access of GenericRead. We can express this logic
in a PowerShell function, as shown in Listing 7-8.

function Test-AccessFilter {
 param($Context)

 $access = Get-NtAccessMask 0xFFFFFFFF
 $sacl = Get-NtSecurityDescriptorSacl $Context.SecurityDescriptor
 foreach($ace in $sacl) {
 if (!$ace.IsAccessFilterAce -or $ace.IsInheritOnly) {
 continue
 }
 1 if (!(Test-NtAceCondition $ace -Token $token)) {
 2 $access = $access -band $ace.Mask
 }
 }

 $access = Grant-NtAccessMask $access AccessSystemSecurity
 3 return Test-NtAccessMask $access $Context.RemainingAccess -All
}

Listing 7-8 The access filter check algorithm

This algorithm resembles the one we implemented to check
the process trust level. The only difference is that we check a
conditional expression rather than the SID 1. The function
supports multiple access filter ACEs, and for each matching
ACE, the access mask is bitwise ANDed with the final access
mask, which starts with all access mask bits set 3. As the masks
are ANDed, each ACE can only remove access, not add it. Once
we’ve checked all ACEs, we check the remaining access to
determine whether the check succeeded or failed 3.

In Listing 7-9, we check the behavior of the actual access-
filter algorithm to ensure it works as expected.

PS> $sd = New-BaseSD
PS> Add-NtSecurityDescriptorAce $sd -Type AccessFilter -KnownSid World `
 1 -Access ModifyState -Condition "Exists TSA://ProcUnique" -MapGeneric
PS> Format-NtSecurityDescriptor $sd -Summary -SecurityInformation AccessFilter
<Access Filters>
Everyone: (AccessFilter)(None)(ModifyState)(Exists TSA://ProcUnique)

2 PS> Show-NtTokenEffective -SecurityAttributes
SECURITY ATTRIBUTES

Name Flags ValueType Values
---- ----- --------- ------

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

TSA://ProcUnique NonInheritable, Unique UInt64 {187, 365588953}

PS> Get-NtGrantedAccess $sd -AsString

3 Full Access

PS> Use-NtObject($token = Get-NtToken -Anonymous) {
 Get-NtGrantedAccess $sd -Token $token -AsString
}

4 ModifyState

Listing 7-9 Testing the access filter ACE

We add the AccessFilter ACE to the security descriptor
with the conditional expression "Exists
TSA://ProcUnique" 1. The expression checks whether the
TSA://ProcUnique security attribute is present in the token.
For a normal user, this check should always return True;
however, the attribute doesn’t exist in the anonymous user’s
token. We set the mask to be ModifyState and the SID to the
Everyone group. Note that the SID isn’t verified, so it can have
any value, but using the Everyone group is conventional.

We can check the current effective token’s security attributes
using Show-NtTokenEffective 2. Getting the maximum
access for the effective token results in Full Access, meaning
the access filter check passes without restricting access 3.
However, when use the anonymous user’s token, the access filter
check fails, and the access is restricted to ModifyState only 4.

To set an access filter, you need only WriteDac access. So,
what’s to prevent a user removing the filter? Obviously, the
access filter shouldn’t grant WriteDac in the first place, but if it
does, you can limit any changes to a protected-process trust level.
To do this, set the ACE SID to a process trust-level SID, and set
the TrustProtected ACE flag. Now a caller with a lower
process trust level won’t be able to remove or modify the access
filter ACE.

The Mandatory Integrity Level Check

Finally, we’ll implement the mandatory integrity level check.
In the SACL, a mandatory label ACE’s SID represents the

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

security descriptor’s integrity level. Its mask, which expresses the
mandatory policy, combines the NoReadUp, NoWriteUp and
NoExecuteUp policies to determine the maximum access the
system can grant the caller based on the GenericRead,
GenericWrite, and GenericExecute values from the
generic mapping structure.

To determine whether to enforce the policy, the check
compares the integrity level SIDs of the security descriptor and
token. If the token’s SID dominates the security descriptor’s, then
no policy is enforced, and any access is permitted. However, if
the token’s SID doesn’t dominate, then any access requested
outside of the value for the policy causes the access check to fail
with STATUS_ACCESS_DENIED.

Calculating whether one integrity level SID dominates
another is much simpler than calculating the equivalent value for
the process trust-level SID. To do so, we extract the last RID
from each SID and compare these as numbers. If one integrity
level SID’s RID level is greater than or equal to the other, it
dominates.

However, calculating the access mask for the policy based on
the generic mapping is much more involved, as it requires a
consideration of shared access rights. I won’t implement the code
for calculating the access mask, as we can use an option on Get-
NtAccessMask to calculate it for us.

In Listing 7-10, we implement the mandatory integrity level
check.

function Test-MandatoryIntegrityLevel {
 param($Context)

 $token = $Context.Token
 $sd = $Context.SecurityDescriptor
 $mapping = $Context.GenericMapping

 1 $policy = Get-NtTokenMandatoryPolicy -Token $token
 if (($policy -band "NoWriteUp") -eq 0) {
 return $true
 }

 if ($sd.HasMandatoryLabelAce) {

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

 $ace = $sd.GetMandatoryLabel()
 $sd_il_sid = $ace.Sid
 2 $access = Get-NtAccessMask $ace.Mask -GenericMapping $mapping
 } else {
 3 $sd_il_sid = Get-NtSid -IntegrityLevel Medium
 $access = Get-NtAccessMask -ManadatoryLabelPolicy NoWriteUp `
 -GenericMapping $GenericMapping
 }

 4 if (Test-NtTokenPrivilege -Token $token SeRelabelPrivilege) {
 $access = Grant-NtAccessMask $access WriteOwner
 }

 $il_sid = Get-NtTokenSid -Token $token -Integrity
 if (Compare-NtSid $il_sid $sd_il_sid -Dominates) {
 return $true
 }

 return Test-NtAccessMask $access $Context.RemainingAccess -All
}

Listing 7-10 Implementing the mandatory integrity level check algorithm

We start by checking the token’s mandatory policy 1. In this
case, we check if the NoWriteUp flag is set or not. If the flag is
not set, then we disable integrity level checking for this token and
return True. This flag is rarely turned off, however, and it
requires SeTcbPrivilege to disable, so in almost all cases,
the integrity level check will continue.

Next, we need to capture the security descriptor’s integrity
level and mandatory policy from the mandatory label ACE. If the
ACE exists, we extract these values and map the policy to the
maximum access mask using Get-NtAccessMask 2. If the
ACE doesn’t exist, the algorithm uses a Medium integrity level
and a NoWriteUp policy by default 3.

If the token has the SeRelabelPrivilege privilege, we
add the WriteOwner access back to the maximum access, even
if the policy removed it 4. This allows a caller with
SeRelabelPrivilege to change the security descriptor’s
mandatory integrity label ACE.

Then, we query the token’s integrity level SID and compare it
to the security descriptor’s. If the token’s SID dominates, then the

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

check passes and allows any access. Otherwise, the calculated
policy access mask must grant the entirety of the remaining
access mask requested. Note that we don’t treat
AccessSystemSecurity differently here, as we did in the
process trust level or access filter checks. We remove it if the
policy contains NoWriteUp, the default for all resource types.

Let’s verify the behavior of the mandatory integrity level
check by considering the real access-check process (Listing 7-
11).

PS> $sd = New-BaseSD
PS> Format-NtSecurityDescriptor $sd -SecurityInformation Label -Summary
<Mandatory Label>

1 Mandatory Label\Untrusted Mandatory Level: (MandatoryLabel)(None)(NoWriteUp)

PS> Use-NtObject($token = Get-NtToken -Anonymous) {
 Format-NtToken $token -Integrity
 Get-NtGrantedAccess $sd -Token $token -AsString
}

2 INTEGRITY LEVEL

Untrusted

3 Full Access

4 PS> Remove-NtSecurityDescriptorIntegrityLevel $sd
PS> Use-NtObject($token = Get-NtToken -Anonymous) {
 Get-NtGrantedAccess $sd -Token $token -AsString
}

5 ModifyState|ReadControl|Synchronize

Listing 7-11 Testing the mandatory label ACE

We create a security descriptor and check its mandatory
integrity label. We can see that it’s set to the Untrusted
integrity level, which is the lowest level, and that its policy is
NoWriteUp 1. We then get the maximum access for the
anonymous user’s token. We can show that that the token has an
integrity level of Untrusted 2. As this integrity level matches
the security descriptor’s integrity level, the token is allowed full
access 3.

To test access mask restrictions, we remove the mandatory
label ACE from the security descriptor so that the access check
will default to the Medium integrity level 4. Running the check

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

again, we now get
ModifyState|ReadControl|Synchronize, which is the
Mutant object’s full access without the GenericWrite access
mask 5.

This concludes the implementation of the mandatory access
check. We’ve seen that this algorithm is really three separate
checks for integrity, process trust level, and the access filter. Each
check can only deny access; it never grants additional access.

Performing the Token Access Check

The second main check, the token access check, uses
properties of the caller’s token to determine whether to grant
certain specific access rights. More specifically, it checks for any
special privileges, as well as for the owner of the security
descriptor.

Unlike the mandatory access check, the token access check
can grant access to a resource if it has removed all bits from the
token’s access mask. Listing 7-12 implements the top-level
Result-TokenAccess function.

Function Result-TokenAccess {
 param($Context)

 Resolve-TokenPrivilegeAccess $Context
 if (Test-NtAccessMask $Context.RemainingAccess -Empty) {
 return
 }
 return Resolve-TokenOwnerAccess $Context
}

Listing 7-12 Token access check algorithm

The check is simple. First, we check the token’s privileges
using a function we’ll define next, Resolve-
TokenPrivilegeAccess, passing it the current context. If
certain privileges are enabled, this function modifies the token’s
remaining access, and if the remaining access is empty, meaning
no access remains to be granted, we can return immediately. We
then call Resolve-TokenOwnerAccess, which checks

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

whether the token owns the resource and can also update
RemainingAccess. Let’s dig into these individual checks.

The Privilege Check

The privilege check determines whether the Token object has
three different privileges enabled. If one of these privileges is
enabled, we’ll grant an access mask and the bits from the
remaining access (Listing 7-13).

function Resolve-TokenPrivilegeAccess {
 param($Context)

 $token = $Context.Token
 $access = $Context.RemainingAccess

 if ((Test-NtAccessMask $access AccessSystemSecurity) -and
 1 (Test-NtTokenPrivilege -Token $token SeSecurityPrivilege)) {
 $access = Revoke-NtAccessMask $access AccessSystemSecurity
 $Context.Privileges += "SeSecurityPrivilege"
 }

 if ((Test-NtAccessMask $access WriteOwner) -and
 (Test-NtTokenPrivilege -Token $token SeTakeOwnershipPrivilege)) {
 $access = Revoke-NtAccessMask $access WriteOwner
 $Context.Privileges += "SeTakeOwnershipPrivilege"
 }

 if ((Test-NtAccessMask $access WriteOwner) -and
 (Test-NtTokenPrivilege -Token $token SeRelabelPrivilege)) {
 $access = Revoke-NtAccessMask $access WriteOwner
 $Context.Privileges += "SeRelabelPrivilege"
 }

 2 $Context.RemainingAccess = $access
}

Listing 7-13 The token-privilege checking algorithm

First, we check whether the caller has requested
AccessSystemSecurity; if so, and if
SeSecurityPrivilege is enabled, we remove
AccessSystemSecurity from the remaining access 1. We
also update the list of privileges we’ve used so that we can return
it to the caller.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Next, we perform similar checks for
SeTakeOwnershipPrivilege and
SeRelabelPrivilege and remove WriteOwner from the
remaining access if they’re enabled. Lastly, we update the
RemainingAccess value with the final access mask 2.

Granting WriteOwner to both
SeTakeOwnershipPrivilege and
SeRelabelPrivilege makes sense from the kernel’s
perspective, as you need WriteOwner to modify the owner SID
and integrity level. However, this implementation also means that
a token with only SeRelabelPrivilege can take ownership
of the resource, which we might not always intend. Fortunately,
even administrators don’t get SeRelabelPrivilege by
default, making this a minor issue.

Let’s check this function against the real access check
process. Run the script in Listing 7-14 as an administrator.

PS> $owner = Get-NtSid -KnownSid Null
PS> $sd = New-NtSecurityDescriptor -Type Mutant -Owner $owner
1 -Group $owner -EmptyDacl

2 PS> Set-NtTokenPrivilege SeTakeOwnershipPrivilege
3 PS> Get-NtGrantedAccess $sd -Access WriteOwner -PassResult

Status Granted Access Privileges
------ -------------- ----------

 STATUS_SUCCESS WriteOwner 4 SeTakeOwnershipPrivilege

5 PS> Set-NtTokenPrivilege SeTakeOwnershipPrivilege -Disable
PS> Get-NtGrantedAccess $sd -Access WriteOwner -PassResult
Status Granted Access Privileges
------ -------------- ----------

6 STATUS_ACCESS_DENIED None NONE

Listing 7-14 Testing the token privilege check

Listing 7-14 starts by creating a security descriptor that
should grant no access to the current user 1. We then enable
SeTakeOwnershipPrivilege 2. Next, we request an access
check for WriteOwner access and specify the PassResult
parameter, which outputs the full access check result 3. The result
shows that the access check succeeded, granting WriteOwner
access, but also that the check used the
SeTakeOwnershipPrivilege 4. To verify that we weren’t

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

granted WriteOwner for another reason, we disable the
privilege 5 and rerun the check. The check now denies us access
6.

The Owner Check

The owner check exists to grant ReadControl and
WriteDac access to the owner of the resource, even if the
DACL doesn’t grant that owner any other access. The purpose of
this check is to prevent a user from locking themselves out of
their own resources. If they accidentally change the DACL so that
they no longer have access, they can still use WriteDac access
to return the DACL to its previous state.

The check compares the owner SID in the security descriptor
with all enabled token groups (not just the token owner),
checking them for the user’s SID. We demonstrated this behavior
at the start of this chapter, in Listing 7-1. In Listing 7-15, we’ll
implement the Resolve-TokenOwnerAccess function.

function Resolve-TokenOwnerAccess {
 param($Context)

 $token = $Context.Token
 $sd = $Context.SecurityDescriptor
 $sd_owner = Get-NtSecurityDescriptorOwner $sd
 1 if (!(Test-NtTokenGroup -Token $token -Sid $sd_owner.Sid)) {
 return
 }

 $sids = Select-NtSecurityDescriptorAce $sd

2 -KnownSid OwnerRights -First -AclType Dacl
 if ($sids.Count -gt 0) {
 return
 }

 $access = $Context.RemainingAccess
 3 $Context.RemainingAccess = Revoke-NtAccessMask $access ReadControl,
WriteDac
}

Listing 7-15 The token owner access-check algorithm

We use the Test-NtTokenGroup to check whether the
security descriptor’s owner SID is an enabled member of the

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

token 1. If the owner SID is not a member, we simply return. If it
is an owner, the code then needs to check whether there are any
OWNER RIGHTS SIDs (S-1-3-4) in the DACL 2. If there are,
then we don’t follow the default process, and instead rely on the
DACL check to grant access to the owner. Finally, if both checks
pass, we can remove ReadControl and WriteDac from the
remaining access 3.

In Listing 7-16, we verify this behavior in the real access-
check process.

1 PS> $owner = Get-NtSid -KnownSid World
PS> $sd = New-NtSecurityDescriptor -Owner $owner -Group $owner
 -Type Mutant -EmptyDacl
PS> Get-NtGrantedAccess $sd

2 ReadControl, WriteDac

PS> Add-NtSecurityDescriptorAce $sd -KnownSid OwnerRights -Access ModifyState
PS> Get-NtGrantedAccess $sd
ModifyState

Listing 7-16 Testing the owner check process

We start by creating a security descriptor with the owner and
group set to Everyone 1. We also create a security descriptor with
an empty DACL, which means the access check process will
consider only the owner check when calculating the granted
access. When we run the access check, we get ReadControl
and WriteDac 2.

We then add a single ACE with the OWNER RIGHTS SID.
This disables the default owner access and causes the access
check to grant only the access specified in the ACE (in this case,
ModifyState). When we run the access check again, we now
find that the only granted access is ModifyState and that we
no longer have ReadControl or WriteDac.

This concludes the token access check. As we demonstrated,
the algorithm can grant certain access rights to a caller before any
significant processing of the security descriptor takes place. This
is primarily to allow users to maintain access to their own
resources, and for administrators to take ownership of other user’s
files. Let’s continue to the final check.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Performing the Discretionary Access Check

We’ve relied on the behavior of the DACL for a few of our
tests. Now we’ll explore exactly how the DACL check works.
Checking the DACL may seem simple, but the devil is in the
details. Listing 7-17 implements the algorithm:

function Get-DiscretionaryAccess {
 param($Context)

 $token = $Context.Token
 $sd = $Context.SecurityDescriptor
 $access = $Context.RemainingAccess
 $resource_attrs = $null
 if ($sd.ResourceAttributes.Count -gt 0) {
 $resource_attrs = $sd.ResourceAttributes.ResourceAttribute
 }

 1 if (!(Test-NtSecurityDescriptor $sd -DaclPresent) `
 -or (Test-NtSecurityDescriptor $sd -DaclNull)) {
 $Context.RemainingAccess = Get-NtAccessMask 0
 return
 }

 $owner = Get-NtSecurityDescriptorOwner $sd
 $dacl = Get-NtSecurityDescriptorDacl $sd
 2 foreach($ace in $dacl) {
 3 if ($ace.IsInheritOnly) {
 continue
 }
 4 $sid = Get-AceSid $ace -Owner $owner
 $continue_check = $true
 switch($ace.Type) {
 "Allowed" {
 5 if (Test-NtTokenGroup -Token $token $sid) {
 $access = Revoke-NtAccessMask $access $ace.Mask
 }
 }
 "Denied" {
 6 if (Test-NtTokenGroup -Token $token $sid -DenyOnly) {
 if (Test-NtAccessMask $access $ace.Mask) {
 $continue_check = $false
 }
 }
 }
 "AllowedCompound" {
 $server_sid = Get-AceSid $ace -Owner $owner
 7 if ((Test-NtTokenGroup -Token $token $sid)
-and (Test-NtTokenGroup -Sid $server_sid)) {
 $access = Revoke-NtAccessMask $access $ace.Mask
 }

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

 }
 "AllowedCallback" {
 if ((Test-NtTokenGroup -Token $token $sid)
-and (Test-NtAceCondition $ace -Token $token
8 -ResourceAttributes $resource_attrs)) {
 $access = Revoke-NtAccessMask $access $ace.Mask
 }
 }
 }

 9 if (!$continue_check -or (Test-NtAccessMask $access -Empty)) {
 break
 }
 }

 0 $Context.RemainingAccess = $access
}

Listing 7-17 The discretionary access-check algorithm

We begin by checking whether the DACL is present; if it is,
we check whether it’s a NULL ACL 1. If there is no DACL or
only a NULL ACL, there is no security to enforce, so the function
clears the remaining access and returns, granting the token any
access to the resource that the mandatory access check hasn’t
restricted.

Once we’ve confirmed that there is a DACL to check, we can
enumerate each of its ACEs 2. If an ACE is InheritOnly, it
won’t take part in the check, so we ignore it 3. Next, we need to
map the SID in the ACE to the SID we’re checking using a helper
function we’ll define next, Get-AceSid 4. This function
converts the OWNER RIGHTS SID for the ACE to the current
security descriptor’s owner, as shown in Listing 7-18.

function Get-AceSid {
 param(
 $Ace,
 $Owner
)

 $sid = $Ace.Sid
 if (Compare-NtSid $sid -KnownSid OwnerRights) {
 $sid = $Owner.Sid
 }

 return $sid
}

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Listing 7-18 The implementation of Get-AceSid

With the SID in hand, we can now evaluate each ACE based
on its type. For the simplest type, Allowed, we check whether
the SID is in the token’s Enabled groups. If so, we grant the
access represented by the ACE’s mask and can remove those bits
from remaining access 5.

The Denied type also checks whether the SID is in the
token’s groups; however, it must include both Enabled and
DenyOnly groups, so we pass the DenyOnly parameter 6. Note
that it’s possible to configure the token user SID as a DenyOnly
group as well, and Test-NtTokenGroup takes this into
account. A Denied ACE doesn’t modify the remaining access;
instead, the function compares the mask against the current
remaining access, and if any bit of remaining access is also set in
the mask, then the function denies that access and immediately
returns the remaining access.

The final two ACE types we’ll cover are variations on the
Allowed type. The first, AllowedCompound, contains the
additional server SID. To perform this check, the function
compares both the normal SID and the server SID with the caller
token’s groups, as these values might be different 7. (Note that the
server SID should be mapped to the owner if the OWNER
RIGHTS SID is used.) The ACE condition is met only if both
SIDs are enabled.

Finally, we check the AllowedCallback ACE type. To do
so, we again check the SID, as well as whether a conditional
expression matches the token using Test-NtAceCondition
8. If the expression returns True, the ACE condition is met, and
we remove the mask from the remaining access. To fully
implement the conditional check, we also need to pass in any
resource attributes from the security descriptor; we’ll describe
resource attributes in more detail in the Central Access Policy
section later in the chapter. Notice, we’re intentionally not
checking DenyCallback, as the kernel does not support
DenyCallback ACEs, although the user-mode-only
AuthzAccessCheck API does.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

After we’ve processed the ACE, we check the remaining
access 9. If the remaining access is empty, we’ve been granted the
entire requested access and can stop processing ACEs. This is
why we have a canonical ACL ordering. If Denied ACEs were
placed after Allowed ACEs, the remaining access could become
empty, and the loop might exit before ever checking a Denied
ACE.

Lastly, this function sets the RemainingAccess 0. If the
value of RemainingAccess is non-empty, the access check
fails with access denied. Therefore, an empty DACL blocks all
access; if there are no ACEs, the RemainingAccess never
changes, so it won’t be empty at the end of the function.

We’ve covered all three access checks, and you should now
have a better understanding of their structure. However, there is
more to the access check process. In the next section, we discuss
how the access check process supports the implementation of
sandboxes.

Sandboxing

In Chapter 4, we covered two types of sandbox tokens:
restricted and lowbox. These sandbox tokens modify the access
check process by adding additional checks. Let’s discuss each
token type in more detail, starting with restricted tokens.

Restricted Tokens

Using a restricted token affects the access-checking process
by introducing a second owner and a discretionary access check
against the list of restricted SIDs. In Listing 7-15, we modify the
owner SID check in the Resolve-TokenOwnerAccess
function to account for this.

1 if (!(Test-NtTokenGroup -Token $token -Sid $sd_owner.Sid)) {
 return
}

if ($token.Restricted -and
2 !(Test-NtTokenGroup -Token $token -Sid $sd_owner.Sid -Restricted)) {

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

 return
}

Listing 7-19 The modified Get-TokenOwner access check for restricted tokens

We first perform the existing SID check 1. If the owner SID
isn’t in the list of token groups, then we don’t grant
ReadControl or WriteDac access. At 2 is the additional
check: if the token is restricted, then we also check the list of
restricted SIDs for the owner SID, and grant the token
ReadControl and WriteDac access only if the owner SID is
in both the main group list and the restricted SID list.

We’ll follow the same pattern for the discretionary access
check, although for simplicity, we’ll add a Boolean
Restricted switch parameter to the Get-
DiscretionaryAccess function and pass it to any call to
Test-NtTokenGroup. For example, we can modify the
allowed-ACE check implemented in Listing 7-17 so it looks as
shown in Listing 7-20.

"Allowed" {
 if (Test-NtTokenGroup -Token $token $sid -Restricted:$Restricted) {
 $access = Revoke-NtAccessMask $access $ace.Mask
 }
}

Listing 7-20 The modified allowed-ACE type for restricted tokens

In Listing 7-20, we set the Restricted parameter to the
value of a parameter passed into Get-
DiscretionaryAccess. We now need to modify the Get-
PSGrantedAccess function defined in Listing 7-2 to call
Get-DiscretionaryAccess twice for a restricted token
(Listing 7-21).

1 $RemainingAccess = $Context.RemainingAccess
Get-DiscretionaryAccess $Context

2 $success = Test-NtAccessMask $Context.RemainingAccess -Empty

3 if ($success -and $Token.Restricted) {
 4 if (!$Token.WriteRestricted -or
(Test-NtAccessMask $RemainingAccess -WriteRestricted $GenericMapping)) {
 $Context.RemainingAccess = $RemainingAccess
 5 Get-DiscretionaryAccess $Context -Restricted
 $success = Test-NtAccessMask $Context.RemainingAccess -Empty

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

 }
}

6 if ($success) {
 return Get-AccessResult STATUS_SUCCESS $Context.Privileges $DesiredAccess
}
return Get-AccessResult STATUS_ACCESS_DENIED

Listing 7-21 The Get-PSGrantedAccess function modified to account for restricted tokens

We first capture the existing RemainingAccess value, as
the discretionary access check will modify it, and we want to
repeat that check a second time 1. We then run the discretionary
access check and save the result in a variable 2. If this first check
succeeded and the token is restricted, we must perform a second
check 3. We also need to consider whether the token is write-
restricted, and whether the remaining access includes write access
4. We look for write access by checking the passed generic
mapping. (Note that the owner check doesn’t perform a write
check, so in theory it could grant the token WriteDac access,
which is considered a write access).

We run the check a second time, this time with the
Restricted parameter to indicate that the restricted SIDs
should be checked 5. If this second check also passes, we set the
success variable to True and grant access to the resource 6.

Keep in mind that the restricted SID check applies to both
allow and deny ACE types. This means that if the DACL contains
a denied ACE that references a SID in the restricted SID list, the
function will deny access, even if the SID isn’t in the normal
group list.

Lowbox Tokens

The access check process for a lowbox token resembles that
for a restricted token. A lowbox token can contain a list of
capability SIDs used to perform a second check, similar to the
check we performed with the list of restricted SIDs. Likewise, if
the access check process doesn’t grant access through both
normal and capability checks, the access check fails. However,

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

the lowbox token’s access check contains some subtle
differences:

• It will consider the token’s package SID in addition to its list
of capability SIDs.

• The checked capability SIDs must have the enabled attribute
flag set to be considered active.

• The check applies only to Allowed ACE types, not to
Denied ACE types.

• NULL DACLs do not grant full access.

In addition, two special package SIDs will match any token’s
package SID for the purposes of the package SID check:

• ALL APPLICATION PACKAGES (S-1-15-2-1)

• ALL RESTRICTED APPLICATION PACKAGES (S-1-15-
2-2)

You might wonder why we need these two separate special
package SIDs. Well, Windows 8 originally included only the ALL
APPLICATION PACKAGES special SID, but during the
development of the Edge web browser, Microsoft realized that
many secured resources used it to allowed access, increasing the
attack surface.

To combat this expanded attack surface, Microsoft decided
that the access check would ignore the ALL APPLICATION
PACKAGES SID if the token had the WIN://NOALLAPPPKG
security attribute with a single value of 1. In those cases, it would
consider only the ALL RESTRICTED APPLICATION
PACKAGES SID. If the security attribute wasn’t present or was
set to 0, the access check would consider both SIDs. Microsoft
refer to processes with this security attribute as running a less
privileged AppContainer (LPAC).

Because setting a token’s security attribute requires
SeTcbPrivilege, the process-creation APIs have an option
for applying the attribute to a new process. Listing 7-22 shows a

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

basic implementation of the lowbox access check for Allowed
ACE types. You should add this code to the end of discretionary
access check in Listing 7-17.

Add to start of Get-DiscretionaryAccess
$ac_access = $context.DesiredAccess
if (!$token.AppContainer) {
 $ac_access = Get-NtAccessMask 0
}

Add in switch ACE switch statement.
"Allowed" {
 if (Test-NtTokenGroup -Token $token $sid -Restricted:$Restricted) {
 1 $access = Revoke-NtAccessMask $access $ace.Mask
 } else {
 2 if ($Restricted) {
 break
 }

 3 if (Test-NtTokenGroup -Token $token $sid -Capability) {
 4 $ac_access = Revoke-NtAccessMask $ac_access $ace.Mask
 }
 }
}

Add at end of ACE loop.
$effective_access = $access -bor $ac_access

Listing 7-22 An implementation of the lowbox access check for Allowed ACEs

The first test verifies whether the SID is in the normal group
(and thus not a restricted SID). If it finds the group, it removes
the mask from the remaining access check 1. If the group test
fails, we check whether it’s a package or capability SID. We must
ensure that we’re not checking whether we’re in the restricted
SID mode, as this mode doesn’t define lowbox checks 2.

Our check for the capability SIDs includes the package SID
and the ALL APPLICATION PACKAGES SIDs 3. If we find a
match, we remove the mask from the remaining access 4.
However, we need to maintain separate remaining access values
for normal SIDs and AppContainer SIDs. Therefore, we create
two variables, $access and $ac_access. We initialize the
$ac_access variable to the value the original
DesiredAccess, not the current remaining access, as we
won’t grant owner rights such as WriteDac unless the SID also

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

matches an Allowed package or capability SID ACE. We also
modify the loop’s exit condition to consider both remaining
access values; they must both be empty before we exit.

We also add some additional checks to better isolate
AppContainer processes from existing Low-integrity-level
sandboxes such as Internet Explorer’s protected mode. After all,
AppContainer processes should have strong isolation
mechanisms, so why not try to isolate them from Low-integrity-
level sandbox processes?

The first change we implement affects the mandatory access
check. If the check fails for a lowbox token, we then check the
security descriptor’s integrity level a second time. If the integrity
level is less than or equal to Medium, we assume that the check
succeeds. This is despite the fact that lowbox tokens have a Low
integrity level, as demonstrated in Chapter 4. This behavior
blocks access to any resources that the lowbox token created, as
these would have inherited the token’s Low integrity level.

In Listing 7-23, we check this behavior.
1 PS> $sd = New-NtSecurityDescriptor -Owner "BA" -Group "BA" -Type Mutant

PS> Add-NtSecurityDescriptorAce $sd -KnownSid World -Access GenericAll
PS> Add-NtSecurityDescriptorAce $sd -KnownSid AllApplicationPackages
 -Access GenericAll
PS> Edit-NtSecurityDescriptor $sd -MapGeneric

2 PS> Set-NtSecurityDescriptorIntegrityLevel $sd Medium

PS> Use-NtObject($token = Get-NtToken -Duplicate -IntegrityLevel Low) {
 Get-NtGrantedAccess $sd -Token $token -AsString
}

3 ModifyState|ReadControl|Synchronize

PS> $sid = Get-NtSid -PackageName "mandatory_access_lowbox_check"
PS> Use-NtObject($token = Get-NtToken -LowBox -PackageSid $sid) {
 Get-NtGrantedAccess $sd -Token $token -AsString
}

4 Full Access

Listing 7-23 Verifying the behavior of a mandatory access check against a lowbox token

We start by building a security descriptor that grants
GenericAll access for the Everyone and ALL
APPLICATION PACKAGES groups 1. We also set an explicit

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

integrity level of Medium 2, although this isn’t necessary, as
Medium is the default for security descriptors without a
mandatory label ACE. We then perform an access check using a
Low-integrity-level token, and we receive only read access to the
security descriptor 3. We try the access check again with a
lowbox token; although the token’s integrity level is still Low, the
token is granted Full Access.

The second change in behavior is this: if the DACL contains a
package SID, we deny access to the Low-integrity-level token
regardless of the security descriptor’s integrity level or other
groups. This mechanism blocks access to resources that are
assigned the default DACL, as the package SID is added to the
default DACL when a lowbox token is created. Listing 7-24 tests
this behavior.

PS> $sid = Get-NtSid -PackageName 'package_sid_low_il_test'
1 PS> $token = Get-NtToken -LowBox -PackageSid $sid
2 PS> $sd = New-NtSecurityDescriptor -Token $token -Type Mutant

PS> Format-NtSecurityDescriptor $sd -Summary -SecurityInformation Dacl, Label
<DACL>

3 GRAPHITE\user: (Allowed)(None)(Full Access)
NT AUTHORITY\SYSTEM: (Allowed)(None)(Full Access)
NT AUTHORITY\LogonSessionId_0_109260: (Allowed)(None)(ModifyState|...)

4 package_sid_low_il_test: (Allowed)(None)(Full Access)
<Mandatory Label>

5 Mandatory Label\Low Mandatory Level: (MandatoryLabel)(None)(NoWriteUp)

PS> Get-NtGrantedAccess $sd -Token $token -AsString

6 Full Access
PS> $token.Close()

PS> $low_token = Get-NtToken -Duplicate -IntegrityLevel Low
PS> Get-NtGrantedAccess $sd -Token $low_token -AsString

7 None

Listing 7-24 Verifying the behavior of the package SID for Low-integrity-level tokens

In Listing 7-24, we start by creating a lowbox token 1. The
token does not have any added capability SIDs, only the package
SID. Next, we build a default security descriptor from the lowbox
token 2. When inspecting the entries in the security descriptor, we
see that the current user SID 3 and the package SID 4 have been
granted Full Access. As a lowbox token has Low integrity

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

level, the security descriptor inheritance rules require the integrity
level to be added to the security descriptor 5.

We then request the granted access for the security descriptor
based on the lowbox token and receive Full Access 6. Next,
we create a duplicate of the current token but set its integrity level
to Low. We now get a granted access of None 7, even though we
expected to receive Full Access based on the integrity level
ACE in the security descriptor. In this case, the presence of the
package SID in the security descriptor blocked access.

One final thing to note: as the sandbox access checks are
orthogonal, it’s possible to create a lowbox token from a
restricted token, causing both lowbox checks and restricted SID
checks to occur. The resulting access is the most restrictive of all,
making for a stronger sandbox primitive.

Enterprise Access Checks

Enterprise deployments of Windows often perform some
additional access checks. You won’t typically need these checks
on standalone installations of Windows, but you should still
understand how they modify the access-check process if present.

The Object-Type Access Check

For simplicity’s sake, one thing I intentionally removed from
the discretionary access-check algorithm was the handling of
object ACEs. To support object ACEs, you must use a different
access-check API: either SeAccessCheckByType in kernel
mode or the NtAccessCheckByType system call. These APIs
introduces two additional parameters to the access-check process:

Principal
An SID used to replace the SELF SID in ACEs

ObjectTypes
A list of GUIDs that are valid for the check

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

The Principal is easy to define: when we’re processing
the DACL and encounter an ACE’s SID set to the SELF SID (S-
1-5-10), we replace the SID with a value from the
Principal parameter. Listing 7-25 shows an adjusted version
of the Get-AceSid function that takes this into account.

function Get-AceSid {
 Param (
 $Ace,
 $Owner,
 $Principal
)

 $sid = $Ace.Sid
 if (Compare-NtSid $sid -KnownSid OwnerRights) {
 $sid = $Owner
 }
 if ((Compare-NtSid $sid -KnownSid Self) -and ($null -NE $Principal)) {
 $sid = $Principal
 }
 return $sid
}

Listing 7-25 Adding the principal SID to the Get-AceSid function

You’ll also have to modify the Get-PSGrantedAccess
function to receive the Principal parameter by adding it to the
$Context value.

Microsoft introduced the SELF SID for use in Active
Directory, we’ll discuss its purpose in more detail in Chapter 11.
Listing 7-26 tests the behavior of the Principal SID.

PS> $owner = Get-NtSid -KnownSid LocalSystem
1 PS> $sd = New-NtSecurityDescriptor -Owner $owner -Group $owner -Type Mutant

PS> Add-NtSecurityDescriptorAce $sd -KnownSid Self -Access GenericAll -
MapGeneric

2 PS> Get-NtGrantedAccess $sd -AsString
None

PS> $principal = Get-NtSid

3 PS> Get-NtGrantedAccess $sd -Principal $principal -AsString
Full Access

Listing 7-26 Testing the Principal SID replacement

We start by creating a security descriptor with the owner and
group set to the SYSTEM user SID and a single Allowed ACE

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

that grants the SELF SID GenericAll access 1. Based on the
access-checking rules, this should not grant the user any access to
the resource. We can confirm that this is the case with a call to
Get-NtGrantedAccess 2.

Next, we get the effective token’s User SID and pass it in the
Principal parameter to Get-NtGrantedAccess 3. The
DACL check will then replace the SELF SID with the
Principal SID, which matches the current user and therefore
grants Full Access. This check replaces SIDs in the DACL
and SACL only; for example, setting SELF as the owner SID
won’t grant any access.

The other parameter, ObjectTypes, is much trickier to
implement. The parameter is a list of GUIDs that are valid for the
access-check process. Each GUID represents the type of an object
to be accessed; for example, you might have a GUID associated
with a computer object and a different one for a user object.

Each GUID also has an associated level, turning the list into a
hierarchical tree. Each node maintains its own remaining access,
which it initializes to the main RemainingAccess value.
Active Directory uses this hierarchy to implement a concept of
properties and property sets, as shown in Figure 7-4.

Figure 7-4 Active Directory-style properties

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Each node in Figure 7-4 shows the name we’ve given it, a
portion of the object type GUID, and the current
RemainingAccess value (in this case, GenericAll). Level
0 corresponds to the top-level object, of which there can be only
in the list. At level 1 are the property sets, numbered 1 and 2.
Below each property set are the individual properties, at level 2.

By setting up the object types in a hierarchy, we can configure
a security descriptor to grant access to multiple properties using a
single ACE by setting the access on the property set. If you
granted a property set some access, you’d also grant that access to
all properties contained in that set. Conversely, if you were to
deny access to a single property, the deny status would propagate
up the tree and deny access to the entire property set and object as
a whole.

Let’s consider a basic implementation of object-type access.
The code in Listing 7-27 relies on an ObjectTypes property
added to the access context. We can generate the values for this
parameter using the New-ObjectTypeTree and Add-
ObjectTypeTree commands, whose use we’ll cover in “The
Object-Type Access Check” on page XX.

Listing 7-27 shows the access check implementation for the
AllowedObject ACE type. Add it to the ACE enumeration
code from Listing 7-17.

"AllowedObject" {
 1 if (!(Test-NtTokenGroup -Token $token $sid)) {
 break
 }

 2 if ($null -eq $Context.ObjectTypes -or $null -eq $ace.ObjectType) {
 break
 }

 3 $object_type = Select-ObjectTypeTree $Context.ObjectTypes
 if ($null -eq $object_type) {
 break
 }

 4 Revoke-ObjectTypeTreeAccess $object_type $ace.Mask
 5 $access = Revoke-NtAccessMask $access $ace.Mask
}

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Listing 7-27 An implementation of the AllowedObject ACE access-check algorithm

We start with the SID check 1. If the SIDs don’t match, we
don’t process the ACE. Next, we check whether the
ObjectTypes property exists in the context, and whether the
ACE defines an ObjectType 2. (In Chapter 5, you learned that
the ObjectType on the ACE is optional.) Again, if these
checks fail, we ignore the ACE. Finally, we check whether there
is an entry in the ObjectTypes parameter for the
ObjectType GUID 3.

If all checks pass, we consider the ACE for the access check.
First, we revoke the access from the entry in the tree of objects.
This removes the access from the ObjectType entry we found
at 3, but also from any children of that entry. We also revoke the
access we’re maintaining for this function.

Let’s apply this behavior to the tree shown in Figure 7-4. If
the AllowedObject ACE granted GenericAll to property
set 1, the new tree would look like the one in Figure 7-5.

Figure 7-5 The object type tree after access is granted to property set 1

Because we revoked the RemainingAccess from property
set 1, we also removed that access from properties X and Y. I’ve

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

highlighted the nodes with an empty RemainingAccess. Note
that, for Allowed ACEs, only the main RemainingAccess
matters, as the tree’s purpose is to handle Denied ACEs
correctly. This means that not every object type must have a
RemainingAccess of zero for the access check to succeed.

Now let’s handle the DeniedObject ACE. Add the code in
Listing 7-28 to the existing ACE enumeration code in Listing 7-
17.

"DeniedObject" {
 if (!(Test-NtTokenGroup -Token $token $sid -DenyOnly)) {
 break
 }

 1 if ($null -ne $Context.ObjectTypes) {
 if ($null -eq $ace.ObjectType) {
 break;
 }

 $object_type = Select-ObjectTypeTree $Context.ObjectTypes
$ace.ObjectType
 if ($null -eq $object_type) {
 break
 }

 2 if (Test-NtAccessMask $object_type.RemainingAccess $ace.Mask) {
 $continue_check = $false
 break
 }
 }
 3 if (Test-NtAccessMask $access $ace.Mask) {
 $continue_check = $false
 }
}

Listing 7-28 An implementation of the DeniedObject ACE access-check algorithm

As usual, we begin by checking all ACEs with the
DeniedObject type. If the check passes, we next check the
ObjectTypes context property 1. When we handled the
AllowedObject ACE, we stopped the check if the property
was missing. However, we handle the DeniedObject ACEs
differently. If there is no ObjectTypes property, the check will
continue as if it were a normal Denied ACE, by considering the
main RemainingAccess 3.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

If the ACE’s access mask contains bits in the
RemainingAccess, we deny access 2. If this check passes, we
check the value against the main RemainingAccess. This
demonstrates the purpose of maintaining the tree: if the Denied
ACE matched property X in Figure 7-5, the denied mask would
have no effect. However, if the Denied ACE matched property
Z, then that object type, and by association property set 2 and the
root object type, would be denied as well. In Figure 7-6, you can
see that the hatched nodes are all now denied, even though the
property set 1 branch is still allowed.

Figure 7-6 The object type tree after denying access to property Z

The NtAccessCheckByType system call returns a single
status and granted access for the entire list of object types,
reflecting the access specified at the root of the object type tree.
Therefore, in the case of Figure 7-6, the whole access check
would fail.

However, you can figure out which particular object types
failed the access check using the
NtAccessCheckByTypeResultList system call, which
returns a status and the granted access for every entry in the
object type list. We can use this system call by specifying the

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

ResultList parameter to Get-NtGrantedAccess, as
shown in Listing 7-29.

1 PS> $tree = New-ObjectTypeTree (New-Guid) -Name "Object"
PS> $set_1 = Add-ObjectTypeTree $tree (New-Guid) -Name "Property Set 1" -
PassThru
PS> $set_2 = Add-ObjectTypeTree $tree (New-Guid) -Name "Property Set 2" -
PassThru
PS> Add-ObjectTypeTree $set_1 (New-Guid) -Name "Property X"
PS> Add-ObjectTypeTree $set_1 (New-Guid) -Name "Property Y"
PS> $prop_z = New-Guid
PS> Add-ObjectTypeTree $set_2 $prop_z -Name "Property Z"

PS> $owner = Get-NtSid -KnownSid LocalSystem
PS> $sd = New-NtSecurityDescriptor -Owner $owner -Group $owner -Type Mutant
PS> Add-NtSecurityDescriptorAce $sd -KnownSid World -Access WriteOwner

2 -MapGeneric -Type DeniedObject -ObjectType $prop_z
PS> Add-NtSecurityDescriptorAce $sd -KnownSid World
-Access ReadControl, WriteOwner -MapGeneric
PS> Edit-NtSecurityDescriptor $sd -CanonicalizeDacl

3 PS> Get-NtGrantedAccess $sd -PassResult -ObjectType $tree
-Access ReadControl, WriteOwner | Format-Table Status, SpecificGrantedAccess,
Name
 Status SpecificGrantedAccess Name
 ------ --------------------- ----

4 STATUS_ACCESS_DENIED None Object

5 PS> Get-NtGrantedAccess $sd -PassResult -ResultList -ObjectType $tree
-Access ReadControl, WriteOwner | Format-Table Status, SpecificGrantedAccess,
Name
 6 Status SpecificGrantedAccess Name
 ------ --------------------- ----
STATUS_ACCESS_DENIED eadControl Object
 STATUS_SUCCESS ReadControl, WriteOwner Property Set 1
 STATUS_SUCCESS ReadControl, WriteOwner Property X
 STATUS_SUCCESS ReadControl, WriteOwner Property Y
STATUS_ACCESS_DENIED ReadControl Property Set 2
STATUS_ACCESS_DENIED ReadControl Property Z

Listing 7-29 Example showing the difference between normal and list results

We start by building the object type tree to match the tree in
Figure 7-4 1. We don’t care about the specific GUID values
except for that of property Z, which we’ll need for the
DeniedObject ACE, so we generate random GUIDs. Next, we
build the security descriptor, creating an ACE that denies
ReadControl access to property Z 2. We also include a non-
object ACE to grant ReadControl and WriteOwner.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

We first run the access check with the object type tree but
without the ResultList parameter, requesting both
ReadControl and WriteOwner 3. We use the Deny ACE, as
it matches an object type GUID in the object type tree. As we
expected, this causes the access-check process to return
STATUS_ACCESS_DENIED, with None as the granted access 4.

When we execute the access check again, this time with
ResultList, we receive a list of access check results 5. The
top-level object entry still indicates that access was denied, but
Property Set 1 and its children were considered a success 6. This
result corresponds to the tree shown in Figure 7-6. Also note that
the entries for which access was denied don’t show an empty
granted access; instead, they indicate that ReadControl would
have been granted. This is an artifact of how the access check is
implemented under the hood and almost certainly shouldn’t be
used.

Central Access Policy

Central access policy, a feature added in Window 8 and
Windows Server 2012 for use in enterprise networks, is the core
security mechanism behind a Windows feature called dynamic
access control. It relies on device- and user-claim attributes in the
token. While it’s an enterprise-focused feature, its changes to the
access check process exist in all versions of Windows since.

In Chapter 4, we mentioned user and device claims when
discussing the conditional expression format. A user claim is a
security attribute added to the token for a specific user. For
example, you might have a claim that represents the country in
which a user is employed. We can sync the value of the claim
with values stored in Active Directory, so that if the user, say,
moves to another country, their user claim will update the next
time they authenticate.

A device claim belongs to the computer used to access the
resource. For example, a device claim might indicate whether the
computer is located in a secure room or is running a specific
version of Windows. Figure 7-7 shows a common use of a central

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

access policy: restricting access to files on a server in an
enterprise network.

Figure 7-7 A central access policy on a file server

This central access policy contains one or more additional
security descriptors that the access check will consider in addition
to a file’s security descriptor. The final granted access is the most
restrictive of the access checks. While not strictly necessary, the
additional security descriptors can rely on user and device claims
in AllowedCallback ACEs to determine the granted access.
To send the user and device claims over the network, the
enterprise’s Kerberos authentication must be configured to
support the claims. We’ll come back to Kerberos authentication
in Chapter 12.

You might wonder how using a central access policy differs
from simply configuring the security of the files to use the device
and user claims. The main difference is that the central access
policy is managed centrally using policies in the enterprise
domain group policy. This means an administrator can change the
policy in one place to update it across the enterprise.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

A second difference is that the central access policy works
more like a mandatory access control mechanism. For example, a
user might typically be able to modify the security descriptor for
the file; however, the central access policy could further restrict
their access or block it outright if, for example, the user moved to
a new country or used a different computer not accounted for in
the rules.

We won’t discuss how to configure a central access policy, as
the topic is more appropriate for a book on Windows enterprise
management. Instead, we’ll explore how it’s enforced by the
kernel’s access-check process. The Windows registry stores the
central access policy when the computer’s group policy is
updated, and you can find the key at the following location:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\
Lsa\CentralizedAccessPolicies

There can be more than one configured policy. Each policy
contains the following information:

• The name and description of the policy

• An SID that uniquely identifies the policy

• One or more policy rules

Each policy rule contains the following information:

• The name and a description of the rule

• A conditional expression that determines when the rule should
be enforced

• The security descriptor to use in the central access policy
access check

• An optional staging security descriptor used to test new policy
rules

You can use the Get-CentralAccessPolicy
PowerShell command to display the list of policies and rules. For
most Windows systems, the command won’t return any

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

information. To see results like those in Listing 7-30, you’ll need
to join a domain that is configured to use a central access policy.

PS> Get-CentralAccessPolicy
Name CapId Description
---- ----- -----------
Secure Room Policy S-1-17-3260955821-1180564752-... Only for Secure Computers
Main Policy S-1-17-76010919-1187351633-...
PS> $rules = Get-CentralAccessPolicy | Select-Object -ExpandProperty Rules
PS> $rules | Format-Table
Name Description AppliesTo
---- ----------- ---------
Secure Rule Secure! @RESOURCE.EnableSecure == 1
Main Rule NotSecure!

PS> $sd = $rules[0].SecurityDescriptor
PS> Format-NtSecurityDescriptor $sd -Type File -SecurityInformation Dacl
<DACL> (Auto Inherit Requested)
 - Type : AllowedCallback
 - Name : Everyone
 - SID : S-1-1-0
 - Mask : 0x001F01FF
 - Access: Full Access
 - Flags : None
- Condition: @USER.ad://ext/clearance == "TS/ST3" &&
 @DEVICE.ad://ext/location = "Secure"

Listing 7-30 Displaying the central access policy using Get-CentralAccessPolicy

We run Get-CentralAccessPolicy and see two
policies, Secure Room Policy and Main Policy. Each
policy has a CapId SID and a Rules property, which we can
expand to see the individual rules. The output table contains the
following fields: Name, Description, and AppliesTo,
which is a conditional expression used to select whether the rule
should be enforced. If the AppliesTo field is empty, the rule
will always be enforced. The AppliesTo field for the Secure
Rule selects on a resource attribute, which we’ll come back to in
Listing 7-32.

Let’s display the security descriptor for one of the rules,
Secure Rule. The DACL contains a single AllowedCallback
ACE that grants full access to the Everyone group if the condition
matches. In this case, the clearance user claim must be set to the
value TS/ST3, and the device claim location must be set to
Secure.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

We’ll walk through a basic implementation of the central
access policy access check to better understand what the policy is
being used for. Add the code in Listing 7-31 to the end of the
Get-PSGrantedAccess function from Listing 7-2.

1 if (!$success) {
 return Get-AccessResult STATUS_ACCESS_DENIED
}

2 $capid = $SecurityDescriptor.ScopedPolicyId
if ($null -eq $capid) {
 return Get-AccessResult STATUS_SUCCESS $Context.Privileges $DesiredAccess
}

3 $policy = Get-CentralAccessPolicy -CapId $capid.Sid
if ($null -eq $policy){
 return Get-AccessResult STATUS_SUCCESS $Context.Privileges $DesiredAccess
}

4 $effective_access = $DesiredAccess
foreach($rule in $policy.Rules) {
 if ($rule.AppliesTo -ne "") {
 $resource_attrs = $null
 if ($sd.ResourceAttributes.Count -gt 0) {
 $resource_attrs = $sd.ResourceAttributes.ResourceAttribute
 }
 if (!(Test-NtAceCondition -Token $Token -Condition $rule.AppliesTo

5 -ResourceAttribute $resource_attrs)) {
 continue
 }
 }
 $new_sd = Copy-NtSecurityDescriptor $SecurityDescriptor
6 Set-NtSecurityDescriptorDacl $rule.Sd.Dacl

 $Context.SecurityDescriptor = $new_sd
 $Context.RemainingAccess = $DesiredAccess

7 Get-DiscretionaryAccess $Context
8 $effective_access = $effective_access -band (-bnot $Context.RemainingAccess)
}

9 if (Test-NtAccessMask $effective_access -Empty) {
 return Get-AccessResult STATUS_ACCESS_DENIED
}

0 return Get-AccessResult STATUS_SUCCESS $Context.Privileges $effective_access

Listing 7-31 An implementation of central access policy enforcement

Listing 7-31 begins immediately after the discretionary access
check. If the discretionary access check fails, the $success

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

variable will be False, and we should return access denied 1.
To start the process of enforcing a central access policy, we need
to query the ScopedPolicyId ACE from the SACL 2. If there
is no ScopedPolicyId ACE, we can return success. We also
return success if there is no central access policy with a CapId
that matches the ACE’s SID 3.

Within the central access policy check, we first set the
effective access to the original DesiredAccess 1. We’ll use
the effective access to determine how much of the
DesiredAccess we can grant after processing all the policy
rules. Next, we check the AppliesTo conditional expression for
each rule. If there is no value, the rule applies to all resources and
tokens. If there is a conditional expression, we must check it
using Test-NtAceCondition, passing any resource
attributes from the security descriptor 5. If the test doesn’t pass,
the check should skip to the next rule.

We build a new security descriptor using the owner, group,
and SACL from the original security descriptor but the DACL
from the rule’s security descriptor 6. If the rule applies, we do
another discretionary access check for the DesiredAccess 7.
After the discretionary access check, we remove any bits that we
weren’t granted from the effective_access variable 8.

After we’ve checked all the applicable rules, we test whether
the effective access is empty. If it is, the central access policy has
not granted the token any access, so it should be denied 9.
Otherwise, we return success, but return only the remaining
effective access that grants less access than the result of the first
access check 0.

How can we enable the central access policy for a resource? If
we’re enabling it on a file server, we can use the Windows GUI to
set up the policy using file properties in Explorer and the
Advanced Security Settings dialog.

While most central access policies are designed to check files,
we can modify any resource type to enforce a policy. To enable it
for another resource, we need to do two things: set a scoped

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

policy ID ACE with the SID of the policy to enable, and add any
resource attribute ACEs to match the AppliesTo condition, if
there is any. We perform these tasks in Listing 7-32.

PS> $sd = New-NtSecurityDescriptor
1 PS> $attr = New-NtSecurityAttribute "EnableSecure" -LongValue 1
2 PS> Add-NtSecurityDescriptorAce $sd -Type ResourceAttribute -Sid "WD"

-SecurityAttribute $attr -Flags ObjectInherit, ContainerInherit
PS> $capid = "S-1-17-3260955821-1180564752-1365479606-2616254494"

3 PS> Add-NtSecurityDescriptorAce $sd -Type ScopedPolicyId -Sid $capid
-Flags ObjectInherit, ContainerInherit
PS> Format-NtSecurityDescriptor $sd -SecurityInformation Attribute, Scope
Type: Generic
Control: SaclPresent
<Resource Attributes>
 - Type : ResourceAttribute
 - Name : Everyone
 - SID : S-1-1-0
 - Mask : 0x00000000
 - Access: Full Access
 - Flags : ObjectInherit, ContainerInherit
 - Attribute: "EnableSecure",TI,0x0,1

<Scoped Policy ID>
 - Type : ScopedPolicyId
 - Name : S-1-17-3260955821-1180564752-1365479606-2616254494
 - SID : S-1-17-3260955821-1180564752-1365479606-2616254494
 - Mask : 0x00000000
 - Access: Full Access
 - Flags : ObjectInherit, ContainerInherit

PS> Set-NtTokenPrivilege SeSecurityPrivilege

4 PS> Set-Win32SecurityDescriptor $sd MACHINE\SOFTWARE\PROTECTED
-Type RegistryKey -SecurityInformation Scope, Attribute

Listing 7-32 Enabling the secure room policy for a registry key

The first thing we need to do is add a resource attribute ACE
to satisfy the AppliesTo condition for the Secure Rule. We
create a security attribute object with the name EnableSecure
and a single Int64 value of 1 1. We add this security attribute to
an ACE of type ResourceAttribute in the security
descriptor’s SACL 2. We then need to set the SID of the central
access policy, which you can get from the output of the Get-
CentralAccessPolicy command in a ScopedPolicyId
ACE 3. We can format the security descriptor to check the ACEs
are correct.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

We now set the two ACEs to the resource. In this case, the
resource we’ll pick is a registry key 4. Note that you must have
previously created this registry key for the operation to succeed.
The SecurityInformation must be set to Scope and
Attribute. As we observed in Chapter 5, to set the
ScopedPolicyId ACE, we need
AccessSystemSecurity access, which means we need to
first enable SeSecurityPrivilege.

If you access the registry key, you should find the policy to be
enforced. Note that, as the central access policy is configured for
use with filesystems, the access mask in the security descriptor
might not work correctly with other resources, such as registry
keys. You could manually configure the attributes in Active
Directory if you really wanted to support this behavior.

One final thing to mention: central access policy rules support
specifying a staging security descriptor as well as the normal
security descriptor. We can use this staging security descriptor to
test an upcoming security change before deploying it widely. The
staging security descriptor is checked in the same way as the
normal security descriptor, except the result of the check is used
only to compare against the real granted access, and an audit log
is generated if the two access masks differ.

Worked Examples

Let’s finish with some worked examples using the commands
you’ve learned about in this chapter.

Using the Get-PSGrantedAccess Command

Throughout this chapter, we’ve built our own implementation
of the access check process: the Get-PSGrantedAccess
command. In this section, let’s explore the use of this command.
You can retrieve the module from the
chapter7_access_check_impl.psm1 file included with the online
additional materials for this book.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Because Get-PSGrantedAccess is a simple
implementation of the access check, it’s missing some features,
such as support for calculating maximum access. However, can
help you understanding the access check process. You can, for
example, use a PowerShell debugger in the PowerShell Integrated
Scripting Environment (ISE) or Visual Studio Code to step
through the access check and see how it functions based on
different input.

Run the commands in Listing 7-33 as a non-administrator
split-token user.

1 PS> Import-Module ".\chapter_7_access_check_impl.psm1"
2 PS> $sd = New-NtSecurityDescriptor "O:SYG:SYD:(A;;GR;;;WD)"

-Type File -MapGeneric
PS> $type = Get-NtType File
PS> $desired_access = Get-NtAccessMask -FileAccess GenericRead -
MapGenericRights

3 PS> Get-PSGrantedAccess -SecurityDescriptor $sd
-GenericMapping $type.GenericMapping -DesiredAccess $desired_access
Status Privileges GrantedAccess
------ ---------- -------------
STATUS_SUCCESS {} 1179785

4 PS> $desired_access = Get-NtAccessMask -FileAccess WriteOwner
PS> Get-PSGrantedAccess -SecurityDescriptor $sd
-GenericMapping $type.GenericMapping -DesiredAccess $desired_access
Status Privileges GrantedAccess
------ ---------- -------------
STATUS_ACCESS_DENIED {} 0

5 PS> $token = Get-NtToken -Linked
6 PS> Set-NtTokenPrivilege -Token $token -Privilege SeTakeOwnershipPrivilege

PS> Get-PSGrantedAccess -Token $token -SecurityDescriptor $sd
-GenericMapping $type.GenericMapping -DesiredAccess $desired_access
Status Privileges GrantedAccess
------ ---------- -------------
STATUS_SUCCESS {SeTakeOwnershipPrivilege} 524288

Listing 7-33 Using the Get-PSGrantedAccess command

First, we import the module containing the Get-
PSGrantedAccess command 1. The import assumes the
module file is saved in your current directory; if it’s not, modify
the path as appropriate. We then build a restrictive security

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

descriptor, granting read access to the Everyone group and
nobody else 2.

We call Get-PSGrantedAccess, requesting
GenericRead access, along with the File object type’s
generic mapping 3. We don’t specify a Token parameter, which
means the check will use the caller’s effective token. The
command returns STATUS_SUCCESS, and the granted access
matches the desired access we originally passed to it.

Next, we change the desired access to WriteOwner access
only 4. Based on the restrictive security descriptor, only the
owner of the security descriptor should be granted this access,
which was set to the SYSTEM user. If we rerun the access check,
we get STATUS_ACCESS_DENIED, and no granted access.

To show how we can bypass these restrictions, we query for
the caller’s linked token 5. As described in Chapter 4, UAC uses
the linked token to expose the full administrator token. This
command won’t work unless you’re running the script as a split-
token administrator. However, we can enable the
SeTakeOwnershipPrivilege on the linked token 6, which
should bypass the owner check for WriteOwner. The access
check should now return STATUS_SUCCESS and grant the
desired access. The privileges column shows that
SeTakeOwnershipPrivilege was used to grant the access
right.

As mentioned, it’s worth running this script in a debugger and
stepping into Get-PSGrantedAccess to follow the access
check process so that you understand it better. I also recommend
trying different combinations of values in the security descriptor.

Calculating Granted Access for Resources

If you really need to know the granted access of a resource,
you’re better off using the Get-NtGrantedAccess command
over the PowerShell implementation we’ve developed. Let’s see
how we can use this command to get the granted access for a list
of resources. In Listing 7-34, we’ll take the script we used in

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Chapter 6 to find the owners of objects and calculate the full
granted access.

PS> function Get-NameAndGrantedAccess {
 [CmdletBinding()]
 param(
 [parameter(Mandatory, ValueFromPipeline)]
 $Entry,
 [parameter(Mandatory)]
 $Root
)

 PROCESS {
 $sd = Get-NtSecurityDescriptor -Path $Entry.Name -Root $Root
-TypeName $Entry.NtTypeName -ErrorAction SilentlyContinue
 if ($null -ne $sd) {
 1 $granted_access = Get-NtGrantedAccess -SecurityDescriptor $sd
 if (!(Test-NtAccessMask $granted_access -Empty)) {
 $props = @{
 Name = $Entry.Name;
 NtTypeName = $Entry.NtTypeName
 GrantedAccess = $granted_access
 }

 New-Object –TypeName PSObject –Prop $props
 }
 }
 }
}

PS> Use-NtObject($dir = Get-NtDirectory \BaseNamedObjects) {
 Get-NtDirectoryEntry $dir | Get-NameAndGrantedAccess -Root $dir
}
Name NtTypeName GrantedAccess
---- ---------- -------------
SM0:8924:120:WilError_03_p0 Semaphore QueryState, ModifyState, ...
CLR_PerfMon_DoneEnumEvent Event QueryState, ModifyState, ...
msys-2.0S5-1888ae32e00d56aa Directory Query, Traverse, ...
SyncRootManagerRegistryUpdateEvent Event QueryState, ModifyState, ...
--snip--

Listing 7-34 Enumerating objects and getting their granted access

We’ve modified the script you created in Listing 6-37. Now,
instead of merely checking the owner SID, we call Get-
NtGrantedAccess with the security descriptor 1. This should
retrieve the granted access for the caller. Another strategy would
have been to check the granted access for any impersonation
token at the Identification level with query access on the handle,

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

then pass it as the Token parameter. In the next chapter, we’ll
show an easier way to do large-scale access checking without
having to write your own scripts.

Wrapping Up

In this chapter, we detailed the implementation of the access-
checking process in Windows at length. This included describing
the operating system’s mandatory access checks, token owner and
privilege checks, and discretionary access checks. We also built
our own implementation of the access check so that you can
better understand the process.

We also covered how the two types of sandboxing tokens,
restricted and lowbox, affect the access-checking process to
restrict resource access. We then discussed object-type checking
and central access policies, important features of enterprise
security for Windows.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

8
O T H E R A C C E S S C H E C K I N G U S E

C A S E S

Access checks determine what access a caller should
have when opening a kernel resource. However, we
sometimes perform access checks for other reasons, as
they can serve as additional security checks. This
chapter details some examples of using access checks
as a secondary security mechanism.

We’ll start the chapter with traversal checking, which
determines whether a caller has access to a hierarchy of resources.
Then, we’ll discuss how access checks are used when a handle is
duplicated. We’ll also discuss how an access check can limit

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

access to kernel information, such as process listings, from
sandboxed applications. Finally, we’ll describe some additional
PowerShell commands that automate the access checking of
resources.

Traversal Checking

When accessing a hierarchical set of resources, such as an
object directory tree, the user must traverse the hierarchy until
they reach the target resource. But for every directory or container
in the hierarchy, the system performs an access check to
determine whether a caller can proceed to the next container.

This check is called a traversal check, and it’s performed
whenever code looks up a path inside the I/O manager or object
manager. For example, Figure 8-1 shows the traversal checks
needed to access an OMNS object using the path
\ABC\QRS\XYZ\OBJ.

Figure 8-1 Traversal checks needed to access OBJ

As you can see, we need three access checks to determine if
OBJ exists. Each access check extracts the security descriptor
from the container and then checks the type-specific access to see
if traversal is allowed. Both the OMNS and file directories can
have a Traverse access right they can grant. If, for example,
QRS denied Traverse access to the caller, the traversal check
would fail, as shown in Figure 8-2.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Figure 8-2 Traversal checks blocked at QRS

Even though the caller can access XYZ and OBJ, the traversal
check will fail because QRS now denies access, so it’s no longer
possible to access OBJ using the \ABC\QRS\XYZ\OBJ path.

This behavior has two implications: first, it prevents a user
from accessing their resources if any parent container blocks their
access. However, if a user must have access to a resource
multiple levels deep in a hierarchy, they probably also have
access to all of the resource’s parents. As it’s common for the
user to have access to these parent containers, doing the access
check for each container is unnecessary and wastes processing
time.

Almost every Token object has
SeChangeNotifyPrivilege enabled, which solves both of
these issues.

The SeChangeNotifyPrivilege Privilege

If the SeChangeNotifyPrivilege privilege is enabled,
the system bypasses the entire traversal check and lets users
access resources that an inaccessible parent would otherwise
block. Let’s verify the privilege’s behavior using OMNS
directory objects (Listing 8-2).

PS> $path = "\BaseNamedObjects\ABC\QRS\XYZ\OBJ"
PS> $os = New-NtMutant $path -CreateDirectories
PS> Enable-NtTokenPrivilege SeChangeNotifyPrivilege
PS> Test-NtObject $path
True

PS> $sd = New-NtSecurityDescriptor -EmptyDacl
PS> Set-NtSecurityDescriptor "\BaseNamedObjects\ABC\QRS" $sd Dacl

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

PS> Test-NtObject $path
True

PS> Disable-NtTokenPrivilege SeChangeNotifyPrivilege
PS> Test-NtObject $path
False

PS> Test-NtObject "OBJ" -Root $os[1]
True

Listing 8-1 Testing SeChangeNotifyPrivilege to bypass traversal checks

We first create a Mutant object and all of its parent
directories. We can automate this directory-creation by using the
CreateDirectories property. We ensure the privilege is
enabled and then use the Test-NtObject command to check
whether the Mutant object can be opened. In the output we can
see we’re able to open the Mutant object.

We then set a security descriptor with an empty DACL on the
QRS directory. This should block all access to the directory
object, including Traverse access. But when we checking our
access again, we can still access the Mutant object because we
have the privilege enabled.

We now disable the privilege and try again to open the
Mutant object. This time, the directory traversal fails. Without
the privilege or access to the QRS directory, we can no longer
open the Mutant object. However, our final check demonstrates
that if you have access to a parent after QRS, such as XYZ, you
can access the Mutant object via a relative open by using the
directory as the Root.

Limited Checks

The kernel contains an additional performance improvement
for traversal checks. If the SeChangeNotifyPrivilege is
disabled, the kernel will call the SeFastTraverseCheck
function, which performs a more limited check rather than a full
access check. For completeness, I have reimplemented the
SeFastTraverseCheck function in PowerShell so that we

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

can explore its behavior in more detail. Listing 8-2 shows the
implementation.

function Get-FastTraverseCheck {
 Param(
 1 $TokenFlags,
 $SecurityDescriptor,
 $AccessMask
)

 2 if ($SecurityDescriptor.DaclNull) {
 return $true
 }
 3 if (($TokenFlags -band "IsFiltered, IsRestricted") -ne 0) {
 return $false
 }
 $sid = Get-Ntsid -KnownSid World
 foreach($ace in $SecurityDescriptor.Dacl) {
 4 if ($ace.IsInheritedOnly -or !$ace.IsAccessGranted($AccessMask)) {
 continue
 }
 5 if ($ace.IsDeniedAce) {
 return $false
 }
 6 if ($ace.IsAllowedAce -and $ace.Sid -eq $sid) {
 return $true
 }
 }
 6 return $false
}

Listing 8-2 A PowerShell implementation of SeFastTraverseCheck

First, we define the three parameters the function takes: the
token’s flags, a directory object’s security descriptor, and the
traverse access rights to check 1. We specify the access rights
because the object manager and the I/O manager use this function
for Directory and File objects, and the Traverse access
right has a different value between the two object types, so
specifying the access as a parameter allows the check function to
handle both cases.

Next, we check whether the security descriptor’s DACL is
NULL; if it is, we grant access 2. We follow this with a check on
two token flags 3. If the flags indicate that the token is filtered or
restricted, then the fast check fails. The kernel copies these flags
from the caller’s token object. You can get the flags from user-

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

mode using the Flags property on a token object, as shown in
Listing 8-3.

PS> $token = Get-NtToken -Pseudo -Primary
PS> $token.Flags
VirtualizeAllowed, IsFiltered, NotLow
PS> $token.ElevationType
Limited

Listing 8-3 Querying token flags

Listing 8-3 also shows something interesting: the flags
include the IsFiltered flag. If you’re not running in a
restricted token sandbox, why would this flag be set?

The token elevation type is Limited, which means it’s the
default token for a UAC administrator. To convert the full
administrator token to the default token, LSASS uses the
NtFilterToken system, which will set the IsFiltered flag
but not IsRestricted, as it’s only removing groups, not
adding restricted SIDs. This means that while a UAC admin
running code as the default user can never pass the fast traverse
check, a normal user could. This behavior doesn’t have any
security implication, but it does mean that if
SeChangeNotifyPrivilege is disabled, resource lookup
performance will suffer.

The final check in Listing 8-2 consists of enumerating the
DACL’s ACEs. If the ACE is inherit-only or doesn’t contain the
required Traverse access mask, it’s skipped 4. If it’s a deny
ACE, the fast traverse check fails 5, and the ACE’s SID is not
checked at all in this case. Finally, if the ACE is an allow ACE
and the SID equals the Everyone group SID, the fast check
succeeds 6. If there are no more ACEs, the check fails 7.

Note that this fast check doesn’t consider whether the caller’s
token has the Everyone group enabled. This is because, typically,
the only way to remove the Everyone group would be to filter the
token. The big exception to this is the anonymous token, which
doesn’t have any groups but is also not filtered in any way.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Let’s turn to another use for the access check: considering the
granted access when assigning a duplicated handle.

Handle Duplication Access Checks

The system always performs an access check when creating
or opening a kernel resource that returns a handle. But what about
when that handle is duplicated? In the simplest case, when the
new handle has the same granted access mask as the original, the
system won’t perform any checks. It’s also possible to drop some
parts of the granted access mask, and doing so won’t trigger an
additional access check, either. However, if you want to add
additional access rights to the duplicated handle, the kernel will
query the security descriptor from the object and perform a new
access check to determine whether to allow access.

When you duplicate a handle, you must specify both the
source and destination process handles, and the access check
occurs in the context of the destination process. This means the
access check considers the destination process’s primary token,
not the source process’s, which could be an issue if a privileged
process tried to duplicate a handle to a less privileged process
with additional access. Such an operation would fail with access
denied.

Listing 8-4 demonstrates this handle duplication access check
behavior.

PS> $sd = New-NtSecurityDescriptor -EmptyDacl
PS> $m = New-NtMutant -Access ModifyState, ReadControl -SecurityDescriptor $sd
PS> Use-NtObject($m2 = Copy-NtObject -Object $m) {
 $m2.GrantedAccess
}
QueryState, ReadControl

PS> $mask = Get-NtAccessMask -MutantAccess QueryState
PS> Use-NtObject($m2 = Copy-NtObject -Object $m -DesiredAccessMask $mask) {
 $m2.GrantedAccess
}
QueryState

PS> Use-NtObject($m2 = Copy-NtObject -Object $m -DesiredAccess GenericAll) {
 $m2.GrantedAccess

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

}
Copy-NtObject : (0xC0000022) - {Access Denied}
A process has requested access to an object, ...

Listing 8-4 Testing the handle duplication access check behavior

We first create a new Mutant object with an empty DACL
and request only QueryState and ReadControl access on
the handle. This will block all users from accessing the Mutant,
with the exception of the owner, who can be granted
ReadControl and WriteDac access thanks to the owner
check we described in the previous chapter.

We now test the duplication by requesting the same access,
which the new handle returns. Next, we request QueryState
access only. As the mutant’s DACL is empty, this access right
wouldn’t be granted during an access check, and because we get
QueryState on the new handle, we know that no access check
took place. Finally, we try to increase our access by requesting
GenericAll. An access check must now take place, as we’re
requesting additional access rights than the handle currently has.
This check results in Access Denied.

If we hadn’t set a security descriptor when creating the
Mutant, there would be no security associated with the object,
and this last check would have succeeded, granting full access. As
mentioned in Chapter 5, you need to be careful when duplicating
unnamed handles to less privileged processes if you’re dropping
access; the destination process might be able to reduplicate the
handle to one with more access. In Listing 8-5, we test the
NtDuplicateObject NoRightsUpgrade flag to see how
it affects handle duplication access checking.

PS> $m = New-NtMutant -Access ModifyState
PS> Use-NtObject($m2 = Copy-NtObject -Object $m -DesiredAccess GenericAll) {
 $m2.GrantedAccess
}
QueryState, Delete, ReadControl, WriteDac, WriteOwner, Synchronize

PS> Use-NtObject($m2 = Copy-NtObject -Object $m -NoRightsUpgrade) {
 Use-NtObject($m3 = Copy-NtObject -Object $m2 -DesiredAccess GenericAll) {}
}
Copy-NtObject : (0xC0000022) - {Access Denied}
A process has requested access to an object, ...

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Listing 8-5 Testing the NtDuplicateObject NoRightsUpgrade flag

We start by creating an unnamed Mutant object, which will
have no associated security descriptor. We request the initial
handle with QueryState access only. However, duplicating a
new handle with GenericAll succeeds, granting us complete
access.

Now, we test the NoRightsUpgrade flag, and because we
don’t specify any access mask, the handle will be duplicated with
QueryState access. With the new handle, we perform another
duplication, this time requesting GenericAll access. We can
observe that the handle duplication fails. This isn’t due to an
access check; instead, it’s because of a flag set on the handle
entry in the kernel indicating that any request for more access
should fail immediately. This prevents the handle from being
used to gain additional access rights.

The incorrect handling of duplicate handles can lead to
vulnerabilities; for example, I discovered CVE-2019-0943, an
issue in a privileged service responsible for caching the details of
font files on Windows. The service duplicated a Section object
handle to a sandbox process with read-only access. However,
sandbox process could convert the handle back to a writeable
section handle, and the section could be mapped into memory as
writeable. This allowed the sandbox process to modify the state
of the privileged service and escape the sandbox. Windows fixed
the vulnerability by duplicating the handle using the
NoRightsUpgrade flag.

THE THREAD PROCESS CONTEXT

Every thread is associated with a process. Normally, when an access check occurs, the kernel
extracts the process object from the calling thread’s object structure and uses it to look up the primary
token for the access check. But the thread has a second process object associated with it: the current
process context, which indicates the process in which the thread is currently executing code.

Normally, these process objects are the same; however, the kernel sometimes switches the
current process context to another process to save time during certain tasks, such as handle or virtual
memory access. When the process switch has occurred, any access check on the thread will look up
the primary token of the switched-to process rather than the token belonging to the process associated
with the thread. Handle duplication operations use this process context switch; the kernel first queries
the source process’s handle table, then switches the process context for the calling thread to the

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

destination process to create the new handle in that process’s handle table.
A handle can abuse this behavior to duplicate a handle with more access to a less-privileged

process. If you call the NtDuplicateObject system call while impersonating your own token with
access to the object, then when the access check runs, it will capture the
SECURITY_SUBJECT_CONTEXT for the thread, setting the primary token for the destination process.
Crucially, though, it also sets the impersonation token to the identity being impersonated. The result is
that the access check will run against the caller’s impersonation token rather than the destination
process’s primary token. This allows a handle to be duplicated with additional granted access rights
even if the destination process’s primary token could not pass an access check for those rights. You
probably shouldn’t rely on this behavior in practice; it’s an implementation detail and might be subject to
change.

The access checks that occur during traversal checking and
handle duplication are typically hidden from view, but both relate
to the security of an individual resource. Next, we’ll discuss how
access checks limit the information we can extract, and the
operations we can perform, for a group of resources. These
restrictions occur based on the caller’s token, regardless of the
individual access set for those resources.

Sandbox Token Checks

Beginning in Windows 8, Microsoft has tried to make it
harder to compromise the system by escaping sandbox token
restrictions. This is especially important for software such as web
browsers or document readers, which process untrusted content
from the internet.

The kernel implements two APIs that use an access check to
determine whether the caller is in a sandbox:
ExIsRestrictedCaller, introduced in Windows 8, and
RtlIsSandoxToken, introduced in Windows 10. These APIs
produce equivalent results; the difference between them is that
ExIsRestrictedCaller checks the token of the caller,
while RtlIsSandoxToken checks a specified token object that
doesn’t have to be the caller’s.

Internally, these APIs perform an access check for the token
and grants access only if the token is not in a sandbox. Listing 8-6
shows a reimplementation of this access check in PowerShell.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

PS> $type = New-NtType -Name "Sandbox" -GenericRead 0x20000 -GenericAll
0x1F0001
PS> $sd = New-NtSecurityDescriptor -NullDacl -Owner "SY" -Group "SY" -Type
$type
PS> Set-NtSecurityDescriptorIntegrityLevel $sd Medium -Policy NoReadUp
PS> Get-NtGrantedAccess -SecurityDescriptor $sd -Access 0x20000 -PassResult
Status Granted Access Privileges
------ -------------- ----------
STATUS_SUCCESS GenericRead NONE

PS> Use-NtObject($token = Get-NtToken -Duplicate -IntegrityLevel Low) {
 Get-NtGrantedAccess -SecurityDescriptor $sd -Access 0x20000
-Token $token -PassResult
}
Status Granted Access Privileges
------ -------------- ----------
STATUS_ACCESS_DENIED None NONE

Listing 8-6 An access check for a sandbox token

First, we need to define a dummy kernel object type using the
New-NtType command. This allows us to specify the generic
mapping for the access check. We specify only the generic-read
and generic-all values, as write and execute access are not
important in this context. Note that the new type is local to
PowerShell; the kernel doesn’t know anything about it.

We then define a security descriptor with a NULL DACL and
the owner and group SIDs set to the SYSTEM user. The use of a
NULL DACL will deny access to lowbox tokens, as we described
in the previous chapter, but not to any other sandbox token type,
such as restricted tokens.

To handle other token types, we add a Medium mandatory
label ACE with a NoReadUp policy. As a result, any token with
an integrity level lower than Medium will be denied access to the
mask specified in the generic mapping’s generic read field.
Lowbox tokens ignore the Medium mandatory label, but we’ve
covered these tokens using the NULL DACL. Note that this
security descriptor doesn’t consider restricted tokens with a
Medium integrity level to be sandbox tokens. It’s not clear if this
is an intentional oversight or a bug in the implementation.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

We can now perform an access check with the Get-
NtGrantedAccess command, using the current, non-
sandboxed token. The access check succeeds, granting us
GenericRead access. If we repeat the check with a token that
has a Low integrity level, the system denies us access, indicating
that the token is sandboxed.

Behind the scenes, the kernel APIs call the
SeAccessCheck API, which will return an error if the caller
has an Identification-level impersonation token. Therefore, the
kernel will consider some impersonation tokens to be sandboxed
even if the implementation in Listing 8-6 would indicate
otherwise.

When either API indicates that the caller is sandbox, the
kernel changes its behavior to do the following:

• Listing only processes and threads that can be directly
accessed

• Blocking access to loaded kernel modules

• Enumerating open handles and their kernel object addresses

• Creating arbitrary file and object manager symbolic links

• Creating a new restricted token with more access

For example, in Listing 8-7, we query for handles while
impersonating a Low integrity level token, and are denied access.

PS> Invoke-NtToken -Current -IntegrityLevel Low {
 Get-NtHandle -ProcessId $pid
}
Get-NtHandle : (0xC0000022) - {Access Denied}
A process has requested access to an object,...

Listing 8-7 Querying for handle information while impersonating a Low integrity level token

While only kernel-mode code can access
ExIsRestrictedCaller, you can access
RtlIsSandboxToken in user-mode, as it’s also exported in
NDTLL. This allows you to query the kernel using a token handle
to find out whether the kernel thinks it is a sandbox token. The

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

RtlIsSandboxToken API exposes its result in the token
object’s IsSandbox property, as shown in Listing 8-8.

PS> Use-NtObject($token = Get-NtToken) {
 $token.IsSandbox
}
False

PS> Use-NtObject($token = Get-NtToken -Duplicate -IntegrityLevel Low) {
 $token.IsSandbox
}
True

Listing 8-8 Checking the sandbox status of tokens

The process object returned by Get-NtProcess has an
IsSandboxToken property. Internally, this property opens the
process’s token and calls IsSandbox. We can use this property
to easily discover which processes are sandboxed, by using the
script in Listing 8-9, for example.

PS> Use-NtObject($ps = Get-NtProcess -FilterScript {$_.IsSandboxToken}) {
 $ps | ForEach-Object { Write-Host "$($_.ProcessId) $($_.Name)" }
}
7128 StartMenuExperienceHost.exe
7584 TextInputHost.exe
4928 SearchApp.exe
7732 ShellExperienceHost.exe
1072 Microsoft.Photos.exe
7992 YourPhone.exe

Listing 8-9 Enumerating all sandboxed processes for the current user

These sandbox checks are an important feature for limiting
information disclosure and restricting dangerous functionality
such as symbolic links, which improve an attacker’s chances of
escaping the sandbox and gaining additional privileges. For
example, blocking access to the handle table prevents the
disclosure of kernel object addresses that could be used to exploit
kernel memory-corruption vulnerabilities.

We’ve now covered three uses of the access check for
purposes not related to opening a resource. We’ll finish this
chapter by describing some commands that simplify access
checking over a range of individual resources.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Automating Access Checks

The previous chapter provided a worked example that used
Get-NtGrantedAccess to determine the granted access for a
collection of kernel objects. If you want to check a different type
of resource, such as files, you’ll need to modify that script to use
file commands.

Because checking for the granted access across a range of
resources is such a useful operation, the PowerShell module
comes with several commands to automate the process. The
commands are designed to allow you to quickly assess the
security attack surface of available resources on a Windows
system. They all start with Get-Accessible, and you can use
Get-Command to list them, as shown in Listing 8-10.

PS> Get-Command Get-Accessible* | Format-Wide
Get-AccessibleAlpcPort Get-AccessibleDevice
Get-AccessibleEventTrace Get-AccessibleFile
Get-AccessibleHandle Get-AccessibleKey
Get-AccessibleNamedPipe Get-AccessibleObject
Get-AccessibleProcess Get-AccessibleScheduledTask
Get-AccessibleService Get-AccessibleToken
Get-AccessibleWindowStation Get-AccessibleWnf

Listing 8-10 Listing the Get-Accessible commands

We’ll come back to some of these commands in later
chapters. Here, we’ll demonstrate the Get-
AccessibleObject command, which we can use to automate
access checking over the entire OMNS. The command lets you
specify an OMNS path to check, then enumerates the OMNS and
reports either the maximum granted access or whether a specific
access mask can be granted.

You can also specify what tokens to use for the access
checking. The command can source tokens from the following
locations:

• The list of token objects

• The list of process objects

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

• The list of process names

• The list of process IDs

• The list of process command lines

If you specify no options when running the command, it will
use the current primary token. It will then enumerate all objects
based on an OMNS path and perform an access check for every
token specified. If the access check succeeds, then the command
generates a structured object containing the details of the access
check result. Listing 8-11 shows us an example.

PS> Get-AccessibleObject -Path "\"
TokenId Access Name
------- ------ ----
C5856B9 GenericExecute|GenericRead \

Listing 8-11 Getting accessible objects from the OMNS root

We run the command against the root of the OMNS and
receive three columns in the output:

TokenId
The unique identifier of the token used for the access check

Access
The granted access, mapped to generic access rights

Name
The name of the checked resource

We can use the TokenId to distinguish the results for the
different tokens specified to the command.

The result contains much more information than is shown by
default, and you can extract it using commands like Format-
List. You can also display the copy of the security descriptor
used to perform the access check with the Format-
NtSecurityDescriptor PowerShell command, as shown in
Listing 8-12.

PS> Get-AccessibleObject -Path \ | Format-NtSecurityDescriptor -Summary
<Owner> : BUILTIN\Administrators
<Group> : NT AUTHORITY\SYSTEM

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

<DACL>
Everyone: (Allowed)(None)(Query|Traverse|ReadControl)
NT AUTHORITY\SYSTEM: (Allowed)(None)(Full Access)
BUILTIN\Administrators: (Allowed)(None)(Full Access)
NT AUTHORITY\RESTRICTED: (Allowed)(None)(Query|Traverse|ReadControl)

Listing 8-12 Displaying the security descriptor used for the access check

As we’ve run the command against a directory, you might
wonder if it will also list the objects contained within the
directory. By default, no; the command opens the path as an
object and does an access check. If you want to recursively check
all objects in the directory, you need to specify the Recurse
parameter. The command also accepts a Depth parameter you
can use to specify the maximum recursive depth. If you run a
recursive check as a non-administrator user, you might see a lot
of warnings, as in Listing 8-13.

PS> Get-AccessibleObject -Path "\" -Recurse
WARNING: Couldn't access \PendingRenameMutex - Status: STATUS_ACCESS_DENIED
WARNING: Couldn't access \ObjectTypes - Status: STATUS_ACCESS_DENIED
--snip--

Listing 8-13 Warnings when recursively enumerating objects.

You can turn off warnings by setting the WarningAction
parameter to Ignore, but keep in mind that they’re trying to tell
you something. For the command to work, it needs to open each
object and query its security descriptor. From user mode, this
requires passing the access check during the opening, so if you
don’t have permission to open for ReadControl access, the
command can’t perform an access check. For better results, you
can run the command as an administrator, and for the best results,
run it as the SYSTEM user by using the Start-
Win32ChildProcess command to start a SYSTEM
PowerShell shell.

By default, the command will perform the access check using
the caller’s token. But if you’re running the command as an
administrator, you probably don’t want to do this, as almost all
resources will allow administrators full access. Instead, consider
specifying arbitrary tokens to check against the resource. For
example, when run as a UAC administrator, the following

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

command recursively opens the resources as the administrator
token but performs the access check with the non-administrator
token from the Explorer process:

PS> Get-AccessibleObject -Path \ -ProcessName explorer.exe -Recurse

It’s common to want to filter the list of objects to check. You
could run the access check against all the objects and then filter
the list afterward, but this would require a lot of work that you’ll
then just throw away. To save you some time, the Get-
AccessibleObject command supports multiple filter
parameters:

TypeFilter
A list of NT type names to check

Filter
A name filter used to restrict which objects are opened; can
contain wildcards

Include
A name filter used to determine which results to include in the
output

Exclude
A name filter to determine which results to exclude from the
output

Access
An access mask to limit the output to only objects with specific
granted access

For example, the following command will find all the
Mutant objects that can be accessed for GenericAll access:

PS> Get-AccessibleObject -Path \ -TypeFilter Mutant -Access GenericAll -
Recurse

By default, the Access parameter requires that all access be
granted before outputting a result. You can be modify this by
specifying AllowPartialAccess, which would output any
result that partially matches the specified access. If you want to

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

see all results regardless of the granted access, specify
AllowEmptyAccess.

Worked Examples

Let’s wrap up with some worked examples that use the
commands you’ve learned about in this chapter.

Simplifying an Access Check for an Object

In the previous chapter, we used the Get-
NtGrantedAccess command to automate an access check
against kernel objects and determine their maximum granted
access. To accomplish this, we first needed to query for an
object’s security descriptor. Then, we passed this value to the
command along with the type of kernel object to check.

If you have a handle to an object, you can simplify the call to
the Get-NtGrantedAccess command by specifying the
object with the Object parameter, as shown in Listing 8-14.

PS> $key = Get-NtKey HKLM\Software -Win32Path -Access ReadControl
PS> Get-NtGrantedAccess -Object $key
QueryValue, EnumerateSubKeys, Notify, ReadControl

Listing 8-14 Running an access check on an object

Using the Object parameter eliminates having to manually
extract the security descriptor from the object and will
automatically select the correct generic mapping structure for the
kernel object type. This reduces the chance that you’ll make
mistakes when performing an object access check.

Finding Writeable Section Objects

The system uses Section objects to share memory between
processes. If a privileged process sets a weak security descriptor,
it might be possible for a less-privileged process to open and
modify the contents of the section. This can lead to security issues

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

if that section contains trusted parameters that can trick the
privileged process into performing privileged operations.

I discovered a vulnerability of this class, CVE-2014-6349, in
Internet Explorer’s sandbox configuration. The configuration
incorrectly secured a shared Section object, allowing
sandboxed Internet Explorer processes to open it and disable the
sandbox entirely. To discover this issue, I checked all named
Section objects, performing an access check for the
MapWrite access right. Once I had identified all sections with
this access right, I manually determined whether any of them
were exploitable from the sandbox. In Listing 8-15, we automate
the discovery of writeable sections using the Get-
AccessibleObject command.

PS> $access = Get-NtAccessMask -SectionAccess MapWrite -AsGenericAccess
PS> $objs = Use-NtObject($token = Get-NtToken -Duplicate -IntegrityLevel Low)
{
 Get-AccessibleObject -Win32Path "\" -Recurse -Token $token
-TypeFilter Section -Access $access
}
PS> $token.Close()
PS> $objs | ForEach-Object {
 Use-NtObject($sect = Get-NtSection -Path $_.Name) {
 Use-NtObject($map = Add-NtSection $sect -Protection ReadWrite -ViewSize
4096) {
 Write-Host "$($sect.FullPath)"
 Out-HexDump -ShowHeader -ShowAscii -HideRepeating -Buffer $map | Out-
Host
 }
 }
}
\Sessions\1\BaseNamedObjects\windows_ie_global_counters
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F - 0123456789ABCDEF

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 -
-> REPEATED 1 LINES
00 00 00 00 00 00 00 00 00 00 00 00 1C 00 00 00 -
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 -
--snip--

Listing 8-15 Enumerating writeable Section objects for a Low integrity level token

Listing 8-15 starts by calculating the access mask for the
MapWrite access and converting it into a generic access
enumeration. We do this because the Get-
AccessibleObject command takes only generic access, as it

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

doesn’t know ahead of time what objects you’re likely to want to
check for. We then duplicate the current user’s token and set its
integrity level to Low, producing a simple sandbox.

We pass the token and access mask to Get-
AccessibleObject, performing a recursive check in the
user’s base-named objects directory by specifying a single path
separator to the Win32Path parameter. The results returned
from the command should contains only sections that can be
opened for MapWrite access.

Finally, we enumerate the list of discovered sections,
displaying their names and initial contents of any discovered
writeable section object. We open the named section, map up to
the first 4,096 bytes into memory, and then output the contents as
a hex dump. We map the section writeable, as it’s possible the
Section object’s security descriptr grants MapWrite access
but that the section was created read-only. In this case, mapping
ReadWrite will fail with an error.

You can use this script as-is to find interesting writeable
sections. You don’t have to use a sandbox token; it can be
interesting to see the sections available for a normal user that are
owned by privileged processes. It should also give you the basics
for how you could do the same check for any kernel object type.

Wrapping Up

In this chapter, we looked at some examples of the uses of
access checking outside of opening a resource. We first described
traversal access, which is used to determine if a user can traverse
a hierarchical list of containers, such as object directories. Then
we discussed how the access check is used when handles are
duplicated between processes, including how this can create
security issues if the object has no name or security descriptor
configured.

We then described how an access check is used to determine
if a caller’s token is sandboxed. The kernel does this to limit

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

access to information or certain operations to make it more
difficult to exploit certain classes of security vulnerabilities.
Finally, we described how to automate access checks for various
resource types of Get-Accessible commands. We described
the basic parameters common to all commands and how to use
them to enumerate accessible named kernel objects.

That’s the end of our description of the access-checking
process. In the next chapter, we’ll cover the last remaining
responsibility of the SRM: security auditing.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

9
S E C U R I T Y A U D I T I N G

Intertwined with the access-checking process is the
auditing process. An administrator can configure the
system’s auditing mechanism to generate a log of
accessed resources. Each log event would include
details about the user and application that opened the
resource and whether the access succeeded or failed.
This information could help us identify incorrect
security settings or detect malicious access to sensitive
resources.

In this short chapter, we’ll first discuss where the resource
access log gets stored once the kernel generates it. We’ll then

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

describe how a system administrator can configure the audit
mechanism. Finally, we’ll detail how to configure individual
resources to generate audit log events through the SACL.

The Security Event Log

Windows generates log events whenever an access check
succeeds or fails. The kernel writes these log events to the
security event log, which only administrators can access.

When performing access checks on kernel resources,
Windows will generate the following types of audit events. The
security event log represents these by using the event ID included
in parentheses:

• Object handle opened (4656)

• Object handle closed (4658)

• Object deleted (4660)

• Object handle duplicated (4690)

• SACL changed (4717)

When we access resources via kernel system calls such as
NtCreateMutant, the auditing mechanism generates these
events automatically. But for the object-related audit events, we
must first configure two aspects of the system: we must set the
system policy to generate audit events, and we must enable audit
ACEs in the resource’s SACL. Let’s discuss each of these
configuration requirements in turn.

Configuring the System Audit Policy

Most Windows users don’t need to capture auditing
information for kernel resources, so the audit policy is disabled
by default. Enterprise environments commonly configure the
audit policy through a domain security policy, which the
enterprise network distributes to the individual devices.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Users not in an enterprise network can enable the audit policy
manually. One way to do so is to edit the local security policy,
which looks the same as the domain security policy but applies
only to the current system. There are two types of audit policy:
the legacy policy used prior to Windows 7 and the advanced audit
policy. On the latest version of Windows, the advanced audit
policy is recommended, as it provides more granular
configuration, so we won’t discuss the legacy policy further.

If you open the local security policy editor by running the
secpol.msc command in PowerShell, you can view the current
configuration of the advanced audit policy, as shown in Figure 9-
1.

Figure 9-1 The security policy editor showing the advanced audit policy

As you can see, the categories in the audit policy aren’t
currently configured. To explore how audit events are generated,
we’ll use PowerShell to enable the required audit policy
temporarily and run some example code. Any changes you make

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

with PowerShell won’t be reflected in the local security policy,
which will revert the next time it synchronizes (for example,
during a reboot or when the group policy is updated on an
enterprise network). You can force the settings to synchronize by
running the command gpupdate.exe /force as an
administrator in PowerShell or the command prompt.

Advanced audit policies have two levels: a top-level category
and multiple sub-categories. You can query for the top-level
categories using Get-NtAuditPolicy, as in Listing 9-1.

PS> Get-NtAuditPolicy
Name SubCategory Count
---- -----------------
System 5
Logon/Logoff 11
Object Access 14
Privilege Use 3
Detailed Tracking 6
Policy Change 6
Account Management 6
DS Access 4
Account Logon 4

Listing 9-1 The top-level audit policy categories

In the output, you can see the name of each category and its
number of sub-categories. Each category also has an associated
GUID, but this value is hidden by default. To see it, select the Id
property from the command’s output, as shown in Listing 9-2.

PS> Get-NtAuditPolicy | Select-Object Name, Id
Name Id
---- --
System 69979848-797a-11d9-bed3-505054503030
Logon/Logoff 69979849-797a-11d9-bed3-505054503030
Object Access 6997984a-797a-11d9-bed3-505054503030
--snip--

Listing 9-2 Displaying category GUIDs

You can display the sub-categories by using the
ExpandCategory parameter. In Listing 9-3, we specify the
System category by name and then expand the output to show
its sub-categories.

PS> Get-NtAuditPolicy -Category System -ExpandCategory

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Name Policy
---- ------
Security State Change Unchanged
Security System Extension Unchanged
System Integrity Unchanged
IPsec Driver Unchanged
Other System Events Unchanged

Listing 9-3 Displaying the audit policy’s sub-categories

You can also select a category by specifying its GUID using
the CategoryGuid parameter.

The auditing policy is based on these sub-categories; here,
they all show the value Unchanged, which means no policy has
been configured. The sub-category policy can have one or more
of the following values:

Unchanged
The policy is not configured, and should not be changed.

Success
The policy should generate audit events when an auditable
resource is opened successfully.

Failure
The policy should generate audit events when an auditable
resource can’t be opened.

None
The policy should never generate an audit event.

We can enable kernel object auditing by running the
commands shown in Listing 9-4 in an administrator PowerShell
console.

PS> Enable-NtTokenPrivilege SeSecurityPrivilege
PS> Set-NtAuditPolicy -Category ObjectAccess -Policy Success, Failure -
PassThru
Name Policy
---- ------
File System Success, Failure
Registry Success, Failure
Kernel Object Success, Failure
SAM Success, Failure
Certification Services Success, Failure

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Application Generated Success, Failure
Handle Manipulation Success, Failure
File Share Success, Failure
Filtering Platform Packet Drop Success, Failure
Filtering Platform Connection Success, Failure
Other Object Access Events Success, Failure
Detailed File Share Success, Failure
Removable Storage Success, Failure
Central Policy Staging Success, Failure

Listing 9-4 Setting the policy and viewing the resulting ObjectAccess audit policy list

We’ve enabled the Success and Failure auditing policies
for all sub-categories under Object Access. To make this
modification, we need the SeSecurityPrivilege privilege.
You can set a single sub-category rather than the entire category
by name by using the SubCategoryName parameter or
specifying the GUID using SubCategoryGuid.

We can confirm that the audit policy has been configured
correctly by specifying the PassThru parameter, which lists the
modified sub-category objects. The output displays some
important audit policies, including File System, Registry,
and Kernel Object, which enable auditing on files, registry
keys, and other kernel objects, respectively.

You can run the following command as an administrator to
disable the change we made in Listing 9-4:

PS> Set-NtAuditPolicy -Category ObjectAccess -Policy None

Unless you need to enable the audit policy for some reason,
it’s best to disable it once you’re finished.

Configuring the Per-User Audit Policy

We’ve shown how to configure the system-wide policy, but
it’s also possible to configure the audit policy on a per-user basis.
You could use this feature to add auditing to a specific user
account in cases when the system does not define an overall
auditing policy. You could also use it to exclude a specific user
account from auditing. To facilitate this behavior, the policy
settings differ slightly for per-user policies:

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Unchanged
The policy is not configured. When set the policy should not be
changed.

SuccessInclude
Generate audit events on success regardless of the system policy.

SuccessExclude
Never generate audit events on success regardless of the system
policy.

FailureInclude
Generate audit events on failure regardless of the system policy.

FailureExclude
Never generate audit events on failure regardless of the system
policy.

None
Never generate an audit event. Removes the per-user audit entry.

To configure a per-user policy, you can specify an SID to the
User parameter when using the Set-NtAuditPolicy
command. This SID must belong to a user account; it can’t be a
group SID, such as Administrator, or a service account, such as
SYSTEM, or you’ll receive an error when setting the policy.

Listing 9-5 configures a per-user policy for the current user.
You must run these commands as an administrator.

PS> Enable-NtTokenPrivilege SeSecurityPrivilege
PS> $sid = Get-NtSid
PS> Set-NtAuditPolicy -Category ObjectAccess -User $sid -UserPolicy
SuccessExclude
PS> Get-NtAuditPolicy -User $sid -Category ObjectAccess -ExpandCategory
Name User Policy
---- ---- ------
File System GRAPHITE\admin SuccessExclude
Registry GRAPHITE\admin SuccessExclude
Kernel Object GRAPHITE\admin SuccessExclude
SAM GRAPHITE\admin SuccessExclude
--snip--

Listing 9-5 Configuring a per-user audit policy

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

We specify the user’s SID to the User parameter and then
specify the SuccessExclude user policy. This will exclude
success audit events for only this user. If you want to remove the
per-user policy for a user, you can specify the None user policy.
You can also enumerate all users who have configured policies
using the AllUser parameter of Get-NtAuditPolicy, as
shown in Listing 9-6.

PS> Get-NtAuditPolicy -AllUser
Name User SubCategory Count
---- ---- -----------------
System GRAPHITE\admin 5
Logon/Logoff GRAPHITE\admin 11
Object Access GRAPHITE\admin 14
--snip--

Listing 9-6 Querying per-user policies for all users

To clear the per-user audit policy, run the following
command:

PS> Set-NtAuditPolicy -Category ObjectAccess -User $sid -UserPolicy None

You now know how to query and set policies for the system
and for a specific user. Now let’s look at how to grant users the
access needed to query and set these policies on the system.

Audit Policy Security

To query or set a policy, the caller can enable
SeSecurityPrivilege on their token. If the privilege is not
enabled, LSASS will perform an access check based on a security
descriptor in the system configuration. We can configure the
following access rights in the security descriptor:

SetSystemPolicy
Enables setting the system audit policy

QuerySystemPolicy
Enables querying the system audit policy

SetUserPolicy
Enables setting a per-user audit policy

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

QueryUserPolicy
Enables querying a per-user audit policy

EnumerateUsers
Enables enumerating all per-user audit policies

SetMiscPolicy
Enables setting a miscellaneous audit policy

QueryMiscPolicy
Enables querying a miscellaneous audit policy

These access rights grant a user the ability to query or set the
policy for the system a single user. No standard auditing API
seems to use the SetMiscPolicy and QueryMiscPolicy
access rights, but because they are defined in the Windows SDK,
I’ve added them here for completeness.

As an administrator, you can query the currently configured
security descriptor by enabling SeSecurityPrivilege and
using the Get-NtAuditSecurity command (Listing 9-7).

PS> Enable-NtTokenPrivilege SeSecurityPrivilege
PS> $sd = Get-NtAuditSecurity
PS> Format-NtSecurityDescriptor $sd -Summary -MapGeneric
<DACL>

1 BUILTIN\Administrators: (Allowed)(None)(GenericRead)
NT AUTHORITY\SYSTEM: (Allowed)(None)(GenericRead)

Listing 9-7 Querying and displaying the audit security descriptor

We pass the queried security descriptor to Format-
NtSecurityDescriptor to display the DACL. Notice that
only the Administrators and SYSTEM groups can access the
policy 1. Also, this access is limited to GenericRead access,
which allows users to query the policy but not modify it. Thus,
even administrators would need to enable
SeSecurityPrivilege to modify the audit policy, as that
privilege bypasses any access check.

Note A user who has not been granted read access to the policy can still
query the advanced audit categories and sub-categories, which

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

ignore the security descriptor. However, they won’t be granted
access to query the configured settings. The Get-
NtAuditPolicy will return the value of Unchanged for audit
settings the user wasn’t able to query.

If you want to allow non-administrators to change the
advanced audit policy, you can change the security descriptor
using the Set-NtAuditSecurity command. Run the
commands in Listing 9-8 as an administrator.

PS> Enable-NtTokenPrivilege SeSecurityPrivilege
PS> $sd = Get-NtAuditSecurity
PS> Add-NtSecurityDescriptorAce $sd -Sid "LA" -Access GenericAll
PS> Set-NtAuditSecurity $sd

Listing 9-8 Modifying the audit security descriptor

We first query the existing security descriptor for the audit
policy and grant the local administrator all access rights. Then,
we set the modified security descriptor using the Set-
NtAuditSecurity command. Now the local administrator
can query and modify the audit policy without needing to enable
SeSecurityPrivilege.

You shouldn’t normally reconfigure the security of the audit
policy, and you certainly shouldn’t grant all users write access.
Note that the security descriptor doesn’t affect who can query or
set the security descriptor itself; only callers with
SeSecurityPrivilege enabled can do this, no matter the
values in the security descriptor.

Configuring the Resource SACL

Just enabling the audit policies isn’t enough to start
generating audit events. We also need to configure an object’s
SACL to specify the auditing rules to use . To set the SACL on an
object, we’ll need to enable SeSecurityPrivilege, which
can only be done as an administrator (Listing 9-9).

PS> $sd = New-NtSecurityDescriptor -Type Mutant
PS> Add-NtSecurityDescriptorAce $sd -Type Audit -Access GenericAll
-Flags SuccessfulAccess, FailedAccess -KnownSid World -MapGeneric

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

PS> Enable-NtTokenPrivilege SeSecurityPrivilege
PS> Clear-EventLog -LogName "Security"
PS> Use-NtObject($m = New-NtMutant "ABC" -Win32Path -SecurityDescriptor $sd) {
 Use-NtObject($m2 = Get-NtMutant "ABC" -Win32Path) {
 }
}

Listing 9-9 Creating a Mutant object with an audit ACE and opening it to generate an event

We create an empty security descriptor and add a single
Audit ACE to the SACL. Other ACE types you could add
include AuditObject and AuditCallback.

The processing of Audit ACEs looks a lot like the
discretionary access check we described in Chapter 7. The SID
must match a group in the calling token (including any
DenyOnly SIDs), and the access mask must match one or more
bits of the granted access. The Everyone group SID is a special
case; it will always match, regardless of whether the SID is
available in the token.

In addition to any of the usual inheritance ACE flags, such as
InheritOnly, the Audit ACE must specify one or both of the
SuccessfulAccess and FailedAccess flags, which
provide the auditing code with the conditions in which it should
generate the audit entry.

We’ll assign the SACL to a Mutant object. But before
creating the Mutant object, we need to enable
SeSecurityPrivilege. If we don’t, the creation will fail.
To make it easier to see the generated audit event, we can also
clear the security event log. Next, we create the object, passing it
the SACL we built, and then reopen it to trigger the generation of
an audit log.

Now we can query the security event log using Get-
WinEvent, passing it the event ID 4656 to find the generated
audit event (Listing 9-10).

PS> $filter = @{logname='Security';id=@(4656)}
PS> Get-WinEvent -FilterHashtable $filter | Select-Object -ExpandProperty
Message
A handle to an object was requested.
Subject:

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

 Security ID: S-1-5-21-2318445812-3516008893-216915059-1002
 Account Name: user
 Account Domain: GRAPHITE
 Logon ID: 0x524D0

Object:
 Object Server: Security
 Object Type: Mutant
 Object Name: \Sessions\2\BaseNamedObjects\ABC
 Handle ID: 0xfb4
 Resource Attributes: -

Process Information:
 Process ID: 0xaac
 Process Name:
C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe

Access Request Information:
 Transaction ID: {00000000-0000-0000-0000-000000000000}
 Accesses: DELETE
 READ_CONTROL
 WRITE_DAC
 WRITE_OWNER
 SYNCHRONIZE
 Query mutant state

 Access Reasons: -
 Access Mask: 0x1F0001
 Privileges Used for Access Check: -
 Restricted SID Count: 0

Listing 9-10 Viewing the open audit event for the Mutant object

We first set up a filter for the security event log and event ID
4656, which corresponds to the opening of a handle. We then use
the filter with Get-WinEvent and select the event’s textual
message.

The output begins with this textual description of the event,
which confirms that it was generated in response to a handle
being opened. After this comes the Subject, which includes the
user’s information, including their SID and username. To look up
the username, the kernel sends the audit event to the LSASS
process.

Next are the details of the opened object. These include the
object server (Security, representing the SRM), the object type

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

(Mutant), and the native path to the object. One key value,
HandleId, is the handle number for the object. If you query the
handle value returned from the NtCreateMutant system call,
it should match this value. We then get some basic process
information, and finally, information about the access granted to
the handle.

How can distinguish between success and failure events? The
best way to do this is to extract the KeywordsDisplayNames
property, which contains either Audit Success if the handle
was opened or Audit Failure if the handle could not be
opened. Listing 9-11 shows an example.

PS> Get-WinEvent -FilterHashtable $filter | Select-Object KeywordsDisplayNames
KeywordsDisplayNames

{Audit Success}
{Audit Failure}
--snip--

Listing 9-11 Extracting KeywordsDisplayName to view the success or failure status

When you close the handle to the object, you’ll get another
audit event, with the event ID 4658, as shown in Listing 9-12.

PS> $filter = @{logname='Security';id=@(4658)}
PS> Get-WinEvent -FilterHashtable $filter | Select-Object -ExpandProperty
Message
The handle to an object was closed.
Subject :
 Security ID: S-1-5-21-2318445812-3516008893-216915059-1002
 Account Name: user
 Account Domain: GRAPHITE
 Logon ID: 0x524D0

Object:
 Object Server: Security
 Handle ID: 0xfb4

Process Information:
 Process ID: 0xaac
 Process Name:
C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe

Listing 9-12 Viewing the audit event generated when the Mutant object handle is closed

You might notice that the information provided about the
closing of the object handle is slightly less detailed than the

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

information generated when the handle was opened. You can
manually correlate the open and close handle events by using the
handle IDs, which should match.

It’s possible to generate object audit events manually from
user-mode using some additional system calls. To do so, you need
the SeAuditPrivilege, which is typically only granted to the
SYSTEM account, and not to normal administrators.

You can generate the audit event at the same time as an access
check using the NtAccessCheckAndAuditAlarm system
call. This access check system call has all of the same object ACE
variants as the normal access checks do. You can access it using
the Get-NtGrantedAccess PowerShell command with the
Audit parameter.

You can also generate events manually using the
NtOpenObjectAuditAlarm and
NtCloseObjectAuditAlarm system calls, which
PowerShell exposes through the Write-NtAudit command.
Run the commands in Listing 9-13 as the SYSTEM user to
manually generate audit log events.

1 PS> Enable-NtTokenPrivilege SeAuditPrivilege -WarningAction Stop
PS> $owner = Get-NtSid -KnownSid Null
PS> $sd = New-NtSecurityDescriptor -Type Mutant -Owner $owner -Group $owner
PS> Add-NtSecurityDescriptorAce $sd -KnownSid World -Access GenericAll -
MapGeneric
PS> Add-NtSecurityDescriptorAce $sd -Type Audit -Access GenericAll

2 -Flags SuccessfulAccess, FailedAccess -KnownSid World -MapGeneric

3 PS> $handle = 0x1234
4 PS> $r = Get-NtGrantedAccess $sd -Audit -SubsystemName "SuperSecurity"

-ObjectTypeName "Badger" -ObjectName "ABC" -ObjectCreation
-HandleId $handle -PassResult

5 PS> Write-NtAudit -Close -SubsystemName "SuperSecurity" -HandleId $handle
-GenerateOnClose:$r.GenerateOnClose

Listing 9-13 Manually generating audit log events

We must first enable SeAuditPrivilege; otherwise, the
rest of the script will fail 1. This privilege must be enabled on the
primary token, as you can’t impersonate a token with the

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

privilege, which is why you must run the PowerShell instance as
the SYSTEM user.

After enabling the privilege, we build a security descriptor
with a SACL to audit success and failure access 2. We generate a
fake handle ID 3; this value would be the kernel handle in a
normal audit event, but when we generate an event from user
mode, it can be any value we like. We can then run the access
check, specifying the Audit parameter, which enables the other
auditing parameters 4. We need to specify the
SubsystemName, ObjectTypeName, and ObjectName
parameters, which can be completely arbitrary. We also specify
the handle ID.

In the output, we receive an access check result with one
additional property: GenerateOnClose, which indicates
whether we need to write a closed handle event. Calling the
Write-NtAudit command and specifying the Close
parameter will call the NtCloseObjectAuditAlarm system
call to generate the event. We do so, specifying the
GenerateOnClose value from the result 5. If
GenerateOnClose were false, we would still need to write the
close event to complete the audit, but the actual close event would
not be written to the audit log.

If you don’t receive any auditing events when you run the
commands in Listing 9-13, ensure that you’ve enabled object
auditing, as we did in Listing 9-4.

THE MYSTERIOUS ALARM ACE

If you’ve look at the lists of ACE types, you might have noticed an Alarm ACE type that is related
to auditing. (Also, all of the system calls we’ve described in this chapter for manually generating audit
events in user mode end with the term AuditAlarm.) But if you read the online MSDN documentation
for this ACE type, you’ll see the phrase, “The SYSTEM_ALARM_ACE structure is reserved for future use.”
What is the purpose of this ACE type if it has always been reserved?

It’s hard to tell. Kernel code checked for the Alarm ACE type starting in Windows NT 3.1 until
Microsoft removed the check in Windows XP. The Windows developers even defined
AlarmCallback, AlarmObject and AlarmObjectCallback variants, though code doesn’t seem to
have checked these in the Windows 2000 kernel, where object ACEs were introduced. It is clear from
old kernels that the Alarm ACE type was handled; less clear is whether an Alarm ACE could generate
an event to be monitored. Even in the MSDN documentation for versions of Windows that handled the

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

Alarm ACE type, it is marked as unsupported.
As to what the Alarm ACE might have done, it’s likely a holdover from Windows NT’s VMS roots.

VMS had a similar security model to Windows NT, including the use of ACLs and ACEs. In VMS, audit
ACEs wrote to an audit log file, as on Windows, and the Alarm ACEs would generate real-time
ephemeral security events on the operator’s terminal once a user enabled alarms using the
REPLY/ENABLE=SECURITY command. It’s likely that Microsoft added support to the Windows kernel
for this ACE type but never implemented the ability to send these real-time events. With modern logging
alternatives such as Event Tracing for Windows (ETW), which provides much more comprehensive
security information in real-time, the chances of Microsoft reintroducing the Alarm ACE in the future
are slim.

Configuring the Global SACL

Correctly configuring the SACL for every resource can be
difficult, as well as time consuming. For this reason, the advanced
audit policy allows you to configure a global SACL for files or
registry keys. The system will use this global SACL if no SACL
exists for a resource, and if a resource already has a SACL, it will
merge the global and resource SACLs. Because these broad
auditing configurations can swamp your logging output and
impede your ability to monitor events, use global SACLs
sparingly.

You can query the global SACL by specifying either the
File or Key value to the GlobalSacl parameter of the Get-
NtAuditSecurity PowerShell command. You can also
modify the global SACL with the Set-NtAuditSecurity
command, specifying the same GlobalSacl parameter. To test
this behavior, run the commands in Listing 9-14 as an
administrator.

PS> Enable-NtTokenPrivilege SeSecurityPrivilege
PS> $sd = New-NtSecurityDescriptor -Type File
PS> Add-NtSecurityDescriptorAce $sd -Type Audit -KnownSid World
-Access WriteData -Flags SuccessfulAccess
PS> Set-NtAuditSecurity -GlobalSacl File -SecurityDescriptor $sd
PS> Get-NtAuditSecurity -GlobalSacl File |
Format-NtSecurityDescriptor -SecurityInformation Sacl -Summary
<SACL>
Everyone: (Audit)(SuccessfulAccess)(WriteData)

Listing 9-14 Setting and querying the global file SACL

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

We start by building a security descriptor containing a SACL
with a single Audit ACE, as we’ve done earlier in the chapter.
We then call Set-NtAuditSecurity to set the global SACL
for the File type. Finally, we query the global SACL to make
sure it’s set correctly.

You can remove the global SACL by passing a security
descriptor with a NULL SACL to Set-NtAuditSecurity.
To create this security descriptor, use the following command:

PS> $sd = New-NtSecurityDescriptor -NullSacl
Then use the command we covered in Listing 9-14 to clear

the SACL.

Worked Examples

Let’s wrap up with some worked examples that use the
commands you learned about in this chapter.

Verifying Audit Access Security

When we’re checking whether malicious code has
compromised an untrusted Windows system, it’s a good idea to
verify that the security settings haven’t been modified. One check
you might want to perform is determining whether a non-
administrator user has the access needed to change the audit
policy on the system. If a non-administrator user can change the
policy, they could disable auditing and hide their access to
sensitive resources.

You can inspect the audit policy’s security descriptor
manually, or do so using the Get-NtGrantedAccess
PowerShell command. Run the commands in Listing 9-15 as an
administrator.

PS> Enable-NtTokenPrivilege SeSecurityPrivilege
PS> $sd = Get-NtAuditSecurity
PS> Set-NtSecurityDescriptorOwner $sd -KnownSid LocalSystem
PS> Set-NtSecurityDescriptorGroup $sd -KnownSid LocalSystem
PS> Get-NtGrantedAccess $sd -PassResult
Status Granted Access Privileges

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

------ -------------- ----------
STATUS_SUCCESS GenericRead NONE

PS> Use-NtObject($token = Get-NtToken -Filtered -Flags LuaToken) {
 Get-NtGrantedAccess $sd -Token $token -PassResult
}
Status Granted Access Privileges
------ -------------- ----------
STATUS_ACCESS_DENIED 0 NONE

Listing 9-15 Performing an access check on the audit policy security descriptor

We start by querying for the audit policy security descriptor
and setting the owner and group fields. The security descriptor
returned from Get-NtAuditSecurity does not contain these
fields, but they’re required for the access check process, so we set
them here.

We can then pass the security descriptor to the Get-
NtGrantedAccess command to check it against the current
administrator token. The result indicates the caller has
GenericRead access to the audit policy, which allows them to
query the policy but not set it without enabling
SeSecurityPrivilege.

Finally, we can remove the administrator group from the
token by creating a filtered token with the LuaToken flag.
Running the access check with the filtered token indicates that it
has no granted access to the audit policy (not even read access). If
this second check returns a status other than access denied, you
can conclude that the default audit policy security descriptor has
been changed, and it’s worth checking whether this occurred
intentionally or maliciously.

Finding Resources with Audit ACEs

Most resources aren’t configured with a SACL. So, you might
want to enumerate the resources on the system that have a SACL,
as this can help you understand what resources might generate
audit log events. Listing 9-16 provides a simple example in which
we find these resources. Run the commands as an administrator.

PS> Enable-NtTokenPrivilege SeDebugPrivilege, SeSecurityPrivilege

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

1 PS> $ps = Get-NtProcess -Access QueryLimitedInformation, AccessSystemSecurity
-FilterScript {
 2 $sd = Get-NtSecurityDescriptor $_ -SecurityInformation Sacl
 $sd.HasAuditAce
}

3 PS> $ps | Format-NtSecurityDescriptor -SecurityInformation Sacl
Path: \Device\HarddiskVolume3\Windows\System32\lsass.exe
Type: Process
Control: SaclPresent

<SACL>
 - Type : Audit
 - Name : Everyone
 - SID : S-1-1-0
 - Mask : 0x00000010

4 - Access: VmRead
 - Flags : SuccessfulAccess, FailedAccess

PS> $ps.Close()

Listing 9-16 Finding processes with configured SACLs

We focus on process objects here, but you can apply this same
approach to other resource types.

We first open all processes for
QueryLimitedInformation and
AccessSystemSecurity access 1. We apply a filter to the
processes, querying for the SACL from the process object, then
returning the value of the HasAuditAce property 2. This
property indicates whether the security descriptor has at least one
audit ACE.

We then pipe the results returned from the Get-NtProcess
command into Format-NtSecurityDescriptor to display
the SACLs 3. In this case, there is only a single entry, for the
LSASS process. We can see that the audit ACE logs an event
whenever the LSASS process is opened for VmRead access 4.

This policy is a default audit configuration on Windows, used
to detect access to the LSASS process. The VmRead access right
allows a caller to read the virtual memory of a process, and this
ACE aims to detect the extraction the LSASS memory contents,
which can include passwords and other authentication credentials.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

If the process is opened for any other access right, no audit log
entry will be generated.

Wrapping Up

In this chapter, we covered the basics of security auditing. We
started with a description of the security event log and the types
of log entries you might find when auditing resource access.
Next, we checked the auditing policy configuration, and set
advanced auditing policies with the Set-NtAuditPolicy
command. We also discussed how Windows controls access to
the auditing policy and showed the importance of the
SeSecurityPrivilege privilege, used for almost all audit-
related configuration.

To enable auditing on an object, we must modify the SACL to
define rules for generating the events enabled by the policy. We
walked through examples of generating audit events
automatically, using the SACL, and manually, during a user-
mode access check.

We’ve now covered all aspects of the SRM: security access
tokens, security descriptors, access checking, and auditing. In the
rest of this book, we’ll explore the various parts of the Windows
platform that the SRM secures.

Windows Security Internals with PowerShell (Early Access) © 2023 by James Forshaw

	Forshaw_WindowsSecurityInternals_01
	Forshaw_WindowsSecurityInternals_02
	Forshaw_WindowsSecurityInternals_03
	Forshaw_WindowsSecurityInternals_04
	Forshaw_WindowsSecurityInternals_05
	Forshaw_WindowsSecurityInternals_06
	Forshaw_WindowsSecurityInternals_07
	Forshaw_WindowsSecurityInternals_08
	Forshaw_WindowsSecurityInternals_09
	Blank Page
	Blank Page
	Blank Page
	Blank Page

