
IT-SC book

ADO: ActiveX Data Objects

Jason T. Roff
Publisher: O'Reilly
First Edition June 2001
ISBN: 1-56592-415-0, 618 pages

This book is a one-stop guide to ADO, the universal data
access solution from Microsoft that allows easy access to data
from multiple formats and platforms. It includes chapters on
the Connection, Recordset, Field, and Command objects and
the Properties collection; ADO architecture, data shaping, and
the ADO Event Model; brief introductions to RDS, ADO.NET,
and SQL; and a comprehensive alphabetic reference to every
ADO object, method, property, and event.

IT-SC book 2

IT-SC book 3

Copyright © 2001 O'Reilly & Associates, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks
of O'Reilly & Associates, Inc. Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where those designations appear in this
book, and O'Reilly & Associates, Inc. was aware of a trademark claim, the designations have
been printed in caps or initial caps. The association between the image of an ivory-billed
woodpecker and ActiveX Data Objects is a trademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher assumes no
responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

IT-SC book 4

Preface
 Introduction and Organization
 Conventions Used in This Book
 Comments and Questions
 Acknowledgments

I: Learning ADO

1. Introduction to ADO
 1.1 ADO in Context: Universal Data Access
 1.2 ADO and COM: Language Independence
 1.3 When to Use ADO
 1.4 Summary

2. The ADO Architecture
 2.1 An Overview of the ADO Architecture
 2.2 ADO Components
 2.3 Summary

3. Accessing ADO with Various Languages
 3.1 Accessing ADO with Visual Basic
 3.2 Accessing ADO with Visual C++
 3.3 Accessing ADO with Visual J++
 3.4 Accessing ADO with VBScript
 3.5 Accessing ADO with JScript
 3.6 Summary

4. The Connection Object
 4.1 Opening and Closing a Connection: Implicit Versus Explicit
 4.2 Configuring Connections
 4.3 Choosing a Data Provider
 4.4 Executing Commands
 4.5 Managing Multiple Transactions
 4.6 Determining the Layout of Your Data Source
 4.7 Summary

5. The Recordset Object
 5.1 Cursors: Viewing a Recordset
 5.2 Working with Recordsets
 5.3 Navigating a Recordset
 5.4 Working with Records
 5.5 Lock Types: Managing Access to a Recordset
 5.6 Summary

6. Fields
 6.1 The Fields Collection Object
 6.2 Field Specifics
 6.3 Determining Field Object Functionality
 6.4 Summary

7. The Command Object
 7.1 Specifying Commands

IT-SC book 5

 7.2 Executing Commands
 7.3 Parameters
 7.4 The Parameters Project
 7.5 Asynchronous Execution
 7.6 Summary

8. The ADO Event Model
 8.1 Introduction to Events
 8.2 The ConnectionEvent Family
 8.3 The RecordsetEvent Family
 8.4 Canceling Operations
 8.5 Turning Events Off
 8.6 Summary

9. Data Shaping
 9.1 An Introduction to Data Shaping
 9.2 The Microsoft Data Shaping Service
 9.3 Shaping Commands
 9.4 Example: Accessing Shaped Recordsets
 9.5 Summary

10. Records and Streams
 10.1 The Record Object
 10.2 The Stream Object
 10.3 Summary

11. Remote Data Services
 11.1 RDS Object Model
 11.2 An Example in RDS
 11.3 More Information About RDS
 11.4 Summary

12. The Microsoft .NET Framework and ADO.NET
 12.1 The Microsoft .NET Framework
 12.2 ADO.NET
 12.3 ADO.NET Features
 12.4 Summary

II: Reference Section

13. ADO API Reference
 13.1 Finding the Reference Page
 13.2 Using the Reference Pages

III: Appendixes

A. Introduction to SQL
 A.1 Record Selection
 A.2 Data Manipulation
 A.3 Database Modification

B. The Properties Collection
 B.1 The Property Example

IT-SC book 6

C. ADO Errors
 C.1 Working with Errors in ADO
 C.2 The Errors Example

D. The ADO Data Control
 D.1 The ADO Data Control Property Pages
 D.2 Creating Connection Strings with the ADO Data Control
 D.3 The ADO Data Control Example

E. Enumeration Tables

Colophon

IT-SC book 7

Preface

This book is about ActiveX Data Objects (ADO), including Version 2.6, the latest release of
ADO from Microsoft at the time of publication. In this Preface, I will first briefly introduce ADO
and explain how the book is organized.

Introduction and Organization

This book is organized into three parts, as described in the following sections.

Part I: Learning ADO

ADO is Microsoft's advanced universal data-access solution, consisting of an object model-based
wrapper around OLE DB, which is a technology that allows data-access functionality to different
types of data sources. This allows companies such as Oracle, Microsoft, and Sybase to develop
what are called "data providers," to do just that -- provide data to the OLE DB technology. OLE
DB technology can work with all kinds of data sources, including relational databases such as
SQL Server or an email system such as Exchange. OLE DB and ADO can even deal with plain
text files and Excel spreadsheets. Chapter 1, and Chapter 2, provide more information on ADO,
related technologies, and the structure of key ADO components.

ADO adds a common programming interface to OLE DB, thus allowing developers to use
existing skills with multiple languages. ADO can be used with virtually any development
language that supports COM, such as Visual Basic, Visual C++, J++, JScript, and VBScript.
Developing with ADO in each of these languages is discussed in Chapter 3. ADO was designed
to encourage DAO and RDO developers to migrate to this new technology, without the burden of
the many different objects of DAO and RDO.

ADO is a lightweight, disconnected object model, which means that it has few objects, as
compared to DAO or RDO, and that the objects do not necessarily rely on each other. For
instance, one of the most common objects of ADO is the Connection object (Chapter 4). This
object establishes a physical connection with a data source. But you don't need it: the other
objects of ADO, such as the Command object, which issues textual commands to the data source,
and the Recordset object (Chapter 5), which is used to store a result set, can create their
Connection objects internally if they need to. Of course they use some default options, and hence
the advantage of creating your own Connection -- more power and control over your data access.

The Fields Collection object represents, unsurprisingly, a collection of fields contained in every
Recordset object. Chapter 6, explains the Fields Collection object, as well as the Field objects.

Another example of ADO disconnected object model is the Command object, covered in
Chapter 7. The Command object issues commands such as SQL statements. You can actually
issue statements through the Connection object if you don't mind using the default values. In this
case the Connection object creates its own Command object internally to get the job done.

Asynchronous operations are a very big selling feature with a data-access technology -- and ADO
definitely does not fall short in this category. With the ability to fire events when asynchronous
operations are executing and when they complete, ADO offers much greater control of your data

IT-SC book 8

access than did previous data-access technologies such as DAO. In addition to asynchronous
operations, events can be fired for transactions, connecting and disconnecting to a data source, as
well as moving around a recordset and changing values within it. Events are covered in Chapter
8.

One of the unique features of ADO is its ability to use the Data Shaping data provider, which
allows you to write code that can store hierarchical data within a single Recordset object. It
allows you to shape result sets into parent-child relationships, where a single field value can
contain an entire child recordset. Data shaping is covered in Chapter 9.

A newer functionality in ADO is the ability to connect to web resources with not only the
Recordset object, which stores result sets, but with the Record object, which stores individual
rows, and the Stream object, which represents the actual content of a resource, such as a file or a
directory. Chapter 10, explains these topics.

Remote Data Services (RDS) extends ADO functionality to three-tier web applications. Chapter
11, provides an overview of RDS.

Chapter 12, offers a glimpse into the next generation of ADO and related technologies, in the
form of ADO.NET and the .NET Framework and how they will interact with today's ADO
projects.

Part II: Reference Section

Part II consists of Chapter 13. For this chapter, I have compiled an exhaustive list of every
object, method, property, event, and enumeration in an easy-to-use alphabetical reference. See
also Appendix E.

Part III: Appendixes

Appendix A, provides just that -- an introduction to using SQL with the Microsoft Jet Engine
SQL language, including record selection, data manipulation, and database modification.

In Appendix B, I explain the Properties collection, which exists within and provides information
about ADO objects. ADO is a flexible framework that exposes the functionality of the data
provider. Nothing guarantees what functionality a data provider will actually provide your
application, but ADO does dictate the interface used for supported functionality. ADO has what it
calls "dynamic properties," which can be used to understand the functionality supported by the
data provider and to set data provider specific properties that aren't part of the ADO framework.
This flexibility that ADO offers contributes to its longevity.

Appendix C, lists trappable errors and data-provider errors, as well as methods for handling them.

Appendix D, explains the ADO Data Control Property Pages and how to create connection
strings with the Data Control property, including an example application.

The companion to the Chapter 13 reference is Appendix E, which alphabetically lists
enumerations used by ADO objects and collections.

About the Book

IT-SC book 9

This book covers ActiveX Data Objects up to Version 2.6. It covers every class, method, property, and
enumeration included with this release. This book has three sections; the first is a tutorial that explains how
each of these components work, with examples in Visual Basic along the way. The second part of this book
is a practical reference guide that allows you to easily look up any component to see every piece of detailed
information available for it. The third part of this book contains several appendixes providing related
information, as well as reference tables.

Although this book includes small sections on Remote Data Objects (RDO), ADO.NET (from
Microsoft's .NET Framework), and SQL, it by no means attempts to cover these subjects to any degree of
completeness.

Audience

While this book is intended for any person interested in learning about ADO, it is targeted more
specifically to the experienced Visual Basic developer who understands the basic principles
behind data access and manipulation. This book provides many introductions to secondary topics,
including SQL (Appendix A), RDS (Chapter 11), and others, in order to help the less-
experienced reader understand all facets of ADO in context.

This book assumes that you know how to develop in Visual Basic -- or you at least understand how to read
it. Knowledge of one of Microsoft's early database technologies (DAO or RDO) is helpful, but not
necessary.

Conventions Used in This Book

I use the following font conventions in this book:

Italic is used for:

New terms where they are defined

Internet addresses, such as domain names and URLs

Pathnames, filenames, and program names

Constant width is used for:

Code examples for Visual Basic, C++, Java, and other languages

Specific names and keywords in Visual Basic programs, including method names, property
names, variable names, enumeration names, constants, and class names

Constant width italic is occasionally used for placeholder items in code, replaceable by a
specific item in your code.

Comments and Questions

I have tested and verified the information in this book to the best of my ability, but you may find that
features have changed (or even that I have made mistakes!). Please let me know about any errors you find,
as well as your suggestions for future editions, by writing to:

O'Reilly & Associates, Inc.

IT-SC book 10

101 Morris Street
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

There is a web page for this book, which lists errata, any plans for future editions, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/ado/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, software, Resource Centers, and the O'Reilly Network, see
the O'Reilly web site at:

http://www.oreilly.com

IT-SC book 11

Acknowledgments

The people I need to acknowledge the most are the good folk at O'Reilly & Associates, starting with Ron
Petrusha, who put up with me while still insisting on a quality piece of work. John Osborn and Nancy
Kotary brought it home. Thank you very much for your expertise, guidance, persistence, and understanding.

I need to thank the technical reviewers who -- while they didn't go easy on me -- didn't beat me up too bad,
either. This includes Bob Beauchemin and Ben Willet's MDAC team over at Microsoft: Steve Hoberecht,
Rick Feinauer, and Irene Smith. I'd also like to thank the O'Reilly Production staff. Specifically, thanks to
my Production Editors, Jeffrey Holcomb and Sarah Jane Shangraw, and the additional Production staff who
worked on this book: Linley Dolby, Matt Hutchinson, and Claire Cloutier.

And last but not least, my wife, who put up with me working on this book, before we were married, after
we were married, before she was pregnant, while she was pregnant, and after she gave birth to my son,
Zachary -- the real reason I finished this book. I love you both.

IT-SC book 12

Part I: Learning ADO

IT-SC book 13

Chapter 1. Introduction to ADO

In today's computing environments, data exists in many formats, ranging from Access
and SQL Server databases to Word documents, email messages, and many others. ADO,
or ActiveX Data Objects, data-access technology simplifies use of data from multiple
sources, thus freeing developers from learning data, vendor-specific API calls, and any
other coding minutiae for each data format involved. With ADO, almost any data source
becomes accessible in a consistent way for developers creating standalone applications,
client/server applications, or ASP pages.

In this chapter, I define ADO in the historic and current context of Microsoft's overall
data-access strategy and related technologies.

1.1 ADO in Context: Universal Data Access

Microsoft's philosophy behind ADO and a series of related technologies is Universal
Data Access (UDA). UDA isn't a tangible product or technology, but rather a strategy for
attacking the problem of data access, whose goal is efficient and powerful data access,
regardless of data source or development language. Moreover, this universal access is
meant to eliminate the need to convert existing data from one proprietary format to
another.

With this lofty goal in view, Microsoft developed a series of technologies, collectively
known as Microsoft Data Access Components (MDAC), that allow developers to
implement UDA. MDAC consists of the following four key pieces:

ODBC (Open Database Connectivity)

OLE DB (Object Linking and Embedding Databases)

ADO (ActiveX Data Objects)

RDS (Remote Data Service)

These components implement the UDA vision both individually and as a whole. To best
understand ADO in context, you should have a basic understanding of each MDAC
technology and its relationship to ADO.

1.1.1 ODBC

Open Database Connectivity, or ODBC, provides access to relational databases through a
standard API, addressing the problem of native application -- and platform-specific APIs
and their lack of cross-application compatibility. ODBC's industry-standard architecture
offers an interface to any Database Management System (DBMS), such as SQL Server or
Oracle, that uses the standard ODBC API. The main drawbacks of ODBC are the amount
of work required to develop with it and its restriction to SQL-based data sources.

IT-SC book 14

Two COM components (Component Object Model -- see "ADO and COM: Language
Independence" later in this chapter) designed to help with ODBC complications are DAO
and RDO, described briefly in later sections in this chapter.

1.1.1.1 Jet/DAO

With the release of Microsoft Access 1.1 in 1993, Microsoft introduced the Jet Database
Engine, which worked with Access databases (Microsoft Access Databases, or MDB
files), ODBC-supported data sources, and Indexed Sequential Access Method databases
(ISAM, which includes Excel, dBase, and a few other databases).

Data Access Objects (DAO) was introduced as a means of interacting with Jet. DAO,
through COM, provided an object-oriented interface to Jet and Microsoft Access.

Jet and DAO were successful in their flexibility but added layers to the ODBC API and
were therefore more efficient for some databases (Access/MDB and ISAM) than others,
including Relational Database Management Systems (RDBMS). DAO is still widely used
today, but it is most appropriate for single-user, low-traffic database applications. The
problem with DAO, as many soon began to see, was that it was so full-featured that it
brought with it a profusion of objects. Figure 1-1 shows the DAO object model.

Figure 1-1. The DAO object model

IT-SC book 15

As you will see later in this chapter and in other chapters, ADO was designed to address
this and other problems with DAO.

1.1.1.2 RDO

Microsoft's response to the developer's need for easier access to ODBC data sources
came, in 1995, in the form of Remote Data Objects, or RDO. RDO provided more direct,
and therefore faster, access to the ODBC API, as well as support for RDBMS sources.
With RDO, the emphasis moved from data-access methods designed for ISAM databases
toward techniques to provide for stored procedures and the results that they returned.
RDO lacked some of the power that DAO offered with Jet (for instance, RDO is not
designed to access ISAM sources and does not allow the creation of new databases), but
it offered more power for newer, more robust enterprise systems.

IT-SC book 16

The problem with RDO is that it is very different from the DAO architecture, which means two
things. First, developers had to learn a new interface, and second, converting an existing DAO
application to RDO involved a lot of additional development, because almost every piece of RDO
differed from DAO, as you can see by comparing Figure 1-1 and Figure 1-2 (the RDO object
model). With the introduction of RDO, developers chose between DAO and RDO instead of
moving directly to RDO and abandoning DAO.

Figure 1-2. The RDO object model

1.1.1.3 ODBCDirect

ODBCDirect was provided as part of a later release of DAO; to save time, it allows
developers to work directly with Access sources without using Jet as the go-between. It is
similar to DAO's object model but includes RDO's direct access to remote data sources.

1.1.2 OLE DB

ODBC provides access only to relational databases. Its successor, Object Linking and
Embedding Databases (OLE DB), includes all other data sources. OLE DB is the
foundation upon which ADO relies.

OLE DB provides the following features:

Access to data regardless of its format or location (via COM -- see "ADO and COM: Language
Independence" later in this chapter)

IT-SC book 17

Full access to ODBC data sources and ODBC drivers

A specification that Microsoft wants to act as a standard throughout the industry

OLE DB comprises four types of components; Figure 1-3 shows their relationships, which are
described here:

Data consumer

Any application or tool that accesses data from a data source. While the API calls that are
available to access the data in your database are considered data providers, the application that
uses that data itself is a data consumer, since it requests the data from the data provider.

Data service provider

The engine that makes OLE DB work; the resource necessary for a data provider to be able to
provide data. A data service provider is a modular or add-on component that allows an
application to deliver data through OLE DB. Data service providers are usually provided by the
vendor for major products such as Oracle, DB2, and Informix. Microsoft promotes the creation of
data service providers by either the manufacturer of the data provider or a third-party company.

Business component

A go-between for a data provider and a data consumer. In today's development environment, it is
becoming more and more important not to develop in such a way that every object in your
application manipulates your data. With a business component that you call to access your data,
which in turn calls your database access component (ADO, RDO, ODBC, OLE DB, or ADO),
then you need only modify the code in that business component.

Data provider

A component (application or database engine, for example) that delivers data from a data source
(such as a database, spreadsheet, or email message) in a consistent manner.

Figure 1-3. OLE DB component relationships

ODBC, as we have just seen, is an excellent technology for accessing SQL-based data.
OLE DB incorporates this proven technology with a particular component that allows
OLE DB consumers to communicate directly with ODBC providers. In other words, use

IT-SC book 18

OLE DB to access SQL-based data, and you gain the advantage of being able to access
both relational and other forms of data with the same code.

As they have done with ODBC, Microsoft is actively encouraging software vendors and
tool developers to support the OLE DB standard within their applications and tools.
Widespread standardization is an advantage for developers; with OLE DB, we can ensure
that our applications become more robust and more powerful as they span the enterprise.

Keep in mind that OLE DB was designed for software vendors who develop data-based
applications to expose that data to you, an end-user developer, through a consistent
interface. OLE DB is fast, efficient, and powerful. It has everything a developer looks for
in a data-access technology. It offers access to any data source known to man (or to
Windows, for that matter), and it provides access to these data sources with a consistent
interface, regardless of data source. The problem with OLE DB is that, like ODBC, it is
inaccessible to Visual Basic and other developers, because it is based on a C-style API.
Visual Basic developers, in particular, needed more.

1.1.3 ADO

Enter ActiveX Data Objects (ADO). ADO, an application-level interface to OLE DB, is
the latest, greatest piece of Microsoft's UDA strategy. It combines the best features of its
predecessors, DAO and RDO, and adds OLE DB accessibility for VBA programmers.
ADO provides a consistent, language-independent means to access data from almost any
source, including text-based or other legacy data in relational and nonrelational formats.
(You can now see why I needed to explain some of the alphabet soup before getting to
ADO itself.)

ADO comprises a collection of object libraries in a new, modular object model: in this
new model, many objects can exist independently of the others, as you will see in later
chapters of this book. The ADO object model is more flexible than the DAO object
model, but it's similar, so programmers familiar with DAO will feel at home with ADO.
ADO is a smaller version of DAO, generalized to allow easy access to any data source,
not just Jet databases or ODBC data sources. The ADO object model simplifies data
access more than DAO or RDO did by using fewer objects. See Figure 1-1 and also
Chapter 2, for more information.

Used with OLE DB, ADO provides fast, simple access to almost any data source. It
allows developers to use a single, consistent interface to new and legacy databases and
other data sources of all formats, when creating desktop -- or web-based -- applications.

ADO can also use the OLE DB provider for ODBC. Instead of removing the already
proven and tested code for ODBC drivers, ADO allows you to use ODBC through the
same interface you would for OLE DB. This may be an option when you have code you
are migrating from RDO, which already uses ODBC.

ADO breaks the common characteristics of all data sources into easy-to-use components
(which we will look at in Chapter 2). Consistency and language-independence are

IT-SC book 19

provided, so that developers can worry more about the content and quality of applications,
rather than about the techniques used in delivering data or the type of data being used.

What does language-independent development mean? It is quite simple -- one technology,
one development interface. You will use the same object, method, and property names
with ADO, regardless of the development language that you are using. The difference is
almost unnoticeable. Under the covers, ADO, through COM (Component Object Model),
worries about the particular language you are developing with, whether it is Visual Basic,
Visual C++, or Java. Even scripting languages, such as VBScript and JavaScript in
HTML pages are supported. We will look more closely into programming for these
different languages in Chapter 3.

With this feature, you might expect that a lot of specific functionality of data sources
would be lost. On the contrary, ADO allows the developer to access any data source-
specific commands, methods, properties, and utilities that the vendor has made available
through OLE DB. And yes, ADO does this in a well-structured, consistent way. Can you
possibly ask for more?

As we will see in chapters to come, an application can be designed to access a simple
database, such as Access, and with a little bit of additional code, it can later access more
intricate databases, such as SQL Server databases, Word documents, or email files. The
only real coding necessary involves altering the connection string used in ADO to read
the new data source. This powerful technology will help us move into the future as
applications begin to grow across enterprises.

1.1.4 RDS

The final piece of data-access technology in this list of the MDAC components is Remote
Data Services (RDS). RDS, based on existing Active Data Connector (ADC) technology
integrated into ADO, transports ADO objects via proxy between server and client, thus
allowing developers to create web-based applications that can access data on the server in
new ways. Some of the advantages of RDS are:

Client-side caching of data results

Ability to update data from the client

Support for data-aware ActiveX components and controls

Client-side caching is something that we will all grow to love. With it, clients (end-users)
are able to view data from the server without making numerous round trips. For instance,
when you are using a search engine on the Internet, such as Yahoo!, you receive a list of
links that relate to your search, usually in groups of tens. If you want to see the next ten
sites from the resulting search, your browser must make another request to the server.
With client-side caching, all of the data is sent to the client, so that the client can browse
this data without incurring time delays that are associated with additional requests. This
feature reduces local-area network and Internet traffic and allows the end-user to move

IT-SC book 20

freely through data without unnecessary pauses and to perform operations on that data,
such as sorting and filtering.

With RDS, web pages can now offer the client the ability to interact with and alter data.
This data can be sent back to the server after manipulation. At the server, the data can be
verified and then returned to the data source. With this technology, your client/server
applications can span the Internet (or your intranet). Clients can now invoke server-side
automation objects through HTML, meaning that particular business rules (chosen by the
developer) can be accessed via the client.

RDS enables three-tier client/server applications, with the model shown in Figure 1-4.

Figure 1-4. The three-tier client/server web-based application model

With automation objects, your application can become an auto-downloaded application.
For businesses with a large number of client-side users, you can create, maintain, and
update your application on the server alone. When clients run your application, they can
use an ActiveX-aware browser (Internet Explorer) to access the application. With auto-
download features built into the browser, the client receives an updated version of the
application.

RDS also supports data-aware ActiveX controls that can be placed within an HTML page
on a client. For instance, if you want to allow the client to view a list of documents that
you have stored in your data source on the server, you could link RDS to an ActiveX list
box control that is placed in the HTML page and downloaded to the client. The control
interacts automatically with RDS, without any additional programming, to download all
of the document names.

IT-SC book 21

See Chapter 11, for a more detailed introduction to RDS.

1.1.5 Putting It All Together

With the addition of RDS to its MDAC family of components, Microsoft has integrated
several useful existing technologies into the universal data-access strategy: IE data-access
technology for data-bound web pages, remote data capability through RDS, and ASP/IIS-
related technologies for better access to data services via the Internet. The result allows
applications to work with data offline to reduce network traffic, update data on remote
clients, and gather data asynchronously for faster response time.

Figure 1-5 shows the relationships and dependencies of the MDAC components.

Figure 1-5. MDAC architecture

As you can see from Figure 1-5, your application can use a number of different
Microsoft-supplied technologies to access SQL -- as well as non-SQL and legacy -- data,
such as that residing on a mainframe.

Until ADO, we had four choices: DAO, RDO, ODBC, and OLE DB. DAO served its
purpose well: it used the power of the underlying (Jet) database engine to access
Microsoft and other ISAM data sources. With RDO, things were even better with its
easy-to-use interface to ODBC and ability to access almost any SQL data source.
Accessing ODBC directly was always a possibility, but it was questionable whether the
overwhelming amount of work was worth the extra speed gained in the process. Finally,
OLE DB offered everything under the sun. It offered access to ISAM, SQL, non-SQL,

IT-SC book 22

and legacy data. However wonderful OLE DB was, it is considered the most difficult
interface with which to develop to access data sources. This is where ADO comes into
play. ADO reports directly to OLE DB and no one else, meaning that it provides an
interface to the whole complicated mess, about which we need to know little or nothing.

ADO provides a consistent development interface to the wonders of OLE DB, and it does
so while being language-independent.

1.2 ADO and COM: Language Independence

Microsoft's Component Object Model, better known as COM, is a mature technology that
offers universal access to components, regardless of the language in which they were
programmed. This is the backbone that allows ADO, through OLE DB, to be so versatile.
To understand how COM allows ADO to be language-independent, you must first
understand what COM is and what it achieves.

1.2.1 COM

COM is technology specification for writing software components that interact through a
standard interface. The COM specification is strictly a binary specification. This
guarantees that the language in which a COM object is developed has absolutely no
importance once the object is compiled, as long as its adheres to the binary specification.

The COM specification sets rules for creating and managing component objects. This
specification guarantees that all COM objects are compatible and that they expose a
minimal set of interfaces. These interfaces allow COM objects to communicate with each
other whether they are on the same machine or supported by networks. Since the COM
specification relies on binary compatibility, COM works across heterogeneous networks.
In other words, COM objects can run on any machine, even without the Windows
operating system.

A particular type of COM implementation is OLE Automation, or simply Automation.
Automation is a standard way for COM objects to expose their functionality to software
products, development languages, and even scripting languages. The use of Automation
allows applications to actually manipulate other applications through the exposed features
and functionality of the latter's COM objects. Automation allows two applications to
communicate with each other.

An example of this type of manipulation is a Visual Basic add-in. Visual Basic exposes
an object model through the COM technology to any other component that wishes to
interact with it. You can create an add-in for Visual Basic that works seamlessly with the
product, through the use of Visual Basic's exposed features. As a matter of fact, many of
Microsoft's products expose their features through COM, including the Microsoft Office
family of products. Microsoft Word, for example, exposes its functionality through COM
and allows itself to be manipulated through scripting with VBA (Visual Basic for
Applications).

IT-SC book 23

When a COM object is exposed through OLE Automation, that object is then called an
ActiveX object or an ActiveX server. The application or tool that manipulates the ActiveX
object is called an ActiveX client.

1.2.2 ADO and COM

As a COM technology, ADO has the ability to communicate with any data source that
provides an OLE DB interface. ADO and OLE DB share the same backbone -- COM.
Figure 1-6 shows COM at work with ADO and OLE DB. When ADO communicates
with a data provider at the simplest level, two COM objects are exchanging information,
regardless of the connection between them.

Figure 1-6. ADO and COM

Also, COM has the ability to send events or notifications to other COM objects. This
capability is used in ADO, as we will see later on when we execute queries. We have the
ability, through ADO, OLE DB, and finally COM, to send a request for a selection of
records through SQL and then to be notified when it has completed processing.

What is even better is that COM has been around for a long time, has gained the respect
of application and tools developers, has a proven track record, and is supported by
Microsoft. COM's architecture does not change between programming languages or
operating systems; thus, neither does ADO.

COM objects are easily distributed. They have the ability to communicate across
machines and enterprises. This advantage is embraced with ADO through RDS, or
Remote Data Service, which I will be talking about in Chapter 11.

As you can see from this very limited introduction to COM, ADO stands upon OLE DB,
which relies heavily on COM to communicate with other COM objects. This can do
nothing but benefit us as developers, because it enables communication with objects that
aren't necessarily written in the same language.[1]

IT-SC book 24

[1] For more information, see Inside COM by Dale Rogerson (Microsoft Press, 1997).

1.3 When to Use ADO

ADO is language-independent, as discussed earlier. This means that no matter which
language you are developing with -- Visual Basic, VBScript, Visual Basic for
Applications (VBA), Visual C++, Visual J++, or JavaScript -- the development interface
is identical. This allows developers to become familiar with the technology itself, instead
of worrying about learning a half-dozen different programming syntaxes for that
technology. I suggest that you use ADO whenever your application fits into any or all of
the following categories:

Your application accesses or may later need to access more than one data source.

Your application accesses or may later need to access data sources other than ISAM or ODBC
databases.

Your application spans or may later span a heterogeneous network.

Your application uses or may later use multiple languages.

If your application needs to access more than one type of data source, then you should
consider integrating ADO technology into your application. For instance, if you were
designing an application that had to search Word documents, email messages, and a SQL
Server database for keywords and then to show related information based on that query,
ADO is the best choice. With ADO, you can create a component to search all three of
these data sources using identical code, saving you time in development, as well as in
maintenance and upkeep. This choice also provides the option of adding a fourth data
source to your application at some later time with little or no additional overhead in
development.

If your application may access data sources other than conventional ISAM or ODBC
databases, you should use ADO. With ADO, you can search through an Excel worksheet
just as if you were searching through email messages. If you use some other technology
besides ADO, you must not only code two different components, one for each data source,
but you also need to learn that other technology. In this case, you would have to research
MAPI API calls, as well as Word document file structures. And then what happens when
Word comes out with a new version? Or what about when more APIs are added to MAPI?
You could easily ignore these until your application becomes so outdated that it renders
itself useless. With ADO, you simply use the data service providers supplied by
Microsoft for both Excel and Word so that the ability to access and manipulate these data
sources are exposed identically through ADO.

If your application has or may spread across a heterogeneous network, such as the
Internet or your corporate intranet, you should use ADO. For instance, consider an
application that is deployed from your company's server to each employee. This
application might access data stored on a mainframe containing legacy data. From this
point, ADO serves as a driver to access data on this mainframe platform. This alone

IT-SC book 25

would save you valuable time and effort, because in order to access the mainframe data
source by some other means, you would have to write custom drivers, or even worse,
spend a fortune on a third-party tool that might not do everything that you want. Even the
client side would benefit from ADO. Suppose you have employees that don't have a
Windows machine in front of them, but who need access to the same data that someone
running Windows has. Other employees might use a Sun workstation, for instance. As
long as they use a browser that supports ActiveX technology, such as Internet Explorer, it
is as if they are running the same application. In addition, if your application is prone to
updates or fixes, by deploying it over the network using Internet Information Server (IIS)
along with Active Server Pages (ASP), you can automatically (and transparently) update
the client's version of the application each time it changes.

If your application uses multiple languages, especially if they are in the same tier of an n-
tier client/server architecture, then ADO is the best choice. If you are the only developer
of an application, or even if there are a handful of developers, then by sticking to a
language-independent data-access technique, you eliminate the need to know multiple
implementations of the same technology. For instance, if your application has business-
rule components that update the data source, query the data source, or delete from the
data source, it is very likely in today's development environments, that each component
could be written in a completely different language. By fully understanding ADO, you
can make the best use of the same technology in each of these languages.

On the other hand, there are a few cases in which you shouldn't use ADO. If your
application falls into any of the following categories, an alternative method of data access
might be preferable:

Your application is already too far along to redesign and currently does not support business
components for data access.

Your application needs to read in only text data from a flat file, which cannot be broken down
into logical rowsets.

Your application saves data in your own format, and you do not wish to offer others access to
your data through OLE DB.

If your application is already under development, it's probably too far along to turn back
now. If it does not support business components for data access, you might not have a
choice in converting to ADO. If the data-access technology, whether DAO, RDO, or
something else, has not been placed within designed business components to handle the
data access, you would most likely spend more time rewriting your application to support
ADO than is justified.

By using business components in your applications, you can alter a few areas of code to
achieve a widespread result. In this case, if your application had a component to read
from your data source and a component to write to your data source, your application
would call the business components rather than calling DAO, RDO, or even ADO
directly. When a new technology such as ADO comes along, you simply change the two

IT-SC book 26

components, as opposed to changing every location in your application that now calls the
components.

If your application will read in only text data from a flat file, which cannot be broken into
logical rowsets of data, you may be better off using the Visual Basic Open statement, or
the file-access statement equivalent for the language you are developing in. For instance,
if your application displays a readme text file in a registration screen, can you imagine
opening up a database and using the rowset methodology on streamed text? You should
use the Open statement, if you're using Visual Basic, to read in the readme text file
yourself. ADO is overkill in a situation like this.

If your application is going to save state information or other data and will not allow
others to view this data through OLE DB or any other conventional database technology
(DAO, RDO, ODBC API, or ADO), you may not want ADO. To ensure the security of
your data, it would be wise for you to write your own functions for storing and retrieving
information from an encrypted binary file. This binary file would have a structure that
only you, as the developer, would be aware of, as opposed to the structure of an OLE
DB-enabled file, which can be read at runtime. Of course, even though nobody knows the
structure of your binary file, people are smart -- they could figure it out. To ensure that
people can't see the data, you must encrypt it. For instance, you might want to write an
application that does your taxes for you (and pretend that nobody else ever wrote a
program like this before, so that we have a reason to do it now). After a year of entering
financial data, the user can automatically print tax reports and forms that can be sent the
government. The data that is entered all year long obviously has to be saved somewhere,
but the question is where. My suggestion in this case would be to create a binary file in
your own data structure, hiding that structure from the outside world. This file will hold
personal financial information that you really don't want other people to have access to.
With ADO, you would be exposing it to the world, whether you wanted to or not.

1.4 Summary

This chapter introduced ActiveX Data Objects, along with the closely related evolution of
Microsoft data-access technologies. You also learned when to use ADO, the newest of
these technologies. Following is a list of some key items, pointed out in this chapter:

ADO offers access to virtually any data source on any platform by being a data consumer of OLE
DB. OLE DB is an industry standard promoted by Microsoft for exposing data, regardless of its
source or format, in a uniform way. With the power of OLE DB, used via ADO, you gain access
to any data source that provides an OLE DB interface.

ADO offers ease of use when writing data access applications. Since ADO was created with a
similar design to DAO (Data Access Objects), developers are familiar with the object architecture.
And since the development interface is consistent, you can develop for any OLE DB data source
with ADO using the same syntax.

ADO offers language-independence and thus offers developers a choice of languages. With any
language, including Visual Basic, VBScript, VBA, Visual C++, Java, and JavaScript, the

IT-SC book 27

development interface remains the same, which allows developers to focus on the ADO
technology, not the implementation.

Throughout the rest of this book, you will learn how to use ADO with any development
language. You will learn every object, collection, property, and method of ADO and how
you can use each of them to access the power of OLE DB in your applications.

IT-SC book 28

Chapter 2. The ADO Architecture

In this chapter, we take a look at the ADO architecture; in the first section, "An Overview
of the ADO Architecture," I describe how all of the pieces of ADO fit together to perform
all of the functions that are necessary when accessing data sources. The remainder of the
chapter is dedicated to the introduction and brief description of each of the key
components of the ADO architecture.

2.1 An Overview of the ADO Architecture

ADO is built upon layer after layer of solid, proven technologies that allow applications
to communicate with data, regardless of where it resides or how it is structured, using any
language or scripting language. How can one technology offer techniques to access both
relational databases and nonrelational sources such as email?

ADO is the lowest common denominator when it comes to data access. It makes no
assumptions when it comes to its data sources. Because ADO cannot assume that the data
source being accessed is even a database, it must use objects, methods, and properties
that are relevant to all data sources.

With ADO, the data provider (as described in the previous chapter, the connection
between the data consumer, or application), not the data consumer, creates the driver for
a data source. What this means is that the version of ADO does not dictate the data
sources that are available to us; rather, it dictates the functionality that is passed through
from the data provider to our software. The burden is on the data provider or vendor to
create and distribute the proper resources necessary to develop with their product. ADO
is a framework; the behavior of the OLE DB providers can vary widely. ADO does not
require that all interfaces and functionality be offered by each provider.

By designing the architecture of ADO as a simple generic interface, ADO is not tied to a
specific command type, but is capable of growing with the needs and the abilities of both
developers and data sources.

A powerful feature of ADO is its ability to offer the functionality of a particular data
source. If your data provider supports stored procedures, for example, then you can use
them. In Chapter 4, we take a look at a number of popular providers and their specific
functionality.

ADO has already proven to be a very well-thought-out interface for data access, which is
worth its weight in gold because it is so very robust and scalable, in addition to being so
easy to use.

In the second half of this chapter, I will take a closer look at how each of the major
components of the ADO architecture fit together to achieve its desired goal of a generic
data-access interface.

IT-SC book 29

ADO Versus DAO and RDO

DAO assumes that it's working with a Jet engine and an Access database. RDO
also makes an assumption -- specifically, that it is working with an ODBC data
source. With DAO, a Database object is used to connect to a particular database.
The type of database must be picked from a list that is stored in the version of
DAO that you are using to develop your application. If a database is not
included in the current list, you are out of luck -- you cannot access that
database with the version of DAO that you have. ADO has been designed to
work with any data source, regardless of version. As long as an OLE DB
provider driver is available, you can access that data.

The problem with DAO is that it is too tightly bound to the Microsoft Jet engine.
The problem with RDO is that it is too tightly bound to the ODBC API. In
contrast, ADO is fitted loosely around the concept of data access and the
assumption that all data can be visualized as collections of fields that constitute
records. ADO's approach to data-access interfaces allows it to remain up to date
with new types of data structures and data-access techniques. If a new type of
data query is later invented, as long as a particular OLE DB data provider
supports it, ADO can take advantage of it through the use of a Command object.

To summarize, ADO has a smaller object model than DAO because it has been
generalized to allow easy access to any data source, not just Jet databases or
ODBC data sources. Its architecture is very similar to that of DAO, but it
simplifies data access more than DAO or RDO did by using fewer objects.
Because the same interface can be used to access any type of data source, ADO
is easier to use.

2.2 ADO Components

ActiveX Data Objects consists of a generic-style data-access structure that allows you to
access any data source, regardless of its structure, with the same programming interface.
The individual objects within the ADO object model are used to provide all of the data-
storage, manipulation, and retrieval commands needed when writing a data-based
application. ADO includes the following objects and collections:

The Connection object

The Command object

The Parameters collection and the Parameter object

The Recordset object

The Fields collection and the Field object

IT-SC book 30

The Record and Stream objects

The Properties collection and the Property object

The Errors collection and the Error object

In the next sections, I take a closer look at these objects and collections.

2.2.1 The Connection Object

The Connection object is the gateway for all data communications through ActiveX Data
Objects. Figure 2-1 illustrates the Connection object's object model.

Figure 2-1. The Connection object's object model

In order to access data from any source, a connection for that source must first be
established. ADO uses the Connection object to accomplish this. The Connection object
uses information that you provide to establish a unique connection to a particular OLE
DB data source. The standard information that a Connection object accepts includes
filenames, data-provider names, usernames, and passwords. If your particular data
provider needs additional information, this information can be passed from the
Connection object directly to your data provider. By allowing this form of pass-through
of connection specifications, ADO does not make any assumptions or restrict itself to one
type of data source. All of the functionality of the chosen data provider is made available
through the use of the Connection object.

A Connection object is used to accomplish the following tasks:

Select a data source and data provider

Open and close a connection on a selected data source

Manage transactions on a data source

Execute queries on a data source

Connection objects can be created explicitly and used later with the Command and
Recordset objects, or the Connection object can be created by the Command and
Recordset objects implicitly, behind the scenes.

In addition, the Connection object reports errors through an Errors collection and
provides ADO version information. The Connection object is examined in greater detail
in Chapter 4.

IT-SC book 31

2.2.2 The Command Object

The Command object is used to execute instructions -- whether for storing, manipulating,
or gathering information -- on a specific data source. Figure 2-2 shows the Command
object's object model.

Figure 2-2. The Command object's object model

Once you're connected to a data source, you naturally want to perform some operation on
it. One of your options is to use the Command object, which executes commands against
the associated data source. There are five types of commands that a Command object can
execute:

A SQL statement

Probably the most popular type of command, a SQL statement can gather information,
manipulate information, or manipulate the structure of the underlying database.

A parameterized query (a query with input and output parameters)

A parameterized query uses variables that set or return values that are part of a particular
query or SQL statement.

A stored procedure from within the current data source

A stored procedure is a query that resides within the connected data source. By
identifying the name of a stored procedure, you can execute, through the data provider, a
query that is defined outside of ADO. Stored procedures can also use parameters.

A statement to open a single table

An open table-type statement does not query data, but instead returns all of the fields in
all of the records belonging to the specified table. This is comparable to the DAO
OpenTable method.

A string command passed directly to the data provider

A string command enables the data provider to perform a specific operation that is
defined by the provider itself and outside of ADO. Such a command is commonly used,
for example, when a particular data provider offers its own version of the SQL language.
In such a situation, ADO has no idea how to process a proprietary SQL string for this
language, so you tell ADO to forward it directly to the data provider. The data provider,
in turn, can take this string and process a result that can be sent back through ADO to
your application. The OLE DB provider for Internet Publishing, for instance, allows the
passing of a URL statement to identify a data source, within the Command object.

IT-SC book 32

If the Command object is used to retrieve data, then a Recordset object containing the
requested records is created and passed back to the application.

The Command object can be associated with a currently open connection, or it can be
created independently of any existing Connection objects, in which case the Command
object creates its own Connection object but does not share it with you.

The Command object is discussed in Chapter 7.

2.2.2.1 The Parameters collection and the Parameter object

The Parameters collection belongs to the Command object. This collection stores
Parameter objects that are used to make parameterized queries or to invoke stored
procedures. Every Command object has a Parameters collection created by ADO. You
can populate the Parameters collection, or it can be refreshed to retrieve the already
defined parameters -- for the Command -- from the data source.

The Parameters collection and the Parameter object's object model is displayed in
Figure 2-3. This collection and object combination defines the characteristics of
parameters when referring to a parameterized query or defines the input and output
arguments when referring to a stored procedure.

Figure 2-3. The Parameters collection and the Parameter object's object
model

With the Parameter object, you can set or read the name, value, and characteristics of a
given parameter. If you know this information beforehand for any stored procedure or
parameterized query, you can potentially save valuable time by creating Parameter
objects yourself that ADO would otherwise spend trying to learn this information.

The Parameters collection and the Parameter object are covered in Chapter 7.

2.2.3 The Recordset Object

A Recordset object is used to access data on a record level. Figure 2-4 illustrates the
Recordset object model.

Figure 2-4. The Recordset object model

IT-SC book 33

A Recordset object can be created by the developer to return data itself, or it can be
returned from executing a command with a Connection or Command object. This
information can be obtained from a table in the underlying data source or from a previous
SQL statement, query, or stored procedure executed through the Command object.

The Recordset object consists of a Fields collection of individual Field objects, each with
its own properties, characteristics, and values. (The Recordset object may be familiar to
you if you have worked with DAO before.)

The Recordset object works well with all types of data because it relies on the ability of
all data to be broken into structured records composed of one or more fields. It is easy to
see this structure in a database, but what about a data source such as a directory? In this
case, each file in the directory may be a record. Each field of this record might be a
different attribute of that file, including its name, its size, its creation date, its last
modification date, its contents, etc. It is important to realize that all stored data can have a
structure that represents records with fields that are located within tables, just as in a
more obviously structured database.

With the Recordset object, we can move a virtual record pointer around a list of records,
searching for records, placing bookmarks, and editing specific values of designated fields.
We can also add and remove records from the recordset. We can view and edit the
properties of the fields that make up these records.

Recordset objects, like Command objects, can be created using an existing Connection,
or Recordset objects can implicitly create their own Connection object, which is not
automatically passed back to your application, unless you request it. Recordsets show you
one record at a time. With this view, you can manipulate data any way that you would
like through a Fields collection or Field object, which are discussed next. Multiple
Recordset objects can access the same data, and, as a matter of fact, Recordset objects
can even be cloned using a special method that we will look at in the Section 5.2.6 of
Chapter 5.

There are four types of cursors available in ADO. A cursor is a way of working within a
result set or records. Each provides a different view of the same data, and each has its
pros and cons. Not all providers support every type of cursor. The four types of cursors
are:

Forward-only cursor

The forward-only cursor is exactly the same as the static cursor except that you can only
move forward through the records in your recordset. Unless you specify otherwise, this is
the default view of a recordset, and it offers the best performance of all four recordset
types.

Dynamic cursor

This view of your data source allows you to see dynamically any additions, changes, or
deletions made by other users of the data source. The dynamic cursor is the most
resource-intensive type of recordset.

IT-SC book 34

Keyset cursor

This view of your data source only allows you to see modifications made to the data in
your recordset by other users. It does not show you records that have been added by other
users, and it denies you access to records that have been deleted. The keyset cursor offers
slightly better performance than the dynamic cursor.

Static cursor

The static cursor offers you a snapshot of your data through the Recordset object. The
static cursor does not show you any additions, modifications, or deletions of the records
in your recordset, regardless of what other users are doing to it. It is generally used for
data gathering and reporting in a multi-user environment. The static cursor offers
abundant speed advantages over both the keyset and dynamic cursor.

The Recordset object offers two types of data updating: immediate update mode and
batch update mode. In the immediate update mode, changes are made one record at a
time. Once you have indicated that you have finished updating a record, the information
is immediately transferred to the underlying data source and written. On the other hand,
the batch update mode allows the data provider to cache several records in memory to be
sent to the data source in a single call, where it is then written as a batch.

The Recordset Object is covered in detail in Chapter 5.

2.2.3.1 The Fields collection and the Field object

The Fields collection belongs to the Recordset object and the Record object. The Fields
collection is a group of Field objects that represent individual columns in a recordset.
Figure 2-5 shows the Fields collection and Field object's object model. Every
Recordset object and every Record object has a Fields collection that is created by ADO.

Figure 2-5. The Fields collection and the Field object's object model

The Field object offers the developer complete access to the underlying data of a chosen
recordset. The Field object makes available its field's name, value, data size, and
attributes. With this information, we can read, alter, and verify field information within
the current record of our recordset.

Both the Fields collection and the Field object are discussed in Chapter 5.

2.2.4 The Record Object

IT-SC book 35

The Record object is one of the newest additions to the ADO object model added with
Version 2.5. It can represent either a single record within a Recordset object, or it can
represent a resource within a hierarchical data source. A Record object can be obtained
from a Recorset object (representing a single record of the complete recordset), or it can
be created as a standalone object to represent a resource such as a file or a directory.
Figure 2-6 shows the Record object's object model.

Figure 2-6. The Record object's object model

One of the unique features of the Record object is that it can be used to navigate
hierarchical data sources such as a file directory. By using the OLE DB provider for
Internet Publishing, the Record object allows the developer to access resources within a
web server (files and directories).

The Record object allows for file and directory manipulation, such as copying, moving,
and deleting resources. In addition, the Record object can be used to access the actual
data belonging to one of these resources through the exposure of a default Stream object.

The Record object is discussed in Chapter 10.

2.2.5 The Stream Object

The Stream object was added at the same time as when the Record object was added to
ADO with Version 2.5. The Stream object is used to view and manipulate text and binary
data belonging to a resource such as a file or a buffer in memory. A Stream object can be
obtained from a Record object or it can be created as a standalone object. Figure 2-7
shows the Stream object's object model.

Figure 2-7. The Stream object's object model

An additional feature of the Stream object is its ability to be created independently of a
specified data source. In other words, the Stream object can be created in memory and
need not be tied to any predefined data. In this way, the Stream object can be used as a
utility object such as a buffer. Added functionality allows the Stream's buffer to be
persisted (saved to the datasource) to local files in any directory.

The Stream object is discussed in Chapter 10.

2.2.6 The Properties Collection and the Property Object

IT-SC book 36

The Connection, Command, and Recordset objects each have their own Properties
collection. The Properties collection consists of individual Property objects that hold
specific information about their associated objects. These collections are supplied
automatically by ADO. Figure 2-8 illustrates the Properties collection and Property
object's object model.

Figure 2-8. The Properties collection and the Property object's object model

In order to fine-tune all of these objects -- the Connection, Command, Recordset, and
Field objects -- ADO offers the Properties collection. This collection contains individual
Property objects that allow dynamic characteristics of the data source belonging to the
current data provider to be accessed within each object. The Property objects may inform
you of special features that are unique to the data source and are not standard ADO
functionality. The Property objects may also tell you what standard ADO functions are
supported by the current data provider so that you can avoid problems when attempting
particular commands. With this ability, we can determine at runtime the capabilities of
the data source that we are trying to access. This allows our software to realize the full
potential of data-source drivers.

One of the more flexible features of ADO is that it can offer the developer data provider-
defined functions that are not part of the standard ADO specification. For instance, the
Microsoft Cursor Service for OLE DB offers dynamic properties that are used to specify
how often calculated and aggregate columns are calculated within a data-shaping query.
Instead of working with only the lowest common denominator in data-access techniques,
ADO allows your application to check for and take advantage of functions that are
specific to a particular data provider. Each data provider uses the Property objects of the
Properties collection differently, but they all use it to expose their special functionality.
Consult the documentation of the data provider you are using in your application for
more information on how to utilize the Properties collection and the Property object.

The Properties collection and Property object are covered in many chapters throughout
this book. For the Connection object, they are covered in Chapter 4. For the Command
object, they are covered in Chapter 7. And for the Recordset and Field objects, they are
covered in Chapter 5.

2.2.7 The Errors Collection and the Error Object

IT-SC book 37

The Errors collection belongs to the Connection object but services all of ADO. The
Errors collection is populated with Error objects whenever an error occurs within a single
ADO data-access operation. Figure 2-9 shows the Errors collection and the Error
object's object model.

Figure 2-9. The Errors collection and the Error object's object model

The Errors collection contains errors and warnings that are generated both by ADO and
by the individual data provider being used. These messages allow us to scan and trap
errors that arise when we access data sources. If ADO detects the error, then ADO will
throw the error. But if the error is provider-specific, the data provider passes it back to
ADO, which will report the error to you. What is nice about ADO's error capabilities is
that they can tell you where an error was generated and which object produced the error.

An Error object is added to the Errors collection whenever an error occurs within ADO.
The Errors collection is cleared right before a method that can generate an error is called.
An Error object provides a description of the error, an error number, the name of the
object that generated the error, the capability to access Windows help files based on the
particular error, and error information from SQL data sources. An error object can also
contain a warning that does not halt the execution of your application.

The Error collection and the Error object model are discussed in detail in Chapter 7.

2.3 Summary

This chapter has explained the architecture behind the ActiveX Data Objects technology.
The following is a list of some key items pointed out in this chapter:

ADO offers a generic data-access interface that is used to communicate with a wide range of
proprietary data sources and providers.

With ADO, the burden of creating efficient data access is placed upon the individual data
provider, not the data-access technology.

The ADO architecture is comprised of nine major components. These components include the
Connection object, the Command object, the Parameters collection and the Parameter object, the
Recordset object, the Fields collection and Field object, the Record object, the Stream object, the
Properties collection and the Property object, and finally, the Errors collection and the Error
object.

The rest of this book walks you through the nitty gritty of application development using
the ActiveX Data Objects technology. You will next learn how to access ADO through
various different development languages, and then we will dive into the actual
components of ADO.

IT-SC book 38

Chapter 3. Accessing ADO with Various
Languages

Because ActiveX Data Objects expose their properties by means of COM interfaces, they
can be accessed by any language that can utilize COM. In this book, we will look at
accessing ADO from Visual Basic, Visual C++, and Visual J++, since these are the most
commonly used tools for developing ADO applications on the Windows operating
system.

In addition to these three languages, there are two scripting languages that are already
well-established: VBScript and JScript. VBScript is a lightweight subset of Visual Basic
that's designed specifically for adding script to HTML documents. JScript is Microsoft's
implementation of JavaScript, designed for script development within HTML documents.

Although ADO is meant to offer the same development interface to each language from
which it is accessed, some inconsistencies arise because of differences in their syntax and
the development environments in which they are used. In this chapter, we will take a look
at each of the five languages and learn how to get started developing ADO applications in
each.

3.1 Accessing ADO with Visual Basic

Visual Basic is probably the most popular language in which to develop applications for
ADO. It is also the language used in the examples and code throughout this book. Visual
Basic is a very easy language to understand and excellent for both beginners and
advanced developers.

3.1.1 Referencing ActiveX Data Objects

To write an application in Visual Basic using ActiveX Data Objects, you must first tell
Visual Basic about them by adding ADO to the list of references that Visual Basic uses to
run an application. You may do this by selecting the Project References menu item so
that the References dialog box appears, as shown in Figure 3-1. In the Available
References list box, select the latest version of Microsoft ActiveX Data Objects Library
that you have installed. Now you are ready to create and use ADO objects within your
current Visual Basic application.

Figure 3-1. The References dialog box of Visual Basic

IT-SC book 39

When redistributing ADO applications, you should use the MDAC redistributable
package available for download from Microsoft's web site.

3.1.2 Creating ActiveX Data Objects

In Visual Basic, you can create new ADO objects by simply referencing the ADODB
classes of the Microsoft ActiveX Data Objects Library. The following piece of code
creates a Connection and a Recordset object in Visual Basic:
' create a reference to a Connection object
Dim con As ADODB.Connection

' create a reference to a Recordset object
Dim rst AS ADODB.Recordset

As with any other Visual Basic objects, you must instantiate them before they can be
used, as in the following examples:
' create a new instance of the Connection object
Set con = New ADODB.Connection

' create a new instance of the Recordset object
Set rst = New ADODB.Recordset

In the previous examples, the ADODB prefix to the ADO objects is used in case your
Visual Basic development environment references another object of the same class name
in a different class library. The following code illustrates how a DAO Recordset and an
ADO Recordset can be created within the same project:
' which object model is this from?
Dim rst As Recordset

' explicitly specifying the Data Access Object Model
Dim rstDAO As DAO.Recordset

IT-SC book 40

' explicitly specifying the ActiveX Data Object Model
Dim rstADO As ADODB.Recordset

If you know for a fact that no other class library listed in the References dialog box of
your current Visual Basic application has the same class names as ADO, you may
remove the ADODB prefix when declaring and instantiating object variables. However,
if you are using more than one object model with the same class definitions (as in the
previous example), not specifying the library from which the class should be derived tells
VB to instantiate the class from the library that comes first in the list of references to the
project.

In Visual Basic, it is always a good idea to remove an object from memory once it is no
longer being used. This is done by setting the object to Nothing, as follows:
' remove the objects
Set con = Nothing
Set rst = Nothing

3.1.3 Using ADO with Visual Basic: An Example

So that you can visualize how to work with ADO objects in Visual Basic, Example 3-1
uses ADO to open a connection to the Jet Biblio database and to return a recordset
containing the names of its first ten authors. Each record is then written to a list box
before both the Connection and Recordset objects are closed. Note that the example
makes use of dynamic control creation supported by Visual Basic 6.0 or later; if you have
an earlier version, simply delete the code that defines, instantiates, and sets the properties
of the list box, and place a list box named lstAuthors on the form at design time.

To begin, create a new Application EXE project, and open the Project References
menu so that you see the References dialog box shown in Figure 3-1. Select the latest
version of Microsoft ActiveX Data Objects that you have installed, and press the OK
button.

Now, replace the existing source code for Form1 with the code shown in Example 3-1,
and run the application. That's all there is to it. Make sure that you have a Biblio.mdb
database located at C:\Program Files\Microsoft Visual Studio\VB98, or if you have it in
another location, simply change the path in the code that points to the Access database.

Example 3-1. A Simple Visual Basic Example

Option Explicit

Private WithEvents lstAuthors As ListBox

Private Sub Form_Load()

 ' create new instances of the Connection and Recordset objects

 Dim con As ADODB.Connection
 Dim rst As ADODB.Recordset

IT-SC book 41

 ' instantiate the Connection and Recordset objects
 Set con = New ADODB.Connection
 Set rst = New ADODB.Recordset

 ' create two strings to define the connection and the recordset

 Dim sConString As String
 Dim sSQLString As String

 ' Create list box control

 Set lstAuthors = Me.Controls.Add("vb.listbox", _
 "lstAuthors", _
 Me)

 lstAuthors.Visible = True

 ' open the BiblioDSN data source with the Connection object

 sConString = "Provider=Microsoft.Jet.OLEDB.4.0; " _
 & "Data Source=C:\Program Files" _
 & "\Microsoft Visual Studio" _
 & "\VB98\Biblio.mdb"

 con.Open sConString

 Debug.Print "Connection opened."

 ' create a Recordset object from a SQL string

 sSQLString = "SELECT TOP 10 Author " & _
 "FROM Authors"

 Set rst = con.Execute(sSQLString)

 Debug.Print "SQL statement processed."

 ' retrieve all the data within the Recordset object

 Debug.Print "Getting data now..."

 Do Until (rst.EOF)
 lstAuthors.AddItem rst("Author").Value
 rst.MoveNext
 Loop

 Debug.Print "End of data."

 ' close and remove the Recordset object from memory

 rst.Close
 Set rst = Nothing

 Debug.Print "Closed and removed " _
 & "Recordset object from memory."

IT-SC book 42

 ' close and remove the Connection object from memory

 con.Close
 Set con = Nothing

 Debug.Print "Closed and removed " _
 & "Connection object from memory."

End Sub

Private Sub Form_Resize()

 ' this code is added for asthetics

 lstAuthors.Top = 0
 lstAuthors.Left = 0
 lstAuthors.Width = Me.Width
 lstAuthors.Height = Me.Height

End Sub

A lot of this information will not make much sense to you now, but it will start to as you
begin to learn how to use ActiveX Data Objects from the rest of the chapters in this book.
The important technique to notice from this example is how the ADO objects are created
in the beginning of the code example, and how the ADO objects are removed at the end
of the code example.

3.2 Accessing ADO with Visual C++

Visual C++ is a much more difficult language and environment with which to develop
applications for ActiveX Data Objects. Because it is so difficult, Microsoft is constantly
trying to provide developers with easier ways to access ADO components.

By far the easiest method (and the only method described here) is one that takes
advantage of the #import keyword. This approach offers not only the most control to the
developer, but it also allows the developer to code in a Visual Basic programming style.

3.2.1 Referencing ActiveX Data Objects

The #import keyword is used in Visual C++ applications to import information from a
type library. To make ADO.ACcessible to your C++ code, use the following #import
directive:
#import <msado15.dll> no_namespace rename("EOF", "EOFile")

This statement assumes that the path to msado15.dll (usually C:\Program Files\Common
Files\System\ADO) is already set within the Visual C++ environment; if not, select the
Directories tab of the Options dialog box (Tools Options), and add it.

IT-SC book 43

The #import statement does a couple of things. First, at compile time it creates a header
file with a .tlh extension, which stands for Type Library Header. This header file is
comprised of enumerated types and definitions for the objects contained in the type
library for msado15.dll.

Secondly, it creates a file with a .tli (Type Library Implementation) extension that
contains the wrappers for each function in the object model defined by the msado15.dll
type library.

Finally, the rename attribute in the statement:
rename("EOF", "EOFile")

renames the EOF keyword from the type library and calls it EOFile so that it does not
conflict with Visual C++'s definition of the EOF property.

3.2.2 Creating ActiveX Data Objects

In order to invoke an ActiveX Data Object, we must first start OLE so that we can use
OLE DB. Remember that Chapter 2, showed that ADO was simply a wrapper around the
OLE DB technology. We do this with the following piece of code:
struct StartOLEProcess{
 StartOLEProcess() {
 ::CoInitialize(NULL);
 }
 ~StartOLEProcess() {
 ::CoUninitialize();
 }
} _start_StartOLEProcess;

Placing this structure definition anywhere in our application forces the application to call
the _start_StartOLEProcess constructor once it has started. This constructor simply
calls CoInitialize to initialize OLE. Once our application is complete, the destructor of
_start_StartOLEProcess will be called. This in turn will call CoUninitialize, which
will shut down OLE.

The next thing we must do to create an ActiveX Data Object is to declare a pointer to the
object we wish to create, as follows:
// define a variable that will be used as a reference to the
// Connection object and set it to NULL
ADODB::_ConnectionPtr con = NULL;

// define a variable that will be used as a reference to the
// Recordset object and set it to NULL
ADODB::_RecordsetPtr rst = NULL;

We then can create an ActiveX Data Object by calling the CreateInstance function of our
ADO pointer. This function returns a result of type HRESULT to inform us whether the
creation of the object was successful. This is illustrated in the following code fragment:

IT-SC book 44

' create a new instance of an ADO Connection object
hr = con.CreateInstance(_ _uuidof(ADODB::Connection));

' create a new instance of an ADO Recordset object
hr = rst.CreateInstance(_ _uuidof(ADODB::Recordset));

Finally, just as in Visual Basic, it is always a good idea to release objects once they are
no longer needed. In Visual C++, we accomplish this with a couple of lines of code that
look like the following:
' remove the objects
con = Null;
rst = Null;

3.2.3 Using ADO with Visual C++: An Example

Now let's take a look at a fully functional example of a Visual C++ application that
utilizes ActiveX Data Objects. To try the following code, create a new Win32 Console
Application from within Visual C++, choosing the Simple option from the wizard, and
replace the contents of the main .cpp file with the code shown in Example 3-2.

Remember, just as with the Visual Basic example, make sure that a copy of Biblio.mdb is
in the C:\Program Files\Microsoft Visual Studio\VB98 directory, or that you change the
directory in the following source code to reflect the proper path of the Access database.
In addition, if you are having trouble with this code, make sure that you have the
MSADO15.DLL file in the C:\Program Files\Common Files\System\ado directory or that
you have the proper directory entered in the source code.

Example 3-2. A Simple Visual C++ Example

#include "stdafx.h"
#include <stdio.h>

#import "C:\Program Files\Common Files\System\ado\MSADO15.dll" _
 rename("EOF", "EOFile")

struct StartOLEProcess{
 StartOLEProcess() {
 ::CoInitialize(NULL);
 }
 ~StartOLEProcess() {
 ::CoUninitialize();
 }
} _start_StartOLEProcess;

void main(void)
{

 // define our variables which will be used as references to the
 // Connection and Recordset objects

 ADODB::_ConnectionPtr con = NULL;
 ADODB::_RecordsetPtr rec = NULL;

IT-SC book 45

 // define variables to read the Author field from the recordset

 ADODB::FieldPtr pAuthor;
 _variant_t vAuthor;
 char sAuthor[40];

 // create two strings for use with the creation of a Connection
 // and a Recordset object

 bstr_t sConString;
 bstr_t sSQLString;

 // create a variable to hold the result to function calls

 HRESULT hr = S_OK;

 // long variable needed for Execute method of Connection object

 VARIANT *vRecordsAffected = NULL;

 // create a new instance of an ADO Connection object

 hr = con.CreateInstance(_ _uuidof(ADODB::Connection));

 printf("Connection object created.\n");

 // open the BiblioDSN data source with the Connection object

 sConString = L"Provider=Microsoft.Jet.OLEDB.4.0; "
 L"Data Source=C:\\Program Files\\"
 L"Microsoft Visual Studio\\"
 L"VB98\\Biblio.mdb";

 con->Open(sConString, L"", L"", -1);

 printf("Connection opened.\n");

 // create a Recordset object from a SQL string

 sSQLString = L"SELECT TOP 10 Author FROM Authors;";

 rec = con->Execute(sSQLString,
 vRecordsAffected,
 1);

 printf("SQL statement processed.\n");

 // point to the Author field in the recordset

 pAuthor = rec->Fields->GetItem("Author");

 // retrieve all the data within the Recordset object

 printf("Getting data now...\n\n");

 while(!rec->EOFile) {

IT-SC book 46

 // get the Author field's value and change it
 // to a multibyte type
 vAuthor.Clear();

 vAuthor = pAuthor->Value;

 WideCharToMultiByte(CP_ACP,
 0,
 vAuthor.bstrVal,
 -1,
 sAuthor,
 sizeof(sAuthor),
 NULL,
 NULL);

 printf("%s\n", sAuthor);

 rec->MoveNext();

 }

 printf("\nEnd of data.\n");

 // close and remove the Recordset object from memory

 rec->Close();
 rec = NULL;

 printf("Closed an removed the "
 "Recordset object from memory.\n");

 // close and remove the Connection object from memory

 con->Close();
 con = NULL;

 printf("Closed and removed the "
 "Connection object from memory.\n");

}

Although much of the previous example will be very foreign to you until you have a
thorough understanding of how to develop applications with ActiveX Data Objects, it is
particularly important to notice how Visual C++ applications must convert datatypes
returned by a field's value. In Example 3-2, a function called WideCharToMultiByte is
used to convert a Variant datatype to a normal char string datatype (ASCII) so that it can
in turn be passed to the printf function.

3.3 Accessing ADO with Visual J++

Like Visual C++, Visual J++ offers a number of ways to access ActiveX Data Objects.
By far the easiest and most powerful is to use the Windows Foundation Classes, which
expose the ADO objects and their members.

IT-SC book 47

3.3.1 Referencing ActiveX Data Objects

To use the ActiveX Data Objects within your Visual J++ application through the WFC,
you must import the type library with the following statement:
import com.ms.wfc.data.*;

3.3.2 Creating ActiveX Data Objects

In order to create an ActiveX Data Object in Visual J++, you must first create a variable
to reference that object, as follows:
// define a variable which will be used as a reference to the
// Connection object
Connection con;

// define a variable which will be used as a reference to the
// Recordset object
Recordset rst;

Next, you can create a new instance of an ActiveX Data Object by using the new keyword
and assigning it to the variable reference you just defined:
' create a new instance of an ADO Connection object
con = new Connection();

' create a new instance of an ADO Recordset object
rst = new Recordset();

These last two steps could be combined into one step with the following code (this is one
of the beauties of Java):
// define a variable which will be used as a reference to the
// Connection object and create a new instance for that variable
Connection con = new Connection();

// define a variable which will be used as a reference to the
// Recordset object and create a new instance for that variable
Recordset rst = new Recordset();

As in any language, it is always a good idea to remove instances of objects that are no
longer being used. You can do this in Java with the following lines of code:
' remove the objects
con = null;
rst = null;

3.3.3 Using ADO with Visual J++: An Example

Example 3-3 illustrates how an ActiveX Data Objects application may be written for the
Visual J++ development environment. To create this project, open a Visual J++ Console
Application project, and simply replace the code within the Class1.java file with the code
from Example 3-3.

IT-SC book 48

If you are having difficulty running this example, remember to have the Biblio.mdb file in
the C:\Program Files\Microsoft Visual Studio\VB98 directory, or have the correct
directory for the Access database entered in the source code that you run.

Example 3-3. A Simple Visual J++ Example

import com.ms.wfc.data.*;

public class Class1
{

 public static void main(String args[]) {

 // define our variables which will be used as references to the
 // Connection and Recordset objects

 Connection con = new Connection();
 Recordset rst = new Recordset();

 // create two strings for use with the creation of a connection
 // and a recordset

 String sConString;
 String sSQLString;

 // create temporary variables for Execute method call

 long lRecordsAffected;
 int nCmdType;

 // create a new instance of an ADO Connection object

 System.out.println("Connection object created.\n");

 // open the BiblioDSN data source with the Connection object

 sConString = "Provider=Microsoft.Jet.OLEDB.4.0; " +
 "Data Source=C:\\Program Files\\" +
 "Microsoft Visual Studio\\" +
 "VB98\\Biblio.mdb";

 con.open(sConString);

 System.out.println("Connection opened.\n");

 // create a Recordset object from a SQL string

 sSQLString = "SELECT TOP 10 Author FROM Authors";

 rst = con.execute(sSQLString);

 System.out.println("SQL statement processed.\n");

 // retrieve all the data within the Recordset object

IT-SC book 49

 System.out.println("Getting data now...\n\n");

 while (!rst.getEOF()) {
 System.out.println(rst.getField("Author").getValue());
 rst.moveNext();
 }

 System.out.println("\nEnd of data.\n");

 // close and remove the Recordset object from memory

 rst.close();
 rst = null;

 System.out.println("Closed and removed " +
 "Recordset object from memory.\n");

 // close and remove the Connection object from memory

 con.close();
 con = null;

 System.out.println("Closed and removed " +
 "Connection object from memory.\n");

 }

}

Notice that with the WFC, the implementation of ADO is just as easy as the
implementation of ADO within Visual Basic.

3.4 Accessing ADO with VBScript

ActiveX Data Objects can be accessed from within server-side scripts via Active Server
Pages, better known as ASP (which in this case does not stand for Application Service
Provider). Although this book does not go into ASP in detail,[1] a brief explanation of the
technology is needed to understand how to develop VBScript code that uses ActiveX
Data Objects.

[1] For more detailed information, see ASP in a Nutshell, Second Edition by A. Keyton
Weissinger (O'Reilly & Associates, 2000), which goes into depth about how to incorporate ADO
into your ASP pages. In addition, Developing ASP Components by Shelley Powers (O'Reilly &
Associates, 1999) covers accessing ADO from Visual Basic and Visual J++, discussing how to
create an OLE DB simple data provider.

When a client requests an ASP (Active Server Page) from a server, the ASP is "executed"
before it is sent to the calling client. If there are any scripts embedded within the Active
Server Page, they are executed. The result of this execution of different scripts is a static
HTML page that can be viewed by virtually any web browser.

Active X Data Objects therefore can be embedded within a server-side script in order to
gather and display information for the client in a low-resource-intensive manner. Because

IT-SC book 50

the ADO code is run on a server, the HTML page contains only the result, not the code.
Once the page has been dynamically created by the server, it is passed back to the client
for static reading. Because the web server does not pass actual recordsets, or rows of data,
the potential savings in bandwidth can be considerable.

3.4.1 Referencing ActiveX Data Objects

In order to use ActiveX Data Objects from within your server-side scripts, your server
must be running IIS (Internet Information Server) Version 3.0 or better. Along with IIS,
you must of course have installed ADO, which is part of the MDAC installation. MDAC
and IIS are included as part of the Windows 2000 operating system.

Also, in order to use ADO constants, you should copy the file adovbs.inc to the directory
in which your HTML pages that use ADO reside. You can reference the adovbs.inc file
by adding the following line of code to your HTML source:
<!--#include file="adovbs.inc"-->

3.4.2 Creating ActiveX Data Objects

In VBScript, the Variant is the only datatype. This type can represent just about any type
of information that you could possibly want it to. Although in Visual Basic developers
usually try to avoid using the Variant datatype at all costs, it is a necessary component of
almost any VBScript code.

The first step in creating our ActiveX Data Objects in VBScript, as in Visual Basic, is to
define the variables that will be used as references to our ActiveX Data Objects:
' define our variables which will be used as references to the
' Connection and Recordset objects
Dim con
Dim rst

You should notice that I did not use the As datatype notation in the variable-declaration
statements. This is because VBScript does not allow us to define variables as a particular
type. Because of this, we cannot directly create our variables as ADO objects. Instead, we
must use late binding through the CreateObject method of the Server object to assign
ActiveX Data objects to our Variant variables:
' create a new instance of an ADO Connection object
Set con = Server.CreateObject("ADODB.Connection")

' create a new instance of an ADO Recordset object
Set rst = Server.CreateObject("ADODB.Recordset")

Just as in Visual Basic, it is always good practice to remove your objects from memory
before your code ends:
' remove the objects
Set con = Nothing
Set rst = Nothing

IT-SC book 51

3.4.3 Using ADO with VBScript: An Example

Example 3-4 uses VBScript along with ActiveX Data Objects to create a static HTML
sheet that can be passed from the Microsoft Internet Information Server to a client's web
browser. It must be assigned a filename ending with an .asp extension and it must be
stored in an IIS virtual directory so that IIS recognizes it as an Active Server Page.

As with the other projects, ensure that the Biblio.mdb file is located in the C:\Program
Files\Microsoft Visual Studio\VB98 directory or that the correct location is entered in the
ASP page that you create.

Example 3-4. A Simple ASP Example Using VBScript

<% @LANGUAGE="VBScript" %>
<% Option Explicit %>
<!--#include file="adovbs.inc"-->

<html>

<head>
<title>Example of ADO using VBScript</title>
</head>

<body>
<%

 ' define our variables which will be used as references to our
 ' ActiveX Data Objects

 Dim con
 Dim rst

 ' create two strings for use with the creation of a connection
 ' and a recordset

 Dim sConString
 Dim sSQLString

 ' create a new instance of an ADO Connection object

 Set con = Server.CreateObject("ADODB.Connection")

 Response.Write "Connection object created.
"

 ' open the BiblioDSN data source with the Connection object

 sConString = "Provider=Microsoft.Jet.OLEDB.4.0; " _
 & "Data Source=C:\\Program Files\\" _
 & "Microsoft Visual Studio\\" _
 & "VB98\\Biblio.mdb"

 con.Open sConString

IT-SC book 52

 Response.Write "Connection opened.
"

 ' create a Recordset object from a SQL string

 sSQLString = "SELECT TOP 10 Author FROM Authors"

 Set rst = con.Execute(sSQLString)

 Response.Write "SQL statement processed.
"

 ' retrieve all the data within the Recordset object

 Response.Write "Getting data now...

"

 Do Until (rst.EOF)
 Response.Write rst("Author") & "
"
 rst.MoveNext
 Loop

 Response.Write "
End of data.
"

 ' close and remove the Recordset object from memory

 rst.Close
 Set rst = Nothing

 Response.Write "Closed and removed " _
 & "Recordset object from memory.
"

 ' close and remove the Connection object from memory
 con.Close
 Set con = Nothing
 Response.Write "Closed and removed " _
 & "Connection object from memory.
"

%>

</body>
</html>

As with the other examples shown so far, the previous code may not mean too much to
you yet. Right now, remember that when implementing ADO with VBScript, there are
two important things that you should always remember. The first is that all variables are
created as Variant datatypes. The second is that you must use late binding through the use
of the Server.CreateObject method in order to assign a new instance of an ActiveX Data
Object to a Variant datatype.

3.5 Accessing ADO with JScript

The JScript implementation of ActiveX Data Objects is almost identical to that of
VBScript. The only difference is in the syntax. JScript server-side scripts are used within
Active Server Pages and (with the help of Internet Information Server) are issued to a
client web browser.

IT-SC book 53

3.5.1 Referencing ActiveX Data Objects

Once difference between the VBScript and JScript implementations of ADO is the name
of the include file for ActiveX Data Objects. In JScript, the filename is adojavas.inc. To
add it to an Active Server Page, type the following line:
<!--#include file="adojavas.inc"-->

3.5.2 Creating ActiveX Data Objects

The first thing you need to do is create the variables that will hold your objects:
// define a variable which will be used as a reference to the
// Connection object
var con;

// define a variable which will be used as a reference to the
// Recordset object
var rec;

Once you have the variable references, you can create ActiveX Data Objects with the
CreateObject function of the Server object just as in VBScript:
' create a new instance of an ADO Connection object
con = Server.CreateObject("ADODB.Connection");

' create a new instance of an ADO Recordset object
rst = Server.CreateObject("ADODB.Recordset");

Again, always remove your unused objects by setting them to null:
' remove the objects
con = null;
rst = null;

3.5.3 Using ADO with JScript: An Example

The last example in this chapter is very similar to the VBScript example. The JScript
program in Example 3-5 illustrates how an Active Server Page can use the JScript
scripting language to create and instantiate ActiveX Data Objects on an Internet
Information Server in order to create standard static HTML pages to be sent back to a
requesting client. The ASP page should be stored in a file with an .asp extension that is
located in an IIS virtual directory.

Once again, ensure that the Biblio.mdb file resides in the C:\Program Files\Microsoft
Visual Studio\VB98 directory or that the directory entered in the ASP source matches the
location of the Access database file.

Example 3-5. A Simple ASP Page Using JScript

<% @LANGUAGE="JScript" %>
<!--#include file="adojavas.inc"-->

IT-SC book 54

<html>

<head>
 <title>Example of ADO using JScript</title>
</head>

<body>
<script LANGUAGE="JScript" RUNAT="server">

 // define our variables which will be used as references to our
 // ActiveX Data Objects and instantiate a new Connection object

 var con = Server.CreateObject("ADODB.Connection");
 var rst;

 Response.write("Connection object created.
");

 // create two strings for use with the creation of a connection
 // and a recordset

 var sConString;
 var sSQLString;

 // create temporary variable for Execute method call

 var lRecordsAffected;

 // open the BiblioDSN data source with the Connection object

 sConString = "Provider=Microsoft.Jet.OLEDB.4.0; " +
 "Data Source=C:\\Program Files\\" +
 "Microsoft Visual Studio\\" +
 "VB98\\Biblio.mdb";

 con.Open(sConString, "", "", -1);

 Response.write("Connection opened.
");

 // create a Recordset object from a SQL string

 sSQLString = "SELECT TOP 10 Author FROM Authors";

 rst = con.Execute(sSQLString,
 lRecordsAffected,
 adCmdText);

 Response.write("SQL statement processed.
");

 // retrieve all the data within the Recordset object

 Response.write("Getting data now...

");

 while (!rst.EOF) {
 Response.write(rst("Author") + "
");
 rst.MoveNext();
 }

IT-SC book 55

 Response.write("
End of data.
");

 // close and remove the Recordset object from memory

 rst.Close();
 rst = null;

 Response.write("Closed and removed " +
 "Recordset object from memory.
");

 // close and remove the Connection object from memory

 con.Close();
 con = null;

 Response.write("Closed and removed " +
 "Connection object from memory.
");

</script>

</body>
</html>

3.6 Summary

This chapter has explained how to access and use ActiveX Data Objects with the five
most commonly used Microsoft development languages: Visual Basic, Visual C++,
Visual J++, VBScript, and JScript. The following is a list of key points:

Visual Basic is an easy language with which to develop ActiveX Data Object applications due to
its minimal setup.

Visual C++ offers a keyword, #import, to help create type library information for ADO
enumerations (groups of constants) and interfaces. In addition, OLE must be instantiated before
any ActiveX Data Objects are created at all.

Visual J++ uses the Java Type Library Wizard to create type library information for ADO
enumerations and interfaces.

VBScript and JScript can be used through Active Server Pages to provide requesting clients with
static HTML pages based upon an OLE DB data source.

The interface for ActiveX Data Objects is extremely similar throughout all of the languages we
have looked at, making it easy to move your skills from one language to another.

The next chapter in this book, Chapter 4, deals with the most fundamental object within
ADO, the Connection object. This object is used to create a session with a data source
and to create different views with the data source's data.

IT-SC book 56

Chapter 4. The Connection Object

Within ADO, all activity is centered on the Connection object. A Connection object
represents a unique physical connection to a data source. The characteristics of a
connection are defined by the values that you pass to the Connection object.[1]

[1] For a complete list of the Connection object's methods, see Chapter 13.

4.1 Opening and Closing a Connection: Implicit Versus
Explicit

The Connection object is used to establish a unique physical connection to a given data
source. This connection defines how you can obtain, interact with, and manipulate data
from the specified source. While a Connection object is always required, you can choose
whether to instantiate a connection explicitly or to allow ADO to create one implicitly on
your behalf.

4.1.1 Opening a Connection

Example 4-1 illustrates how to open a Recordset object on a table in a data source
without explicitly creating a Connection object.

Example 4-1. Implicit Creation of a Connection Object

' declare and instantiate a Recordset
Dim rst As ADODB.Recordset
Set rst = New ADODB.Recordset

' open the Recordset object and implicitly create a Connection
rst.Open "Titles", _
 "DSN=BiblioDSN", _
 adOpenForwardOnly, _
 adLockReadOnly, _
 adCmdTable
'
' do something

' close the Recordset and clean up
rst.Close
Set rst = Nothing

Don't worry about not understanding the entire example now -- I will explain everything
soon. Do notice, however, how easy it is to open a table within a data source. Example 4-
1 relies on no other code to first establish a connection; the simple connection string
DSN=BiblioDSN tells ADO that the table, Titles, is in the BiblioDSN data source.

Some objects in ADO -- in particular, the Recordset and the Command objects -- do not
require a pre-existing Connection object to operate. Both objects can read and write data

IT-SC book 57

to a data source, and both need a physical connection to a data source to do so. But the
Recordset and the Command objects can create their own Connection objects in the
background with information that you supply. The choice of declare and establish a
connection with the Connection object or to let the Recordset or Command object handle
the work for you.

By using your own Connection object, you gain greater control over your data access and
manipulation. For instance, with a Connection object, you can execute queries through
stored procedures that reside in a data source or through SQL statements that you
explicitly declare to your application at runtime. The Connection object also offers
transaction management so that at critical points in your data-manipulation code, the
integrity of your data source can be preserved if an error were to occur.

Take a look at Example 4-2, which first explicitly creates and opens a Connection object
to establish a connection before opening the table from the database.

Example 4-2. Explicit Creation of a Connection Object

' declare and instantiate a Connection and a Recordset
Dim con As ADODB.Connection
Dim rst As ADODB.Recordset

Set con = New ADODB.Connection
Set rst = New ADODB.Recordset

' first establish a connection to the data source
con.Open "DSN=BiblioDSN"

' now open the recordset using the established Connection
rst.Open "Titles", _
 con, _
 adOpenForwardOnly, _
 adLockReadOnly, _
 adCmdTable

' do something

' close the Recordset and clean up
rst.Close
Set rst = Nothing

' close the Connection and clean up
con.Close
Set con = Nothing

Notice the amount of extra work that is needed to open the Connection object before
opening the Recordset object. Instead of passing a connection string to the Open method
of the Recordset object, we are passing the already opened Connection object. This
longer piece of code is accomplishing exactly what the previous example did in fewer
lines. If a connection string is passed to a Recordset, the Recordset object creates its own
Connection object from that string. If you pass a Connection object to a Recordset object,
a new Connection object is not created. When opening a lot of Recordset objects, it

IT-SC book 58

would be advantageous to pass a Connection object, not a connection string, so that only
one connection to the database is created. Figure 4-1 shows us the difference between
creating Connection objects implicitly versus explicitly.

Figure 4-1. Implicit versus explicit creation of Connection objects

Creating a Connection object should be done implicitly when you need only one or a
small number of connections to a data source. If you plan on having multiple recordsets,
or views, of the same data source, you should create your own Connection object, which
requires fewer system resources and offers better control, as you will learn in the
following sections.

4.1.2 Closing a Connection

Although I have not specifically defined how to close a Connection object, you have seen
it in all of the code presented thus far. You can use the Close method to close or
disconnect the Connection object from the data source. When you use this method, the
physical connection is lost, but the Connection object itself remains. It can be reopened
with the same properties, or those properties can be altered before the Connection object
is opened again. To fully remove the Connection object from memory, to free resources,
and to remain respectable in the development community, set the object to the value
Nothing, as shown here:
Set con = Nothing

Now that you know how to both establish and break a connection to a data source, we
should take a look at the various options that we can use when connecting. These options
dictate the ways in which our data is presented to us in the rest of our applications.

When you are using a client-side Connection object with Remote
Data Service (RDS), the connection with the server is not actually

IT-SC book 59

established by the Open method. Instead, RDS waits until a
Recordset object is opened on the Connection object.

4.2 Configuring Connections

Let's now take a look at the different ways in which we can configure the connection to a
data source through the use of a Connection object. In this section, I will explain how to
work with connection strings and Data Source Names (DSNs). Connection strings are
detailed explanations of how to open a data source, while Data Source Names are just a
name of a definition that is stored on the current machine, by the operating system rather
than the application. In addition, I will also talk about how to obtain the version number
for the ADO library that you are using and how to set connection options such as the
cursor location (whether to run the cursor on the server or the client), the default database
setting, and the permission settings.

4.2.1 Working with Connection Strings

All connections revolve around connection strings, which contain all the pertinent
information to ADO concerning the establishment of a connection to our data source. The
connection string comprises a number of arguments. There are five standard ADO
arguments that can be used in a connection string:
Provider

Identifies the name of the data provider that you wish to use to establish a connection to a data
source. The data provider indicates the type of data source. The Provider argument can be set to
such things as Microsoft's OLE DB provider for SQL Server (SQLOLEDB.1) or Microsoft's OLE
DB provider for Jet (Microsoft.Jet.OLEDB.4.0). (I will talk about the various types of data
providers later in this chapter.)

File Name

Specifies an exact filename (including a path) with which the connection should be established.
Because this argument forces ADO to load the data provider that is associated with the data-
source type of the file, the Provider argument cannot be used with the File Name argument; when
the File Name argument is used, the data provider is implicit rather than explicit.

Remote Provider

Used only when implementing RDS from a client-side Connection object to specify the name of a
data provider. As a matter of fact, when using a client-side Connection object, you can use only
the Remote Provider and Remote Server arguments.

Remote Server

Used only when implementing RDS from a client-side Connection object to specify the path to a
remote server. As a matter of fact, when using a client-side Connection object, you can use only
the Remote Provider and Remote Server arguments.

URL

IT-SC book 60

Used to specify a resource, such as a file or a directory, as the data source. When using this
argument, it must be in the form of an absolute URL (for example, http://JROFF-
NTLT/Documents/ADO.DOC.01).

The ConnectionString is a public property of the Connection object that is set before the
connection is opened. Here is an example of a ConnectionString that could be used to
connect to an Oracle database, using the username of BigBear and the password, 1810:
"Provider=MSDAORA.1; Data Source=WidgetOracle; User ID=BigBear;
Password=1810;"

The default data provider is the Microsoft OLE DB provider for ODBC drivers (or
MSDASQL.1). Because it is the default provider, you don't necessarily have to name it in
the ConnectionString. The following two connection strings are identical:
"Provider=MSDASQL.1; Data Source=WidgetsDSN; User ID=BigBear;
Password=1810;"

and:
"Data Source=WidgetsDSN; User ID=BigBear; Password=1810;"

Example 4-3 shows the ways in which we can use the ConnectionString when we open
the Connection object.

Example 4-3. The Two Different Ways of Opening a Connection Object

' declare and instantiate a Connection
Dim con As ADODB.Connection
Set con = New ADODB.Connection

' set the Connection String property
con.ConnectionString = "Provider=MSDASQL.1; " _
 & "Data Source=BiblioDSN"

' open the Connection object using the connection string that was just
set
con.Open

' display the version of ADO
MsgBox "Connection opened with ADO Version " & con.Version

' close the Connection
con.Close

' set the Connection String property with the Open method
con.Open "Provider=MSDASQL.1; " _
 & "Data Source=BiblioDSN"

' print the version of ADO and close the Connection object
MsgBox "Connection opened with ADO Version " & con.Version

' close the Connection and clean up
con.Close
Set con = Nothing

IT-SC book 61

In the first part of the code, you can see that we set the ConnectionString as a property of
the Connection object, and in the second part of the code, we passed the
ConnectionString as an argument to the Open method of the Connection object. Either
way works, and there is no real benefit to using one method over another.

The ConnectionString property of the Connection object has another useful function,
however. Because it has read ability as well as write ability, we can use the
ConnectionString property to view the ConnectionString used by a Connection object
that was implicitly created with another object, such as a Recordset object, as shown in
Example 4-4.

Example 4-4. Reading the ConnectionString Property of the Connection
Object

' declare and instantiate a Connection and a Recordset
Dim con As ADODB.Connection
Dim rst As ADODB.Recordset

Set con = New ADODB.Connection
Set rst = New ADODB.Recordset

' open the recordset, creating a Connection object implicitly
rst.Open "Titles", _
 "Provider=MSDASQL.1; Data Source=BiblioDSN", _
 adOpenForwardOnly, , _
 adCmdTable

' set con to the Connection object that was just created by
' the Recordset object in the above Method call
Set con = rst.ActiveConnection

' print the ConnectionString of the implicitly created Connection
object
Debug.Print con.ConnectionString

' close and clean up the Recordset object
rst.Close
Set rst = Nothing

' close and clean up the Connection object
con.Close
Set con = Nothing

After running the previous code, the ConnectionString property of the implicitly created
Connection object is printed to the Immediate window of the VB IDE. You should get an
output message similar to the following:
Provider=MSDASQL.1;Data Source=BiblioDSN;
Extended Properties="DSN=BiblioDSN;DBQ=C:\Inetpub\wwwroot\BIBLIO.MDB;
DriverId=25;FIL=MS Access;MaxBufferSize=2048;PageTimeout=5;"

IT-SC book 62

By reading the ConnectionString property, you can determine what settings are being
used when connecting to a data source. For instance, in the previous example, you could
parse the String for MaxBufferSize and see that it was set to 2048.

4.2.2 Working with Data Source Names

Another way in which to use the Open method of the Connection object is for the
ConnectionString to be set to a valid Data Source Name (DSN). Valid DSNs are
maintained in the ODBC applet in the Windows Control Panel. This is where all of the
information regarding connections is stored. Using a DSN allows you to not worry about
the actual definition of the connection string in your application. The details (such as the
data-source type and location) are maintained by the ODBC applet on the system you are
running your application. When using a DSN, ADO looks up the connection information
through the ODBC applet.

4.2.2.1 Installing the DSNs

Throughout the rest of this book, I will be using two DSNs. The first of these two DSNs
is BiblioDSN, which uses an ODBC driver for Microsoft Access to connect to the
Biblio.mdb database usually located in the C:\Program Files\Microsoft Visual
Studio\VB98 directory when you install Visual Basic. The second is SQLNorthwindDSN,
which uses an ODBC driver for SQL Server to connect to the Northwind database,
installed with SQL Server.

To set up the BiblioDSN:

Open the Data Sources ODBC setup utility within the Control Panel (for Windows 9x and NT) or
under Administrative Tools within the Control Panel for Windows 2000.

From this dialog box, select the System DSN tab, and click on the Add button so that you get the
Wizard shown in Figure 4-2.

Figure 4-2. The Create New Data Source Wizard

IT-SC book 63

From here, select the Microsoft Access driver, and click Finish. This should bring up the ODBC
Microsoft Access Setup dialog box shown in Figure 4-3. Fill out the Data Source Name
(BiblioDSN) and the database (by clicking the Select button and navigating to the Biblio.mdb
file).

Figure 4-3. The ODBC Microsoft Access Setup dialog box

Once you have entered this information, hit the OK button to finish.

To set up the SQLNorthwindDSN:

Open the Data Sources ODBC setup utility within the Control Panel (for Windows 9x and NT) or
under Administrative Tools within the Control Panel for Windows 2000.

From this dialog box, select the System DSN tab, and click the Add button so that you get the
Wizard shown in Figure 4-1. Next, select the SQL Server driver and click the Finish button.
You should see the "Create a New Data Source to SQL Server" dialog box, as shown in Figure

IT-SC book 64

4-4. Fill in the Data Source Name (SQLNorthwindDSN), and choose your SQL Server of choice
(I use my local machine).

Figure 4-4. The Create New Data Source to SQL Server dialog box

Click the Next button, which brings up the panel in Figure 4-5. Here you must fill in a username
and password to log on to the server. If you can click the Next button again, you don't have a
problem with these settings.

Figure 4-5. Specifying username and password information

The next screen, shown in Figure 4-6, allows you to choose your default database. Choose the
Northwind database now, and click the Next button and then the Finish button so that you can see
the summary screen shown in Figure 4-7. Here you can test your data source.

IT-SC book 65

Figure 4-6. Setting the default database

As soon as you choose the OK button, your new DSN is created for you to use.

Figure 4-7. Summary screen

4.2.2.2 Opening a connection with a DSN

Once a DSN has been created, all we have to supply ADO is the name of this DSN and
logon information, as shown in Example 4-5.

Example 4-5. Connecting to a Data Source Using a DSN

IT-SC book 66

' instantiate a new instance of the Connection
Set con = ADODB.Connection
Set con = New ADODB.Connection

' establish a connection using only a DSN name and logon information
con.Open "BiblioDSN", _
 "Tammi", _
 "Rocks"

' print the ConnectionString used to establish this connection
Debug.Print con.ConnectionString

' close and clean up
con.Close
Set con = Nothing

This code calls the Open method of the Connection object with a ConnectionString
containing only a DSN name. In addition, the arguments Tammi and Rocks were used as
the username and password. After running the previous code, you should see output
similar to the following in the Immediate window of the VB IDE:
Provider=MSDASQL.1;Password=Rocks;User ID=Tammi;Data Source=BiblioDSN;
Extended Properties="DSN=BiblioDSN;DBQ=C:\Inetpub\wwwroot\BIBLIO.MDB;
DriverId=25;FIL=MS Access;MaxBufferSize=2048;PageTimeout=5;PWD=Rocks;
UID=admin;"

Obviously we did not send all of this information to ADO through the ConnectionString,
but regardless, it is there. The Provider argument was obtained through the ODBC applet
in the Windows Control Panel along with some of the other information. These are the
default values of the Connection object.

ADO determines that the ConnectionString argument being passed through the Open
method is a DSN if it does not contain an equal sign (=).

It should be noted that you can use any valid connection string when opening a
Connection object, not just a DSN. For simplicity in our examples for this chapter, I have
chosen to use DSNs until you learn more about the details of a connection string.

4.2.3 Setting Connection Options

There are four connection properties that we can specify via the Connection object:
Default database

The DefaultDatabase property allows you to specify which database, on a multiple-database
connection, is to be the default.

Data access permissions

By using the Mode property, you can either grant or read the permissions for accessing data for
the given connection. In other words, you can determine whether the current user has read, write,
or both read and write access to data over the given connection. In addition, you can deny others
any of these rights.

IT-SC book 67

Timeout setting

The ConnectionTimeout property provides a way of setting the number of seconds for which
ADO will wait until it can establish a connection with the data source we specify.

Cursor location

The CursorLocation property specifies where the data will be processed when referenced by your
application. We can specify that the cursor will reside either on the server (server-side) or on the
client (client-side).

These properties are described in the following sections.

4.2.3.1 Default database

When the particular data provider that you are using allows the use of multiple databases
per connection, I recommend that you set the DefaultDatabase property (shown in
Example 4-6), because if you are using a DSN, it is possible that it will be pointing to a
database that you do not care to use. This property indicates the database that is used for
default access, via SQL statements, throughout any use of the Connection object. You
should also set the DefaultDatabase for Recordset and Command objects that have been
created with their ActiveConnection property set to such a Connection object.

If your data provider allows the use of multiple databases per connection, you must
specify the name of alternate databases in SQL statements when you access them. All
other statements (those that do not specify a database name) will revert to the default
database specified by the DefaultDatabase property.

Example 4-6. Displaying the Default Database

' instantiate a new instance of the Connection
Set con = ADODB.Connection
Set con = New ADODB.Connection

' open a connection on a given DSN (Data Source Name)
con.Open "SQLNorthwindDSN"

' display the name of the current default database
MsgBox "The default database is: " & con.DefaultDatabase

' set the new default database of the currently open Connection object
con.DefaultDatabase = "Master"

' display the name of the current default database
MsgBox "The default database is: " & con.DefaultDatabase

' close and clean up
con.Close
Set con = Nothing

IT-SC book 68

In Example 4-6, the output of the DefaultDatabase property is Master, exactly as it is
shown being set. The location (full qualified path) and filename (minus the database file
extension) is reported.

If your data provider does not allow the use of multiple databases per connection, the
DefaultDatabase property is read-only to your application. If your data provider does not
support the DefaultDatabase property, either an empty string will be returned, or you will
get an adErrFeatureNotAvailable error.

The DefaultDatabase property is not available to a client-side
Connection object when using RDS.

4.2.3.2 Data-access permissions

With the Mode property, you can specify the types of permissions that are allowed on a
connection. The Mode property can be set only while the Connection object is closed and
is read-only once it is opened.

The Mode property can be set to one of the values specified by the ConnectModeEnum
enumeration, which establishes the permissions for reading and writing data to the
connection. The values of ConnectModeEnum are shown in Table 4-1.

Table 4-1. The ConnectModeEnum Values

Constant Value Description

AdModeUnkown 0
Default. Either the permissions of the current
connection have not been set yet, or they are
undeterminable.

AdModeRead 1 The user has read-only permission to the current
connection.

AdModeWrite 2 The user has write-only permission to the current
connection.

adModeReadWrite 3 The user has both read and write permissions to the
current connection.

adModeShareDenyRead 4 Others are prevented from opening the current
connection with read permissions.

adModeShareDenyWrite 8 Others are prevented from opening the current

IT-SC book 69

connection with write permissions.

adModeShareExclusive 12 Others are prevented from opening the current
connection with either read or write permissions.

adModeShareDenyNone 16 Others are prevented from opening the current
connection with any permissions at all.

adModeRecursive &H400000
Used with the ShareDeny constants so that the
permissions are recursively set to all children
resources, such as in a file structure.

Example 4-7 demonstrates the setting of the Mode property on a Connection object. In
addition, this example displays a message based on the current setting of the Mode
property.

Example 4-7. Setting Data-Access Permissions

Dim con As ADODB.Connection
Dim sPermissions As String

Set con = New ADODB.Connection

' do not allow other users to write to the data source
con.Mode = adModeShareDenyWrite

' open the Connection object with a connection string
con.Open "DSN=SQLNorthwindDSN"

' print the current Mode property setting once the connection object
' is opened to verify the permissions
Select Case (con.Mode)

 Case adModeUnknown:
 sPermissions = "Unkown or unset permissions."

 Case adModeRead:
 sPermissions = "User cannot read data."

 Case adModeWrite:
 sPermissions = "User cannot write data."

 Case adModeReadWrite:
 sPermissions = "User cannot read nor write data."

 Case adModeShareDenyRead:
 sPermissions = "Other users cannot read data."

 Case adModeShareDenyWrite:
 sPermissions = "Other users cannot write data."

IT-SC book 70

 Case adModeShareExclusive:
 sPermissions = "Other users cannot read or write data."

 Case adModeShareDenyNone:
 sPermissions = "Other users cannot do anything with data."

End Select

' close the connection to the data source
con.Close

' display permissions
MsgBox sPermissions

' clean up
Set con = Nothing

The Mode property is very useful when you need to restrict other users from accessing
your data source. This usually occurs when yours needs to be the only application that
allows changes to a particular database or when it is important that other applications do
not change information that your application has changed.

The constant value of adModeUnknown is the only valid value for the
Mode property when you are using a client-side Connection object with
RDS.

4.2.3.3 Timeout setting

The Connection object uses the value of the ConnectionTimeout property to define the
maximum number of seconds that ADO has to attempt to open a connection to a data
source. The default value for this property is 15, or 15 seconds.

If the value of the ConnectionTimeout property is set to zero, then ADO will wait forever
for a connection to complete. By setting the value of this property, you can abandon a
connection when the network is too busy for this type of operation to take place. If the
connection does not complete within the specified time interval, then an error is
generated and ADO cancels the attempt.

The code in Example 4-8 illustrates how you can use the ConnectionTimeout property to
abandon the opening of a connection to a data source. Notice how this subroutine handles
errors. ADO can produce multiple errors; therefore, we must loop through a collection of
errors and handle each one.

Example 4-8. Handling a Connection Timeout

Public Sub OpenDataSource()
On Error GoTo ERR_OpenDataSource:

IT-SC book 71

 Dim con As ADODB.Connection
 Set con = New ADODB.Connection

 ' set the timeout period to 2 seconds
 con.ConnectionTimeout = 2

 ' attempt to open the Connection object with a connection string
 con.Open "DSN=SQLNorthwindDSN"

 '
 ' do something here
 '

 ' close the connection
 con.Close

' clean up
GoTo CleanUp:

' an error has occurred
ERR_OpenDataSource:

 Dim oErr As ADODB.Error

 ' there can be multiple errors in ADO;
 ' therefore, we must look at all of them
 For Each oErr In con.Errors

 Select Case (Err.Number)

 Case adErrStillConnecting:
 ' timeout error
 MsgBox "The connection timed out on attempting to
open."

 Case Else:
 ' other type of error
 MsgBox "Other Error: " & oErr.Description

 End Select

 Next oErr

' this code will be run whether or not there was an error
CleanUp:

 ' clean up
 Set con = Nothing

End Sub

The ConnectionTimeout property is read-only once the Connection object is opened, and
it can be used only if the specified data provider supports it. Writing to the
ConnectionTimeout property while the Connection object is open will generate an error.

4.2.3.4 Cursor location

IT-SC book 72

When opening a Connection object on a given data source, you can indicate whether you
would like either a client-side or a server-side cursor for that object. Client-side cursors
indicate that local cursor libraries will process the data from your connection locally.
Server-side cursors indicate that the data provider will process the data from your
connection on the server.

Your decision to use either client-side or server-side cursors should be based on the
relative abilities of your local cursor libraries and those of the data provider. Usually, you
would change the location of your cursor to take advantage of special features not
available in another location.

Changing the location of your cursor is done with the CursorLocation property. By
setting the CursorLocation property to adUseClient (or adUseClientBatch for earlier
versions of ADO), you indicate to ADO that you want your data to be client-side,
supplied by a local cursor library. By setting this property to adUseServer, which is the
default, you indicate that you wish ADO to use the data provider or driver-supplied
cursors for the given data source, residing wherever the data source resides.

CursorLocation is a read-write property. However, if you change its value, you will not
see its effects until the Connection object's Open method is called. In other words, if the
Connection object is already open when you change the value of the CursorLocation
property, the location of the cursor will not change until that Connection object is closed
and then reopened with the Open method, as Example 4-9 illustrates.

Example 4-9. Changing the Cursor Location

Dim con As ADODB.Connection
Set con = New ADODB.Connection

' set the ConnectionString property to use our DSN
con.ConnectionString = "SQLNorthwindDSN"

' set the cursor location to client-side
con.CursorLocation = adUseClient

' open the Connection object
con.Open

' we are using a client-side client

' do something here

' change the cursor location
con.CursorLocation = adUseServer

' this has no effect yet until we reopen the Connection object

con.Close

con.Open

' now we are using a server-side client

IT-SC book 73

'
' do something here

' close the current connection
con.Close

' clean up
Set con = Nothing

When you are using a client-side Connection object with RDS, the
CursorLocation property can be set only to adUseClient.

4.2.4 Determining ADO Version Number and Connection State

You can determine the version of ADO that you are using with the Version property of
the Connection object. The value returned by the Version property is a read-only string.
The following code fragment prints the version of ADO:
Dim con as ADODB.Connection
Set con = New ADODB.Connection

' print the current version of ActiveX Data Objects
Debug.Print con.Version

You can also determine whether the current connection is open or closed by reading the
value of the State property of the Connection object. This property returns a long value
that can be used to check the state of the Connection object. The connection can either be
opened or closed, as represented by the constants adStateOpen and adStateClosed,
respectively.

The following piece of code displays the state of the current Connection object:
If (con.State & adStateClosed) Then
 Debug.Print "The con object is currently closed."
End If

If (con.State & adStateConnecting) Then
 Debug.Print "The con object is currently connecting."
End If

If (con.State & adStateExecuting) Then
 Debug.Print "The con object is currently executing."
End If

If (con.State & adStateFetching) Then
 Debug.Print "The con object is currently fetching."
End If

If (con.State & adStateOpen) Then
 Debug.Print "The con object is currently open."
End If

IT-SC book 74

4.3 Choosing a Data Provider

As of this writing, Microsoft supplies ten OLE DB providers with ADO. These providers
are listed in Table 4-2. Other companies supply their own OLE DB providers. In this
book, I will focus on the OLE DB provider for ODBC drivers and the OLE DB providers
for SQL Server and Microsoft Access.

Table 4-2. Available Microsoft OLE DB Providers

Provider Value

Microsoft OLE DB provider for ODBC MSDASQL.1

Microsoft OLE DB provider for Microsoft Indexing Service MSIDXS

Microsoft OLE DB provider for Microsoft Active Directory
Service

ADSDSOObject

Microsoft OLE DB provider for Microsoft Jet Microsoft.Jet.OLEDB.4.0

Microsoft OLE DB provider for SQL Server SQLOLEDB

Microsoft OLE DB provider for Oracle MSDAORA

Microsoft OLE DB provider for Internet Publishing MSDAIPP.DSO

Microsoft Data Shaping Service for OLE DB (ADO Service
Provider)

MSDataShape

Microsoft OLE DB Persistence Provider (ADO Service
Provider)

MSPersist

Microsoft OLE DB Remoting Provider (ADO Service
Provider)

MS Remote

The OLE DB provider for ODBC, supplied by Microsoft, is probably the most popular
type of data source used today and is the default data provider of ADO. In other words, if
you do not specify a data provider before opening a connection, ADO will assume you
wish to use the ODBC OLE DB data provider. The ODBC OLE DB provider allows
ADO to access any data source that has an ODBC-compliant driver, including, among

IT-SC book 75

others, flat files, Microsoft SQL Server, Microsoft Access, Microsoft FoxPro, Paradox,
dBase, Oracle databases, and Microsoft Excel worksheets.

To explicitly choose the OLE DB provider for ODBC, set the value of the Provider
argument in the ConnectionString of the Connection object to MSDASQL.1, as shown in
Example 4-10. Additionally, this example illustrates the use of the ConnectionString to
include arguments for usernames (UID) and passwords (PWD) with Connection objects
con1 and con2.

Example 4-10. Specifying the Microsoft OLE DB Provider for ODBC Drivers

Dim con1 As ADODB.Connection
Dim con2 As ADODB.Connection
Dim con3 As ADODB.Connection
Dim con4 As ADODB.Connection

Set con1 = New ADODB.Connection
Set con2 = New ADODB.Connection
Set con3 = New ADODB.Connection
Set con4 = New ADODB.Connection

' connect without using a DSN (Data Source Name)
con1.Open "Provider=MSDASQL.1; " _
 & "DRIVER={SQL Server}; " _
 & "Database=Northwind; " _
 & "Server=JROFF-NTLT; " _
 & "UID=sa; " _
 & "PWD="

' connect using a DSN and use the default provider
con2.Open "DSN=BiblioDSN; " _
 & "UID=BigBear; " _
 & "PWD=1810"

' connect using a DSN and specify the provider
con3.Open "Provider=MSDASQL.1; " _
 & "DSN=BiblioDSN; " _
 & "UID=Jason; " _
 & "PWD=1810; " _

' connect using a File DSN and specify the provider
con4.Open "Provider=MSDASQL.1; " _
 & "FileDSN=C:\Program Files\Common Files\ODBC\" _
 & "Data Sources\BiblioDSN.dsn"

' close all connections
con1.Close
con2.Close
con3.Close
con4.Close

' clean up all connections
Set con1 = Nothing
Set con2 = Nothing
Set con3 = Nothing

IT-SC book 76

Set con4 = Nothing

Data providers offer their own options for the syntax of the ConnectionString argument
and property of the Connection object. The OLE DB provider for ODBC drivers is no
exception. There are two ways to access a data source with this data provider through the
connection string -- the first with a DSN, the second without.

The following can be used to correctly specify a DSN:
"Provider=MSDASQL.1; DSN=dsn_name; [DATABASE=database_name]; " _
& "UID=user_name; PWD=password"

 "Provider=MSDASQL.1; FileDSN=dsn_file; [DATABASE=database_name]; " _
& "UID=user_name; PWD=password"

As you can see, either a DSN name or a DSN filename can be given. The Provider
argument is shown in both of these examples, but it is optional, since the OLE DB
provider for ODBC drivers is the default data provider for ADO.

The DATABASE argument is optional. It refers to the name of the database to be used with
the DSN, although one is already provided within the DSN itself. The DSN must be
specified in the ODBC applet in the Windows Control Panel. Using the DATABASE
argument in a DSN connection string actually alters the DSN definition, so it is important
to use it whenever you can to ensure that you are getting the database that you need, in
case someone else has altered the DSN definition.

An alternative syntax for an ODBC drivers data-provider connection string, a DSN-less
connection, is as follows:
"Provider=MSDASQL.1; DRIVER=driver; SERVER=server; " _
& "DATABASE=database; UID=user_name; PWD=password;"

Connections of the preceding types do not need to include the Provider argument,
because the OLE DB data provider for ODBC drivers is assumed to be the default. The
DRIVER argument refers to the actual data-source driver for the connection. The SERVER
argument refers to the name of the server chosen as the data source, and the DATABASE
argument refers to the database name within the chosen server. See also the portion of
code that opens the con1 Connection object in Example 4-10.

4.4 Executing Commands

ADO can work with data, or execute commands, in several ways:

Data can be queried or gathered based on a specific list of qualifications (selection commands).

Data can be manipulated with an action query that usually changes data in some common way
throughout your data source (update commands).

Data can be restructured with statements that alter the way the data resides in a particular data
source (restructuring commands).

IT-SC book 77

These three types of data gathering and manipulation can be done through either SQL
statements or stored procedures. The Connection object allows the execution of both SQL
statements and stored procedures directly, through the use of an Execute method. The
Execute method can also be used to open an entire table from your data source.

The following sections describe in detail execution of commands.

4.4.1 The Execute Method

There are two different syntaxes for the Connection object's Execute method. The first is
for commands that return information in the form of a Recordset object (see Chapter 5),
and the second is for commands that do not return anything.

The correct syntax for a call to the Execute method that returns a Recordset object is:
Set recordset = connection.Execute (CommandText, RecordsAffected,
Options)

The correct syntax for a method call that does not return any records is:
connection.Execute CommandText, RecordsAffected, Options

Table 4-3 describes each of the components found in these syntaxes.
Table 4-3. The Components of the Execute Method

Component Description

connection A currently open Connection object.

CommandText A string value containing a SQL statement, a table name, or a stored
procedure command.

RecordsAffected Optional. A long value that returns the number of records that were
affected by the call to the Execute method.

Options Optional. A long value that indicates the precise content of the
CommandText argument. See Table 4-4.

Table 4-4 describes the different values for the Options argument of the Execute method,
which are values of the CommandTypeEnum.

Table 4-4. The CommandTypeEnum Values

Constant Value Description

adCmdText 1 Indicates that the CommandText string is a data provider-specific

IT-SC book 78

command and will pass it onto that data provider for evaluation and
execution. This value would be used when passing a SQL statement
to a SQL data provider.

adCmdTable 2

Indicates that the CommandText string is evaluated as a name of a
table in the current database. This type of CommandText string,
when used with the Execute method of the Connection object, will
result in a recordset that includes the entire table specified.

adCmdStoredProc 4 Indicates that the CommandText string is evaluated as a name of a
stored procedure located within the current database.

adCmdUnknown 8

Default. Indicates that you have no clue what kind of
information you are passing to the data provider and that the
data provider will have to figure it out itself. This usually
indicates that the Options flag was not set.

adCmdFile 256
Indicates that the CommandText string is evaluated as a name of a
file that contains a previously persisted Recordset object. This
option can be used only with the Open and Requery methods.

adCmdTableDirect 512
Indicates that the CommandText string is evaluated as a name of a
table that you are requesting all of the columns to be returned. This
option can be used only with the Open and Requery methods.

If you do not specify a value for the Options argument, then ADO has to communicate
with your data provider to determine whether the CommandText string is a SQL statement,
a stored procedure name, or a table name. This could take a considerable amount of time;
therefore, it is recommended that you always specify the kind of information that you are
sending to the data provider through the CommandText argument.

Example 4-11 illustrates how the Execute method can be used to execute each type of
command matching those indicated in Table 4-4.

Example 4-11. Executing Different Command Types with the Connection
Object

Dim con As ADODB.Connection
Dim rst As ADODB.Recordset

Set con = New ADODB.Connection
Set rst = New ADODB.Recordset

' use this variable to record the number of records affected by the
' Execute method
Dim lRecordsAffected As Long

IT-SC book 79

' open the DSN (Data Source Name)
con.Open "SQLNorthwindDSN"

' execute a SQL statement on the database
Set rst = con.Execute("SELECT * FROM Orders;", _
 lRecordsAffected, _
 adCmdText)

' execute an open table command
Set rst = con.Execute("Orders", _
 lRecordsAffected, _
 adCmdTable)

rst.Close
Set rst = Nothing

' execute a stored proceudre
' notice that we did not specify the options argument, therefore,
' the data provider must determine what type of command this is
con.Execute "Invoices"

con.Close
Set con = Nothing

The OLE DB provider for ODBC can utilize the CommandText argument of the Execute
method to access stored procedures with a special syntax. An example of this syntax
appears in Example 4-12 where it is used to execute a Microsoft Access select query. (I
will discuss the CommandText property of the Command object in Chapter 7.)

The Parameters collection belongs only to a Command object, not to a Connection object.
For this reason, we cannot pass parameters to stored procedures via a Connection object.
We can execute queries that do not require parameters, using this special syntax or by
naming the stored procedure as in Example 4-12.

Example 4-12. Executing Stored Procedures

Dim con As ADODB.Connection
Dim rst As ADODB.Recordset

Set con = New ADODB.Connection
Set rst = New ADODB.Recordset

Dim lRecordsAffected As Long

con.Open "SQLNorthwindDSN"

' use just the name of the stored procedure
Set rst = con.Execute("[Ten Most Expensive Products]", _
 lRecordsAffected, _
 adCmdStoredProc)

' use OLE DB Provider for ODBC Drivers special stored procedure
' call syntax

IT-SC book 80

Set rst = con.Execute("{call SalesByCategory(1)}", _
 lRecordsAffected, _
 adCmdText)

rst.Close
Set rst = Nothing

con.Close
Set con = Nothing

The code that is emphasized in Example 4-12 illustrates the syntax used for calling
stored procedures with the OLE DB provider for ODBC drivers.

4.4.2 The CommandTimeout Property

The behavior of the Connection object's CommandTimeout property is very similar to the
ConnectionTimeout property, although the setting for one does not affect the other. As
described earlier, the ConnectionTimeout property indicates the maximum number of
seconds allowed when completing a connection on a specified data source. The
CommandTimeout property represents the maximum number of seconds allowed for
ADO to complete a given command with the Execute method.

The default value for the CommandTimeout property is 30, representing 30 seconds. If
the execution of a command exceeds the number of seconds specified in the
CommandTimeout property, then the command is abandoned and an error is raised. This
permits your command to timeout if network traffic is too busy to carry out such an
operation.

Example 4-13 shows the use of the CommandTimeout property.

Example 4-13. The CommandTimeout Property

Public Sub CommandTimeout()
On Error GoTo ERR_CommandTimeout:

 Dim con As ADODB.Connection
 Set con = New ADODB.Connection

 ' set the timeout period to 2 seconds
 con.CommandTimeout = 2

 ' attempt to open the Connection object with a connection string
 con.Open "BiblioDSN"

 con.Execute "[All Titles]"

 ' close the connection
 con.Close

GoTo CleanUp:

' an error has occurred

IT-SC book 81

ERR_CommandTimeout:

 Dim oErr As ADODB.Error

 ' there can be multiple errors in ADO; we must look at all of them
 For Each oErr In con.Errors

 Select Case (Err.Number)

 Case adErrStillConnecting:
 ' timeout error
 MsgBox "The command timed out on attempting to
execute."

 Case Else:
 ' other type of error
 MsgBox "Other Error: " & oErr.Description

 End Select

 Next oErr

' this code will be ran whether there was an error or not
CleanUp:

 ' clean up
 Set con = Nothing

End Sub

The CommandTimeout property is read-only once the Connection object is opened, but
while it is closed, you can either read or set its value.

4.5 Managing Multiple Transactions

Transaction management is used to maintain the integrity of a data source when
operations on one or more data sources need to be treated as a single operation.

The most common example of transaction management comes from banking. Take, for
instance, the steps involved in transferring money from a savings account to a checking
account. First, you must remove the desired amount of money from the savings account,
and then that amount must be added to your checking account. Suppose that somebody
walked by and pulled the plug of the ATM machine just when it had completed removing
your money from your savings account, but before it added it to your checking account.

By using three methods (BeginTrans, CommitTrans, and RollbackTrans), you can create
single transactions from multiple operations.

The BeginTrans, CommitTrans, and RollbackTrans methods are not
available when you are using a client-side Connection object with RDS.

IT-SC book 82

4.5.1 Starting a Transaction: The BeginTrans and CommitTrans
Methods

A transaction begins with a call to a Connection object's BeginTrans method and ends
with a call to the CommitTrans method. The CommitTrans method indicates that the
transaction is completed and that the data should be saved, or committed, to the data
source.

The following code illustrates the use of the BeginTrans and CommitTrans methods:
' begin a new transaction
con.BeginTrans

'
' do some manipulation of the data here
'

' commit the manipulations of the data to the data source now
con.CommitTrans

Not all data providers support transactions, and you should check before using them. You
can tell whether the current data provider supports transactions by checking for the
Transaction DDL dynamic property by using the Properties collection of the Connection
object. If it appears in the Connection object's Properties collection, then your data
provider supports transaction management through the BeginTrans, CommitTrans, and
RollbackTrans methods.

Example 4-14 shows how you can test for the support of transactions by your data
provider, and how you can work with or without it depending on the result of your test.

Example 4-14. Testing for Transaction Support

Public Sub TestForTransactionSupport()

 Dim con As ADODB.Connection
 Set con = New ADODB.Connection

 ' open the connection on a given data source
 con.Open "BiblioDSN"

 ' if the data provider supports transactions, begin one
 If (SupportsTransactions(con)) Then con.BeginTrans

 ' manipulate data here
 '
 ' if the data provider supports transactions, commit changes
 If (SupportsTransactions(con)) Then con.CommitTrans

 ' close the Connection and clean up
 con.Close
 Set con = Nothing

End Sub

IT-SC book 83

Private Function SupportsTransactions(_
 conConnectionToTest As ADODB.Connection) As Boolean
On Error GoTo ERR_SupportsTransactions:

 Dim lValue As Long

 ' simply try to access the property to verify whether the data
provider
 ' supports transactions
 lValue = conConnectionToTest.Properties("Transaction DDL").Value

 ' if we got this far, the property exists and the data provider
 ' supports transactions
 SupportsTransactions = True

Exit Function

ERR_SupportsTransactions:

 Select Case (Err.Number)

 ' property does not exist, therefore the data provider does not
 ' support transactions
 Case adErrItemNotFound:
 SupportsTransactions = False

 Case Else:
 ' another error

 End Select

End Function

4.5.2 Canceling a Transaction: The RollbackTrans Method

It doesn't make sense to keep track of transactions if you cannot cancel them, so the
Connection object implements the RollbackTrans method. The RollbackTrans method
cancels the current transaction, which is defined as the entire set of operations performed
on the data source since the last call to the BeginTrans method. Once the RollbackTrans
method is called, your data source will never see the changes that were made during the
last transaction.

A common time to use the RollbackTrans method is immediately following an error that
has occurred during the processing of data. Example 4-15 demonstrates the
RollbackTrans method.

Example 4-15. The RollbackTrans Method

Public Sub Rollback()
On Error GoTo ERR_Rollback:

 Dim con As ADODB.Connection

IT-SC book 84

 Set con = New ADODB.Connection

 ' open the connection on a given data source
 con.Open "BiblioDSN"

 ' begin a transaction
 con.BeginTrans

 '
 ' manipulate data here
 '

 ' commit changes
 con.CommitTrans

 ' skip rollback and close the connection
 GoTo CloseConnection

ERR_Rollback:

 ' an error has occurred, abort changes
 con.RollbackTrans

CloseConnection:

 ' close the Connection and clean up
 con.Close
 Set con = Nothing

End Sub

4.5.3 Nesting Transactions

If your data provider supports transactions, there is a good chance that it also supports
nested transactions. For instance, Microsoft Access can support nested transactions up to
five levels deep.

The BeginTrans method returns a Long value that represents the level of nesting for the
newly created transaction. The first level is considered level one (1), not zero (0). When
you nest transactions, you must resolve the more recently created transaction with either
the CommitTrans or RollbackTrans method before you can resolve previously created
transactions.

Example 4-16 illustrates the use of nested transactions.

Example 4-16. Nested Transactions

Dim con As ADODB.Connection

Dim lLevel As Long

Set con = New ADODB.Connection

IT-SC book 85

' the connection must be open to utilize transactions
con.Open "Provider=Microsoft.Jet.OLEDB.4.0; " _
 & "Data Source=C:\Program Files" _
 & "\Microsoft Visual Studio" _
 & "\VB98\Biblio.mdb"

' record the level of the newly created transaction and print it
lLevel = con.BeginTrans()
Debug.Print lLevel

' inside level 1 transaction

 ' record the level of the newly created transaction and print it
 lLevel = con.BeginTrans()
 Debug.Print lLevel

 ' inside level 2 transaction

 ' record the level of the newly created transaction and print
it
 lLevel = con.BeginTrans()
 Debug.Print lLevel

 ' inside level 3 transaction

 ' commit changes to the level 3 transaction
 con.CommitTrans

 ' commit changes to the level 2 transaction
 con.CommitTrans

' commit changes to the level 1 transaction
con.CommitTrans

' close the Connection and clean up
con.Close
Set con = Nothing

4.5.4 Setting Transaction Options

There are two types of options that we can specify when using transactions through ADO:
Attributes

The Attributes property specifies the automatic creation of new transactions. By using the
Attributes property of the Connection object, we can define whether new transactions are created
when the current one has ended.

IsolationLevel

By setting the value of the IsolationLevel property, you can determine whether the current
transaction can read the changes that are as of yet not committed by another transaction.

4.5.4.1 Automatic creation of new transactions

IT-SC book 86

When you call either the CommitTrans or the RollbackTrans methods, you are ending the
current transaction. By default, you must call BeginTrans once again to start another
transaction, but you can change this behavior by setting the value of the Attributes
property. Table 4-5 lists these values.

Table 4-5. The XactAttributeEnum Values of the Attributes Property

Constant Value Description

none 0 Default. Indicates that neither of the following
constants have been chosen.

adXactCommitRetaining 131072 Indicates that a new transaction will be created after
the CommitTrans method is called.

adXactAbortRetaining 262144 Indicates that a new transaction will be created after
the RollBackTrans method is called.

You can use both the adXactCommitRetaining and the adXactAbortRetaining
constants at the same time, as shown in Example 4-17.

Example 4-17. Using the Attributes Property with Multiple Constants

Dim con As ADODB.Connection
Set con = New ADODB.Connection

' the connection must be open to utilize transactions
con.Open "BiblioDSN"

' set the attributes to automatically create a new transaction
' when both the CommitTrans and the RollbackTrans methods are
' called
con.Attributes = adXactCommitRetaining _
 + adXactAbortRetaining

' start transaction #1
con.BeginTrans

' do something here

' commit transaction #1, start transaction #2
con.CommitTrans

' do something here

' rollback transaction #2, start transaction #3
con.RollbackTrans

' do something here

IT-SC book 87

' set the attributes so that neither CommitTrans nor RollbackTrans
' will create a new transaction
con.Attributes = 0

' commit transaction #3
con.CommitTrans

' close the Connection and clean up
con.Close
Set con = Nothing

The Attributes property is not available to a client-side Connection
object when using RDS. In addition, not all data providers support
the transactions, and, therefore, they won't support the Attributes
property. Be sure to check for the Transaction DDL property in the
Properties collection of your Connection object to see whether your
data provider supports transactions before you attempt to use the
Attributes property.

4.5.4.2 Isolation level

The IsolationLevel property is used to indicate how transactions relate to each other. By
setting its value, you can determine whether the current transaction can read the changes
that are as of yet not committed by another transaction.

IsolationLevel is a read/write property that can take any one of the following
IsolationLevelEnum constants shown in Table 4-6.

Table 4-6. The IsolationLevelEnum Values

Constant Value Description

adXactUnspecified -1 Indicates that the data provider is using an isolation
level that cannot be determined.

AdXactChaos 16 Indicates that you cannot write over changes that
have been made by higher level transactions.

AdXactBrowse 256 Indicates that you can view changes that have not yet
been committed by other transactions.

adXactReadUncommitted 256 Same as adXactBrowse. Kept for compatibility with
earlier versions of ADO.

adXactCursorStability 4096 Default. Indicates that you can only view changes

IT-SC book 88

from other transactions once they have been
committed.

adXactReadCommitted 4096 Same as adXactCursorStability. Kept for
compatibility with earlier versions of ADO.

adXactRepeatableRead 65536

Indicates that from one transaction, you cannot see
changes that have been made in other transactions
until they are committed, but you can requery the
data source to see newly created records.

AdXactIsolated 1048576 Indicates all transactions are completely isolated
from each other.

adXactSerializable 1048576 Same as adXactIsolated. Kept for compatibility with
earlier versions of ADO.

The constant adXactUnspecified is the only valid value for the
IsolationLevel property when you are using a client-side Connection
object when using RDS.

Example 4-18 shows how you can use the IsolationLevel property to determine the level
of isolation for the current transactions.

Example 4-18. Using the IsolationLevel Property

Dim con As ADODB.Connection
Set con = New ADODB.Connection

Dim sLevel As String

' open the connection
con.Open "BiblioDSN"

' select message based on the current isolation level
Select Case (con.IsolationLevel)

 Case adXactUnspecified:
 sLevel = "Isolation level cannot be determined."

 Case adXactChaos:
 sLevel = "You cannot write over changes that have been " _
 & "made by higher level transactions."

IT-SC book 89

 Case adXactBrowse Or adXactReadUncommitted:
 sLevel = "You can view changes not yet committed by other " _
 & "transactions."

 Case adXactCursorStability Or adXactReadCommitted:
 sLevel = "You can only view changes from other " _
 & "transactions that have been committed."

 Case adXactRepeatableRead:
 sLevel = "You can only view changes from other " _
 & "transactions that have been committed and you " _
 & "can requery data to see new records."

 Case adXactIsolated Or adXactSerializable:
 sLevel = "All transactions are isolated from each other."

End Select

' display isolation level message
MsgBox sLevel

con.Close
Set con = Nothing

The IsolationLevel property is both read- and write-enabled, but it does not take effect
until you call the BeginTrans method of the Connection object. It is possible that the data
provider will automatically change the level of isolation when it cannot establish the level
requested. In such a case, the level will be changed to the next higher level of isolation.

4.6 Determining the Layout of Your Data Source

Your data source has many characteristics that can be exposed to your applications via
ADO. For instance, some data sources have table names, field names, and indexes. You
can use the OpenSchema method of the Connection object to enumerate the
characteristics that make up the structure of your data source. The OpenSchema method
has the following syntax:
Set recordset_name = connection_name.OpenSchema(QueryType, Criteria,
SchemaID)

Table 4-7 describes each of the components found in the previous syntax declaration.

Table 4-7. The Components of the OpenSchema Method

Component Description

recordset_name A valid Recordset object.

connection_name A currently open Connection object.

IT-SC book 90

QueryType

Indicates what type of schema query to perform on the associated
connection object. This value must be a valid constant that belongs to the
SchemaEnum enumeration. Not all QueryType values are supported by
every data source. See the OpenSchema method in Appendix C, for more
information.

Criteria

Optional. Indicates a specific constraint used to perform the query as
defined by the QueryType argument. Criteria values are specific to
each QueryType value, and, because not all QueryTypes are
supported by every data source, neither are all Criteria values.

SchemaID Optional. A GUID for a provider-specific schema that is used only with the
QueryType constant, adSchemaProviderSpecific.

In most cases, your data provider will not support all of the Criteria constraints. As a
matter of fact, the data provider must supply you with only the adSchemaTables,
adSchemaColumns, and adSchemaProviderTypes constants, according to the OLE DB
specification. For a list of all the constraints available, refer to the SchemaEnum
enumeration in Appendix E.

Example 4-19 utilizes the OpenSchema method to create a viewer for all possible
QueryType and Criteria combinations for a given data source.

To create this example, first open up a new Application EXE project within Visual Basic,
and add the latest version of Microsoft ActiveX Data Objects through the Project
References tool item. Next, add the controls listed in Table 4-8, and name them
accordingly.

Table 4-8. The Components of the OpenSchema Method

Control Name

ListBox Control lstQueryType

ListBox Control lstCriteria

ListBox Control lstValue

Command Button cmdClose

Now, replacing the code that is already in the Form1 form dialog box, enter the code for
the modular-level object variables, as shown in Example 4-19. This example will use the
OLE DB provider for ODBC connections and the SQL Server DSN, SQLNorthwindDSN.

IT-SC book 91

If you do not have SQL Server, you can replace this DSN with the BiblioDSN DSN (see
Section 4.2.2.1 earlier in this chapter).

Example 4-19. The Schema Viewer Example

Option Explicit

Private con As ADODB.Connection
Private rst As ADODB.Recordset

Private Sub Form_Load()

 Set con = New ADODB.Connection
 Set rst = New ADODB.Recordset

 ' connect to our data source
 con.Open "SQLNorthwindDSN"

 ' populate the query types list box with valid query type values
for
 ' this particular data source
 Call PopulateQueryTypes

End Sub

Private Sub PopulateQueryTypes()

 lstQueryType.Clear

 ' call the CheckQueryType function for each possible query type
value
 CheckQueryType "adSchemaCatalogs: " & adSchemaCatalogs

 CheckQueryType "adSchemaCharacterSets: " & adSchemaCharacterSets
 CheckQueryType "adSchemaCheckConstraints: " &
adSchemaCheckConstraints
 CheckQueryType "adSchemaCollations: " & adSchemaCollations
 CheckQueryType "adSchemaColumnPrivileges: " &
adSchemaColumnPrivileges
 CheckQueryType "adSchemaColumns: " & adSchemaColumns
 CheckQueryType "adSchemaColumnsDomainUsage: " _
 & adSchemaColumnsDomainUsage
 CheckQueryType "adSchemaConstraintColumnUsage: " _
 & adSchemaConstraintColumnUsage
 CheckQueryType "adSchemaConstraintTableUsage: " _
 & adSchemaConstraintTableUsage
 CheckQueryType "adSchemaCubes: " & adSchemaCubes
 CheckQueryType "adSchemaDBInfoKeywords: " & adSchemaDBInfoKeywords
 CheckQueryType "adSchemaDBInfoLiterals: " & adSchemaDBInfoLiterals
 CheckQueryType "adSchemaDimensions: " & adSchemaDimensions
 CheckQueryType "adSchemaForeignKeys: " & adSchemaForeignKeys
 CheckQueryType "adSchemaHierarchies: " & adSchemaHierarchies
 CheckQueryType "adSchemaIndexes: " & adSchemaIndexes
 CheckQueryType "adSchemaKeyColumnUsage: " & adSchemaKeyColumnUsage
 CheckQueryType "adschemaLevels: " & adSchemaLevels
 CheckQueryType "adSchemaMeasures: " & adSchemaMeasures

IT-SC book 92

 CheckQueryType "adSchemaMembers: " & adSchemaMembers
 CheckQueryType "adSchemaPrimaryKeys: " & adSchemaPrimaryKeys
 CheckQueryType "adSchemaProcedureColumns: " &
adSchemaProcedureColumns
 CheckQueryType "adSchemaProcedureParameters: " _
 & adSchemaProcedureParameters
 CheckQueryType "adSchemaProcedures: " & adSchemaProcedures
 CheckQueryType "adSchemaProperties: " & adSchemaProperties
 CheckQueryType "adSchemaProviderTypes: " & adSchemaProviderTypes
 CheckQueryType "adSchemaReferentialContraints: " _
 & adSchemaReferentialContraints
 CheckQueryType "adSchemaSchemata: " & adSchemaSchemata

 CheckQueryType "adSchemaSQLLanguages: " & adSchemaSQLLanguages
 CheckQueryType "adSchemaStatistics: " & adSchemaStatistics
 CheckQueryType "adSchemaTableConstraints: " &
adSchemaTableConstraints
 CheckQueryType "adSchemaTablePrivileges: " &
adSchemaTablePrivileges
 CheckQueryType "adSchemaTables: " & adSchemaTables
 CheckQueryType "adSchemaTranslations: " & adSchemaTranslations
 CheckQueryType "adSchemaUsagePrivileges: " &
adSchemaUsagePrivileges
 CheckQueryType "adSchemaViewColumnUsage: " &
adSchemaViewColumnUsage
 CheckQueryType "adSchemaViews: " & adSchemaViews
 CheckQueryType "adSchemaViewTableUsage: " & adSchemaViewTableUsage

End Sub

The CheckQueryType method determines if a schema is available by attempting to open
it with the OpenSchema method:
Private Sub CheckQueryType(sQueryType As String)
On Error GoTo ERR_CheckQueryType:

 ' if we can open the schema without getting an error, the data
source
 ' will support it, otherwise, do not add it to the list box
 Set rst = con.OpenSchema(GetQueryTypeValue(sQueryType))

ERR_CheckQueryType:
 Select Case Err.Number
 Case 0:
 lstQueryType.AddItem (sQueryType)
 Case adErrFeatureNotAvailable:
 ' not supported
 End Select

End Sub

When a user clicks on a query-type list box, the corresponding schema is opened and
used to populate the criteria list box:
Private Sub lstQueryType_Click()

 Dim lTemp As Long

IT-SC book 93

 Dim fld As ADODB.Field

 lstCriteria.Clear
 lstValue.Clear

 ' get the value of the query type from parsing the string
 ' that is selected
 lTemp = GetQueryTypeValue(lstQueryType.List(lstQueryType.ListIndex))

 ' open the schema for the query type chosen
 Set rst = con.OpenSchema(lTemp)

 ' add criterias that are available for the query type to the list
box

 For Each fld In rst.Fields
 lstCriteria.AddItem fld.Name
 Next fld

End Sub

In turn, as the criteria list box is selected, the individual values for the criteria are added
to the values list box:
Private Sub lstCriteria_Click()

 lstValue.Clear

 ' populate the values list box with the values for the selected
 ' query type and criteria
 If (Not (rst.EOF And rst.BOF)) Then rst.MoveFirst
 Do Until (rst.EOF)
 lstValue.AddItem _
 ConvertToString(rst.Fields(lstCriteria.ListIndex).Value)
 rst.MoveNext
 Loop

End Sub

Now enter the remaining utility and termination methods, and you are done:
Private Function ConvertToString(vInput As Variant) As String

 ' return the 'Null' string if the value is null, otherwise return
the
 ' actual string
 If IsNull(vInput) Then
 ConvertToString = "Null"
 Else
 ConvertToString = vInput
 End If

End Function

Private Function GetQueryTypeValue(sQueryType As String) As Long

 Dim sTemp As String

IT-SC book 94

 ' take the number (value of the query type) off of the string
 sTemp = Right$(sQueryType, Len(sQueryType) - InStr(1, sQueryType,
":"))

 GetQueryTypeValue = Val(sTemp)

End Function

Private Sub cmdClose_Click()

 ' clean up recordset object
 rst.Close
 Set rst = Nothing

 ' clean up connection object
 con.Close
 Set con = Nothing

 ' end the application
 Unload Me

End Sub

When this application is compiled and run, it should produce a result similar to Figure 4-
8, assuming your data source is similar to mine.

Figure 4-8. The Schema Viewer application in action

The OpenSchema method is very useful for finding such information about the data
source as table names, stored procedure and query names, index information, table names,
as well as a number of other valuable pieces of information. I suggest that you use the
Schema Viewer application from Example 4-19 on your data source to see what is
available and what you would find useful within your own application.

IT-SC book 95

The OpenSchema method is not available to a client-side Connection
object when using RDS.

4.7 Summary

This chapter has introduced the Connection object -- the first of the nine major
components of ActiveX Data Objects. You have learned how to establish connections
with any type of OLE DB data provider. The following list summarizes key points:

You can create a Connection object either explicitly within your own code, or implicitly, through
instantiation of a Recordset or Command object.

Each Connection object represents a single unique connection to a particular OLE DB data source
through a data provider, both of which you have specified in a connection string.

With the Connection object, you can execute commands against the associated data source. There
are three types of commands that can be executed: a SQL statement, a stored procedure, or a
parameterized query. In addition, you can open a simple table or pass a data provider-specific
string to the particular data provider, which will provide its own analysis and resultset.

The Connection object controls the utilization of transaction management through three methods:
BeginTrans, CommitTrans, and RollbackTrans. Transactions are used to manage the integrity of
one or multiple data sources when data is manipulated. Like If...Then statements, transactions
can be nested.

You can use the Connection object to obtain information about the structure of a given data
source with the use of the OpenSchema method. This information can be helpful when querying
for table, procedure, or index names.

The next chapter of this book, Chapter 5, explains how to manipulate and read data that
is stored in record form, each of which is a collection of fields.

IT-SC book 96

Chapter 5. The Recordset Object

This chapter explains the Recordset object (familiar to users of DAO), which is used to access
and manipulate data on the record level. As you learned earlier, all data can be broken down into
logical rows, each containing one or more fields. Each field, in turn, describes one specific piece
of data that falls into a specific category that is common throughout all the other rows in that
rowset. For instance, the Authors table of the Biblio.mdb Access database supplied with Visual
Basic contains one row per Author in the table. It also has a field called Name, which is an
attribute of every Author.

With the Recordset object, you can navigate through the multiple rows that make up a
rowset. You can search for particular rows, move to a row that you previously marked, or
move to the beginning or the end of your logical rowset, all with the Recordset object.

The Recordset object is also used to add, edit, or delete records. We can specify how the
data provider executes batch commands, and we can also run queries on our data source
to provide a customized, filtered view of records.

ActiveX Data Objects allows us to view our records, selected from our data source, in a
number of different ways. The way in which our data is present ed to us is described by a
cursor.

5.1 Cursors: Viewing a Recordset

Cursors present a logical view of a particular recordset. Once the records have been
selected for us from our data source by opening our Recordset object, we must decide on
how we would like them presented. This is done through a cursor. In ADO, there are four
types of cursors:

Dynamic cursor

Keyset cursor

Static cursor

Forward-only cursor

In the following sections, the different cursor types are explained and an example at the
end displays the various functions of each. To prepare your Recordset object to open with
a particular cursor, use the CursorType property. The CursorType property is both read-
and write-enabled while the Recordset object is closed, but once it is opened, the
CursorType property becomes read-only.

Not all providers support all cursor types. When the data provider cannot provide you
with the cursor that you have specified because prerequisites could not be met, the data
provider may automatically assign a different cursor type. When this occurs, you can read

IT-SC book 97

the CursorType property to see the kind of cursor that was actually used when opening
the recordset.

5.1.1 Dynamic Cursor

The first type of cursor is a dynamic cursor. A dynamic cursor allows you to move freely
throughout your recordset, without restrictions, except when your provider does not support
bookmarks -- in this case, you cannot use bookmarks with the Dynamic cursor (see Section
5.3.5 later in this chapter for more information).

"Moving freely through the recordset" means that you may move the record pointer
forward or backwards and to the beginning and end of the recordset. This may seem like
an obvious functionality, but as you will soon see, not all cursors allow you to move the
record pointer this freely.

One of the biggest benefits of using the dynamic cursor is that it allows you to see, in real
time, all additions, changes, and deletions made by other users in your recordset. For
instance, if another user adds a row to a data source, and that row would have been part
of your recordset if you recreated it, that row immediately becomes part of your recordset.

The dynamic cursor is by far the most versatile cursor available to the ADO developer.
The major drawback of the dynamic cursor is that it is extremely resource- and time-
intensive because of its ability to show, in real time, changes made by other users. I
strongly recommend that you use the dynamic cursor only on the rare occasions when
speed is not a concern and you need the added functionality that this cursor alone offers.

To prepare your Recordset object to open a dynamic cursor, set the CursorType property
to adOpenDynamic:
rst.CursorType = adOpenDynamic

5.1.2 Keyset Cursor

The keyset cursor is very similar to the dynamic cursor in functionality, with the
exception of the real-time viewing of new records created, deleted, and modified by other
users. This cursor is the most resource-intensive cursor available in ADO.

The keyset cursor thus allows changes made by other users to be visible to your currently
opened recordset and blocks access to records that have been deleted by other users, just
as with a dynamic cursor. However, when a record is added by another user to your data
source, when you have an open keyset cursor, you will not see the new record until you
recreate the recordset.

Unlike with the dynamic cursor, the ability of the data provider to offer the use of bookmarks is
mandatory. This is so that the keyset cursor can offer something called batch updates, which will
be covered in more detail later in this chapter.

Use the keyset cursor instead of the dynamic cursor whenever possible to conserve
resources.

IT-SC book 98

To prepare your Recordset object to open a keyset cursor, set the CursorType property to
adOpenKeyset:
rst.CursorType = adOpenKeyset

Figure 5-1 shows us the functionality supported by the keyset cursor. (The code for creating this
informational dialog box is in the section "Cursor Type Example.")

Figure 5-1. Keyset cursor functionality

5.1.3 Static Cursor

The static cursor is vastly different than the previous two. It still allows your application to move
freely through the recordset. The difference is that you are unable to dynamically view changes
made to the records by other users within your static recordset.

The static cursor is like a snapshot of the data within your data source at a specific point
in time. You could open a static recordset on your data source and immediately afterward
have the entire data source deleted, but your static cursor would never see the changes.
To prepare your Recordset object to open a static cursor, set the CursorType property to
adOpenStatic:
rst.CursorType = adOpenStatic

As with keyset cursors, Static cursors require that bookmarks are supported by the data provider.
Figure 5-2 shows the functionality supported by the static cursor.

Figure 5-2. Static cursor functionality

IT-SC book 99

The static cursor is excellent when you need to generate reports on data, which cannot
dynamically change. It is also very good when you are using a data source that you know
for sure no other users will access while you are.

The static cursor is significantly faster than both the dynamic and the keyset cursors
because it does not constantly check the data source to ensure that changes have not been
made.

When you are using a client-side Recordset object with Remote Data
Service (RDS), your only choice of cursor type is the static cursor.

5.1.4 Forward-Only Cursor

The forward-only cursor is the fastest available. It is similar to the static cursor in that it
presents a snapshot of the data at a particular point in time, but it lacks the ability to move
the record pointer backwards. The forward-only cursor is the only type of cursor that
does not allow the record pointer to be moved in this way.

Because the forward-only cursor is so limited in its abilities, there are no prerequisites to
opening one. To prepare your Recordset object to open a forward-only cursor, set the
CursorType property to adOpenForwardOnly:
rst.CursorType = adOpenForwardOnly

Figure 5-3 indicates the functionality supported by the forward-only cursor.

Figure 5-3. Forward-only cursor functionality

IT-SC book 100

The forward-only cursor is very useful when you need to make only a single pass through
your recordset, such as in some reporting scenarios. I strongly recommend using the
forward-only cursor whenever your application can deal with its lack of abilities, because
it is so fast.

5.1.5 CursorType Example

The example in this section will demonstrate the different available functions for each of
the four cursor types.

First, create a new project with one form. Add the controls listed in Table 5-1, setting their
values as specified in the second and third columns. Figure 5-4 shows the result.

Figure 5-4. The CursorType example in design mode

Table 5-1. The CursorType Example Control Settings

IT-SC book 101

Control Property Value

Command Button Name cmdCursorType

 Index 0

 Caption ForwardOnly

Command Button Name cmdCursorType

 Index 1

 Caption Keyset

Command Button Name cmdCursorType

 Index 2

 Caption Dynamic

Command Button Name cmdCursorType

 Index 2

 Caption Static

Command Button Name cmdClose

 Caption &Close

Label Caption Cursor Opened:

Label Name lblCursorType

Label Caption Add New:

IT-SC book 102

Label Caption Approx. Position:

Label Caption Bookmark:

Label Caption Delete:

Label Caption Find:

Label Caption Hold Records:

Label Caption Move Previous:

Label Caption Notify:

Label Caption Resync:

Label Caption Update:

Label Caption Update Batch:

Label Name lblBoolean

 Index 0

 Tag 16778240

Label Name lblBoolean

 Index 1

 Tag 16384

Label Name lblBoolean

 Index 2

IT-SC book 103

 Tag 8192

Label Name lblBoolean

 Index 3

 Tag 16779264

Label Name lblBoolean

 Index 4

 Tag 524288

Label Name lblBoolean

 Index 5

 Tag 256

Label Name lblBoolean

 Index 6

 Tag 512

Label Name lblBoolean

 Index 7

 Tag 262144

Label Name lblBoolean

 Index 8

IT-SC book 104

 Tag 131072

Label Name lblBoolean

 Index 9

 Tag 16809984

Label Name lblBoolean

 Index 10

 Tag 65536

Once you have all of the controls in place and you have set the necessary properties, you
can begin to enter the code. Begin by entering the cmdClose_Click event to end the
application:
Private Sub cmdClose_Click()
 Unload Me
End Sub

Next, enter the bulk of the code in the cmdCursorType_Click event:
Private Sub cmdCursorType_Click(Index As Integer)

 Dim rst As ADODB.Recordset
 Dim nCount As Integer

 Const FORWARD_ONLY = 0
 Const KEYSET = 1
 Const DYNAMIC = 2
 Const STATIC = 3

 Set rst = New ADODB.Recordset

 Select Case (Index)
 Case FORWARD_ONLY:
 rst.CursorType = adOpenForwardOnly
 lblCursorType.Caption = "Forward Only"
 Case KEYSET:
 rst.CursorType = adOpenKeyset
 lblCursorType.Caption = "Keyset"
 Case DYNAMIC:
 rst.CursorType = adOpenDynamic
 lblCursorType.Caption = "Dynamic"
 Case STATIC:
 rst.CursorType = adOpenStatic

IT-SC book 105

 lblCursorType.Caption = "Static"
 End Select

 If (rst.State & adStateOpen) Then rst.Close
 rst.Open "Authors", _
 "DSN=BiblioDSN", _
 , _
 adLockPessimistic

 For nCount = 0 To 10
 If (rst.Supports(lblBoolean(nCount).Tag)) Then
 lblBoolean(nCount).Caption = "Supported"
 Else
 lblBoolean(nCount).Caption = "---"
 End If
 Next nCount

 rst.Close
 Set rst = Nothing

End Sub

This code determines which button has been pressed by the Index variable passed to the function.
With this information, the application opened the Authors table of the DSN with the correct
cursor type. Once the recordset is opened, the application loops through all of the lblBoolean
labels on the form. Each label represents a function that the current cursor may or may not
support. By the value stored in that label's Tag property, the Recordset can determine whether the
functionality is supported. Each of the values in the Tag properties directly corresponds to the
functions enumeration value from the CursorOptionEnum enumeration shown in Table 5-2.

Table 5-2. The CursorOptionEnum Enumeration

Value Description

adAddNew Indicates that the recordset can use the AddNew method to add new
records.

adApproxPosition Indicates that the recordset supports the AbsolutePosition and
AbsolutePage properties.

adBookmark Indicates that the recordset supports the Bookmark property.

adDelete Indicates that the recordset can use the Delete method to delete
records.

adHoldRecords Indicates that the recordset allows more records to be modified
before committing current changes.

IT-SC book 106

adMovePrevious Indicates that the recordset can use the MovePrevious method to
step backwards in a recordset.

adResync Indicates that the recordset can use the Resync method to update the
records in the recordset from the underlying data source.

adUpdate Indicates that the recordset can use the Update method to update
information that has been modified within the recordset.

adUpdateBatch Indicates that the recordset can use the UpdateBatch and
CancelBatch methods to support batch processing of edits.

Finally, enter the code for the Form_Load event, which kicks off the application by
invoking the Forward Only command button:
Private Sub Form_Load()
 cmdCursorType_Click (0)
End Sub

Once this project is built, press the Dynamic button to see the application illustrated in Figure 5-
5.

Figure 5-5. Dynamic cursor functionality

If you are having trouble starting the application, you may need to set up a System DSN (Data
Source Name) -- see "Installing the DSNs" in Chapter 4.

The examples in this chapter use the Biblio.mdb Access database
extensively. In order for these examples to work correctly (and to maintain
their simplicity), it is necessary to remove all relationships from within the
tables of the Biblio.mdb database. It is suggested that you make a copy of
the Biblio.mdb database (in a working directory), open it up with Access,

IT-SC book 107

and remove all of the relationships. Once this is done, you can use the
ODBC Data Source Administrator to set the System DSN, BiblioDSN, to
your copy of the Biblio.mdb database as described in Chapter 4.

5.2 Working with Recordsets

The first thing you want to do with a recordset is open it, of course. In order to open a
recordset, you must specify, with the Recordset object, what information you want, where
your information is located, and how to open your information.

5.2.1 The Open Method

The following syntax describes the Open method of the Recordset object:
Recordset.Open [Source], [ActiveConnection], [CursorType], _
 [LockType], [Options]

Notice that all of the parameters of the Open method are optional. The parameters all
relate directly to the respective properties of the Recordset object. You can set their
values through the corresponding parameter or property. However, specifying the
parameter will override previously set properties. In addition, these properties are
read/write while the Recordset object is closed but read-only once the object has been
opened.

Setting the Source property of the Recordset object indicates the information you wish to
open in your recordset. The ActiveConnection property tells the Recordset object where
it can find the information that you want to open. Both the CursorType and LockType
properties tell the Recordset how to open and use the information in the recordset. The
following code opens a Recordset object and sets its properties:
rst.Source = "Authors"
rst.ActiveConnection = "DSN=BiblioDSN"
rst.CursorType = adOpenKeyset
rst.LockType = adLockOptimistic

rst.Open
' do something here
rst.Close

As you can see, there is not much involved with opening recordsets.

All of the examples in this chapter are assuming that you have already
instantiated the Recordset object with the New keyword.

Alternatively, you can specify all of these values as parameters to the Open method of the
Recordset object as shown:
rst.Open "Authors", _

IT-SC book 108

 "DSN=BiblioDSN", _
 adOpenKeyset, _
 adLockOptimistic, _
 adCmdTable

' do something here
rst.Close

Notice that this example has an extra parameter (adCmdTable), called the Options parameter.
This parameter is used to indicate the type of the Source property or parameter's value. In the
previous example, the adCmdTable value indicates that the "Authors" Source is a table name.
The complete list of valid Options is shown in Table 5-3.

Table 5-3. The CommandTypeEnum Enumeration

Value Description

AdCmdFile Indicates that the Source value will be evaluated as a filename.

adCmdStoredProc Indicates that the Source value will be evaluated as a stored
procedure.

adCmdTable Indicates that ADO will create a SQL statement to return all rows of
the table specified by Source.

adCmdTableDirect Indicates that the Source value will be evaluated as a table name.

AdCmdText Indicates that the Source value will be evaluated as a SQL statement
or another string value that should be understood by the data source.

adCmdUnknown Indicates that the type of the Source value is unknown.

The following piece of code shows us how we can pass a SQL statement through the Source
parameter of the Open method. Notice that the fifth parameter, Options, is set to adCmdText to
indicate that the Source parameter contains a string that should be evaluated as a SQL statement
by the data source:
rst.Open "SELECT * FROM Authors;", _
 "DSN=BiblioDSN", _
 , _
 , _
 adCmdText

Debug.Print "Number of records: " & _
 CStr(rst.RecordCount)

rst.Close

IT-SC book 109

There is no member property for the Options parameter of the Open method as there is
for Source, ActiveConnection, CursorType, and LockType. Although it is optional, I
recommend that you always specify the Options parameter. If you do not specify its value,
ADO has to make several calls to the data source to determine how to open the Source,
which can cause significant delays in performance.

The Option parameter has been omitted from most of the remaining code
examples for simplicity and ease of reading. Although this chapter's
examples rarely use the Option parameter, it is a good idea to indicate it in
your applications.

The ActiveConnection property can be set to a Variant value that evaluates to an open
Connection object or a String value that evaluates to a valid connection string (see Section
4.2.1).

The following piece of code demonstrates how the ActiveConnection property can be set
to an already opened connection object:
con.Open "DSN=BiblioDSN"

rst.Source = "Authors"
rst.ActiveConnection = con
rst.Open

rst.Close
con.Close

If the ActiveConnection property is not set to an already open Connection object, you can
pass the Recordset object a connection string. The Recordset object will then use the
connection string to create its own Connection object:
rst.Open "Authors", _
 "DSN=BiblioDSN"

Set con = rst.ActiveConnection

If (con.State & adStateOpen) Then
 Debug.Print "Connection object open."
End If

Debug.Print "Number of records: " & _
 CStr(rst.RecordCount)

rst.Close
con.Close

Notice that the previous example also indicates how the Connection object can be
referenced directly through the ActiveConnection property of the Recordset object.

In the previous two examples, you should notice that the ActiveConnection property
accepts either a String or a Connection object. When a String is passed (a valid

IT-SC book 110

connection string), the code is telling ADO to create a new Connection object with the
connection string for the Recordset object. When you pass the Connection object, the
code is telling ADO to use the reference to the existing Connection object for the
Recordset object.

5.2.2 The Save Method

A very interesting method of the Recordset object is the Save method, which saves the
recordset to a file. This method takes two optional parameters: the first is a filename to
which to save the recordset. The second is a parameter, PersistFormat, indicating the
format of the saved recordset. The two options for this parameter are adPersistADTG
(default) and adPersistXML. The following code illustrates how to use the Save method:
rst.CursorLocation = adUseClient
rst.Open "Authors", _
 "DSN=BiblioDSN"

rst.Save "AuthorsRecordset", adPersistXML

' alter recordset

rst.Save

rst.Close

It is not necessary to specify a filename in subsequent calls to the Save method. This
example's second call to Save will save the recordset to the same location as the first.

It is always a wise idea to set the CursorLocation property to adUseClient (to use a cursor
engine recordset). When you do this, you get better behavior, as some providers have limitations
when saving metadata. In addition, you are bringing all the records locally anyways, so you'll get
a little better performance when letting the cursor engine handle the entire rowset.

To open the saved recordset from a file, specify the filename in either the Source property
of the Recordset object (while the object is closed) or the Source parameter of the Open
method of the Recordset object. It is not necessary to indicate the Options parameter as
adCmdFile, because this is the default value of the parameter if the ActiveConnection
property is not set.
rst.Open "AuthorsRecordset"

Debug.Print "Number of records: " & _
 CStr(rst.RecordCount)

rst.Close

5.2.3 Determining the State of the Recordset Object: The State
Property

You can determine the state of a Recordset object with the State property. The State property
returns a value from the ObjectStateEnum enumeration as shown in Table 5-4.

IT-SC book 111

Table 5-4. The ObjectStateEnum Enumeration

Value Description

adStateClosed Indicates that the object is closed. This is the default value.

adStateConnecting Indicates that the object is still connecting.

adStateExecuting Indicates that the object is still executing a command.

adStateFetching Indicates that the object is still fetching rows from the source.

adStateOpen Indicates that the object is opened.

Example 5-1 shows how the State property of the Recordset object can be used to print the
object's state.

Example 5-1. The PrintRecordState Subroutine

Private Sub PrintRecordsetState(rst As Recordset)

If (rst.State & adStateClosed) Then
 Debug.Print "The rst object is currently closed."
End If

If (rst.State & adStateConnecting) Then
 Debug.Print "The rst object is currently connecting."
End If

If (rst.State & adStateExecuting) Then
 Debug.Print "The rst object is currently executing."
End If

If (rst.State & adStateFetching) Then
 Debug.Print "The rst object is currently fetching."
End If

If (rst.State & adStateOpen) Then
 Debug.Print "The rst object is currently open."
End If
End Sub

The following code uses the PrintRecordState subroutine shown in Example 5-1 to let us see the
state of a Recordset during the process of opening and closing a data source:
PrintRecordsetState rst ' State & adStateClosed

rst.Open "Authors", _
 "DSN=BiblioDSN" ' Open the recordset

IT-SC book 112

PrintRecordsetState rst ' State & adStateOpen

rst.Close ' Close the recordset

PrintRecordsetState rst ' State & adStateClosed

The output from running this piece of code first shows that the recordset is closed prior to
the Open method call. Once the call has been made, the recordset is opened (the State
property is equal to adStateOpen) and then closed once the Close method is called.

5.2.4 Fine-Tuning Performance of the Recordset Object

The Recordset object has numerous properties used to fine-tune performance with the
connection to the data source. One of these properties is the CacheSize property.

5.2.4.1 The CacheSize property

The CacheSize property can be set at any time, while the Recordset object is opened or
closed.

The CacheSize property indicates how many records are cached by ADO. The default
setting for this property is 1, and its value cannot be set to 0. If the value of the CacheSize
property is changed while the Recordset is open, it will not affect the caching of records
until the Recordset object needs to cache more records when the record pointer moves to
a location outside the cached group of records. In other words, if the CacheSize property
has been set to 5 and then to 10, the Recordset will not cache 10 records until it reaches
the sixth record.

The following code illustrates how to use the CacheSize property:
rst.Open "Authors", _
 "DSN=BiblioDSN"

rst.CacheSize = 10
Do Until (rst.EOF)
 Debug.Print "Author: " & rst.Fields("Author").Value
 rst.MoveNext
Until

rst.Close

5.2.4.2 The MaxRecords property

The number of records returned by a Recordset object can be limited by using the
MaxRecords property. The MaxRecords property accepts a Long value, which indicates
the maximum number of records to be returned to the recordset.

The following code counts the number of records returned after setting the MaxRecords
property to 100:

IT-SC book 113

Dim lRecords As Long

rst.MaxRecords = 100

rst.Open "SELECT Au_ID FROM Authors;", _
 "DSN=BiblioDSN"

lRecords = 0

Do Until (rst.EOF)
 lRecords = lRecords + 1
 rst.MoveNext
Loop

Debug.Print "There were " & CStr(lRecords) & " retrieved."

rst.Close

The default value of the MaxRecords property is 0, which indicates that there is no limit
to the number of records returned to the Recordset object.

5.2.4.3 The CursorLocation property

Another useful property of the Recordset object is the CursorLocation property, which tells ADO
where to create the recordset, either on the server (adUseServer -- the default) or the client
(adUseClient).

The following example prints the time it takes to establish a connection to the Author
table using a server-side cursor:
rst.CursorLocation = adUseServer

dTime = Now

rst.Open "Authors", _
 "DSN=BiblioDSN", _
 , _
 , _
 adCmdTableDirect

' do something
rst.Close

Debug.Print "Time taken: " & _
 Format$(Now - dTime, "hh:mm:ss")

The next code fragment indicates the time taken to establish a connection to the Author
table using a client-side cursor:
rst.CursorLocation = adUseClient

dTime = Now

rst.Open "Authors", _
 "DSN=BiblioDSN", _

IT-SC book 114

 , _
 , _
 adCmdTableDirect

' do something
rst.Close

Debug.Print "Time taken: " & _
 Format$(Now - dTime, "hh:mm:ss")

The CursorLocation property is both read- and write-enabled while the Recordset object
is closed, but is read-only once the object has been opened.

The Connection object also has a CursorLocation property (see "Cursor location" under "Setting
Connection Options" in Chapter 4). If you decide to open your Recordset object with an already
opened Connection object and the ActiveConnection property, the Recordset object will
automatically inherit the value of the CursorLocation property from the Connection object.

When you are using a client-side Recordset object with RDS, your only
choice of cursor location is the client.

5.2.5 Sorting, Filtering, and Finding Rows in a Recordset

The Recordset objects also include properties that allow recordset manipulation, such as
sorting and filtering records in already created recordsets.

5.2.5.1 The Filter property

The Filter property of the Recordset object allows you to filter a recordset even after it
has been created. This very useful property allows us to filter our recordset down into a
smaller subset of records.

The Filter property can be set to a number of values. The first of these values is the
criteria search string. This is a value that closely resembles the WHERE clause of a SQL
statement. The following code illustrates how the Filter property is used with a criteria
search string:
rst.Open "Authors", _
 "DSN=BiblioDSN", _
 adOpenKeyset

Debug.Print "Number of records: " & _
 CStr(rst.RecordCount)

rst.Filter = "[Year Born]=1970"

Debug.Print "Number of records: " & _
 CStr(rst.RecordCount)

rst.Close

IT-SC book 115

When this piece of code is executed, the number of records in the Recordset object is originally
very large (assuming there are a large number of records still in the Biblio.mdb database). Once
the filter is applied with the [Year Born]=1970 clause, the number of records drops
significantly because the Recordset is now filtering out all other values.

Other acceptable values for the Filter property include the values of the FilterGroupEnum
enumeration shown in Table 5-5.

Table 5-5. The FilterGroupEnum Enumeration

Value Description

adFilterNone

Indicates that there is no filter on the recordset. This
value is equivalent to an empty string ("") and can be
used to remove a filter and restore the recordset to its
original contents.

adFilterPendingRecords

Indicates that the filter on the recordset is for records
that have changed and have not yet been sent to the
server. This value is for batch update mode only (see
"Batch Optimistic" later in this chapter for more
information).

adFilterAffectedRecords
Indicates that the filter on the recordset is for records
that have been affected by the last call to Delete,
Resync, UpdateBatch, or CancelBatch methods.

adFilterFetchedRecords Indicates that the filter on the recordset is only for those
records in the current cache.

adFilterConflictingRecords Indicates that the filter on the recordset is for those
records that have failed the last attempt at batch update.

The next piece of code illustrates the use of the adFilterPendingRecords constant as the
value for the Filter property in order to see only those records that have not yet been
posted to the data source:
rst.Open "Authors", _
 "DSN=BiblioDSN", _
 adOpenKeyset, _
 adLockBatchOptimistic

rst.AddNew "Author", "Steven"
rst.AddNew "Author", "Patrice"
rst.AddNew "Author", "Tammi"

rst.Filter = adFilterPendingRecords

IT-SC book 116

Debug.Print "Number of records: " & _
 CStr(rst.RecordCount)

rst.Filter = ""
Debug.Print "Number of records: " & _
 CStr(rst.RecordCount)

rst.UpdateBatch
Debug.Print "Number of records: " & _
 CStr(rst.RecordCount)

rst.Close

In this example, after the filter is applied, only the three newly added records are visible through
the Recordset object because the adFilterPendingRecords constant value was used.

5.2.5.2 The Sort property

You can also sort an opened recordset by the Recordset object by using the Sort property. The
Sort property accepts a list of comma-delimited fields that correspond to fields in the recordset. In
addition, a space followed by either DESC or ASC can be added to each field in the list to specify
the order in which the records will be sorted. The Sort property works only with client-side
cursors.

The following code uses a client-side cursor to create a temporary index on the local machine
based upon the sorting criteria [Year Born] DESC, Author:
rst.CursorLocation = adUseClient

rst.Open "Authors", _
 "DSN=BiblioDSN"

rst.Sort = "[Year Born] DESC, Author"

Do Until (rst.EOF)
 Debug.Print rst.Fields("Author").Value, _
 "" & rst.Fields("Year Born").Value
 rst.MoveNext
Loop

rst.Close

5.2.5.3 The Resync method

Another useful method of the Recordset object is the Resync method. The Resync
method repopulates the Recordset object with data from the data source. The Resync
method accepts two parameters, AffectRecords and ResyncValues.

The values for the AffectRecords parameter can be one of the AffectEnum enumeration values
listed in Table 5-6.

Table 5-6. The AffectEnum Enumeration

IT-SC book 117

Value Description

adAffectCurrent Indicates that only the current record will be refreshed.

adAffectsGroup Indicates that the records within the group specified by the Filter
property will be refreshed.

adAffectAll
Indicates that all of the records within the Recordset object (even
those outside of the applied Filter) will be updated. This is the default
value.

The value for the second parameter, ResyncValues, can be set to one of the ResyncEnum
enumeration values shown in Table 5-7.

Table 5-7. The ResyncEnum Enumeration

Value Description

adResyncAllValues
Indicates that the recordset is populated with the data from
the data source, overwriting any pending changes. This is
the default value.

adResyncUnderlyingValues Indicates that pending changes are saved to the database
and then the recordset is repopulated.

In the following code example, the Resync method is called with the adAffectGroup
value for the AffectRecords parameter so that only the modified record is repopulated. In
addition, the adResyncAllValues value is used for the ResyncValues parameter. This
value causes the record that has been modified to be repopulated with the original data
from the data source, thus canceling the update batch:
Dim lNumRecords As Long

rst.Open "Authors", _
 "DSN=BiblioDSN", _
 adOpenKeyset, _
 adLockBatchOptimistic

rst.Find "Author='Jason'"
rst.Update "Author", "Joey"
rst.Filter = adFilterPendingRecords
Debug.Print "Number of records: " & _
 CStr(rst.RecordCount)

rst.Resync adAffectGroup, _
 adResyncAllValues

IT-SC book 118

Debug.Print "Number of records: " & _
 CStr(rst.RecordCount)

Debug.Print rst.Fields("Author").Value

rst.Close

In order to repopulate the recordset with the one record that was modified and to post the update
to the data source, the Resync method should be called with the adResyncUnderlyingValues
value for the ResyncValues parameter. This is shown in the following code:
rst.Open "Authors", _
 "DSN=BiblioDSN", _
 adOpenKeyset, _
 adLockBatchOptimistic

rst.Find "Author='Jason'"
rst.Update "Author", "Joey"
rst.Filter = adFilterPendingRecords
Debug.Print "Number of records: " & _
 CStr(rst.RecordCount)

rst.Resync adAffectGroup, _
 adResyncUnderlyingValues
Debug.Print "Number of records: " & _
 CStr(rst.RecordCount)

Debug.Print rst.Fields("Author").Value

rst.Close

5.2.5.4 The Find method

The Find method of the Recordset object can be used to locate the first occurrence of a
condition within a Recordset object. The Find method has four arguments:
Criteria (String)

Indicates a column name from the Recordset, a comparison operator (<, >, =, >=, <=, <>, or like).

SkipRows (Long)

Optional. Indicates how many records to skip before beginning the search. The default value for
this argument is 0.

SearchDirection

Optional. A SearchDirectionEnum (adSearchBackward or adSearchForward).

Start (Variant)

Optional. A bookmark that specifies where the search should begin.

The following example illustrates how the Find method can be used to find the first author in the
Authors table, named Jason:
rst.Open "Authors", _

IT-SC book 119

 "DSN=BiblioDSN", _
 adOpenKeyset, _
 adLockBatchOptimistic

rst.Find "Author='Jason'"

.
.
.

rst.Close

5.2.6 Working with Multiple Recordset Objects

You can clone a Recordset object with the Clone method of the Recordset object.

By cloning Recordset objects, as shown in the next code fragment, you can easily look at
multiple records within the same recordset. If you add records to the original or to the
clone, the new records are instantaneously available to the other:
Dim rstClone As ADODB.Recordset
Set rstClone = ADODB.Recordset

rst.Open "Authors", _
 "DSN=BiblioDSN", _
 adOpenKeyset, _
 adLockOptimistic

Set rstClone = rst.Clone

Debug.Print "Number of records before AddNew (original): " & _
 CStr(rst.RecordCount)

Debug.Print "Number of records before AddNew (clone): " & _
 CStr(rstClone.RecordCount)

rst.AddNew "Author", "Jason"

Debug.Print "Number of records after AddNew (original): " & _
 CStr(rst.RecordCount)

Debug.Print "Number of records after AddNew (clone): " & _
 CStr(rstClone.RecordCount)

rst.Close
rstClone.Close

Recordsets can be cloned as many times as you wish. You can close the clones or the
originals without affecting the other. When a clone is created, the record pointer is moved
to the first record of the cloned recordset.

The Clone method accepts an optional parameter, the LockType parameter. The default value for
this parameter is adLockUnspecified, which tells ADO to use the same locking scheme on the

IT-SC book 120

clone as was used on the original. The only other value specified for this property is
adLockReadOnly, which, as it sounds, sets the locking scheme of the clone to read-only.

Another method that is of some interest within the Recordset object is the NextRecordset
method. This method allows you to query multiple SQL statements from within a single
compound recordset. The following code illustrates how to use the NextRecordset
method:
rst.Open "SELECT * FROM Authors; " & _
 "SELECT * FROM Publishers;", _
 "DSN=BiblioDSN", _
 adOpenForwardOnly, _
 adLockReadOnly, _
 adCmdText

While (Not rst)
 Do Until (rst.EOF)
 Debug.Print rst.Fields(1).Value
 rst.MoveNext
 Until

 Set rst = rst.NextRecordset
Wend

rst.Close

Notice that the two SQL statements in this code example are separated by a semicolon (;). The
first time through, the rst Recordset object is set to a recordset created by the first SQL
statement. With the first call to the NextRecordset method (which returns a Recordset object), the
rst Recordset object is set to a recordset created by the second SQL statement. Upon the second
call to the NextRecordset method, the rst Recordset object is set to Nothing.

5.3 Navigating a Recordset

Moving around in a recordset is one of the most basic actions. There are many ways you
can move within a recordset, but the basic concept for each technique is the same.

Regardless of where or how you want to move around in a recordset, there is always a
place pointed to by a record pointer.

5.3.1 The Record Pointer

The record pointer indicates the current record. Imagine a record pointer as the needle on
a record player. It points to the current song so that you can access that song's
information. In a recordset, a record pointer points to a record (most of the time) so that
you can access that records information.

Two important properties of a Recordset object, which have appeared in previous examples
without full explanation, are the BOF (Beginning Of File) and EOF (End Of File) properties.
These are Boolean properties that indicate that you have stepped out of the bounds of the
recordset. Figure 5-6 shows you that the BOF property is True when the record pointer is before

IT-SC book 121

the first record in the recordset and that the BOF property is True when the record pointer is past
the last record in the recordset.

Figure 5-6. A typical recordset with BOF and EOF Properties

If, when you open a recordset, there are no records in that recordset, both the BOF and EOF
properties are set to True. We can check for this situation with the following code:
If (Not (rst.BOF And rst.EOF)) Then ...

The BOF and EOF properties are very important when moving around within a recordset.
We will take a closer look at them in the next section as we begin to explore how they
interact with functions that allow us to change the position of the record pointer.

5.3.2 The MoveFirst, MovePrevious, MoveNext, and MoveLast
Methods

The four most common methods for moving the record pointer in a recordset are the MoveFirst,
MovePrevious, MoveNext and MoveLast methods. The functionalities of these methods are
described in Table 5-8.

Table 5-8. The MoveFirst, MovePrevious, MoveNext, and MoveLast Methods

Method Description

MoveFirst The MoveFirst method moves the record pointer to the first record in a
recordset.

MovePrevious
The MovePrevious method moves the record pointer to the ordinal position
located directly before the current one. If there is no record at this location
(meaning that the current record is the first record in the recordset), the BOF
property is set to True and the record pointer no longer points to a valid record.

IT-SC book 122

MoveNext
The MoveNext method moves the record pointer to the ordinal position located
directly after the current one. If there is no record at this location (meaning that
the current record is the last record in the recordset), the EOF property is set to
True and the record pointer no longer points to a valid record.

MoveLast The MoveLast method moves the record pointer to the last record in the
recordset.

The following code is a typical example of how the MoveFirst and MoveNext methods
can be used (with the BOF and EOF properties) to step from the beginning to the end of a
recordset:
rst.Open "Authors", _
 "DSN=BiblioDSN"

Do Until (rst.EOF)
 Debug.Print "Author: " & rst.Fields("Author").Value
 rst.MoveNext
Loop

rst.Close

Notice what is happening in this code. First, we check the recordset to see whether it is empty. If
it's not, the record pointer is set to the first record in the recordset. Next, a Do Until statement,
while the record pointer points to a valid record, prints the Author name and moves to the next
record (by means of the MoveNext method). If the recordset is empty, the Do Until statement
never executes, because the EOF property is true.

Use the same concept to move from the end of a recordset to the beginning:
rst.Open "Authors", _
 "DSN=BiblioDSN", _
 adOpenKeyset

Do Until (rst.BOF)
 Debug.Print "Author: " & rst.Fields("Author").Value
 rst.MovePrevious
Loop

rst.Close

In this example, if the recordset is not empty, a call to the MoveLast method moves the record
pointer to the end of the recordset. Also, the Do Until statement checks whether the record
pointer is pointing to the beginning of the file, thus making the BOF property True.

During each call to the MovePrevious method, the record pointer is moved to the record directly
before the record to which it was pointing. When the record pointer points to the first record in
the recordset and the MovePrevious method is called, the record pointer moves to the position
located directly before the first record. When the record pointer is in this position, the BOF
property is set to True as shown in Figure 5-6. The Do Until loop does not execute again
because there are no more records available in the recordset.

IT-SC book 123

Notice that in the last example, we opened the recordset with a keyset cursor. Remember from the
previous section on cursors (Section 5.1) that the keyset cursor is one of the three cursors that
allow you to move the record pointer backward within a recordset.

Sometimes it is necessary to check for the ability to move backward within a recordset.
We can do this with the Supports method:
rst.Open "Authors", _
 "DSN=BiblioDSN", _
 adOpenForwardOnly

If (rst.Supports(adMovePrevious)) Then
 rst.MoveLast

 Do Until (rst.BOF)
 Debug.Print "Author: " & rst.Fields("Author").Value
 rst.MovePrevious
 Loop
Else
 Debug.Print "Cursor does not support bookmarks."
End If

rst.Close

This code never prints an Author name, because a forward-only cursor does not support
the MovePrevious method.

5.3.3 The Move Example

This example uses a model that is very typical to many database applications. Figure 5-7 shows
the Move Example in action.

Figure 5-7. The Move Example

Each of the four buttons that allow the user to move to a different record in the recordset
are called navigation buttons. Each of these buttons corresponds to a Move method
introduced in the last section.

Begin by adding the controls and setting their property values as shown in Table 5-9. Remember
to make the four navigation buttons part of a control array.

Table 5-9. The Move Example Control Settings

IT-SC book 124

Control Property Value

Label Caption Author ID:

Label Name lblAuthorID

Label Caption Author:

Label Name lblAuthorName

Label Caption Year Born:

Label Name lblYearBorn

Command Button Name cmdMove

 Index 0

 Caption << &First

Command Button Name cmdMove

 Index 1

 Caption < &Previous

Command Button Name cmdMove

 Index 2

 Caption &Next >

Command Button Name cmdMove

 Index 3

IT-SC book 125

 Caption &Last >>

Command Button Name cmdClose

 Caption &Close

Now enter the code shown in Example 5-2.

Example 5-2. The Move Next Example

Option Explicit

Private m_rst As ADODB.Recordset

Const FIRST = 0
Const PREVIOUS = 1
Const NEXT = 2
Const LAST = 3

Private Sub cmdClose_Click()
 m_rst.Close
 Set m_rst = Nothing

 Unload Me
 End
End Sub

Private Sub cmdMove_Click(Index As Integer)

 Select Case (Index)
 Case FIRST:
 m_rst.MoveFirst
 Case PREVIOUS:
 m_rst.MovePrevious
 Case NEXT:
 m_rst.MoveNext
 Case LAST:
 m_rst.MoveLast
 End Select

 PopulateAuthorInformation

 AdjustNavigationButtons

End Sub

Private Sub PopulateAuthorInformation()

 lblAuthorID.Caption = m_rst.Fields("Au_ID").Value
 lblAuthorName.Caption = "" & m_rst.Fields("Author").Value
 lblYearBorn.Caption = "" & m_rst.Fields("Year Born").Value

IT-SC book 126

End Sub

Private Sub AdjustNavigationButtons()

 m_rst.MovePrevious
 If (m_rst.BOF) Then
 cmdMove(FIRST).Enabled = False
 cmdMove(PREVIOUS).Enabled = False
 Else
 cmdMove(FIRST).Enabled = True
 cmdMove(PREVIOUS).Enabled = True
 End If
 m_rst.MoveNext

 m_rst.MoveNext
 If (m_rst.EOF) Then
 cmdMove(LAST).Enabled = False
 cmdMove(NEXT).Enabled = False
 Else
 cmdMove(LAST).Enabled = True
 cmdMove(NEXT).Enabled = True
 End If
 m_rst.MovePrevious

End Sub

Private Sub Form_Load()

 Set m_rst = New ADODB.Recordset

 m_rst.Open "Authors", _
 "DSN=BiblioDSN", _
 adOpenKeyset, _
 adLockReadOnly

 If (m_rst.BOF And m_rst.EOF) Then
 MsgBox "There are no records in this recordset.", _
 vbOKOnly, _
 "Error"
 cmdClose_Click
 End If

 cmdMove_Click FIRST

End Sub

In this example, the navigation buttons move the record pointer within the recordset. The
AdjustNavigationButtons method changes the Enabled property for the buttons based on whether
they can be used. If the record pointer is before the first record in the recordset, then the First and
Previous button's Enabled property is set to False. If the record pointer is past the last record in
the recordset, then the Last and Next button's Enabled property is set to False.

Take a close look at the code in the AdjustNavigationButtons method. Notice that when
testing to determine if BOF is True, the record pointer is first moved back one ordinal
position and then is moved back to its original position once the test is completed:

IT-SC book 127

m_rst.MovePrevious
If (m_rst.BOF) Then
.
.
.
End If
m_rst.MoveNext

The reason for this, as you may recall, is that the BOF property is True when the record pointer
is at the position immediately before the first record in the recordset. What this code does is
disable the First and Previous buttons before the user moves the record pointer to the position
after the last record in the recordset, which would be an invalid record.

The same goes for the EOF property. In this example, the record pointer is moved forward one
position to check to see whether it is at position directly after the last record in the recordset.
Once this check is complete, the record pointer moves back to the original record position. If the
EOF property becomes True during this check, it means that the original position pointed to was
the last record in the recordset.

Notice that in the Form_Load event, after the recordset is opened, there is a check whether there
are any records in the recordset at all. The reason for this is simple. If the recordset was empty
when it was opened, the code just described would not work properly. You cannot use MoveFirst,
MovePrevious, MoveNext, or MoveLast in an empty recordset. In an empty recordset, the BOF
and EOF properties are set to True.

5.3.4 Ordinal Position

The ordinal position of the record pointer can be set with the AbsolutePosition property
as shown:
rst.Open "Authors", _
 "DSN=BiblioDSN", _
 adOpenKeyset

rst.AbsolutePosition = 1234

Debug.Print "Author at record 1234: " & _
 rst.Fields("Author").Value

rst.Close

The AbsolutePosition property returns a value ranging from 1 to the number of records in the
recordset. To obtain the number of records in a recordset, use the RecordCount property:
rst.Open "Authors", _
 "DSN=BiblioDSN", _
 adOpenKeyset

Debug.Print "Number of records: " & _
 CStr(rst.RecordCount)

rst.Close

IT-SC book 128

The AbsolutePosition property can also return one of the constants from the PositionEnum
enumeration shown in Table 5-10.

Table 5-10. The PositionEnum Enumeration

Value Description

adPosBOF
Indicates that the record pointer is at the position directly before the first record
in the recordset, and that the BOF property is True. This value is not returned if
the recordset is empty.

adPosEOF
Indicates that the record pointer is at the position directly after the last record in
the recordset and that the EOF property is True. This value is not returned if the
recordset is empty.

AdPosUnknown

Indicates one of three things:

The recordset is empty.

The current position of the record pointer is unknown.

The data provider does not support the AbsolutePosition property.

Once the AbsolutePosition property has changed, ADO recaches the number of records
indicated by the CacheSize property, the first record in the cache being that pointed to by
the AbsolutePosition property.

The value of the AbsolutePosition property should never be used as a marker or a record
number, because you cannot rely on the value of this property being the same even if you
read it twice for the same record. Once a record is added or deleted from the recordset,
this value changes. Instead, use the Bookmark property to perform such actions.

5.3.5 Bookmarks

When a recordset is created, each record is given a unique identifier, called a bookmark, which
can be accessed with the Bookmark property. The Bookmark property returns a Variant datatype,
which does not always evaluate to a readable String. The Bookmark property is not meant to be
read directly: its implementation is dependent upon the data provider. The data provider is
required only to allow you to read and set the values properly -- not to allow you to read and
make sense of the value.

Not all data providers or cursors support bookmarks. Use the Supports
method of the Recordset object to check for the availability of bookmarks
within a recordset. However, when you are using a client-side Recordset
object with RDS, the Bookmark property is always supported.

IT-SC book 129

The following code illustrates how the Bookmark property is used:
Dim vBookmark As Variant

rst.Open "Authors", _
 "DSN=BiblioDSN", adOpenKeyset

rst.Find "Author='Jason'"

If (rst.Supports(adBookmark)) Then

 vBookmark = rst.Bookmark
 rst.MoveFirst
 rst.Bookmark = vBookmark

 Debug.Print rst.Fields("Author").Value

End If

rst.Close

The value of a recordset's bookmark is unique to the currently opened recordset. You
cannot use a bookmark within two different recordsets or even two instances of the same
recordset and expect predictable results. (The only exception to this rule is when you
create one recordset from another with the Clone method.)

The same record can be pointed to by two different bookmarks; therefore, you should
never directly compare two bookmark's values. Instead, use the CompareBookmark
property:
Dim vFirstBookmark As Variant
Dim vSecondBookmark As Variant
Dim lCompareResult As Long

rst.Open "Authors", _
 "DSN=BiblioDSN", _
 adOpenKeyset

rst.MoveFirst
rst.Find "Author='Jason'"
vFirstBookmark = rst.Bookmark

rst.MoveFirst
rst.Find "Author='Tammi'"
vSecondBookmark = rst.Bookmark

lCompareResult = rst.CompareBookmarks(vFirstBookmark, _
 vSecondBookmark)

If (lCompareResult = adCompareLessThan) Then
 Debug.Print "Jason comes before Tammi"
Else
 Debug.Print "Tammi comes before Jason"
End If

rst.Close

IT-SC book 130

In this example, the result of the CompareBookmarks method was compared to the
adCompareLessThan constant to see the position of one bookmark in relation to the other. In
addition to this constant, the CompareBookmark method can also return any value from the
CompareEnum enumeration shown in Table 5-11.

Table 5-11. The CompareEnum Enumeration

Value Description

adCompareLessThan Indicates that the first bookmark comes before the second in
order.

adCompareGreaterThan Indicates that the second bookmark comes before the first in
order.

adCompareEqual Indicates that the first bookmark is in the same position as
the second.

adCompareNotEqual
Indicates that the first bookmark is not in the same position
as the second and furthermore that the records are not
ordered.

adCompareNotComparable Indicates that the first bookmark cannot be compared to the
second bookmark.

5.3.5.1 The Move method

Another method for navigating a recordset is the Move method. This method takes two
parameters. The first parameter is a Long value that indicates the number of records to move. The
second parameter can be either a valid bookmark Variant value or a valid value from the
BookmarkEnum enumeration shown in Table 5-12.

Table 5-12. The BookmarkEnum Enumeration

Value Description

adBookmarkCurrent
Indicates that the Move method should begin counting records
from the current record pointed to by the record pointer. This is the
default value.

adBookmarkFirst Indicates that the Move method should begin counting records
from the first record in the recordset.

adBookmarkLast Indicates that the Move method should begin counting records

IT-SC book 131

from the last record in the recordset.

For you to pass a bookmark for the second parameter of the Move method, the recordset
must support bookmarks. The following example illustrates how the Move method is
used:
Dim lNumRecords As Long

rst.Open "Authors", _
 "DSN=BiblioDSN", _
 adOpenKeyset

lNumRecords = 230

rst.Move lNumRecords, adBookmarkFirst

Do Until (rst.EOF)
 Debug.Print "Author: " & _
 rst.Fields("Author").Value
 rst.Move lNumRecords, adBookmarkCurrent
Loop

rst.Close

This code starts at the first record in the recordset (indicated by the adBookmarkFirst constant
value) and moves ahead 230 record positions. Within the Do Until loop, the Move method is
continually called with the adBookmarkCurrent value that tells ADO to start from the current
position within the recordset. This continues until the EOF property is True.

If the number of records in the recordset is not evenly divisible by 230, attempting to move past
the last record in the recordset sets the EOF property to True. Another attempt to move forward
in a recordset by the Move method would result in an error, as would a call to the MoveNext
method.

You can also pass a negative number to the Move method as its first parameter:
rst.Open "Authors", _
 "DSN=BiblioDSN", _
 adOpenKeyset

lNumRecords = -230

rst.Move lNumRecords, adBookmarkLast

Do Until (rst.BOF)
 Debug.Print "Author: " & _
 rst.Fields("Author").Value
 rst.Move lNumRecords, adBookmarkCurrent
Until

rst.Close

Notice the second parameter to the Move method, the adBookmarkLast constant. This constant
indicates that the Move method will begin counting records from the last record in the recordset.

IT-SC book 132

This example is almost identical to the previous one, except the negative number passed to the
Move method indicates that the record pointer is moving backwards in the recordset. The Move
method then uses the adBookmarkCurrent constant, as in the last example, from within the Do
Until loop to move from the position to which the record pointer is currently pointing. When the
Move method attempts to move the record pointer before the first record in the recordset, the
BOF property is set to True.

5.3.6 Paging

Pages logically divide the recordset into groups. The size of a page is determined by the value
passed to the PageSize property. The number of logical pages within a recordset is indicated by
the PageCount property. These properties are not available in a forward-only cursor.

Both of these properties are illustrated in the following code:
rst.Open "Authors", _
 "DSN=BiblioDSN", _
 adOpenKeyset, _
 adLockOptimistic

rst.PageSize = 25

Debug.Print "Pages: " & CStr(rst.PageCount)
Debug.Print "Page Size: " & CStr(rst.PageSize)

rst.Close

You can jump to the beginning of any page by using the AbsolutePage property to set the
current page:
Dim lPageNumber As Long

rst.Open "Authors", _
 "DSN=BiblioDSN", _
 adOpenKeyset, _
 adLockOptimistic

rst.PageSize = 25

For lPageNumber = 1 To rst.PageCount
 rst.AbsolutePage = lPageNumber
 Debug.Print "The first author on page " & _
 CStr(lPageNumber) & " is " & _
 rst.Fields("Author").Value
Next lPageNumber

rst.Close

5.4 Working with Records

When working with data sources, the majority of your work revolves around adding,
editing, or deleting records. In addition, you may find the need to retrieve many records

IT-SC book 133

at once. Let us begin learning how to work with records by learning how to add them to
our recordset.

5.4.1 Adding New Records

To add a new record to a recordset, use the AddNew method. The AddNew method
creates a new record at the end of your recordset and points the record pointer to it. The
following code illustrates the most basic way in which the AddNew method can be used:
rst.Open "Authors", _
 "DSN=BiblioDSN", _
 adOpenKeyset, _
 adLockOptimistic

rst.AddNew
rst.Fields("Author") = "Jason"
rst.Fields("Year Born") = 1973
rst.Update

rst.Close

Notice that before the recordset is closed and after the information has been loaded into
the fields of the recordset, the Update method is called. The Update method tells ADO
that the record currently being edited is ready to be updated in the database.

The AddNew method can also be used with a set of parameters as shown in this example:
rst.Open "Authors", _
 "DSN=BiblioDSN", _
 adOpenKeyset, _
 adLockOptimistic

rst.AddNew "Author", "Kimberly"

rst.Close

This example passes two parameters to the AddNew method. The first parameter is the
name of a field and the second parameter is the value for that field. There is no need to
call the Update method when using this syntax because ADO knows that you are creating
a new record with only one field value specified.

Finally, the third and final syntax for adding new records with the AddNew method also
accepts two parameters, but it allows you to set multiple fields' values in a single method
call. This is accomplished with the use of arrays as follows:
Dim sFields(1) As Variant
Dim sValues(1) As Variant

rst.Open "Authors", _
 "DSN=BiblioDSN", _
 adOpenKeyset, _
 adLockOptimistic

sFields(0) = "Author"

IT-SC book 134

sFields(1) = "Year Born"

sValues(0) = "Tamara"
sValues(1) = "1975"

rst.AddNew sFields, sValues

rst.Close

Notice that the sFields array has the same dimension as the sValues array and that each
ordinal position in the sFields array (beginning with 0) corresponds to an ordinal position in the
sValues array.

As in the previous example, there is no need to call the Update method, because ADO
assumes that it has all the information it needs and automatically updates this information
in the data source.

It may seem obvious, but it is important to realize that a read-only data source does not
allow you to update the recordset. This includes adding new records. The ability of a
recordset to add new records can be checked with the Supports method by passing the
adAddNew constant:
rst.Open "Authors", _
 "DSN=BiblioDSN", _
 adOpenKeyset, _
 adLockReadOnly ' read only... cannot add a record

If (rst.Supports(adAddNew)) Then
 rst.AddNew "Author", "New Author"
Else
 Debug.Print "Cannot add a new record."
End If

rst.Close

As stated earlier, once a new record has been added to the recordset, the record pointer
points to this new record so that the application can immediately read information from
the newly added record. The following code displays the name of the newly added record,
illustrating that the record pointer is automatically moved to point to the new record:
rst.Open "Authors", _
 "DSN=BiblioDSN", _
 adOpenKeyset

If (rst.Supports(adAddNew)) Then
 rst.AddNew
 rst.Fields("Author") = "John"
 rst.Update

 Debug.Print rst.Fields("Author")
Else
 Debug.Print "Cannot add a new record."
End If

IT-SC book 135

rst.Close

5.4.2 Updating and Editing Records

Earlier in this chapter, the Update method was described as the method that indicates to
ADO that the application is ready for it to save the information for the edited record.
There is also a method that tells ADO to cancel the pending modifications and to discard
any new information to the data source. This method is the CancelUpdate method, which
is illustrated in the following code:
rst.Open "Authors", _
 "DSN=BiblioDSN", _
 adOpenKeyset, _
 adLockOptimistic

Dim lResponse As Long

If (rst.Supports(adAddNew)) Then

 rst.AddNew
 rst.Fields("Author") = "Kaitlyn"
 rst.Fields("Year Born") = "1997"

 lResponse = MsgBox("Are you sure you want to add this record?", _
 vbYesNo, _
 "Add Record")

 If (lResponse = vbYes) Then
 rst.Update
 Else
 rst.CancelUpdate
 End If

End If

rst.Close

This example creates a new record in the recordset and then asks the user to confirm that
they want to create a new record. If the answer is yes, the Update method is called. If the
answer is no, the CancelUpdate method is called.

Besides working in conjunction with the AddNew method, the Update method can also
be used to edit an existing record in the recordset. By passing two parameters (just like
the AddNew method), the Update method can alter the contents of a single field.

The following example queries a data source to create a recordset that contains all records where
Author is equal to Tamara. The Do Until loop then changes each of the records in the recordset
so that the Author field is Tammi, instead of Tamara.
rst.Open "SELECT Author " & _
 "FROM Authors " & _
 "WHERE Author='Tamara';", _
 "DSN=BiblioDSN", _
 adOpenKeyset, _

IT-SC book 136

 adLockOptimistic

Do Until (rst.EOF)
 rst.Update "Author", "Tammi"
 rst.MoveNext
Loop

rst.Close

Just as the AddNew method had various syntaxes for its parameters, so does the Update
method. Two Variant arrays can be passed to the Update method so that multiple fields
can be updated immediately within a single record. The following piece of code
illustrates how this can be done:
Dim sFields(1) As Variant
Dim sValues(1) As Variant

rst.Open "SELECT Author, [Year Born] " & _
 "FROM Authors " & _
 "WHERE Author='Kimberly';", _
 "DSN=BiblioDSN", _
 adOpenKeyset, _
 adLockOptimistic

sFields(0) = "Author"
sFields(1) = "Year Born"

sValues(0) = "Kim"
sValues(1) = "1975"

Do Until (rst.EOF)
 rst.Update sFields, sValues
 rst.MoveNext
Until

rst.Close

This example changes the value of the Author field to Kim and the Year Born field to 1975 for all
records where the Author field was originally Kimberly.

The EditMode property returns a value representing the current state of the recordset; this value is
a valid EditModeEnum enumeration value as shown in Table 5-13.

Table 5-13. The EditModeEnum Enumeration

Value Description

AdEditAdd

Indicates that the AddNew method has been called to add a new
record to the current recordset, but either the Update or the
CancelUpdate methods have not yet been called to save the new
record to the underlying data source.

IT-SC book 137

AdEditDelete Indicates that the record that is pointed to by the record pointer has
been deleted.

AdEditInProgress Indicates that the data within the record that is currently being
pointed to has been edited but not yet saved.

AdEditNone Indicates that there is no editing taking place on the current record.

The EditMode property can be used to print a text message indicating the mode of editing
for a given recordset, at any time, by using a procedure like this one:
Private Sub PrintEditMode(rst As Recordset)

 Select Case (rst.EditMode)
 Case adEditNone:
 Debug.Print "Edit None"
 Case adEditInProgress:
 Debug.Print "Edit In Progress"
 Case adEditAdd:
 Debug.Print "Edit Add"
 Case adEditDelete:
 Debug.Print "Edit Delete"
 End Select

End Sub

Now, take a look at a piece of code that has utilizes the PrintEditMode function to
indicate the mode of a recordset at particular key places in our editing routines:
rst.Open "Authors", _
 "DSN=BiblioDSN"

If (rst.Supports(adAddNew)) Then

 PrintEditMode rst ' EditMode = adEditNone

 rst.AddNew ' Add a new record
 PrintEditMode rst ' EditMode = adEditAdd

 rst.Fields("Author") = "Justin"
 rst.Update ' Update the new record
 PrintEditMode rst ' EditMode = adEditNone

 rst.AddNew "Author", "Tyler" ' Add a new record (and update it)
 PrintEditMode rst ' EditMode = adEditNone

 rst.AddNew ' Add a new record
 rst.Fields("Author") = "Lisa"
 PrintEditMode rst ' EditMode = adEditAdd

 rst.AddNew ' Add a new record (update the
other)

IT-SC book 138

 PrintEditMode rst ' EditMode = adEditAdd

 rst.Fields("Author") = "Jessie"
 rst.Update ' Update the last new record
 PrintEditMode rst ' EditMode = adEditNone

End If

rst.Close

5.4.3 Deleting Records

In ADO, the Delete method is used to remove records from the underlying data source. The
Delete method can accept one of the AffectEnum enumeration values shown in Table 5-6.

The following code shows how the Delete method can be used to delete a number of records. In
this case, the Delete method is used to delete all records from the data source whose Year Born
field is equal to 1975:
rst.Open "SELECT Author, [Year Born] " & _
 "FROM Authors " & _
 "WHERE [Year Born]=1975;", _
 "DSN=BiblioDSN"

Do Until (rst.EOF)
 rst.Delete adAffectCurrent
 rst.Requery
Loop

rst.Close

5.4.4 Retrieving Records

Multiple records of a recordset can be retrieved with a single call to ADO in one of two
ways. The first is by using the GetRows method. This method accepts three parameters.
The first parameter is the number of rows that you would like to retrieve. The second
parameter indicates the position in the recordset from which ADO should begin to
retrieve rows. The third parameter indicates which fields to return from the recordset.

The following example shows how the GetRows method is used:
Dim vAuthor As Variant
Dim lCount As Long

rst.Open "Authors", _
 "DSN=BiblioDSN", _
 adOpenKeyset, adLockOptimistic

vAuthor = rst.GetRows(20, _
 adBookmarkFirst, _
 "Author")

For lCount = 0 To UBound(vAuthor, 2)
 Debug.Print vAuthor(0, lCount)

IT-SC book 139

Next lCount

rst.Close

The first parameter in the previous example indicates that 20 records should be returned. The
second parameter, adBookmarkFirst, indicates to the GetRows method that ADO should start
retrieving records starting from the first record. In addition to the example shown, the second
parameter of the GetRows method can be a valid bookmark or any one of the BookmarkEnum
enumeration values indicated in Table 5-14.

Table 5-14. The BookmarkEnum Enumeration

Value Description

adBookmarkCurrent Indicates that the GetRows method will begin retrieving records
starting with the current record in the recordset.

adBookmarkFirst Indicates that the GetRows method will begin retrieving records
starting with the first record in the recordset.

adBookmarkLast Indicates that the GetRows method will begin retrieving records
starting with the last record in the recordset.

The third and last parameter of the GetRows method can set to a valid field name -- as in
the last example, an ordinal position of a field name, an array of field names, or an array
of ordinal positions of field names.

Along with the GetRows method, there is a method that returns the entire recordset in a
string format. This method is called the GetString method:
Dim vRecordset As Variant

rst.Open "SELECT * FROM Authors " & _
 "WHERE ([Year Born]<1970) " & _
 "AND ([Year Born]<>0); ", _
 "DSN=BiblioDSN", _
 adOpenKeyset, _
 adLockOptimistic

vRecordset = rst.GetString

Debug.Print vRecordset

rst.Close

Although not shown in this example, the GetString method can accept as many as five
parameters:

IT-SC book 140

The first parameter, the StringFormat parameter, can be set to a valid StringFormatEnum
enumeration value. Currently, the only value defined within ADO for this enumeration is
adClipString.

The second parameter, the NumRows parameter, indicates the number of rows in the recordset
that should be returned by the GetString method. If the NumRows value is not specified (or if it is
greater than the number of records in the recordset), then the entire recordset will be returned in a
string format.

The third parameter, the ColumnDelimiter parameter, is used to indicate the character in which
the columns are divided. If this parameter is omitted, the TAB character is used.

The fourth parameter, the RowDelimiter parameter, is used to indicate the character in which the
rows are divided. If this parameter is omitted, the CARRIAGE RETURN character is used.

The fifth parameter, the NullExpr parameter, is used to indicate the character in which to display
a NULL value. An empty string is used if this parameter is omitted.

5.5 Lock Types: Managing Access to a Recordset

There are four record-locking schemes in ADO. Each has its own advantages and
disadvantages, as described in the following sections. The record lock type is indicated
by either the LockType property of the Recordset object or the LockType parameter of
the Open method of the Recordset object. The LockType parameter of the Open method
is the fourth parameter in the parameter list.

Either one of these (the parameter or the property) can be set to one of the four valid constants
from the LockTypeEnum enumeration shown in Table 5-15.

Table 5-15. The LockTypeEnum Enumeration

Value Description

adReadOnly Indicates that the recordset will use a read-only record-locking
scheme.

adLockOptimistic Indicates that the recordset will use an optimistic record-
locking scheme.

adLockPessimistic Indicates that the recordset will use a pessimistic record-
locking scheme.

adLockBatchOptimistic Indicates that the recordset will use a batch optimistic record-
locking scheme.

5.5.1 Read-Only Locks

IT-SC book 141

A read-only record-locking scheme is the simplest locking scheme of the four available.
Basically, a read-only recordset does not allow adding or editing of records; therefore, the
records themselves do not need to be locked for editing at all.

The following example illustrates how to open a recordset with the read-only record-
locking scheme:
rst.Open "Authors", _
 "DSN=BiblioDSN", _
 adOpenKeyset, _
 adLockReadOnly

' cannot alter data

rst.Close

You should use read-only locking whenever you do not plan on updating the data with
the recordset. This can save system resources and speed up the data access because ADO
does not have to handle multiple users editing the data.

5.5.2 Pessimistic Locks

A pessimistic record-locking scheme is one in which the data provider usually locks the
data source, record by record, as soon as a record begins to be edited:
rst.Open "Authors", _
 "DSN=BiblioDSN", _
 adOpenKeyset, _
 adLockPessimistic

rst.AddNew ' record locked
rst.Fields("Author").Value = "Lindsay"
rst.Update
 ' record unlocked
rst.Close

The previous example illustrates how the data provider locks a newly created record
immediately while the call to AddNew is made. The record is unlocked once the Update
method (or the CancelUpdate method) is called.

You might choose to use pessimistic locking when your updates are going to be quick, as
with an automated import process. Since pessimistic locking locks the record
immediately, you don't have to wait until you have processed all the data and attempt to
update the record to find out that it is locked by another user. However, pessimistic
locking can cause delays in multi-update applications, creating lock contention.

5.5.3 Optimistic Locks

An optimistic record-locking scheme is one in which the data provider usually locks the
data source, record by record, only during the Update method call:
rst.Open "Authors", _

IT-SC book 142

 "DSN=BiblioDSN", _
 adOpenKeyset, _
 adLockOptimistic

rst.AddNew
rst.Fields("Author").Value = "Lindsay"
rst.Update ' record locked
 ' record unlocked
rst.Close

Notice how this example differs from that of the pessimistic locking example. The newly
created record is locked only during the Update method call rather than during the entire
time between the AddNew and Update method calls.

You might use optimistic locking when the user has interaction with the editing process.
Because optimistic locking does not lock the record until the update is being performed,
you can tie your code that modifies field values directly to the user interface that the user
is modifying. By using optimistic locking, you don't need to lock a record if the user
decides to take an hour to modify data -- instead, when the user attempts to save the data,
the record would be locked momentarily.

5.5.4 Batch Optimistic Locks

Batch optimistic locking is very similar to optimistic locking in that the data provider
locks the underlying data source only when updates are made, rather than when editing
begins. The difference, however, is that updates are done in batches.

Batch optimistic locking is advantageous when the user is making a lot of changes and
wants to commit them all at once:
rst.Open "Authors", _
 "DSN=BiblioDSN", _
 adOpenKeyset, _
 adLockBatchOptimistic

rst.AddNew "Author", "Christopher"
rst.AddNew "Author", "Charlie"
rst.AddNew "Author", "Frankie"
rst.UpdateBatch

rst.Close

Notice how the previous example adds three new records. Because the LockType parameter of
the Open method call of the Recordset object was set to adLockBatchOptimistic, the records
aren't actually written to the data source until the UpdateBatch method of the Recordset object is
called. In addition, the data source is not locked until this method is called.

Just as the Update method has a CancelUpdate method, the UpdateBatch method has the
CancelBatch method, which accomplishes basically the same job:
rst.Open "Authors", _
 "DSN=BiblioDSN", _
 adOpenKeyset, _

IT-SC book 143

 adLockBatchOptimistic

rst.AddNew "Author", "David"
rst.AddNew "Author", "Danny"
rst.CancelBatch

rst.Close

In the preceding example, neither of the two records created by the AddNew method was
added to the recordset because the CancelBatch method was called.

The UpdateBatch and CancelBatch methods can also accept a valid AffectEnum enumeration
value as shown in Table 5-6. The following example illustrates the use of a parameter with the
CancelBatch and UpdateBatch methods:
rst.Open "Authors", _
 "DSN=BiblioDSN", _
 adOpenKeyset, _
 adLockBatchOptimistic

rst.AddNew "Author", "David"
rst.AddNew "Author", "Danny"
rst.CancelBatch adAffectCurrent ' cancels Danny

rst.AddNew "Author", "Marie"
rst.UpdateBatch adAffectAllChapters ' updates David and Marie

rst.Close

Notice that the call to the CancelBatch method only cancels the last editing function, the AddNew
method that was used to add a record with an Author field set to Danny. The UpdateBatch
method uses the adAffectAllChapters value to update the two remaining, newly created
records.

The Status property displays the status of the current record's editing by returning a sum of one or
more valid RecordStatusEnum enumeration values as shown in Table 5-16.

Table 5-16. The RecordStatusEnum Enumeration

Value Description

adRecCanceled Indicates that the record was not saved because the last
batch operation was canceled.

adRecCantRelease Indicates that the new record was not saved because of
conflicts with record locks.

adRecConcurrencyViolation Indicates that the record was not saved because
optimistic concurrency was used.

IT-SC book 144

adRecDBDeleted Indicates that the record has already been removed from
the data source.

adRecDeleted Indicates that the record has been deleted.

adRecIntegrityViolation Indicates that the record was not saved because the
application violated integrity constraints.

adRecInvalid Indicates that the record was not saved because its
bookmark was invalid.

adRecMaxChangesExceeded
Indicates that the record was not saved because there
were more pending records than the data provider
supported.

adRecModified Indicates that the record was not modified.

adRecMutlipleChanges Indicates that the record was not saved because it would
have affected multiple records.

adRecNew Indicates that the record is new.

adRecObjectOpen Indicates that the record was not saved because it
conflicted with an open storage object.

adRecOK Indicates that the record was successfully updated.

adRecOutOfMemory Indicates that the record was not saved because the
computer has run out of memory.

adRecPendingChanges Indicates that the record was not saved because it
references a pending insert.

adRecPermissionDenied Indicates that the record was not saved because the
application did not have sufficient permissions.

adRecSchemaViolation Indicates that the record was not saved because it
conflicted with the underlying structure of the database.

IT-SC book 145

adRecUnmodified Indicates that the record was not modified.

The Status property can be used to print a textual description of the status of the
Recordset object, at any time, by using a subroutine similar to the one listed here:
Private Sub PrintRecordStatus(rst As Recordset)

 Select Case (rst.Status)
 Case adRecUnmodified:
 Debug.Print "Record is unmodified"
 Case adRecNew:
 Debug.Print "New record"
 Case adRecDBDeleted:
 Debug.Print "Record has been deleted"
 Case Else:
 Debug.Print "Other"
 End Select

The PrintRecordStatus method can be used in our code to see the status of our records as
we constantly add and edit them, as shown in this example:
rst.Open "Authors", _
 "DSN=BiblioDSN", _
 adOpenKeyset, _
 adLockBatchOptimistic

PrintRecordStatus rst' Status = adRecUnmodified

rst.AddNew "Author", "David" ' Add a new record
PrintRecordStatus rst' Status = adRecNew

rst.AddNew "Author", "Danny" ' Add a new record
PrintRecordStatus rst' Status = adRecNew

rst.CancelBatch adAffectCurrent' Remove the previous record
PrintRecordStatus rst' Status = adRecDBDeleted

rst.AddNew "Author", "Marie" ' Add a new record
PrintRecordStatus rst' Status = adRecNew

rst.UpdateBatch adAffectAllChapters' Update all pending records
PrintRecordStatus rst' Status = adRecUnmodified

rst.Close

When working with client-side cursors, an Update method of some kind can send a lot of
unnecessary information back to the server. In particular, by default, the Update methods return
all of the records to the server, even if they were not modified. To alter this behavior, the
MarshallOptions property can be set to adMarshallModifiedOnly value, which allows the
client-side cursor to return only the modified records to the server -- this setting can potentially
save a lot of time and resources:
rst.Open "Authors", _
 "DSN=BiblioDSN", _

IT-SC book 146

 adOpenStatic, _
 adLockBatchOptimistic

rst.MarshalOptions = adMarshalModifiedOnly
rst.AddNew "Author", "Patrice"

rst.Close

The MarshalOptions property is used only when you are using a client-side
Recordset object with RDS.

5.6 Summary

This chapter showed you the second of the seven major components of ActiveX Data
Objects, the Recordset object and its functions. After reading this chapter, you should be
able to fully understand the Recordset object and the following key points:

There are four different types of views, or cursors, into a data source's information. These are the
dynamic, keyset, static, and forward-only cursors.

Recordsets are opened with the Open method. Before a recordset is opened, the way in which it
can be opened can be fine-tuned with multiple properties, and once a recordset is opened, it can
be filtered and sorted.

The standard ways in which you can move around within a recordset are the MoveFirst,
MovePrevious, MoveNext, and MoveLast methods. In addition, the record pointer can be set to a
particular ordinal position within a recordset or a valid bookmark.

Records can be added, modified, and deleted. The status of a particular record can be identified --
and multiple records can be returned -- by the single method calls GetRows and GetString.

There are four different types of record-locking schemes: read-only, pessimistic, optimistic, and
batch optimistic record locking.

The next chapter of this book, Chapter 6, explains how to work with individual fields of a
recordset. In addition, this chapter will show how these fields can be manipulated from within an
application.

IT-SC book 147

Chapter 6. Fields

6.1 The Fields Collection Object

6.2 Field Specifics

6.3 Determining Field Object Functionality

6.4 Summary

6.1 The Fields Collection Object

Every Recordset object contains a collection of fields represented by the Fields collection
object. Within the Fields collection object, there is a collection of Field objects, each
representing a column in the recordset. Through the Fields collection object, each
individual Field object can be accessed.

Every value within one column of a recordset shares a common group of characteristics,
which define that field. These characteristics for each column are stored in a
corresponding Field object within the recordset's Fields collection object.

6.1.1 The Field Object

In its simplest form, a Field object has a name and a value. A field's name uniquely
identifies a column within the recordset. The name of a given field can be accessed
through Field object's Name property, for example:
Dim fld As Field

rst.Open "Authors", _
 "DSN=BiblioDSN"

Set fld = rst.Fields(1)

Debug.Print fld.Name

rst.Close
Set fld = Nothing

The value of a Field object changes depending on which record the record pointer is
pointing to. The value of a field can be obtained by the Value property of the Field object:
Debug.Print rst.Fields!Author.Value
Debug.Print rst.Fields!Author

Both of these statements would print the same value, because the two lines are identical
in meaning: because the Value property is the default property for the Field object.

IT-SC book 148

When you add new records to a recordset, you can use the Value property to set the value
for a particular field in the new record:
rst.AddNew
rst.Fields("Author").Value = "Jason"
rst.Update

And, as mentioned earlier, since the Value property is the default property for the Field
object, it can be omitted, as in the following example:
rst.AddNew
rst.Fields("Author") = "Kimberly"
rst.Update

6.1.2 Working with the Fields Collection

The Fields collection object of a Recordset object contains a collection of Field objects
for the given recordset, once the Recordset object is opened. The number of Field objects
with the Fields collection object can be obtained with the Count property:
rst.Open "Authors", _
 "BiblioDSN", _
 adOpenKeyset, _
 adLockOptimistic

Debug.Print rst.Fields.Count

rst.Close

Individual Field objects can be accessed with the Item method of the Fields collection
object:
Debug.Print rst.Fields.Item(1).Name
Debug.Print rst.Fields.Item("Author").Name

Alternatively, the Item method can be omitted, because it is the default property of the
Fields collection object:
Debug.Print rst.Fields(1).Name
Debug.Print rst.Fields("Author").Name

In addition, the following syntax can be used to access a particular Field object in the
Fields collection object:
Debug.Print rst.Fields!Author.Name

To add a new Field object to the Fields collection object, use the Append method:
rst.Fields.Append "Dirty", _
 adChar, _
 10, _
 adFldMayBeNull + adFldUpdatable

Notice the use of the parameters in this example. The first parameter gives the newly created
Field object a name. The second parameter indicates the new Field object's datatype. The optional

IT-SC book 149

third parameter indicates the defined size of the new Field object. The fourth and last parameter is
a combination of FldAttributesEnum values. All of these parameters are described later in this
chapter.

The Append method cannot be called on a recordset that is already open or has had the
ActiveConnection property previously set.

To remove a Field object from the Fields collection object, use the Delete method of the
Fields object with a single parameter indicating the name of the Field to delete from the
collection:
rst.Fields.Delete "Dirty"

6.2 Field Specifics

The Field object, as stated earlier, contains all of the information that corresponds to a single
column of data within the recordset. The most important type of field characteristic is the field's
datatype.

6.2.1 Field Datatypes

The datatype of a field specifies the type of information stored in the field within the recordset.
There are many different datatypes available from many different data sources. ADO contains a
list of datatypes that encompasses the majority of the datatypes known to developers. This list is
shown in Table 6-1. These values are constants that represent the different datatype values that
the Type property of the Field object can be set to.

Table 6-1. The DataTypeEnum Enumeration

Value Description

adArray Indicates that the datatype of the Field object is a safe array of
another type that is joined to the adArray value by a logical Or.

adBigInt Indicates that the datatype of the Field object is an 8-byte signed
integer value.

adBinary Indicates that the datatype of the Field object is a binary value.

adBoolean Indicates that the datatype of the Field object is a Boolean value.

adByRef Indicates that the datatype of the Field object is a pointer to
another type which is joined to the adByRef value by a logical Or.

adBSTR Indicates that the datatype of the Field object is a null-terminated

IT-SC book 150

character-string value.

adChar Indicates that the datatype of the Field object is a String value.

adCurrency Indicates that the datatype of the Field object is a currency value,
which is stored in an 8-byte, signed integer.

adDate Indicates that the datatype of the Field object is a date value,
which is stored in a Double.

adDBDate Indicates that the datatype of the Field object is a date value represented
in the format yyyymmdd.

adDBTime Indicates that the datatype of the Field object is a date value represented
in the format hhmmss.

adDBTimeStamp
Indicates that the datatype of the Field object is a date-time stamp
represented in the format yyyymmddhhmmss and a fraction value that
represents billionths of a second.

adDecimal Indicates that the datatype of the Field object is an exact numeric
value with a fixed precision and scale.

adDouble Indicates that the datatype of the Field object is a double-precision
floating-point value.

adEmpty Indicates that the datatype of the Field object is unspecified.

adError Indicates a 32-bit error code.

adGUID Indicates that the datatype of the Field object is a globally unique
identifier (GUID).

adIDispatch Indicates that the datatype of the Field object is a pointer to an
Idispatch interface on an OLE object.

adInteger Indicates that the datatype of the Field object is a 4-byte signed
integer value.

IT-SC book 151

adIUnknown Indicates that the datatype of the Field object is a pointer to an
unknown interface on an OLE object.

adLongVarBinary Indicates that the datatype of the Field object is a long binary
value.

adLongVarChar Indicates that the datatype of the Field object is long String value.

adLongVarWChar Indicates that the datatype of the Field object is a long null-
terminated string value.

adNumeric Indicates that the datatype of the Field object is an exact numeric
value with a fixed precision and scale.

adSingle Indicates that the datatype of the Field object is a single precision
floating-point value.

adSmallInt Indicates that the datatype of the Field object is a 2-byte signed-
integer value.

adTinyInt Indicates that the datatype of the Field object is a 1-byte signed-
integer value.

adUnsignedBigInt Indicates that the datatype of the Field object is an 8-byte
unsigned-integer value.

adUnsignedInt Indicates that the datatype of the Field object is a 4-byte
unsigned-integer value.

adUnsignedSmallInt Indicates that the datatype of the Field object is a 2-byte
unsigned-integer value.

adUnsignedTinyInt Indicates that the datatype of the Field object is a 1-byte
unsigned-integer value.

adUserDefined Indicates that the datatype of the Field object is a user-defined
variable.

IT-SC book 152

adVarBinary Indicates that the datatype of the Field object is a binary value.

adVarChar Indicates that the datatype of the Field object is a String value.

adVariant Indicates that the datatype of the Field object is an Automation
Variant value.

adVector
Indicates that the datatype of the Field object is a structure that
contains a count of elements and a pointer to a value of another
other type, which is joined to the adVector value by a logical Or.

adVarWChar Indicates that the datatype of the Field object is a null-terminated
Unicode character-string value.

adWVhar Indicates that the datatype of the Field object is a null-terminated
Unicode character-string value.

You can use the Type property of the Field object to print the datatype for a given object
with a function, as shown here:
Private Sub PrintFieldDataType(fld As Field)

 Dim sTemp As String

 Select Case (fld.Type)
 Case adBigInt:
 sTemp = "8-Byte Signed Integer"
 Case adBinary:
 sTemp = "Binary"
 Case adBoolean:
 sTemp = "Boolean"
 Case adBSTR:
 sTemp = "Null Terminated String"
 Case adChar:
 sTemp = "String"
 Case adCurrency:
 sTemp = "Currency"
 Case adDate:
 sTemp = "Date (Double)"
 Case adDBDate:
 sTemp = "Date (yyyymmdd)"
 Case adDBTime:
 sTemp = "Time (hhmmss)"
 Case adDBTimeStamp:
 sTemp = "Date/Time (yyyymmddhhmmss and a billionths " _
 & "of a second fraction)"
 Case adDecimal:
 sTemp = "Decimal"

IT-SC book 153

 Case adDouble:
 sTemp = "Double Precision Floating Point"
 Case adEmpty:
 sTemp = "Not Specified"
 Case adError:
 sTemp = "32-Bit Error code"
 Case adGUID:
 sTemp = "Globally Unique Identifier"
 Case adIDispatch:
 sTemp = "Pointer to an IDispatch Interface"
 Case adInteger:
 sTemp = "4-Byte Signed Integer"
 Case adIUnknown:
 sTemp = "Pointer to an IUnknown Interface"
 Case adLongVarBinary:
 sTemp = "Long Binary"
 Case adLongVarChar:
 sTemp = "Long String"
 Case adLongVarWChar:
 sTemp = "Long Null Terminated String"
 Case adNumeric:
 sTemp = "Numeric"
 Case adSingle:
 sTemp = "Single Precision Floating Point"
 Case adSmallInt:
 sTemp = "2-Byte Signed Integer"
 Case adTinyInt:
 sTemp = "1-Byte Signed Integer"
 Case adUnsignedBigInt:
 sTemp = "8-Byte Unsigned Integer"
 Case adUnsignedInt:
 sTemp = "4-Byte Unsigned Integer"
 Case adUnsignedSmallInt:
 sTemp = "2-Byte Unsigned Integer"
 Case adUnsignedTinyInt:
 sTemp = "1-Byte Unsigned Integer"
 Case adUserDefined:
 sTemp = "User Defined Variable"
 Case adVarBinary:
 sTemp = "Binary"
 Case adVarChar:
 sTemp = "String"
 Case adVariant:
 sTemp = "Variant"
 Case adWChar:
 sTemp = "Null Terminated Unicode String"
 End Select

 Debug.Print fld.Name & ":", _
 sTemp

End Sub

The PrintFieldDataType function can be used to display the datatype of each of the Field
objects in a given Fields collection object:
For Each fld In rst.Fields

IT-SC book 154

 PrintFieldDataType fld
Next fld

If we were to take a look at the output of running the previous code segment, we might
see something like this:
Au_ID: 4-Byte Signed Integer
Author: String
Year Born: 2-Byte Signed Integer

For fields with numeric datatypes, the Precision property allows you to see the number of
bytes that can be used to represent the information within the field. The following code
will print the precision for each of the three fields in the Fields collection object:
For Each fld In rst.Fields
 Debug.Print fld.Name & ":", _
 fld.Precision
Next fld

with output something like:
Au_ID: 10
Author: 255
Year Born: 5

The Au_ID field can hold the maximum value that can be shown in 10 digits
(2,147,483,647). The Author field does not have precision -- thus the 255 value. The
Year Born field's largest value (32,767) can be shown in a maximum of 5 bytes.

The NumericScale property is used to determine how many bytes are used after the
decimal point for fields with numeric datatypes. If the following code was run on the
same table, values of 255 would appear for each since Long Integers, Strings, and
Integers do not have a numeric scale:
For Each fld In rst.Fields
 Debug.Print fld.Name & ":", _
 fld.NumericScale
Next fld

6.2.2 Field Sizes

There are two sizes associated with each Field object: defined and actual.

The defined size of a field is the size, in bytes, that the field obtains within a data source
to hold the field's information. The actual size of a field is the size, in bytes, that is used
by the field to hold the field's information. In other words, the defined size indicates the
allotted space for the field information while the actual size is the space that is actually
used. The actual size can be equal to or less than the defined size.

The defined size of a field can be obtained by using the DefinedSize property. The actual
size of a field is determined by the ActualSize property:
For Each fld In rst.Fields

IT-SC book 155

 Debug.Print "Name:", _
 fld.Name

 Debug.Print "Value:", _
 fld.Value

 Debug.Print "Actual Size:", _
 fld.ActualSize

 Debug.Print "Defined Size:", _
 fld.DefinedSize

 Debug.Print "Room Left:", _
 (fld.DefinedSize - fld.ActualSize)

 Debug.Print

Next fld

If this code were run on our data source, the following output would be generated:
Name: Au_ID
Value: 16587
Actual Size: 4
Defined Size: 4
Room Left: 0

Name: Author
Value: Kimberly
Actual Size: 8
Defined Size: 50
Room Left: 42

Name: Year Born
Value: 0
Actual Size: 2
Defined Size: 2
Room Left: 0

Notice that the fields that are of numeric datatypes have no room left, even if they aren't
holding any information (Year Born). Also notice how the actual size is different from
the defined size for the field Author, which is a string datatype.

6.2.3 Large Datatypes

Sometimes a field's data is too large to obtain all at once. Sometimes we don't know the
actual size of a field's data. A good example of this is the Microsoft Access datatype
"Memo." This datatype is used to hold a large amount of string information, and the
amount varies from record to record.

Conventional field access would tell us to use the Value property to obtain this data, but
ADO gives us a couple more functions to deal with these datatypes. The AppendChunk
and GetChunk methods are used to store and retrieve chunks of information in datatypes

IT-SC book 156

that contain large binary information. In order to use either the AppendChunk or
GetChunk methods, the field must be able to support them. To check for this
functionality, use the Attributes property as shown in the following example:
If (rst.Fields("BigField").Attributes And adFldLong) Then

 rst.MoveFirst

 rst.Fields("BigField").AppendChunk "This is the first part of the
data"
 rst.Fields("BigField").AppendChunk "This is another"
 rst.Fields("BigField").AppendChunk "This is another"
 rst.Fields("BigField").AppendChunk "This is another"

 rst.Update

End If

This code segment moves to the first record within a recordset and appends data to a field,
BigField, if the field has an attribute of adFldLong. The first AppendChunk method call replaces
the information within the field, while each subsequent call adds information onto the last. Finally,
the Update method of the recordset is called to save the information.

After running this code, the value of the BigField field would be, "This is the first part of
the dataThis is anotherThis is anotherThis is another". In this example, this value makes
little sense, but in real-world applications, the AppendChunk method can be used to
append log information, note fields, or even binary image information.

The sister method of AppendChunk, GetChunk, is used to retrieve the information within a large
binary field. Just as with AppendChunk, the attribute flag adFldLong must be set in order to use
the method. The following example uses the GetChunk method to retrieve the information stored
within the BigField field:
If (rst.Fields("BigField").Attributes And adFldLong) Then

 Dim sTemp As String

 rst.MoveFirst
 sTemp = rst.Fields("BigField").GetChunk(5) & ""
 While (sTemp <> "")
 Debug.Print sTemp;
 sTemp = rst.Fields("BigField").GetChunk(2) & ""
 Wend
 Debug.Print

End If

In this example, an initial call to the GetChunk method is made with the parameter 5, which
indicates how many bytes of information to retrieve from the field. With this method call,
GetChunk will return five bytes of information if it exists. If less than five bytes of information
exists, then the remainder will be returned. If there is no more information to return, the value
returned from the GetChunk method is Null.

IT-SC book 157

This return value from the GetChunk method is concatenated with an empty string ("") so that we
do not get an error if this information returned Null. We cannot assign a Null value to a String,
but by concatenating a Null value and empty string, we are left with an empty string, which can
be assigned to a String variable.

The previous code then performs a While loop, which checks for an empty string value to
indicate completion. Within the loop, the GetChunk method retrieves two bytes at a time, until a
Null value is returned and concatenated with our empty string, thus ending the While loop.

6.2.4 Batch Updates

When working with batch updates, sometimes it is desirable to know what was in the
field before changes were made. ADO offers two different properties to check this value:
UnderlyingValue and OriginalValue.

The OriginalValue property returns the value that was originally returned to the
Recordset object. This value is used to restore the field value when a CancelUpdate or
CancelBatch method is called. If the Update or UpdateBatch method is called, then the
OriginalValue will return this new value.

The UnderlyingValue property returns the value that is stored in the data source. This
value can change (perhaps by another user) and differs from the OriginalValue, which
returns the value last stored in the recordset.

To see the difference between the two properties, look at the following code fragment:
rst.Open "Authors", _
 "DSN=BiblioDSN", _
 adOpenKeyset, _
 adLockBatchOptimistic

rst.MoveFirst
PrintFieldValues rst.Fields("Author")

rst.Fields("Author") = "Jason"
PrintFieldValues rst.Fields("Author")

rst.Fields("Author") = "Kimberly"
PrintFieldValues rst.Fields("Author")

 ' modify the first record, assuming its Year Born field is 1973
 con.Open "DSN=BiblioDSN"
 con.Execute "UPDATE Authors SET Author = 'Tammi' WHERE [Year Born]
= 1973;"
 con.Close

PrintFieldValues rst.Fields("Author")

rst.Fields("Author") = "Kaitlyn"
PrintFieldValues rst.Fields("Author")

rst.UpdateBatch
PrintFieldValues rst.Fields("Author")

IT-SC book 158

rst.Close

Here the record pointer is positioned to the first record in the recordset. Its value is changed to
Jason, then to Kimberly. At this time, a second transaction updates all records to Tammi, where
the Year Born field value is 1973 (we are assuming the first record has this value for Year Born).
Next, the Author name is changed to Kaitlyn and then updated.

Between the commotion, calls to the method PrintFieldValues are made. This method
simply displays the name, value, underlying value, and original value of the field as
follows:
Private Sub PrintFieldValues(fld As Field)

 Debug.Print "Name: " & fld.Name
 Debug.Print "Value: " & fld.Value
 Debug.Print "Underlying Value: " & fld.UnderlyingValue
 Debug.Print "Original Value: " & fld.OriginalValue
 Debug.Print

End Sub

If we took a look at the output of the previous pieces of code, we would see something
like this:
Name: Author
Value: Sydow, Dan Parks
Underlying Value: Sydow, Dan Parks
Original Value: Sydow, Dan Parks

The first call to the PrintFieldValues prints what we would expect -- the value,
underlying value, and original value are all the same:
Name: Author
Value: Jason
Underlying Value: Sydow, Dan Parks
Original Value: Sydow, Dan Parks

Now, the code has changed the value of the field to Jason. Notice that the recordset is in batch
updating mode and the information will not be saved until the UpdateBatch method is called.
Name: Author
Value: Kimberly
Underlying Value: Sydow, Dan Parks
Original Value: Sydow, Dan Parks

Again, the value of the field is changed, this time to Kimberly:
Name: Author
Value: Kimberly
Underlying Value: Tammi
Original Value: Sydow, Dan Parks

IT-SC book 159

Notice how the underlying value and the original value part ways. Now the underlying
value in the data source has been changed by the Update method from a separate
transaction. The original value is the value that was originally returned to the recordset.
Name: Author
Value: Kaitlyn
Underlying Value: Tammi
Original Value: Sydow, Dan Parks

Once again, the value of the field is changed -- this time to Kaitlyn:
Name: Author
Value: Kaitlyn
Underlying Value: Kaitlyn
Original Value: Kaitlyn

Finally, the UpdateBatch method is called, resetting all three values to the value that is in
the field, in the data source, and the value that has been returned to the recordset.

6.3 Determining Field Object Functionality

Earlier, the Attributes property of the Field object was introduced as a method to identify
functionality available to a particular field. In the earlier example, the Attributes property
was used to see whether a field contained long binary data prior to using the
AppendChunk and GetChunk methods.

In addition to this attribute, the Attributes property can identify any combination of valid
FieldAttributeEnum enumeration values as listed in Table 6-2.

Table 6-2. The FieldAttributeEnum Enumeration

Value Description

adFldMayDefer Indicates that the field value is returned only when the value is
accessed rather than with the rest of the record.

adFldUpdatable Indicates that the field value is updateable.

adFldUnknownUpdatable Indicates that ADO cannot determine if the field value is
updateable.

adFldFixed Indicates that the field contained a fixed length of data.

adFldIsNullable Indicates that the field value can be set to Null.

adFldKeyColumn Indicates that the field value is a key in the data source.

IT-SC book 160

adFldMayBeNull Indicates that the Null values can be returned by this field
value.

adFldLong
Indicates that the field value is a long binary value. This
attribute must be set in order to use AppendChunk and
GetChunk methods on a field.

adFldRowID Indicates that the field value is a unique row identifier that
cannot be set.

adFldRowVersion Indicates that the field value is a type of time and/or date
stamp used to track changes in the record.

adFldCacheDeferred Indicates that the field value is cached.

In order to check for a particular FieldAttributeEnum value, use the logical And operator on the
Attributes property as shown in the following code segment:
For Each fld In rst.Fields

 Debug.Print "Name:", _
 fld.Name

 Debug.Print "Attributes:"

 If (fld.Attributes And adFldMayDefer) Then
 Debug.Print , "Deferred"
 End If

 If (fld.Attributes And adFldUpdatable) Then
 Debug.Print , "Updateable"
 End If

 If (fld.Attributes And adFldUnknownUpdatable) Then
 Debug.Print , "Update capability unknown"
 End If

 If (fld.Attributes And adFldFixed) Then
 Debug.Print , "Fixed-length data"
 End If

 If (fld.Attributes And adFldIsNullable) Then
 Debug.Print , "Accepts Null values"
 End If

 If (fld.Attributes And adFldMayBeNull) Then
 Debug.Print , "Field may be null"
 End If

IT-SC book 161

 If (fld.Attributes And adFldLong) Then
 Debug.Print , "Long binary data"
 End If

 If (fld.Attributes And adFldRowID) Then
 Debug.Print , "Row identifier"
 End If

 If (fld.Attributes And adFldKeyColumn) Then
 Debug.Print , "Key column"
 End If

 If (fld.Attributes And adFldRowVersion) Then
 Debug.Print , "Time or date stamp for versioning"
 End If

 If (fld.Attributes And adFldMayBeNull) Then
 Debug.Print , "Cached"
 End If

 Debug.Print

Next fld

In this code, separate If...Then clauses are needed to check for each FieldAttributeEnum
value. Because the Attributes property can contain multiple FieldAttributeEnum values, I do
not recommend checking for an attribute with equality. For instance, if the following code were
used to check for the adFldRowVersion value, it would not work if the Attributes property
contained both the adFldRowVersion and adFldKeyColumn flags:
' will not detect adFldRowVersion + adFldKeyColumn
If (fld.Attributes = adFldRowVersion) Then
 Debug.Print , "Time or date stamp for versioning"
End If

6.4 Summary

After reading this chapter, you should understand the Fields collection object, as well as
the Field object, and the following key points about the two:

The Fields collection object contains a collection of Field objects, which each represent a column
in the data source.

There are many different datatypes for fields, all of which can be identified with the Type
property. For many types, alternate properties such as Precision and NumericScale can be used to
better explain the definition of the field.

The supported functionality of a given Field object can be obtained using the Attributes property.

The next chapter of this book, Chapter 7, explains how commands can be sent to the data source
in order to execute SQL statements, stored procedures, and other data source-specific commands.

IT-SC book 162

Chapter 7. The Command Object

The Command object performs one of three tasks. First, it can query the data source and
return a Recordset object. By giving the Command object the name of a parameterized
query, a stored procedure, or even a table, the Command object can execute instructions
and return to your application a Recordset object with the results of the operation.
Although we have learned to pass SQL statements and open tables with other objects
from ADO (e.g., Recordset objects), as we will soon learn, the Command object is the
only object that can use Parameter objects.

Second, the Command object can execute bulk operations such as an UPDATE or INSERT INTO
SQL statement. Again, the Recordset object can provide the same functionality, but the Command
object will allow the persistence of its command text for re-execution, unlike the Recordset object.

Finally, the Command object can alter the state of the underlying data source using SQL
statements. Appendix A, introduces the Structured Query Language (SQL) and provides
examples of commands that can alter the structure of a data source.

7.1 Specifying Commands

Commands are set, through Command objects, with two properties. The first of these properties,
CommandText, holds either the String value representing the command's text or the name of a
stored command text as the data provider references it. In other words, either the SQL statement
SELECT * FROM Authors; can be assigned to the CommandText property, or this string can be
stored in the data source and referenced, through the data provider, by a name such as "Get All
From Authors". The CommandType property tells ADO what kind of value resides in the
CommandText property. This property would indicate if the value within the CommandText
property was a SQL statement or a name of a stored SQL statement. The value of the
CommandType property can be set to any valid CommandTypeEnum values as shown in Table
7-1.

Table 7-1. The CommandTypeEnum Enumeration

Value Description

adCmdText Indicates that the value of the CommandText property is a definition
of a command that the data provider will understand.

adCmdTable
Indicates that the value of the CommandText property is the name of
a table within the data source. ADO will create a SQL statement
from the table name specified to return all fields within the table.

adCmdTableDirect Indicates that the value of the CommandText property is the name of
a table within the data source. This value is very similar to that of

IT-SC book 163

adCmdFile except that the table name is used to return all of the
fields within the table rather than a generated SQL statement.

adCmdStoredProc Indicates that the value of the CommandText property is the name of
a stored procedure accessible by the data provider.

adCmdUnknown
Indicates that the value of the CommandText property is of an
unknown type. This is the default value for the CommandType
property.

adCmdFile Indicates that the value of the CommandText property is the name of
a file that has been created by a persisted Recordset.

One of the most common uses of the CommandText and CommandType properties
involves passing textual definitions of commands to the data source.

7.1.1 Textual Definitions as Commands

When working with textual definitions of a command, we usually think of SQL
statements. Although it is a topic well beyond the scope of this book, many other types of
textual definitions can be defined within the CommandText property, depending on your
data provider. Particular command information should be available within your data
provider's documentation. In this book, we are working with Access and SQL Server
databases; therefore, we are going to stick with SQL statements as the sole example of
textual definitions of commands.

The following piece of code illustrates how a SQL SELECT statement can be assigned to the
CommandText property and how it can be executed to return a Recordset object to the application:
com.ActiveConnection = "driver={SQL Server}; " _
 & "server=JROFF_LAPTOP; " _
 & "uid=sa; " _
 & "database=Northwind"

com.CommandText = "SELECT * " _
 & "FROM Customers " _
 & "WHERE (ContactTitle = 'Sales Representative') " _
 & "AND (Country = 'USA'); "
com.CommandType = adCmdText

Set rst = com.Execute

Do Until (rst.EOF)
 Debug.Print rst.Fields("ContactName")
 rst.MoveNext
Loop

rst.Close

IT-SC book 164

In this example, the Execute method of the Command object instructed ADO to query the data
source with the SQL statement defined within the CommandText property and to return a
Recordset object. Notice that ADO also knew the CommandText property held a textual
definition of a command because the CommandType property had been set to adCmdText.

It is also important to note that the ActiveConnection property, in the last piece of code,
was used to indicate the SQL Server data source that we are using to execute our query.
Although the ActiveConnection property is explained in greater detail later in this chapter,
all Command objects have to have an associated connection to a data source to use the
Execute method.

The next piece of code is somewhat similar to the last, except that the SQL statement being
executed by the Command object is considered an Action query (see Appendix A for more
information):
com.ActiveConnection = "driver={SQL Server}; " _
 & "server=JROFF_LAPTOP; " _
 & "uid=sa; " _
 & "database=Northwind"

com.CommandText = "UPDATE customers " _
 & "SET Country = 'UK' " _
 & "WHERE (CustomerID = 'HUNGC'); "

com.CommandType = adCmdText

Set rst = com.Execute

If (rst.State & adStateOpen) Then
 Debug.Print "Recordset is open... records returned."
 rst.Close
Else
 Debug.Print "Recordset not open... no records."
End If

Since an Action query does not return records, the Recordset object returned from the
Execute method is closed. Furthermore, if we attempt to use the Close method on a
closed Recordset object, we get an error. The previous example illustrates how you can
use the Command object to modify a group of records with a single command.

7.1.2 Stored Procedures as Commands

Another type of value that can be passed to the CommandText property is a name of a
stored definition of a command -- a stored procedure. Stored procedures are used a lot in
today's database applications and used quite heavily within ADO implementations of
these applications.

To execute a stored procedure with a Command object in ADO, pass the name of the stored
procedure to the CommandText property, and set the CommandType property to
adCmdStoredProc as shown:
com.ActiveConnection = "driver={SQL Server}; " _
 & "server=JROFF_LAPTOP; " _

IT-SC book 165

 & "uid=sa; " _
 & "database=Northwind"

com.CommandText = "[Ten Most Expensive Products]"
com.CommandType = adCmdStoredProc

Set rst = com.Execute

Do Until (rst.EOF)
 Debug.Print rst.Fields("TenMostExpensiveProducts")
 rst.MoveNext
Loop

In this code, we are assuming that the stored procedure "Ten Most Expensive Products"
returns records. In addition, because the name of this stored procedure has spaces within
it, we have to put this name within brackets. This is a requirement of SQL Server, not
ADO. ADO simply passes this information to SQL Server.

7.1.3 Table Names as Commands

Table names can be used as the command text of a Command object in two different ways. First,
when the adCmdTable value is used within the CommandType property, ADO constructs a SQL
statement based on the table name that is passed to it through the ComandText property, as in the
following code:
com.ActiveConnection = "driver={SQL Server}; " _
 & "server=JROFF_LAPTOP; " _
 & "uid=sa; " _
 & "database=Northwind"

com.CommandText = "Orders"
com.CommandType = adCmdTable

Set rst = com.Execute

Debug.Print "CommandText property value: " & com.CommandText

rst.Close

The output from this code is:
CommandText property value:
SELECT * FROM ORDERS

As you can see, ADO has generated a SQL statement and has placed it directly within the
CommandText property.

The second way tables can be accessed with a Command object is with the adCmdTableDirect
setting for the CommandType property. This setting is not available with all data providers,
including SQL Server, but it does exist:
com.ActiveConnection = "DSN=SupportedDSN"

com.CommandText = "ATableName"
com.CommandType = adCmdTableDirect

IT-SC book 166

Set rst = com.Execute

Debug.Print "CommandText property value: "
Debug.Print UCase$(com.CommandText)

rst.Close

When this code is executed on a data provider that supports the adCmdTableDirect flag of the
CommandType property, its output is:
CommandText property value:
ATableName

Notice how ADO does not change the value of the CommandText property value when
communicating with the data provider.

7.1.4 Unknown Command Types

Another valid setting for the CommandType property is adCmdUnknown. What this value
indicates to ADO is that the application does not know what it is sending to the data provider. It
could be a SQL statement, a stored procedure, or a table name. It doesn't know. Although ADO
will accept this, it is not a wise value to use unless absolutely necessary.

When you do use the adCmdUnknown value, ADO has to try to figure out what it has and perform
additional communications with SQL Server to determine the type of command it is, an
unnecessary and time-consuming activity.

Nevertheless, if for some reason you don't know the type of command that you are asking ADO
to execute, you can use the adCmdUnknown value as follows:
com.ActiveConnection = "driver={SQL Server}; " _
 & "server=JROFF_LAPTOP; " _
 & "uid=sa; " _
 & "database=Northwind"

com.CommandText = "[Ten Most Expensive Products]"
com.CommandType = adCmdUnknown

Set rst = com.Execute

If (rst.State & adStateOpen) Then
 Debug.Print "Recordset is open... records returned."
 rst.Close
Else
 Debug.Print "Recordset not open... no records."
End If

As you can see, the only difference is the change of the CommandType property value to
adCmdUnknown.

7.2 Executing Commands

IT-SC book 167

You can execute a command with the Command object, the Connection object, or the
Recordset object. Command objects allow you the greatest flexibility by allowing you to
specify how the returned Recordset is defined. Connection objects and Recordset objects
offer very little fine-tuning capabilities, but they are excellent for retrieving simple
recordsets using the default settings.

7.2.1 Executing Commands with the Command Object

A command can be executed with a Command object by using its Execute method. The Execute
method has three parameters. The first is a number indicating how many records were affected by
the command once it had been executed. If the command being executed deleted records, this
number would indicate how many were deleted. If it was a command to update records, this
number would indicate how many were updated. The second is an array of variant data
representing one or more parameter values (parameters are discussed in the next section of this
chapter). The third is an integer value representing a CommandTypeEnum value listed in Table
7-1 and an optional ExcecuteOptionEnum value.

The ExecuteOptionEnum value used with the Execute method of the Command object allows you
to specify how a provider should execute a command. The valid values for the
ExecuteOptionEnum enumeration can be found in Table 7-2.

Table 7-2. The ExecuteOptionEnum Enumeration

Enumeration (ADO/WFC) Value Description

AdAsyncExecute
(ASYNCEXECUTE)

16
(&H10)

Instructs ADO to execute the command
asynchronously.

adAsyncFetch (ASYNCFETCH) 32
(&H20)

Instructs ADO to fetch the records returned
from this command asynchronously after the
initial number of rows (indicated by the
CacheSize property) are returned.

adAsyncFetchNonBlocking
(ASYNCFETCHNONBLOCKING)

64
(&H40)

Instructs ADO never to block the main
thread while executing, and if the row that is
requested has not been read, it is
automatically moved to the end of the file.

adExecuteNoRecords
(NORECORDS)

128
(&H80)

Instructs ADO that the CommandText property
does not return rows, and if it does, to discard
them. This value is always combined with
adCmdText or adCmdStoredProc of the
CommandTypeEnum enumeration.

adExecuteStream (no
1024
(&H400) Indicates that the returned object of the

Command object's Execute method will be a

IT-SC book 168

ADO/WFC equivalent) Stream object. This value is invalid for all
other uses.

Although a Command object is independent of other objects, it must be connected to a
data source before it can execute its command. The Command object uses the
ActiveConnection property to establish this connection.

The ActiveConnection can be set to any valid, open Connection object, as shown in the
following example:
con.ConnectionString = "DSN=BiblioDSN"
con.Open

Set com.ActiveConnection = con

com.CommandText = "Authors"

Set rst = com.Execute(, , adCmdTable)

Debug.Print "First author's name: " & rst.Fields("Author")

rst.Close
con.Close

In this example, once the Connection object is open, a reference of the object is given to
the Command object to use as a connection to the data source (this is merely one way of
establishing a connection). If the Close method of the Connection object were to be
called prior to the Execute method of the Command object, an error would occur.

A Command object's ActiveConnection property can also accept a String value
representing a connection string. With this value, the Command object can create its own
Connection object, internally:
com.ActiveConnection = "DSN=BiblioDSN"

Set con = com.ActiveConnection

Debug.Print "Command Object's Connection String:"

sTemp = con.ConnectionString & ";"

While (sTemp <> "")
 nPosition = InStr(1, sTemp, ";", vbTextCompare)
 Debug.Print , Left$(sTemp, nPosition)
 sTemp = Right$(sTemp, Len(sTemp) - nPosition)
Wend

com.CommandText = "Authors"

Set rst = com.Execute(, , adCmdTable)

Debug.Print "First author's name: " & rst.Fields("Author")

IT-SC book 169

rst.Close
con.Close

Notice that in this code segment, the internally created Connection object is actually
retrieved from the Command object by reading the ActiveConnection property.

The following example is the output that describes the ConnectionString property of the newly
created Connection object, all derived from the original "DSN=BiblioDSN" connection string
passed to the ActiveConnection of the Command object:
Command Object's Connection String:
 Provider=MSDASQL.1;
 Connect Timeout=15;
 Extended Properties="DSN=BiblioDSN;
 DBQ=c:\My Documents\Book\Chapter 5\BIBLIO.MDB;
 DriverId=25;
 FIL=MS Access;
 MaxBufferSize=512;
 PageTimeout=5;
 ";
 Locale Identifier=1033;

If a Connection object is not specified for a Command object's ActiveConnection
property, a new Connection object is created each time, even if the connection string used
is the same. It is wiser to create a single Connection object and pass it to the Command
object each time you need to execute a command to save resources and connection time.

7.2.2 Executing Commands with the Connection Object

The second way of executing a command is through the Connection object. Although it is
not necessary to explicitly instantiate an instance of a Command object in order to
execute a command through the Connection object, it does not mean that one is not being
used.

The Execute method of the Connection object accepts three parameters. The first is the
equivalent of the CommandText property of the Command object. The second is a
variable used to store the number of records affected by the execution. The third and final
parameter is equivalent to the CommandType property of the Command object,
specifying the type of command that has been passed in the first parameter:
con.Open "DSN=BiblioDSN"

Set rst = con.Execute("Authors", _
 , _
 adCmdTable)

Debug.Print "First author's name: " & rst.Fields("Author")

rst.Close

When the Execute method is called, it returns a Recordset object just as the Command's
Execute method does. This is done with a Command object that is created internally by

IT-SC book 170

the Connection object. The Command object created by the Connection object cannot be
retrieved like the Connection object from the Command object in the last section.

7.2.3 Executing Commands with the Recordset Object

The third and final way of executing a command within ADO is with the use of a
Recordset object. In this way, a Command object is created by specifying at least the
connection and the command itself. This Command object is then passed to the Open
method of the Recordset object as the first parameter, representing the source of the
recordset. The following piece of code represents this method:
com.ActiveConnection = "DSN=BiblioDSN"
com.CommandText = "Authors"

rst.Open com, _
 , _
 adOpenDynamic, _
 adLockBatchOptimistic, _
 adCmdTable

Debug.Print "First author's name: " & rst.Fields("Author")

rst.Close

Note that if a Command object is being passed to the Open method of the Recordset
object, a connection must already be established within the Command object. The
connection cannot be present in the second parameter of the Open method. This situation
would result in an error.

In addition, it is also very important to note that this final method of executing commands
is the only method that allows the developer to specify how the recordset is returned to
the application. It is the only way in which the cursor type and locking scheme can be
specified for the resulting recordset.

7.3 Parameters

Parameterized queries are used frequently in today's databases. Parameters allow queries
to be stored within the data source and to be altered based upon different values at
runtime.

7.3.1 Passing Parameters

Like most things in ADO, there are a couple ways of passing parameter values to the data
provider.

The first way, and probably the easiest, is to specify the value of a parameter in
CommandText property of a Command object, like a function call:
com.ActiveConnection = "driver={SQL Server}; " _
 & "server=JROFF_LAPTOP; " _

IT-SC book 171

 & "uid=sa; " _
 & "database=Northwind"

com.CommandText = "CustOrderHist('ALFKI')"
com.CommandType = adCmdStoredProc

Set rst = com.Execute

Do Until (rst.EOF)
 Debug.Print rst.Fields("ProductName")
 rst.MoveNext
Loop

rst.Close

In this code, the value 'ALFKI' is passed to the stored procedure CustOrderHist. This method
can also be used when executing commands through a Connection object, as in the following
example:
con.Open "driver={SQL Server}; " _
 & "server=JROFF_LAPTOP; " _
 & "uid=sa; " _
 & "database=Northwind"

Set rst = con.Execute("CustOrderHist('ALFKI')", _
 , _
 adCmdStoredProc)

Do Until (rst.EOF)
 Debug.Print rst.Fields("ProductName")
 rst.MoveNext
Loop

rst.Close

Although easy to understand, this method leaves much to be desired. Suppose that you
wish to pass a parameter value from within a variable, rather than hard-coding it into the
string as shown in the last two examples. In this case, of course it can be done. However,
you will have to do string concatenation, and things can get sloppy in the code. Why
bother?

Through the Command object only, ADO allows us to specify the values of parameters as
an array (or a string if there is only one parameter), as in the following example:
com.ActiveConnection = "driver={SQL Server}; " _
 & "server=JROFF_LAPTOP; " _
 & "uid=sa; " _
 & "database=Northwind"

com.CommandText = "CustOrdersDetail"

Set rst = com.Execute(, "10255", adCmdStoredProc)

Do Until (rst.EOF)
 Debug.Print rst.Fields("ProductName")
 rst.MoveNext

IT-SC book 172

Loop

rst.Close

In this code, the value 10255 has been passed as the parameter to the Execute method of the
Command object. Notice that the third and final parameter, CommandType, must be specified if
the second parameter is being used. This method is a lot neater than the first.

The Parameters collection of the Command object allows us to view information about
parameters in addition to setting them. The Parameters collection has a method called
Refresh. The Refresh method must be called before you can read the properties of any
given parameter. In fact, the Refresh method must be called in order to obtain the
individual parameters.

In the previous examples, the Command object called the Refresh method on its own to
obtain information about the parameters for the given stored procedure.

Once the Refresh method has been called, parameters can be accessed via their index in
the collection, as shown in the following example:
com.ActiveConnection = "driver={SQL Server}; " _
 & "server=JROFF_LAPTOP; " _
 & "uid=sa; " _
 & "database=Northwind"

com.CommandText = "CustOrdersDetail"
com.CommandType = adCmdStoredProc

com.Parameters.Refresh
com.Parameters(1).Value = "10255"

Set rst = com.Execute

Do Until (rst.EOF)
 Debug.Print rst.Fields("ProductName")
 rst.MoveNext
Loop

rst.Close

Here, the Refresh method is called after the stored procedure name is specified in order to obtain
information regarding its parameters. The value of the first parameter is set to 10255, and then
the command is executed.

In addition to the Value property of the Parameter object, if the particular parameter accepts long
binary data, the AppendChunk method can be used to set the value of the parameter as explained
in Section 6.2.3 in Chapter 6.

The Attributes property can determine whether the particular parameter accepts long binary data
by using the logical And keyword and the value adParamLong as shown:
com.ActiveConnection = "driver={SQL Server}; " _
 & "server=JROFF_LAPTOP; " _
 & "uid=sa; " _

IT-SC book 173

 & "database=Northwind"

com.CommandText = "CustOrdersDetail"
com.CommandType = adCmdStoredProc

com.Parameters.Refresh

If (com.Parameters(1).Attributes And adParamLong) Then
 com.Parameters(1).AppendChunk "First piece of data"
 com.Parameters(1).AppendChunk "Second piece of data"
 com.Parameters(1).AppendChunk "Third piece of data"
 com.Parameters(1).AppendChunk "Fourth piece of data"
Else
 com.Parameters(1).Value = "10255"
End If

Set rst = com.Execute

Do Until (rst.EOF)
 Debug.Print rst.Fields("ProductName")
 rst.MoveNext
Loop

rst.Close

If a parameter accepts long binary values, the AppendChunk method, called in succession,
appends data to the value. The first time the AppendChunk method is called on a parameter, the
value of that parameter is set to the value passed with the method. Every succeeding call to the
AppendChunk method adds data to that value. In addition, by passing a Null value to the
AppendChunk method, the value of the parameter is cleared.

7.3.2 Parameter Properties

Once the Parameters collection has all the information about the individual Parameter objects that
are within it, you can use any of the Parameter properties shown in Table 7-3.

Table 7-3. The Parameter Object's Properties

Property Description

Attributes Indicates particular properties of a Parameter object, including whether it
accepts signed values, nulls, or long binary data.

Direction
Indicates if the parameter is an input parameter, an output parameter, both
an input and an output parameter, or a return value from a stored
procedure.

Name Indicates the name of the parameter.

IT-SC book 174

NumericScale Indicates the number of decimal places that are used if the type of the
particular Parameter object is numeric.

Precision Indicates the number of bytes that are used to present the largest numeric
value that the Parameter object can hold.

Size Indicates the maximum number of bytes that the Parameter object can
hold.

Type Indicates the type of the Parameter object's value by a DataTypeEnum
value.

Value Indicates the value of the Parameter object.

Although we can ask ADO to obtain information about the parameters belonging to a
stored procedure, it is not always such a good idea. In most cases, obtaining information
about parameters on its own causes ADO to spend a lot of time communicating with the
data provider when it doesn't have to. The following section explains how to specify
known parameters.

7.3.3 Specifying Parameters

In the cases in which you know the details about a specific parameter, it saves time tell
ADO before attempting to execute a command.

The Parameters collection contains all the parameters for a command. Parameters can be
added to this collection with the use of the CreateParameter method of the collection. The
CreateParameter method accepts three parameters itself: the name, the datatype, and the
direction of the parameter to be created.

The datatype parameter must be a valid DataTypeEnum value (see Table 6-1). The direction
parameter must be a valid ParameterDirectionEnum value shown in Table 7-4.

Table 7-4. The ParameterDirectionEnum Enumeration

Value Description

adParamUnknown Indicates that the parameter direction is unknown.

adParamInput Indicates that the parameter is an input parameter. This is the
default value for the Direction property and parameter.

IT-SC book 175

adParamOutput Indicates that the parameter is an output parameter.

adParamInputOutput Indicates that the parameter is both an input and an output
parameter.

adParamReturnValue Indicates that the parameter is a return value from the stored
procedure.

The following example illustrates the use of the CreateParameter method:
com.ActiveConnection = "driver={SQL Server}; " _
 & "server=JROFF_LAPTOP; " _
 & "uid=sa; " _
 & "database=Northwind"

com.CommandText = "CustOrdersDetail"
com.CommandType = adCmdStoredProc

Set par = com.CreateParameter("@OrderID", adInteger, adParamInput)
com.Parameters.Append par

par.Value = "10255"
Set rst = com.Execute

Do Until (rst.EOF)
 Debug.Print rst.Fields("ProductName")
 rst.MoveNext
Loop
rst.Close

par.Value = "10260"
Set rst = com.Execute

Do Until (rst.EOF)
 Debug.Print rst.Fields("ProductName")
 rst.MoveNext
Loop
rst.Close

As you can see, the CreateParameter method returns a Parameter object. A reference to
the Parameter object is appended, using the Append method, to the Parameters collection.
Once this is done, the Parameter object's value is changed before each execution of the
stored procedure.

The previous code fragment potentially executes faster than code using the Refresh
method of the Parameters collection to determine the parameter specifications of a stored
procedure.

7.4 The Parameters Project

IT-SC book 176

Now that you understand Parameter objects, this section will walk you though a project
that allows you to view all available properties and attributes of any given stored
procedure.

Begin by creating a form that looks like that of the one shown in Figure 7-1.

Figure 7-1. The Parameters Project in design mode

Now set the values of the controls as listed in Table 7-5.

Table 7-5. The Parameters Project Example Control Settings

Control Property Value

Command Button Name cmdGo

 Caption "&Go"

 Default -1 'True

Command Button Name CmdClose

 Caption "&Close"

 Cancel -1 'True

Text Box Name TxtConnectionString

IT-SC book 177

 MultiLine -1 'True

 Text A valid connection string

Text Box Name TxtCommandString

 Text A valid stored procedure name

Check Box Name chkSigned

 Alignment 1 'Right Justify

 Caption "Accepts Signed Values:"

Check Box Name chkNull

 Alignment 1 'Right Justify

 Caption "Accepts Null Values:"

Check Box Name chkLong

 Alignment 1 'Right Justify

 Caption "Accepts Long Values:"

Combo Box Name CboDirection

 Enabled 0 'False

List Box Name lstParameters

Text Box Name TxtType

 Enabled 0 'False

IT-SC book 178

Text Box Name TxtSize

 Enabled 0 'False

Text Box Name TxtPrecision

 Enabled 0 'False

Text Box Name TxtNumericScale

 Enabled 0 'False

Label Caption "Connection String:"

Label Caption "Stored Procedure:"

Label Caption "Parameters:"

Label Caption "Direction:"

Label Caption "Numerical Scale:"

Label Caption "Precision:"

Label Caption "Size:"

Label Caption "Type:"

Now that the controls are in place and their values have been set, begin by entering the
Declarations section of the Parameters project as follows:
Option Explicit

Private com As ADODB.Command
Private par As ADODB.Parameter

Enter the code for the Close button's Click event, which unloads the global Command
object instance from memory:
Private Sub cmdClose_Click()
 Set com = Nothing

IT-SC book 179

 Unload Me
End Sub

The form's Load event clears the controls by calling the SetFields method:
Private Sub Form_Load()
 Set com = New ADODB.Command

 Call SetFields
End Sub

Private Sub SetFields()

 chkSigned.Value = 0
 chkNull.Value = 0
 chkLong.Value = 0

 cboDirection.Clear
 cboDirection.AddItem "Unknown direction", adParamUnknown
 cboDirection.AddItem "Input Parameter", adParamInput
 cboDirection.AddItem "Output Parameter", adParamOutput
 cboDirection.AddItem "Input/Output Parameter", adParamInputOutput
 cboDirection.AddItem "Return Value", adParamReturnValue

 txtNumericScale.Text = ""
 txtPrecision.Text = ""
 txtSize.Text = ""
 txtType.Text = ""

End Sub

Now enter the following code for the Go button's Click event. This code clears the
contents of the controls on the form and attempts to refresh the Parameters collection of a
Command object based upon the connection string and stored procedure name entered in
the form:
Private Sub cmdGo_Click()
On Error GoTo ERR_cmdGo_Click:

 Screen.MousePointer = vbHourglass

 lstParameters.Clear
 SetFields

 com.ActiveConnection = txtConnectionString.Text
 com.CommandText = txtCommandText.Text
 com.CommandType = adCmdStoredProc
 com.Parameters.Refresh

 lstParameters.Clear
 For Each par In com.Parameters
 lstParameters.AddItem par.Name
 Next

ERR_cmdGo_Click:

IT-SC book 180

 Screen.MousePointer = vbDefault

 Select Case (Err.Number)
 Case 0: ' no error
 Case Else:
 MsgBox "Error #" & Err.Number _
 & " " & Err.Description
 End Select
End Sub

The only thing left to enter now is the Click event for the list control containing the
parameters belonging to the stored procedure. This event basically fills in the controls on
the form, based on the information gathered from the parameter that was chosen from the
list:
Private Sub lstParameters_Click()

 Call SetFields

 Set par = com.Parameters(_
 lstParameters.List(_
 lstParameters.ListIndex))

 If (par.Attributes And adParamSigned) Then chkSigned.Value = 1
 If (par.Attributes And adParamNullable) Then chkNull.Value = 1
 If (par.Attributes And adParamLong) Then chkLong.Value = 1

 cboDirection.ListIndex = par.Direction

 txtNumericScale.Text = par.Direction
 txtPrecision.Text = par.Precision
 txtSize.Text = par.Size

 Select Case (par.Type)
 Case adBigInt:
 txtType.Text = "adBigInt"
 Case adBinary:
 txtType.Text = "adBinary"
 Case adBoolean:
 txtType.Text = "adBoolean"
 Case adBSTR:
 txtType.Text = "adBSTR"
 Case adChar:
 txtType.Text = "adChar"
 Case adCurrency:
 txtType.Text = "adCurrency"
 Case adDate:
 txtType.Text = "adDate"
 Case adDBDate:
 txtType.Text = "adDBDate"
 Case adDBTime:
 txtType.Text = "adDBTime"
 Case adDBTimeStamp:
 txtType.Text = "adDBTimeStamp"
 Case adDecimal:
 txtType.Text = "adDecimal"

IT-SC book 181

 Case adDouble:
 txtType.Text = "adDouble"
 Case adEmpty:
 txtType.Text = "adEmpty"
 Case adError:
 txtType.Text = "adError"
 Case adGUID:
 txtType.Text = "adGUID"
 Case adIDispatch:
 txtType.Text = "adIDispatch"
 Case adInteger:
 txtType.Text = "adInteger"
 Case adIUnknown:
 txtType.Text = "adIUnknown"
 Case adLongVarBinary:
 txtType.Text = "adLongVarBinary"
 Case adLongVarChar:
 txtType.Text = "adLongVarChar"
 Case adLongVarWChar:
 txtType.Text = "adLongVarWChar"
 Case adNumeric:
 txtType.Text = "adNumeric"
 Case adSingle:
 txtType.Text = "adSingle"
 Case adSmallInt:
 txtType.Text = "adSmallInt"
 Case adTinyInt:
 txtType.Text = "adTinyInt"
 Case adUnsignedBigInt:
 txtType.Text = "adUnsignedBigInt"
 Case adUnsignedInt:
 txtType.Text = "adUnsignedInt"
 Case adUnsignedSmallInt:
 txtType.Text = "adUnsignedSmallInt"
 Case adUnsignedTinyInt:
 txtType.Text = "adUnsignedTinyInt"
 Case adUserDefined:
 txtType.Text = "adUserDefined"
 Case adVarBinary:
 txtType.Text = "adVarBinary"
 Case adVarChar:
 txtType.Text = "adVarChar"
 Case adVariant:
 txtType.Text = "adVariant"
 Case adVarWChar:
 txtType.Text = "adVarWChar"
 Case adWChar:
 txtType.Text = "adWChar"
 End Select

 Set par = Nothing

End Sub

Once you have entered all of the code, run the application. If the connection string and stored
procedure values are not already entered, do so now. Click the Go button to refresh the

IT-SC book 182

Parameters collection of the newly created Command object, and then choose a parameter from
the list to the left to view its specific attributes and property values. Figure 7-2 shows what this
project might look like in action.

Figure 7-2. The Parameters project executing

7.5 Asynchronous Execution

Asynchronous execution allows you to execute commands in the background of the client or
server, while allowing the application to continue executing other commands. Asynchronous
execution is vital when dealing with large data sources over a large network.

In most cases, users will not wait more than a few seconds -- let alone two or three
minutes -- for a response from your application indicating that a command is finally done.
For instance, suppose an administrator of a large company determines to increase the
prices of all items by one dollar. Suppose that this company has 10,000 products. When
the user presses a button confirming the price change, she shouldn't have to wait for all
products to be updated before she can continue her work. Instead, once she confirms the
price change, the application should issue an asynchronous command to the server to
execute the update.

7.5.1 Executing a Command Asynchronously

Before you learn how to execute commands asynchronously, first take a look at a piece of
code that takes a significant amount of time to execute:
com.ActiveConnection = "driver={SQL Server}; " _
 & "server=JROFF_LAPTOP; " _
 & "uid=sa; " _
 & "database=Northwind"

com.CommandText = "DELETE [Order Details (Backup)]; "

sSQL = "INSERT INTO [Order Details (Backup)] " _

IT-SC book 183

 & " (OrderID, ProductID, UnitPrice, Quantity, Discount) " _
 & "SELECT OrderID, ProductID, UnitPrice, Quantity, Discount " _
 & "FROM [Order Details]; "

com.CommandText = com.CommandText + sSQL

Debug.Print "Time execution began: " & Now

Set rst = com.Execute(lNumberOfRecords, _
 , _
 adCmdText)

Debug.Print " Number of records: " & lNumberOfRecords

Debug.Print "Time execution completed: " & Now

This code actually executes two action queries on the data source with one command
execution. First, all the records of the "Order Details (Backup)" table are deleted. Second,
all of the records located in the "Order Details" record are copied to the blank table.

On my machine, this takes about 3 seconds and inserts 2,155 records into the backup
table. Although 3 seconds is not a tremendous amount of time, imagine if it were to insert
21550 records. This could take 30 seconds on a single machine. It could take a minute
over the network.

To execute a command asynchronously, add the adAsyncExecute constant value to the
CommandType parameter of the Execute method:
com.ActiveConnection = "driver={SQL Server}; " _
 & "server=JROFF_LAPTOP; " _
 & "uid=sa; " _
 & "database=Northwind"

com.CommandText = "DELETE [Order Details (Backup)]; "

sSQL = "INSERT INTO [Order Details (Backup)] " _
 & " (OrderID, ProductID, UnitPrice, Quantity, Discount) " _
 & "SELECT OrderID, ProductID, UnitPrice, Quantity, Discount " _
 & "FROM [Order Details]; "

com.CommandTimeout = 0
com.CommandText = com.CommandText + sSQL

Set rst = com.Execute(lNumberOfRecords, _
 , _
 adCmdText + adAsyncExecute)

PrintObjectState "Command", com

While (com.State & adStateExecuting)
 ' empty loop
Wend

PrintObjectState "Command", com

IT-SC book 184

You will also need the following code for the PrintObjectState method to display the
current state of the Command object in the last example:
Private Sub PrintObjectState(sObjectType As String, _
 oObject As Object)

 Debug.Print "The " & sObjectType & " object is ";
 Select Case (oObject.State)
 Case adStateClosed:
 Debug.Print "closed."
 Case adStateOpen:
 Debug.Print "open."
 Case adStateConnecting:
 Debug.Print "connecting."
 Case adStateExecuting:
 Debug.Print "executing."
 Case adStateFetching:
 Debug.Print "fetching."
 End Select

End Sub

Notice that when this example is executed, the processing of the application still
continues. Visual Basic does not wait for ADO to return from the Execute method and
announce its completion; rather, Visual Basic continues to process while the data
provider does its thing in the background.

Also, notice that the CommandTimeout property was used in the last example. As we will
see next, the CommandTimeout property is used to indicate the length, in seconds, to
wait for an execution to complete. In the previous example, the CommandTimeout
property was set to zero, which indicates that there is no time limit.

7.5.2 Canceling a Command

If a command's execution is taking longer than expected, or too long for your needs, you
can always cancel its execution with the Cancel method of the Command object. The
following example illustrates the use of the Cancel method:
Private Sub ExecuteCancelQuery()

 Dim com As ADODB.Command
 Dim rst As ADDOB.Recordset
 Dim sSQL As String

 Set com = New ADODB.Command

 com.ActiveConnection = "driver={SQL Server}; " _
 & "server=JROFF_LAPTOP; " _
 & "uid=sa; " _
 & "database=Northwind"

 com.CommandText = "DELETE [Order Details (Backup)]; "

 sSQL = "INSERT INTO [Order Details (Backup)] " _

IT-SC book 185

 & " (OrderID, ProductID, UnitPrice, Quantity, Discount) "
_
 & "SELECT OrderID, ProductID, UnitPrice, Quantity, Discount "
_
 & "FROM [Order Details]; "

 com.CommandText = com.CommandText + sSQL

 Set rst = com.Execute(, , adCmdText + adAsyncExecute)

 PrintObjectState "Command", com

 If (com.State = adStateExecuting) Then
 com.Cancel
 Debug.Print " The execution took too long, "
 Debug.Print " it has been canceled."
 End If

 PrintObjectState "Command", com

End Sub

In this example, ExecuteCancelQuery executes an asynchronous query and immediately
cancels it to illustrate how to use the Cancel method. Notice, however, that the state of
the command's execution is checked prior to the Cancel method call.

We can also use the CommandTimeout property of a Command object to explicitly state
the length in seconds to wait to complete a command's execution. In the following
example, the CommandTimeout property is set to one second, assuming that the time to
execute the following command will take longer than this:
Private Sub ExecuteTimeoutQuery()
On Error GoTo ERR_ExecuteTimeoutQuery:

 Dim com As ADODB.Command
 Dim rst As ADODB.Recordset
 Dim sSQL As String

 Set com = New ADODB.Command

 com.ActiveConnection = "driver={SQL Server}; " _
 & "server=JROFF_LAPTOP; " _
 & "uid=sa; " _
 & "database=Northwind"

 com.CommandText = "DELETE [Order Details (Backup)]; "

 sSQL = "INSERT INTO [Order Details (Backup)] " _
 & " (OrderID, ProductID, UnitPrice, Quantity, Discount) "
_
 & "SELECT OrderID, ProductID, UnitPrice, Quantity, Discount "
_
 & "FROM [Order Details]; "

 com.CommandText = com.CommandText + sSQL

IT-SC book 186

 com.CommandTimeout = 1 ' one second to execute command

 Set rst = com.Execute(, _
 , _
 adCmdText + adAsyncExecute)

 PrintObjectState "Command", com

 While (com.State & adStateExecuting)
 ' empty loop
 Wend

 PrintObjectState "Command", com
ERR_ExecuteTimeoutQuery:
 Select Case Err.Number
 Case 0: ' No error
 Case -2147217871: ' Timeout error
 MsgBox "Execution timeout."
 Case Else: ' Unknown error
 MsgBox "Error #: " & Err.Number _
 & " " & Err.Description
 End Select
End Sub

When executed in the previous example, ExecuteCancelQuery will timeout and raise
error number -2147217871, which is trapped in the error-handling section of the function.
If this were a complete application, you would inform the user that the execution did not
complete.

7.6 Summary

This chapter explains the Command object and its use of Parameter objects to help you
understand how to execute different types of commands and pass parameters to stored
procedures. After reading this chapter, you should be able to fully understand how
commands are executed using ADO and the following key points about their execution:

Although Command objects can be created independently of other ADO objects, they still need to
connect to a data source.

Commands can be executed with the Command object, the Recordset object, or the Connection
object.

Specifying parameters ahead of time can significantly increase performance when executing
commands.

Asynchronous execution of commands allows applications to continue processing while ADO
and the data provider continue to work in the background of the client machine or on a server.

The next chapter of this book, Chapter 8, explains how to use the Errors collection of the
Connection object, which contains all of the Error objects for specific failures of the data provider.

IT-SC book 187

Chapter 8. The ADO Event Model

With Version 2.0 of ActiveX Data Objects came the introduction of the ADO Event
Model. Coupled with the power of ADO to handle asynchronous operations, this new
event model gives developers greater control over their applications.

8.1 Introduction to Events

There are two different types of events:
Will event

Raised when an operation will occur. For instance, the WillConnect event is raised when a
connection to a data source will occur. All Will events begin with the word Will.

Complete event

Raised once the operation is completed (successfully or not). An example of a Complete event is
the ConnectComplete event that is raised once a connection to a data source has been attempted.
Some, but not all, Complete events end with the word Complete.

All Will events have a matching Complete event, but the opposite is not true. Matching
Will and Complete events (e.g., WillConnect and ConnectComplete) are usually referred
to as "Will/Connect pairs." Those Complete events that do not have a corresponding Will
event are usually referred to as "Standalone events."

Events belong to either the ConnectionEvent family or the RecordsetEvent family, each
of which represents the events that are raised by operations on the respective object.

Within the ConnectionEvent family, there are nine events broken into four categories, as shown
in Table 8-1.

Table 8-1. The ConnectionEvent Family of Events

Event Group Event Description

Connection Events WillConnect Indicates that a connection will occur.

 ConnectComplete Indicates that a connection has occurred.

 Disconnect Indicates that a connection has ended.

Execution Events WillExecute Indicates that an execution will occur.

 ExecuteComplete Indicates that an execution has occurred.

IT-SC book 188

Transaction
Events BeginTransComplete Indicates that a transaction has begun.

 CommitTransComplete Indicates that a transaction has been
committed.

 RollbackTransComplete Indicates that a transaction has been rolled
back.

Informational
Event InfoMessage Provides additional information about an

operation.

The RecordsetEvent family has eleven events broken into five categories, as shown in Table 8-2.

Table 8-2. The RecordsetEvent Family of Events

Event Group Event Description

Retrieval Events FetchProgress Indicates the progress of an asynchronous
fetch.

 FetchComplete Indicates that an asynchronous fetch has
completed.

Movement
Events WillMove Indicates that the record pointer within the

recordset will move to a new record.

 MoveComplete Indicates that the record pointer within the
recordset has moved to a new record.

 EndOfRecordset Indicates that the record pointer within the
recordset has moved past the last record.

Field Change
Events WillChangeField Indicates that a field's value will change.

 FieldChangeComplete Indicates that a field's value has changed.

Record Change WillChangeRecord Indicates that the current record will

IT-SC book 189

Events change.

 RecordChangeComplete Indicates that the current record has
changed.

Recordset
Change Events WillChangeRecordset Indicates that the current recordset will

change.

 RecordsetChangeComplete Indicates that the current recordset has
changed.

The events and their categories are described in more detail in the following sections.

8.2 The ConnectionEvent Family

The ConnectionEvent family contains a group of events that belong to the Connection
object. To instantiate a connection object that implements events, declare it as follows:
Private WithEvents con As ADODB.Connection

As stated earlier, the events within the ConnectionEvent family can be broken into four
categories:

Connection events

Execution events

Transaction events

Informational events

Each category of events contains events pertaining to one specific task.

8.2.1 Connection Events

The Connection events category of the ConnectionEvent family comprises three events:

The WillConnect event is raised when a connection to a data source is about to be attempted.

The ConnectComplete event is raised after a connection to a data source has been attempted.

The Disconnect event is raised after a connection to a data source has been terminated.

The WillConnect and ConnectComplete events are a Will/Complete event pair. Notice
there is not a Will event for the Disconnect event, making it a standalone event.

IT-SC book 190

To illustrate when each of these events is fired, enter a call to the PrintStatus function
(which I will describe in a minute) to the three events:
Private Sub con_WillConnect(ConnectionString As String, _
 UserID As String, _
 Password As String, _
 Options As Long, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pConnection As ADODB.Connection)

 PrintStatus "WillConnect", adStatus

End Sub

Private Sub con_ConnectComplete(ByVal pError As ADODB.Error, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pConnection As ADODB.Connection)

 PrintStatus "ConnectComplete", adStatus, pError

End Sub

Private Sub con_Disconnect(adStatus As ADODB.EventStatusEnum, _
 ByVal pConnection As ADODB.Connection)

 PrintStatus "Disconnect", adStatus

End Sub

This code assumes that there is already a member variable, con, which is declared as a
Connection object supporting events. To declare this member variable, enter the following code
in the module's General Declaration section:
Option Explicit

Private WithEvents con As ADODB.Connection

Now enter the PrintStatus method that will indicate when an event has been fired. This
method outputs to the Immediate Window the name and status of the event that was fired,
as well as any error information that was passed to the method:
Private Sub PrintStatus(sEventName As String, _
 ByRef adStatus As ADODB.EventStatusEnum, _
 Optional ByVal pError As ADODB.Error)

 Debug.Print
 Debug.Print sEventName & " event raised."

 Debug.Print " Status: ";
 Select Case (adStatus)

 Case adStatusOK:
 Debug.Print "Okay."

 Case adStatusCantDeny:
 Debug.Print "Can't deny."

IT-SC book 191

 Case adStatusErrorsOccurred:
 Debug.Print "Errors have occurred."
 Debug.Print " Error: " & pError.Description
 adStatus = adStatusCancel

 End Select

End Sub

The PrintStatus method accepts three arguments. The first of these arguments is a String
value that represents the name of the event that has been fired. This value is shown in the
three preceding event declarations.

The second parameter is a reference to a variable that contains the event's status at the time it was
fired. This variable can return one of the valid EventStatusEnum enumeration values shown in
Table 8-3.

Table 8-3. The EventStatusEnum Enumeration, Initial Values

Value Description

adStatusOK Indicates that the operation that caused the event to fire has
succeeded.

adStatusErrorsOccurred
Indicates that the operation that caused the event to fire has
resulted in one or more errors or that a corresponding Will
event has canceled the operation.

adStatusCantDeny Indicates that the Will event cannot request that the operation
that caused the event to fire be canceled.

The third parameter is optional and works in conjunction with the status parameter. If the status
parameter returned a value of adStatusErrorOccurred, the third parameter (a pointer to an
Error object) displays the error's description.

If you look back at the PrintStatus method calls that were inserted into the Connection events,
you will notice that only the ConnectComplete event returned an Error object. This is the only
event that can pass this information to the PrintStatus method, because there are plenty of errors
that can occur while attempting to connect to a data source. The ConnectComplete event can
return either adStatusOk or adStatusErrorsOccurred for the status parameter. If the
adStatusErrorsOccurred value is set for the status flag, the Error object is populated with
the information regarding the error.

The WillConnect event does not return an Error object. There are no errors to report. The
WillConnect event simply says that a connection to the data source will be attempted. Being a
Will event, WillConnect can return a value of adStatusOk or adStatusCantDeny only for the
status parameter.

IT-SC book 192

The Disconnect event does not return an Error object. The Disconnect event just indicates when a
connection to a data source has been terminated. The Disconnect event returns a value of
adStatusOk only for the status parameter.

Let's take a look at a very simple example of how these three events are fired:
con.Open "DSN=BiblioDSN"

con.Close

This example establishes a connection to a data source by opening the BiblioDSN data
source name. When this code is run, the following output is sent to the Immediate
Window:
WillConnect event raised.
 Status: Okay.

ConnectComplete event raised.
 Status: Okay.

Disconnect event raised.
 Status: Okay.

Notice the order in which the events are fired. If you were to step through the execution of this
example, you would be able to see how the con method calls fell into this order:
con.Open "DSN=BiblioDSN"
WillConnect
ConnectComplete
con.Close
Disconnect

The following code attempts to open a data-source name that does not exist. (If by some chance
you do have a data-source name MissingDSN, you should select better DSNs!):
con.Open "DSN=MissingDSN"

con.Close

When this code is executed, the following output results:
WillConnect event raised.
 Status: Okay.

ConnectComplete event raised.
 Status: Errors have occurred.
 Error: [Microsoft][ODBC Driver Manager] Data source name not found
and no
 default driver specified

Notice how the error occurred within the ConnectComplete event. This can be a little
misleading -- when the connection fails, the ConnectComplete event is fired with an error.
Furthermore, the con.Close method call will return a runtime error because you cannot
close a Connection object that is not open.

IT-SC book 193

In addition to the values shown in Table 8-3, the EventStatusEnum enumeration contains the
values shown in Table 8-4, which can be used to set the status of an event prior to its completion.
These values cannot be combined.

Table 8-4. The EventStatusEnum Enumeration, Additional Values

Value Description

adStatusUnwantedEvent Indicates that the event is no longer fired.

adStatusCancel Indicates that the code within the event has requested to
cancel the operation.

You can set the status parameter of Will events to adStatusOK (tells the Will event to continue
executing and raising), adStatusCancel (cancel the pending operation on the current object),
or adStatusUnwantedEvent (suppress further firing of the current event for the current
Connection instance). You can set the status parameter of Complete events to adStatusOK or
adStatusUnwantedEvent.

Now look at a similar piece of code that establishes a connection to a SQL Server database by
passing the user ID sa:
con.Open "driver={SQL Server}; " _
 & "server=JROFF_LAPTOP; " _
 & "database=Northwind" _
 , "sa"

con.Close

Assuming that there is no password for the user sa and that the ConnectionString information
passed to the Open method of the Connection object is correct, executing this code will send the
following output to the Immediate Window:
WillConnect event raised.
 Status: Okay.

ConnectComplete event raised.
 Status: Okay.

Disconnect event raised.
 Status: Okay.

Now change the code to pass an invalid user ID:
con.Open "driver={SQL Server}; " _
 & "server=JROFF_LAPTOP; " _
 & "database=Northwind" _
 , "WrongUserID"

con.Close

IT-SC book 194

Again, if you have a valid user named "WrongUserID" (without a password) for the Northwind
database of your SQL Server on JROFF_LAPTOP, something is fishy.

The following error will be reported to the Immediate Window upon execution of the
previous code:
WillConnect event raised.
 Status: Okay.

ConnectComplete event raised.
 Status: Errors have occurred.
 Error: [Microsoft][ODBC SQL Server Driver][SQL Server]Login failed
for user
 'WrongUserID'.

A runtime error will be generated for the attempt to call the Close method of con while the
Connection is not opened.

To illustrate a point, modify the code again to attempt to open the data source without
specifying a user ID:
con.Open "driver={SQL Server}; " _
 & "server=JROFF_LAPTOP; " _
 & "database=Northwind"

con.Close

Now modify the WillConnect event:
Private Sub con_WillConnect(ConnectionString As String, _
 UserID As String, _
 Password As String, _
 Options As Long, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pConnection As ADODB.Connection)

 PrintStatus "WillConnect", adStatus

 If (UserID = "") Then UserID = "sa"

End Sub

This code checks for a user ID before it allows Connection to complete. If the user ID is
missing, it fills it in. As you would expect, this code allows the previous attempt to
connect to the data source to succeed, as we see from the output in the Intermediate
Window:
WillConnect event raised.
 Status: Okay.

ConnectComplete event raised.
 Status: Okay.

Disconnect event raised.
 Status: Okay.

IT-SC book 195

FetchProgress events are dependent upon the provider, and Microsoft tells us that ADO
almost never gets an accurate portrayal of the progress of an asynchronous fetch. The
FetchProgress event is useful to know that your code hasn't hung -- but it is not reliable
enough for a progress bar.

8.2.2 Execution Events

Two events belong to the Execution events category of the ConnectionEvent family:

The WillExecute event is raised when an execution of a command is going to be attempted.

The ExecuteComplete event is raised after an execution of a command has been attempted.

The WillExecute and ExecuteComplete events are a Will/Complete event pair. So that we
can track the firing of these two events, add the code shown to call the PrintStatus
method with information from the events:
Private Sub con_WillExecute(Source As String, _
 CursorType As ADODB.CursorTypeEnum, _
 LockType As ADODB.LockTypeEnum, _
 Options As Long, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pCommand As ADODB.Command, _
 ByVal pRecordset As ADODB.Recordset, _
 ByVal pConnection As ADODB.Connection)

 PrintStatus "WillExecute", adStatus

End Sub

Private Sub con_ExecuteComplete(ByVal RecordsAffected As Long, _
 ByVal pError As ADODB.Error, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pCommand As ADODB.Command, _
 ByVal pRecordset As ADODB.Recordset, _
 ByVal pConnection As ADODB.Connection)

 PrintStatus "ExecuteComplete", adStatus, pError

End Sub

Now look at a piece of code that executes a command from the Connection object:
con.Open "DSN=BiblioDSN"

Set rst = con.Execute("SELECT * FROM Authors")

con.Close

When this code is executed, the following output is sent to the Immediate Window:
WillConnect event raised.
 Status: Okay.

ConnectComplete event raised.

IT-SC book 196

 Status: Okay.

WillExecute event raised.
 Status: Okay.

ExecuteComplete event raised.
 Status: Okay.

Disconnect event raised.
 Status: Okay.

This output also shows the Connection events fired from the last piece of code. (For the
remainder of this section, I will stop showing these events and will focus on the
Execution events.)

To see how an error is reported while executing a command, alter the code to request a
table that does not exist:
Set rst = con.Execute("SELECT * FROM AMissingTable")

When this code is executed, the error is reported to the Complete event of the pair, the
ExecuteComplete event:
WillExecute event raised.
 Status: Okay.

ExecuteComplete event raised.
 Status: Errors have occurred.
 Error: [Microsoft][ODBC Microsoft Access 97 Driver] The Microsoft
Jet
 database engine cannot find the input table or query
'AMissingTable'.
 Make sure it exists and that its name is spelled correctly.

Now, for the sake of illustration, alter the code once again to a valid command text value:
Set rst = con.Execute("DELETE * FROM Authors " _
 & "WHERE (Author = 'Jason')")

Alter the WillExecute event as shown:
Private Sub con_WillExecute(Source As String, _
 CursorType As ADODB.CursorTypeEnum, _
 LockType As ADODB.LockTypeEnum, _
 Options As Long, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pCommand As ADODB.Command, _
 ByVal pRecordset As ADODB.Recordset, _
 ByVal pConnection As ADODB.Connection)

 PrintStatus "WillExecute", adStatus

 Debug.Print " The Source of this execution is:"
 Debug.Print " " & Source

 Debug.Print " The ConnectionString used for this execution is:"

IT-SC book 197

 Debug.Print " " & pConnection.ConnectionString

 CursorType = adOpenKeyset
 LockType = adLockOptimistic
 Options = adCmdText

End Sub

This code sends the command text and the ConnectionString used to execute the
command to the Immediate Window as output. In addition, the properties of the resulting
recordset can be altered, as shown, by setting the CursorType, LockType, and Options
variables. An example of output from the previous code is:
WillExecute event raised.
 Status: Okay.
 The Source of this execution is:
 DELETE * FROM Authors WHERE (Author = 'Jason')
 The ConnectionString used for this execution is:
 Provider=MSDASQL.1;User ID=sa;Connect Timeout=15;Extended
 Properties="DSN=BiblioDSN;DBQ=c:\My
Documents\BIBLIO.MDB;DriverId=25;
 FIL=MS Access;MaxBufferSize=512;PageTimeout=5;UID=admin;";
 Locale Identifier=1033

ExecuteComplete event raised.
 Status: Okay.

Notice how the ConnectionString information is a lot longer than you might have
expected. This is because ADO sets many of the default characteristics of a connection
for you.

Now, execute a non-row-returning command as shown next:
Set rst = con.Execute("DELETE * FROM Authors " _
 & "WHERE (Author = 'Kaitlyn')")

Alter the ExecuteComplete event to output the number of records the command affected:
Private Sub con_ExecuteComplete(ByVal RecordsAffected As Long, _
 ByVal pError As ADODB.Error, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pCommand As ADODB.Command, _
 ByVal pRecordset As ADODB.Recordset, _
 ByVal pConnection As ADODB.Connection)

 PrintStatus "ExecuteComplete", adStatus, pError

 If (RecordsAffected >= 0) Then
 Debug.Print " Records Affected: " & RecordsAffected
 End If
End Sub

Notice that the records affected are only printed if the number is greater than or equal to
zero. This is because the variable, RecordsAffected, is very often set to -1 (usually when

IT-SC book 198

ADO cannot determine the number of records that have been affected). The following
output results from the previous code:
WillExecute event raised.
 Status: Okay.
 The Source of this execution is:
 DELETE * FROM Authors WHERE (Author = 'Kaitlyn')
 The ConnectionString used for this execution is:
 Provider=MSDASQL.1;User ID=sa;Connect Timeout=15;Extended
 Properties="DSN=BiblioDSN;DBQ=c:\My
Documents\BIBLIO.MDB;DriverId=25;
 FIL=MS Access;MaxBufferSize=512;PageTimeout=5;UID=admin;";
 Locale Identifier=1033

ExecuteComplete event raised.
 Status: Okay.
 Records Affected: 4

You can also use the Execute events when working with a Command object, although the
events belong to a Connection object.

As you may recall, each Command object has to have an associated Connection object. If
this Connection object is external to the Command object rather than internally created
by the Command object, the Execute events can be fired for a Command object's
execution, as illustrated in the following code:
com.CommandText = "SELECT * FROM Authors"
com.CommandTimeout = 10
com.CommandType = adCmdText
com.ActiveConnection = con

Set rst = com.Execute

Notice that in this piece of code, the con variable is set to the ActiveConnection property of the
Command object that will be executed. This con variable is where the actual firing of the Execute
events takes place.

Now alter the WillExecute event so that we may verify that it is fired for the correct
Command object:
Private Sub con_WillExecute(Source As String, _
 CursorType As ADODB.CursorTypeEnum, _
 LockType As ADODB.LockTypeEnum, _
 Options As Long, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pCommand As ADODB.Command, _
 ByVal pRecordset As ADODB.Recordset, _
 ByVal pConnection As ADODB.Connection)

 PrintStatus "WillExecute", adStatus

 Debug.Print " The CommandText used for this execution is:"
 Debug.Print " " & pCommand.CommandText

End Sub

IT-SC book 199

This code results in the following (partial) output:
WillExecute event raised.
 Status: Okay.
 The CommandText used for this execution is:
 SELECT * FROM Authors

We can verify that the WillExecute method was fired for the Command object because
the CommandText is identical.

8.2.3 Transaction Events

Three events belong to the Transaction events category of the ConnectionEvent family:

The BeginTransComplete event is raised when a new transaction has been created.

The CommitTransComplete event is raised when a transaction has been committed to the data
source.

The RollbackTransComplete event is raised when a transaction has been rolled back to restore the
information within the data source prior to the creation of a new transaction.

Just as you have for the other events introduced thus far, add the method call to
PrintStatus for each of the Transaction events:
Private Sub con_BeginTransComplete(ByVal TransactionLevel As Long, _
 ByVal pError As ADODB.Error, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pConnection As
ADODB.Connection)

 PrintStatus "BeginTransComplete", adStatus, pError

End Sub

Private Sub con_CommitTransComplete(ByVal pError As ADODB.Error, _
 adStatus As ADODB.EventStatusEnum,
_
 ByVal pConnection As
ADODB.Connection)

 PrintStatus "CommitTransComplete", adStatus, pError

End Sub

Private Sub con_RollbackTransComplete(ByVal pError As ADODB.Error, _
 adStatus As ADODB.EventStatusEnum,
_
 ByVal pConnection As
ADODB.Connection)

 PrintStatus "RollbackTransComplete", adStatusCancel, pError

End Sub

IT-SC book 200

To illustrate how the Transaction events are fired, enter the following code, which
establishes a connection, begins a transaction, commits the transaction, and closes the
connection to the data source:
con.Open "DSN=BiblioDSN"

con.BeginTrans
'
' do something here...
'
con.CommitTrans

con.Close

This code results in the following output in the Immediate Window:
WillConnect event raised.
 Status: Okay.

ConnectComplete event raised.
 Status: Okay.

BeginTransComplete event raised.
 Status: Okay.

CommitTransComplete event raised.
 Status: Okay.

Disconnect event raised.
 Status: Okay.

Again, the WillConnect, ConnectComplete, and Disconnect events are shown here to
illustrate where the Transaction events are fired in comparison. For the remainder of this
section, the Connection events will not be shown.

Now look at something slightly different. The following piece of code attempts to
commit a transaction that has already been rolled back:
con.BeginTrans
'
' do something here...
'
con.RollbackTrans
'
' do something here...
'
con.CommitTrans

Upon execution of the above piece of code, the following output is sent to the Immediate
Window:
BeginTransComplete event raised.
 Status: Okay.

RollbackTransComplete event raised.
 Status: Okay.

IT-SC book 201

CommitTransComplete event raised.
 Status: Errors have occurred.
 Error: No transaction is active.

By changing the Attributes property of the Connection object, we can allow transactions
to be created automatically after any call to RollbackTrans or CommitTrans. This change
eliminates the previous error.

The following code adds the adXactCommitRetaining and adXactAbortRetaining flags to
the Attributes property to allow for just this (refer to the "Managing Multiple Transactions" in
Chapter 4, for more information):
con.Attributes = adXactCommitRetaining _
 + adXactAbortRetaining

con.BeginTrans
'
' do something here...
'
con.RollbackTrans
'
' do something here...
'
con.CommitTrans

When this code is executed, a new transaction is created after the RollbackTrans method
call, therefore allowing it to be committed with the CommitTrans method call. The
following output results:
BeginTransComplete event raised.
 Status: Okay.

RollbackTransComplete event raised.
 Status: Okay.

CommitTransComplete event raised.
 Status: Okay.

As we can see, the transaction code no longer generates an error.

8.2.4 Informational Events

The final category in ConnectionEvents is the Informational events category. The only
event currently in the Informational Events category is the InfoMessage event, which is
fired whenever a warning has occurred during any other ConnectionEvents operation.

To track the firing of the InfoMessage event and to display the warning that has been
raised, modify the InfoMessage event as shown:
Private Sub con_InfoMessage(ByVal pError As ADODB.Error, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pConnection As ADODB.Connection)

IT-SC book 202

 PrintStatus "InfoMessage", adStatus, pError

 Debug.Print " Error: " & pError.Description
 Debug.Print

End Sub

Now, enter code that you thought executed previously without any problems:
con.Open "DSN=BiblioDSN"

Set rst = con.Execute("SELECT * FROM Authors")

con.Close

When this code is executed, notice the following InfoMessage event:
WillConnect event raised.
 Status: Okay.

ConnectComplete event raised.
 Status: Okay.

InfoMessage event raised.
 Status: Okay.
 Error: [Microsoft][ODBC Driver Manager] Driver's SQLSetConnectAttr
failed

WillExecute event raised.
 Status: Okay.
 The Source of this execution is:
 SELECT * FROM Authors
 The ConnectionString used for this execution is:
 Provider=MSDASQL.1;User ID=sa;Connect Timeout=15;Extended
 Properties="DSN=BiblioDSN;DBQ=c:\My
Documents\BIBLIO.MDB;DriverId=25;
 FIL=MS Access;MaxBufferSize=512;PageTimeout=5;UID=admin;";
 Locale Identifier=1033

ExecuteComplete event raised.
 Status: Okay.

Disconnect event raised.
 Status: Okay.

The InfoMessage event has posted a warning, not an error. This warning was placed in the pError
object just as an error is. When the InfoMessage event is raised, it is known that a warning has
occurred, and therefore the pError object will be populated with its information; however, the
adStatus flag is set to adStatusOK. Our code in the PrintStatus method prints the information
from the pError object only if the adStatus flag is set to adStatusErrorsOccurred. This is
why we printed the warning from within the InfoMessage event itself.

8.3 The RecordsetEvent Family

IT-SC book 203

The RecordsetEvent family contains a group of events that belong to the Recordset object.
To instantiate a Recordset object that implements events, declare it as follows:
Private WithEvents rst As ADODB.Recordset

As stated earlier, the events within the Recordset family can be broken into five
categories:

Retrieval events

Movement events

Field Change events

Record Change events

Recordset Change events

Each category of events contains events pertaining to one specific task. The first of these
tasks is retrieving records from a data source.

8.3.1 Retrieval Events

Two events belong to the Retrieval events category of the RecordsetEvent family:

The FetchProgress event is raised to indicate the progress of a lengthy asynchronous fetch
operation.

The FetchComplete event is raised when an asynchronous fetch operation is complete.

So that we can track how ADO raises these two events, add the PrintStatus method call to each,
as shown in the following code. In addition, we will put an End keyword within the
FetchComplete event so that the application will terminate once all of the records have been
fetched:
Private Sub rst_FetchProgress(ByVal Progress As Long, _
 ByVal MaxProgress As Long, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pRecordset As ADODB.Recordset)

 PrintStatus "FetchProgress", adStatus

End Sub

Private Sub rst_FetchComplete(ByVal pError As ADODB.Error, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pRecordset As ADODB.Recordset)

 PrintStatus "FetchComplete", adStatus

 ' End the application
 End

IT-SC book 204

End Sub

Now enter the following code to create a recordset that returns all of the records from the Orders
table. In this example, we are passing the adAsyncFetch option to the Open method of the
Recordset object in order to retrieve the records asynchronously:
Dim con As ADODB.Connection

Set con = New ADODB.Connection
Set rst = New ADODB.Recordset

con.CursorLocation = adUseClient

con.Open "driver={SQL Server}; " _
 & "server=JROFF_LAPTOP; " _
 & "database=Northwind; " _
 & "uid=sa;"

rst.rst.Open "SELECT * FROM Orders", _
 con, _
 , _
 , _
 adAsyncFetch

While True
 DoEvents
Wend

The last piece of code had a forced While...Wend statement that assures us that our application
is still running. Periodically, while the fetch is taking place, the FetchProgress event should be
raised; once the operation is complete, the FetchComplete event should be raised.

Once the last piece of code is executed, the following output is sent to the Immediate
Window:
FetchProgress event raised.
 Status: Okay.

.
. (about 20 more times)
.

FetchProgress event raised.
 Status: Okay.

FetchProgress event raised.
 Status: Okay.

FetchComplete event raised.
 Status: Okay.

For clarity, I have removed about twenty statements declaring that the FetchProgress
event has been raised. The last piece of code executed exactly as we had planned.

8.3.2 Movement Events

IT-SC book 205

Three events belong to the Movement events category of the RecordsetEvent family:

The WillMove event is raised when an operation is going to execute that will move the record
pointer to a different location within the recordset.

The MoveComplete event is raised when an operation that moves the record pointer to a different
location within the recordset has completed.

The EndOfRecordset event is raised when an operation has completed that moved the record
pointer to the EOF marker within the recordset.

We will first look at the WillMove and MoveComplete events of the Recordset object. For both
of these events, an adReason parameter is returned, containing a constant value that represents the
reason why the event was raised. This parameter can contain any valid EventReasonEnum
enumeration value listed in Table 8-5.

Table 8-5. The EventReasonEnum Enumeration Values for the adReason Parameter

Value Description

adRsnMoveFirst The event was raised because of a MoveFirst method call.

adRsnMoveLast The event was raised because of a MoveLast method call.

adRsnMoveNext The event was raised because of a MoveNext method call.

adRsnMovePrevious The event was raised because of a MovePrevious method call.

adRsnMove The event was raised because of a Move method call.

adRsnRequery The event was raised because of a Requery method call.

Enter the following code for both the WillMove and the WillComplete events so that we
can track the raising of these events. In addition, place a call to the PrintReason function
(which I will define next) within the WillMove event:
Private Sub rst_WillMove(ByVal adReason As ADODB.EventReasonEnum, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pRecordset As ADODB.Recordset)

 PrintStatus "WillMove", adStatus
 PrintReason adReason

End Sub

Private Sub rst_MoveComplete(ByVal adReason As ADODB.EventReasonEnum, _
 ByVal pError As ADODB.Error, _
 adStatus As ADODB.EventStatusEnum, _

IT-SC book 206

 ByVal pRecordset As ADODB.Recordset)

 PrintStatus "MoveComplete", adStatus, pError

End Sub

The EventReasonEnum contains many more constants than those shown in Table 8-3, but they
do not apply to the WillMove and MoveComplete events. The following code for the PrintReason
method includes all of the possible EventReasonEnum values, because it will be used for other
RecordsetEvent events later in this chapter:
Private Sub PrintReason(adReason As ADODB.EventReasonEnum)

 Debug.Print " Reason for event: ";
 Select Case (adReason)
 Case adRsnAddNew:
 Debug.Print "AddNew"
 Case adRsnClose:
 Debug.Print "Close"
 Case adDelete:
 Debug.Print "Delete"
 Case adRsnFirstChange:
 Debug.Print "First Change"
 Case adRsnMove:
 Debug.Print "Move"
 Case adRsnMoveFirst:
 Debug.Print "MoveFirst"
 Case adRsnMoveLast:
 Debug.Print "MoveLast"
 Case adRsnMoveNext:
 Debug.Print "MoveNext"
 Case adRsnMovePrevious:
 Debug.Print "MovePrevious"
 Case adRsnOpen:
 Debug.Print "Open"
 Case adRsnRequery:
 Debug.Print "Requery"
 Case adRsnResynch:
 Debug.Print "Resynch"
 Case adRsnUndoAddNew:
 Debug.Print "Undo AddNew"
 Case adRsnUndoDelete:
 Debug.Print "Undo Delete"
 Case adRsnUndoUpdate:
 Debug.Print "Undo Update"
 Case adRsnUpdate:
 Debug.Print "Update"
 End Select

End Sub

The following code and its output illustrate the events that are called when a recordset is
simply opened and then closed:
Debug.Print "---------- Before the recordset is opened."
rst.rst.Open "Authors", _
 "DSN=BiblioDSN", _

IT-SC book 207

 adOpenKeyset, _
 adLockOptimistic, _
 adCmdTable

Debug.Print
Debug.Print "---------- Before the recordset is closed."
rst.rst.Close

When this example is run, the following output is sent to the Immediate Window:
---------- Before the recordset is opened.

WillMove event raised.
 Status: Can't deny.
 Reason for event: Move

MoveComplete event raised.
 Status: Okay.

---------- Before the recordset is closed.

WillMove event raised.
 Status: Okay.
 Reason for event: Move

MoveComplete event raised.
 Status: Okay.

In analyzing the output from the previous piece of code, when the Recordset is opened, the
WillMove event is raised for the first time. This event is raised with a status of Can't deny. The
reason displayed for the event being raised is a Move method. We did not code a Move method in
our code example; however, when the Recordset is first opened, the record pointer is moved for
the first record, and you can't do anything about it. This is why its status is 'Can't deny'. The
MoveComplete event is then raised once the move has been completed.

When the Recordset is closed, the Move event is raised again, followed by the
MoveComplete event.

Now look at a piece of code that does a little more. After the Recordset is opened, the
MoveNext method is called and followed by the Close method. Enter the following code
to see how the WillMove and MoveComplete events are called in this situation:
Debug.Print "---------- Before the recordset is opened."
rst.Open "Authors", _
 "DSN=BiblioDSN", _
 adOpenKeyset, _
 adLockOptimistic, _
 adCmdTable
Debug.Print
Debug.Print "---------- MoveNext Call"
rst.MoveNext

Debug.Print
Debug.Print "---------- Before the recordset is closed."
rst.Close

IT-SC book 208

Once this code has been entered and run, the following output is sent to the Immediate
Window:
---------- Before the recordset is opened.

---------- MoveNext Call

WillMove event raised.
 Status: Okay.
 Reason for event: MoveNext

MoveComplete event raised.
 Status: Okay.

---------- Before the recordset is closed.

The output for the Open and Close method calls have been omitted in the most recent
example output because it is the same as the output in the previous example. The only
output that is shown earlier is that for the MoveNext method to illustrate the events that
are fired for the previous example's MoveNext statement.

The third event belonging to the Movement events category of the RecordsetEvents
family is the EndOfRecordset event. This event, as stated earlier in this section, is raised
once the record pointer has moved one position past the last record in the recordset to the
EOF marker. Add the PrintStatus method to the EndOfRecordset event, as shown in the
following example, so that we can track when this event is being raised:
Private Sub rst_EndOfRecordset(fMoreData As Boolean, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pRecordset As ADODB.Recordset)

 PrintStatus "EndOfRecordset", adStatus

End Sub

Assuming that a recordset is already open, enter the following methods to move the
record pointer around within the recordset:
Debug.Print
Debug.Print "---------- MoveLast Call"
rst.MoveLast

Debug.Print
Debug.Print "---------- First MoveNext Call"
rst.MoveNext

Debug.Print
Debug.Print "---------- Second MoveNext Call"
rst.MoveNext

Run this code to see which Movement events are being raised for each Recordset method
call in the previous piece of code. The following is sent as output to the Immediate
Window from the last piece of code:
---------- MoveLast Call

IT-SC book 209

WillMove event raised.
 Status: Okay.
 Reason for event: MoveLast

MoveComplete event raised.
 Status: Okay.

---------- First MoveNext Call

WillMove event raised.
 Status: Okay.
 Reason for event: MoveNext

EndOfRecordset event raised.
 Status: Okay.

MoveComplete event raised.
 Status: Okay.

---------- Second MoveNext Call

WillMove event raised.
 Status: Okay.
 Reason for event: MoveNext

EndOfRecordset event raised.
 Status: Okay.

MoveComplete event raised.
 Status: Errors have occurred.
 Error: Either BOF or EOF is True, or the current record has been
deleted;
 the operation requested by the application requires a current
record.

The MoveLast method call continues successfully, as does the first call to MoveNext.
This call to MoveNext effectively places the record pointer at the end of file marker,
located directly past the last record in the recordset.

The second call to the MoveNext method generates an error after it raises the EndOfRecordset
event. The error is reported through the MoveComplete event, which indicates that neither BOF
nor EOF is True.

Now, modify the EndOfRecordset event as shown:
Private Sub rst_EndOfRecordset(fMoreData As Boolean, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pRecordset As ADODB.Recordset)

 PrintStatus "EndOfRecordset", adStatus

 pRecordset.AddNew
 pRecordset.Update

 fMoreData = True

IT-SC book 210

End Sub

The fMoreData flag of the EndOfRecordset event allows you to indicate that more data has been
added to the recordset and that the record pointer no longer points to an invalid record. If you
want to do this, you must add the new records (with the AddNew method) and then set the
fMoreData flag to True. When the application exits the EndOfRecordset event, the
MoveComplete event does not report an error, but completes successfully.

By changing the EndOfRecordset event as shown before and re-executing the code, the
following event output is sent to the Immediate Window:
---------- MoveLast Call

WillMove event raised.
 Status: Okay.
 Reason for event: MoveLast

MoveComplete event raised.
 Status: Okay.

---------- First MoveNext Call

WillMove event raised.
 Status: Okay.
 Reason for event: MoveNext

EndOfRecordset event raised.
 Status: Okay.

MoveComplete event raised.
 Status: Okay.

---------- Second MoveNext Call

WillMove event raised.
 Status: Okay.
 Reason for event: MoveNext

EndOfRecordset event raised.
 Status: Okay.

MoveComplete event raised.
 Status: Okay.

Notice how the last MoveNext method call executed without an error.

8.3.3 Field Change Events

Two events make up the Field Change events category of the RecordsetEvent family:

The WillChangeField event is raised when one or more fields are about to change due to an
operation.

IT-SC book 211

The ChangeFieldComplete event is raised when one or more fields were changed due to an
operation.

The WillChangeField event, shown next, passes two important parameters. The first of
these parameters is a Long value indicating the number of fields that will be changed.
The second parameter, Fields, is a Variant value that contains an array of Field objects
that are about to be changed.

The code in the following WillChangeField event not only calls the PrintStatus method to
indicate that the event has been raised, but it also prints the old value of each field that is
about to be modified:
Private Sub rst_WillChangeField(ByVal cFields As Long, _
 ByVal Fields As Variant, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pRecordset As ADODB.Recordset)

 Dim lCount As Long

 PrintStatus "WillChangeField", adStatus

 For lCount = 1 To cFields
 Debug.Print " Field " & lCount & ": " & Fields(lCount - 1)
 Next lCount

End Sub

The FieldChangeComplete event is called after the operation has changed the field (or
has failed trying):
Private Sub rst_FieldChangeComplete(ByVal cFields As Long, _
 ByVal Fields As Variant, _
 ByVal pError As ADODB.Error, _
 adStatus As ADODB.EventStatusEnum,
_
 ByVal pRecordset As ADODB.Recordset)

 PrintStatus "FieldChangeComplete", adStatus, pError

End Sub

Now enter the following code to see how the Field Change events are raised when a
single Field is modified:
rst.MoveFirst

rst.Update "Author", "Kimberly"

When this code is executed, the following output is sent to the Immediate Window:
WillChangeField event raised.
 Status: Okay.
 Field 1: Jason

FieldChangeComplete event raised.

IT-SC book 212

 Status: Okay.

Notice that the value of Field 1 output during the WillChangeField event is Jason, although the
code has changed it to the value of Kimberly. This is because during the WillChangeField event,
the value of the Field has not changed yet; therefore, the original value of the field is outputted.

8.3.4 Record Change Events

Two events make up the Record Change events category of the RecordsetEvent family:

The WillChangeRecord event is raised when the current record is about to change due to an
operation.

The ChangeRecordComplete event is raised when the current record has changed due to an
operation.

Both of the Record Change events pass the adReason flag that we saw earlier in the Movement
events. The WillChangeRecord and RecordChangeComplete events can be raised because of any
of the values of the EventReasonEnum values in Table 8-6.

Table 8-6. The EventReasonEnum Enumeration for Record Change Events

Value Description

adRsnAddNew The event was raised because of an AddNew method call.

adRsnDelete The event was raised because of a Delete method call.

adRsnUpdate The event was raised because of an Update method call.

adRsnUndoUpdate The event was raised because of a CancelUpdate method call.

adRsnUndoAddNew The event was raised because of a CancelBatch method call
(concerning a previous AddNew method call).

adRsnUndoDelete The event was raised because of a CancelBatch method call
(concerning a previous Delete method call).

adRsnFirstChange The event was raised because it was the first time that this recordset
has been set.

Enter the following code for both the WillChangeRecord and the
RecordChangeComplete events. It will be used to track when and why the events are
raised.

IT-SC book 213

Private Sub rst_WillChangeRecord(ByVal adReason As
ADODB.EventReasonEnum, _
 ByVal cRecords As Long, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pRecordset As ADODB.Recordset)

 PrintStatus "WillChangeRecord", adStatus
 PrintReason adReason
 Debug.Print " Records: " & cRecords

End Sub

Private Sub rst_RecordChangeComplete(ByVal adReason As
ADODB.EventReasonEnum, _
 ByVal cRecords As Long, _
 ByVal pError As ADODB.Error, _
 adStatus As ADODB.EventStatusEnum,
_
 ByVal pRecordset As
ADODB.Recordset)

 PrintStatus "RecordChangeComplete", adStatus, pError
 PrintReason adReason
 Debug.Print " Records: " & cRecords

End Sub

Now enter some code that would fire the two previous events. The following piece of
code uses a single Update method call to modify two fields within the current record:
Dim vFields(1) As Variant
Dim vValues(1) As Variant

vFields(0) = "Author"
vFields(1) = "Year Born"

vValues(0) = "Tamara"
vValues(1) = "1975"

rst.Update vFields, vValues

When the previous code is run, the following is sent as output to the Immediate Window:
WillChangeRecord event raised.
 Status: Okay.
 Reason for event: First Change
 Records: 1

WillChangeField event raised.
 Status: Okay.
 Field 1: Jason
 Field 2: 1973

FieldChangeComplete event raised.
 Status: Okay.

RecordChangeComplete event raised.

IT-SC book 214

 Status: Okay.
 Reason for event: First Change
 Records: 1

WillChangeRecord event raised.
 Status: Okay.
 Reason for event: Update
 Records: 1

RecordChangeComplete event raised.
 Status: Okay.
 Reason for event: Update
 Records: 1

When we break down this output, we see that the WillChangeRecord event is raised before any
other. Then the WillChangeField and FieldChangeComplete events are fired, indicating that the
two Fields shown (with values of Jason and 1973) are changed. Then the
RecordChangeComplete event is raised. This grouping of events has indicated that the values
have changed, but not necessarily been updated to the data source.

When the last WillChangeRecord and RecordChangeComplete events are raised, the
update is made (indicated by the Update output for the reason for the event).

8.3.5 Recordset Change Events

Two events make up the final set of events -- the Record Change events category of the
RecordsetEvent family:

The WillChangeRecordset event is raised when the current recordset is about to change due to an
operation.

The ChangeRecordsetComplete event is raised when the current recordset has changed due to an
operation.

Both of these events include a parameter, adReason, which can be set to any of the
EventReasonEnum values indicated in Table 8-7.

Table 8-7. The EventReasonEnum Enumeration for Recordset Change Events

Value Description

adRsnReQuery The event was raised because of a Requery method call.

adRsnReSynch The event was raised because of a Resynch method call.

adRsnOpen The event was raised because of an Open method call.

adRsnClose The event was raised because of a Close method call.

IT-SC book 215

Now enter the code that is necessary in order to track the raising of the
WillChangeRecordset and the RecordsetChangeComplete events:
Private Sub rst_WillChangeRecordset(ByVal adReason As
ADODB.EventReasonEnum, _
 adStatus As ADODB.EventStatusEnum,
_
 ByVal pRecordset As ADODB.Recordset)

 PrintStatus "WillChangeRecordset", adStatus
 PrintReason adReason

End Sub

Private Sub rst_RecordsetChangeComplete(ByVal adReason As
ADODB.EventReasonEnum, _
 ByVal pError As ADODB.Error, _
 adStatus As
ADODB.EventStatusEnum, _
 ByVal pRecordset As
ADODB.Recordset)

 PrintStatus "RecordsetChangeComplete", adStatus, pError
 PrintReason adReason

End Sub

Now enter code that will illustrate how these two events are raised. The following piece
of code opens and closes a recordset:
rst.Open "Authors", _
 "DSN=BiblioDSN", _
 adOpenDynamic, _
 adLockOptimistic, _
 adCmdTable

rst.Close

When this code is run, the following is sent as output to the Immediate Window:
WillChangeRecordset event raised.
 Status: Okay.
 Reason for event: Move

RecordsetChangeComplete event raised.
 Status: Okay.
 Reason for event: Move

WillMove event raised.
 Status: Okay.
 Reason for event: Move

MoveComplete event raised.
 Status: Okay.

RecordsetChangeComplete event raised.
 Status: Okay.

IT-SC book 216

 Reason for event: Close

Looking at this output, we see that the record pointer moving from one record to another
has caused the WillChangeComplete and RecordsetChangeComplete events to be raised.
Once the recordset is closed, the RecordsetChangeComplete event is raised again.

8.4 Canceling Operations

Your application can deny the execution of any operation that triggers a Will event. By changing
the status parameter passed to any Will event to adStatusCancel, the operation will not
execute. However, if the adStatus property is set to adStatusCantDeny, you cannot cancel the
operation.

For instance, assume that you want to restrict the connection to a data source. By entering
the following code for the WillConnect event, the connection will never occur:
Private Sub con_WillConnect(ConnectionString As String, _
 UserID As String, _
 Password As String, _
 Options As Long, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pConnection As ADODB.Connection)

 ' cancel the connection
 adStatus = adStatusCancel

End Sub

Now enter the following code in a method to test the connection:
On Error GoTo ERR_Connection:

 Set con = New Connection

 con.Open "DSN=BiblioDSN"

 con.Close

ERR_Connection:
 If (Err.Number = 3712) Then
 Debug.Print "Connection canceled."
 End If

 Set con = Nothing

Output from this code produces the message Connection canceled. Of course, you would not
logically deny every connection attempt made by an application, but you might deny Connections
if you know that you already have many connections made to the same data source.

8.5 Turning Events Off

In addition to canceling operations by altering the status parameter of an event, you can also turn
the events off completely for an open instance of an object. By setting any event's status

IT-SC book 217

parameter to adStatusUnwantedEvent, you are informing ADO that you no longer want to be
notified of a particular event.

To illustrate this ability, alter the WillMove event as shown:
Private Sub rst_WillMove(ByVal adReason As ADODB.EventReasonEnum, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pRecordset As ADODB.Recordset)

 Debug.Print
 Debug.Print " WillMove Event Raised"
 adStatus = adStatusUnwantedEvent
 Debug.Print " Turned WillMove Event Off"

End Sub

Now enter and execute a piece of code that raises the WillMove event at least once:
Debug.Print "--------- Before Opening Recordset"
rst.Open "Authors", _
 "DSN=BiblioDSN"

Debug.Print
Debug.Print "--------- Before MoveFirst"
rst.MoveFirst

Debug.Print
Debug.Print "--------- Before MoveNext"
rst.MoveNext

Debug.Print
Debug.Print "--------- Before Closing Recordset"
rst.Close

When this code is executed, the following output is sent to the Immediate Window:
--------- Before Opening Recordset

 WillMove Event Raised
 Turned WillMove Event Off

--------- Before MoveFirst

--------- Before MoveNext

--------- Before Closing Recordset

Note that once a Recordset object (or a Connection object for that matter) is closed and
then reopened, the event will be raised again.

In the case of events that can be raised for more than one reason, you must indicate that
the event is not wanted for each possible reason as each type occurs. At the very least,
each event can occur one time for each possible reason.

8.6 Summary

IT-SC book 218

This chapter was written to help you understand how to trap and potentially alter
executions prior to their completion, as well as develop applications that are notified once
an operation is complete. After reading this chapter, you should be able to fully
understand how the ADO Event Model works and the following key points about it:

There are two different types of events, Will/Complete events and Standalone events.

The Connection object supports events that deal with connecting to a data source, executing
commands, transaction management, and informational events that belong to the
ConnectionEvent family.

The Recordset object supports events that deal with the asynchronous fetching of records,
movement through a recordset, and Field, Record, and Recordset Change events that belong to
the RecordsetEvent family.

Within a given event, an operation can be canceled or an event can be turned off so that the
application will no longer receive them.

The next chapter of this book, Chapter 9, explains how to use one or more data providers to
construct a hierarchical view (shaped view) of your data.

IT-SC book 219

Chapter 9. Data Shaping

Introduced with ADO 2.0, data shaping allows creation of hierarchical or nested sets of
recordsets with a single ADO object. The data shaping specifies the relation between columns
and recordsets (i.e., parent-child relationships).

9.1 An Introduction to Data Shaping

Each of the columns within a shaped recordset can be defined as one of the following:

Data from a data provider

A reference to another recordset

A solution to an operation on a single row of this recordset

A solution to an operation on an entire column of a recordset

A completely new defined column

A recordset whose column contains another recordset is called a hierarchical recordset.
Hierarchical recordsets can be nested to any depth. The recordset that contains another recordset
is called the parent, while the contained recordset is called the child. When a parent recordset's
field (column), which represents another recordset, is read, ADO actually returns an instance of
another Recordset object as the value of the field.

The field in the parent recordset that refers to a child recordset is called a chapter. This Field
object is appended to the parent recordset and given a datatype of adChapter.

To create shaped recordsets, ADO 2.0 introduced the Shape command syntax, which is explained
later in this chapter (Section 9.3). Shape commands are used in conjunction with the OLE DB
provider's native command set, usually SQL. A Shape command is passed to the Source property
of a Recordset object just like any other SQL statement.

In Version 2.1, ADO introduced the concept of reshaping. Reshaping allows a newly created
recordset to have existing shaped recordsets as its children. There are four restrictions to
reshaping:

You cannot add columns to an existing recordset.

You cannot reshape a parameterized query.

You cannot reshape any of the Recordset objects within an intervening Compute clause.

You cannot perform aggregate options on the children or the recordset that is being reshaped.

Each recordset in a hierarchical recordset can have an alias. Any field within any of these
recordsets can be referenced through a fully qualified name. For instance, if a hierarchical
recordset has three recordsets -- Customers, Orders, and Products -- a product's cost may be

IT-SC book 220

referenced with the name Customers.Orders.Products.Cost. This name can also be used as an
argument to one of the aggregate functions mentioned later in this chapter. This concept is
referred to as grandchild aggregates.

9.2 The Microsoft Data Shaping Service

The Microsoft Data Shaping Service is one of two providers necessary to create a shaped
recordset with a connection to a data source. The other is a data provider such as SQL
Server. In this case, SQL Server would supply the data to the MS Data Shaping service,
which would supply it to the application, through ADO.

To specify the MS Data Shaping Service, in the ConnectionString property, set the Provider
keyword to MSDataShape. When the Provider property is set to MSDataShape, the connection
string gains a dynamic property called Data Provider, used to specify the source of the data
provided to the MS Data Shaping Service.

The following example shows how the MS Data Shaping Service property is used in
conjunction with the MS Jet Engine:
Dim con As ADODB.Connection

Set con = New ADODB.Connection

con.ConnectionString = "Provider=MSDataShape; " _
 & "Data Provider=Microsoft.Jet.OLEDB.4.0; " _
 & "Data Source=C:\My Documents\Biblio.mdb; "

con.Open

'
' do something here
'
con.Close
Set con = Nothing

9.3 Shaping Commands

Shaping commands allow you to create hierarchical recordsets in two ways. The first way is done
through the APPEND command. The APPEND command can be used to attach a child recordset to a
parent based upon a common field value or values. One field value in the parent recordset is
equivalent to all of the field values in its child recordset. The APPEND command can add not only
chapter columns (pointing to child recordsets), it can also add calculated, aggregated, and
fabricated columns.

The second method of creating hierarchical recordsets in ADO is to use the COMPUTE command.
This method generates a parent recordset from a child recordset. Parent columns are created by
aggregation operations over a column of the child, an expression on an entire row of the recordset,
a grouping column (using the keyword BY), or by creating a new blank column. In addition, one
of the parent recordset's columns must be a chapter column pointing to the child recordset. The
parent can also be a calculated, aggregated, or fabricated column.

IT-SC book 221

9.3.1 APPEND Command

The APPEND command is used to append a child recordset to a column within a parent recordset.
The syntax of the APPEND command is as follows:
SHAPE {parent-command} [[AS] parent-alias]
APPEND ({child-command} [AS] child-alias
RELATE parent-column TO child-column) [[AS] chapter-alias]...

In this syntax, the parent-command and child-commands can be one of four things:

A command that is translated by the underlying data provider (usually a SQL Statement)

A table name preceded by the keyword TABLE

Another Shape command in (...)

The name of a recordset that has already been shaped

The first type of command can be translated by the underlying data provider. In the following
example, two tables from the Nwind.mdb database supplied with Visual Basic 6.0 will be shaped.
To better visualize the hierarchical recordset that is a result of this Shape command, we will
create a form with only one control: the Microsoft Hierarchical FlexGrid control.

Create a new project, and rename the main form to frmShapeExample. Add the component
Microsoft Hierarchical FlexGrid Control 6.0 (OLE DB) and the reference to ADO, Microsoft
ActiveX Data Objects 2.6 Library.

Next, add an instance of the MSHFlexGrid control to the form, and rename it mshFlexGrid. Now
enter the following code to resize the control along with the form:
Private Sub Form_Resize()

 mshFlexGrid.Top = 0
 mshFlexGrid.Left = 0
 mshFlexGrid.Width = Me.ScaleWidth
 mshFlexGrid.Height = Me.ScaleHeight

End Sub

Now save this project as prjShapeExample. This project will be used throughout this chapter to
view the hierarchical recordsets that we will create.

The simplest hierarchical recordset that we can create is one that appends one SQL
statement to another:
SHAPE {SELECT * FROM Orders;}
APPEND ({SELECT * FROM [Order Details];}
RELATE OrderID TO OrderID)

This statement uses the Orders and Order Details tables from the Nwind.mdb MS Access database
file distributed with MS Visual Basic 6.0.

To view this recordset in action, enter the following code for the FirstExample method:

IT-SC book 222

Private Sub FirstExample()

 Dim con As ADODB.Connection
 Dim rst As ADODB.Recordset

 Dim sSource As String

 Set con = New ADODB.Connection
 Set rst = New ADODB.Recordset

 con.ConnectionString = "Provider=MSDataShape; " _
 & "Data Provider=Microsoft.Jet.OLEDB.4.0; " _
 & "Data Source=D:\My Documents\Nwind.mdb; "

 con.Open

 sSource = "SHAPE {SELECT * FROM Orders;} " _
 & "APPEND ({SELECT * FROM [Order Details];} " _
 & "RELATE OrderID TO OrderID) "

 rst.Open sSource, _
 con, _
 adOpenForwardOnly, _
 adLockReadOnly

 Set mshFlexGrid.Recordset = rec

 rst.Close
 Set rst = Nothing

 con.Close
 Set con = Nothing

End Sub

Now, enter a call to the FirstExample method within the Form_Load event, and run this example.
If this example doesn't work immediately, ensure that the path set in the
con.ConnectionString property points to your copy of the Nwind.mdb database file.

If this example does work properly for you, you should see a form similar to that shown in
Figure 9-1.

Figure 9-1. The first Shape example in action

IT-SC book 223

Another valid value for either the parent-command or the child-command would be a table name
preceded with the TABLE keyword. By replacing the following lines of code in the FirstExample
method shown earlier, the application is performing the same function:
sSource = "SHAPE TABLE Orders; " _
 & "APPEND (TABLE [Order Details] " _
 & "RELATE OrderID TO OrderID) "

In addition, either the parent-command or the child-command can be another valid Shape
command as in the following example:
sSource = "SHAPE TABLE Customers " _
 & "APPEND ((" _
 & " SHAPE TABLE Orders " _
 & " APPEND (TABLE [Order Details]; " _
 & " RELATE OrderID TO OrderID)) " _
 & "RELATE CustomerID TO CustomerID) "

This example creates a three-level hierarchical recordset starting with the Customers
table, then the Orders table, and finally the Order Details table.

You can enter the previous code lines into the project that you have set up and run it. You
will notice that you have a lot of column headers now -- three tables worth. To ease the
readability for the example, you can selectively choose the columns that you would like
to see, as with the following lines of code:
sSource = "SHAPE {SELECT CustomerID, ContactName " _
 & " FROM Customers;} " _
 & "APPEND ((" _
 & " SHAPE {SELECT OrderID,CustomerID " _
 & " FROM Orders;} " _
 & " APPEND (TABLE [Order Details] " _
 & " RELATE OrderID TO OrderID)) " _
 & "RELATE CustomerID TO CustomerID) "

If you were to run this code within the project that you have created, you would see a window
similar to that shown in Figure 9-2.

IT-SC book 224

Figure 9-2. A three-level hierarchical recordset example

When a Recordset object is opened on an ordinary Shape command, both the parent and
the child recordsets are opened immediately. You might expect to achieve better
performance by using a Shaped recordset.

The main advantage to a shaped recordset is the amount of information that is returned to the
application. Every Shaped recordset could be replaced with a JOINed SQL statement. With a
Shaped recordset, parent records are not duplicated; with a JOINed SQL statement, a parent
recordset could contain much more data than necessary. For instance, take a look at Figure 9-2,
at CustomerID ANATR. With a Shaped recordset, only one record is returned from the parent
recordset for this customer. If this recordset was created with JOINed SQL statements, there
would be four records (one for each of the orders) that are duplicated for the parent. In addition, if
a third recordset was appended, as in the example shown in Figure 9-2, there would be a
duplicated record for each of the order detail records.

The shape commands can also use the PARAMETER keywords. Don't mistake the Shape
PARAMETER keyword with the Parameters collection object or the PARAMETER object of ADO; it
has nothing to do with them. The Shape PARAMETER keyword is interpreted by the Microsoft
Data Shaping Engine. Try placing the following lines of code into the example project that you
have created:
sSource = "SHAPE TABLE Orders " _
 & "APPEND ({SELECT * " _
 & " FROM [Order Details] " _
 & " WHERE (OrderID = ?);} " _
 & "RELATE OrderID TO PARAMETER 0) "

The question mark (?) in the SQL statement SELECT * FROM [Order Details] WHERE
(OrderID = ?); acts like an ordinary parameter. The PARAMETER keyword, with the index zero,
is supplied by the Data Shaping Engine to the child recordset before ADO returns it. The result is
that the child recordset is not read until it is needed. This is different than the shaped recordsets
that we have seen so far, in that the entire child recordset is read immediately.

IT-SC book 225

By using the PARAMETER keyword, ADO isn't expecting an actual value for the parameter from
the application. In the preceding example, the data shaping engine knows to relate the OrderID
value of the Orders Detail table with the OrderID of the current Orders table.

The are two advantages to using the PARAMETER keyword. First, it offers faster initial execution
since the child rowset is not populated at execute time. Second, only the child data you actually
need is fetched from the server. If your application needs to use all of the children from a Shaped
recordset, you will most likely be better off without using the PARAMETER keyword because it
will require many small trips to the server versus fewer larger trips.

9.3.2 COMPUTE Command

The COMPUTE command is used to create a parent recordset based upon a given child recordset.
The syntax of the COMPUTE command is as follows:
SHAPE {child-command} [AS] child-alias
COMPUTE child-alias [, additional-fields-list]
[BY group-field-list]

In this syntax, the child-command can be one of four things:

A command that is translated by the underlying data provider (usually a SQL statement)

A table name preceded by the keyword TABLE

Another Shape command

The name of a recordset that has already been shaped

If a COMPUTE Shape command does not use the optional BY keyword, then only one record will
be returned in the recordset. The columns for this record would include chapter column pointing
to the entire child recordset.

By using the project skeleton that was introduced earlier in this chapter, replace the sSource
variable assignment with the following code:
sSource = "SHAPE {SELECT * FROM Orders;} " _
 & " AS Orders " _
 & "COMPUTE Orders, " _
 & " SUM(Orders.Freight) AS TotalFreight"

In this code, the following Shape command is being assigned to the sSource variable:
SHAPE {SELECT * FROM Orders;} AS Orders
COMPUTE Orders, SUM(Orders.Frieght) AS TotalFreight

The child-command in this example is a SQL statement that returns all of the columns of the
Orders table to the MS Data Shaping Service. The MS Data Shaping Service is going to create a
parent recordset for this child-command because the COMPUTE command is being used. Within
this parent recordset, there are two fields. The first is a chapter field pointing to the child-
recordset, Orders. The second field is a summation of all the Freight field values within the child
recordset. This command will return only one record with the total freight cost as the TotalFreight
field value.

IT-SC book 226

In order to return more than one record within the created parent-recordset, you must use the BY
keyword. The BY keyword groups by a column value within the child recordset producing one
record in the parent recordset for each unique value within the child recordset.

As an example, replace the sSource variable assignment in our sample application with the
following code:
sSource = "SHAPE {SELECT OrderID, ShipCountry " _
 & " FROM Orders;} " _
 & " AS Orders " _
 & "COMPUTE Orders, " _
 & " COUNT(Orders.OrderID) AS [Number Of Orders], " _
 & "BY ShipCountry"

This code produces the following Shape statement:
SHAPE {SELECT OrderID, ShipCountry FROM Orders;"
 AS Orders
COMPUTE Orders, COUNT(Orders.OrderID) AS [Number Of Orders]
BY ShipCountry

This example uses a child-command that only returns two columns, the OrderID and the
ShipCountry. The COMPUTE command causes a parent recordset to be created with three fields.
The first field is a chapter field pointing to the child-recordset that was created by the SQL
statement. The second field displays a count of the number of orders within the chapter of that
record. Finally, the third field comes from the BY clause of the Shape command, the ShipCountry
field. This BY clause causes the parent recordset to have a distinct record for each unique
ShipCountry within the child-command specified. For each of these parent recordset records, the
chapter field returns a subset of the overall child command. Each child recordset contains only
recordsets whose ShipCountry field values match that of the current parent recordset's
ShipCountry field value. Figure 9-3 illustrates how this parent-child hierarchical recordset looks
once it is created.

Let us go one step further and create another nested level within our hierarchical
recordset. In the next example, the parent recordset is grouped by countries, and its child
recordset contains all of the regions within each country. Furthermore, each recordset
broken down by regions acts as a parent recordset whose child recordset contains all of
the individual orders within each region.

To create such a nested Shape command, replace the sSource assignment in our example
framework with the following two assignments:
sSource = "SHAPE {SELECT OrderID, ShipCountry, ShipRegion " _
 & " FROM Orders;} " _
 & " AS Orders " _
 & "COMPUTE Orders, " _
 & " COUNT(Orders.OrderID) AS [Number Of Orders], " _
 & " ANY(Orders.ShipCountry) as Country " _
 & "BY ShipRegion "

sSource = "SHAPE (" & sSource & ") " _
 & " AS OrderRegion " _
 & "COMPUTE OrderRegion, " _
 & " SUM(OrderRegion.[Number Of Orders]) " _

IT-SC book 227

 & " AS [Number Of Country Orders] " _
 & "BY Country"

Figure 9-3. A simple COMPUTE Shape command

As you can see, the sSource variable is first set to a Shape command that will group the orders
by region. The second sSource variable is assigned to another Shape command that takes the
first shape command and groups it by country.

The following output is generated by the code:
SHAPE (
 SHAPE {SELECT OrderID, ShipCountry, ShipRegion
 FROM Orders;}
 AS Orders
 COMPUTE Orders,
 COUNT(Orders.OrderID) AS [Number Of Orders],
 ANY(Orders.ShipCountry) AS Country
 BY ShipRegion
)
 AS OrderRegion
COMPUTE OrderRegion,
 SUM(OrderRegion.[Number Of Orders])
 AS [Number Of Country Orders]
BY Country

Notice that within the nested Shape statement the inner nest, or the first Shape statement,
returns four fields: the Orders chapter, the Count field, the ShipCountry value for the
given row, and the ShipRegion for its child recordset. It is important to have this Shape
statement include the ShipCountry value to the outer Shape command so that it can group
by it.

IT-SC book 228

When the application is run with this statement, you should see a dialog box very similar to that
shown in Figure 9-4.

Figure 9-4. A nested COMPUTE Shape command

Notice that we have introduced another aggregate function, ANY. The purpose of the ANY
aggregate function is to return a value for a column that is the same for all of the child recordset's
rows. For instance, notice that in Figure 9-4, the ShipCountry value is the same for all records of
a chapter by looking at the last three columns shown in the dialog box. In this example, USA is the
value for all of the child records.

9.3.3 Shape Functions

In total, the Shape command syntax supports seven aggregate functions as shown in Table 9-1.

Table 9-1. The Shape Aggregate Functions

Function
Syntax Description

ANY (chapter-
alias.field-
name)

Returns the value of the column that matches all the values of the child's
column of the same name. The ANY function has a well-defined result
only when all of the rows in the child recordset have the identical value for
the specified column. If the rows in the child recordset don't all have the
same value for the specified column, one of the values will be picked as
the value of the ANY aggregate. Which value is picked is not defined, so
ANY in this case has unpredictable results.

IT-SC book 229

AVG (chapter-
alias.field-
name)

Returns an average value within the child recordset.

COUNT
(chapter-
alias.field-
name)

Returns a count of all child's records. The field name is optional for the
COUNT function. If it is omitted, the value of COUNT is the number of
rows in the child recordset. If a field name is provided, then the value of
COUNT is the number of rows in the child recordset for which the
specified column is non-Null.

MAX (chapter-
alias.field-
name)

Returns the maximum value within the child recordset.

MIN (chapter-
alias.field-
name)

Returns the minimum value within the child recordset.

STDEV
(chapter-
alias.field-
name)

Returns the standard deviation based upon the values within the child
recordset.

SUM (chapter-
alias.field-
name)

Returns the sum of all the values within the child recordset.

In addition, the Shape command syntax also supports all VBA function or expressions through
the use of the CALC function. The CALC function can be used only upon the row of the recordset
that contains the CALC function itself, as in the following example:
sSource = "SHAPE {SELECT OrderID, OrderDate FROM Orders;} " _
 & "APPEND ({SELECT OrderID, ProductID FROM [Order Details];} "
_
 & "RELATE OrderID TO OrderID), " _
 & " CALC(Format(OrderDate, 'mmm-dd-yyyy'))"

In this example, the VBA function Format$ was used to return the OrderDate field with the
format mmm-dd-yyyy.

9.4 Example: Accessing Shaped Recordsets

The example in this chapter allows you to navigate manually through a three-level
hierarchical recordset with the use of non-bound controls. Although the MS Hierarchical

IT-SC book 230

Flex Grid is very useful in some situations, as we see throughout this chapter, this control
frequently offers us no help at all in our real-world applications.

Figure 9-5 shows what the Access example looks like during runtime.

Figure 9-5. The Access Shape recordset example in action

This example allows the user to select a contact name, or customer, from a list box on the
left. Programmatically, this action accesses a chapter field within the recordset that passes
a child recordset to the individual orders shown in the second list box. When you select
an order from this list box, another chapter field is read to return the second child
recordset, the Order Details table. The Total Order Price shown in the bottom-right
corner of the form is calculated using an aggregation method on the Order Details child
recordset.

To begin this example, create a new project and call it prjAccessExample. Use the Project
References . . . menu item to add a reference to Microsoft ActiveX Data Objects 2.1 Library, or
the most recent version that you have. In addition, you should use the Project Components . . .
menu item to add the Microsoft Windows Common Controls 6.0 to your project for the use of the
List View control.

Once you are done with these steps, add four labels, two list boxes, a List View, and a text box as
shown in Figure 9-6. The lstOrderDetails control shown is the List View control.

Figure 9-6. The Access Shape recordset example at design time

After adding the controls to the form, go to the Property Pages of the List View control
by right-clicking on the control and selecting Properties from the pop-up menu. Change
the View property on the first tab to 3-lvwReport, and then add five columns to the

IT-SC book 231

Column Headers tab. Name the columns ProductID, Quantity, UnitPrice, Discount, and
Total Price. Set all but the ProductID column headers alignment to 1-lvwColumnRight
because they will be displaying numeric values.

Once you are done with all of this, you can continue to set the properties of the controls as
specified by Table 9-2.

Table 9-2. The Access Shape Recordset Example Form Control Settings

Control Property Value

Form Name frmAccessExample

 Caption Access Example

Label Caption Contact Name:

List Box Name lstCustomers

Label Caption Order Number:

List Box Name lstOrders

Label Caption Order Details:

List View Name lstOrderDetails

Label Caption Total Order Price:

Text Box Name txtTotalOrderPrice

 Enabled False

 BackColor Button Face

Now begin entering the code. Enter the following Private declarations for the connection
and the three recordsets:
Private con As ADODB.Connection

Private rstCustomers As ADODB.Recordset
Private rstOrders As ADODB.Recordset

IT-SC book 232

Private rstOrderDetails As ADODB.Recordset

Now add the code to kick off the Form_Load event:
Public Sub Form_Load()

 Set con = New ADODB.Connection
 Set rstCustomers = New ADODB.Recordset
 Set rstOrders = New ADODB.Recordset
 Set rstOrderDetails = New ADODB.Recordset

 SpaceOrderDetailColumns
 CreateRecordset
 PopulateCustomersList

End Sub

The code for the Form_Unload event simply closes any open recordsets, as well as the connection.
It also sets all of these objects to Nothing. Notice that for only two Recordset objects,
rstOrderDetails and rstOrders, the state of the object is checked to make sure it is open
before it is closed. This is done because these recordsets are opened as you click on the list boxes;
if you do not click on them and close the application, they will never be opened. In such a case,
attempting to close them would result in an error; therefore, the State property of each is
compared to the constant enumeration value, adStateOpen, to attempt to close them only if they
are already open. The rstCustomers Recordset and the con Connection aren't checked because we
are assuming that they both are open at the application startup:
Private Sub Form_Unload(Cancel As Integer)

 If (rstOrderDetails.State = adStateOpen) Then rstOrderDetails.Close
 Set rstOrderDetails = Nothing

 If (rstOrders.State = adStateOpen) Then rstOrders.Close
 Set rstOrders = Nothing

 rstCustomers.Close
 Set rst = Nothing

 con.Close
 Set con = Nothing

End Sub

Now enter the following code for SpaceOrderDetailColumns method. This automatically
resizes the column headers of the List View control so that all are shown on the screen at
once. This is done only for aesthetics:
Private Sub SpaceOrderDetailColumns()

 Dim lColumnCount As Long
 Dim lColumnWidth As Long

 With lstOrderDetails

 lColumnWidth = (.Width - 100) / .ColumnHeaders.Count

IT-SC book 233

 For lColumnCount = 1 To .ColumnHeaders.Count
 .ColumnHeaders(lColumnCount).Width = lColumnWidth
 Next lColumnCount

 End With

End Sub

The following method, ClearContents, has been added to clear the contents of everything
but the lstCustomers List Box control. This example will use this method in a couple of
places.
Private Sub ClearContents()

 lstOrders.Clear
 lstOrderDetails.ListItems.Clear
 txtTotalOrderPrice.Text = ""

End Sub

The second method to be called from the Form_Load event is the CreateRecordset method shown
next. This method establishes a connection to the data source -- in this case, the Nwind.mdb
database supplied with MS Visual Basic 6.0. After the connection is established, a shaped
recordset is created. You may need to change the path of the Nwind.mdb database file in order to
get this example to work correctly on your machine.
Private Sub CreateRecordset()

 Dim sSource As String

 con.ConnectionString = "Provider=MSDataShape; " _
 & "Data Provider=Microsoft.Jet.OLEDB.4.0; " _
 & "Data Source=D:\My Documents\Nwind.mdb; "

 con.Open

 sSource = "SHAPE TABLE Customers " _
 & "APPEND ((" _
 & " SHAPE TABLE Orders " _
 & " APPEND ({SELECT OrderID, ProductID, Quantity, " _
 & " UnitPrice, Discount, " _
 & " ((UnitPrice * Quantity * (1 - Discount)
" _
 & " / 100) * 100)
" _
 & " AS TotalUnitPrice " _
 & " FROM [Order Details];} " _
 & " RELATE OrderID TO OrderID) AS cptOrderDetails, " _
 & " SUM(cptOrderDetails.TotalUnitPrice) " _
 & " AS TotalOrderPrice) " _
 & "RELATE CustomerID TO CustomerID) AS cptOrders"

 rstCustomers.Open sSource, _
 con, _
 adOpenForwardOnly, _
 adLockReadOnly

IT-SC book 234

End Sub

I tried very hard to get the shaped recordset that is set to the sSource String variable to be as
readable as I could, but just in case you still cannot read it, here it is without the mess:
SHAPE TABLE Customers
APPEND ((
 SHAPE TABLE Orders
 APPEND ({SELECT OrderID, ProductID, Quantity, UnitPrice, Discount,
 ((UnitPrice * Quantity * (1 - Discount) / 100) * 100)
 AS
TotalUnitPrice
 FROM [Order Details];}
 RELATE OrderID TO OrderID) AS cptOrderDetails,
 SUM(cptOrderDetails.TotalUnitPrice) AS TotalOrderPrice)
RELATE CustomerID TO CustomerID) AS cptOrders

Let's take a look at this Shape command. There are three recordsets being shaped in all. The
parent recordset is made up of all the columns of the Customers table (TABLE Customers;),
and its child recordset is the Orders table (TABLE Orders;). The two of these tables are related
by the CustomerID field shown on the last line of the Shape command, and the chapter field that
refers to the child recordset is referred to as cptOrders.

The third recordset, created from the Order Details table with a complex SELECT
statement, is a child recordset of the Orders table, which is now a parent recordset. The
two tables are related by the OrderID field and the child recordset is accessed through the
chapter field, TotalOrderPrice.

In addition, the SELECT statement, which is done on the Order Details table to create the third-
level recordset, has an additional field, the TotalUnitPrice field. This field is calculated for each
row of the Order Details table based upon the Quantity, UnitPrice, and Discount field values. This
TotalUnitPrice field is used within an aggregate function, SUM, which in turn is used to append
another field to each order record in the Orders table.

In short, this Shape command relates customers to their orders and the orders to the order
details. For each order detail, a total unit price is calculated, and for each order, all the
total unit prices are summed in order to generate a total order price.

Now we can continue to the third and last method that is called by the Form_Load event,
the PopulatCustomersList method:
Private Sub PopulateCustomersList()

 With rstCustomers

 If (Not (.BOF And .EOF)) Then .MoveFirst

 Do Until (.EOF)
 lstCustomers.AddItem .Fields("ContactName").Value
 .MoveNext
 Loop

 End With

IT-SC book 235

 ClearContents

End Sub

This method simply fills the lstCustomers list box with the ContactName property values
of the rstCustomers Recordset object. It then calls ClearContents to remove anything else
that is shown on the form.

When a user clicks on the lstCustomers list box, the lstCustomers_Click event, shown
next, is fired to populate the lstOrders list box for the customer selected:
Private Sub lstCustomers_Click()

 Dim sCustomer As String

 ClearContents

 sCustomer = lstCustomers.List(lstCustomers.ListIndex)

 With rstCustomers

 If (Not (.BOF And .EOF)) Then .MoveFirst
 .Find "ContactName='" & sCustomer & "'"

 Set rstOrders = .Fields("cptOrders").Value

 End With

 PopulateOrdersList

End Sub

First, the customer name is extracted from the list box and then used to find the correct
record within the lstCustomers recordset. Once it is found, the rstOrders Recordset object
is opened with the cptOrders chapter field of that record. This chapter field returns a child
recordset of the rstCustomers recordset for the current customer. Once the recordset has
been extracted, the PopulateOrdersList method is called, as follows:
Private Sub PopulateOrdersList()

 With rstOrders

 If (Not (.BOF And .EOF)) Then .MoveFirst

 Do Until (.EOF)
 lstOrders.AddItem .Fields("OrderID").Value
 .MoveNext
 Loop

 End With

End Sub

IT-SC book 236

When the lstOrders list box is clicked, the lstOrders_Click event is fired. Fill in the code
for this event as it appears here:
Private Sub lstOrders_Click()

 Dim sOrderID As String

 sOrderID = lstOrders.List(lstOrders.ListIndex)

 With rstOrders

 If (Not (.BOF And .EOF)) Then .MoveFirst
 .Find "OrderID='" & sOrderID & "'"

 Set rstOrderDetails = .Fields("cptOrderDetails").Value

 txtTotalOrderPrice.Text =
FormatCurrency(.Fields("TotalOrderPrice"))

 End With

 PopulateOrderDetailInformation

End Sub

The code for the lstOrders_Click event is very similar to that of the lstCustomers_Click
event. It finds the order that has been selected from the list, and it locates it in the
rstOrders child recordset. Once the record has been located, the rstOrderDetails
Recordset object is set to the chapter field cptOrderDetails. This chapter field returns
another child recordset, this time for the parent rstOrders. The returned child recordset
contains the detail records for the current order selected from the rstOrders recordset.

In addition, the aggregate field, TotalOrderPrice, is used to populate the
txtTotalOrderPrice text box on the form indicating the total price of the order.

Finally, the PopulateOrderDetailInformation method is called to show the detail records
contained within this new child recordset. The following code is used for this method:
Private Sub PopulateOrderDetailInformation()

 Dim lListItem As Long
 Dim lFieldCount As Long

 lstOrderDetails.ListItems.Clear

 rstOrderDetailsDo Until (rstOrderDetails.EOF)

 With lstOrderDetails

 .ListItems.Add , ,
rstOrderDetails.Fields("ProductID").Value

 lListItem = .ListItems.Count

 With .ListItems(lListItem).ListSubItems

IT-SC book 237

 .Add , , rstOrderDetails.Fields("Quantity").Value
 .Add , , FormatCurrency(_
 rstOrderDetails.Fields("UnitPrice").Value)
 .Add , , rstOrderDetails.Fields("Discount").Value
 .Add , , FormatCurrency(_

rstOrderDetails.Fields("TotalUnitPrice").Value)

 End With

 End With

 rstOrderDetails.MoveNext

 Loop

End Sub

For each record within the rstOrderDetails recordset, another list item is added to the List
View control.

9.5 Summary

This chapter introduced and explained the concepts of Data Shaping and Hierarchical
Recordset with the use of the Microsoft Data Shaping Service provided with ADO 2.0
and 2.1, how to create Shaped statements, and how to use them in your applications.
After reading this chapter, you should be able to connect to the MS Data Shaping Service
and fully understand the Shape command syntax and the following key points about it:

There are two types of Shape commands: APPEND and COMPUTE.

The APPEND Shape command allows you to append a child recordset to a parent recordset.

The COMPUTE Shape command allows you to create a parent recordset to a child recordset
based upon computations specified in the Shape statement.

Shape commands can be nested to any level that you need.

IT-SC book 238

Chapter 10. Records and Streams

The Record object represents either a single record of a Recordset object or of a resource
on a web server (such as a file or a directory). The Stream object represents a buffer of
either binary or text data.

Together the Record and Stream objects can be used to navigate hierarchical data sources,
such as a directory structure. Each file and directory within this hierarchical data source
is considered a resource and therefore can be opened as a Record object. The Record
object allows you to copy, move, and delete files and directories of a data source. Within
such a resource, there is a stream (or buffer) of information that can be read, thus the
Stream object. The Stream object allows you to manipulate the contents of a stream by
editing the text or binary data directly. One of the most interesting features about these
two new objects is the ability to connect to their data source with the use of URLs as a
connection string. Both the Record and Stream objects were introduced with ActiveX
Data Objects 2.5.

10.1 The Record Object

The Record object is used to navigate hierarchical data sources, such as a file directory.
Think of a file directory as a tree with nodes. The Record object can represent any node
within that tree -- either a leaf node (a file), or a nonleaf node (a directory).

As a leaf node, the Record object contains information about a file or document. The properties of
the file or document are accessed through the Record object's Fields collection. The contents of
the file or document is accessed through the default stream for the Record Object (covered later in
this chapter under Section 10.2.1.2.

As a nonleaf node, the Record object contains information about a directory, which may contain
other files and directories. As such, the Record object will provide information about the
directory through its Fields collection. The files and directories belonging to the directory
represented by this Record object can be returned within a Recordset object, containing individual
Record objects for each resource. I will discuss this later in this chapter (see Section 10.1.2.

10.1.1 Opening a Record Object

To begin working with a Record object, you first have to open it, of course. Following is
the prototype for the Record.Open method:
record.Open [Source], _
 [ActiveConnection], _
 [Mode], _
 [CreateOptions], _
 [Options], _
 [UserName], _
 [Password]_

IT-SC book 239

The Record object can be opened by passing one of five different items to the Source
argument:

A Command object

A SQL statement

A table name

An open Recordset object

A URL representing the resource to open served by a web site

This chapter focuses on opening a Record object with a URL, but I will first briefly
discuss the other four ways of opening a Record object, all of which return a single row
when used with the Record object.

10.1.1.1 Opening a Record object with a Command object

To open a Record object with a Command object, you must create a common Connection
object that uses a data provider that supports executing commands through the Record
object. The OLE DB provider for SQL Server does just that.

After the Connection object is opened, it must be passed to both the Command object and the
Record object. Assign your CommandText property of the Command object with the correct SQL
statement, and then pass the Command object to the Record object's open method. Finally, the
fifth parameter to the Open method, the Options parameter, must be set to the
ADODB.RecordOpenOptionsEnum value adOpenExecuteCommand:
con.Open "Provider=SQLOLEDB; " _
 & "Data Source=JROFF-NTLT; " _
 & "Initial Catalog=Northwind; " _
 & "UID=sa"

com.ActiveConnection = con
com.CommandText = "SELECT * " _
 & "FROM Shippers " _
 & "WHERE CompanyName='United Package'"

rec.Open com, _
 con, , , _
 adOpenExecuteCommand

Make sure that you have done the following:

Declared the con, com, and rec object variables as ADODB Connection, Command, and Record
objects, respectively.

Set each of the three object variables to a new instance of its respective ADODB object type.

Have a SQL Server running on JROFF-NTLT (or change it to your own).

IT-SC book 240

Have an OLE DB provider for SQL Server driver installed.

Have a database named Northwind (one comes with SQL Server).

Have the username and password of the SQL Server set to "sa" and "", respectively.

Before running the previous code, add the following code so that you can see whether the
Record object was opened by looking at the Record.State property:
If (rec.State & adStateOpen) Then
 MsgBox "Record successfully opened."
Else
 MsgBox "Record was not opened."
End If

Finally, add the following function to your project so that you can see the output of the
Fields collection of the Record object:
Private Function DisplayFields(Flds As ADODB.Fields)

 Dim fld As ADODB.Field

 For Each fld In Flds
 Debug.Print Left$(fld.Name & Space(25), 25) & ": " & fld.Value
 Next fld

End Function

Now add a call to the DisplayFields function that you have just entered, and add the code
to close all of the objects that you were using:
DisplayFields rec.Fields

rec.Close
com.Close
con.Close

After running all of the previous code, you should see the following output in your
Immediate window within Visual Basic:
ShipperID : 2
CompanyName : United Package
Phone : (503) 555-3199

If you got this far, you have successfully opened your first Record object -- and used a
Command object while you were at it. If you are experiencing errors with this first
example, go back and make sure that your prerequisites listed in the beginning are correct
(do you have the right server name? did you declare and instantiate your variables
correctly? and so on).

10.1.1.2 Opening a Record object with a SQL statement

Now that you are getting the hang of opening Record objects, the next one should be a
snap. To open a Record object with a SQL statement, do the exact same thing you did

IT-SC book 241

when opening a Record object with a Command object, except that you leave out the
Command object. Instead of setting the SQL statement to the Command.CommandText
property, you can pass it directly to the Record.Open method's Source argument as shown
here:
con.Open "Provider=SQLOLEDB; " _
 & "Data Source=JROFF-NTLT; " _
 & "Initial Catalog=Northwind; " _
 & "UID=sa"

rec.Open "SELECT * " _
 & "FROM Customers " _
 & "WHERE CustomerID='CHOPS'", _
 con, , , _
 adOpenExecuteCommand

DisplayFields rec.Fields

rec.Close
con.Close

Running this code fragment gives you the fields you would expect from the Customer's
table:
CustomerID : CHOPS
CompanyName : Chop-suey Chinese
ContactName : Yang Wang
ContactTitle : Owner
Address : Hauptstr. 29
City : Bern
Region :
PostalCode : 3012
Country : Switzerland
Phone : 0452-076545
Fax :

10.1.1.3 Opening a Record object with a table name

Opening a Record object with a table name is just as easy -- simply pass the table name
instead of the SQL statement, and you are done:
con.Open "Provider=SQLOLEDB; " _
 & "Data Source=JROFF-NTLT; " _
 & "Initial Catalog=Northwind; " _
 & "UID=sa"

rec.Open "Orders", _
 con, , , _
 adOpenExecuteCommand

DisplayFields rec.Fields

rec.Close
con.Close

IT-SC book 242

The output of this code fragment yields the following:
OrderID : 10248
CustomerID : VINET
EmployeeID : 5
OrderDate : 7/4/1996
RequiredDate : 8/1/1996
ShippedDate : 7/16/1996
ShipVia : 3
Freight : 32.38
ShipName : Vins et alcools Chevalier
ShipAddress : 59 rue de l'Abbaye
ShipCity : Reims
ShipRegion :
ShipPostalCode : 51100
ShipCountry : France

10.1.1.4 Opening a Record object with an open Recordset object

Now let's try to open a Record object with an already open Recordset object. Remember
that a Record object can represent a single row within a Recordset object.

To use the Recordset object as a Source to the Record.Open method, the Recordset must
be opened on a file using the OLE DB Internet Publishing Provider. To do so, you must
specify a valid URL address of the file you want to open.

I have IIS 5.1 running on my machine, and my server's root directory is C:\Inetpub\WWWroot;
however, to access this directory, it is specified in IIS as the JROFF-NTLT server. With this
information, the correct URL pointing to this directory is http://JROFF-NTLT/. Precede this with
the URL keyword as in the following code fragment, and you should be on your way:
rst.Open "index.htm", _
 "URL=http://JROFF-NTLT/", , , _
 adCmdTableDirect

rec.Open rst

DisplayFields rec.Fields

rec.Close
rst.Close

Notice that the Recordset object takes the URL statement within the ActiveConnection argument
to the Open method, while it accepts the name of the individual file index.htm as the source. Also
notice that the option adCmdTableDirect is used.

Once the Recordset object is opened, it can be passed to the Record object's Open method.
Calling the DisplayFields function displays the following output to the Immediate
window:
RESOURCE_PARSENAME : index.htm
RESOURCE_PARENTNAME : http://jroff-ntlt
RESOURCE_ABSOLUTEPARSENAM: http://jroff-ntlt/index.htm
RESOURCE_ISHIDDEN : False

IT-SC book 243

RESOURCE_ISREADONLY :
RESOURCE_CONTENTTYPE :
RESOURCE_CONTENTCLASS : text/html
RESOURCE_CONTENTLANGUAGE :
RESOURCE_CREATIONTIME : 3/19/2000 5:08:35 PM
RESOURCE_LASTACCESSTIME :
RESOURCE_LASTWRITETIME : 3/19/2000 5:08:36 PM
RESOURCE_STREAMSIZE : 13715
RESOURCE_ISCOLLECTION : False
RESOURCE_ISSTRUCTUREDDOCU:
DEFAULT_DOCUMENT :
RESOURCE_DISPLAYNAME : index.htm
RESOURCE_ISROOT :
RESOURCE_ISMARKEDFOROFFLI: False
DAV:getcontentlength : 13715
DAV:creationdate : 3/19/2000 5:08:35 PM
DAV:displayname : index.htm
DAV:getetag : "0240c3c591bf1:aec6"
DAV:getlastmodified : 3/19/2000 5:08:36 PM
DAV:ishidden : False
DAV:iscollection : False
DAV:getcontenttype : text/html

All of the previous fields are specific to the OLE DB provider for Internet Publishing.
Each will be explained in "Internet Publishing Provider Fields" later in this chapter, but
you should be able to guess what a lot of these fields indicate already.

10.1.1.5 Opening a Record object with a URL

Now let's apply the same information regarding a URL ActiveConnection to the Record object.
The following code fragment opens up the root directory of the JROFF-NTLT server:
rec.Open , "URL=http://JROFF-NTLT/"

DisplayFields rec.Fields

rec.Close

The output from calling the DisplayFields function should look familiar to you now:
RESOURCE_PARSENAME :
RESOURCE_PARENTNAME : http://jroff-ntlt
RESOURCE_ABSOLUTEPARSENAM: http://jroff-ntlt
RESOURCE_ISHIDDEN : False
RESOURCE_ISREADONLY :
RESOURCE_CONTENTTYPE :
RESOURCE_CONTENTCLASS : application/octet-stream
RESOURCE_CONTENTLANGUAGE :
RESOURCE_CREATIONTIME : 1/15/2000 12:46:22 AM
RESOURCE_LASTACCESSTIME :
RESOURCE_LASTWRITETIME : 1/15/2000 12:46:24 AM
RESOURCE_STREAMSIZE : 0
RESOURCE_ISCOLLECTION : True
RESOURCE_ISSTRUCTUREDDOCU:
DEFAULT_DOCUMENT :
RESOURCE_DISPLAYNAME : /

IT-SC book 244

RESOURCE_ISROOT :
RESOURCE_ISMARKEDFOROFFLI: False
DAV:getcontentlength : 0
DAV:creationdate : 1/15/2000 12:46:22 AM
DAV:displayname : /
DAV:getetag : "0709af2f15ebf1:aec6"
DAV:getlastmodified : 1/15/2000 12:46:24 AM
DAV:ishidden : False
DAV:iscollection : True
DAV:getcontenttype : application/octet-stream

The last example opened up what ADO refers to as a collection, or a directory. This is indicated
by the RESOURCE_ISCOLLECTION field's value of True.

Open up a file, which is considered a noncollection resource. You can do this by specifying the
resource in the Source argument of the Record.Open method. Additionally, I have added a path to
locate the resource. (I don't expect you to have a Documents directory containing a file named
ADO.01.DOC -- unless you are writing a competing ADO book and don't need my help!) In any
case, change the Source argument in the remaining examples to directories and files that you have
on your server. The important point about the next example is that it is pointing to a file -- it
doesn't necessarily have to be a Word document:
rec.Open "Documents/ADO.01.DOC", _
 "URL=http://JROFF-NTLT/"

DisplayFields rec.Fields

rec.Close

Running this code will cause the following output in your Immediate Window:
RESOURCE_PARSENAME : ADO.01.DOC
RESOURCE_PARENTNAME : http://jroff-ntlt/Documents
RESOURCE_ABSOLUTEPARSENAM: http://jroff-ntlt/Documents/ADO.01.DOC
RESOURCE_ISHIDDEN : False
RESOURCE_ISREADONLY :
RESOURCE_CONTENTTYPE :
RESOURCE_CONTENTCLASS : application/msword
RESOURCE_CONTENTLANGUAGE :
RESOURCE_CREATIONTIME : 4/15/2000 9:10:55 PM
RESOURCE_LASTACCESSTIME :
RESOURCE_LASTWRITETIME : 4/5/1999 3:02:56 PM
RESOURCE_STREAMSIZE : 123392
RESOURCE_ISCOLLECTION : False
RESOURCE_ISSTRUCTUREDDOCU:
DEFAULT_DOCUMENT :
RESOURCE_DISPLAYNAME : ADO.01.DOC
RESOURCE_ISROOT :
RESOURCE_ISMARKEDFOROFFLI: False
DAV:getcontentlength : 123392
DAV:creationdate : 4/15/2000 9:10:55 PM
DAV:displayname : ADO.01.DOC
DAV:getetag : "090e462757fbe1:aec6"
DAV:getlastmodified : 4/5/1999 3:02:56 PM
DAV:ishidden : False
DAV:iscollection : False

IT-SC book 245

DAV:getcontenttype : application/msword

Notice a couple of newly populated properties. First, RESOURCE_STREAMSIZE is now populated
with the file size of your resource. This indicates that we can open a Stream object to access the
data within the file specified. We will do this later in this chapter, in Section 10.2.1.2.

We can create files and directories with the Record.Open method by passing the right values to
the CreateOptions argument. The following example creates a new file, the appropriately named
NewFile within the Documents directory of the JROFF-NTLT server. As a matter of fact, if the
file already exists on the server, in the same location, this code will overwrite it:
rec.Open "Documents/NewFile", _
 "URL=http://JROFF-NTLT", , _
 adCreateOverwrite
'
'
'
rec.Close

Similarly, we can create a collection (a directory), by adding the adCreateCollection
enumeration value to the CreateOptions argument:
rec.Open "Documents/NewDirectory", _
 "URL=http://JROFF-NTLT/", , _
 adCreateOverwrite + adCreateCollection
'
'
'
rec.Close

You can also specify the ActiveConnection and the Source property values separately, by
using the corresponding Record object property values, as in the following example:
rec.ActiveConnection = "URL=http://JROFF-NTLT/"
rec.Source = "Documents/ADO.01.DOC"
rec.Open

Debug.Print "ParentUrl: " & rec.ParentURL

rec.Close

In addition, the Record object has a nifty property called ParentURL, which, when read
(unsurprisingly), outputs the parent URL for the opened resource. Running the previous
results in the following output:
ParentURL: http://jroff-ntlt/Documents

Another important property of the Record object is the Mode property. The Mode
property indicates the read/write permissions the Record object should use to open the
resource. The following two examples produce the same effect. One uses the Record
properties, and the other uses the Record.Open method arguments:
rec.Mode = adModeReadWrite
rec.ActiveConnection = "URL=http://JROFF-NTLT/Documents/"
rec.Source = "ADO.01.DOC"
rec.Open

IT-SC book 246

'
'
'
rec.Close

rec.Open "ADO.01.DOC", _
 "URL=http://JROFF-NTLT/Documents/", _
 adModeReadWrite
'
'
'
rec.Close

The RecordType property of the Record object returns a RecordTypeEnum enumeration value
indicating the record type of the opened resource. The following source code indicates that the
ADO.01.DOC file is a Simple Record -- or a text file:
sSource = "http://JROFF-NTLT/Documents/ADO.01.DOC"

rec.Open sSource

Select Case (rec.RecordType)
 Case ADODB.RecordTypeEnum.adCollectionRecord
 sRecordType = "Collection"
 Case ADODB.RecordTypeEnum.adSimpleRecord
 sRecordType = "Simple Record"
 Case ADODB.RecordTypeEnum.adStructDoc
 sRecordType = "Structured Document"
End Select

MsgBox "The source: " & sSource & " has a record type of " &
sRecordType

rec.Close

10.1.2 Navigating Hierarchies

Now that we've seen the basic steps for opening a Record object, let's do something with
it. When a Record object is opened on a collection resource (such as a directory), the
GetChildren method of the Record object can be used to return a Recordset containing
the subdirectories and files belonging to that directory.

The following two functions use the GetChildren method to build a display of the directory
structure for the JROFF-NTLT server:
Public Sub NavigatingHierarchies()

 Set rec = New ADODB.Record

 rec.Open "http://JROFF-NTLT"

 DisplaySubLevels rec, 0

 rec.Close

IT-SC book 247

 Set rec = Nothing

End Sub

Private Sub DisplaySubLevels(RecordIn As ADODB.Record, _
 Level As Long)

 Dim rst As ADODB.Recordset
 Dim rec As ADODB.Record

 If (Level = 0) Then Debug.Print RecordIn.ParentURL

 If (RecordIn.RecordType = adCollectionRecord) Then

 '
 ' Display resource name
 '
 Debug.Print Space(Level * 2);
 Debug.Print RecordIn.Fields("RESOURCE_PARSENAME").Value

 '
 ' loop through collection
 '
 Set rst = RecordIn.GetChildren

 If (Not (rst.BOF And rst.EOF)) Then rst.MoveFirst

 Set rec = New ADODB.Record

 While (Not rst.EOF)
 rec.Open rst
 DisplaySubLevels rec, Level + 1
 rec.Close
 rst.MoveNext
 Wend

 Set rec = Nothing
 rst.Close

 End If

End Sub

This example outputs only the directories; however, it can be modified to also output the
files within each directory. Running the previous code on my server resulted in the
following output:
http://jroff-ntlt

 scripts
 webpub
 msadc
 Samples11
 AddressBook
 Samples
 Tutorial

IT-SC book 248

 Selector
 Middle_Tier
 VBBusObj
 Client
 VB
 VBtoADF
 Setup
 VBtoVB
 Setup
 IE
 AddressBook
 doc11
 iishelp
 iis
 misc
 winhelp
 htm
 tutorial
 template
 core
'
'
' continued...

10.1.3 File and Directory Manipulation with the Record Object

The Record object has three methods designed to manipulate files and directories on a
server: the CopyRecord, DeleteRecord, and MoveRecord methods.

10.1.3.1 Copying

The CopyRecord method accepts a source, a destination, and an
ADODB.CopyRecordOptionsEnum enumeration value, which indicates how the copy should
proceed. The following code copies the index.htm file to the Copyofindex.htm file, overwriting
the destination file if it already exists:
rec.Open "http://JROFF-NTLT/"

rec.CopyRecord "http://JROFF-NTLT/index.htm", _
 "Copy of index.htm", , , _
 adCopyOverWrite

rec.Close

The following code does the same thing; this time, a relative URL path is passed for the
Source argument, instead of an absolute URL path:
rec.Open "http://JROFF-NTLT/"

rec.CopyRecord "index.htm", _
 "Copy of index.htm", , , _
 adCopyOverWrite

rec.Close

IT-SC book 249

The CopyRecord method can also be used to copy directories, as in the following
example:
rec.Open "http://JROFF-NTLT/"

rec.CopyRecord "Documents", _
 "Copy of Documents", , , _
 adCopyOverWrite

rec.Close

The previous code fragment will copy the Documents folder and any other recursive folders and
files beneath it. To avoid this, and to simply copy the directory name to another location, add the
adCopyOverwrite enumeration value to the CopyOptions argument of the Record.CopyRecord
method.
rec.CopyRecord "Backup of Documents", _
 "Documents Folder", , , _
 adCopyNonRecursive + adCopyOverWrite

rec.Close

Another option when copying files with the Record.CopyRecord method is to allow for
emulation, which means that while the files and directories are being copied, other
applications will see the files as if they were already there, through simulation:
rec.CopyRecord "Backup of Documents", _
 "Documents Folder", , , _
 adCopyOverWrite + adCopyAllowEmulation

rec.Close

10.1.3.2 Deleting

To delete a file on a server, call the Record.Delete method with the name of that file:
rec.Open "http://JROFF-NTLT/"

rec.DeleteRecord "Copy of Index.htm"

rec.Close

10.1.3.3 Moving

To move a file from one place to another (but still within the scope of the server), use the
Record.MoveRecord method:
rec.Open "http://JROFF-NTLT/"

rec.MoveRecord "index.htm", _
 "index.htm Renamed", , , _
 adMoveOverWrite

rec.Close

IT-SC book 250

This example overwrites the destination file if it already exists because the MoveRecord method
was called with the adMoveOverWrite value.

When you move files from one location to another on a web server, think about hyperlinks
between these files. By default, the MoveRecord method updates links, if your provider can
handle it. If for some reason you don't want to update the hyperlinks based on the new location of
the resource, you can add the adMoveDontUpdateLinks enumeration value to the
MoveOptions parameter:
rec.Open "http://JROFF-NTLT/"

rec.MoveRecord "Documents", _
 "Documents Renamed", , , _
 adMoveOverWrite + adMoveDontUpdateLinks

rec.Close

Finally, the MoveRecord method also allows for emulation, just as the CopyRecord
method does, as shown in the next code fragment:
rec.Open "http://JROFF-NTLT/"

rec.MoveRecord "Backup of Documents", _
 "Documents Folder", , , _
 adMoveAllowEmulation + adMoveOverWrite

rec.Close

10.1.4 Record Object Properties

Although the Record object has a Properties collection, it doesn't seem to contain
anything. As a matter of fact, Microsoft's documentation doesn't even show that
properties exist for the Record object.

10.1.5 Record Object Fields

Each Record object has a Fields collection. The Fields collection of the Record object is just like
the Fields collection of the Recordset object, which is covered in detail in Chapter 6.

What is unique about the Record object's Fields collection is the type of Fields that are
present when using the OLE DB provider for Internet Publishing, as described in the
following sections.

10.1.5.1 Internet Publishing provider fields

As in previous examples throughout this chapter, the OLE DB provider for Internet Publishing
has a set of standard field values that provide information about the resource that is open. Table
10-1 describes each of these fields.

Table 10-1. Standard Record Object Fields

IT-SC book 251

Field Description

RESOURCE_PARSENAME
If the Record object represents a simple
record (noncollection-type resource),
represents the name of this resource.

RESOURCE_PARENTNAME

Indicates the parent URL of the given
non-collection resource or the entire URL
if the Record object represents a
collection resource.

RESOURCE_ABSOLUTEPARSENAME

Combination of
RESOURCE_PARSENAME and
RESOURCE_PARENTNAME: returns
an absolute URL to the resource
represented by the Record object.

RESOURCE_ISHIDDEN Indicates if the resource is hidden.

RESOURCE_ISREADONLY Indicates if the resource is read-only.

RESOURCE_CONTENTTYPE Indicates the type of the resource, such as
text/html.

RESOURCE_CONTENTCLASS
Indicates the type of resource, such as
text/html, application/octet-stream,
application/msword.

RESOURCE_CONTENTLANGUAGE Indicates the language of the resource.

RESOURCE_CREATIONTIME Indicates the time the resource was
created.

RESOURCE_LASTACCESSTIME Indicates the time the resource was last
accessed.

RESOURCE_LASTWRITETIME Indicates the time the resource was last
written to.

IT-SC book 252

RESOURCE_STREAMSIZE
Indicates the size of the default stream of
the Record object, if the Record object
represents a noncollection-type resource.

RESOURCE_ISCOLLECTION Indicates if the Record object represents a
collection-type resource.

RESOURCE_ISSTRUCTUREDDOCUMENT Indicates if the Record object represents a
structured document-type resource.

DEFAULT_DOCUMENT

Indicates that the resource contains a
URL to a simple document (folder or
structured document) that is the default.
This is used when the default stream is
requested and blank for a simple file.

RESOURCE_DISPLAYNAME Indicates the name that is displayed for
the current resource.

RESOURCE_ISROOT Indicates if the current resource is a root.

RESOURCE_ISMARKEDFOROFFLINE Indicates if the current resource is
marked for offline browsing.

DAV:getcontentlength Same as RESOURCE_STREAMSIZE.

DAV:creationdate Same as
RESOURCE_CREATIONTIME.

DAV:displayname Same as RESOURCE_DISPLAYNAME.

DAV:getetag The entity tag associated with a cached
entity.

DAV:getlastmodified Same as
RESOURCE_LASTWRITETIME.

DAV:ishidden Same as RESOURCE_ISHIDDEN.

IT-SC book 253

DAV:iscollection Same as RESOURCE_ISCOLLECTION.

DAV:getcontenttype Same as
RESOURCE_CONTENTCLASS.

10.1.5.2 Standard Record object fields

There are two special Field objects accessed via the FieldEnum enumeration. The first of
these special Field objects is the RecordURL field, accessed via the adRecordURL
enumeration value, as shown in the following code fragment:
rec.Open "http://JROFF-NTLT/index.htm"

MsgBox "Record opened on " & _
 rec.Fields.Item(ADODB.FieldEnum.adRecordURL).Value

rec.Close

This code returns the Source parameter that was passed to the Record.Open method call.

The second of the two special Field objects is the default stream that belongs to Record
objects representing noncollection-type resources. This field is accessed via the
adDefaultStream enumeration value and returns a Stream object:
rec.Open "Documents/ADO.01.DOC", "URL=http://JROFF-NTLT/"

Set stm = rec.Fields.Item(ADODB.FieldEnum.adDefaultStream).Value

If (stm.State & adStateOpen) Then
 MsgBox "Stream successfully opened."
Else
 MsgBox "Stream was not opened."
End If

rec.Close
stm.Close

The Stream object returned from the default stream field of the Record object represents
the data within the resource opened. Let us now take a closer look at the Stream object.

10.2 The Stream Object

The Stream object is used to view and manipulate text or binary data. A stream object can
exist as a type of resource (such as a noncollection file) or as a buffer in memory.

10.2.1 Opening a Stream Object

The prototype for the Stream object is:
stream.Open [Source], _

IT-SC book 254

 [Mode], _
 [OpenOptions], _
 [UserName], _
 [Password]

The Stream object can be retrieved in four ways:

By setting it to the default Stream property of the Record object, as seen in the last section of this
chapter.

By passing an open Record object to the Source argument of the Stream.Open method.

By passing an absolute URL to the Source argument of the Stream.Open method.

By opening the Stream in memory; that is, by calling the Stream.Open method without a Source
argument.

This chapter focuses on opening a Record object with a URL, but I will first describe the
other four ways of opening a Record object.

10.2.1.1 Obtaining a Stream with the Default Stream from a Record object

The following example recaps what we saw earlier regarding the Record object returning
the default string for a noncollection-type resource through the use of the Default Stream
field:
rec.Open "Documents/ADO.01.DOC", "URL=http://JROFF-NTLT/"

Set stm = rec.Fields.Item(ADODB.FieldEnum.adDefaultStream).Value

MsgBox "Stream is " & stm.Size & " bytes."

rec.Close
stm.Close

In this example, we see that we can get the size of the Stream in bytes through the
Stream.Size property.

10.2.1.2 Opening a Stream with an open Record object

Similarly, we can pass the opened Record object to the Source argument of the
Stream.Open method to accomplish the same task as the previous example:
rec.Open "Documents/ADO.01.DOC", "URL=http://JROFF-NTLT/"

stm.Open rec, , _
 adOpenStreamFromRecord

If (stm.State & adStateOpen) Then MsgBox "Stream open."

stm.Close
rec.Close

IT-SC book 255

Here, the Stream is checked to see whether it is open, by means of the State property.

10.2.1.3 Opening a Stream with an absolute URL

A Stream object can accept an absolute URL to a noncollection-type resource within the
Source argument of the Stream.Open method as shown:
Set stm = New ADODB.Stream

stm.Open "URL=http://JROFF-NTLT/Documents/ADO.01.DOC"

Select Case (stm.Type)
 Case (ADODB.StreamTypeEnum.adTypeBinary):
 sMessage = "binary"
 Case (ADODB.StreamTypeEnum.adTypeText):
 sMessage = "text"
End Select

MsgBox "The stream is " & sMessage

stm.Close

This example determines whether the newly opened Stream is a binary or a text resource
by checking the Stream.Type property.

10.2.1.4 Opening a Stream in memory

One of the most interesting ways in which we can use the Stream object is without connecting to
a web server at all. In this case, the Stream can be used to contain either text or binary data locally.
As we will see in Section 10.2.2.3, we can use these types of Stream objects to persist the data
to a file locally and later retrieve this information in the same state. In this way, the Stream object
doubles as a nifty buffer utility:
stm.Type = adTypeBinary
stm.Open

If (stm.State & adStateOpen) Then MsgBox "Stream open."

'
'
'
stm.Close

10.2.2 Reading and Writing with Streams

Once we have opened a Stream, we can either read from it or write to it. We can do so
with either text or binary information, depending upon how the Stream was created.

10.2.2.1 Textual data

Let's first take a look at writing to a newly created text file. In the following example, we
create a new text file using the Record object. Next, we open a Stream object, but not

IT-SC book 256

before we set the Stream.Type property to text and the Stream.CharSet property to ASCII.
Once the Stream is opened, we can use the WriteText method to send data to the stream:
rec.Open "TextFile.txt", _
 "URL=http://JROFF-NTLT/", _
 adModeReadWrite, _
 adCreateNonCollection + adCreateOverwrite

stm.Type = adTypeText
stm.Charset = "ASCII"

stm.Open rec, _
 adModeReadWrite, _
 adOpenStreamFromRecord

stm.WriteText "This is the first line of text.", adWriteLine
stm.WriteText "This is the second line of text.", adWriteLine
stm.WriteText "This is the third line of text.", adWriteLine
stm.WriteText "ABC", adWriteChar
stm.WriteText "DEF", adWriteChar
stm.WriteText "GHI", adWriteLine
stm.WriteText "This is the fifth line of text.", adWriteLine
stm.WriteText "This is the sixth and last line of text.", adWriteLine

stm.Flush

stm.Close
rec.Close

As you can see, this example used two different parameters in the WriteText method calls. The
first parameter used, adWriteLine, indicates that a line separator should be appended to the end
of the data being written. The second parameter, adWriteChar, indicates that the next call to
WriteText should append to the location that this call last left off. This technique is similar to
adding a semicolon at the end of a Debug.Print statement.

To verify the contents of the newly created text file, enter the following code to print its
contents:
stm.Open "URL=http://JROFF-NTLT/TextFile.txt", _
 adModeReadWrite

Debug.Print stm.ReadText(ADODB.StreamReadEnum.adReadAll)

stm.Close

You should see the following output in the Immediate window:
This is the first line of text.
This is the second line of text.
This is the third line of text.
ABCDEFGHI
This is the fifth line of text.
This is the sixth and last line of text.

Notice that in the first example, the Stream.Flush method is called prior to the
Stream.Close method. This isn't completely necessary. The Flush method forces data

IT-SC book 257

entered with the WriteText method (and the Write method -- described in the next section)
to the data source. By calling the Close method, the Flush method is implicitly called.
This example was redundant in order to show you the Stream.Flush method.

The previous example read the entire file by passing the adReadAll parameter to the
Stream.ReadText method. We can also read a file line-by-line with the adReadLine method:
stm.Open "URL=http://JROFF-NTLT/TextFile.txt", _
 adModeReadWrite

While (Not stm.EOS)
 Debug.Print stm.ReadText(ADODB.StreamReadEnum.adReadLine)
Wend

stm.Close

In this code fragment, the Stream.EOS property is used to indicate whether the end of the
Stream has been reached. The first time the ReadText method is called, the Stream is read
from the beginning of the file until a line separator or the end of the Stream is reached. If
the end of the Stream is not reached and the second call to Stream.ReadText is made, the
Stream's pointer picks up where is last left off, at the beginning of the next line.

Finally, we can read a section of characters with the ReadText method by specifying a
number of characters to retrieve. In the following example, one character is obtained at a
time:
Dim sChar As String

stm.Open "URL=http://JROFF-NTLT/TextFile.txt", _
 adModeReadWrite

While (Not stm.EOS)
 sChar = stm.ReadText(1)
 If (Asc(sChar) <> 10) Then Debug.Print sChar;
Wend

stm.Close

This example contains a little bit more code than the others. The reason for this is simple:
by reading one character at a time, we get two characters at the end of a line (carriage
return and linefeed). Both of these characters, outputed with Debug.Print, cause a
carriage return, resulting in blank lines in between each line. To avoid this, the code
suppresses characters with an ASCII code of 10 (line feeds), but keeps the carriage
returns.

Another interesting method of the Stream object that has to do with reading text data is
the SkipLine method. It does exactly what it seems to do -- skips lines:
stm.Open "URL=http://JROFF-NTLT/TextFile.txt", _
 adModeReadWrite

Debug.Print stm.ReadText(ADODB.StreamReadEnum.adReadLine)

IT-SC book 258

stm.SkipLine

Debug.Print stm.ReadText(ADODB.StreamReadEnum.adReadLine)

stm.SkipLine
stm.SkipLine

Debug.Print stm.ReadText(ADODB.StreamReadEnum.adReadLine)

stm.Close

Running this code on the same text file returns the following output to the Immediate
window:
This is the first line of text.
This is the third line of text.
This is the sixth and last line of text.

The Stream.Position property can be read to indicate where the stream pointer is located
within a Stream, or it can be set to force the stream pointer to a particular location. Using
the Position property in conjunction with the SetEOS method (which truncates files,
giving them a new EOS marker), we can change the size of a file as in the next example:
stm.Open "URL=http://JROFF-NTLT/TextFile.txt"

stm.Position = Abs(stm.Size / 2)
stm.SetEOS
stm.Position = 0

Debug.Print stm.ReadText(ADODB.StreamReadEnum.adReadAll)

stm.Close

This example cuts the file in half by obtaining the size of the stream, and dividing it by
two -- and thereby moving the stream pointer to the halfway mark and calling the SetEOS
method. After this, the stream pointer is moved back to the beginning of the Stream so
that the Stream can be sent as output to the Immediate window as shown:
This is the first line of text.
This is the second line of text.
This is the third line of

10.2.2.2 Binary data

Reading and writing binary data is almost identical to reading and writing text data,
except that instead of a String value, the Write and Read methods accept and return an
array of Byte values. Since there is no sense of line separators with binary data, the Write
method doesn't have the second parameter that the WriteText method has to indicate if a
line separator should be added:
Dim byBuffer(5) As Byte

rec.Open "BinaryData.dat", _
 "URL=http://JROFF-NTLT/", _
 adModeReadWrite, _

IT-SC book 259

 adCreateNonCollection + adCreateOverwrite

stm.Type = adTypeBinary

stm.Open rec, _
 adModeReadWrite, _
 adOpenStreamFromRecord

byBuffer(0) = 100
byBuffer(1) = 110
byBuffer(2) = 120
byBuffer(3) = 130
byBuffer(4) = 140

stm.Write byBuffer

stm.Flush

stm.Close
rec.Close

To read and output the data, use the following code fragment:
Dim byBufferIn() As Byte
Dim lCount As Long

stm.Open "URL=http://JROFF-NTLT/BinaryData.dat"

byBufferIn = stm.Read(ADODB.StreamReadEnum.adReadAll)

For lCount = 0 To UBound(byBuffer)
 Debug.Print "Byte #" & lCount + 1 & ": " & byBuffer(lCount)
Next lCount

stm.Close

This code results in the following output:
Byte #1: 100
Byte #2: 110
Byte #3: 120
Byte #4: 130
Byte #5: 140
Byte #6: 0

Notice the last Byte value, 0. This is the end-of-file marker.

10.2.2.3 Stream persistence

When we create a Stream in memory without specifying a Source argument, we can
persist the information within the Stream object by using the SaveToFile, LoadToFile,
and CopyTo methods.

IT-SC book 260

The first of these methods, SaveToFile, persists the Stream to a file of your choice (which
does not have to be within a web server's scope because we are not using the OLE DB
provider for Internet Publishing):
stm.Type = adTypeText
stm.Open

stm.WriteText "This is the first line of text.", adWriteLine
stm.WriteText "ABC", adWriteChar
stm.WriteText "DEF", adWriteChar
stm.WriteText "GHI", adWriteLine
stm.WriteText "This is the third line of text.", adWriteLine

stm.SaveToFile "Stream Output.txt", _
 adSaveCreateOverWrite

stm.Close

To reread the data into a Stream object, we can use the LoadFromFile method -- but not
until the Stream is already opened as shown:
stm.Open

stm.LoadFromFile "Stream Output.txt"

Debug.Print stm.ReadText(ADODB.StreamReadEnum.adReadAll)

stm.Close

This code fragment sends the following output to the Immediate window:
This is the first line of text.
ABCDEFGHI
This is the third line of text.

The CopyTo method copies the contents or a portion of one Stream to another. In the
following example, the CopyTo method is used to copy the first 10 bytes to another open
Stream object:
Dim stmCopy As ADODB.Stream

Set stmCopy = New ADODB.Stream

stm.Open
stm.LoadFromFile "Stream Output.txt"

stmCopy.Open

stm.CopyTo stmCopy, 10
stm.Close

stmCopy.Position = 0

Debug.Print stmCopy.ReadText(ADODB.StreamReadEnum.adReadAll)

10.3 Summary

IT-SC book 261

This chapter introduced the Record and Stream objects, explaining how they can be used
to access hierarchical data sources such as directory and file structures. The Record and
Stream objects are primarily designed to work in conjunction with the OLE DB provider
for Internet Publishing; however, each has their own methods and properties, which add
functionality way beyond the scope of Internet Publishing. After reading this chapter, you
should be able to open both Record and Stream objects and understand the following key
points about each:

There are five ways in which a Record object can be opened.

The Record object can be used to navigate hierarchical data sources.

The Record object can be used to manipulate directories and files within a web server.

The OLE DB provider for Internet Publishing provides a standard set of Fields for the Record
object, which contain additional information about the Record object's represented resource.

The Stream object can be obtained four different ways.

The Stream object can be used to read and write text and binary data.

The Stream object can be used to persist and retrieve information to local files.

IT-SC book 262

Chapter 11. Remote Data Services

With ADO, you typically create two-tier applications in which your application is the
first tier and the data source is the second. In this scenario, your application can access
data directly.

In some cases, you may wish to create a three-tier application in which a separate middle-
tier is added to handle communication with the data source on behalf of the application.
In web applications, this functionality of the optional middle tier requires IIS (Internet
Information Server) or some other web server to mediate communication between the
browser-based client and the data source. Remote Data Service (RDS) allows you to
provide this functionality in a middle tier.

This chapter provides a brief overview of RDS.

11.1 RDS Object Model

Remote Data Service is a set of three objects used to provide client-side access to
functionality running on the middle tier, especially over the Internet or an intranet.

By using a third middle tier, your application written in VBScript need not access the
data source directly. Instead, by using RDS, the client application can instruct IIS to
connect to the database itself, optimally processing the data on the server instead of tying
up client resources.

The following three objects are provided with RDS:
DataSpace object

Allows the client access to business objects, such as the DataFactory object, located on the
middle tier of an application through the generation of proxies.

DataFactory object

Provides a client-side application with access to the data. This object can be replaced with a
custom object that implements its methods differently than the default.

DataControl object

Binds one or more HTML controls to a Recordset object so that they are automatically populated
with the data retrieved from the Recordset object.

When the client application requests a query from the data source indirectly through RDS,
IIS establishes a proxy connection to the data source through either the DataSpace object
or the DataControl object, depending upon which one you use in your code.

With the DataControl object, this proxy is used internally and allows the DataControl
object access to the data source without the use of the DataSpace or the DataFactory

IT-SC book 263

objects. On the client side, the DataFactory object can be bound to one or more visual
controls on the HTML page, just as VB controls can be bound to an instance of the ADO
Data Control.

If your application is not using the DataControl object, the proxy that is returned to the
client application can be used with the DataFactory object that allows your application to
remotely control the manipulation of a Recordset that was created on the middle tier. This
Recordset can be sent to the client for manipulation, and just the changes can be sent
back to the middle tier to be persisted by passing back this same instance of the Recordset
object.

11.1.1 The DataSpace Object

The DataSpace object establishes a proxy with a business object located in the middle tier of an
application. A proxy allows the client application to communicate with objects created in the
middle tier. Remote Data Service supports HTTP, HTTPS, and DCOM protocols through the use
of proxies. In addition, if the middle tier is accessible to the client without the use of the Internet
or a network (usually on the same machine), then a proxy is not necessary; instead, the DataSpace
simply returns an instance of the business object requested. The use of proxies is illustrated in
Figure 11-1.

Figure 11-1. The use of proxies with the DataSpace object

When a new request is made from the DataSpace object, a new instance of the specified
business object is instantiated on the middle tier, a proxy is created (for HTTP, HTTPS,
and DCOM protocols) and returned to the client. This proxy is used by the client to
access the functionality of the business object just as it was instantiated locally.

Once a request is completed with the business object, and since the Internet is stateless,
RDS automatically removes the instance of the business object. If another request is
made from the same DataSpace object, a new business object is automatically created on
the middle tier. Although this activity is transparent to the client, it is the reason the client
cannot use properties of the business object to carry over application data from request to
request.

11.1.1.1 DataSpace object members

The following method and property are the only members of the DataSpace object:

IT-SC book 264

CreateObject method (String)

Instantiates an instance of a business object for use in the front-end code by accepting a String
value as the programmatic ID of the business object to create and a String value as the computer
name or URL to the web server where the instance of the business object is created. In doing this,
a proxy is created if the protocol specified is HTTP (standard Internet protocol), HTTPS (secure
Internet protocol), or DCOM (for a network without HTTP). The proxy handles the packaging of
data from the server and unpacks it on the client. In addition, the CreateObject method can use an
in-process protocol that is used when the business object is on the same machine and a network is
unnecessary. In this case, a proxy is bypassed, and a pointer to the instantiated business object is
returned.

InternetTimeout property

Specifies, in milliseconds, the time to wait before a connection to the server will timeout. The
InternetTimeout property applies only to HTTP and HTTPS protocols.

11.1.1.2 Instantiating an object with the DataSpace object

To instantiate a business object from the client using the HTTP protocol, you might use
code similar to the following:
Dim dsp As RDS.DataSpace
Dim dfy As Object

Set dsp = New RDS.DataSpace

dsp.InternetTimeout = 10
Set dfy = dsp.CreateObject("RDSServer.DataFactory", _
 "http://production/")

'
' place your code here
'

Set dfy = Nothing
Set dsp = Nothing

In this code, the CreateObject method of the DataSpace object indicates that the business
object to create is the DataFactory object and that it should be created on the production
server using an HTTP protocol to obtain the proxy.

Before you use the DataSpace object in Visual Basic, you need to add a reference (from
the Project References . . . menu) to the Microsoft Remote Data Services 2.6 library.

11.1.2 The DataFactory Object

The DataFactory object provides access to the underlying data source from the client. It is
created as an Automation object on the server side that processes requests from the client.

IT-SC book 265

The DataFactory and the DataControl objects share some members. If you call these
members from within your client-side application, the DataControl object's members are
called by default.

The DataFactory object can be replaced with a custom business object that will
implement some or all of the methods provided by the default DataFactory object and
that is customized for the data source. From this custom business object, the default
DataFactory's methods can be called if the custom business object doesn't implement
them itself.

11.1.2.1 DataFactory object members

The following four methods are the only members of the DataFactory object:
ConvertToString method

Accepts a Recordset object and converts it into a MIME string that can be sent via HTTP to the
client. Microsoft suggests that you use this process only for recordsets with 400 or fewer records
with each record containing no more than 1024 bytes.

CreateRecordset method

Creates an empty Recordset object that can be used by a server-side business object. This method
accepts an array of columns to be used in the creation of the Recordset object. Each column is an
array of attributes containing the name, type, size, and nullability of the column. On the server
side, this Recordset object can be populated with data from a file, data from a data source, or
hard-coded data from the application.

Query method

Accepts a connection string and a valid SQL statement (for the specified data source) and returns
a Recordset object.

SubmitChanges method

Sends changes to a Recordset object back to the server so that they can be persisted. This method
accepts a connection string and a Recordset object.

11.1.2.2 Creating an empty recordset on the client side

The following example illustrates how an empty Recordset object can be created from the
client-side application:
Dim dfy As RDSServer.DataFactory
Dim rst As ADODB.Recordset

Dim vFieldInfo1(3) As Variant
Dim vFieldInfo2(3) As Variant
Dim vFieldInfo3(3) As Variant
Dim vFields(2) As Variant
Dim vValues(2) As Variant
Dim vFieldNames(2) As Variant

Set dfy = New RDSServer.DataFactory

IT-SC book 266

'
' define the recordset
'
vFieldInfo1(0) = "Name"
vFieldInfo1(1) = CInt(ADODB.DataTypeEnum.adVarChar)
vFieldInfo1(2) = CInt(30)
vFieldInfo1(3) = False

vFields(0) = vFieldInfo1

vFieldInfo2(0) = "Age"
vFieldInfo2(1) = CInt(ADODB.DataTypeEnum.adInteger)
vFieldInfo2(2) = CInt(-1)
vFieldInfo2(3) = True

vFields(1) = vFieldInfo2

vFieldInfo3(0) = "Married"
vFieldInfo3(1) = CInt(ADODB.DataTypeEnum.adBoolean)
vFieldInfo3(2) = CInt(-1)
vFieldInfo3(3) = True

vFields(2) = vFieldInfo3

Set rst = dfy.CreateRecordSet(vFields)

'
' populate the recordset
'
vFieldNames(0) = vFieldInfo1(0)
vFieldNames(1) = vFieldInfo2(0)
vFieldNames(2) = vFieldInfo3(0)

vValues(0) = "Jason"
vValues(1) = CInt(27)
vValues(2) = True
rst.AddNew vFieldNames, vValues

vValues(0) = "Kimberly "
vValues(1) = 25
vValues(2) = True
rst.AddNew vFieldNames, vValues

vValues(0) = "Zachary "
vValues(1) = 0
vValues(2) = False
rst.AddNew vFieldNames, vValues

'
' do something with the Recordset
'

Set rst = Nothing
Set dfy = Nothing

IT-SC book 267

11.1.2.3 Roundtrip querying and updating

The DataFactory object allows a query to the server and an update from the client in a
single roundtrip communication, as shown in the following example:
Dim dsp As RDS.DataSpace
Dim dfy As Object
Dim rst As ADODB.Recordset

Dim sCon As String

Set dsp = New RDS.DataSpace

dsp.InternetTimeout = 10

'
' create the data factory from the data space
'
Set dfy = dsp.CreateObject("RDSServer.DataFactory", "")

'
' retrieve the data from the server
'
sCon = "driver={SQL Server};" _
 & "server=jroff-laptop;" _
 & "database=NORTHWIND"

Set rst = dfy.Query(sCon, _
 "SELECT * FROM Orders")

'
' update the data
'
rst.Find "OrderID=10268", _
 0, _
 adSearchForward, _
 0

rst!Freight = rst!Freight + 1.27

'
' send the data back to the server
'
dfy.SubmitChanges sCon, rst

Set dfy = Nothing
Set dsp = Nothing

11.1.3 The DataControl Object

The RDS DataControl object allo ws your project easy access to data without your
explicitly creating and working with the DataSpace object and a DataFactory object. In
addition, the DataControl object links one or more controls on an HTML page to a query.

IT-SC book 268

The DataControl object is for web applications only and has no purpose in a Visual Basic
desktop application. If you have multiple queries, you need multiple DataControl objects.
There is no restriction on the number of DataControl objects that you can use in a single
HTML page.

All of the properties of the DataControl object are optional, since custom business objects
can be developed to replace any of the functionality. With the DataControl object, you
can query a data source with a SQL statement; move around within the created recordset;
and update, sort, and filter records.

11.1.3.1 DataControl object members

The following list of methods, properties, and events constitute the members of the
DataControl object:
Cancel method

Cancels the execution of an asynchronous method call that is still running. After calling this
method, the Recordset object is empty.

CancelUpdate method

Cancels any pending changes to the current record or the new record. After calling this method,
the bound control is refreshed from the original data.

Connect property

Connects to a data source against which queries and updates will be executed. The Connect
property can be set during design time (by using HTML tags) or runtime.

CreateRecordset method

Creates an empty Recordset object that can be used by a server-side business object. On the
server side, this Recordset object can be populated with data from a file, data from a data source,
or hard-coded data from the application.

ExcecuteOptions property

Indicates whether the next refresh of the Recordset will be asynchronous (adcExecAsync, the
default value) or synchronous (adcExecSync).

FetchOptions property

Indicates the type of asynchronous fetching that should occur. The default value for this property
is adcFetchAsync, which returns control immediately to the application while the records are
being fetched. This is the setting recommended by Microsoft for web applications. For a
compiled client application, the Microsoft-recommended setting is adcFetchBackground,
which returns control to the application as soon as the first batch of records has been fetched. The
remaining setting, adcFetchUpFront, fetches all of the records before control is returned. You
should choose this last setting if you need the entire recordset to continue your code.

FilterColumn property

IT-SC book 269

Used with the FilterValue and FilterCriterion properties, indicates the column on which to
evaluate the filter criteria for the Recordset. The Reset method must be called to update the data
in the Recordset.

FilterCriterion property

Is set to a String value of <, <=, >, >=, =, or <> to indicate the filter-criteria operator used in the
filter specified by the FilterValue and FilterColumn properties. The Reset method must be called
to update the data in the Recordset.

FilterValue property

Is set to a String value that indicates the data value to filter on. The FilterValue property is used in
conjunction with the FilterColumn and the FilterCriterion properties. The Reset method must be
called to update the data in the Recordset.

Handler property

Indicates the name of a server-side custom program (or handler) that is used to extend the
functionality of the DataFactory object. Included in this string can be parameters for the handler,
separated by commas (for example, "handler_name, parameter1, parameter2").

InternetTimeout property

Specifies, in milliseconds, the time to wait before a request to the server will timeout. The
InternetTimeout property applies only to HTTP and HTTPS protocols.

MoveFirst method

Moves to the first record in the Recordset.

MoveLast method

Moves to the last record in the Recordset.

MoveNext method

Moves to the next record in the Recordset.

MovePrevious method

Moves to the previous record in the Recordset.

onError event

Called whenever an error occurs with an operation.

onReadyStateChange event

Fired when a change occurs in the DataControl's ReadyState property value.

ReadyState property

Indicates the current state of the DataControl object as it receives data. If no records have been
fetched yet and the query is still executing, the ReadyState property is set to
adcReadyStateLoaded. If the initial set of records is loaded in the DataControl object and the
remaining records are still loading, the Recordset object can be used, and the ReadyState property

IT-SC book 270

is set to adReadyStateInteractive. If all the records have been returned to the DataControl
object or an error has occurred in the execution of the last command, the ReadyState property will
be set to adcReadyStateComplete. To determine whether an error has occurred, in addition to
checking the ReadyState property, check the State property for the adStateClosed enumeration
value.

Recordset property

Read-only. Returns the Recordset object that was returned from a custom business object. To set
the Recordset object, use the SourceRecordset object.

Refresh method

Refreshes the data in the Recordset object by querying the data source again. Any controls on the
page that are tied to the DataControl object are refreshed automatically.

Reset method

Re-executes the sort and filter query for a Recordset object for a client-side cursor. This method
accepts a Boolean value to indicate if the re-execution of the query should include the current
filter (True) or if it should re-execute on the original data (False) and clear out the current filter.

SourceRecordset property

Write-only. Sets the Recordset object that was returned from a custom business object. To read
the Recordset object, use the Recordset object.

Server property

Indicates on which server the DataControl's request is processed. This property can be set at
design time or runtime.

SortColumn property

Indicates which column is to be used when sorting the Recordset.

SortDirection property

Indicates the direction of the sort for the Recordset. A value of True indicates that the sort order
is ascending; False indicates descending.

SQL property

Indicates the SQL statement that is used to populate the Recordset object.

SubmitChanges method

Sends only the changed records from a Recordset object to the server to be updated. Either all or
none of the records are updated.

URL property

Indicates a String that contains either a relative or an absolute URL. This URL usually points to
an ASP page that returns a Recordset object. If the URL property is indicated, the SubmitChanges
method will return records to the URL.

11.1.3.2 Binding a control to the DataControl object

IT-SC book 271

The DataControl object binds a query easily to one or more visual controls on an HTML
page, as demonstrated in the next example. To run this example, you must first create an
ASP page. Within this page, create a table with the following HTML code:
<TABLE DATASRC=#OrderTable>
<TBODY>
 <TR>
 <TD></TD>
 <TD></TD>
 <TD></TD>
 </TR>
</TBODY>
</TABLE>

In this code, three columns are names based upon three columns in the recordset that we
will be creating.

The next thing you need to do is to create a DataControl object. To do this, you must create an
object with the class ID of BD96C556-65A3-11D0-983A-00C04FC29E33, as in the following
code:
<OBJECT classid="clsid:BD96C556-65A3-11D0-983A-00C04FC29E33"
 ID=OrderTable HEIGHT=1 WIDTH=1>
</OBJECT>

Within the VBScript section of your ASP page, enter the following code to set the server,
SQL statement, and connection string:
OrderTable.Server = "http://JROFF-LAPTOP/"

OrderTable.SQL = "SELECT * FROM Orders;"

OrderTable.Connect = "DRIVER={SQL SERVER}; " _
 & "SERVER=JROFF-LAPTOP; " _
 & "DATABASE=Northwind; "

OrderTable.Refresh

When this page is viewed, the table is populated with all the records from the Orders
table.

11.1.3.3 Filtering and sorting the recordset

With the DataControl object, you can filter and sort the recordset, as shown:
'
' set the filter
'
OrderTable.FilterColumn = "Freight"
OrderTable.FilterCriterion = ">="
OrderTable.FilterValue = "20.00"

'
' set the sort order

IT-SC book 272

'
OrderTable.SortColumn = "Freight"
OrderTable.SortDirection = False

'
' populate
'
OrderTable.Refresh

11.2 An Example in RDS

Example 11-1 displays the entire Orders table of the Northwind database in a table within an
ASP page. To run this example, create an ASP page and replace the entire contents of the page
with the following code. Make sure that this ASP page is within a virtual directory of your web
server, such as RDSExample. To execute this page, go to Internet Explorer and type in the full
URL to the ASP -- for example, http://servername/RDSExample/example.asp.

Example 11-1. Displaying a Table with RDS

<%@ Language=VBScript %>
<html>
<head>
 <title>RDS Code Example</title>
</head>

<body>

<h1>RDS Code Example</h1>

<H2>Orders Table</H2>
<P>

<INPUT TYPE=button NAME="View" VALUE="View">

<SCRIPT Language="VBScript">
<!--

Sub View_OnClick

 '
 ' connect to the server and query
 '
 OrderTable.Server = "http://JROFF-LAPTOP/"

 OrderTable.SQL = "SELECT * FROM Orders;"

 OrderTable.Connect = "DRIVER={SQL SERVER}; " _
 & "SERVER=JROFF-LAPTOP; " _
 & "DATABASE=Northwind; "

 '
 ' set the filter
 '
 OrderTable.FilterColumn = "Freight"

IT-SC book 273

 OrderTable.FilterCriterion = ">="
 OrderTable.FilterValue = "20.00"

 '
 ' set the sort order
 '
 OrderTable.SortColumn = "Freight"
 OrderTable.SortDirection = False

 '
 ' populate
 '
 OrderTable.Refresh

End Sub

-->
</SCRIPT>
 </P>

<TABLE DATASRC=#OrderTable
 align=left
 border=1
 style="LEFT: 11px; TOP: 115px">
<TBODY>
 <TR>
 <TD></TD>
 <TD></TD>
 <TD></TD>
 </TR>
</TBODY>
</TABLE>

<P>
<OBJECT classid=clsid:BD96C556-65A3-11D0-983A-00C04FC29E33
 height=1
 id=OrderTable
 width=1>

 <PARAM NAME="ExecuteOptions" VALUE="2">
 <PARAM NAME="FetchOptions" VALUE="3">
 <PARAM NAME="InternetTimeout" VALUE="100">

</OBJECT></P>

<P> </P>
<P> </P>
<P> </P>

</body>
</html>

11.3 More Information About RDS

This chapter by no means covers RDS in full. RDS has more capabilities that are not mentioned
here. For instance, RDS allows you to create custom business objects to use in place or in

IT-SC book 274

addition to the standard objects supplied by RDS. RDS also has many features that allow
customization of security rights. For more information see Professional ADO 2.5 RDS
Programming with ASP 3.0 by John Papa (Wrox Press, Inc., 2000).

11.4 Summary

This chapter introduced to you the component of ADO called Remote Data Services or
RDS. You have learned that RDS allows client-side applications to access and
manipulate data sources through a third middle tier such as IIS. After reading this chapter,
you should be able to fully understand RDS and the following key points:

There are three objects that make up RDS: the DataSpace object, the DataFactory object, and the
DataControl object.

The DataSpace object manages the connection through the middle tier to the data source by
providing a proxy to the client application.

The DataFactory object allows the manipulation and the access to the underlying data source by
using the proxy returned from the DataSpace object.

The DataControl object is used as a simple way to access a data source through a middle tier
without using the DataSpace and the DataFactory objects. This object also allows your client
HTML page to be bound to the results of the query that has been executed by the DataControl.

IT-SC book 275

Chapter 12. The Microsoft .NET
Framework and ADO.NET

At the Professional Developer's Conference 2000, Microsoft announced a new development
platform called the .NET Framework. One of the components of the new .NET Framework is
ADO.NET, Microsoft's successor to ADO. In this chapter, I will provide a brief introduction to
the .NET Framework and ADO.NET's place within it. For more information on .NET, see
http://msdn.microsoft.com, as well as C# Essentials (O'Reilly, 2001) and the upcoming .NET
Framework Essentials (O'Reilly, 2001).

12.1 The Microsoft .NET Framework

The Microsoft .NET Framework consists of three new components of interest to the ADO
developer:

The Common Language Runtime (CLR) and its base class library (BCL)

C#, a new unified programming language

ASP.NET, a new framework for web application development

Each of these three components plays a key role in the .NET Framework.

12.1.1 The Common Language Runtime

The Common Language Runtime has two roles, one for the execution environment and
one for the development environment.

For the execution environment, the CLR is the provider of .NET's functionality. This
functionality includes, but is not limited to: compilation of Intermediate Language (IL) to
native code, handling of security, memory allocation, and thread and process
management.

For the development environment, the CLR supports any language compiler that
generates the IL code that it understands and the metadata it uses to make runtime
decisions. In its first release, .NET will support VB.NET (the new C# language),
managed C++, and JScript.NET. The CLR also allows the developer to write less code
because so much is handled by the runtime, such as garbage collection and serialization
of objects to and from XML.

12.1.2 C#: Unified Programming Language

In the current Microsoft development framework, C++, Visual Basic, and Java all have
different APIs that achieve the same functionality. With the .NET Framework, Microsoft
is attempting to combine the APIs into one class framework.

IT-SC book 276

This gives developers more power than they have ever had by allowing them to mix and
match languages very easily. In fact, it will allow cross-language inheritance, debugging,
and error handling.

This common class framework (or set of APIs) that every language can use as its own
will make the language used for developing an application virtually meaningless,
allowing you to create applications in JScript that are just as powerful as applications
written in C++.

12.1.3 ASP.NET

ASP.NET is the Microsoft .NET Framework for developing web applications. ASP.NET,
like its predecessor, allows developers to combine HTML and programming languages to
create web pages on the server that function as middle-tier business objects. ASP.NET
also simplifies the task of interacting with browser clients a range of devices including
PDAs and cell phones, as well as PCs.

ASP.NET controls are objects that run on the server but broadcast simple HTML controls
to the client, such as a text box or a button. These ASP.NET controls have object models
so that they can be programmed using normal development techniques on the server and
any of the .NET-compliant languages.

In addition, ASP.NET provides application context through its own object model to the
web developer, such as session state.

12.1.4 From COM to .NET: The Creation of ADO.NET

One of the main purposes of the Microsoft .NET Framework is to make development of
COM objects and applications easier. This is done through an abstraction level that
automates the creation, management, interaction, and registration of COM objects so that
the developer can do other things.

Because of this abstraction, Microsoft was able to create ADO.NET, a simpler successor
to ADO that is geared towards web applications. Because web applications are stateless,
ADO.NET focuses on disconnected data, while traditional ADO focuses on connected
data.

ADO will continue to play an important role in traditional desktop and client-server
applications where the data-services code is tightly coupled with the data source itself.
Microsoft provides access to ADO and other COM/ActiveX object libraries through the
use of the .NET/COM interoperability services, which allow direct access to a COM
object from within the .NET Framework, without using the abstraction layer that is
normally applied to COM objects. By using these services, your application can access
traditional ADO as it always has.

12.2 ADO.NET

IT-SC book 277

ADO.NET is comprised of two main components, DataSets and managed providers. DataSets can
store an entire database in memory, while managed providers provide the ability to establish a
connection between the data source and a DataSet. In addition, managed providers provide a
means of populating, manipulating, and accessing the data within the DataSet.

12.2.1 DataSets

A DataSet is a memory-resident version of a database containing tables, rows,
relationships, constraints, and keys. In ADO.NET, all work is done with a DataSet. The
DataSet has three main collection classes and numerous child classes belonging to each:
TablesCollection object

A collection of one or more DataTable objects that represent individual tables from the data
source. In these DataTable objects, both columns and rows are stored as separate objects. Each
DataTable object represents one table within memory. The DataSet is able to persist the contents
of the TablesCollection and reload it using XML. The TablesCollection automatically keeps track
of any changes made to the data stored in the individual DataTables.

RelationsCollection object

A collection of one or more relations between rows from different tables. Relations can be
navigated from one table to another.

Extended Properties object

A collection of user-customized properties such as a password or the time data was last updated.

12.2.2 Managed Providers

A managed provider establishes a connection between a data source, such as SQL Server
and DataSet. There are three main components to managed providers:
DataSetCommand object

Connections, commands, and parameters that access and populate the DataSet with the data.

DataReader object

Provides fast, simple, forward-only access to data.

Low-level objects

Connect to the database to issue data-specific commands.

There are two managed providers provided with .NET: the SQL managed provider,
which creates a connection between the DataSet and SQL Server, and the ADO managed
provider, which bridges the DataSet object to any data source that has an OLE DB driver.

12.3 ADO.NET Features

IT-SC book 278

As the name implies, ADO.NET is an extension built upon the existing, traditional ADO
object model. While ADO.NET will be very familiar to an ADO developer, several new
features have been added to facilitate use with disconnected data sources:

ADO.NET focuses on disconnected data.

ADO.NET allows strongly typed language.

ADO.NET works with hierarchical and relational data through XML.

Each of these differences have their own benefits, as explained in the following sections.

12.3.1 Disconnected Data

ADO.NET allows you to create disconnected n-tier applications. This feature is probably the
biggest draw of ADO.NET. Traditional ADO was designed to work with tightly coupled
application tiers, where state is maintained. In the web development paradigm, state is
nonexistent.

With ADO.NET, the DataSet object is populated with the entire data that is needed in
your application, and then the connection is closed, even if you are going to work with
this data for a long time. When the data needs to be persisted to the data source, another
connection is created, and then the data is persisted.

In ADO, you must state explicitly that you want to work with a disconnected Recordset,
which can be done only with RDS objects: with ADO.NET, this choice is the default.

12.3.2 Strongly Typed Language

ADO.NET provides for a strongly typed language, which allows you to access collection
classes and data that are normally parameterized with the actual name. For instance, to
display the first name of the current author in a table, you could type:
Msgbox Authors.Firstname

With ADO, you must specify the parametered value, such as:
Msgbox rst("FirstName").Value

In addition, ADO.NET syntax allows you to use the actual datatype of the member, rather
than just a Variant -- this is the definition of a strongly typed language. This feature
allows the development IDE to use IntelliSense and display the actual table and column
names as you are developing, thus enabling faster and smoother development.

12.3.3 XML Integration

Both .NET and ADO.NET allow you to work easily with hierarchical data (compared to
the relational data that ADO works so well with). The ability to work with hierarchical

IT-SC book 279

data is important, as the computing population is moving closer and closer to XML, a
hierarchical data-storage method.

ADO.NET provides the ability to access relational data through the use of a DataSet. The
DataSet also allows data to be saved and restored in its native format, including XML,
making the DataSet an ideal candidate for tier communication in a client/server
application.

.NET provides the ability to access hierarchical data, with XML, through the use of the
XmlDocument. A third component, XmlDataDocument, allows the developer to bridge
the two types of data access. This object allows the developer to load either relational or
hierarchical data and manipulate it using DOM (Document Object Model). The
XmlDataDocument handles the synchronization between the DataSet and the DOM.

12.4 Summary

This chapter briefly introduced the Microsoft .NET Framework and its ADO.NET
component. I also listed the key components and features of the ADO.NET component:

The Microsoft .NET Framework is a development and runtime environment that promises ease of
development and stronger Internet applications, based upon its ability to abstract COM details.

ADO.NET is the .NET Framework's replacement for ADO. ADO.NET maintains in memory a
copy of data in use, allowing disconnected access to a data source -- ideal for today's web
applications.

Some of the features of ADO.NET include the ability to work disconnected data, promotion of a
strongly typed language, and XML integration.

IT-SC book 280

Part II: Reference Section

Chapter 13. ADO API Reference

This reference chapter lists all of the methods, properties, and events that belong to
ActiveX Data Objects.

13.1 Finding the Reference Page

This reference section is arranged in alphabetical order, and all properties, methods, and
events are alphabetized by their fully qualified name, which includes the name of the
object which they are part of. For instance, if you want to read about the Open method of
the Recordset object, look up "Recordset.Open", not "Open."

Table 13-1 contains a directory that will help if you do not know the object to which your
method, property, or event belongs, or if the reference page is not where you expected. The table
of contents lists, in the left column, the properties, methods, and events within ADO. The right
column gives you the full name of the object and the member -- here's where you'll find the
correct reference page. Note that some members are used by more than one object. For example,
the State property belongs to the Command, Connection, Record, Recordset, and Stream objects.

Table 13-1. Reference Contents

For See

AbsolutePage Recordset.AbsolutePage

AbsolutePosition Recordset.AbsolutePosition

ActiveCommand Recordset.ActiveCommand

ActiveConnection Command.ActiveConnection, Record.ActiveConnection,
Recordset.ActiveConnection

ActualSize Field.ActualSize

AddNew Recordset.AddNew

Append Fields.Append, Parameters.Append

AppendChunk Field.AppendChunk, Parameter.AppendChunk

IT-SC book 281

Attributes Connection.Attributes, Field.Attributes,
Parameter.Attributes, Property.Attributes

BeginTrans Connection.BeginTrans

BeginTransComplete Connection.BeginTransComplete

BOF Recordset.BOF

Bookmark Recordset.Bookmark

CacheSize Recordset.CacheSize

Cancel Command.Cancel, Connection.Cancel, Record.Cancel,
Recordset.Cancel, Stream.Cancel

CancelBatch Recordset.CancelBatch

CancelUpdate Fields.CancelUpdate, Recordset.CancelUpdate

CharSet Stream.CharSet

Clear Errors.Clear

Clone Recordset.Clone

Close Connection.Close, Record.Close, Recordset.Close,
Stream.Close

CommandStream Command.CommandStream

CommandText Command.CommandText

CommandTimeout Command.CommandTimeout,
Connection.CommandTimeout

IT-SC book 282

CommandType Command.CommandType

CommitTrans Connection.CommitTrans

CommitTransComplete Connection.CommitTransComplete

CompareBookmarks Recordset.CompareBookmarks

ConnectionString Connection.ConnectionString

ConnectionTimeout Connection.ConnectionTimeout

CopyRecord Record.CopyRecord

CopyTo Stream.CopyTo

Count Fields.Count, Parameters.Count, Properties.Count

CreateParameter Command.CreateParameter

CursorLocation Connection.CursorLocation, Recordset.CursorLocation

CursorType Recordset.CursorType

DataFormat Field.DataFormat

DataMember Recordset.DataMember

DataSource Recordset.DataSource

DefaultDatabase Connection.DefaultDatabase

DefinedSize Field.DefinedSize

Delete Fields.Delete, Parameters.Delete, Recordset.Delete

IT-SC book 283

DeleteRecord Record.DeleteRecord

Description Error.Description

Dialet Command.Dialet

Direction Parameter.Direction

Disconnect Connection.Disconnect

EditMode Recordset.EditMode

EndOfRecordset Recordset.EndOfRecordset

EOF Recordset.EOF, Stream.EOS

Errors Connection.Errors

Execute Command.Execute, Connection.Execute

ExecuteComplete Connection.ExecuteComplete

FetchComplete Recordset.FetchComplete

FetchProgress Recordset.FetchProgress

FieldChangeComplete Recordset.FieldChangeComplete

Fields Fields, Record.Fields, Recordset.Fields

Find Recordset.Find

Flush Stream.Flush

GetChildren Record.GetChildren

IT-SC book 284

GetChunk Field.GetChunk

GetRows Recordset.GetRows

GetString Recordset.GetString

HelpContext Error.HelpContext

HelpFile Error.HelpFile

Index Recordset.Index

InfoMessage Connection.InfoMessage

IsolationLevel Connection.IsolationLevel

Item Errors.Item. Fields.Item, Parameters.Item, Properties.Item

LineSeparator Stream.LineSeparator

LoadFromFile Stream.LoadFromFile

LockType Recordset.LockType

MarshallOptions Recordset.MarshallOptions

MaxRecords Recordset.MaxRecords

Mode Connection.Mode, Record.Mode, Stream.Mode,
Recordset.Move

MoveComplete Recordset.MoveComplete

MoveFirst Recordset.MoveFirst

MoveLast Recordset.MoveLast

IT-SC book 285

MoveNext Recordset.MoveNext

MovePrevious Recordset.MovePrevious

MoveRecord Record.MoveRecord

Name Command.Name, Field.Name, Parameter.Name,
Property.Name

NamedParameters Command.NamedParameters

NativeError Error.NativeError

NextRecordset Recordset.NextRecordset

Number Error.Number

NumericScale Field.NumericScale, Parameter.NumericScale

Open Connection.Open, Record.Open, Recordset.Open,
Stream.Open

OpenSchema Connection.OpenSchema

OriginalValue Field.OriginalValue

PageCount Recordset.PageCount

PageSize Recordset.PageSize

Parameters Command.Parameters, Parameters Collection

ParentURL Record.ParentURL

Position Stream.Position

IT-SC book 286

Precision Field.Precision, Parameter.Precision

Prepared Command.Prepared

Properties
Connection.Properties, Field.Properties,
Parameter.Properties, Properties, Record.Properties,
Recordset.Properties

Provider Connection.Provider

Read Stream.Read

ReadText Stream.ReadText

RecordChangeComplete Recordset.RecordChangeComplete

RecordCount Recordset.RecordCount

RecordsetChangeComplete Recordset.RecordsetChangeComplete

RecordType Record.RecordType

Refresh Errors.Refresh, Fields.Refresh, Parameters.Refresh,
Properties.Refresh

Requery Recordset.Requery

Resync Fields.Resync, Recordset.Resync

RollbackTrans Connection.RollbackTrans

Save Recordset.Save

SaveToFile Stream.SaveToFile

Seek Recordset.Seek

IT-SC book 287

SetEOS Stream.SetEOS

Size Parameter.Size, Stream.Size

SkipLine Stream.SkipLine

Sort Recordset.Sort

Source Error.Source, Record.Source, Recordset.Source

SQLState Error.SQLState

State Command.State, Connection.State, Record.State,
Recordset.State, Stream.State

Status Field.Status, Recordset.Status

StayInSync Recordset.StayInSync

Supports Recordset.Supports

Type Field.Type, Parameter.Type, Property.Type, Stream.Type

UnderlyingValue Field.UnderlyingValue

Update Fields.Update, Recordset.Update

UpdateBatch Recordset.UpdateBatch

Value Field.Value, Parameter.Value, Property.Value

Version Connection.Version

WillChangeField Recordset.WillChangeField

WillChangeRecord Recordset.WillChangeRecord

IT-SC book 288

WillChangeRecordset Recordset.WillChangeRecordset

WillConnect Connection.WillConnect

WillExecute Connection.WillExecute

WillMove Recordset.WillMove

Write Stream.Write

WriteText Stream.WriteText

13.2 Using the Reference Pages

Each object and collection within ADO has its own section. The first reference page is
titled "Sample Object"; it explains the structure of each reference page representing an
ADO object or collection.

Each member (method, property, or event) of an ADO object and collection has its own
section. The second reference page is titled "Sample Object.Property"; it explains the
structure of each reference page representing an ADO property.

The third reference page is titled "Sample Object.Method"; it explains the structure of
each reference page representing an ADO method or event.

Sample Object (Versions)

Title, Versions, and Description

Each entry begins with a title, the versions of ADO in which the object or collection is
found, and a description. Entries are listed in alphabetical order with a quick summary of
the item; this feature helps ensure that you've found the correct entry.

Collections

Some ADO objects contain references to ADO collections. For instance, the Recordset
object has a reference to the Fields collection. In this section, the referenced Collections
for the currently referenced ADO object are listed in alphabetical order with a brief
description.

IT-SC book 289

Methods

Lists the methods, if any, for the currently referenced ADO object or collection in
alphabetical order with a brief description.

Properties

Lists the properties, if any, for the currently referenced ADO object or collection in
alphabetical order with a brief description.

Events

Lists the events, if any, for the currently referenced ADO object in alphabetical order
with a brief description.

Description

Provides the pertinent information for the given ADO object or collection with an
overview of what the object or collection can do and an idea of the capabilities of each
member method, property, and event.

Examples

One or more examples on using the ADO object or collection.

Sample Object.Property (Versions)

Title, Versions, and Description

Each property reference entry includes a title, the versions of ADO the property can be
found in, and a description. Entries in the reference are listed in alphabetical order and
contain the fully qualified name of the property. For instance, the State property of the
Recordset object is titled "Recordset.State Property."

Datatype

Lists the datatype for the given property.

Description

Provides a detailed description of the property.

See Also

IT-SC book 290

Lists the objects, collections, methods, properties, and events that are related to the
current property.

Sample Object.Method (Versions)

Title, Versions, and Description

Each method and event reference entry includes a title, the versions of ADO the property
can be found in, and a description. Entries in the reference are listed in alphabetical order
and contain the fully qualified name of the method. For instance, the Open method of the
Recordset object is titled "Recordset.Open Method."

Arguments

Lists the arguments, if any, for the current method or event, with a datatype and a
description.

Returns

Lists the possible datatypes that can be returned for the method. Events do not have
Returns sections.

Description

Provides a detailed description of the method.

See Also

Lists the objects, collections, methods, properties, and events that are related to the
current method or event.

Command Object (Versions 2.0, 2.1, 2.5, 2.6)

Dim object As ADODB.Command

The Command object executes a SQL statement, query, or stored procedure against a
specified data source. A Command object can alter the structure of the data source,
execute large batch operations, or select records to be returned within a Recordset object.

Collections

Parameters

IT-SC book 291

The Parameters collection returns a collection of parameters for the given Command object.

Properties

The Properties property returns a Properties Collection class that contains characteristics specific
to the Command object for the currently used provider.

Methods

Cancel

The Cancel method cancels the pending asynchronous command that is executing.

CreateParameter

The CreateParameter creates and returns a new parameter with the information that is supplied.

Execute

The Execute method executes a SQL statement, query, or stored procedure specified in the
Command.CommandText property value.

Properties

ActiveConnection

The ActiveConnection property specifies the Connection object for the current Command object.

CommandStream

The CommandStream property sets or returns the data provider-specific stream that is used as the
Command's input just as the CommandText property identifies the command to use as the input.

CommandText

The CommandText property sets or returns a valid SQL statement, table name, stored procedure
name, relative URL, or any other command text that the data provider may recognize.

CommandTimeout

The CommandTimeout property indicates how long ADO waits, in seconds, before it generates
an error when executing an asynchronous command.

CommandType

The CommandType property indicates the current type of Command object.

Dialect

The Dialect property is used with the CommandText and the CommandStream properties to
indicate the data provider-specific syntax of the Command's source.

Name

The Name property specifies the name for the current Command object.

IT-SC book 292

NamedParameters

The NamedParameters property indicates whether the data provider should use parameter names
to match the Command object's parameters or if it should match them in the order that they
appear.

Prepared

The Prepared property indicates whether a prepared statement should be created by the current
Command object before it is executed.

State

The Status property determines the status of the current record when using batch updates or bulk
operations.

Description

A Command object must have a value for its ActiveConnection property that either
associates it with an existing, open ActiveConnection object or uses a connection string
to create a new, independent Connection object within the Command object.

Once a Command object is associated to an open Connection object, the Command object
can be executed from the Connection object, by name. A Connection object can also
execute a command, without a Command object at all, by using the Execute method. In
this case, ADO is actually creating and using a Command object internally within the
Connection object, but it does not expose it to your application.

When you execute a command without a Command object, you cannot persist (save the
data to the datasource) and re-execute the command text or use parameters with your
command.

If two or more Command objects are associated to the same Connection object and one of
them is a stored procedure with output parameters, an error will occur. To avoid this, use
separate Connection objects for each Command object, or make sure that all other
Command objects are disconnected from their Connection objects before executing
others.

Examples

In this section, we will be looking at three examples that will show us how to:

Execute SQL statements.

Execute a Command object from an associated Connection object.

Use parameters in queries.

To use the Command examples for this section, you must define the following connection string
Const value for the examples to work properly:

IT-SC book 293

Private Const DATASOURCE_BIBLIO = "Provider=Microsoft.Jet.OLEDB.4.0; "
_
 & "Data Source=C:\Program Files\" _
 & "Microsoft Visual
Studio\VB98\Biblio.mdb;"

Example 13-1 illustrates how a Command object can be used to execute a simple SQL
statement. Notice how the connection string Const value is assigned to the ActiveConnection
property. This value will be used by ADO to create the Command object and its own Connection
object.

Example 13-1. Executing a SQL Statement with a Command Object

Dim com As ADODB.Command
Dim rst As ADODB.Recordset

'
' instantiate a new instance of the Command Object
'
Set com = New ADODB.Command

'
' pass the previously defined connection string to the object
'
' this will create a new internal Connection object
'
com.ActiveConnection = DATASOURCE_BIBLIO

'
' specify the command text and tell the object to evaluate it
' as a SQL statement
'
com.CommandText = "SELECT * FROM Authors;"
com.CommandType = adCmdText

'
' instruct ADO to prepare the statement and timeout after 30 seconds
'
com.Prepared = True
com.CommandTimeout = 30

'
' execute the command and return the results to the Recordset object
'
Set rst = com.Execute

'
' the Recordset object now contains the results from the Command's
query
'
MsgBox "The first author in the recordset is: " &
rst.Fields.Item("Author").Value

'
' like always, clean up
'

IT-SC book 294

rst.Close

Set rst = Nothing
Set com = Nothing

A Command object can also be associated with a Connection object and be invoked directly as
you will see in Example 13-2. Note that by using this method, the method created by the
associated Command object -- in this example, MyCommand -- is not available in the Intellisense
feature offered by VB. This is because the Command object is being bounded late to the
Connection object.

Example 13-2. Executing a Command Object from a Connection Object

Dim con As ADODB.Connection
Dim com As ADODB.Command
Dim rst As ADODB.Recordset

'
' open an external Connection object
'
Set con = New ADODB.Connection
con.Open DATASOURCE_BIBLIO

'
' instantiate a new instance of the Command Object and give it a name
'
Set com = New ADODB.Command
com.Name = "MyCommand"

'
' associate the Command object with the already opened Connection
object
'
Set com.ActiveConnection = con

'
' specify the command text and tell the object to evaluate it
' as a SQL statement
'
com.CommandText = "SELECT * FROM Authors WHERE Author=AuthorName;"
com.CommandType = adCmdText

'
' execute the command and return the results to the Recordset object
'
Set rst = New ADODB.Recordset
con.MyCommand "Ingham, Kenneth", rst

'
' the Recordset object now contains the results from the Command's
query
'
MsgBox "The first author in the recordset is: " & rst.Fields("Author")

Debug.Print rst.Fields.Item("Author").Value

IT-SC book 295

'
' like always, clean up
'
rst.Close
con.Close

Set rst = Nothing
Set com = Nothing
Set con = Nothing

Example 13-3 illustrates how parameters are used with the object. Each Command object has its
own collection class, Parameters. By using the CreateParameter method, we can create an
instance of a Parameter class and append it to the Command's Parameters collection.

Example 13-3. Using Parameters with the Command Object

Dim con As ADODB.Connection
Dim com As ADODB.Command
Dim par As ADODB.Parameter
Dim rst As ADODB.Recordset

'
' open an external Connection object
'
Set con = New ADODB.Connection
con.Open DATASOURCE_BIBLIO

'
' instantiate a new instance of the Command Object and give it a name
'
Set com = New ADODB.Command
com.Name = "MyCommand"

'
' associate the Command object with the already opened Connection
object
'
Set com.ActiveConnection = con

'
' specify the command text and tell the object to evaluate it
' as a SQL statement
'
com.CommandText = "SELECT * FROM Authors WHERE Author=AuthorName;"
com.CommandType = adCmdText

'
' create the parameter and add it to the Parameters collection
'
Set par = com.CreateParameter("AuthorName", _
 adChar, _
 adParamInput, _
 20, _
 "Ingham, Kenneth")

IT-SC book 296

com.Parameters.Append par

'
' execute the command and return the results to the Recordset object
'
Set rst = New ADODB.Recordset
con.MyCommand , rst

'
' the Recordset object now contains the results from the Command's
query
'
MsgBox "The first author in the recordset is: " & rst.Fields("Author")

Debug.Print rst.Fields.Item("Author").Value

'
' like always, clean up
'
rst.Close
con.Close

Set rst = Nothing
Set com = Nothing
Set par = Nothing
Set con = Nothing

Command.ActiveConnection
Property

(Versions 2.0, 2.1,
2.5, 2.6)

Command.ActiveConnection = ConnectionString
Set Command.ActiveConnection = ConnectionObject

The ActiveConnection property specifies the Connection object for the current Command
object.

Datatype

String or Variant (containing the current Connection object)

Description

The ActiveConnection property can be set to either a String, representing a connection
string, or a Variant, representing an open Connection object.

The ActiveConnection property can be set to either a String or a reference to a Connection object.
If a String value is used, then it should be a valid connection string that could be passed to the
ConnectionString property of a Connection object. You must set the ActiveConnection property
before you attempt to execute a Command object. Before it is set, the value of the
ActiveConnection property is a Null object reference, by default.

IT-SC book 297

If you set the ActiveConnection property to a closed Connection object, ADO will generate an
error. If you set it to Nothing, ADO will disassociate the Command object from the Connection
object and release any resources that are associated with the data source. If the ActiveConnection
property is set to either Nothing or a different Connection object, those Parameter objects that
were supplied by the data provider, residing in the Command's Parameters collection class, will
be lost. However, those Parameter objects that were manually added to the Parameters collection
class will not.

If you close the Connection object associated with a Command object, the Command object's
ActiveConnection will automatically be set to Nothing.

See Also

Connection.ConnectionString Property

Command.Cancel Method (Versions 2.0, 2.1, 2.5, 2.6)

Command.Cancel

The Cancel method cancels the pending asynchronous command that is executing.

Description

The Cancel method cancels an asynchronous executing command that was initiated with the
Execute method using the adAsyncExecute option.

If the Cancel method is called on a command that was not executed with the adAsyncExecute
option set, an error will occur.

See Also

Command.Execute Method

Command.CommandStream Property (Version 2.6)

Command.CommandStream = Stream

The CommandStream property sets or returns the data provider-specific stream that is
used as the Command's input just as the CommandText property identifies the command
to use as the input.

Datatype

Variant

IT-SC book 298

Description

The CommandStream property is used to specify the stream used as a Command's input. If this
property is set, then the CommandText property is set to an empty String (""). Similarly, if the
CommandText property is set, the CommandStream property is set to Nothing.

If a Command object whose source is a stream is used to create a Recordset object,
reading the Recordset object's Source property would return an empty String (""),
because it returns the value of the Command object's CommandText property.

You must use either the adCmdText or adCmdUnknown enumeration values for the
CommandType property if the CommandStream property is set.

The format of the stream being set to the CommandStream property is data provider-
specific, as is the behavior of both the Command.Parameters.Refresh and
Command.Prepare methods.

See Also

Command.CommandText Property, Comand.CommandDialect Property,
CommandTypeEnum Enumeration, Recordset.Source

Command.CommandText
Property

(Versions 2.0, 2.1,
2.5, 2.6)

Command.CommandText = CommandText

The CommandText property sets or returns a valid SQL statement, table name, stored
procedure name, relative URL, or any other command text that the data provider may
recognize.

Datatype

String

Description

The CommandText property contains a String value that by default contains a zero-length
string (""). This string can be set to a SQL statement, table name, stored procedure call,
relative URL, or any other command text that the data provider may recognize.

The CommandType property is used to indicate to ADO what type of information resides within
the CommandText property. If the CommandType property is set to adCmdText, it indicates to
the provider that the CommandText property value contains a text command that the provider will
understand. This will usually be a SQL statement, but not necessarily.

IT-SC book 299

If you set the CommandText property, ADO prepares the specified query on the Execute or Open
methods whenever the Prepared property of the Command object is set to True, and it is bound
to an open connection.

The value of CommandText may be changed by ADO, depending on the value of the
CommandType property. Retrieve the value of the CommandText property at any time if
you question its value.

If the CommandStream property is set to a value, then the CommandText property is
automatically set to an empty string ("").

See Also

Command.CommandStream, Command.CommandType Property, Command.Dialect
Property, Command.Prepared Property

Command.CommandTimeout
Property

(Versions 2.0, 2.1,
2.5, 2.6)

Command.CommlandTimeout = Seconds

The CommandTimeout property indicates how long ADO waits, in seconds, before it
generates an error when executing an asynchronous command.

Datatype

Long

Description

The CommandTimeout property is read- and write-enabled. With the CommandTimeout
property, you can specify how long ADO will wait for a command to execute. The setting
for the CommandTimeout property is represented in seconds, and the default value is 30.
By setting this property to zero, you are allowing ADO to wait indefinitely for a specified
command to execute. If a command does timeout, an error is generated.

The CommandTimeout property of the Command object is unrelated to the
CommandTimeout property of the Connection object.

Note

Not all providers support the CommandTimeout property. Check your data provider's
documentation to see if it supports this property. When developing an application with
ADO, it might be a good idea to go as far as checking the capabilities of your planned
data provider to see whether it matches your needs before you write most of your code --
and it becomes too late.

IT-SC book 300

See Also

Command.Execute Method, Connection.CommandTimeout Property

Command.CommandType
Property

(Versions 2.0, 2.1,
2.5, 2.6)

Command.CommandType = CommandTypeEnum

The CommandType property indicates the current type of Command object.

Datatype

CommandTypeEnum

Description

The CommandType property indicates the type of Command object you are using. The value of
this property can be set to one of the CommandTypeEnum enumeration values. If the source of
the Command object is a stream (set via the Command.CommandStream property), the
CommandType property must be set to either adCmdText or adCmdUnknown.

In addition, the ExecuteOptionEnum value of adExecuteNoRecords can be combined with the
adCmdText or adCmdStoredProc constants to improve performance. This value cannot be used
with the Open method of the Recordset object.

If you know the type of Command object that you are using, set this property manually to
prevent unwanted delays in performance when ADO tries to figure it out for itself. If the
property is set incorrectly, an error is generated upon a call to the Execute method.

See Also

Command.CommandStream, Command.CommandText Property, CommandTypeEnum
Enumeration

Command.CreateParameter
Method

(Versions 2.0, 2.1,
2.5, 2.6)

Set parameter = command.CreateParameter(Name,
Type, Direction, Size, Value)

The CreateParameter method creates and returns a new parameter with the information
supplied.

Arguments

IT-SC book 301

Name (String)

Optional. Contains the desired name of the new parameter. This argument is mapped to the
Parameter.Name property.

Type (DataTypeEnum)

Optional. Indicates the desired datatype of the new parameter. This argument is mapped to the
Parameter.Type property. The default value is adEmpty.

Direction (ParameterDirectionEnum)

Optional. Indicates the desired direction of the new parameter. This argument is mapped to the
Parameter.Direction property. The default value is adParamImput.

Size (Long)

Optional. Specifies the maximum length of the newly created parameter in either characters or
bytes if the Type parameter is set to a variable-length datatype. This argument is mapped to the
Parameter.Size property.

Value (Variant)

Optional. Is used to initialize the value of the newly created Parameter object. This argument is
mapped to the Parameter.Value property.

Returns

Parameter object

Description

With the CreateParameter method of the Command object, you can create a new
Parameter object with the information that you specify, including name, type, direction,
size, and value. When you create a new Parameter object with this method, the parameter
is not automatically added to the Parameters collection of the chosen Command object.
The Append method of the Command.Parameters property must be used to do this.

When assigning variable-length datatypes, you must set the Size property at either
creation or some other time before appending it to the Parameters collection to avoid an
error.

If the Type property is set to either adNumeric or adDecimal, the Parameter.NumericScale and
Parameter.Precision properties must be set to fully specify the parameter's datatype. For instance,
a NumericScale of 3 would indicate that there are three digits after the decimal point and a
Precision of 5 would mean that there are five digits, total, representing the number.

See Also

DataTypeEnum Enumeration, ParameterDirectionEnum Enumeration,
Parameter.Direction Property, Parameter.Name Property, Parameter.NumericScale

IT-SC book 302

Property, Parameter.Precision Property, Parameter.Size Property, Parameter.Type
Property, Parameter.Value Property

Command.Dialect Property (Version 2.6)

Command.Dialect = GUID

The Dialect property is used with the CommandText and the CommandStream properties
to indicate the data provider-specific syntax of the Command's source.

Datatype

String

Description

The default value for the Dialect property is {C8B521FB-5CF3-11CE-ADE5-00AA0044773D},
which indicates to ADO that the provider will attempt to figure out how to interpret the
Command's source specified in either the CommandStream or the CommandText property.

Note

You must check your data provider's documentation to see what the valid values of the
Dialect property must be specified as, depending upon the value in the CommandStream
or CommandText properties.

See Also

Command.CommandStream Property, Command.CommandText Property

Command.Execute
Method

(Versions 2.0, 2.1, 2.5,
2.6)

Set recordset = command.Execute(RecordsAffected,
Parameters, Options)
Set stream = command.Execute(RecordsAffected,
Parameters, Options)
command.Execute RecordsAffected, Parameters,
Options

The Execute method executes a SQL statement, query, or stored procedure specified in
the Command.CommandText property value.

Arguments

IT-SC book 303

RecordsAffected (Long)

Optional. Populated, by the data provider, with the number of records that were affected by the
action SQL statement, query, or stored procedure (result-returning commands do not populate this
parameter).

Parameters (Variant Array)

Optional. Contains the values to be passed to the SQL statement, query, or stored procedure for
the parameters in which it holds.

Options (Long)

Optional. A combination of one or more CommandTypeEnum and ExecuteOptionEnum values
indicating how the data provider should treat the command. The default value is -1 (no options
set). The CommandTypeEnum values can also be set with the Command.CommandType property.

Returns

Recordset object
Stream object
Nothing

Description

The Execute method executes a stored procedure, SQL statement, or query against a data
source. The command that is executed is dependent upon the value of the
Command.CommandText property. The way in which ADO evaluates this
CommandText is dependent upon the Options parameter to the Execute method.

If the CommandText value causes the Execute method to return records from the data
source, these records are returned in the form of a Recordset object from the Execute
method. A returned Recordset object from the Command.Execute method is always a
read-only, forward-only cursor.

When the Execute method's Options parameter includes the adAsyncExecute, adAsyncFetch,
or adAsyncFetchNonBlocking values, operations continue in the background of the
application flow. While these operations are continuing, the Command.Cancel method can be
called to cancel all pending asynchronous operations.

See Also

Command.Cancel Method, Command.CommadText Property, Command.CommandType
Property, CommandTypeEnum Enumeration, ExecuteOptionEnum Enumeration,
ExecuteOptionEnum Enumeration

Command.Name Property (Versions 2.0, 2.1, 2.5, 2.6)

IT-SC book 304

command.Name = Name

The Name property specifies the name for the current Command object.

Datatype

String

Description

The Name property is both read- and write-enabled for the Command object. The Name
property is used to assign a name to the associated Command object or retrieve a
Command object from the Commands collection.

Names do not have to be unique within collections.

Command.NamedParameters
Property

(Version
2.6)

command.NamedParameters = Boolean

The NamedParameters property indicates whether the data provider should use parameter
names to match the Command object's parameters or if it should match them in the order
that they appear.

Datatype

Boolean

Description

If the NamedParameters property is set to True, the name properties of each Parameter object in
the current Command objects, Parameters collection, will be passed to the data provider so that
they can be used to map the parameters to the values in either the CommandText or the
CommandStream Property.

If this property is set to False, then the parameters are not matched by name, but rather by the
order in which they appear.

See Also

Command.CommandText Property, Command.CommandStream Property, Parameters
Collection

IT-SC book 305

Command.Parameters
Collection

(Versions 2.0, 2.1,
2.5, 2.6)

Set parameters = command.Parameters

The Parameters collection returns a collection of parameters for the given Command
object.

Datatype

Parameters (Collection object)

Applies To

Command object

Description

The Parameters property of the Command object is read-only. It returns a reference to the
Parameters collection object, which can contain zero or many Parameter objects that
represent parameters for the given command.

Command.Prepared
Property

(Versions 2.0, 2.1, 2.5,
2.6)

command.Prepared = Boolean

The Prepared property indicates whether a prepared statement should be created by the
current Command object before it is executed.

Datatype

Boolean

Description

If the value of the Prepared property is set to True, then before the first execution of a query
defined by the CommandText property of the Command object, the query is compiled and saved.
From then on the Execute statement will refer to the compiled version of the query to perform.
This may slow the initial call to Execute, but all calls that follow will benefit from this.

If the value of the Prepared property is set to False, then the query is never compiled; instead the
query is done directly from the Command object.

IT-SC book 306

Note

Not all providers support the Prepared property. Some providers raise an error as soon as the
Prepared property is set to True, while others do not raise an error and simply replace the
Prepared property's value with False.

Command.Properties
Collection

(Versions 2.0, 2.1, 2.5,
2.6)

Set properties = command.Properties

The Properties property returns a Properties Collection class that contains characteristics
specific to the Command object for the currently used provider.

Datatype

Properties (Collection object)

Applies To

Command object

Description

The Properties collection class contains a Property class instance for each property
specific to the Command object for the data provider.

The Properties collection of the Command object is not populated until the
ActiveConnection property of the Command object has been set to an open Connection
object or a valid connection string value.

See Also

Command.ActiveConnection Property

Command.State Property (Versions 2.0, 2.1, 2.5, 2.6)

state = command.State

The Status property is used to determine the status of the current record when using batch
updates or bulk operations.

Datatype

IT-SC book 307

RecordStatusEnum

Description

The Type property is used to check the changes that are pending for records that have
changed during a batch update. In addition, you can check the status of records that have
failed during bulk operations such as what might happen with a call to the Delete, Resync,
UpdateBatch, or CancelBatch methods or when a Filter property is set to an array of
bookmarks.

The Type property returns a sum of one or more of the RecordStatusEnum enumerations, listed in
Appendix E.

See Also

Recordset.CancelBatch, Recordset.Delete Method, Recordset.Filter Property,
Recordset.Resync Method, Recordset.UpdateBatch, RecordStatusEnum Enumeration,
ObjectStateEnum Enumeration

Connection Object (Versions 2.0, 2.1, 2.5, 2.6)

Dim connection As ADODB.Connection

A Connection object represents a unique connection to a data source. Connection objects
are independent of all other ADO objects.

Collections

Errors

The Errors collection is a collection of individual errors and warnings that have occurred for the
last operation on the current Connection object.

Properties

The Properties collection contains characteristics specific to the Connection object for the
currently used provider.

Methods

BeginTrans

Manages transaction processing for the current Connection object by starting a transaction.

Cancel

Cancels the pending asynchronous connection or execution.

Close

IT-SC book 308

Closes either a Connection or Recordset object, including any dependent objects that they may
have.

CommitTrans

Manages transaction processing for the current Connection object by committing a transaction.

Execute

Executes a specified SQL statement, query, stored procedure, URL, or provider-specific
command against the data source.

Open

For the Connection object, opens a connection to a particular data source. For the Recordset
object, opens a cursor.

OpenSchema

Returns a Recordset object containing information about the data source's schema.

RollbackTrans

Manages transaction processing for the current Connection object by rolling back a transaction.

Properties

Attributes

Sets or returns specific characteristics about the Connection object.

CommandTimeout

Indicates how long ADO waits before it generates an error when executing a particular command.

ConnectionString

Defines the connection used to access a data source.

ConnectionTimeout

Indicates how long in seconds ADO will wait while attempting a connection to a data source.

CursorLocation

Indicates the location of the cursor service.

DefaultDatabase

Indicates the database that is chosen as the default for the current connection.

IsolationLevel

Sets the level of isolation used when utilizing transaction management.

Mode

Identifies the available permissions for modifying data within the specified connection.

IT-SC book 309

Provider

Indicates the name of the data provider for the current Connection object.

State

Indicates the current status of a Command, Connection, Record, Recordset, or Stream object.

Version

Indicates the current version of ActiveX Data Objects that is being used.

Events

BeginTransComplete

Raised after the BeginTrans method has completed its operation.

CommitTransComplete

Raised after the CommitTrans method completes its operation.

ConnectComplete

Raised once a connection has been made.

Disconnect

Raised once a connection has ended.

ExecuteComplete

Called when the execution of a command has completed.

InfoMessage

Called when a warning is produced during a ConnectionEvent operation.

RollbackTransComplete

Raised after the RollbackTrans method has completed its operation.

WillConnect

Raised before a connection is made.

WillExecute

Raised before an execution of a command has begun.

Description

A Connection object can execute commands on its own or with the use of an associated
Command object. In addition, Connection objects are used to manage transaction locking,
view ADO errors, and inspect the schema of a data source.

IT-SC book 310

The Connection is one of the two ADO objects that support events at this time. By
responding to the Connection events, your application can be notified when transactions
are being used, when connections are made and lost, and when commands are executed.

Examples

In this section, we will be looking at four examples that will show us how to:

Establish an asynchronous connection to a data source.

Manage transactions with the Connection object.

Issue SQL statements without the use of a Command object.

Inspect the schema of a data source.

Before we take a look at these examples that use the Connection object, let's first add
some code to show us when our Connection events are fired. With this code, we can see
how events are reported as we look at the upcoming examples in this section.

For all examples, add a new Class to your current project and declare the Connection object
WithEvents as shown:
Private WithEvents con As ADODB.Connection

Now, you should be able to see the con variable in the first combo box in the code pane.
Selecting this object, you will be given a choice of nine events that can be fired for your
Connection object. For each event, we are going to add code to output the parameters passed to
that event to the Immediate Window.

Add the following code for the nine events to the new Class:
Private Sub con_BeginTransComplete(ByVal TransactionLevel As Long, _
 ByVal pError As ADODB.Error, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pConnection As ADODB.Connection)

 Debug.Print "Event: BeginTransComplete"
 Debug.Print " TransLevel: " & TransactionLevel
 Debug.Print " Status: " & GetStatusString(adStatus)
 Debug.Print " Connection: " & pConnection.ConnectionString
 Debug.Print

End Sub

Private Sub con_CommitTransComplete(ByVal pError As ADODB.Error, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pConnection As ADODB.Connection)

 Debug.Print "Event: CommitTransComplete"
 Debug.Print " Status: " & GetStatusString(adStatus)
 Debug.Print " Connection: " & pConnection.ConnectionString
 Debug.Print

IT-SC book 311

End Sub

Private Sub con_ConnectComplete(ByVal pError As ADODB.Error, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pConnection As ADODB.Connection)

 Debug.Print "Event: ConnectComplete"
 Debug.Print " Status: " & GetStatusString(adStatus)
 Debug.Print " Connection: " & pConnection.ConnectionString
 Debug.Print

End Sub

Private Sub con_Disconnect(adStatus As ADODB.EventStatusEnum, _
 ByVal pConnection As ADODB.Connection)

 Debug.Print "Event: Disconnect"
 Debug.Print " Status: " & GetStatusString(adStatus)
 Debug.Print " Connection: " & pConnection.ConnectionString
 Debug.Print

End Sub

Private Sub con_ExecuteComplete(ByVal RecordsAffected As Long, _
 ByVal pError As ADODB.Error, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pCommand As ADODB.Command, _
 ByVal pRecordset As ADODB.Recordset, _
 ByVal pConnection As ADODB.Connection)

 Debug.Print "Event: ExecuteComplete"
 Debug.Print " RecordsAff: " & RecordsAffected
 Debug.Print " Status: " & GetStatusString(adStatus)
 Debug.Print " Command: " & pCommand.CommandText
 Debug.Print " Recordset: " & pRecordset.Source
 Debug.Print " Connection: " & pConnection.ConnectionString
 Debug.Print

End Sub

Private Sub con_InfoMessage(ByVal pError As ADODB.Error, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pConnection As ADODB.Connection)

 Debug.Print "Event: InfoMessage"
 Debug.Print " Error: " & pError.Description
 Debug.Print " Status: " & GetStatusString(adStatus)
 Debug.Print " Connection: " & pConnection.ConnectionString
 Debug.Print

End Sub

Private Sub con_RollbackTransComplete(ByVal pError As ADODB.Error, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pConnection As ADODB.Connection)

IT-SC book 312

 Debug.Print "Event: RollbackTransComplete"
 Debug.Print " Status: " & GetStatusString(adStatus)
 Debug.Print " Connection: " & pConnection.ConnectionString
 Debug.Print

End Sub

Private Sub con_WillConnect(ConnectionString As String, _
 UserID As String, _
 Password As String, _
 Options As Long, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pConnection As ADODB.Connection)

 Debug.Print "Event: WillConnect"
 Debug.Print " UserID: " & UserID
 Debug.Print " Password: " & Password
 Debug.Print " Options: " & Options
 Debug.Print " Status: " & GetStatusString(adStatus)
 Debug.Print " Connection: " & pConnection.ConnectionString
 Debug.Print

End Sub

Private Sub con_WillExecute(Source As String, _
 CursorType As ADODB.CursorTypeEnum, _
 LockType As ADODB.LockTypeEnum, _
 Options As Long, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pCommand As ADODB.Command, _
 ByVal pRecordset As ADODB.Recordset, _
 ByVal pConnection As ADODB.Connection)

 Debug.Print "Event: WillExecute"
 Debug.Print " CursorType: " & CursorType
 Debug.Print " LockType: " & LockType
 Debug.Print " Options: " & Options
 Debug.Print " Status: " & GetStatusString(adStatus)
 If (Not (pCommand Is Nothing)) Then
 Debug.Print " Command: " & pCommand.CommandText
 End If
 If (Not (pRecordset Is Nothing)) Then
 Debug.Print " Recordset: " & pRecordset.Source
 End If
 Debug.Print " Connection: " & pConnection.ConnectionString
 Debug.Print

End Sub

The only other code that you will need for the following examples is the code for the
GetStatusString function, which accepts an EventStatusEnum value and returns a String
describing the enumeration value:
Private Function GetStatusString(adStatus As ADODB.EventStatusEnum) _
 As String

IT-SC book 313

 Select Case (adStatus)

 Case ADODB.EventStatusEnum.adStatusCancel:
 GetStatusString = "Cancel"

 Case ADODB.EventStatusEnum.adStatusCantDeny:
 GetStatusString = "Can't Deny"

 Case ADODB.EventStatusEnum.adStatusErrorsOccurred
 GetStatusString = "Errors Occurred"

 Case ADODB.EventStatusEnum.adStatusOK:
 GetStatusString = "Status Okay"

 Case ADODB.EventStatusEnum.adStatusUnwantedEvent:
 GetStatusString = "Unwanted Event"

 End Select

End Function

Example 13-4 illustrates how we can establish a connection to a data source, asynchronously,
by adding the adAsyncExecute enumeration value to the Open method of the Connection object.

Example 13-4. Establishing an Asynchronous Connection

' instantiate a new Connection object
'
Set con = New ADODB.Connection

'
' open the Biblio database with Jet as read/write enabled
'

con.Mode = adModeReadWrite

con.Provider = "Microsoft.Jet.OLEDB.4.0"

con.Open "C:\Program Files\Microsoft Visual Studio\VB98\Biblio.mdb", _
 , _
 , _
 ADODB.ExecuteOptionEnum.adAsyncExecute

While (con.State <> ADODB.ObjectStateEnum.adStateOpen)
 '
 ' do something while the connection is being opened
 '
Wend

'
' do something with the connection object
'

'
' close and clean up
'

IT-SC book 314

con.Close

Set con = Nothing

Notice that all the examples for the Connection object do not declare their own con variable --
rather, they simply instantiate the module-level variable that has already been declared so that we
can trap the events for that object. Example 13-4 sends the following output to the Immediate
Window:
Event: WillConnect
 UserID:
 Password:
 Options: 16
 Status: Status Okay
 Connection: C:\Program Files\Microsoft Visual Studio\VB98\Biblio.mdb

Event: ConnectComplete
 Status: Status Okay
 Connection: Provider=Microsoft.Jet...... ir=False;Jet OLEDB:SFP=False

Event: Disconnect
 Status: Status Okay
 Connection: C:\Program Files\Microsoft Visual Studio\VB98\Biblio.mdb

I'm sure that you will notice that the connection string for the ConnectComplete event has been
shorted to save trees.

Example 13-5 shows how transactions are used and managed with the Connection object.

Example 13-5. Managing Transactions with the Connection Object

Dim sCon As String

'
' instantiate and open a new Connection object
'
Set con = New ADODB.Connection

sCon = "Provider=Microsoft.Jet.OLEDB.4.0; " _
 & "Data Source=C:\Program Files\Microsoft " _
 & "Visual Studio\VB98\Biblio.mdb; "

con.Open sCon

'
' begin the first level of the transaction
'
con.BeginTrans

 '
 ' begin the second level of the transaction
 '
 con.BeginTrans

 '
 ' begin the third level of the transaction

IT-SC book 315

 '
 con.BeginTrans

 '
 ' commit the third level of the transaction
 '
 con.CommitTrans

 '
 ' rollback the second level of the transaction
 '
 con.RollbackTrans

'
' commit the third level of the transaction
'
con.CommitTrans

'
' close and clean up
'
con.Close

Set con = Nothing

This example uses three levels of transactions, as we can see from the Immediate
Window's tell-tale account:
Event: WillConnect
 UserID:
 Password:
 Options: -1
 Status: Status Okay
 Connection: Provider=Microsoft.Jet.OLEDB.4.0; Data Source=C:\Program
Files\
Microsoft Visual Studio\VB98\Biblio.mdb;

Event: ConnectComplete
 Status: Status Okay
 Connection: Provider=Microsoft.Jet...... ir=False;Jet OLEDB:SFP=False

Event: BeginTransComplete
 TransLevel: 1
 Status: Status Okay
 Connection: Provider=Microsoft.Jet...... ir=False;Jet OLEDB:SFP=False

Event: BeginTransComplete
 TransLevel: 2
 Status: Status Okay
 Connection: Provider=Microsoft.Jet...... ir=False;Jet OLEDB:SFP=False

Event: BeginTransComplete
 TransLevel: 3
 Status: Status Okay
 Connection: Provider=Microsoft.Jet...... ir=False;Jet OLEDB:SFP=False

Event: CommitTransComplete

IT-SC book 316

 Status: Status Okay
 Connection: Provider=Microsoft.Jet...... ir=False;Jet OLEDB:SFP=False

Event: RollbackTransComplete
 Status: Status Okay
 Connection: Provider=Microsoft.Jet...... ir=False;Jet OLEDB:SFP=False

Event: CommitTransComplete
 Status: Status Okay
 Connection: Provider=Microsoft.Jet...... ir=False;Jet OLEDB:SFP=False

Event: Disconnect
 Status: Status Okay
 Connection: Provider=Microsoft.Jet.OLEDB.4.0; Data Source=C:\Program
Files\
Microsoft Visual Studio\VB98\Biblio.mdb;

Although the connection strings for the transaction events have been shortened, you might notice
that the connection events WillConnect and Disconnect used the original connection string
that was used with the Connection object. The other events used a modified String that contained
much more detail about the connection once it was made.

Example 13-6 shows how the Connection object can be used to issue SQL statements without
the use of a Command object.

Example 13-6. Issuing SQL Statements Without the Use of a Command
Object

Dim sCon As String

Dim com As ADODB.Command
Dim rst As ADODB.Recordset

'
' instantiate and open a new Connection object
'
Set con = New ADODB.Connection

sCon = "Provider=Microsoft.Jet.OLEDB.4.0; " _
 & "Data Source=C:\Program Files\Microsoft " _
 & "Visual Studio\VB98\Biblio.mdb; "

con.Open sCon

'
' execute a SQL statement without a Command object
'
con.CommandTimeout = 3
Set rst = con.Execute("SELECT * FROM Authors;")

'
' the Recordset object now contains the results from the Command
'
MsgBox "The first author in the recordset is: " & rst("Author")

IT-SC book 317

'
' close and clean up
'
rst.Close
con.Close

Set rst = Nothing
Set con = Nothing

Events fired by our Connection object cause the following message to be printed:
Event: WillConnect
 UserID:
 Password:
 Options: -1
 Status: Status Okay
 Connection: Provider=Microsoft.Jet.OLEDB.4.0; Data Source=C:\Program
Files\
Microsoft Visual Studio\VB98\Biblio.mdb;

Event: ConnectComplete
 Status: Status Okay
 Connection: Provider=Microsoft.Jet...... ir=False;Jet OLEDB:SFP=False

Event: WillExecute
 CursorType: -1
 LockType: -1
 Options: -1
 Status: Status Okay
 Connection: Provider=Microsoft.Jet...... ir=False;Jet OLEDB:SFP=False

Event: ExecuteComplete
 RecordsAff: 0
 Status: Status Okay
 Command: SELECT * FROM Authors;
 Recordset: SELECT * FROM Authors;
 Connection: Provider=Microsoft.Jet...... ir=False;Jet OLEDB:SFP=False

Event: Disconnect
 Status: Status Okay
 Connection: Provider=Microsoft.Jet.OLEDB.4.0; Data Source=C:\Program
Files\
Microsoft Visual Studio\VB98\Biblio.mdb;

Example 13-7, our final example for the Connection object, illustrates how we can inspect the
schema of a data source with the Connection object and display its tables. Notice that the
Connection object is being used to check the version of ADO in use.

Example 13-7. Inspecting a Data Source's Schema

Dim sCon As String
Dim sTables As String

Dim com As ADODB.Command
Dim rst As ADODB.Recordset
Dim fld As ADODB.Field

IT-SC book 318

'
' instantiate and open a new Connection object
'
Set con = New ADODB.Connection

sCon = "Provider=Microsoft.Jet.OLEDB.4.0; " _
 & "Data Source=C:\Program Files\Microsoft " _
 & "Visual Studio\VB98\Biblio.mdb; "

con.Open sCon

'
' display the ADO version
'
MsgBox "ADO Version " & CStr(con.Version)

'
' open the schema for the database tables which is returned as a
' Recordset
'
Set rst = con.OpenSchema(adSchemaTables)

'
' record the field names and values
'
If (Not (rst.BOF And rst.EOF)) Then rst.MoveFirst

For Each fld In rst.Fields
 sTables = sTables & Left$(fld.Name & Space(20), 20) & vbTab
Next fld

sTables = sTables & vbCr

While (Not rst.EOF)

 For Each fld In rst.Fields
 sTables = sTables & Left$((fld.Value & "") & Space(20), 20)
 sTables = sTables & vbTab
 Next fld

 sTables = sTables & vbCr

 rst.MoveNext

Wend

'
' display the table information
'
Debug.Print sTables

'
' close and clean up
'
rst.Close
con.Close

IT-SC book 319

Set rst = Nothing
Set con = Nothing

Now, we have output from both the events and the schema data. Because the amount of
schema data returned in this example is tremendous, we kept only a couple of columns
for readability:
Event: WillConnect
 UserID:
 Password:
 Options: -1
 Status: Status Okay
 Connection: Provider=Microsoft.Jet.OLEDB.4.0; Data Source=C:\Program
Files\
Microsoft Visual Studio\VB98\Biblio.mdb;

Event: ConnectComplete
 Status: Status Okay
 Connection: Provider=Microsoft.Jet...... ir=False;Jet OLEDB:SFP=False

TABLE_NAME TABLE_TYPE
All Titles VIEW
Authors TABLE
MSysACEs SYSTEM TABLE
MSysIMEXColumns ACCESS TABLE
MSysIMEXSpecs ACCESS TABLE
MSysModules ACCESS TABLE
MSysModules2 ACCESS TABLE
MSysObjects SYSTEM TABLE
MSysQueries SYSTEM TABLE
MSysRelationships SYSTEM TABLE
Publishers TABLE
Title Author TABLE
Titles TABLE

Event: Disconnect
 Status: Status Okay
 Connection: Provider=Microsoft.Jet.OLEDB.4.0; Data Source=C:\Program
Files\
Microsoft Visual Studio\VB98\Biblio.mdb;

Connection.Attributes
Property

(Versions 2.0, 2.1, 2.5,
2.6)

Connection.Attributes = XactArgumentsEnum [+
XactArgumentsEnum...]

The Attributes property is used to set or return specific characteristics about the
Connection object.

Datatype

IT-SC book 320

XactArgumentsEnum (Long)

Description

The Attributes property is read- and write-enabled. The value of the Attributes property can be set
to any sum of the XactArgumentsEnum enumeration values, listed in Appendix E.

The default value of the Attributes property is zero.

Note

Not all providers support the functionality of the Attributes property.

See Also

Connection.BeginTrans Method, Connection.CommitTrans Method,
Connection.RollBackTrans Method, XactAttributeEnum Enumeration

Connection.BeginTrans
Method
Connection.CommitTrans
Method
Connection.RollbackTrans
Method

CBT Method(Versions
2.0, 2.1, 2.5, 2.6)

CCT Method(Versions
2.0, 2.1, 2.5, 2.6)

CRT Method(Versions
2.0, 2.1, 2.5, 2.6)

connection.BeginTrans
level = connection.BeginTrans()
connection.CommitTrans
connection.RollbackTrans

The BeginTrans, CommitTrans, and RollbackTrans methods are used to manage
transaction processing for the current Connection object.

The BeginTrans method begins a transaction, as you might expect.

The CommitTrans method ends the current transaction, while first saving any changes
and then possibly starting another transaction altogether.

The RollbackTrans method ends the current transaction, but rolls back any changes made
during the current transaction. In addition, the RollbackTrans method can start another
transaction, just as the CommitTrans method can.

Description

IT-SC book 321

The BeginTrans, CommitTrans, and RollbackTrans methods of the Connection object
perform transaction management within a particular connection. The most common
example of a need for transaction management is a banking system. When you transfer
money from one account to another, it is important that the two steps involved (a
withdraw followed by a deposit) occur as a single transaction. By using these three
transaction-management methods, we can ensure that both or none (but not either alone)
of the bank steps are performed. If there is a problem with the deposit after the withdraw
has completed, we can in effect roll back time with the RollbackTrans method.

The BeginTrans method begins a new transaction within the current Connection object.
By using the BeginTrans method, you can create nested transactions much like you can
create nested If . . . Then statements in your code. A return value can be received from
the BeginTrans method in the form of a Long, if the data provider supports nested
transactions. This return value indicates the level of the nested transaction that was
created, one being the first.

The CommitTrans method commits any changes since the beginning of the last
transaction. While the RollbackTrans method performs the opposite, it cancels any
changes made to the last transaction. In both cases, the last transaction is ended. In
addition, the last transaction created must end before either the CommitTrans or
RollbackTrans methods can end an earlier transaction.

If the Arguments property of the Connection object is set to adXactCommitRetaining, a new
transaction is automatically created after a CommitTrans method call. If this property is set to
adXactAbortRetaining, a new transaction is created automatically after a RollbackTrans
method call.

See Also

Connection.Arguments Property

Connection.BeginTransComplete
Event

(Versions 2.0,
2.1, 2.5, 2.6)

Private Sub BeginTransComplete(ByVal
TransactionLevel As Long, _
 ByVal pError As
ADODB.Error, _
 adStatus As
ADODB.EventStatusEnum, _
 ByVal pConnection
As ADODB.Connection)

The BeginTransComplete event is raised after the BeginTrans method has completed its
operation.

IT-SC book 322

Arguments

TransactionLevel

A Long value indicating the nesting level of the new transaction.
pError

An Error object containing details about an error that occurred if the adStatus parameter is set
to adStatusErrorsOccurred.
adStatus

An EventStatusEnum value indicating the status of the current operation. If the adStatus
parameter is set to adStatusOK, the operation was successful. If the adStatus parameter is set
to adStatusErrorsOccurred, the operation failed, and the pError object contains the details
regarding the error. By setting the adStatus parameter to adStatusUnwantedEvent, this
event will not be called again.
pConnection

The Connection object that fired this event.

See Also

Connection.BeginTrans Method, Connection.CommitTransComplete Event,
Connection.RollbackTransComplete Event, EventStatusEnum Enumeration

Connection.Cancel
Method

(Versions 2.0, 2.1, 2.5,
2.6)

connection.Cancel

The Cancel method cancels the pending asynchronous connection or execution.

Description

If the Execute or Open methods of a Connection object where called with the adAsyncConnect,
adAsyncExecute, or adAsyncFetch options, the Cancel method will cancel the pending
asynchronous operation.

If the Cancel method is called for an operation that was not executed with the adAsyncExecute
option set, an error will occur.

See Also

Connection.Execute Method, Connection.Open Method

IT-SC book 323

Connection.Close Method (Versions 2.0, 2.1, 2.5, 2.6)

connection.Close

The Close method is used to close either a Connection or Recordset object, including any
dependent objects that they may have.

Description

The Close method terminates a connection with a data source. After a Connection object
is closed, properties can be adjusted, and the object can be opened again. Calling methods
that require a connection while the Connection object is closed generates an error.

Closing a Connection object that one or more Recordset objects were created from causes
those Recordset objects to close as well. All pending changes are lost. If there is a
pending transaction, an error occurs.

Closing a Connection object does not remove it from memory, it only frees the resources that it is
using. To remove the Connection object from memory in Visual Basic, set it to Nothing.

Connection.CommandTimeout
Property

(Versions 2.0,
2.1, 2.5, 2.6)

connection.CommandTimeout = timeout

The CommandTimeout property indicates how long ADO waits before it generates an
error when executing a particular command.

Datatype

Long

Description

The CommandTimeout property is read- and write-enabled. By using the CommandTimeout
property, you can specify how long ADO will wait for a command to execute. The setting for the
CommandTimeout property is represented in seconds, and the default value is 30. By setting this
property to zero, you are allowing ADO to wait indefinitely for a specified command to execute.
If a command does time out, an error will be generated.

The CommandTimeout property of the Command object is unrelated to the
CommandTimeout property of the Connection object.

The Connection object's CommandTimeout is read- and write-enabled even when the
Connection object is open.

IT-SC book 324

Note

Not all providers support the CommandTimeout property.

Connection.CommitTrans
Method

(Versions 2.0, 2.1,
2.5, 2.6)

See the Connection.BeginTrans Method.

Connection.CommitTransComplete
Event

(Versions 2.0,
2.1, 2.5, 2.6)

Private Sub CommitTransComplete(ByVal pError As
ADODB.Error, _
 adStatus As
ADODB.EventStatusEnum, _
 ByVal pConnection
As ADODB.Connection)

The CommitTransComplete event is raised after the CommitTrans method completes its
operation.

Arguments

pError

An Error object containing details about an error that occurred if the adStatus parameter is set
to adStatusErrorsOccurred.
adStatus

An EventStatusEnum value indicating the status of the current operation. If the adStatus
parameter is set to adStatusOK, the operation was successful. If the adStatus parameter is set
to adStatusErrorsOccurred, the operation failed, and the pError object contains the details
regarding the error. By setting the adStatus parameter to adStatusUnwantedEvent, this
event will not be called again.
pConnection

The Connection object that fired this event.

See Also

Connection.BeginTransComplete Event, Connection.CommitTrans Method,
Connection.RollbackTransComplete Event, EventStatusEnum Enumeration

IT-SC book 325

Connection.ConnectComplete
Event

(Versions 2.0, 2.1,
2.5, 2.6)

Private Sub ConnectComplete(ByVal pError As
ADODB.Error, _
 adStatus As
ADODB.EventStatusEnum, _
 ByVal pConnection As
ADODB.Connection)

The ConnectComplete event is raised once a connection has been made.

Arguments

pError

An Error object containing details about an error that occurred if the adStatus parameter is set
to adStatusErrorsOccurred.
adStatus

An EventStatusEnum value indicating the status of the current operation. If the adStatus
parameter is set to adStatusOK, the operation was successful. If the adStatus parameter is set
to adStatusErrorsOccurred, the operation failed, and the pError object contains the details
regarding the error. If the adStatus parameter is set to adStatusUnwantedEvent, this event
will not be called again.
pConnection

The Connection object that fired this event.

See Also

Connection.Disconnect Event, Connection.WillConnect Event, ConnectOptionEnum
Enumeration, EventStatusEnum Enumeration

Connection.ConnectionString
Property

(Versions 2.0,
2.1, 2.5, 2.6)

connection.ConnectionString = connectionstring

The ConnectionString property defines the connection used to access a data source.

Datatype

String

IT-SC book 326

Description

The ConnectionString property indicates the data source to be used by your connection. You may
pass either a DSN (data source name) or a detailed connection string, which is a list of arguments.
The arguments must be in the form of argument=value, with multiple arguments separated by a
semicolon. If ADO finds an equal sign in the ConnectionString property, it assumes that you are
passing a detailed connection string.

Arguments

The three supported arguments are listed next. If you pass additional arguments, they are
passed directly to the data provider and are not checked by ADO:
Provider

Specifies the name of the data provider to use for the particular connection.
Filename

Specifies the name of a data provider-specific file containing connection information. This
argument cannot be used with the Provider argument.
URL

Identifies the absolute URL of a file or directory.

The contents of the ConnectionString property can be altered by ADO at any time after
opening the Connection object, so read the property if you are unsure of its contents.

If the ConnectionString argument was used in the Open method of the Connection object,
the value is placed within the ConnectionString property of the Connection object.

While the Connection object is open, the ConnectionString is read-only, but when it is
closed, it is both read- and write-enabled.

See Also

Connection.Open Method

Connection.ConnectionTimeout
Property

(Versions 2.0,
2.1, 2.5, 2.6)

connection.ConnectionTimeout = timeout

The ConnectionTimeout property indicates how long in seconds ADO will wait while
attempting a connection to a data source.

Datatype

IT-SC book 327

Long

Description

By using the ConnectionTimeout property, you can specify how long ADO will wait for
a connection to a data source. The setting for the ConnectionTimeout property is
represented in seconds. By setting this property to zero, you are allowing ADO to wait
indefinitely for a specified connection. If the connection does time out, an error is
generated.

The ConnectionTimeout property is read- and write-enabled while the Connection object
is closed, but read-only once it is opened.

Note

Not all providers support the ConnectionTimeout property.

See Also

Connection.Open Method

Connection.CursorLocation
Property

(Versions 2.0, 2.1,
2.5, 2.6)

connection.CursorLocation = CursorLocationEnum

The CursorLocation property indicates the location of the cursor service.

Datatype

CursorLocationEnum (Long)

Description

The value of the CursorLocation property can be set to one of the valid CursorLocationEnum
values, listed in Appendix E.

The value of the CursorLocation property is both read- and write-enabled. However,
changing the value of this property affects only Connections that are opened after the
value has changed.

See Also

Connection.Open Method

IT-SC book 328

Connection.DefaultDatabase
Property

(Versions 2.0, 2.1,
2.5, 2.6)

connection.DefaultDatabase = database

The DefaultDatabase property indicates the database that is chosen as the default for the
current connection.

Datatype

String

Description

The DefaultDatabase property allows the application to specify which database is the
default for a Connection object.

Unqualified syntax automatically refers to the database specified by the DefaultDatabase
property. Qualifying the object names with the desired database name must be done to
access all other databases.

Note

Not all providers support the DefaultDatabase property. If they do not, they may raise an
error or return an empty String value.

Connection.Disconnect
Event

(Versions 2.0, 2.1, 2.5,
2.6)

Private Sub Disconnect(adStatus As
ADODB.EventStatusEnum, _
 ByVal pConnection As
ADODB.Connection)

The Disconnect event is raised once a connection has ended.

Arguments

adStatus

An EventStatusEnum value indicating the status of the current operation. The adStatus
parameter is always set to adStatusOK when the event is fired. Setting the adStatus parameter
to adStatusUnwantedEvent before leaving the event code means that this event will not be
called again.

IT-SC book 329

pConnection

The Connection object that fired this event.

See Also

Connection.ConnectComplete Event, EventStatusEnum Enumeration

Connection.Errors
Collection

(Versions 2.0, 2.1, 2.5,
2.6)

Set errors = connection.Errors

The Errors collection is a collection of individual errors and warnings that have occurred
for the last operation on the current Connection object.

Datatype

Errors (Collection Object)

Description

The Errors property of the Connection object is read-only. It returns a reference to the
Errors collection object that can contain zero or many Error objects that indicate ADO or
provider-specific errors.

Connection.Execute
Method

(Versions 2.0, 2.1, 2.5,
2.6)

connection.Execute CommandText, RecordsAffected,
Options
Set recordset = connection.Execute(CommandText,
RecordsAffected, Options)

The Execute method is used to execute a specified SQL statement, query, stored
procedure, URL, or provider-specific command against the data source.

Arguments

CommandText (String)

Optional. Contains the SQL statement, query, stored procedure, URL, or provider-specific
command to be executed. The parameter is similar to the Command.CommandText property.

RecordsAffected (Long)

IT-SC book 330

Optional. Contains the number of records that the executed command affected.

Options (Long)

Optional. Represents a combination of one or more CommandTypeEnum and
ExecuteOptionEnum values indicating how the data provider should treat the command. The
default value is -1 (no options set).

The CommandTypeEnum and ExecuteOptionEnum enumeration values are listed in Appendix E.

Returns

RecordsetObject

Description

The Execute method executes the command specified by the CommandText parameter,
which in turn is evaluated based upon the Options parameter. When the execution of the
command is complete, the Connection.ExecuteComplete event is raised.

If the execution of the command returns records, a new Recordset object is returned from
the Execute method. If the execution of the command does not return records, an empty
Recordset object is returned from the Execute method. Regardless, the Recordset
returned is always read-only with a forward-only cursor.

When the Execute method's Options parameter includes one of the adAsyncExecute,
adAsyncFetch, or adAsyncFetchNonBlocking values, operations continue in the
background of the application flow. While these operations are continuing, the
Connection.Cancel method can be called to cancel all pending asynchronous operations.

Note

Although the documentation for ADO 2.6 (beta 2) has specified that the CommandText
arguments and property can be set to a relative URL, I have found that whatever you set
this value to, it is irrelevant. If you wish to obtain the contents of a directory, you must
specify the directory in the ConnectionString property. No matter what you specify as the
CommandText arguments of the Execute method or the CommandText property of the
Connection object, it is ignored. However, if you use an empty String ("") as a value, you
will receive the error "Errors Occurred."

The following example illustrates how the CommandText property value is irrelevant
when calling the Execute method:
Dim con As ADODB.Connection
Dim rec As ADODB.Recordset

Set con = New ADODB.Connection

con.Open "URL=http://jroff_laptop/"

IT-SC book 331

Set rec = con.Execute("nothing really matters")

'
' rec contains contents of jroff_laptop
'

rec.Close
con.Close

Set rec = Nothing
Set con = Nothing

See Also

Connection.Cancel Method, Command.CommandText Property,
Connection.ExecuteComplete Event, CommandTypeEnum Enumeration,
ExecuteOptionEnum Enumeration

Connection.ExecuteComplete
Event

(Versions 2.0, 2.1,
2.5, 2.6)

Private Sub con_ExecuteComplete(ByVal
RecordsAffected As Long, _
 ByVal pError As
ADODB.Error, _
 adStatus As
ADODB.EventStatusEnum, _
 ByVal pCommand As
ADODB.Command, _
 ByVal pRecordset
As ADODB.Recordset, _
 ByVal pConnection
As ADODB.Connection)

The ExecuteComplete event is called when the execution of a command has completed.

Arguments

RecordsAffected (Long)

Indicates how many records are affected by the executed command.

pError (Error)

Contains details about an error that occurred if the adStatus parameter is set to
adStatusErrorsOccurred.

adStatus (EventStatusEnum)

IT-SC book 332

Indicates the status of the current operation. If the adStatus parameter is set to adStatusOK,
the operation was successful. If the adStatus parameter is set to adStatusErrorsOccurred,
the operation failed, and the pError object contains the details regarding the error. If the
adStatus parameter is set to adStatusUnwantedEvent, this event will not be called again.
pCommand

Represents the Command object that was executed (if there was one).
pRecordset

Represents the Recordset object that results from the commands execution. This Recordset object
can be empty.
pConnection

Represents the Connection object that fired this event.

See Also

Connection.Execute Method, Command.Execute Method, Recordset.NextRecordset
Method, Recordset.Open Method, EventStatusEnum Enumeration

Connection.InfoMessage
Event

(Versions 2.0, 2.1, 2.5,
2.6)

Private Sub InfoMessage(ByVal pError As
ADODB.Error, _
 adStatus As
ADODB.EventStatusEnum, _
 ByVal pConnection As
ADODB.Connection)

The InfoMessage event is called when a warning is produced during a ConnectionEvent
operation.

Arguments

pError

An Error object containing details about an error that occurred if the adStatus parameter is set
to adStatusErrorsOccurred.
adStatus

An EventStatusEnum value indicating the status of the current operation. If the adStatus
parameter is set to adStatusOK, the operation was successful. If the adStatus parameter is set
to adStatusErrorsOccurred, the operation failed, and the pError object contains the details
regarding the error. If the adStatus parameter is set to adStatusUnwantedEvent, this event
will not be called again.

IT-SC book 333

pRecordset

The Recordset object that fired this event.

See Also

EventStatusEnum Enumeration

Connection.IsolationLevel
Property

(Versions 2.0, 2.1,
2.5, 2.6)

connection.IsolationLevel = IsolationLevelEnum

The IsolationLevel property is used to set the level of isolation used when utilizing
transaction management.

Datatype

IsolationLevelEnum (Long)

Description

The IsolationLevel property is both read- and write-enabled. If the value of this property
is changed, the effects will not take place until you call the BeginTrans method. If the
level of isolation requested couldn't be granted by the data provider, then the next level
may be set automatically.

The IsolationLevel property can be set to one of the IsolationLevelEnum enumerations listed in
Appendix E.

See Also

Connection.BeginTrans Method, IsolationLevelEnum Enumeration

Connection.Mode
Property

(Versions 2.0, 2.1, 2.5,
2.6)

connection.Mode = ConnectModeEnum

The Mode property identifies the available permissions for modifying data within the
specified connection.

Datatype

IT-SC book 334

ConnectModeEnum (Long)

Description

The Mode property is read- and write-enabled while the Connection object is closed, but
read-only once it is opened.

The Mode property can be set to one of the ConnectModeEnum enumerations listed in Appendix
E.

Connection.Open Method (Versions 2.0, 2.1, 2.5, 2.6)

connection.Open ConnectionString, UserID,
Password, Options

The Open method for the Connection object opens a connection to a particular data
source. The Open method for the Recordset object opens a cursor.

Arguments

ConnectionString (String)

Optional. Contains the information needed for ADO to connect to the data provider. This property
is mapped to the Connection.ConnectionString property.

UserID (String)

Optional. Contains a username that is used to establish the desired connection.

Password (String)

Optional. Contains a password that is used to establish the desired connection.

Options (Long)

Optional. Represents a ConnectOptionEnum enumeration value. Currently, the only defined value
for the ConnectOptionEnum enumeration is adAsyncConnect (16) which instructs ADO to
connect to the data source asynchronously. The default value is -1 (no options set).

Description

The Open method establishes a connection with a data provider. Once a connection is
established, you can issue commands against the data provider and obtain information
from the data source.

The connection to a data provider can be established asynchronously by passing the
adConnectAsync value to the Options parameter of the Open method. Once the operation has
started, the application can call the Connection.Cancel method to cancel the pending
asynchronous connection if the application has determined that the connection is taking too long.

IT-SC book 335

The connection to the data provider is defined by the value of the ConnectionString parameter. In
addition, the UserName and Password parameters authenticates the user within the data provider.
It is possible to set the UserName and Password values in both the ConnectionString and as
parameters to the Open method. In such a case, the parameters will override those specified in the
ConnectionString property.

The ConnectionString parameter overwrites any value previously set to the
Connection.ConnectionString property. In most cases, the ConnectionString property
contains more detailed information about the connection then you would pass through the
ConnectionString parameter of the Open method. You can read the ConnectionString
property to see this added detail.

The ConnectionString parameter, like the ConnectionString property, is constructed of a services
of argument=value statements separated by semicolons. The arguments that are used within the
ConnectionString parameter (and property) are completely dependent upon the data provider to
which you are connecting.

The Connection.Close method is used to close an opened Connection object once the application
is done with it. A Connection object that is closed can be altered and reopened again. To remove
the Connection object from memory in Visual Basic, set it to Nothing.

See Also

Connection.Cancel Method, Connection.Close Method, Connection.ConnectionString
Property, ConnectModeEnum Enumeration, ConnectOptionEnum Enumeration

Connection.OpenSchema (Versions 2.0, 2.1, 2.5, 2.6)

Set recordset = connection.OpenSchema(Schema,
Criteria, SchemaID)

The OpenSchema method returns a Recordset object containing information about the
data source's schema.

Arguments

Schema (SchemaEnum)

Indicates the type of schema the OpenSchema method will provide in the returned Recordset
object.

SchemaEnum contains the enumeration values listed in Table F-1.
Criteria (Variant Array)

Optional. Indicates which constraint columns to use for the Schema requested. A list of each
available constraint column for each schema type is listed in Table G-1.

SchemaID (Long)

IT-SC book 336

Optional. Represents a GUID of a provider-specific schema query. If the Schema parameter is set
to adSchemaProviderSpecific (-1), then this parameter is mandatory; otherwise, it is not
used.

Description

The OpenSchema method is used to obtain information about a data source's structure --
its schema.

By setting the Schema parameter to a SchemaEnum value, ADO can determine which
information the application is requesting. In addition, the Criteria parameter can be set to
narrow the search. For instance, by passing the adSchemaTables enumeration value, the
OpenSchema method will only return the table names.

Some providers may support their own schema query types. To use this feature, set the Schema
parameter to adSchemaProviderSpecific, and set the SchemaID parameter to the GUID of
the provider-specific schema query. If the Schema parameter is set to the
adSchemaProviderSpecific value and the SchemaID parameter is not specified, an error
will occur.

Not all providers will support all of the schema queries defined in Table G-1. As a matter
of fact, only the adSchemaTables, adSchemaColumns, and adSchemaProviderTypes
schema queries are supported by all providers. But this still does not guarantee that any of
the constraint columns are supported.

See Also

SchemaEnum Enumeration

Connection.Properties
Collection

(Versions 2.0, 2.1,
2.5, 2.6)

Set properties = connection.Properties

The Properties collection contains characteristics specific to the Connection object for the
currently used provider.

Datatype

Properties (Collection Object)

Description

The Properties collection class contains a Property class instance for each property
specific to the Connection object for the data provider.

IT-SC book 337

The Properties collection of the Connection object contains only the following properties
until the Connection is opened:

Password

Persist Security Info

User ID

Data Source

Window Handle

Location

Mode

Prompt

Connect Timeout

Extended Properties

Locale Identifier

Initial Catalog

OLE DB Services

General Timeout

Connection.Provider
Property

(Versions 2.0, 2.1, 2.5,
2.6)

connection.Provider = provider

The Provider property indicates the name of the data provider for the current Connection
object.

Datatype

String

Description

The Provider property sets the provider for the current Connection object. It can also be
specified in the ConnectionString property of the Connection object or the
ConnectionString argument to the Open method of the Connection object. It is

IT-SC book 338

recommended that the provider be specified in only one of these places, however,
because the results can be unpredictable.

The Provider property of the Connection object is read- and write-enabled when the
associated Connection object is closed, but read-only once it is open.

The Provider property is not used until the Connection object is opened or the Properties
collection of the Connection object is used.

If no provider is specified, ADO will default to MSDASQL, the Microsoft ODBC Provider for OLE
DB.

See Also

Connection.ConnectionString Property, Connection.Open Method

Connection.RollbackTrans
Method

(Versions 2.0, 2.1,
2.5, 2.6)

See the Connection.BeginTrans Method.

Connection.RollbackTransComplete
Event

(Versions 2.0,
2.1, 2.5, 2.6)

Private Sub con_RollbackTransComplete(ByVal pError
As ADODB.Error, _
 adStatus As
ADODB.EventStatusEnum, _
 ByVal
pConnection As ADODB.Connection)

The RollbackTransComplete event is raised after the RollbackTrans method has completed its
operation.

Arguments

pError

An Error object containing details about an error that occurred if the adStatus parameter is set
to adStatusErrorsOccurred.
adStatus

IT-SC book 339

An EventStatusEnum value indicating the status of the current operation. If the adStatus
parameter is set to adStatusOK, the operation was successful. If the adStatus parameter is set
to adStatusErrorsOccurred, the operation failed, and the pError object contains the details
regarding the error. If the adStatus parameter is set to adStatusUnwantedEvent, this event
will not be called again.
pConnection

The Connection object that fired this event.

See Also

Connection.BeginTransComplete Event, Connection.CommitTransComplete Event,
Connection.RollbackTrans Method, EventStatusEnum Enumeration

Connection.State
Property

(Versions 2.0, 2.1, 2.5,
2.6)

state = connection.State

The State property indicates the current status of a Command, Connection, Record, Recordset, or
Stream object.

Datatype

ObjectStateEnum (Long)

Description

The State property returns a combination of the ObjectStateEnum values, listed in Appendix E,
which indicate the current state of an object.

See Also

ObjectStateEnum Enumeration

Connection.Version
Property

(Versions 2.0, 2.1, 2.5,
2.6)

version = connection.Version

The Version property indicates the current version of ADO in use.

Datatype

String

IT-SC book 340

Description

The Version property returns the version information for the version of ADO that you are using in
your application, in the form of a String.

Connection.WillConnect
Event

(Versions 2.0, 2.1, 2.5,
2.6)

Private Sub WillConnect(ConnectionString As
String, _
 UserID As String, _
 Password As String, _
 Options As Long, _
 adStatus As
ADODB.EventStatusEnum, _
 ByVal pConnection As
ADODB.Connection)

The WillConnect event is raised before a connection is made.

Arguments

ConnectionString (String)

Contains the connection information for the awaiting connection operation.

UserID (String)

Contains the username for the awaiting connection operation.

Password (String)

Contains the password for the awaiting connection operation.

Options (Long)

Indicates how the ConnectionString parameter should be evaluated. For this parameter, the only
valid value is adAsyncOpen.

adStatus (EventStatusEnum)

Indicates the status of the current operation. The adStatus parameter is set to adStatusOK if
the operation causing this event was successful. If the adStatus parameter is set to
adStatusCantDeny, the event cannot request that the operation be canceled. If the adStatus
parameter is set to adStatusUnwantedEvent, this event will not be called again. If the
adStatus parameter is set to adStatusCancel, a cancelation request will be made for this
operation.
pConnection

IT-SC book 341

Represents the Connection object that fired this event.

Note

The ConnectionString, UserID, and Password parameters can be changed by the
application within this event before the operation finishes execution.

See Also

Connection.ConnectComplete Event, EventStatusEnum Enumeration

Connection.WillExecute
Event

(Versions 2.0, 2.1, 2.5,
2.6)

Private Sub WillExecute(Source As String, _
 CursorType As
ADODB.CursorTypeEnum, _
 LockType As
ADODB.LockTypeEnum, _
 Options As Long, _
 adStatus As
ADODB.EventStatusEnum, _
 ByVal pCommand As
ADODB.Command, _
 ByVal pRecordset As
ADODB.Recordset, _
 ByVal pConnection As
ADODB.Connection)

The WillExecute event is raised before an execution of a command has begun.

Arguments

Source (String)

Contains the source of the command that is to be executed. This value is usually a SQL statement
or a stored procedure name.

CursorType (CursorTypeEnum)

Indicates the type of Recordset object that will be opened. This value can be changed within the
event to change the type of cursor that gets used when the Recordset.Open method is called. This
parameter is ignored for any other method that causes this event.

LockType (LockTypeEnum)

Indicates the locking scheme that will be used when the Recordset object is opened. This value
can be changed within the event to change the locking scheme that gets used when the

IT-SC book 342

Recordset.Open method is called. This parameter is ignored for any other method that causes this
event.

Options (Long)

Indicates any other options used to execute the command or open the recordset.

adStatus (EventStatusEnum)

Indicates the status of the current operation. The adStatus parameter is set to adStatusOK if
the operation causing this event was successful. If the adStatus parameter is set to
adStatusCantDeny, the event cannot request that the operation be canceled. If the adStatus
parameter is set to adStatusUnwantedEvent, this event will not be called again. By setting the
adStatus parameter to adStatusCancel, a cancelation request will be made for this operation.
pCommand

Represents the Command object to which this event applies. Set to Nothing if this event was
raised because of a Connection.Execute method or a Recordset.Open method.
pRecordset

Represents the Recordset object to which this event applies. Set to Nothing if this event was
raised because of a Connection.Execute method or a Command.Execute method.
pConnection

Represents the Connection object that fired this event.

See Also

Connection.Execute Method, Command.Execute Method, Recordset.Open Method,
EventStatusEnum Enumeration, LockTypeEnum Enumeration

Error Object

Dim error As ADODB.Error

The Error object contains information regarding a particular error or warning that was raised by a
data provider during an ADO operation.

Applies To

Errors

Contains one or more Error objects that hold information about errors or warnings raised by ADO
during an operation.

Properties

Description

IT-SC book 343

Describes the error or warning either ADO or the data provider has generated.

HelpContext

Indicates the topic within a help file for a particular error within an Error object.

HelpFile

Indicates the name of a help file that contains a topic for a particular error within an Error object.

NativeError

Returns the error code supplied by the data provider for the current Error object.

Number

Uniquely identifies the error specified by the current Error object.

Source

Returns the name of an object or application that generated an error within ADO.

SQLState

Returns the SQL state of the current Error object.

Description

It is important to remember that these errors are not ADO errors, but rather data-provider errors.
ADO errors are reported by the development languages default error-handling mechanism (in
Visual Basic, this is the On Error statement and the Err object).

When a data provider reports an error for a single ADO operation, ADO clears the contents of the
Errors collection and populates the collection with an Error object for each error or warning. Data
providers can generate warnings, but they do not halt the execution of an operation.

Because the Errors collection is cleared by ADO only when a new error or warning is generated,
it is a good idea to call the Errors.Clear method (to remove all Error objects from the collection)
before calling an ADO member that can cause an error or warning, such as
Recordset.CancelBatch, Recordset.Filter, Recordset.Resync, Recordset.UpdateBatch, or
Connection.Open.

Examples

Example 13-8 generates an ADO error (reported by VB) and a data-provider error (reported
through the Errors collection).

Example 13-8. Error Reporting

Public Sub ErrorExample()
On Error GoTo ErrorHandler

 Dim con As ADODB.Connection
 Dim ero As ADODB.Error

IT-SC book 344

 Dim sMes As String

 Set con = New ADODB.Connection
 con.Open "DSN=MissingDSN"

 '
 ' process flow will never get here
 '

Exit Sub

ErrorHandler:

 sMes = "Error Number:" & vbTab & Err.Number & vbCr _
 & "Source:" & vbTab & vbTab & Err.Source & vbCr _
 & "Last DLL Error:" & vbTab & Err.LastDllError & vbCr _
 & "Description:" & vbCr & vbCr & Err.Description

 MsgBox sMes, _
 vbCritical + vbMsgBoxHelpButton, _
 "VB/ADO Error", _
 Err.HelpFile, _
 Err.HelpContext

 For Each ero In con.Errors
 sMes = "Error Number:" & vbTab & ero.Number & vbCr _
 & "Source:" & vbTab & vbTab & ero.Source & vbCr _
 & "SQL State:" & vbTab & ero.SQLState & vbCr _
 & "Native Error:" & vbTab & ero.NativeError & vbCr _
 & "Description:" & vbCr & vbCr & ero.Description & vbCr

 MsgBox sMes, _
 vbCritical + vbMsgBoxHelpButton, _
 "Data Provider Error", _
 ero.HelpFile, _
 ero.HelpContext

 Next ero

 Set con = Nothing

End Sub

Error.Description
Property

(Versions 2.0, 2.1, 2.5,
2.6)

description = error.Description

The Description property describes the error or warning either ADO or the data provider has
generated.

Datatype

IT-SC book 345

String

Description

The Description property of the Error object is read-only. It offers error or warning information in
a String form so that you can notify the user of your application that an error or warning has
occurred.

The value of the Description property can come from either ADO or the provider.

Error.HelpContext Property
Error.HelpFile Property

(Versions 2.0, 2.1, 2.5,
2.6) (Versions 2.0, 2.1,

2.5, 2.6)

helpcontext = error.HelpContext
helpfile = error.HelpFile

The HelpContext and HelpFile properties indicate the topic and the name, respectively, of a
particular error within an Error object.

Datatype

Long (HelpContext Property)
String (HelpFile Property)

Description

The HelpFile property contains a fully qualified path to a Windows Help file.

The HelpContext property automatically displays a Help topic from the Windows Help file that is
indicated through the HelpFile property.

If no Help topic is relevant to the generated error, the HelpContext property returns zero, and the
HelpFile property returns an empty string ("").

Error.NativeError
Property

(Versions 2.0, 2.1, 2.5,
2.6)

nativeerror = error.NativeError

The NativeError property returns the error code supplied by the data provider for the current
Error Object.

Datatype

Long

IT-SC book 346

Description

Use this property to retrieve error codes that pass from the data source to the data provider and
then to ADO.

Error.Number Property (Versions 2.0, 2.1, 2.5, 2.6)

number = error.Number

The Number property is used to uniquely identify the error specified by the current Error object.

Datatype

Long or ErrorValueEnum (Long)

Description

The value of the Number property is a unique number that describes an error that has occurred.
The value can be one of the ErrorValueEnum enumeration values shown in Table E-18.

See Also

ErrorValueEnum Enumeration

Error.Source Property (Versions 2.0, 2.1, 2.5, 2.6)

source = error.Source

The Source property returns the name of an object or application that generated an error within
ADO.

Datatype

The Error object returns a String.

Description

For the Errors object, the Source property indicates the name of the object or application that
originally generated an error within ADO.

ADO errors will have a source value beginning with the value ADODB. followed by the name of
the object that generated the error.

Error.SQLState Property (Versions 2.0, 2.1, 2.5, 2.6)

IT-SC book 347

sqlstate = error.SQLState

The SQLState property returns the SQL state of the current Error object.

Datatype

String (five characters)

Description

Use this property to retrieve the five-character error code that the data provider returns to ADO
when an error occurs processing a SQL statement. These error codes should be ANSI SQL
standard, but they may not be, depending on the particular data provider.

Errors Collection (Versions 2.0, 2.1, 2.5, 2.6)

Set errors = connection.Errors

See the Error Object for more information and examples pertaining to the Errors collection.

Objects

Error

Contains information regarding a particular error or warning that was raised by ADO during an
operation.

Methods

Clear

The Clear method erases all errors stored in the Errors collection.

Refresh

The Refresh method of the Errors collection is an undocumented method of ADO that has been
around since Version 2.0.

Properties

Count

Indicates how many Error objects belong to the associated Errors collection.

Item

Accesses a particular Error object belonging to the Errors collection.

IT-SC book 348

Errors.Clear Method (Versions 2.0, 2.1, 2.5, 2.6)

errors.Clear

The Clear method erases all errors stored in the Errors collection.

Description

The Clear method clears the current collection of ADO errors. When a new runtime error is
generated, the Errors collection is automatically cleared and then populated with the error
information.

Use the Clear method when you are going to make calls to a Recordset object that might return
multiple warnings. These calls include Delete, Resync, UpdateBatch, and CancelBatch. Once you
have made any of these calls, after clearing the Errors collection, you can determine whether any
warnings were generated by the call in question.

See Also

Recordset.CancelBatch Method, Recordset.Delete Method, Recordset.Resync Method,
Recordset.UpdateBatch Method

Errors.Count Property (Versions 2.0, 2.1, 2.5, 2.6)

count = errors.Count

The Count property indicates how many Error objects belong to the associated Errors collection.

Datatype

Long

Description

If the value of the Count property is zero, there are no Error objects within the associated Errors
collection. However, Error objects that do belong to the associated Errors collection are indexed
from 0 to one less than the value of the Count property.

Errors.Item Property (Versions 2.0, 2.1, 2.5, 2.6)

Set error = errors.Item(Index)
Set error = errors (Index)

The Item property accesses a particular Error object belonging to the Errors collection.

IT-SC book 349

Datatype

Error object

Description

The Index placeholder represents a Variant datatype that represents the ordinal position of an
Error object within the Errors collection. If the Errors collection does not contain the item
requested, an error is generated.

Note

Some languages do not support the Item property in its first syntax. For these languages, use the
second syntax, without the Item method name.

Errors.Refresh Method (Versions 2.0, 2.1, 2.5, 2.6)

errors.Refresh

The Refresh method of the Errors collection is an undocumented method of ADO that has been
around since Version 2.0.

Description

The Errors.Refresh method appears to requery for errors within ADO.

Field Object (Versions 2.0, 2.1, 2.5, 2.6)

Dim field As ADODB.Field

The Field object represents an individual column within a Recordset or a Record object's Fields
collection. A Field contains metadata properties that define its datatype, size, and precision.

Applies To

Fields

Contains a group of Field objects that represent the fields of the current record in an open
Recordset object.

Collections

Properties

Contains characteristics specific to the Field object for the currently used provider.

IT-SC book 350

Methods

AppendChunk

Appends data to a large data or binary field.

GetChunk

Returns the specified number of bytes or characters from the specified field.

Properties

ActualSize

Returns the actual length of a field's value.

Attributes

Sets or returns specific characteristics about the Field object.

DataFormat

The DataFormat property for the Field object is not documented at all in the ADO help files --
however, the DataFormat property is used in other Microsoft objects outside of ADO.

DefinedSize

Represents the size, in bytes, of the capacity of a Field object's datatype.

Name

Specifies the name for the current Field object.

NumericScale

Indicates the scale of numeric values in the current Field object.

OriginalValue

Returns the value that belonged to a field before any changes were made to it.

Precision

Represents the degree of precision of a numeric value within the current Field object.

Status

Indicates the status of the current Field object.

Type

Indicates the datatype of the Field's Value property.

UnderlyingValue

Returns the current value of the Field object's Value property.

Value

IT-SC book 351

Indicates the value assigned to the current Field object.

Description

A Field object can be used to inspect the value of data within the current row in a Recordset or
the row represented by the Record object.

For a Record object, the Fields collection contains two special fields. The first is the URL of the
resource that is represented by the Record object, and the second is the default stream for the
Record object.

The Fields collection can be used to add or remove fields with the Append and Delete method
and can be finalized with the Update method. Attempting to access fields that do not exist causes
ADO to append the field to the collection to await a call to Update.

Examples

In this section, we will be looking at three examples that will show us how to:

Examine a Field object's attributes.

Use long datatypes, such as Memo, with the Field object.

Add Field objects to a Recordset object without a data source.

Before we begin looking at the Field examples for this section, we define the following
connection string Const value so that the examples will work properly:
Private Const DATASOURCE_BIBLIO = "Provider=Microsoft.Jet.OLEDB.4.0; "
_
 & "Data Source=C:\Program Files\" _
 & "Microsoft Visual
Studio\VB98\Biblio.mdb;"

Now that we have this constant defined, we can begin to look at some examples. Example 13-9
displays the information for each of the Field objects in a Fields collection of a Recordset object.

Example 13-9. Examining a Field Object's Attributes

Dim con As ADODB.Connection
Dim rst As ADODB.Recordset
Dim fld As ADODB.Field

Dim sMes As String

'
' open an external Connection object
'
Set con = New ADODB.Connection
con.Open DATASOURCE_BIBLIO

'
' obtain a recordset with data

IT-SC book 352

'
Set rst = con.Execute("SELECT * FROM Authors;")

'
' display the names of the fields within the Recordset object
'
sMes = ""
For Each fld In rst.Fields
 sMes = sMes & fld.Name & vbCr
Next fld

MsgBox "Field names:" & vbCr & vbCr & sMes

'
' display the values of the fields for the first record
'
sMes = ""
For Each fld In rst.Fields
 sMes = sMes & fld.Name & ": " & vbTab & fld.Value & vbCr
Next fld

MsgBox "The values for the first record's fields are: " _
 & vbCr & vbCr & sMes

'
' clean up
'
rst.Close
con.Close

Set rst = Nothing
Set con = Nothing

Example 13-10 illustrates how you can use the Field object's AppendChunk and GetChunk
methods to read and write to columns that have a long datatype, such as Memo.

Example 13-10. Using Long Datatypes with the Field Object

Dim con As ADODB.Connection
Dim rst As ADODB.Recordset
Dim fld As ADODB.Field

Dim sMes As String
Dim sChunk As String

'
' open an external Connection object
'
Set con = New ADODB.Connection
con.Open DATASOURCE_BIBLIO

'
' obtain a recordset with data
'
Set rst = New ADODB.Recordset
rst.Open "Publishers", con, adOpenDynamic, adLockPessimistic

IT-SC book 353

'
' use the AppendChunk method to add to a Long type field
'
rst.MoveFirst
rst.Fields.Item("Comments").AppendChunk "This is the first piece."
rst.Fields.Item("Comments").AppendChunk "This is the second piece."
rst.Fields.Item("Comments").AppendChunk "This is the third piece."
rst.Fields.Item("Comments").AppendChunk "This is the fourth piece."
rst.Fields.Item("Comments").AppendChunk "This is the fifth piece."
rst.Update

rst.MoveFirst

'
' now read the Long type field, one chunk at a time
'
sMes = rst.Fields.Item("Comments").GetChunk(10)
MsgBox "The first chunk is: '" & sMes & "'"

sMes = rst.Fields.Item("Comments").GetChunk(10)
MsgBox "The second chunk is: '" & sMes & "'"

sMes = rst.Fields.Item("Comments").GetChunk(10)
MsgBox "The third chunk is: '" & sMes & "'"

sChunk = rst.Fields.Item("Comments").GetChunk(10)
While (sChunk <> "")
 sMes = sMes & sChunk
 sChunk = rst.Fields.Item("Comments").GetChunk(10) & ""
Wend
sMes = sMes & sChunk

MsgBox "The remaining data is: '" & sMes & "'"

'
' clean up
'
rst.Close
con.Close

Set rst = Nothing
Set con = Nothing

Example 13-11 shows how Field objects can be added to a Recordset object that has been
instantiated without a connection to a physical data source. After the Fields are appended, the
Recordset object is populated with three rows and then saved to an XML file.

Example 13-11. Adding Field Objects to a Recordset Object

Dim rst As ADODB.Recordset
Dim fld As ADODB.Field

'
' create a new Recordset object
'

IT-SC book 354

Set rst = New ADODB.Recordset

MsgBox "There are " & CStr(rst.Fields.Count) & " fields."

'
' add four fields to it dynamically
'
rst.Fields.Append "FirstField", adChar, 20
rst.Fields.Append "SecondField", adBoolean
rst.Fields.Append "ThirdField", adInteger
rst.Fields.Append "FourthField", adBinary, 10
MsgBox "There are " & CStr(rst.Fields.Count) & " fields."

'
' remove one of the fields
'
rst.Fields.Delete 3
MsgBox "There are " & CStr(rst.Fields.Count) & " fields."

rst.Open

'
' add three records
'
rst.AddNew
rst.Fields("FirstField").Value = "Jason T. Roff"
rst!SecondField = True
rst.Fields(2) = 27
rst.Update

rst.AddNew
rst.Fields("FirstField").Value = "Kimberly A. Roff"
rst!SecondField = True
rst.Fields(2) = 25
rst.Update

rst.AddNew
rst.Fields("FirstField").Value = "??? Roff"
rst!SecondField = True
rst.Fields(2) = 0
rst.Update

'
' save the data to an XML file
'
rst.Save "Data.xml", adPersistXML

'
' clean up
'
rst.Close

Set rst = Nothing

In the previous example, numerous ways of accessing a Field object from the Recordset object
are shown. Example 13-11 produces the following XML file:

IT-SC book 355

<xml xmlns:s='uuid:BDC6E3F0-6DA3-11d1-A2A3-00AA00C14882'
 xmlns:dt='uuid:C2F41010-65B3-11d1-A29F-00AA00C14882'
 xmlns:rs='urn:schemas-microsoft-com:rowset'
 xmlns:z='#RowsetSchema'>
<s:Schema id='RowsetSchema'>
 <s:ElementType name='row' content='eltOnly' rs:updatable='true'>
 <s:AttributeType name='FirstField' rs:number='1'
rs:write='true'>
 <s:datatype dt:type='string' rs:dbtype='str'
dt:maxLength='20' rs:
precision='0' rs:fixedlength='true' rs:maybenull='false'/>
 </s:AttributeType>
 <s:AttributeType name='SecondField' rs:number='2'
rs:write='true'>
 <s:datatype dt:type='boolean' dt:maxLength='2'
rs:precision='0' rs:
fixedlength='true' rs:maybenull='false'/>
 </s:AttributeType>
 <s:AttributeType name='ThirdField' rs:number='3'
rs:write='true'>
 <s:datatype dt:type='int' dt:maxLength='4' rs:precision='0'
rs:
fixedlength='true' rs:maybenull='false'/>
 </s:AttributeType>
 <s:extends type='rs:rowbase'/>
 </s:ElementType>
</s:Schema>
<rs:data>
 <rs:insert>
 <z:row FirstField='Jason T. Roff ' SecondField='True'
ThirdField='27'/>
 <z:row FirstField='Kimberly A. Roff ' SecondField='True'
ThirdField='25'/>
 <z:row FirstField='??? Roff ' SecondField='True'
ThirdField='0'/>
 </rs:insert>
</rs:data>
</xml>

Field.ActualSize Property (Versions 2.0, 2.1, 2.5, 2.6)

actualsize = field.ActualSize

The ActualSize property returns the actual length of a field's value.

Datatype

Long

Description

The ActualSize property returns a number indicating how many bytes are stored in the specified
field, as opposed to the maximum number of bytes allowed (indicated through the DefinedSize

IT-SC book 356

property). If the length of the Field object's value cannot be determined by ADO, adUnknown is
returned.

See Also

Field.DefinedSize Property

Field.AppendChunk (Versions 2.0, 2.1, 2.5, 2.6)

field.AppendChunk Data

The AppendChunk method is used to append data to a large data or binary field.

Arguments

Data (Variant)

Contains the large amount of data that you wish to append to the current Field object.

Description

The AppendChunk method appends large amounts of either text or binary data to an existing
Field object. This can come in very useful when the current system contains limited system
memory with regard to the amount needed for the operation to be performed. With the
AppendChunk method, you can add the data to your Field object in increments as you see fit.

You can use the AppendChunk method with a Field object only if the adFldLong bit of the
Arguments property of that Field object is set to True.

By calling the AppendChunk method for the first time, you overwrite any data that may already
be in that field. With each additional call to the AppendChunk method, the data is appended to
the end of the pre-existing data. ADO assumes that you are finished appending to a particular
field in a recordset if you then read or write data in another field in the same recordset. What this
means is that if you call the AppendChunk method again on the original field, the data is once
again cleared, as if it were the first call to the method. Reading or writing data in another
Recordset object will not cause this action to occur, unless it is a clone of the original Recordset
object.

See Also

Field.Attributes Property, FieldAttributeEnum Enumeration

Field.Attributes Property (Versions 2.0, 2.1, 2.5, 2.6)

field.Attributes = attributes

IT-SC book 357

The Attributes property sets or returns specific characteristics about the Field object.

Datatype

Long

Description

The Attributes property is read-only; it can be a sum of the values from the FieldAttributesEnum
enumeration listed in Appendix E indicating the characteristics of the Field object, such as
whether it is updatable or represents a row identifier.

See Also

FieldAttributesEnum Enumeration

Field.DataFormat
Property

(Versions 2.0, 2.1, 2.5, 2.6) The
DataFormat property links the
current Field object to a data-

bound control.

Datatype

StdDataFormat

Description

The DataFormat property is both read- and write-enabled. It accepts and returns a StdDataFormat
object that is used to attach a bound object.

The DataFormat property for the Field object is not documented at all in
the ADO help files -- however, the DataFormat property is used in other
Microsoft objects outside of ADO.

Field.DefinedSize
Property

(Versions 2.0, 2.1, 2.5,
2.6)

definedsize = field.DefinedSize

The DefinedSize property represents the size, in bytes, of the capacity of a Field object's datatype.

Datatype

IT-SC book 358

Long

Description

The DefinedSize property is used to determine the data capacity of a Field object's Value property,
in bytes. This property differs from the ActualSize property, which indicates how many bytes of
the defined datatype size are actually being used.

See Also

Field.ActualSize Property

Field.GetChunk Method (Versions 2.0, 2.1, 2.5, 2.6)

Set value = field.GetChunk(NumBytes)

The GetChunk method returns the specified number of bytes or characters from the specified field.

Arguments

NumBytes

The NumBytes parameter is a Long value representing the number of bytes or characters that you
want to receive.

Returns

Variant

Description

The GetChunk method gets pieces of information from a Field object that belongs to a Fields
collection of an open Recordset object. If the Arguments property of the Field object is set to
adFldLong, you can use the GetChunk method on that field.

The first call to GetChunk retrieves the number of bytes specified in the method call, from the
beginning of the field. All subsequent calls to GetChunk will return data starting from where the
last call to GetChunk left off. If the amount of bytes or characters in the Field object is fewer than
the amount that you requested, only the remainder is returned without padding for the difference.

When you read or write to another field within the same Recordset object (one that is not a clone
of that recordset), ADO assumes that you are done retrieving chunks from that particular Field
object. The next call to GetChunk will perform as if it were the first, retrieving the first number of
bytes or characters that you request.

See Also

IT-SC book 359

Field.Arguments Property

Field.Name Property (Versions 2.0, 2.1, 2.5, 2.6)

Set value = field.GetChunk(NumBytes)

The Name property specifies the name for the current Field object.

Datatype

String

Description

The Name property retrieves a Field object from the Fields collection. Names do not have to be
unique within collections.

Field.NumericScale
Property

(Versions 2.0, 2.1, 2.5,
2.6)

field.NumericScale = numericscale

The NumericScale property indicates the scale of numeric values in the current Field object.

Datatype

Byte

Description

The read-only NumericScale property identifies how many bytes are used to the right of the
decimal point for a Field object containing a numeric value.

Field.OriginalValue
Property

(Versions 2.0, 2.1, 2.5,
2.6)

originalvalue = field.OriginalValue

The OriginalValue property returns the value that belonged to a field before any changes were
made to it.

Datatype

Variant

IT-SC book 360

Description

In Immediate mode, the OriginalValue property returns the value of a field in the current record
before any changes were made to it. In other words, the OriginalValue property is the value of the
field when the last Update method was called. This is the value that is replaced in the Field object
when the CancelUpdate method is called.

In Batch Update mode, the OriginalValue property returns the value of a field in the current
record before any changes were made to it. In other words, the OriginalValue property is the
value of the field when the last UpdateBatch method was called. This is the value that is replaced
in the Field object when the CancelBatch method is called.

See Also

Recordset.CancelBatch Method, Recordset.CancelUpdate Method, Recordset.Update Method,
Recordset.UpdateBatch Method

Field.Precision Property (Versions 2.0, 2.1, 2.5, 2.6)

precision = field.Precision

The Precision property represents the degree of precision of a numeric value within the current
Field object.

Datatype

Byte

Description

The Precision property is read-only for the Field object. This property returns a Byte value that
indicates the total number of digits used to represent a value for a numeric Field object.

Field.Properties
Collection

(Versions 2.0, 2.1, 2.5,
2.6)

Set properties = field.Properties

The Properties collection contains characteristics specific to the Field object for the currently
used provider.

Datatype

Properties (Collection object)

Description

IT-SC book 361

The Properties collection class contains a Property class instance for each property specific to the
Field object for the data provider.

Field.Status Property (Versions 2.5, 2.6)

status = field.Type

The Status property indicates the status of the current Field object.

Datatype

FieldStatusEnum

Description

The default value for the Status property is adFieldOK.

After a call to the Record or Recordset's Update method if an error has occurred the Status
property of each Field object is set to a value from the FieldStatusEnum enumeration, describing
the problem.

If you are adding and deleting Field objects to and from the Fields collection, the Status property
can tell you whether they have been successfully added or deleted.

The Status property can hold more than one FieldStatusEnum enumeration value at a time.

See Also

FieldStatusEnum Enumeration, Record.Update Method, Recordset.Update Method

Field.Type Property (Versions 2.0, 2.1, 2.5, 2.6)

datatype = field.Type

The Type property indicates the datatype of the Field's Value property.

Datatype

DataTypeEnum

Description

The Type property is read-only unless it is for a new Field object that has been appended to the
Fields collection of a Record object, of which it is only read/write after the Value property of the
Field object has already been specified and the data provider has added the Field object to the
data source (by using the Update method of the Fields collection).

IT-SC book 362

See Also

DataTypeEnum Enumeration, Field.Value Property, Fields.Update Method

Field.UnderlyingValue
Property

(Versions 2.0, 2.1, 2.5,
2.6)

underlyingvalue = field.UnderlyingValue

The UnderlyingValue property returns the current value of the Field object's Value property.

Datatype

Variant

Description

The UnderlyingValue property returns the value -- from the current record -- of the associated
Field object. This value may differ from the OriginalValue property as it shows the value of a
field for the current transaction.

This is the same value that the Resync method uses to replace the value of the Value property.

See Also

Field.OriginalValue, Field.Value Property, Recordset.Resync Method

Field.Value Property (Versions 2.0, 2.1, 2.5, 2.6)

field.Value = value

The Value property indicates the value assigned to the current Field object.

Datatype

Variant

Description

The Value property is used to read and set the value of the associated Field object. The Value
property supports long binary data through ADO.

Fields Collection (Versions 2.0, 2.1, 2.5, 2.6)

IT-SC book 363

Set fields = record.Fields
Set fields = recordset.Fields

See the Field object for more information and examples pertaining to the Fields collection.

Applies To

Recordset

Offers a particular view of a group of records from the associated connection.

Objects

Field

Contains information about a single field in the current record of an open Recordset object.

Methods

Append

Adds a new Field object to the collection.

CancelUpdate

Cancels any pending changes to the individual Field objects of the Record object's Fields
collection.

Delete

Removes a Field object from the current Fields collection.

Refresh

Does not perform any visible function according to the Microsoft documentation.

Resync

Updates the current collection based upon the underlying database.

Update

Persists any changes made to the current Fields collection of a Record object.

Properties

Count

Indicates how many Field objects belong to the associated Fields collection.

Item

IT-SC book 364

Accesses a particular Field object belonging to the Fields collection.

Fields.Append Method (Versions 2.0, 2.1, 2.5, 2.6)

fields.Append Name, Type, DefinedSize, Attrib,
FieldValue

The Append method adds a new Field object to the collection.

Arguments

Name (String)

Represents the name of the field to append to the Fields collection. This name must not already
exist within the collection.

Type (DataTypeEnum)

Specifies the datatype of the Field's Value property. The default value for this parameter is
adEmpty.

DefinedSize (String)

Optional. Dictates the length of the value stored within the Field object. The value of this
parameter is derived from the Type property.

Attrib (FieldAttributeEnum)

Optional. Specifies additional information regarding the new Field object. The default value for
this parameter is adFldDefault.

FieldValue (Variant)

Optional. Gives the new Field object a value. The default for this parameter is Null. This
parameter is valid only when adding a Field object to a Record object's Fields collection, not a
Recordset object's.

Description

The following datatypes are not supported by ADO and cannot be used when adding new Field
objects to the collection class: adIDispatch, adIUnknown, and adVariant.

The following datatypes cannot be added to the Field's collection and will generate an error:
adArray, adChapter, adEmpty, adPropVariant, and adUserDefined.

When using the Append method with a Fields collection of a Recordset object, you cannot use the
FieldValue parameter. Instead, you must add the Field objects while the Recordset object is
closed and then assign them values after it is opened.

IT-SC book 365

When appending Field objects to the Fields collection of a Record object, you must first set the
Field.Value property and call the Update method before accessing any other Field properties such
as Type.

See Also

DataTypeEnum Enumeration, FieldAttributeEnum Enumeration

Fields.CancelUpdate Method (Versions 2.5, 2.6)

record.Fields.CancelUpdate

The CancelUpdate method cancels any pending changes to the individual Field objects of the
Record object's Fields collection.

Description

After calling the CancelUpdate method, all of the Field Objects will have a status of adFieldOK.

See Also

Record Object

Fields.Count Property (Versions 2.0, 2.1, 2.5, 2.6)

count = fields.Count

The Count property indicates how many Field objects belong to the associated Fields collection.

Datatype

Long

Description

If the value of the Count property is zero, there are no Field objects within the associated Fields
collection. However, Field objects that do belong to the associated Fields collection are indexed
from 0 to one less than the value of the Count property.

Fields.Delete Method (Versions 2.0, 2.1, 2.5, 2.6)

Fields.Delete Field

The Delete method removes a Field object from the current Fields collection.

IT-SC book 366

Arguments

Field

Either the name of a valid Field object within the current Field's collection or the ordinal position
of a Field object within the collection to be removed.

Description

You can call the Field.Delete method only on a closed Recordset object.

Fields.Item Property (Versions 2.0, 2.1, 2.5, 2.6)

Set field = fields.Item(Index)
Set field = fields(Index)

The Item property accesses a particular Field object belonging to the Fields collection.

Datatype

Object

Description

The Index placeholder represents a Variant datatype that represents the ordinal position of a Field
object within the Fields collection. If the Fields collection does not contain the item requested, an
error is generated.

Note

Some languages do not support the Item property in its first syntax. For these languages, use the
second syntax, without the Item method name.

Fields.Refresh Method (Versions 2.0, 2.1, 2.5, 2.6)

Fields.Refresh

The Refresh method does not perform any visible function according to the Microsoft
documentation.

Description

In order to update the Fields collection with changes from the underlying database, use the
Resync method or the MoveFirst method if the Recordset object doesn't support bookmarks.

See Also

IT-SC book 367

Recordset.MoveFirst Method, Recordset.Resync Method

Fields.Resync Method (Versions 2.5, 2.6)

record.Fields.Resync ResyncValues

The Resync method updates the current collection based upon the underlying database.

Arguments

ResyncValues (ResyncEnum)

Optional. Specifies whether the underlying values within the Fields collection are overwritten.
The default value for this parameter is adResyncAllValues.

Description

The Resync method resynchronizes the Field objects of a Record object's Fields collection with
those within the underlying database.

The default value for the only parameter to this method, adResyncAllValues synchronizes all
of the values within the UnderlyingValue, Value, and OriginalValue properties.

If a Field object within the collection has a Status property equal to either
adFieldPendingUnknown or adFieldPendingInsert, then the Resync method is ignored
for those Field objects.

See Also

Field.OriginalValue Property, Field.Status Property, Field.UnderlyingValue Property,
Field.Value Property, ResyncEnum Enumeration

Fields.Update Method (Versions 2.5, 2.6)

record.Fields.Update

Description

The Update method persists any pending changes to the current Fields collection of a Record
object.
Dim parameter As ADODB.Parameter

Parameter Object (Versions 2.0, 2.1, 2.5, 2.6)

IT-SC book 368

The Parameter object contains information for one variable within a SQL statement or stored
procedures. Combined, Parameter objects belong to the Parameters collection of Command
objects.

Applies To

Parameters

This collection contains a group of Parameter objects that describe parameters belonging to the
associated Command object.

Collections

Properties

Returns a Properties collection class that contains characteristics specific to the Parameter object
for the currently used provider.

Methods

AppendChunk

Append data to a large data or binary field within the current Parameter object.

Properties

Attributes

Sets or returns specific characteristics about the Parameter object.

Direction

Specifies whether the current parameter is an input parameter, an output parameter, both an input
and an output parameter, or a return value from a stored procedure.

Name

Specifies the name for the current Parameter object.

NumericScale

Indicates the scale of numeric values in the current Parameter object.

Precision

Represents the degree of precision of a numeric value within the current Parameter object.

Size

Returns the maximum size of a Parameter object's value.

Type

IT-SC book 369

Identifies the current object's datatype.

Value

Indicates the value assigned to the current Parameter object.

Description

Parameters allow SQL statements or stored procedures to be created that can be "altered" at
runtime by plugging in values for specific variables. A Parameter object contains metadata about
the variable (datatype, attributes, direction, numeric scale, and size). Parameters can be input,
output, or both input and output variables.

When using a Command object with a parameterized query, you can either call the Refresh
method of the Parameters collection before specifying values for each parameter, or you can call
the CreateParameter method of the Command object for each parameter that belongs to the query.

By calling the CreateParameter method for each parameter, you can potentially save tremendous
amounts of time that would otherwise be used by ADO when the Refresh method is called,
communicating with the data source to find the parameters and their metadata information for a
parameterized query.

Examples

In this section, we will be looking at two examples that will show how to:

Execute a parameterized query without first identifying the parameters.

Execute a parameterized query with explicitly specified parameters.

Before we begin looking at the Parameter examples for this section, please make sure that you
have the following connection string Const value defined so that the examples will work
properly:
Private Const DATASOURCE_NWIND = "Provider=Microsoft.Jet.OLEDB.4.0; " _
 & "Data Source=C:\Program Files\" _
 & "Microsoft Visual Studio\VB98\NWind.mdb;"

Now that we have this constant defined, we can begin to look at some examples. Example 13-
12 will show you how to execute a parameterized query without specifying the parameters
beforehand.

Example 13-12. Executing a Parameterized Query Without First Identifying
the Parameters

Dim con As ADODB.Connection
Dim com As ADODB.Command
Dim rst As ADODB.Recordset

Dim vParameters() As Variant

'

IT-SC book 370

' open the connection
'
Set con = New ADODB.Connection
con.Open DATASOURCE_NWIND

'
' create a new Command object and assign the stored procedure
'
Set com = New ADODB.Command
Set com.ActiveConnection = con

com.CommandText = "[Employee Sales by Country]"
com.CommandType = adCmdStoredProc

'
' there are two parameters for this stored procedure, start and end
date
'
ReDim vParameters(1)

vParameters(0) = "1/1/1995"
vParameters(1) = "12/31/1996"

'
' execute the command with the parameters
'
Set rst = com.Execute(, vParameters)

'
' the Recordset object now contains the results from the Command's
query
'
MsgBox "The first order to ship in the time frame specified was: " _
 & CStr(rst.Fields("OrderID").Value)

'
' clean up
'
rst.Close
con.Close

Set com = Nothing
Set rst = Nothing
Set con = Nothing

Example 13-13 executes the same parameterized query as Example 13-12, but it does so by
first explicitly specifying the parameters with the CreateParameter example.

Example 13-13. Executing a Query with Explicitly Specified Parameters

Dim con As ADODB.Connection
Dim com As ADODB.Command
Dim par As ADODB.Parameter
Dim rst As ADODB.Recordset

Dim vParameters() As Variant

IT-SC book 371

'
' open the connection
'
Set con = New ADODB.Connection
con.Open DATASOURCE_NWIND

'
' create a new Command object and assign the stored procedure
'
Set com = New ADODB.Command
Set com.ActiveConnection = con

com.CommandText = "[Employee Sales by Country]"
com.CommandType = adCmdStoredProc

'
' now manually create the two parameters and append them to the
' collection
'

Set par = com.CreateParameter("Start Date", _
 adDate, _
 adParamInput, _
 , _
 "1/1/1995")
com.Parameters.Append par

Set par = com.CreateParameter("End Date", _
 adDate, _
 adParamInput, _
 , _
 "12/31/1995")
com.Parameters.Append par

'
' execute the command
'
Set rst = com.Execute

'
' the Recordset object now contains the results from the Command's
query
'
MsgBox "The first order to ship in the time frame specified was: " _
 & CStr(rst.Fields("OrderID").Value)

'
' clean up
'
rst.Close
con.Close

Set com = Nothing
Set par = Nothing
Set rst = Nothing
Set con = Nothing

IT-SC book 372

Parameter.AppendChunk
Method

(Versions 2.0, 2.1,
2.5, 2.6)

parameter.AppendChunk Data

The AppendChunk method appends data to a large data or binary field within the current
Parameter object.

Arguments

Data

The only parameter, Data, is a Variant datatype that contains the large amount of data that you
wish to append to the current Parameter object.

Description

The AppendChunk method appends large amounts of either text or binary data to an existing
Parameter object. This can be very useful when the current system contains limited system
memory in respect to the amount needed for the operation to be performed. With the
AppendChunk method, you can add the data to your Field object in increments as you see fit.

The adFldLong bit of the Arguments property belonging to the Parameter object must be set in
order for the AppendChunk method of the Parameter object to be called.

By calling the AppendChunk method multiple times on a Parameter object, you append the data
to the pre-existing data in the object. The only way to clear the data in a Parameter object is set it
to a zero-length string. By passing a Null value to the AppendChunk method of a Parameter
object, you generate an error.

See Also

Parameter.Arguments Property

Parameter.Attributes
Property

(Versions 2.0, 2.1, 2.5,
2.6)

parameter.Attributes = ParameterAttributesEnum

The Attributes property is used to set or return specific characteristics about the Parameter object.

Datatype

ParameterAttributesEnum (Long)

IT-SC book 373

Description

The Arguments property is read- and write-enabled. The value of the Arguments property can be
set to any sum of the values from the ParameterArgumentsEnum enumeration listed in Appendix
E. The default value for the Arguments property is adParamSigned.

See Also

ParameterAttributesEnum Enumeration

Parameter.Direction
Property

(Versions 2.0, 2.1, 2.5,
2.6)

parameter.Direction = ParameterDirectionEnum

The Direction property specifies whether the current parameter is an input parameter, an output
parameter, both an input and an output parameter, or a return value from a stored procedure.

Datatype

ParameterDirectionEnum (Long)

Description

The Direction property is both read- and write-enabled. It is to your advantage to add parameters
manually to a Parameters collection so that ADO does not have to make additional calls to the
data provider to locate this information itself. In some cases, you must specify the Direction
property manually because the particular data provider may not be able to determine this
information itself.

The Direction property may be set to one of the ParameterDirectionEnum enumerations listed in
Appendix E.

Note

Not all providers can determine the value of the Direction property; therefore, for such providers
the application must manually set the value of the Direction property for parameters before they
are used.

See Also

ParameterDirectionEnum Enumeration

Parameter.Name
Property

(Versions 2.0, 2.1, 2.5,
2.6)

IT-SC book 374

parameter.Name = Name

The Name property specifies the name for the current Parameter object.

Datatype

String

Description

The Name property is both read- and write-enabled for the Parameter object. You can set the
Name property only if the Parameter object is not already appended to a Parameters collection.

The Name property assigns a name to the associated Parameter object or retrieves a Parameter
object from the Parameters collection.

Names do not have to be unique within the Parameters collection object.

Parameter.NumericScale
Property

(Versions 2.0, 2.1,
2.5, 2.6)

numberscale = parameter.NumericScale

The NumericScale property indicates the scale of numeric values in the current Parameter object.

Datatype

Byte

Description

The NumericScale property is both read- and write-enabled for the Parameter object. It is used to
identify how many bytes are used to the right of the decimal point for a numeric Parameter object.

Parameter.Precision
Property

(Versions 2.0, 2.1, 2.5,
2.6)

precision = parameter.Precision

The Precision property represents the degree of precision of a numeric value within the current
Parameter object.

Datatype

IT-SC book 375

Byte

Description

The Precision property is both read- and write-enabled for the Parameter object. This property
returns a Byte value that indicates the total number of digits used to represent a value for a
numeric Parameter object.

Parameter.Properties
Collection

(Versions 2.0, 2.1, 2.5,
2.6)

Set properties = parameter.Properties

The Properties collection returns a Properties collection class that contains characteristics specific
to the Parameter object for the currently used provider.

Datatype

Properties (Collection object)

Description

The Properties collection class contains a Property class instance for each property specific to the
Parameter object for the data provider.

Parameter.Size Property (Versions 2.0, 2.1, 2.5, 2.6)

parameter.Size = size

The Size property returns the maximum size of a Parameter object's value.

Datatype

Long

Description

The Size property returns the maximum size of a parameter's value, in bytes. This property is
both read- and write-enabled.

If a Parameter object is of variable length datatype, the Size property must be set before it is
appended to the Parameters collection, or an error will be generated.

If you attempt to change the datatype of a Parameter object to a variable-length datatype, be sure
to set the Size property first so that an error will not be generated.

IT-SC book 376

You should also set the Size property of the Parameter object before calling the Execute method
of the Command object, since if you don't and a variable-length datatype exists, ADO may try to
allocate memory based on the maximum amount needed, causing an error.

Parameter.Type Property (Versions 2.0, 2.1, 2.5, 2.6)

parameter.Type = DataTypeEnum

The Type property identifies the current object's datatype.

Datatype

DataTypeEnum (Long)

Description

The Type property is both read- and write-enabled for the Parameter object. This property returns
a Byte value that indicates the total number of digits used to represent a value for a numeric
Parameter object.

See Also

DataTypeEnum Enumeration

Parameter.Value
Property

(Versions 2.0, 2.1, 2.5,
2.6)

parameter.Value = value

The Value property indicates the value assigned to the current Parameter object.

Datatype

Variant

Description

The Value property reads and sets the value of the associated Parameter object. The Value
property supports long binary data through ADO.

ADO reads Parameter objects' Value property only once. If you execute a command containing a
parameter with an empty Value property -- and it creates a recordset -- be sure to close the
recordset before you read the Value property.

Parameters Collection

IT-SC book 377

Set parameters = command.Parameters
Set fields = recordset.Fields

See the Parameter Object for more information and examples pertaining to the Parameters
collection.

Objects

Parameter

Contains information about a particular parameter belonging to a SQL statement, query, or stored
procedure.

Methods

Append

Appends a new Parameter object to the current Parameters collection class.

Delete

Removes a Parameter object from the Parameters collection class.

Refresh

Updates the collection with the parameters of the current stored procedure or parameterized query
associated with the Command object to which the Parameters collection belongs.

Properties

Count

Indicates how many Parameter objects belong to the associated Parameters collection.

Item

Accesses a particular Parameter object belonging to the Parameters collection.

Parameters.Append
Method

(Versions 2.0, 2.1, 2.5,
2.6)

parameters.Append Object

The Append method appends a new Parameter object to the current Parameters collection class.

Arguments

Object

IT-SC book 378

The only parameter of the Append method is a Parameter object. The Type property of the
Parameter object must be set before the Append method is actually called. In addition, if the
datatype of your Parameter is of variable length, you must also set the Size property of the
Parameter object to a value greater than zero.

Description

The Append method of the Parameters collection informs ADO of the type of parameters that are
included in stored procedures or parameterized queries. You would do this for a couple of reasons:
one is that it decreases the time that a stored procedure or parameterized query takes to perform
its duty by minimizing the calls to the data provider for this information. Another reason for
declaring the parameters in advance -- by adding them to the Parameters collection -- is that not
all data providers actually make this information known to ADO. For this reason, unless you
populate the Parameters collection yourself, you stand a strong chance of not being able to use
these stored procedures or queries at all.

It is my advice (as well as Microsoft's) to always declare the parameters of a stored procedure or
parameterized query in advance whenever possible, because you may not always be able to rely
on the information being available to ADO (and it can't hurt having the extra speed advantage).

See Also

Command.CreateParameter Method, Parameter.Size Property, Parameter.Type Property

Parameters.Count
Property

(Versions 2.0, 2.1, 2.5,
2.6)

count = parameters.Count

The Count property indicates how many Parameter objects belong to the associated Parameters
collection.

Datatype

Long

Description

If the value of the Count property is zero, there are no Parameter objects within the associated
Parameters collection. However, Parameter objects that do belong to the associated Parameters
collection are indexed from 0 to one less than the value of the Count property.

Parameters.Delete
Method

(Versions 2.0, 2.1, 2.5,
2.6)

parameters.Delete Index

IT-SC book 379

The Delete method removes a Parameter object from the Parameters collection class.

Arguments

Index

The Index parameter can be either the name of the Parameter object to be removed or its ordinal
position.

Description

The Delete method of the Parameters collection class removes a Parameter object from the
collection. By passing either the name of a valid Parameter object within the collection or its
ordinal position, the Delete method removes the specified Parameter object from the associated
Parameters collection class.

See Also

Parameter.Name Property

Parameters.Item
Property

(Versions 2.0, 2.1, 2.5,
2.6)

Set error = errors.Item(Index)
Set error = errors (Index)

The Item property accesses a particular Parameter object belonging to the Parameters collection.

Datatype

Object

Description

The Index placeholder is a Variant datatype that represents the ordinal position of a Parameter
object within the Parameters collection. If the Parameters collection does not contain the item
requested, an error is generated.

Note

Some languages do not support the Item property in its first syntax. For these languages, use the
second syntax, without the Item method name.

Parameters.Refresh
Method

(Versions 2.0, 2.1, 2.5,
2.6)

IT-SC book 380

parameters.Refresh

The Refresh method of the Parameters collection class updates the collection with the parameters
of the current stored procedure or parameterized query associated with the Command object to
which the Parameters collection belongs.

Description

The Refresh method updates the Parameters collection class with the parameters of the associated
Command object's stored procedure or parameterized query.

If you attempt to access the Parameters collection class before calling the Refresh method, it is
automatically called by ADO.

Properties Collection (Versions 2.0, 2.1, 2.5, 2.6)

Set properties = connection.Properties
Set properties = command.Properties
Set properties = recordset.Properties
Set properties = field.Properties

See the Property Object for more information and examples pertaining to the Properties collection.

Objects

Property

Contains information about a particular feature supported by the associated data provider.

Methods

Refresh

Updates the Properties collection with properties that are specific to the data provider.

Properties

Count

Indicates how many Property objects belong to the associated Properties collection.

Item

Accesses a particular Property object belonging to the Properties collection.

Properties.Count
Property

(Versions 2.0, 2.1, 2.5,
2.6)

IT-SC book 381

count = properties.Count

The Count property indicates how many Property objects belong to the associated Properties
collection.

Datatype

Long

Description

If the value of the Count property is zero, there are no Property objects within the associated
Properties collection. However, Property objects that do belong to the associated Properties
collection are indexed from 0 to one less than the value of the Count property.

Properties.Item Property (Versions 2.0, 2.1, 2.5, 2.6)

Set property = properties.Item(Index)
Set property = properties(Index)

The Item property accesses a particular Property object belonging to the Properties collection.

Datatype

Property object

Description

The Index placeholder is a Variant datatype that represents the ordinal position of a Property
object within the Properties collection. If the Properties collection does not contain the item
requested, an error is generated.

Note

Some languages do not support the Item property in its first syntax. For these languages, use the
second syntax, without the Item method name.

Properties.Refresh Method (Versions 2.1, 2.5, 2.6)

properties.Refresh

The Refresh method updates the Properties collection with properties that are specific to the data
provider.

IT-SC book 382

Property Object (Versions 2.0, 2.1, 2.5, 2.6)

Dim property As ADODB.Property

The Property object contains information about dynamic properties implemented by the
associated data provider.

Applies To

Properties

This collection contains a group of Property objects that hold information about the functionality
of a data provider.

Properties

Attributes

Sets or returns specific characteristics about the Property object.

Name

Specifies the name for the current Property object.

Type

Indicates the datatype of the Property object's value.

Value

Indicates the value of the current Property object.

Description

Individual Property objects are part of Properties collections for the Connection, Command,
Recordset, and Field objects.

An instance of a Property object represents a single Dynamic property for the given data provider.
The values of these properties, when changed, can alter the behavior of a data provider to a lower
level than with the built-in properties of the given ADO object.

Examples

In this section, we will be looking at two examples that show how to do the following:

Display the dynamic properties of the Connection object.

Modify the value of a dynamic property.

IT-SC book 383

Before we begin looking at the Property examples for this section, define the following
connection string Const value so that the examples will work properly:
Private Const DATASOURCE_NWIND = "Provider=Microsoft.Jet.OLEDB.4.0; " _
 & "Data Source=C:\Program Files\" _
 & "Microsoft Visual Studio\VB98\NWind.mdb;"

Now that we have this constant defined, we can begin to look at some examples. Example 13-
14 displays all of the dynamic properties for the Connection object when it connects to the
Northwind database with Jet 4.0.

Example 13-14. Displaying the Dynamic Properties of the Connection Object

Dim con As ADODB.Connection
Dim prp As ADODB.Property

'
' open the NWind database with Jet
'
Set con = New ADODB.Connection
con.Open DATASOURCE_NWIND

'
' display each dynamic property of the Connection object
'
For Each prp In con.Properties
 Debug.Print Left$(prp.Name & ":" & Space(45), 45) & " " & prp.Value
Next prp

'
' clean up
'
con.Close

Set con = Nothing

As we can see from the output of this example, there are plenty of properties to play with:
Current Catalog:
Active Sessions: 128
Asynchable Commit: False
Catalog Location: 1
Catalog Term: Database
Column Definition: 1
NULL Concatenation Behavior: 2
Data Source Name:
C:\Program......\NWind.mdb
Read-Only Data Source: False
DBMS Name: MS Jet
DBMS Version: 04.00.0000
GROUP BY Support: 4
Heterogeneous Table Support: 2
Identifier Case Sensitivity: 8
Maximum Index Size: 255
Maximum Row Size: 4049
Maximum Row Size Includes BLOB: False

IT-SC book 384

Maximum Tables in SELECT: 0
Multiple Storage Objects: False
Multi-Table Update: True
NULL Collation Order: 4
OLE Object Support: 1
ORDER BY Columns in Select List: False
Prepare Abort Behavior: 1
Prepare Commit Behavior: 2
Procedure Term: STORED QUERY
Provider Name: MSJETOLEDB40.DLL
OLE DB Version: 02.10
Provider Version: 04.00.2927
Schema Term: Schema
Schema Usage: 0
SQL Support: 512
Structured Storage: 9
Subquery Support: 63
Isolation Levels: 4096
Isolation Retention: 9
Table Term: Table
User Name: Admin
Pass By Ref Accessors: False
Transaction DDL: 16
Asynchable Abort: False
Data Source Object Threading Model: 1
Output Parameter Availability: 1
Persistent ID Type: 4
Multiple Parameter Sets: True
Rowset Conversions on Command: True
Multiple Results: 0
Provider Friendly Name: Microsoft......der for
Jet
Alter Column Support: 36
Open Rowset Support: 2
Cache Authentication: True
Encrypt Password: False
Mask Password: False
Password:
User ID: Admin
Data Source:
C:\Program......\NWind.mdb
Window Handle: 0
Mode: 16
Prompt: 4
Extended Properties:
Locale Identifier: 1033
Jet OLEDB:System database:
Jet OLEDB:Registry Path:
Jet OLEDB:Database Password:
Jet OLEDB:Engine Type: 4
Jet OLEDB:Database Locking Mode: 0
Jet OLEDB:Global Partial Bulk Ops: 2
Jet OLEDB:Global Bulk Transactions: 1
Jet OLEDB:New Database Password:
Jet OLEDB:Create System Database: False
Jet OLEDB:Encrypt Database: False
Jet OLEDB:Don't Copy Locale on Compact: False

IT-SC book 385

Jet OLEDB:Compact Without Replica Repair: False
Jet OLEDB:SFP: False
Jet OLEDB:Compact Reclaimed Space Amount: 0
Autocommit Isolation Levels: 4096
Jet OLEDB:ODBC Command Time Out: 0
Jet OLEDB:Max Locks Per File: 0
Jet OLEDB:Implicit Commit Sync: False
Jet OLEDB:Flush Transaction Timeout: 0
Jet OLEDB:Lock Delay: 0
Jet OLEDB:Max Buffer Size: 0
Jet OLEDB:User Commit Sync: True
Jet OLEDB:Lock Retry: 0
Jet OLEDB:Exclusive Async Delay: 0
Jet OLEDB:Shared Async Delay: 0
Jet OLEDB:Page Timeout: 0
Jet OLEDB:Recycle Long-Valued Pages: False
Jet OLEDB:Reset ISAM Stats: True
Jet OLEDB:Connection Control: 2
Jet OLEDB:ODBC Parsing: False
Jet OLEDB:Page Locks to Table Lock: 0
Jet OLEDB:Sandbox Mode: False
Jet OLEDB:Transaction Commit Mode: 0

Example 13-15 shows how one of the previous properties can be modified to change the
behavior of the data provider, particularly the Prompt dynamic property which allows you to
instruct ADO to prompt the user for connection information.

Example 13-15. Modifying a Dynamic Property Object

Dim con As ADODB.Connection

'
' create a new instance of the Connection object
'
Set con = New ADODB.Connection

'
' ask to always show the prompt
'
con.Properties.Item("Prompt") = ADODB.ConnectPromptEnum.adPromptAlways

'
' attempt to open the Connection without any information
'
con.Open

'
' do something here
'

'
' clean up
'
con.Close

Set con = Nothing

IT-SC book 386

Property.Attributes
Property

(Versions 2.0, 2.1, 2.5,
2.6)

property.Attributes = PropertyArgumentsEnum

The Attributes property sets or returns specific characteristics about the Property object.

Datatype

PropertyArgumentsEnum (Long)

Description

The Attributes property is read-only. The value of the Arguments property can be set to any sum
of the values from the PropertyArgumentsEnum enumerations listed in Appendix E.

See Also

PropertyAttributesEnum Enumeration

Property.Name Property (Versions 2.0, 2.1, 2.5, 2.6)

property.Name = name

The Name property specifies the name for the current Property object.

Datatype

String

Description

The Name property is read-only for the Property object. The Name property retrieves a Property
object from the Properties collection. Names do not have to be unique within a Properties
collection class.

Property.Type Property (Versions 2.0, 2.1, 2.5, 2.6)

type = property.Type

The Type property indicates the datatype of the Property object's value.

Datatype

IT-SC book 387

DataTypeEnum

Description

The Type property is read-only for Property objects.

See Also

DataTypeEnum Enumeration

Property.Value Property (Versions 2.0, 2.1, 2.5, 2.6)

value = property.Value

The Value property indicates the value of the current Property object.

Datatype

Variant

Description

Sets or returns the value of the current Property object.

Record Object (Versions 2.5, 2.6)

Dim record As ADODB.Record

The Record object represents either a single row within a Recordset object or a resource in a
semistructured data source, such as a file directory.

Collections

Fields

Contains individual field objects for the current Record object.

Properties

Contains characteristics specific to the Record object for the currently used provider.

Methods

Cancel

Cancels an asynchronous operation for the Record object.

IT-SC book 388

Close

Closes an opened Record object.

CopyRecord

Represents a member method of the Recordset object that cancels the currently pending batch
update.

DeleteRecord

Deletes the resource represented by the current Record object, or another if specified.

GetChildren

Returns the children of a collection Record object in the form of a Recordset object.

MoveRecord

Moves a resource to another location.

Open

Opens an individual record in a recordset or a resource within a data source.

Properties

ActiveConnection

Indicates to which Connection object the current Record object belongs.

Mode

Indicates the permissions for modifying data within a Record object.

ParentURL

Indicates the parent record of the current Record object by means of an absolute URL.

RecordType

Indicates the type of the current record.

Source

Indicates from which object the Record object is created.

State

Indicates the current state of the Record object.

Description

A Record object contains a collection of Fields, just as a Recordset object does. When a Record
object is opened with a Recordset object, the Record object contains all of the fields of the

IT-SC book 389

Recordset object plus two extra (one for the default stream and one for the URL representing the
resource identified by the Record object).

If a Record object is created from a Recordset object, the Source property can be used to return to
the original Recordset object.

When a Record object is representing a structured data source such as a filesystem, the Record
object can be used to represent a leaf node (file) or nonleaf node (directory). In each case, the
fields within the Fields collection may mean different things. As a nonleaf node (directory), the
Field objects usually represent attributes of the resource. As a leaf node (file), the Field objects
contain not only attributes of the resource, but also a default Stream object that contains the
binary data for the resource. Although this is usually the case, a nonleaf node may also contain
binary data.

A Record object can be opened by a URL that uniquely represents a resource. In such a case, a
Connection object is implicitly created within the Record object, unless one is explicitly stated
with the ActiveConnection property. In the latter case, the Connection object would dictate the
context of the files and directories accessible from the Record object.

The Record object can be used to copy, move, and delete resources within the context of its
associated Connection object. These resources can be, but don't necessarily have to be, the
resource that is being represented by the current Record object.

MSDAIPP is needed to browse filesystem data sources; it is the Microsoft
OLE DB Provider for Internet Publishing.

Examples

In this section, we will be looking at three examples that show how to do the following:

Open a Record object from a Recordset object.

Work with files using the Record object.

Return the children of a resource with the Record object.

Example 13-16 shows how a Record object can be opened from an already opened Recordset
object. This example opens a Recordset object using a URL from the root directory of your
localhost. Please note that for this example to work, you must be running a Internet
Information Server or an equivalent Web Server.

Example 13-16. Opening a Record Object from a Recordset Object

Dim rst As ADODB.Recordset
Dim rec As ADODB.Record
Dim fld As ADODB.Field

'
' open a Recordset object for the root of the local host

IT-SC book 390

'
Set rst = New ADODB.Recordset
rst.Open "URL=http://localhost"

'
' open the Record object with the current record of the Recordset
'
Set rec = New ADODB.Record
rec.Open rst

'
' display the fields for the single record of the Recordset object
'
For Each fld In rec.Fields
 Debug.Print Left$(fld.Name & ":" & Space(35), 35) & " " & fld.Value
Next fld

'
' clean up
'
rec.Close
rst.Close

Set rec = Nothing
Set rst = Nothing

After running this example, notice that the following information is outputed to the Immediate
Window. The Record object had been opened for the first resource in the root directory of the
localhost, the Gallery directory (collection):
RESOURCE_PARSENAME: Gallery
RESOURCE_PARENTNAME: http://localhost
RESOURCE_ABSOLUTEPARSENAME: http://localhost/Gallery
RESOURCE_ISHIDDEN:
RESOURCE_ISREADONLY:
RESOURCE_CONTENTTYPE:
RESOURCE_CONTENTCLASS:
RESOURCE_CONTENTLANGUAGE:
RESOURCE_CREATIONTIME:
RESOURCE_LASTACCESSTIME:
RESOURCE_LASTWRITETIME:
RESOURCE_STREAMSIZE:
RESOURCE_ISCOLLECTION: True
RESOURCE_ISSTRUCTUREDDOCUMENT:
DEFAULT_DOCUMENT:
RESOURCE_DISPLAYNAME: Gallery
RESOURCE_ISROOT: True
RESOURCE_ISMARKEDFOROFFLINE: False

Example 13-17 shows how files can be created, copied, moved, and deleted within the context
of the connection -- in this case, the root directory of the localhost machine.

Example 13-17. Working with Files Using the Record Object

Dim rec As ADODB.Record

IT-SC book 391

'
' create a new resource on the local host
'
Set rec = New ADODB.Record

rec.Open "newfile", _
 "URL=http://localhost/", _
 adModeReadWrite, _
 adCreateOverwrite

'
' copy the new resource to another file
'
rec.CopyRecord , _
 "http://localhost/anotherfile", _
 , _
 , _
 adCopyOverWrite

'
' move the file to a new file name
'
rec.MoveRecord "http://localhost/anotherfile", _
 "http://localhost/movedfile", _
 , _
 , _
 adMoveOverWrite

'
' delete the moved file
'
rec.DeleteRecord "http://localhost/movedfile"

'
' clean up
'
rec.Close

Set rec = Nothing

Example 13-18 shows how the Record object can return children for a given resource. In this
example, the Record object is opened for the root directory (a collection resource) of the
localhost machine. Calling the GetChildren method returns a Recordset object containing
multiple records, each representing a single resource that is considered a child of the root
directory resource.

Example 13-18. Returning the Children of a Resource Using the Record
Object

Dim rec As ADODB.Record
Dim rst As ADODB.Recordset
Dim fld As ADODB.Field

Set rec = New ADODB.Record

IT-SC book 392

rec.Open "Gallery", "URL=http://localhost"

Set rst = rec.GetChildren

If (Not (rst.BOF And rst.EOF)) Then rst.MoveFirst
While (Not rst.EOF)
 Debug.Print rst.Fields.Item("RESOURCE_ABSOLUTEPARSENAME").Value
 rst.MoveNext
Wend

'
' clean up
'
rst.Close
rec.Close

Set rst = Nothing
Set rec = Nothing

Running the previous example outputs the following data to the Immediate Window:
http://localhost/Gallery/survey
http://localhost/Gallery/guestbk
http://localhost/Gallery/usernote
http://localhost/Gallery/timeline
http://localhost/Gallery/themes
http://localhost/Gallery/shopcart
http://localhost/Gallery/randomad
http://localhost/Gallery/quote
http://localhost/Gallery/query
http://localhost/Gallery/prefer
http://localhost/Gallery/mmedia
http://localhost/Gallery/ie4
http://localhost/Gallery/grid
http://localhost/Gallery/dentry
http://localhost/Gallery/counter
http://localhost/Gallery/controls
http://localhost/Gallery/applet
http://localhost/Gallery/images
http://localhost/Gallery/_private
http://localhost/Gallery/VIEWSRC.ASP
http://localhost/Gallery/USERNTB.HTM
http://localhost/Gallery/USERNTA.HTM
http://localhost/Gallery/TIMELNB.HTM
http://localhost/Gallery/TIMELNA.HTM
http://localhost/Gallery/THEMEB.HTM
http://localhost/Gallery/THEMEA.HTM
http://localhost/Gallery/SURVEYB.HTM
http://localhost/Gallery/SURVEYA.HTM
http://localhost/Gallery/SHOPCRTB.HTM
http://localhost/Gallery/SHOPCRTA.HTM
http://localhost/Gallery/SAMPTOC.HTM
http://localhost/Gallery/SAMPLE.ASP
http://localhost/Gallery/SAMPINTR.HTM
http://localhost/Gallery/SAMPHDR.ASP
http://localhost/Gallery/RANDADB.HTM
http://localhost/Gallery/RANDADA.HTM

IT-SC book 393

http://localhost/Gallery/QUOTEB.HTM
http://localhost/Gallery/QUOTEA.HTM
http://localhost/Gallery/QUERYB.HTM
http://localhost/Gallery/QUERYA.HTM
http://localhost/Gallery/PREFB.HTM
http://localhost/Gallery/PREFA.HTM
http://localhost/Gallery/MMEDIAB.HTM
http://localhost/Gallery/MMEDIAA.HTM
http://localhost/Gallery/LEGEND.ASP
http://localhost/Gallery/IE4B.HTM
http://localhost/Gallery/IE4A.HTM
http://localhost/Gallery/GUESTBKB.HTM
http://localhost/Gallery/GUESTBKA.HTM
http://localhost/Gallery/GRIDB.HTM
http://localhost/Gallery/GRIDA.HTM
http://localhost/Gallery/Global.asa
http://localhost/Gallery/DENTRYB.HTM
http://localhost/Gallery/DENTRYA.HTM
http://localhost/Gallery/DEFAULT.HTM
http://localhost/Gallery/COUNTERB.HTM
http://localhost/Gallery/COUNTERA.HTM
http://localhost/Gallery/CONTROLB.HTM
http://localhost/Gallery/CONTROLA.HTM
http://localhost/Gallery/CODE.ASP
http://localhost/Gallery/APPLETB.HTM
http://localhost/Gallery/APPLETA.HTM

Record.ActiveConnection
Property

(Versions 2.5,
2.6)

Record.ActiveConnection = ConnectionString
Set Record.ActiveConnection = ConnectionObject

The ActiveConnection property indicates to which Connection object the current Record object
belongs.

Datatype

String or Variant (containing the current Connection object)

Description

The ActiveConnection property of the Record object is both read- and write-enabled while the
Record object is closed and read-only once it is opened. This property can be set to either a
connection string or a Connection object and returns a Connection object when it is read.

If the Record object was opened from an existing Record object or a Recordset object, then the
Record object gains its Connection object from this object. If the Record object is opened by
using a URL, a Connection object is automatically created for the Record object and is accessible
from the ActiveConnection property.

IT-SC book 394

See Also

Record.Open Method

Record.Cancel Method (Versions 2.5, 2.6)

record.Cancel

The Cancel method cancels an asynchronous operation for the Record object.

Description

The Cancel method can be called to cancel an asynchronous operation of the Record object
invoked by the CopyRecord, DeleteRecord, MoveRecord, and Open methods.

See Also

Record.CopyRecord Method, Record.DeleteRecord Method, Record.MoveRecord Method,
Record.Open Method

Record.Close Method (Versions 2.5, 2.6)

record.Close

The Close method closes an opened Record object.

Description

The Close method can be called only on an open Record object. After calling the Close method,
the Open method can be called again to reopen the Record object. Calling the Close method
releases any resources allocated to the Record object.

Record.CopyRecord Method (Versions 2.5, 2.6)

record.CopyRecord (Source, _
 Destination, _
 UserName, _
 Password, _
 Options, _
 Async) As String

The CancelBatch is a member method of the Recordset object that cancels the currently pending
batch update.

IT-SC book 395

Arguments

Source (String)

Optional. Indicates the URL of a resource to be copied. If this argument is omitted, then the
resource represented by the current Record object is copied.

Destination (String)

Optional. Represents a URL value that indicates where the resource will be copied to.

UserName (String)

Optional. Indicates, if necessary, the username that will be used to access the resource indicated
by the Destination argument.

Password (String)

Optional. Indicates, if necessary, the password to verify the UserName argument.

Options (CopyRecordOptionsEnum)

Optional. Indicates the behavior of the copy operation. The default value for this argument is
adCopyUnspecified.

Async (Boolean)

Optional. Indicates whether this operation should be executed asynchronously.

Returns

String

Description

By default, the CopyRecord method will not overwrite a resource that already exists. To force the
replacement of the destination resource, use the adCopyOverWrite option.

By default, the CopyRecord method will copy all subdirectories and files beneath the source
resource unless the adCopyNonRecursive option is specified.

If the source and the destination resources are identical, an error will occur. If the destination
resource is a child of the source resource, the operation will never complete.

The return value, although provider-specific, is usually the name of the destination resource.

See Also

CopyRecordOptionsEnum Enumeration

Record.DeleteRecord Method (Versions 2.5, 2.6)

IT-SC book 396

record.DeleteRecord Source, Async

The DeleteRecord method deletes the resource represented by the current Record object, or
another if specified.

Arguments

Source (String)

Optional. Specifies which resource to delete. If this argument is omitted, the resource represented
by the current Record object will be deleted.

Async (Boolean)

Optional. Indicates whether this operation should be executed asynchronously.

Description

The DeleteRecord method deletes all children resources of the current resource as well.

The Record object should be closed immediately after calling the DeleteRecord method because
its behavior would be unpredictable. At the very least, an error will occur when trying to work
with a Record object that represents a deleted resource.

If the Record object was created from a Recordset object, you should either close and reopen the
Recordset object or call Resync or Requery for the resource to be removed from it.

See Also

Recordset.Open Method, Recordset.Requery Method, Recordset.Resync Method

Record.Fields Collection (Versions 2.5, 2.6)

record.Fields

The Fields collection contains individual Field objects for the current Record object.

Datatype

Fields (Collection object)

Description

The Fields collection contains multiple Field objects for the current Record object. There are two
special Field objects, adDefaultStream and adRecordURL,that can be accessed by specifying

IT-SC book 397

the FieldEnum enumeration. One returns the default string for the current Record object, and the
other returns the URL.

Field objects can be added to the collection either by calling the Field.Append method or by
referencing a Field by name that is not already part of the collection. Calling the Field.Update
method will add the field to the collection, if possible, within the data source. Until this moment,
the Field.Status property will return adFieldPendingInsert.

See Also

Field.Append Method, Field.Update Method, FieldEnum Enumeration

Record.GetChildren Method (Versions 2.5, 2.6)

Set recordset = record.GetChildrean

The GetChildren method returns the children of a collection Record object in the form of a
Recordset object.

Returns

Recordset object

Description

The GetChildren method returns a Recordset object containing children of the current Record
object. Each record within the returned Recordset object represents a single resource that is a
child of the resource represented by the associated Record object.

Record.Mode Property (Versions 2.5, 2.6)

record.Mode = ConnectModeEnum

The Mode property indicates the permissions for modifying data within a Record object.

Datatype

ConnectModeEnum

Description

The default value for the Mode property of a Record object is adModeRead. The Mode property
is read- and write-enabled while the Record object is closed, but read-only once it is opened.

See Also

IT-SC book 398

ConnectModeEnum Enumeration

Record.MoveRecord Method (Versions 2.5, 2.6)

record.MoveRecord (Source, _
 Destination, _
 UserName, _
 Password, _
 Options, _
 Async) As String

The MoveRecord method moves a resource to another location.

Arguments

Source (String)

Optional. Indicates the URL of a resource to be moved. If this argument is omitted, then the
resource represented by the current Record object is moved.

Destination (String)

Optional. Represents a URL value that indicates where the resource will be moved.

UserName (String)

Optional. Indicates, if necessary, the username that will be used to access the resource indicated
by the Destination argument.

Password (String)

Optional. Indicates, if necessary, the password to verify the UserName argument.

Options (CopyRecordOptionsEnum)

Optional. Indicates the behavior of the move operation. The default value for this argument is
adMoveUnspecified.

Async (Boolean)

Optional. Indicates whether this operation should be executed asynchronously.

Returns

String

Description

IT-SC book 399

By default, the MoveRecord method does not overwrite a resource that already exists. To force
the replacement of the destination resource, use the adCopyOverWrite option. All hypertext
links in the file are automatically updated unless otherwise specified in the Options argument.

If the source and the destination resources are identical, an error will occur.

If the Record object was created from a Recordset object, you should close and reopen the
Recordset object or call Resync or Requery for the resource to be removed from the recordset.

Not all properties of the Record object will be automatically repopulated -- to do this, close and
reopen the Record object.

The return value, although provider-specific, is usually the name of the destination resource.

See Also

MoveRecordOptionsEnum Enumeration, Record.Close Method, Record.Open Method,
Recordset.Open Method, Recordset.Requery Method, Recordset.Resync Method

Record.Open Method (Versions 2.5, 2.6)

record.Open (Source, _
 ActiveConnection, _
 Mode, _
 CreateOptions, _
 Options, _
 UserName, _
 Password)

The Open method opens an individual record in a recordset or a resource within a data source.

Arguments

Source (Variant)

Optional. Indicates the source of the resource to open. This can be a URL, a Command object
returning a single row, an open Recordset object, or a String containing a SQL statement or a
table name.

ActiveConnection (Variant)

Optional. Indicates the connection to the data source by either a connection string or an open
Connection object.

Mode (ConnectModeEnum)

Optional. Indicates the access permissions to open the Record object with. The default value is
adModeUnknown.

CreateOptions (CreateModeEnum)

IT-SC book 400

Optional. This argument is used only when the Source argument represents a URL. This
argument can be used to indicate whether to open an existing resource or to create a new one. The
default value for this argument is adFailIfNotExist.

Options (RecordOpenOptionsEnum)

Optional. Can contain multiple RecordOpenOptionsEnum enumeration values that indicate
special options for opening the Record object. The default value for this method is
adOpenRecordUnspecified.

UserName (String)

Optional. Indicates, if necessary, the username that will be used to access the resource indicated
by the source argument.

Password (String)

Optional. Indicates, if necessary, the password to verify the UserName argument.

Description

If the Record object represents a resource that cannot be represented by a URL, then the
ParentURL property and the adRecordURL default field both return Null.

See Also

ConnectModeEnum Enumeration, RecordCreateOptionsEnum Enumeration,
RecordOpenOptionsEnum Enumeration

Record.ParentURL Property (Versions 2.5, 2.6)

record.ParentURL = ParentURL

The ParentURL is used to indicate the parent record of the current Record object by means of an
absolute URL.

Datatype

String

Description

The ParentURL property indicates the parent resource of the current resource represented by the
Record object. This property is read-only.

The ParentURL can be Null if there is no parent for the current resource represented by the
Record object or if the resource cannot be expressed in terms of a URL.

Record.Properties Collection (Versions 2.5, 2.6)

IT-SC book 401

record.Properties

The Properties collection contains characteristics specific to the Record object for the currently
used provider.

Datatype

Properties (Collection object)

Description

The Properties collection class contains a Property class instance for each property specific to the
Record object for the data provider.

Record.RecordType Property (Versions 2.5, 2.6)

record.RecordType = RecordTypeEnum

The RecordType property indicates the type of the current record.

Datatype

RecordTypeEnum

Description

The RecordType property is read-only; it indicates the type of the current Record object.

See Also

RecordTypeEnum Enumeration

Record.Source Property (Versions 2.5, 2.6)

Set record.Source = object

The Source property indicates from which object the Record object is created.

Datatype

Variant

Description

IT-SC book 402

The Source property is read-only when the Record object is open, but read- and write-enabled
while it is closed.

The Source property can be set to a Recordset or Command object. If the Source property is set to
a Recordset object, the Record object will be opened based upon the current record of the
Recordset object. If the Source property is set to a Command object, the Command object must
return a single row.

If the ActiveConnection property is also set, then the Source property must be set to an object that
is within the connection's scope.

The Source property returns the Source argument of the Record.Open method.

See Also

Record.ActiveConnection Property, Record.Open Method

Record.State Property (Versions 2.5, 2.6)

state = record.State

The State property indicates the current state of the Record object.

Datatype

Long (ObjectStateEnum)

Description

The read-only State property returns a Long value that can be evaluated as an ObjectStateEnum
enumeration value. The default value for the Record object is closed (adStateClosed).

For the Record object, the State property can return multiple values when the object is executing
an operation asynchronously (i.e., adStateOpen and adStateExecuting).

See Also

ObjectStateEnum Enumeration

Recordset Object (Versions 2.0, 2.1, 2.5, 2.6)

Dim recordset As ADODB.Recordset

The Recordset object represents a complete group of rows within a table or a group of records
that have been returned from an executed command.

IT-SC book 403

Collections

Fields

Contains multiple Field objects for the current Recordset object, one for each column in the
Recordset object.

Properties

Contains characteristics specific to the Recordset object for the currently used provider.

Methods

AddNew

Creates a new record within the current Recordset object and sets it to the specified value.

Cancel

Cancels an asynchronous operation for the Recordset object.

CancelBatch

Cancels the currently pending batch update for the current Recordset object.

CancelUpdate

Cancels any changes to the current batch update made since the last AddNew or Update method
calls.

Clone

Returns a clone of the current recordset.

Close

Closes a recordset and releases any resources used by it.

CompareBookmarks

Determines the position of two bookmarks in a recordset in relationship to one another.

Delete

Deletes specified records within the recordset.

Find

Moves the record pointer to a row within the current recordset that matches the single-column
search criteria specified.

GetRows

Returns multiple records from an open Recordset object in the form of an array.

GetString

IT-SC book 404

Returns the entire Recordset object as a String value.

Move

Moves the position of the record pointer within the desired Recordset object.

MoveFirst

Moves the record pointer to the first record in a recordset.

MoveLast

Moves the record pointer to the last record in a recordset.

MoveNext

Moves the record pointer to the next record in a recordset.

MovePrevious

Moves the record pointer to the previous record in a recordset.

NextRecordset

Returns the next recordset by advancing through a series of commands.

Open

Opens a cursor within a Recordset object.

Requery

Re-executes the command that created the recordset in the first place, in order to cause a refresh
of the recordset.

Resync

Refreshes the data in the recordset from the underlying data source.

Save

Saves the current Recordset object to a file or to a Stream object.

Seek

Quickly changes the record pointer to the record in the Recordset object that matches the index
provided.

Supports

Determines whether the current data provider supports specified functionality.

Update

Saves the changes made to fields within the current record when one or more fields have been
changed or a call to AddNew was made.

UpdateBatch

IT-SC book 405

Writes all pending batch updates to disk when called.

Properties

AbsolutePage

Returns or sets a value that indicates the current page in the recordset.

AbsolutePosition

Returns or sets a value that indicates the current record position within the recordset.

ActiveCommand

Returns the Command object that was used to populate a Recordset object.

ActiveConnection

Specifies the Connection object for the current Recordset object.

BOF

Indicates that the record pointer is located before the first record in the recordset.

Bookmark

Returns a unique identifier for the current record within a recordset. By setting the Bookmark
property to a previously read value, the record pointer can be repositioned to the original record.

CacheSize

Indicates the number or records that are cached by ADO locally in system memory.

CursorLocation

Indicates the location of the cursor service.

CursorType

Indicates the type of cursor being used for the current recordset.

DataMember

Indicates the object, within the data source specified by the DataSource property, with which the
Recordset object should be created.

DataSource

Indicates the source with which the Recordset object should be created.

EditMode

Indicates the current editing status for a given record.

EOF

Indicates that the record pointer is located directly after the last record in the recordset.

IT-SC book 406

Filter

Filters a selection of records within the current Recordset object.

Index

Sets the current index for a given recordset.

LockType

Indicates the type of locks that are set on records when they are being edited.

MarshalOptions

Indicates which records are to be marshaled back to the server.

MaxRecords

Indicates the maximum number of records to be returned to a recordset from a query.

PageCount

Returns the number of logical pages that are in the current Recordset object.

PageSize

Indicates how many records belong to a logical page.

RecordCount

Returns the number of records in the current Recordset object.

Sort

Sorts a recordset on one or more field names.

Source

Returns the source for the data in a Recordset object.

State

Indicates the current state of the Recordset object.

Status

Indicates the status of the current record in relation to bulk operations.

StayInSync

Indicates whether the references to chapter recordsets change when the record pointer moves to a
different parent row for hierarchical recordsets.

Events

EndOfRecordset

Called when an attempt to move the record pointer past the end of the recordset has occurred.

IT-SC book 407

FetchComplete

Called when a long asynchronous operation (fetch) has completed and all of the records have
been returned.

FetchProgress

Called during a long asynchronous operation (fetch) to report the progress of the fetch.

FieldChangeComplete

Called after an operation changes one or more Field object values.

MoveComplete

Called after an operation changes the position of the record pointer within the Recordset object.

RecordChangeComplete

Called after an operation changes one or more records in the Recordset object.

RecordsetChangeComplete

Called after an operation changes the Recordset object.

WillChangeField

Called before an operation changes one or more Field object values.

WillChangeRecord

Called before an operation changes one or more records in the Recordset object.

WillChangeRecordset

Called before an operation changes the Recordset object.

WillMove

Called before an operation changes the position of the record pointer within the Recordset object.

Description

The Recordset object needs a connection to a data source through the ActiveConnection property
or the ActiveConnection argument of the Open method. Either can be set to an open Connection
object or a valid connection string. If used with a connection string, the Recordset object
implicitly creates its own Connection object behind the scenes. When using multiple Recordset
objects for the same data source, create a Connection object, and use it with the
ActiveConnection property or argument. By passing a connection string to each Recordset object,
multiple connections to the data source are maintained, even if the connection string is identical.

Before opening a Recordset object, you can set the type of cursor that is used to view the data.
There are four types of cursors available: Dynamic, Keyset, Static, and Forward Only. (See
Chapter 5, for more information on these cursor types.) The Forward Only cursor is the default.

IT-SC book 408

The Dynamic cursor allows the application to see all changes including additions, deletions, and
modifications to records. You can move in any direction within a Dynamic cursor, even if the
data provider being used doesn't support bookmarks.

The Keyset cursor is very similar to the Dynamic cursor, except that it doesn't allow you to see
newly added rows or to access rows that have been deleted by other users. Changes to existing
rows can still be seen by the application. Because the Keyset cursor supports bookmarks, you can
move in any direction.

The Static cursor takes a snapshot of the data within a data source and therefore doesn't allow the
application to see additions, changes, or deletions by other users. The Static cursor also supports
bookmarks and allows full movement within it. The Static cursor is the only cursor that can be
chosen when using a client-side Recordset object (the CursorLocation property is equal to
adUseClient).

The Forward Only cursor is the default cursor and does not allow backwards movement through a
Recordset object. It also does not support viewing changes by other users. This cursor is very
popular because of its speed when a single pass through the Recordset object is needed.

You can navigate through a Recordset object with the MoveFirst, MoveNext, MovePrevious,
MoveLast, and Move methods in conjunction with the BOF and EOF properties, which indicate
the beginning and the end of the recordset, respectively. If the current Recordset object is empty,
then both the BOF and EOF properties will be set to True.

The Filter property can be set to specify which records are visible within the Recordset object.
You can search for a particular record by using the Find and Seek methods.

A Recordset object can be used to modify data by means of updating. There are two types of
updating supported by the Recordset object, Immediate and Batch.

Immediate updating is done by calling the Update method. Batch updating is done with the
UpdateBatch method. Batch updating can be used to persist multiple record changes at one time
to the data source.

Examples

In this section, we will be looking at three examples that show how to do the following:

Open and navigate a Recordset object.

Add new records to a Recordset object.

Find and filter data in a Recordset object.

Before we take a look at any examples of the Recordset object, let's first add some code to our
application to show us when our Recordset events are fired. With this code, we can see how
events are reported as we look at the upcoming examples in this section.

Add a new Class to your current project, declare the Recordset object With Events as shown, and
add the necessary ConnectionString Const for the examples:

IT-SC book 409

Private WithEvents rst As ADODB.Recordset

Private Const DATASOURCE_NWIND = "Provider=Microsoft.Jet.OLEDB.4.0; " _
 & "Data Source=C:\Program Files\" _
 & "Microsoft Visual Studio\VB98\NWind.mdb;"

Now you should be able to see the rst variable in the first combo list box over your code. After
selecting this object, you will be given a choice of eleven events that can be fired for your
Recordset object. For each event, we are going to add code to output the parameters passed to that
event to the Immediate Window.

Add the code from Example 13-19 for the 11 events[1] to the new Class.

[1] Available for download from the book's web site, http://www.oreilly.com/catalog/ado.

Example 13-19. The 11 Events to the New Class

Private Sub rst_EndOfRecordset(fMoreData As Boolean, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pRecordset As ADODB.Recordset)

 Debug.Print "Event: EndOfRecordset"
 Debug.Print " More Data: " & fMoreData
 Debug.Print " Status: " & GetStatusString(adStatus)
 Debug.Print " Recordset: " & pRecordset.Source
 Debug.Print

End Sub

Private Sub rst_FetchComplete(ByVal pError As ADODB.Error, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pRecordset As ADODB.Recordset)

 Debug.Print "Event: FetchComplete"
 Debug.Print " Error: " & pError.Description
 Debug.Print " Status: " & GetStatusString(adStatus)
 Debug.Print " Recordset: " & pRecordset.Source
 Debug.Print

End Sub

Private Sub rst_FetchProgress(ByVal Progress As Long, _
 ByVal MaxProgress As Long, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pRecordset As ADODB.Recordset)

 Debug.Print "Event: FetchProgress"
 Debug.Print " Progress: " & Progress
 Debug.Print " Maximum: " & MaxProgress
 Debug.Print " Status: " & GetStatusString(adStatus)
 Debug.Print " Recordset: " & pRecordset.Source
 Debug.Print

End Sub

IT-SC book 410

Private Sub rst_FieldChangeComplete(ByVal cFields As Long, _
 ByVal Fields As Variant, _
 ByVal pError As ADODB.Error, _
 adStatus As ADODB.EventStatusEnum,
_
 ByVal pRecordset As ADODB.Recordset)

 Debug.Print "Event: FieldChangeComplete"
 Debug.Print " Changed: " & cFields
 If (Not (pError Is Nothing)) Then
 Debug.Print " Error: " & pError.Description
 End If
 Debug.Print " Status: " & GetStatusString(adStatus)
 Debug.Print " Recordset: " & pRecordset.Source
 Debug.Print

End Sub

Private Sub rst_MoveComplete(ByVal adReason As ADODB.EventReasonEnum, _
 ByVal pError As ADODB.Error, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pRecordset As ADODB.Recordset)

 Debug.Print "Event: MoveComplete"
 Debug.Print " Reason: " & GetReasonString(adReason)
 If (Not (pError Is Nothing)) Then
 Debug.Print " Error: " & pError.Description
 End If
 Debug.Print " Status: " & GetStatusString(adStatus)
 Debug.Print " Recordset: " & pRecordset.Source
 Debug.Print

End Sub

Private Sub rst_RecordChangeComplete(_
 ByVal adReason As ADODB.EventReasonEnum, _
 ByVal cRecords As Long, _
 ByVal pError As ADODB.Error, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pRecordset As ADODB.Recordset)

 Debug.Print "Event: RecordChangeComplete"
 Debug.Print " Reason: " & GetReasonString(adReason)
 Debug.Print " Changed: " & cRecords
 If (Not (pError Is Nothing)) Then
 Debug.Print " Error: " & pError.Description
 End If
 Debug.Print " Status: " & GetStatusString(adStatus)
 Debug.Print " Recordset: " & pRecordset.Source
 Debug.Print

End Sub

Private Sub rst_RecordsetChangeComplete(_
 ByVal adReason As ADODB.EventReasonEnum,
_
 ByVal pError As ADODB.Error, _

IT-SC book 411

 adStatus As ADODB.EventStatusEnum, _
 ByVal pRecordset As ADODB.Recordset)

 Debug.Print "Event: RecordsetChangeComplete"
 Debug.Print " Reason: " & GetReasonString(adReason)
 If (Not (pError Is Nothing)) Then
 Debug.Print " Error: " & pError.Description
 End If
 Debug.Print " Status: " & GetStatusString(adStatus)
 Debug.Print " Recordset: " & pRecordset.Source
 Debug.Print

End Sub

Private Sub rst_WillChangeField(ByVal cFields As Long, _
 ByVal Fields As Variant, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pRecordset As ADODB.Recordset)

 Debug.Print "Event: WillChangeField"
 Debug.Print " Changed: " & cFields
 Debug.Print " Status: " & GetStatusString(adStatus)
 Debug.Print " Recordset: " & pRecordset.Source
 Debug.Print

End Sub

Private Sub rst_WillChangeRecord(_
 ByVal adReason As ADODB.EventReasonEnum, _
 ByVal cRecords As Long, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pRecordset As ADODB.Recordset)

 Debug.Print "Event: WillChangeRecord"
 Debug.Print " Reason: " & GetReasonString(adReason)
 Debug.Print " Changed: " & cRecords
 Debug.Print " Status: " & GetStatusString(adStatus)
 Debug.Print " Recordset: " & pRecordset.Source
 Debug.Print

End Sub

Private Sub rst_WillChangeRecordset(_
 ByVal adReason As ADODB.EventReasonEnum, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pRecordset As ADODB.Recordset)

 Debug.Print "Event: WillChangeRecordset"
 Debug.Print " Reason: " & GetReasonString(adReason)
 Debug.Print " Status: " & GetStatusString(adStatus)
 Debug.Print " Recordset: " & pRecordset.Source
 Debug.Print

End Sub

Private Sub rst_WillMove(ByVal adReason As ADODB.EventReasonEnum, _
 adStatus As ADODB.EventStatusEnum, _

IT-SC book 412

 ByVal pRecordset As ADODB.Recordset)

 Debug.Print "Event: WillMove"
 Debug.Print " Reason: " & GetReasonString(adReason)
 Debug.Print " Status: " & GetStatusString(adStatus)
 Debug.Print " Recordset: " & pRecordset.Source
 Debug.Print

End Sub

The only other code that you need for the following examples is the code for the GetStatusString
and GetReasonString functions, which accept an enumeration value and returns a String
describing the value:
Private Function GetStatusString(adStatus As ADODB.EventStatusEnum) As
String

 Select Case (adStatus)

 Case ADODB.EventStatusEnum.adStatusCancel:
 GetStatusString = "Cancel"

 Case ADODB.EventStatusEnum.adStatusCantDeny:
 GetStatusString = "Can't Deny"

 Case ADODB.EventStatusEnum.adStatusErrorsOccurred
 GetStatusString = "Errors Occurred"

 Case ADODB.EventStatusEnum.adStatusOK:
 GetStatusString = "Status Okay"

 Case ADODB.EventStatusEnum.adStatusUnwantedEvent:
 GetStatusString = "Unwanted Event"

 End Select

End Function

Private Function GetReasonString(adReason As ADODB.EventReasonEnum) As
String

 Select Case (adReason)

 Case ADODB.EventReasonEnum.adRsnAddNew
 GetReasonString = "Add New"

 Case ADODB.EventReasonEnum.adRsnClose
 GetReasonString = "Close"

 Case ADODB.EventReasonEnum.adRsnDelete
 GetReasonString = "Delete"

 Case ADODB.EventReasonEnum.adRsnFirstChange
 GetReasonString = "First Change"

 Case ADODB.EventReasonEnum.adRsnMove
 GetReasonString = "Move"

IT-SC book 413

 Case ADODB.EventReasonEnum.adRsnMoveFirst
 GetReasonString = "Move First"

 Case ADODB.EventReasonEnum.adRsnMoveLast
 GetReasonString = "Move Last"

 Case ADODB.EventReasonEnum.adRsnMoveNext
 GetReasonString = "Move Next"

 Case ADODB.EventReasonEnum.adRsnMovePrevious
 GetReasonString = "Move Previous"

 Case ADODB.EventReasonEnum.adRsnRequery
 GetReasonString = "Requery"

 Case ADODB.EventReasonEnum.adRsnResynch
 GetReasonString = "Resynch"

 Case ADODB.EventReasonEnum.adRsnUndoAddNew
 GetReasonString = "Undo Add New"

 Case ADODB.EventReasonEnum.adRsnUndoDelete
 GetReasonString = "Undo Delete"

 Case ADODB.EventReasonEnum.adRsnUndoUpdate
 GetReasonString = "Undo Update"

 Case ADODB.EventReasonEnum.adRsnUpdate
 GetReasonString = "Update"

 End Select

End Function

Example 13-20 illustrates how to open a Recordset object with an existing Connection object
and how to navigate the newly opened object with the Move methods and bookmarks.

Example 13-20. Opening and Navigating a Recordset Object

Dim con As ADODB.Connection

Dim vBookmark1 As Variant
Dim vBookmark2 As Variant

'
' instantiate and open a new Connection object
'
Set con = New ADODB.Connection
con.Open DATASOURCE_NWIND

'
' instantiate and open a new Recordset object with:
'
' currently opened connection
' Suppliers table

IT-SC book 414

' Server side cursor
' Dynamic cursor
' Read-only locking
'

Set rst = New ADODB.Recordset

rst.ActiveConnection = con
rst.Source = "Suppliers"
rst.CursorLocation = adUseServer
rst.CursorType = adOpenKeyset
rst.LockType = adLockReadOnly
rst.Open , , , , adCmdTable

'
' move to the first record in the recordset
'
If (Not (rst.BOF And rst.EOF)) Then rst.MoveFirst

'
' begin to move around
'
rst.MoveLast
rst.MovePrevious

'
' save the first bookmark
'
vBookmark1 = rst.Bookmark
MsgBox "Bookmark 1 is at position " & CStr(rst.AbsolutePosition)

'
' move around a little
'
rst.MoveFirst
rst.MoveNext

'
' save the second bookmark
'
vBookmark2 = rst.Bookmark
MsgBox "Bookmark 2 is at position " & CStr(rst.AbsolutePosition)

'
' compare the two bookmarks
'
If (rst.CompareBookmarks(vBookmark1, _
 vBookmark2) = adCompareLessThan) Then
 MsgBox "Bookmark 1 comes before Bookmark 2."
Else
 MsgBox "Bookmark 2 comes before Bookmark 1."
End If

'
' set the record pointer to a prevously saved bookmark
'
rst.Bookmark = vBookmark1

IT-SC book 415

MsgBox "Now located at position " & CStr(rst.AbsolutePosition)
MsgBox "Now located at page " & CStr(rst.AbsolutePage)

'
' clean up
'
rst.Close
con.Close

Set rst = Nothing
Set con = Nothing

Remember not to declare the rst variable in a member function. It is already declared at a
module level, allowing the events that are triggered for it to be displayed in the Immediate
Window, as shown for the output from the previous example:
Event: WillMove
 Reason: Move
 Status: Can't Deny
 Recordset: select * from Suppliers

Event: MoveComplete
 Reason: Move
 Status: Status Okay
 Recordset: select * from Suppliers

Event: WillMove
 Reason: Move
 Status: Status Okay
 Recordset: select * from Suppliers

Event: MoveComplete
 Reason: Move
 Status: Status Okay
 Recordset: select * from Suppliers

Event: WillMove
 Reason: Move First
 Status: Status Okay
 Recordset: select * from Suppliers

Event: MoveComplete
 Reason: Move First
 Status: Status Okay
 Recordset: select * from Suppliers

Event: WillMove
 Reason: Move Last
 Status: Status Okay
 Recordset: select * from Suppliers

Event: MoveComplete
 Reason: Move Last
 Status: Status Okay
 Recordset: select * from Suppliers

Event: WillMove

IT-SC book 416

 Reason: Move Previous
 Status: Status Okay
 Recordset: select * from Suppliers

Event: MoveComplete
 Reason: Move Previous
 Status: Status Okay
 Recordset: select * from Suppliers

Event: WillMove
 Reason: Move First
 Status: Status Okay
 Recordset: select * from Suppliers

Event: MoveComplete
 Reason: Move First
 Status: Status Okay
 Recordset: select * from Suppliers

Event: WillMove
 Reason: Move Next
 Status: Status Okay
 Recordset: select * from Suppliers

Event: MoveComplete
 Reason: Move Next
 Status: Status Okay
 Recordset: select * from Suppliers

Event: WillMove
 Reason: Move
 Status: Status Okay
 Recordset: select * from Suppliers

Event: MoveComplete
 Reason: Move
 Status: Status Okay
 Recordset: select * from Suppliers

Event: RecordsetChangeComplete
 Reason: Close
 Status: Status Okay
 Recordset: select * from Suppliers

Example 13-21 shows how records can be added to a Recordset object in immediate update
mode, the default.

Example 13-21. Adding Records to a Recordset Object

'
' instantiate and open a Recordset on the Suppliers table
'
Set rst = New ADODB.Recordset

rst.Open "Suppliers", _
 DATASOURCE_NWIND, _

IT-SC book 417

 adOpenKeyset, _
 adLockOptimistic, _
 adCmdTable

'
' add a new record to the Suppliers table
'
rst.AddNew
rst.Fields("CompanyName").Value = "Roff's Supplies"
rst.Fields("ContactName").Value = "Roff, Jason T."
rst.Update

'
' add another record to the Suppliers table
'
rst.AddNew
rst.Fields("CompanyName").Value = "Kimberly's Supplies"
rst.Fields("ContactName").Value = "Roff, Kimberly A."
rst.Update

'
' clean up
'
rst.Close

Set rst = Nothing

When running Example 13-21, the following output is displayed in the Immediate Window:
Event: WillMove
 Reason: Move
 Status: Can't Deny
 Recordset: select * from Suppliers

Event: MoveComplete
 Reason: Move
 Status: Status Okay
 Recordset: select * from Suppliers

Event: WillMove
 Reason: Move
 Status: Status Okay
 Recordset: select * from Suppliers

Event: MoveComplete
 Reason: Move
 Status: Status Okay
 Recordset: select * from Suppliers

Event: WillMove
 Reason: Move
 Status: Status Okay
 Recordset: select * from Suppliers

Event: WillChangeRecord
 Reason: Add New
 Changed: 1

IT-SC book 418

 Status: Status Okay
 Recordset: select * from Suppliers

Event: RecordChangeComplete
 Reason: Add New
 Changed: 1
 Status: Status Okay
 Recordset: select * from Suppliers

Event: MoveComplete
 Reason: Move
 Status: Status Okay
 Recordset: select * from Suppliers

Event: WillChangeField
 Changed: 1
 Status: Status Okay
 Recordset: select * from Suppliers

Event: FieldChangeComplete
 Changed: 1
 Status: Status Okay
 Recordset: select * from Suppliers

Event: WillChangeField
 Changed: 1
 Status: Status Okay
 Recordset: select * from Suppliers

Event: FieldChangeComplete
 Changed: 1
 Status: Status Okay
 Recordset: select * from Suppliers

Event: WillChangeRecord
 Reason: Update
 Changed: 1
 Status: Status Okay
 Recordset: select * from Suppliers

Event: RecordChangeComplete
 Reason: Update
 Changed: 1
 Status: Status Okay
 Recordset: select * from Suppliers

Event: WillMove
 Reason: Move
 Status: Status Okay
 Recordset: select * from Suppliers

Event: WillChangeRecord
 Reason: Add New
 Changed: 1
 Status: Status Okay
 Recordset: select * from Suppliers

IT-SC book 419

Event: RecordChangeComplete
 Reason: Add New
 Changed: 1
 Status: Status Okay
 Recordset: select * from Suppliers

Event: MoveComplete
 Reason: Move
 Status: Status Okay
 Recordset: select * from Suppliers

Event: WillChangeField
 Changed: 1
 Status: Status Okay
 Recordset: select * from Suppliers

Event: FieldChangeComplete
 Changed: 1
 Status: Status Okay
 Recordset: select * from Suppliers

Event: WillChangeField
 Changed: 1
 Status: Status Okay
 Recordset: select * from Suppliers

Event: FieldChangeComplete
 Changed: 1
 Status: Status Okay
 Recordset: select * from Suppliers

Event: WillChangeRecord
 Reason: Update
 Changed: 1
 Status: Status Okay
 Recordset: select * from Suppliers

Event: RecordChangeComplete
 Reason: Update
 Changed: 1
 Status: Status Okay
 Recordset: select * from Suppliers

Event: RecordsetChangeComplete
 Reason: Close
 Status: Status Okay
 Recordset: select * from Suppliers

Example 13-22, our final example for the Recordset object, illustrates how data can be found
and filtered very easily.

Example 13-22. Filtering and Finding Data

Dim sInfo As String

'

IT-SC book 420

' instantiate and open a Recordset on the Suppliers table
' using Batch locking
'
Set rst = New ADODB.Recordset

rst.Open "Suppliers", _
 DATASOURCE_NWIND, _
 adOpenKeyset

If (Not (rst.BOF And rst.EOF)) Then rst.MoveFirst

'
' find the first record with the contact, Jason T. Roff
'
rst.Find "ContactName = 'Roff, Jason T.'", _
 0, _
 adSearchForward

MsgBox "Jason's company: " & rst.Fields("CompanyName")

'
' display some information about the current Recordset objet
'
sInfo = sInfo & "Page size: " & vbTab & rst.PageSize & vbCr
sInfo = sInfo & "Page count: " & vbTab & rst.PageCount & vbCr
sInfo = sInfo & "Cache size: " & vbTab & rst.CacheSize & vbCr
sInfo = sInfo & "Recordcount: " & vbTab & rst.RecordCount
MsgBox sInfo

'
' filter records for just the Managers
'
rst.Filter = "ContactTitle Like '*Manager*'"
MsgBox "There are " & CStr(rst.RecordCount) & " managers as contacts."

'
' clean up
'
rst.Close

Set rst = Nothing

The Immediate Window is populated with the following event-debug information:
Event: WillMove
 Reason: Move
 Status: Can't Deny
 Recordset: Suppliers

Event: MoveComplete
 Reason: Move
 Status: Status Okay
 Recordset: Suppliers

Event: WillMove
 Reason: Move
 Status: Status Okay

IT-SC book 421

 Recordset: Suppliers

Event: MoveComplete
 Reason: Move
 Status: Status Okay
 Recordset: Suppliers

Event: WillMove
 Reason: Move First
 Status: Status Okay
 Recordset: Suppliers

Event: MoveComplete
 Reason: Move First
 Status: Status Okay
 Recordset: Suppliers

Event: WillMove
 Reason: Move Last
 Status: Status Okay
 Recordset: Suppliers

Event: MoveComplete
 Reason: Move Last
 Status: Status Okay
 Recordset: Suppliers

Event: WillMove
 Reason: Requery
 Status: Status Okay
 Recordset: Suppliers

Event: MoveComplete
 Reason: Requery
 Status: Status Okay
 Recordset: Suppliers

Event: RecordsetChangeComplete
 Reason: Close
 Status: Status Okay
 Recordset: Suppliers

Recordset.AbsolutePage
Property

(Versions 2.0, 2.1,
2.5, 2.6)

absolutepage = recordset.AbsolutePage

The AbsolutePage property returns or sets a value that indicates the current page in the recordset.

Datatype

Long

IT-SC book 422

Description

By setting the AbsolutePage property, you are instructing ADO to move the record pointer to the
first record within the page that you specified. The AbsolutePage property can be set from 1 to
the number returned by the PageCount property, which is the total number of logical pages. The
size of each page is determined by the PageSize property.

By reading the AbsolutePage property, you can determine in which logical page the record
pointer is located. The AbsolutePage property can return a Long value indicating the current page
or a PositionEnum value.

If when reading the AbsolutePage property, the record pointer is pointing to the BOF marker,
then the value adPosBOF (-2) is returned. If the record pointer is at the EOF marker, then the
adPosEOF (-3) value is returned. If the recordset is empty, if the record pointer's position is
unknown or if the data provider does not support the AbsolutePage property, then the value
adPosUnknown (-1) is returned.

The AbsolutePage property is 1-based, meaning that a value of 1 indicates the first page in the
recordset.

Note

Not all providers support the AbsolutePage property.

See Also

CursorOptionEnum Enumeration, PositionEnum Enumeration, Recordset.Count Property,
Recordset.Filter Property, Recordset.PageSize Property, Recordset.Supports Method

Recordset.AbsolutePosition
Property

(Versions 2.0, 2.1,
2.5, 2.6)

absoluteposition = recordset.AbsolutePosition

The AbsolutePosition property returns or sets a value that indicates the current record position
within the recordset.

Datatype

Long

Description

By setting the AbsolutePosition property, you are instructing ADO to move to the record with the
ordinal position that you specified. The AbsolutePosition property can be set from 1 to the
number returned by the RecordCount property, which is the total number of records in the
recordset.

IT-SC book 423

When you set the AbsolutePosition property, ADO reloads the cache with a new set of records,
the first one of which is the record that you specify. The number of records that are loaded in the
cache is determined by the CacheSize property.

By reading the AbsolutePosition property, you can determine at which ordinal position the record
pointer is located by the Long or the PositionEnum value.

If, when reading the AbsolutePosition property, the record pointer is pointing to the BOF marker,
then the value adPosBOF (-2) is returned. If the record pointer is at the EOF marker, then the
adPosEOF (-3) value is returned. If the recordset is empty, if the record pointer's position is
unknown, or if the data provider does not support the AbsolutePosition property, then the value
adPosUnknown (-1) is returned.

It is important to note that the AbsolutePosition can change in the event that a previous record is
deleted or even if the recordset is required. I recommend using bookmarks to keep track of
records by position.

The AbsolutePosition property is 1-based, meaning that the value 1 indicates the first record in
the recordset.

Note

Not all providers support the AbsolutePosition property.

See Also

CursorOptionEnum Enumeration, PositionEnum Enumeration, Recordset.CacheSize Property,
Recordset.RecordCount Property, Recordset.Supports Method

Recordset.ActiveCommand
Property

(Versions 2.0, 2.1,
2.5, 2.6)

activecommand = recordset.ActiveCommand

The ActiveCommand property returns the Command object that was used to populate a Recordset
object.

Datatype

Variant (containing a Command object)

Description

The read-only ActiveCommand property is used to return the Command object that was used to
populate a Recordset object.

If a Command object was not used to populate a Recordset object, a reference to a Null object is
returned.

IT-SC book 424

Recordset.ActiveConnection
Property

(Versions 2.0, 2.1,
2.5, 2.6)

Set recordset.ActiveConnection = connection
recordset.ActiveConnection = connenctionstring

The ActiveConnection property specifies the Connection object for the current Recordset object.

Datatype

String or a Variant (containing the current Connection object)

Description

The ActiveConnection property can be read to return either a String or a reference to a
Connection object. The ActiveConnection property cannot be read if the Recordset object is open
or if the Recordset object was created with a Command object (its Source property set to a
Command object). At any other time, the ActiveConnection property can be set to either a String
or a reference to a Connection object. If a String value is used, then it should be a valid
connection string that could be passed to the ConnectionString property of a Connection object.
You must set the ActiveConnection property before you attempt to open a Recordset object.
Before it is set, the default value for the ActiveConnection property is a Null object reference.

If you specify the ActiveConnection as a parameter to the Open method of the Recordset object,
the ActiveConnection property will access the same value. If you opened a Recordset object with
a Command object as the Source property value, the Recordset object's ActiveConnection
property will access the Command object's ActiveConnection property value.

See Also

Conection.ConnectionString Property, Recordset.Open Method, Recordset.Source Property

Recordset.AddNew
Method

(Versions 2.0, 2.1, 2.5,
2.6)

recordset.AddNew Fields, Values

The AddNew method creates a new record within the current Recordset object that is set to the
value that you specify.

Arguments

Fields

IT-SC book 425

As the optional first parameter to the AddNew method, supply either a Variant or a Variant array.
This object represents the name of the field or an array of fields, respectively, for which you wish
to initialize values. If this parameter is a Variant array, then the next parameter, Values, must
also be a Variant array of the same dimension.
Values

The optional second parameter works in correspondence with the first parameter, Fields. This
parameter is also either a Variant or a Variant array that specifies the values of the fields that you
included in your first parameter. It is important to remember that if this parameter contains a
Variant array, then the Fields parameter must also be an array of the same dimension. In addition,
each ordinal position of both arrays must match the proper fields to the correct values.

Description

The AddNew method is a member method of the Recordset object. Its purpose is to add a new
record to the recordset specified by the Recordset object. With the AddNew method, you may
choose to include either a single field name and initialization value or a list of fields, in the form
of a Variant array, along with a corresponding Variant array of values, which match these fields.

After calling the AddNew method, you can call either the Update method or the AddNew method
again to add the current record to the Recordset object. If you call the AddNew method before
calling the Update method, then ADO automatically calls the Update method and proceeds with
the AddNew method call. Simply adding the record to the Recordset object does not guarantee
that your new record is in your data source. This case depends on the updating mode of your
Recordset object.

If the Recordset object is set for immediate update mode and you do not include parameters with
the AddNew call, then your changes are made immediately after the following Update or
AddNew method call. If you call AddNew with parameters, the values are cached locally until the
next Update is called. During the period between the AddNew and Update method calls, the
EditMode property is set to adEditAdd and is not reset to adEditNone until the update is
completed, either by calling the Update method or AddNew once again.

If the Recordset object is set for batch update mode, your changes are made only when the
UpdateBatch method of the Recordset object is called. In this mode, the changes are cached
locally if the AddNew method does not include parameters. This also sets the EditMode property
to adEditAdd. The changes are sent to the provider -- but still not posted to the data source --
when the Update method is called, in turn setting the EditMode property to adEditNone. On the
other hand, if you call the AddNew method with parameters, the changes are immediately sent to
the provider to be posted with the next UpdateBatch method call.

If your Recordset object supports bookmarks, your new record will be added to the end of your
recordset and can be accessed at any time. If your Recordset object does not support bookmarks,
there is a good chance that you may not be able to access the record once you move away from it,
so never rely on it being there. Instead, use the Requery method of the Recordset object to enable
your application to find the field.

See Also

IT-SC book 426

EditModeEnum Enumeration, Recordset.EditMode Property, Recordset.Requery Method,
Recordset.Update Method, Recordset.UpdateBatch Method

Recordset.BOF Property
Recordset.EOF Property

(Versions 2.0, 2.1, 2.5,
2.6) (Versions 2.0, 2.1,

2.5, 2.6)

Boolean = recordset.BOF
Boolean = recordset.EOF

The BOF property indicates that the record pointer is located before the first record in the
recordset. The EOF property indicates that the record pointer is located directly after the last
record in the recordset.

Datatype

Boolean

Description

The BOF and EOF properties are both read-only.

If both the BOF and EOF properties are True, then the current recordset is empty. Using any
Move method (Move, MovePrevious, MoveFirst, MoveNext, or MovePrevious) generates an
error.

If both the BOF and EOF properties are False, then the record pointer can be pointing to any
record within the recordset. If this is the case, you can use any of the Move methods without
generating an error.

If the BOF property is True and the EOF property is False, then the record pointer is pointing to
the position directly before the first record within the recordset. When this happens, you cannot
use the MovePrevious method or the Move method with a negative number without generating an
error.

If the EOF property is True and the BOF property is False, then the record pointer is pointing to
the position directly after the last record within the recordset. When this happens, you cannot use
the MoveFirst method or the Move method with a positive number without generating an error.

If you delete the last record in the recordset, the BOF and EOF properties will remain set to
False until you move the record pointer.

If either a call to MoveFirst or a call to MoveLast results in not being able to find a record, both
the EOF and BOF properties will be set to True.

If MovePrevious or Move -- with a value of less than zero -- cannot find a record, the BOF
property is set to True.

IT-SC book 427

If MoveNext or Move -- with a value of greater than zero -- cannot find a record, the EOF
property is set to True.

See Also

Recordset.Move Method, Recordset.MoveFirst Method, Recordset.MoveLast Method,
Recordset.MoveNext Method, Recordset.MovePrevious Method, Recordset.Open Method

Recordset.Bookmark
Property

(Versions 2.0, 2.1, 2.5,
2.6)

bookmark = recordset.Bookmark

The Bookmark property returns a unique identifier for the current record within a recordset. By
setting the Bookmark property to a previously read value, the record pointer can be repositioned
to the original record.

Datatype

Variant

Description

The Bookmark property is available only through recordsets that support bookmarks. Bookmarks
are used to record the position of the current record and later to set the current record back to the
specified bookmark.

Bookmarks can be used interchangeably within Recordset objects that are clones of each other,
but not with other Recordset objects, even if they were created from the same source.

The return value of the Bookmark property is not readable and shouldn't be used in comparisons
because two bookmarks of the same record may not be the same.

Note

Not all recordsets support the Bookmark property.

See Also

CursorOptionEnum Enumeration, Recordset.Supports Method

Recordset.CacheSize
Property

(Versions 2.0, 2.1, 2.5,
2.6)

recordset.CacheSize = cachesize

IT-SC book 428

The CacheSize property indicates the number or records that are cached by ADO locally in
system memory.

Datatype

Long

Description

The CacheSize property sets or reads the number of records that are kept in local memory at one
time by ADO. The value of CacheSize must be at least 1, otherwise an error will occur. The
default value of the CacheSize property is 1.

When a recordset is first opened, the number of records specified by the CacheSize property is
gathered. After the record pointer moves beyond this number, another set of records is returned,
the first being the next record in the recordset. If fewer records are available, the CacheSize
requests only those records that are gathered.

The CacheSize property can be changed throughout the life of a recordset; however, the number
of records retrieved into the cache does not change until the record pointer is moved outside the
current cache.

The values within the cache do not reflect changes made by other users. To accomplish this, use
the Resync method.

See Also

Recordset.Resync Method

Recordset.Cancel Method (Versions 2.0, 2.1, 2.5, 2.6)

recordset.Cancel

The Cancel method cancels an asynchronous operation for the Recordset object.

Description

The Cancel method can be called to cancel an asynchronous operation of the Recordset object
invoked by the Open method.

See Also

Recordset.Open Method

Recordset.CancelBatch
Method

(Versions 2.0, 2.1, 2.5,
2.6)

IT-SC book 429

recordset.CancelBatch AffectRecords

The CancelBatch method cancels the currently pending batch update for the current Recordset
object.

Arguments

AffectRecords (AffectEnum)

Optional. Enumerator with the value of adAffectCurrent, adAffectGroup, or
adAffectAll.

If the value of AffectRecords is adAffectCurrent, the CancelBatch method call affects
only the pending updates for the current record of the recordset.

If the value of AffectRecords is adAffectGroup, the CancelBatch method call affects only
the pending records that are dictated through the Filter property of the current Recordset object.
This property must be already set for the CancelBatch method to be called with the
adAffectGroup parameter.

If the value of AffectRecords is adAffectAll, all records pending updates within the current
Recordset object (including those hidden by the Filter property) are affected by the CancelBatch
method.

Description

With the CancelBatch method, you can cancel any or all pending updates in the current Recordset
object from batch update mode; however, in immediate update mode, calling this method will
generate an error.

The CancelUpdate method is called when the CancelBatch method is called, thus removing any
updates or new records that were added within the batch. For this reason, the current record
position may be invalid, and it is suggested that you move to a reliable record position, either by a
valid bookmark or by using a method such as MoveFirst.

If a runtime error occurs during the call to the CancelBatch method, then there are conflicts with
all of the records that were requested from the current recordset. In addition, if only one or a few
records are in conflict, then the Errors collection is populated, but a runtime error does not occur.

Note

Not all providers support the CancelBatch property.

See Also

CursorOptionEnum Enumeration, Recordset.CancelUpdate Method, Recordset.Filter Property,
AffectEnum Enumeration, Recordset.Supports Method

IT-SC book 430

Recordset.CancelUpdate
Method

(Versions 2.0, 2.1,
2.5, 2.6)

recordset.CancelUpdate

The CancelUpdate method cancels any changes to the current batch update made since the last
AddNew or Update method calls.

Description

The CancelUpdate method of the Recordset object cancels any changes that were made to a
record since a call to the Update method of that Recordset. In addition, the CancelUpdate method
cancels the creation of a new record by the AddNew method.

The CancelUpdate method must be called before the Update method for the current record. The
only other way to cancel the changes to a record is by using transaction management through the
BeginTrans and RollbackTrans methods of the Recordset object.

See Also

Recordset.AddNew Method, Recordset.Update Method

Recordset.Clone Method (Versions 2.0, 2.1, 2.5, 2.6)

Set cloned_recordset = original_recordset.Clone

The Clone method of the Recordset object returns a clone of the current Recordset.

Returns

Recordset object

Description

The Clone method of the Recordset object creates an exact multiple copy of the original
Recordset object. Use this method when you want to access more than one record at a time within
the same recordset. This is more efficient than creating another new Recordset object for the same
recordset.

When a clone is created, the clone's record position will be set to the first record in the recordset.

Only recordsets that support bookmarks can be cloned. Bookmarks from one recordset are valid
for clones of that recordset, and vice versa. Closing a clone does not close the original recordset,
and vice versa.

IT-SC book 431

See Also

LockTypeEnum Enumeration

Recordset.Close Method (Versions 2.0, 2.1, 2.5, 2.6)

recordset.Close

The Close method closes a Recordset object.

Description

The Close method closes either a Connection or a Recordset object. When you invoke this
method on either object, all dependant objects of your connection or recordset are also closed.
You would use the Close method to free system resources although the resource still remains in
memory. After closing a Connection or Recordset object, you can still open it again. To
completely remove the object from memory, set it to Nothing.

When calling the Close method of the Connection object, all associated Recordset objects will be
closed, but the associated Command object will persist, thus setting the ActiveConnection
property to Nothing and clearning the Parameters collection of the Command object. You can
still use the Open method to connect to a data source.

If you close a Connection object that has any associated open Recordset objects, any pending
changes of the Recordset objects will be rolled back. By calling the Close method of the
Connection object while a transaction is in progress, you generate an error. If a Connection object
falls out of scope while a transaction is in progress, the transaction is automatically rolled back.

When you use the Close method on the Recordset object, that object releases any exclusive access
you may have to the data and releases any associated data. You can still use the Open method of
that Recordset object later, after the Close method.

If your data source is in immediate update mode and the Close method is called while editing, an
error occurs. To avoid this error, call either the Update method or the CancelUpdate method. If
you are in batch update mode, the data since the last UpdateBatch will be lost.

If you have cloned a Recordset object whose Close method you called, the cloned Recordset
object will not be closed, and vice versa.

See Also

Recordset.ActiveConnection Property, Recordset.CancelUpdate Method, Recordset.Open Method,
Recordset.Update Method

Recordset.CompareBookmarks
Method

(Versions 2.0,
2.1, 2.5, 2.6)

IT-SC book 432

result = recordset.CopmareBookmarks (Bookmark1,
Bookmark2)

The CompareBookmarks method determines the position of two bookmarks in a recordset
relative to one another.

Arguments

Bookmark1 (Variant)

A bookmark of the first row to be compared.

Bookmark2 (Variant)

A bookmark of the second row to be compared.

Returns

CompareEnum

Description

The CompareBookmark method returns a value that indicates which of the two passed bookmarks
come first in ordinal position. Bookmarks are unique to rows within the same Recordset and
clones of a Recordset object. Comparing bookmarks from two different Recordsets (not created
by cloning another) will not return reliable results.

Obtain the current row's bookmark by reading the Bookmark property.

See Also

CompareEnum Enumeration, Recordset.Bookmark Property, Recordset.Clone Method

Recordset.CursorLocation
Property

(Versions 2.0, 2.1,
2.5, 2.6)

recordset.CursorLocation = cursorlocation

The CursorLocation property indicates the location of the cursor service.

Datatype

CursorLocationEnum (Long)

Description

IT-SC book 433

The value of the CursorLocation property can be set to one of the valid CursorLocationEnum
values listed in Appendix E.

The value of the CursorLocation property is read- and write-enabled for closed Recordset objects
and read-only for open Recordset objects.

A recordset returned from an Execute method inherits the value for the CursorLocation from the
original object. Recordset objects automatically inherit this value from the Connection object that
established it.

See Also

Command.Object Method, Connection.Execute Method, CursorLocationEnum Enumeration,
Recordset.Open Method

Recordset.CursorType
Property

(Versions 2.0, 2.1, 2.5,
2.6)

recordset.CursorLocation = cursorlocation

The CursorType property indicates the type of cursor to be used for the current recordset.

Datatype

CursorTypeEnum (Long)

Description

The CursorType property indicates the type of cursor that should be used when the Recordset
object is opened. The value of this property is read- and write-enabled when the Recordset object
is closed and read-only when it is opened. The value of the CursorType property can be one of
the CursorType enumerations listed in Appendix E.

If the current data provider does not support the selected cursor type, the value of the CursorType
property changes when the Recordset object is opened. This value can be read by the application
if need be. In this case, once the Recordset object is closed, the original selected value will be
returned to the CursorType property.

You can use the Supports method of the Recordset object to see what functionality is supported
by the chosen cursor type. (See Chapter 5 for more information on cursor types.)

The Dynamic cursor supports the adMovePrevious functionality as described by the Supports
method. The Forward Only cursor does not support any of the functionality that the Supports
method indicates. The Keyset cursor and the Static cursor support adBookmark, adHoldRecords,
adMovePrevious, and adResync functionality as described by the Supports method.

The Forward Only cursor type does not support bookmarks, because you do not have the
functionality to move back to a bookmarked record. The Keyset and Static cursor records support

IT-SC book 434

bookmarks through ADO, and the Dynamic cursor supports bookmarks through the data provider
(if it supports them).

Note

If the CursorLocation property has been set to adUseClient, only the adOpenStatic
CursorType value can be used.

See Also

Connection.CursorLocation Property, CursorTypeEnum Enumeration, Recordset.CursorLocation
Property, Recordset.Open Method, Recordset.Supports Method

Recordset.DataMember
Property
Recordset.DataSource
Property

RDM Property(Versions
2.0, 2.1, 2.5, 2.6) RDS
Property(Versions 2.0,

2.1, 2.5, 2.6)

recordset.DataMember = datamember
recordset.DataSource = datasource

The DataMember property indicates the object, within the data source specified by the Data
Source property, that the Recordset object should be created with.

Datatype

String (DataMember property)
DataSource (DataSource property)

Description

The DataMember and DataSource properties are always used together.

The DataSource property indicates the data source in which the object specified by DataMember
resides.

The DataMember property indicates which object within the data source should be used to create
the Recordset object.

The Recordset must be closed when the DataMember property is being set. In addition, an error
will be raised if the DataSource property is set before the DataMember property.

Recordset.Delete Method (Versions 2.0, 2.1, 2.5, 2.6)

recordset.Delete AffectRecords

IT-SC book 435

The Delete method deletes specified records within the recordset.

Arguments

AffectRecords (Affect Enum)

Optional. Indicates either the value of adAffectCurrent or adAffectGroup.

If the value of AffectRecords is adAffectCurrent, the CancelBatch method call affects
only the pending updates for the current record of the recordset.

If the value of AffectRecords is adAffectGroup, the CancelBatch method call affects only the
pending records that are dictated through the Filter property of the current Recordset object. This
property must be already set for the CancelBatch method to be called with the adAffectGroup
parameter.

Description

The Delete method removes a record or a group of records when used with the Recordset object.
The Delete method removes a specified Parameter object from the Parameters collection when
used with it.

When using the Delete method with the Recordset object, records that are to be deleted are
actually marked for deletion. If the particular recordset does not allow deletion, an error occurs.
In immediate update mode, the deletion occurs immediately. However, in batch update mode, the
records are marked deleted and are cached until the UpdateBatch method is called. You can view
the deleted records by using the Filter property.

After you delete a record, the current record position is still on that record. Once you move from
that record position, the records are no longer accessible, and attempting to read a deleted record
results in an error. If you are using transaction management with BeginTrans, you can cancel the
deletion of records with the RollbackTrans method. In addition, in batch update mode, you can
cancel deletion by using the CancelBatch method.

If you attempt to delete a record that has already been deleted by another user, a runtime error
does not occur; instead, the Errors collection is populated with warnings. A runtime error occurs
only if all of the requested records to be deleted have a conflict for some reason. You can use the
Filter property with the adFilterAffectedRecords value and the Status property to locate
any records with conflicts.

The Delete method is valid only for the Parameters collection of the Command object. Specify
the name of the parameter to be deleted from the collection in the form of a String.

Note

Not all providers support the Delete method.

See Also

IT-SC book 436

AffectEnum Enumeration, Connection.RollbackTrans Method, CursorOptionEnum Enumeration,
Recordset.CancelBatch Method, Recordset.Filter Property, Recordset.Status Property,
Recordset.Supports Method

Recordset.EditMode
Property

(Versions 2.0, 2.1, 2.5,
2.6)

recordset.EditMode = editmode

The EditMode property indicates the current editing status for a given record.

Datatype

EditModeEnum (Long)

Description

Use the EditMode property to determine whether the current record is being edited when an
editing process has been interrupted. With this information, you can determine whether you need
to call the Update method or the CancelUpdate method.

The value of the EditMode property can be one of the EditModeEnum enumerations listed in
Appendix E.

See Also

EditModeEnum Enumeration, Recordset.AddNew Method, Recordset.CancelUpdate Method,
Recordset.Update Method

Recordset.EndOfRecordset
Event

(Versions 2.0, 2.1,
2.5, 2.6)

EndOfRecordset(fMoreData As Boolean, _
 adStatus As ADODB.EventStatusEnum,
_
 ByVal pRecordset As
ADODB.Recordset)

The EndOfRecordset event is called when an attempt to move the record pointer past the end of
the recordset has occurred.

Arguments

fMoreData

IT-SC book 437

A VARIANT_BOOL value that can be set to True if more data was added by the application to
invalidate the current event. In other words, when this event is fired, it is an indication that the
record pointer has gone outside the recordset. At this time, you can append more records to the
recordset and set this fMoreData parameter to True, so that the operation can be attempted
again.
adStatus

An EventStatusEnum value indicating the status of the current operation. The adStatus
parameter is set to adStatusOK if the operation causing this event was successful. If the
adStatus parameter is set to adStatusCantDeny, the event cannot request that the operation
be canceled. If the adStatus parameter is set to adStatusUnwantedEvent, this event will not
be called again.
pRecordset

The Recordset object that fired this event.

See Also

EventStatusEnum Enumeration, Recordset.MoveNext Method

Recordset.EOF Property (Versions 2.0, 2.1, 2.5, 2.6)

See Recordset.BOF Property.

Recordset.FetchComplete
Event

(Versions 2.0, 2.1,
2.5, 2.6)

FetchComplete(ByVal pError As ADODB.Error, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pRecordset As ADODB.Recordset)

The FetchComplete event is called when a long asynchronous operation (fetch) has completed
and all of the records have been returned.

Arguments

pError

An Error object containing details about an error that occurred if the adStatus parameter is set
to adStatusErrorsOccurred.
adStatus

IT-SC book 438

An EventStatusEnum value indicating the status of the current operation. If the adStatus
parameter is set to adStatusOK the operation was successful. If the adStatus parameter is set
to adStatusErrorsOccurred, the operation failed and the pError object contains the details
regarding the error. By setting the adStatus parameter to adStatusUnwantedEvent, this
event will not be called again.
pRecordset

The Recordset object that fired this event.

See Also

EventStatusEnum Enumeration

Recordset.FetchProgress
Event

(Versions 2.0, 2.1, 2.5,
2.6)

FetchProgress(ByVal Progress As Long, _
 ByVal MaxProgress As Long, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pRecordset As ADODB.Recordset)

The FetchProgress event is called during a long asynchronous operation (fetch) to report the
progress of the fetch.

Arguments

Progress

A Long value that indicates the number of records that have been retrieved so far by the operation.
MaxProgress

A Long value that indicates the maximum number of records that are expected to be retrieved.
adStatus

An EventStatusEnum value indicating the status of the current operation. The adStatus
parameter is set to adStatusOK if the operation causing this event was successful. If the
adStatus parameter is set to adStatusCantDeny, the event cannot request that the operation
be canceled. If the adStatus parameter is set to adStatusUnwantedEvent, this event will not
be called again.
pRecordset

The Recordset object that fired this event.

See Also

EventStatusEnum Enumeration, Recordset.FetchProgress Event

IT-SC book 439

Recordset.FieldChangeComplete
Event

(Versions 2.5,
2.6)

FieldChangeComplete(ByVal cFields As Long, _
 ByVal Fields As Variant, _
 ByVal pError As ADODB.Error, _
 adStatus As
ADODB.EventStatusEnum, _
 ByVal pRecordset As
ADODB.Recordset)

The FetchChangeComplete event is called after an operation changes one or more Field object
values.

Arguments

cFields (Long)

Indicates the number of Field objects within the Fields parameter.

Fields (Variant array)

Contains the Field objects that are waiting to be changed.

pError (Error)

Contains details about an error that occurred if the adStatus parameter is set to
adStatusErrorsOccurred.

adStatus (EventStatusEnum)

Indicates the status of the current operation. If the adStatus parameter is set to adStatusOK,
the operation was successful. If the adStatus parameter is set to adStatusErrorsOccurred,
the operation failed, and the pError object contains the details regarding the error. If the
adStatus parameter is set to adStatusCancel, then the operation has been canceled before
completion by the application. If the adStatus parameter is set to adStatusUnwantedEvent,
this event will not be called again.
pRecordset

Represents the Recordset object that fired this event.

See Also

EventStatusEnum Enumeration, Recordset.WillChangeField Event, Recordset.Value,
Recordset.Update

Recordset.Fields (Versions 2.0, 2.1, 2.5,
2.6)

IT-SC book 440

Collection

record.Fields

The Field collection contains multiple Field objects for the current Recordset object, one for each
column in the Recordset object.

Datatype

Fields (Collection object)

Description

The Fields collection of a Recordset object can be populated before opening a Recordset object
by calling the Refresh method of the Fields collection.

Field objects can be added to the collection either by calling the Field.Append method or by
referencing by name a Field object that is not already part of the collection. Calling the
Field.Update method will add the field to the collection, if possible, within the data source. Until
this moment, the Field.Status property will return adFieldPendingInsert.

See Also

Field.Append Method, Field.Refresh Method, Field.Update Method

Recordset.Filter Property (Versions 2.0, 2.1, 2.5, 2.6)

recordset.CancelBatch AffectRecords

The Filter property filters a selection of records within the current Recordset object.

Datatype

Variant

Description

When you set the Filter property, the cursor type is changed to the current filtered recordset. In
this case, the AbsolutePosition, AbsolutePage, RecordCount, and PageCount properties are
affected, since the current record is changed to the first record that meets the requirements
dictated by the Filter property.

The Filter property can have one of three types of values:

A set of clauses that are connected with the AND or OR keywords.

IT-SC book 441

An array of bookmark values.

A FilterGroupEnum enumeration value.

Clauses are similar to WHERE clauses in SQL statements. They consist of a field name, an
operator, and a value. Multiple clauses can be grouped and joined together with the AND and OR
keywords. The field name in a clause has to be a valid field name within the current recordset and
if it contains spaces, it has to be placed in brackets ([First Name]). The operator within a clause
can be any of the following: <, >, <=, >=, <>, =, or LIKE. The value within a clause is similar to
the data within the field specified. Numbers can use decimal points, dollar signs, and scientific
notation. Dates are surrounded by pound signs (#) (#06/20/1973#) and strings are surrounded
by single quotes ('Jason T. Roff').

If you are using the LIKE keyword as an operator, only the asterisk (*) and percent sign (%) can
be used as wildcards, as long as one of the two is at the end of the value (Jason* or *as*).

When setting the Filter property to an array of bookmarks, the bookmarks must be unique --
pointing to different records -- within the associated recordset.

When setting the Filter to a FilterGroupEnum enumeration value, choose from one of the
constants listed in Table E-25.

The Filter property can fail because of a record that has been deleted by another user. In this case,
a runtime error does not occur. Instead, the Errors collection is populated with warnings. A
runtime error occurs only if all of the requested records to be filtered have a conflict for some
reason. You can use the Status property to locate any records with conflicts.

See Also

AffectEnum Enumeration, FilterGroupEnum Enumeration, Recordset.AbsolutePage Property,
Recordset.AbsolutePosition Property, Recordset.CancelBatch Method, Recordset.Delete Property,
Recordset.PageCount Property, Recordset.RecordCount Property, Recordset.Resync Method,
Recordset.UpdateBatch Method

Recordset.Find Method (Versions 2.0, 2.1, 2.5, 2.6)

recordset.Find (Criteria, SkipRows,
SearchDirections, Start)

The Find method moves the record pointer to a row within the current recordset that matches the
single-column search criteria specified.

Arguments

Criteria (String)

Specifies a single-column search criteria in the form of 'Column Operator Value'. The
Column portion is a name of a column in the Recordset object. The Operator can be >, <, =, >=,
<=, <>, or LIKE. The value can be written as a string, floating point number, or date. Strings are

IT-SC book 442

deliminated with single strings or number signs (#) and dates are deliminated with number signs
(#). When using the LIKE operator, asterisks (*) can be used at the end or both the beginning and
the end of the value ('*jr*', 'jr*'). If the asterisks is used at the beginning only, an error will
occur.

SkipRows (Long)

Optional. Indicates how many rows to skip before searching the recordset for a match to the
Criteria argument. The default is 0, meaning the search will begin on the current row.

SearchDirection (SearchDirectionEnum)

Optional. Indicates whether to search forward or backward through the recordset. If a match is
not found and a forward search is being done, the record pointer will point to the EOF marker. If
a backward search is done and a match is not found, the record pointer will point to the BOF
marker. By default, a forward search is done.

Start (Variant)

Optional. Specifies a starting position for the search in the form of a bookmark. The default value
for this argument is the current row.

Description

If a current record is not set prior to calling the Find method, an error will occur. It is good
practice to call the MoveFirst method prior to the Find method.

The Find method works only with single-column search critierias.

Not all providers support Bookmarks and, therefore, cannot search backwards. Use the Supports
method to determine whether your current data provider can support the Find operation that you
want to use.

See Also

CursorOptionEnum Enumeration, Recordset.MoveFirst Method, Recordset.Supports Method,
SearchDirectionEnum Enumeration

Recordset.GetRows
Method

(Versions 2.0, 2.1, 2.5,
2.6)

Set record_array = recordset.GetRows(Rows, Start,
Fields)

The GetRows method of the Recordset object returns multiple records from an open Recordset
object in the form of an array.

Arguments

IT-SC book 443

Rows (Long)

Optional. Indicates the number of records to retrieve. The default value for this argument is
adGetRowsRest (value of -1).

Start (String or Variant)

Optional. Evaluates to a bookmark where the GetRows method should begin.

Fields (Variant)

Optional. Specifies which fields should be returned for each record by the GetRows method.
Represents a single field name, a single field-ordinal number, an array of field names, or an array
of field-ordinal numbers.

Returns

Variant (two-dimensional array)

Description

The GetRows method of the Recordset object returns multiple records from the same Recordset
object into a two-dimensional array. The records are returned in the form of a Variant array that is
automatically dimensioned by ADO. The first subscript is the field; the second is the record
number. The data returned is read-only.

You can specify the number of records to be returned through the first argument. If this value is
larger than the number of records, only the remaining records are returned.

If the selected Recordset object supports bookmarks, you can specify the starting location by
passing the value of the record's Bookmark property.

After the call to GetRows, the record pointer is set to the next unread record, unless there is no
more records, in which case the EOF property is set to True.

The last argument, Fields, can represent a single field or a group of fields to be returned by the
GetRows method. This is done with a field name, a field-ordinal position, an array of field names,
or an array of field-ordinal positions.

Note

Not all providers support the Find method.

See Also

BookmarkEnum Enumeration, CursorOptionEnum Enumeration, GetRowsOptionEnum
Enumeration, Recordset.Bookmark Property, Recordset.EOF Property, Recordset.Supports
Method

Recordset.GetString (Versions 2.0, 2.1, 2.5,

IT-SC book 444

Method 2.6)

Set Variant = recordset.GetString(StringFormat,
NumRows, ColumnDelimiter, _
 RowDelimiter,
NullExpr)

The GetString method returns the entire Recordset object as a String value.

Arguments

StringFormat (StringFormatEnum)

Indicates the format of the returned Recordset in String form.
NumRows

Optional. Indicates the number of rows to be converted to a String. If the value of this parameter
is either missing or greater than the total number of records in the Recordset object, then all of the
records are converted.
ColumnDelimeter

Optional. Used only when the StringFormat parameter is set to adClipString. Indicates the
delimeter used between columns. The tab character is the default character.
RowDelimeter

Optional. Used only when the StringFormat parameter is set to adClipString. Indicates the
delimeter used between rows. The carriage return character is the default character.
NullExpr

Optional. Used only when the StringFormat parameter is set to adClipString. Indicates the
String used to replace Null characters. The default for this parameter is the empty String.

Returns

Variant

Description

The GetString method converts the contents of the Recordset object to a String value.

See Also

StringFormatEnum Enumeration

Recordset.Index Property (Versions 2.1, 2.5, 2.6)

IT-SC book 445

recordset.Index = index

The Index property sets the current index for a given recordset.

Datatype

String

Description

The Index property is both read- and write-enabled. However, it cannot be set within a
WillRecordsetChange or RecordsetChangeComplete event or during an asynchronous execution.

The Index property is used in conjunction with the Seek method to take advantage of the
underlying table's indexed structure (as compared to the Find method, which operates
sequentially).

The position of the record pointer may change when the Index is set (changing the
AbsolutePosition property value). In addition, the following events occur: WillRecordsetChange,
RecordsetChangeComplete, WillMove, and MoveComplete.

If the LockType property is set to adLockPessimistic or adLockOptimistic, then the
UpdateBatch method is called releasing any filter that may be applied. In addition, the record
pointer is moved to the first record in the indexed recordset.

Note

Not all providers support indexes; therefore, they do not all support the Index property.

See Also

CursorOptionEnum Enumeration, Recordset.MoveComplete Event,
Recordset.RecordsetChangeComplete Event, Recordset.Seek Method, Recordset.UpdateBatch
Method, Recordset.WillMove Event, Recordset.WillRecordsetChange Event, Recordset.Supports
Method

Recordset.LockType
Property

(Versions 2.0, 2.1, 2.5,
2.6)

locktype = recordset.LockType

The LockType property indicates the type of locks that are set on records when they are being
edited.

Datatype

IT-SC book 446

LockTypeEnum (Long)

Description

The LockType property is read- and write-enabled when the Recordset object is closed, but read-
only once it is opened. The LockType property may be any one of the values in Table E-29.

Note

Not all data providers support every type of record locking. In this case, the data provider may
automatically select a different type of lock type. Check the available functionality of a data
provider with the Supports property.

See Also

LockTypeEnum Enumeration, Recordset.Open Method, Recordset.Supports Method,
Recordset.Update Method

Recordset.MarshalOptions
Property

(Versions 2.0, 2.1,
2.5, 2.6)

recordset.MarshalOptions = marshaloptions

The MarshalOptions property indicates which records are to be marshaled back to the server.

Datatype

MarshalOptionsEnum (Long)

Description

The MarshalOptions property can be one of the MarshalOptionsEnum enumeration values listed
in Appendix E.

See Also

MarshalOptionsEnum Enumeration

Recordset.MaxRecords
Property

(Versions 2.0, 2.1, 2.5,
2.6)

recordset.MaxRecords = maxrecords

The MaxRecords property indicates the maximum number of records to be returned to a recordset
from a query.

IT-SC book 447

Datatype

Long

Description

The MaxRecords property is read- and write-enabled when the Recordset object is open, but read-
only when it is closed. A value of 0 (default) indicates that all of the valid records will be returned
from a query.

Recordset.Move Method (Versions 2.0, 2.1, 2.5, 2.6)

recordset.Move NumRecords, Start

The Move method of the Recordset object moves the position of the record pointer within the
specified Recordset object.

Arguments

NumRecords (Long)

Specifies the number of records you want the record pointer to move.

Start (String or Variant)

Optional. Represents the bookmark from which you want the record pointer to move.

Description

The Move method of the Recordset object moves the record pointer a specified number of records.
If the NumRecords argument is less than zero, the pointer is moved forward the desired number.
If the NumRecords argument is greater than zero, the record pointer is moved forward the
desired number of records.

If the current Recordset object supports bookmarks, then you can indicate a beginning position to
start moving from with the Start argument. The Start argument should be set to a valid bookmark
within the current Recordset object, and the record pointer will be moved the desired number of
records from that point. If no bookmark is used, the record pointer will move from the current
record.

Attempting to move to a point before the first record will result in moving to the record before the
first record, which is a BOF. Attempting to move past the last record will result in the record
pointer moving to the record after the last record, which is the EOF. In either case, if the Move
method is used to attempt to move past the BOF or EOF, an error is generated.

If the CacheSize property is set to cache records locally from the data provider and you pass a
NumRecords that ventures outside of the cache, ADO is forced to retrieve a new group of records
from the data provider. The number of records received is dependent upon the CacheSize

IT-SC book 448

property. This also happens if you are using a local cache and use the Start argument. The first
record to be received, in this case, would be the desired destination record.

Even if the Recordset object is forward-only, you can still pass a NumRecords value that is less
than zero, as long as the destination record is within the current cache. If it is before the current
cache, an error is generated.

Note

Not all providers support the Move method.

See Also

BookmarkEnum Enumeration, Recordset.Bookmark Property, Recordset.CacheSize Property

Recordset.MoveComplete
Event

(Versions 2.0, 2.1,
2.5, 2.6)

MoveComplete(ByVal adReason As
ADODB.EventReasonEnum, _
 ByVal pError As ADODB.Error, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pRecordset As ADODB.Recordset)

The MoveComplete event is called after an operation changes the position of the record pointer
within the Recordset object.

Arguments

adReason (EventReasonEnum)

Indicates the reason for this event. Proper values for the adReason parameter are:
adRsnMoveFirst, adRsnMoveLast, adRsnMoveNext, adRsnMovePrevious, adRsnMove,
and adRsnRequery.

pError (Error)

Contains details about an error that occurred if the adStatus parameter is set to
adStatusErrorsOccurred.

adStatus (EventStatusEnum)

Indicates the status of the current operation. If the adStatus parameter is set to adStatusOK,
the operation was successful. If the adStatus parameter is set to adStatusErrorsOccurred,
the operation failed, and the pError object contains the details regarding the error. If the
adStatus parameter is set to adStatusCancel, the operation has been canceled before
completion by the application. If the adStatus parameter is set to adStatusUnwantedEvent,
this event will not be called again.

IT-SC book 449

pRecordset

Represents the Recordset object that fired this event.

See Also

EventReasonEnum Enumeration, EventStatusEnum Enumeration, Recordset.AbsolutePage
Property, Recordset.AbsolutePosition Property, Recordset.AddNew Method,
Recordset.Bookmark Method, Recordset.Filter Property, Recordset.Index Property,
Recordset.Open Method, Recordset.Move Method, Recordset.MoveFirst Method,
Recordset.MoveLast Method, Recordset.MoveNext Method, Recordset.MovePrevious Method,
Recordset.Requery Method, Recordset.WillMove Event

Recordset.MoveFirst Method
Recordset.MoveLast Method
Recordset.MoveNext Method
Recordset.MovePrevious
Method

RMF Method(Versions
2.0, 2.1, 2.5, 2.6) RML

Method(Versions 2.0,
2.1, 2.5, 2.6) RMN

Method(Versions 2.0,
2.1, 2.5, 2.6) RMP

Method(Versions 2.0,
2.1, 2.5, 2.6)

recordset.MoveFirst
recordset.MoveLast
recordset.MoveNext
recordset.MovePrevious

The MoveFirst, MoveLast, MoveNext, and MovePrevious methods of the Recordset object move
the record pointer to the first, last, next, and previous records, respectively, and make that record
the current record.

Description

The MoveFirst, MoveLast, MoveNext, and MovePrevious methods of the Recordset object allow
you to move freely throughout the specified open Recordset object.

The MoveFirst method moves to the first record in the recordset, making it the current record.

The MoveLast method moves to the last record in the recordset, making it the current record. This
method requires the Recordset object to support bookmarks. If it does not, an error is generated
when attempting to use the MoveLast method.

The MoveNext method moves to the next record in the recordset, making it the current record. If
the current record is the last record in the recordset before the call to MoveNext, then the record
pointer is moved to the record after the last in the recordset and sets the EOF property to True.
Attempting to move past the EOF results in an error.

IT-SC book 450

The MovePrevious method moves to the record directly before the current record in the recordset.
This record is then set to the current record. This method requires that the recordset support either
bookmarks or backward cursor movement; otherwise, an error is generated. If the current record -
- before calling the MovePrevious method -- is the first record in the recordset, the record pointer
is set to the record directly before the first record, and the BOF property is set to True.
Attempting to move before the beginning of the recordset results in an error.

Note

Not all providers support the MoveFirst and MovePrevious methods.

See Also

CursorOptionEnum Enumeration, Recordset.BOF Property, Recordset.EOF Property,
Recordset.Supports Method

Recordset.NextRecordset
Method

(Versions 2.0, 2.1,
2.5, 2.6)

Set resulting_recordset =
recordset.NextRecordset(RecordsAffected)

The NextRecordset method of the Recordset object returns the next recordset by advancing
through a series of commands:
recordset.MoveFirst

Arguments

RecordsAffected (Long)

Set to the number of records that the current operation affected. The data provider does this.

Description

Use the NextRecordset method of the Recordset object to obtain the next recordset in a
compound command statement or a stored procedure that returns multiple results. An example of
a compound command statement is:
SELECT * FROM upstairs; SELECT * FROM downstairs

The recordset that is originally created with either the Execute or Open methods returns a
Recordset object based only on the first SQL statement in this compound statement. You must
call NextRecordset to obtain each additional recordset. If the Recordset object is closed and there
are remaining statements, those statements will never be executed.

The NextRecordset method continues to return recordsets as long as there are more in the list. If a
row-returning statement successfully executes, and the result is zero records, then the Recordset
object's EOF and BOF properties are both be set to True. If a non-row-returning statement

IT-SC book 451

successfully executes, then the Recordset object should not be set to Nothing, but the EOF
property should be True.

If there are no more statements in the compound command statement, the returned Recordset
object is set to Nothing.

You must call the Update or the CancelUpdate methods before requesting the next recordset if
you are in immediate update mode and editing. Otherwise, an error will be generated.

Parameters for compound command statements are passed like those of regular statements; all
parameters must be filled in the Parameters collection in the proper order across statements. In
addition, you must read all the results of a recordset before reading output parameter values.

See Also

Recordset.Update Method, Recordset.CancelUpdate Method, Recordset.BOF Property,
Recordset.EOF Property

Recordset.Open Method (Versions 2.0, 2.1, 2.5, 2.6)

recordset.Open Source, ActiveConnection,
CursorType, LockType, Options

The Open method opens a cursor within a Recordset object.

Arguments

Source (Variant)

Optional. Indicates the actual data that is used to open the Recordset object. This can be a
Command object, a SQL statement, a table name, a stored procedure, a URL, a filename, or a
Stream object that contains a previously persisted Recordset object.

ActiveConnection (Variant)

Optional. Specifies either an open Connection object or a connection string to be used when the
Recordset object creates its own Connection object.

CursorType (CursorTypeEnum)

Optional. Indicates the type of cursor that is to be used when opening the Recordset object. By
default this value is adLockReadOnly.

LockType (LockTypeEnum)

Optional. Specifies the locking to be used on the opened Recordset object. The
adLockReadOnly enumeration value is the default value for this argument.

Options (Long -- CommandTypeEnum and ExecuteOptionEnum)

IT-SC book 452

Optional. Specifies the type of data that is to be specified by the Source argument; additionally,
can indicate that the Recordset object is to be opened asynchronously. The default value for the
Options argument if a Command object is not the source of the Recordset object is adCmdFile.

Description

The Source, ActiveConnection, CursorType, and LockType arguments have matching properties
within the Recordset object. If the arguments are omitted in the Open method call, the individual
values are obtained from the corresponding properties. If a value is specified for a given argument,
however, it will overwrite the previous value stored in the property value.

The source of a Recordset object can be one of the following:

Command object

SQL statement

Stored procedure

Table name

URL

Filename

Stream object (with the contents of a previously persisted Recordset object)

If anything other than a Command object is used to open a Recordset, specify the data source by
using the Options argument. If you do not, ADO must call the data provider repeatedly to
determine the type of data that it is opening.

When specifying a file as a Recordset object's source, you can do so with a full pathname, a
relative pathname, or even a URL value (http://www.domain.com).

The ActiveConnection argument is used only if you do not specify a Command object. In fact, it
is read-only if a valid Command object is set to the Source property.

The ActiveConnection argument can be either an already opened Connection object or a
connection string, which will be used to open a new Connection object for the Recordset object.

It is possible to change the value of the ActiveConnection property after a Recordset object is
opened, in order to send the updates to the recordset to another data source. However, the
remaining arguments and their corresponding properties become read-only once the Recordset
object is opened.

You can also open a Recordset asynchronously by adding the adAsyncFetch enumeration value
(from the ExecuteOptionEnum enumeration).

Once the Recordset is opened if it is empty, both the BOF and the EOF properties will be set
True. Close the Recordset object by calling the Close method. This doesn't remove the Recordset

IT-SC book 453

object from memory because you can reopen a Recordset object. To remove the Recordset from
memory, set the object to Nothing.

When opening a Recordset object with a Stream object, the Recordset will automatically be
opened synchronously regardless of the ExecuteOptionEnum values specified. In addition, you
should not specify any other arguments to the Open method when opening a Recordset object
from a Stream object.

See Also

CommandTypeEnum Enumeration, CursorTypeEnum Enumeration, ExecuteOptionEnum,
LockTypeEnum Enumeration, Recordset.ActiveConnection Property, Recordset.BOF Property,
Recordset.Close Method, Recordset.CursorType Property, Recordset.EOF Property,
Recordset.LockType Property, Recordset.Source Property

Recordset.PageCount
Property

(Versions 2.0, 2.1, 2.5,
2.6)

pagecount = recordset.PageCount

The PageCount property returns the number of logical pages that are in the current Recordset
object.

Datatype

Long

Description

The PageCount property returns a value indicating how many logical pages of data are contained
within the recordset. A page is determined by the number of records in the recordset divided by
the number of records per page (determined by the PageSize property).

If the last page does not contain the number of records in the PageSize property, that page is still
counted as a page in the PageCount property.

Returns

If the Recordset object does not support the PageCount property, the return value is -1. This
indicates that the number of pages could not be determined.

See Also

Recordset.AbsolutePage Property, Recordset.PageSize Property

Recordset.PageSize (Versions 2.0, 2.1, 2.5,
2.6)

IT-SC book 454

Property

pagesize = recordset.PageSize

The PageSize property indicates the number of records in a logical page.

Datatype

Long

Description

The PageSize property determines how many records belong to a logical page within your
recordset. The default value is 10. This property can be set at any time and is used with the
AbsolutePage property to move to the first record within a specified page.

See Also

Recordset.AbsolutePage Property, Recordset.PageCount Property

Recordset.Properties
Collection

(Versions 2.0, 2.1, 2.5,
2.6)

Set properties = recordset.Properties

The Properties collection contains characteristics specific to the Recordset object for the currently
used provider.

Datatype

Properties (Collection object)

Description

The Properties collection class contains a Property class instance for each property specific to the
Recordset object for the data provider.

The Properties collection of the Command object is not populated until the ActiveConnection
property of the Command object has been set to an open Connection object or a valid connection
string value.

See Also

Command.ActiveConnection Property

IT-SC book 455

Recordset.RecordChangeComplete
Event

(Versions 2.0,
2.1, 2.5, 2.6)

RecordChangeComplete(ByVal adReason As
ADODB.EventReasonEnum, _
 ByVal cRecords As Long, _
 ByVal pError As ADODB.Error,
_
 adStatus As
ADODB.EventStatusEnum, _
 ByVal pRecordset As
ADODB.Recordset)

The RecordChangeComplete event is called after an operation changes one or more records in the
Recordset object.

Arguments

adReason (EventReasonEnum)

Indicates the reason for this event. Proper values for the adReason parameter
are: adRsnAddNew, adRsnDelete, adRsnUpdate, adRsnUndoUpdate,
adRsnUndoAddNew, adRsnUndoDelete, and adRsnFirstChange.

cRecords (Long)

Indicates how many records are affected by the operation causing this event.

pError (Error)

Contains details about an error that occurred if the adStatus parameter is set to
adStatusErrorsOccurred.

adStatus(EventStatusEnum)

Indicates the status of the current operation. If the adStatus parameter is set to adStatusOK,
the operation was successful. If the adStatus parameter is set to adStatusErrorsOccurred,
the operation failed, and the pError object contains the details regarding the error. If the
adStatus parameter is set to adStatusCancel, the operation has been canceled before
completion by the application. If the adStatus parameter is set to adStatusUnwantedEvent,
this event will not be called again.
pRecordset

Represents the Recordset object that fired this event.

See Also

IT-SC book 456

EventReasonEnum Enumeration, EventStatusEnum Enumeration, Recordset.AddNew Method,
Recordset.CancelBatch Method, Recordset.CancelUpdate Method, Recordset.Delete Method,
Recordset.WillChangeRecord Event, Recordset.Update Method, Recordset.UpdateBatch Method

Recordset.RecordsetChangeComplete
Event

(Versions
2.0, 2.1,
2.5, 2.6)

RecordsetChangeComplete(ByVal adReason As
ADODB.EventReasonEnum, _
 ByVal pError As
ADODB.Error, _
 adStatus As
ADODB.EventStatusEnum, _
 ByVal pRecordset As
ADODB.Recordset)

The RecordsetChangeComplete event is called after an operation changes the Recordset object.

Arguments

adReason (EventReasonEnum)

Indicates the reason for this event. Proper values for the adReason parameter are:
adRsnReQuery, adRsnReSynch, adRsnClose, and adRsnOpen.

pError (Error)

Contains details about an error that occurred if the adStatus parameter is set to
adStatusErrorsOccurred.

adStatus (EventReasonEnum)

Indicates the status of the current operation. If the adStatus parameter is set to adStatusOK,
the operation was successful. If the adStatus parameter is set to adStatusErrorsOccurred,
the operation failed, and the pError object contains the details regarding the error. If the
adStatus parameter is set to adStatusCancel, the operation has been canceled before
completion by the application. If the adStatus parameter is set to adStatusUnwantedEvent,
this event will not be called again.
pRecordset

Represents the Recordset object that fired this event.

See Also

EventReasonEnum Enumeration, EventStatusEnum Enumeration, Recordset.Open Method,
Recordset.Requery Method, Recordset.WillChangeRecordset Event

IT-SC book 457

Recordset.RecordCount
Property

(Versions 2.0, 2.1,
2.5, 2.6)

recordcount = recordset.RecordCount

The RecordCount property returns the number of records in the current Recordset object.

Datatype

Long

Description

If the provider or the cursor does not support the RecordCount property, or if the number of
records cannot be determined by ADO, -1 is returned.

The actual number of records is always returned by the RecordCount property for Keyset or
Static cursors, but -1 is always returned for a Forward Only cursor. Dynamic cursors can return
either -1 or the actual number of records, depending upon the data source.

The RecordCount efficiently reports the number of records in a recordset only if the current
Recordset object supports approximate positioning (Supports -- adApproxPosition) or bookmarks
(Supports -- adBookmark); otherwise, this property uses a lot of resources because ADO must
load all of the records to count them.

Recordset.Requery
Method

(Versions 2.0, 2.1, 2.5,
2.6)

recordset.Requery

Description

The Requery method of the Recordset object re-executes the command that created the recordset
in the first place in order to cause a refresh of the recordset. This method has the same effect as
calling the Close method followed by the Open method.

If you are adding a new record or editing an existing one, when you call the Requery method, an
error is generated.

If you wish to change properties that are read-only while a Recordset object is open (CursorType,
LockType, etc.), you must manually close and reopen the Recordset object by calling the Close
method, editing the properties, and calling the Open method.

See Also

IT-SC book 458

ExecuteOptionEnum

Recordset.Resync Method (Versions 2.0, 2.1, 2.5, 2.6)

recordset.Resync AffectRecords

The Resync method of the Recordset object refreshes the data in the recordset from the
underlying data source.

Arguments

AffectRecords (AffectEnum)

Optional. An enumerator of type AffectEnum having the value of adAffectCurrent (1),
adAffectGroup (2), or adAffectAll (3, the default).

If the value of AffectRecords is adAffectCurrent, the Resync method call affects only the
pending updates for the current record of the recordset.

If the value of AffectRecords is adAffectGroup, the Resync method call affects only the
pending records that are dictated through the Filter property of the current Recordset object. This
property must be already set for the Resync method to be called with the adAffectGroup
parameter.

If the value of AffectRecords is adAffectAll, all records pending updates within the current
Recordset object (including those hidden by the Filter property) are affected by the Resync
method.

Description

The Resync method of the Recordset object is used to resynchronize the records in the current
recordset with those found in the underlying data source. This is very useful when you have either
a Static or a Forward Only cursor and you want to check whether anyone else has altered the
records in the data source.

The Resync method does not show you records that have been added to the data source; rather, it
simply updates the ones that you already have. Therefore, the Resync method does not re-execute
the underlying command that created the recordset in the first place.

If the Resync method attempts to read a record that has been deleted by another user, a runtime
error does not occur. Instead, the Errors collection is populated with warnings. A runtime error
occurs only if all of the requested records to be updated have a conflict for some reason. You can
use the Filter property with the adFilterAffectedRecords value and the Status property to
locate any records with conflicts.

Note

Not all providers support the Resync method.

IT-SC book 459

See Also

ADCPROP_UPDATERESYNC_ENUM Enumeration, AffectEnum Enumeration,
CursorOptionEnum Enumeration, Recordset.Supports Method, ResyncEnum Enumeration

Recordset.Save Method (Versions 2.0, 2.1, 2.5, 2.6)

recordset.Save Destination, PersistFormat

The Save method saves the current Recordset object to a file or to a Stream object.

Arguments

Destination (Variant)

Optional. Can be either a name of a file to create or a Stream object that is to accept the saved
Recordset object.

PersistFormat (PersistFormatEnum)

Optional. Indicates the format of the Recordset object when it is saved. The default is ADTG, but
XML can also be used.

Description

The Save method must be invoked on an Open Recordset object. The first time Save is called,
you can specify the Destination argument, but subsequent calls should be made omitting this
argument. If the same destination name is used on the same Recordset object, an error will occur,
but if two different names are used, both files will remain open until the Close method is called.
Omitting the Destination name on the initial call to Save causes a file to be created with the name
of the Source to the Recordset object.

When saving a Recordset object with a Filter, only visible records are saved. When saving a
hierarchical recordset, the current child Recordset, its children, and the parent Recordset are all
saved. When saving a child Recordset, only the child and its children are saved.

If the Save method is called while an asynchronous operation is in effect for the Recordset object,
the Save method waits until that operation is complete before attempting to persist the Recordset
object. After the Recordset object is persisted, the record pointer points to the first record in the
Recordset.

You should obtain better results by setting the CursorLocation property to the client. If the data
provider does not support the functionality necessary to save the Recordset object, then the cursor
service will. When using the server as the cursor location, you can typically only insert, delete, or
update a single table. In addition, the Resync method is not available.

Microsoft warns that when persisting hierarchical recordsets in XML format, you cannot save the
Recordset if it contains pending updates or is a parameterized hierarchical Recordset object.

IT-SC book 460

See Also

PersistFormatEnum Enumeration, Recordset.Close Method, Recordset.CursorLocation Property,
Recordset.Filter Property, Recordset.Source Property

Recordset.Seek Method (Versions 2.1, 2.5, 2.6)

recordset.Seek KeyValues, SeekOptions

The Seek method quickly changes the record pointer to the record in the Recordset object that
matches the index provided.

Arguments

KeyValues (Variant)

Indicates the values that are used in conjunction with the Recordset.Index value to locate a record.

SeekOptions (SeekEnum)

Indicates the type of comparison used when seeking a record.

Description

The Seek method is used with the Index property of the Recordset object. If the current Recordset
supports indexes, you can use the Seek method. Check the value of the Recordset.Supports
(adSeek) method call to determine whether the current Recordset object will support this method.

The Index property indicates which Index is used with the Seek method. The Seek method's first
parameter, an array of Variant values, should contain one value for each column within the
currently used Index.

If the record cannot be found, the record pointer is placed at the EOF marker.

Notes

The Seek method can be used only on server-side clients, which are opened with the
CommandTypeEnum enumeration value, adCmdTableDirect.

Not all providers support the Seek method.

See Also

CommandTypeEnum Enumeration, CursorOptionEnum Enumeration, Recordset.EOF Property,
Recordset.Index Property, SeekEnum Enumeration, Recordset.Supports Method

Recordset.Sort Property (Versions 2.0, 2.1, 2.5, 2.6)

IT-SC book 461

recordset.Sort = sortstring

The Sort property sorts a recordset on one or more field names.

Datatype

String

Description

The Sort property can be set to sort a recordset based upon one or more fields in either ascending
or descending order. The Sort property accepts a String value identical to a sort clause of a SQL
statement. Fields are separated by commas with either the ASC or DESC keywords following
each field name. If the ASC or DESC keyword is absent, ASC is inferred.

Setting the Sort property to an empty String value ("") removes the sort from the recordset and
returns the order to the default.

For instance, the following value for the Sort property, "Company ASC, Contact DESC," would
sort the recordset by the company in ascending order and then by the contact in descending order.

The Sort property does not rearrange data within the recordset; instead, it creates a temporary
index for each field that does not already have an index if the CursorLocation property is set to
adUseClient.

Note

Not all providers support the Sort property.

See Also

Recordset.CursorLocation Property

Recordset.Source
Property

(Versions 2.0, 2.1, 2.5,
2.6)

recordset.Source = source

The Source property returns the source for the data in a Recordset object.

Datatype

String (Let, Get)
Command (Set)

Description

IT-SC book 462

For a Recordset object, the Source property specifies from where a recordset's data comes. The
Source property for the Recordset object is read- and write-enabled while the Recordset object is
closed, but read-only once it is opened.

The value of the Source property for the Recordset object can contain one of the following:

Command object variable

SQL statement

Stored procedure name

Table name

File or URL

If the Source property is set to a Command object, the ActiveConnection property of the
Recordset object gets its value from the ActiveConnection property of the Command object, but
reading the Source property does not return a Command object. Instead, it returns the
CommandText property of the associated Command object from which you set the Source
property.

If the Source property is set to a SQL statement, a stored procedure name, or a table name, you
would be better off specifying it in the Options argument of the Open method, in order for the
Recordset object to optimize performance.

See Also

Recordset.Open Method

Recordset.State Property (Versions 2.0, 2.1, 2.5, 2.6)

state = recordset.State

The State property indicates the current state of the Recordset object.

Datatype

ObjectStateEnum

Description

The read-only State property indicates whether the current Recordset object is opened or closed.

See Also

ObjectStateEnum Enumeration

IT-SC book 463

Recordset.Status
Property

(Versions 2.0, 2.1, 2.5,
2.6)

status = recordset.Status

The Status property indicates the status of the current record in relation to bulk operations.

Datatype

RecordStatusEnum

Description

The Status property can be set to one or more of the RecordStatusEnum enumeration values listed
in Appendix E.

The Status property indicates changes still pending for records that have been updated during a
batch operation.

In addition, the Status property indicates why the following functions have failed: Resync,
UpdateBatch, CancelBatch, and Filter (setting equal to an array of bookmarks).

See Also

Recordset.CancelBatch Method, Recordset.Filter Property, Recordset.Resync Method,
Recordset.UpdateBatch Method, RecordStatusEnum Enumeration

Recordset.StayInSync
Property

(Versions 2.0, 2.1, 2.5,
2.6)

recordset.Resync AffectRecords

The StayInSync property indicates when the references to chapter recordsets change if the record
pointer moves to a different parent row for hierarchical recordsets.

Datatype

Boolean

Description

The StayInSync property is both read- and write-enabled. The default value for this property is
True.

IT-SC book 464

If the value of the StayInSync property is set to True, the references of chapter recordsets change
when the parent recordset is changed.

If the value of the StayInSync property is set to False, the references of chapter recordsets point
to the previous parent recordset when moving the record pointer within a hierarchical recordset
changes the parent recordset.

Recordset.Supports
Method

(Versions 2.0, 2.1, 2.5,
2.6)

Set boolean = recordset.Supports(CursorOptions)

The Supports method determines whether the current data provider supports specified
functionality.

Arguments

CursorOptions (Long)

Represents the type functionality that you are testing for. This value can be one or more of the
CursorOptionEnum values listed in Appendix E.

Returns

Boolean

Description

The Supports method of the Recordset object tests whether the Recordset object supports
individual types of functionality.

If the values of the CursorOptionEnum values are added and passed as the sole argument to the
Supports function, a return value indicates whether all of the questioned functionality is supported.

See Also

CursorOptionEnum Enumeration

Recordset.Update Method (Versions 2.0, 2.1, 2.5, 2.6)

recordset.Update Fields, Values

The Update method of the Recordset object saves the changes made to fields within the current
record since a call to AddNew changes the contents of a field or array of fields.

Arguments

IT-SC book 465

Fields (Variant or Variant array)

This argument can hold the field, ordinal position, array of fields, or an array of ordinal positions
that you wish to update in the current record. The Fields argument must be of the same type and
dimension as that of the Values argument.

Values (Variant or Variant array)

Optional. This argument can hold the value or values of the fields specified in the Fields
argument. The Values argument must be of the same type and dimension as that of the Fields
argument.

Description

The current record remains the current record after the call to the Update method.

If you specify an array of field names for the Fields argument to the Update method, the
Values argument must have the same dimensional array passed to it, containing the
corresponding values for each field listed in the Fields array. Otherwise, an error will be
generated.

If you move to another record while editing a record, that record will be saved -- by an automatic
call to the Update method -- before the record position is changed. In addition, if you are editing
the current record and you call the UpdateBatch method, the Update method will again --
automatically be called.

Conversely, the CancelUpdate method cancels any changes made to the current record.

Note

Not all providers support the Update method.

See Also

CursorOptionEnum Enumeration, Recordset.Supports Method

Recordset.UpdateBatch
Method

(Versions 2.0, 2.1, 2.5,
2.6)

recordset.UpdateBatch AffectRecords

The UpdateBatch method of the Recordset object writes all pending batch updates to disk when
called.

Arguments

AffectRecords (AffectEnum)

IT-SC book 466

The optional parameter to the UpdateBatch method is an enumerator of type AffectEnum having
the value of adAffectCurrent (1), adAffectGroup (2), or adAffectAll (3, the default).

If the value of AffectRecords is adAffectCurrent, the UpdateBatch method call affects
only the pending updates for the current record of the recordset.

If the value of AffectRecords is adAffectGroup, the UpdateBatch method call affects only
the pending records that are dictated through the Filter property of the current Recordset object.
This property must be already set for the UpdateBatch method to be called with the
adAffectGroup parameter.

If the value of AffectRecords is adAffectAll, all records pending updates within the current
Recordset object (including those hidden by the Filter property) are affected by the UpdateBatch
method.

Description

The UpdateBatch method transmits all pending batch updates to the data source. This method is
for use only when in batch update mode, which should be used only with a Keyset or Static
cursor.

It is possible to update cached field values multiple times before committing the changes of the
pending batch updates. The Update method is automatically called if the UpdateBatch method is
called while in edit mode.

If you attempt to update a record that has already been deleted by another user, a runtime error
does not occur; instead, the Errors collection is populated with warnings. A runtime error occurs
only if all of the requested records to be updated have a conflict for some reason. You can use the
Filter property with the adFilterAffectedRecords value and the Status property to locate
any records with conflicts.

Conversely, the CancelBatch method cancels all pending batch updates,

Note

Not all providers support the UpdateBatch method.

See Also

AffectEnum Enumeration, Recordset.Supports Method, CursorOptionEnum Enumeration

Recordset.WillChangeField
Event

(Versions 2.0, 2.1,
2.5, 2.6)

WillChangeField(ByVal cFields As Long, _
 ByVal Fields As Variant, _
 adStatus As ADODB.EventStatusEnum,
_

IT-SC book 467

 ByVal pRecordset As
ADODB.Recordset)

The WillChangeField event is called before an operation changes one or more Field object values.

Arguments

cFields (Recordset object)

Represents the actual recordset that you wish to refresh.

Fields (Variant array)

Contains the Field objects that are waiting to be changed.

adStatus (EventStatusEnum)

Indicates the status of the current operation. The adStatus parameter is set to adStatusOK if
the operation causing this event was successful. If the adStatus parameter is set to
adStatusCantDeny, the event cannot request that the operation be canceled. If the adStatus
parameter is set to adStatusUnwantedEvent, this event will not be called again. If the
adStatus parameter is set to adStatusCancel, a cancellation request will be made for this
operation.
pRecordset

Represents the Recordset object that fired this event.

See Also

EventStatusEnum Enumeration, Recordset.FieldChangeComplete Event, Recordset.Update
Method, Recordset.Value Property

Recordset.WillChangeRecord
Event

(Versions 2.0, 2.1,
2.5, 2.6)

WillChangeRecord(ByVal adReason As
ADODB.EventReasonEnum, _
 ByVal cRecords As Long, _
 adStatus As
ADODB.EventStatusEnum, _
 ByVal pRecordset As
ADODB.Recordset)

The WillChangeRecord event is called before an operation changes one or more records in the
Recordset object.

Arguments

IT-SC book 468

adReason (EventStatusEnum)

Indicates the reason for this event. Proper values for the adReason parameter
are: adRsnAddNew, adRsnDelete, adRsnUpdate, adRsnUndoUpdate,
adRsnUndoAddNew, adRsnUndoDelete, and adRsnFirstChange.

cRecords (Long)

Indicates how many records are affected by the operation causing this event.

adStatus (EventStatusEnum)

Indicates the status of the current operation. The adStatus parameter is set to adStatusOK if
the operation causing this event was successful. If the adStatus parameter is set to
adStatusCantDeny, the event cannot request that the operation be canceled. If the adStatus
parameter to adStatusUnwantedEvent, this event will not be called again. If the adStatus
parameter is set to adStatusCancel, a cancellation request will be made for this operation.
pRecordset

Represents the Recordset object that fired this event.

See Also

EventReasonEnum Enumeration, EventStatusEnum Enumeration, Recordset.AddNew Method,
Recordset.CancelBatch Method, Recordset.CancelUpdate Method, Recordset.Delete Method,
Recordset.RecordChangeComplete Event, Recordset.Update Method, Recordset.UpdateBatch
Method

Recordset.WillChangeRecordset
Event

(Versions 2.0,
2.1, 2.5, 2.6)

WillChangeRecordset(ByVal adReason As
ADODB.EventReasonEnum, _
 adStatus As
ADODB.EventStatusEnum, _
 ByVal pRecordset As
ADODB.Recordset)

The WillChangeRecordset event is called before an operation changes the Recordset object.

Arguments

adReason (EventReasonEnum)

Indicates the reason for this event. Values for the adReason parameter are: adRsnReQuery,
adRsnReSynch, adRsnClose, and adRsnOpen.

adStatus (EventReasonEnum)

IT-SC book 469

Indicates the status of the current operation. The adStatus parameter is set to adStatusOK if
the operation causing this event was successful. If the adStatus parameter is set to
adStatusCantDeny, the event cannot request that the operation be canceled. If the adStatus
parameter is set to adStatusUnwantedEvent, this event will not be called again. If the
adStatus parameter is set to adStatusCancel, a cancellation request will be made for this
operation.
pRecordset

Represents the Recordset object that fired this event.

See Also

EventReasonEnum Enumeration, EventStatusEnum Enumeration, RecordsetChangeComplete
Event, Recordset.Requery, Recordset.Open

Recordset.WillMove
Event

(Versions 2.0, 2.1, 2.5,
2.6)

WillMove(ByVal adReason As ADODB.EventReasonEnum,
_
 adStatus As ADODB.EventStatusEnum, _
 ByVal pRecordset As ADODB.Recordset)

The WillMove event is called before an operation changes the position of the record pointer
within the Recordset object.

Arguments

adReason (EventReasonEnum)

Indicates the reason for this event. Values for the adReason parameter are:
adRsnMoveFirst, adRsnMoveLast, adRsnMoveNext, adRsnMovePrevious, adRsnMove,
adRsnRequery.

adStatus

Holds an EventStatusEnum value indicating the status of the current operation. The adStatus
parameter is set to adStatusOK if the operation causing this event was successful. If the
adStatus parameter is set to adStatusCantDeny, the event cannot request that the operation
be canceled. If the adStatus parameter is set to adStatusUnwantedEvent, this event will not
be called again. If the adStatus parameter is set to adStatusCancel, a cancellation request
will be made for this operation.
pRecordset

Represents the Recordset object that fired this event.

See Also

IT-SC book 470

EventReasonEnum Enumeration, EventStatusEnum Enumeration, Recordset.AbsolutePage
Property, Recordset.AbsolutePosition Property, Recordset.AddNew Method,
Recordset.Bookmark Method, Recordset.Filter Property, Recordset.Index Property,
Recordset.Move Method, Recordset.MoveFirst Method, Recordset.MoveLast Method,
Recordset.MoveNext Method, Recordset.MovePrevious Method, Recordset.Open Method,
Recordset.Requery Method, Recordset.WillMove Event

Stream Object (Versions 2.5, 2.6)

Dim stream As ADODB.Stream

A Stream object represents a stream of data that is obtained from a URL, a Record object, or
nothing at all.

Methods

Cancel

Cancels an asynchronous operation for the Stream object.

Close

Closes an opened Stream object.

CopyTo

Copies data from one stream to another.

Flush

Ensures that all changes made to a Stream object have been persisted to the resource that the
Stream object represents.

LoadFromFile

Loads a file's contents into an already open Stream object.

Open

Opens a Stream object from a URL, an opened Record object, or without a source at all, in
memory.

Read

Reads a number of bytes from a binary stream.

ReadText

Reads a number of characters from a binary stream.

SaveToFile

Persists the data of a binary stream to a local file.

IT-SC book 471

SetEOS

Changes the EOS within a given Stream object and to truncate any data that lies past the new
EOS pointer.

SkipLine

Skips entire lines when reading text streams.

Write

Writes a number of bytes to a binary stream.

WriteText

Writes a number of bytes to a binary stream.

Properties

CharSet

Indicates the character set to which the contents of a text Stream should be translated.

EOS

Indicates that the stream pointer is currently at the end of the stream.

LineSeparator

Indicates the character (or characters) that are used to indicate the end of a line in text streams.

Mode

Indicates the permissions for modifying data within a Stream object.

Position

Indicates the position of the stream pointer within the Stream object.

Size

Represents the number of bytes in a Stream object.

State

Indicates the current state of the Stream object.

Type

Indicates how a Stream object's data should be analyzed.

Description

A Stream object created with no source can be instantiated in memory without a data provider.

IT-SC book 472

A Stream object can contain binary or textual data. It can be persisted to a file, retrieved from a
file, or copied to a file or another Stream object in memory.

MSDAIPP is needed to browse filesystem data sources; it is the Microsoft
OLE DB Provider for Internet Publishing.

Examples

In this section, we will be looking at three examples that show how to do the following:

Open a Stream object with a URL.

Open a Stream object with a Record object.

Open a Stream object without a physical data source.

The examples for the Stream object require you to create a test text file placed at the root
directory of your web server. For these examples, our text file is named text.txt and contains the
following information:
This is the first line of the file.
This is the second line of the file.
abcdefghijklmnopqrstuvwxyz
1234567890
This is the sixth line of the file.
This is the last line of the file.

Example 13-23 opens the test.txt file with a URL, which means that you must have Internet
Information Server running (or equivalent). Once the file is opened, it is sent to the Immediate
Window with the ReadText method. After this is done, we write to and read from the file a little
bit more, displaying its size as we go along.

Example 13-23. Opening a Stream Object with a URL

Dim sText As String

Dim str As ADODB.Stream

'
' instantiate and open the Stream object for a resource
'
Set str = New ADODB.Stream

str.Open "URL=http://localhost/test.txt", _
 adModeReadWrite

'
' set the characterset and data type of the stream
'
str.Charset = "iso-8859-1"
str.Type = adTypeText

IT-SC book 473

'
' output the entire resource
'
Debug.Print str.ReadText

'
' add a line of data
'
str.Position = 0
str.WriteText "<some added data>", adWriteLine

'
' output the entire resource and display the size
'
str.Position = 0
Debug.Print
Debug.Print str.ReadText

MsgBox "The size of the stream is: " & CStr(str.Size)

'
' write a piece of text to the resource and set a new EOS
'
str.Position = 10
str.WriteText "New text"
str.SetEOS

'
' output the entire resource and display the size
'
str.Position = 0
Debug.Print
Debug.Print str.ReadText

MsgBox "The size of the stream is: " & CStr(str.Size)

'
' clean up
'
str.Close

Set str = Nothing

The following is sent as output to the Immediate Window once the example has executed:
This is the first line of the file.
This is the second line of the file.
abcdefghijklmnopqrstuvwxyz
1234567890
This is the sixth line of the file.
This is the last line of the file.

<some added data>
ine of the file.
This is the second line of the file.
abcdefghijklmnopqrstuvwxyz
1234567890

IT-SC book 474

This is the sixth line of the file.
This is the last line of the file.

<some addeNew text

Example 13-24 illustrates how a Stream object can be opened from a Record object in two
different ways. The first method passes the Record object to the Open method of the Stream
object, while the second method requests the default Stream object from the Record object's
Fields collection.

Example 13-24. Opening a Stream Object from a Record Object

Dim rec As ADODB.Record
Dim str As ADODB.Stream

'
' open a stream from a Record object
'
Set rec = New ADODB.Record
rec.Open "test.txt", _
 "URL=http://localhost/"

Set str = New ADODB.Stream
str.Open rec, _
 , _
 adOpenStreamFromRecord

'
' do something
'

str.Close
Set str = Nothing

'
' open a stream from the default stream for a Record object
'
Set str = rec.Fields.Item(ADODB.FieldEnum.adDefaultStream).Value

'
' do something
'

str.Close
Set str = Nothing

Set str = New ADODB.Stream
str.Open
str.LoadFromFile "C:\autoexec.bat"

'
' clean up
'
str.Close
rec.Close

IT-SC book 475

Set str = Nothing
Set rec = Nothing

Example 13-25 illustrates how a stream can be created without a physical data source (resource)
associated with it; instead, the stream is created from memory. After opening the Stream object
without a resource, data is written to it and saved to a local file on the local machine.

Example 13-25. Creating a Stream Object Without a Physical Data Source

Dim str As ADODB.Stream

'
' instantiate and open a Stream object in memory
'
Set str = New ADODB.Stream
str.Open

'
' add some data to the Stream object
'
str.WriteText "This is a test.", adWriteLine
str.WriteText "Just want to see something...", adWriteChar
str.WriteText "hopefully this will work...", adWriteLine
str.WriteText "(I bet it does)", adWriteLine

'
' save the Stream object to a file
'
str.SaveToFile "C:\newfile.txt", _
 adSaveCreateOverWrite

'
' clean up
'
str.Close

Set str = Nothing

The following text represents the contents of the file created after running Example 13-25:
This is a test.
Just want to see something...hopefully this will work...
(I bet it does)

Stream.Cancel Method (Versions 2.5, 2.6)

record.Cancel

The Cancel method cancels an asynchronous operation for the Stream object.

Description

IT-SC book 476

The Cancel method cancels an asynchronous operation of the Record object invoked by the Open
method.

See Also

Stream.Open Method

Stream.CharSet Property (Versions 2.5, 2.6)

stream.CharSet = characterset

The CharSet property indicates the character set to whioch the contents of a text Stream should be
translated.

Datatype

String

Description

The CharSet property can be set to a valid character set only if the Position property of the Stream
object is set to 0. Valid character sets for a system are defined in the
HKEY_CLASSES_ROOT\MIME\Database\CharSet subkeys.

The default value for the CharSet property is "unicode". If the character set is changed on the fly,
the data is translated as it is read from the stream and passed to the application. When writing
data, the information is translated before being saved to the data source.

This property is only valid for text streams, which are Stream objects having a value of
adTypeText for their Type property value.

See Also

Stream.Type Property

Stream.Close Method (Versions 2.5, 2.6)

record.Close

The Close method closes an opened Stream object.

Description

The Close method can be called only on an open Stream object. After calling the Close method,
the Open method can be called again to reopen the Stream object. Calling the Close method
releases any resources allocated to the Stream object.

IT-SC book 477

Stream.CopyTo Method (Versions 2.5, 2.6)

stream.CopyTo DestStream, NumChars

The CopyTo method copies data from one stream to another.

Arguments

DestStream (Stream Object)

Must be set to a valid open Stream object, otherwise a runtime error occurs.

NumChars (Integer)

Optional. Specifies the number of characters to copy from the source to the destination Stream
object. The default value is -1, which indicates that all remaining data should be copied.

Description

The CopyTo method copies data from the source Stream object starting at the current stream
pointer position (indicated by the Stream.Position property). The number of characters copied is
either the number indicated by the NumChars argument or the rest of the source stream if the
NumChars argument is greater than the number of remaining characters in the source stream or
the NumChars argument value is -1.

The stream pointer position of the destination Stream object is automatically set to the next byte
available in the Stream object. The CopyTo method will not remove excess data from the
destination Stream object past the copy. To do this, call the SetEOS method.

You can copy data from a textual Stream to a binary Stream object, but not from a binary Stream
to a textual Stream object.

See Also

Stream.Position Property, Stream.SetEOS Method

Stream.EOS Property (Versions 2.5, 2.6)

Boolean = stream.EOS

The EOS property indicates that the stream pointer is currently at the end of the stream.

Datatype

Boolean

IT-SC book 478

Description

The EOS property is True when the stream pointer is located directly after the last piece of
information within the stream and is now pointing to the End-Of-Stream pointer.

Stream.Flush Method (Versions 2.5, 2.6)

stream.Flush

The Flush method ensures that all changes made to a Stream object have been persisted to the
resource that the Stream object represents.

Description

The Flush method persists any outstanding changes of the Stream object to the resource that is
represented by the Stream object. Microsoft claims that this is very rarely necessary, as ADO
calls this method internally in the background whenever possible. In addition, when closing a
Stream object, the stream is first flushed to the data source.

Stream.LineSeparator Property (Versions 2.5, 2.6)

stream.LineSeparator = lineseparator

The LineSeparator indicates the character (or characters) that are used to indicate the end of a line
in text streams.

Datatype

LineSeparatorEnum

Description

The default value for the LineSeparator property is adCRLF, which indicates both a carriage
return and a line feed.

This property is valid only for text streams, which are Stream objects having a value of
adTypeText for their Type property value.

See Also

LineSeparatorEnum Enumeration, Stream.SkipLine Method

Stream.LoadFromFile Method (Versions 2.5, 2.6)

IT-SC book 479

stream.LoadFromFile FileName

The LoadFromFile method loads a file contents into an already open Stream object.

Arguments

FileName (String)

Must contain a name of a valid file to be loaded into the currently opened Stream object. If the
file specified by this argument cannot be found, a runtime error occurs.

Description

The LoadFromFile method works only with an already opened Stream object, replacing the
contents of the object with the contents of the file specified within the LoadFromFile argument,
FileName. All pre-existing data is overwritten, and any extra data is truncated. However, the
Stream object does not lose its relationship to the resource with which it was originally opened.

The LoadFromFile method can be used to upload a file to a server from a client.

Stream.Mode Property (Versions 2.5, 2.6)

stream.Mode = ConnectModeEnum

The Mode property indicates the permissions for modifying data within a Stream object.

Datatype

ConnectModeEnum

Description

The default value for the Mode property of a Stream object that is associated with an underlying
source is adModeRead. Stream objects that are instantiated in memory have a default value of
adModeUnknown for the Mode property.

The Mode property is read- and write-enabled while the Stream object is closed, but read-only
once it is opened.

If the Mode property is not specified for a Stream object, it is inherited from the source used to
open the object, such as a Record object.

See Also

ConnectModeEnum Enumeration, Stream.Open Method

IT-SC book 480

Stream.Open Method (Versions 2.5, 2.6)

stream.Open Source, Mode, OpenOptions, UserName,
Password

The Open method opens a Stream object from a URL, an opened Record object, or without a
source at all, in memory.

Arguments

Source (Variant)

Optional. Indicates the source of the resource to open. This can be a URL or an open Record
object. Omitting this argument instructs ADO to open the Stream object in memory only.

Mode (ConnectModeEnum)

Optional. Indicates the access permissions with which to open the Stream object. The default
value is adModeUnknown; if the Stream object is opened with a Record object, the Mode value is
taken from that object, ignoring this argument.

OpenOptions (StreamOpenOptions)

Optional. Can be one or more StreamOpenOptions enumeration values, which indicate whether
the Stream object should be opened asynchronously or if it is being opened from a Record object,
but the default value is adOpenStreamUnspecified.

UserName (String)

Optional. Indicates, if necessary, the username that will be used to access the resource indicated
by the source argument. If the Stream object is being opened with a Record object, this value is
ignored because access is already available for the resource.

Password (String)

Optional. Indicates, if necessary, the password to verify the UserName argument. If the Stream
object is being opened with a Record object, this value is ignored because access is already
available for the resource.

Description

The Open method of the Stream object can be invoked with a URL source, an already opened
Record object, or without a source at all, indicating that the Stream object is opened in memory.
If this last method is used, you can read and write to the Stream object just as you can any other
way, but you can persist and retrieve data only by using the SaveToFile or LoadFromFile
methods.

When opening a Stream object from an already opened Record object, the Mode value is taken
from the Record object, and the UserName and Password properties, if specified, are ignored
because access has to be already granted to the Record object if it is open. If opening a Stream

IT-SC book 481

from a Record object, specify the adOpenStreamFromRecord enumeration value as the
OpenOptions argument, and ADO will use the Record's default stream to populate the Stream
object.

If you are opening the Stream object with a URL, you must use the URL keyword
(URL=scheme://server/folder).

See Also

ConnectModeEnum Enumeration, Stream.LoadFromFile Method, Stream.Mode Property,
Stream.SaveToFile Method, StreamOpenOptionsEnum Enumeration

Stream.Position Property (Versions 2.5, 2.6)

stream.Position = number

The Position property indicates the position of the stream pointer within the Stream object.

Datatype

Long

Description

The Position property can be set to any positive number or 0. It can also be set to a value greater
than the size of the current Stream object. In doing so, for streams with write permissions you
may increase the size of a Stream object by automatically adding Null values. You can, although
you are not advised to, do the same for read-only streams, but the size is not altered.

The Position property indicates the number of bytes the stream pointer is located away from the
first byte in the stream. If your character set contains multiple bytes for each character, you must
multiply this number by the position desired to get the actual character position. For example,
when using Unicode, 0 represents the first character, and 2 represents the second.

Stream.Read Method (Versions 2.5, 2.6)

bytes = stream.Read (NumBytes)

The Read method reads a number of bytes from a binary stream.

Arguments

NumBytes (Long or StreamReadEnum)

Optional. Specifies the number of bytes to read from the binary stream. The default value is
adReadAll, which returns all the remaining bytes in the stream.

IT-SC book 482

Returns

Variant (array)

Description

The Read method is used to read binary streams (Stream.Type property is equal to
adTypeBinary), while the ReadText method is used to read textual streams (Stream.Type
property is equal to adTypeText).

The return value is a Variant array of bytes, which will equal the number of bytes requested or the
number of remaining bytes in the stream if the number of remaining bytes is less than the
requested number of bytes. If there is no data to return, a Null Variant value is returned.

See Also

Stream.ReadText Method, Stream.Type Property, StreamReadEnum Enumeration

Stream.ReadText Method (Versions 2.5, 2.6)

string = stream.ReadText (NumChars)

The ReadText method reads a number of characters from a binary stream.

Arguments

NumChars (Long or StreamReadEnum)

Optional. Specifies the number of characters to read from the text stream. The default value is
adReadAll, which returns all the remaining characters in the stream. You can also specify to
return the next line of data with the adReadLine enumeration value.

Returns

String

Description

The ReadText method reads textual streams (Stream.Type property is equal to adTypeText),
while the Read method is used to read binary streams (Stream.Type property is equal to
adTypeBinary).

The return value is a String of values, which equals the number of characters requested or the
number of remaining characters in the stream if the number of remaining characters is less than
the requested number of characters. If there is no data to return, a Null Variant value is returned.

See Also

IT-SC book 483

Stream.Read Method, Stream.Type Property, StreamReadEnum Enumeration

Stream.SaveToFile Method (Versions 2.5, 2.6)

stream.SaveToFile (FileName, SaveOptions)

The SaveToFile method persists the data of a binary stream to a local file.

Arguments

FileName (String)

Indicates where the contents of the current Stream object are to be persisted.

SaveOptions (SaveOptionsEnum)

Specifies whether a file is to be created if one doesn't exist, if an existing file should be
overwritten, or, if a file already exists, whether an error should occur.

Description

The SaveToFile method completely overwrites an existing file if the adSaveCreateOverwrite
enumeration value is used in the SaveOptions argument.

Using this method does not change the contents of the Stream object nor its association to the
original resource with which the Stream object was opened. The only difference from the Stream
object is that the Position property is set to the beginning of the stream (0).

See Also

SaveOptionsEnum Enumeration, Stream.Position Property

Stream.SetEOS Method (Versions 2.5, 2.6)

stream.SetEOS

The SetEOS method changes the EOS within a given Stream object and truncates any data that
lies past the new EOS pointer.

Description

The SetEOS method can shorten a Stream object's length when using the Write, WriteText, and
CopyTo methods, which cannot truncate the stream themselves.

See Also

IT-SC book 484

Stream.CopyTo Method, Stream.Write Method, Stream.WriteText Method

Stream.Size Property (Versions 2.5, 2.6)

size = stream.Size

The Size property represents the number of bytes in a Stream object.

Datatype

Long

Description

Because the Stream object's size is only restricted by resources, a Long value may not correctly
contain the size of a Stream if it exceeds the largest possible number a Long value can contain.

If the size of a stream is unknown, -1 is returned.

Stream.SkipLine Method (Versions 2.5, 2.6)

stream.SkipLine

The SkipLine method skips entire lines when reading text streams.

Description

The SkipLine method skips an entire line in a textual stream (Stream.Type is equal to
adTypeText). This is done by searching for the next occurrence of a line separator (indicated by
the LineSeparator property which is, by default, set to adCRLF) or the EOS pointer.

See Also

LineSeparatorEnum Enumeration, Stream.LineSeparator Property, Stream.Type Property

Stream.State Property (Versions 2.5, 2.6)

state = record.State

The State property indicates the current state of the Stream object.

Datatype

Long (ObjectStateEnum)

IT-SC book 485

Description

The State property is read-only; returning a Long value that can be evaluated as an
ObjectStateEnum enumeration value. The default value for the Stream object is closed.

For the Stream object, the State property can return multiple values when the object is executing
an operation asynchronously (i.e., adStateOpen and adStateExecuting).

See Also

ObjectStateEnum Enumeration

Stream.Type Property (Versions 2.5, 2.6)

streamtype = stream.Type

The Type property indicates how a Stream object's data should be analyzed.

Datatype

StreamTypeEnum Enumeration

Description

The default value for a Stream object is adTypeText, but if binary data is written to a new
Stream object, the Type property will automatically be changed to adTypeBinary.

The Type property is read- and write-enabled while the stream pointer is at zero (Position
property equals 0) and read-only at any other position.

If the Type property is set to adTypeText, you should use the ReadText and WriteText methods
for data manipulation and retrieval. If the Type property is set to adTypeBinary, you should use
the Read and Write methods for data manipulation and retrieval.

See Also

Stream.Read Method, Stream.ReadText Method, Stream.Write Method, Stream.WriteText
method, StreamTypeEnum Enumeration

Stream.Write Method (Versions 2.5, 2.6)

stream.Write Buffer

The Write method writes a number of bytes to a binary stream.

Arguments

IT-SC book 486

Buffer (Variant)

Contains an array of Byte values to be written to the current binary stream.

Description

After writing the specified bytes to the Stream object, the Position property is set to the next byte
following the last byte written. If there is existing data past the end of what has been written, it is
not truncated. If you want to truncate this data, call the SetEOS method.

If the written data exceeds the length of the Stream object, the new data is appended to the Stream
object, the length of the stream is increased, and the EOS pointer is moved to the new end of the
stream.

The Write method is used to write to binary streams (Stream.Type property is equal to
adTypeBinary), while the WriteText method is used to write textual streams (Stream.Type
property is equal to adTypeText).

See Also

Stream.EOS Property, Stream.SetEOS Method, Stream.Type Property, Stream.WriteText Method,
StreamWriteEnum Enumeration

Stream.WriteText Method (Versions 2.5, 2.6)

stream.WriteText Data, Options

The WriteText method writes a number of bytes to a binary stream.

Arguments

Data (String)

Represents the String data to be written to the Stream object.

Options (StreamWriteEnum)

Optional. Indicates whether just the data is written to the Stream object or if the data and a line
separator (indicated by the LineSeparator property) are added to the Stream object. The default is
not to add the line separator.

Description

After writing the specified string to the Stream object, the Position property is set to the next
character following the last character written. If there is existing data past the end of what has
been written, it is not truncated. If you want to truncate this data, call the SetEOS method.

IT-SC book 487

If the written data exceeds the length of the Stream object, the new data is appended to the Stream
object, the length of the stream is increased, and the EOS pointer is moved to the new end of the
stream.

The WriteText method is used to write to text streams (Stream.Type property is equal to
adTypeText), while the Write method is used to write binary streams (Stream.Type property is
equal to adTypeBinary).

See Also

Stream.EOS Property, Stream.SetEOS Method, Stream.Type Property, Stream.WriteText Method,
StreamWriteEnum Enumeration

IT-SC book 488

Part III: Appendixes

Appendix A. Introduction to SQL

The SQL, or Structured Query Language, specification has many varieties. All are used for either
data selection, data manipulation, or database modification. Through this language we can
gracefully create queries, store procedures, filter recordsets, create tables -- you name it. Just
about everything that you can do with a database, you can do with SQL.

In this appendix, you will learn the Microsoft Jet Engine SQL language. This form of SQL is very
similar to the ANSI SQL specification. Differences exist between these two specifications in a
number of places, the most important difference being datatypes. ANSI SQL and Microsoft use
different names for datatypes. The SQL language described in this appendix uses the Microsoft
datatypes, for obvious reasons.

Other differences arise when ANSI SQL conflicts with Microsoft standards. In addition, some
functions have been removed from the ANSI standard by Microsoft because there are already
ways to accomplish these functions through ADO. Also, some statements (listed next) are unique
to Microsoft, including TRANSFORM, PARAMETERS, STDEV, and STDEVP. We will be
taking a look at these statements and functions shortly.

A.1 Record Selection

The most basic SQL statements are constructed through selection statements. Selection
statements return a group of records whose values can be filtered, grouped, ordered, or altered. To
jump into the basics of SQL, you must first learn how to create a simple selection query.

A.1.1 Selection Statements

Statements that select records all begin with the keyword SELECT. The syntax for a simple select
statement is as follows:
SELECT [predicate] {* |
 field_name1 [AS alias_name1]
 [field_name2 [AS alias_name2]] [, ...]]}
FROM table_expression
 [IN external_database]

This syntax declaration might be slightly intimidating if you have never seen SQL before, but rest
assured, you will know this like the back of your hand before long.

Let's begin by taking a look at the simplest of all select statements, one without any predicate (or
secondary keyword), the SELECT statement.

A.1.1.1 SELECT

The SELECT statement is used to return selected fields from all records, in one or more tables,
located in the current database or an external database. Let's image that we have a table named
Employees in our current database. The Employees table has the following field names:
FirstName, LastName, and EmployeeID. The Employees table is populated as in Table A-1.

IT-SC book 489

Table A-1. The Employees Table

FirstName LastName EmployeeID

Jason Roff 100

Tammi Roff 101

Kimberly Roff 102

John DelWhatta 200

John Katsosing 201

By using a simple SELECT statement, we can list all of the employees and their IDs:
SELECT *
FROM Employees;

The asterisk (*) in the preceding SQL statement indicates that you want all of the fields that
belong to the chosen record to be returned. The FROM portion of this statement indicates that you
want to select the fields from the Employees table. Results of this statement look like this:

FirstName LastName EmployeeID
Jason Roff 100
Tammi Roff 101
Kimberly Roff 102
John DelWhatta 200
John Katsosing 201

The first line of the preceding output should be the field names as the SQL statement returned
them. Now let's suppose that we want to return partial data on the given table. Let's face it: we are
not always going to need every field in a particular table, and by requesting them all, we waste
resources. Take a look at this statement:
SELECT LastName AS Name,
 EmployeeID AS Number
FROM Employees;

This time, we have added a new keyword, AS, to the statement. The AS keyword alters the field
name in the resulting recordset to the new name. The results of this query are:
Name Number
Roff 100
Roff 101
Roff 102
DelWhatta 200
Katsosing 201

IT-SC book 490

Notice how the field names on the first line of the result set have changed to the names indicated
in the SQL statement.

A.1.1.2 SELECT ALL

In the Microsoft Jet Engine SQL Language, SELECT ALL has the same effects as the SELECT
statement. You can use them interchangeably; the predicate ALL is the default for the SELECT
statement. In other words, if you leave out the predicate altogether, the Jet Engine inserts the ALL
keyword.

A.1.1.3 SELECT DISTINCT

The SELECT DISTINCT phrase is very commonly used in SQL. The purpose of the DISTINCT
keyword is to filter the selected records down to those that have unique values. Take a look at the
following statement and its results:
SELECT DISTINCT LastName
FROM Employees;

LastName
Roff
Ann
DelWhatta
Katsosing

Notice how one two of the Roffs were left out because we used the DISTINCT predicate within
the SQL statement. Now take a look at this SQL statement and result combination:
SELECT DISTINCT FirstName, LastName
FROM Employees;

FirstName LastName
Jason Roff
Tammi Roff
Kimberly Roff
John DelWhatta
John Katsosing

The Roff records are still in the result set. This is because the DISTINCT predicate returns distinct
rows based on the sum of its fields. In this example, Jason Roff and Tammi Roff are two unique
records and should both be included.

A.1.1.4 SELECT DISTINCTROW

The DISTINCTROW predicate is used with joins within your SQL statement. This concept is
explained later under "Joining Tables."

A.1.1.5 SELECT TOP

The TOP predicate is used to return only the first number of fields specified, based on records or
on a percentage of the records in the table. The TOP predicate works with the ORDER BY clause
and is discussed under Section A.1.4 later in this appendix.

IT-SC book 491

A.1.2 Aggregate Functions

Aggregate functions are a very powerful feature of any SQL language. They report numeric
statistics on a field for the entire record set that is a product of a SQL statement.

A.1.2.1 AVG

The AVG function returns a value that is the average of all of the records selected, for a particular
field. Let's suppose that we have the table Sales as shown in Table A-2.

Table A-2. The Sales Table

EmployeeID CrossStitch Hammocks Automobiles TotalRevenue

100 1,012 1,234 456 21,100

101 450 345 45 62,758

102 21,018 3,234 765 1,154,001

200 17 32 143 991

201 3 1 0 17

By using the AVG function, we can obtain important statistics from our Sales table:
SELECT AVG(CrossStitch) AS Average
FROM Sales;

Average
4500

Notice that the SQL statement returns a single record. You can also create AVG functions for other
fields in the SQL statement.

A.1.2.2 COUNT

The COUNT function displays a count of the number of records selected from a recordset. The
COUNT function takes as an argument a string expression that evaluates to one or more field
names. It accepts the asterisk (*), which specifies all fields to be included. If a string is used, only
records that have no NULL values in the fields indicated are counted. If the asterisk is used, all
records are counted as long as at least one field in each record has a non-NULL value. This is the
fastest method of using the COUNT function. Following is an example of using COUNT:
SELECT COUNT(*) AS CountOfPeople
FROM Employees;

CountOfPeople

IT-SC book 492

5

A.1.2.3 MIN and MAX

The MIN and MAX functions return the minimum and the maximum value, respectively, within a
chosen recordset. Take a look at an example of both the MIN and MAX functions:
SELECT MIN(CrossStitch) AS Minimum,
 MAX(Hammocks) AS Maximum
FROM Sales;

Minimum Maximum
3 3234

A.1.2.4 STDEV and STDEVP

The STDEV and STDEVP functions are not part of the ANSI SQL specification. These functions
are used to report the standard deviation of a sample (STDEV) and the standard deviation of a
population (STDEVP). The following is an example of both these functions:
SELECT STDEV(CrossStitch) AS Sample,
 STDEVP(Hammocks) AS Population
FROM Sales;

Sample Population
9243.01447039871 1216.94854451616

A.1.2.5 SUM

The SUM function returns a sum of a field in a selection statement:
SELECT SUM(CrossStitch) AS CrossStitchSum,
 SUM(CrossStictch + Hammocks) AS Both
FROM Sales;

CrossStitchSum Both
22500 27346

In this example, a sum was taken from a single field and from the sum of two fields.

A.1.2.6 VAR and VARP

The VAR and VARP functions return the variance of a sample and the variance of a population,
respectively:
SELECT VAR(CrossStitch) AS Sample,
 VARP(Hammocks) AS Population
FROM Sales;

Sample Population
85433316.5 88855543.76

If you can find a reason to use this . . . go for it.

IT-SC book 493

A.1.3 Setting Conditions

Conditions can be set in a number of places to specify which records the SQL statement returns.
The most common place for these conditions is in the WHERE clause.

A.1.3.1 WHERE

The WHERE clause can contain expressions that limit the amount of records returned. In the
following example, I filter the records with ordinary comparison operators:
SELECT EmployeeID,
 CrossStitch,
 Hammocks
FROM Sales
WHERE ((CrossStitch >= 450)
 AND (Hammocks < 2000));

EmployeeID CrossStitch Hammocks
100 1012 1234
101 450 345

In the next example, I limit the records returned with the IN keyword:
SELECT FirstName
FROM Employees
WHERE LastName NOT IN (Roff, Katsosing);

FirstName
John

In this example, I limit the records returned with the LIKE keyword:
SELECT FirstName
FROM Employees
WHERE ((FirstName LIKE "[A-M]*")
 AND (LastName LIKE "RO*"));

FirstName
Jason
Kimberly

A.1.3.2 WHERE

Another useful clause is the BETWEEN...AND... clause. The following two statements are
equivalent:
SELECT...
WHERE ((Field >= 100)
 AND (Field <= 200))

SELECT...
WHERE Field BETWEEN 100 AND 200

Take a look at the BETWEEN...AND... clause in action with the optional NOT keyword:
SELECT EmployeeID,

IT-SC book 494

 TotalRevenue
WHERE TotalRevenue NOT Between 10000 AND 100000;

EmployeeID TotalRevenue
1154001
991
17

A.1.4 Grouping and Ordering

With other SQL clauses, you can group records in your recordset or order them according to a
particular field or group of fields. You can also perform conditional statements on the groups that
you have formed or limit the amount of records that are returned to your recordset with the TOP
predicate of the SELECT statement. Table A-3 contains the Automobile table, which will serve as
our recordset for the following sections.

Table A-3. The Automobile Table

EmployeeID Year Make Model Color Cost

102 1998 BMW 323I Black 40,000

100 1989 Mercury Sable Blue 0

100 1987 Ford Mustang Red 4,500

100 1979 Chevy Nova Red 800

100 1975 Chevy Camaro Blue 800

100 1981 Mercury Capri Brown 0

A.1.4.1 GROUP BY

The GROUP BY clause of a selection statement combines records based on the fields that you
specify. The following combination of SQL statement and result uses the GROUP BY clause:
SELECT Make,
 COUNT(Make) AS NumOfMake
FROM Automobile
GROUP BY Make;

Make NumOfMake
BMW 1
Mercury 2
Ford 1
Chevy 2

IT-SC book 495

Notice how the Make field was unique, while the NumOfMake field contained the number of
records for each Make in the recordset.

A.1.4.2 HAVING

The HAVING clause works with the GROUP BY clause to set one or more conditions on the groups
created by the SQL statement. In this example, the HAVING clause restricts the outputed records
to those that represent more than one car for the same Make value:
SELECT Make
FROM Automobile
GROUP BY Make
HAVING (COUNT(Make) < 1);

Make NumOfMake
Mercury 2
Chevy 2

A.1.4.3 ORDER BY

The ORDER BY clause sets the order of the resulting records of a SQL statement. The syntax for an
ORDER BY clause of a SQL statement is as follows:
SELECT field_name1 [, field_name2 ...]
FROM table_expression
ORDER BY field_name1 [ASC | DESC] [, field_name2 [ASC | DESC]...]

The ASC and DESC keywords tell the SQL statement to order the records, by the specified field, in
either ascending or descending order. Both of these are optional; however, if you do not specify
one, ascending order is the default. Here are some examples:
SELECT DISTINCT Make
FROM Automobile
ORDER BY Make;

Make
BMW
Chevy
Ford
Mercury

SELECT Make, Model, Color
FROM Automobile
ORDER BY Color DESC, Make ASC;

Make Model Color
Chevy Nova Red
Ford Mustang Red
Mercury Capri Brown
Chevy Camaro Blue
Mercury Sable Blue
BMW 323I Black

In this last example, the ORDER BY clause sorts first by the Color field in descending order and
then sorts multiple Color records by the Make field in ascending order.

IT-SC book 496

A.1.4.4 SELECT TOP

The TOP predicate returns a subset of fields -- it returns the first x fields from the recordset, or the
first y percentage of fields from the recordset. The TOP predicate works in conjunction with the
ORDER BY clause. The syntax for the TOP predicate of the SELECT statement is as follows:
SELECT TOP number [PERCENT] field_name1 [, field_name2 ...]
FROM table_expression
ORDER BY field_name1 [ASC | DESC] [, field_name2 [ASC | DESC]...]

The first form of the SELECT TOP clause is illustrated here:
SELECT TOP 2 Model,
 Cost
FROM Automobile
ORDER BY Cost DESC;

Model Cost
323I 40,000
Mustang 4,500

As you can see, the number 2 is placed after the TOP predicate to indicate that you want only the
top two records based on the ORDER BY clause, which specifies that the records should be sorted
in descending order based on the Cost field.

In the next example, we see the second form of the SELECT TOP clause, with the use of the
PERCENT keyword:
SELECT TOP 50 PERCENT Model,
 Cost
FROM Automobile
ORDER BY Cost ASC;

Model Cost
Sable 0
Capri 0
Nova 800

Here, the SQL statement returns the top 50 percent of the records, based on the ORDER BY clause.
This example highlights a very useful piece of information about the TOP predicate: even if there
are more than the specified number or percentage of records available, only the amount requested
is returned. In this last example, you could argue that the Camaro also had a Cost value of 800, as
did the Nova. The thing to remember is that no matter what, the TOP predicate will return the
number or percentage of records from the top of the recordset. In this case 50 percent meant 3
records.

A.1.5 Joining Tables

Joins are used to include multiple tables in the same result set from a SQL statement. Technically,
there is no limit to the number of tables that you can join together in a single query, but
practically speaking, it is greatly limited by the abilities of your data provider. There are two
major types of joins.

A.1.5.1 INNER JOIN

IT-SC book 497

The first type of join is the inner join, which joins two tables that have one or more matching
fields. One record is chosen from each table when all of the conditions are met in the ON clause.

The following example uses the INNER JOIN clause:
SELECT Employees.FirstName,
 Employees.LastName,
 Sales.TotalRevenue
FROM Employees
INNER JOIN Sales
ON (Employees.EmployeeID = Sales.EmployeeID);

FirstName LastName TotalRevenue
Jason Roff 21,100
Tammi Roff 62,758
Kimberly Roff 1,154,001
John DelWhatta 991
John Katsosing 17

As you can see, by using the INNER JOIN clause, you can greatly expand the number of tricks in
your bag.

A.1.5.2 LEFT JOIN and RIGHT JOIN

The second type of join is the outer join. An outer join can be categorized as either a left outer
join or a right outer join. A left outer join includes all the records from the first table, even if
there is not a matching record, based on the ON clauses in the second table. A right outer join
includes all the records in the second table, regardless of whether they are present in the first.

The following query represents the use of the LEFT JOIN clause:
SELECT Employees.FirstName,
 Employees.LastName,
 Automobile.Make
FROM Employees
LEFT JOIN Automobile
ON (Employees.EmployeeID = Automobile.EmployeeID);

FirstName LastName Make
Jason Roff Mercury
Jason Roff Ford
Jason Roff Chevy
Jason Roff Chevy
Jason Roff Mercury
Tammi Roff
Kimberly Roff BMW
John DelWhatta
John Katsosing

Notice how in this query, Jason Roff comes up five times, and other people don't have a car
associated to them. The outer join gathers all data from one table, regardless of whether there is a
matching record in the second table.

A.1.5.3 SELECT DISTINCTROW

IT-SC book 498

The DISTINCTROW predicate is used with joins in your SQL statement to weed out distinct rows
within a recordset of two or more tables. Look back at the previous example. If the LEFT JOIN
had been an INNER JOIN, people without a car would not have been included. Now, if we include
the DISTINCTROW predicate of the SELECT statement, we also weed out duplicate rows:
SELECT Employees.FirstName,
 Employees.LastName,
 Automobile.Make
FROM Employees
LEFT JOIN Automobile
ON (Employees.EmployeeID = Automobile.EmployeeID);

FirstName LastName Make
Jason Roff Mercury
Jason Roff Ford
Jason Roff Chevy
Kimberly Roff BMW

The DISTINCTROW predicate operates just as the DISTINCT predicate does, but it spans across
tables when they are joined. Remember, a record's uniqueness is determined by the sum of all of
its displayed fields.

A.1.6 Subqueries

Subqueries are very useful statements. They are actually one or more nested SQL statements.
Subqueries are frequently very resource-intensive, especially in large databases, because the data
provider must gather a lot of information in memory to determine which fields the SQL statement
returns.

The following is an example of a subquery:
SELECT FirstName,
 LastName
FROM Employees
WHERE EmployeeID IN
 (SELECT EmployeeID
 FROM Sales
 WHERE (TotalRevenues > 10,000));

FirstName LastName
Jason Roff
Tammi Roff
Kimberly Roff

A.1.7 Unions

Unions are used to produce the combination of one or more queries into one resultset of a SQL
statement.

A.1.7.1 UNION

Use the UNION keyword with the following syntax:
[TABLE] query_expression1 UNION [ALL]

IT-SC book 499

[TABLE] query_expression2
[UNION [ALL] [TABLE] query_expression3 [...]]

Does this look a little overwhelming? Well, let's take a look at a typical UNION query:
(SELECT EmployeeID,
 TotalRevenue
 FROM Employees
 WHERE (TotalRevenue < 1000))
 UNION
(SELECT EmployeeID,
 TotalRevenue
 FROM Employees
 WHERE (TotalRevenue > 100000));

EmployeeID TotalRevenue
1154001
991
17

Notice that the two queries report the same field names. This output looks like one query. You
can also use the UNION keyword with the TABLE and ALL keywords, as in this senseless query:
TABLE Employees
UNION ALL
(SELECT *
 FROM Employees
 WHERE (TotalRevenue < 20));

EmployeeID CrossStitch Hammocks Automobiles TotalRevenue
100 1012 1234 456 21100
101 450 345 45 62758
102 21018 3234 765 1154001
200 17 32 143 991
201 3 1 0 17

I called this query "senseless" because no matter what records the second query returns, the
resulting recordset contains all of the records of the Employees table. In real-world applications,
use two different tables with the same structure when using the TABLE...UNION ALL clause.

When using the UNION clause, only distinct records (unique based on the sum of all the fields) are
returned.

A.1.8 Other Options

There are additional capabilities for selection statements that I have not yet covered. These
include parameter capabilities, the creation of stored procedures, and an option that allows the
user of a query to have the same access privileges as its owner.

A.1.8.1 PARAMETERS

The PARAMETERS clause is used to insert variables into your SQL statement so that it can be used
under different conditions. Here is an example of the PARAMETERS clause in action:
PARAMETERS

IT-SC book 500

[First Name Parameter] AS STRING,
[Last Name Parameter] AS STRING;
SELECT FirstName,
 LastName
FROM Employees
WHERE ((FirstName LIKE [First Name Parameter])
 AND (LastName LIKE [Last Name Parameter]);

[First Name Parameter] = "*"
[Last Name Parameter] = "Roff"

FirstName LastName
Jason Roff
Tammi Roff
Kimberly Roff

As you can see, the PARAMETERS clause can be very helpful when creating complex queries
within a large database application.

A.1.8.2 PROCEDURE

The PROCEDURE clause creates and names stored procedures from a SQL statement. The
PROCEDURE clause can also accept parameters, much like the PARAMETERS clause:
PROCEDURE ReturnEmployeeID
[First Name Parameter] AS STRING,
[Last Name Parameter] AS STRING;
SELECT FirstName,
 LastName,
 EmployeeID
FROM Employees
WHERE ((FirstName LIKE [First Name Parameter])
 AND (LastName LIKE [Last Name Parameter]);

[First Name Parameter] = "Jason"
[Last Name Parameter] = "Roff"

FirstName LastName EmployeeID
Jason Roff 100

A.1.8.3 WITH OWNERACCESS OPTION

The WITH OWNERACCESS OPTION is used at the end of any SQL statement to allow the user of
the query to access information for which she otherwise would not have the proper permissions.
Of course, this is all dependent on the owner of the query having the proper permissions to access
the information.

The WITH OWNERACCESS OPTION appears in a SQL statement as shown here:
PROCEDURE GetFinancialInformation
[First Name Parameter] AS STRING,
[Last Name Parameter] AS STRING;
SELECT Employees.FirstName,
 Employees.LastName,
 Sales.TotalRevenue

IT-SC book 501

FROM Employees
INNER JOIN Sales
ON (Employees.EmployeeID = Sales.EmployeeID)
WHERE ((Employees.FirstName = [First Name Parameter])
 AND (Employees.LastName = [Last Name Parameter]))
WITH OWNERACCESS OPTION;

[First Name Property] = "Kimberly"
[Last Name Property] = "Roff"

FirstName LastName TotalRevenue
Kimberly Roff 1154001

A.2 Data Manipulation

SQL is much more than just a data-retrieving language. It is also manipulates data within a given
data source. The three types of data manipulation are the addition of data, the modification of data,
and the removal of data.

A.2.1 Adding Records

Adding records in SQL is very easy. It is done through an append query. This type of query can
add one or more records to an existing table through the INSERT...INTO clause.

A.2.1.1 INSERT . . . INTO

The INSERT...INTO clause syntax for appending a single record is as follows:
INSERT INTO target_table
[IN external_database]
 [(field_name1 [, field_name2 [, ...]])]
SELECT [source_table].field_name1 [, field_name2 [, ...]
FROM source_table

The following example inserts multiple records into the Automobile table, based on cost, from an
additional table, NewAutomobiles:
INSERT INTO Automobile
SELECT *
FROM NewAutomobiles
WHERE (Cost >= 100000);

The INSERT...INTO clause syntax for appending multiple records is as follows:
INSERT INTO target_table
 [(field_name1 [, field_name2 [, ...]])]
VALUES (value1 [, value2 [, ...]])

The following SQL statement adds a new record to the Automobile table:
INSERT INTO Automobile
 (EmployeeID,
 Year,
 Make,
 Model,

IT-SC book 502

 Color,
 Cost)
VALUES (100,
 1997,
 Chevy
 Cavalier,
 Teal,
 14000);

A.2.2 Modifying Records

To modify values of a field in an existing table, use an update query.

A.2.2.1 UPDATE

The UPDATE clause syntax is:
UPDATE table_name
SET new_value_of_field
WHERE criteria_for_update

The following example increments the value of the TotalRevenue field of the Sales table based on
the amount of hammocks sold:
UPDATE Sales
SET (TotalRevenue = TotalRevenue + (Hammocks * 1.25))
WHERE (Hammocks >= 1000);

This example makes changes to the indicated records:

Hammocks TotalRevenue TotalRevenue
 (Before) (After)
21100 22642.5
3234 1154001 11548043.5

The UPDATE clause can also update multiple fields within the qualifying records (based upon the
WHERE clause) with the same SQL statement, as demonstrated in the following example:
UPDATE Sales
SET (TotalRevenue = TotalRevenue + (Hammocks * 1.25)),
 (UnitsSold = UnitsSold + 1)
WHERE (Hammocks >= 1000);

A.2.3 Deleting Records

The DELETE method deletes one or more records of a specified table with optional conditions.

A.2.3.1 DELETE

The DELETE clause syntax is:
DELETE [table_name.*]
FROM table_name
WHERE criteria_for_delete

IT-SC book 503

The following examples delete all records from the Automobile table:
DELETE
FROM Automobile;

DELETE *
FROM Automobile;

DELETE Automobile.*
FROM Automobile;

The following example deletes blue cars from the Automobile table:
DELETE Automobile.*
FROM Automobile
WHERE (Automobile.Color = "Blue");

A.3 Database Modification

The last part of the functionality of SQL is database modification. With SQL, you can
dynamically change the structure of a database by adding, modifying, and deleting tables. When
you perform database modification on tables, either by adding or modifying them, you can add or
modify indexes and constraints.

A.3.1 CREATE TABLE

The CREATE TABLE statement creates a new table in the current data source. This statement has
the following syntax:
CREATE TABLE table_expression
 (field_name1 data_type [(size)] [NOT NULL]
 [, field_name2 data_type [(size)] [NOT NULL] [, ...]])

The following CREATE TABLE statement creates the Automobile table:
CREATE TABLE Automobile
 (Year LONG NOT NULL,
 Make TEXT (12) NOT NULL,
 Model TEXT (15) NOT NULL,
 Color TEXT (10) NOT NULL,
 Cost LONG);

The NOT NULL keywords in the preceding example tell the data provider to create the particular
field so that it does not accept NULLs as legal values for that field.

A.3.2 ALTER TABLE

The ALTER TABLE clause alters an existing table in your current data source. The syntax for the
ALTER TABLE clause is:
ALTER TABLE table_expression
 [ADD COLUMN field_name1 data_type [(size)] [NOT NULL]
 [CONSTRAINT index_name1 | CONSTRAINT
multifield_index_name]] |
 [DROP {COLUMN field_name1 | CONSTRAINT index_name1}]

IT-SC book 504

The ALTER TABLE statement is very powerful. You can add or delete a particular field in a table
or add or delete a CONSTRAINT within a table. The following example illustrates adding a field to
the Automobile table:
ALTER TABLE Automobile
 ADD COLUMN MotorSize TEXT(5);

The following example shows you how to remove that field from the Automobile table:
ALTER TABLE Automobile
 DROP COLUMN MotorSize;

The following example illustrates how to add a CONSTRAINT to the Automobile table:
ALTER TABLE Employees
 ADD CONSTRAINT EmployeeIDConst REFERENCES Automobile (EmployeeID);

The following example shows you how to remove this last CONSTRAINT from the Automobile
table:
ALTER TABLE Automobile
 DROP CONSTRAINT Automobile;

A.3.3 CONSTRAINT

The CONSTRAINT clause can be used with either the CREATE TABLE statement or the ALTER
TABLE statement. The CONSTRANT clause can be used to create both single-field constraints and
multiple-field constraints. The syntax for the single-field CONSTRAINT clause is as follows:
CONSTRAINT constraint_name
 {PRIMARY KEY |
 UNIQUE |
 NOT NULL |
 REFERENCES foreign_table [(foreign_field1, foreignfield2)]}

An example of a CONSTRAINT is shown in this SQL statement, which adds the EmployeeID
field to the Sales table:
ALTER TABLE Sales
 ADD COLUMN EmployeeID LONG NOT NULL
 CONSTRAINT EmployeeIDConst
 REFERENCES Employees (EmployeeID);

The syntax for a multiple-field constraint is as follows:
CONSTRAINT constraint_name
 {PRIMARY KEY (primary1 [, primary2 [, ...]]) |
 UNIQUE (unique1 [, unique2, [, ...]]) |
 NOT NULL (not_null1, [, not_null2 [, ...]]) |
 FOREIGN KEY (ref1 [, ref2 [, ...]]) |
 REFERENCES foreign_table [(foreign_field1, foreignfield2)]}

A.3.4 CREATE INDEX

The CREATE INDEX statement creates an index within the current data source with the
information that you provide. The syntax for the CREATE INDEX statement is as follows:

IT-SC book 505

CREATE [UNIQUE] INDEX index_name
 ON table_name (field_name1 [ASC | DESC] [,field_name2 [ASC | DESC]
[, ...]])
 [WITH {PRIMARY |
 DISALLOW NULL |
 IGNORE NULL}]

The following two examples show you how to use the CREATE INDEX statement within your SQL
statements:
CREATE UNIQUE INDEX EmployeeIDIndex
ON Employees (EmployeeID ASC)
WITH PRIMARY;

CREATE INDEX CarType
ON Automobile (Make ASC, Model ASC)'

A.3.5 DROP

The DROP statement removes either a table from the associated data source or an index from the
indicated table. The following statement removes the Automobile table from our data source:
DROP TABLE Automobile;

This example removes the CarTypeIndex from the Automobile table:
DROP TABLE CarTypeIndex
ON Automobile;

Appendix B. The Properties Collection

The Properties collection exists within the Connection, Command, Recordset, and Field objects.
This collection provides dynamic property information about its corresponding ADO object
directly from the underlying data provider.

The Properties collection is not very complicated. Because the capabilities with the Properties
collection is limited, so are the number of properties and methods. In fact, there is only one
property, Count, which returns the number of Property objects within the Properties collection.
Only two methods belong to the Properties collection: Item and Refresh. Item, as its name implies,
accesses an individual Property object within the Properties collection. The Refresh method
repopulates the corresponding ADO object with the dynamic Property objects that describe the
characteristics of the underlying data provider.

Each Property object within the Properties collection represents a single attribute of the
underlying data provider that pertains to the associated ADO object, whether it is the Connection,
Command, Recordset, or Field object.

An individual Property object does not have any methods, but it does have four properties of its
own:

Name

Returns a string value representing the name of the property.

IT-SC book 506

Type

Returns a valid DataTypeEnum value indicating the datatype of the property's value.

Value

Sets or returns a variant value representing the value of the datatype.

Attributes

Returns a valid PropertyAttributesEnum value that indicates the attributes associated with the
given Property object. The Attributes property can contain a sum of any of the valid
PropertyAttributesEnum values shown in Table B-1.

Table B-1. The PropertyAttributesEnum Enumeration

Value Description

adPropNotSupported Indicates that the characteristic defined by the current Property object is
not supported by the data provider.

adPropRequired

Indicates that the characteristic defined by the current Property object
must be set by the application before connecting to the data source.
Most of the time, a required field has a default value so that actually
populating the Property object with a value is unnecessary.

adPropOptional
Indicates that the characteristic defined by the current Property object is
optional and does not have to be set in order to establish a connection to
the data source.

adPropRead Indicates that the value of the characteristic defined by the current
Property object can be read.

adPropWrite Indicates that the value of the characteristic defined by the current
Property object can be written by the application.

Now that we understand Property objects and the Properties collection, let's take a look at a neat
example that allows you to view the contents of different ADO objects' Properties collections.

B.1 The Property Example

The Property Example is a simple application that utilizes the Properties collection and the
Property object to report in a user-friendly manner the dynamic characteristics that are exposed
by a data provider for any of the given ADO objects that support the Properties collection. Figure
B-1 shows the Property Example main dialog box when the program is executing.

Figure B-1. The Property Example

IT-SC book 507

To begin, create a new Visual Basic project, select the Standard EXE project type, name the
default form frmPropertyExample, and change its Caption property to "Property Example". Next,
add two labels, a List View control, and five command buttons. For each of these controls, set the
values of the properties shown in Table B-2.

Table B-2. The Property Example Control Settings

Control Property Value

Label Caption Properties for:

Label Name lblObject

List View Name lvwProperties

 View 3 - lvwReport

Command Button Name cmdConnection

 Caption Co&nnection

Command Button Name cmdRecordset

 Caption &Recordset

Command Button Name cmdCommand

 Caption Co&mmand

IT-SC book 508

Command Button Name cmdField

 Caption &Field

Command Button Name cmdClose

 Caption &Close

Next, you need to add the four column headers through the Custom property in the property
dialog box in the Visual Basic IDE for the List View. The four columns that you need to create
are:

Name

Value

Type

Attributes

Now we are ready for the code.[A] In the General Declarations section of the form, declare the four
variables shown in the following code, one for each of the ADO objects that contains the
Properties collection. Remember to include the ADO runtime DLL within the References dialog
box of your Visual Basic project, or you will have some trouble when it comes time to compile:

[A] This and all other code examples from this book are available for download from the book's
web site, http://www.oreilly.com/catalog/ado/.

Option Explicit

Private m_oCon As Connection
Private m_oCom As Command
Private m_oRst As Recordset
Private m_oFld As Field

Make sure that all of the objects are set to Nothing when the application exits by adding the
following code to the cmdClose_Click event:
Private Sub cmdClose_Click()
 Set m_oCon = Nothing
 Set m_oRst = Nothing
 Set m_oCom = Nothing
 Unload Me
End Sub

Now enter the following code for the cmdConnection_Click event, which is used to establish
a connection with a data source. The form frmConnnection is used to gather the
ConnectionString and CursorLocation information for the Connection object. We will enter the
frmConnection code later. After the connection is established, the DisplayProperties method is

IT-SC book 509

called with the Connection object as a parameter. We will soon see that the DisplayProperties
method is used to populate the List View control with the Properties collection of the ADO object
that is passed to it:
Private Sub cmdConnection_Click()

 frmConnection.Show vbModal
 If (frmConnection.Canceled) Then Exit Sub

 Set m_oCon = New Connection
 m_oCon.ConnectionString = frmConnection.ConnectionString
 m_oCon.CursorLocation = frmConnection.CursorLocation
 Unload frmConnection

 m_oCon.Open

 cmdRecordset.Enabled = True
 cmdCommand.Enabled = True
 cmdField.Enabled = False
 Set m_oRst = Nothing

 DisplayProperties m_oCon, "Connection"

End Sub

The code for the cmdRecordset_Click event is very similar to that for the
cmdConnection_Click event. To open a Recordset object, the application uses the form
frmRecordset to gather the CursorType, LockType, and Source property values. Once the
Recordset object is opened, the DisplayProperties method is called to populate the List View
control:
Private Sub cmdRecordset_Click()

 frmRecordset.Show vbModal
 If (frmRecordset.Canceled) Then Exit Sub

 Set m_oRst = New ADODB.Recordset

 m_oRst.ActiveConnection = m_oCon
 m_oRst.CursorType = frmRecordset.CursorType
 m_oRst.LockType = frmRecordset.LockType
 m_oRst.Source = frmRecordset.Source
 Unload frmRecordset

 m_oRst.Open

 cmdField.Enabled = True

 DisplayProperties m_oRst, "Recordset"

End Sub

The cmdCommand_Click event uses the frmCommand form to gather the CommandText to open
a Command object:
Private Sub cmdCommand_Click()

IT-SC book 510

 frmCommand.Show vbModal
 If (frmCommand.Canceled) Then Exit Sub

 Set m_oCom = New ADODB.Command
 Set m_oRst = New ADODB.Recordset

 m_oCom.ActiveConnection = m_oCon
 m_oCom.CommandText = frmCommand.CommandText
 Unload frmCommand

 Set m_oRst = m_oCom.Execute

 cmdField.Enabled = True

 DisplayProperties m_oCom, "Command"

End Sub

Finally, enter the code for the cmdField_Click event, which displays the frmField form so
that the user can select a field from the currently opened Recordset or Command object to display
its Properties collection:
Private Sub cmdField_Click()

 Set frmField.Recordset = m_oRst
 frmField.Show vbModal
 If (frmField.Canceled) Then Exit Sub

 Set m_oFld = m_oRst.Fields(frmField.Field)
 Unload frmField

 DisplayProperties m_oFld, "Field"

End Sub

Now enter the following code for the DisplayProperties method. The following code sets the
width of the columns within the List View control then loops through each of the Property objects
in the Properties collection of the ADO object that has been passed to the method. For each
property, a ListItem is added to the List View control. The ListItem contains all of the Property
object's properties: Name, Value, Type, and Attributes. Because the values returned from the
Type and Attributes properties are numeric, the GetPropertyType and GetAttributes methods are
used to return a string value that is easy for the user to understand:
Private Sub DisplayProperties(oObject As Object, _
 sUsing As String)

 Dim lColumnCount As Long
 Dim lColumnWidth As Long

 Dim oProperty As Property
 Dim oListItem As ListItem

 lblObject.Caption = sUsing

 lColumnWidth = lvwProperties.Width / 4
 For lColumnCount = 1 To 4

IT-SC book 511

 lvwProperties.ColumnHeaders.Add
 lvwProperties.ColumnHeaders(lColumnCount).Width = lColumnWidth
 Next lColumnCount

 lvwProperties.ListItems.Clear

 For Each oProperty In oObject.Properties
 Set oListItem = lvwProperties.ListItems.Add()
 oListItem.Text = oProperty.Name
 oListItem.SubItems(1) = oProperty.Value & ""
 oListItem.SubItems(2) = GetPropertyType(oProperty.Type)
 oListItem.SubItems(3) = GetAttributes(oProperty.Attributes)
 Next oProperty

End Sub

The code for the GetAttributes method is as follows:
Private Function GetAttributes(lAttributes As Long) As String

 If (lAttributes And adPropNotSupported) Then _
 GetAttributes = "Not Supported, "

 If (lAttributes And adPropRequired) Then _
 GetAttributes = GetAttributes & "Required, "

 If (lAttributes And adPropOptional) Then _
 GetAttributes = GetAttributes & "Optional, "

 If (lAttributes And adPropRead) Then _
 GetAttributes = GetAttributes & "Read, "

 If (lAttributes And adPropWrite) Then _
 GetAttributes = GetAttributes & "Write, "

 If (Right$(GetAttributes, 2) = ", ") Then _
 GetAttributes = Left$(GetAttributes, Len(GetAttributes) - 2)

End Function

Because the value within the Attributes property of a Property object can be the sum of any of the
PropertyAttributesEnum values, the Attributes value is logically Anded with each enumeration
constant to see whether that particular flag is set. For each flag that is set, a string value is
appended to the description of the attributes.

The code for the GetPropertyType method is as follows. This code also returns a string value to
describe the enumeration value that is passed to it:
Private Function GetPropertyType(lType As Long) As String
 Select Case (lType)
 Case adBigInt: GetPropertyType = "BigInt"
 Case adBinary: GetPropertyType = "Binary"
 Case adBoolean: GetPropertyType = "Boolean"
 Case adBSTR: GetPropertyType = "BSTR"
 Case adChar: GetPropertyType = "Char"
 Case adCurrency: GetPropertyType = "Currency"
 Case adDate: GetPropertyType = "Date"

IT-SC book 512

 Case adDBDate: GetPropertyType = "DBDate"
 Case adDBTime: GetPropertyType = "DBTime"
 Case adDBTimeStamp: GetPropertyType = "DBTimeStamp"
 Case adDecimal: GetPropertyType = "Decimal"
 Case adDouble: GetPropertyType = "Double"
 Case adEmpty: GetPropertyType = "Empty"
 Case adError: GetPropertyType = "Error"
 Case adGUID: GetPropertyType = "GUID"
 Case adIDispatch: GetPropertyType = "IDispatch"
 Case adInteger: GetPropertyType = "Integer"
 Case adIUnknown: GetPropertyType = "IUnknown"
 Case adLongVarBinary: GetPropertyType = "LongVarBinary"
 Case adLongVarChar: GetPropertyType = "LongVarChar"
 Case adLongVarWChar: GetPropertyType = "LongVarWChar"
 Case adNumeric: GetPropertyType = "Numeric"
 Case adSingle: GetPropertyType = "Single"
 Case adSmallInt: GetPropertyType = "SmallInt"
 Case adTinyInt: GetPropertyType = "TinyInt"
 Case adUnsignedBigInt: GetPropertyType = "UnsignedBigInt"
 Case adUnsignedInt: GetPropertyType = "UnsignedInt"
 Case adUnsignedSmallInt: GetPropertyType =
"UnsignedSmallInt"
 Case adUnsignedTinyInt: GetPropertyType = "UnsignedTinyInt"
 Case adUserDefined: GetPropertyType = "UserDefined"
 Case adVarBinary: GetPropertyType = "VarBinary"
 Case adVarChar: GetPropertyType = "VarChar"
 Case adVariant: GetPropertyType = "Variant"
 Case adVarWChar: GetPropertyType = "VarWChar"
 Case adWChar: GetPropertyType = "WChar"
 Case Else: GetPropertyType = "Unknown"
 End Select
End Function

Finally, enter the code for the Form_Load event, which sets the Enabled property of the
command buttons:
Private Sub Form_Load()
 cmdConnection.Enabled = True
 cmdRecordset.Enabled = False
 cmdCommand.Enabled = False
 cmdField.Enabled = False
End Sub

Now that the main form, frmPropertiesExample, is complete, add another form to your project,
name it frmConnection, and change its Caption property to "Connection Information". This form
gathers the ConnectionString and CursorLocation property values from the user so that the
frmPropertiesExample form can open a Connection object. Figure B-2 shows the frmConnection
form at runtime.

Figure B-2. The Connection Information dialog box

IT-SC book 513

Add two frames to your new form. Within the first frame, add a control array of four option
buttons. Within this frame, create a text box next to the last option button in the control array.
Within the second frame, add a control array of two option buttons. Add two command buttons in
the area outside of the frames, and then set the properties of all the controls as shown in Table B-
3.

Table B-3. The Connection Information Dialog Box Control Settings

Control Property Value

Frame Caption Connection String

Option Button Name optConnectionString

 Index 0

Option Button Name optConnectionString

 Index 1

Option Button Name optConnectionString

 Index 2

Option Button Name optConnectionString

 Index 3

IT-SC book 514

 Caption Other

Text Box Name txtConnectionString

 MultiLine True

Option Button Name optCursorLocation

 Index 0

 Caption Use Server

Option Button Name optCursorLocation

 Index 1

 Caption Use Client

Command Button Name cmdOpen

 Caption &Open

 Default True

Command Button Name CmdCancel

 Caption &Cancel

 Cancel True

Once all of the properties are set for the controls, enter the following code to handle the command
button's Click events and the Cancel property. When the user clicks the Cancel command button,
the Canceled property will be set to True, but it will be set to False when the user clicks Open:
Option Explicit

Private m_bCanceled As Boolean

Private Sub cmdCancel_Click()
 m_bCanceled = True
 Me.Hide

IT-SC book 515

End Sub

Private Sub cmdOpen_Click()
 m_bCanceled = False
 Me.Hide
End Sub

Public Property Get Canceled() As Boolean
 Canceled = m_bCanceled
End Property

The code for the Form_Load event, shown next, populates the ConnectionString option button
array with different connection strings. In addition, the User Server CursorLocation value is
chosen as the default for startup:
Private Sub Form_Load()

 optConnectionString(0).Caption = "DSN=BiblioDSN"

 optConnectionString(1).Caption = "driver={SQL Server}; " _
 & "server=JROFF_LAPTOP; " _
 & "uid=sa; " _
 & "database=Northwind"

 optConnectionString(2).Caption = "DSN=OtherDSN"

 optConnectionString(0).Value = True
 optCursorLocation(0).Value = True

End Sub

When the fourth option button is pressed (indicated by an Index value of 3), the Connection
String text box has to be enabled. The Connection String text box allows users to enter their own
connection string rather than picking one of the "hard-coded" choices. The following code takes
care of this:
Private Sub optConnectionString_Click(Index As Integer)
 If (Index = 3) Then
 txtConnectionString.Enabled = True
 txtConnectionString.BackColor = vbWhite
 Else
 txtConnectionString.Enabled = False
 txtConnectionString.BackColor = &H8000000F ' light grey
 End If
End Sub

Next, enter the code for the CursorLocation property, which returns a valid CursorLocationEnum
enumeration value based upon which option button the user has selected:
Public Property Get CursorLocation() As ADODB.CursorLocationEnum
 If (optCursorLocation(0).Value = True) Then
 CursorLocation = adUseServer
 Else
 CursorLocation = adUseClient
 End If
End Property

IT-SC book 516

The code for the ConnectionString property returns a connection string based upon the option
button selected by the user or the connection string entered into the Connection text box next to
the last option button:
Public Property Get ConnectionString() As String

 If (optConnectionString(0).Value = True) Then _
 ConnectionString = optConnectionString(0).Caption

 If (optConnectionString(1).Value = True) Then _
 ConnectionString = optConnectionString(1).Caption

 If (optConnectionString(2).Value = True) Then _
 ConnectionString = optConnectionString(2).Caption

 If (optConnectionString(3).Value = True) Then _
 ConnectionString = txtConnectionString.Text

End Property

That's it for the frmConnection form.

Now move onto the frmRecordset form, which allows the user to select the Source, CursorType,
and LockType property values prior to opening a new Recordset object. The frmRecordset form
is shown in Figure B-3.

Figure B-3. The Recordset Information dialog box

To begin, add a new form to your project, name it frmRecordset, and change its Caption property
to "Recordset Information". Now add the three frames and the three control arrays of option
buttons. Add the text-box control and two command buttons, and enter the properties for each of
these controls as shown in Table B-4.

Table B-4. The Recordset Information Dialog Box Control Settings

IT-SC book 517

Control Property Value

Frame Caption Source

Option Button Name optSource

 Index 0

Option Button Name optSource

 Index 1

Option Button Name optSource

 Index 2

Option Button Name optSource

 Index 3

 Caption Other

Text Box Name txtSource

 MultiLine True

Frame Caption CursorType

Option Button Name optCursorType

 Index 0

 Caption Dynamic

Option Button Name optCursorType

 Index 1

IT-SC book 518

 Caption Keyset

Option Button Name OptCursorType

 Index 2

 Caption Forward Only

Option Button Name OptCursorType

 Index 3

 Caption Static

Frame Caption Lock Type

Option Button Name optLockType

 Index 0

 Caption Batch Optimistic

Option Button Name optLockType

 Index 1

 Caption Pessimistic

Option Button Name optLockType

 Index 2

 Caption Optimistic

Option Button Name optLockType

 Index 3

IT-SC book 519

 Caption Read-Only

Command Button Name cmdOpen

 Caption &Open

 Default True

Command Button Name cmdCancel

 Caption &Cancel

 Cancel True

Begin the frmRecordset code by entering in the command-button Click-event code and the
Cancel property support just as you did for the frmConnection form:
Option Explicit

Private m_bCanceled As Boolean

Private Sub cmdCancel_Click()
 m_bCanceled = True
 Me.Hide
End Sub

Private Sub cmdOpen_Click()
 m_bCanceled = False
 Me.Hide
End Sub

Public Property Get Canceled() As Boolean
 Canceled = m_bCanceled
End Property

Use the Form_Load event to populate the Source option buttons with source-string values that
can be used to open recordsets:
Private Sub Form_Load()

 optSource(0).Caption = "Authors"

 optSource(1).Caption = "SELECT * FROM Authors;"

 optSource(2).Caption = "SELECT * FROM Orders;"

 optSource(0).Value = True
 optCursorType(0).Value = True
 optLockType(0).Value = True

IT-SC book 520

End Sub

To enable the text box when the user selects the last option button in the Source control array,
enter the following code:
Private Sub optSource_Click(Index As Integer)
 If (Index = 3) Then
 txtSource.Enabled = True
 txtSource.BackColor = vbWhite
 Else
 txtSource.Enabled = False
 txtSource.BackColor = &H8000000F ' light grey
 End If
End Sub

Now enter the code that returns a valid CursorTypeEnum enumeration value for the CursorType
property based upon the option button that is selected by the user:
Public Property Get CursorType() As ADODB.CursorTypeEnum
 If (optCursorType(0).Value = True) Then CursorType = adOpenDynamic
 If (optCursorType(1).Value = True) Then CursorType = adOpenKeyset
 If (optCursorType(2).Value = True) Then CursorType =
adOpenForwardOnly
 If (optCursorType(3).Value = True) Then CursorType = adOpenStatic
End Property

Do the same for the LockType property so that a valid LockTypeEnum value is returned:
Public Property Get LockType() As ADODB.LockTypeEnum
 If (optLockType(0).Value = True) Then LockType =
adLockBatchOptimistic
 If (optLockType(1).Value = True) Then LockType = adLockPessimistic
 If (optLockType(2).Value = True) Then LockType = adLockOptimistic
 If (optLockType(3).Value = True) Then LockType = adLockReadOnly
End Property

Finish by entering the code for the Source property, which returns the Caption of a chosen option
button unless the last one is selected, in which case the value of the Source text box is returned:
Public Property Get Source() As String

 If (optSource(0).Value = True) Then _
 Source = optSource(0).Caption

 If (optSource(1).Value = True) Then _
 Source = optSource(1).Caption

 If (optSource(2).Value = True) Then _
 Source = optSource(2).Caption

 If (optSource(3).Value = True) Then _
 Source = txtSource.Text

End Property

IT-SC book 521

Now that you are done with the frmRecordset form, begin the frmCommand form, which is very
similar. The frmCommand form, shown in Figure B-4, is used to allow the user to select the
CommandText property used when opening a new Command object.

Figure B-4. The Command Information dialog box

Add a new form to your project, name it frmCommand, and set its Caption property to
"Command Information". This form only has one frame and control array, as compared to the last
two forms, which had at least two. Add the two command buttons, and then set all of the
properties shown in Table B-5 to the values specified.

Table B-5. The Command Information Dialog Box Control Settings

Control Property Value

Frame Caption Command Text

Option Button Name optCommandText

 Index 0

Option Button Name optCommandText

 Index 1

Option Button Name optCommandText

 Index 2

Option Button Name optCommandText

IT-SC book 522

 Index 3

Text Box Name txtCommandText

 MultiLine True

Command Button Name cmdOpen

 Caption &Open

 Default True

Command Button Name cmdCancel

 Caption &Cancel

 Cancel True

Enter the usual code for the command buttons and the Cancel property:
Option Explicit

Private m_bCanceled As Boolean

Private Sub cmdCancel_Click()
 m_bCanceled = True
 Me.Hide
End Sub

Private Sub cmdOpen_Click()
 m_bCanceled = False
 Me.Hide
End Sub

Public Property Get Canceled() As Boolean
 Canceled = m_bCanceled
End Property

Now enter the Form_Load event procedure, which contains the code to populate the
CommandText properties on the frmCommand form:
Private Sub Form_Load()

 optCommandText(0).Caption = "SELECT * FROM Authors;"

 optCommandText(1).Caption = "DELETE * FROM Authors _
 WHERE (Author = 'Jason');"

IT-SC book 523

 optCommandText(2).Caption = "SELECT * " _
 & "FROM Customers " _
 & "WHERE (ContactTitle = 'Sales Representative') "
_
 & "AND (Country = 'USA'); "

 optCommandText(0).Value = True

End Sub

The following code enables the CommandText text box when the user selects the last option
button in the control array:
Private Sub optCommandText_Click(Index As Integer)
 If (Index = 3) Then
 txtCommandText.Enabled = True
 txtCommandText.BackColor = vbWhite
 Else
 txtCommandText.Enabled = False
 txtCommandText.BackColor = &H8000000F ' light grey
 End If
End Sub

When the CommandText property is read, a CommandText string value is passed from either the
selected option button or the text box containing a user-entered CommandText value:
Public Property Get CommandText() As String

 If (optCommandText(0).Value = True) Then _
 CommandText = optCommandText(0).Caption

 If (optCommandText(1).Value = True) Then _
 CommandText = optCommandText(1).Caption

 If (optCommandText(2).Value = True) Then _
 CommandText = optCommandText(2).Caption

 If (optCommandText(3).Value = True) Then _
 CommandText = txtCommandText.Text

End Property

Now that the frmCommand form is complete, you can move on to the last form, the frmField
form. This form allows the user to select a Field object from the currently open Recordset or
Command object. The Field form is shown in Figure B-5. Begin by adding the form to your
project, changing its Name property to frmField and changing its Caption property to "Field
Information."

Figure B-5. The Field Information dialog box

IT-SC book 524

The frmField form consists of a Label, a List View control, and two command buttons. After
placing these controls onto the form, set the properties shown in Table B-6 to the values
specified.

Table B-6. The Field Information Dialog Control Settings

Control Property Value

Label Caption Fields:

List Box Name lstFields

Command Button Name cmdOk

 Caption &Ok

 Default True

Command Button Name cmdCancel

 Caption &Cancel

 Cancel True

Enter the usual command-button and Cancel-property code -- this should be familiar by now:
Option Explicit

Private m_bCanceled As Boolean

Private Sub cmdCancel_Click()
 m_bCanceled = True
 Me.Hide
End Sub

Private Sub cmdOk_Click()

IT-SC book 525

 m_bCanceled = False
 Me.Hide
End Sub

Public Property Get Canceled() As Boolean
 Canceled = m_bCanceled
End Property

Enter the following code to enable the cmdOK command button only when a valid Field object is
selected from the List View control:
Private Sub Form_Load()
 cmdOk.Enabled = False
End Sub

Private Sub lstFields_Click()
 cmdOk.Enabled = True
End Sub

The following code populates the List View control with a Recordset object that has been passed
to it:
Public Property Set Recordset(rec As Recordset)

 Dim fld As Field

 For Each fld In rec.Fields
 lstFields.AddItem fld.Name
 Next fld

End Property

Finally, the Field property returns the name of the field that was chosen by the user from the list:
Public Property Get Field() As String
 Field = lstFields.List(lstFields.ListIndex)
End Property

IT-SC book 526

Appendix C. ADO Errors

Errors are commonplace to any application. Usually, the development environment has a default
exception-handling mechanism. In Visual Basic, this mechanism is the On Error statement.

All Visual Basic errors can be trapped using this mechanism, but sometimes errors occur outside
of Visual Basic. In these cases, the Visual Basic exception-handling mechanism does little if any
good. This is especially true with ADO where errors can occur after execution has left your
Visual Basic application and has gone to the data providers.

ADO allows your Visual Basic application to deal with data-provider errors through a special
object: the Error object.

C.1 Working with Errors in ADO

Two types of errors are of interest to us when using ActiveX Data Objects. The first of these
types are those ADO errors that can be trapped within the development environment by using the
default exception-handling mechanism. In Visual Basic, this mechanism is accessed using the On
Error statement.

The second type of error are those that are reported by a data provider and that can't be trapped
within the development environment. These errors are reported within the Errors collection of the
Connection object. Within this collection, one or more Error objects are used to represent the
individual errors that are reported by the data provider.

C.1.1 ADO Trappable Errors

Table C-1 lists the trappable errors related to ADO.

Table C-1. The ErrorValueEnum Enumeration

Enumeration (ADO/WFC) Value Description

adErrBoundToCommand
(BOUNDTOCOMMAND)

3707
(&HE7B)

The ActiveConnection property of a
Recordset object cannot be changed because
the Recordset object's source is a Command
object.

adErrCannotComplete (no
ADO/WFC equivalent)

3732
(&HE94)

The server that owns the source row cannot
complete the operation.

adErrCantChangeConnection (no
ADO/WFC equivalent)

3748
(&HEA4)

The Connection was denied because it has
different characteristics than the one already
in use.

adErrCantChangeProvider (no
3220
(&HC94) The supplied provider is different from the

IT-SC book 527

ADO/WFC equivalent) one already in use.

adErrCantConvertvalue (no
ADO/WFC equivalent)

3724
(&HE8C)

Data value could not be converted for reasons
other than sign mismatch or data overflow.
For example, conversion would have
truncated data.

adErrCantCreate (no ADO/WFC
equivalent)

3725
(&HE8D)

Data could not be set or retrieved because the
column datatype was unknown or the
provider had insufficient resources to perform
the operation.

adErrCatalogNotSet (no
ADO/WFC equivalent)

3747
(&HEA3) The operation requires a valid ParentCatalog.

adErrColumnNotOnThisRow (no
ADO/WFC equivalent)

3726
(&HE8E) Column does not exist on this row.

adErrDataConversion
(DATACONVERSION)

3421
(&HD5D)

A wrong datatype is being used for the
operation.

adErrDataOverflow (no ADO/WFC
equivalent)

3721
(&HE89)

Data value is too large to be represented by
the column datatype.

adErrDelResOutOfScope (no
ADO/WFC equivalent)

3738
(&HE9A)

The URL of the object to be deleted is outside
the scope of the current row. Make sure the
URL is inside the scope.

adErrDenyNotSupported (no
ADO/WFC equivalent)

3750
(&HEA6)

The data provider does not support sharing
restrictions.

adErrDenyTypeNotSupported (no
ADO/WFC equivalent)

3751
(&HEA7)

The data provider does not support the
requested sharing restriction type.

adErrFeatureNotAvailable
(FEATURENOTAVAILABLE)

3251
(&HCB3) The provider does not support the operation.

adErrFieldsUpdateFailed 3749
(&HEA5) The Fields update failed.

adErrIllegalOperation
(ILLEGALOPERATION)

3219
(&HC93)

The operation cannot be performed during
this context.

IT-SC book 528

adErrIntegrityViolation (no
ADO/WFC equivalent)

3719
(&HE87)

The data value conflicts with the integrity
constraints of the field.

adErrInTransaction
(INTRANSACTION)

3246
(&HCAE)

The operation is in the middle of a transaction
and cannot close the Connection object.

adErrInvalidArgument
(INVALIDARGUMENT)

3001
(&HBB9)

The argument either is not of the correct type,
has a value that is not in the acceptable range,
or is in conflict with another argument.

adErrInvalidConnection
(INVALIDCONNECTION)

3709
(&HE7D)

The operation cannot be performed because
the Connection object is closed.

adErrInvalidParamInfo
(INVALIDPARAMINFO)

3708
(&HE7C)

The parameter information is not defined
correctly.

adErrInvalidTransaction (no
ADO/WFC equivalent)

3714
(&HE82)

The coordinating transaction is invalid or has
not started.

adErrInvalidURL (no ADO/WFC
equivalent)

3729
(&HE91)

The specified URL contains invalid
characters. Make sure the URL is typed
correctly.

adErrItemNotFound
(ITEMNOTFOUND)

3265
(&HCC1)

The object requested does not exist in the
ADO collection at the ordinal position or with
the name provided.

adErrNoCurrentRecord
(NOCURRENTRECORD)

3021
(&HBCD)

The record pointer does not point to a valid
record, and one is needed for the operation.

adErrNotExecuting
(NOTEXECUTING) (This seemed to be
missing in 2.6)

3715 The execution could not be canceled because
it was not executing.

adErrNotReentrant
(NOTREENTRANT)

3710
(&HE7E)

The code within the event would cause the
event to be fired again.

adErrObjectClosed
(OBJECTCLOSED)

3704
(&HE78)

The object that is needed by the operation is
closed.

adErrObjectInCollection
(OBJECTINCOLLECTION)

3367
(&HD27) The attempt to add the object to the collection

IT-SC book 529

was unsuccessful because the object is
already in the collection.

adErrObjectNotSet
(OBJECTNOTSET)

3420
(&HD5C)

The object does not point to a valid ADO
object.

adErrObjectOpen (OBJECTOPEN) 3705
(&HE79)

The operation requires that the object is not
open.

adErrOpeningFile (no ADO/WFC
equivalent)

3002
(&HBBA) The file could not be opened.

adErrOperationCancelled
(OPERATIONCANCELLED)

3712
(&HE80) An ADO operation has been canceled.

adErrOutOfSpace (no ADO/WFC
equivalent)

3734
(&HE96)

The provider is unable to obtain enough
storage space to complete the copy operation.

adErrPermissionDenied (no
ADO/WFC equivalent)

3720
(&HE88)

User does not have permission to write to the
column. Check Column Privileges property.

adErrPropConflicting (no
ADO/WFC equivalent)

3742
(&HE9E)

The property value was not set because it
would have conflicted with an existing
property.

adErrPropInvalidColumn (no
ADO/WFC equivalent)

3739
(&HE9B)

The property cannot apply to the specified
column.

adErrPropInvalidOption (no
ADO/WFC equivalent)

3740
(&HE9C) The specified option is invalid.

adErrPropInvalidValue (no
ADO/WFC equivalent)

3741
(&HE9D)

The specified value is invalid. Make sure the
value is typed correctly.

adErrPropNotAllSettable (no
ADO/WFC equivalent)

3743
(&HE9F)

The property is read-only or could not be set
for the particular column.

adErrPropNotSet (no ADO/WFC
equivalent)

3744
(&HEA0)

The property value was not set. The value of
dwOptions was
DBPROPOPTIONS_OPTIONAL, and the
property could not be set to the specified
value.

IT-SC book 530

adErrPropNotSettable (no
ADO/WFC equivalent)

3745
(&HEA1)

The property was read-only or the consumer
attempted to set values of properties in the
Initialization property group after the data-
source object was initialized. Consumers can
set the value of a read-only property to its
current value. This value is also returned if a
settable column property could not be set for
the particular column.

adErrPropNotSupported (no
ADO/WFC equivalent)

3746
(&HEA2)

The property value was not set. The provider
does not support the property.

adErrProviderFailed (no
ADO/WFC equivalent)

3000
(&HBB8)

The provider failed to perform the requested
operation.

adErrProviderNotFound
(PROVIDERNOTFOUND)

3706
(&HE7A) The provider could not be found.

adErrReadFile (no ADO/WFC
equivalent)

3003
(&HBBB) The file could not be read.

adErrResourceExists (no
ADO/WFC equivalent)

3731
(&HE93)

The copy operation cannot be performed. The
object named by destination URL already
exists. Specify adCopyOverwrite to replace
the object.

adErrResourceLocked (no
ADO/WFC equivalent)

3730
(&HE92)

The object represented by the specified URL
is locked by one or more other processes.
Wait until the process has finished, and
attempt the operation again.

adErrResourceOutOfScope (no
ADO/WFC equivalent)

3735
(&HE97)

The source or destination URL is outside the
scope of the current row. Make sure the URL
is inside the scope.

adErrSchemaViolation (no
ADO/WFC equivalent)

3722
(&HE8A)

Data value conflicted with the datatype or
constraints of the column.

adErrSignMismatch (no ADO/WFC
equivalent)

3723
(&HE8B)

Conversion failed because the data value was
signed and the column datatype used by the
provider was unsigned.

adErrStillConnecting
(STILLCONNECTING)

3713
(&HE81) The operation cannot be executed because

IT-SC book 531

ADO was still connecting to the data source.

adErrStillExecuting
(STILLEXECUTING)

3711
(&HE7F)

The operation cannot be executed because
another command is still being executed.

adErrTreePermissionDenied (no
ADO/WFC equivalent)

3728
(&HE90)

The operation is unable to access a tree or
subtree due to a permissions failure.

adErrUnavailable (no ADO/WFC
equivalent)

3736
(&HE98)

An operation failed to complete, and the
status is unavailable.

adErrUnsafeOperation
(UNSAFEOPERATION)

3716
(&HE84)

The operation is not considered safe by the
environment that is currently running ADO.

adErrURLDoesNotExist (no
ADO/WFC equivalent)

3727
(&HE8F)

Either the source URL or the parent of the
destination URL does not exist.

adErrURLNamedRowDoesNotExist
(no ADO/WFC equivalent)

3737
(&HE99)

The row named by this URL does not exist.
Make sure the URL is typed correctly.

adErrVolumeNotFound (no
ADO/WFC equivalent)

3733
(&HE95)

The provider is unable to locate the storage
volume indicated by the URL. Make sure the
URL is typed correctly.

adErrWriteFile (no ADO/WFC
equivalent)

3004
(&HBBC) The file could not be written to.

adwrnSecurityDialog (no
ADO/WFC equivalent)

3717
(&HE85)

This is an internal constant only, and
Microsoft asks that you do not use it.

adwrnSecurityDialogHeader (no
ADO/WFC equivalent)

3718
(&HE86)

This is an internal constant only, and
Microsoft asks that you do not use it.

The errors listed in Table C-1 are generated by using ADO itself rather than from an underlying
problem occurring within the data provider. These are errors that are caused by using ADO
improperly.

C.1.2 Data-Provider Errors

Errors that occur within the data provider are not easily trappable within the traditional runtime
exception-handling mechanism of a development environment like those generated by ADO itself.

IT-SC book 532

These errors, generated by the data provider, are visible through the Error objects within the
Errors collection of the Connection object. Every time an ADO operation causes a data-provider
error, the Errors collection is populated within one or more errors (and in some cases, warnings)
through individual Error objects.

The Errors collection is not cleared until a new ADO operation causes a data provider error or the
user manually clears the Errors collection with the Clear method. Warnings do not clear the
Errors object, so it is a good idea to clear the Errors collection manually with the Clear method
before calling any ADO operation that can generate warnings in order to determine whether a
warning has been reported.

The Resync, UpdateBatch, and CancelBatch methods, as well as the Filter property, of the
Recordset object can generate warnings. In addition, the Open method of a Connection object can
also generate data-provider warnings.

Each Error object within the Errors collection can be accessed through the use of the default
property of the Errors collection (Item), and the number of Error objects within the Errors
collection can be obtained by using the Count property.

Each Error object has properties that access the details about the error or warning generated by a
data provider:

Number

Returns a Long value representing the constant value of the error or warning.

Description

Returns a String value representing the textual description of the error or warning.

Source

Returns a String value representing the object or the application that raised the error or warning.
This value can be the object's class name or programmatic identification.

SQL State

Returns a String value five characters long. This value represents the ANSI SQL standard for
error codes generated by SQL data sources.

NativeError

Returns a Long value representing the native error code from the data provider. This number does
not have any meaning to ADO itself, but it can be used in conjunction with the data provider to
gather more information about the error or warning.

HelpFile

Returns a String value representing the name of a file, if any, that contains more information
about the particular error or warning.

HelpContext

Returns a Long value representing context identification within the help file named by the
HelpFile property, which contains more information about the particular error or warning.

IT-SC book 533

The most common and useful properties that are used to determine a data-provider error are the
first three described previously -- the Number, Description, and Source properties of the Error
object.

C.2 The Errors Example

To better understand how the Errors collection of the Connection object works, I have come up
with an example application conveniently named the Errors Collection Example.

This example allows you to execute an operation within ADO that will (hopefully) generate an
error. In addition, you can add more error-generating code to the example to further investigate
the usage of error handling within ADO.

The first form within the Errors Collection Example asks the user what type of error he would
like to generate, as shown in Figure C-1.

Figure C-1. The Errors Collection Example form

After the user selects an error from the list and presses the Ok button, the operation that generates
the error or errors is attempted, and with any luck, the ADO Error(s) form is displayed detailing
each error, as shown in Figure C-2.

Figure C-2. The ADO Error(s) form

IT-SC book 534

To begin this example, create a new project within Visual Basic, and be sure to set a reference to
the Microsoft ActiveX Data Objects xx Library, where xx represents the version of ADO that you
have on your machine (1.0, 1.5, 2.0, 2.1). Name the project ErrorsCollectionExample.

C.2.1 The Main Form

Once your new project is created, change the name of Form1 to frmErrorsCollectionExample,
and add a label, a list box, and two command buttons, as shown in Figure C-3.

Figure C-3. The Errors Collection Example form in Design mode

Once the controls have been placed on the form, set the values of the properties listed in Table
C-2.

Table C-2. The Errors Collection Form Control Settings

Control Property Value

Form Caption Errors Collection Example

Label Caption Generate Error:

List Box Name LstErrors

Command Button Name cmdOk

 Caption &Ok

Command Button Name cmdClose

 Caption &Close

IT-SC book 535

Begin entering the following code. This is a list of constant values that represent each error the
user can generate. If you want to add additional errors to the list, create a new constant for it here:
Option Explicit

Private Const BAD_CONNECTION_ERROR = 1
Private Const SQL_SERVER_NOT_STARTED_ERROR = 2
Private Const BAD_USER_NAME_ERROR = 3
Private Const INVALID_COMMANDTEXT_VALUE_ERROR = 4
Private Const TABLE_NOT_AVAILABLE_ERROR = 5
Private Const NOT_AN_ADO_ERROR = 6

Now add the code for the Command buttons. The Close button unloads the form, but the Ok
button calls the GenerateError method with the constant representing the error selected. You will
see later that each item in the list box has its ItemData property to set the constant value of its
corresponding error:
Private Sub cmdClose_Click()
 Unload Me
End Sub

Private Sub cmdOk_Click()
 GenerateError lstErrors.ItemData(lstErrors.ListIndex)
End Sub

Enter the following code to populate the list box with the errors that have been predefined. As
you can see, the Form_Load event calls the PopulateErrors method, which in turn calls the
AddToErrorList method for each possible error that can be generated. A description of the error
and the constant representing the error is used for each item within the list box.

If you want to add additional errors to the list, enter another call to the AddToErrorList method
within the PopulateErrors method for each:
Private Sub Form_Load()
 PopulateErrors
End Sub

Private Sub PopulateErrors()

 AddToErrorList "Bad connection", BAD_CONNECTION_ERROR
 AddToErrorList "SQL Server not started",
SQL_SERVER_NOT_STARTED_ERROR
 AddToErrorList "Bad user name", BAD_USER_NAME_ERROR
 AddToErrorList "Invalid command text value",
INVALID_COMMANDTEXT_VALUE_ERROR
 AddToErrorList "Table not available", TABLE_NOT_AVAILABLE_ERROR
 AddToErrorList "Not an ADO error", NOT_AN_ADO_ERROR
 lstErrors.ListIndex = 0

End Sub

Private Sub AddToErrorList(sError As String, _
 lErrorIndex As Long)

 lstErrors.AddItem sError
 lstErrors.ItemData(lstErrors.ListCount - 1) = lErrorIndex

IT-SC book 536

End Sub

The GenerateError method generates the error that was chosen by the user. Again, if you have
added additional errors to the list, add another Case statement to generate the error that you want:
Private Sub GenerateError(lErrorIndex As Long)
On Error GoTo ERR_GenerateError:

 Dim con As ADODB.Connection

 Set con = New ADODB.Connection

 Select Case (lErrorIndex)

 Case BAD_CONNECTION_ERROR:
 con.Open "Bad Connection"

 Case SQL_SERVER_NOT_STARTED_ERROR:
 MsgBox "Make sure that the SQL Server service is not
started.", _
 vbInformation + vbOKOnly, _
 "Information"
 con.Open "DSN=NorthwindDSN"

 Case BAD_USER_NAME_ERROR:
 MsgBox "Make sure that the SQL Server service is started.",
_
 vbInformation + vbOKOnly, _
 "Information"
 con.Open "DSN=NorthwindDSN", "INVALID USER"

 Case INVALID_COMMANDTEXT_VALUE_ERROR:
 con.Open "DSN=BiblioDSN"
 con.Execute "INVALID COMMANDTEXT VALUE"

 Case TABLE_NOT_AVAILABLE_ERROR:
 con.Open "DSN=BiblioDSN"
 con.Execute "MISSINGTABLE", _
 , _
 adCmdTable

 Case NOT_AN_ADO_ERROR:
 con.Execute "SELECT * FROM Authors;"

 End Select

 Set con = Nothing

Exit Sub

ERR_GenerateError:

 If (Not frmDisplayADOError.IsAnADORelatedError(Err, con.Errors))
Then

 MsgBox Err.Number & ": " & Err.Description, _
 vbExclamation + vbOKOnly, _

IT-SC book 537

 "General Error"

 Else
 Resume Next
 End If

End Sub

Notice that in the previous GenerateError method, the Visual Basic exception handling
mechanism, On Error, is used to trap a Visual Basic runtime error. If one is generated, the method
IsAnADORelatedError of the frmDisplayADOError form is called with the Visual Basic runtime-
error information to determine whether it is an ADO-related error.

You will soon see that if it is in fact an ADO-related error, the error is handled through the
frmDisplayADOError form, but if it is not, the value FALSE is returned so that the GenerateError
method can display its own error message.

C.2.2 The ADO Error(s) Form

Begin creating the ADO Error(s) form as shown in Figure C-4. Create a list box control within
one frame and a number of controls within another. This second frame should contain eight labels
and eight text boxes. In addition, add a Command button to the bottom of the form as shown in
order to unload the form from memory.

Figure C-4. The ADO Error(s) form in Design mode

Once you have placed all of the controls on the form, you can enter the values for the properties
shown in Table C-3.

Table C-3. The ADO Error(s) Form Control Settings

IT-SC book 538

Control Property Value

Form Name frmDisplayADOError

 Caption ADO Error(s)

Frame Caption Errors

List Box Name lstErrors

Label Caption Number:

Text Box Name txtText

 BackColor Button Face

 Enabled False

Label Caption Description:

Text Box Name txtDescription

 MultiLine 1-True

 BackColor Button Face

 Enabled False

Label Caption Last DLL Error:

Text Box Name txtLastDLLError

 BackColor Button Face

 Enabled False

Label Caption Native Number:

IT-SC book 539

Text Box Name txtNativeNumber

 BackColor Button Face

 Enabled False

Label Caption SQL State:

Text Box Name txtSQLState

 BackColor Button Face

 Enabled False

Label Caption Source:

Text Box Name txtSource

 BackColor Button Face

 Enabled False

Label Caption Help Context:

Text Box Name txtHelpContext

 BackColor Button Face

 Enabled False

Label Caption Help File:

Text Box Name txtHelpFile

 BackColor Button Face

 Enabled False

IT-SC book 540

Command Button Name cmdClose

 Caption &Close

Begin by entering the following code into the General Declarations section of the
frmDisplayADOError form. The type TVBAError, shown next, is used to hold the information
from a Visual Basic runtime error as you will soon see:
Option Explicit

Private Type TVBAError
 Number As Long
 Description As String
 LastDllError As Long
 Source As String
 HelpContext As Long
 HelpFile As String
End Type

Private m_oVBAError As TVBAError
Private m_oADOErrors As ADODB.Errors

Private Const VBA_ERROR = 1
Private Const ADO_ERROR = 2

Add the following code to close the form:
Private Sub cmdClose_Click()
 Unload Me
End Sub

The following function, AddErrorToList, adds a single error -- either a Visual Basic runtime error
or an ADO data-provider error -- to the list box shown on the form:
Private Function AddErrorToList(lErrorNumber As Long, _
 lErrorType As Long)

 Dim sErrorType As String

 Select Case (lErrorType)
 Case VBA_ERROR: sErrorType = "(VBA)"
 Case ADO_ERROR: sErrorType = "(ADO)"
 End Select

 lstErrors.AddItem CStr(lErrorNumber) & " " & sErrorType
 lstErrors.ItemData(lstErrors.ListCount - 1) = lErrorType

End Function

The following method, IsAnADORelatedError, is the method that was called by the
frmErrorsCollectionExample form to display the errors if they related to an ADO operation or
return False if they didn't. In the conditional shown later, if the ADO Errors collection passed to
the method has any Error objects in it, then the errors are ADO-related.

IT-SC book 541

With the Else portion of the conditional, the Visual Basic runtime error that was trapped in the
frmErrorsCollectionExample is copied into the TVBAError type that was declared earlier. It is
important to note whether this information has to be copied, because the ErrObject object can be
cleared without warning by Visual Basic itself.

Once the Visual Basic error is copied, it is added to the list via the AddErrorToList method call.
The same is done for each Error object within the Errors collection passed to the method:
Public Function IsAnADORelatedError(oVBAError As VBA.ErrObject, _
 oADOErrors As ADODB.Errors) As
Boolean

 Dim oADOError As ADODB.Error

 If (oADOErrors.Count = 0) Then

 IsAnADORelatedError = False
 Unload Me

 Else

 m_oVBAError.Number = oVBAError.Number
 m_oVBAError.Description = oVBAError.Description
 m_oVBAError.LastDllError = oVBAError.LastDllError
 m_oVBAError.Source = oVBAError.Source
 m_oVBAError.HelpContext = oVBAError.HelpContext
 m_oVBAError.HelpFile = oVBAError.HelpFile

 AddErrorToList m_oVBAError.Number, VBA_ERROR

 Set m_oADOErrors = oADOErrors

 For Each oADOError In m_oADOErrors
 AddErrorToList oADOError.Number, ADO_ERROR
 Next oADOError

 lstErrors.ListIndex = 0

 IsAnADORelatedError = True
 Me.Show

 End If

End Function

When a new error is selected from the list box on the form, the lstErrors_Click event is raised.
Enter the code for this event as shown in the next code. Notice that for each type of error, there is
different information. The Visual Basic error does not have a NativeNumber or SQLState
property, but it does have a LastDLLError property that the ADO Error object does not:
Private Sub lstErrors_Click()

 Dim lIndex As Long

 lIndex = lstErrors.ListIndex

IT-SC book 542

 Select Case (lstErrors.ItemData(lIndex))

 Case VBA_ERROR:

 With m_oVBAError
 txtNumber.Text = .Number
 txtDescription.Text = .Description
 txtLastDLLError = .LastDllError
 txtNativeNumber = ""
 txtSQLState = ""
 txtSource = .Source
 txtHelpContext.Text = .HelpContext
 txtHelpFile.Text = .HelpFile & ""
 End With

 Case ADO_ERROR:

 With m_oADOErrors(lIndex - 1)
 txtNumber.Text = .Number
 txtDescription.Text = .Description
 txtLastDLLError = ""
 txtNativeNumber = .NativeError
 txtSQLState = .SQLState
 txtSource = .Source
 txtHelpContext.Text = .HelpContext
 txtHelpFile.Text = .HelpFile & ""
 End With

 End Select

End Sub

Once you have entered all of the code, your Errors Collection Example is ready to go. Simply run
it, and generate all the errors you want.

IT-SC book 543

Appendix D. The ADO Data Control

The ADO Data Control is the third in a line of controls that are used to easily create a connection
to a database. The first of these three was the intrinsic Data Control that utilized DAO technology.
The next in line was the Remote Data Control that used the RDO technology. What would a data-
access technology be without the familiar VCR button-style interface that was called the data
control?

The ADO Data Control allows for an easy way to connect to a data source. Once that connection
is made, it can be easily bound to data-aware controls such as the DBList and DBCombo controls
found in the Microsoft Data Bound List Controls component.

D.1 The ADO Data Control Property Pages

The ADO Data Control is very easy to configure by means of its Property Pages, which are
accessible through the Custom property shown in the controls property list.

The first page of the ADO Data Control Property Pages allows you to select a source of
connection in one of three ways. This tab is shown in Figure D-1.

Figure D-1. The General tab of the ADO Data Control Property Pages

The first way to specify a source of connection is by specifying a Data Link File. A Data Link file
is a file that contains the Connection-string information used to establish a connection to a data
source. We will look into how to create Data Link Files in the next section of this chapter.

The second way to select a source of the database connection is by specifying a Data Source
Name. To create a new DSN you can use the ODBC Data Source Administrator, which can be
found in the Control Box or by pressing the New button located to the right of the Combo Box.

IT-SC book 544

The third way to select a source of the database connection is to specify a Connection-string value.
If you would like to, you can create a connection string by using the Build button. Creating
connection-string values is also covered in the next section of this chapter.

Once you have specified the correct connection information for a data source, you can use the
next tab of the Property Pages dialog box, the Authentication tab, to enter a username and
password. This is shown in Figure D-2.

Figure D-2. The Authentication tab of the ADO Data Control Property Pages

The third tab, the RecordSource tab, allows you to specify the information necessary to create a
recordset from the data source specified. This tab is shown in Figure D-3.

Figure D-3. The RecordSource tab of the ADO Data Control Property Pages

The RecordSource tab of the Property Pages dialog box allows you to specify the CommandType
property of the recordset that is going to be created internally by the ADO Data Control.

If you specify that the CommandType is either adCmdTable or adCmdStoredProc, then you can
select a Table or Stored Procedure Name from the drop-down list provided. If you specify that the
CommandType is either adCmdUnknown or adCmdText, you can enter in a CommandText value
in the section provided.

IT-SC book 545

The last two tabs of the ADO Data Control's Property Pages dialog box are used for setting the
physical characteristics of the data control, the Color and Font.

D.2 Creating Connection Strings with the ADO Data
Control

One of the best features of the ADO Data Control is its ability to create connection strings. From
the beginning of ADO (somewhere around Version 1.5), connection strings have been a daunting
and tedious task. The ADO Data Control has given us a wizard to guide us through these rough
waters.

D.2.1 Data Link Properties Dialog Box

The Data Link Properties dialog box is a wizard that allows you to create ADO connection strings.
To access the Data Link Properties dialog box, press the Build button for the Connection-string
property in either the first tab of the Property Pages dialog box (Figure D-1) or the Property
Pages dialog box that is shown when you go into the Connection String property dialog box
(Figure D-4). Incidentally, the first tab of the Property Pages dialog box is identical to the
property dialog box of the Connection String dialog box.

Figure D-4. The Connection String Property dialog box

D.2.1.1 Entering provider information

Afteryou press the Build button, the Data Link Properties dialog box will appear as shown in
Figure D-5.

Figure D-5. The Provider tab of the Data Link Properties dialog box

IT-SC book 546

The first tab of the Data Link Properties dialog box is the Provider tab, which allows the user to
select an installed Data Provider from a list of available data providers.

D.2.1.2 Entering connection information

The second tab in the Data Link Properties is dependent upon the provider chosen in the first tab.
Currently, there are four types of data providers included with the Microsoft Data Access
Components:

Jet

ODBC

SQL Server

Oracle

For each of the providers shown here, there is a specific Connection tab with unique property
combinations that are used by that provider. For all other providers not included in the Microsoft
Data Access Components, a generic Connection tab is used.

D.2.1.2.1 The Jet providers

The Connection tab of the Data Link Properties dialog box for Jet connections is shown in Figure
D-6.

Figure D-6. The Connection tab of the Data Link Properties dialog box for Jet
providers

IT-SC book 547

Within this dialog box you can select an Access database, the username and password and a few
settings regarding the password itself.

The first option, Blank Password, will place a blank password in the connection string. The
second option, Allow saving password, will place the password in the connection string
unmasked and unencrypted.

To test the connection after you have made the proper settings, click the Test Connection button.
If the connection was made successfully, you should see the message box shown in Figure D-7.

Figure D-7. The Test Connection Succeeded message box

If you don't see the Test Connection Succeeded dialog box, check the properties that you have
entered for an error.

D.2.1.2.2 The ODBC provider

The Connection tab of the Data Link Properties dialog box for ODBC connections is shown in
Figure D-8.

Figure D-8. The Connection tab of the Data Link Properties dialog box for
the ODBC provider

IT-SC book 548

The first step in specifying the connection information for ODBC connections is to enter either a
data source name (DSN) or an ODBC connection string. If you want to build an ODBC
connection string, you can click the Build button for the Connection-string property. This will
allow you to create either a File DSN (DSN-less connection string) or a Machine DSN (DSN-
based connection string).

The second step allows you to enter a username and password. You can also indicate if the
password should be blank in the connection string (the Blank password option) or if the password
should be saved in the connection string (the Allow saving password option), which will neither
mask or encrypt the password.

Finally, you can choose which database to use for the connection under the Initial Catalog
property.

Once you have completed this information, test the connection with the Test Connection button.

D.2.1.2.3 The SQL Server providers

The Connection tab of the Data Link Properties dialog box for SQL Server connections is shown
in Figure D-9.

Figure D-9. The Connection tab of the Data Link Properties dialog box for
SQL Server providers

IT-SC book 549

The first step in specifying the connection information for SQL Server connections is entering the
server name from which the database resides.

Next, you can choose to use the Windows NT integrated-security option if your OLE DB
provider supports an authentication service and you have permission in the data source to use that
authentication service. If you choose not to use the Windows NT integrated security, you can
enter a username and password manually. In addition, you can specify that the password is blank
in the connection string or the password is saved in the connection string (although it is not
masked or encrypted).

Finally, select the database to use that is on the server specified. You can either select a database
from a list, or if you have SQL Server 7.0, you can attach a SQL-database file as a database name
and enter the name of the single-file database file.

Once you are done setting up the connection specifications, you can test the connection with the
Test Connection button.

D.2.1.2.4 The Oracle providers

The Connection tab of the Data Link Properties dialog box for Oracle connections is shown in
Figure D-10.

Figure D-10. The Connection tab of the Data Link Properties dialog box for
Oracle providers

IT-SC book 550

When specifying Oracle connection information, first enter the name of the server on which the
Oracle database resides.

Next, enter the username and password to be used when establishing the connection. In addition,
you can specify to include a blank password in the connection string or to save the password in
the connection string unmasked and unencrypted.

Once you have specified all of the Oracle connection information, you can test the connection
with the Test Connection button on the bottom of this tab.

D.2.1.2.5 Other OLE DB providers

The Connection tab of the Data Link Properties dialog box for all other connections is shown in
Figure D-11.

Figure D-11. The Connection tab of the Data Link Properties dialog box for
other providers

IT-SC book 551

When connecting with any other type of OLE DB provider, the first step is to specify the data
source and its location. The data source would usually be a server name, and the location would
be a database name.

Next, choose to use either Windows NT integrated security or to enter a username and password
manually.

If you choose to use the Windows NT integrated-security option, you must be sure that the OLE
DB provider that you are using supports an authentication service, and you must have permission
to use that authentication service in the data source that you are choosing.

If you choose to enter a username and password manually, you can also specify to have a blank
password entered in the connection string or, if you have a password, have it saved to the
connection string although it will be done so unmasked and unencrypted.

The final step on this tab would be to identify the initial catalog that the connection will use. This
means that you need to enter the database that you want to access.

Once you are done with all of this information, you can test the connection by using the Test
Connection button.

D.2.1.3 Entering advanced information

The third tab of the Data Link Properties dialog box is shown in Figure D-12. This tab is used to
set the advanced properties of a data-source connection: the impersonation level, the protection
level, the connection timeout, and the access permissions.

Figure D-12. The Advanced tab of the Data Link Properties dialog box

IT-SC book 552

D.2.1.3.1 Impersonation level

The impersonation level only applies to network connections that are not RPC (Remote
Procedure Call) connections. This property indicates what level of impersonation the server can
use when it is impersonating the client. The value of the impersonation-level property can be set
to any of the values shown in Table D-1.

Table D-1. Impersonation Level Settings

Value Description

Anonymous Indicates that the server cannot get identification information about the client and,
therefore, cannot impersonate it.

Identify Indicates that the server can identify the client, allowing it to impersonate it.
However, it cannot access system objects as the client.

Impersonate Indicates that the server can impersonate the client's security context.

Delegate Indicates that not only can the server impersonate the client's security context, but
it can also make calls to other servers on behalf of the client.

D.2.1.3.2 Protection level

The protection level also only applies to network connections that are not RPC connections. This
property represents the level of protection of the data that is sent across the network, between the
client and the server. The value of the protection-level property can be set to any of the values
shown in Table D-2.

Table D-2. Protection Level Settings

IT-SC book 553

Value Description

None Indicates that no authentication of data is done between the client and the server.

Connect Indicates that authentication is done only when the client connects with the server.

Call Indicates that authentication is done at the beginning of each request to the server
from the client.

Pkt Indicates that authentication is done on all data received by the client.

Pkt
Integrity

Indicates that authentication is done on all data received by the client and that the
client checks to ensure that the date has not changed during the transmission.

Pkt
Privacy

Indicates that authentication is done on all data received by the client, that the
client checks to ensure that the data has not changed during the transmission, and
that the data has been encrypted to protect its privacy.

D.2.1.3.3 Connection timeout

The connection-timeout property indicates, in seconds, the time that the OLD DB provider is to
wait for initialization of the connection to complete.

If the connection-timeout value causes the connection to actually timeout, an error is raised, and
the attempt to create a connection is canceled.

D.2.1.3.4 Access permissions

The access permissions of a connection can be one or more of the values shown in Table D-3.

Table D-3. Access-Permission Settings

Value Description

Read Indicates that the connection is read-only.

Write Indicates that the connection is write-only.

ReadWrite Indicates that the connection is both read- and write-enabled.

Share Deny None Indicates that the connection cannot deny read or write access to other
connections.

IT-SC book 554

Share Deny Read Indicates that the connection prevents read access to other connections.

Share Deny
Write Indicates that the connection prevents write access to other connections.

Share Exclusive Indicates that the connection prevents other connections from read and
write access.

D.2.1.4 Reviewing all of the Data Link information

The last tab of the Data Link Properties dialog box is the All tab, which shows all of the
providers' initialization properties and their set values. Figure D-13 shows the All tab of the
Data Link Properties dialog box.

Figure D-13. The All tab of the Data Link Properties dialog box

The properties shown in this tab will vary from provider to provider. You can alter individual
values by selecting a property in the list and by clicking on the Edit Value button.

Once you are done setting these properties, simply click the OK button to finish. Depending on
where you invoked the Data Link Properties dialog box, you should see a created connection
string. If you are not using the ADO Data Control and you are coding by hand, you can cut this
connection string and paste it into your application.

D.2.2 Data Link Files

IT-SC book 555

Microsoft allows you to save connection string information into a file called a Data Link File.
This file has the .UDL extension.

To create a Data Link File, first press the Browse button for the Data Link File property in either
the first tab of the Property Pages dialog box (Figure D-1) or the Property Pages dialog box that
is shown when you go into the Connection String property dialog box (Figure D-4). Once you
have pressed the Browse button on one of these dialog boxes, you are presented with Select Data
Link File dialog box as shown in Figure D-14.

Figure D-14. Selecting a Data Link File

This dialog box will direct you to the Program Files\Common Files\System\OLE DB\Data Links
directory, which will contain a list of the currently installed Data Link Files on your computer.
Chances are if you are reading this section, the list will be empty.

The dialog box also instructs you on how to create a new Data Link File by clicking the right
mouse button anywhere within the file list of the dialog box.

Once you perform the right-click on the mouse and select New from the pop-up menu, you
should be presented with a menu that looks like that shown in Figure D-15. Choose the
Microsoft Data Link from this cascading pop-up menu.

Figure D-15. The Microsoft Data Link menu

IT-SC book 556

This will add a new file to the current directory shown in the dialog box with the name "New
Microsoft Data Link.UDL". You can rename this file if you like.

Double click on the file, as the dialog box instructs, or right click on the file and chose Properties
from the menu to modify its contents. Once you have double-clicked on this file, you should see
the now familiar Data Link Properties dialog box shown in Figure D-5. Begin creating your
connection string. It will be saved to your Data Link File when you close this dialog box.

D.3 The ADO Data Control Example

Lets take a look at the ADO Data Control with an example. We will be using the ADO Data
Control to bind text-box controls to the Publishers table of the Biblio.mdb Access database file.
Figure D-16 shows the ADO Data Control Example during runtime.

Figure D-16. The ADO Data Control Example

IT-SC book 557

To begin, place the controls shown in Figure D-17 onto a form. This includes an ADO Data
Control, ten labels, ten text boxes, and three command buttons.

Begin by setting the properties for the ADO Data Control. You can use the steps outlined earlier
to create a Data Link File that points to the Biblio.mdb database file. After you have created a
Data Link File, you can use the Custom property of the ADO Data Control to point to that Data
Link File through the first tab of the dialog box, the General tab (shown in Figure D-1). Then
switch to the RecordSource tab (shown in Figure D-3) to set the CommandType property to
adCmdTable and the Table property to Publishers.

Figure D-17. The ADO Data Control Example in Design mode

Now you are ready to set the rest of the properties as specified in Table D-4.

IT-SC book 558

Notice that the two properties that are being selected for all of the text boxes are DataField and
DataSource. First choose the DataSource property for the text box from the drop-down list. There
should only be one valid ADO Data Control listed since it is the only one on your form. Because
all of the ten text boxes should have the same value for the DataSource property, you can set
them all at once by multiselecting all of the text boxes before setting the DataSource property.

Once the DataSource property is set for a given text box, the list box for the DataField property
will contain all of the valid Field names within the Recordset specified by the ADO Data Control.
Choose the appropriate Field name for the text box you are setting.

Table D-4. The ADO Data Control Example Control Settings

Control Property Value

Form Name FrmADODCExample

ADO Data Control Name adcPublishers

Label Caption Publisher ID:

Text Box BackColor 'Button Face

 DataField "PubID"

 DataSource "adcPublishers"

 Enabled 0 'False

Label Caption Name:

Text Box DataField "Name"

 DataSource "adcPublishers"

Label Caption Company Name:

Text Box DataField "Company Name"

 DataSource "adcPublishers"

Label Caption Address:

IT-SC book 559

Text Box DataField "Address"

 DataSource "adcPublishers"

Label Caption City:

Text Box DataField "City"

 DataSource "adcPublishers"

Label Caption State:

Text Box DataField "State"

 DataSource "adcPublishers"

Label Caption ZIP:

Text Box DataField "Zip"

 DataSource "adcPublishers"

Label Caption Telephone:

Text Box DataField "Telephone"

 DataSource "adcPublishers"

Label Caption Fax:

Text Box DataField "Fax"

 DataSource "adcPublishers"

Label Caption Comments:

Text Box DataField "Comments"

IT-SC book 560

 DataSource "adcPublishers"

 MultiLine -1 'True

Command Button Name cmdAddNew

 Caption &AddNew

Command Button Name cmdDelete

 Caption &Delete

Command Button Name cmdClose

 Caption Close

The point of the ADO Data Control is minimal coding. When the application is run as it is right
now, the recordset will be created by the ADO Data Control, and the text boxes will be populated
with the information bound to the data control. When the navigation buttons on the ADO Data
Control are used, the record displayed through the ten text boxes will change.

To make things a little more interesting, we are going to add the ability to add and delete records
from the recordset in a neat and efficient manner, but first, let's get the closing code out of the
way:
Private Sub cmdClose_Click()
 Unload Me
End Sub

The easiest of the two new methods is adding a new record. Accessing the Recordset object of the
ADO Data Control directly, as shown in the following code, can do this:
Private Sub cmdAddNew_Click()
 adcPublishers.Recordset.AddNew
 txtName.SetFocus
End Sub

After entering this code, try running the application. When you press the AddNew button, the
record is cleared, and the cursor is placed in the Name text box waiting for you to add the record
information. As you know with the AddNew method, the record is not saved until the record
pointer changes location or the Update method is called. In this example, we are relying on the
user to change the record pointer by using one of the navigation controls of the ADO Data
Control.

To code the functionality to delete a record, enter the cmdDelete_Click event shown in the
following code:

IT-SC book 561

Private Sub cmdDelete_Click()
On Error GoTo ERR_cmdDelete_Click:

 adcPublishers.Recordset.Delete
 adcPublishers.Recordset.MovePrevious
 If (adcPublishers.Recordset.BOF) Then _
 adcPublishers.Recordset.MoveFirst

Exit Sub

ERR_cmdDelete_Click:
 Select Case (Err.Number)
 Case -2147217842: ' canceled by user
 Case Else:
 MsgBox "Error #" & Err.Number & ": " & Err.Description, _
 vbExclamation + vbOKOnly, _
 "Error"
 End Select
End Sub

For a moment, ignore the code labeled by ERR_cmdDelete_Click.

When the user clicks the Delete button on our example form, this method calls the Delete method
of the Recordset object belonging to the ADO Data Control. As with the AddNew method, the
change does not take place until the record pointer is moved. This is then done with the call to
MovePrevious (and the call to MoveFirst if the MovePrevious call moved the record pointer
before the first record -- this will occur if the user deletes the first record in the recordset).

Too often users delete things they don't mean to. Even more often users expect to be asked if they
are sure they want to go ahead with their instructions. Our example should cater to this.

Because the ADO Data Control exposes the Recordset object, it also exposes the Recordset's
events. Of interest to us is the WillChangeRecord event, which we can use to trap the deletion of
the current record, as shown in the following code:
Private Sub adcPublishers_WillChangeRecord(_
 ByVal adReason As
ADODB.EventReasonEnum, _
 ByVal cRecords As Long, _
 adStatus As ADODB.EventStatusEnum, _
 ByVal pRecordset As ADODB.Recordset)

 Dim lResponse As Long

 If (adReason = adRsnDelete) Then
 lResponse = MsgBox("Are you sure that you want to delete " _
 & "the current record?", _
 vbQuestion + vbYesNo, _
 "Delete")

 If (lResponse = vbNo) Then adStatus = adStatusCancel
 End If

End Sub

IT-SC book 562

In the adcPublishers_WillChangeRecord event shown previously, if the record is being deleted
(adReason is equal to adRsnDelete), then the user is asked if they are sure they want to proceed
with this action. If the user responds No, then the adStatus flag is set to adStatusCancel.

At this point, we are referred back to the code in the cmdDelete_Click event:
ERR_cmdDelete_Click:
 Select Case (Err.Number)
 Case -2147217842: ' canceled by user
 Case Else:
 MsgBox "Error #" & Err.Number & ": " & Err.Description, _
 vbExclamation + vbOKOnly, _
 "Error"
 End Select
End Sub

Once ADO attempts to move the record pointer, directly after the Delete method call, the
WillChangeRecord event is fired. When the user answers No to cancel the deletion, an error is
raised in the calling method (cmdDelete_Click) and is trapped in the code shown previously.

If the error number is equal to -2147217842, it is an indication that the user canceled the method
(by changing the adStatus flag to adStatusCancel in the WillChangeRecord event), as well as an
indicator to continue without stopping.

As an added safety measure, since we are trapping errors, we added the Case Else: statement to
display any other errors that may have occurred in this method. If we hadn't added this statement,
errors could go unnoticed.

Although this is an extremely basic example of how you can use the ADO Data Control, it proves
that using the ADO Data Control is extremely basic to implement. In addition, it should be noted
that additional code would still need to be implemented in order to perform other "basic"
requirements of any application, such as validation of field data and additional error handling.

IT-SC book 563

Appendix E. Enumeration Tables

This appendix contains an alphabetical list of the Enumerations used by the members of ADO
objects and collections.

Next to each enumeration name is a list of the versions of ADO that contained the particular
enumeration. For each enumeration, there is a description, a table, and in some cases a "See Also"
section with a list of related ADO objects, collections, methods, properties, events, and
enumerations.

In each enumeration table, the first column, "Enumeration (ADO/WFC)," contains the
enumeration constant for both ADO and WFC (Java). The middle column displays the numeric
value for the enumeration constant, and the last column contains the description.

ADCPROP_ASYNCTHREADPRIORITY_ENUM
Enumeration

(Versions
2.0, 2.1,
2.5, 2.6)

The ADCPROP_ASYNCTHREADPRIORITY_ENUM enumeration sets the execution priority
of an asynchronous thread receiving data. This enumeration value is used within the Recordset
dynamic property, Background Thread Priority.

Table E-1. The ADCPROP_ASYNCTHREADPRIORITY_ENUM Enumeration

Enumeration (ADO/WFC) Value Description

adPriorityAboveNormal
(ABOVENORMAL) 4 The priority is set between normal and

highest.

adPriorityBelowNormal
(BELOWNORMAL) 2 The priority is set between lowest and

normal.

adPriorityHighest (HIGHEST) 5 The priority is set to the highest possible
setting.

adPriorityLowest (LOWEST) 1 The priority is set to the lowest possible
setting.

adPriorityNormal (NORMAL) 3 The priority is set to the normal setting.

ADO/WFC

IT-SC book 564

The ADCPROP_ASYNCTHREADPRIORITY_ENUM enumeration is part of the
com.ms.wfc.data package, and the constant values are preceded with
AdoEnums.AdcPropAsyncThreadPriority.

ADCPROP_AUTORECALC_ENUM
Enumeration

(Versions 2.1,
2.5, 2.6)

The ADCPROP_AUTORECALC_ENUM enumeration dictates whether, within a hierarchical
recordset, the MSDataShape provider recalculates the aggregate and calculated columns. This
enumeration value is used within the Recordset dynamic property, Auto Recalc.

Table E-2. The ADCPROP_AUTORECALC_ENUM Enumeration

Enumeration Value Description

adRecalcAlways 1
Default. Indicates that values are recalculated whenever the
MSDataShape provider can determine that data used for calculated
columns have changed.

adRecalcUpFront 0 Indicates that the calculation is done only when building the
hierarchical recordset.

ADO/WFC

The ADCPROP_AUTORECALC_ENUM enumeration does not have ADO/WFC constants.

ADCPROP_UPDATECRITERIA_ENUM
Enumeration

(Versions
2.0, 2.1,
2.5, 2.6)

The ADCPROP_UPDATECRITERIA_ENUM enumeration indicates which fields dictate
conflicts during optimistic updates. This enumeration value is used within the Recordset dynamic
property, Update Criteria.

Table E-3. The ADCPROP_UPDATECRITERIA_ENUM Enumeration

Enumeration (ADO/WFC) Value Description

adCriteriaAllCols
(ALLCOLS) 1 If any column of the data-source row has been changed, a

conflict is detected.

IT-SC book 565

adCriteriaKey (KEY) 0 If the key column of the data-source row has changed (the
row has been deleted), a conflict is detected.

adCriteriaTimeStamp
(TIMESTAMP) 3

If the timestamp of the data-source row has been changed
(the row has been accessed after the Recordset was
obtained), a conflict is detected.

adCriteriaUpdCols
(UPDCOLS) 2

If any columns of the data-source row that correspond to
the updated fields in the Recordset object have changed, a
conflict is detected.

ADO/WFC

The ADCPROP_UPDATECRITERIA_ENUM enumeration is part of the com.ms.wfc.data
package and the constant values are preceded with AdoEnums.AdcPropUpdateCriteria.

ADCPROP_UPDATERESYNC_ENUM
Enumeration

(Versions
2.5, 2.6)

The ADCPROP_UPDATERESYNC_ENUM enumeration specifies whether calling the
UpdateBatch method automatically calls the Resync method afterwards -- including some
additional options. This enumeration value is used within the Recordset dynamic property,
Update Resync.

Table E-4. The ADCPROP_UPDATERESYNC_ENUM Enumeration

Enumeration Value Description

adResyncAll 15

Indicates that the Resync method is called, but with the
combined values of the other
ADCPROP_UPDATERESYNC_ENUM enumeration
values.

adResyncAutoIncrement 1

Default. Indicates that the new value for columns that are
automatically updated by the data source are retrieved if
possible. This would include any automatic row-ID values or
auto-number datatypes.

adResyncConflicts 2 Indicates that the Resync method is called for all rows for
which an update or delete failed because of a conflict.

IT-SC book 566

adResyncInserts 8 Indicates that the Resync method is called for all successfully
inserted rows.

adResyncNone 0 Indicates that the Resync method is not invoked.

adResyncUpdates 4 Indicates that the Resync method is invoked for all
successfully updated rows.

ADO/WFC

The ADCPROP_UPDATERESYNC_ENUM enumeration does not have ADO/WFC constants.

See Also

Recordset.Resync Method

AffectEnum Enumeration (Versions 2.0, 2.1, 2.5, 2.6)

The AffectEnum enumeration indicates which records are affected by an invoked operation.

Table E-5. The AffectEnum Enumeration

Enumeration (ADO/WFC) Value Description

adAffectAll (ALL) 3

Indicates that all records will be affected by the operation
if there is no Filter applied or if a Filter is set to a member
of the FilterGroupEnum enumeration or an array of
bookmarks.

If the Filter property is set to a String value, then the
operation will affect only those rows that are visible within
the current chapter.

adAffectAllChapters
(ALLCHAPTERS) 4

Indicates that all records in all sibling chapters of the
Recordset object will be affected by the operation. This
includes those records not visible with an applied filter.

adAffectCurrent
(CURRENT) 1 Indicates that only the current row will be affected by the

operation.

adAffectGroup (GROUP) 2 Indicates that all records, which satisfy the current Filter if

IT-SC book 567

it is set to a member of the FilterGroupEnum enumeration
or an array of bookmarks, will be affected.

Note

The adAffectAll enumeration value does not appear in the Object Browser.

ADO/WFC

The AffectEnum enumeration is part of the com.ms.wfc.data package, and the constant values are
preceded with AdoEnums.Affect.

See Also

FilterGroupEnum Enumeration, Recordset.CancelBatch Method, Recordset.Delete Method,
Recordset.Resync Method, Recordset.UpdateBatch Method, Recordset.Filter Property,
FilterGroupEnum Enumeration

BookmarkEnum
Enumeration

(Versions 2.0, 2.1, 2.5,
2.6)

The BookmarkEnum enumeration specifies a bookmark that indicates where an operation is to
begin.

Table E-6. The BookmarkEnum Enumeration

Enumeration (ADO/WFC) Value Description

adBookmarkCurrent
(CURRENT) 0 Indicates that the operation will start at the current

record.

adBookmarkFirst (FIRST) 1 Indicates that the operation will start at the first
record.

adBookmarkLast (LAST) 2 Indicates that the operation will start at the last record.

ADO/WFC

The BookmarkEnum enumeration is part of the com.ms.wfc.data package, and the constant
values are preceded with AdoEnums.Bookmark.

See Also

IT-SC book 568

Recordset.GetRows Method, Recordset.Move Method

CommandTypeEnum
Enumeration

(Versions 2.0, 2.1,
2.5, 2.6)

The CommandTypeEnum enumeration indicates how a command argument should be interpreted.

Table E-7. CommandTypeEnum Enumeration Values

Enumeration (ADO/WFC) Value Description

adCmdFile (FILE) 256
(&H100)

Indicates that the CommandText property should be
evaluated as a name of a file that contains a persisted
recordset.

adCmdStoredProc
(STOREDPROC) 4 Indicates that the CommandText property should be

evaluated as a stored-procedure name.

adCmdTable (TABLE) 2

Indicates that the CommandText property should be
evaluated as a table name. This table name will be
converted to a SQL statement by ADO to return all of its
columns.

adCmdTableDirect
(TABLEDIRECT)

512
(&H200)

Indicates that the CommandText property should be
evaluated as a table name.

adCmdText (TEXT) 1
Default. Indicates that the CommandText property should
be evaluated as a SQL statement or a data provider-specific
command (including a stream).

adCmdUnknown
(UNKNOWN) 8 Indicates that the type of the CommandText property is not

specified.

ADO/WFC

The CommandTypeEnum enumeration is part of the com.ms.wfc.data package, and the constant
values are preceded with AdoEnums.CommandType.

See Also

Command.CommandStream Property, Command.CommandType Property, Command.Execute
Method, Connection.Execute Method, Recordset.Open Method, Recordset.Seek Method

IT-SC book 569

CompareEnum
Enumeration

(Versions 2.0, 2.1, 2.5,
2.6)

The CompareEnum enumeration indicates how two bookmarks compare.

Table E-8. The CompareEnum Enumeration

Enumeration (ADO/WFC) Value Description

adCompareEqual (EQUAL) 1 Indicates that the two bookmarks are
equivalent.

adCompareGreaterThan
(GREATERTHAN) 2 Indicates that the first bookmark is located

after the second bookmark.

adCompareLessThan (LESSTHAN) 0 Indicates that the second bookmark is located
after the first bookmark.

adCompareNotComparable
(NOTCOMPARABLE) 4 Indicates that the two bookmarks cannot be

compared.

adCompareNotEqual (NOTEQUAL) 3 Indicates that the two bookmarks are not equal
and not ordered.

ADO/WFC

The CompareEnum enumeration is part of the com.ms.wfc.data package, and the constant values
are preceded with AdoEnums.Compare.

See Also

Recordset.CompareBookmarks Method

ConnectModeEnum
Enumeration

(Versions 2.0, 2.1, 2.5,
2.6)

IT-SC book 570

The ConnectModeEnum enumeration indicates the available permissions for modifying data in a
Connection object, opening data in a Record object, or specifying values within a Record or
Stream object.

Table E-9. The ConnectModeEnum Enumeration

Enumeration (ADO/WFC) Value Description

adModeRead (READ) 1 Indicates that the data has read-only privileges.

adModeReadWrite
(READWRITE) 3 Indicates that the data has both read and write

privileges.

adModeRecursive (no
ADO/WFC equivalent)

4194304
(&H400000)

Used with adModeShareDenyNone,
adModeShareDenyWrite, and
adModeShareDenyRead to extend sharing
restrictions to all children records of the current
record. This value has no effect if the current record
has no children and causes an error if it is used with
adModeShareDenyNone alone.

adModeShareDenyNone
(SHAREDENYNONE) 16 (&H10) Prevents other users from opening the connection

with any permissions.

adModeShareDenyRead
(SHAREDENYREAD) 4 Prevents other users from opening the connection

with read permissions.

adModeShareDenyWrite
(SHAREDENYWRITE) 8 Prevents other users from opening the connection

with write permissions.

adModeShareExclusive
(SHAREEXCLUSIVE) 12 Prevents other users from opening the connection

with read and write permissions.

adModeUnknown
(UNKNOWN) 0 Default. Indicates that the permissions have not yet

been set or that they cannot be determined by ADO.

adModeWrite (WRITE) 2 Indicates that the data has write-only privileges.

ADO/WFC

The ConnectModeEnum enumeration is part of the com.ms.wfc.data package, and the constant
values are preceded with AdoEnums.ConnectMode.

See Also

IT-SC book 571

Connection.Open Method, Record.Mode Property, Record.Open Method, Stream.Mode Property,
Stream.Open Method

ConnectOptionEnum
Enumeration

(Versions 2.0, 2.1,
2.5, 2.6)

The ConnectOptionEnum enumeration specifies whether a connection to a data source is opened
synchronously or asynchronously.

Table E-10. The ConnectOptionEnum Enumeration

Enumeration (ADO/WFC) Value Description

adAsyncConnect (ASYNCCONNECT) 16
(&H10)

Indicates that the connection will be
opened asynchronously.

adConnectUnspecified
(CONNECTUNSPECIFIED) -1 Default. Indicates that the connection will

be opened synchronously.

ADO/WFC

The ConnectOptionEnum enumeration is part of the com.ms.wfc.data package, and the constant
values are preceded with AdoEnums.ConnectOption.

See Also

Connection.ConnectComplete Event, Connection.Open Method

ConnectPromptEnum
Enumeration

(Versions 2.0, 2.1,
2.5, 2.6)

The ConnectPromptEnum enumeration indicates whether the user is prompted to enter missing
parameters when opening connection. This enumeration value is used within the Connection
dynamic property, Prompt.

Table E-11. The ConnectPrompt Enumeration

Enumeration (ADO/WFC) Value Description

adPromptAlways (ALWAYS) 1 Indicates that the user is always prompted for

IT-SC book 572

parameter information.

adPromptComlete (COMPLETE) 2 Indicates that the user is prompted for
additionally required parameters.

adPromptComleteRequired
(COMPLETEREQUIRED) 3

Indicates that the user is prompted for
parameters that are required, but optional
parameters are not allowed.

adPromptNever (NEVER) 4 Indicates that the user is never prompted for
parameter information.

ADO/WFC

The ConnectPromptEnum enumeration is part of the com.ms.wfc.data package, and the constant
values are preceded with AdoEnums.ConnectPrompt.

CopyRecordOptionsEnum
Enumeration

(Versions 2.5,
2.6)

The CopyRecordOptionsEnum enumeration indicates the behavior of the CopyRecord method.

Table E-12. The CopyRecordOptionsEnum Enumeration

Enumeration Value Description

adCopyAllowEmulation 4

Indicates that the CopyRecord method will attempt
to simulate the copy using the downloaded and
uploaded operations if the method fails due to the
Destination being on a different server or being
serviced by a different provider than the Source.

adCopyNonRecursive 2 Indicates that the CopyRecord method copies only
the current directory and its subdirectories.

adCopyOverWrite 1
Indicates that the CopyRecord method will
overwrite the file or directory specified as the
Destination, if it already exists.

adCopyUnspecified -1
(&HFFFFFFFF) Default. Indicates that the CopyRecord method will

copy all of the subdirectories and files of the

IT-SC book 573

current directory and that it will not overwrite
existing files and directories if they already exist.

ADO/WFC

The ADCPROP_UPDATERESYNC_ENUM enumeration does not have ADO/WFC constants.

See Also

Record.CopyRecord Method

CursorLocationEnum
Enumeration

(Versions 2.0, 2.1,
2.5, 2.6)

The CursorLocationEnum enumeration specifies the location of the cursor service.

Table E-13. The CursorLocationEnum Enumeration

Enumeration (ADO/WFC) Value Description

adUseClient
(CLIENT) 3 Indicates that the cursor service is located on the client

machine.

adUseServer
(SERVER) 2 Indicates that the cursor service is located on the server

machine.

ADO/WFC

The CursorLocationEnum enumeration is part of the com.ms.wfc.data package, and the constant
values are preceded with AdoEnums.CursorLocation.

See Also

Connection.CursorLocation Property, Recordset.CursorLocation Property

CursorOptionEnum
Enumeration

(Versions 2.0, 2.1, 2.5,
2.6)

IT-SC book 574

The CursorOptionEnum enumeration indicates for which functionality the Supports method is
testing.

Table E-14. The CursorOption Enumeration

Enumeration (ADO/WFC) Value Description

adAddNew (ADDNEW) 16778240
(&H10004000) Indicates that the AddNew method is supported.

adApproxPosition
(APPROXPOSITION) 16384 (&H4000) Indicates that the AbsolutePosition and

AbsolutePage properties are supported.

adBookmark
(BOOKMARK) 8192 (&H2000) Indicates that the Bookmark property is

supported.

adDelete (DELETE) 16779264
(&H1000800) Indicates that the Delete method is supported.

adFind (FIND) 524288
(&H80000) Indicates that the Find method is supported.

adHoldRecords
(HOLDRECORDS) 256 (&H100)

Indicates that the Recordset can retrieve more
records or change the position of the record
pointer without committing all pending changes.

adIndex (INDEX) 8388608
(&H800000) Indicates that the Index property is supported.

adMovePrevious
(MOVEPREVIOUS) 512 (&H200)

Indicates that the MoveFirst, MovePrevious,
Move, and GetRows methods can be used to
move the record pointer backwards without the
use of bookmarks.

adNotify (NOTIFY) 262144
(&H40000)

Indicates that the data provider supports
notifications and in turn indicates that Recordset
events are supported.

adResync (RESYNC) 131072
(&H20000) Indicates that the Resync method is supported.

adSeek (SEEK) 4194303
(&H400000) Indicates that the Seek method is supported.

adUpdate (UPDATE) 16809984
(&H1008000) Indicates that the Update method is supported.

adUpdateBatch
(UPDATEBATCH)

65536
(&H10000)

Indicates that the UpdateBatch and the
CancelBatch methods are supported.

IT-SC book 575

ADO/WFC

The CursorOptionEnum enumeration is part of the com.ms.wfc.data package, and the constant
values are preceded with AdoEnums.CursorOption.

See Also

Recordset.AbsolutePage Property, Recordset.AbsolutePosition Property, Recordset.AddNew
Method, Recordset.Bookmark Property, Recordset.CancelBatch Method, Recordset.Delete
Method, Recordset.Find Method, Recordset GetRows Method, Recordset.Index Property,
Recordset.Move Method, Recordset.MoveFirst Method, Recordset.MovePrevious Method,
Recrodset.Seek Method, Recordset.Supports Method, Recordset.Update Method,
Recordset.UpdateBatch Method

CursorTypeEnum
Enumeration

(Versions 2.0, 2.1, 2.5,
2.6)

The CursorTypeEnum enumeration indicates the type of cursor to be used with the Recordset
object.

Table E-15. The CursorTypeEnum Enumeration

Enumeration (ADO/WFC) Value Description

adOpenDynamic
(DYNAMIC) 2

Indicates a dynamic cursor for the recordset. The recordset
allows the application to see new records, edited records, and
deletions by other users.

adOpenForwardOnly
(FORWARDONLY) 0

Default. Indicates a forward-only cursor for the recordset. The
recordset does not report added, edited, or deleted records by
other users. Think of this cursor as a snapshot of the recordset.
This is the fastest type of cursor and is the default setting.

adOpenKeyset
(KEYSET) 1

Indicates a keyset cursor for the recordset. The recordset
allows the application to see changes in records made by other
users. It also denies access to deleted records, but it does not
allow you to see records that have been added by other users.

adOpenStatic
(STATIC) 3

Indicates a static cursor for the recordset. The recordset does
not allow the application to see any changes in the recordset at
all. This cursor is only surpassed in speed only by the forward-
only cursor.

IT-SC book 576

ADO/WFC

The CursorTypeEnum enumeration is part of the com.ms.wfc.data package, and the constant
values are preceded with AdoEnums.CursorType.

See Also

Recordset.CursorType Property, Recordset.Open Method

DataTypeEnum
Enumeration

(Versions 2.0, 2.1, 2.5,
2.6)

The DataTypeEnum enumeration indicates the datatype of the particular parameter, field, or
property.

Table E-16. DataTypeEnum Enumeration Values

Enumeration (ADO/WFC) Value Description

adArray (ARRAY) 8192
(&H2000)

Indicates an array of values. This value is always
combined with another DataTypeEnum enumeration
value.

adBigInt (BIGINT) 20 (&H14) Indicates an 8-byte signed integer.

adBinary (BINARY) 128
(&H80) Indicates a binary value.

adBoolean (BOOLEAN) 11 Indicates a Boolean value (True or False).

adBSTR (BSTR) 8 Indicates a null-terminated character Unicode string.

adChapter (CHAPTER) 136
(&H88)

Indicates a 4-byte Chapter recordset (for hierarchical
recordsets).

adChar (CHAR) 129
(&H81) Indicates a String value.

adCurrency (CURRENCY) 6 Indicates a currency value that is an 8-byte signed
integer with a scale factor of 10,000.

adDate (DATE) 7 Indicates a Date value stored as a Double, where the
whole part is the number of days since December

IT-SC book 577

30, 1899, and the fraction represents the time of day.

adDBDate (DBDATE) 133
(H&85) Indicates a date value in the form of yyyymmdd.

adDBTime (DBTIME) 134
(&H86) Indicates a time value in the form of hhmmss.

adDBTimeStamp
(DBTIMESTAMP)

135
(&H87)

Indicates a date/time stamp in the form of
yyyymmddhhmmss, including a fraction in
billionths.

adDecimal (DECIMAL) 14 Indicates an exact numeric value with a fixed-
precision and scale factor.

adDouble (DOUBLE) 5 Indicates a double-precision floating-point number.

adEmpty (EMPTY) 0 Indicates that no value is specified.

adError (ERROR) 10 Indicates a 32-byte error code.

adFileTime (FILETIME) 64 (&H40)
Indicates a file's time with a 64-bit value that
represents the number of 100-nanosecond intervals
since January 1, 1601.

adGUID (GUID) 72 (&H48) Indicates a globally unique identifier.

adIDispatch
(IDISPATCH) 9 Indicates a pointer to an IDispatch interface on an

OLE object.

adInteger (INTEGER) 3 Indicates a 4-byte signed integer.

adIUnknown (IUNKNOWN) 13 Indicates a pointer to an IUknown interface on an
OLE object.

adLongVarBinary
(LONGVARBINARY)

205
(&HCD)

Indicates a long binary value only for a Parameter
object.

adLongVarChar
(LONGVARCHAR)

201
(&HC9)

Indicates a long String value only for a Parameter
object.

adLongVarWChar
(LONGVARWCHAR)

203
(&HCB) Indicates a long null-terminated string value only for

IT-SC book 578

a Parameter object.

adNumeric (NUMERIC) 131
(&H83)

Indicates an exact numeric value with a fixed-
precision and scale factor.

adPropVariant
(PROPVARIANT)

138
(&H8A) Indicates an automation PROPVARIANT.

adSingle (SINGLE) 4 Indicates a single-precision floating-point number.

adSmallInt (SMALLINT) 2 Indicates a 2-byte signed integer.

adTinyInt (TINYINT) 16 (&H10) Indicates a 1-byte signed integer.

adUnsignedBigInt
(UNSIGNEDBIGINT) 21 (&H15) Indicates an 8-byte unsigned integer.

adUnsignedInt
(UNSIGNEDINT) 19 (&H13) Indicates a 4-byte unsigned integer.

adUnsignedSmallInt
(UNSIGNEDSMALLINT) 18 (&H12) Indicates a 2-byte unsigned integer.

adUnsignedTinyInt
(UNSIGNEDTINYINT) 17 (&H11) Indicates a 1-byte unsigned integer.

adUserDefined
(USERDEFINED)

132
(&H84) Indicates a user-defined variable.

adVarBinary
(VARBINARY)

204
(&HCC) Indicates a binary value only for a Parameter object.

adVarChar (VARCHAR) 200
(&HC8) Indicates a string value only for a Parameter object.

adVariant (VARIANT) 12 Indicates an OLE Automation Variant.

adVarNumeric
(VARNUMERIC)

139
(&H8B)

Indicates a numeric value only for a Parameter
object.

adVarWChar (VARWCHAR) 202
(&HCA)

Indicates a null-terminated UNICODE character
string only for a Parameter object.

adWChar (WCHAR) 130
(&H82)

Indicates a null-terminated UNICODE character
string.

ADO/WFC

IT-SC book 579

The DataTypeEnum enumeration is part of the com.ms.wfc.data package, and the constant values
are preceded with AdoEnums.DataType.

See Also

Command.CreateParameter Method, Field.Type Property, Fields.Append Method,
Parameter.Type Property, Property.Type Property

EditModeEnum
Enumeration

(Versions 2.0, 2.1, 2.5,
2.6)

The EditModeEnum enumeration indicates the current edit status of a record.

Table E-17. The EditMode Enumeration

Enumeration (ADO/WFC) Value Description

adEditAdd (ADD) 2
Indicates that the AddNew method has been called and the
new record currently contains values that have not yet been
saved.

adEditDelete (DELETE) 4 Indicates that the current record has been marked for
deletion but has not yet been deleted in the database.

adEditInProgress
(INPROGRESS) 1 Indicates that there is currently no editing being done on the

given record.

adEditNone (NONE) 0 Indicates that there are currently values in the given record
that have not yet been saved.

ADO/WFC

The EditModeEnum enumeration is part of the com.ms.wfc.data package, and the constant values
are preceded with AdoEnums.EditMode.

See Also

Recordset.AddNew Method, Recordset.EditMode Property

ErrorValueEnum
Enumeration

(Versions 2.0, 2.1, 2.5,
2.6)

IT-SC book 580

The ErrorValueEnum enumeration contains the constants for ADO runtime errors.

Table E-18. The ErrorValueEnum Enumeration Values

Enumeration (ADO/WFC) Value Description

adErrBoundToCommand
(BOUNDTOCOMMAND)

3707
(&HE7B)

The ActiveConnection property of a
Recordset object cannot be changed because
the Recordset object's source is a Command
object.

adErrCannotComplete (no
ADO/WFC equivalent)

3732
(&HE94)

The server that owns the source row cannot
complete the operation.

adErrCantChangeConnection (no
ADO/WFC equivalent)

3748
(&HEA4)

The Connection was denied because it has
different characteristics than the one already
in use.

adErrCantChangeProvider (no
ADO/WFC equivalent)

3220
(&HC94)

The supplied provider is different from the
one already in use.

adErrCantConvertvalue (no
ADO/WFC equivalent)

3724
(&HE8C)

Data value could not be converted for reasons
other than sign mismatch or data overflow.
For example, conversion would have
truncated data.

adErrCantCreate (no ADO/WFC
equivalent)

3725
(&HE8D)

Data could not be set or retrieved because the
column datatype was unknown or the provider
had insufficient resources to perform the
operation.

adErrCatalogNotSet (no
ADO/WFC equivalent)

3747
(&HEA3) The operation requires a valid ParentCatalog.

adErrColumnNotOnThisRow (no
ADO/WFC equivalent)

3726
(&HE8E) Column does not exist on this row.

adErrDataConversion
(DATACONVERSION)

3421
(&HD5D)

A wrong datatype is being used for the
operation.

adErrDataOverflow (no ADO/WFC
3721
(&HE89) Data value is too large to be represented by

IT-SC book 581

equivalent) the column datatype.

adErrDelResOutOfScope (no
ADO/WFC equivalent)

3738
(&HE9A)

The URL of the object to be deleted is outside
the scope of the current row. Make sure the
URL is inside the scope.

adErrDenyNotSupported (no
ADO/WFC equivalent)

3750
(&HEA6)

The data provider does not support sharing
restrictions.

adErrDenyTypeNotSupported (no
ADO/WFC equivalent)

3751
(&HEA7)

The data provider does not support the
requested sharing-restriction type.

adErrFeatureNotAvailable
(FEATURENOTAVAILABLE)

3251
(&HCB3) The provider does not support the operation.

adErrFieldsUpdateFailed 3749
(&HEA5) The Fields update failed.

adErrIllegalOperation
(ILLEGALOPERATION)

3219
(&HC93)

The operation cannot be performed during
this context.

adErrIntegrityViolation (no
ADO/WFC equivalent)

3719
(&HE87)

The data value conflicts with the integrity
constraints of the field.

adErrInTransaction
(INTRANSACTION)

3246
(&HCAE)

The operation is in the middle of a transaction
and cannot close the Connection object.

adErrInvalidArgument
(INVALIDARGUMENT)

3001
(&HBB9)

The argument either is not of the correct type,
has a value that is not in the acceptable range,
or is in conflict with another argument.

adErrInvalidConnection
(INVALIDCONNECTION)

3709
(&HE7D)

The operation cannot be performed because
the Connection object is closed.

adErrInvalidParamInfo
(INVALIDPARAMINFO)

3708
(&HE7C)

The parameter information is not defined
correctly.

adErrInvalidTransaction (no
ADO/WFC equivalent)

3714
(&HE82)

The coordinating transaction is invalid or has
not started.

adErrInvalidURL (no ADO/WFC
equivalent)

3729
(&HE91)

The specified URL contains invalid
characters. Make sure the URL is typed
correctly.

IT-SC book 582

adErrItemNotFound
(ITEMNOTFOUND)

3265
(&HCC1)

The object requested does not exist in the
ADO collection at the ordinal position or with
the name provided.

adErrNoCurrentRecord
(NOCURRENTRECORD)

3021
(&HBCD)

The record pointer does not point to a valid
record, and one is needed for the operation.

adErrNotExecuting
(NOTEXECUTING)

(This seemed to be missing in 2.6)

3715 The execution could not be canceled because
it was not executing.

adErrNotReentrant
(NOTREENTRANT)

3710
(&HE7E)

The code within the event would cause the
event to be fired again.

adErrObjectClosed
(OBJECTCLOSED)

3704
(&HE78)

The object that is needed by the operation is
closed.

adErrObjectInCollection
(OBJECTINCOLLECTION)

3367
(&HD27)

The attempt to add the object to the collection
was unsuccessful because the object is already
in the collection.

adErrObjectNotSet
(OBJECTNOTSET)

3420
(&HD5C)

The object does not point to a valid ADO
object.

adErrObjectOpen (OBJECTOPEN) 3705
(&HE79)

The operation requires that the object is not
open.

adErrOpeningFile (no ADO/WFC
equivalent)

3002
(&HBBA) The file could not be opened.

adErrOperationCancelled
(OPERATIONCANCELLED)

3712
(&HE80) An ADO operation has been canceled.

adErrOutOfSpace (no ADO/WFC
equivalent)

3734
(&HE96)

The provider is unable to obtain enough
storage space to complete the copy operation.

adErrPermissionDenied (no
ADO/WFC equivalent)

3720
(&HE88)

The user does not have permission to write to
the column. Check Column Privileges
property.

adErrPropConflicting (no
3742
(&HE9E) The property value was not set because it

would have conflicted with an existing

IT-SC book 583

ADO/WFC equivalent) property.

adErrPropInvalidColumn (no
ADO/WFC equivalent)

3739
(&HE9B)

The property cannot apply to the specified
column.

adErrPropInvalidOption (no
ADO/WFC equivalent)

3740
(&HE9C) The specified option is invalid.

adErrPropInvalidValue (no
ADO/WFC equivalent)

3741
(&HE9D)

The specified value is invalid. Make sure the
value is typed correctly.

adErrPropNotAllSettable (no
ADO/WFC equivalent)

3743
(&HE9F)

The property is read-only or could not be set
for the particular column.

adErrPropNotSet (no ADO/WFC
equivalent)

3744
(&HEA0)

The property value was not set. The value of
dwOptions was
DBPROPOPTIONS_OPTIONAL, and the
property could not be set to the specified
value.

adErrPropNotSettable (no
ADO/WFC equivalent)

3745
(&HEA1)

The property is read-only or the consumer
attempted to set values of properties in the
Initialization property group after the data-
source object was initialized. Consumers can
set the value of a read-only property to its
current value. This value is also returned if a
settable column property could not be set for
the particular column.

adErrPropNotSupported (no
ADO/WFC equivalent)

3746
(&HEA2)

The property value was not set. The provider
does not support the property.

adErrProviderFailed (no
ADO/WFC equivalent)

3000
(&HBB8)

The provider failed to perform the requested
operation.

adErrProviderNotFound
(PROVIDERNOTFOUND)

3706
(&HE7A) The provider could not be found.

adErrReadFile (no ADO/WFC
equivalent)

3003
(&HBBB) The file could not be read.

adErrResourceExists (no
ADO/WFC equivalent)

3731
(&HE93)

The copy operation cannot be performed. The
object named by destination URL already
exists. Specify adCopyOverwrite to replace

IT-SC book 584

the object.

adErrResourceLocked (no
ADO/WFC equivalent)

3730
(&HE92)

The object represented by the specified URL
is locked by one or more other processes.
Wait until the process has finished, and
attempt the operation again.

adErrResourceOutOfScope (no
ADO/WFC equivalent)

3735
(&HE97)

The source or destination URL is outside the
scope of the current row. Make sure the URL
is inside the scope.

adErrSchemaViolation (no
ADO/WFC equivalent)

3722
(&HE8A)

The data value conflicts with the datatype or
constraints of the column.

adErrSignMismatch (no ADO/WFC
equivalent)

3723
(&HE8B)

The conversion failed because the data value
was signed and the column datatype used by
the provider was unsigned.

adErrStillConnecting
(STILLCONNECTING)

3713
(&HE81)

The operation cannot be executed because
ADO was still connecting to the data source.

adErrStillExecuting
(STILLEXECUTING)

3711
(&HE7F)

The operation cannot be executed because
another command is still being executed.

adErrTreePermissionDenied (no
ADO/WFC equivalent)

3728
(&HE90)

The operation is unable to access a tree or
sub-tree due to a permissions failure.

adErrUnavailable (no ADO/WFC
equivalent)

3736
(&HE98)

An operation failed to complete, and the
status is unavailable.

adErrUnsafeOperation
(UNSAFEOPERATION)

3716
(&HE84)

The operation is not considered safe by the
environment that is currently running ADO.

adErrURLDoesNotExist (no
ADO/WFC equivalent)

3727
(&HE8F)

Either the source URL or the parent of the
destination URL does not exist.

adErrURLNamedRowDoesNotExist
(no ADO/WFC equivalent)

3737
(&HE99)

The row named by this URL does not exist.
Make sure the URL is typed correctly.

adErrVolumeNotFound (no
ADO/WFC equivalent)

3733
(&HE95)

The provider is unable to locate the storage
volume indicated by the URL. Make sure the
URL is typed correctly.

IT-SC book 585

adErrWriteFile (no ADO/WFC
equivalent)

3004
(&HBBC) The file could not be written to.

adwrnSecurityDialog (no
ADO/WFC equivalent)

3717
(&HE85)

This is an internal constant only, and
Microsoft asks that you do not use it.

adwrnSecurityDialogHeader (no
ADO/WFC equivalent)

3718
(&HE86)

This is an internal constant only, and
Microsoft asks that you do not use it.

ADO/WFC

The ErrorValueEnum enumeration is part of the com.ms.wfc.data package, and the constant
values are preceded with AdoEnums.ErrorValue.

See Also

Error.Number Property

EventReasonEnum (Versions 2.0, 2.1, 2.5, 2.6)

The EventReasonEnum enumeration indicates why a given event was fired.

Table E-19. The EventReasonEnum Enumeration

Enumeration (ADO/WFC) Value Description

adRsnAddNew (ADDNEW) 1 Indicates that a new record has been added by an
operation.

adRsnClose (CLOSE) 9 Indicates that the Recordset object has been closed by an
operation.

adRsnDelete (DELETE) 2 Indicates that a record has been deleted by an operation.

adRsnFirstChange
(FIRSTCHANGE)

11 Indicates that the first change to a record has been made
by an operation.

adRsnMove (MOVE) 10 Indicates that the record pointer has moved within the
Recordset object by an operation.

IT-SC book 586

adRsnMoveFirst
(MOVEFIRST)

12 Indicates that the record pointer has been moved to the
first record of the Recordset object by an operation.

adRsnMoveLast
(MOVELAST)

15 Indicates that the record pointer has been moved to the
last record of the Recordset object by an operation.

adRsnMoveNext
(MOVENEXT)

13 Indicates that the record pointer has moved to the next
record in the Recordset object by an operation.

adRsnMovePrevious
(MOVEPREVIOUS)

14 Indicates that the record pointer has moved to the
previous record in the Recordset object by an operation.

adRsnRequery (REQUERY) 7 Indicates that an operation has required the Recordset
object.

adRsnResynch (RESYNCH) 8 Indicates that an operation has resynchronized the
Recordset object.

adRsnUndoAddNew
(UNDOADDNEW)

5 Indicates that a newly added record has been reversed by
an operation.

adRsnUndoDelete
(UNDODELETE)

6 Indicates that a deleted record has been reversed by an
operation.

adRsnUndoUpdate
(UNDOUPDATE)

4 Indicates that an update has been reversed by an
operation.

adRsnUpdate (UPDATE) 3 Indicates that an operation has updated an existing record
within the Recordset object.

ADO/WFC

The EventReasonEnum enumeration is part of the com.ms.wfc.data package, and the constant
values are preceded with AdoEnums.EventReason.

See Also

Recordset.MoveComplete Event, Recordset.RecordChangeComplete Event,
Recordset.RecordsetChangeComplete Event, Recordset.WillChangeRecord Event, Recordset
WillChangeRecordset Event, Recordset.WillMove Event

EventStatusEnum (Versions 2.0, 2.1, 2.5,

IT-SC book 587

Enumeration 2.6)

The EventStatusEnum enumeration specifies the current status of an executed event.

Table E-20. The EventStatusEnum Enumeration

Enumeration (ADO/WFC) Value Description

adStatusCancel (CANCEL) 4
Indicates that the application is requesting the
cancelation of the operation that has caused the
current event to occur.

adStatusCantDeny (CANTDENY) 3 Indicates that the operation that has caused the
current event to occur cannot be canceled.

adStatusErrorsOccurred
(ERRORSOCCURRED) 2 Indicates that the operation that has caused this

event to occur did not complete successfully.

adStatusOK (OK) 1 Indicates that the operation that has caused this
event to occur completed successfully.

adStatusUnwantedEvent
(UNWANTEDEVENT) 5

Indicates that the application no longer wishes to
receive subsequent notifications of the event that
has been fired.

ADO/WFC

The EventStatusEnum enumeration is part of the com.ms.wfc.data package, and the constant
values are preceded with AdoEnums.EventStatus.

See Also

Connection.BeginTransComplete Event, Connection.CommitTransComplete Event,
Connection.ConnectComplete Event, Connection.Disconnect Event,
Connection.ExecuteComplete Event, Connection.InfoMessage Event,
Connection.RollbackTransComplete Event, Connection.WillConnect Event,
Connection.WillExecute Event, Recordset.EndOfRecordset Event, Recordset.FetchComplete
Event, Recordset.FetchProgress Event, Recordset.FieldChangeComplete Event,
Recordset.MoveComplete Event, Recordset.RecordChangeComplete Event,
Recordset.RecordsetChangeComplete Event, Recordset.WillChangeField Event,
Recordset.WillChangeRecord Event, Recordset.WillChangeRecordset Event,
Recordset.WillMove Event

IT-SC book 588

ExecuteOptionEnum
Enumeration

(Versions 2.0, 2.1,
2.5, 2.6)

The ExecuteOptionEnum enumeration indicates how a data provider should execute a command.

Table E-21. The ExecuteOptionEnum Enumeration

Enumeration (ADO/WFC) Value Description

adAsyncExecute
(ASYNCEXECUTE)

16
(&H10)

Instructs ADO to execute the command
asynchronously.

adAsyncFetch (ASYNCFETCH) 32
(&H20)

Instructs ADO to fetch the records returned from
this command asynchronously after the initial
number of rows (indicated by the CacheSize
property) are returned.

adAsyncFetchNonBlocking
(ASYNCFETCHNONBLOCKING)

64
(&H40)

Instructs ADO to never block the main thread
while executing. If the row that is requested has
not been read, it is automatically moved to the
end of the file.

adExecuteNoRecords
(NORECORDS)

128
(&H80)

Instructs ADO that the CommandText property
does not return rows and, if it does, to discard
them. This value is always combined with
adCmdText or adCmdStoredProc of the
CommandTypeEnum enumeration.

adExecuteStream (no
ADO/WFC equivalent)

1024
(&H400)

Indicates that the returned object of the
Command object's Execute method will be a
Stream object. This value is invalid for all other
uses.

ADO/WFC

The ExecuteOptionEnum enumeration is part of the com.ms.wfc.data package, and the constant
values are preceded with AdoEnums.ExecuteOption.

See Also

Command.Execute Method, Connection.Execute Method, Recordset.Open Method,
Recordset.Requery Method

IT-SC book 589

FieldAttributesEnum
Enumeration

(Versions 2.0, 2.1,
2.5, 2.6)

The FieldAttributesEnum enumeration indicates attributes of a field.

Table E-22. The FieldAttributesEnum Enumeration

Enumeration (ADO/WFC) Value Description

adFldCacheDeferred
(CACHEDEFERRED)

4096
(&H1000)

Indicates that the ADO caches the value of
this field, and any future attempts to read this
value will be read from the cache.

adFldFixed (FIXED) 16 (&H10) Indicates that the field's value is of fixed
length.

adFldIsChapter (no
ADO/WFC equivalent)

8192
(&H2000)

Indicates that the field specifies a chapter
value, which in turn contains a child
recordset.

adFldIsCollection (no
ADO/WFC equivalent)

262144
(&H40000)

Indicates that the field is a collection of other
resources such as a folder, directory, etc.

adFldIsDefaultStream (no
ADO/WFC equivalent)

131072
(&H20000)

Indicates that the field contains the default
Stream object for the record.

adFldIsNullable
(ISNULLABLE) 32 (&H20) Indicates that the field accepts Null values.

adFldIsRowURL (no ADO/WFC
equivalent)

65536
(&H10000)

Indicates that the field contains the URL that
names the resource from the data store.

adFldKeyColumn (no
ADO/WFC equivalent)

32768
(&H8000)

Indicates that the field belongs to a key within
its table.

adFldLong (LONG) 128 (&H80)

Indicates that the field's value is a long binary
field. This also indicates that you may use the
AppendChunk and GetChunk methods on this
field.

adFldMayBeNull
(MAYBENULL) 64 (&H40) Indicates that this field may have Null values

IT-SC book 590

that you can read.

adFldMayDefer (MAYDEFER) 2
Indicates that this field's value is not retrieved
from the current record until it is explicitly
requested.

adFldNegativeScale
(NEGATIVESCALE)

16384
(&H4000)

Indicates that the field is based upon a
negative scale.

adFldRowID (ROWID) 256
(&H100)

Indicates that this field contains a record
identifier.

adFldRowVersion
(ROWVERSION)

512
(&H200)

Indicates that this field contains a time or date
stamp to track changes.

adFldUnknownUpdatable
(UNKNOWNUPDATABLE) 8 Indicates that the data provider cannot

determine whether you can write to this field.

adFldUpdatable
(UPDATABLE) 4 Indicates that you can write to this field.

ADO/WFC

The FieldAttributeEnum enumeration is part of the com.ms.wfc.data package, and the constant
values are preceded with AdoEnums.FieldAttribute.

See Also

Fields.Append Method, Field.Attributes Property

FieldEnum Enumeration (Versions 2.5, 2.6)

The FieldEnum enumeration indicates the special fields referenced in a Record object's Fields
collection.

Table E-23. The FieldEnum Enumeration

Enumeration Value Description

adDefaultStream -1 (&HFFFFFFFF)
Indicates that the field contains the default Stream
object for the Record object.

IT-SC book 591

adRecordURL -2
(&HFFFFFFFE)

Indicates that the field contains the absolute URL of the
current Record object.

ADO/WFC

The FieldEnum enumeration does not have ADO/WFC constants.

FieldStatusEnum Enumeration (Versions 2.5, 2.6)

The FieldStatusEnum specifies the status of the current field.

Table E-24. The FieldStatusEnum Enumeration

Enumeration Value Description

adFieldAlreadyExists 26 (&H1A) Indicates that the field already exists.

adFieldBadStatus 12 Indicates that an invalid status value was
sent from ADO to the OLE DB provider.

adFieldCannotComplete 20 (&H14)
Indicates that the server of the URL
specified by Source could not complete the
operation.

adFieldCannotDeleteSource 23 (&H17)
Indicates that during a move, a tree or
subtree was moved to a new location, but
the source could not be deleted.

adFieldCantConvertValue 2 Indicates that the field cannot be persisted
or retrieved without losing some data.

adFieldCantCreate 7 Indicates that the field cannot be added
because a limitation has been reached.

adFieldDataOverflow 6
Indicates that the data returned from the
provider has overflowed the datatype that is
used to store it.

adFieldDefault 13 Indicates that the default value for the field
was used.

IT-SC book 592

adFieldDoesNotExist 16 (&H10) Indicates that the field does not exist.

adFieldIgnore 15 Indicates that the field was skipped when
setting data values in the source.

adFieldIntegrityViolation 10 Indicates that the field is a calculated field
and cannot be directly modified.

adFieldInvalidURL 17 (&H11) Indicates that the URL specifying the data
source contains invalid characters.

adFieldIsNull 3 Indicates that the data provider returned a
Null value for the value of the field.

adFieldOK 0 Default. Indicates that the field was
successfully added or deleted.

adFieldOutOfSpace 22 (&H16)
Indicates that the data provider cannot
obtain enough space to perform the move
or copy.

adFieldPendingChange 262144
(&H40000)

Indicates that a change is pending for the
field.

adFieldPendingDelete 131072
(&H20000)

Indicates that the field has been marked for
deletion.

adFieldPendingInsert 65536
(&H10000)

Indicates that the field has been marked to
be added to the Fields collection after the
Update method is called.

adFieldPendingUnknown 524288
(&H80000)

Indicates that the data provider cannot
determine what operation has caused the
status of the field to be updated.

adFieldPendingUnknownDelete 1048576
(&H100000)

Indicates that the data provider cannot
determine what operation has caused the
status of the field to be updated, but it will
be removed from the Fields collection after
a call to the Update method.

adFieldPermissionDenied 9 Indicates that the field cannot be modified

IT-SC book 593

because it is read-only.

adFieldReadOnly 24 (&H18) Indicates that the field is read-only.

adResourceExists 19 (&H13)
Indicates that the data provider was unable
to perform the specified operation because
the resulting resource already exists.

adFieldRsouceLocked 18 (&H12)

Indicates that the resource specified is
locked by another process and the data
provider is unable to perform the operation
specified.

adFieldResourceOutOfScope 25 (&H19) Indicates that a URL value specified is
outside the scope of the current record.

adFieldSchemaViolation 11 Indicates that a schema constraint for the
field has been violated by the value.

adFieldSignMismatch 5

Indicates that the data returned by the data
provider is unsigned because the datatype
for the ADO field will not accept signed
data.

adFieldTruncated 4 Indicates that the data has been truncated
(in the case of variable-length data).

adFieldUnavailable 8 Indicates that the data provider cannot
determine the value from the data source.

adFieldVolumnNotFound 21 (&H15) Indicates that the storage volume indicated
by the URL cannot be found.

ADO/WFC

The FieldStatusEnum enumeration does not have ADO/WFC constants.

See Also

Field.Status Property

FilterGroupEnum (Versions 2.0, 2.1, 2.5,
2.6)

IT-SC book 594

Enumeration

The FilterGroupEnum enumeration specifies which groups of records are to be filtered out of the
Recordset object.

Table E-25. The FilterGroupEnum Enumeration

Enumeration (ADO/WFC) Value Description

adFilterAffectedRecords
(AFFECTEDRECORDS) 2

Filters the recordset so that you can see only
records affected by the last Delete, Resync,
UpdateBatch, or CancelBatch method call.

adFilterConflictingRecords
(CONFLICTINGRECORDS) 5 Filters the recordset to include only those records

that failed the last batch update.

adFilterFetchedRecords
(FETCHEDRECORDS) 3

Filters the recordset so that you can see only
records from the last fetch from the database --
only the records in the current cache.

adFilterNone (NONE) 0

Tells the Filter property to remove any current
filter and restore the recordset to its original state,
showing all records. If you set the Filter property
to an empty string (""), it is the same as setting it
to the adFilterNone value.

adFilterPendingRecords
(PENDINGRECORDS) 1

Used when in batch update mode. Filters the
recordset so that you can see only the records that
have since changed but have not yet been sent to
the data provider to be saved.

ADO/WFC

The FilterGroupEnum enumeration is part of the com.ms.wfc.data package, and the constant
values are preceded with AdoEnums.FilterGroup.

See Also

AffectEnum Enumeration, Recordset.Filter Property

GetRowsOptionEnum (Versions 2.0, 2.1,
2.5, 2.6)

IT-SC book 595

Enumeration

The GetRowsOptionEnum enumeration indicates how many records are to be retrieved from the
Recordset object.

Table E-26. The GetRowsOptionEnum Enumeration

Enumeration
(ADO/WFC) Value Description

adGetRowsRest
(REST)

-1
(&HFFFFFFFF)

Indicates that the rest of the rows are to be retrieved
from the Recordset object.

ADO/WFC

The GetRowsOptionEnum enumeration is part of the com.ms.wfc.data package, and the constant
values are preceded with AdoEnums.GetRowsOption.

See Also

Recordset.GetRows Method

IsolationLevelEnum
Enumeration

(Versions 2.0, 2.1,
2.5, 2.6)

The IsolationLevelEnum enumeration indicates the level of transaction isolation for the
Connection object.

Table E-27. The IsolationLevelEnum Enumeration

Enumeration (ADO/WFC) Value Description

adXactBrowse (BROWSE)
adXactReadUnCommitted
(READUNCOMMITTED)

256 (&H100) Indicates that you can view uncommitted
values within other transactions.

adXactChaos (CHAOS) 16 (&H10)
Indicates that you cannot change values
that are pending from higher-level
transactions.

IT-SC book 596

adXactCursorStability
(CURSORSTABILITY)
adXactReadCommitted
(READCOMMITTED)

4096 (&H1000)
Indicates that you cannot view
uncommitted values within other
transactions.

adXactIsolated (ISOLATED)
adXactSerializable
(SERIALIZABLE)

1048576
(&H100000)

Indicates that each transaction is
conducted in complete isolation of other
transactions.

adXactRepeatableRead
(REPEATABLEREAD)

65536
(&10000)

Indicates that you cannot view
uncommitted values within other
transactions, but by requerying, you can
see new recordsets.

adXactUnspecified
(UNSPECIFIED)

-1
(&HFFFFFFFF)

Returned if the data provider is using a
level of isolation that cannot be
determined.

ADO/WFC

The IsolationLevelEnum enumeration is part of the com.ms.wfc.data package, and the constant
values are preceded with AdoEnums.IsolationLevel.

See Also

Connection.IsolationLevel Property

LineSeparatorEnum Enumeration (Versions 2.5, 2.6)

The LineSeparatorEnum enumeration indicates the character(s) used as line separators for text in
Stream objects.

Table E-28. The LineSeparator Enumeration

Enumeration Value Description

adCR 13 Carriage return.

adCRLF -1 (&HFFFFFFFF) Default. Carriage return and line feed.

adLF 10 Line feed.

IT-SC book 597

ADO/WFC

The LineSeparatorEnum enumeration does not have ADO/WFC constants.

See Also

Stream.LineSeparator Property, Stream.SkipLine Method

LockTypeEnum
Enumeration

(Versions 2.0, 2.1, 2.5,
2.6)

The LockTypeEnum enumeration specifies the lock to use on records while they are being edited.

Table E-29. The LockTypeEnum Enumeration

Enumeration (ADO/WFC) Value Description

adLockBatchOptimistic
(BATCHOPTIMISTIC) 4 Required for batch update mode. Should be used

only by a keyset or static cursor.

adLockOptimistic (OPTIMISTIC) 3 Indicates that the record is locked once the
Update method has been called.

adLockPessimistic
(PESSIMISTIC) 2 Indicates that the record is locked once editing

has begun.

adLockReadOnly (READONLY) 1 Default. Indicates that the data is read-only.

ADO/WFC

The LockTypeEnum enumeration is part of the com.ms.wfc.data package, and the constant values
are preceded with AdoEnums.IsolationLevel.

See Also

Connection.WillExecute Event, Recordset.Clone Method, Recordset.LockType Property,
Recordset.Open Method

MarshalOptionsEnum
Enumeration

(Versions 2.0, 2.1,
2.5, 2.6)

IT-SC book 598

The MarshalOptionsEnum enumeration indicates which records should be returned to the server.

Table E-30. The MarshallOptionsEnum Enumeration

Enumeration (ADO/WFC) Value Description

adMarshalAll (ALL) 0 Default. Returns all of the records to the server.

adMarshalModifiedOnly
(MODIFIED) 1 Returns only those records that have been

modified to the server.

ADO/WFC

The MarshalOptionsEnum enumeration is part of the com.ms.wfc.data package, and the constant
values are preceded with AdoEnums.MarshallOptions.

See Also

Recordset.MarshalOptions Property

MoveRecordOptionsEnum
Enumeration

(Versions 2.5,
2.6)

The MoveRecordOptionsEnum enumeration indicates the behavior of the MoveRecord method.

Table E-31. The MoveRecordOptionsEnum Enumeration

Enumeration Value Description

adMoveAllowEmulation 4 Indicates that the data provider will attempt to
simulate the move.

adMoveDontUpdateLinks 2 Indicates that the MoveRecord method will not
update the hypertext links.

adMoveOverWrite 1 Indicates that the MoveRecord method will
overwrite the destination if it already exists.

adMoveUnspecified -1
(&HFFFFFFFF) Default. Indicates that the MoveRecord method

IT-SC book 599

will fail if the destination already exists and that
all hypertext links will be updated.

ADO/WFC

The MoveRecordOptionsEnum enumeration does not have ADO/WFC constants.

See Also

Record.MoveRecord Method

ObjectStateEnum
Enumeration

(Versions 2.0, 2.1, 2.5,
2.6)

The ObjectStateEnum enumeration provides a status of the current object.

Table E-32. The ObjectStateEnum Enumeration

Enumeration (ADO/WFC) Value Description

adStateClosed (CLOSED) 0 Default. Indicates that the current object is closed.

adStateConnecting
(CONNECTING) 2 Indicates that the current object is connecting to the

data source.

adStateExecuting
(EXECUTING) 4 Indicates that the current object is executing a

command.

adStateFetching (FETCHING) 8 Indicates that the current object is fetching rows from
the data source.

adStateOpen (OPEN) 1 Indicates that the current object is open.

ADO/WFC

The ObjectStateEnum enumeration is part of the com.ms.wfc.data package, and the constant
values are preceded with AdoEnums.ObjectState.

See Also

IT-SC book 600

Command.State Property, Connection.State Property, Record.State Property, Recordset.State
Property, Stream.State Property

ParameterAttributesEnum
Enumeration

(Versions 2.0, 2.1,
2.5, 2.6)

The ParameterAttributesEnum enumeration specifies the attributes of a Parameter object.

Table E-33. The ParameterArgumentsEnum Enumeration

Enumeration (ADO/WFC) Value Description

adParamLong (LONG) 128
(&H80)

Indicates that the current parameter can accept long
binary-data values.

adParamNullable
(NULLABLE)

64
(&H40)

Indicates that the current parameter can accept Null
values.

adParamSigned (SIGNED) 16 (&H10)
Indicates that the current parameter can accept
signed values.

ADO/WFC

The ParameterAttributesEnum enumeration is part of the com.ms.wfc.data package, and the
constant values are preceded with AdoEnums.ParameterAttributes.

See Also

Parameter.Attributes Property

ParameterDirectionEnum
Enumeration

(Versions 2.0, 2.1,
2.5, 2.6)

The ParameterDirectionEnum enumeration indicates whether the parameter receives information,
returns information, both receives and returns information, or if it is a return value of a stored
procedure.

Table E-34. The ParameterDirectionEnum Enumeration

Enumeration (ADO/WFC) Value Description

IT-SC book 601

adParamInput (INPUT) 1 Default. Input parameter only.

adParamInputOutput (INPUTOUTPUT) 3 Both an input and output parameter.

adParamOutput (OUTPUT) 2 Output parameter only.

adParamReturnValue (RETURNVALUE) 4 A return value from a command.

adParamUnknown (UNKNOWN) 0 Unknown parameter type.

ADO/WFC

The ParameterDirectionEnum enumeration is part of the com.ms.wfc.data package, and the
constant values are preceded with AdoEnums.ParameterDirection.

See Also

Command.CreateParameter Method, Parameter.Direction Property

PersistFormatEnum
Enumeration

(Versions 2.0, 2.1, 2.5,
2.6)

The PersistFormatEnum enumeration indicates in which format a Recordset object will be
persisted.

Table E-35. The PersistFormatEnum Enumeration

Enumeration
(ADO/WFC) Value Description

AdPersistADTG
(ADTG) 0 Indicates that the Recordset object will be saved in the Microsoft

Advanced Data TableGram (ADTG) format.

AdPersistXML
(XML) 1 Indicates that the Recordset object will be saved in the Extensible

Markup Language (XML) format.

ADO/WFC

The PersistFormatEnum enumeration is part of the com.ms.wfc.data package, and the constant
values are preceded with AdoEnums.PersistFormat.

IT-SC book 602

See Also

Recordset.Save Method

PositionEnum
Enumeration

(Versions 2.0, 2.1, 2.5,
2.6)

The PositionEnum enumeration specifies the current position of the record pointer within a
Recordset object.

Table E-36. The PositionEnum Enumeration

Enumeration
(ADO/WFC) Value Description

adPosBOF (BOF) -2
(&HFFFFFFFE)

Indicates that the record pointer is immediately before
the first record in the Recordset object.

adPosEOF (EOF) -3
(&HFFFFFFFD)

Indicates that the record pointer is immediately after the
last record in the Recordset object.

adPosUnknown
(UNKNOWN)

-1
(&HFFFFFFFF)

Indicates that the Recordset is empty, the position is
unknown, or the data provider cannot determine the
current position.

ADO/WFC

The PositionEnum enumeration is part of the com.ms.wfc.data package, and the constant values
are preceded with AdoEnums.Position.

See Also

Recordset.AbsolutePage Property, Recordset.AbsolutePosition Property

PropertyAttributesEnum
Enumeration

(Versions 2.0, 2.1,
2.5, 2.6)

The PropertyAttributesEnum enumeration specifies the attributes of a Property object.

Table E-37. The PropertyAttributesEnum Enumeration

IT-SC book 603

Enumeration (ADO/WFC) Value Description

adPropNotSupported
(NOTSUPPORTED) 0 Indicates that the current property is not supported

by the data provider.

adPropOptional
(OPTIONAL) 2

Indicates that the current property does not have to
receive a value before the data source can be
initialized.

adPropRead (READ) 512
(&H200) Indicates that the property can be read.

adPropRequired
(REQUIRED) 1 Indicates that the current property must receive a

value before the data source can be initialized.

adPropWrite (WRITE) 1024
(&H400)

Indicates that the current property object can be
set.

ADO/WFC

The PropertyAttributesEnum enumeration is part of the com.ms.wfc.data package, and the
constant values are preceded with AdoEnums.PropertyAttributes.

See Also

Property.Attributes Property

RecordCreateOptionsEnum
Enumeration

(Versions 2.5,
2.6)

The RecordCreateOptionsEnum enumeration indicates whether the new record should be created
or an existing record should be opened when using the Open method of the Record object.

Table E-38. The RecordCreateOptionsEnum Enumeration

Enumeration Value Description

adCreateCollection 8192 (&H2000)

Indicates that a new record is to be created. If
one already exists, a runtime error is generated
unless if this value is combined with
adOpenIfExists or adCreateOverwrite.

IT-SC book 604

adCreateNonCollection 0 Indicates that a simple record (type
adSimpleRecord) will be created.

adCreateOverwrite 67108864
(&H4000000)

Indicates that a new record is to be created if
one does not already exists, or, if it does exist,
that it will be overwritten.

adCreateStructDoc -2147483648
(&H80000000)

Indicates that a structured document (type
adStructDoc) will be created.

adFailIfNotExists -1
(&HFFFFFFFF)

Default. Indicates that a runtime error will be
generated if the record specified does not
already exist.

adOpenIfExists 33554432
(&H2000000)

Indicates that the record specified will be
opened only if it exists.

ADO/WFC

The RecordCreateOptionsEnum enumeration does not have ADO/WFC constants.

See Also

Record.Open Method

RecordOpenOptionsEnum
Enumeration

(Versions 2.5,
2.6)

The RecordOpenOptionsEnum enumeration indicates options for opening a Record object.

Table E-39. The RecordOpenOptionsEnum Enumeration

Enumeration Value Description

adDelayFetchFields 32768
(&H8000)

Indicates that the provider need only retrieve
the fields when they are accessed, rather than
in advance.

adDelayFetchStream 16384
(&H4000) Indicates that the provider need only retrieve

the default stream when it is accessed, rather

IT-SC book 605

than in advance.

adOpenAsync 4096 (&1000) Indicates that the Record object should be
opened asynchronously.

adOpenExecuteCommand 65536
(&H10000)

Indicates that the Source field of the Record
object contains a command that should be
executed.

adOpenOutput 8388608
(&H800000)

Indicates that if the source of the Record
object points to an executable script, then the
Record object contains the results of the
executed script.

adOpenRecordUnspecified -1 (&HFFFFFFFF)
Default. Indicates that no special options are
specified.

ADO/WFC

The RecordOpenOptionsEnum enumeration does not have ADO/WFC constants.

See Also

Record.Open Method

RecordStatusEnum
Enumeration

(Versions 2.0, 2.1, 2.6,
2.6)

The RecordStatusEnum enumeration indicates the status of a record within a Recordset object
with regards to bulk operations such as batch updates.

Table E-40. The RecordStatusEnum Enumeration

Enumeration (ADO/WFC) Value Description

adRecCanceled (CANCELED) 256
(&H100)

Indicates that the record has not been saved
because the operation was canceled.

adRecCantRelease
(CANTRELEASE)

1024
(&H400)

Indicates that the new record has not been
saved because of record locks.

IT-SC book 606

adRecConcurrencyViolation
(CONCURRENCYVIOLATION)

2048
(&H800)

Indicates that the record has not been saved
because optimistic concurrency (the
assumption that collisions between data
rarely occur, and therefore the row is left
unlocked until update or deletion) was in
use.

adRecDBDeleted (DBDELETED) 262144
(&H40000)

Indicates that the record has already been
deleted from the data source.

adRecDeleted (DELETED) 4 Indicates that the record has been deleted.

adRecIntegrityViolation
(INTEGRITYVIOLATION)

4096
(&H1000)

Indicates that the record had not been
saved because the user violated integrity
constraints.

adRecInvalid (INVALID) 16 (&H10)
Indicates that the bookmark of the record is
bad and therefore that record was not
saved.

adRecMaxChangesExceeded
(MAXCHANGESEXCEEDED)

8192
(&H2000)

Indicates that the record has not been saved
because there were too many pending
changes.

adRecModified (MODIFIED) 2 Indicates that the record has been
modified.

adRecMultipleChanges
(MULTIPLECHANGES) 64 (&H40)

Indicates that the record has not been saved
because it would have affected multiple
records.

adRecNew (NEW) 1 Indicates that the record is new.

adRecObjectOpen (OBJECTOPEN) 16384
(&H4000)

Indicates that the record has not been saved
because of a conflict with an open storage
object.

adRecOK (OK) 0 Indicates that the record was successfully
updated.

adRecOutOfMemory
(OUTOFMEMORY)

32768
(&H8000) Indicates that the record has not been saved

because the computer has run out of

IT-SC book 607

memory.

adRecPendingChanges
(PENDINGCHANGES) 128 (&H80) Indicates that the record has not been saved

because it refers to a pending insert.

adRecPermissionDenied
(PERMISSIONDENIED)

65536
(&H10000)

Indicates that the record has not been saved
because the user has insufficient
permissions.

adRecSchemaViolation
(SCHEMAVIOLATION)

131072
(&H20000)

Indicates that the record has not been saved
because it violated the structure of its
underlying database.

adRecUnmodified (UNMODIFIED) 8 Indicates that the record has not been
modified.

ADO/WFC

The RecordStatusEnum enumeration is part of the com.ms.wfc.data package, and the constant
values are preceded with AdoEnums.RecordStatus.

See Also

Recordset.Status Property

RecordTypeEnum Enumeration (Versions 2.5, 2.6)

The RecordTypeEnum enumeration indicates the type of the current Record object.

Table E-41. The RecordTypeEnum Enumeration

Enumeration Value Description

adCollectionRecord 1 Indicates the current record is a collection (containing child
nodes).

adSimpleRecord 0 Indicates the current record is a simple record (not containing
child nodes).

adStructDoc 2 Indicates the current record is a COM structured document.

IT-SC book 608

ADO/WFC

The RecordTypeEnum enumeration does not have ADO/WFC constants.

See Also

Record.RecordType Property

ResyncEnum
Enumeration

(Versions 2.0, 2.1, 2.5,
2.6)

The ResyncEnum enumeration indicates whether underlying data is overwritten and if pending
updates are lost when the Resync method is called.

Table E-42. The ResyncEnum Enumeration

Enumeration (ADO/WFC) Value Description

adResyncAllValues (ALLVALUES) 2
Default. Indicates that a call to the Resync
method overwrites data and cancels pending
updates.

adResyncUnderlyingValues
(UNDERLYINGVALUES) 1

Indicates that a call to the Resync method does
not overwrite data and that pending updates are
not canceled.

ADO/WFC

The ResyncEnum enumeration is part of the com.ms.wfc.data package, and the constant values
are preceded with AdoEnums.Resync.

See Also

Recordset.Resync Method, Fields.Resync Method

SaveOptionsEnum
Enumeration

(Versions 2.1, 2.5,
2.6)

The SaveOptionsEnum enumeration indicates whether a file should be created or overwritten
when saving a Stream object.

IT-SC book 609

Table E-43. The SaveOptionsEnum Enumeration

Enumeration Value Description

adSaveCreateNotExist 1 Default. Indicates that a new file will be created if it does not
already exist when using the SaveToFile method.

adSaveCreateOverWrite 2 Indicates that if the file exists, it will be overwritten when
using the SaveToFile method.

ADO/WFC

The SaveOptionsEnum enumeration does not have ADO/WFC constants.

See Also

Stream.SaveToFile Method

SchemaEnum
Enumeration

(Versions 2.0, 2.1, 2.5,
2.6)

The SchemaEnum enumeration indicates the type of schema information that is returned from the
OpenSchema method of the Connection object.

Table E-44. The SchemaEnum Enumeration

Enumeration (ADO/WFC) Value Description

adSchemaAsserts (ASSERTS) 0

Returns assertions for a catalog of a
user. Constraint columns include:

CONSTRAINT_CATALOG

CONSTRAINT_SCHEMA

CONSTRAINT_NAME

adSchemaCatalogs (CATALOGS) 1

Returns the physical arguments
associated with catalogs accessible
from the data source. Constraint
columns include:

CATALOG_NAME

IT-SC book 610

adSchemaCharacterSets
(CHARACTERSETS) 2

Returns the available character sets
for a catalog of a user. Constraint
columns include:

CHARACTER_SET_CATALOG

CHARACTER_SET_SCHEMA

CHARACTER_SET_NAME

adSchemaCheckConstraints
(CHECKCONTRAINTS) 5

Returns the check constraints for a
catalog of a user. Constraint columns
include:

CONSTRAINT_CATALOG

CONSTRAINT_SCHEMA

CONSTRAINT_NAME

adSchemaCollations
(COLLATIONS) 3

Returns the character collations for a
catalog of a user. Constraint columns
include:

COLLATION_CATALOG

COLLATION_SCHEMA

COLLATION_NAME

adSchemaColumnPrivileges
(COLUMNPRIVILEGES) 13

Returns privileges for columns of
tables in a catalog of -- or granted by
-- a user. Constraint columns include:

TABLE_CATALOG

TABLE_SCHEMA

TABLE_NAME

COLUMN_NAME

GRANTOR

GRANTEE

adSchemaColumns (COLUMNS) 4 Returns columns of tables and views
for a catalog of a user. Constraint

IT-SC book 611

columns include:

TABLE_CATALOG

TABLE_SCHEMA

TABLE_NAME

COLUMN_NAME

adSchemaColumnsDomainUsage
(COLUMNSDOMAINUSAGE) 11

Returns columns of a catalog
dependent on a domain for a catalog
for a user. Constraint columns
include:

DOMAIN_CATALOG

DOMAIN_SCHEMA

DOMAIN_NAME

COLUMN_NAME

adSchemaConstraintColumnUsage
(CONSTRAINTCOLUMNUSAGE) 6

Returns the columns used by
referential constraints, unique
constraints, check constraints, and
assertions for a catalog of a user.
Constraint columns include:

TABLE_CATALOG

TABLE_SCHEMA

TABLE_NAME

COLUMN_NAME

adSchemaConstraintTableUsage
(CONSTRAINTTABLEUSAGE) 7

Returns the tables that are used by
referential constraints, unique
constraints, check constraints, and
assertions for a catalog of a user.
Constraint columns include:

TABLE_CATALOG

TABLE_SCHEMA

TABLE_NAME

IT-SC book 612

adSchemaCubes (CUBES) 32 (&H20)

Returns information about the
available cubes in a schema (or
catalog for providers that do not
support schemas). Constraint
columns include:

CATALOG_NAME

SCHEMA_NAME

CUBE_NAME

adSchemaDBInfoKeywords
(DBINFOKEYWORDS) 30 (&H1E)

Returns a list of keywords that are
specific to the provider. There are no
constraint columns for this schema.

adSchemaDBInfoLiterals
(DBINFOLITERALS) 31 (&H1F)

Returns a list of literals for text
commands that are specific to the
provider.

There are no constraint columns for
this schema.

adSchemaDimensions
(DIMENSIONS) 33 (&H21)

Returns one row of information for
each dimension of a cube. Constraint
columns include:

CATALOG_NAME

SCHEMA_NAME

CUBE_NAME

DIMENSION_NAME

DIMENSION_UNIQUE_NAME

adSchemaForieignKeys
(FOREIGNKEYS) 27 (&H1B)

Returns foreign key columns for a
catalog of a user. Constraint columns
include:

PK_TABLE_CATALOG

PK_TABLE_SCHEMA

PK_TABLE_NAME

IT-SC book 613

FK_TABLE_CATALOG

FK_TABLE_SCHEMA

FK_TABLE_NAME

adSchemaHierarchies
(HIERARCHIES) 34 (&H22)

Returns information about the
hierarchies available in a dimension.
Constraint columns include:

CATALOG_NAME

SCHEMA_NAME

CUBE_NAME

DIMENSION_UNIQUE_NAME

HIERARCHY_NAME

HIERARCHY_UNIQUE_NAME

adSchemaIndexes (INDEXES) 12

Returns the indexes for a catalog of a
user. Constraint columns include:

TABLE_CATALOG

TABLE_SCHEMA

INDEX_NAME

TYPE

TABLE_NAME

adSchemaKeyColumnUsage
(KEYCOLUMNUSAGE) 8

Returns the columns for a catalog that
are constrained as keys for a user.
Constraint columns include:

CONSTRAINT_CATALOG

CONSTRAINT_SCHEMA

CONSTRAINT_NAME

TABLE_CATALOG

TABLE_SCHEMA

IT-SC book 614

TABLE_NAME

COLUMN_NAME

adSchemaLevels (LEVELS) 35 (&H23)

Returns the information regarding the
levels in a dimension. Constraint
columns include:

CATALOG_NAME

SCHEMA_NAME

CUBE_NAME

DIMENSION_UNIQUE_NAME

HIERARCHY_UNIQUE_NAME

LEVEL_NAME

LEVEL_UNIQUE_NAME

adSchemaMeasures (MEASURES) 36 (&H24)

Returns information about the levels
available in a dimension. Constraint
columns include:

CATALOG_NAME

SCHEMA_NAME

CUBE_NAME

DIMENSION_UNIQUE_NAME

HIERARCHY_UNIQUE_NAME

LEVEL_NAME

LEVEL_UNIQUE_NAME

adSchemaMembers (MEMBERS) 38 (&H26)

Returns information about the
available measures. Constraint
columns include:

CATALOG_NAME

SCHEMA_NAME

IT-SC book 615

CUBE_NAME

DIMENSION_UNIQUE_NAME

HIERARCHY_UNIQUE_NAME

LEVEL_UNIQUE_NAME

LEVEL_NUMBER

MEMBER_NAME

MEMBER_UNIQUE_NAME

MEMBER_CAPTION

MEMBER_TYPE

An OLAP Tree Operator

adSchemaPrimaryKeys
(PRIMARYKEYS)

28 (&H1C)

Returns the primary key columns
defined for a catalog of a user.
Constraint columns include:

PK_TABLE_CATALOG

PK_TABLE_SCHEMA

PK_TABLE_NAME

adSchemaProcedureColumns
(PROCEDURECOLUMNS)

29 (H1D)

Returns information about the
columns of rowsets returned by
procedures. Constraint columns
include:

PROCEDURE_CATALOG

PROCEDURE_SCHEMA

PROCEDURE_NAME

COLUMN_NAME

adSchemaProcedureParameters
(PROCEDUREPARAMETERS)

26 (&H1A)

Returns the tables on which viewed
tables, for a catalog of a user, are
dependent. Constraint columns
include:

IT-SC book 616

PROCEDURE_CATALOG

PROCEDURE_SCHEMA

PROCEDURE_NAME

PARAMETER_NAME

adSchemaProcedures (PROCEDURES) 16 (&H10)

Returns the procedures for a catalog
owned by a user. Constraint columns
include:

PROCEDURE_CATALOG

PROCEDURE_SCHEMA

PROCEDURE_NAME

PROCEDURE_TYPE

adSchemaProperties (PROPERTIES) 37 (&H25)

For each level of the dimension,
returns information about the
available properties. Constraint
columns include:

CATALOG_NAME

SCHEMA_NAME

CUBE_NAME

DIMENSION_UNIQUE_NAME

HIERARCHY_UNIQUE_NAME

LEVEL_UNIQUE_NAME

MEMBER_UNIQUE_NAME

PROPERTY_TYPE

PROPERTY_NAME

adSchemaProviderSpecific
(PROVIDERSPECIFIC)

-1
(&HFFFFFFFF)

Used if the data provider has defined
its own nonstandard schema queries.

Constraint columns are provider
specific.

IT-SC book 617

adSchemaProviderTypes
(PROVIDERTYPES)

22 (&H16)

Returns the base datatypes supported
by the data provider. Constraint
columns include:

DATA_TYPE

BEST_MATCH

adSchemaReferentialConstraints
(REFERENTIALCONTRAINTS)

9

Returns the referential constraints for
a catalog, owned by a user.
Constraint columns include:

CONSTRAINT_CATALOG

CONSTRAINT_SCHEMA

CONSTRAINT_NAME

adSchemaSchemata (SCHEMATA) 17 (&H11)

Returns the schemas owned by a user.
Constraint columns include:

CATALOG_NAME

SCHEMA_NAME

SCHEMA_OWNER

adSchemaSQLLanguages
(SQLLANGUAGES)

18 (&H12)

Returns the conformance levels,
options, and dialects supported by the
SQL-implementation processing data
for a catalog. There are no defined
constraint columns for this schema.

adSchemaStatistics (STATISTICS) 19 (&H13)

Returns the statistics defined in the
catalog that are owned by a user.
Constraint columns include:

TABLE_CATALOG

TABLE_SCHEMA

TABLE_NAME

adSchemaTableConstraints
(TABLECONSTRAINTS)

10
Returns the table constraints for a
catalog that are owned by a user.
Constraint columns include:

IT-SC book 618

CONSTRAINT_CATALOG

CONSTRAINT_SCHEMA

CONSTRAINT_NAME

TABLE_CATALOG

TABLE_SCHEMA

TABLE_NAME

CONSTRAINT_TYPE

adSchemaTablePrivelages
(TABLEPRIVILEGES)

14

Returns the privileges on tables for a
catalog that are available or granted
by a user. Constraint columns
include:

TABLE_CATALOG

TABLE_SCHEMA

TABLE_NAME

GRANTOR

GRANTEE

adSchemaTables (TABLES) 20 (&14)

Returns the tables and views for a
catalog of a user. Constraint columns
include:

TABLE_CATALOG

TABLE_SCHEMA

TABLE_NAME

TABLE_TYPE

adSchemaTranslations
(TRANSLATIONS)

21 (&15)

Returns the character translations
defined for a catalog of a user.
Constraint columns include:

TRANSLATION_CATALOG

TRANSLATION_SCHEMA

IT-SC book 619

TRANSLATION_NAME

adSchemaTrustees (TRUSTEES) 39 (&H27)
Returns information about
trustees.There are no defined
constraint columns for this schema.

adSchemaUsagePrivileges
(USAGEPRIVILEGES)

15

Returns the usage privileges on
objects for a catalog that are available
or granted by a user. Constraint
columns include:

OBJECT_CATALOG

OBJECT_SCHEMA

OBJECT_NAME

OBJECT_TYPE

GRANTOR

GRANTEE

adSchemaViewColumnUsage
(VIEWCOLUMNUSAGE)

24 (&H18)

Returns the columns on which
viewed tables, for a catalog and
owned by a user, are dependent.
Constraint columns include:

VIEW_CATALOG

VIEW_SCHEMA

VIEW_NAME

adSchemaViews (VIEWS) 23 (&H17)

Returns the views for a catalog of a
user. Constraint columns include:

TABLE_CATALOG

TABLE_SCHEMA

TABLE_NAME

adSchemaViewTableUsage
(VIEWTABLEUSAGE)

25 (&H19)

Returns the tables on which viewed
tables -- for a catalog and owned by a
user -- are dependent. Constraint
columns include:

IT-SC book 620

VIEW_CATALOG

VIEW_SCHEMA

VIEW_NAME

adSchemaPrimaryKeys
(PRIMARYKEYS)

28 (&H1C)

Returns the primary key columns
defined for a catalog of a user.
Constraint columns include:

PK_TABLE_CATALOG

PK_TABLE_SCHEMA

PK_TABLE_NAME

ADO/WFC

The SchemaEnum enumeration is part of the com.ms.wfc.data package, and the constant values
are preceded with AdoEnums.Schema.

See Also

Connection.OpenSchema Method

SearchDirectionEnum
Enumeration

(Versions 2.0, 2.1,
2.5, 2.6)

The SearchDirectionEnum enumeration indicates in which direction the Find method of the
Recordset object is to look.

Table E-45. The SearchDirectionEnum Enumeration

Enumeration (ADO/WFC) Value Description

adSearchBackward
(BACKWARD)

-1
(&HFFFFFFFF)

Indicates that the Find method will search
backwards until either a match is found or the
BOF marker is reached.

adSearchForward
(FORWARD) 1

Indicates that the Find method will search forward
until either a match is found or the EOF marker is
reached.

IT-SC book 621

ADO/WFC

The SearchDirectionEnum enumeration is part of the com.ms.wfc.data package, and the constant
values are preceded with AdoEnums.SearchDirection.

See Also

Recordset.Find Method

SeekEnum Enumeration (Versions 2.1, 2.5, 2.6)

The SeekEnum enumeration indicates the type of Seek to perform.

Table E-46. The SeekEnum Enumeration

Enumeration
(ADO/WFC) Value Description

adSeekAfter (AFTER) 8 Indicates that the Seek will occur just after where a match
with KeyValues would have occurred.

adSeekAfterEQ
(AFTEREQ) 4

Indicates that the Seek will occur where a key equals
KeyValues or just after where a match would have
occurred.

adSeekBefore
(BEFORE)

32
(&H20)

Indicates that the Seek will occur just before where a match
with KeyValues would have occurred.

adSeekBeforeEQ
(BEFOREEQ)

16
(&H10)

Indicates that the Seek will occur where a key equals
KeyValues or just before where a match would have
occurred.

adSeekFirstEQ
(FIRSTEQ) 1 Indicates that the Seek will occur to the first key equal to

KeyValues.

adSeekLastEQ
(LASTEQ) 2 Indicates that the Seek will occur to the last key equal to

KeyValues.

ADO/WFC

The SeekEnum enumeration is part of the com.ms.wfc.data package, and the constant values are
preceded with AdoEnums.Seek.

IT-SC book 622

See Also

Recordset.Seek Method

StreamOpenOptionsEnum
Enumeration

(Versions 2.5,
2.6)

The StreamOpenOptionsEnum enumeration specifies options for opening a Stream object.

Table E-47. The StreamOpenOptionsEnum Enumeration

Enumeration Value Description

adOpenStreamAsync 1 Indicates that the Stream will be opened
asynchronously.

adOpenStreamFromRecord 4
Indicates that the contents of the Source
parameter to the Open method contain an
already open Record object.

adOpenStreamUnspecified -1 (&HFFFFFFFF)
Default. Indicates that no special options are
selected.

ADO/WFC

The StreamOpenOptionsEnum enumeration does not have ADO/WFC constants.

See Also

Stream.Open Method

StreamReadEnum Enumeration (Versions 2.5, 2.6)

The StreamReadEnum enumeration indicates whether one line or the entire Stream should be
read.

Table E-48. The StreamReadEnum Enumeration

Enumeration Value Description

IT-SC book 623

adReadAll -1 (&HFFFFFFFF) Default. Indicates that the entire Stream is to be read.

adReadLine -2 (&HFFFFFFFE) Indicates that the next line is to be read in from the Stream.

ADO/WFC

The StreamReadEnum enumeration does not have ADO/WFC constants.

See Also

Stream.Read Method, Stream.ReadText Method

StreamTypeEnum Enumeration (Versions 2.5, 2.6)

The StreamTypeEnum enumeration indicates what type of data is stored in a Stream object.

Table E-49. The StreamTypeEnum Enumeration

Enumeration Value Description

adTypeBinary 1 Indicates that the Stream contains binary data.

adTypeText 2 Indicates that the Stream contains textual data.

ADO/WFC

The StreamTypeEnum enumeration does not have ADO/WFC constants.

See Also

Stream.Type Property

StreamWriteEnum Enumeration (Versions 2.5, 2.6)

The StreamWriteEnum enumeration indicates whether a line separator is appending to a String
written to a Stream object.

Table E-50. The StreamWriteEnum Enumeration

IT-SC book 624

Enumeration Value Description

adWriteChar 0 Default. Indicates that the specified text string is written to the Stream
object.

adWriteLine 1 Indicates that the specified text string followed by a line separator will be
written to the Stream object.

ADO/WFC

The StreamWriteEnum enumeration does not have ADO/WFC constants.

See Also

Stream.WriteText Method

StringFormatEnum
Enumeration

(Versions 2.0, 2.1, 2.5,
2.6)

The StringFormatEnum enumeration indicates the format of a recordset when retrieving it as a
string value.

Table E-51. The StringFormatEnum Enumeration

Enumeration
(ADO/WFC) Value Description

adClipString
(CLIPSTRING) 2

Indicates that when importing a Recordset as a String value, rows
are delimited by RowDelimiter, columns by ColumnDelimiter, and
NULL value by NullExpr.

ADO/WFC

The StringFormatEnum enumeration is part of the com.ms.wfc.data package, and the constant
values are preceded with AdoEnums.StringFormat.

See Also

Recordset.GetString Method

XactAttributeEnum (Versions 2.0, 2.1, 2.5,

IT-SC book 625

Enumeration 2.6)

The XactAttributeEnum enumeration indicates the transaction attributes of a Connection object.

Table E-52. The XactAttributeEnum Enumeration

Enumeration (ADO/WFC) Value Description

adXactAbortRetaining
(ABORTRETAINING)

262144
(&H40000)

Indicates that by calling the RollbackTrans
method, ADO will start a new transaction
automatically.

adXactCommitRetaining
(COMMITRETAINING)

131072
(&H20000)

Indicates that by calling the CommitTrans
method, ADO will start a new transaction
automatically.

ADO/WFC

The XactAttributeEnum enumeration is part of the com.ms.wfc.data package, and the constant
values are preceded with AdoEnums.IsolationLevel.

See Also

Connection.Attributes Property

IT-SC book 626

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical topics,
breathing personality and life into potentially dry subjects.

The bird on the cover of ADO: ActiveX Data Objects is an ivory-billed woodpecker
(Campephilus principalis). Considered extinct by many naturalists and ornithologists (the last
confirmed sighting was in the 1950s), the "ivory-bill" was never abundant in its habitat, the
southeastern United States and Cuba. With glossy black plumage, white markings, and a red
tufted crest (males only), the ivory-bill looks extremely similar to the pileated woodpecker, with
whom it also shared its habitat. The similarities between the two birds has been the cause of much
trouble, as eager amateurs add to unconfirmed sighting reports of the ivory-bill when they have
probably spotted the pileated woodpecker. This is especially troublesome for naturalists who hold
out hope that the ivory-bill may still exist in the far reaches of Louisiana forests or in Cuba. In the
early 1990s, many nature and birding groups spent considerable amounts of money mounting
search efforts for the ivory-bill.

As do all woodpeckers, the ivory-bill has a chisel-like bill and a long, hard-tipped, sticky tongue;
the first for drilling and scaling bark, the latter for retrieving beetles and grubs on which to feed.
Retrieving food in this manner, however, is not what creates the drumming sound that many
associate with woodpeckers. Rather, woodpeckers drum when reinforcing their claim to a
territory, creating the loudest drum possible by striking the tops of dead, hollow trees.

Important differences between the closely linked ivory-billed and pileated woodpeckers include
their bills (the ivory-bill's was, well, ivory, while the pileated woodpecker's bill is gray), their
sizes (the ivory-bill was the largest of all North American woodpeckers), and their calls (the
ivory-bill's was a "toot"; the pileated's is a "kuk"). In 1987, Dr. Jerome A. Jackson of Florida Gulf
University caught the ivory-bill's distinctive call on eighteen minutes of tape in Louisiana, adding
to the excitement created by various unconfirmed sightings. The most recent and credulous
sighting occurred in 1999, when graduate student David Kulivan sighted a pair of what were
supposedly ivory-bills in southeastern Louisiana.

While The Nature Conservancy declared the ivory-bill extinct in 1994, the U.S. Fish and Wildlife
Service has not yet added it to its extinction list. The reason for its near or possible extinction:
logging of the old-growth forests in which it lived.

Jeffrey Holcomb and Sarah Jane Shangraw were the production editors for ADO: ActiveX Data
Objects. Jeffrey Holcomb copyedited the text. Linley Dolby, Matt Hutchinson, and Claire
Cloutier provided quality control. Pamela Murray, Sarah Jane Shangraw, and Joe Wizda wrote
the index. Sarah Jane Shangraw did page composition.

Hanna Dyer designed the cover of this book, based on a series design by Edie Freedman. The
cover image is a 19th-century engraving from the Dover Pictorial Archive. Erica Corwell
produced the cover layout with Quark XPress 4.1 using Adobe's ITC Garamond font.

Melanie Wang designed the interior layout based on a series design by Nancy Priest. Anne-Marie
Vaduva converted the files from Microsoft Word to FrameMaker 5.5.6 using tools created by
Mike Sierra. The text and heading fonts are ITC Garamond Light and Garamond Book; the code
font is Constant Willison. The illustrations that appear in the book were produced by Robert

IT-SC book 627

Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6. This
colophon was written by Jeffrey Holcomb.

