
ASP
IN A NUTSHELL

A Desktop Quick Reference

ASP
IN A NUTSHELL

A Desktop Quick Reference
A. Keyton Weissinger
Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

ASP in a Nutshell: A Desktop Quick Reference
by A. Keyton Weissinger

Copyright © 1999 O’Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.

Editor: Ron Petrusha

Production Editor: Clairemarie Fisher O’Leary

Printing History:

February 1999: First Edition.
Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are
registered trademarks of O’Reilly & Associates, Inc. The association of the image of
an asp and the topic of Active Server Pages is a trademark of O’Reilly & Associates,
Inc.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and O’Reilly & Associates, Inc. was aware of a trademark claim, the designations
have been printed in caps or initial caps. ActiveX, JScript, Microsoft, Microsoft
Internet Explorer, Visual Basic, Visual C++, Windows, and Windows NT are
registered trademarks of Microsoft Corporation.

While every precaution has been taken in the preparation of this book, the publisher
assumes no responsibility for errors or omissions, or for damages resulting from the
use of the information contained herein.
ISBN: 1-56592-490-8 [1/00]

[M]

Table of Contents
Preface ... xi

Part I: Introduction to Active Server Pages

Chapter 1—Active Server Pages: An Introduction 3

The Static Internet .. 3
The Dynamic Internet Part I: CGI Applications 3
The Dynamic Internet Part II: ISAPI .. 4
Active Server Pages and Active Server Pages 2.0 6
ASP: A Demonstration .. 6
The ASP Object Model ... 9

Chapter 2—Active Server Pages: Server-Side Scripting 12

Client-Side Scripting ... 12
Server-Side Scripting ... 15
ASP Functions ... 19
Scripting Languages .. 22

Chapter 3—Extending Active Server Pages 23

Part II: Object Reference

Chapter 4—Application Object .. 27

Comments/Troubleshooting .. 28
v

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Collections Reference ... 30
Methods Reference ... 36
Events Reference .. 38

Chapter 5—ObjectContext Object ... 41

Comments/Troubleshooting .. 42
Methods Reference ... 43
Events Reference .. 45

Chapter 6—Request Object ... 48

How HTTP Works .. 48
The ASP Request Object .. 57
Comments/Troubleshooting .. 57
Properties Reference .. 58
Collections Reference ... 59
Methods Reference ... 82

Chapter 7—Response Object .. 85

Comments/Troubleshooting .. 86
Properties Reference .. 87
Collections Reference ... 99
Methods Reference ... 104

Chapter 8—Server Object .. 114

Comments/Troubleshooting .. 115
Properties Reference .. 115
Methods Reference ... 116

Chapter 9—Session Object .. 122

Comments/Troubleshooting .. 123
Properties Reference .. 125
Collections Reference ... 129
Methods Reference ... 136
Events Reference .. 138

Chapter 10—Preprocessing Directives, Server-Side Includes,
and GLOBAL.ASA ... 141

Preprocessing Directives .. 141
Preprocessing Directives Reference .. 142
vi

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Server-Side Includes ... 146
#include .. 147
GLOBAL.ASA .. 150
GLOBAL.ASA Reference ... 151

Part III: Installable Component Reference

Chapter 11—ActiveX Data Objects 1.5 159

Accessory Files/Required DLL Files ... 161
Instantiating Active Data Objects ... 161
Comments/Troubleshooting .. 163
Object Model .. 163
Properties Reference .. 174
Collections Reference ... 206
Methods Reference ... 207

Chapter 12—Ad Rotator Component 236

Accessory Files/Required DLL Files ... 237
Instantiating the Ad Rotator ... 240
Comments/Troubleshooting .. 240
Properties Reference .. 241
Methods Reference ... 243
Ad Rotator Example ... 244

Chapter 13—Browser Capabilities Component 248

Accessory Files/Required DLL Files ... 249
Instantiating the Browser Capabilities Component 253
Comments/Troubleshooting .. 253
Properties Reference .. 254

Chapter 14—Collaboration Data Objects for
Windows NT Server ... 256

Accessory Files/Required DLL Files ... 257
Instantiating Collaboration Data Objects ... 257
Comments/Troubleshooting .. 258
The CDO Object Model ... 259
NewMail Object Properties Reference ... 268
Methods Reference ... 280
 vii

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Chapter 15—Content Linking Component 286

Accessory Files/Required DLL Files ... 287
Instantiating a Content Linking Object .. 288
Comments/Troubleshooting .. 289
Methods Reference ... 290
Content Linking Component Example .. 299

Chapter 16—Content Rotator Component 303

Accessory Files/Required DLL Files ... 304
Instantiating the Content Rotator Component 306
Comments/Troubleshooting .. 306
Methods Reference ... 306

Chapter 17—Counters Component ... 309

Accessory Files/Required DLL Files ... 310
Instantiating the Counters Component ... 310
Comments/Troubleshooting .. 311
Methods Reference ... 312

Chapter 18—File Access Component .. 316

Accessory Files/Required DLL Files ... 316
Instantiating Installable Components .. 316
Comments/Troubleshooting .. 317
Object Model .. 317
Properties Reference .. 324
Methods Reference ... 334

Chapter 19—MyInfo Component ... 346

Accessory Files/Required DLL Files ... 346
Comments/Troubleshooting .. 349
Properties Reference .. 350

Chapter 20—Page Counter Component 354

Accessory Files/Required DLL Files ... 355
Instantiating the Page Counter Component 355
Comments/Troubleshooting .. 356
Methods Reference ... 356
viii

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Chapter 21—Permission Checker Component 358

Accessory Files/Required DLL Files ... 359
Instantiating the Permission Checker .. 359
Comments/Troubleshooting .. 360
Methods Reference ... 360

Part IV: Appendixes

Appendix A—Converting CGI/WinCGI Applications into
ASP Applications ... 365

Appendix B—ASP on Alternative Platforms 377

Appendix C—Configuration of ASP Applications on IIS ... 382

Index .. 389
 ix

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Chapter 1
Preface

Active Server Pages (ASP) allows for powerful web application development. It is

both simple to use and, with its extensibility through ActiveX and Java compo-
nents, very powerful. But what is it? Is it a programming language? No, not exactly.
Is it a Microsoft-only rapid development platform? No, not really.

Active Server Pages is a technology originally created by Microsoft as an answer to
the sometimes complex problems posed by CGI application development. It
allows you to use any scripting language, from VBScript to Python, to create real-
world web applications.

Although originally only available for Microsoft platforms, ASP is quickly becoming
available for nearly any web server on many operating systems. Microsoft suggests
that there are 250,000 web developers using ASP and over 25,000 web applica-
tions built using ASP. So you’re not alone.

You hold in your hands the desktop reference for this exciting technology.

Who Is This Book For?
This book is intended as a reference guide for developers who write Active Server
Page web applications. Whether you are a professional developer paid to work
magic with the Web or an amateur trying to figure out this web development
thing, this book is for you. If you are coming to ASP from CGI, I hope this book
will help make your transition from CGI to ASP an easy one.

I hope this book will be a very accessible, very convenient reference book. While
I was writing this book, I envisioned myself (or one of you) with half a line of
code written, trying to remember what options were available for the specific
property or method I was attempting to use. I wanted a quick access book that
would sit on my desk and be there when I needed it. I hope I have achieved that
goal.
xi

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

How to Use This Book
This book is not for the beginning programmer that knows nothing about the
Web. There are already several books out there that will teach you about web
applications and even how to write ASP applications specifically. Although each
chapter starts with a brief overview, I have included these sections only to put the
current object for that chapter in the context of Active Server Pages as a whole.

How to Use This Book
As mentioned above, this book is a reference. Although you can read the entire
book from beginning to end and understand Active Server Pages from a holistic
perspective, that was not my intent. There are two ways to use this book:

• You can navigate to the particular chapter that covers the intrinsic ASP object
or component in which you’re interested. This method of navigating the book
will help you learn more about the intrinsic object or component with which
you are working.

• You can look up the particular method, property, or event with which you’re
working and go directly to the explanation and example code that you need.

Each chapter is divided into sections to help make reference simple. Each section
covers a specific topic related to the intrinsic ASP object or component that is the
focus of that chapter. The sections are:

Introduction
This section introduces the object or component in the context of its use in
ASP applications.

Summary
This section lists the object or component’s properties, methods, collections,
and events. Note that not all of these elements are present for every object or
component.

Comments/Troubleshooting
This section contains my comments on experiences I have had with the
specific object or component. It is here that I will talk about possible discrep-
ancies between Microsoft’s documentation and my experience.

Properties
This section covers all the properties and their uses of the specific object or
component.

Collections
This section covers all the collections for the specific object or component.

Methods
This section covers all the methods for the specific object or component.

Events
This section covers all the events for the specific object or component. (Note
that most objects and components don’t support any events.)

Each Properties, Collections, Methods, and Events section is further divided into an
introduction, an example, and comments.
xii Preface

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Preface
How This Book Is Structured
ASP in a Nutshell is divided into three parts. Part I, Introduction to
Active Server Pages, provides a fast-paced introduction to ASP that consists of three
chapters. Chapter 1, Active Server Pages: An Introduction, places ASP within the
broader context of the evolution of web application development, provides a
quick example Active Server Page, and briefly examines the ASP object model.
Chapter 2, Active Server Pages: Server-Side Scripting, examines the difference
between client-side scripting and server-side scripting, takes a look at the struc-
ture and syntax of ASP pages, and examines the scripting languages that can be
used for ASP development. Chapter 3, Extending Active Server Pages, examines the
general mechanism for incorporating external COM components into an ASP appli-
cation and lists the components that are included with Internet Information Server
(IIS).

In part, Active Server Pages is an object model that features six intrinsic objects
(Application, ObjectContext, Request, Response, Server, and Session) that are
always available to your scripts. (Actually, the ObjectContext object is a Microsoft
Transaction Server object that is available only if you’re using ASP 2.0 or greater.)
Part II, Object Reference, documents each of these intrinsic objects. These chapters
are arranged alphabetically by object. In addition, Chapter 10, Preprocessing Direc-
tives, Server-Side Includes, and GLOBAL.ASA, covers three major structural features
of ASP that are not closely related to its object model.

ASP is extensible. That is, by calling the Server object’s CreateObject method, you
can instantiate external COM components that can be accessed programmatically
just like any of the six intrinsic objects. Part III, Installable Component Reference,
documents the components that are included with the IIS installation. These
eleven chapters are again arranged alphabetically by component name.

Finally, ASP in a Nutshell includes three appendixes. Appendix A, Converting CGI/
WinCGI Applications into ASP Applications, shows what’s involved in converting a
simple application from Perl and Visual Basic to ASP and VBScript. It also includes
two handy tables that list CGI and WinCGI environment variables and their equiv-
alent ASP properties. Appendix B, ASP on Alternative Platforms, examines some of
the beta and released software that will allow you to develop ASP applications for
software other than Microsoft’s. Finally, Appendix C, Configuration of ASP Applica-
tions on IIS, covers the configuration details that you need to know about to get
your ASP application to run successfully.

Conventions Used in This Book
Throughout this book, we’ve used the following typographic conventions:

Constant width
Constant width in body text indicates an HTML tag or attribute, a scripting
language construct (like For or Set), an intrinsic or user-defined constant, or
an expression (like dElapTime = Timer()-dStartTime). Code fragments
and code examples appear exclusively in constant-width text. In syntax state-
ments and prototypes, text in constant width indicates such language
elements as the method or property name and any invariable elements
Preface xiii

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

How to Contact Us
required by the syntax. Constant width is also used for operators, statements,
and code fragments.

Constant width italic
Constant width italic in body text indicates parameter and variable names. In
syntax statements or prototypes, constant width italic indicates replaceable
parameters.

Italic
Italicized words in the text indicate intrinsic or user-defined functions and
procedure names. Many system elements, such as paths, filenames, and URLs,
are also italicized. Finally, italics are used to denote a term that’s used for the
first time.

This symbol indicates a tip.

This symbol indicates a warning.

How to Contact Us
We have tested and verified all the information in this book to the best of our
ability, but you may find that features have changed (or even that we have made
mistakes). Please let us know about any errors you find, as well as your sugges-
tions for future editions, by writing to:

O’Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472
1-800-998-9938 (in the U.S. or Canada)
1-707-829-0515 (international/local)
1-707-829-0104 (fax)

You can also send messages electronically. To be put on our mailing list or to
request a catalog, send email to:

nuts@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com
xiv Preface

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Preface
We have a web site for the book, where we’ll list examples, errata, and any plans
for future editions. You can access this page at:

http://www.oreilly.com/catalog/aspnut/

For more information about this book and others, see the O’Reilly web site:

http://www.oreilly.com

Acknowledgments
I’d like to start by thanking my wife, Liticia, without whose support this book
would not have been written.

Next, I’d like to thank Ron Petrusha, my editor at O’Reilly. His comments and
thoughtful insights have helped to make this book what it is. Also, if it weren’t for
the tireless efforts of his assistant editors, Tara McGoldrick and Katie Gardner, this
book may not have been completed on time. Thank you.

I’d also like to personally thank Tim O’Reilly for not only publishing some of the
best books in the industry, but also for going one step further and publishing
several titles meant to “give back” to the community. How many technical
publishers would produce the best computer documentation in the industry,
support free software efforts worldwide, and still make time to publish books like
Childhood Leukemia. Very few. Thank you, Tim.

I’d like to thank my technical reviewers, Chris Coffey, John Ternent, Matt Sargent,
and Sarah Ferris. Their efforts and professional comments helped keep me focused
on creating a quick reference that’s useful to real-world, professional ASP devel-
opers. I’d like to especially thank Chris for helping me to focus on the details and
maintain a high level of consistency.

I’d like to note my gratitude to Chris Burdett, Karen Monks, Chad Dorn, Chris
Luse, and Jeff Adkisson at the technical documentation department at my last
employer. Their contributions to the skills required to write this book were early
but imperative.

Finally, I’d like to thank you for buying this book and for using it. I hope it helps
you get home a little earlier or get a little more done in your day.
Preface xv

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

PART I

Introduction to
Active Server Pages
This part contains a brief introduction to Active Server Pages and an over-
view of the interaction between Active Server Pages and Microsoft’s
Internet Information Server. Also in this part, you will be introduced to the
IIS object model and the objects that make it up and to all the installable
server components that come with IIS. Part I consists of the following
chapters:

Chapter 1, Active Server Pages: An Introduction

Chapter 2, Active Server Pages: Server-Side Scripting

Chapter 3, Extending Active Server Pages
ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Chapter 1Introduction
Introduction
CHAPTER 1

Active Server Pages:
An Introduction

ASP is a technology that allows you to dynamically generate browser-neutral

content using server-side scripting. The code for this scripting can be written in
any of several languages and is embedded in special tags inside the otherwise-
normal HTML code making up a page of content. This heterogeneous scripting/
content page is interpreted by the web server only upon the client’s request for
the content.

To understand the evolution of ASP and its current capabilities, it helps to quickly
review the history of web-based content and applications.

The Static Internet
In the early days of the World Wide Web, all information served to the client’s
browser was static. In other words, the content for page A served to client 1 was
exactly the same as the content for page A served to client 2. The web server did
not dynamically generate any part of the site’s contents but simply served requests
for static HTML pages loaded from the web server’s file system and sent to the
requesting client. There was no interactivity between the user and the server. The
browser requested information, and the server sent it.

Although the static Internet quickly evolved to include graphics and sounds, the
Web was still static, with little interactivity and very little functionality beyond that
provided by simple hyperlinking.

Figure 1-1 illustrates the user’s request and the web server’s corresponding
response for static (HTML, for example) web content.

The Dynamic Internet Part I: CGI Applications
One of the first extensions of the static internet was the creation of the Common
Gateway Interface. The Common Gateway Interface, or CGI, provides a mecha-
nism by which a web browser can communicate a request for the execution of an
3

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Dynamic Internet Part II: ISAPI
application on the web server. The result of this application is converted/formatted
into a browser-readable (HTML) form and sent to the requesting browser.

CGI applications raised the bar on what was expected from a web site and transi-
tioned the World Wide Web from an easy way to share information to a viable
platform for information processing. The response to this evolution of the Web
was rapidly accelerated growth and the beginning of the business world’s interest
in the Internet.

Part of this growth was the creation of several client-side scripting solutions that
enabled the client’s machine to take on part of the processing tasks. Chief among
these client-side solutions are Netscape’s JavaScript and Microsoft’s VBScript.

During this huge growth in Internet-based technologies, Microsoft released its
Internet Information Server. Touted as being easy to use, scalable, portable,
secure, and extensible, it is also free and closely integrated with Microsoft’s
Windows NT operating system. It quickly became very popular.

The Dynamic Internet Part II: ISAPI
In addition to supporting the CGI specification, Microsoft introduced an alterna-
tive to CGI, the Internet Server Application Programming Interface (or ISAPI).
ISAPI addresses one of the most limiting features of CGI applications.

Each time a client requests the execution of a CGI application, the web server
executes a separate instance of the application, sends in the user’s requesting
information, and serves the results of the CGI application’s processing to the client.

Figure 1-1: Static web content: request and delivery

Browser Server

Browser requests Sample.HTM
from Web Server

Browser Server

Server sends Sample.HTM
to browser from file system
4 Chapter 1 – Active Server Pages: An Introduction

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Introduction
The Dynamic Internet Part II: ISAPI
The problem with this approach is that a separate CGI application is loaded for
each request. This can be quite a drain on the server’s resources if there are many
requests for the CGI application.

ISAPI alleviates this problem by relying on dynamic link libraries (DLLs). Each
ISAPI application is in the form of a single DLL that is loaded into the same
memory space as the web server upon the first request for the application. Once
in memory, the DLL stays in memory, answering user requests until it is explicitly
released from memory. This increased efficiency in memory usage comes at a cost.
All ISAPI DLLs must be thread-safe so that multiple threads can be instantiated into
the DLL without causing problems with the application’s function.*

ISAPI applications are normally faster than their equivalent CGI applications
because the web server does not have to instantiate a new application every time
a request is made. Once the ISAPI application DLL is loaded into memory, it stays
in memory. The web server does not need to load it again.

In addition to ISAPI applications, ISAPI allows for the development of ISAPI filters.
An ISAPI filter is a custom DLL that is in the same memory space as the web
server and is called by the web server in response to every HTTP request. In this
way, the ISAPI filter changes the manner in which the web server itself behaves.
The ISAPI filter then instructs the web server how to handle the request. ISAPI
filters thus allow you to customize your web server’s response to specific types of
user requests. To state the difference between ISAPI filters and ISAPI applications
(and CGI applications) more clearly, ISAPI filters offer three types of functionality
that set them apart from ISAPI (or CGI) applications:

• An ISAPI filter allows you to provide a form of web site or page-level secu-
rity by its insertion as a layer between the client and the web server.

• An ISAPI filter allows you to track more information about the requests to the
web server and the content served to the requestor than a standard HTTP
web server on its own can. This information can be stored in a separate for-
mat from that of the web server’s logging functions.

• An ISAPI filter can serve information to clients in a different manner than the
web server can by itself.

Here are some examples of possible ISAPI filters:

• A security layer between the client and the web server. This security layer
could provide for a more thorough screening of the client request than that
provided for by straight username and password authentication.

• A custom filter could interpret the stream of information from the server and,
based on that interpretation, present the stream in a different format than
would the original web server. The ASP.DLL (see the following section) is an
example of this type of ISAPI filter. It interprets the server code in a script
requested by the client and, depending on its interpretation, serves the client
customized content according to the client’s request.

* The latest version of Microsoft Internet Information Server 4.0 allows you to load CGI appli-
cations into the same memory space as the web server, just as you can ISAPI applications.
The Dynamic Internet Part II: ISAPI 5

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Active Server Pages and Active Server Pages 2.0
• A custom filter could map a client’s request to a different physical location on
the server. This could be used in high-volume sites where you might want to
move the client onto a different server.

Active Server Pages and Active Server Pages 2.0
Late in the life of Internet Information Server 2.0, Microsoft began public beta
testing of a technology whose code name was Denali. This technology is now
known as Active Server Pages and is a very important aspect of Microsoft’s
Internet Information Server strategy.

This ASP technology is encapsulated in a single, small (~300K) DLL called ASP.DLL.
This DLL is an ISAPI filter that resides in the same memory space as Internet Infor-
mation Server. (For more about how IIS is configured to use ISAPI filters, see
Appendix C, Configuration of ASP Applications on IIS.) Whenever a user requests
a file whose file extension is .ASP, the ASP ISAPI filter handles the interpretation.
ASP then loads any required scripting language interpreter DLLs into memory,
executes any server-side code found in the Active Server Page, and passes the
resulting HTML to the web server, which then sends it to the requesting browser.
To reiterate this point, the output of ASP code that runs on the server is HTML (or
HTML along with client-side script), which is inserted into the HTML text stream
sent to the client.* Figure 1-2 illustrates this process.

ASP: A Demonstration
The actual interpretation of the web page by the ASP.DLL ISAPI filter is best
explained by example. Example 1-1 shows a simple active server page, Sample.
ASP. In this example, three pieces of server-side code, indicated in boldface, when
executed on the server, create HTML that is sent to the client. This is a quick intro-
duction. Don’t worry if you don’t understand exactly what is going on in this
example; the details will be explained in Chapter 2, Active Server Pages: Server-
Side Scripting.

* Note, however, that an Active Server Page application could just as easily send XML, for ex-
ample to the browser. HTML is only the default.
6 Chapter 1 – Active Server Pages: An Introduction

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Introduction
ASP: A Demonstration
Figure 1-2: Dynamically generated web content: request and delivery

Example 1-1: Sample.ASP, an Example of Processing Server-Side Script

<%@ LANGUAGE="VBSCRIPT" %>

<HTML>
<HEAD>
<TITLE>Sample ASP</TITLE>
</HEAD>

Browser Server

Browser requests Sample.HTM
from Web Server

IIS passes requested
document to ASP.DLL

Browser ServerASP passes the interpreted
(new HTML) back to IIS
for sending to the client

Browser Server

IIS sends Sample.HTM to the client

ASP.DLL

ASP.DLL

ASP.DLL
ASP: A Demonstration 7

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ASP: A Demonstration
When the client receives the HTML result from the ASP script’s execution, it resem-
bles Figure 1-3.

<BODY>

Good afternoon.

Welcome to the sample. It is now approximately
<%=Time()%> at the server. Here are a couple of
demonstrations:

Some simple text formatting done using HTML:

Hello Size 1

Hello Size 2

Hello Size 3

Hello Size 4

Hello Size 5

The same text formatting using server-side code:

<%
For intCounter = 1 to 5
%>
<FONT SIZE = <%=intCounter%>>
Hello Size <%=intCounter%>

<%
Next
%>

</BODY>
</HTML>

Figure 1-3: Client-side view of Sample.ASP

Example 1-1: Sample.ASP, an Example of Processing Server-Side Script (continued)
8 Chapter 1 – Active Server Pages: An Introduction

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Introduction
The ASP Object Model
If you were to view the HTML source behind this HTML, you would see the
output in Example 1-2.

The server accepted the request, ASP.DLL interpreted and executed the server-side
script and created HTML. The HTML is sent to the client, where it appears indistin-
guishable from straight HTML code.

As mentioned earlier, you will learn more about server-side scripting and how it
works in Chapter 2.

The ASP Object Model
ASP encapsulates the properties and methods of the following six built-in objects:

• Application

• ObjectContext

• Request

• Response

• Server

• Session

Example 1-2: Sample.HTM, the Output of Sample.ASP

<HTML>
<HEAD>
<TITLE>Sample ASP</TITLE>
</HEAD>
<BODY>

Good afternoon.

Welcome to the sample. It is now approximately
9:28:47 at the server. Here are a couple of
demonstrations:

Some simple text formatting done using HTML:

Hello Size 1

Hello Size 2

Hello Size 3

Hello Size 4

Hello Size 5

The same text formatting using server-side code:

Hello Size 1

Hello Size 2

Hello Size 3

Hello Size 4

Hello Size 5

</BODY>
</HTML>
The ASP Object Model 9

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The ASP Object Model
These objects are part of the ASP.DLL and are always available to your ASP
applications.

The Application object represents your ASP application itself. This object is
universal to all users attached to an application, and there is only one Application
object for all users. The Application object has two events, Application_OnStart
and Application_OnEnd, that fire when the first user requests a page from your
application and when the administrator explicitly unloads the application using the
Microsoft Management Console (see Chapter 4, Application Object), respectively.
The OnStart event can be used to initialize information needed for every aspect of
the application. The OnEnd event can be used to do any custom cleanup work
after the end of your application. You can store any variable type (with some limi-
tations—see Chapter 3, Extending Active Server Pages) with application-level
scope. These variables hold the same value for every user of the site. See
Chapter 4 for more information on the Application object.

In this book, an ASP application is a group of scripts and HTML con-
tent files that together form some function.

The ObjectContext object is actually part of the Microsoft Transaction Server and is
only interfaced through ASP. The ObjectContext object allows you to create trans-
actional Active Server Pages. The functions in these pages that support transactions
will succeed as a single unit or fail completely. If your application requires the use
of functions that do not natively support transactions (notably file access), you
must write custom code to handle success or failure of these functions. See
Chapter 5, ObjectContext Object, for more information.

The Request object represents the way you interact with the client’s HTTP request.
This is one of the most important objects in the ASP object model. It is through the
use of the Request object that you access both HTML form-based data and param-
eters sent over the address line. In addition, you can use the Request object to
receive HTTP cookie information and client certificate information from your
users. Finally, the ServerVariables collection of the Request object gives you access
to all the information in the HTTP request header. This information contains (in
addition to the cookie information) other relevant data describing the client
machine, its connection, and its actual requests. The ServerVariables collection is
equivalent to environment variables in traditional CGI applications. See Chapter 6,
Request Object, for more information.

The Response object represents your access/control over the HTTP response sent
back to the user. Through the Response object, you can send cookies to the client
and set if and when content should expire. In addition to this, the Response object
is your route to completely controlling how data is sent to the client. Is it buffered
before sending? Is it sent as it is constructed? Finally, the Response object allows
you to seamlessly redirect the user from one URL to another. See Chapter 7,
Response Object, for more information.
10 Chapter 1 – Active Server Pages: An Introduction

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Introduction
The ASP Object Model
The Server object gives you access to the web server itself. This object contains
many utility features that you use in almost every application. Through the Server
object, you can set the timeout variable for your scripts (how long the web server
will attempt to serve a script before serving an error note instead). You also can
use the Server object to map a virtual path to a physical path or encode informa-
tion for sending over the address line. The most important method of the Server
object, however, is its CreateObject method, which enables you to create instances
of server-side components. You will use this method any time you require func-
tionality outside that provided by the built-in objects. Database access, for
example, is handled by various ActiveX Data Objects that must be instantiated on
the server before being used. See Chapter 8, Server Object, for more information.

Finally, the Session object holds information that is unique to a specific user’s
current session on the web server. Each user session is identifiable through the use
of a unique cookie that is sent to the user every time the user makes a request.
The web server starts a session for every new user that requests a page from your
web application. This session stays active by default until 20 minutes after the
user’s last request or until the session is explicitly abandoned through code. See
Chapter 9, Session Object, for more information.
The ASP Object Model 11

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Chapter 2Server-Side Scripting
CHAPTER 2

Active Server Pages:
Server-Side Scripting

Chapter 1, Active Server Pages: An Introduction, provided a brief introduction to

Active Server Pages and how they can be used to dynamically create HTML
content. In this chapter, you will learn more about what’s going on behind the
scenes. First we’ll review scripting, scripting hosts, and scripting languages. You
will learn about how Active Server Pages (the actual ASP.DLL) works to interpret
your server-side code to create HTML and how IIS then inserts that dynamically
created HTML into the HTML stream.

Client-Side Scripting
The Hypertext Markup Language, or HTML, provides for very detailed formatting
of static textual content. This content can contain images, tables, and carefully
formatted text and hyperlinks, making for a very powerful medium through which
to present information. However, aside from the very low level interactivity of
hyperlinks and their ability to move the user from one page to another in a stream
of information flowing from one page to another, HTML by itself allows for no
true interactivity. HTML does not allow the web page to react to user input in any
way beyond navigating to another page. HTML is an excellent way to allow for the
presentation of information but does not allow for the interactivity required to
transform web pages from an information medium to a dynamic web application
solution.

Netscape Communications along with Sun Microsystems created a solution called
LiveScript that allowed for the inclusion of limited programming instructions that
reside in web pages viewed using the Netscape Navigator browser on the client
machine. This programming language was limited in its ability to interact with the
user’s machine outside the browser and slowly over an evolving process was
made safe and secure. You could not use LiveScript programming instructions on
the client machine to undermine the security innate to the Netscape Navigator
browser. LiveScript, in accordance with the marketing frenzy surrounding Java,
was quickly renamed to JavaScript. Unfortunately, this renaming has led, errone-
12

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Server-Side
Scripting

Client-Side Scripting
ously, to its being thought of by many as a subset of the powerful Java language,
although only its syntax is similar to that of Java.

HTML was enlivened. Using JavaScript, you could build forms and mortgage calcu-
lators and all sorts of interactive web pages. The only drawback was that your
browser had to be a scripting host for this scripting language. But that being said,
web content quickly went from being static and largely simple to being interactive
and alive.

Before JavaScript, all interaction with the user and all reaction on the part of the
web server required the use of sophisticated web server applications and higher-
end web server machines. With the advent of JavaScript, the user’s machine was
now added to the equation, making it possible to offload some of this computa-
tional power onto the client, whereas before it had rested solely on the server.

Not to be outdone, Microsoft Corporation quickly created a scripting language of
its own: Visual Basic, Scripting Edition, or VBScript for short. VBScript is a subset
of the Visual Basic for Applications language and, like JavaScript, it allows for the
creation of interactive web pages. Unlike JavaScript, whose syntax was similar to
that of Java (and thus similar to that of C++), the syntax of VBScript was exactly
that of Visual Basic. If you knew Visual Basic (and many, many people do), you
already had a good grasp on VBScript. Furthermore, Microsoft also created its own
version of JavaScript called JScript that was similar but not identical to its
predecessor.

Today (only a few short years later), JavaScript has undergone a transformation
into a new language built using submissions from both Netscape and Microsoft.
This new language is called ECMAScript (from European Computer Manufacturers
Association). According to David Flanagan in JavaScript: The Definitive Guide, this
name was chosen specifically because it had no relation to either parent company
and it had none of the marketing glitz of Java artificially associated with it. Both
Netscape and Microsoft have continued to help ECMAScript (still called JavaScript
by everyone except members of the European Computer Manufacturers Associa-
tion) evolve. For more details on the different browsers’ implementations,
Flanagan provides excellent coverage in his book.

Although the preceding discussion suggests that only JavaScript and VBScript exist,
the web browser actually allows for a multitude of scripting language alternatives.
You could even build your own. Some of the other languages include PerlScript,
Python, and Awk, with PerlScript being the most popular after JavaScript and
VBScript.

One thing all scripting languages have in common, however, is how they are
included on a web page and how the browser recognizes them as script and not
as HTML. All script is surrounded by matching <SCRIPT></SCRIPT> tags, as the
three examples of client-side script in Example 2-1 illustrate. Each of the three
routines performs exactly the same action: each displays a message box (or alert
Client-Side Scripting 13

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Client-Side Scripting
box, depending on your preference of nomenclature) on the screen containing the
words “Hello world.”

There are two features in Example 2-1 to notice. The first is how the actual code is
surrounded by HTML comment symbols:

<!--
code here
-->

This lets the page be shown in browsers that do not support the <SCRIPT> tag
without causing problems or displaying the script on the page.

The second feature is the LANGUAGE attribute in each piece of sample code. The
LANGUAGE attribute of the <SCRIPT> tag, as you’ve undoubtedly guessed, indi-
cates what scripting language the browser should use to execute the included
code. This can be any language that your browser supports. JavaScript is probably
the safest bet for client-side scripting, since VBScript is supported only with the
use of plugins in non-Microsoft browsers, and other scripting languages are not
commonly installed on user machines. For more information about JavaScript, see
David Flanagan’s excellent book, JavaScript: The Definitive Guide, 3rd Edition. For
more information about VBScript, see Learning VBScript, by Paul Lomax. Both are
published by O’Reilly & Associates. We’ll revisit the question of scripting
languages at the end of this chapter.

Example 2-1: Client-Side Scripting Using Three Scripting Languages

<SCRIPT LANGUAGE = "JavaScript">
<!—-
Function AlertJS()
{
 alert("Hello world.")
}
-->
</SCRIPT>

<SCRIPT LANGUAGE = "VBScript">
<!—-
Sub AlertVBS()
 MsgBox "Hello world."
End Sub
-->
</SCRIPT>

<SCRIPT language="PerlScript">
<!—-
sub AlertPS()
{
 $window->alert("Hello world.");
}
-->
</SCRIPT>
14 Chapter 2 – Active Server Pages: Server-Side Scripting

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Server-Side
Scripting

Server-Side Scripting
Server-Side Scripting
The last section served to introduce you to client-side scripting: how to include
scripting code in the web pages that are viewed by your users. Now you will learn
how to bring the power of scripting to the server and harness it to dynamically
create HTML in reaction to user requests.

As you will recall from the last chapter, when the browser makes a request for a
file ending with the .ASP file extension, IIS knows to bring ASP.DLL into play to
interpret the ASP code in the file. Once interpreted, the results of this code are
placed into the document, which is a simple HTML document before it is sent to
the user.

How does ASP.DLL know which code to interpret? The answer to this question is
the key to executing code on the server. ASP.DLL interprets all code in a file (with
the .ASP file extension) that’s delimited with <%…%> as being ASP code. (There is
another way to delineate server-side code that I’ll cover in a moment.)
Example 2-2 shows an active server page named ExampleChap2.asp, with the
VBScript code that will be interpreted by ASP.DLL in bold.

When a user requests ExampleChap2.ASP, IIS pulls the file from the file system
into its memory. Recognizing the .ASP extension from the settings in the Manage-
ment Console, it uses ASP.DLL to read and interpret the file. Once interpreted, IIS
sends the final result down to the requesting client browser.

IIS handles all the HTTP traffic. ASP.DLL only interprets server-side code, pulling
in the DLL of the appropriate scripting engine when necessary. Let’s assume the
time is 10:42:43. The previous ASP file, once interpreted, would result in the
following dynamically created HTML page that will in turn be sent to the client by
IIS:

<HTML>
<HEAD><TITLE>Example</TITLE></HEAD>
<BODY>
Hello. It is now 10:42:43 on the server.
</BODY>
</HTML>

Example 2-2: ExampleChap2.asp

<HTML>
<HEAD><TITLE>Example</TITLE></HEAD>
<BODY>
<%
' Construct a greeting string with a salutation and the
' current time on the server (retrieved from the Time()
' function) and then display that in the HTML sent to the
' client.
strGreetingMsg = "Hello. It is now " & Time() & _
 " on the server."
Response.Write strGreetingMsg
%>
</BODY>
</HTML>
Server-Side Scripting 15

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Server-Side Scripting
You will learn more about the Write method of the Response object in Chapter 7,
Response Object. For now, recognize it as one way of writing information from the
portion of the script that is interpreted on the server to the portion of HTML that
will be displayed on the browser.

It is important to recognize this for what it is. There is no magic here. We are
simply capturing the HTTP request. Then ASP.DLL interprets some code and alters
the HTTP response that is sent back to the client.

ASP.DLL is an ISAPI filter that alters the resulting HTTP response
stream in reaction to information in the HTTP request combined
with code in the requested document.

The Response.Write method call is one way of inserting code into the HTML
stream that is sent back to the client, but there is a shortcut for this method call:
the <%=…%> delimiters. Note the inclusion of the equal sign (=). The equal sign is
what differentiates this as a shortcut call to the Response.Write method and not
simply more ASP code to interpret.

The <%=…%> delimiters allow for some subtle effects that can allow you to
produce some powerful server-side/client-side HTML combinations. Here is
Example 2-2 rewritten using the <%=…%> delimiters:

<HTML>
<HEAD><TITLE>Example</TITLE></HEAD>
<BODY>
Hello. It is now <%=Time()%> on the server.
</BODY>
</HTML>

Using the <%=…%> delimiters is the same as using the Write method of the
Response object. It simply inserts into the HTML stream whatever is between the
opening <%= and the closing %>. If the content between the delimiters represents a
variable, that variable’s value is inserted into the HTML stream. If the content is a
call to a function, the result of the function call is inserted into the HTML stream.

With the careful use of these delimiters, you can dynamically construct not only
HTML content but also client-side script code, as Example 2-3 demonstrates. The
script is called DynamicForm.asp, and it accepts a single parameter, button_
Count. Based on the value of button_Count, DynamicForm.asp will dynamically
build between one and ten HTML submit buttons and also dynamically generate
script for the onClick events for each of them. We will discuss this script in detail.

Example 2-3: DynamicForm.asp

<HTML>
<HEAD><TITLE>DynamicForm.asp</TITLE></HEAD>
<BODY>
Welcome to the dynamic form!
<%
' Retrieve the number of buttons the user wishes to create.
16 Chapter 2 – Active Server Pages: Server-Side Scripting

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Server-Side
Scripting

Server-Side Scripting
Suppose we call this script with the following line:

/DynamicForm.asp?button_Count=3

The result appears in Figure 2-1, and the resulting HTML source is shown in
Example 2-4.

intCmdCount = Request.QueryString("button_Count")

' Ensure that the sent parameter is within the acceptable
' limits.
If intCmdCount < 1 Then
 intCmdCount = 1
End If

If intCmdCount > 10 Then
 intCmdCount = 10
End If

' Create the buttons.
For intCounter = 1 to intCmdCount
%>
 <INPUT TYPE = button VALUE = Button<%=intCounter%>
 OnClick = "Button<%=intCounter%>_Click()">
<%
Next
%>

<SCRIPT LANGUAGE = "VBScript">
<%
' Create the scripts for each of the created buttons.
For intCounter = 1 to intCmdCount
%>
Sub Button<%=intCounter%>_Click()
 MsgBox "You just clicked button <%=intCounter%>."
End Sub
<%
Next
%>
</SCRIPT>

</BODY>
</HTML>

Example 2-3: DynamicForm.asp (continued)
Server-Side Scripting 17

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Server-Side Scripting
The parameter button_Count=3 translated into the construction of three HTML
button elements and the corresponding code to go with them. Note the names and
the onClick event procedure names for each of these buttons (in bold in the
following code):

<INPUT TYPE = button VALUE = Button1
OnClick = "Button1_Click()">

Figure 2-1: The web page that results from invoking DynamicForm.ASP

Example 2-4: HTML Source Produced by DynamicForm.ASP

<HTML>
<HEAD><TITLE>DynamicForm.asp</TITLE></HEAD>
<BODY>
Welcome to the dynamic form!
<INPUT TYPE = button VALUE = Button1
OnClick = "Button1_Click()">

<INPUT TYPE = button VALUE = Button2
OnClick = "Button2_Click()">

<INPUT TYPE = button VALUE = Button3
OnClick = "Button3_Click()">

<SCRIPT LANGUAGE = "VBScript">

Sub Button1_Click()
 MsgBox "You just clicked button 1."
End Sub

Sub Button2_Click()
 MsgBox "You just clicked button 2."
End Sub

Sub Button3_Click()
 MsgBox "You just clicked button 3."
End Sub

</SCRIPT>
</BODY>
</HTML>
18 Chapter 2 – Active Server Pages: Server-Side Scripting

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Server-Side
Scripting

ASP Functions
<INPUT TYPE = button VALUE = Button2
OnClick = "Button2_Click()">

<INPUT TYPE = button VALUE = Button3
OnClick = "Button3_Click()">

These button element names and event procedure titles each came from the
following line of code:

 <INPUT TYPE = button VALUE = Button<%=intCounter%>
 OnClick = "Button<%=intCounter%>_Click()">

Note that the result of <%=intCounter%> is inserted into the HTML text stream.
Using ASP, we were able to dynamically generate names for each of our buttons
by appending the value of a counter variable onto the end of the word “Button” in
the HTML stream.

This is a subtle point. One of the most common errors in ASP development is to
treat the result of <%=…%> as a variable name. For example, the following line of
server-side code does not result in the greeting “Hello Margaret,” though some
developers mistakenly believe it does:

<%
' INCORRECT CODE.
strUserName = "Margaret"
%>
MsgBox "Hello " & <%=strUserName%>

When the preceding is sent to the client, it will appear like this:

MsgBox "Hello " & Margaret

VBScript tries diligently to make something of the token Margaret, but the result
is shown in Figure 2-2.

The correct line of code to produce the desired result is the following:

MsgBox "Hello <%=strUserName%>"

The point here is that what’s in the <%=…%> delimiters comes into the HTML
stream as is, even inside a string. Whatever the value of the content is, that is what
is inserted into the HTML stream. Do not treat <%=…%> as a variable.

ASP Functions
Code reuse is as important in Active Server Pages as it is in any other form of
application programming. The first example of code reuse is the ASP function or
subroutine. As I mentioned in the beginning of this chapter, there is one other

Figure 2-2: Treating the result of <%=...%> as a variable name
ASP Functions 19

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ASP Functions
way to delineate server-side code: the RUNAT attribute of the <SCRIPT> tag. You
can use the RUNAT attribute to specify that a particular function or subroutine is to
be run (and called from) the server side. Example 2-5 demonstrates the use of the
RUNAT attribute to create a simple function that uses the last three letters of the
domain string to return the general type of site that it represents. This function
takes a domain string such as www.oreilly.com and returns the string “company.”
The RUNAT attribute instructs ASP that this is a server-side-only function. It will not
be sent to the client and is a valid function to call from within the server-side
code. We could now incorporate that into a script, as shown in Example 2-6.

Example 2-5: Using the RUNAT Attribute to Create a Server-Side Function

<SCRIPT LANGUAGE = "VBScript" RUNAT = SERVER>
Function DomainType(strDomainString)

 strPossibleDomain = Right(strDomainString, 3)

 Select Case Ucase(strPossibleDomain)
 Case "COM"
 DomainType = "company"
 Case "EDU"
 DomainType = "educational"
 Case "GOV"
 DomainType = "government_civil"
 Case "MIL"
 DomainType = "government_military"
 Case Else
 DomainType = "UNKNOWN"
 End Select

End Function
</SCRIPT>

Example 2-6: Including a Server-Side Function in an ASP

<HTML><HEAD><TITLE>Function Example</TITLE></HEAD>
<BODY>
<%
' In this script we'll simply initialize a string
' example parameter, but this value could have
' come from another script.
strDomainString = "perl.ora.com"
strDomainType = DomainType(strDomainString)
%>
<%=strDomainString%> is a <%=strDomainType%> site.
</BODY>
</HTML>

<SCRIPT LANGUAGE = "VBScript" RUNAT = SERVER>
Function DomainType(strDomainString)

 strPossibleDomain = Right(strDomainString, 3)
20 Chapter 2 – Active Server Pages: Server-Side Scripting

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Server-Side
Scripting

ASP Functions
The script in Example 2-6, once interpreted, generates and sends the following
script to the client:

<HTML>
<HEAD><TITLE>Function Example</TITLE></HEAD>
<BODY>
perl.ora.com is a company site.
</BODY>
</HTML>

Note that neither the text between the <%…%> delimiters nor the DomainType
function is present in the resulting HTML.

The script in Example 2-6 also demonstrates that we need not place our server-
side functions within the <HTML>…</HTML> tags. However, if we do (as in
Example 2-7), the resulting HTML will be exactly the same as it was before. The
server-side function is still not inserted into the HTML stream, even when we place
it inside the <BODY> tags.

 Select Case Ucase(strPossibleDomain)
 Case "COM"
 DomainType = "company"
 Case "EDU"
 DomainType = "educational"
 Case "GOV"
 DomainType = "government_civil"
 Case "MIL"
 DomainType = "government_military"
 Case Else
 DomainType = "UNKNOWN"
 End Select

End Function
</SCRIPT>

Example 2-7: Script Placed Within the <HTML>…</HTML> Tags

<HTML>
<HEAD><TITLE>Function Example</TITLE></HEAD>
<BODY>
<%
' In this script we'll simply initialize a string
' example parameter, but this value could have
' come from another script.
strDomainString = "perl.ora.com"
strDomainType = DomainType(strDomainString)
%>
<%=strDomainString%> is a <%=strDomainType%> site.

<SCRIPT LANGUAGE = "VBScript" RUNAT = SERVER>
Function DomainType(strDomainString)

 strPossibleDomain = Right(strDomainString, 3)

Example 2-6: Including a Server-Side Function in an ASP (continued)
ASP Functions 21

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Scripting Languages
Scripting Languages
You do not have to use one single language for the entire ASP application. There
is no problem with mixing and matching for convenience. I typically use VBScript
in server-side code and JavaScript on the client, but you are not forced to use a
single language in either setting. You can, however, force ASP to default to a
specific script by using the @LANGUAGE preprocessor ASP directive. ASP directives
are covered in Chapter 10, Preprocessing Directives, Server-Side Includes, and
GLOBAL.ASA. For now, know that you can use the following line of code as the
first in your script to force ASP to use JScript as the default scripting language
when interpreting your code:

<%@ LANGUAGE = JScript%>

If you place this line anywhere but as the first line, you will receive an error. Also
note that VBScript is the default for all server-side scripts. However, you can
change this in the Application options for your ASP application’s virtual directory.
See Appendix C, Configuration of ASP Applications on IIS.

 Select Case Ucase(strPossibleDomain)
 Case "COM"
 DomainType = "company"
 Case "EDU"
 DomainType = "educational"
 Case "GOV"
 DomainType = "government_civil"
 Case "MIL"
 DomainType = "government_military"
 Case Else
 DomainType = "UNKNOWN"
 End Select

End Function
</SCRIPT>

</BODY>
</HTML>

Example 2-7: Script Placed Within the <HTML>…</HTML> Tags (continued)
22 Chapter 2 – Active Server Pages: Server-Side Scripting

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Chapter 3Extending ASP
Extending
ASP
CHAPTER 3

Extending Active Server Pages

Chapter 1, Active Server Pages: An Introduction, presented a very brief overview of

the Active Server Pages application paradigm. This chapter covers the various
extensions for ASP. Some of these are included with IIS 4.0 and ASP 2.0, and some
are available via the World Wide Web.

Extending Active Server Pages applications usually takes the form of instantiating
server-side objects that expose methods and properties that you can access
through your server-side code. Microsoft includes many of these Active server
components with IIS 4.0. For example, one of the server components included
with IIS is the Browser Capabilities component. Once instantiated, a Browser
Capabilities object allows you to discern details about the user’s web browser:
what scripting it supports, what platform it is running on, and so on. This compo-
nent allows you to dynamically alter your site in response to the presence or
absence of certain browsers.

As will be discussed in Chapter 8, Server Object, you use the CreateObject method
of the Server object to instantiate a server component. For example, to create a
MyInfo object in your Active Server Page, you could use code similar to the
following:

<%
' Declare local variables.
Dim objMyInfo

' Instantiate a MyInfo object.
Set objMyInfo = Server.CreateObject("MSWC.MyInfo")

' You can now initialize the values.
objMyInfo.PersonalName = "A. Keyton Weissinger"
...[additional code]
%>
23

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Extending Active Server Pages
As you see in this example, instantiating these server components is simple. Once
instantiated, you can use any of an object’s exposed methods or properties to
extend your web application.

Although IIS comes with several server components, you also can write your own
in any development language that can create COM objects, such as Microsoft
Visual Basic, Visual C++, Visual J++, or Inprise’s Delphi. The details of writing
server components are beyond the scope of this book, so I would encourage you
to read O’Reilly’s forthcoming Developing ASP Components, by Shelley Powers.

The server components discussed in this book are described in Table 3-1.

Table 3-1: Server Components Discussed in ASP in a Nutshell

Server
Component Description

ADO Adds database access to Active Server Pages applications.
Through its COM interface to OLE DB data providers, you are
able to access any OLE DB or ODBC compliant data source.

Browser
Capabilities

Easily determines the functionality supported by your user’s
web browser.

Collabora-
tion Data
Objects for
NTS

Adds messaging functionality to web applications. Using the
objects that make up CDONTS, you can create robust, mail-
enabled groupware applications using ASP. Although only
introduced in this book, CDONTS is a powerful extension to
ASP.

Content
Linking

Maintains a linked list of static content files. From within these
static files, the Content Linking component allows you to set up
easy-to-use navigation from one page to the next (or previous)
page.

Content
Rotator

Creates a schedule file containing several pieces of HTML that
are alternately placed in your web site. This component is
similar to the Ad Rotator component but works with straight
HTML content rather than advertisements.

Counters Maintains a collection of counters, over the scope of an entire
ASP application, that can be incremented or decremented from
anywhere in your web site.

File Access
Components

Allows you to access your local and network file system. It’s
part of the scripting runtime library that’s installed and regis-
tered by default when you install IIS.

MyInfo Maintains commonly accessed information, such as the
webmaster’s name, address, company, etc., from within your
web applications.

Page Counter Creates a page counter on any page on your web site. The
page count is saved regularly to a text file. This allows you to
maintain page count information even if the web server is
restarted.

Permission
Checker

Checks the permissions on a given resource on the local
machine or on the network. This allows you to determine on
the fly whether the current user has permission to see a file.
24 Chapter 3 – Extending Active Server Pages

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

PART II

Object Reference
This part covers every aspect of the intrinsic objects that make up the IIS
object model. This includes every event, method, property, and collection
for the Application, ObjectContext, Request, Response, Session, and Server
objects. This part also includes a reference for all of the ASP directives and
in-depth coverage of the GLOBAL.ASA file.

Because support for these objects, as well as for the GLOBAL.ASA file, is
built in to Active Server Pages, you can access and take advantage of all of
these components from ASP automatically; no additional components or
libraries are needed.

Part II is organized into the following chapters:

Chapter 4, Application Object

Chapter 5, ObjectContext Object

Chapter 6, Request Object

Chapter 7, Response Object

Chapter 8, Server Object

Chapter 9, Session Object

Chapter 10, Preprocessing Directives, Server-Side Includes, and
GLOBAL.ASA
ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Chapter 4Application Object
Ap
CHAPTER 4

Application Object

In the context of Active Server Pages, an application is the sum of all the files that
 plication
O

bject
can be accessed through a given virtual directory and its subdirectories. This ASP
application context is the same for all clients using the application. For example, a
client from Thailand who requests pages from your /SearchApp virtual directory is
accessing the same “application” as a second client from Sweden who is
requesting pages from the same virtual directory—regardless of which specific
web page within the virtual directory each is requesting.

Just as traditional standalone applications allow you to share information
throughout the application, so too do ASP applications. You can share informa-
tion among all clients of a given ASP application using the Application object. This
built-in object represents the ASP application itself and is the same regardless of
the number or type of clients accessing the application and regardless of what part
or parts of the application those clients are requesting.

The Application object is initialized by IIS the moment the first client requests any
file from within the given virtual directory. It remains in the server’s memory until
either the web service is stopped or the application is explicitly unloaded from the
web server using the Microsoft Management Console.

IIS allows you to instantiate variables and objects with application-level scope.
This means that a given variable contains the same value for all clients of your
application. You also can instantiate server-side objects with application-level
scope that likewise contain the same values for all clients. These application-level
variables and objects can be accessed and changed from the context of any user’s
session and from any file within the current application.

As stated earlier, the Application object’s initialization occurs when the first user of
your application requests any file from within the virtual directory that the ASP
application encompasses. This initialization can be thought of as setting aside
memory for the given ASP application. The web server instantiates and initializes
the Application object for you. However, you can customize this initialization by
27

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Comments/Troubleshooting
including code in a special optional file called GLOBAL.ASA. Although I will
discuss this file in greater depth in Chapter 10, Preprocessing Directives, Server-Side
Includes, and GLOBAL.ASA, it is worth presenting a brief overview here.

The GLOBAL.ASA file exists—if it exists—at the root of the physical directory
mapped to by your ASP application’s virtual directory. It is processed every time a
new user requests a page from within the application’s virtual directory. This file
contains initialization code for both the user’s session and the application itself. If
the user is not the first user, the application-specific sections of GLOBAL.ASA are
not processed. If the GLOBAL.ASA file does not exist or does not contain any
code, but the user’s request is the web server’s first request for files within a given
application, the web server still initializes the Application object. However, the
web server’s initialization involves only the dimensioning of memory required for
the application.

The GLOBAL.ASA file provides a place for you to create variables and objects that
have application-level scope. This section of the GLOBAL.ASA file represents an
event procedure. The event is the OnStart event, and its event handler is executed
when the application is started. It’s important to note that although the GLOBAL.ASA
file is processed for every user that makes a request, the Application object’s
OnStart event is executed for only the first user. (The OnStart and the corre-
sponding OnEnd event procedures are covered in detail later in this chapter.)

Variables and objects with application-level scope have the same value for all
users at all times during the life of the application. If one user requests a page
containing code that changes an application-level variable’s value, then that vari-
able’s value is changed for all users. This presents a problem: potentially, two or
more users could attempt to change the value of the same application-level vari-
able at the same time. Fortunately, ASP provides the Application object’s Lock and
Unlock methods to avoid conflicts in these situations. Just as you must carefully
consider the ramifications of using global variables in a multithreaded application,
you also must consider the ramifications of using variables with application-level
scope. Use application-level variables with care.

The properties, collections, methods, and events of the ASP Application object are
outlined in the following box.

Comments/Troubleshooting
Application-level variables are, in effect, global variables for your ASP application.
The use of globals in ASP applications should be viewed with as much skepticism
as the use of globals in traditional standalone applications, if not with more. The
most important step is to painstakingly consider its scope before implementing any
object or variable with application-level scope. There are very few instances in
which using these ASP global variables is necessary.

With that warning, there are a few instances in which using application-level vari-
ables or objects is useful in creating functional ASP applications. One of the most
important of these is maintaining application-specific statistics for your web site.
Using application-level variables that are incremented at the beginning of each
user session, for example, you could maintain a count of clients that have used
28 Chapter 4 – Application Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Application
O

bject
Comments/Troubleshooting
your application. Although such web management tools as Microsoft Site Server
perform similar tasks, their statistics are file specific, not application specific.

Some ASP literature has suggested using application-level objects for maintaining
open ActiveX Data Objects (ADO) database connections for all application users.
(For more information on ADO, see Chapter 11, ActiveX Data Objects 1.5.) This is
not a good use of application-level variables, since this approach prevents ODBC
from pooling connections per individual pages.* However, you could use an appli-
cation-level variable to maintain an application-specific connection string for that
same database connection.

There is one trap that you should be aware of when considering the use of appli-
cation-level variables and objects. Consider the following scenario. You have two
physical directories: c:\inetpub\wwwroot\MainApp and c:\inetpub\wwwroot\
MainApp\SearchApp. These directories are mapped to the virtual directories
/MainApp and /SearchApp, respectively. You have, in effect, an application within
an application. The first client requests a page within the c:\inetpub\wwwroot\
MainApp\SearchApp physical directory. Which initialization code will be used to
initialize the Application object—the code in the GLOBAL.ASA for /MainApp or the
GLOBAL.ASA for /SearchApp? In this case the /SearchApp GLOBAL.ASA is the one
processed. Until a file in /MainApp that does not exist in /SearchApp is requested,
the GLOBAL.ASA file for /MainApp is not processed. If the two GLOBAL.ASA files
define different sets of application-level variables, you have no way of knowing
within your code which Application variables were properly initialized without
testing them.

Application Object Summary
Properties

None

Collections
Contents
StaticObjects

Methods
Lock
Unlock

Events
OnStart
OnEnd

* ODBC connection pooling provides a method by which ODBC connections can be reused
by successive users. Instead of creating a new connection each time a client requests one, the
server attempts to reuse an already existing connection that is no longer in use. If unused
ODBC connections reside in memory after a certain period of time (configured in the MMC),
they are destroyed to free memory.
Comments/Troubleshooting 29

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Collections Reference
Finally, note that IIS now allows you to set ASP applications up in separate
memory spaces from each other and from the web server itself by simply checking
an option on the Properties panel of a given virtual directory in IIS’s Microsoft
Management Console. This ability is an important improvement in IIS. If your ASP
application is running in a separate memory space from the web server and a
server object in it (or the scripting engine itself) crashes, it will not also crash the
web server or your other ASP applications.

Collections Reference

Contents Collection
Application.Contents(Key)

The Contents collection of the Application object contains all the application-level
scoped variables and objects added to the current application through the use of
scripts (not through the use of the <OBJECT> tag).

Before examining how elements are added to the Contents collection, you must
first understand the properties of the Contents collection. The Contents collection
has three properties:

Item
Sets or retrieves the value of a specific member of the Contents collection.
You determine which specific member of the collection by using an index
number or a key. For example, if you wish to set the value of the first
element of the Contents collection, you could use a line of code similar to the
following:

Application.Contents.Item(1) = 3.14159

Note that you use a 1 (one), not a 0 (zero), to represent the first element in
the Contents collection. This is a subtle point, since using a zero in your code
will not result in an error; it will simply be ignored.

The next point to note is that we could have set the value of this element
using a name instead of a number, as in:

Application.Contents.Item("PI") = 3.14159

The name of the element (in this case “PI”) is its Key property (discussed next).

Item is the default property of the Contents collection, and the Contents
collection is the default collection of the Applications object. This means that
each of the following three lines of code is interpreted in exactly the same
manner in your application:

Application.Contents.Item(1) = 3.14159
Application.Contents(1) = 3.14159
Application(1) = 3.14159

as is each of these:

Application.Contents.Item("PI") = 3.14159
Application.Contents("PI") = 3.14159
Application("PI") = 3.14159
30 Chapter 4 – Application Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Application
O

bject
Contents Collection
One final point: it is always safer to use the key rather than the index when
referencing the value of a specific element in the Contents collection, because
the index numbers for elements in the Contents collection begin from the first
application-scoped variable value set by any user of your application. With
application-scoped variables, determining which variable was set first (aside
from those in the GLOBAL.ASA file) can be problematic.

As mentioned earlier, the values of the elements in the collection that were
set in the Application_OnStart event in the GLOBAL.ASA file are set in the
order in which they exist in the event procedure’s code.

Key
Represents the name of a specific element in the Contents collection.
Remember from earlier that each element’s value is represented by the Item
property. Similarly, each element’s name is represented by its Key property.

If you do not know the name of a specific key, you can obtain it using its
ordinal reference. For example, assume that you want to learn the key name
for the third element in the collection and, subsequently, retrieve that
element’s value. You could use the following code:

strKeyName = Application.Contents(3)
strKeyValue = Application.Contents.Item(strKeyName)

If, on the other hand, you know that the third element’s key name is “STATE,”
you could simply use the following code to retrieve the value of that element:

StrKeyValue = Application.Contents.Item("STATE")

Count
Represents the total number of elements in the Contents collection.

Notes

You can initialize application-level variables and thus add elements to the
Contents collection in one of two ways. First, you can initialize Application vari-
ables in the Application_OnStart event procedure in the GLOBAL.ASA file, as
Example 4-1 illustrates.

Example 4-1: Initializing Application-Level Variables in GLOBAL.ASA

' <<<<<<<<<<<<<<< FROM GLOBAL.ASA >>>>>>>>>>>>>>>>>>
' This code resides in the GLOBAL.ASA file at the
' root of the current application.
' See Chapter 10 for more details on the GLOBAL.ASA file.

Sub Application_OnStart

 Application.Contents.Item(1) = "Georgia"
 Application.Contents(2) = "Kentucky"
 Application(3) = "Alabama"
 Application.Contents.Item("STATE_FOURTH") = "California"
 Application.Contents("STATE_FIFTH") = "Oregon"
 Application("STATE_SIXTH") = "Washington"

End Sub
Contents Collection 31

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Contents Collection
The code in Example 4-1 creates six application-scoped variables, thus adding six
elements to the Contents collection. Note that these variables will be instantiated
and initialized only at the start of the application, not upon every visit to the site
by subsequent users. These variables maintain the same values unless another
script changes them for all pages and for all users.

You also can create application-scoped variables and thus add elements to the
Contents collection inside any script on any page. Note, however, that any vari-
ables created in this manner are created and maintained across the whole
application and all its users. Example 4-2 illustrates this method of initializing
application-scoped variables.

The code in Example 4-2 adds six more application-scoped variables to the appli-
cation. Note that these variables will be reinitialized every time a user requests the
page containing this code. To prevent this waste of processor power, it might be
better to perform this initialization using code similar to the following:

<%
' A more efficient example of the creation of an
' application-scoped variable.
If IsEmpty(Application.Contents.Item(13)) Then
 Application.Contents(13) = "Texas"
End If

%>

This code creates a 13th application variable for the current application only if it
has not already been created.

The Contents collection supports the For Each and For…Next constructs for iter-
ating the collection, as Example 4-3 demonstrates.

Example 4-2: Initializing Application-Level Variables in a Server-Side Script

<%
' This code exists in the server-side section of a script
' on the web site.
Application.Contents.Item(7) = "Florida"
Application.Contents(8) = "Tennessee"
Application(9) = "Mississippi"

Application.Contents.Item("STATE_TENTH") = "New York"
Application.Contents("STATE_ELEVENTH") = "New Jersey"
Application("STATE_TWELFTH") = "Vermont"

%>

Example 4-3: Using For Each with the Contents Collection

<%
For Each strKey in Application.Contents
%>
 The next item in Application's Contents collection

 has <%= strKey %> as its key and
 <%= Application.Contents(strKey) %>
32 Chapter 4 – Application Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Application
O

bject
Contents Collection
Note, however, that the Contents collection does not support the Add or Remove
methods that are common with most collection objects. This makes planning
imperative, since variables given application scope stay resident until the web
server is stopped or the last user’s session times out.

If you add an object to the Application’s Contents collection, make sure that the
threading model for the object supports its use in an application scope; use of the
free-threaded model is recommended.* For more on the use of various threading
models in IIS server components, see Shelley Powers’ forthcoming book Devel-
oping ASP Components, published by O’Reilly & Associates.

To access an application-scoped object’s properties or methods, use an extension
of the syntax you saw earlier for accessing the value of an application-scoped vari-
able, as the following code fragment illustrates:

' In this example, assume you have an application-scoped Ad
' Rotator variable called MyAdRot.

' Accessing a property:
intBorder = Application.Contents("MyAdRot").Border

' Executing a method:
Application.Contents("MyAdRot").GetAdvertisement("Sched.txt")

If you intend to use a given object in a transaction using the Object-
Context object, do not give that object application or session scope.
Objects used in transactions are destroyed at the end of the transac-
tion and any subsequent reference to their properties or calls to their
methods will result in an error.

When adding an array to the Application object’s Contents collection, add the
entire array as a whole. When changing an element of the array, retrieve a copy of
the array, change the element, and then add the array to the Contents collection as
a whole again. The code in Example 4-4 demonstrates this.

 as its value.<P>
<%
Next %>

* Free-threaded applications allow multiple user processes to access the same instance of the
component simultaneously.

Example 4-4: Working with Arrays in the Contents Collection

<%
' Create an array variable and add it to Contents collection.
ReDim arystrNames(3)

arystrNames(0) = "Chris"

Example 4-3: Using For Each with the Contents Collection (continued)
Contents Collection 33

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

StaticObjects
StaticObjects
Application.StaticObjects(Key)

The StaticObjects collection contains all of the objects added to the application
through the use of the <OBJECT> tag. You can use the Item property (discussed
later) of the StaticObjects collection to retrieve properties of a specific object in the
collection. You also can use the Item property of the StaticObjects collection to
access a specific method of a given object in the collection.

You can add objects to this collection only through the use of the <OBJECT> tag in
the GLOBAL.ASA file, as in the following example:

<OBJECT RUNAT=Server SCOPE=Application ID=AppInfo2
 PROGID="MSWC.MyInfo">
</OBJECT>

You cannot add objects to this collection anywhere else in your ASP application.

The StaticObjects collection, like other ASP collections, has the following
properties:

Item
Returns a reference to a specific element in the collection. To specify an item,
you can use an index number or a key.

arystrNames(1) = "Julie"
arystrNames(2) = "Vlad"
arystrNames(3) = "Kelly"

Application("arystrUserNames") = arystrNames

%>

The second name in the User Names array is
<%= Application("arystrUserNames")(1) %>

<%

' Change an element of the array being held in the
' Contents collection.
ReDim arystrNames(3)

arystrNamesLocal = Application("arystrUserNames")
arystrNamesLocal(1) = "Mark"

Application("arystrUserNames") = arystrNamesLocal
' The second name is now Mark.

%>
Now, the second name in the User Names array is
<%= Application("arystrUserNames")(1) %>

Example 4-4: Working with Arrays in the Contents Collection (continued)
34 Chapter 4 – Application Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Application
O

bject
StaticObjects
Key
Returns the name of a specific element in the collection; the name is assigned
by the ID attribute of the <OBJECT> tag. For example, you could receive the
name of the first element in the collection like this:

objElement = Application.StaticObjects.Key(1)

Use the value of the Key property to retrieve the value of an element by
name. For example, suppose the first object in the StaticObjects collection is
named MyAdRotator. You could then use the following line of code to set (or
retrieve) the value of the Border property of that object:

strKey = Application.StaticObjects.Key(1)
Application.StaticObjects.Item(strKey).Border = 0

Count
The current number of elements in the collection.

For more imformation on the Item, Key, and Count properties of a
collection, see the section on the Contents collection of the Applica-
tion object, earlier in this chapter.

Example

' <<<<<<<<<<<<<<< FROM GLOBAL.ASA >>>>>>>>>>>>>>>>>>
' This code resides in the GLOBAL.ASA file at the root
' of the current application. The following <OBJECT>
' tag is processed only once for the current application.
' See Chapter 10 for more details on the GLOBAL.ASA file.

<OBJECT RUNAT=Server
SCOPE=Application
ID=AppInfo1
PROGID="MSWC.MyInfo">
</OBJECT>

<OBJECT RUNAT=Server
SCOPE=Application
ID=AppInfo2
PROGID="MSWC.MyInfo">
</OBJECT>

' <<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>

<%
' The following code initializes the AppInfo1 component.
' This initialization code can reside anywhere.
AppInfo1.PersonalName = "Gertrude Stein"
AppInfo1.PersonalAddress = "233 Main Street"

AppInfo2.PersonalName = "David Davidson"
AppInfo2.PersonalAddress = "19A West Avenue"
StaticObjects 35

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Methods Reference
' The following code uses the StaticObjects collection
' of the Application object to retrieve the value
' of the PersonalName property of both AppInfo1 and AppInfo2.
For Each objInfo In Application.StaticObjects
%>
 The personal name is

 <%= Application.StaticObjects(objInfo).PersonalName%><P>
<%
Next
%>

There are <%= Application.StaticObjects.Count %> items
in the Application's StaticObjects collection.

Notes

The StaticObjects collection allows you to access any object instantiated with
application-level scope through the use of an <OBJECT> tag. Objects instantiated
using the Server.CreateObject method are not accessible through this collection.
The nomenclature here can be a bit confusing. To reiterate: the StaticObjects
collection contains those server objects instantiated through the use of the
<OBJECT> tag, not through the CreateObject method of the Server object.

The StaticObjects example in the IIS 4.0 documentation by Microsoft suggests that
if you iterate through this collection, you will be able to reference each property.
This is somewhat misleading, as it suggests that the collection actually represents
all the properties of the objects rather than the objects themselves. If you want to
access the properties or methods of objects in the StaticObjects collection, you
must use the dot operator outside of the parentheses around the Key, followed by
the property or method name, as demonstrated in the preceding example.

Objects created in the GLOBAL.ASA file are not actually instantiated on the server
until the first time a property or method of that object is called. For this reason, the
StaticObjects collection cannot be used to access these objects’ properties and
methods until some other code in your application has caused them to be instanti-
ated on the server.

Do not give application or session scope to an object used in a transaction using
the ObjectContext object. Objects used in transactions are destroyed at the end of
the transaction, and any subsequent references to their properties or calls to their
methods will result in an error.

Methods Reference

Lock
Application.Lock

The Lock method locks the Application object, preventing any other client from
altering any variables’ values in the Contents collection (not just those variables
you alter before calling the Unlock method). The corresponding Unlock method is
used to release the Application object so other clients can again alter the Contents
36 Chapter 4 – Application Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Application
O

bject
Lock
collection variable values. If you fail to use the Unlock method, IIS will unlock the
variable automatically at the end of the current Active Server Pages script or upon
script timeout,* whichever occurs first.

Parameters

None

Example
<%
' This script exists on the second page of a
' multipage ASP application, so that users may
' or may not visit it. The example shows how you could
' see how many visitors the page has had.
' Assume that TotalNumPage2 starts at 0.

' Lock the Application object.
Application.Lock

intNumVisits = Application.Contents("TotalNumPage2")
intNumVisits = intNumVisits + 1
Application.Contents("TotalNumPage2") = intNumVisits

' Explicitly unlock the Application object.
Application.Unlock

' NOTE: Using the PageCnt.DLL would be a more
' efficient manner of doing this.

%>
<HTML>
<HEAD><TITLE>Home Page</TITLE></HEAD>
<BODY BGCOLOR = #ffffcc>
Welcome to our homepage. You are client number
<%= Application.Contents("TotalNumPage2")%> to our site. Thank
you for your patronage.
</BODY>
</HTML>

Notes

Any client connected to your web server can call a script that potentially could
alter the value of a variable in the Application Contents collection. For this reason,
it is a good idea to use the Lock and Unlock methods every time you reference or
alter a variable in the Contents collection. This prevents the possibility of a client
attempting to change a variable’s value when another client is resolving that vari-
able’s value.

* The ASP script timeout is adjustable through the Properties page of the web site using the
Microsoft Management Console. The default is 120 seconds.
Lock 37

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Unlock
Keep in mind that you cannot create a read-only variable by using a call to the
Lock method without a corresponding call to Unlock, since IIS automatically
unlocks the Application object.

You do not have to call the Lock and Unlock methods in the Application_OnStart
event procedure (see this chapter’s Events Reference for more about the
Application_OnStart event). The Application_OnStart event occurs only once
regardless of the number of sessions that are eventually initiated. Only the first
client request triggers the Application_OnStart event and, for that reason, only that
client can alter the value of the specific Application variable. Also, no other client
requests will be handled until the Application_OnStart code has completed.

Unlock
Application.Unlock

The Unlock method releases the application variables from a Lock method call.
Once Unlock has been called, other clients can again alter the values of the vari-
ables in the Application Contents collection. If you call Lock and do not provide a
corresponding Unlock, IIS will automatically unlock the variables in the Applica-
tion Contents collection at the end of the current active server page or when the
script times out, whichever comes first.

Parameters

None

Example

See the example for Application.Lock.

Notes

See the notes for Application.Lock.

Events Reference

OnEnd
Application_OnEnd

The Application_OnEnd event is triggered when the ASP application itself is
unloaded from the web server (using the Microsoft Management Console) or when
the application is inadvertently stopped for some reason (i.e., the web service is
stopped on the web server). Application_OnEnd is called only once per applica-
tion. The code for this event procedure resides in the GLOBAL.ASA file and is
processed after all other code in the file. It is in the code for the Application_
OnEnd event that you will “clean up” after any application-scoped variables.

Parameters

None
38 Chapter 4 – Application Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Application
O

bject
OnStart
Example
' <<<<<<<<<<<<<<< FROM GLOBAL.ASA >>>>>>>>>>>>>>>>>>
' This code resides in the GLOBAL.ASA file at the
' root of the current application. The following
' procedure is processed only once for the current
' application.
' See Chapter 10 for more details on the GLOBAL.ASA file.

<SCRIPT LANGUAGE="VBScript" RUNAT=Server>
Sub Application_OnEnd

' This code will run on the server when
' the application stops.
' This code saves the final count of an application
' use counter to a file.
Set filsysObj1 = _
 CreateObject("Scripting.FileSystemObject")
Set tsObj1 = filsysObj1.CreateTextFile("c:\usrcount.txt", _
 True)
tsObj1.WriteLine(Application.Contents("AppUserCount"))
tsObj1.Close

End Sub
</SCRIPT>

' <<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>

Notes

The use of the Application_OnEnd event is tricky. The Microsoft documentation
suggests that the OnEnd event is triggered when there are no longer any active
sessions. However, this is not the case. Only when the web service is interrupted
or when the administrator explicitly unloads the application from the web server’s
memory (using the MMC) is the OnEnd executed. You cannot assume that this
event will ever be called from your application without something going wrong or
direct intervention on your part. This is yet another reason to very carefully
consider the implications before using application-level variables of any kind.

You cannot use the Server object method MapPath (see Chapter 8, Server Object,
for more on the Server object) to map a relative or virtual directory to a physical
directory within the Application_OnEnd event procedure. Microsoft gives no
reason for this limitation, though it is likely a security-related control.

OnStart
Application_OnStart

The Application_OnStart event is triggered when the first client request is received.
Application_OnStart is called only once per application. The code for this event
procedure resides in the GLOBAL.ASA file and is processed before any other code
or object instantiation in the file.
OnStart 39

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

OnStart
Parameters

None

Example
' <<<<<<<<<<<<<<< FROM GLOBAL.ASA >>>>>>>>>>>>>>>>>>
' This code resides in the GLOBAL.ASA file at the
' root of the current application. The following
' procedure is processed only once for the current
' application.
' See Chapter 10 for more details on the GLOBAL.ASA file.

<SCRIPT LANGUAGE="VBScript" RUNAT=Server>
Sub Application_OnStart

' This code will run on the server when
' the application starts.
' This code retrieves the last final user count
' and uses it to initialize an Application
' variable.
Set filsysObj1 = CreateObject("Scripting.FileSystemObject")
Set tsObj1 = filsysObj1.OpenTextFile("c:\usrcount.txt", _
 True)
Application.Contents("AppUserCount") = tsObj1.ReadAll
tsObj1.Close

End Sub
</SCRIPT>

' <<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>

Notes

The Application_OnStart event procedure, if it exists, is the first code run on the
server for a given Active Server Pages application. For this reason, it is the best
place to initialize application-level variables. No other code in your ASP applica-
tion is guaranteed to run.

Carefully consider the use of application-level variables. Every variable with appli-
cation scope that you dimension and initialize in the Application_OnStart event
continues to take up memory on the server until the end of the application.
40 Chapter 4 – Application Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Chapter 5ObjectContext Object
CHAPTER 5

ObjectContext Object

An important addition in Active Server Pages 2.0 is the ability to create a transac-
O
bjectContext

O
bject
tional script: one whose constituent code segments all succeed completely or fail
as a group. For example, using such a script, one section of code could remove a
record from an inventory table, and a second section could add a record to a sales
log table. However, only if both sections of code succeed does the script itself
succeed. If the removal of the inventory record or the addition of the sales record
fails, the script itself fails. Both processes are rolled back: the deleted record, if it
was removed, is added back into the database, and the sales record, if it was
added, is removed from the sales log table. This ability to wrap several functions
in a single transactional unit that succeeds or fails as a whole is an important
improvement in the power of ASP applications. Previously, all transactions relied
on database transaction support.

ASP application transactions are controlled by Microsoft Transaction Server. This
piece of the BackOffice suite allows control over all database actions coded to use
MTS. Support for MTS and transactional scripts is built into IIS and Personal Web
Server and does not require any special setup. Without MTS transactional support,
your applications would have to track all database changes manually and roll back
all database actions by hand, keeping track of multiuser and concurrency issues,
etc. MTS gives this support for very little extra coding—as long as the database
your application is connected to supports the XA protocol from the X/Open
consortium. Note that this support is currently limited to SQL Server. Note, also,
that this means that file actions are not yet supported by MTS—or at least, not
automatically.

ASP’s support of MTS transactions is coded through the use of the ObjectContext
object, which represents the actual ObjectContext object of MTS itself. By calling
methods of the ObjectContext object and coding its events, you can create a trans-
actional script with only a few more lines of code.
41

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Comments/Troubleshooting
To declare all the script on a given page to be transactional, simply add the
following line of code as the first line in your script:

<%@ TRANSACTION = Required %>

For more details on the TRANSACTION ASP directive, see Chapter 10, Prepro-
cessing Directives, Server-Side Includes, and GLOBAL.ASA. Here it is important only
that this line be the first in your script; including this line alerts the web server to
use MTS to ensure that the script succeeds or fails as a whole.

To commit the transaction or abort it, you simply call the SetComplete or SetAbort
methods of the ObjectContext object, respectively. If you are dealing with a
complex transaction containing segments of code that are not supported by MTS
(notably file actions), you can specially code for these actions in the ObjectCon-
text events OnTransactionCommit and OnTransactionAbort. There are examples of
all of these methods and event procedures in the reference section later in this
chapter.

Comments/Troubleshooting
There are currently two very important limitations in constructing transactional
scripts:

• Only database actions are supported, and only databases that support the XA
protocol are supported by MTS.

• A transaction cannot span more than one ASP page. For this reason, you must
be very careful in creating your pages: they must include all the actions
required by your transactions but not be so large as to slow the processing of
the page by too large a percentage.

If you write your own server components that complete some or all of the data-
base actions in your transaction, that component must be registered in an MTS

ObjectContext Object Summary
Properties

None

Collections
None

Methods
SetComplete
SetAbort

Events
OnTransactionCommit
OnTransactionAbort
42 Chapter 5 – ObjectContext Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

O
bjectContext

O
bject

SetAbort
package.* MTS transactional support is provided only if the component is regis-
tered. What’s more, you should create your own library packages and not include
your component in the IIS in-process package. Custom library packages can be
used by multiple ASP applications and are run in the same process as the ASP
DLL. Setting up library packages also gives your component the ability to be
pooled for reuse by your applications. This pooling is managed by MTS as well.
You also can add your components to a server package, but doing so is required
only for role-based transactions or transactions running on remote computers.

Note that you should not give objects functioning in transactions session- or appli-
cation-level scope, since transactional objects are deactivated at the end of their
transaction. If you do give such an object session or application scope, calls after
the end of the transaction will fail and raise an error.

Although transactions are supported only for database actions, you can add code
to the OnTransactionCommit and OnTransactionAbort event procedures to provide
your own nondatabase transactional support. For example, code in these event
procedures could easily be used to write or remove files from the file system upon
success or failure of a given transaction.

ObjectContext exposes six methods other than the ones you can access through
ASP. However, these are accessible only through code within the server compo-
nents being managed by MTS.

Transactional scripts are a very important addition to ASP. If you had access to
database transactions only through use of ActiveX Data Objects, it would still be a
very important and useful function. However, by creating custom server compo-
nents, you can create complex and powerful transactions.

Methods Reference

SetAbort
ObjectContext.SetAbort

Aborts the transaction as a whole. When it is called, the transaction ends unsuc-
cessfully, regardless of code that has or has not already been processed in your
script.

You can use this method in your script after testing for the completion of a given
part of the transaction, or a server component managed by MTS can call it. Calling
SetAbort rolls back any parts of the transaction that have already occurred and
calls the ObjectContext_OnTransactionAbort event procedure if one exists in your
script.

Parameters

None

* For more information on MTS packages and server components, see the forthcoming book,
Developing ASP Components, written by Shelley Powers and published by O’Reilly & Associates.
SetAbort 43

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SetAbort
Example
<%

' The following code tests the result from a method call
' to a custom server component that attempts to remove
' a book from the inventory table and then tests the
' results from a credit card check.

' Based on this code and the segment that follows it, the
' script will call either the SetAbort or the SetComplete
' method of the ObjectContext object.

' Attempt to sell 2 copies of the book Animal Farm.
intBooks = MyInventory.SellBook("Animal Farm", 2)

' Check the credit card given by the client.
intCheckCC = MyCreditChecker.ChkCard("0001231234")

If intBooks = 2 And intCheckCC = 0 Then

 ' Complete the transaction. Two copies of the book
 ' are in the inventory and the credit card checks out.
 ObjectContext.SetComplete

Else

 ' Abort the transaction. Either there are not two
 ' copies of the book in the inventory or the credit
 ' card did not check out.
 ObjectContext.SetAbort

End If

%>

Notes

Any segment of a transactional script can call the SetAbort method. Note that if
you have code that exists after the call to SetAbort, it will not be processed until
after the execution of the OnTransactionAbort event procedure, if one exists. For
this reason, be sure that your OnTransactionAbort event procedure performs any
cleanup that is necessary for actions that are not supported in an MTS transaction
(notably file actions).

If you want some code to be processed regardless of a call to SetAbort, make sure
that it is before the call to SetAbort in the script, or test for completion of the trans-
action after your code in the script.
44 Chapter 5 – ObjectContext Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

O
bjectContext

O
bject

OnTransactionAbort
SetComplete
ObjectContext.SetComplete

Signals the successful completion of a transaction. When it is called, the code in
the OnTransactionCommit event procedure code is processed if it exists.

A call to the SetComplete method from within the script itself only indicates the
success of the script on the page. It does not override possible failure of the code
within the components referenced in the script. All transactional components in
the script must signal SetComplete for the transaction to commit.

Parameters

None

Example

See the example in the previous section, “SetAbort.”

Notes

Note that calling SetComplete does not necessarily mean that the entire transac-
tion is complete. Every component called from the script also must call the
SetComplete method of the ObjectContext object.

If you do not explicitly call SetComplete, the transaction is complete only after all
code is processed without any calls to SetAbort. If no call to SetAbort is made by
the end of the script, the OnTransactionCommit event procedure code is
processed if it exists, regardless of whether SetComplete is called.

Events Reference

OnTransactionAbort
OnTransactionAbort()

The OnTransactionAbort event procedure is processed immediately if the SetAbort
method of the ObjectContext object is called explicitly in scripted code or by a
server component called from the scripted code. If no code calls the SetAbort
method, this event procedure is never processed.

Parameters

None

Example
<%

' The following code procedure is processed when the code in
' the SetAbort method example is processed.
SubOnTransactionAbort ()
%>
 Your book sales transaction could not be completed.
 Either there was not sufficient inventory for your
OnTransactionAbort 45

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

OnTransactionCommit
 sale to be processed, or your credit card did not
 go through.
<%
 ' Clean up any nontransactional actions here...

End Sub

%>

Notes

Use OnTransactionAbort to clean up any nonsupported actions your transaction
makes that must be reversed if the transaction fails. This includes changes to vari-
ables (session- and application-level scope), the registry, and the file system. Note,
however, that your server components should clean up after themselves.

You also should use the OnTransactionAbort event to inform the client that the
transaction has failed.

Do not call the SetAbort or SetCommit methods from the OnTransactionAbort
event procedure. Doing so may introduce a loop and result in the loss of function
for your application and/or a loss of data.

OnTransactionCommit
OnTransactionCommit()

The OnTransactionCommit event procedure is processed immediately if the
SetComplete method of the ObjectContext object is called explicitly in scripted
code or by a server component called from the scripted code. It also is called
implicitly if no script on the current page called the SetAbort method.

Parameters

None

Example
<%

' The following code procedure is processed when the code in
' the SetAbort method example is processed.
SubOnTransactionCommit ()
%>
 Your book sales transaction was completed.
 Thank you for your sale.

<%
 Session("intTotalSales") = Session("intTotalSales") + 1

 ' Process any nontransactional code here...

End Sub

%>
46 Chapter 5 – ObjectContext Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

O
bjectContext

O
bject

OnTransactionCommit
Notes

The OnTransactionCommit event procedure can be used to inform the client of the
success of the transaction. It also can be used for code that you want to be
processed only if the transaction completes successfully.

Do not call the SetAbort or SetCommit methods from the OnTransactionCommit
event procedure. Doing so may introduce a loop and result in the loss of function
for your application and/or a loss of data.
OnTransactionCommit 47

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Chapter 6Request Object
CHAPTER 6

Request Object

The Request object gives you access to the user’s HTTP request header and body.

It is arguably the most important built-in ASP object to understand, since it is
through this object that you will be able to react to the decisions made by the
user. Using the Request object, you can dynamically create web pages and
perform more meaningful server-side actions (such as updating a database) based
on input from the user.

How HTTP Works
I will cover the Request object in detail in just a moment. First, however, it is
important for you to understand the basics of the HTTP protocol. With such an
introduction, use of the Request object is translated from the realm of the myste-
rious to the ordinary. For those of you whose eyes are beginning to glaze over,
don’t worry. This will be only a brief overview of the HTTP protocol.

HTTP: A Simple Example

You probably already know that HTTP is a “transaction” style protocol. The
browser (the client) sends a request to the server. The server obeys the request if
it can and sends a response back to the client. The server then completely forgets
about the transaction. The browser may or may not forget about it.

To illustrate the interaction between web browser and server, let’s examine a fairly
simple example that illustrates this exchange. Figure 6-1 shows Netscape Navi-
gator displaying a very simple form, HELLO.HTM, that prompts the user for her
name. When the user clicks the Submit button, a CGI application is invoked on a
WebSite server that sends back the page displayed in Figure 6-2. (Although Navi-
gator and WebSite are used for this example, the exchange between any browser
and any server would be more or less identical. Also, although this example uses a
CGI application, the HTTP request/response cycle is almost exactly the same as
that for ASP applications. For more about CGI-to-ASP conversion, see Appendix A,
48

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Request
O

bject
How HTTP Works
Converting CGI/WinCGI Applications into ASP Applications.) Let’s see how this
interchange between browser and server are handled by the protocol:

1. When the user finishes entering the URL for HELLO.HTM, Navigator sends* the
following stream to the server:

[73:send:(179)]GET /hello.htm HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/3.0 (Win95; I)
Host: pc229.west.ora.com
Accept: image/gif, image/x-xbitmap, image/jpeg,
 image/pjpeg, */*

Figure 6-1: HELLO.HTM, a simple HTML form

Figure 6-2: HELLOCGI.HTM, an HTML page created by a CGI application

* send in the following output listing is a sockets function that sends a stream in a connected
socket. In the output, 73 identifies the socket, while 179 is the value returned by the function
and represents the total number of bytes sent.
How HTTP Works 49

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

How HTTP Works
This is a request header. The browser indicates that it wants the server to get
the document /HELLO.HTM. Get is more than a generic description of what
the server should do; it indicates the HTTP request type. (For details, see
“HTTP Request Types,” later in this chapter.) The browser also indicates that
it’s using version 1.0 of the Hypertext Transfer Protocol.

Note that the first line in this HTTP header is actually an artifact of
the TCP/IP packet sniffer used in this demonstration and not part of
the actual HTTP request sent. The same is true for all HTTP seg-
ments in this chapter.

2. The server receives* the headers sent by the browser, as shown in the
following output produced by our spy program, and processes the request:

[21:recv: completed (179)]GET /hello.htm HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/3.0 (Win95; I)
Host: pc229.west.ora.com
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

3. The server sends the document HELLO.HTM to the browser:

[21:send:(535)]HTTP/1.0 200 OK
Date: Monday, 30-Sep-98 23:33:00 GMT
Server: WebSite/1.1
Allow-ranges: bytes
Accept-ranges: bytes
Connection: Keep-Alive
Content-type: text/html
Last-modified: Monday, 30-Sep-98 23:30:38 GMT
Content-length: 297

<HTML>
<HEAD><TITLE>Hello, World!</TITLE></HEAD>
<BODY>
<FORM ACTION="/cgi-win/hello.exe" METHOD="POST">
What is your name? <INPUT TYPE="text" NAME="name" SIZE=60>

<INPUT TYPE="submit" VALUE="Submit the form">
<INPUT TYPE="reset" VALUE="Clear all fields">
</FORM>
</BODY> </HTML>

Here, WebSite sends a total of 535 bytes to the browser. This consists of a
response header, followed by a blank line, followed by the HTML document
itself. The header fields indicate, among other things, the number of bytes
(the Content-length header) and the format (the Content-type header) of the

* The recv function is used to receive data from a socket. In the output, the initial number, 21,
represents the socket used by the server. “Completed (179)” indicates the function’s return val-
ue, in this case that it completed normally by receiving 179 bytes. Note that this corresponds
to the number of bytes sent by the browser.
50 Chapter 6 – Request Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Request
O

bject
How HTTP Works
transmitted data. “200 OK” is a status code indicating that the browser’s
request was fulfilled. The server also indicates that, like the browser, it’s using
version 1.0 of HTTP.

4. The browser reads the headers and data sent by the server:

[73:recv: posted]
[73:recv: completed (260)]HTTP/1.0 200 OK
Date: Monday, 30-Sep-98 23:33:00 GMT
Server: WebSite/1.1
Allow-ranges: bytes
Accept-ranges: bytes
Connection: Keep-Alive
Content-type: text/html
Last-modified: Monday, 30-Sep-98 23:30:38 GMT
Content-length: 297

<HTML>
<HEAD><TITLE>H
[73:recv: posted]
[73:recv: completed (275)]ello, World!</TITLE></HEAD>
<BODY>
<FORM ACTION="/cgi-win/hello.exe" METHOD="POST">
What is your name? <INPUT TYPE="text" NAME="name" SIZE=60>

<INPUT TYPE="submit" VALUE="Submit the form">
<INPUT TYPE="reset" VALUE="Clear all fields">
</FORM>
</BODY> </HTML>

Although two recv operations are required to retrieve the header records
along with the document, the total number of bytes read in these two opera-
tions equals the total number of bytes sent by the server.

5. The browser displays the form asking for the user’s name and, when the user
fills it out and clicks the Submit button, sends the following to the server:

[70:send:(232)]POST /cgi-win/hello.exe HTTP/1.0
Referer: http://pc229.west.ora.com/hello.htm
Connection: Keep-Alive
User-Agent: Mozilla/3.0 (Win95; I)
Host: pc229.west.ora.com
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*
[70:send:(69)]Content-type: application/x-www-form-urlencoded
Content-length: 14
[70:send:(2)]
[70:send:(16)]name=Jayne+Doe

Because the browser is transmitting form data, the HTTP request type is
“POST,” as the very first header record indicates. Similarly, the Content-length
and Content-type records indicate that the browser is transmitting 14 bytes of
x-www-form-urlencoded data in the body of the request. This consists of
the information input by the user in the form’s single data field, the name text
box.

6. The server receives the header records and form data transmitted by the
browser in the previous step. (Since it’s basically identical to the text sent by
How HTTP Works 51

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

How HTTP Works
the browser, we won’t duplicate it here.) The URL (/cgi-win/hello.exe) causes
the server to launch the CGI application HELLO.EXE and to transmit the
form’s data to it. The CGI application may do some back-end processing, then
builds an HTML document on the fly and returns it to the server.

7. The server returns the HTML document to the browser along with the neces-
sary header records, as the following output from WSock32 Spy shows:

[18:send:(422)]HTTP/1.0 200 OK
Date: Monday, 30-Sep-98 23:33:10 GMT
Server: WebSite/1.1
Allow-ranges: bytes
Accept-ranges: bytes
Connection: Keep-Alive
Content-type: text/html
Content-length: 231

<HTML><HEAD>
<TITLE>Welcome to this Web Page!</TITLE></HEAD>

<BODY><H1>Welcome to Our Web Server!</H1><p><p>
Hello, Jayne Doe! We're glad that you took
the time out of your busy day to visit us!
<HR></PRE></BODY></HTML>

Notice that the server indicates to the browser that it’s sending 231 bytes of an
HTML document.

8. The browser receives the data stream send by the server and uses it to render
the HTML page.

Hopefully, this gives you a fairly good sense of what’s involved in the interchange
between browser and server. It’s important, though, to take a more in-depth look
at some of the points that we’ve touched on only briefly, as well as to cover some
additional features that are not included in this simple example.

HTTP Request Types

The request type is passed by the client to the server to indicate what the server
should do with the URL that’s also supplied by the browser. Although the HTTP
specification details a number of request types, like PUT and DELETE, only two are
supported by all servers and in common use: GET and POST. A GET request asks
the server to “get” a piece of information, typically a document, and return it to
the client. If the request includes any additional information, these are appended
as arguments to the URL. A POST request, on the other hand, provides the server
with information to be “posted” to the URL; typically, it’s used to send the contents
of an HTML form to the server, or to provide the server with information that’s
needed for back-end processing. The information itself is contained in the body of
the request.

Most servers cannot handle data received from either the POST or GET methods
internally. Normally, POST requests, as well as GET requests that also send data to
the server, are handled by accessory programs or DLLs (CGI and ISAPI applica-
52 Chapter 6 – Request Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Request
O

bject
How HTTP Works
tions and ISAPI filters). Both POST and GET requests can return any kind of data of
any size.

While it may seem when transmitting data to a web server that GET and POST are
similar, one rule is hard and fast: A GET request must never change anything.
Don’t write an ASP script that makes changes to a database, for instance, in
response to a GET request. The reason for this is discussed in greater detail in the
following section, “Form Submission.”

Form Submission

A user enters input into the fields of a form. When the form is submitted, the data
contained in each field of the form is transferred to the server, which then passes
it to ASP. This data is sent in the format name=value, where name is the name
assigned to the field by the NAME= attribute of the <INPUT> tag, and value is the
value entered in that field. For example, if the user enters “Archie” in a field
prompting for his first name, the browser may send along the string first_
name=Archie.

If the form is written to use METHOD=GET, the form data is appended to the URL as
an argument string. If the form contains many fields or if fields contain long strings
of text, the complete URL can become very large and unwieldy. In addition, the
limit of the number of characters submitted in a GET—typically about 2000—is
much lower than in a POST.

If the form instead uses METHOD=POST, the name=value pairs are sent as the body
of the request instead of being appended to the URL. In addition to the greater
ease of handling of POST requests, most servers offer better performance when
extracting data from the body of a request than from a URL in the request header.

Always use the POST method with forms that change something or cause any irre-
versible action (most do). POST is safer and more efficient; GET should never be
used to change anything. In developing your ASP scripts, you can decide whether
you want to support data passed to your program using the GET method.

GET Versus POST

In the event that you’re confused about the difference between these two
methods, GET can be used to retrieve any document, POST cannot. On the
other hand, both GET and POST can be used to pass data to the object indi-
cated by the URL. When GET is used for this purpose, the data is included in
the URL as the argument string; in order to extract this data with Win-CGI,
you have to parse the argument string. When POST is used, the data is
passed to the server in the body of the request message. So, in cases in
which data is sent to the server, GET and POST differ in the method used to
transmit that data.
How HTTP Works 53

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

How HTTP Works
HTTP Request and Response

Headers are the most misunderstood part of HTTP, yet understanding their role
can make understanding the properties and methods of both the ASP Request and
Response objects much easier.

Take a look at any Internet email message. It consists of two parts, the header and
the body. The header consists of several lines that describe the body of the
message and perhaps the way the message was handled as it was routed to you.
The header and body are separated by a blank line. (For more information on
header syntax, consult RFC-822.)

An HTTP message (either a request or a response) is structured the same way. The
first line is special, but the rest of the lines up to the first blank line are headers
just like in a mail message. The header describes the request and its content, if
any, or the response and its content.

The request

In an earlier section, “HTTP: A Simple Example,” we saw a number of requests
from the browser. Here is another example of a simple HTTP request:

POST /cgi-win/hello.exe HTTP/1.0
Accept: image/gif, image/jpeg, */*
User-Agent: Mozilla/2.0N (Windows; I; 32Bit)
Content-type: application/x-www-form-urlencoded
Content-length: 14
[mandatory blank line]
name=Jayne+Doe

The first line, which is known as the request-line, describes the type of request (or
method)—in this case POST, the URL, and, finally, the version of the HTTP
protocol that the client uses. The second line describes the types of documents
that the client can accept. The third line is an “extra” header that’s not required by
HTTP. It gives the name and version of the client software. Following this, as
discussed in the section “HTTP: A Simple Example,” are two lines describing the
information contained in the body of the request.

Everything up to the mandatory blank line is part of the HTTP request header. In
addition to the example lines here, there can be other lines in this section. For
example, if the browser is sending information contained in a “cookie,” that infor-
mation also will be in the request header.

Below the mandatory blank line is the HTTP request body. In most cases, this
section of the request is empty (for example, when the browser is requesting only
a static page and is not sending any information). However, when the POST
method is used, the information sent to the web server is located in this section of
the request.

The response

Here is an example of a simple HTTP response:

HTTP/1.0 200 OK
54 Chapter 6 – Request Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Request
O

bject
How HTTP Works
Date: Thursday, 02-Nov-95 08:44:52 GMT
Server: WebSite/1.1
Last-Modified: Wednesday, 01-Nov-95 02:04:33 GMT
Content-Type: text/html
Content-length: 8151
[mandatory blank line]
<HTML><HEAD>
<TITLE>...

The first line of the response is also special and is known as the status-line. It
contains the protocol version the server uses, plus a status code and a reason
phrase. The server uses the status code and reason phrase to inform the browser
whether it was able to respond to the browser’s request; in this case, it’s success-
fully filled the browser’s request for a document. The second line contains the date
and time the server handled the request. Third is a header line describing the
server software and version. The fourth line indicates the date and time when the
requested document was last modified. The last two lines describe the type of data
and the number of bytes in the requested document. This is followed by exactly
one blank line, then the body of the message, which contains the document data
that the server is sending back for the browser to display.

As with the HTTP request, everything above the mandatory blank line is consid-
ered part of the HTTP response header. Everything below this line is part of the
response body.

This chapter covers the ASP Request object, which you can use to access both the
header and the body of the HTTP request. The next chapter discusses the ASP
Response object, which you use in manipulating the HTTP response from the web
server.

The HTTP Request and the ASP Request Object

As mentioned earlier, the ASP Request object allows you to access both the header
and body of the HTTP request sent to the web server by the client’s browser. The
method of retrieving information from the HTTP request is basically the same for
an ASP script as it is for a CGI application. The exceptions come not from the
actual request mechanics but from how each type of application is loaded into the
web server (CGI versus an ISAPI filter), as described in the first two chapters of
this book.

Just as with CGI applications, the client browser can send information to an ASP
script in two different manners. First, it also can send information by means of an
HTML form using the GET method:

<HTML>
<HEAD><TITLE>Welcome to the Corp.</TITLE></HEAD>
<BODY>
<FORM ACTION=" http://mycorp.com/secure.asp" METHOD="GET">
First name: <INPUT TYPE="text" NAME="first_name" SIZE=60>

Last name: <INPUT TYPE="text" NAME="last_name" SIZE=60>

<INPUT TYPE="submit" VALUE="Submit the form">
<INPUT TYPE="reset" VALUE="Clear all fields">
</FORM>
</BODY> </HTML>
How HTTP Works 55

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

How HTTP Works
When the client submits a GET request, the information about the request is
appended to the end of the request URL as name/value pairs separated by amper-
sands and preceded by a question mark. Each name corresponds to an element in
the form. For example, suppose the user entered Horatia and Thompson into the
two fields in the last example and clicked on the Submit button. The submission
of the preceding form is, as far as the server is concerned, identical to the
following:

http://mycorp.com/secure.asp?first_name=horatia&last_
name=thompson

This is an important point. Following this example, consider the following line of
code:

http://mycorp.com/secure.asp?first_name=horatia&last_
name=thompson

If the user were to type this into the address line or click on a link containing the
preceding as a URL, the web server would treat that resulting HTTP request
exactly as if the information had been sent as part of a form using the GET request.
From within your ASP application, you can access this information through the
QueryString collection of the Request object. For example:

<%
strFirstName = Request.QueryString("first_name")
%>

will initialize the strFirstName variable to the value sent in the first_name
parameter. The QueryString collection is discussed in detail later in this chapter.

Just as with CGI applications, you also can send information to an ASP script using
the POST method. In this case, instead of being part of the HTTP request header,
the information would be in the body of the request object:

<HTML>
<HEAD><TITLE>Welcome to the Corp.</TITLE></HEAD>
<BODY>
<FORM ACTION="http://mycorp.com/secure.asp" METHOD="POST">
First name: <INPUT TYPE="text" NAME="first_name" SIZE=60>

First name: <INPUT TYPE="text" NAME="last_name" SIZE=60>

<INPUT TYPE="submit" VALUE="Submit the form">
<INPUT TYPE="reset" VALUE="Clear all fields">
</FORM>
</BODY> </HTML>

This form’s submission would result in an HTTP request similar to the following:

POST /secure.asp HTTP/1.0
Accept: image/gif, image/jpeg, */*
User-Agent: Mozilla/2.0N (Windows; I; 32Bit)
Content-type: application/x-www-form-urlencoded
Content-length: 35
[mandatory blank line]
first_name=horatio&last_name=aubrey

For your application to manipulate the information sent in that HTTP request, you
would have to use the Form collection of the Request object:
56 Chapter 6 – Request Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Request
O

bject
Comments/Troubleshooting
<%
strFirstName = Request.Form("first_name")
%>

This will initialize the strFirstName variable to the value sent in the first_name
parameter. The Form collection is discussed in detail later in this chapter.

The ASP Request Object
The properties, collections, methods, and events of the ASP Request object are as
follows:

Comments/Troubleshooting
In the previous discussion of ASP and the GET and POST methods, we saw that
information from a GET is retrieved by using the QueryString collection and that
information from a POST is retrieved by using the Form collection. This is true, but
there is a simpler way: you do not have to specify a collection. For example, the
code:

strName = Request("name")

returns the value of the “name” key regardless of the collection in which it’s
located, because IIS searches all collections. When you specify a value in this
manner, ASP looks through each Request object collection in the following order:

1. QueryString

2. Form

3. Cookies

4. ClientCertificate

5. ServerVariables

Request Object Summary
Properties

TotalBytes

Collections
ClientCertificate
Cookies
Form
QueryString
ServerVariables

Methods
BinaryRead

Events
None
Comments/Troubleshooting 57

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Properties Reference
The variable you are initializing will receive the value in the first instance of the
name/value pair whose name matches the string requested. For this reason, it is
important to realize that if you have the same name/value pair in two or more
collections, you will receive the first one found according to the preceding
sequence, unless you specify a particular collection.

As with the other collections in the ASP object model, all the collections discussed
in this chapter for the Request object support the Item and Key properties, the
Count method, and the For..Each construct.

Properties Reference

TotalBytes
Var = Request.TotalBytes

The TotalBytes property is a read-only value that specifies the total number of
bytes posted to the web server by the client in the HTTP request body. This prop-
erty is important when preparing to read data from the request body using the
BinaryRead method of the Request object.

Parameters

Var
Receives the total number of bytes in the client’s HTTP request body when it
posts data to the web server. Remember that the TotalBytes property is read-
only.

Example

In this example, assume that the user has responded to the following form:

<HTML>
<HEAD><TITLE>File Upload Form</TITLE></HEAD>
<BODY>
<FORM ENCTYPE = "multipart/form-data”
ACTION= "http://mycorp.com/secure.asp" METHOD="POST">
Select a file to upload:
<INPUT TYPE="file" NAME="filename">

<INPUT TYPE="submit" VALUE="Submit the form">
</FORM>
</BODY> </HTML>

You can use the TotalBytes property to determine exactly how many bytes of
information were sent to the web server in the HTTP request:

<%
' The following code retrieves the total number of
' bytes sent in the user's HTTP request. This variable
' is then used to determine how many bytes to retrieve
' using the Request object's BinaryRead method.
Dim lngTotalByteCount
Dim vntRequestData
58 Chapter 6 – Request Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Request
O

bject
ClientCertificate
lngTotalByteCount = Request.TotalBytes

vntRequestData = Request.BinaryRead(lngTotalByteCount)

%>

Notes

Most often, you will not need to access data in the HTTP request body at the low
level provided by the Request object’s BinaryRead method and so will not need to
retrieve the value of the TotalBytes property. You will use the Form and
QueryString collections for almost all of your request data access.

In the preceding example, the value of vntRequestData represents
the total bytes sent, not just the byte count of the uploaded file; i.e.,
all header-related HTTP request information also counts toward this
total. To retrieve from the preceding upload only the file contents,
you would have to parse out the header information.

Collections Reference

ClientCertificate
Request.ClientCertificate

The ClientCertificate collection of the Request object provides access to the certifi-
cation fields of the client’s digital certificate. Client certificates are sent to the web
server when a client’s browser supports the Secure Sockets Layer and that browser
is connected to a web server also running the Secure Sockets Layer (i.e., the URL
starts with https:// rather than http://). For example, if you were using Internet
Explorer 4.01 and were connected to an Internet Information Server web site with
SSL running, each request made by your browser would include your client certifi-
cate, if you have one. The fields of a client certificate are specified in the
International Telecommunications Union (ITU) recommendation X.509.

The ClientCertificate collection, like the other ASP collections, has the following
properties:

Item
Returns the value of a specific element in the collection. To specify an item,
you can use an index number or a key.

Key
Represents the name of a specific element in the ClientCertificate collection.
Just as each element’s value is represented by the Item property, each
element’s name is represented by its Key property.

If you do not know the name of a specific key, you can obtain it using its
ordinal reference. For example, assume that you want to learn the key name
ClientCertificate 59

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ClientCertificate
for the third element in the collection and, subsequently, that element’s value.
You could use the following code:

strKeyName = Request.ClientCertificate.Key(3)
strKeyValue = Request.ClientCertificate.Item(strKeyName)

If, on the other hand, you know that the third element’s key name is
“ISSUER,” you could simply use the following code to retrieve the value of
that element:

strKeyValue = Request.ClientCertificate.Item("ISSUER")

As with other ASP collections, you can retrieve the value of any field of the
Cookies collection through the use of the Item property. Note that, because Item is
the default property of the collection, the syntax can be abbreviated so that it does
not explicitly show the use of the Item property. For example:

strClientCountry = Request.ClientCertificate("Issuer")

is only an abbreviated form of:

strCertIssuer = Request.ClientCertificate.Item("Issuer")

For more information on the Item, Key, and Count properties of a
collection, see the discussion in the section “Contents Collection” in
Chapter 4, Application Object.

The available Key values are predefined and are as follows:

Certificate
A string value that contains the entire binary stream from the certificate
content. The content is retrieved in standard ASN.1 (Abstract Syntax Notation
One) format, the international standard for representing data types and
structures.

Flags
A set of flags that provide additional information about the client’s certificate.
These flags are integer values that can be represented by the constants
ceCertPresent and ceUnrecognizedIssuer if the VBScript include file
cervbs.inc is included in your scripts (see Chapter 10, Preprocessing Direc-
tives, Server-Side Includes, and GLOBAL.ASA, for more on including files). As
the constant names suggest, ceCertPresent signifies that a client certificate
is present, and ceUnrecognizedIssuer signifies that the client’s digital certif-
icate was issued by an unknown certificate authority.

Issuer
A string that contains several pieces of information about the issuer of the
client’s digital certificate. If no SubKey parameter (discussed later) is added,
using the Issuer key returns a comma-delimited list of all the Issuer subfield
values (e.g., C=US, O=VeriSign, GN=Weissinger, etc.).
60 Chapter 6 – Request Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Request
O

bject
ClientCertificate
SerialNumber
An ASCII representation of the hexadecimal bytes of the client’s certification
serial number. This value is provided by the issuer. Retrieving the Serial-
Number key would provide a number such as 0A-B7-34-23.

Subject
A list of comma-delimited strings that provide information about the owner of
the digital certificate. If no SubKey is provided, the entire comma-delimited
list of subfields is retrieved, similar to that described for the Issuer key.

ValidFrom
The date the certificate becomes valid. This key’s value is provided as a date
and time. For example, a possible value of the ValidFrom key (in the U.S.)
could be 1/29/98 12:01:00 A.M.

ValidUntil
The date the certificate becomes invalid. This key’s value is provided as a date
and time. For example, a possible value of the ValidUntil key (in the U.S.)
could be 1/28/99 11:59:59 P.M.

You can add a “subkey” to some of the Key values to retrieve an individual
subfield from either the Issuer or Subject key lists. For example, if you wanted to
obtain the country of origin subkey value from the Issuer key list, you would
retrieve the value:

Request.ClientCertificate("IssuerC")

If you wanted to retrieve the locality subkey value from the Subject key list, you
would retrieve its value using the syntax:

Request.ClientCertificate("SubjectL")

You also can retrieve a value from a specific subkey, including those
not listed here, from the Certificate key string value using the sub-
key’s ASN.1 identifier. An ASN.1 identifier is a list of numbers sepa-
rated by a period, similar in appearance to an IP address, but not
limited to 0 through 255. For example: 3.56.7886.34.

The available subkeys are as follows:

C The country of origin for the Subject or Issuer.

CN The common name of the Subject key. Note this subkey is not defined for the
Issuer key.

GN The given name of the Subject or Issuer.

I The initials of the Subject or Issuer.

L The locality of the Subject or Issuer.

O The organization or company name of the Subject or Issuer.

OU The name of the specific organizational unit within an organization or
company for a Subject or Issuer.
ClientCertificate 61

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ClientCertificate
S The state (or province) of the Subject or Issuer.

T The title of the Subject or Issuer.

Example
<%

' The following code retrieves the country of origin
' for the client's certificate issuer.
strCertIssuerCountry = Request.ClientCertificate("IssuerC")

%>

<!-- #include file="cervbs.inc" -->

<%
' The next example code determines whether the
' issuer is recognized by using the flags key.
If Request.ClientCertificate("Flags") _
 and ceUnrecognizedIssuer Then
%>
 Your identification is in question because your issuer
 is not recognized.
<%
Else
%>
 Welcome to our site.
<%
End If

' Finally the following code iterates through the
' ClientCertificate collection and writes the key-key
' value pairs to the response buffer.
For Each key In Request.ClientCertificate
 Response.Write "The " & key & " key contains the value "
 Response.Write Request.ClientCertificate(key) & "
"
Next

%>

Notes

Before you can retrieve information from a client’s digital certificate, you must
ensure that the client’s web browser uses the SSL3.0/PCT1 protocol in its requests
to your site. The simplest way to do this is to attempt to retrieve an element from
the ClientCertificate collection.

You also must ensure that you have set up your IIS web server to request client
certificates.

If the client sends no digital certificate, any key you attempt to retrieve from the
ClientCertificate collection will be empty.

The ITU Recommendation X.509 is just that—a recommendation. It has not been
recognized as an official standard. For this reason, various companies’ certificates
62 Chapter 6 – Request Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Request
O

bject
Cookies
may function slightly differently or may not contain all the fields you are
attempting to retrieve. To ensure you are properly identifying your clients, it is
wise to do some experimentation with the ClientCertificate collection before
relying on it.

Cookies
Request.Cookies

Before discussing the Cookies collection, we’ll briefly introduce/review the
concept of HTTP cookies. This will be only a brief overview. For more informa-
tion, visit either the Netscape Preliminary Specification at www.netscape.com/
newsref/std/cookie_spec.html, or visit Cookie Central, a clearinghouse of all cookie-
related information. I can specifically recommend www.cookiecentral.com/
unofficial_cookie_faq.htm.

The problem with a stateless protocol like HTTP is that it forces both the server
and client to do a great deal of repetitive work. For example, with a truly stateless
protocol, the web server would have to ask you who you are every single time
you navigate to a page on the site—even if you navigate to this new page from
another page within the same site. Likewise, your interaction would be limited to
what you can enter and save on one page of information, because without some
way of storing the data from one page, a second page has no way of getting to
that data.

Netscape Communications Corp. foresaw this problem early on and devised a
method by which small pieces of information could be stored by the web server
on the web client’s machine. This information would, in turn, be sent to the server
each time the client requested a page from the same area from which she received
the information. That little bit of information is at the root of Netscape’s Persistent
Client State Mechanism or “cookies,” as they are known. (It’s interesting to note
that, according to the Netscape preliminary specification, this state object was
called a cookie “for no compelling reason.”)

Through the use of cookies, web servers can store information on the client
machine in a safe, easy-to-retrieve fashion that make almost all e-commerce
possible. Web sites can now keep track of who you are, when you last visited,
and what type of books you like, for example.

Cookies are very simple. They are sent to the client using a Set-Cookie HTTP
response header in the following format (note that the Set-Cookie header should
all be on one line):

Set-Cookie: NAME=VALUE; expires=DATE; domain=DOMAIN_NAME;
path=PATH; secure

The syntax breaks down as follows:

NAME=VALUE
The name/value pair of the specific cookie the web server wishes saved on
the client machine. The value can contain any character but white space,
commas, or semicolons. This part of the cookie is mandatory.
Cookies 63

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Cookies
expires
Holds a date after which the browser can dispose of the cookie. If no
expires attribute is given, this defaults to the end of the current HTTP
session. The format of the expires date is the following:

Wdy, DD-Mon-YYYY HH:MM:SS GMT

Note that only Greenwich mean times are allowed.

domain
Each time the user navigates to a specific URL, the domain attributes of all the
cookies on the user’s machine are compared against the domain of the URL. If
the domain attribute of any cookie on the user’s machine matches the “tail” of
the URL domain (the last two segments of the full domain name), then that
cookie is sent as a Request header (more on this later) to that URL. A domain
must have at least two periods in its name to set the domain attribute of a
cookie sent to the client. For example, www.microsoft.com can send cookies
to your machine (and does), but mydomain.com cannot. The actual value of
the Microsoft-related cookie domain attribute would be Microsoft.com.

This cookie would thus be sent to any URL ending with Microsoft.com,
including www.microsoft.com, home.microsoft.com. Likewise, only pages
within this domain can set cookies with this domain attribute. For example,
www.microsoft.com can send cookies with a domain of Microsoft.com, but
www.ora.com cannot.

If no domain attribute is included in the cookie sent to the client browser, the
default is the domain name of the sender of the cookie. This is an optional
parameter.

path
The subset of URLs within the domain defined by the cookie’s domain
attribute. Its value determines whether the cookie is sent back to the server. If
no path attribute is sent, the default is the path of the document the browser
is viewing. For example, cookies from www.oreilly.com/newtitles/upcoming.
asp without a path attribute set would default to /newtitles/. The browser
will send cookies from this page only to those pages in this path. The most
general path for a domain is “/”. This is an optional attribute.

This discussion of path brings up a sometimes confusing point. Does the
browser’s machine store one cookie for each page in a path or does it only
store a single cookie that is used repeatedly? The answer is that the browser
stores a cookie for each individual cookie value. There is no single cookie
that contains those cookie values for the current page. Each cookie value has
its own entry.

secure
When present for a cookie, instructs the browser to send this cookie only to
pages within the path specified in the path property if the server and browser
are communicating over a secure channel (HTTPS, for example).

If the user navigates to a URL for which a cookie is present on the local machine,
the browser will send a Request header in the following format:

Cookie:Name1=Value1;Name2=Value2;...NameX=ValueX;
64 Chapter 6 – Request Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Request
O

bject
Cookies
where:

NameX
Is the name of a cookie for that URL.

ValueX
Is the value of the corresponding cookie with the name NameX. This value
must be a string with no spaces, semicolons, or commas.

An example will help to make this clearer. Suppose a client navigates to a URL
and his browser receives the following HTTP response headers:

Set-Cookie: userid=a.keyton.weissinger; domain=yourbooks.com;
path=/; expires=Thursday, 10-Nov-1999 23:59:59

Set-Cookie: usersel=aspbooks; domain=yourbooks.com;
path=/sales/; expires=Monday, 01-Jan-2010 23:59:59

Between now and 10 November 1999 at 11:59 P.M., the first cookie will be sent to
the web server any time the client navigates to any page within any domain
whose last two segments are yourbooks.com. The HTTP request header will
resemble the following:

Cookie: userid=a.keyton.weissinger

Between now and 1 January 2010 at 11:59 P.M., the second cookie will be sent to
any page in the yourbooks.com domain whose path is /sales/something. For
example, the following cookie request header:

Cookie: usersel=aspbooks

would be sent to www.yourbooks.com/sales/default.asp or to www.yourbooks.com/
sales/final/asp, or even to www.yourbooks.com/sales/checkout/default.asp.

Finally, if both sets of criteria (for both cookies userid and usersel) are met, the
following cookie header will be sent by the user browser:

Cookie: userid=a.keyton.weissinger; usersel=aspbooks

There are several other details about cookies that you should be aware of if you
plan to make extensive use of them. See either of the preceding references for
more information. With this brief overview concluded, we’ll now move on to the
Cookies collection of the Request object.

The Cookies collection of the Request object enables your ASP application to
retrieve the values of cookies and cookie dictionary items from the client’s HTTP
request body.

The Cookies collection, like the other ASP collections, has the following
properties:

Item
Represents the value of a specific cookie in the collection. To specify a
cookie, you can use an index number or a key.
Cookies 65

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Cookies
Key
Represents the name of a specific element in the Cookies collection. Just as
each element’s value is represented by the Item property, each element’s
name is represented by its Key property.

If you do not know the name of a specific key, you can obtain it using its
ordinal reference. For example, assume that you want to learn the key name
for the third element in the collection and, subsequently, that element’s value.
You could use the following code:

strKeyName = Request.Cookies.Key(3)
strKeyValue = Request.Cookies.Item(strKeyName)

If, on the other hand, you know that the third element’s key name is “STATE,”
you could simply use the following code to retrieve the value of that element:

strKeyValue = Request.Cookies.Item("STATE")

Count
Represents the number of elements in the collection.

As with other ASP collections, you can retrieve the value of any field of the
Cookies collection through the use of the Item property. Note that in the exam-
ples and explanations given here, the syntax has been abbreviated so that it does
not explicitly show the use of the Item property. For example:

strLastSearch = Request.Cookies("LastSearch")

is only an abbreviated form of:

strLastSearch = Request.Cookies.Item("LastSearch")

For more information on the Item, Key, and Count properties of a
collection, see the discussion in the section “Contents Collection” in
Chapter 4.

In addition to storing simple values, a cookie in the Cookies collection can repre-
sent a cookie dictionary. A dictionary is a construct that is similar to an associative
array in that each element of the array is identifiable by its name.

However, it is important to note that although a cookie can contain a cookie
dictionary, it cannot contain more complex data types, such as objects.

To determine the value of a specific value within a cookie dictionary, you must
use a SubKey. For example, suppose a specific cookie represents the five colors
chosen by a user on a web page. The cookie itself is called Colors and the
subkeys have the following names: color1, color2, . . . color5. To determine
the value residing in color3, you would use code resembling the following:

strColor3 = Request.Cookies("Colors")("color3")

To determine whether a specific cookie has subkeys, you must use the HasKeys
property of that specific cookie, as in the following:

blnHasKeys = Request.Cookies("Colors").HasKeys
If blnHasKeys Then
66 Chapter 6 – Request Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Request
O

bject
Cookies
 strColor3 = Request.Cookies("Colors")("color3")
End If

Example
<%
' The following code iterates through the Cookies collection.
' If a given cookie represents a cookie dictionary, then
' a second, internal for...each construct iterates through
' it retrieving the value of each subkey in the dictionary.
Dim strCookie
Dim strSubKey

Dim str3rdCookieValue
Dim strCompanyCookieValue

For Each strCookie In Request.Cookies
 If Request.Cookies(strCookie).HasKeys Then

 ' The cookie is a dictionary. Iterate through it.
%>
 The cookie dictionary <%=strCookie%> has the
 following values:
<%
 For Each strSubKey In Request.Cookies(strCookie)
%>
 SubKey: <%= strSubKey %>

 Value:
 <%=Request.Cookies(strCookie)(strSubKey)%>

<%
 Next
 Else
 ' The cookie represents a single value.
%>
 The cookie <%=strCookie%> has the following value:
 <%=Request.Cookies(strCookie)%>

<%
 End If

Next

' The following code retrieves the value of the third cookie
' in the Cookies collection.
str3rdCookieValue = Request.Cookies(2)

' The following code retrieves the value of the "company"
' cookie in the Cookies collection.
strCompanyCookieValue = Request.Cookies("Company")

%>
Cookies 67

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Form
Notes

When accessing a cookie that represents a cookie dictionary, if you do not specify
a subkey, you will retrieve a string value similar to the following:

FirstSubKey=FirstSubKeyValue&SecondSubKey=SecondSubKeyValue

Part of the cookie structure on the client’s machine is a path representing the web
page from which the client received the cookie. An important point about
retrieving cookie values comes into play when two cookies with the same name,
but different paths, exist. In such a case, attempting to retrieve the cookie will
retrieve only the cookie from the deeper directory. For example, if the web page
www.MyCompany.com/ContribApp/Contrib1.asp has a cookie named UserPref
and a second web page with a deeper path, for example, www.MyCompany.com/
ContribApp/Addresses/AddrContrib1.asp, also has a cookie named UserPref, then
attempting to retrieve the UserPref cookie will retrieve only the second
UserPref cookie.

If you attempt to retrieve the value of a subkey for a cookie name that does not
represent a cookie dictionary, the result will be null. For this reason, it is impor-
tant to take advantage of the HasKeys property before attempting to retrieve the
value of a subkey.

As you know, the HTTP Persistent Client State Mechanism (cookies to most
people) is a continuously evolving recommendation. Any cookie draft remains
valid for only six months. The current draft, as of this writing, can be found at ftp:/
/ftp.isi.edu/internet-drafts/draft-ietf-http-state-man-mec-08.txt.

From this document (or its more recent equivalent), you will learn that the latest
draft for the cookies specification goes far beyond that originally proposed by
Netscape. Obviously, the current Cookies collection of the Request object supports
only some of this specification. It is assumed that as the draft becomes a standard,
more aspects of cookies will be retrievable through the Request Cookies
collection.

Form
Request.Form

The Form collection allows you to retrieve the information input into an HTML
form on the client and sent to the server using the POST method. This information
resides in the body of the HTTP request sent by the client.

The Form collection, like the other ASP collections, has the following properties:

Item
Represents the value of a specific element in the collection. To specify an
item, you can use an index number or a key. In the case of the Form collec-
tion, the index number represents the number of the element on the HTML
form. For example, suppose you have the following HTML form:

<FORM ACTION = "RecordPrefs.asp" METHOD = POST>
Name: <INPUT TYPE = TEXT NAME = "Name">

Color Pref: <SELECT NAME = "optColor">
68 Chapter 6 – Request Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Request
O

bject
Form
<OPTION VALUE = "red" SELECTED>Red
<OPTION VALUE = "blue" >Blue
<OPTION VALUE = "green" >Green
</SELECT>

Have a Modem? <INPUT TYPE = CHECKBOX NAME = "Modem">

<INPUT TYPE=submit VALUE=submit>
</FORM>

From within RecordPrefs.ASP, the first element (element 1) is “Name.” The
third element is “Modem.” Note that the numbering begins with 1 (one).

Key
Represents the name of a specific element in the Form collection. Just as each
element’s value is represented by the Item property, so each element’s name
is represented by its Key property.

If you do not know the name of a specific key, you can obtain it using its
ordinal reference. For example, assume that you want to learn the key name
for the third element in the collection and, subsequently, that element’s value.
You could use the following code:

strKeyName = Request.Form.Key(3)
strKeyValue = Request.Form.Item(strKeyName)

If, on the other hand, you know that the third element’s key name is “STATE,”
you could simply use the following code to retrieve the value of that element:

strKeyValue = Request.Form.item("STATE")

Count
Returns the number of elements in the collection.

As with other ASP collections, you can retrieve the value of any field of the Form
collection through the use of the Item property. Note that in the following exam-
ples and explanations, the syntax has been abbreviated so that it does not
explicitly show the use of the Item property. For example:

strFirstName = Request.Form("txtFirstName")

is only an abbreviated form of:

strFirstName = Request.Form.Item("txtFirstName")

For more information on the Item, Key, and Count properties of a
collection, see the discussion in the section “Contents Collection” in
Chapter 4.

Example

The examples of the Form collection of the Request object will all use the
following HTML form:

<HTML>
<HEAD>
<TITLE>User Information</TITLE>
</HEAD>
Form 69

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Form
<BODY>
<CENTER>
<H1>User Information</H1>
Please enter your user information using the form below:
<FORM NAME = "frmInfo" ACTION="UserInfo.ASP"
 METHOD = "POST">
First Name: <INPUT TYPE="text" NAME = "txtFirstName">

Last Name: <INPUT TYPE="text" NAME = "txtLastName">

Zipcode: <INPUT TYPE="text" NAME = "txtZipCode">

Occupation: <INPUT TYPE="text" NAME = "txtOccupation">

Please select your connection speed:
<SELECT NAME = "optConnSpeed">
<OPTION VALUE = "28.8" SELECTED>28.8 Modem
<OPTION VALUE = "ISDN" >ISDN
<OPTION VALUE = "T1" >T1
<OPTION VALUE = "T3" >T3
</SELECT>

Below, select all the peripherals you have:
<INPUT TYPE = "checkbox" NAME = "chkPeriph"
 VALUE = "Joystick">Joystick

<INPUT TYPE = "checkbox" NAME = "chkPeriph"
 VALUE= "GraphicsAccel">3D Graphics Card

<INPUT TYPE = "checkbox" NAME = "chkPeriph"
 VALUE = "Printer">Printer

Check here if it's ok to send your information:
<INPUT TYPE = "checkbox" NAME = "chkSellInfo">

<INPUT TYPE = "Submit"VALUE = "Submit User Info">

</FORM>
</BODY>
</HTML>

Once the client clicks on the form’s Submit button, the form information is sent to
the web server via the HTTP Post method in the body of the HTTP request body.

The following code could be used in UserInfo.ASP to determine the values of the
specific elements of the form frmInfo in the previous example. It is assumed in
the following code that you know before writing it the exact fields in the form that
are to be processed.

<%

' The following code example demonstrates the use of
' the Form collection of the Request object to retrieve
' the values entered by the client into an HTML form.
Dim strFirstName
Dim strLastName
Dim strZipCode
Dim strOccupation
Dim blnSendInfo
Dim strConnSpeed
Dim intPeriphCount
70 Chapter 6 – Request Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Request
O

bject
Form
Dim aryPeripherals()
Dim chkItem

intPeriphCount = 0

' Retrieve the information from the form's text boxes.
strFirstName = Request.Form("txtFirstName")
strLastName = Request.Form("txtLastName")
strZipCode = Request.Form("txtZipCode")
strOccupation = Request.Form("txtOccupation")

' Retrieve the information from the Sell Information
' checkbox.
blnSendInfo = Request.Form("chkSellInfo")

' Determine the connection speed from the Connection
' Speed option buttons.
strConnSpeed = Request.Form("optConnSpeed")

' Populate an array with the peripherals the user has.
For Each SubKey in Request.Form("chkPeriph")
 ReDim Preserve aryPeripherals(intPeriphCount + 1)
 intPeriphCount = intPeriphCount + 1
 aryPeripherals(intPeriphCount) = _
 Request.Form("chkPeriph")(intPeriphCount)

Next
%>

Notes

If you refer to an element without an index and that element contains multiple
values, your code will return a comma-delimited string. For example, suppose that
instead of using a subkey with the chkPeriph element of the Form collection
earlier in this chapter, we included the following line of code:

response.write Request.Form("chkPeriph")

Assuming we chose all three options (Joystick, GraphicsAccel, and Printer),
this line of code would result in the following string:

Joystick, GraphicsAccel, Printer

Your application also can retrieve unparsed data from the client’s HTTP request.
To retrieve unparsed data from the HTTP request body, use Request.Form without
any parameters. Note that the use of unparsed HTTP request data—specifically
binary data—in this manner can be problematic. However, there are several
ActiveX controls and Java applets that can be used to retrieve binary data more
efficiently.

To submit information from an HTML form to an ASP application, you must set the
<FORM> tag’s ACTION attribute to the name of the file that will process the HTML
form data. This Active Server Page can be in the same virtual directory or can be
specified in terms of its virtual directory. You can do this from an HTML page or
from another ASP file. However, one of the most powerful uses of this process is
Form 71

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Form
the construction of an ASP that calls itself. This is not necessarily faster, but its
development is more efficient.

The following example demonstrates a simple ASP that constructs an HTML form
whose entered data is processed by the same ASP:

<%
' UserInfo2.ASP
' The following code determines whether the HTML form (see
' the bottom portion of the script) has been filled out. If
' it has, then some processing takes place and one HTML output
' is sent back to the client. If not, the HTML form is sent to
' the client.
If Not IsEmpty(Request.Form("txtFirstName")) And _
 Not IsEmpty(Request.Form("txtLastName")) Then

 ' The form has been filled out and the reply is
 ' a brief thank you.
%>
 <HTML>
 <HEAD><TITLE>Thank You</TITLE>
 </HEAD>
 <BODY>
 Thank you, <%= Request.Form("txtFirstName")%>
<%= Request.Form("txtLastName")%> for your information.
Have a nice day.
 </BODY>
 </HTML>
<%
Else
%>
 <HTML>
 <HEAD><TITLE>Thank You</TITLE>
 </HEAD>
 <BODY>

 <FORM NAME = "frmInfo" ACTION="UserInfo2.ASP"
 METHOD = "POST">
 First Name: <INPUT TYPE="text" NAME="txtFirstName">

 Last Name: <INPUT TYPE="text" NAME="txtLastName">

 <INPUT TYPE = "Submit" VALUE = "Submit User Info">

 </FORM>
 </BODY>
 </HTML>
<%
End If

%>

This script first determines whether the form elements have been filled out by the
client. If so, then this script sends a brief “Thank You” to the client and the script
ends. If the information was not entered, the form is presented to the user. This
72 Chapter 6 – Request Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Request
O

bject
QueryString
technique, though it uses only a rudimentary form here, is very powerful and can
significantly help you to modularize your code, a sometimes difficult task in ASP
application development.

If your HTML form contains ActiveX controls in addition to (or instead of) stan-
dard HTML form elements, you can refer to their values in the same manner. For
example, suppose you have the following (simple) HTML form containing a single
Microsoft Forms 2.0 textbox:

<FORM NAME = "frmInfo" ACTION="UserInfo.ASP"
 METHOD = "POST">
First Name:
<OBJECT NAME = "txtFirstName" WIDTH=211 HEIGHT=20
 CLASSID="CLSID:8BD21D10-EC42-11CE-9E0D-00AA006002F3">
 <PARAM NAME="VariousPropertyBits" VALUE="746604571">
 <PARAM NAME="BackColor" VALUE="16777215">
 <PARAM NAME="MaxLength" VALUE="255">
 <PARAM NAME="Size" VALUE="5574;529">
 <PARAM NAME="Value" VALUE="">
 <PARAM NAME="BorderColor" VALUE="0">
 <PARAM NAME="FontCharSet" VALUE="0">
 <PARAM NAME="FontPitchAndFamily" VALUE="2">
 <PARAM NAME="FontWeight" VALUE="0">
</OBJECT>
<INPUT TYPE = "Submit"VALUE = "Submit User Info">

</FORM>

You could refer to the value entered into the textbox from UserInfo.ASP using the
following line of code:

strFirstName = Request.Form("txtFirstName")

If you have an HTML form containing ActiveX controls whose values are validated
using client-side script, make sure that none of your elements (the submission
button, for example) have the name Submit. This seems like a small point, but if
you overlook it, you will not be able to submit your form! Try it.

Remember that data in the Form collection represents only that data in the HTTP
request body. You also can use the HTTP Get method to send data from the client
to the server. Using Get results in the information being sent from the client in the
HTTP request header. To retrieve this data, you must use the Request object’s
QueryString collection.

QueryString
Request.QueryString(element)[(key) | .Count]

The QueryString collection allows you to retrieve the information sent by the client
using the HTTP Get method with an HTML form and data appended to the URL
when the page is requested. The QueryString collection is less capable than the
Form collection, since there is a limit to the amount of data that can be sent in the
header of an HTTP request. In my experience, this limit is around 2000 charac-
QueryString 73

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

QueryString
ters. More characters than this, sent as part of the QueryString, will not be
processed, although the script still executes.

The QueryString collection, like the other ASP collections, has the following
properties:

Item
Returns the value of a specific element in the collection. To specify an item,
you can use an index number or a key. In the case of the QueryString collec-
tion, the index number represents the number of the element as it appears in
the URL or the number of the element on the HTML form (assuming a GET
method is used to send the data). If the POST method is used to submit form
data, however, these HTML elements do not exist in the QueryString collec-
tion, but rather in the Form collection of the Request object.

Key
Returns the name of a specific element in the QueryString collection. Just as
each element’s value is represented by the Item property, each element’s
name is represented by its Key property.

If you do not know the name of a specific key, you can obtain it using its
ordinal reference. For example, assume that you want to learn the key name
for the third element in the collection and, subsequently, that element’s value.
You could use the following code:

strKeyName = Request.QueryString.Key(3)
strKeyValue = Request.QueryString.Item(strKeyName)

If, on the other hand, you know that the third element’s key name is “STATE,”
you could simply use the following code to retrieve the value of that element:

strKeyValue = Request.QueryString.Item("STATE")

Count
The number of elements in the collection.

As with other ASP collections, you can retrieve the value of any field of the
QueryString collection through the use of the Item property. Note that in the
following examples and explanations, the syntax has been abbreviated so that it
does not explicitly show the use of the Item property. For example,:

strFirstName = Request.QueryString("FirstName")

is only an abbreviated form of:

strFirstName = Request.QueryString.Item("FirstName")

For more information on the Item, Key, and Count properties of a
collection, see the discussion in the section “Contents Collection” in
Chapter 4.

Example
<%
' This code iterates through the QueryString collection
' and fills an array with the values retrieved.
74 Chapter 6 – Request Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Request
O

bject
QueryString
Dim item
Dim aryQueryValues()
Dim intItemCount

intItemCount = 0

For Each item In Request.QueryString
 ReDim Preserve aryQueryValues(intItemCount + 1)
 aryQueryValues(intItemCount) = _
 Request.QueryString(item)
 intItemCount = intItemCount + 1
Next

%>

Notes

Like the elements of the Form collection, elements of the QueryString collection
can represent multiple values. For example, suppose your ASP file receives a
submission from the following HTML form:

<FORM NAME = "frmInfo" ACTION="UserInfo2.ASP"
 METHOD = "GET">
Below, select all the peripherals you have:
<INPUT TYPE = "checkbox" NAME = "chkPeriph" VALUE =
 "Joystick">Joystick

<INPUT TYPE = "checkbox" NAME = "chkPeriph" VALUE=
 "GraphicsAccel">3D Graphics Card

</FORM>

Assume the user checks both checkboxes. The resulting information would be
interpreted in the ASP exactly as if the ASP had been requested using the
following URL:

UserInfo2.ASP?chkPeriph=Joystick&chkPeriph=GraphicsAccel

To refer to the first element, you could use the following code (note that like other
ASP collections, the elements start at 1):

strFirstOption = Request.QueryString("chkPeriph")(1)

If you do not specify a subkey, as in:

strOptions = Request.QueryString("chkPeriph")

then strOptions would have the following value:

Joystick, GraphicsAccel

Also like the Form collection, the QueryString collection contains information sent
from the client to the web server. This information can be in the form of param-
eter/value pairs appended to the end of the requested URL in the HTTP request
header, appended to the URL in the address field of the browser, or from an
HTML form whose action is set to the HTTP Get method.

There are some limitations to the use of the QueryString collection, the most
important of which is its limited length. Although this length varies with varying
amounts of client and web server available memory, you should not count on
QueryString 75

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ServerVariables
being able to send more than ~1800 characters from the client to the server using
the QueryString collection. This ~1800-character “limit” is counted from the end of
the script name being called to the end of the parameter list appended to the
requested URL, including the names, not just the values, of the parameters sent.

Like elements of the Form collection, elements of the QueryString collection can
contain multiple values. To determine the number of values available for a specific
element of the collection, use the Count property of the element in question. The
value of the Count property is equal to the number of values contained in the
element and is zero (0) if the element is not in the collection.

You can retrieve all the values for a given multiple-value element by leaving off
the index parameter for the specific element. The values are returned as a comma-
delimited string containing only the values from the element being addressed.

Also like the Form collection, you are able to retrieve unparsed data in the
QueryString collection. To retrieve the raw, unparsed QueryString collection data,
use the syntax Request.QueryString without any element parameter.

The data in the QueryString collection is also accessible from the ServerVariables
collection of the Request object, using the HTTP_QUERYSTRING parameter. This is
covered in more depth in the section on the ServerVariables collection.

Finally, note that you must encode several special characters when used in the
QueryString:

& The ampersand is used by ASP to delineate separate parameter/value pairs
that have been added to the QueryString collection.

? The question mark delineates the beginning of the QueryString that is added
after the filename extension in the filename requested in the URL from the
client.

% The percentage symbol is used in the encoding of other special characters.

+ The plus sign is recognized in the QueryString as representing a space.

These characters can be encoded automatically using the URLEncode and
HTMLEncode methods of the Server object on the server side and custom script on
the client side.

ServerVariables
Var = Request.ServerVariables(key)

The ServerVariables collection contains several predefined environment variables
in the context of the client’s specific HTTP request of the web server.

The ServerVariables collection, like the other ASP collections, has the following
properties:

Item
The value of a specific element in the collection. To specify an item, you can
use an index number or a key.
76 Chapter 6 – Request Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Request
O

bject
ServerVariables
Key
Returns the name of a specific element in the ServerVariables collection. Just
as each element’s value is represented by the Item property, each element’s
name is represented by its Key property.

If you do not know the name of a specific key, you can obtain it using its
ordinal reference. For example, assume that you want to learn the key name
for the third element in the collection and, subsequently, that element’s value.
You could use the following code:

strKeyName = Request.ServerVariables.Key(3)
strKeyValue = Request.ServerVariables.Item(strKeyName)

If, on the other hand, you know that the third element’s key name is
“QUERY_STRING,” you could simply use the following code to retrieve the
value of that element:

strKeyValue = _
 Request.ServerVariables.Item("QUERY_STRING")
Or, simply

strKeyValue = Request.ServerVariables("QUERY_STRING")

Count
The number of elements in the collection.

As with other ASP collections, you can retrieve the value of any field of the Server-
Variables collection through the use of the Item property. Note that in the
following examples and explanations below (and in nearly all examples from
other sources), the syntax has been abbreviated so that it does not explicitly show
the use of the Item property. For example:

strFirstName = Request.ServerVariables("REMOTE_ADDR")

is only an abbreviated form of:

strFirstName = Request.ServerVariables.Item("REMOTE_ADDR")

For more information on the Item, Key, and Count properties of a
collection, see the discussion in the section “Contents Collection” in
Chapter 4.

The possible values for Key are in the following list. Although they typically
appear in uppercase, Key is actually case insensitive. Note that like elements from
other ASP collections, the element values from the ServerVariables collection also
can be retrieved using an index number. However, it is important to realize that
the following list is in alphabetical order, not in the order in which the elements
exist in the ServerVariables collection.

ALL_HTTP
One long string containing all the HTTP headers sent by the client’s browser.
Each of the following elements can be parsed from this element.
ServerVariables 77

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ServerVariables
ALL_RAW
One long string containing all the HTTP headers in their original state as sent
by the client browser. The primary difference between the ALL_RAW and the
ALL_HTTP values is that the values of the ALL_HTTP element are all prefixed
with HTTP_ and the header name is always capitalized. Each of the following
elements can be parsed from this element.

APPL_MD_PATH
Internally, the IIS metabase holds all the settings of the server. It is similar in
function to the registry except for the fact that the metabase holds only infor-
mation about those items added (as snap-ins) into the Microsoft Management
Console. This can include Internet Information Server, Index Server, and SQL
Server 7.0, among others. The information in the metabase almost exclusively
represents installation and configuration information.

The APPL_MD_PATH element of the ServerVariables collection represents the
metabase-specific path for the ISAPI DLL. This is the metabase path from
which the ISAPI DLL is called, not its physical location on the server. For
example, on my Windows 95 machine (running Personal Web Server) the
value of this element is the following:

/LM/W3SVC/1/ROOT

APPL_PHYSICAL_PATH
The physical path of the APPL_MD_PATH element. This value is retrieved from
the conversion of APPL_MD_PATH by IIS. For example, on my system this
translates to C:\Inetpub\wwwroot\.

AUTH_PASSWORD
If IIS security is set to Basic Authentication, AUTH_PASSWORD represents the
password entered in the authentication box when the client logs into the web
server. If a password is not supplied, its value is a null string.

AUTH_TYPE
The method of authentication set on the web server. This authentication
method is used to validate all users requesting scripts on the server protected
by Windows NT security.

AUTH_USER
The raw username entered upon authentication of the client by the web
server.

CERT_COOKIE
A unique ID for the client’s digital certificate. The value for this element can
be used as a signature for the entire certificate. This element has a value only
for clients using the HTTPS protocol. Note that the ClientCertificate collection
contains all client-related digital certificate information. The ClientCertificate
collection is easier to use than the HTTP header information. Note also that if
the client does not send a digital certificate, these CERT_ elements still exist in
the ServerVariables collection, but they are empty (i.e., they have no value).

CERT_FLAGS
CERT_FLAGS represents a two-bit value. Bit #0 is set to 1 if the client certifi-
cate is present. Bit #1 is set to 1 if the client certificate’s certifying authority is
invalid (i.e., the issuer is not found in the list of verified certificate issuers that
78 Chapter 6 – Request Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Request
O

bject
ServerVariables
resides on the web server). Note that these values correspond to the
ceCertPresent and ceUnrecognizedIssuer constants for the Flags
element of the ClientCertificate collection.

CERT_ISSUER
The issuer of the client certificate, if one exists. The value of this element is a
comma-delimited string that contains the subfields for each of the possible
subelements described in the Issuer element section of the ClientCertificate
collection explanation earlier in this chapter.

CERT_KEYSIZE
The number of bits used in the Secure Sockets Layer connection key size (for
example, 64 or 128).

CERT_SECRETKEYSIZE
The number of bits in the secret server certificate private key (for example,
1024).

CERT_SERIALNUMBER
The value of the client’s certificate serial number.

CERT_SERVER_ISSUER
The issuer of the server certificate.

CERT_SERVER_SUBJECT
The subject field of the server certificate. Like the Subject field of the client
certificate, this element’s value is a comma-delimited string containing the
subfields described in the Subject element section of the ClientCertificate
collection description.

CERT_SUBJECT
The subject field of the client certificate. This element’s value is a comma-
delimited string containing the subfields described in the Subject element
section of the ClientCertificate collection description.

CONTENT_LENGTH
The total length of the body of the HTTP request body sent by the client. You
can use this value to determine the length of the raw HTTP content in the
client’s HTTP request. This value does not include the length of any data
presented through the request header (i.e., information sent with a GET
method), only that information in the request body.

CONTENT_TYPE
This is the MIME type of the content sent by the client. When used with HTTP
queries that contain attached information (such as HTTP GET, POST, and PUT
actions), this can allow you to determine the data type of the client’s HTTP
request content data. The most common value for this element is
application/x-www-form-urlencoded. If you were to include a file
element in your HTML form, you would set the ENCTYPE parameter (and
thus the CONTENT_TYPE header in your request) to multipart/form-data.

GATEWAY_INTERFACE
The revision of the Common Gateway Interface that is used by the web server.
This string value is in the format CGI/revision #. For example, if you were
connected to an IIS 4.0 web server, the value of this item would be CGI/1.1.
ServerVariables 79

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ServerVariables
HTTP_[HeaderName]
The value sent in the HTTP header called headername. To retrieve the value
of any HTTP header not mentioned in this list (including custom headers),
you must prefix the header name with HTTP_. Note that if you specify an
HTTP_CUSTOM_SELECTION header, IIS will actually look for an HTTP
header labeled as Custom-Header by the client in its HTTP request. In other
words, when looking for an HTTP header with hyphens in the name in the
ServerVariables collection, use underscores instead. Note that attempting to
retrieve a nonexistent header returns an empty string, not an error. For
example, each of the following:

HTTP_ACCEPT_LANGUAGE
HTTP_CONNECTION
HTTP_HOST
HTTP_AUTHORIZATION (same as the AUTH_TYPE element)
HTTP_USER-AGENT

requires code resembling the following to receive its value:

strUserAgent = _
 Request.ServerVariables("HTTP_USER-AGENT")

HTTPS
This element’s value is the string “ON” if the client’s HTTP request was sent
using SSL. It is “OFF” otherwise.

HTTPS_KEYSIZE
The same as CERT_KEYSIZE described earlier.

HTTPS_SECRETKEYSIZE
The same as CERT_SECRETKEYSIZE described earlier.

HTTPS_SERVER_ISSUER
The same as CERT_SERVER_ISSUER described earlier.

HTTPS_SERVER_SUBJECT
The same as CERT_SERVER_SUBJECT described earlier.

INSTANCE_ID
The ID of the current IIS instance specified in textual format. If this element
evaluates to 1, then the value is a string. The INSTANCE_ID represents the
number of the instance of the web server to which this request belongs. This
is useful only if there is more than one instance of the web server running on
your server. Otherwise, this value is always 1, representing the first (and only)
instance of the web server on the machine.

INSTANCE_META_PATH
The path in the metabase for the instance of IIS to which the client’s HTTP
request is sent. As discussed in the earlier section on the APPL_MD_PATH
element of the ServerVariables collection, the metabase holds information
specific to the installation and configuration of your web server. For my
machine running Personal Web Server, the value of this element is /LM/
W3SVC/1.
80 Chapter 6 – Request Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Request
O

bject
ServerVariables
LOCAL_ADDR
The TCP/IP address of the web server that is accepting the client HTTP
request. This element of the ServerVariables collection is especially important
when your web server resides in a server farm of several machines with
distinct IP addresses, all answering requests to the same domain name. If the
server is accessed as localhost, its value is 127.0.0.1.

LOGON_USER
The Windows NT user account with which the user has logged onto the
system. This is true regardless of the security type you have set for your web
server (i.e., anonymous, basic, or Windows NT challenge/response).

PATH_INFO
The virtual path of the web page from which the client makes its HTTP
request. If this information evaluates to a virtual directory, the virtual direc-
tory is mapped to a physical directory before it is sent to the CGI filter.

PATH_TRANSLATED
The virtual-to-physical mapping of the value of the PATH_INFO element of the
ServerVariables collection.

QUERY_STRING
The values sent by the client after the question mark (?) at the end of the
HTTP request URL. This element also contains the information sent to the
web server using the HTTP GET method. All the information in this element is
also available via the QueryString collection (which is easier to utilize, as it
does not require parsing).

REMOTE_ADDR
The TCP/IP address of the client.

REMOTE_HOST
The IP address from which the web server receives the client’s HTTP request.
If the HTTP request does not include this information, the REMOTE_ADDR
element’s value will be set and this value will be empty.

REQUEST_METHOD
The method by which the client made the HTTP request (GET, POST, HEAD,
etc.).

SCRIPT_NAME
The entire virtual path to the current script. It does not include the base
portion of the URL, which is represented by the URL element of the Server-
Variables collection. It is used (largely internally) for self-referencing URLs.
This is equivalent to the value of the PATH_INFO element.

SERVER_NAME
The web server’s TCP/IP address, its DNS or hostname as it would appear in
a self-referencing URL.

SERVER_PORT
The server port to which the client’s HTTP request is sent. This is typically 80
or 8080 for most web servers.
ServerVariables 81

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Methods Reference
SERVER_PORT_SECURE
If the HTTP request is being managed by the web server on a secure port,
this value evaluates to 1. If the port is not secure, this value is 0.

SERVER_PROTOCOL
The name and version of the protocol used by the web server to handle the
client request. For example, if the client is using Microsoft Internet Explorer
4.01 and the web server is IIS 4.0, this value is the string “HTTP/1.1.”

SERVER_SOFTWARE
The name and version of the web server software handling the client HTTP
request. For example, again using Microsoft IIS 4.0, an example value for this
element of the ServerVariables collection is Microsoft-IIS/4.0.

URL
The base URL requested by the client in its HTTP request.

Example
<%

' The following code determines the value of the
' LOGON_USER item of the ServerVariables collection. This
' code can be used to determine the identity of the
' client.
Dim strUserName

strUserName = Request.ServerVariables("LOGON_USER")

%>

Notes

As the list earlier in this section illustrates, the ServerVariables collection contains
many very useful pieces of information regarding the client’s HTTP request.
Perhaps the most important elements allow you to determine the identity and
address of the user. These elements allow you to customize your security efforts.

Also, many of the Request object’s other collections’ data can be obtained through
the ServerVariables collection (usually with more effort, however).

Methods Reference

BinaryRead
MySafeArray = Request.BinaryRead(ByteCount)

The BinaryRead method reads a number of bytes directly from the HTTP request
body sent by the client as part of an HTTP Post. The data read from an HTTP
request using the BinaryRead method is returned into a SafeArray. A SafeArray is a
special variant array that contains, in addition to its items, the number of dimen-
sions in the array and the upper bounds of the array.
82 Chapter 6 – Request Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Request
O

bject
BinaryRead
In actuality, a SafeArray is not an array at all. It’s a special type of
structure used internally to maintain information held in its array
portion. The dimensions and upper bounds values are available only
from C/C++ as elements of the structure. You cannot manipulate
these values (or even retrieve them) through script.

Parameters

MySafeArray
The name of a SafeArray used to store the information returned from a
BinaryRead.

ByteCount
The number of bytes read using the BinaryRead method. Typically, this vari-
able’s value evaluates to the number of bytes returned using the TotalBytes
property of the Request object described previously.

Example
<%

' The following code determines the total number of bytes
' sent in the client's HTTP request. It then reads the
' bytes, checks for errors, and if there are none,
' reports to the client that the read was successful.
Dim lngTotalByteCount
Dim vntRequestData

On Error Resume Next

lngTotalByteCount = Request.TotalBytes

vntRequestData = Request.BinaryRead(lngTotalByteCount)
If Err = 0 Then
 ' For details about the Response object, see Chapter 7.
 ' For now, suffice it to say the following code sends
 ' information to the client.
 Response.Clear
 Response.Write lngTotalByteCount & _
 " bytes successfully read.
"
 Response.End
End If

%>

Notes

If your web application’s client piece could control exactly what was sent in the
HTTP request body, this method would be invaluable, since it would enable your
client to upload information on a byte level (or upload files). However, control-
ling the information sent in a Post request at byte level is difficult. There are,
however, several file-transfer controls available via third parties that allow you to
BinaryRead 83

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

BinaryRead
add file-transfer functionality to your application more efficiently and with less
difficulty.

It is important to note that if you have previously retrieved information from the
Form collection of the Request object, subsequent calls to the BinaryRead method
will cause an error. Likewise, if you have previously called the BinaryRead method
of the Request object and subsequently attempt to retrieve information from the
Form collection, your script will result in an error.
84 Chapter 6 – Request Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Chapter 7Response Object
CHAPTER 7

Response Object

Just as the Request object allows you to retrieve and manipulate information sent
Response
O

bject
by the client browser in its HTTP request, the Response object gives you a great
deal of control over the HTTP response to the client. This control comes in three
broad categories:

• Control over what data and data types are sent to the client in the headers of
the HTTP response

• Control over what data and data types are sent to the client in the body of the
HTTP response

• Control over when and how that data is sent

Control over the HTTP response headers includes setting cookies on the client
machine, setting various preexisting HTTP header values (such as the content type
and expiration information for a given page), and, finally, adding your own
custom headers to the HTTP response.

You control the HTTP response body directly through the Write and BinaryWrite
methods. As you might infer from the names, these methods of the Response
object allow you to write information directly to the response body, which will be
received by the client just like any other information received in an HTML request
response.

Finally, the Response object allows you to control how and when the response is
sent to the client. For example, using the properties and methods involved in buff-
ering the response, you can determine whether to send the HTTP response as a
single unit to the client or to send the results of the request piecemeal. You can
dynamically determine whether the client is still connected to your web site. You
can redirect her request as though she requested something else. Finally, you can
use the Response object to write entries into the web server log.
85

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Comments/Troubleshooting
Comments/Troubleshooting
As you will see, the many methods of the Response object give you powerful
control over what you can send to the client in the headers and body of the HTTP
response. However, one of the most valuable uses for the Response object is in
debugging your scripts. Although Microsoft’s Internet Information Server 4.0 does
allow for server-side debugging, these debugging tools—at least currently—are
sometimes not quite as functional as you need them to be when working on some
piece of have-to-finish code. The Response object allows you to view the current
state of your server-side scripts on the fly, as follows.

Assume you want to view the current value for your server-side variable,
strMyValue, at a certain place in your script. You can insert the following code
and view the value anywhere in your script:

Response.Clear
Response.Write "The value of strMyValue is " & strMyValue
Response.End

Although simple, this code actually does three very important things. First, it clears
the buffer (assuming your Buffer property is set to True) that the output of your

Response Object Summary
Properties

Buffer
CacheControl
Charset
ContentType
Expires
ExpiresAbsolute
IsClientConnected
PICS
Status

Collections
Cookies

Methods
AddHeader
AppendToLog
BinaryWrite
Clear
End
Flush
Redirect
Write

Events
None
86 Chapter 7 – Response Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Response
O

bject
Buffer
server scripting has been filling to be sent to the browser. Next, it inserts only a
single line of text displaying your variable’s value. Finally—and this is very impor-
tant—it completely ends processing of your server script and sends the contents of
the Response object’s buffer to the user. No code after Response.End is processed!
This can be invaluable for those pieces of code that work up until a certain point
but not afterward.

Properties Reference

Buffer
Response.Buffer [= blnSetting]

The Buffer property determines whether the content created by your script is
delivered to the client browser as a whole or sent immediately to the client
browser as each line is created and entered into the HTML stream. If set to True,
then all script on the page is run before the results of that script are sent to the
client browser.

The default value for the Buffer property is False unless you set
ASPBufferingOn in the metabase (through a Windows Scripting Host script or
through the Microsoft Management Console for your web site). If set in the meta-
base, the value there can be overridden using the Buffer property on a page. For
example, if you set ASPBufferingOn to True, you could later use the Buffer
property to override this behavior and force IIS not to buffer the page.

Parameters

blnSetting
Specifies whether the HTTP response that results from the web server’s
processing of your script is buffered and then sent to the client or sent to the
client as it is created:

True
Causes the web server to buffer all results of your script until all
processing is complete or until the Flush or End method of the Response
object is invoked. Note that even if buffering is set to True, if you call
the End method, the contents of the buffer are sent to the client and all
subsequent results from the processing of your script are not sent to the
client.

False
Instructs the web server to send information to the client as your script is
processed, instead of waiting until all processing is complete. Note that if
Buffer is set to False, any call to the Clear, End, or Flush methods of the
Response object will result in a runtime error.
Buffer 87

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Buffer
Example

Consider the following example. Note that we haven’t set the Buffer property of
the Response object explicitly, so it’s False:

<%@ LANGUAGE="VBScript" %>
<HTML>

<%
CODE THAT RETRIEVES A FIELD VALUE FROM A DATABASE
%>

The response is not buffered before it is sent to the requesting browser. For this
reason, if the previous database action results in an error, the user will see half a
page ending in an error notice. Now examine the second code example:

<%@ LANGUAGE="VBScript" %>
<%Response.Buffer = True %>
<HTML>

<%
On Error Resume Next
CODE THAT RETRIEVES A FIELD VALUE FROM A DATABASE
If Err.Number <> 0 Then
 Response.Clear
 Response.Write "There has been an error. Here is the SQL"
 Response.Write "statement that caused the problem: "
 Response.Write strSQL
 Response.End
End If
%>

In this second example, the response is buffered first and completed before it is
sent to the requesting browser. For this reason, we have the opportunity to clear
the buffer and place a simple error notice in it that provides more information than
does the unbuffered example shown earlier. The code here doesn’t provide much
interaction, but you get the idea.

If the response is not buffered, the client will receive the HTTP response to its
request as it is built—even if that building results in errors.

Notes

The first thing to remember is that the Buffer property must be set before the
<HTML> tag is generated for the HTTP response. Attempting to set the Buffer prop-
erty after the <HTML> tag will result in a runtime error.

If your script includes a preprocessing directive setting the language for the page,
for example, this directive must be placed before you attempt to set the Buffer
property’s value. If you attempt to set the language for the page after setting the
value for the Buffer property, you will experience an error.

If the Buffer property is set to True and your script does not call the Flush method
anywhere, then the web server will honor Keep-Alive requests sent by the client.
Keep-Alive requests from the browser inform the server that it should maintain a
connection between itself and the client. If the client’s Keep-Alive request is
88 Chapter 7 – Response Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Response
O

bject
Buffer
honored on the server, it is not forced to reestablish the connection each time it
makes an HTTP request. It is, in effect, already connected. This saves the client
from having to resolve the URL again.

If the Buffer property is set to False or if you use the Flush method somewhere
in your script, the server will be forced to create a new connection to the client in
response to each request.

When should you buffer your scripts? The answer to this question depends on two
things: how long is too long for your clients to wait, and how complex your
scripts are.

If your clients are introductory-level users of the Internet, their patience is typi-
cally fairly low; these clients need immediate action upon clicking the Submit
button in your forms. More experienced users understand more about the back
end of Internet applications and are, perhaps, more understanding of lag times in
script results.

More important than this is how important it is for you to present the response as
a single unit. For scripts that do a great deal of iterative processing, where each
loop is directly affected by the loop before, it may be important to present the
final result as a single unit. However, if your script consists of several definable
sections, each of which is easily capable of being displayed on its own, then buff-
ering may be less important.

One strategy for dealing with the lag times for complex scripts whose results are
required in a single unit is to provide a “please wait” page in some form. This
interim page informs the user that his request was received and that the script is
processing.

For example, suppose the client browser requests an ASP script that retrieves and
formats data from a very complex query requiring a long load time (30 seconds,
for example). Rather than forcing the client to click on a link and have nothing
happen for 30 seconds (in which time the inexperienced web user might very well
click on the same link or button repeatedly), you might first display a page like
the following:

<HTML>
<HEAD><TITLE>Please Wait</TITLE></HEAD>
<BODY LANGUAGE = "VBScript" OnLoad = "WinLoad()">
Your request is being processed, please wait...
<SCRIPT LANGUAGE = "VBScript">
Sub WinLoad()
 Parent.Location.HREF = "/Reports/Longreport.asp"
End Sub
</SCRIPT>
</BODY>
</HTML>

The short page will take very little time to load, and when it does, the user will
see a “please wait” message until the next script has been processed and the
report is ready for viewing, at which time the “please wait” page is unloaded and
the report is loaded.
Buffer 89

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

CacheControl
Finally, if you find that most of your scripts require buffering, you might consider
setting the metabase ASPBufferingOn (using the Application Configuration page
for your virtual directory; see Appendix C, Configuration of ASP Applications on
IIS) so that all scripts are buffered by default.

CacheControl
Response.CacheControl [= ProxyCacheControlSetting]

The CacheControl allows you to set whether proxy servers serving your pages can
cache your page. If your page’s content is large and doesn’t change often, you
might want to allow proxy servers to cache the page and thus serve it faster to
requesting client browsers.

Parameters

ProxyCacheControlSetting
Determines whether proxy servers used to access your web site can cache
your pages. The default for this property is Private, indicating that the proxy
servers cannot cache your page. If this value is Public, however, proxy
servers can cache the page. Note that Private and Public are string values.

Example

Setting this property is a simple affair, as the following code demonstrates. You
may be asking yourself if there is any way to determine if the client is accessing
the web page through a proxy server. Although there is, if you know ahead of
time of the existence of the possible proxy servers, this is problematic and
cumbersome. Furthermore, there is no need to determine this before setting this
property. Either the client request is being handled by a proxy server and this
property will affect the caching of the page, or this property is completely ignored.

<%

' The following code sets the HTTP cache control header so
' that this page can be cached by the proxy servers being
' used to access the page.
Response.CacheControl = "Public"
%>
<HTML>
<%
' Note that the CacheControl property was set BEFORE the
' <HTML> tag was constructed.
%>

Notes

Clearly, if the proxy server can cache your page, then the client’s access times
when accessing the page though a proxy server will be decreased. However, this
is less useful if the page changes frequently. Also note that just because you set
the value of the CacheControl property to Public, the proxy server is not required
to cache your page(s). This must be configured on the proxy server.
90 Chapter 7 – Response Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Response
O

bject
Charset
Setting a value for CacheControl alters the value in the cache control HTTP header
sent to the client upon a request.

If you use this property, you must do so before sending any response to the client
(i.e., before the <HTML> tag is generated for your page). If you attempt to set the
value for this (or any other HTTP header) after the <HTML> tag has already been
sent to the client, an error will result unless the response is buffered.

Keep in mind that setting this property does not guarantee caching on the proxy
server. The proxy server itself must be configured to cache these pages before this
property will have any effect.

Charset
Response.Charset(strCharsetName)

The Charset allows you to specify a character set for the HTTP response content.
The name of this character set is added to the end of the Content-Type header/
value pair in the HTTP response headers.

Parameters

strCharsetName
The strCharsetName is a string corresponding to a character set. The default
character set is ISO-LATIN-1.

Example

If you do not set the Charset property, the Content-Type HTTP response header
looks like the following:

content-type:text/html

If you set the Charset property, as in the following line of code:

<%
Response.Charset("ISO-LATIN-7")
%>

the value you use to set the Charset property value (the string “ISO-LATIN-7” in
the preceding code) is appended to the end of the Content-Type HTTP response
header value:

content-type:text/html;charset=ISO-LATIN-7

Notes

Although Charset is referred to in both this book and the Microsoft documentation
as a property, it is really a method that takes a string argument representing the
name of the charset to be added to the end of the Content-Type HTTP response
header. For this reason, if you attempt to set the value of the Charset “property” as
you would any other Response object property, you will receive an error:

<%
' Next line will NOT work:
Response.Charset = "ISO-LATIN-7"
%>
Charset 91

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ContentType
If the value you set for the Charset property does not represent a valid character
set, this value is ignored by the client’s browser, and the default character set is
used instead.

Note that you can append the name of only one character set to the end of the
Content-Type header/value pair. Each subsequent change of the Charset prop-
erty’s value simply replaces the last setting. For example, the following code:

<%
Response.Charset("ISO-LATIN-7")
Response.Charset("ISO-LATIN-3")
%>

results in the following Content-Type HTTP response header/value pair:

content-type:text/html;charset=ISO-LATIN-3

Also note that if your content type is exclusively nontext (image data, for
example), the character set value is ignored by the browser.

Finally, the default character set for the Apple Macintosh and compatibles is not
ISO-LATIN-1, as it is for IBM PCs and compatibles. If you do not set the Charset
property, all Macintosh browsers will interpret requested pages to be in the Macin-
tosh character set. Microsoft’s Personal Web Server for Macintosh automatically
converts the character set of the requested content to ISO-LATIN-1 and will ignore
any other Charset property settings you provide in your script.

Like other properties that result in a change to the HTTP response header values,
the Charset property must be set before the server sends the <HTML> tag to the
client unless the response is buffered.

ContentType
Response.ContentType [= strContentType]

The ContentType allows you to set the value for the Content-Type setting in the
HTTP response header. This value defines the type of data being sent in the
Response body. The client browser uses this information to determine how to
interpret downloaded HTTP response content.

Parameters

strContentType
Represents the content type. This string is in a type/subtype format. The type
portion of the value represents the general content category and the subtype
represents the specific type of content.

Example
<%

' The following code sets the value of the Content-Type
' HTTP response header according to the value of a
' local variable.
If strData = "jpg" Then
 Response.ContentType = "image/JPEG"
92 Chapter 7 – Response Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Response
O

bject
Expires
Else
 Response.ContentType = "text/plain"
End If

%>

Notes

Some of the possible values for ContentType type/subtype pairs are listed in
Table 7-1.

The number of subtypes is expected to grow significantly over time. The best
reference for the available subtypes is the latest MIME RFC (RFC 2231 as of this
writing). Many of the new subtypes are expected to come from industry. For
example, Microsoft has already added the x-cdf subtype to the application type
for its Channel Definition Format.

Like other properties that result in a change to the HTTP response header values,
the ContentType property must be set before the server sends the <HTML> tag to
the client unless the response is buffered.

As another example of the ContentType property, see the code example for the
Response object’s BinaryWrite method later in this chapter.

Expires
Response.Expires [= intNumMinutes]

The Expires property specifies the length of time (in minutes) that the client
machine will cache the current page. If the user returns to the page within the
amount of time set for the Expires property, the user will view the cached version
of the page. If the Expires property is not set, content expiration set for the virtual
directory (through the Properties page for the virtual directory on the Microsoft
Management Console) will be used. Its default is 24 hours.

Table 7-1: Available Content-Type HTTP Header Values

Type SubType Description

Text Plain, RichText Textual information

Multipart Mixed, Alternative,
Parallel, Digest

Data in response consists of multiple
parts of independent data

Message Partial, External-body An encapsulated message

Image JPEG, GIF Image data

Audio Basic Audio data

Video MPEG Video data

Application ODA, PostScript, Active Typically uninterpreted binary data or
data to be processed by a mail-based
application
Expires 93

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ExpiresAbsolute
Parameters

intNumMinutes
The number of minutes you wish the client’s browser to cache the current
page

Notes

If you wish to prevent the client’s browser from caching the page, use a value of 0
for intNumMinutes. Doing so will force the client to rerequest the page from the
web server every time the client navigates to the page.

If you attempt to set the Expires property more than once in a script, the shortest
setting is used. For example, the page that includes the following script will result
in the client caching the page for 5 minutes, even though the last setting of the
Expires property is 20 minutes:

<%

Response.Expires = 10
Response.Expires = 5
Response.Expires = 20

%>

Like other properties that result in a change to the HTTP response header values,
the Expires property must be set before the server sends the <HTML> tag to the
client unless the response is buffered.

ExpiresAbsolute
Response.ExpiresAbsolute [= [Date] [Time]]

Specifies a date and time on which the content of the current page will cease
being cached on the client machine. If no time is specified when setting the
ExpiresAbsolute property, the time is taken to be midnight on the date specified.
Before the date specified in the ExpiresAbsolute property, the client will display
the cached version of the current page if the user navigates to it.

Parameters

Date
A calendar date after which the current page will no longer remain cached.
The date value you use should be in the standard month/day/year format.
However, the value sent in the Response header will conform in format to the
RFC 1123 date format.

Time
Specifies the exact time on Date after which the current page will no longer
be cached on the user machine. If no date is specified, the client browser will
expire the page at midnight of the current day. The web server converts the
time you use to GMT before sending this header to the client.
94 Chapter 7 – Response Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Response
O

bject
IsClientConnected
Example
<%
' The following code sets the current page's caching on the
' client machine to end at 9 P.M. on 7 May 1998 GMT. NOTE
' the use of the "#" to designate the date and time.
Response.ExpiresAbsolute=#May 7, 1998 21:00:00#
%>

Notes

As the example demonstrates, you must use the pound character (#) to designate
the date and time used in the ExpiresAbsolute property value.

Like the Expires property, setting this property multiple times results in the current
page’s caching ending on the earliest date and time specified in the script.

Like other properties that result in a change to the HTTP response header values,
the ExpiresAbsolute property must be set before the server sends the <HTML> tag
to the client unless the response is buffered.

IsClientConnected
Response.IsClientConnected

A read-only property that evaluates to True if the client is still connected to the
web server since the last use of the Response object’s Write method and returns
False otherwise.

Parameters

None

Example
<%
' The following code determines whether the client
' is still connected to the server. If it is still
' connected, then the SessionID (see Chapter 9) will be
' used to retrieve the user information from a database.
If Response.IsClientConnected Then
 strUserName = fn_strGetUserName(Session.SessionId)
End If
%>

Notes

The IsClientConnected property gives you the ability to determine whether the
client has disconnected. This is very important if the current script is long. If the
client is no longer connected, it may be important to discontinue processing a
script.

The following example demonstrates checking for the client connection before
continuing in a long script. If the client is no longer connected, the easiest way to
stop all processing is to use the Response object’s End method.
IsClientConnected 95

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

PICS
<%Response.Buffer = True%>
<HTML>
<HEAD><TITLE>One Long Script</TITLE></HEAD>
<BODY>
<%

' The following code is the first of two segments
' in this script that will take a long time to process:
[SOME LONG CODE]

' Now before performing the second half of this long script,
' check to see if the client is still connected.
If Response.IsClientConnected Then
 [SECOND LONG CODE SEGMENT]
Else
 ' The client is no longer connected, end the script's
 ' processing.
 Response.End
End If
%>
</BODY></HTML>

This property is useful only for those clients using HTTP 1.1. If the browser uses
HTTP 1.0, IIS tracks the session using individual HTTP requests and Keep-Alive
requests by the client, not a constant connection that is only consistent with the
later (1.1+) version of HTTP.

PICS
Response.PICS(strPICSLabel)

Adds a PICS (Platform for Internet Content Selection) label to the HTTP response
header. This PICS system labels your web content to enable rating services (such
as the Recreational Software Advisory Council (RSAC) and SafeSurf, a parents’
organization) to rate that content according to various criteria set by content
control software such as NetNanny and CyberWatch.

Parameters

strPICSLabel
A string value that contains the entire contents of the PICS label you wish to
add. A PICS label consists of the following parts:

– The URL of the rating service that produced the label.

– The set of PICS-defined (and extensible) attribute/value pairs that
contains information about the rating of the content itself, such as the
date it was assigned and an expiration date for the rating.

– A set of attribute/value pairs designed by the rating service that repre-
sents the rating given the content. For example, the RSAC has four
attributes for which they rate software: violence, sexual content,
language, and nudity. These four attributes and their corresponding
values would appear similar to the following: (V 0 S 1 L 3 N 0).
96 Chapter 7 – Response Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Response
O

bject
PICS
Example
<%
' The following piece of code sets a PICS label for the
' content of this page corresponding to the rating discussed
' earlier.
Dim strPicsLabel

strPicsLabel = _
 "(PICS-1.1 <HTTP://www.rsac.org/ratingsv01.html> "
strPicsLabel = strPicsLabel & "labels on " & Chr(34)
strPicsLabel = strPicsLabel & "1998.03.20T06:00-0000" & _
 Chr(34)
strPicsLabel = strPicsLabel & " until " & Chr(34)
strPicsLabel = strPicsLabel & "1999.12.31T23:59-0000" & _
 Chr(34)
strPicsLabel = strPicsLabel & "ratings (V 0 S 1 L 3 N 0))"

Response.PICS(strPicsLabel)
%>

Notes

The PICS label in the example states that:

• The PICS draft used is 1.1.

• The rating service is RSAC.

• The URL for the rating service is HTTP://www.rsac.org/ratingsv01.html.

• The content label is to go into effect at 6 A.M. GMT 3/20/98.

• The content label expires at 11:59 P.M. GMT on 12/31/99.

• In the content label, the violence level is 0, the sexual content level is 1, the
adult language level is 3, and the nudity level is 0.

The actual PICS label that is added to the HTTP response header is the following:

PICS-label:(PICS-1.1 http://www.rsac.org/ratingsv01.html
labels on "1998.03.20T06:00-0000" until
"1999.12.31T023:59-0000" ratings (v 0 s 1 l 3 n 0))

If you attempt to add an invalid PICS label to the HTTP header, the client machine
will ignore it. Note that each subsequent setting of the PICS property value over-
writes the last value. Only the final setting is actually sent to the client machine.

Note also that the dates in the PICS label are in quotation marks. For this reason
you must use the Chr(34) character (34 is the ASCII equivalent to the quotation
mark). This is easiest to handle by simply typing out the label as it should appear
in the final PICS label and then replacing each quotation mark in the line of code
with the following:

" & Chr(34) & "

Like other properties that result in a change to the HTTP response header values,
adding a PICS label must be done before the server sends the <HTML> tag to the
client unless the response is buffered.
PICS 97

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Status
Status
Response.Status(strStatusDescString)

Specifies the HTTP status line that is returned to the client machine from the web
server.

Parameters

strStatusDescSetting
The strStatusDescSetting is a string value containing a three-digit status
code that indicates the status of the HTTP request and a short explanation of
the status code.

The possible values of the strStatusDescSetting parameter are described
in the current HTTP specification* and fall into the following high-level
categories:

1xx
The 100 range is set aside for sending information-only response statuses
to the client.

2xx
The 200 range is set aside for sending successful response statuses to the
client.

3xx
The 300 range is set aside for redirection of the client. This status range
should be used for requested pages that have been moved temporarily or
permanently.

4xx
The 400 range is set aside for sending notices of client error to the client.
For example, you have undoubtedly seen the 404 Not Found error status
sent back to your browser when you attempt to navigate to a page that
has been moved or that does not exist.

5xx
The 500 range is set aside for sending notices of server error to the client.
For example, attempts to reach pages on a server that is unable to handle
the request due to temporary overloading or server maintenance could
result in the response status 503 Service Not Available.

Example
<%
' The following code sets the Status property of the
' Response object to 404 Not Found. Unless other content is
' generated for the page, the status code will be
' interpreted by itself by the client.
strStatusText = _
 "404 Not Found The Web server cannot find the "
strStatusText = strStatusText & "file or script you asked "

* The latest version of the HTTP specification can be found at http://www.w3c.org/protocols.
98 Chapter 7 – Response Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Response
O

bject
Cookies
strStatusText = strStatusText & "for. Please check the URL "
strStatusText = strStatusText & "to ensure that the path "
strStatusText = strStatusText & "is correct."
Response.Status = strStatusText
%>

Notes

As with setting other Response headers, each subsequent setting of the Status
property value resets the last setting.

Like other properties that result in a change to the HTTP response header values,
the Status property must be set before the server sends the <HTML> tag to the
client unless the response is buffered.

Collections Reference

Cookies
Response.Cookies.Item(Key)[(SubKey) | .attribute] = strCookieValue

The Cookies collection of the Response object enables your ASP application to use
the Set-Cookie HTTP response header to write cookies to the client’s machine. If
you attempt to set the value of a cookie that does not yet exist, it is created. If it
already exists, the new value you set overwrites the old value already written to
the client machine.

As with the Cookies collection of the Request object, each cookie in the Cookies
collection of the Response object can also represent a cookie dictionary. Recall
from Chapter 6, Request Object, that a cookie dictionary is a construct that is
similar to an associative array in that each element of the array is identifiable by its
name. For more information on cookie dictionaries, see the section on the Cookies
collection of the Request object in Chapter 6.

The Cookies collection of the Response object, like other ASP collections, has the
following properties:

Item
Returns the value of a specific element in the collection. To specify an item,
you can use an index number or a key.

Key
Returns the name of a specific element in the Cookies collection. Just as each
element’s value is represented by the Item property, so each element’s name
is represented by its Key property.

If you do not know the name of a specific key, you can obtain it using its
ordinal reference. For example, assume that you want to learn the key name
for the third element in the collection and, subsequently, that element’s value.
You could use the following code:

strKeyName = Response.Cookies.Key(3)
strKeyValue = Response.Cookies.Item(strKeyName)
Cookies 99

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Cookies
If, on the other hand, you know that the third element’s key name is COLOR_
PREF, you could simply use the following code to retrieve the value of that
element:

strKeyValue = Response.Cookies.Item("COLOR_PREF")

Count
The Count property of the Cookies collection represents the current number
of cookies in the collection.

As with other ASP collections, you can retrieve the value of any field of the
Cookies collection through the use of the Item property. However, as in other
places in this book, in the following examples, the syntax has been abbreviated so
that it does not explicitly show the use of the Item property. For example:

Response.Cookies("UserPref") = "Red"

is an abbreviated form of:

Response.Cookies.Item("UserPref") = "Red"

To set the value of a cookie, you would use code similar to the following:

strLastSearch = Response.Cookies("LastSearch") = _
 "SELECT * FROM Details WHERE Color = 'Red'"

For more information on the Item, Key, and Count properties of a
collection, see the discussion in the section “Contents Collection” in
Chapter 4, Application Object.

The previous code would create the cookie UserPref if it doesn’t already exist
(or overwrite the original value if it does). This cookie would translate into a SET-
COOKIE response header being added to the response sent back to the client
browser. The client browser would receive this response header and create (or
overwrite) a UserPref cookie on the user machine.

Each element in the Cookies collection (or subkey, if the cookie is a cookie dictio-
nary) also has the following cookie-specific attributes:

Domain
Sets the cookie so that the client sends the cookie’s value only to pages in the
domain set in the Domain property. The Domain property is write-only. For
example, suppose we wanted to add the domain “mycorp.com” to the
following LastSearch cookie. This would cause the client to send this
cookie’s value to the mycorp.com domain when it requests pages from it:

Response.Cookies("LastSearch").Domain = "mycorp.com"

Expires
The date on which the cookie expires and is discarded on the client machine.
For example, suppose we want the cookie to expire on January 29, 2000. We
could use the following code:

Response.Cookies("LastSearch").Expires = #1/29/2000#
100 Chapter 7 – Response Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Response
O

bject
Cookies
If you do not set the Expires property value, the cookie resides on the client
machine for the duration of the client’s session. The cookie also will reside on
the client machine only for the duration of the client’s session if the date
value you set for the Expires property is earlier than the current date. The
Expires property is write-only.

HasKeys
As previously mentioned, a cookie in the Cookies collection also can repre-
sent a cookie dictionary. To determine whether a specific cookie has subkeys,
you must use the HasKeys property of that cookie, as in the following:

blnHasKeys = Response.Cookies("Colors").HasKeys
If blnHasKeys Then
 strColor3 = Response.Cookies("Colors")("color3")
End If

 The HasKeys property is read-only.

Path
The Path property represents the virtual directory on the server to which the
cookie will be sent by the client browser when the client browser requests a
page from within that virtual path. For example, if we want the client to send
this cookie to only those scripts in the /Apps/SearchApps virtual directory,
we’d use the following line of code:

Response.Cookies("LastSearch").Path = "/Apps/SearchApps"

If the cookie’s Path attribute is not set, the path defaults to the path of the
current ASP application. The Path property is write-only.

Secure
The Secure property allows you to specify whether the cookie is sent from
the client only if the client is using the Secure Sockets Layer. For example,
suppose we have stored some sensitive information in a cookie (this is not
wise, but there are occasions when you might do so), and you want the user’s
browser to send this information only if it is using the Secure Sockets Layer.
This will significantly decrease the probability that a sensitive cookie could be
intercepted. You would use the following simple line of code:

Response.Cookies("SensitiveCookie").Secure = True

The Secure property takes a Boolean value. The Secure property is write-only.

Example

The following is a more complete example of the use of the Cookies collection of
the Response object. It demonstrates many of the items discussed earlier.

<HTML>
<HEAD><TITLE>Search Cookie Example</TITLE></HEAD>
<BODY>
<H3>Welcome to the Search Results Options Page.</H3>
You can use the following form to select your search results
display options. These options will be saved on your machine as
a set of cookies.
<FORM ACTION="/SaveSearchCookie.asp" METHOD = POST>
First Name:<INPUT TYPE = TEXT NAME = "txtFirstName">

Cookies 101

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Cookies
Last Name:<INPUT TYPE = TEXT NAME = "txtLastName">

User ID:<INPUT TYPE = TEXT NAME = "txtUserId">

Check All that Apply:
Show Descriptions:
<INPUT TYPE = CHECKBOX NAME = "chkUserPrefs"VALUE = "Desc">
Show Hit Count (display how many matches found per result):
<INPUT TYPE = CHECKBOX NAME = "chkUserPrefs"VALUE = "Count">
Show Relevance with Graph:
<INPUT TYPE = CHECKBOX NAME = "chkUserPrefs"
VALUE = "Graph">
Use Small Fonts(will show more results per page):
<INPUT TYPE = CHECKBOX NAME = "chkUserPrefs"
VALUE = "Small">
<INPUT TYPE = SUBMIT VALUE = "Save Selections">
</FORM>
</BODY>
</HTML>

The following code (SaveSearchCookie.asp) will retrieve the values selected in the
previous form and save them to the user’s machine as cookies:

<%
' The following code retrieves user information from the
' Form collection of the Request object (see Chapter 6) and
' then writes the information to a set of cookies on the
' client machine.
Dim strFirstName
Dim strLastName
Dim strUserId
Dim intCounter
Dim intPrefCounter
Dim strKeyName
Dim arstrUserPrefs()

' Retrieve user information...
strFirstName = Request.Form("txtFirstName")
strLastName = Request.Form("txtLastName")
strUserId = Request.Form("txtUserId")

intPrefCounter = 1

For intCounter = 1 to Request.Forms("chkUserPrefs").Count
 ReDim Preserve arstrUserPrefs(intPrefCounter)
 arstrUserPrefs(intPrefCounter – 1) = _
 Request.Form("chkUserPrefs")(intCounter)
 intPrefCounter = intPrefCounter + 1
Next

' Write the user information to the client machine.
' Save all the information in cookies, but set the
' Expires property only for the UserId. We'll want
' that to remain on the client machine after the session
' is complete.
Response.Cookies("UserFirstName") = strFirstName
Response.Cookies("UserLastName") = strLastName
102 Chapter 7 – Response Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Response
O

bject
Cookies
For intCounter = 1 to intPrefCounter – 1
 strKeyName = "Pref" & CStr(intCounter)
 Response.Cookies("UserPrefs")(strKeyName) = _
 arstrUserPrefs(intCounter – 1)
Next

' Note in the first line below, that when no property
' is specified, the value of the cookie is set.
Response.Cookies("UserId") = strUserId
Response.Cookies("UserId").Expires = #December 31, 1999#
Response.Cookies("UserId").Domain = "www.customsearch.com"
Response.Cookies("UserId").Path = "/usersearch/"
Response.Cookies("UserId").Secure = True
%>

Notes

In the example, the UserFirstName cookie is sent to the client machine. For this
example, let’s assume the value of the strFirstName variable is the string “David.”
The actual HTTP response header sent to the client machine is:

Set-Cookie:USERFIRSTNAME=david

Also for this example, assume the three values sent are 800 (for client browser
width), 8 (for color depth in bits), and English (for English language preference).
The actual HTTP response header sent to the client is the following:

Set-Cookie:USERPREFS=PREF1=800&PREF2=8&PREF3=english

If the string value sent for a value of a cookie contains spaces, those spaces are
replaced with plus signs (+) in the HTTP response header.

If you sent a subsequent cookie value to the UserPrefs cookie on the client
machine without specifying a SubKey, as in the following:

Response.Cookies("UserPrefs") = "german"

the two values for PREF1 and PREF2 will be overwritten and the Count property
for the UserPrefs cookie will return 1.

Alternatively, if you send a subsequent cookie value and specify a SubKey to a
client machine where the cookie has a value but no keys, the value already in
place on the client machine is overwritten.

If, while you are generating values for the Cookies collection of the Response
object, you need to determine if there are already subkeys defined for a given
cookie, you can evaluate the HasKeys property of the cookie. If the cookie has
subkeys defined, the HasKeys property evaluates to True.

Like other properties that result in a change to the HTTP response header values,
the Cookies collection values must be set before the server sends the <HTML> tag
to the client unless the response is buffered.
Cookies 103

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Methods Reference
Methods Reference

AddHeader
Response.AddHeader strName, strValue

Allows you to add your own HTTP response header with a corresponding value. If
you add an HTTP header with the same name as a previously added header, the
second header will be sent in addition to the first; adding the second header does
not overwrite the value of the first header with the same name. Also, once the
header has been added to the HTTP response, it cannot be removed.

If the client sends the web server an HTTP header other than those listed in the
section on the ServerVariables collection in Chapter 6, you can use HTTP_
HeaderName to retrieve it. For example, if the client sends the HTTP header:

ClientCustomHeader:CustomHeaderValue

 then you could retrieve the value for this element using the following syntax:

<%
Request.ServerVariables("HTTP_ClientCustomHeader")
%>

This is an advanced method and should not be used without careful planning. If
another method of the Response object will meet your needs, use it instead of
using the AddHeader method.

Parameters

strName
The name of the HTML header you wish to add to the response header

strValue
The initial value of the new header you are adding to the response header

Example
<%
' The following code adds the CUSTOM-ERROR HTML header to
' the HTTP response headers.
Response.AddHeader "CUSTOM-ERROR", "Your browser is not IE."
%>

Notes

Like the other methods and properties of the Response object that alter the HTTP
response headers, you must call the AddHeader method before sending the
<HTML> tag to the client. If you have previously set the Buffer property value of
the Response object to True, you can use AddHeader unless you have previously
called the Flush method. If you call AddHeader after sending the <HTML> tag to
the client or calling the Flush method, your call to AddHeader will result in a
runtime error.

You should not use underscores in your custom headers. Doing so will increase
your chances of ambiguity with headers already present. Use hyphens to separate
104 Chapter 7 – Response Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Response
O

bject
AppendToLog
multiple words instead. Also, note that to retrieve the value of a custom header
with hyphens, you replace them with underscores when retrieving the values of
your custom headers.

AppendToLog
Response.AppendToLog strLogEntry

Adds a string to the web server log entry for the current client request. You can
only add up to 80 characters at a time, but you are able to call the AppendToLog
method multiple times.

Logging web site activity

IIS allows you to log user activity into a text file* or into an ODBC-compliant data-
base. This logging is separate from Windows NT logging, and the records in the
IIS log cannot be viewed using the Windows NT Event Viewer tool. To view the
IIS log files, you must open them as you would any other ASCII text file, import
them into a spreadsheet or database program, or, if you’ve been logging to an
ODBC database, view them through queries to that database.

Specifically, you can log the following aspects of users’ visits to your web site,
among other things:

• Date/time of user visit

• Requested pages

• IP address of user

• Length of time connected to server

Using this information and information your application adds to this log through
Response.AppendToLog, you can plan future development for your site, plan
security, and plan for new servers if the load warrants it.

Parameters

strLogEntry
The string you want added to the current client request’s entry in the web
server. This string can be up to 80 characters in length. Note that the string
you append to the web server log entry cannot contain commas, since the
fields in the IIS web log entries are comma delimited.

Example
<%
' Assume you have constructed one string containing all that
' you'd like logged to the web's server. This string is
' declared as strOrigLogContent. The following Do...While
' loop code will loop through your content and log it to the
' web server 79 characters at a time.

* The log files for IIS are found in winnt\system32\LogFiles\W3svc1\ex[date].log. Each entry
into the (IIS default) log contains time, caller IP, caller method (GET/POST), uri-stem (no server
path), and resulting status.
AppendToLog 105

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

BinaryWrite
Do While Len(strOrigLogContent) > 0
 If Len(strOrigLogContent) >= 79 Then
 strLogString = Left(strOrigLogContent, 79)
 Else
 strLogString = strOrigLogContent
 End If

 ' Log the content.
 Response.AppendToLog strLogString

 If Len(strOrigLogContent) > Len(strLogString) Then
 strOrigLogContent = _
 Right(strOrigLogContent, _
 Len(strOrigLogContent) - Len(strLogString))
 Else
 strOrigLogContent = ""
 End If
Loop
%>

Notes

Before you are able to append information to the web server log in IIS, you must
enable the URL Query option of the Extended Logging Properties sheet for the
web site whose activity the log files are being used to record.

This method can be an invaluable time saver in maintaining detailed information
about actions on your web site. If you have a unique identifier for each user that
is stored in the log file with the entry (which contains an IP address, possibly a
Windows NT account name, and the date and time of the visit), you can quickly
determine who was visiting the site at the time of an unexpected error on your
site. This method cannot be relied on for security, since you cannot be 100%
certain of the user’s identity, but it can help.

BinaryWrite
Request.BinaryWrite arbyteData

Writes information directly to the response content without any character conver-
sion. If your application involves writing binary data to the client, you must use
this method to ensure that data you send is not converted to character data from
the original binary.

Parameters

arbyteData
An array of bytes you wish to write to the response content

Example

The following example code is lengthy for the simple call to BinaryWrite, but it
demonstrates a very useful concept, especially if you are forced to deal with
binary data from a database.
106 Chapter 7 – Response Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Response
O

bject
BinaryWrite
<%

' The following code retrieves a binary object
' (in this case a JPG image) and writes it to the
' client using BinaryWrite. (For more information
' on ActiveX Data Objects usage, see Chapter 11.)

' Create an ADO connection object.
Set adoCon = Server.CreateObject("ADODB.Connection")

' Use the Open method of the Connection object
' to open an ODBC connection with the database
' represented by the DSN ImageDatabase.
adoCon.Open "ImageDatabase"

' Use the Execute method of the ADO Connection object
' to retrieve the binary data field from the database.
Set adoRecImgData = adoCon.Execute _
 ("SELECT ImageData FROM Images WHERE ImageId = 1234")

' Create a Field object by setting one equal to a
' specific field in the recordset created previously.
Set adoFldImage = adoRecImgData("ImageData")

' Use the ActualSize property of Field object to retrieve
' the size of the data contained in the Field object. After
' this line you will know how many bytes of data reside in
' the Field object.
lngFieldDataLength = adoFldImage.ActualSize

' Use the BinaryWrite method to write 4K bytes of binary
' data at a time. So, first we need to determine how many
' 4K blocks the data in the Field object represents.
lngBlockCount = lngFieldDataLength / 4096

' Now let’s get how many bytes are left over after removing
' lngBlockCount number of bytes.
lngRemainingData = lngFieldDataLength Mod 4096

' We now must set the HTTP content type Response header
' so that the browser will recognize the data being sent
' as being JPEG image data.
Response.ContentType = "image/JPEG"

' Loop through and write the first lngBlockCount number
' of binary blocks of data.
For intCounter = 1 to lngBlockCount
 Response.BinaryWrite adoFldImage.GetChunk(4096)
Next

' Now write the last remainder of the binary data.
Response.BinaryWrite adoFldImage.GetChunk(lngRemainingData)
BinaryWrite 107

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Clear
' Close the recordset.
adoRecImgData.Close
%>

Notes

At first, the BinaryWrite method seems to be of limited use, until you have binary
data stored in a database that must be sent to the client; then, BinaryWrite is
invaluable. As the code sample demonstrates, one example of this is the display of
image data that is stored and retrieved from a DBMS capable of storing binary
data.

I have used this method to display JPEG images stored in a Microsoft SQL Server
database (using code similar to the preceding), and it works quite well. Because
you are sending the HTTP response containing only the image data (not a link
request to the image), it may even be faster than sending images to the client
upon a straight client request, assuming your database access is suitably fast.

Clear
Response.Clear

Empties the current contents of the Response buffer. It does so without sending
any of the buffered response to the client.

Parameters

None

Example
<% Response.Buffer = True%>
<HTML>
<HEAD><TITLE>Response Clear Method Example</TITLE></HEAD>
<BODY>
<%
On Error Resume Next

[CODE TO DO SOME CALCULATIONS]
lngFormulaElement1 = 47
lngFormulaElement2 = lngFormulaElement1 – 47
lngFormulaElement3 = 23

' This next line results in a division-by-zero error
' (Error Number 11).
lngNewCalcTotal = lngFormulaElement3 / lngFormulaElement2

' This next line will still be processed because we used
' ON ERROR RESUME NEXT.
If Err <> 0 Then
 ' The following code clears the Response buffer, writes
 ' an error message, and ends the response, forcing IIS to
 ' send the response to the client. Note that the Buffer
 ' property has to be set to True for the following code
 ' to work properly.
108 Chapter 7 – Response Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Response
O

bject
End
 Response.Clear
 Response.Write "Your request resulted in the error: " & _
 Err.Description
 Response.Write " Error Number: " & Err.Number
 Response.Write "
Call your web admin at 555-HELP for "
 Response.Write "more information."
 Response.End
End If
%>
...[additional code]

Notes

The Clear method of the Response object does not clear any HTTP headers, only
the content. As noted in the example, the Buffer property of the Response object
must be set to True or the use of this method will result in a runtime error.

One of the most important uses for the Clear method is to clear the buffer and
send to the client browser something else instead, often error information, as is the
case with the example.

For errors to be caught and error information to be sent to the client in this
fashion, not only must the Buffer property be set to True, but also you must use
the following line of code to ensure that your error trap will be processed:

On Error Resume Next

End
Response.End

Ends all storage of information in the response buffer and sends the current
contents of the buffer immediately to the client. Any code present after the call to
the End method is not processed. Any memory set aside by the script up until the
call to End (such as database objects previously used in the script) is released.

Parameters

None

Example

See the previous example for the Clear method.

Notes

If the Buffer property is set to True, calling the End method will flush the
Response buffer exactly as if you had called the Flush method (see the next
section). However, unlike calling the Flush method, no code after the call to End
is processed by the web server.
End 109

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Flush
Flush
Response.Flush

Immediately sends all data currently in the response buffer to the client. Unless the
Buffer property of the Response object is set to True, this method will result in a
runtime error. This method allows you to send various portions of the response to
the client at your discretion.

Parameters

None

Example
<% Response.Buffer = True%>
<HTML>
<HEAD><TITLE>Response Flush Method Example</TITLE></HEAD>
<BODY>
<%
' Suppose for this example that this first part of the
' script retrieves some information from a database and
' that retrieval takes a long time, say 30 seconds.
' (Don't worry about the details of the ActiveX Data Object
' calls. They are covered later in the book and serve only
' as an example here of something that might take a long time.)
Set adoCon = Server.CreateObject("ADODB.Connection")
adoCon.Open MyDatabase
Set adoRec = adoCon.Execute([BIG SQL STATEMENT])

' Rather than continue to the second part of the script, in
' which a second slow SQL statement (say another 15 seconds)
' executes, first we'll use the Flush method to force the
' first part of the script results to the client. This way,
' the user can be looking at the results of the first query
' while waiting for the second.
Response.Flush

' [Second LONG SQL statement.]
Set adoRec2 = adoCon.Execute([BIG SQL STATEMENT])
%>
</BODY></HTML>

Notes

Using the buffering capacity of the Response object, you are able to send the
response to the client in parts. For example, suppose you are presenting a descrip-
tion of your worldwide organization followed by a list of offices derived from
information in a database. The organization description is straight text, and thus it
takes very little time to prepare and send it to the client. The second part takes
more time. You could use the Flush method of the Response object to send the
organizational description to the client first and then send the list when it is
complete. Without this approach, the user can get the impression that the page is
slow to download.
110 Chapter 7 – Response Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Response
O

bject
Write
One caution, however: if you use the Flush method on an Active Server Page, the
server will ignore Keep-Alive requests sent by the client for that page. This will
force a new connection to be made for each piece of information sent to the
client.

Redirect
Response.Redirect strURL

Redirects the client’s request to another URL.

Parameters

strURL
The Universal Resource Locator string for the new location to which you wish
to redirect the client

Example
<%
' The following code determines whether the client has
' security clearance for a certain page. If not, it
' is redirected to another URL.
[...Code to determine user's clearance for the current page...]

If Not(strUserSecurity = "ADMIN" or "SUPERADMIN") Then
 Response.Redirect "/security/noclearance.asp?usrid=09563"
End If
%>

Notes

The strURL value you use when calling the Redirect method can be an exact URL
with DNS or a virtual directory and filename. It also can be the name of a file that
resides in the same folder as the requested page.

If your script has written any content to the HTTP response body, that content is
ignored by the script once the call to the Redirect method is executed.

Calling the Redirect method is conceptually the same as setting the Status prop-
erty to “302 Object Moved” and sending the user to a new location using the
Location HTTP header.

Note that upon redirection, some older (HTTP 1.0) client browsers will mistakenly
change POST requests to GET requests when the new URL is called. This is an
important consideration when the client’s POSTed information contains more data
than the GET method can handle. It is assumed that new browsers supporting the
HTTP 1.1 protocol have fixed this problem.

Write
Response.Write vntData

Writes information directly to the HTTP response body.
Write 111

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Write
Parameters

vntData
The information to be inserted into the HTML text stream that will be received
by the client browser. This includes text, HTML tags, client-side script, and so
on. The data variables in the ASP script itself are of the data type variant. The
value cannot contain the %> character sequence; the web server will interpret
it as the end of your active server script. If your script requires this character
sequence, use the escape sequence %\> instead.

Example
<%
strDirCommand = "Dir /w"

' The following code writes an entire HTML table to the HTTP
' response body.
Response.Write "<TABLE>"
Response.Write "<TR>"
Response.Write "<TD WIDTH = 50%\>"
Response.Write "Command"
Response.Write "</TD>"
Response.Write "<TD WIDTH = 50%\>"
Response.Write "Description"
Response.Write "</TD>"
Response.Write "</TR>"
Response.Write "<TR>"
Response.Write "<TD WIDTH = 50%\>"
Response.Write Chr(34) & strDirCommand & Chr(34)
Response.Write "</TD>"
Response.Write "<TD WIDTH = 50%\>"
Response.Write "This allows you to see a list of the "
Response.Write "files in
 your current folder."
Response.Write "</TD>"
Response.Write "</TR>"
Response.Write "</TABLE>"
%>

Notes

As demonstrated in the example program, you can use the Write method to write
HTML and client-side script to the response body that the client browser will inter-
pret as plain HTML.

To send a carriage return/line feed or a quotation mark, use the Chr function, as
demonstrated the following code:

' Note: Chr(34) is a quotation mark. Chr(10) & Chr(13) is
' the equivalent of a carriage return, followed by a
' linefeed.
Response.Write "Hamlet said, " & Chr(34) & _
 "To be, or not to be." & Chr(34) & Chr(10) & Chr(13)

Finally, you can use the Write method to send the value of a server-side script to
the client browser. This method is sometimes cleaner in your code than going
back and forth between server-side code and client code using the <%=…%> nota-
112 Chapter 7 – Response Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Response
O

bject
Write
tion. For example, the following code displays the value of the strHighestPrice
data value using both the <%=…%> and the Response.Write methods:

<%
Response.Write "The highest price is " & strHighestPrice
Response.Write ".
"

' The same line as the preceding using the other format:
%>
The highest price is <%=strhighestPrice%>.

Write 113

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Chapter 8Server Object
CHAPTER 8

Server Object

The Server object provides several miscellaneous functions that you can use in

your Active Server Page applications. Although most of its methods are esoteric
and seldom used, one method, the CreateObject method, and the Server object’s
single property, ScriptTimeout, are invaluable. You will use these in many of your
scripts.

The Server object, as its name implies, represents the web server itself, and much
of the functionality it provides is simply functionality the web server itself uses in
the normal processing of client requests and server responses.

Server Object Summary
Properties

ScriptTimeout

Collections
None

Methods
CreateObject
HTMLEncode
MapPath
URLEncode

Events
None
114

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Server O
bject

ScriptTimeout
Comments/Troubleshooting
Use of the Server object’s property and methods is straightforward. Typically, if
you are using the Server object’s functionality with the correct syntax, you will
experience the expected outcome. If you experience errors, it typically indicates a
problem with IIS itself either in its configuration or in its installation.

Properties Reference

ScriptTimeout
Server.ScriptTimeout [= lngNumSeconds]

Specifies the maximum amount of time the web server will continue processing
your script. If you do not set a value for this property, the default value is 90
seconds.

Parameters

lngNumSeconds
The number of seconds you want the web server to continue processing your
script before it times out, sending the client an ASP error

Example
<%

' The following code sets the amount of time before the
' script times out to 100 seconds. If the script takes
' more time than 100 seconds, the script will time out and
' a timeout error will be sent to the client.
Server.ScriptTimeout = 100

%>

Notes

The number used in setting the ScriptTimeout property’s value must be greater
than or equal to that set in the AspScriptTimeout property in the IIS metabase or
the setting will be ignored. For example, the default setting of AspScriptTimeout in
the IIS metabase is 90 seconds. If you use the ScriptTimeout property to decrease
this time to 10 seconds without first changing the setting in the metabase, the
script will still time out after 90 seconds.

You should consider decreasing the AspScriptTimeout property in the IIS meta-
base. 90 seconds is a long time to wait for processing a web request. Show me a
user who is willing to wait for a minute and a half, and I’ll show you a user who
has fallen asleep. However, if your application requires a longer timeout setting,
consider using an interim “Please wait . . .” page whose OnLoad event will in turn
call the longer script or ASP page. This will give the user some notice that her wait
will be a long one.

This technique is demonstrated in the following code. Assume that you must call the
InfoSearch.ASP script, and you know that it takes a single parameter,
ScriptTimeout 115

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Methods Reference
strSrchItem, and that it takes up to two minutes to complete its tasks. Instead of
calling InfoSearch.ASP immediately, you could call the following page instead:

<HTML>
<HEAD><TITLE>Search Wait</TITLE></HEAD>
<BODY LANGUAGE="VBScript" OnLoad = "PageLoad()">
Please wait, your request is being processed...
<SCRIPT LANGUAGE="VBScript">
Sub PageLoad()
Parent.Location.HREF = _
"InfoSearch.ASP?<%=Request.ServerVariables("QUERY_STRING")%>"
End Sub
</SCRIPT>
</BODY>
</HTML>

As you can see, when this script loads, it calls the page with the long script,
sending the original query string (retrieved from the ServerVariables collection of
the Request object; see Chapter 6, Request Object, for more details). This gives the
user immediate feedback without forcing him to sit watching a blank screen
waiting for a script to complete processing.

Methods Reference

CreateObject
Set objMyObject = Server.CreateObject(strProgId)

Instantiates an object on the server. Once instantiated, this object’s properties and
methods can be used just as you can use the properties and methods of the built-
in objects that come with ASP. The DLLs from which these objects are instantiated
must be installed and registered on the web server machine separately from your
installation of IIS.

Parameters

objMyObject
The name of a variable that will contain a reference to the object you are
instantiating.

strProgId
The programmatic ID for the class from which you would like to instantiate
an object. The format for the strProgId parameter is:

[VendorName.]Component[.Version]

This value is found in the registry and represents how the component’s DLL is
registered there. Although it sometimes contains the DLL name, it often does
not. For example, the DLL from which you instantiate the Ad Rotator object is
adrot.dll. However, its ProgID is MSWC.AdRotator.1, as defined by the
default value of the following registry key:

HKEY_CLASSES_ROOT\CLSID\{1621F7C0-60AC-11CF-9427-444553540000}\
ProgID
116 Chapter 8 – Server Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Server O
bject

CreateObject
As you will note, this is the ProgID for the registered DLL and contains
version information in addition to its registered name. Sometimes, however,
you may have several different versions of the same DLL registered on your
machine. In this case, you can use the default value of the
VersionIndependentProgID registry key to instantiate the most recent
version of the DLL. In our example (the ad rotator), the version-independent
ProgID is MSWC.AdRotator.

Example
<%

' The following code uses the CreateObject method of
' the Server object to instantiate an Ad Rotator object
' on the server.
Dim objAdRotator

Set objAdRotator = Server.CreateObject("MSWC.AdRotator")

%>

Notes

When a client browser requests an ASP script containing objects, ASP instantiates
the objects (thus triggering their default constructor functions, if they exist) and
then immediately—before any script is processed—calls the OnStartPage method
of every object on the page that has a defined OnStartPage event handler. The
OnStartPage method allows the object to use the ScriptingContext object to
retrieve pointers to the built-in ASP objects. The details behind the ScriptingCon-
text object and the OnStartPage methods of server components is beyond the
scope of this book. For more information on this, see Shelley Powers’ book, Devel-
oping ASP Components, published by O’Reilly & Associates.

Using the CreateObject method creates a server-side object with page-level scope,
unless CreateObject is called in the Application_OnStart or Session_OnStart events,
in which case the object will be instantiated with application- or session-level
scope, respectively. Objects with page-level scope are destroyed and the memory
they occupy is released at the end of the page.

To create an object with application scope, you must call the CreateObject method
in the Application_OnStart event (see Chapter 4, Application Object, for more
details) or use the <OBJECT> tag in the GLOBAL.ASA file and set the SCOPE param-
eter to Application. (For more details on the GLOBAL.ASA file, see Chapter 10,
Preprocessing Directives, Server-Side Includes, and GLOBAL.ASA.)

Likewise, to create an object with session scope, you must call the CreateObject
method in the Session_OnStart event (see Chapter 9, Session Object, for more
details) or use the <OBJECT> tag in the GLOBAL.ASA file and set the SCOPE param-
eter to Session. Also, you can use a Session variable to hold the object instantiated
using CreateObject, as in the following example:

Set Session("objMyAdRot") = _
 Server.CreateObject("MSWC.AdRotator")
CreateObject 117

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

HTMLEncode
Objects with application-level scope are not destroyed until the Application_
OnEnd event is fired. Session-scoped objects are similarly destroyed at the end of
a user’s session or when the Abandon method of the Session object is called; see
Chapter 9 for more details.

Once an object is instantiated, it can be destroyed by setting its value to the
keyword Nothing, as in the following example code:

Set objMyAdRot = Nothing

You also can simply replace the value of the object variable to release the memory
being used for the original object:

Set objMyAdRot = strSomeOtherValue

You cannot use CreateObject to create an instance of one of the built-in objects.
For example the following code will generate a runtime error:

Set objMySession = Server.CreateObject("Session") ' WRONG

HTMLEncode
Server.HTMLEncode (strHTMLString)

If you ever need to display the actual HTML code involved in an HTML page or
ASP script, you must use the HTMLEncode method of the Server object. The
HTMLEncode method of the Server object allows you to encode the HTML string
so that, when it is displayed in the browser, the browser does not simply interpret
the HTML as instructions for text layout.

Parameters

strHTMLString
The string whose HTML code you wish to encode for display on the client
machine

Example
<%

' The following code encodes these HTML tags so that they can
' be displayed without interpretation on the client browser:
' <TABLE><TR><TD></TD></TR></TABLE>
Dim strOldHTML
Dim strNeutralCode

strOldHTML = "<TABLE><TR><TD>"
strNeutralCode = Server.HTMLEncode(strOldHTML)

' The variable strNeutralCode now holds the following code:
' <TABLE><TR><TD>
' but will be displayed on the client's machine as
' <TABLE><TR><TD>
' and the <TABLE><TR><TD> will be
' seen only if you view the source code on the client.
Response.Write strNeutralCode

%>
118 Chapter 8 – Server Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Server O
bject

MapPath
Notes

The HTMLEncode method is a straightforward method that is simple to use. It
makes it possible to display the source code of your HTML page or to demon-
strate the use of various HTML tags in a web page. It is also invaluable for
displaying the output of database queries.

MapPath
Server.MapPath (strPath)

The MapPath method allows you to determine the physical path on the server,
given a virtual or relative path.

Parameters

strPath
A complete virtual path or a path relative to the path of the current script’s
home directory on the server. The method determines how to interpret the
string depending on if it starts with either a slash (/) or a backslash (\). If the
strPath parameter begins with either of these characters, the string is
assumed to be a complete virtual path. Otherwise, the physical path returned
is the path relative the current script’s physical directory on the web server.

Example
<%

' The following line of code determines the physical path
' of the current script for later use.
strSearchPath = _
 Server.MapPath("/searchscripts/start/searchstart.asp")

' This following code then uses the strSearchPath string to
' determine the file attributes for the current file for
' display in the client-side HTML.
Set fs = Server.CreateObject("Scripting.FileSystemObject")
Set f = fs.GetFile(strSearchPath)
datFileLastModified = f.DateLastModified
%>
<HTML>
<HEAD><TITLE>MapPath Example</TITLE></HEAD>
<BODY>
The current script was last modified <%=datFileLastModified%>.
</BODY>
</HTML>

Notes

There are two important facts to remember when using the MapPath method. The
first is that it does not support the standard MS-DOS relative directory notation (“.”
and “..”). For this reason, the following line of code will result in a runtime error:

strSearchPath = Server.MapPath("../start/searchstart.asp")
MapPath 119

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

URLEncode
Second, the MapPath method does not check to ensure whether a given physical
directory exists. For this reason, this method is useful in determining the physical
path for a new file to be created by the web server in response to a line of script
code.

Finally, to determine the physical path of the current file, you can use the PATH_
INFO element of the Request object’s ServerVariables collection (for more details,
see Chapter 6). For example, assume the current script is searchstart.ASP and it is
located in the /searchscripts/start/ virtual directory. The following line of code
would set the value of strSearchPath to D:\apps\searchscripts\start\searchstart.
asp :

strSearchPath = _
 Server.MapPath(Request.ServerVariables("PATH_INFO"))

URLEncode
Server.URLEncode (strURL)

Encodes a string that can then be sent over the address line as a query string.

Parameters

strURL
The string value you want to encode to send over the address line as a query
string

Example
<%

' The following encodes the URL
' http://www.myserver.com/apps/search.asp
Dim strOldURL
Dim strNewURL

strOldURL = "http://www.myserver.com/apps/search.asp"
strNewURL = Server.URLEncode(strOldURL)

' This encoding results in the following string value being
' placed in the strNewURL variable:
' http%3A%2A%2Awww%3Amyserver%3Aapps%3Asearch.asp

' This new string value could be used in a query string to
' represent a "next script," as demonstrated here:

%>
<HTML>
<HEAD><TITLE>URLEncode Example</TITLE></HEAD>
<BODY>
<FORM ACTION="/apps/CalcAndRedirect.asp?newURL=<%=strNewURL%>"
METHOD = POST>
<INPUT TYPE = TEXT NAME = "First Value">
<INPUT TYPE = TEXT NAME = "Second Value">
<INPUT TYPE = SUBMIT NAME = "Calculate Results">
120 Chapter 8 – Server Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Server O
bject

URLEncode
</FORM>
</BODY>
</HTML>

Notes

The URLEncode method, like the HTMLEncode method, is straightforward and
easy to use. It is imperative that you use the URLEncode method any time you are
forced to send information over the address line instead of posting information
using the POST method. If you do not encode your information and place it into
the QueryString collection (through the GET method), its interpretation is unpre-
dictable, depending on the data sent.

If you send information in the query string (i.e., from visible frame to visible
frame), but not over the address line, this encoding is done for you.
URLEncode 121

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Chapter 9Session Object
CHAPTER 9

Session Object

One of the greatest challenges you face in constructing a full-featured web appli-

cation is keeping track of user-specific information while a user navigates your site
without asking her to identify herself at every request from the server. Among
other pieces of information that you need to maintain are a user’s identification, a
user’s security clearance if applicable, and, in more advanced applications, user
preferences that allow you to customize your web site’s look and feel in response
to selections made by the user. The primary problem with maintaining user-
specific information is limitations in the currently standard HTTP 1.0 protocol.

Although HTTP 1.0 does provide a mechanism for persistent connections that
allows you to maintain user identification and user-specific data, its utility is
limited. Without getting into the technical details, the Hypertext Transfer Protocol
1.0 allows client browsers to send Keep-Alive messages to proxy servers. These
messages basically tell the proxy server to maintain an open connection with the
requesting client. However, these connection requests are often unrecognized by
the proxy server. This problem in the proxy server results in a hung connection
between the proxy server and the requested web server. In a nutshell, main-
taining connections with web servers is prone to error and thus is unreliable in
HTTP 1.0, still by far the protocol most commonly used by client browsers.

Microsoft Internet Information Server’s (and other web servers’) solution to this
problem is to use the HTTP Persistent Client State Mechanism—better known as
cookies—to identify the user. IIS handles this mechanism through the use of the
Session built-in object.

The Session object represents the current user’s session on the web server. It is
user specific, and its properties and methods allow you to manipulate the informa-
tion on the server that is specific to that user for the duration of that user’s
connection. This duration is defined as the time from the client’s first request of a
page within your web application until 20 minutes (20 minutes is a default value
that can be changed—see “Timeout,” later in this chapter) after the user’s last
request to the web server.
122

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Sess
O

bje
Comments/Troubleshooting
A user session can be initiated in one of three ways:

• A user not already connected to the server requests an Active Server Page that
resides in an application containing a GLOBAL.ASA file with code for the
Session_OnStart event.

• A user requests an Active Server Page whose script stores information in any
session-scoped variable.

• A user requests an Active Server Page in an application whose GLOBAL.ASA
file instantiates an object using the <OBJECT> tag with the SCOPE parameter
set to Session.

Note that a user session is specific to a given application on your web site. In fact,
it is possible to maintain session information for more than one application at a
time if one application is rooted in a virtual directory that resides under the virtual
directory designating another application.

The web server identifies each user with a unique SessionID value. This SessionID
variable is assigned to each user at the beginning of his session on the web server
and is stored in memory on the web server. The SessionID is stored on the client
by writing a cookie containing the SessionID to the user’s machine. This cookie is
sent to the server each time the user makes a request. To identify the user, the
server retrieves the cookie and matches it up with a SessionID held in memory.

In addition to the SessionID variable, you can store other information specific to
individual users. You can initialize (or change) any session-level variable
anywhere in any Active Server Pages script. To ensure that a session-level variable
is initialized to a specific value, you can script code in the Session_OnStart event
procedure in the GLOBAL.ASA file. This event procedure is fired when the user’s
session starts. The GLOBAL.ASA file (see Chapter 10, Preprocessing Directives,
Server-Side Includes, and GLOBAL.ASA) is a special file that you can code specific
to each ASP application. This file’s code is processed when the user session
begins.

As discussed earlier, the Session object is very important in maintaining informa-
tion about individual users. You also can use the Session object to handle some of
the special issues that are specific to non-English-speaking clients requesting infor-
mation from your web site.

Comments/Troubleshooting
One of the most important things that you need to keep in mind when using the
Session object is its scope. Any information you store with session-level scope is in
scope for the duration of the user’s session in a given application. This is a fine
point. For example, assume your code deals with a session-level variable that was
defined in the context of the Search application on your web site. This applica-
tion’s virtual directory, /search, reflects the following physical directory:

D:\www\apps\search

The current script, SearchStart.ASP, resides in this directory. Assume that you have
initialized a session-level variable, strSearchPref, in this script. Now the user
moves to another application script, ContribMain.ASP, that resides in a separate
Comments/Troubleshooting 123

ionct

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Comments/Troubleshooting
application whose virtual directory, /contrib, reflects the following physical
directory:

D:\www\apps\contrib

If this user does not return to a script in the virtual directory encompassing the
Search application within 20 minutes (or whatever the session duration is set to),
the strSearchPref session-level variable value is reset. This is an important
source of errors in complex web applications. A user session’s session-level vari-
ables expire when the session ends, even if the time spent away from the
application was spent in applications on the same web site.

One way to avoid this problem is to nest applications. For example, you can place
the /contrib virtual directory underneath the search directory, as reflected in the
following path:

D:\www\apps\search\contrib

Using this configuration, all requests to the contribution application’s virtual path, /
contrib, remain in the context of the search application.

I’ve noted that you can change the default length of time after which a user
session ends. Why would you want to do this? There are two possible reasons.
The first is that you want to save the user’s session information for longer than 20
minutes. For example, you may know beforehand that a user will leave your site
for more than 20 minutes and then return. The second possibility is that you want
to terminate the user’s session information sooner. For example, say you know
your users do not stay connected to your site for very long and you want to mini-
mize the impact on server memory consumption that saving session information in
memory consumes. See “Timeout,” later in this chapter, for how to set this infor-
mation differently from the default.

Session Object Summary
Properties

CodePage
LCID
SessionID
Timeout

Collections
Contents
StaticObjects

Methods
Abandon

Events
Session_OnEnd
Session_OnStart
124 Chapter 9 – Session Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Session
O

bject
CodePage
All of this session-level information storage is based on the use of cookies sent to
the client and then sent back to the server. What if the user has cookies turned off
or is using an older browser that does not support the use of cookies? Well, if you
are using Windows NT or Basic Authentication, you can identify the user from the
LOGON_USER element of the Request object’s ServerVariables collection. From
this information, you can retrieve user-specific data from a database or text files on
the server. If you are not using Windows NT or Basic Authentication, you will
likely not be able to identify the user. In the past, you could use a user’s IP
address as an identifier, but with dynamically generated IP addresses using DHCP
and firewalls, the IP address should be considered useless for the purpose of user
identification.

Properties Reference

CodePage
Session.CodePage (= intCodePageValue)

Specifies or retrieves the code page that will be used by the web server to display
dynamic content in the current script. A code page is a character set containing all
the alphanumeric characters and punctuation used by a specific locale.

Parameters

intCodePageValue
An unsigned integer corresponding to a specific character set installed on the
server. Setting the CodePage property will cause the system to display content
using that character set. The following table lists only a few of the possible
valid values for this parameter:

Example
<%

' In the following code, assume that the original code
' page setting is 1252 for American English. The
' example demonstrates the use of the CodePage property
' of the Session object to temporarily set the character
' set to Chinese so the text sent to the browser uses the
' Chinese character set:
Dim uintOrigCodePage
Dim uintChineseCodePage

uintChineseCodePage = 950
uintOrigCodePage = Session.CodePage

CodePage
Value Language

932 Japanese Kanji

950 Chinese

1252 American English (and most European languages)
CodePage 125

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

LCID
Session.CodePage = uintChineseCodePage
%>
' +---+
' | This text is sent to the client browser using the |
' | Chinese character set. |
' +---+
<%

' Remember to reset your CodePage property if you don't want
' the rest of of the text created and placed into the HTML
' stream to be displayed using the new character set.
Session.CodePage = uintOrigCodePage

%>

Notes

Remember that, by default, Active Server Pages uses whatever character set you
set for the script page using the CODEPAGE directive (see Chapter 10). Setting the
CodePage property overrides this only for text sent to the browser. Script text is
still communicated between ASP and your script or your script and ActiveX
components using the same character set declared using the CODEPAGE directive.

LCID
Session.LCID (= intLCID)

The locale represents a user preference for how certain information is formatted.
For example, some locales have dates formatted in the Month/Day/Year format.
This is the standard U.S. locale. Each locale is identified by that locale’s unique
LCID, or locale ID. This code is defined in the operating system.

You can set the locale identifier for your script’s content using the LCID property
of the Session object. The LCID property represents the valid locale identifier that
will be used to display dynamic content to the web browser.

Parameters

intLCID
A valid 32-bit locale identifier

Example
<%

' The following code demonstrates the use of the LCID property
' to temporarily set the locale identifier to
' Standard French.

Dim intOrigLCID
Dim intFrenchLCID

intFrenchLCID = 1036
intOrigLCID = Session.LCID
126 Chapter 9 – Session Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Sess
O

bje
SessionID
Session.LCID = intFrenchLCID
%>
' +---+
' | This text sent to the client browser will be formatted |
' | according to the rules set by the locale identifier for |
' | Standard French. For example, dates would be formatted |
' | using the Day/Month/Year format, instead of the U.S. |
' | standard Month/Day/Year. |
' +---+
<%

' The next line resets the LCID property:
Session.LCID = intOrigLCID

%>

Notes

Similar to the CodePage property in syntax, the LCID property allows you to set
the formatting rules for times and dates, and it also sets rules for alphabetizing
strings.

If you use the ASP LCID directive, you are setting the locale identifier for the
script’s environment on the server. The Session.LCID property uses this value as a
default. If you wish to send string or date/time information to the client using
different formatting rules, you must set the LCID property of the Session object.
However, doing so has no impact on how the strings and date/time values are
formatted internally to the script.

SessionID
Session.SessionID

A read-only value that uniquely identifies each current user’s session. This value is
of data type Long and is stored as a cookie on the client machine. During a user’s
session, the user’s browser sends this cookie to the web server as a means of iden-
tifying the user.

Parameters

None

Example
<%

' The following code retrieves the current SessionID for
' a given user:

Dim lngUserSessionId

lngUserSessionId = Session.SessionID

%>
SessionID 127

ionct

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Timeout
Notes

The SessionID property is generated the first time a user requests a page from the
web server. The web server creates a value for the SessionID property using a
complex algorithm and then stores this value in the form of a cookie on the user’s
machine. Subsequently, each time the user requests a page from the web server,
this cookie is sent to the server in the HTTP request header. The server is then
able to identify the user according to her SessionID. The cookie is reinitialized
only when the client restarts her browser or when the webmaster restarts the web
server.

Note that the SessionID cookie lasts on the client browser and is sent to (and
recognized by) the web server until one of the two machines (client or web
server) is restarted. This time period has nothing to do with the Timeout property
of the Session object. For example, assume a user’s session ends or is abandoned
by using the Abandon method of the Session object. Then the user (without
having restarted her browser) revisits the site. Assuming also that the web server
has not been restarted since the end of the last session, the web server will start a
new session for the user but will use the same SessionID, which is again sent to
the web server as part of the HTTP request.

This last point is important and is worth noting. Only if both the client browser
and the web server applications have not been restarted can you assume a
SessionID uniquely identifies a user. Do not use this value as a primary key, for
example, as it is reset anytime either browser or server is stopped and restarted.

Remember also that a browser that does not support cookies or that has cookies
turned off will not send the SessionID as part of the HTTP request header. In this
case, you must rely on some other method to identify users. You also can prevent
the web application from using cookies by using the EnableSessionState
preprocessor directive (for more details, see Chapter 10).

To maintain information without using cookies, you could either append informa-
tion from each request onto the QueryString or post the identifying information
from a hidden form element on your page.

Timeout
Session.Timeout (= intMinutes)

The length of time in minutes the web server will maintain a user’s session infor-
mation without requesting or refreshing a page. This value is set to 20 minutes by
default.

Parameters

intMinutes
The number of minutes for which the web server will maintain session
information

Example
<%
128 Chapter 9 – Session Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Sess
O

bje
Contents Collection
' The following code resets the Timeout property of the
' Session object from its default of 20 minutes to 5
' minutes.

Session.Timeout = 5

%>

Notes

The Timeout property is straightforward in use. You can set this property’s value
as high as you like, but note that the value for the Timeout property directly
affects the memory consumption on the web server that each user session
requires.

Consider setting this number lower (as in the example) when your site’s users visit
for only brief periods. If, however, each page is visited for a longer period of time
(for example, one page may provide a client-side scripted calculator), you may
want to consider increasing this value.

Note that, unlike most properties of the Session object, this property affects all
user sessions, not just the current session. If you set the value of the Timeout
property of the Session object to 120 minutes, every user’s session information will
remain in memory on the web server until 120 minutes after he last requests or
refreshes a page.

Collections Reference

Contents Collection
Session.Contents(Key)

Contains all of the variables and objects added with session-level scope through
script (i.e., not through the use of the <OBJECT> tag).

The Contents collection of the Session object, like other ASP collections, has the
following properties:

Item
Represents the value of a specific element in the collection. To specify an
item, you can use an index number or a key.

Key
Represents the name of a specific element in the collection. For example, you
could receive the name of the first element in the collection like this:

strElementName = Session.Contents.Key(1)

You use the value of the Key property to retrieve the value of an element by
name. For example, suppose the first element’s name is “UserSecurityCode.”
Then the code:

strKey = Session.Contents.Key(1)
Session.Contents.Item(strKey) = "Admin"

sets the value of the UserSecurityCode element in the Contents collection.
Contents Collection 129

ionct

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Contents Collection
Count
Returns the current number of elements in the collection.

As with other ASP collections, you can retrieve the value of any field of the
Contents collection through the use of the Item property. However, as in other
places in this book, in the following examples, the syntax has been abbreviated so
that it does not explicitly show the use of the Item property. For example:

strSecurityCode = Session("UserSecurityCode")

is an abbreviated form of:

strSecurityCode = Session.Contents.Item("UserSecurityCode")

For more information on the Item, Key, and Count properties of a
collection, see the discussion in the section “Contents Collection” in
Chapter 4, Application Object.

Example

The following script is the first of two ASP scripts that the user will visit (the first
redirects the user’s browser to the second). In this first script, the user’s session-
level variables are created (SessionVar1, SessionVar2, and SessionVar3).

<HTML>
<HEAD><TITLE>Session Contents Example Page1</TITLE></HEAD>
<BODY>
<%
Dim strVar1
Dim strVar2
Dim strVar3

strVar1 = "Session Variable 1"
strVar2 = "Session Variable 2"
strVar3 = "Session Variable 3"

' Each of the next three varieties of syntax
' are equivalent.
Session.Content.Item("SessionVar1") = strVar1
Session.Content("SessionVar2") = strVar2
Session("SessionVar3") = strVar3

Response.Redirect SessionPage2.asp
%>
</BODY>
</HTML>

In this second script, we’ll take a look at the current elements in the Contents
collection of the Session object.

<HTML>
<HEAD><TITLE>Session Contents Example Page2</TITLE></HEAD>
<BODY>
<%
130 Chapter 9 – Session Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Sess
O

bje
Contents Collection
Dim intContentsCount
Dim strAppStatus
Dim strKey
Dim intCounter
Dim objMyComponent
Dim arystrNames()

intContentsCount = Session.Contents.Count
strAppStatus = "Open"
%>
There are <%= intContentsCount %> items in the
Session's Contents collection.

<%
For Each strKey in Session.Contents
%>
 The next item in Session's Contents collection

 has <%= strKey %> as its key and
 <%= Session.Contents(strKey) %>
 as its value.

<%
Next

' Set the AppStatus item in the Contents collection.
' If this Session variable has been created before this,
' this line resets its value. If it has not been
' created, this line creates it.
strAppStatus = "Page2...InProcess..."
Session("AppStatus") = strAppStatus

%>
The first three elements of the Session's Contents
collection are as follows:

<%
' Retrieve the first three elements of the Contents
' collection.
For intCounter = 1 to 3
%>

<%= Session.Contents(intCounter) %>

<%
Next
%>
A second trip through the first three items.
<%
' This could just as accurately have been written
' like this:
For intCounter = 1 to 3
%>

<%= Session.Contents.Item(intCounter) %>

<%
Next

' Add an object to the Contents collection, then use that
' object's PrintDoc method through the Contents collection.
Contents Collection 131

ionct

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Contents Collection
' (NOTE: For more on the Server object, see Chapter 8.)

'**
' If you try this script on your own, it will raise an error
' because of the lack of the Server component.
'**
Set objMyComponent = Server.CreateObject("MyComp.clsSpecial")
Session ("objRef") = objMyComponent

' Call the object's method through the Contents collection.
Session ("objRef").PrintDoc
%>
</BODY>
</HTML>

Notes

If you add an object variable to the Session object’s Contents collection, you can
access that object’s methods and properties through the Contents syntax. For
example, the following code creates an instance of the MyServerComp object and
then refers to its LastUpdated property:

Dim datLastUpdatet
Set Session.Contents(objSessionMyObj) = _
 Server.CreateObject("MyCompanyDLL.MyServerComp")
datLastUpdated = Session.Contents(objSessionMyObj).LastUpdated

When adding an array to the Contents collection, add the entire array. When
changing an element of the array, retrieve a copy of the array, change the element,
and then add the array as a whole to the Contents collection again. The following
example demonstrates this point:

<% Response.Buffer = True%>
<HTML>
<HEAD><TITLE>Session Array Example</TITLE></HEAD>
<BODY>
<%
' Create an array variable and add it to the
' Contents collection.
ReDim arystrNames(3)

arystrNames(0) = "Chris"
arystrNames(1) = "Julie"
arystrNames(2) = "Vlad"
arystrNames(3) = "Kelly"

Session.Contents("arystrUserNames") = arystrNames
%>
The second name in the User Names array is

<%= Session("arystrUserNames")(1) %>
<%

' Change an element of the array being held in the
' Contents collection. Use a different (new) array
' to temporarily hold the contents. Creating a new
132 Chapter 9 – Session Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Sess
O

bje
Contents Collection
' array is the safest way to work with Session
' arrays because most of the time you cannot be
' guaranteed how many elements are contained
' in a Session array created in another script.
arystrNames2 = Session("arystrUserNames")
arystrNames2(1) = "Mark"

Session("arystrUserNames") = arystrNames2
' The second name is now Mark.
%>

Now, the second name in the User Names array is

<%= Session("arystrUserNames")(1) %>

NOTE: The first element of the Contents collection is still
1, not 0 -- even though the first element of the array in
element 1 ("arystrUserNames") is 0:

<%= Session.Contents(1)(0)%>

</BODY></HTML>

Objects created in the GLOBAL.ASA file are not actually instantiated on the server
until the first time a property or method of that object is called.

If you intend to use a given object in a transaction using the ObjectContext object,
do not give that object application or session scope. An object used in a transac-
tion is destroyed at the end of the transaction, and any subsequent reference to its
properties or calls to its methods will result in an error.

You will notice that the Contents (and StaticObjects) collection for the Session
object is very similar to the Contents collection of the Application object.

Although the Contents collection is the default collection of the Session object,
there is one unusual behavior that differentiates it from the Contents collection of
the Application object: You cannot retrieve an item directly from the Session
object, because your implicit references to the Contents collection (the Session
object’s default collection) and the Item method (the collection’s default value)
cannot be resolved successfully.

Suppose you have the following code:

<HTML>
<HEAD><TITLE>Strange Behaviour</TITLE></HEAD>
<BODY>
<%
Session.Contents.Item("Item1") = "SessionVar1"
Session.Contents.Item("Item2") = "SessionVar2"
Session.Contents.Item("Item3") = "SessionVar3"
%>
...[additional code]

Because the Contents collection is the default collection of the Session object, you
can refer to Item2 using the following line of code:

strNewVar = Session("Item2")

However, unlike the Contents collection of the Application object, you cannot
refer to the same element using the following line of code. This line of code will
Contents Collection 133

ionct

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

StaticObjects Collection
either be ignored or will raise an error, depending on the variable you are trying
to retrieve:

strNewVar = Session(2)

However,

strNewVar = Session.Contents.Item(2)

or,

strNewVar = Session.Contents(2)

work just fine.

I was unable to find this behavior documented anywhere, but I found it to be
consistent on IIS and Personal Web Server.

StaticObjects Collection
Session.StaticObjects(Key)

Contains all of the objects with session-level scope that are added to the applica-
tion through the use of the <OBJECT> tag. You can use the StaticObjects collection
to retrieve properties of a specific object in the collection. You also can use the
StaticObjects collection to use a specific method of a given object in the collection.

The StaticObjects collection of the Session object, like other ASP collections, has
the following properties:

Item
Represents the value of a specific element in the collection. To specify an
item, you can use an index number or a key.

Key
Represents the name of a specific element in the collection. For example:

strFirstObjName = _
 Session.StaticObjects.Key(1)

retrieves the name of the first element in the StaticObjects collection of the
Session object.

Use the value of the Key property to retrieve the value of an element by
name. For example, suppose the first element’s name is objMyObject. The
code:

strKey = Session.StaticObjects.Key(1)
Session.StaticObjects.Item(strKey).Printer = "Epson 540"

then sets the value of the Printer property of the objMyObject element in the
StaticObjects collection of the Session object.

Count
Returns the current number of elements in the collection.

As with other ASP collections, you can retrieve the value of any field of the Static-
Objects collection through the use of the Item property. However, as in other
134 Chapter 9 – Session Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Sess
O

bje
StaticObjects Collection
places in this book, in the following examples, the syntax has been abbreviated so
that it does not explicitly show the use of the Item property. For example:

strPrinterName = Session.StaticObjects("objMyObj").Printer

is an abbreviated form of:

strPrinterName = Session.StaticObjects.Item("objMyObj").Printer

For more information on the Item, Key, and Count properties of a
collection, see the discussion in the section “Contents Collection” in
Chapter 4.

Example
' <<<<<<<<<<<<<<< FROM GLOBAL.ASA >>>>>>>>>>>>>>>>>>
' This code resides in the GLOBAL.ASA file at the
' root of the current application. The following
' <OBJECT> tag is only processed once for the current
' application.
' See Chapter 10 for more details on the GLOBAL.ASA file.

<OBJECT RUNAT=Server
SCOPE=Session
ID=AppInfo1
PROGID="MSWC.MyInfo">
</OBJECT>

<OBJECT RUNAT=Server
SCOPE=Session
ID=AppInfo2
PROGID="MSWC.MyInfo">
</OBJECT>

' <<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>

<%
' The following code initializes the AppInfo1 component.
' This initialization code can reside anywhere.
AppInfo1.PersonalName = "Gertrude Stein"
AppInfo1.PersonalAddress = "233 Main Street"

AppInfo2.PersonalName = "David Davidson"
AppInfo2.PersonalAddress = "19A West Avenue"

' The following code uses the StaticObjects collection
' of the Session object to retrieve the value
' of the PersonalName property of both AppInfo1 and AppInfo2.
For Each objInfo In Session.StaticObjects
%>
 The personal name is

 <%= Session.StaticObjects(objInfo).PersonalName%>
StaticObjects Collection 135

ionct

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Methods Reference
<%
Next
%>

There are <%= Session.StaticObjects.Count %> items
in the Session's StaticObjects collection.

Notes

The Session object’s StaticObjects collection allows you to access any given object
instantiated with session scope through the use of an <OBJECT> tag. Objects
instantiated using Server.CreateObject are not accessible through this collection.

The StaticObjects example in the IIS 4.0 documentation by Microsoft suggests that
if you iterate through this collection, you will be able to reference each object’s
properties. This is somewhat misleading, as it suggests that the collection actually
represents all the properties of the objects rather than the objects themselves. If
you want to access the properties or methods of objects in the StaticObjects collec-
tion, you must use the dot operator outside of the parentheses around the Key,
followed by the property or method name, as demonstrated here:

<%= Session.StaticObjects(objInfo).PersonalName%>

This line of code works because Session.StaticObjects(objInfo) returns a
reference to the objInfo object.

Objects created in the GLOBAL.ASA file are not actually instantiated on the server
until the first time a property or method of that object is called. For this reason, the
StaticObjects collection cannot be used to access these objects’ properties and
methods until some other code in your application has caused them to be instanti-
ated on the server.

If you intend to use a given object in a transaction using the ObjectContext object,
do not give that object application or session scope. Objects used in transactions
are destroyed at the end of the transaction and any subsequent reference to their
properties or calls to their methods will result in an error.

Methods Reference

Abandon
Session.Abandon

Releases the memory used by the web server to maintain information about a
given user session. It does not, however, affect the session information of other
users. If the Abandon method is not explicitly called, the web server will maintain
all session information until the session times out.

Parameters

None
136 Chapter 9 – Session Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Sess
O

bje
Abandon
Example

The following script allows the user to click on a link that will redirect his browser
to a page that will clear his session variables:

<HTML>
<HEAD><TITLE>Session Abandom Example Page1</TITLE></HEAD>
<BODY>
Click here to reset
your user preferences.
</BODY>
</HTML>

The following script actually clears the session variables:

<HTML>
<HEAD><TITLE>Session Abandom Example Page2</TITLE></HEAD>
<BODY>
<%

' The following code abandons the current user session.
' Note that the actual information stored for the current
' user session is not released by the server until the
' end of the current Active Server Pages.

Session.Abandon

%>
Your user preferences have now been reset.
</BODY>
</HTML>

Notes

If you make heavy use of the Session object’s Contents collection, the Abandon
method can come in very handy. Suppose, for example, that you have many
different user preferences saved as session variables and, as in the example, you
want to remove them all and allow the user to select all new ones. Without the
Abandon method, you would have to remove each variable from the Contents
collection by hand—a slow and laborious prospect if you have several variables.
The Abandon method allows you to remove them all in one line of code.

The Abandon method is actually processed by the web server after the rest of the
current page’s script is processed. After the current page’s processing is complete,
however, any page request by the user initiates a new session on the web server.

In the following example, the session variable intUserAge is available to your
script until the end of the page. The Abandon method does not remove the vari-
able from memory until the end of the page:

Session("intUserAge") = 23
Session.Abandon
[...More Code...]
' The current line successfully retrieves the value of
' intUserAge.
intAgeCategory = CInt(Session("intUserAge") / 10)
Abandon 137

ionct

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Events Reference
[...End of Script. Session information is removed from web
memory now...]

Events Reference

Session_OnEnd
Session_OnEnd

Triggered when the user’s session times out or when your scripts call the Abandon
method of the Session object.

The OnEnd event procedure, if it exists, resides in the GLOBAL.ASA file for the
application that contains the requested page.

Parameters

None

Example
<SCRIPT LANGUAGE = "VBScript" RUNAT = Server>

Sub Session_OnEnd

 ' If the user has a search results recordset open, close
 ' it:
 If IsObject(adoRSResults) Then
 Set adoRSResults = Nothing
 End If

End Sub

</SCRIPT>

Notes

In the code for the OnEnd event procedure, you have access only to the Applica-
tion, Server, and Session objects. Most important, you have no access to the
Response object or Request object, and for this reason, you cannot redirect the
client or send cookies to (or receive cookies from) the client machine.

One of the possible uses of the OnEnd event is to write information concerning
the user to a log file or other text file on the server for later use. If you intend to
do this, there are several important points you must remember. First, before you
can save any information, that information must be saved to a session variable
because, as mentioned earlier, you do not have access to the Request object,
which is the most common source of user information. The following code
demonstrates one possible method of storing a session-level variable:

<SCRIPT LANGUAGE = "VBScript" RUNAT = Server>

Sub Session_OnEnd
138 Chapter 9 – Session Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Sess
O

bje
Session_OnStart
 ' Assume that SessionVar1 contains some user-preference
 ' information.

 ' It is not important that you understand exactly what is
 ' happening in the following code (you can learn more about
 ' File objects in Chapter 18). Just suffice it to say
 ' that these lines of code write the value of the
 ' SessionVar1 Session variable to the text file
 ' UserPref.txt.
 Set fs = Server.CreateObject("Scripting.FileSystemObject")
 Set f = fs.GetFile("d:\UserPref.txt")
 Set ts = f.OpenAsTextStream(ForAppending,_
 TristateUseDefault)
 ts.Write Session(SessionVar1)
 ts.Close

 ' Note that more often than not, if you want to save this
 ' information to the server at the end of a user's session,
 ' it may very well be more efficient to store it to a
 ' database than to a text file. However, the general
 ' principal (of storing Session variable information in
 ' the OnEnd event) is similar.

End Sub

</SCRIPT>

Note that you cannot use the AppendToLog method of the Response object,
because the Response object is unavailable. In addition, if you intend to write
directly to the web server’s hard drive, you must know the physical path of the file
to which you want to write. This is because, although you do have access to the
Server object, you cannot use its MapPath method in the OnEnd event (for more
information about the MapPath method, see “MapPath” in Chapter 8, Server Object).

Session_OnStart
Session_OnStart

Triggered any time a user who does not already have a session instantiated on the
web server requests any page from the server. The code in the OnStart event of
the Session object, if it exists, is processed before any code on the requested page.

The OnStart event procedure, if it exists, resides in the GLOBAL.ASA file for the
application that contains the requested page.

Parameters

None

Example
<SCRIPT LANGUAGE = "VBScript" RUNAT = Server>

Sub Session_OnStart
Session_OnStart 139

ionct

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Session_OnStart
 Dim strSiteStartPage
 Dim strCurrentPage
 Dim timUserStartTime
 Dim strUserIPAddress
 Dim strUserLogon

 ' Use the OnStart event to initialize session-level
 ' variables that your scripts can use throughout the
 ' the duration of the user's session.
 Session("timUserStartTime") = Now()
 Session("strUserIPAddress") = _
 Request.ServerVariables("REMOTE_ADDR")

 ' Use the OnStart event to redirect the client if
 ' she attempts to enter the site from somewhere
 ' other than the site's home page.
 strCurrentPage = Request.ServerVariables("SCRIPT_NAME")
 strSiteStartPage = "/apps/home/startpage.asp"

 If StrComp(strCurrentPage, strSiteStartPage, 1) Then
 Response.Redirect(strSiteStartPage)
 End If

 ' You can also use the OnStart event of the Session
 ' object to assess user security access from the very
 ' beginning of the user's session. Note this code requires
 ' use of either the Basic authentication or Windows
 ' NT Challenge Response access control on the web server.
 strUserLogon = Request.ServerVariables("LOGON_USER")
 [...Code to Determine Security Level...]

End Sub

</SCRIPT>

Notes

If the client’s browser does not support cookies or if the user has manually turned
cookies off, the Session_OnStart event is processed every time the user requests a
page from the site. No session is started or maintained.

Like the OnEnd event, one of the possible uses of the OnStart event is to write
information concerning the user to a log file or other text file on the server for
later use. If you intend to do this, note that you cannot use the AppendToLog
method of the Response object, and if you intend to write directly to the web
server’s hard drive, you must know the physical path of the file to which you want
to write. This is because, although you do have access to the Server object, just as
in the OnEnd event of the Session object, you cannot use the MapPath method of
the Server object in the Session_OnStart event.
140 Chapter 9 – Session Object

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Chapter 10Directives & GLOBAL.ASA
Directives &
G

LO
BAL.ASA
CHAPTER 10

Preprocessing Directives, Server-Side
Includes, and GLOBAL.ASA

This chapter provides a catch-all description of several features of Active Server

Pages applications that do not neatly fit into groups defined on the basis of the
ASP object model:

• Preprocessing directives, the method by which you instruct the web server to
perform certain functions before processing the script in the Active Server
Pages

• Server-Side Includes, which allow you to easily include commonly used code
into your scripts; this allows you to write reusable code that need only be
stored and maintained in one centralized location

• The GLOBAL.ASA file

Preprocessing Directives
Active Server Pages provides preprocessing directives similar to the compiler direc-
tives in C and similar languages. Like these precompilation directives, ASP
directives instruct the web server to perform a function before the script is
completed and sent to the client. The web server performs the other directives
before interpreting the script itself. ASP directives, with the exception of <%=
expression %>, must appear on the first line of a script and cannot be included
using a Server-Side Included file. The format for these directives (with the afore-
mentioned exception of the <%= expression %> directive) is the following:

<%@ DIRECTIVE=Value%>

where DIRECTIVE is one of the ASP directives listed in this section and Value is a
valid value for the directive. Note that you must include a space between the @
character and the directive. Also note that the preprocessing directive must be
placed within <%...%> delimiters.
141

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Preprocessing Directives Reference
The valid ASP preprocessing directives are listed as follows and are explained in
depth later in this chapter:

CODEPAGE
ENABLESESSIONSTATE
LANGUAGE
LCID
TRANSACTION

Preprocessing Directives: Comments/Troubleshooting

The space between the @ character and the directive and the requirement that
directives be placed on the first line of a script are syntactically the most impor-
tant features of an ASP directive. The failure to include the space or to include
directives on the first line of a script are the most common errors when using
directives.

You may ask yourself how you can have more than one directive in a script if
directives, with the exception of <%= expression %>, must be placed on the first
line of a script. To include more than one directive, use the following syntax:

<%@ DIRECTIVE1=Value DIRECTIVE2=Value %>

You must include at least one space between each directive. Also, you must not
place spaces around the equal signs (=).

Preprocessing Directives Reference

CODEPAGE
<%@CODEPAGE=uintCodePage%>

Sets the character set (or code page) to be used to interpret the script on the
server. Different languages and locales use unique code pages. This directive
provides similar functionality for the interpretation of scripts on the server as the
CodePage property of the Session object provides for client-side interpretation of
the HTML sent to the client. However, it is important to note that the CODEPAGE
preprocessing directive dictates how the script itself is interpreted, whereas the
CodePage property of the Session object dictates how the resulting HTML is
processed.

Parameters

uintCodePage
An unsigned integer value corresponding to a valid code page for the web
server running the ASP script

Example
<%@ CODEPAGE=932%>

' This code sets the code page to OEM 932, which is
' used for Japanese Kanji.
142 Chapter 10 – Preprocessing Directives, Server-Side Includes, and GLOBAL.

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Directives &
G

LO
BAL.ASA

LANGUAGE
Notes

You can have both the CODEPAGE directive and the CodePage property for the
Session object in the same script. This results in the server-side script being inter-
preted using the unsigned integer set for the CODEPAGE directive and the client
information being interpreted using the code page set of the CodePage property of
the Session object.

ENABLESESSIONSTATE
<%@ ENABLESESSIONSTATE=True|False%>

Turns the storage of user-specific session information on (True) or off (False).
This value is True by default.

Parameters

None.

Example
<%@ ENABLESESSIONSTATE=False%>

' This code prevents the web server from storing
' user session information.

Notes

You also can enable session-state storage using the registry, but this directive
allows significantly more flexibility (and on a script-by-script basis). If you have
used a registry setting to control session-state information, then using this direc-
tive overrides that setting.

Setting this directive to False prevents you from storing any information in
session-scoped variables or objects. This forces you to rely on other methods of
maintaining information about each user, if you need to. However, it does provide
some benefits:

• It does not rely on your clients’ browsers using cookies.

• It increases the speed with which your server scripting is processed by the
web server.

LANGUAGE
<%@ LANGUAGE=ScriptingEngine%>

Sets the default scripting engine the web server will use to process the script in
your ASP. This is set to VBScript by default.

Parameters

ScriptingEngine
A valid scripting engine recognized by Internet Information Server. The valid
scripting engines include VBScript, JScript, PerlScript, Python, and REXX.
LANGUAGE 143

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

LCID
Example
<%@ LANGUAGE="JScript"%>

' This code sets the language for the current page to
' JScript, Microsoft's interpretation of the JavaScript
' scripting language. All script on this page will be
' interpreted using the JScript DLL.

Notes

Setting the LANGUAGE directive does not prevent you from using other scripting
engines on your script page. It only sets the default scripting engine for interpreta-
tion of script on the current page. For example, the following example shows how
you can set the default scripting engine for the page to JScript and still use
VBScript for a specific procedure:

<%@ LANGUAGE="JScript"%>
<SCRIPT LANGUAGE="VBScript" RUNAT="Server">
Sub ShowReport()
' This script will be interpreted using the VBScript
' scripting engine.
End Sub
</SCRIPT>

Furthermore, setting the LANGUAGE directive value has no effect on the scripting
engine used on the client side. Even if you set the LANGUAGE of the server-side
script to PerlScript,* for example, you can still set the LANGUAGE attribute of the
client-side <SCRIPT> tag to JScript, as in the following example:

<%@ LANGUAGE="PerlScript"%>

<%
' All server-side script is interpreted using the PerlScript
' scripting engine.
%>

HTML here...
<SCRIPT LANGUAGE="JScript">
Sub btnReport_onClick
 ' This script will be interpreted using the JScript
 ' scripting engine.
End Sub
</SCRIPT>

LCID
<%@ LCID=dwordLCID%>

Sets a valid locale identifier for a given script. This directive specifies various
formats (such as dates and times) to use for data on the server side.

* Note that only the VBScript and JScript scripting engines are included with IIS. All other
scripting engines must be obtained and installed separately.
144 Chapter 10 – Preprocessing Directives, Server-Side Includes, and GLOBAL.

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Directives &
G

LO
BAL.ASA

TRANSACTION
Parameters

dwordLCID
A DWORD (32-bit unsigned) value that represents a valid locale ID

Example
<%@ LCID=1036%>

' This code sets the locale ID for the server-side
' script to that for French.

Notes

Just as setting the CODEPAGE directive has no effect on the CodePage property of
the Session object and what character set is used on the client side, setting the
LCID directive has no effect on the LCID used on the client side. However, it is
important to note that the LCID preprocessing directive dictates how the script
itself is interpreted, whereas the LCID property of the Session object dictates how
the resulting HTML is processed.

TRANSACTION
<%@ TRANSACTION=strValue%>

Instructs the web server to treat the entire script as a single transaction. If you set
the script as requiring a transaction, the web server uses Microsoft Transaction
Server to ensure that the entire script is processed as a single unit (or transaction)
or not at all. Currently, only database manipulation is available in transactions.

Parameters

strValue
The possible values for the strValue parameter are as follows:

Required
Instructs the web server that the current script requires a transaction

Requires_New
Instructs the web server that the current script requires a new transaction

Supported
Instructs the web server not to start a transaction

Not_Supported
Instructs the web server not to start a transaction

Example
<%@ TRANSACTION=Required%>

' This code instructs the web server to start a new
' transaction for the current script.

Notes

Note that the value for the TRANSACTION directive is not a string. For this reason,
you must use an underscore for those values that contain a space (Requires_New
TRANSACTION 145

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Server-Side Includes
and Not_Supported). As discussed in Chapter 5, ObjectContext Object, only a
single script can be encapsulated in a transaction. You must ensure that the
TRANSACTION directive is the first line in a transactional script. Otherwise, it will
result in an error. Finally, you cannot encapsulate the GLOBAL.ASA code in a
transaction.

If an error occurs in a script encapsulated in a transaction, Microsoft Transaction
Server will roll back any actions that support transactions. Currently, only data-
base actions support transactions. For example, not all disk activity is supported by
MTS-based transactions and must be rolled back manually.

Server-Side Includes
Similar to preprocessing directives, Server-Side Includes allow you to include
various values (for instance, the last modified date of a file) or a complete file in
your script. The following are the Server-Side Include directives supported by IIS:

#config
Configures the format for error messages, dates, and file sizes as they are
returned to the client browser

#echo
Inserts the value of an environment variable (equivalent to the various
elements of the Request object’s ServerVariables collection) into a client’s
HTML page

#exec
Inserts the results of a command-line shell command or application

#flastmod
Inserts the last modified date/time for the current page

#fsize
Inserts the file size of the current file

#include
Includes the contents of another file into the current file

All directives are allowed in HTML. Only the #include directive, however, is
allowed in both HTML and ASP pages. The #include directive is the only one
detailed here.

Server-Side Includes: Comments/Troubleshooting

Including files is an excellent method for writing reusable code. We use it often
for code we use in almost every script, such as establishing a connection to a data-
base or closing the connection once your code has no more need of it. Your
Server-Side Include files need not end with any specific file extension, but
Microsoft suggests the .INC file extension as a way of maintaining easily manage-
able sets of ASP scripts and include files for your projects. Remember that your
Server-Side Include files cannot include other files, nor can they contain prepro-
cessing directives described in earlier in this section.
146 Chapter 10 – Preprocessing Directives, Server-Side Includes, and GLOBAL.

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Directives &
G

LO
BAL.ASA

#include
#include
<!-- #include PathType = strFileName -->

The #include Server-Side Include allows you to insert the contents of a given file
into the HTML content or ASP script. You must surround the #include Server-
Side Include statement in an HMTL comment. Otherwise, the text of the Server-
Side Include will be displayed as straight text.

Parameters

PathType
The type of path specified in the strFileName parameter. The possible
values for PathType are described in the following table.

strFileName
The strFileName parameter represents the name of the file whose contents
you want inserted into the HTML content.

Example

The following script contains only a simple “back to top” line of code and a hori-
zontal line with a graphic.

<!—ReturnTop.INC -->
<CENTER>
<HR>
Click here to go back to the top of the
page.

</CENTER>

We could now include this file anywhere we needed a return to the top of a page:

<HTML>
<HEAD><TITLE>Include Example</TITLE></HEAD>
<BODY>
<%
[CODE TO RETRIEVE GLOSSARY TERMS FROM SQL SERVER DATABASE]
' Filter the recordset to include only the A's.
adoRecGlossary.Filter = "UPPER(SUBSTRING(GlossTerm, 1)) = 'A'"

' Iterate through the items in the filtered recordset.
Do While Not adoRecGlossary.EOF
%>
 Term: <%=adoRecGlossary("GlossTerm")%>

 Definition: <%=adoRecGlossary("GlossDef")%>

<%
 adoRecGlossary.MoveNext
Loop

PathType Value Description

File Treats the value of the strFileName parameter as a relative
path from the current directory

Virtual Treats the value of the strFileName parameter as a full
virtual path
#include 147

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

#include
' Next include the link to top file:
%>
<!-- #include virtual "/Includes/ReturnTop.INC" -->

<%
' Repeat for the next letter...
...[additional code]
%>
</BODY>
</HTML>

Notes

The example demonstrates how using include files can reduce the amount of
redundant work you are required to do, but it is very simple. Suppose, as a
second example, that you have an include file containing the DSN of your data-
base, the username, and the password. You could use that include file all over
your site. It would then be a very simple matter to change username and pass-
word: you’d just change it in the include file.

If you use the #include Server-Side Include to incorporate the contents of an
ASP, you must use the <%...%> pair around any script. Otherwise, the contents of
the file are treated as regular HTML code.

One use for this Server-Side Include is to localize the portions of your script that
are used often, such as database access information. This also allows you to
change usernames and passwords quickly and efficiently. If you choose to use the
#include Server-Side Include in this manner, ensure that whatever file you
include is secured properly.

You can include files within files that are, in turn, included in other files. You can
also include the contents of a given file multiple times in the same script. One
example of this is in a simple error-handling script. For example, consider the
following file:

<%
If Err.Number <> 0 Then
%>
<HTML>
<HEAD><TITLE>Error Notice</TITLE></HEAD>
<BODY>
There has been an error in your script (<%=Request.
ServerVariables("SCRIPT_NAME")%>.

Please contact customer service at 1-800-555-HELP and tell
them that you've experienced an error in (<%=Request.
ServerVariables("SCRIPT_NAME")%> and that the parameters sent
to the script were the following:

(<%=Request.ServerVariables("QUERY_STRING")%>.

We apologize for the inconvenience.
</BODY>
</HTML>
<%
End If
%>
148 Chapter 10 – Preprocessing Directives, Server-Side Includes, and GLOBAL.

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Directives &
G

LO
BAL.ASA

#include
This file (named ERROR.INC in this example) could then be included into your
script anywhere you think an error might arise. For example, in the following
code, ERROR.INC is included after the ADO connection is established and after the
recordset object is created (note that for this form of error trapping to work, the
Buffer property of the Response object must be set to True):

<%Response.Buffer = True%>
<HTML>
<HEAD><TITLE>Database Info Page</TITLE></HEAD>
<BODY>
<%
Set adoCon = Server.CreateObject("ADODB.Connection")
AdoCon.Open "MyDatabase"
<!-- #include virtual = "/Accessory/ERROR.INC" -->

Set adoRec = adoCon.Execute ("SELECT * FROM TopSales")
<!-- #include virtual = "/Accessory/ERROR.INC" -->
...[additional code]
%>
</BODY>

In this script, if an error is raised when opening the database connection or when
creating the recordset, the user will see the contents of the ERROR.INC file,
containing a standard error notice and a help line phone number.

When you include a file, make sure that the included file does not include the
current file. This will result in a service-stopping error on the web server, requiring
that you stop and restart the web service.

You must also remember that Server-Side Includes are processed before any script
code. For this reason, you cannot dynamically determine which file to include. For
example, the following script will result in a runtime error:

<%
Dim strFileName
strFileName = "/Apps/CustomConstants.INC"
%>
<!-- #include file="<%=strFileName%>"-->

Finally, Server-Side Includes must be placed outside script delimiters (<%…%>),
<SCRIPT></SCRIPT> tags, and <OBJECT></OBJECT> tags. For example, the
following code will result in a runtime error (there is no closing %> delimiter):

<%
Dim strLastName
strLastName = "Weissinger"

<!-- #include file="/Apps/CustomConstants.INC"-->

The following code will also fail:

<SCRIPT LANGUAGE="VBScript">
Sub btnHello_Click()
 Dim strLastName
 strLastName = "Weissinger"
#include 149

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

GLOBAL.ASA
 <!-- #include file="/Apps/CustomConstants.INC"-->

End Sub
</SCRIPT>

This is the only Server-Side Include that you can use in both HTML and ASP files.
If you use the #include Server-Side Include in a file, that file’s extension must be
one of those mapped to SSINC.DLL, the dynamic link library that interprets Server-
Side Includes.

GLOBAL.ASA
The GLOBAL.ASA file is where you declare objects, variables, and event handlers
(for the OnStart and OnEnd event procedures for the Application and Session
objects, specifically) that have session or application scope. There can be only one
GLOBAL.ASA file per virtual directory or ASP application. For example, suppose
you have a Search ASP application made up of all the scripts in the /Search virtual
directory. You can have only one GLOBAL.ASA file in the virtual directory, and it
must be in the root of the directory (/Search). A second GLOBAL.ASA file
anywhere else in any subdirectory of /Search will be ignored by ASP.DLL.

The GLOBAL.ASA file can contain no displayable content; any such content is
ignored by ASP.DLL. Any script that is not encased in a <SCRIPT> tag results in an
error, as does the instantiation of a server component that does not support
session- or application-level scope. Finally, this file must be named GLOBAL.ASA
and cannot reside anywhere other than in the root of the virtual directory that
makes up the ASP application. Like other scripts, you can use any supported
scripting language in the GLOBAL.ASA file, and you can group event procedures
that use the same language within a common set of <SCRIPT>...</SCRIPT> tags.

The GLOBAL.ASA file section of this chapter covers the following topics:

• Application object events and application scope

• Session object events and session scope

• Type library declarations

GLOBAL.ASA: Comments/Troubleshooting

When you make changes to the GLOBAL.ASA file for an application, the web
server completes all current requests for the given application before recompiling
the GLOBAL.ASA file. According to Microsoft, once the current requests are
processed, the file is recompiled, and any new sessions started in the current
application trigger the processing of the GLOBAL.ASA file code. During this re-
compilation, the server ignores all new requests for scripts within the application.
Unfortunately, the reality is that this does not work at all with Personal Web
Server, IIS 3.0, and IIS 4.0. You are forced to reboot the machine before the new
GLOBAL.ASA is processed!

Note that any sessions that remain current during this time are unaffected by your
changes to GLOBAL.ASA. Once the web server has recompiled the GLOBAL.ASA
file, all active sessions are deleted and the Session_OnEnd and Application_OnEnd
event procedures in the (new) GLOBAL.ASA file are called. The users must make a
150 Chapter 10 – Preprocessing Directives, Server-Side Includes, and GLOBAL.

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Directives &
G

LO
BAL.ASA

Application Object Events and Application Scope
new request in the web application for new sessions to begin. All new sessions
will start with processing of the new GLOBAL.ASA file.

An important consideration for developing your own GLOBAL.ASA files is that
changing any code included in the file through the use of a Server-Side Include
does not result in the recompilation of the GLOBAL.ASA file by the web server.
You must actually resave the GLOBAL.ASA file (even if it hasn’t changed!) to
trigger its recompilation.

You can have procedures and functions in your GLOBAL.ASA file. However, these
procedures can be called only by the Session_OnStart, Session_OnEnd,
Application_OnStart, and Application_OnEnd event procedures (all of which can
reside only in the GLOBAL.ASA file). If you wish to use these functions/proce-
dures in other files in your application, you should consider using a Server-Side
Include file containing the script you wish called.

Finally, like all other scripts in your web application, you must be careful to secure
your GLOBAL.ASA file using Windows NT security. Otherwise, clients can access
this file. Considering that the GLOBAL.ASA often contains security-related code for
your application, this caveat is very important.

GLOBAL.ASA Reference

Application Object Events and Application Scope
<SCRIPT LANGUAGE=strLangEngine RUNAT = SERVER>
Sub Application_OnStart
 Event procedure code...
End Sub

Sub Application_OnEnd
 Event procedure code...
End Sub
</SCRIPT>

In the GLOBAL.ASA file, you can include event procedure code for the two events
of the Application object: OnStart and OnEnd. These two events are triggered
when the first client requests a page within your application and at the end of the
last user’s session in your application, respectively. These events are covered in
detail in Chapter 4, Application Object. In this chapter we will reiterate some of the
topics covered there and how those topics relate to the GLOBAL.ASA file and its
use.

To review the information covered in the Application Object chapter, an ASP
application is made up of all the files in a virtual directory and all the files in
subfolders under that virtual directory. When a variable or object has application
scope, it holds the same value(s) for every current user of the application, and any
user can change the value(s) of an application-scoped variable or object. Such a
change affects the value as viewed by any user thereafter.
Application Object Events and Application Scope 151

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Application Object Events and Application Scope
Parameters

strLangEngine
A string whose value represents the name of a valid server-side scripting
engine. This engine is VBScript by default on IIS web servers, but you can use
JScript, PerlScript, Python, REXX, or any other scripting engine that supports
the IIS scripting context.

Example
[Excerpt from GLOBAL.ASA]

<OBJECT RUNAT=Server
SCOPE=Application
ID=AppInfo1
PROGID="MSWC.MyInfo">
</OBJECT>

<SCRIPT LANGUAGE = "VBScript" RUNAT="Server">
Sub Application_OnStart

 Dim objCounters
 Dim gdatAppStartDate

 ' The following object variable will hold a Counters
 ' component.
 Set objCounters = Server.CreateObject("MSWC.Counters")

 ' The following application-level variable will
 ' hold the start date of the application.
 gdatAppStartDate = Date()

End Sub

Sub Application_OnEnd

 ' The following code destroys the application-scoped
 ' Counters component.
 Set objCounters = Nothing

 ' The following clears the application-level variable.
 gdatAppStartDate = ""

 ' NOTE: This code is not strictly necessary in this
 ' instance as this object and variable will be released
 ' from memory by the web server itself when the application
 ' ends. This example simply demonstrates how these event
 ' procedures work. For suggestions for the Application
 ' object's use, see the following and Chapter 4.

End Sub

</SCRIPT>
152 Chapter 10 – Preprocessing Directives, Server-Side Includes, and GLOBAL.

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Directives &
G

LO
BAL.ASA

Session Object Events and Session Scope
Notes

There are several points to remember about the GLOBAL.ASA file in general and
the Application event procedures, specifically. The first is that there is no reason
that you must have a GLOBAL.ASA file. Your ASP application will function
completely normally without it. In fact, the lack of a GLOBAL.ASA file will increase
the speed of access for the first requested page in your ASP application, since
running the GLOBAL.ASA and then running your requested script will always be
slower than running only the requested script.

Next, if you do have a GLOBAL.ASA file, there is no real need for you to code
your own Application_OnEnd event procedure, since the web server itself will
release the memory used for application-scoped objects and variables at the end of
the application. If, however, you wish to save information (in a database, for
example) specific to a particular application’s run time, you could code for this in
the Application_OnEnd event procedure. For example, you could create an appli-
cation-level page counter variable and record its value to a text file at the end of
an application for use the next time the application’s files are requested and the
application is restarted. (Note that there are better ways of performing this opera-
tion.)

For further notes on the event procedures of the Application object, see Chapter 4.

Session Object Events and Session Scope
<SCRIPT LANGUAGE=strLangEngine RUNAT = SERVER>
Sub Session_OnStart
 Event procedure code...
End Sub

Sub Session_OnEnd
 Event procedure code...
End Sub
</SCRIPT>

In the GLOBAL.ASA file, you can include event procedure code for the two events
of the Session object: OnStart and OnEnd. These two events are triggered when a
client requests a page within your application for the first time and at the end of
the user’s session (20 minutes after the user’s last request, by default), respec-
tively. These events are covered in detail in Chapter 9, Session Object. In this
chapter, we will reiterate some of the topics covered there and how those topics
relate to the GLOBAL.ASA file and its use.

Parameters

strLangEngine
A string whose value represents the name of a valid server-side scripting
engine. This engine is VBScript by default on IIS web servers, but you can use
JScript, PerlScript, Python, REXX, or any other scripting engine that supports
the IIS scripting context.
Session Object Events and Session Scope 153

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Type Library Declarations
Example
[Excerpt from GLOBAL.ASA]

<OBJECT RUNAT=Server
SCOPE=Session
ID=Tool1
PROGID="MSWC.Tools">
</OBJECT>

<SCRIPT LANGUAGE = "VBScript" RUNAT="Server">
Sub Session_OnStart

 Dim strUserLogon
 Dim StrUserSecurity

 ' The following session-level variables will hold
 ' the user's logon name and security clearance.
 strUserLogon = Request.ServerVariables("USER_LOGON")
 strUserSecurity = "PUBLIC"

End Sub

Sub Session_OnEnd

 ' The following code destroys the session-scoped
 ' Tools component.
 Set Tool1 = Nothing

 ' The following clears the session-level variables.
 strUserLogon = ""
 strUserSecurity = ""

 ' NOTE: This code is not strictly necessary in this
 ' instance as this object and variable will be released
 ' from memory by the web server itself when the session
 ' ends. This example simply demonstrates how these event
 ' procedures work. For suggestions for the Application
 ' object's use, see later in this chapter and Chapter 9.

End Sub

</SCRIPT>

Notes

For notes on the Session event procedures, see Chapter 9.

Type Library Declarations
<!-- METADATA TYPE="TypeLibrary"
FILE="FileName"
UUID="TypeLibraryUUID"
VERSION="MajorVersionNumber.MinorVersionNumber"
154 Chapter 10 – Preprocessing Directives, Server-Side Includes, and GLOBAL.

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Directives &
G

LO
BAL.ASA

Type Library Declarations
LCID="LocaleID"
-->

Type libraries are accessory files that contain information about the properties and
methods of COM objects. These files describe any constants used by the object
and the data types of acceptable property values. A type library enables your
application to more accurately report errors in your use of the object to which the
type library corresponds. It also allows you to use constants defined in the object’s
DLL. This can significantly lower the complexity of an object’s code and increase
the readability and reuse of your code without forcing you to create and use
Server-Side Includes that can be difficult to maintain for all of your objects.

As you know, you can instantiate application-scoped and session-scoped objects
in the GLOBAL.ASA file. If any of these objects have a corresponding type library,
you can declare its use in the application’s GLOBAL.ASA file.

Parameters

FileName
The full physical (not virtual) path and filename of the type library file for the
object in question. If you include both a FileName and a TypeLibraryUUID
parameter to the TypeLibrary declaration, the web server will identify the
type library using the filename. You must include either a FileName or a
TypeLibraryUUID.

TypeLibraryUUID
The universally unique identification number of the type library. This is
different from the UUID for the COM object and is defined in the registry as a
subkey of HKEY_CLASSES_ROOT\TypeLib. If you include both a FileName
and a TypeLibraryUUID parameter to the TypeLibrary declaration, the web
server will identify the type library using the filename. You must include
either a FileName or a TypeLibraryUUID.

MajorVersionNumber
The major version number of the type library. If this optional parameter is
supplied and the web server cannot find the file with the correct major
version number, the web server will raise an error. If you include a
MajorVersionNumber, you must also include a MinorVersionNumber
parameter.

MinorVersionNumber
The minor version number of the type library. If this optional parameter is
supplied and the web server cannot find the file with the correct minor
version number, the web server will raise an error. If you include a
MinorVersionNumber, you must also include a MajorVersionNumber
parameter.

LocaleID
Each type library can support different locales. The LocaleID parameter
represents the locale to use for this type library. If this locale is not found in
the type library, the web server will raise an error. Like the VERSION param-
eter of the TypeLibrary declaration, this parameter is optional.
Type Library Declarations 155

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Type Library Declarations
Example
[Excerpt from GLOBAL.ASA]

<!-- METADATA TYPE="TypeLibrary"
FILE="Report.LIB"
VERSION="1.5"
LCID="1306"
-->

Notes

This code declares the use of Version 1.5 of the Report COM object’s type library.
The LCID used is that for French. If Version 1.5 of this COM object’s type library is
not found or the LCID 1306 (for French) is not supported by the type library, the
code will result in an error.

When you use a type library from within an ASP application, you are actually
using a wrapper-encapsulated version of the type library. IIS creates this wrapper
for your type library in the background.

For coding style, Microsoft suggests that you include your type library declarations
near the top of the GLOBAL.ASA file. However, I’ve seen no effect from placing it
in other places in the file. Also, you are not required to place the TypeLibrary
declaration outside of the <SCRIPT> tags.

One problem with using type libraries from multiple COM objects in one ASP
application (especially if the COM objects were written by different developers) is
the redundancy of constants within the object. You can avoid this redundancy by
referring to any constant using the name of the COM object itself as a prefix for
the constant name. For example, the adStoredProcedure constant of the
ADODB type library can be referred to as ADODB.adStoredProcedure.

Finally, the web server can return one of the errors listed in the following table if
you incorrectly declare your type library:

Error Code Description

ASP 0222 An invalid type library declaration.

ASP 0223 Type library does not exist. For example, if the type library listed
in the METADATA tag does not exist, you will receive this error.

ASP 0224 The type library you declared cannot be loaded for some
unknown reason, even though it was successfully found.

ASP 0225 The web server is unable, for whatever reason, to create a
wrapper for the type library you declared in the METADATA tag.
156 Chapter 10 – Preprocessing Directives, Server-Side Includes, and GLOBAL.

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

PART III

Installable Component
Reference
The following chapters cover the installable components that come with
IIS 4.0:

Chapter 11, ActiveX Data Objects 1.5

Chapter 12, Ad Rotator Component

Chapter 13, Browser Capabilities Component

Chapter 14, Collaboration Data Objects for Windows NT Server

Chapter 15, Content Linking Component

Chapter 16, Content Rotator Component

Chapter 17, Counters Component

Chapter 18, File Access Component

Chapter 19, MyInfo Component

Chapter 20, Page Counter Component

Chapter 21, Permission Checker Component
ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Chapter 11ActiveX Data Objects 1.5
ActiveX Data
O

bjects 1.5
CHAPTER 11

ActiveX Data Objects 1.5

One of the most popular reasons for constructing an ASP application is to enable

people on an intranet or the Internet to manipulate data in a database remotely.
When Microsoft first released Internet Information Server, you were able to
connect from your web server applications to a database through the Internet
Database Connector (IDC). This method involved a connection file that actually set
up the connection to the database and a second file that formatted the informa-
tion or results of your query. Anyone who has spent any time with IDC files can
tell you that, though better than what came before (straight CGI applications, for
example), the Internet Database Connector left much to be desired. You could
retrieve the results of simple queries and you could even perform simple updating
tasks using IDC. However, if you wanted to use a specific cursor type supported
by the underlying database or change the structure of the database’s tables, etc,
IDC fell short. This forced many web developers to go back to (or stay in) CGI
applications.

With the release of Internet Information Server 3.0, Microsoft changed that by
introducing OLE DB, a C++ API that provides a set of COM interfaces for universal
data access. OLE DB can run in any environment that supports COM and DCOM.
Furthermore, OLE DB will (in the future) support any type of data, not just data-
base information. For example, Microsoft envisions a time when you will be able
to do heterogeneous joins between information in your SQL Server database and
messages held by your Exchange server. For this reason, it will be increasingly
important to know more about OLE DB in the immediate future, since you can
probably assume Microsoft will discontinue further enhancements to ODBC.

Unfortunately, the details of OLE DB are not only complex but also outside the
scope of this book. If you want to learn more about OLE DB, pick up O’Reilly’s
forthcoming ADO: The Definitive Guide, by Jason T. Roff. Jason covers ADO and
the underlying OLE DB in great detail and covers it from the standpoint of using it
not only from Active Server Pages but also from other programming methods such
as Visual Basic and C/C++.
159

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ActiveX Data Objects 1.5
How does OLE DB help us connect to and manipulate data from our ASP applica-
tions? Well, it doesn’t directly. Though OLE DB provides a far more object-oriented
access method than ODBC’s C API, it still leaves CGI applications and custom
ISAPI filters as your only options for direct access to database information from
your web applications. So we’re back to IDC and ODBC, right? Wrong. ActiveX
Data Objects (ADO) provides an automation wrapper for OLE DB. This means that
we can access OLE DB through regular COM objects exactly as we access the
underlying web server components through ASP’s built-in objects, as Figure 11-1
illustrates.

As stated earlier, ActiveX Data Objects is a COM interface (specifically a dual inter-
face COM wrapper) for OLE DB. It provides a method of manipulating data that is
fast, simpler than traditional CGI data access, more powerful than the Internet
Database Connector, and small in terms of memory and disk size required. The
following is a list of some of the features of ADO:

• Because ADO is a free-threaded object library, you can easily use it in a mul-
tiuser client/server environment such as a web application.

• You can create objects in the ADO hierarchy independently. Unlike more
familiar data access methods, such as Data Access Objects (DAO) and Remote
Data Objects (RDO), in which you have to traverse the hierarchy to instanti-
ate objects in the tree, ADO allows you to create objects independently of
each other. You can create a standalone Recordset, for instance, whereas with
DAO or RDO, you have to create other objects before you can instantiate a
Recordset object. This allows you to improve your applications’ performance
by instantiating only those objects that you need.

Figure 11-1: Relationship among ActiveX Data Objects, OLE DB, and the
underlying data stores

Active Server Page

ActiveX Data Objects

OLE DB Layer

Data Providers

SQL Relational Database

Non-relational data store
(e.g., email store)

ODBC data
provider

(MSDASQL)

3rd party
data provider
160 Chapter 11 – ActiveX Data Objects 1.5

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ActiveX Data
O

bjects 1.5
Instantiating Active Data Objects
• Using ADO, you can cache data locally and then update the underlying data-
base in a batch fashion. This significantly decreases the overhead of going
back and forth to the database as often as you have to with DAO or RDO.

• You can use several different cursor types. In fact, ADO allows you to use
custom cursor types on a provider-by-provider basis. For example, if a given
data provider (say Oracle) allows you to use a specific cursor type that is not
allowed by other ODBC databases, you can still use this cursor type from
within your ADO application.

• You can limit the number of rows returned to you from a query or table. This
is very important in web applications, when the amount of data returned to
the client has a direct impact on the speed with which it is received by that
client.

• You can return multiple recordsets using a single query. Once instantiated,
you can then iterate through the recordsets just as you would iterate through
fields in a single recordset. This is also very important for performance optimi-
zation and speed considerations.

Although the ActiveX Data Objects provide all of the preceding functionality, it is
imperative that you know the underlying data provider’s ability to meet these
functionality requirements.

While ActiveX Data Objects is a very powerful set of objects that allow you to
create powerful applications, full coverage of its features would require a book in
itself. For this reason, this chapter lists the various properties and methods of ADO
objects and details only those that will allow you the most common functionality.
For more details on the topics I have selected as being “advanced,” I again refer
you to Jason T. Roff’s ADO: The Definitive Guide.

Accessory Files/Required DLL Files
msado15.dll

This is version 1.5 of the dynamic link library for the ADO COM objects. You
must install this on the web server (using the latest executable setup file from
Microsoft) before you can instantiate or use any of the ADO objects.

adovbs.inc
This file contains VBScript declarations for all the constants used by the Active
Data Objects library. You can include this file in your script using the
#include directive and refer to any of these ADO constants. (There are other
includes for use with non-VB languages: adoint.h and adoid.h for C/C++
programming, and adojavas.inc for Java programming.)

Instantiating Active Data Objects
To create an object variable containing an instance of an Active Data object, use
the CreateObject method of the Server object. The syntax for the CreateObject
method is:

Set objMyObject = Server.CreateObject(strProgId)
Instantiating Active Data Objects 161

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Instantiating Active Data Objects
where the parameters are as follows:

objMyObject
The name of the object variable created using the CreateObject method of the
Server object.

strProgId
The programmatic identifier (ProgId) of the component you are trying to
instantiate. Table 11-1 lists the available Active Data Objects and their corre-
sponding ProgIds.

Example
<%

' This code uses the Server object's CreateObject
' method to instantiate an ADO Connection object and
' a Recordset object. For more detail about the Open
' method and the ActiveConnection property in the
' example, see later in this chapter.

Dim adoCon
Dim adoRec

Set adoCon = Server.CreateObject("ADODB.Connection")
Set adoRec = Server.CreateObject("ADODB.Recordset")

' Open the database connection to my database.
adoCon.Open "MyDatabase"

' Set the Connection object to which the Recordset
' object is attached to adoCon.
adoRec.ActiveConnection = adoCon

%>

For more details on the use of the CreateObject method, see its entry in Chapter 8,
Server Object.

Table 11-1: Active Data Objects

Active Data Object ProgId

Command ADODB.Command

Connection ADODB.Connection

Error ADODB.Error

Field ADODB.Field

Parameter ADODB.Parameter

Property ADODB.Property

Recordset ADODB.Recordset
162 Chapter 11 – ActiveX Data Objects 1.5

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ActiveX Data
O

bjects 1.5
Object Model
Comments/Troubleshooting
There are several small “gotchas” that I’ve learned the hard way when using ADO
with ASP. I detail these in this chapter when discussing the particular properties or
methods that caused the problems. The only comment I have on ADO is this:
When you begin to write your ASP database application, take some time to delve
deeper into ADO (perhaps with Roff’s book). There are several more advanced
topics in ADO that I do not cover here.

Once you find out how to use ADO to perform the functions you want, take time
to look at your specific data provider and at what parts of ADO are supported.
Does it support all the cursor types that you need? Does ADO support all the func-
tionality you need? Are there properties of ADO that you cannot use because your
data provider does not provide them, or, more likely, does your data provider
support features that ADO does not support?

The answers to these questions and the research that goes into finding the answers
can save you a great deal of time during development. This may seem self-evident,
but it is extremely important—especially when deciding whether to use ADO.
ADO is young. Although Microsoft has poised OLE DB and its automation
wrapper, ADO, to take the data access spotlight, it has only recently released
ADO. As a result, ADO still has some maturing to do.

Finally, I need to again point out that ADO encompasses a very large amount of
knowledge. My first outline of this chapter (before my editors saved me) would
have resulted in an even more enormous chapter.

One final note: Microsoft has recently released for public download an unsup-
ported HTML Table component that will allow you to display the contents of an
ADO recordset in an HTML table simply and easily. This component was just
released as this book was nearing its last stages of development, so it is not
covered here. Download it from http://www.microsoft.com/windows/downloads/
default.asp and experiment on your own.

Object Model
Figure 11-2 shows a diagram of the ADO object hierarchy. This section briefly
describes each of the seven objects that make up ADO. For each object, I list and
very briefly describe all of the properties, collections, and methods (ADO objects
do not respond to any events). Items marked with an asterisk in the following
tables are documented in detail in the Properties Reference, Collections Refer-
ence, and Methods Reference later in this chapter. As stated earlier, this is meant
only as an overview. However, for several of the more commonly used proper-
ties, collections, and methods, I have added some more in-depth coverage in this
chapter’s Properties Reference, Collections Reference, and Methods Reference.

Command

The Command object allows you to manipulate database commands. Although
you can execute a command string on a Connection object or as part of opening a
Recordset object, the Command object allows you more flexibility. Chief among its
Object Model 163

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Object Model
extended functionalities is the ability to add, remove, and define query parame-
ters using the Command object’s Parameters collection. You can define the text of
a database command, such as a SQL statement, using the CommandText property
of the Command object.

Table 11-2 lists the Command object’s properties, while Table 11-3 lists its collec-
tion objects and Table 11-4 shows its methods.

Figure 11-2: The ADO object model

Table 11-2: Command Object Properties

Property Description

ActiveConnection* The name of the Connection object to which the
Command object belongs.

CommandText* A string containing the text of the command you wish to
execute against the database. It can be a query, a SQL
statement, the name of a stored procedure, or some other
database manipulation command.

CommandTimeout* A Long representing the number of seconds ADO should
wait for the results of a Command object’s execution
before raising an error. The default value is 30 seconds.

CommandType* The type of command that is executed using the
Command object.

Name* A string representing the name of the Command object.

Prepared A Boolean value that, if True, indicates the underlying
data provider is instructed to store a compiled version of
the command before executing it.

State An integer value indicating whether the Command object
is open (adStateOpen from ADOVBS.INC) or closed
(adStateClosed).

Connection Object

Recordset Object

Fields Collection

Command Object

Parameters Collection

Errors Collection
164 Chapter 11 – ActiveX Data Objects 1.5

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ActiveX Data
O

bjects 1.5
Object Model
Connection Object

The Connection object represents a single connection to the underlying data
provider. As such, the Connection object maintains information about that data
provider. In the context of a web application, it represents one connection from
the web server to a database server. As with the other ActiveX Data Objects, your
ability to use any of the Connection object’s methods or properties is directly
dependent on the underlying data provider’s support for the feature.

Tables 11-5, 11-6, and 11-7 list the Connection object’s properties, collection
objects, and methods, respectively.

Table 11-3: Command Object Collections

Collection Description

Parameters All the instantiated Parameter objects which, in turn, contain the
parameters for the current Command object. Parameter objects
are added to the Parameters collection using the Command
object’s CreateParameter method.

Properties The data provider-specific properties for the Command object. If
the data provider does not support any custom properties, this
collection is empty.

Table 11-4: Command Object Methods

Method Description

CreateParameter Creates a new Parameter object for the Command object’s
Parameters collection.

Execute* Executes the command contained in the Command object’s
CommandText property.

Table 11-5: Connection Object Properties

Property Description

Attributes The value of the Attributes property of the Connection
object represents the characteristics for the object. Use
the Attributes property to set whether the Connection
object performs retaining commits and retaining aborts.
This Long value is read/write.

CommandTimeout* The number of seconds the Connection should wait for
the result of a call to the Execute method before raising
an error. The default value is 30 seconds.

ConnectionString* A string containing the information for the current
connection. This string contains the definition of the
Provider, Data Source, User ID, Password, File Name
(for a provider specific file), Remote Provider, and
Remote Server.

ConnectionTimeout* The number in seconds to wait while attempting to
make a connection using the ConnectionString before
raising an error. The default value is 15 seconds.
Object Model 165

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Object Model
CursorLocation Indicates where the cursor for the current connection
should be created: on the client (adUseClient from
ADOVBS.INC) or on the server (adUseServer, the
default).

DefaultDatabase The default database. If no database is explicitly stated
in the execution string, this database is used. If only one
database is being used, this is the default database.

IsolationLevel The isolation level of the connection, which determines
what happens to the underlying records of a database
when a transaction is committed or aborted.

Mode The level of permissions for the connection itself
allowed by the provider. For example, you can use the
Mode property to instruct the provider not to accept any
other connections until after your connection is closed.

Provider The name of the data provider used for the connection.
The default for this string value is MSADSQL (Microsoft
OLE DB Provider for ODBC).

State An integer value representing whether the Connection
object is open (adStateOpen from ADOVBS.INC) or
closed (adStateClosed).

Version The current version of ADO.

Table 11-6: Connection Object Collections

Collection Description

Errors* All the current Error objects generated by errors from the last execu-
tion on the data provider. If there have been no errors, this collec-
tion is empty.

Properties The data provider-specific properties for the Connection object. If
the data provider does not support any custom properties, this
collection is empty.

Table 11-7: Connection Object Methods

Method Description

BeginTrans Begins a transaction in the underlying data provider. None of
the changes made during the transaction are recorded until
you explicitly commit the transaction.

Close* Closes the current connection. You must close a Connection
object’s connection to one data provider before opening a
connection to another data provider.

CommitTrans Commits a transaction in the underlying data provider. None of
the changes made during the transaction are recorded until
you explicitly commit the transaction.

Execute* Executes a query, stored procedure, or other SQL statement
sent as a parameter to this method.

Open* Explicitly opens a connection to a data provider.

Table 11-5: Connection Object Properties (continued)

Property Description
166 Chapter 11 – ActiveX Data Objects 1.5

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ActiveX Data
O

bjects 1.5
Object Model
Error Object

An Error object can contain the details of a data provider error. These provider
errors can result from incorrect use of ADO syntax or from lack of support for a
particular property or method by the underlying data provider. It is important to
realize that the Error object represents the details of an error from the provider,
and not from ADO. ADO errors are caught by the web server at execution time as
runtime errors.

Provider errors are specific to a particular Connection object. When an error
occurs with the data provider, one or more errors are raised by that provider and
added to the Connection object’s Errors collection, which is cleared each time a
new operation causes an error to be returned from the data provider.

From the Error object, you can retrieve the name, number, and description of each
error caused by the invalid operation. In addition, you can retrieve Help informa-
tion and information about the state of the data provider from the Error object.

Table 11-8 lists the Error object’s properties; it has no collection objects or
methods.

OpenSchema Obtains information on the database structure from the data
provider.

RollbackTrans Aborts a transaction in the underlying data provider. All of the
changes that have taken place since the beginning of the trans-
action will be committed, and all previously made data
changes will revert to their previous values.

Table 11-8: Error Object Properties

Property Description

Description* The descriptive string associated with a given error. This descrip-
tive string can be set by ADO or by the data provider.

HelpContext The value of a Help file’s context ID, if the accompanying Help-
File property indicates that there is a Windows help file associ-
ated with an Error object.

HelpFile A string that evaluates to the path and filename of a Windows
Help file if one exists for the Error object.

NativeError The error code raised by the native data provider. This is a Long
value.

Number* A Long that represents the error number for the Error object. If
no error has occurred, the Number property evaluates to 0.

Source* A string that represents the name of the object or application
that caused the ADO error.

SQLState A five-character error code that the provider returns when an
operation involving the processing of a SQL statement raises an
error. The values of these error codes are documented in the
current ANSI SQL standard.

Table 11-7: Connection Object Methods (continued)

Method Description
Object Model 167

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Object Model
Field Object

Each recordset you create is made up of a collection of Field objects. A Field
object represents the data from a specific column in the query or table called from
the data provider by the ADO application. All the data in a given field in the
recordset has the same data type. The Value property of the Field object repre-
sents the actual field value for that field in the current record.

The Field object allows you to view or change the data in a field of a record in
your recordset. Tables 11-9, 11-10, and 11-11 list its properties, collections, and
methods, respectively.

Table 11-9: Field Object Properties

Property Description

ActualSize A Long that represents the size of the field’s value in number of
characters. Some data providers allow the user to set this prop-
erty to reserve space for BLOB data. However, most often this
is a read-only property.

Attributes Allows you to retrieve several different characteristics of the
Field object, such as whether the data for a field is retrieved
with the rest of the record or only when you specifically use
the field, whether you can change the value of the field, etc.
This is a read-only property.

DefinedSize The size of the Field object. This is different from the Actual-
Size property. The value of the ActualSize property could indi-
cate that the length of the value in a Field object is one
character, but the value of the DefinedSize property could be
larger. You can use DefinedSize to determine if a value you
want to input into a new record’s field is larger than the size of
the field.

Name* The field’s name from the database table or query. It is read-
only.

NumericScale The number of decimal places to which numeric values will be
resolved. The data type of this property is Byte.

OriginalValue The actual value of the field before any changes were made.
This property value allows you to programmatically revert the
field’s value.

Precision The number of significant digits to which numeric values will
be resolved. The data type of this property is Byte.

Type An integer that represents the data type of the field’s contents.
For the Field object, this is a read-only property.

Table 11-10: Field Object Collections

Collection Description

Properties Contains the data provider-specific properties for the Field object.
If the data provider does not support any custom properties, this
collection is empty.
168 Chapter 11 – ActiveX Data Objects 1.5

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ActiveX Data
O

bjects 1.5
Object Model
Parameter Object

A Parameter object holds the values of specific parameters for a parameterized
Command object. In other words, if a given SQL statement or other command
takes a given set of parameters that change each time you execute the command,
a Parameter object can be used to hold those parameters’ values.

Each instantiated Command object has a Parameters collection to which you can
add parameters.

In addition to holding parameters of a straight SQL statement, a Parameter object
can also represent the in/out or return values of a stored procedure.

Table 11-12 lists the Parameter object’s properties, while Tables 11-13 and 11-14
show that it supports a single collection and a single method, respectively.

Table 11-11: Field Object Methods

Method Description

AppendChunk Appends a large amount of text or a Binary object to a Field
object.

GetChunk Retrieves a large amount of text or a Binary object from a
Field object.

Table 11-12: Parameter Object Properties

Property Description

Attributes Sets or determines whether a given parameter will accept
various data, such as signed values, null values, or long values.

Direction Reflects whether the parameter represents an input parameter,
an output parameter, or both.

Name* The name of the parameter, if it has one.

NumericScale The number of decimal places to which numeric values will be
resolved. The data type of this property is Byte.

Precision The number of significant digits to which numeric values will
be resolved. The data type of this property is Byte.

Size A Long representing the maximum number of bytes or charac-
ters valid for the Parameter object.

Type An integer that represents the data type of the parameter’s
contents. For the Parameter object, this is a read/write property.

Value The actual value of the contents of the parameter.

Table 11-13: Parameter Object Collection

Collection Description

Properties Contains the data provider-specific properties for the Field object.
If the data provider does not support any custom properties, this
collection is empty.
Object Model 169

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Object Model
Property Object

A Property object represents a custom or unique property that is specific to ADO
objects instantiated using a specific data provider. For example, if a Recordset
object were instantiated using records from an Oracle database, that recordset may
have special properties not supported by a “typical” ADO. You would retrieve/set
the values for these properties using an ADO Property object. This advanced
feature of ADO allows you to take full command of your underlying data provider.

Each Command, Connection, and Recordset object you instantiate maintains its
own Properties collection. This way, you have access to custom properties of your
data provider for all three object types. Table 11-15 lists the Property object’s
properties.

Recordset Object

A Recordset object represents the records returned from a query (or table) and a
cursor into those records. When instantiating a Recordset object, you can automati-
cally create a connection to the underlying data provider on opening the
recordset. However, if you use an already-open Connection object for your
recordset, you can significantly reduce your memory consumption overhead, since
each Connection object can maintain multiple recordsets. However, if you open a
recordset without using an already open Connection object, that connection can
support only that single recordset. You can read more about this feature in the
section on the Open method of the Recordset object near the end of this chapter.

Table 11-14: Parameter Object Method

Method Description

AppendChunk Appends a large amount of text or a Binary object to a Param-
eter object.

Table 11-15: Property Object Properties

Property Description

Attributes Allows you to determine whether a given property is supported,
required, optional, and whether Property is read-only or read/write.

Name* The underlying name assigned by the data provider to a given
property that’s being manipulated through the use of a Property
object.

Type An integer that represents the data type of the property’s contents.
For the Property object, this is a read-only property.

Value The actual value of the property.
170 Chapter 11 – ActiveX Data Objects 1.5

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ActiveX Data
O

bjects 1.5
Object Model
Tables 11-16, 11-17, and 11-18 list the Recordset object’s properties, collections,
and methods, respectively.

Table 11-16: Recordset Object Properties

Property Description

AbsolutePage Allows you to determine the exact page of records in
which the current record resides. Each recordset is broken
up by the data provider and ADO into pages of PageSize
number of records, with the last page possibly containing
fewer records. This is a read-only value of type Long.

AbsolutePosition* The ordinal number of the current record in the recordset.
This is a read/write value of type Long.

ActiveConnection* The currently open Connection object to which the
recordset is affiliated.

BOF* Indicates whether the current record pointer is pointing to
the beginning of the recordset (i.e., the beginning of file),
which is one position earlier in the recordset than the first
record. If you use the MovePrevious method to move one
position before the first record in the recordset, the BOF
property will evaluate to True. This is a Boolean read-only
value.

Bookmark Allows you to retrieve a unique identification number for
the current record in the recordset. If you set this property
to a valid bookmark for another record, the current record
pointer will be moved to the record identified by the value
you set.

CacheSize The number of records cached locally in memory. The
default of this Long value is 1. If you change this value in
code, be aware that the value of the CacheSize property
must be greater than 1, and that the value you set has a
direct relationship on performance. Forcing the server to
cache more than one record locally increases memory
consumption per user and decreases performance.

CursorLocation Indicates to the web server where the cursor for the
current recordset should be created: on the client
(adUseClient from ADOVBS.INC) or on the server
(adUseServer, the default).

CursorType* The type of cursor ADO creates to the underlying data
provider. This is an integer whose value is read-only if the
Recordset object is already opened, but read/write if it is
closed. The default value for this property is
adOpenForwardOnly.

EditMode The current editing state for the current record. The value
of this property indicates whether there is an edit in
progress, whether a record has been edited but not saved,
or whether a new record is to be added to the recordset.
Object Model 171

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Object Model
EOF* Indicates whether the current record pointer is pointing to
the end of the recordset (i.e., end of file), which is one
position after the last record in the recordset. If you use
the Recordset object’s MoveNext method to move one
position after the last record, the EOF property will eval-
uate to True. This is a Boolean read-only value.

Filter* Allows you to selectively filter out records from being
visible in a recordset.

LockType Reflects the current locking scheme placed on the records
during editing. For example, Read-Only, Pessimistic,
Optimistic, or BatchOptimistic.

MarshalOptions Sets or retrieves a setting that determines how records are
marshaled between the client and server. Marshaling
involves packaging and sending groups of records from
the client to the server. This property determines whether
only those records that have been modified or all records
are marshaled back to the server.

MaxRecords* Sets or retrieves the maximum number of records returned
in a recordset by a specific query. This is a Long value
with a default of 0, meaning that there is no maximum.

PageCount Determines how many pages of records were returned by
the data provider into a specific Recordset object. If the
data provider does not support this property or if the page
count is for some other reason undeterminable, the value
of this integer is –1.

PageSize The total number of records that make up one page of
records. This Long value is –1 if the data provider does not
support the PageSize property or if the page size is unde-
terminable.

RecordCount* For Recordset objects that support approximate posi-
tioning or bookmarks, the RecordCount property repre-
sents the exact number of records returned into the
Recordset object. If this property is unsupported by the
underlying data provider or is for some other reason unde-
terminable, its value is –1.

Source* The source string from which the records were returned
from the data provider. The value of the property could be
a SQL string, a stored procedure, the name of a Command
object, or a table name.

State An integer value representing whether the Recordset
object is open (adStateOpen from ADOVBS.INC) or
closed (adStateClosed).

Status The status of the current record in relation to a batch
update or other bulk manipulation of the data.

Table 11-16: Recordset Object Properties (continued)

Property Description
172 Chapter 11 – ActiveX Data Objects 1.5

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ActiveX Data
O

bjects 1.5
Object Model
Table 11-17: Recordset Object Collections

Collection Description

Fields Contains each Field object, corresponding to each column of data
in the recordset.

Properties Contains the data provider-specific properties for the Recordset
object. If the data provider does not support any custom proper-
ties, this collection is empty.

Table 11-18: Recordset Object Methods

Method Description

AddNew* Adds a new record to the recordset and to the underlying
data if the recordset is updateable.

CancelBatch Cancels all pending updates if a recordset is in batch-update
mode.

CancelUpdate Cancels updates to the current record.

Clone* Creates a duplicate of the current recordset.

Close* Closes the current recordset.

Delete* Deletes the current record or a group of records from the
recordset and the underlying data (if the cursor type of the
recordset supports updating).

GetRows Retrieves multiple records from a recordset into an array.

Move* Moves the current record pointer a certain number of posi-
tions forward or backward from the current record. To use
this method, the recordset must support both forward and
backward movement.

MoveFirst* Moves the record pointer to the first record in the recordset.

MoveLast* Moves the record pointer to the last record of the recordset.

MoveNext* Moves the record pointer forward one position.

MovePrevious* Moves the record pointer back one position.

NextRecordset* You can create a Recordset object using multiple commands.
The NextRecordset method allows you to navigate from one
command’s resulting recordset to another command’s
resulting recordset.

Open* Opens a recordset.

Requery* Repopulates the current recordset by rerunning the
command that generated it.

Resync* Refreshes the data in the current recordset without rerunning
the query.

Supports* Determines whether a specific data provider supports a
given functionality.

Update* Saves changes to the current record into the database.

UpdateBatch Saves all changes in the current batch to the database.
Object Model 173

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Properties Reference
Properties Reference

AbsolutePosition (Recordset Object)
rsObj.AbsolutePosition (= intRecordPosition)

Returns or sets the current record based on its ordinal position in the recordset.
This is a read/write value of type Long.

Parameters

rsObj
A reference to a Recordset object

intRecordPosition
The position of the current record or the new position to which you wish to
move the record pointer

Example

The following example demonstrates the use of the AbsolutePosition property.
The use of AbsolutePosition is in bold to distinguish it in this example. The other
parts of the script will be used to demonstrate other parts of ADO. Also, in this
example, you will notice that I am careful not to specify my data provider. The
reason is that only some data providers support the AbsolutePosition property;
SQL Server, for example, does not.

<%@ LANGUAGE="VBSCRIPT" %>
<%response.buffer = true%>

<HTML>
<HEAD>
<TITLE>ADO Examples</TITLE>
</HEAD>
<BODY>
<%
' Include ADOVBS.INC so we can use the ADO constants.
%>
<!-- #include virtual = "/MySSIncludes/adovbs.inc" -->
<%
' Instantiate an ADO Connection object.
Set objDBConn = Server.CreateObject("ADODB.Connection")

' Construct the connection string for the Connection
' object.
strConn = _
 "driver={MyDBType};;uid=sa;pwd=;database=SalesDB"

' Using the connection string, open the connection.
objDBConn.Open strConn

' Instantiate an ADO Recordset object.
Set rsHighSales = _
 Server.CreateObject("ADODB.Recordset")
174 Chapter 11 – ActiveX Data Objects 1.5

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ActiveX Data
O

bjects 1.5
AbsolutePosition (Recordset Object)
' Set the CursorType property of the recordset, so we
' can navigate within the recordset.
rsHighSales.CursorType = adOpenDynamic

' Set our CursorLocation to locate the cursor on the
' client side so we can use the AbsolutePosition
' property.
rsHighSales.CursorLocation = adUseClient

' Construct the SQL to be used to open the recordset.
strSQL = _
 "SELECT Buyer, Price FROM Sales WHERE Price > 70000"

' Open the recordset.
rsHighSales.Open strSQL, objDBConn

' Move to current record pointer to the third record
' in the recordset.
rsHighSales.AbsolutePosition = 3

' Display the Buyer and Price field values for the
' third record in the recordset.
%>

Third Buyer: <%=rsHighSales("Buyer")%>

Third Price: <%=rsHighSales("Price")%>

<%
' Release the memory consumed by objects.
Set rsHighSales = Nothing
Set objDBConn = Nothing
%>
</BODY>
</HTML>

Notes

You can use AbsolutePosition to retrieve or set the position of the current record
pointer within the recordset. This number is one-based, meaning that if you wish
to set the current record pointer to point to the first record in the recordset, you
would set its value to 1.

As with other properties of the Recordset object, the validity of the AbsolutePosi-
tion property depends on whether the underlying data provider supports the
property. Also, you can only use the AbsolutePosition property of the Recordset
object if the cursor type for the recordset supports backward movement in the
cursor.

If you attempt to retrieve the position of the current record pointer, you may
receive one of the following constant values, depending on the state of the current
record pointer:

adPosUnknown
Either the recordset is empty, the current position is unknown, or the under-
lying data provider does not support this property.
AbsolutePosition (Recordset Object) 175

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ActiveConnection (Command, Recordset Object)
adPosBOF
The current record is one before the first record in the recordset.

adPosEOF
The current record is one after the last record in the recordset.

Note that when you set a value for the AbsolutePosition property—even if the new
current record is already in the cache—the cache is reloaded. The number of
records loaded into the cache is determined by the CacheSize property.

Finally, if you want to uniquely identify a given record, use the Bookmark prop-
erty, rather than the AbsolutePosition value, because this value can change.

ActiveConnection (Command, Recordset Object)
Obj.ActiveConnection (= strConnectionName)

Indicates an open Connection object to which a Recordset or Command object
belongs.

Parameters

Obj
A reference to a Command or Recordset object

strConnectionName
The name of a valid, open Connection object

Example

This example demonstrates how you set the ActiveConnection property of a
Recordset object. To set the ActiveConnection property of a Command object, use
exactly the same technique.

<%@ LANGUAGE="VBSCRIPT" %>
<% Response.Buffer = True %>
<HTML>
<HEAD>
<TITLE>ADO Examples</TITLE>
</HEAD>
<BODY>
<%
' Include ADOVBS.INC so we can use the ADO constants.
%>
<!-- #include virtual = "/MySSIncludes/adovbs.inc" -->
<%
' Instantiate an ADO Connection object.
Set objDBConn = Server.CreateObject("ADODB.Connection")

' Construct the connection string for the Connection
' object.
strConn = _
 "driver={SQL Server};;uid=sa;pwd=;database=SalesDB"

' Using the connection string, open the connection.
objDBConn.Open strConn
176 Chapter 11 – ActiveX Data Objects 1.5

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ActiveX Data
O

bjects 1.5
ActiveConnection (Command, Recordset Object)
' Instantiate an ADO Recordset object.
Set rsHighSales = _
 Server.CreateObject("ADODB.Recordset")

' Set the ActiveConnection property of the recordset.
rsHighSales.ActiveConnection = objDBConn

' Construct the SQL to be used to open the recordset.
strSQL = _
 "SELECT Buyer, Price FROM Sales WHERE Price > 70000"

' Open the recordset. Note the lack of a Connection
' object specification.
rsHighSales.Open strSQL

%>

First Buyer: <%=rsHighSales("Buyer")%>

First Price: <%=rsHighSales("Price")%>

<%
' Release the memory consumed by objects.
Set rsHighSales = Nothing
Set objDBConn = Nothing
%>
</BODY>
</HTML>

Notes

You can set or retrieve the name of any valid (open) Connection object by using
the ActiveConnection property. If the Connection object is not yet open when you
attempt to set the property, an error occurs. If you attempt to call the Execute
method of a Command object or the Open method of a Recordset object without
first setting the ActiveConnection property to the name of a valid, open Connec-
tion object, ADO will raise a runtime error. The only exception to this is if you use
the ActiveConnection argument of the Recordset object’s Open method; in this
case, the ActiveConnection property will be set for you to the name of the
Connection object specified in the Open method call.

If you set the ActiveConnection property to Nothing, you will disconnect the
Command or Recordset object from the open Connection object. If you do this
with a Recordset object that is open, an error will occur.

Also, if a Command object has parameters whose values are provided by the data
provider, and you set the ActiveConnection property of this Command object to
Nothing or to another Connection object, these values will be cleared. If you set
the values of the Parameter objects, resetting the ActiveConnection property has
no effect on your parameters’ values.
ActiveConnection (Command, Recordset Object) 177

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

BOF (Recordset Object)
BOF (Recordset Object)
rsObj.BOF

If the value of the BOF property of a Recordset object is True, the current record
pointer is positioned one record before the first record in the recordset. This is a
read-only property. You can use the BOF property in conjunction with the EOF
property to ensure that your recordset contains records and that you have not
navigated beyond the boundaries of the recordset.

Parameters

rsObj
A reference to a Recordset object

Example

The following example demonstrates the use of BOF to determine whether the
opened recordset contains any records. Note that EOF is also True if there are no
records in the recordset. We could just as easily have used the EOF property in
this case as BOF.

<%@ LANGUAGE="VBSCRIPT" %>
<% Response.Buffer = True %>
<HTML>
<HEAD>
<TITLE>ADO Examples</TITLE>
</HEAD>
<BODY>
<%
' Include ADOVBS.INC so we can use the ADO constants.
%>
<!-- #include virtual = "/MySSIncludes/adovbs.inc" -->
<%
' Instantiate an ADO Connection object.
Set objDBConn = Server.CreateObject("ADODB.Connection")

' Construct the connection string for the Connection
' object.
strConn = _
 "driver={SQL Server};;uid=sa;pwd=;database=SalesDB"

' Using the connection string, open the connection.
objDBConn.Open strConn

' Instantiate an ADO Recordset object.
Set rsHighSales = _
 Server.CreateObject("ADODB.Recordset")

' Set the ActiveConnection property of the recordset.
rsHighSales.ActiveConnection = objDBConn

' Construct the SQL to be used to open the recordset.
strSQL = _
 "SELECT Buyer, Price FROM Sales WHERE Price > 70000"
178 Chapter 11 – ActiveX Data Objects 1.5

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ActiveX Data
O

bjects 1.5
CommandText (Command Object)
' Open the recordset. Note the lack of a Connection
' object specification.
rsHighSales.Open strSQL

' Use the BOF property to determine whether there are
' records in the recordset.
If Not rsHighSales.BOF Then
 ' There are records. Use the EOF property to loop
 ' through all the records in the recordset and
 ' display them to the screen.
 Do While Not rsHighSales.EOF
%>
 Buyer: <%=rsHighSales("Buyer")%>

 Price: <%=rsHighSales("Price")%>

<%
 rsHighSales.MoveNext
 Loop
Else
 ' There are no records. Tell the user.
%>
 There are no high sales.
<%
End If

' Release the memory consumed by objects.
Set rsHighSales = Nothing
Set objDBConn = Nothing
%>
</BODY>
</HTML>

Notes

The BOF property’s value is True if there are no records in the recordset or if you
have navigated to the position before the first record in the recordset. If there are
no records in the recordset, the value of both the BOF and EOF properties are
True. This is the only occasion in which this is true. Obviously, a True value of
the BOF property indicates that some navigational methods (in particular, Move-
Previous and Move using a negative argument) of the Recordset object are not
allowed.

CommandText (Command Object)
objCmd.CommandText (= strCommandText)

A string value that represents the actual command you wish to run against the
database. The default value for this property is an empty string (“”). This command
can be a SQL statement or the name of a stored procedure.

Parameters

objCmd
A reference to a Command object
CommandText (Command Object) 179

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

CommandText (Command Object)
strCommandText
A string containing the command you wish to run against the database

Example

This example demonstrates how to use the CommandText property to invoke a
stored procedure with two parameters.

<%@ LANGUAGE="VBSCRIPT" %>
<% Response.Buffer = True %>
<HTML>
<HEAD>
<TITLE>ADO Examples</TITLE>
</HEAD>
<BODY>
<%
' Include ADOVBS.INC so we can use the ADO constants.
%>
<!-- #include virtual = "/bc_SSIncludes/adovbs.inc" -->
<%
' Instantiate an ADO Connection object.
Set objDBConn = Server.CreateObject("ADODB.Connection")

' Construct the connection string for the Connection
' object.
strConn = _
 "driver={MyDBType};;uid=sa;pwd=;database=SalesDB"

' Using the connection string, open the connection.
objDBConn.Open strConn

' Create a stored procedure Command object,
Set objSPCmd = Server.CreateObject("ADODB.Command")

' Set active connection equal to current Connection
' object.
Set objSPCmd.ActiveConnection = objDBConn

' Set Command object type to stored procedure.
objSPCmd.CommandType = adCmdStoredProc

' Set the parameter values.
lngHighPrice = 70000
datFirstDate ='03/02/98'

' Set stored procedure command text. The parameters
' indicate the minimum price that must be paid to
' qualify a sale as a "high sale" and the date after
' which we want to collect sales into our recordset.
strCommandString = "GetHighSales (" & lngHighPrice & _
 "," & datFirstDate & ")"
objSPCmd.CommandText = strCommandString

' Open the recordset using the results from the Command object.
Set rsHighSales = objSPCmd.Execute
180 Chapter 11 – ActiveX Data Objects 1.5

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ActiveX Data
O

bjects 1.5
CommandTimeout (Command, Connection Object)
%>

First Buyer: <%=rsHighSales("Buyer")%>

First Price: <%=rsHighSales("Price")%>

<%
' Release the memory consumed by objects.
Set rsHighSales = Nothing
Set objSPCmd = Nothing
Set objDBConn = Nothing
%>
</BODY>
</HTML>

Notes

If you use a SQL command for the CommandText property of a Command object,
you must ensure that the SQL syntax is that expected by the underlying data
provider. ADO will not translate from one “dialect” of SQL to another.

Depending on the type of command (set using the CommandType property), ADO
may alter the actual string sent to the data provider. For example, suppose you set
the CommandText of a stored procedure-type Command object to the following:

objSPCmd.CommandText = "GetHighSales (70000)"

ADO will actually send the following string to the data provider as the command:

{ call GetHighSales (70000) }

Notice that the braces and the call keyword are added.

CommandTimeout (Command, Connection Object)
Obj.CommandTimeout (= lngNumSeconds)

Sets the maximum amount of time (in seconds) that ADO will wait for the results
of a command to execute before raising an error. The default for this Long value is
30 seconds.

Parameters

Obj
A reference to a Command or Connection object

lngNumSeconds
The number of seconds ADO will wait for the results of a command before
raising an error

Example

This example demonstrates how to use the CommandTimeout property to increase
the amount of time ADO will wait for the results of a stored procedure call before
raising an error.

<%@ LANGUAGE="VBSCRIPT" %>
<% Response.Buffer = True %>
CommandTimeout (Command, Connection Object) 181

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

CommandTimeout (Command, Connection Object)
<HTML>
<HEAD>
<TITLE>ADO Examples</TITLE>
</HEAD>
<BODY>
<%
' Include ADOVBS.INC so we can use the ADO constants.
%>
<!-- #include virtual = "/bc_SSIncludes/adovbs.inc" -->
<%
' Instantiate an ADO Connection object.
Set objDBConn = Server.CreateObject("ADODB.Connection")

' Construct the connection string for the Connection
' object.
strConn = _
 "driver={MyDBType};;uid=sa;pwd=;database=SalesDB"

' Using the connection string, open the connection.
objDBConn.Open strConn

' Create stored procedure command object.
Set objSPCmd = Server.CreateObject("ADODB.Command")

' Set the active connection equal to the current
' Connection object.
Set objSPCmd.ActiveConnection = objDBConn

' Set the Command object type to stored procedure.
objSPCmd.CommandType = adCmdStoredProc

' Set the parameter values.
lngHighPrice = 70000
datFirstDate ='03/02/98'

' Set stored procedure command text. The parameters
' indicate the minimum price that must be paid to
' qualify a sale as a "high sale" and the date after
' which we want to collect sales into our recordset.
strCommandString = "GetHighSales (" & lngHighPrice & _
 "," & datFirstDate & ")"
objSPCmd.CommandText = strCommandString

' Set the Command object's CommandTimeout property so
' that ADO will wait 60 seconds for the results of the
' comand before raising an error.
objDBCmd.CommandTimeout = 60

' Open the recordset using the results from the Command
' object.
Set rsHighSales = objDBCmd.Execute

%>
182 Chapter 11 – ActiveX Data Objects 1.5

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ActiveX Data
O

bjects 1.5
CommandType (Command Object)
First Buyer: <%=rsHighSales("Buyer")%>

First Price: <%=rsHighSales("Price")%>

<%
' Release the memory consumed by objects.
Set rsHighSales = Nothing
Set objDBCmd = Nothing
Set objDBConn = Nothing
%>
</BODY>
</HTML>

Notes

If you create and open a Connection object and set its CommandTimeout prop-
erty and then use its name to set the ActiveConnection property of a previously
instantiated Command object, the Command object does not inherit the Command-
Timeout property value of the Connection object.

If you set this property’s value to 0, the command will wait indefinitely for the
results to be returned.

It is imperative to remember the current setting of the Server object’s
ScriptTimeout property. (The default of the ScriptTimeout property of the Server
object is 90 seconds.) For example, suppose the ScriptTimeout is set to 30 seconds
and the CommandTimeout for the Command object on an Active Server Page is set
to 45 seconds. You may not be able to view the outcome of the command’s
execution—regardless of whether the command is executed successfully by the
data provider.

CommandType (Command Object)
objCmd.CommandType (= intCommandType)

Sets or determines the type of command being executed using the Command
object. The different types of command include text, stored procedure, and table.
The default is Unknown. If you attempt to call the Execute method of a Command
object without setting the CommandType property’s value, an error will occur for
any type of command other than straight text.

Parameters

objCmd
A reference to a Command object.

intCommandType
The type of command. It can be represented by any of the following
constants:

adCmdText
The command is a text command, such as a simple SQL statement;
CommandText is evaluated as a textual definition of a command.
CommandType (Command Object) 183

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

CommandType (Command Object)
adCmdTable
The Command object represents a table; CommandText is evaluated as
the name of a table.

adCmdStoredProc
The Command object represents a stored procedure; CommandText is
evaluated as the name of a stored procedure in the underlying data
provider.

adCmdUnknown
The Command object type is unknown; this is the default value.

Example

This example demonstrates how to use the CommandType property of the
Command object to instruct ADO to treat the CommandText property’s value as
the name of a stored procedure.

<%@ LANGUAGE="VBSCRIPT" %>
<% Response.Buffer = True %>
<HTML>
<HEAD>
<TITLE>ADO Examples</TITLE>
</HEAD>
<BODY>
<%
' Include ADOVBS.INC so we can use the ADO constants.
%>
<!-- #include virtual = "/bc_SSIncludes/adovbs.inc" -->
<%
' Instantiate an ADO Connection object.
Set objDBConn = Server.CreateObject("ADODB.Connection")

' Construct the connection string for the Connection
' object.
strConn = "driver={MyDBType};;uid=sa;pwd=;database=SalesDB"

' Using the connection string, open the connection.
objDBConn.Open strConn

' Create a stored procedure Command object.
Set objSPCmd = Server.CreateObject("ADODB.Command")

' Set the active connection equal to the current
' Connection object.
Set objSPCmd.ActiveConnection = objDBConn

' Set the Command object type to stored procedure.
objSPCmd.CommandType = adCmdStoredProc

' Set the parameter values.
lngHighPrice = 70000
datFirstDate ='03/02/98'

' Set the stored procedure command text. The parameters
184 Chapter 11 – ActiveX Data Objects 1.5

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ActiveX Data
O

bjects 1.5
ConnectionString (Connection Object)
' indicate the minimum price that must be paid to
' qualify a sale as a "high sale" and the date after
' which we want to collect sales into our recordset.
strCommandString = "GetHighSales (" & lngHighPrice & _
 "," & datFirstDate & ")"
objSPCmd.CommandText = strCommandString

' Set the Command object's CommandTimeout property so
' that ADO will wait 60 seconds for the results of the
' command before raising an error.
objDBCmd.CommandTimeout = 60

' Open the recordset using the results from the Command
' object.
Set rsHighSales = objDBCmd.Execute

%>

First Buyer: <%=rsHighSales("Buyer")%>

First Price: <%=rsHighSales("Price")%>

<%
' Release the memory consumed by objects
Set rsHighSales = Nothing
Set objDBCmd = Nothing
Set objDBConn = Nothing
%>
</BODY>
</HTML>

Notes

Setting the value of the CommandType property optimizes the command’s perfor-
mance. You do not have to set the CommandType property, however. If you do
not know at design time the type of command that will be used in the Command-
Text property, you can leave the value for this property at its default of
adCmdUnknown. In this case, however, you will experience decreased perfor-
mance because ADO is forced to take the value of the CommandText property
and query the underlying data provider to determine how to execute the
command.

If you set the CommandType property incorrectly (to something other than
adCmdUnknown) and attempt to call the object’s Execute method, ADO will raise a
runtime error.

ConnectionString (Connection Object)
objConn.ConnectionString (= strConnectionString)

ConnectionString specifies or retrieves the information used to establish an open
connection to an underlying data provider.
ConnectionString (Connection Object) 185

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ConnectionString (Connection Object)
Parameters

strConnectionString
A string value made up of the following elements (in order) broken up by
semicolons. If you do not provide any of the elements, you must still include
its semicolon unless you also do not provide any of the elements after the
omitted element.

Provider=
The name of the underlying OLE DB data provider for the connection.

Data Source=
The name of a data source for the underlying data provider. For example,
for SQL Server or Access, this represents a registered ODBC data source
name.

User ID=
The username to use when establishing the connection.

Password=
The password to use when establishing the connection.

File Name=
The name of a data provider-specific file. This could, for example, repre-
sent a text file containing preset connection information. Using a File
Name element in your ConnectionString loads the provider into memory.
For this reason, you cannot have both a Provider and a File Name
element in your ConnectionString property value.

Remote Provider=
(For use with Remote Data Services only.) The name of the data provider
to use on the server when opening a client-side connection.

Remote Server=
(For use with Remote Data Services only.) The path name of the remote
server to use when opening a client-side connection.

Example
<%@ LANGUAGE="VBSCRIPT" %>
<% Response.Buffer = True %>
<HTML>
<HEAD>
<TITLE>ADO Examples</TITLE>
</HEAD>
<BODY>
<%
' Include ADOVBS.INC so we can use the ADO constants.
%>
<!-- #include virtual = "/bc_SSIncludes/adovbs.inc" -->
<%
' Instantiate an ADO Connection object.
Set objDBConn = Server.CreateObject("ADODB.Connection")

' Build the connection string for the Connection object.
strConn = _
186 Chapter 11 – ActiveX Data Objects 1.5

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ActiveX Data
O

bjects 1.5
ConnectionTimeout (Connection Object)
 "Provider={SQL Server};Data Source=SalesDB;User
ID=sa;Password=;”

' Using the ConnectionTimeout property increases the
' amount of time ADO will wait while establishing a
' connection to the data provider before it raises
' an error.
objDBConn.ConnectionTimeout = 60

' Using the connection string, open the connection.
objDBConn.Open strConn
...[additional code]

Notes

ADO recognizes only the first seven elements of a ConnectionString property
value. However, you can provide as many as you like. If you provide more than
seven, the extra elements are passed directly through to the data provider without
any intervening actions being taken by ADO.

The underlying data provider may alter the contents of the ConnectionString prop-
erty value when the connection is established.

If you use the ConnectionString parameter of the Connection object’s Open
method and also set a value for the ConnectionString property before calling the
Open method, the value passed to the Open method is the value that the Connec-
tionString property eventually receives.

ConnectionTimeout (Connection Object)
objConn.ConnectionTimeout (= lngNumSeconds)

Sets or retrieves the number of seconds ADO will wait while attempting to estab-
lish a connection before raising an error. The default value for this property is 15
seconds.

Parameters

lngNumSeconds
A Long that represents the number of seconds ADO will wait while
attempting to establish a connection to the underlying data provider.

Example

For an example of the ConnectionTimeout property, see the example for the
ConnectionString property.

Notes

You can instruct ADO to wait indefinitely for the connection to the underlying
data provider to be established by setting the value of the ConnectionTimeout
property to 0.

Note, however, that it is imperative to remember the current setting of the Server
object’s ScriptTimeout property. (The default for the ScriptTimeout property is 90
seconds.) For example, suppose the ScriptTimeout is set to 30 seconds and the
ConnectionTimeout (Connection Object) 187

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

CursorType (Recordset Object)
ConnectionTimeout for the Connection object on an Active Server Page is set to 45
seconds. You may not be able to see the result of attempting to establish a
connection to the underlying data provider regardless of success or failure.

CursorType (Recordset Object)
rsObj.CursorType (= intCursorType)

The CursorType property of the Recordset object allows you to specify or retrieve
the type of cursor used to create the recordset.

Parameters

intCursorType
An integer value representing the type of cursor to use for the Recordset
object. It can be any of the following constants:

adOpenForwardOnly
This is the default. A forward-only cursor, as its name implies, only
allows movement forward from the current record. Otherwise, this cursor
type is identical to the static cursor. There is one exception to this,
however: some data providers will allow you to call the MoveFirst
method to move the current record pointer back to the first record in the
database. This is the fastest cursor type.

adOpenKeyset
In a keyset cursor, you cannot see new records added by other users,
and you cannot access records that have been deleted by other users.
You can, however, see the changes to records in your recordset made by
other users. All types of movement are possible in a keyset-cursor
recordset.

adOpenDynamic
Dynamic cursors are the most flexible (and slowest) of the four types. In
a dynamic cursor, additions, changes, and deletions are all visible in your
recordset. All types of movement are possible in a dynamic-cursor
recordset.

adOpenStatic
Static cursors provide a static snapshot of the records in your recordset.
This is useful for generating reports, but the records in the recordset are
not updateable. Additions, changes, and deletions made by other users
are not visible in your recordset.

Example
<%@ LANGUAGE="VBSCRIPT" %>
<%response.buffer = true%>

<HTML>
<HEAD>
<TITLE>ADO Examples</TITLE>
</HEAD>
<BODY>
<%
188 Chapter 11 – ActiveX Data Objects 1.5

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ActiveX Data
O

bjects 1.5
CursorType (Recordset Object)
' Include ADOVBS.INC so we can use the ADO constants.
%>
<!-- #include virtual = "/MySSIncludes/adovbs.inc" -->
<%
' Instantiate an ADO Connection object.
Set objDBConn = Server.CreateObject("ADODB.Connection")

' Construct the connection string for the Connection
' object.
strConn = _
 "driver={MyDBType};;uid=sa;pwd=;database=SalesDB"

' Using the connection string, open the connection.
objDBConn.Open strConn

' Instantiate an ADO Recordset object.
Set rsHighSales = _
 Server.CreateObject("ADODB.Recordset")

' Set the CursorType property of the recordset, so we
' can navigate within the recordset.
rsHighSales.CursorType = adOpenDynamic

' Set our CursorLocation to locate the cursor on the
' client side so we can use the AbsolutePosition property.
rsHighSales.CursorLocation = adUseClient

' Construct the SQL to be used to open the recordset.
strSQL = _
 "SELECT Buyer, Price FROM Sales WHERE Price > 70000"

' Open the recordset.
rsHighSales.Open strSQL, objDBConn

' Move the current record pointer to the third record.
' in the recordset.
rsHighSales.AbsolutePosition = 3

' Display the Buyer and Price field values for the
' third record in the recordset.
%>

Third Buyer: <%=rsHighSales("Buyer")%>

Third Price: <%=rsHighSales("Price")%>

<%
' Release the memory consumed by objects.
Set rsHighSales = Nothing
Set objDBConn = Nothing
%>
</BODY>
</HTML>
CursorType (Recordset Object) 189

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Description (Error Object)
Notes

The CursorType property of the Recordset object is read-only if the recordset is
already open but read/write otherwise.

If you attempt to set the CursorType property to a value not supported by your
underlying data provider, the data provider may return a cursor of a different type
than you set. However, if this happens, the CursorType property value reflects this
change. Then, once the recordset is closed, the CursorType property value reverts
to the value you set. You can use the Supports method of the Recordset object to
determine which cursors are supported by a given data provider, according to
Table 11-19.

What happens if one of the tests on the right fail for your selected cursor type?
Suppose you attempt to set the CursorType to one of the cursor type constants in
the right column, but one or more of the Supports method calls in the left column
returns False. The result is unpredictable, but most often the underlying data
provider will simply change the cursor type when you attempt to open the
recordset.

Description (Error Object)
objError.Description

A read-only string that provides textual information describing the error that the
underlying data provider raised in response to incorrect syntax or lack of support.
Description is a property of each Error object in the Connection object’s Errors
collection. It is not the same as the Description property of the ASP Err object.

Parameters

None

Example

The following example demonstrates the use of the Description property of the
Error object. Notice that for this example to work properly, the Response object’s
Buffer property must be set to True because we use the Response’s object’s Clear
and End methods.

<%@ LANGUAGE="VBSCRIPT" %>

Table 11-19: Determining if a Data Provider Supports a Cursor Type

If Supported, Method Returns True
with These Parameters Cursor Type Supported

None adOpenForwardOnly

adBookmark, adHoldRecords, adMovePrevious,
adResync

adOpenKeyset

adMovePrevious adOpenDynamic

adBookmark, adHoldRecords, adMovePrevious,
adResync

adOpenStatic
190 Chapter 11 – ActiveX Data Objects 1.5

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ActiveX Data
O

bjects 1.5
Description (Error Object)
<%Response.Buffer = True%>

<HTML>
<HEAD>
<TITLE>ADO Examples</TITLE>
</HEAD>
<BODY>
<%
' Include ADOVBS.INC so we can use the ADO constants.
%>
<!-- #include virtual = "/MySSIncludes/adovbs.inc" -->
<%
' Instantiate an ADO Connection object.
Set objDBConn = Server.CreateObject("ADODB.Connection")

' Construct the connection string for the Connection
' object.
strConn = _
 "driver={MyDBType};;uid=sa;pwd=;database=SalesDB"

' Using the connection string, open the connection.
objDBConn.Open strConn

' Check if attempting to open a connection to the
' provider resulted in ADO adding Error objects to the
' Connection's Errors collection.
If objDBConn.Errors.Count > 0 Then
 ' An error occurred and ADO added an Error object to
 ' the Connection's Errors collection. Clear the
 ' Response buffer and alert the user of the error.
 Response.Clear
 Response.Write _
 "One or more errors have occurred.
"
 For intCounter = 0 to objDBConn.Errors.Count
 Response.Write "The " & intCounter & " error's "
 Response.Write "error number is " & _
 objDBConn.Errors(intCounter).Number & ".
"
 Response.Write "The description for this "
 Response.Write "error is
" & _

objDBConn.Errors(intCounter).Description & ".
"
 Next
 Response.End
End If
...[additional code]

Notes

Each time an error occurs in the data provider, ADO adds an Error object to the
Errors collection of the Connection object corresponding to that data provider. The
provider is responsible for generating and sending the actual error text to ADO,
but ADO can modify it before setting the description that it adds to the Connec-
tion object’s Errors collection.
Description (Error Object) 191

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

EOF (Recordset Object)
EOF (Recordset Object)
rsObj.EOF

If the value of a Recordset object’s EOF property is True, the current record
pointer is positioned one record after the last record in the recordset. This is a
read-only property. You can use the EOF property in conjunction with the BOF
property to ensure that your recordset contains records and that you have not
navigated beyond the boundaries of the recordset. Note that the value of EOF is
also True if there are no records in the recordset.

Parameters

None

Example

The following example demonstrates the use of EOF to iterate through a set of
records. Assuming that there are records in the recordset, we know that EOF will
be true once we have iterated through all the records and the record pointer is
pointing at the position after the last record in the recordset.

<%@ LANGUAGE="VBSCRIPT" %>
<% Response.Buffer = True %>
<HTML>
<HEAD>
<TITLE>ADO Examples</TITLE>
</HEAD>
<BODY>
<%
' Include ADOVBS.INC so we can use the ADO constants.
%>
<!-- #include virtual = "/MySSIncludes/adovbs.inc" -->
<%
' Instantiate an ADO Connection object.
Set objDBConn = Server.CreateObject("ADODB.Connection")

' Construct the connection string for the Connection
' object.
strConn = _
 "driver={SQL Server};;uid=sa;pwd=;database=SalesDB"

' Using the connection string, open the connection.
objDBConn.Open strConn

' Instantiate an ADO Recordset object.
Set rsHighSales = _
 Server.CreateObject("ADODB.Recordset")

' Set the ActiveConnection property of the recordset.
rsHighSales.ActiveConnection = objDBConn

' Construct the SQL to be used to open the recordset.
strSQL = _
 "SELECT Buyer, Price FROM Sales WHERE Price > 70000"
192 Chapter 11 – ActiveX Data Objects 1.5

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ActiveX Data
O

bjects 1.5
Filter (Recordset Object)
' Open the recordset. Note the lack of a connection
' object specification.
rsHighSales.Open strSQL

' Use the BOF property to determine whether there
' are records in the recordset.
If Not rsHighSales.BOF Then
 ' There are records. Use the EOF property to loop
 ' through all the records in the recordset and
 ' display them to the screen.
 Do While Not rsHighSales.EOF
%>
 Buyer: <%=rsHighSales("Buyer")%>

 Price: <%=rsHighSales("Price")%>

<%
 rsHighSales.MoveNext
 Loop
Else
 ' There are no records. Tell the user.
%>
 There are no high sales.
<%
End If

' Release the memory consumed by objects.
Set rsHighSales = Nothing
Set objDBConn = Nothing
%>
</BODY>
</HTML>

Notes

The EOF property’s value is True in the following instances:

• There are no records in the recordset. In this case, the value of both the BOF
and EOF properties is True. This is the only occasion on which this is true.

• You have navigated to the position after the last record in the recordset.

Obviously, the value of the EOF property indicates that some navigational
methods of the Recordset object (MoveNext and Move using a positive argument)
are not allowed.

Filter (Recordset Object)
rsObj.Filter (= vntFilterCriteria)

The Filter property of the Recordset object allows you to view a subset of records
contained in the recordset. This subset could match a more exact set of criteria
than the criteria used to create the original recordset. When you are finished using
the subset of records, you can restore the view of the recordset back to its orig-
inal state of displaying all the records. Using a filter does not remove records from
Filter (Recordset Object) 193

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Filter (Recordset Object)
the recordset but only makes them unviewable. For this reason, restoring the
recordset to its original state does not require requerying the database.

Parameters

vntFilterCriteria
Controls what records will appear in the filtered view of your recordset. This
variant value can contain any one of the following filtering types:

Criteria text string
Criteria strings are basically equivalent to SQL WHERE clauses without the
WHERE keyword. For example, suppose your recordset (adoRec) were
constructed using the following SQL statement:

SELECT SalesPrice, Cost, Buyer FROM Sales

You could then apply a filter to this recordset to show only those sales
with prices of more than $1000 by using the following line of code:

adoRec.Filter = "SalesPrice > 1000"
Bookmark array

You can set the Filter property to the name of an array of bookmarks that
point to records in the recordset. These bookmarks are retrieved using
the Bookmark property of the Recordset object for a specific record.

ADO filter constant
These ADO filter constants provide special filtering criteria not easily
obtained otherwise: The adFilterNone constant restores the recordset
view to allow viewing of all the records in the recordset. The
adFilterPendingRecords constant retrieves only those records that
have been changed but not yet updated on the server. The
adFilterAffectedRecords constant retrieves only those records
affected by the Recordset object’s Delete, Resync, UpdateBatch, or
CancelBatch methods. The adFilterFetchedRecords constant retrieves
all the records in the current cache—i.e., all those records retrieved from
the last command on the database.

Example

The following example demonstrates the use of the Filter property. The important
sections are in bold. Assume that the first recordset (before applying the Filter
property) consists of the following records, in the following order:

<%@ LANGUAGE="VBSCRIPT" %>
<%response.buffer = true%>

Buyer Price

Chris 70000

Toby 80000

Simon 90345

Dave 100000

Mark 78658

Josh 89000
194 Chapter 11 – ActiveX Data Objects 1.5

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ActiveX Data
O

bjects 1.5
Filter (Recordset Object)
<HTML>
<HEAD>
<TITLE>ADO Examples</TITLE>
</HEAD>
<BODY>
<%
' Include ADOVBS.INC so we can use the ADO constants.
%>
<!-- #include virtual = "/MySSIncludes/adovbs.inc" -->
<%
' Instantiate an ADO Connection object.
Set objDBConn = Server.CreateObject("ADODB.Connection")

' Construct the connection string for the Connection
' object.
strConn = _
 "driver={MyDBType};;uid=sa;pwd=;database=SalesDB"

' Using the connection string, open the connection.
objDBConn.Open strConn

' Instantiate an ADO Recordset object.
Set rsHighSales = _
 Server.CreateObject("ADODB.Recordset")

' Construct the SQL to be used to open the recordset.
strSQL = _
 "SELECT Buyer, Price FROM Sales WHERE Price > 70000"

' Open the recordset.
rsHighSales.Open strSQL, objDBConn

' Display the Buyer and Price field values for the
' current (first) record in the new recordset BEFORE
' applying the filter. The first buyer will be Chris
' and the first price will be 70,000. There are also
' six viewable records at this point.
%>

Current (first) Buyer: <%=rsHighSales("Buyer")%>

Current (first) Price: <%=rsHighSales("Price")%>

<%

' Now apply a criteria string to the Filter property to
' filter out some of the records.
rsHighSales.Filter = "Price > 80000"

' Again, display the Buyer and Price field values for
' the current (first) record in the new recordset. The
' first buyer will NOW be Simon, and the first price
' will be 90,345. Now only three records are viewable.
%>
Filter (Recordset Object) 195

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

MaxRecords (Recordset Object)
Current (first) Buyer: <%=rsHighSales("Buyer")%>

Current (first) Price: <%=rsHighSales("Price")%>

<%

' Release the memory consumed by objects
Set rsHighSales = Nothing
Set objDBConn = Nothing
%>
</BODY>
</HTML>

Notes

The Filter property allows you to easily filter out the records that you don’t need
from a large recordset without having to requery the database. Once you have
finished with the records that appear in the filtered view of the recordset, you can
restore the view all of the records without requerying the database. Once you
have created your filtered recordset, the set of filtered records becomes the current
cursor. This is a very convenient way to narrow a set of records without creating a
new query and executing it against the database. However, it is important to
recognize that although the Filter property is convenient, it will never be faster
than simply honing the query that you send to the data provider.

If records in the underlying database have been affected since you populated your
recordset (e.g., if a record has been deleted from the underlying table), informa-
tion will be added to the Errors collection. However, this will result only in
warnings unless every record in the filtered recordset results in an error.

When you set the Filter property, the current record pointer moves to the first
record in the subset of records that meet the requirements in the Filter string. If
you reset the recordset, the current record pointer goes back to the first record in
the recordset that meets the criteria in the original command that makes up the
recordset.

In addition to being able to reset the recordset using the ADO adFilterNone
constant, you also can achieve the same result by setting the Filter property value
to an empty string.

MaxRecords (Recordset Object)
rsObj.MaxRecords (= lngNumRecords)

Specifies the maximum number of records returned from a command. If set to
zero (0), this property indicates that the data provider should return all records
that meet the criteria in the command. This is the default.

Parameters

lngNumRecords
A Long value that represents the maximum number of records you want
returned from your command against the database
196 Chapter 11 – ActiveX Data Objects 1.5

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ActiveX Data
O

bjects 1.5
MaxRecords (Recordset Object)
Example

The following example sets the MaxRecords property so that it returns only four
records.

<%@ LANGUAGE="VBSCRIPT" %>
<% Response.Buffer = True %>
<HTML>
<HEAD>
<TITLE>ADO Examples</TITLE>
</HEAD>
<BODY>
<%
' Include ADOVBS.INC so we can use the ADO constants.
%>
<!-- #include virtual = "/MySSIncludes/adovbs.inc" -->
<%
' Instantiate an ADO Connection object.
Set objDBConn = Server.CreateObject("ADODB.Connection")

' Construct the connection string for the Connection
' object.
strConn = _
 "driver={SQL Server};;uid=sa;pwd=;database=SalesDB"

' Using the connection string, open the connection.
objDBConn.Open strConn

' Instantiate an ADO Recordset object.
Set rsHighSales = _
 Server.CreateObject("ADODB.Recordset")

' Set the ActiveConnection property of the recordset.
rsHighSales.ActiveConnection = objDBConn

' Construct the SQL to be used to open the recordset.
strSQL = _
 "SELECT Buyer, Price FROM Sales WHERE Price > 70000"

' Set the maximum number of records the data provider
' can return into your recordset to four records.
rsHighSales.MaxRecords = 4

' Open the recordset. Note the lack of a Connection
' object specification.
rsHighSales.Open strSQL

' Use the BOF property to determine whether there
' are records in the recordset.
If Not rsHighSales.BOF Then
%>
 Buyer: <%=rsHighSales("Buyer")%>

 Price: <%=rsHighSales("Price")%>

<%
MaxRecords (Recordset Object) 197

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Name (Command, Field, Parameter, Property Object)
Else
 ' There are no records. Tell the user.
%>
 There are no high sales.
<%
End If

' Release the memory consumed by objects.
Set rsHighSales = Nothing
Set objDBConn = Nothing
%>
</BODY>
</HTML>

Notes

The MaxRecords property is read/write if the Recordset object is closed but read-
only if it is open. This is functionally equivalent to the SET ROWS command in
ANSI SQL.

Name (Command, Field, Parameter, Property Object)
Obj.Name (= strObjName)

Each Command, Field, Parameter, and Property object has a Name property that is
a string value that identifies that object. The value for the Name property does not
have to be unique within a collection. Note, however, that if two objects in a
collection have the same name, you must use its ordinal position rather than just
its name to ensure you retrieve the correct one. For example, suppose you have a
recordset with two field objects both with the name “SalesPerson.” The first Sales-
Person field is the first in the collection and the second is the fifth. The following
line of code will always retrieve the value in the first column only:

strEmployee = rsSales("SalesPerson")

To retrieve the value of the second SalesPerson field, you must use its ordinal
reference:

strSecondEmployee = rsSales.Fields(5).Value

Parameters

strObjName
A string value that represents the name of the object

Example

The following example demonstrates the use of the Name property to retrieve the
names of the first and second Field objects in the Fields collection of the
rsHighSales Recordset object.

<%@ LANGUAGE="VBSCRIPT" %>
<% Response.Buffer = True %>
<HTML>
<HEAD>
<TITLE>ADO Examples</TITLE>
198 Chapter 11 – ActiveX Data Objects 1.5

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ActiveX Data
O

bjects 1.5
Name (Command, Field, Parameter, Property Object)
</HEAD>
<BODY>
<%
' Include ADOVBS.INC so we can use the ADO constants.
%>
<!-- #include virtual = "/MySSIncludes/adovbs.inc" -->
<%
' Instantiate an ADO Connection object.
Set objDBConn = Server.CreateObject("ADODB.Connection")

' Construct the connection string for the Connection object.
strConn = _
 "driver={SQL Server};;uid=sa;pwd=;database=SalesDB"

' Using the connection string, open the connection.
objDBConn.Open strConn

' Instantiate an ADO Recordset object.
Set rsHighSales = _
 Server.CreateObject("ADODB.Recordset")

' Set the ActiveConnection property of the recordset.
rsHighSales.ActiveConnection = objDBConn

' Construct the SQL to be used to open the recordset.
strSQL = _
 "SELECT Buyer, Price FROM Sales WHERE Price > 70000"

' Open the recordset. Note the lack of a Connection
' object specification.
rsHighSales.Open strSQL

' Use the BOF property to determine whether there
' are records in the recordset.
If Not rsHighSales.BOF Then
 ' There are records. Use the EOF property to loop
 ' through all the records in the recordset and
 ' display them to the screen.
 Do While Not rsHighSales.EOF
%>
 <%=rsHighSales.Fields(0).Name%>:
 <%=rsHighSales("Buyer")%>

 <%=rsHighSales.Fields(1).Name %>:
 <%=rsHighSales("Price")%>

<%
 rsHighSales.MoveNext
 Loop
Else
 ' There are no records. Tell the user.
%>
 There are no high sales.
<%
End If

' Release the memory consumed by objects.
Name (Command, Field, Parameter, Property Object) 199

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Number (Error Object)
Set rsHighSales = Nothing
Set objDBConn = Nothing
%>
</BODY>
</HTML>

Notes

You can retrieve or set the name of a Command, Field, Parameter, or Property
object. However, there are some exceptions. First, if a Parameter object has
already been added to a Command object’s Parameters collection, you cannot set
its Name property. Also, if a Field object is part of the Fields collection of an open
Recordset object, you cannot set its name.

Number (Error Object)
objError.Number

A read-only string that provides the error code number that the underlying data
provider raised in response to incorrect syntax or lack of support. This Number
property is a property of each Error object in the Connection object’s Errors collec-
tion. It is not the same as the Number property of the ASP Err object.

Parameters

None

Example

The following example demonstrates the use of the Number property of the Error
object. Notice that for this example to work properly, the Buffer property of the
Response object must be set to True because we use the Response object’s Clear,
and End methods.

<%@ LANGUAGE="VBSCRIPT" %>
<%Response.Buffer = True%>

<HTML>
<HEAD>
<TITLE>ADO Examples</TITLE>
</HEAD>
<BODY>
<%
' Include ADOVBS.INC so we can use the ADO constants.
%>
<!-- #include virtual = "/MySSIncludes/adovbs.inc" -->
<%
' Instantiate an ADO Connection object.
Set objDBConn = Server.CreateObject("ADODB.Connection")

' Construct the connection string for the Connection object.
strConn = _
 "driver={MyDBType};;uid=sa;pwd=;database=SalesDB"

' Using the connection string, open the connection.
200 Chapter 11 – ActiveX Data Objects 1.5

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ActiveX Data
O

bjects 1.5
RecordCount (Recordset Object)
objDBConn.Open strConn

' Check to see if attempting to open a connection to
' the provider resulted in ADO adding Error objects to
' the Connection's Errors collection.
If objDBConn.Errors.Count > 0 Then
 ' An error occurred and ADO added an Error object to
 ' the Connection's Errors collection. Clear the
 ' Response buffer and alert the user of the error.
 Response.Clear
 Response.Write _
 "One or more errors has occurred.
"
 For intCounter = 0 to objDBConn.Errors.Count
 Response.Write "The " & intCounter & " error's "
 Response.Write "error number is " & _
 ojDBConn.Errors(intCounter).Number & ".
"
 Response.Write "The description for this "
 Response.Write "error is
" & _
 ojDBConn.Errors(intCounter).Description & ".
"
 Next
 Response.End
End If
...[additional code]

Notes

Each time an error occurs in the data provider, ADO adds an Error object to the
Errors collection of the Connection object corresponding to that data provider. The
provider is responsible for generating and sending the actual error text to ADO.
The value of the Number property is unique for each error.

RecordCount (Recordset Object)
rsObj.RecordCount

Provides you with the current number of records in the Recordset object (or the
number of records in the Recordset object that meet the criteria in the Filter prop-
erty, if one is supplied). If ADO cannot ascertain the total number of records, the
value of this property is –1. The Recordset object must be open before you can
retrieve a value for this property. Also, the Recordset object must be of a cursor
type that supports movement (forward and backward) or it must be fully popu-
lated before the value for the RecordCount property is accurate.

Parameters

None

Example
<%@ LANGUAGE="VBSCRIPT" %>
<% Response.Buffer = True %>
<HTML>
<HEAD>
<TITLE>ADO Examples</TITLE>
</HEAD>
RecordCount (Recordset Object) 201

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

RecordCount (Recordset Object)
<BODY>
<%
' Include ADOVBS.INC so we can use the ADO constants.
%>
<!-- #include virtual = "/MySSIncludes/adovbs.inc" -->
<%
' Instantiate an ADO Connection object.
Set objDBConn = Server.CreateObject("ADODB.Connection")

' Construct the connection string for the Connection
' object.
strConn = _
 "driver={SQL Server};;uid=sa;pwd=;database=SalesDB"

' Using the connection string, open the connection.
objDBConn.Open strConn

' Instantiate an ADO Recordset object.
Set rsHighSales = _
 Server.CreateObject("ADODB.Recordset")

' Set the ActiveConnection property of the recordset.
rsHighSales.ActiveConnection = objDBConn

' Set the recordset's cursor type to adOpenStatic so
' that the recordset supports the RecordCount property.
rsHighSales.CursorType = adOpenStatic

' Construct the SQL to be used to open the recordset.
strSQL = _
 "SELECT Buyer, Price FROM Sales WHERE Price > 70000"

' Open the recordset. Note the lack of a Connection
' object specification.
rsHighSales.Open strSQL

' Use the BOF property to determine whether there
' are records in the recordset.
If Not rsHighSales.BOF Then
 ' There are records. Use the EOF property to loop
 ' through all the records in the recordset and
 ' display them to the screen.

 ' If the record count can be determined, display it
 ' to the user. Otherwise, let him know that the
 ' count cannot be determined.
 If Not (rsHighSales.RecordCount = -1) Then
%>
 There are <%=rsHighSales.RecordCount%> records.
<%
 Else
%>
 ADO cannot determine the number of records in
 your recordset.
202 Chapter 11 – ActiveX Data Objects 1.5

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ActiveX Data
O

bjects 1.5
Source (Error Object)
<%
 End If
Else
 ' There are no records. Tell the user.
%>
 There are no high sales.
<%
End If

' Release the memory consumed by objects.
Set rsHighSales = Nothing
Set objDBConn = Nothing
%>
</BODY>
</HTML>

Notes

You can determine whether your recordset supports the RecordCount property by
using the Recordset object’s Supports method with the adApproxPosition or
AdBookmark parameters, as demonstrated in the following code:

blnApproxPos = rsExample.Supports(adApproxPosition)
blnBookmark = rsExample.Supports(adBookmark)

These calls to the Supports method allow you to determine if the Recordset object
supports approximate positioning or bookmarking, respectively. If the value of
blnApproxPos or blnBookmark is True, then RecordCount immediately reflects
the actual number of records in the recordset.

If the recordset does not support approximate positioning, an attempt to retrieve
the value of the RecordCount property will represent a possible drain on
resources, since your code will be forced to traverse the recordset and populate it
before RecordCount represents a valid count of rows in the recordset.

Source (Error Object)
objError.Source

A string value that represents the name of the application or object that caused
ADO or the underlying data provider to add an Error object to the Errors collec-
tion of the Connection object.

Parameters

None

Example
<%@ LANGUAGE="VBSCRIPT" %>
<%Response.Buffer = True%>

<HTML>
<HEAD>
<TITLE>ADO Examples</TITLE>
</HEAD>
Source (Error Object) 203

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Source (Error Object)
<BODY>
<%
' Include ADOVBS.INC so we can use the ADO constants.
%>
<!-- #include virtual = "/MySSIncludes/adovbs.inc" -->
<%
' Instantiate an ADO Connection object.
Set objDBConn = Server.CreateObject("ADODB.Connection")

' Construct the connection string for the Connection
' object.
strConn = _
 "driver={MyDBType};;uid=sa;pwd=;database=SalesDB"

' Using the connection string, open the connection.
objDBConn.Open strConn

' Check to see if attempting to open a connection to
' the provider resulted in ADO adding Error objects to
' the Connection's Errors collection.
If objDBConn.Errors.Count > 0 Then
 ' An error occurred and ADO added an Error object to
 ' the Connection's Errors collection. Clear the
 ' Response buffer and alert the user of the error.
 Response.Clear
 Response.Write _
 "One or more errors have occurred.
"
 For intCounter = 0 to objDBConn.Errors.Count
 Response.Write "The " & intCounter & " error's "
 Response.Write "error number is " & _
 ojDBConn.Errors(intCounter).Number & ".
"
 Response.Write "The description for this "
 Response.Write "error is
" & _
 ojDBConn.Errors(intCounter).Description & _
 ".
"
 Response.Write "The object or application that "
 Response.Write "caused this error to be raised "
 Response.Write " is " & _
 ojDBConn.Errors(intCounter).Source & ".
"
 Next
 Response.End
End If
...[additional code]

Notes

The Error object’s Source property allows you to programmatically determine
which object or application caused the data provider to raise an error. The value
of this string property can be an application name, a class name, or a ProgID for a
class. For errors in ADODB, the value of this property will be the following:

ADODB.strObjName

where strObjName represents the name of the instantiated ADODB object that
caused the error. This is a read-only property.
204 Chapter 11 – ActiveX Data Objects 1.5

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ActiveX Data
O

bjects 1.5
Source (Recordset Object)
Source (Recordset Object)
rsObj.Source (= strSource)

A string value that represents the source for the records in the recordset. This can
be the name of a stored procedure or a Command object, a table name, or a SQL
statement.

Parameters

strSource
A string value that can hold the name of a stored procedure or a Command
object, the name of a table in the database, or a simple SQL statement

Example

In this example, we set the Source property to a simple SQL statement.

<%@ LANGUAGE="VBSCRIPT" %>
<% Response.Buffer = True %>
<HTML>
<HEAD>
<TITLE>ADO Examples</TITLE>
</HEAD>
<BODY>
<%
' Include ADOVBS.INC so we can use the ADO constants.
%>
<!-- #include virtual = "/MySSIncludes/adovbs.inc" -->
<%
' Instantiate an ADO Connection object.
Set objDBConn = Server.CreateObject("ADODB.Connection")

' Construct the connection string for the Connection object.
strConn = _
 "driver={SQL Server};;uid=sa;pwd=;database=SalesDB"

' Using the connection string, open the connection.
objDBConn.Open strConn

' Instantiate an ADO Recordset object.
Set rsHighSales = _
 Server.CreateObject("ADODB.Recordset")

' Set the ActiveConnection property of the recordset.
rsHighSales.ActiveConnection = objDBConn

' If you set the Source property of the Recordset
' object, you do not need to specify a source string
' when you call the Recordset object's Open method.
rsHighSales.Source = _
 "SELECT Buyer, Price FROM Sales WHERE Price > 70000"

' Open the recordset. Note the lack of a Connection
' object specification.
Source (Recordset Object) 205

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Collections Reference
rsHighSales.Open
...[additional code]

Notes

The Source property is read/write if the recordset is closed but read-only other-
wise. If you set the value of the Source property to the name of a Command
object, the ActiveConnection property of the Recordset will inherit the value of the
ActiveConnection property of the Command object—even if you have already set
the ActiveConnection property of the Recordset object. Also, if you set the value of
the Source property to the name of a Command object, retrieving the value of the
recordset’s Source property will return the value of the Command’s CommandText
property, not the name of the Command object.

Even if you set the Source property, you can still optimize the call to the Open
method by setting values for the Options parameter of the Recordset.Open
method.

If the value of your Source property is a simple SQL statement, as it is in the
preceding example, it doesn’t matter whether you set the Source property and
then call the Open method or pass the SQL statement as an argument to the Open
method.

Collections Reference

Errors Collection
objConn.Errors

Each Connection object has its own Errors collection. ADO adds Error objects to
this collection each time the underlying data provider for that Connection object
raises an error because of incorrect syntax or lack of support.

Parameters

None

Example

For examples, see the details for the Description, Number, and Source (Error
object) properties earlier in this chapter.

Notes

ADO clears the Errors collection of the affected Connection object each time a
new error occurs. It does not simply add another Error object to those already in
the Errors collection. These added Error objects represent a data provider error,
not an ADO or ASP error. For this reason, even if ADO adds an Error object to a
Connection object’s Errors collection, that error does not trigger a runtime error
(which could be caught by a script’s On Error trap) unless there is also a corre-
sponding ADO error.
206 Chapter 11 – ActiveX Data Objects 1.5

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ActiveX Data
O

bjects 1.5
AddNew (Recordset Object)
Every Error object currently in the Errors collection of a given Connection object
represents error information raised by the data provider for a single error-causing
operation on the data.

Methods Reference

AddNew (Recordset Object)
rsObj.AddNew FieldName(s), FieldValue(s)

Creates and initializes a new record in the underlying database. To determine
whether the underlying data provider supports this functionality, call the Supports
method of the Recordset object with the ADO adAddNew constant as a parameter.
If the resulting value is True, then you can use AddNew.

Parameters

FieldName(s)
The name of a single field in the new record or the name of an array
containing the names of multiple fields in the new record. If FieldNames(s)
is the name of a field name array, you must also pass the name of a value
array, and the number of elements for both arrays must be the same or an
error occurs.

FieldValue(s)
The value of a single field in the new record or the name of an array
containing the values of multiple fields in the new record. If FieldValue(s)
is a value array, FieldName(s) must be the name of a field name array, and
the number of elements for both arrays must be the same or an error occurs.

Example

The following example demonstrates the use of the AddNew method both without
and with arguments.

<%@ LANGUAGE="VBSCRIPT" %>
<% Response.Buffer = True %>
<HTML>
<HEAD>
<TITLE>ADO Examples</TITLE>
</HEAD>
<BODY>
<%
' Include ADOVBS.INC so we can use the ADO constants.
%>
<!-- #include virtual = "/MySSIncludes/adovbs.inc" -->
<%
Dim astrFieldNames()
Dim astrFieldValues()

' Instantiate an ADO Connection object
Set objDBConn = Server.CreateObject("ADODB.Connection")
AddNew (Recordset Object) 207

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

AddNew (Recordset Object)
' Construct the connection string for the Connection object.
strConn = _
 "driver={SQL Server};;uid=sa;pwd=;database=SalesDB"

' Using the connection string, open the connection.
objDBConn.Open strConn

' Instantiate an ADO Recordset object.
Set rsSales = Server.CreateObject("ADODB.Recordset")

' Set the the type of cursor we will use.
rsSales.CursorType = adOpenKeyset

' Set the Lock type for the records so that only
' when we update a record is that record locked by ADO.
rsSales.LockType = adLockOptimistic

' Open the Sales table.
rsSales.Open "Sales", objDBConn, , , adCmdTable

' Add a new record using no argument.
rsSales.AddNew
rsSales!Buyer = "Josh"
rsSales!Price = 23478
rsSales.Update

' Add a new record using a field name array and a field
' value array.
ReDim Preserve astrFieldNames(2)
ReDim Preserve astrFieldNames(2)

astrFieldNames(0) = "Buyer"
astrFieldNames(1) = "Price"
astrFieldValues(0) = "Mara"
astrFieldValues(1) = 143578

rsSales.AddNew astrFieldNames, astrFieldValues

' No call to the Update method required for this one.

' Release the memory consumed by objects
Set rsSales = Nothing
Set objDBConn = Nothing
%>
</BODY>
</HTML>

Notes

Recordset objects have two distinct update modes: immediate mode, meaning that
the data provider writes your changes to the database immediately after you call
the Update method and batch-update mode, in which the data provider caches
multiple records’ changes as you make them and call the Update method but
updates the database only after you call the UpdateBatch method.
208 Chapter 11 – ActiveX Data Objects 1.5

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ActiveX Data
O

bjects 1.5
Clone (Recordset Object)
If the recordset is in immediate-update mode, calling AddNew with no arguments
sets the EditMode property of the Recordset object to adEditAdd. Once you call
the Update method, the data provider writes your changes to the database and
resets the EditMode property to adEditNone. However, if you include one or
more field name/field value pairs as arguments, the data provider writes the
changes to the database immediately without altering the value of the EditMode
property.

If the Recordset object is in batch-update mode, however, calling AddNew works
exactly as it does when you are in immediate-update mode, with one significant
exception. Your changes are cached until you call the UpdateBatch method,
regardless of whether you include field name/field value pairs with your call to
AddNew.

Note that, once a record is added to the database, that record becomes the current
record unless the Recordset object you are using does not support bookmarks. If
this is the case, you may not be able to access the new record without requerying
the database.

Clone (Recordset Object)
Set rsObj2 = rsObj1.Clone()

Creates an exact duplicate of a recordset and places that recordset into a second
Recordset object variable.

Parameters

rsObj1
The Recordset object you wish to copy

rsObj2
The new Recordset object into which you will place the copy of the Recordset
object represented by the rsObj1 parameter

Example

The following example demonstrates the use of the Clone method of the
Recordset object and the fact that the same bookmark values can be used in
clones as in the originals to point to the same records.

<%@ LANGUAGE="VBSCRIPT" %>
<% Response.Buffer = True %>
<HTML>
<HEAD>
<TITLE>ADO Examples</TITLE>
</HEAD>
<BODY>
<%
' Include ADOVBS.INC so we can use the ADO constants.
%>
<!-- #include virtual = "/MySSIncludes/adovbs.inc" -->
<%
Dim astrFieldNames()
Dim astrFieldValues()
Clone (Recordset Object) 209

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Clone (Recordset Object)
' Instantiate an ADO Connection object.
Set objDBConn = Server.CreateObject("ADODB.Connection")

' Construct the connection string for the Connection object.
strConn = _
 "driver={SQL Server};;uid=sa;pwd=;database=SalesDB"

' Using the connection string, open the connection.
objDBConn.Open strConn

' Instantiate two ADO Recordset object.
Set rsSales = _
 Server.CreateObject("ADODB.Recordset")
Set rsSalesClone = _
 Server.CreateObject("ADODB.Recordset")

' Open the Sales table.
rsSales.Open "Sales", objDBConn, , , adCmdTable

' Create a bookmark in the orginal.
rsSales.MoveNext

' Current record now points to the second record in the
' Sales table.
lngOrigBookmark = rsSales.Bookmark

' Clone the original.
Set rsSalesClone = rsSales.Clone()

' Current record pointer in rsSalesClone now points to
' the first record in the Sales table.

' Set the Bookmark property of the clone.
rsSalesClone.Bookmark = lngBookmark

' Current record pointer in rsSalesClone now points to
' the second record in the Sales table.
...[additional code]
' Release the memory consumed by objects.
Set rsSales = Nothing
Set objDBConn = Nothing
%>
</BODY>
</HTML>

Notes

The Clone method of the Recordset object allows you to create multiple copies of
the same recordset without having to query the database more than once.
However, it is important to realize that these copies are simply pointers to the
same original, not separate Recordset objects. This in effect allows you to main-
tain more than one current record in the same recordset. The Clone method of
creating a new Recordset object is significantly faster than using the Open (or
similar) method of creating a Recordset object.
210 Chapter 11 – ActiveX Data Objects 1.5

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ActiveX Data
O

bjects 1.5
Close (Connection Object, Recordset Object)
Note that the current record pointer in the new copy of your Recordset object
points at the first record in the recordset, and its position has no relationship to
the position of the record pointer in the first (copied) Recordset object. Also,
closing the original (or any clone) has no effect on the other cloned copies.

If you make any changes to any clone Recordset, all of its clones can see those
changes. However, if you call the Requery method for any Recordset, its clones
will no longer be in sync with that Recordset, because requerying resets the object
to point to a new Recordset object. However, the original is still in existence as
long as even one clone still points to it. For this reason the clones still represent
the pre-Requery version of the recordset.

A bookmark in a Recordset represents the same record in a clone of that data-
base. Also, if a particular Recordset object does not support bookmarking, it
cannot be cloned.

Close (Connection Object, Recordset Object)
Obj.Close

Connection.Close closes the connection to the underlying data provider;
Recordset.Close closes a recordset. Both versions of the Close method release
system resources used to hold the object variables but do not remove the object
from memory. The same object can be opened later without being instantiated
again using the Server object’s CreateObject method.

Parameters

Obj
The name of the Connection or Recordset you wish to close

Example
<%@ LANGUAGE="VBSCRIPT" %>
<% Response.Buffer = True %>
<HTML>
<HEAD>
<TITLE>ADO Examples</TITLE>
</HEAD>
<BODY>
<%
' Include ADOVBS.INC so we can use the ADO constants.
%>
<!-- #include virtual = "/MySSIncludes/adovbs.inc" -->
<%
Dim astrFieldNames()
Dim astrFieldValues()

' Instantiate an ADO Connection object.
Set objDBConn = Server.CreateObject("ADODB.Connection")

' Construct the connection string for the Connection object.
strConn = _
 "driver={SQL Server};;uid=sa;pwd=;database=SalesDB"
Close (Connection Object, Recordset Object) 211

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Delete (Recordset Object)
' Using the connection string, open the connection.
objDBConn.Open strConn

' Instantiate an ADO Recordset object.
Set rsSales = _
 Server.CreateObject("ADODB.Recordset")

' Open the Sales table.
rsSales.Open "Sales", objDBConn, , , adCmdTable

' Close the Recordset and Connection—in that order!
rsSales.Close
objDBConn.Close

' The objects still reside in memory here.
' To release the memory consumed by objects, we must
' set the object variables to the keyword Nothing.
Set rsSales = Nothing
Set objDBConn = Nothing
%>
</BODY>
</HTML>

Notes

If you close a Connection object, all of the Recordset objects that have that
Connection object as the value of their ActiveConnection property are also closed.
If you close a Connection object that has Command objects associated with it, the
Command objects will stay open but their ActiveConnection will be reset to
Nothing. Also, if the Command object had a Parameters collection containing
Parameter objects with values provided by the underlying data provider, these
parameter values are cleared.

You can open closed Connection objects. You can also reopen closed Recordset
objects as long as they still have a valid ActiveConnection object or you supply
one before (or while) attempting to reopen them.

If there are any transactions taking place in any of the recordsets associated with a
Connection object when you close it, you will receive an error. If the EditMode
property of the Recordset object is anything other than adEditNone, then those
changes that you have already made are disregarded and not stored to the
database.

As stated in the entry for the Clone method, closing a Recordset object has no
effect on any of its clones.

Delete (Recordset Object)
rsObj.Delete Record(s)ToBeDeleted

Only the Delete method of the Recordset object is covered here.
212 Chapter 11 – ActiveX Data Objects 1.5

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ActiveX Data
O

bjects 1.5
Delete (Recordset Object)
The Delete method of the Recordset object allows you to delete either the current
record or a group of records. To delete a group of records, you must use the Filter
property to define the group of records before deleting them.

Parameters

Record(s)ToBeDeleted
An integer constant that defines whether you want to delete only the current
record or all records meeting the criteria set forth in the Recordset.Filter prop-
erty. The two possible values for this parameter are:

adAffectCurrent
Only the current record is deleted. This is the default.

adAffectGroup
Removes all the records from the database that meet the criteria in the
Filter property. Once deleted, you can set the Filter property to
adFilterAffectedRecords to view those records affected by the call to
the Delete method.

Example

The following example demonstrates the use of the Delete method to delete a
group of records that match the criteria in the Recordset object’s current Filter
property.

<%@ LANGUAGE="VBSCRIPT" %>
<% Response.Buffer = True %>
<HTML>
<HEAD>
<TITLE>ADO Examples</TITLE>
</HEAD>
<BODY>
<%
' Include ADOVBS.INC so we can use the ADO constants.
%>
<!-- #include virtual = "/MySSIncludes/adovbs.inc" -->
<%
Dim astrFieldNames()
Dim astrFieldValues()

' Instantiate an ADO Connection object.
Set objDBConn = Server.CreateObject("ADODB.Connection")

' Construct the connection string for the Connection object.
strConn = _
 "driver={SQL Server};;uid=sa;pwd=;database=SalesDB"

' Using the connection string, open the connection.
objDBConn.Open strConn

' Instantiate an ADO Recordset object.
Set rsSales = _
 Server.CreateObject("ADODB.Recordset")
Delete (Recordset Object) 213

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Delete (Recordset Object)
' Open the Sales table.
rsSales.Open "Sales", objDBConn, , , adCmdTable

' Set the filter property of the recordset to collect
' all the records you wish to delete.
rsSales.Filter = "Price < 20000"

' Delete the records that meet the Filter criteria.
rsSales.Delete adAffectGroup

' Restore the recordset from its filtered state. This
' will set the current record pointer to the first valid
' record in the recordset, avoiding the error that would
' result when you attempt to ascertain the value of the
' current record when the current record has been deleted.
rsSales.Filter = adFilterNone

' Close the Recordset and Connection—in that order!
rsSales.Close
objDBConn.Close

' The objects still reside in memory here.
' To release the memory consumed by objects, we must
' set the object variables to the keyword Nothing.
Set rsSales = Nothing
Set objDBConn = Nothing
%>
</BODY>
</HTML>

Notes

If you are in immediate-update mode (see the description of update modes in the
entry for the AddNew method), calling the Delete method immediately removes
the affected record or records from the database. If you are in batch-update mode,
the affected record or records are marked for deletion but are removed from the
database only when you call the UpdateBatch method.

If the Recordset object (or underlying data provider) does not support deletion of
records, calling the Delete method results in an error. If you attempt to delete a
record that has been deleted or otherwise locked by another user, the data
provider raises a warning and ADO adds an Error object to the active connec-
tion’s Errors collection. Only if all the records you attempted to delete were locked
does execution stop.

If you attempt to retrieve the values of fields in records you have deleted, an error
will occur. This is important to remember when you realize that if you delete a
record, that record remains the current record until after you move from the record
using one of the navigational methods.

Finally, if you call the Delete method from within a transaction and you roll back
that transaction, the records you attempted to delete are restored regardless of the
current update mode.
214 Chapter 11 – ActiveX Data Objects 1.5

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ActiveX Data
O

bjects 1.5
Execute (Command Object)
Execute (Command Object)
[Set rsObj =] cmdObj.Execute(RecordsAffected, Parameters, Options)

Executes a query, SQL statement, or stored procedure. If it results in the creation
of a recordset, that recordset can be immediately assigned to a Recordset object
variable using the Set statement; otherwise, the Set statement should not appear in
the expression.

Parameters

cmdObj
The name of the Command object whose Execute method you are calling.

Options
Indicates what type of command is to be executed. The ADO constant values
for this parameter are the same as those for the Command.CommandType
property:

adCmdText
A text command, such as a simple SQL statement. If the CommandType
is set to this value, the CommandText is evaluated as a textual definition
of a command.

adCmdTable
A table. If the CommandType is set to this value, the CommandText is
evaluated as the name of a table.

adCmdStoredProc
A stored procedure. If the CommandType is set to this value, the
CommandText is evaluated as the name of a stored procedure in the
underlying data provider.

adCmdUnknown
The Command object type is unknown. This is the default value.

Parameters
An array of variants containing parameters for the command to be executed.
You should not put output parameters here, since they will not be returned
properly.

RecordsAffected
An optional Long variable that, when the method returns, indicates how many
records were affected by the call.

rsObj
A Recordset object that you want initialized and set equal to the collection of
records returned by the call to the Execute method.

Example
<%@ LANGUAGE="VBSCRIPT" %>
<% Response.Buffer = True %>
<HTML>
<HEAD>
<TITLE>ADO Examples</TITLE>
</HEAD>
Execute (Command Object) 215

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Execute (Command Object)
<BODY>
<%
' Include ADOVBS.INC so we can use the ADO constants.
%>
<!-- #include virtual = "/bc_SSIncludes/adovbs.inc" -->
<%
' Instantiate an ADO Connection object.
Set objDBConn = Server.CreateObject("ADODB.Connection")

' Construct the connection string for the Connection object.
strConn = _
 "driver={MyDBType};;uid=sa;pwd=;database=SalesDB"

' Using the connection string, open the connection.
objDBConn.Open strConn

' Create stored procedure command object.
Set objSPCmd = Server.CreateObject("ADODB.Command")

' Set the active connection equal to the current
' Connection object.
Set objSPCmd.ActiveConnection = objDBConn

' Set stored procedure command text. In this example
' UpdateHighSales is a stored procedure that retrieves
' information from some other table and then updates the
' Sales table.
strCommandString = "UpdateHighSales"
objSPCmd.CommandText = strCommandString

' Initialize a Long variable to contain the number of
' affected records when the stored procedure is executed.
lngAffectedRecords = 0

' Open the recordset using the results from the Command
' object.
objDBCmd.Execute lngAffectedRecords, , adCmdStoredProc

' Display on the client the number of records updated.
%>

There were <%= lngRecordsAffected%> records affected by your
call to the Execute method.

<%
...[additional code]

Notes

Calling the Execute method returns a Recordset object. Only if there are rows
returned, however, is that Recordset opened. You can also use the Execute
method of the Command object to execute a SQL statement and simply disregard
the recordset created. For example, the following line demonstrates this idea using
an UPDATE query:
216 Chapter 11 – ActiveX Data Objects 1.5

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ActiveX Data
O

bjects 1.5
Execute (Connection Object)
cmdObj.Execute _
 "UPDATE Sales SET Price = 50000 WHERE User ='Henry'"

The Parameters parameter allows you to specify—if you so desire—values for
some of the command query’s parameters. You have two options. You can
provide no parameters in the call to Execute, in which case the command uses the
Parameters collection for the values of the parameters, or you can send in any
number of parameter values with the call to Execute and, thus, override the values
set in the Parameters collection. For example, suppose your command takes three
parameters for which you have created three Parameter objects. If you use the
following call to the Execute method:

avntParams = Array(strVal1, strVal2)
cmdObj.Execute lngRecrodsAffected, avntParams, _
 adStoredProc

the first and second Parameter object values are overridden in the call to the
Execute method, but the third parameter takes the value of the third Parameter
object in the Command object’s Parameters collection.

Execute (Connection Object)
[Set rsObj =] connObj.Execute(CommandText, RecordsAffected,
Options)

Executes a query, SQL statement, or stored procedure. If it results in the creation
of a recordset, that recordset can be immediately assigned to a Recordset object
variable by using the Set statement; if the method call does not return a recordset,
the Set statement should not appear in the expression.

Parameters

CommandText
A string value representing a SQL statement, table name, stored procedure, or
data provider-specific command.

connObj
The name of the Connection object whose Execute method you are calling.

Options
Indicates what type of command is being executed. The ADO constant values
for this parameter are the same as those for the Command.CommandType
property:

adCmdText
A text command, such as a simple SQL statement. If the CommandType
is set to this value, the CommandText is evaluated as a textual definition
of a command.

adCmdTable
A table. If the CommandType is set to this value, the CommandText is
evaluated as the name of a table.
Execute (Connection Object) 217

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Execute (Connection Object)
adCmdStoredProc
A stored procedure. If the CommandType is set to this value, the
CommandText is evaluated as the name of a stored procedure in the
underlying data provider.

adCmdUnknown
The Command object type is unknown. This is the default value.

RecordsAffected
An optional Long variable that, when the method returns, indicates how many
records were affected by the call.

rsObj
A Recordset object that you want initialized and set equal to the collection of
records returned by the call to the Execute method.

Example

The following example demonstrates how you might use the Execute method of a
Connection object to create a read-only, forward-only recordset from the Sales
table.

<%@ LANGUAGE="VBSCRIPT" %>
<% Response.Buffer = True %>
<HTML>
<HEAD>
<TITLE>ADO Examples</TITLE>
</HEAD>
<BODY>
<%
' Include ADOVBS.INC so we can use the ADO constants.
%>
<!-- #include virtual = "/bc_SSIncludes/adovbs.inc" -->
<%
' Instantiate an ADO Connection object.
Set objDBConn = Server.CreateObject("ADODB.Connection")

' Construct the connection string for the Connection object.
strConn = _
 "driver={MyDBType};;uid=sa;pwd=;database=SalesDB"

' Using the connection string, open the connection.
objDBConn.Open strConn

' Create a command text string.
strCommandText = _
 "SELECT * FROM Sales WHERE Price > 70000"

' Create a read-only, forward-only recordset using the
' Execute method of the connection object. Note that we
' have no AffectedRecords parameter.
Set rsSales = objDBConn.Execute strCommandText, _
 ,adCmdText
...[additional code]
218 Chapter 11 – ActiveX Data Objects 1.5

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ActiveX Data
O

bjects 1.5
Move (Recordset Object)
Notes

Calling the Execute method of a Connection object returns a Recordset object.
Only if there are rows returned, however, is that Recordset open. Just as with the
Command object, you can also use the Execute method of the Connection object
to execute a SQL statement and simply disregard the recordset created. For
example, the following line demonstrates this idea using an UPDATE query:

conObj.Execute _
 "UPDATE Sales SET Price = 50000 WHERE User ='Henry'"

If your call to the Execute method of the Connection object returns a Recordset,
that recordset is always read-only and forward-only. If you need a more flexible
Recordset object, you must use the Recordset object’s Open method.

Move (Recordset Object)
rsObj.Move lngNumRecords, vntStartBookmark

Moves the current record pointer forward or backward a given number of records,
starting at either the current record or from an optional bookmarked record.

Parameters

lngNumRecords
The number of records from the current (or bookmarked) record that you
wish to move the current record pointer. This can be a negative number to
move backward in the recordset.

vntStartBookmark
A string or variant value that represents the bookmark for a given record. In
addition to a string or variant value, you can also use one of the following
ADO constants for this optional parameter:

adBookmarkCurrent
Starts at the current record. This is the default value for this parameter.

adBookmarkFirst
Starts at the first record in the current recordset.

adBookmarkLast
Starts at the last record in the current recordset.

Example

The following example demonstrates how to use the Move method to move the
record pointer to a position five records after the current record.

<%@ LANGUAGE="VBSCRIPT" %>
<% Response.Buffer = True %>
<HTML>
<HEAD>
<TITLE>ADO Examples</TITLE>
</HEAD>
<BODY>
<%
' Include ADOVBS.INC so we can use the ADO constants.
Move (Recordset Object) 219

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Move (Recordset Object)
%>
<!-- #include virtual = "/bc_SSIncludes/adovbs.inc" -->
<%
' Instantiate an ADO Connection object.
Set objDBConn = Server.CreateObject("ADODB.Connection")

' Construct the connection string for the Connection object.
strConn = _
 "driver={MyDBType};;uid=sa;pwd=;database=SalesDB"

' Using the connection string, open the connection.
objDBConn.Open strConn

' Create a command text string.
strCommandText = _
 "SELECT * FROM Sales WHERE Price > 70000"

' Create a read-only, forward-only recordset using the
' Execute method of the connection object. Note that we
' have no AffectedRecords parameter.
Set rsSales = objDBConn.Execute strCommandText, _
 , adCmdText

' Move to a record five after the current record. Then
' check to see if you are at the end of the recordset.
' If you are, move back to the starting record.
vntBookmark = rsSales.Bookmark
rsSales.Move 5, adBookmarkCurrent
If rsSales.EOF Then
 rsSales.Bookmark = vntBookmark
End If
...[additional code]

Notes

If you attempt to move to a record position before the first record in the recordset,
the record pointer is set to one position before the first record and the BOF prop-
erty of the Recordset object is set to True. If you attempt to move before this
position, an error occurs.* A similar situation arises from moving past the end of
the recordset.

If you attempt to call the Move method on an empty recordset, an error is raised.

If you include a value for the vntStartBookmark parameter, the movement of
the current record pointer starts from the records represented by the
vntStartBookmark value. If you do not include this parameter, the movement
starts from the current record.

If you are also using the Recordset object’s CacheSize property to set the number
of records cached and you attempt to move outside the currently cached set of
records, ADO will retrieve another set of records. The size of the retrieved group

* Note that the error you receive when trying to use any of the Move methods to move to a
nonexistent record (“No current record”) could be considered a bit cryptic.
220 Chapter 11 – ActiveX Data Objects 1.5

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ActiveX Data
O

bjects 1.5
MoveFirst, MoveLast, MoveNext, MovePrevious (Recordset Object)
is dictated by the value of the CacheSize property. ADO will also set the current
record pointer to the first record in the newly cached set of records.

If the Recordset object’s CursorType is adOpenForwardOnly, you can still move
backward in it. The only restriction on this movement is that you cannot move
outside of the currently cached group of records, or an error will occur. So if you
are able to cache the entire recordset, you could move backward as much as you
want within a forward-only recordset.

MoveFirst, MoveLast, MoveNext, MovePrevious (Recordset Object)
rsObj.{MoveFirst | MoveLast | MoveNext | MovePrevious}

Moves the record pointer to the first record of the recordset, to the last record of
the recordset, forward one position, or backward one position, respectively.

Parameters

None

Example

The following example demonstrates how to use the MoveNext method to move
the current record pointer to a position five records after the current record. Use
the other navigational methods in exactly this same manner. (Note that this is not
the most efficient manner to move the current record five positions forward.)

<%@ LANGUAGE="VBSCRIPT" %>
<% Response.Buffer = True %>
<HTML>
<HEAD>
<TITLE>ADO Examples</TITLE>
</HEAD>
<BODY>
<%
' Include ADOVBS.INC so we can use the ADO constants.
%>
<!-- #include virtual = "/bc_SSIncludes/adovbs.inc" -->
<%
' Instantiate an ADO Connection object.
Set objDBConn = Server.CreateObject("ADODB.Connection")

' Construct the connection string for the Connection object.
strConn = _
 "driver={MyDBType};;uid=sa;pwd=;database=SalesDB"

' Using the connection string, open the connection.
objDBConn.Open strConn

' Create a command text string.
strCommandText = _
 "SELECT * FROM Sales WHERE Price > 70000"

' Create a read-only, forward-only recordset using the
' Execute method of the Connection object. Note that we
MoveFirst, MoveLast, MoveNext, MovePrevious (Recordset Object) 221

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

NextRecordset (Recordset Object)
' have no AffectedRecords parameter.
Set rsSales = objDBConn.Execute strCommandText, _
 adCmdText

' Move to a record five after the current record, using
' the MoveNext method. Then check to see if you are at
' the end of the recordset. If you are, move back to
' the starting record.
vntBookmark = rsSales.Bookmark
rsSales.MoveNext
rsSales.MoveNext
rsSales.MoveNext
rsSales.MoveNext
rsSales.MoveNext

If rsSales.EOF Then
 rsSales.Bookmark = vntBookmark
End If
...[additional code]

Notes

To use the MoveLast method, your Recordset object must support bookmarks.

If you call the MoveNext method and the record pointer is pointing to the last
record in the database, then the record pointer is moved to one position after the
last record, and the EOF property is set to True. If you call MoveNext again from
this record position, a runtime error is raised.

Likewise, if you call the MovePrevious method and the record pointer is pointing
to the first record in the database, then the record pointer is moved to one posi-
tion before the first record, and the BOF property is set to True. If you call
MovePrevious again from this record position, a runtime error is raised.

NextRecordset (Recordset Object)
Set rsObj2 = rsObj1.NextRecordset(lngRecordsAffected)

Clears the current recordset and retrieves the next recordset. This retrieval occurs
by iterating through a series of commands sent in with the call to the Recordset.
Open method.

Parameters

rsObj2
The Recordset object variable to which you assign the recordset returned from
the NextRecordset method.

rsObj1
The current Recordset object. This Recordset can be the same as that repre-
sented by rsObj2. If this is the case, the current recordset is cleared.
Otherwise, you will have two Recordset objects after the method call: one that
represents the current Recordset and one that represents the Recordset
returned from the command.
222 Chapter 11 – ActiveX Data Objects 1.5

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ActiveX Data
O

bjects 1.5
NextRecordset (Recordset Object)
lngRecordsAffected
The number of records cleared if rsObj1 = rsObj2.

Example
<%@ LANGUAGE="VBSCRIPT" %>
<% Response.Buffer = True %>
<HTML>
<HEAD>
<TITLE>ADO Examples</TITLE>
</HEAD>
<BODY>
<%
' Include ADOVBS.INC so we can use the ADO constants.
%>
<!-- #include virtual = "/bc_SSIncludes/adovbs.inc" -->
<%
' Instantiate an ADO Connection object.
Set objDBConn = Server.CreateObject("ADODB.Connection")

' Construct the connection string for the Connection object.
strConn = _
 "driver={MyDBType};;uid=sa;pwd=;database=SalesDB"

' Using the connection string, open the connection.
objDBConn.Open strConn

' Create a command text string.
strCommandText = _
 "SELECT * FROM Sales WHERE Price > 70000; "
strCommandText = strCommandText & _
 "SELECT * FROM Sales WHERE Buyer LIKE'Chris'; "

' Create a read-only, forward-only recordset using the
' Execute method of the connection object. Note that we
' have no AffectedRecords parameter.
Set rsSales = objDBConn.Execute strCommandText, _
 , adCmdText

' Manipulate recordset containing records from the
' Sales table where Price > 70,000.
[CODE HERE]

' Now retrieve the next object into the same
' Recordset object for use later in the script.
rsSales = rsSales.NextRecordset()
...[additional code]

Notes

You can use the NextRecordset method any time you have a compound command
statement in your call to the Open method of the Recordset object (or the Execute
method of the Command or Connection object) or a stored procedure that you call
returns more than one result set. If you include a compound command statement
NextRecordset (Recordset Object) 223

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Open (Connection Object)
in your call to the Open method of the Recordset object or the Execute method of
the Command or Connection object, such as the following:

"SELECT * FROM Sales WHERE Price = 80000; SELECT * FROM Sales
WHERE Buyer ='Chris’”

ADO returns only the results from the first query, exactly as if you had sent only:

"SELECT * FROM Sales WHERE Price = 80000."

To retrieve the records from the second SELECT statement, use the NextRecordset
method.

If any of your commands could return a row set but actually return no rows, the
returned Recordset object is an empty recordset, and its BOF property is True. If
any of your commands does not return rows, then if it is successful, it will return a
closed Recordset.

If you attempt to call the NextRecordset method of a Recordset object that has an
edit pending, you must first call the Update or CancelUpdate method or an error
will result.

Open (Connection Object)
connObj.Open strConnectionString, strUserId, strPassword

Opens a connection to the data provider.

Parameters

strConnectionString
An optional string containing information about the connection to be made.
For more details on what is valid for the strConnectionString parameter,
see the description of the Connection object’s ConnectionString property.

strUserId
A string value that represents the name of the user that will be sent to the
data source. This is an optional parameter unless the strPassword param-
eter is used.

strPassword
A string value that represents the password to be used in verifying the user
identification sent in the strUserId parameter. This is an optional parameter.

Example

The following example demonstrates the construction of a
strConnectionString parameter and the subsequent call to the Connection
object’s Open method.

<%@ LANGUAGE="VBSCRIPT" %>
<% Response.Buffer = True %>
<HTML>
<HEAD>
<TITLE>ADO Examples</TITLE>
</HEAD>
<BODY>
224 Chapter 11 – ActiveX Data Objects 1.5

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ActiveX Data
O

bjects 1.5
Open (Connection Object)
<%
' Include ADOVBS.INC so we can use the ADO constants.
%>
<!-- #include virtual = "/bc_SSIncludes/adovbs.inc" -->
<%
' Instantiate an ADO Connection object.
Set objDBConn = Server.CreateObject("ADODB.Connection")

' Construct the connection string for the Connection
' object. For more detail on what each element of this
' string represents, see the section of this chapter
' that covers the ConnectionString property.
strConn = _
 "driver={SQL Server};;uid=sa;pwd=;database=SalesDB"

' Using the connection string, open the connection.
objDBConn.Open strConn

' You can now use this Connection object to execute
' commands against the underlying data source.
...[additional code]

Notes

Before you can create a recordset or issue commands against a data source using
the Recordset or Command objects, you must first create a valid, open connection
to the data source. The details governing the establishment of this connection
(such as the data source and its location) are located in the ConnectionString prop-
erty of the Connection object you are attempting to open.

You can either send the strConnectionString parameter in your call to the
Open method or set the ConnectionString property before calling the Open
method. However, be aware that if you do both, the values in the
strConnectionString parameter will be used and the ConnectionString prop-
erty value will change to the value of the parameter when the Connection object
becomes open.

As discussed in the ConnectionString property section, you can send user and
password information in the ConnectionString property or in the
strConnectionString parameter. If you use the strConnectionString param-
eter and also include the strUserId and strPassword parameters, the result is
undefined. This may cause an error when opening a connection to some data
sources.

To close the Connection object, use the Connection object’s Close method. If you
want to free the memory resources held by storing that Connection object (open
or closed), you must set the Connection object variable equal to the keyword
Nothing.
Open (Connection Object) 225

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Open (Recordset Object)
Open (Recordset Object)
rsObj.Open vntSource, vntActiveConnection, lngCursorType,
lngLockType, lngOptions

Opens a cursor into a data source.

Parameters

vntSource
A Command object name, SQL statement, table name, or stored procedure
name.

vntActiveConnection
A variant value holding the name of a Connection object or a string
containing valid ConnectionString text.

lngCursorType
The type of cursor you would like to create. If you attempt to create a cursor
type not supported by the underlying data source, an error may occur. The
valid values for the lngCursorType parameter are the following:

adOpenForwardOnly
This is the default. Only allows movement forward from the current
record. Otherwise, this cursor type is identical to the static cursor. There
is one exception to this, however. Some data providers will allow you to
call the MoveFirst method to move the current record pointer back to the
first record in the recordset. This is the fastest cursor type.

adOpenKeyset
In a keyset cursor, you cannot see new records added by other users and
you cannot access records that have been deleted by other users. You
can, however, see the changes to records in your recordset made by
other users. All types of movement are possible in a keyset-cursor
recordset.

adOpenDynamic
Dynamic cursors are the most flexible (and slowest) of the four types. In
a dynamic cursor, additions, changes, and deletions are all visible in your
recordset. All types of movement are possible in a dynamic-cursor
recordset.

adOpenStatic
Static cursors provide a static snapshot of the records in your recordset.
This is useful for generating reports, but the records in the recordset are
not updateable. Additions, changes, and deletions made by other users
are not visible in your recordset.

lngLockType
Determines the type of locking or concurrency that your Recordset will have.
The underlying data source must support this locking mechanism. The valid
ADO constants for this parameter are as follows:

adLockReadOnly
Default. The records in the cursor are read-only.
226 Chapter 11 – ActiveX Data Objects 1.5

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ActiveX Data
O

bjects 1.5
Open (Recordset Object)
adLockPessimistic
The records are locked pessimistically record by record. The data
provider locks the record upon editing it to ensure that changes are
saved appropriately.

adLockOptimistic
The records are locked record by record only when you attempt to save
your changes to the database.

adLockBatchOptimistic
This constant is the same as adLockOptimistic, but for batch updates.

lngOptions
Instructs the data provider how to evaluate the vntSource parameter. The
valid ADO constants for this parameter are as follows:

adCmdText
vntSource is a text command, such as a simple SQL statement.

adCmdTable
vntSource is a table name.

adCmdStoredProc
vntSource is the name of a stored procedure.

adCmdUnknown
Default. The Command object type is unknown.

Example
<%@ LANGUAGE="VBSCRIPT" %>
<% Response.Buffer = True %>
<HTML>
<HEAD>
<TITLE>ADO Examples</TITLE>
</HEAD>
<BODY>
<%
' Include ADOVBS.INC so we can use the ADO constants
%>
<!-- #include virtual = "/bc_SSIncludes/adovbs.inc" -->
<%
' Instantiate an ADO Connection object.
Set objDBConn = Server.CreateObject("ADODB.Connection")

' Construct the connection string for the Connection
' object. For more detail on what each element of this
' string represents, see the section of this chapter
' that covers the ConnectionString property.
strConn = _
 "driver={SQL Server};;uid=sa;pwd=;database=SalesDB"

' Using the connection string, open the connection.
objDBConn.Open strConn

' Instantiate a Recordset object.
Set rsSales = Server.CreateObject("ADODB.Recordset")
Open (Recordset Object) 227

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Requery (Recordset Object)
' Set the ActiveConnection property and initialize the
' string that will be used as the Source parameter.
rsSales.ActiveConnection = objDBConn
strSource = _
 "SELECT COUNT(*) FROM Sales WHERE Price > 23000"

' Open the Recordset.
rsSales.open strSource,,adOpenDynamic, _
 adLockOptimistic, adCmdText
...[additional code]

Notes

You can either send the vntActiveConnection parameter in your call to the
Open method or you can set the ActiveConnection property before calling the
Open method. However, be aware that if you do both, the values in the
vntActiveConnection parameter will be used and the ActiveConnection prop-
erty value will change to the value of the parameter when the Recordset object
becomes open.

The vntSource, lngCursorType, and lngLockType parameters can also be set
using the Source, CursorType, and LockType properties, respectively. However,
these properties are read-only after the Recordset is open. Any attempt to change
them and reopen the Recordset results in a runtime error.

If you use the name of a Command object for the vntSource parameter, the
ActiveConnection is read-only regardless of whether the Recordset is open. The
ActiveConnection of the Recordset inherits the ActiveConnection property value of
the Command object.

If you do not use lngOptions to specify how the data provider should evaluate
the vntSource parameter, ADO will have to query the data source. This results in
a decrease in performance.

To close the Recordset object, you use its Close method. If you want to free the
memory resources being held by storing that Recordset object (open or closed),
you must set the Recordset object variable equal to the keyword Nothing.

Requery (Recordset Object)
rsObj.Requery

Reexecutes the original query you ran to retrieve the records in the Recordset
object. This refreshes the contents of the recordset.

Parameters

None

Example
<%@ LANGUAGE="VBSCRIPT" %>
<% Response.Buffer = True %>
<HTML>
<HEAD>
<TITLE>ADO Examples</TITLE>
228 Chapter 11 – ActiveX Data Objects 1.5

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ActiveX Data
O

bjects 1.5
Requery (Recordset Object)
</HEAD>
<BODY>
<%
' Include ADOVBS.INC so we can use the ADO constants.
%>
<!-- #include virtual = "/bc_SSIncludes/adovbs.inc" -->
<%
' Instantiate an ADO Connection object.
Set objDBConn = Server.CreateObject("ADODB.Connection")

' Construct the connection string for the Connection object.
strConn = _
 "driver={MyDBType};;uid=sa;pwd=;database=SalesDB"

' Using the connection string, open the connection.
objDBConn.Open strConn

' Create a command text string.
strCommandText = _
 "SELECT * FROM Sales WHERE Price > 70000"

' Create a read-only, forward-only recordset using the
' Execute method of the Connection object. Note that we
' have no AffectedRecords parameter.
Set rsSales = objDBConn.Execute strCommandText, _
 , adCmdText

' Assume several changes (by other users) are taking
' place to the underlying records for this Recordset
' object. Now you want to renew this set of records to
' reflect these changes. To do so, call the Requery method.
rsSales.Requery

' The rsSales recordset now contains all the changes
' made by other users.
...[additional code]

Notes

Calling the Requery method is functionally equivalent to closing and reopening the
Recordset object. If you attempt to call the Requery method while editing the
current record or adding a new record, an error will result. You must first call the
Update or CancelUpdate method.

While a given Recordset is open, several of its cursor properties (for example,
CursorType and/or LockType) are read-only. For this reason, if you want to
change any of these property values, you must explicitly close the Recordset
object. Calling the Requery method only refreshes the Recordset object. It cannot
be used to change any of these read-only properties while the Recordset is open.

Furthermore, it is important to note that any bookmarks stored in variables are no
longer guaranteed to point to the right (or any) record after the call to Requery.
Requery (Recordset Object) 229

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Resync (Recordset Object)
Resync (Recordset Object)
rsObj.Resync AffectRecords

Refreshes the field values for all the records already in your recordset. It does not
show you the records added since first opening the database.

Parameters

AffectRecords
Determines which records in the current Recordset object will be affected by
the Resync method call. This parameter is an optional ADO constant that eval-
uates to one of the following:

adAffectCurrent
Refreshes only the field values in the current record. This is the default
value.

adAffectGroup
Refreshes only the field values in the records that match the criteria set in
the Recordset object’s current Filter property.

adAffectAll
Refreshes the field values in all the records in the current Recordset
object.

Example
<%@ LANGUAGE="VBSCRIPT" %>
<% Response.Buffer = True %>
<HTML>
<HEAD>
<TITLE>ADO Examples</TITLE>
</HEAD>
<BODY>
<%
' Include ADOVBS.INC so we can use the ADO constants.
%>
<!-- #include virtual = "/bc_SSIncludes/adovbs.inc" -->
<%
' Instantiate an ADO Connection object.
Set objDBConn = Server.CreateObject("ADODB.Connection")

' Construct the connection string for the Connection object.
strConn = _
 "driver={MyDBType};;uid=sa;pwd=;database=SalesDB"

' Using the connection string, open the connection.
objDBConn.Open strConn

' Create a command text string.
strCommandText = _
 "SELECT * FROM Sales WHERE Price > 70000"

' Create a read-only, forward-only recordset using the
' Execute method of the Connection object. Note that we
230 Chapter 11 – ActiveX Data Objects 1.5

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ActiveX Data
O

bjects 1.5
Supports (Recordset Object)
' have no AffectedRecords parameter.
Set rsSales = objDBConn.Execute strCommandText, _
 , adCmdText

' Assume several changes (by other users) are taking
' place to the underlying records for this Recordset
' object. Now you want to renew this set of records to
' reflect these changes. BUT, you do not care about
' seeing new records—only changes to the records
' currently in the Recordset object. To do so, call the
' Resync method.
rsSales.Resync

' The rsSales recordset now contains all the changes
' made to the records in the current recordset. New
' records do not appear.
...[additional code]

Notes

Unlike calling the Requery method, calling the Resync method does not result in
the query being executed again. The Resync method only synchronizes those
records indicated by the AffectArguments argument with the data for those
records in the underlying database. It does not show new records.

If you attempt to Resync a record that has been deleted from the underlying data-
base by another user, ADO raises a runtime error. If, however, you attempt to
synchronize a group of records containing at least one record that still exists in the
underlying database, no runtime error occurs. Instead, ADO writes warning infor-
mation sent by the data provider to an Error object that’s included in the active
Connection object’s Errors collection.

Supports (Recordset Object)
blnSupported = rsObj.Supports(lngCursorOptions)

Tests the support for one or more features. This method returns a Boolean value
indicating whether the indicated features are supported for the current Recordset
object.

Parameters

blnSupported
A Boolean variable that will hold the result of the call to the Supports method.

rsObj
The name of the Recordset object whose functionality you are testing.

lngCursorOptions
One or more of the following constants. If you want to determine whether
more than one of the following options is supported, add each object in the
call to the Supports method (see the following example).

adAddNew
Determines whether the Recordset supports adding new records.
Supports (Recordset Object) 231

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Supports (Recordset Object)
adApproxPosition
Determines whether the Recordset supports reading and setting the Abso-
lutePosition and AbsolutePage properties.

adBookmark
Determines whether the Recordset supports the bookmark property to
uniquely identify records.

adDelete
Determines whether the Recordset supports deleting records.

adHoldRecords
Determines whether the Recordset supports retrieving more records
without committing pending changes to the currently held records.

adMovePrevious
Determines whether the Recordset supports moving the current record
pointer backward in the recordset.

adResync
Determines whether the Recordset supports updating the current cursor
with the Resync method.

adUpdate
Determines whether the Recordset supports the Update method to save
changes to the database.

adUpdateBatch
Determines whether the Recordset supports the UpdateBatch method for
batch updating of multiple records.

Example
<%@ LANGUAGE="VBSCRIPT" %>
<% Response.Buffer = True %>
<HTML>
<HEAD>
<TITLE>ADO Examples</TITLE>
</HEAD>
<BODY>
<%
' Include ADOVBS.INC so we can use the ADO constants
%>
<!-- #include virtual = "/bc_SSIncludes/adovbs.inc" -->
<%
' Instantiate an ADO Connection object.
Set objDBConn = Server.CreateObject("ADODB.Connection")

' Construct the connection string for the Connection object.
strConn = _
 "driver={MyDBType};;uid=sa;pwd=;database=SalesDB"

' Using the connection string, open the connection.
objDBConn.Open strConn

' Create a command text string.
strCommandText = _
232 Chapter 11 – ActiveX Data Objects 1.5

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ActiveX Data
O

bjects 1.5
Update (Recordset Object)
 "SELECT * FROM Sales WHERE Price > 70000"

' Create a read-only, forward-only recordset using the
' Execute method of the Connection object. Note that we
' have no AffectedRecords parameter.
Set rsSales = objDBConn.Execute strCommandText, _
 , adCmdText

' Assume several changes (by other users) are taking
' place to the underlying records for this Recordset
' object. Now you want to renew this set of records to
' reflect these changes. BUT, you do not care about
' seeing new records—only changes to the records
' currently in the recordset. To do so, call the Resync
' method. However, we want only to attempt the Resync
' if the current recordset supports it. So we must use
' the Supports method.
If rsSales.Supports(adResync) Then
 ' Resync method is supported, so call it.
 rsSales.Resync
End If

' Assuming the recordset supports the Resync method,
' the rsSales recordset now contains all the changes
' made to therecords in the current recordset. New
' records do not appear.
...[additional code]

Notes

Often you will need to dynamically determine the capabilities of cursors on the
current data provider. The Supports method of the Recordset object allows you to
do just that.

Note, however, that just because a given call to the Supports method returns True
does not mean that the functionality tested is available all the time. It is still imper-
ative to trap errors raised in response to lack of cursor functionality—even if you
call the Supports method every time you attempt to use that functionality.

As stated earlier, you can use multiple options when using the Supports method,
as the following demonstrates:

blnSupportsMultiple = rsExample.Supports(adResync Or _adUpdate)

A value of True in the previous example indicates that the recordset supports both
the Resync and Update methods.

Update (Recordset Object)
rsObj.Update FieldName(s), FieldValue(s)

Saves changes to the underlying data provider.
Update (Recordset Object) 233

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Update (Recordset Object)
Parameters

FieldName(s)
The name of a single field in the record to be updated or the name of an
array containing the names of multiple fields in the record to be updated. If
FieldName(s) is the name of a field name array, FieldValue(s) must be
the name of a value array, and the number of elements for both arrays must
be the same or an error occurs.

FieldValue(s)
The value of a single field in the record to be updated or the name of an
array containing the values of multiple fields in the record to be updated. If
FieldValue(s) is the name of a value array, FieldName(s) must be the
name of a field name array, and the number of elements for both arrays must
be the same or an error occurs.

Example

The following code demonstrates a call to the Update method to save changes to
the current record to the database.

<%@ LANGUAGE="VBSCRIPT" %>
<% Response.Buffer = True %>
<HTML>
<HEAD>
<TITLE>ADO Examples</TITLE>
</HEAD>
<BODY>
<%
' Include ADOVBS.INC so we can use the ADO constants.
%>
<!-- #include virtual = "/bc_SSIncludes/adovbs.inc" -->
<%
' Dimension local array variables.
Dim avntFieldNames()
Dim avntFieldValues()

' Instantiate an ADO Connection object.
Set objDBConn = Server.CreateObject("ADODB.Connection")

' Construct the connection string for the Connection object.
strConn = _
 "driver={MyDBType};;uid=sa;pwd=;database=SalesDB"

' Using the connection string, open the connection.
objDBConn.Open strConn

' Create a command text string.
strCommandText = _
 "SELECT * FROM Sales WHERE Price > 70000"

' Create a read-only, forward-only recordset using the
' Execute method of the Connection object. Note that we
' have no AffectedRecords parameter.
234 Chapter 11 – ActiveX Data Objects 1.5

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ActiveX Data
O

bjects 1.5
Update (Recordset Object)
Set rsSales = objDBConn.Execute strCommandText, _
 , adCmdText

' Change the Buyer and Price field values for the first
' record and update the underlying data.
rsSales!Buyer = "Kelly"
rsSales!Price = 45000
rsSales!Update

' Now, change the Buyer and Price field values for the
' second record and update the underlying data—using
' one line of code. Note the next code updates the SAME
' records again—not the next record in the recordset.
ReDim Preserve avntFieldNames(2)
ReDim Preserve avntFieldValues(2)

avntFieldNames = Array("Buyer", "Price")
avntFieldValues = Array("Jeff", 23489)
rsSales!Update avntFieldNames, avntFieldValues
...[additional code]

Notes

You must use the Recordset object’s Update method to write your changes to
records in the current Recordset object to the database, with two important excep-
tions. The first occurs when you call the AddNew method of the Recordset object
and include a field/value pair of values or arrays. The second exception is when
you are attempting to update a group of records, in which case you must call the
UpdateBatch method.

You can also update a record or group of records with one statement by including
arguments in your call to the Update method. To update a single field’s value, you
must supply a field name and a corresponding field value in your call to Update.
To update all records matching the criteria in the current Filter property, you must
include the names of an array of field names and an array of corresponding field
values. If the number of field names in this first array does not match the number
of field values in the second array, an error occurs.

If you move from one record to another while you are in the middle of adding a
new record or editing the current record, ADO will automatically call the Update
method for you before moving the current record pointer. Also, if you are adding
or editing a record and you call the UpdateBatch method, ADO will automatically
call the Update method for the current record before executing the UpdateBatch
method call.
Update (Recordset Object) 235

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Chapter 12Ad Rotator
CHAPTER 12

Ad Rotator Component

The Internet, though begun in an attempt to efficiently share information, is

quickly evolving into a powerful avenue for business. One result of this evolution
is the rapidly growing tendency for web sites to incorporate advertising into their
content pages.

Unfortunately, these ads must be changed often to maintain efficacy, since clients
quickly bore of advertising. The manner by which a webmaster changed the
advertisements on her site used to involve a time-consuming three-step process.
This process involved modifying the content, uploading the file to the server, and
changing the links, if necessary, every time an old ad was to be saved and a new
one displayed. Though several CGI applications became available to make this
process simpler, none of them were less clunky than the original method.

With the advent of the Ad Rotator component, the process by which ads are
displayed has become much simpler. This component allows content providers to
rapidly change ads without relying on webmasters to change links repeatedly or
maintain obtuse naming conventions of ad files for storage until the next time the
same ad is used.

The Ad Rotator component allows you to change the advertisements on your web
site in an automated fashion using a schedule file that you create. This schedule
file contains a list of advertisements, their details (URL, text, etc.), and a weight
factor that instructs the web server how often to display that particular ad. Each
time a page containing a call to the Ad Rotator component’s GetAdvertisement
method is called, the schedule file is referenced by the web server to determine
which ad to display. The ad itself is made up of a text description (for clients who
have graphics turned off), a URI of the graphic for the ad, if one is available, and
the percentage of time that the ad should be displayed relative to the other ads
listed in the schedule file.

The Ad Rotator component also allows you to easily maintain a record of the
number of times users have selected a given advertisement.
236

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Ad Rotator
Accessory Files/Required DLL Files
Accessory Files/Required DLL Files

Adrot.dll

The dynamic link library for the Ad Rotator component. It must be registered on
the web server before it can be instantiated in your web applications. To register
the Ad Rotator component on your web server, perform the following steps:

1. Click on the Start button on the taskbar.

2. Select Run from the Start menu.

3. Type in the following line (assuming your WinNT or Windows directory is on
your C drive):

Windows NT: C:\WinNT\System32\winnt32\inetserv\Regsvr32.exe Adrot.dll
Windows 95/98: C:\Windows\System\Regsvr32.exe Adrot.dll

Redirection File

The Ad Rotator redirection file is an optional accessory file that allows you to trap
clicks on an ad included on a page. It is an Active Server Page that you create to
act as a middle script between the script containing the ad and the ad’s URL. Each
time a user clicks on an ad, the ad’s URL is sent to this redirection file. Within this
redirection file, you could easily add the name of the ad and other details such as
the user’s IP address to the web server log or a database or record it some other
way.

However, the true power of this redirection file lies in your ability to add a script
to this file to save more useful information than simply the number of times the ad
was selected. To name just a few obvious examples, you could determine the
contents of previously created session variables to get more details on the user:
what scripts does he look at, what IP address is he coming from, and what soft-
ware is he using. Frequently overlooked, this redirection file gives you the
opportunity to track the details of your users and, thus, customize your site to its
users.

Ad Rotator Summary
Properties

Border
Clickable
TargetFrame

Collections
None

Methods
GetAdvertisement

Events
None
Accessory Files/Required DLL Files 237

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Accessory Files/Required DLL Files
The following is an example of some code from a redirection file:

<%
' Dimension local variables
Dim strUserName
Dim strRemoteAddress
Dim strURL
Dim strBrowserType

strUserName = Session("UserName")
strRemoteAddress = Request.ServerVariables("REMOTE_ADDR")
strURL = Request.QueryString("url")
strBrowserType = Session("UserBrowser")

[YOU COULD WRITE THE INFORMATION TO A TEXT FILE OR DATABASE HERE]

Response.Redirect strURL

%>

Rotator Schedule File

The rotator schedule file is a custom text file that you create. You can call it
anything you wish. In it, you specify the details for the advertisements to be
displayed on your site. You can specify the sizes of the advertisements, the URLs
of images to be used for your ads, and the percentage of time each ad should be
selected and displayed when the Ad Rotator object’s GetAdvertisement method is
called.

There are two sections in the rotator schedule file. The two sections are separated
by a single line containing only an asterisk (*). The first section contains the
following information that applies to all the advertisements listed in the file:

• The redirection file to use when an ad is clicked. This file’s code will be exe-
cuted before the user’s browser is sent to the ad’s URL. As described earlier,
the redirection file allows for details of the user to be recorded before send-
ing his browser to the ad URL. One good reason to use a redirection file is so
that you can include a default URL that will take the user to a default page if
no ad URL is included in the rotator schedule file. For example, your site may
have a single HTML file that contains a brief description of all its advertisers.
You could use the URL of this page as a default URL in the redirection file.

• The size of the border line for each advertisement.

• The width of the advertisement in pixels.

• The height of the advertisement in pixels.

Each of these elements is optional. If you do not have any of them, the first line
will contain an asterisk, there will be no redirection script called, there will be no
border, and the advertisement graphics will be the size specified in their indi-
vidual graphics files.

The second section contains information specific to each ad. This section contains
the following information for each advertisement, with each item on its own line:
238 Chapter 12 – Ad Rotator Component

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Ad Rotator
Accessory Files/Required DLL Files
• The pathname and filename of the graphics image to use for the advertise-
ment.

• The URL of the advertiser’s home page. This is designed to allow the user to
navigate to the advertiser’s home page by clicking on the ad. If the URL is not
present and the user clicks on the ad, an error results, unless you use a redi-
rection file that contains a default URL.

• The text for the advertisement.

• The relative weight of the advertisement. For example, suppose a schedule
file detailed four ads with weights of 3, 4, 1, and 2. Upon a call to the Ad
Rotator’s GetAdvertisement method, the web server would retrieve the first ad
30% of the time, the second ad 40% of the time, the third ad 10% of the time,
and the last ad 20% of the time.

All of these elements are optional. If you omit one, however, you must insert a
hyphen (-) on the line where you would put a value. See the following example:

[REDIRECT /Apps/MyRedirectScript.ASP]
[WIDTH 300]
[HEIGHT 50]
[BORDER 3]
*
http://www.ora.com/images/ora.gif
http://www.ora.com
Check out the excellent books at O'Reilly!
20
http://www.BikeCityAthens.com/Graphics/BikeOfTheWeek.gif
http://www.BikeCityAthens.com
-
60
http://www.WidgetWare.com/Images/TodaysWidget.gif
-
-
20

In this example, we can ascertain the following:

• The first section sets the redirection URL, the size to 50×300, and the border
to three pixels.

• There are three advertisements detailed in the file. These will be displayed
20%, 60%, and 20% of the time, respectively.

• The second ad has no text associated with it. If the client has graphics turned
off, she will see nothing.

• The third ad has no home URL. If the user clicks on this ad, an error will be
raised if the redirection file has no default URL.

• Finally, like the second ad, the third ad has no text associated with it and has
no home URL.
Accessory Files/Required DLL Files 239

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Instantiating the Ad Rotator
Instantiating the Ad Rotator
To create an object variable containing an instance of the Ad Rotator, use the
Server.CreateObject method. The syntax for the CreateObject method is as follows:

Set objMyObject = Server.CreateObject(strProgId)

where:

• The objMyObject parameter represents the name of a variable that will con-
tain a reference to of the object you are instantiating.

• The strProgId parameter is the programmatic identifier (ProgId) of the Ad
Rotator:

MSWC.AdRotator

Example
<%
' The following code uses the Server object's
' CreateObject method to instantiate an Ad Rotator
' object on the server.
Dim objAdRotator

Set objAdRotator = Server.CreateObject("MSWC.AdRotator")

%>

For more details on the use of the CreateObject method, see its entry in Chapter 8,
Server Object.

Comments/Troubleshooting
The Ad Rotator component is very straightforward and can be a real time saver.
Aside from making sure your rotator schedule file is set up correctly, there’s little
to using the Ad Rotator.

If you don’t want the user to be able to click on the ad (for instance, if it is an
informational ad only, not meant to lead to an URL), set the Clickable property of
the component to False, rather than handling it with the URL or in the redirec-
tion file. This property’s value is True by default.

The only problems I’ve experienced with the use of this component stemmed
from incorrect syntax in the schedule file or from the Ad Rotator DLL (adrot.dll)
not having been registered on the web server. The component is, however, auto-
matically registered when you install IIS, so you have to explicitly remove it for it
not to work.

Finally, it can be beneficial to instantiate an AdRotator object at the session level.
You also can create an ad object at the application level, but doing so gives you
less flexibility on a person-by-person basis.

Figure 12-1 illustrates how the Ad Rotator works.
240 Chapter 12 – Ad Rotator Component

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Ad Rotator
Border
Properties Reference

Border
objAdRot.Border = intSize

Border sets the thickness (in pixels) of the line around your advertisement graphic.

Parameters

intSize
The thickness of the ad graphic’s border in absolute number of pixels

Example
<%
' The following code creates an Ad Rotator object and sets
' border thickness to two pixels. When displayed, the ad
' graphic will be surrounded by a two-pixel border, regardless
' of the setting for the border width in the schedule file.

Figure 12-1: The Ad Rotator component, rotator schedule file, and redirection file in
action

Sample.ASP RotatorSched.txt

Sample.ASP

Ad1
http://www.adspace.com
Ad2
http://www.adspace.com
Ad3
http://www.adspace.com

Redirect.asp

Ad 1

Ad information is retrieved
from RotatorSched.txt and
placed into Sample.ASP
through the use of an Ad
Rotator component

Client browser
requests page
containing Ad
Rotator

Ad 1
User browser directed
to redirection file where
request and user info
is recorded

Client clicks
on Ad1

Ad4
http://www.adspace.com

The client is redirected
to URL for Ad1 if it exsists
Border 241

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Clickable
Dim objAdRot

objAdRot = Server.CreateObject("MSWC.AdRotator")
objAdRot.Border = 2

%>

Notes

The default border thickness is whatever is set by the [BORDER] value in the Ad
Rotator schedule file. If you set a value for the Border property, it will override
that set in the schedule file.

In addition to the preceding example, see the full example at the end of this
chapter.

Clickable
objAdRot.Clickable = blnClickable

Sets or returns whether the ad graphic represents a clickable image that will redi-
rect the client to a URL for the ad’s home page.

Parameters

blnClickable
A Boolean value that determines whether the ad graphic, when clicked, will
transport the user to the homepage of the ad. The default value is True.

Example
<%

' The following code creates an Ad Rotator object and
' sets its Clickable property to False. This makes the
' ad a standalone image that is not clickable by the
' client.

Dim objAdRot

Set objAdRot = Server.CreateObject("MSWC.AdRotator")
objAdRot.Clickable = False

%>

Notes

If the Clickable property is set to True, you must have a URL set for this ad in the
rotator schedule file or you must use a redirection file with a default URL. If the
Clickable property is set to False for the component, the ad’s URL in the rotator
schedule file will be ignored.

In addition to this example, see the full example at the end of this chapter.
242 Chapter 12 – Ad Rotator Component

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Ad Rotator
GetAdvertisement
TargetFrame
objAdRot.TargetFrame = strFrameName

Specifies the name of the frame into which the link represented by a clickable ad
graphic will be loaded. It is functionally equivalent to setting the Target property
of an anchor tag in HTML.

Parameters

strFrameName
A string value that represents the name of the frame into which you want the
linked page loaded. You can set this parameter to _BLANK, _CHILD, _NEW,
_PARENT, _SELF, or _TOP. These settings have exactly the same effect as
setting the TARGET property of an anchor tag.

Example
<%

' The following code demonstrates the creation of an
' Ad Rotator object and the subsequent setting of its
' TargetFrame property to _TOP. Assuming the ad graphic
' resides in a frame, this setting will cause the link
' to be loaded into the top frame.

Dim objAdRot

objAdRot = Server.CreateObject("MSWC.AdRotator")
objAdRot.TargetFrame = _TOP

%>

Notes

Just as when you set the TARGET property of an anchor tag, if you set the value of
the TargetFrame property to a nonexistent frame, the ad link will be loaded into a
new window, as if you’d set the TARGET property to _self.

In addition to this example, see the full example at the end of this chapter.

Methods Reference

GetAdvertisement
objAdRot.GetAdvertisement(strAdScheduleFile)

Retrieves the pertinent information for the next advertisement from the Ad Rotator
schedule file.

From this file, GetAdvertisement retrieves general information about the ad (size,
default border size, etc.). The call to the GetAdvertisement method also retrieves
information about the specific ad that is selected (according to weights) from the
schedule file.
GetAdvertisement 243

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Ad Rotator Example
For more information about the Ad Rotator schedule file and about the relative
weights for the various ads in it, see the discussion on the Ad Rotator schedule file
earlier in this chapter.

Once the GetAdvertisement method has retrieved this information, the Ad Rotator
object creates the HTML for the ad that is sent to the client.

Parameters

strAdScheduleFile
A string value that represents the full virtual path or the path relative to the
current virtual directory for the ad schedule file. For example, suppose the
current virtual path is /search and this can be resolved to the physical path
c:\inetpub\apps\search. If you specify the strAdScheduleFile parameter as
/search/AdSched.txt, the Ad Rotator object will look for c:\inetpub\apps\
search\AdSched.txt.

Example
<%

' The following code instantiates the Ad Rotator
'object, then retrieves and displays an ad from
'the AdRotSched.txt file.

Dim objAdRot

Set objAdRot = Server.CreateObject("MSWC.AdRotator")

' Display the ad in the HTML sent to the client. Note that
' the following line of code inserts the value returned
' by the call to GetAdvertisement into the HTML stream.
%>
<%= objAdRot.GetAdvertisement("/sched/AdRotSched.txt")%>

Notes

Note that you must use a full virtual path or a filename by itself; in the latter case,
the Ad Rotator object will attempt to find the file in the current virtual directory.

In addition to the previous example, see the following full example.

Ad Rotator Example
The following code demonstrates a complete Ad Rotator example to illustrate the
overall mechanism of the Ad Rotator and its accessory files.

The first file, SampleHome.ASP, is the originally requested page containing the ad
component. After the ad component retrieves it from the rotator schedule, this
page also contains the ad.

<%
' +------------------------------------+
' | SAMPLEHOME.ASP |
' +------------------------------------+
%>
244 Chapter 12 – Ad Rotator Component

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Ad Rotator
Ad Rotator Example
<HTML>
<HEAD><TITLE>Ad Rotator Sample</TITLE></HEAD>
<BODY BGCOLOR = #ffffcc>
<%
' Dimension local variables.
Dim adrotSample
Dim strAdRotSchedFile
Dim strAdString

Set adrotSample = Server.CreateObject("MSWC.AdRotator")
' Set the ad to have no border.
adrotSample.Border = 0

' Set the ad so that its corresponding URL is loaded
' into a second, blank browser window.
adrotSample.TargetFrame = "_blank"

' No need to set the Clickable property to True. It is
' the default. If we wanted to temporarily change this
' page's ad so that it was informational only, we
' could uncomment the next line.
'adrotSample.Clickable = False

' Retrieve the ad graphic html code (in this case it
' will be "/ads/graphics/FootTown.gif" with a URL of
' "http://www.foottownusa.com/info/introshoes.html."
' (See the sample rotator schedule file for more
' details on this ad.)
strAdRotSchedFile = "/ads/rotshed.txt"
strAdString = adrotSample.GetAdvertisement(strAdRotSchedFile)
%>
<HR>
<%= strAdString%>
<HR>
Welcome to the shoes outlet page. Please visit our sponsors
above!
</BODY>
</HTML>

When called by the client browser, the previous code will retrieve its current ad
information from the following rotator schedule file (rotshed.txt). Note that the
BORDER entry will be overridden by the Border property setting in the previous
code (adrotSample.Border = 0):

REDIRECT /Ads/AdRecord.asp
WIDTH 300
HEIGHT 40
BORDER 1
*
/ads/graphics/FootTown.gif
http://www.foottownusa.com/info/introshoes.html
Visit Shoe Town, your one stop shop for your footwear needs!
90
/ads/graphics/RunShoe.gif
Ad Rotator Example 245

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Ad Rotator Example
http://www.runshoerun.com/running.html
Click here to see the best running shoe company around!
5
/ads/graphics/WalkingShoe.gif
http://www.walkingshoesUSA.com
The Walking Shoes company provides for your every walking need.
5

These ads have relative weights of 90% 5%, and 5%, respectively. When retrieving
ad information, the script will have a 90% chance of retrieving the first entry and a
5% chance for each of the others. In our example, we’ll assume the first sample is
retrieved.

The following code (SampleHome.html) shows the actual HTML code that is sent
to the client:

<HTML>
<HEAD><TITLE>Ad Rotator Sample</TITLE></HEAD>
<BODY BGCOLOR = #ffffcc>
<HR>
<A HREF = "/Ads/AdRecord.asp?url=http://www.foottownusa.com/
info/introshoes.html&image=/ads/graphics/FootTown.gif" TARGET =
"_blank">
<IMG SRC = "/ads/graphics/FootTown.gif" ALT = "Visit Shoe Town,
your one stop shop for all your footwear needs!" WIDTH = 300
HEIGHT = 40 BORDER = 0>

<HR>
Welcome to the shoes outlet page. Please visit our sponsors
above!
</BODY>
</HTML>

Note in the ad hyperlink that the following items were all retrieved from the
rotator schedule file:

• The HREF of the redirection file

• The URL of the ad

• The URL of the ad graphic

• The alternate text of the hyperlink

• The width of the ad graphic

• The height of the ad graphic

However, the Border property was set in code:

adrotSample.Border = 0

The following redirection file records assorted information about the client who
clicked on the ad and redirects the client’s browser to the ad URL:

<%
' +------------------------------------+
' | AdRecord.asp |
' +------------------------------------+
246 Chapter 12 – Ad Rotator Component

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Ad Rotator
Ad Rotator Example
' Dimension local variables.
Dim strAdURL
Dim strAdImg
Dim strUserName
Dim strUserIP

' Initialize variables.
strAdURL = Request.QueryString("url")
strAdImg = Request.QueryString("image")
strUserName = Request.ServerVariables("logon_user")
strUserIP = Request.ServerVariables("REMOTE_ADDR")

' Record the user information in the web server log file.
Response.AppendToLog "Ad Hit URL: " & strAdURL
Response.AppendToLog "Ad Hit Img: " & strAdImg
Response.AppendToLog "Ad Hit Usr: " & strUserName
Response.AppendToLog "Ad Hit IP: " & strUserIP

' Redirect to the ad URL if there is one.
' If there is not, redirect to a general advertisers
' description page.
If strAdURL <> "" Then
 Response.Redirect strAdURL
Else
 Response.Redirect "/ads/AdvertDesc.asp"
End If

%>

This code retrieves information about the ad on which the user clicked and then
about the user herself (logon name and IP address). This information is then
written to the web server log file for later analysis. Finally, the user is redirected to
either the URL of the selected ad, if it exists, or to a default ad description page.
Ad Rotator Example 247

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Chapter 13Browser Capabilities
CHAPTER 13

Browser Capabilities Component

One of the challenges of constructing a useful web site today is determining what

your users’ browsers can and cannot interpret in the form of content. Generally, if
you know the browser the current user is using, you know its base capabilities.
For example, you know that if the user is using Netscape Navigator, then he must
have an ActiveX plug-in to use ActiveX controls. However, what if the client is
using a less well known browser? Can you be sure the browser even supports
cookies?

In an attempt to help with this problem, Microsoft introduced the Browser Capa-
bilities component. You use the Browser Capabilities component to create a
BrowserType object. When you create a BrowserType object, the web server
retrieves the HTTP USER AGENT header sent by the client. Using this information,
the BrowserType object compares the information from this header to entries in a
special file (BrowsCap.ini). If a match for the current client’s browser is found, the
BrowserType object determines all the properties for the specific browser. Your
scripts can then reference the properties of the BrowserType object to determine
the capabilities of the user’s browser. The following steps summarize this process:

1. The browser requests a page from the web server. That page contains an
instantiated BrowserType object. The browser sends an HTTP_USER_AGENT
request header. For example:

Mozilla/4.0 (compatible; MSIE 4.01; Windows 95)

2. The BrowserType object looks this value up in BrowsCap.ini, retrieves a list
of capabilities for that browser, and loads them as properties of the Browser-
Type object itself.

3. The code can then use the properties of the BrowserType object to dynami-
cally determine the user’s browser’s capabilities.

If the BrowserType object does not find a match for the information from the
client’s USER AGENT HTTP header, all the properties of the BrowserType object
have the string value UNKNOWN.
248

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Browser
Capabilities

Accessory Files/Required DLL Files
Because browser capabilities change rapidly, Microsoft built into this control the
ability to add properties and new browser types by simply altering the accompa-
nying .INI file. You can even customize this file to reflect properties that may
apply only to your web site.

Accessory Files/Required DLL Files

BrowsCap.dll

The dynamic link library containing the Browser Capabilities component. It must
be registered on the web server before it can be instantiated in your web
applications.

BrowsCap.ini

The BrowsCap.ini file includes the HTTP USER AGENT header definitions and the
properties for the browsers defined by those headers. For more information about
the HTTP headers sent by the client, see the latest specification for the HTTP
protocol. You can add to the BrowsCap.ini file as many property definitions as
you wish. You also can define default values for each property definition.

Your BrowsCap.ini file must reside in the same physical directory as BrowsCap.dll.
This is the \WinNT\System32\inetsrv directory by default for Internet Information
Server 4.0.

The format of the BrowsCap.ini file must match the following:

[; comments]
[UserAgentHTTPHeader]
[Parent = strBrowserDefinition]
[strProperty1 = vntValue1]
...[additional code]
[strPropertyN = vntValueN]

; Default Browser Settings
[strDefaultProperty1 = vntDefaultValue1]

Browser Capabilities Summary
Properties

PropertyName (Customizable)

Collections
None

Methods
None

Events
None
Accessory Files/Required DLL Files 249

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Accessory Files/Required DLL Files
...[additional code]
[strDefaultPropertyN = vntDefaultValueN]

The elements in the previous code break down as follows:

comments
You can add comments to the BrowsCap.ini file at any place in the file by
starting the comment line with a semicolon. These comments are ignored by
the BrowserType object.

UserAgentHTTPHeader
The USER AGENT HTTP header sent by the client. There is one
UserAgentHTTPHeader for each browser type defined in the file. For each
browser type thus defined, there is a series of property/value pairs for that
browser. Each UserAgentHTTPHeader entry in the BrowsCap.ini file must be
unique.

If you have several browser types that have the same property/value pairs but
slightly different HTTP headers, you can simplify your BrowsCap.ini file by
using wildcard characters. For example, the HTTP USER AGENT header entry:

[Mozilla/2.0 (compatible; MSIE 4.0;* Windows NT)]

is functionally equivalent to all of the following:

[Mozilla/2.0 (compatible; MSIE 4.0; Windows NT)]
[Mozilla/2.0 (compatible; MSIE 4.0; AK; Windows NT)]
[Mozilla/2.0 (compatible; MSIE 4.0; AOL; Windows NT)]

However, it is important to note that the BrowserType object will first try to
match the HTTP header string exactly before it attempts to match the entries
that use wildcards. This is important, because if you have both:

[Mozilla/2.0 (compatible; MSIE 4.0; AOL; Windows NT)]

and:

[Mozilla/2.0 (compatible; MSIE 4.0;* Windows NT)]

in the same BrowsCap.ini file and your user has the AOL version of Internet
Explorer 4.0, the first BrowsCap.ini entry will always used. If you add items to
the wildcard entry, then these entries will be ignored.

Also, if an HTTP header string matches more than one item in the BrowsCap.
ini file, the properties for the first matching entry are used for the Browser-
Type object.

strBrowserDefinition
An optional parameter that specifies a parent browser for the current browser.
This way, the current BrowserType object will inherit all the properties of the
parent browser’s entry in the BrowsCap.ini file. This makes the definitions of
newer versions of browsers in the BrowsCap.ini file easier, since they usually
support all the functionality of the parent browser. However, it is important to
note that if the newer version does not support some property of the parent
browser, you can explicitly set the property value for the newer browser, and
it will overwrite the inherited version of that same property.
250 Chapter 13 – Browser Capabilities Component

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Browser
Capabilities

Accessory Files/Required DLL Files
StrProperty(#)=vntValue(#)
A specific property and its value for a particular browser type. strProperty
is a property name, such as “ActiveXControls,” and the vntValue parameter
represents the value for that particular property. The vntValue parameter
value is a string by default. If the value represents an integer, it will be
prefixed by a pound sign (#). If the value represents a Boolean, the value will
be either True or False. The strProperty# name cannot contain spaces.

Each browser definition in the BrowsCap.ini file can contain as many or as
few property/value pairs as you need. For example, if your site only needs to
know if the client’s machine supports cookies, the BrowsCap.ini file could
contain only the single property definition

Cookies=True

You can also create your own special properties. For example, suppose your
company has a specialized version of Internet Explorer:

[Mozilla/2.0 (compatible; MSIE 4.0; MyCompany; Windows NT)]

This specialized version of IE has been customized so that the user cannot
right-click on images and save them. We’ll call this feature NoPicSave. You
could add the following to your BrowsCap.ini file:

[Mozilla/2.0 (compatible; MSIE 4.0; MyCompany; Windows NT)]
parent=IE 4.0
NoPicSave=TRUE

This code tells the BrowserType object that in addition to all the properties
found in the entry for IE 4.0, this customized version of the browser also has
the NoPicSave capability. Your code could then look for this entry and show
certain (perhaps sensitive) images to only those users with this feature.

Table 13-1 lists some possible property names and their definitions:

strDefaultProperty# / vntDefaultValue#
The [Default Browser Capability Settings] section of the BrowsCap.ini file
contains property/value pairs for all those properties for which you want to
assume a default value. The vntDefaultValue parameter value is either a

Table 13-1: Some Common Custom Properties

Property Description

Beta Whether the browser is a beta version

Browser The name of the browser

Cookies Whether the browser supports the use of cookies

Frames Whether the browser supports the use of frames

JavaApplets Whether the browser supports the use of Java applets

JavaScript Whether the browser supports the use of JavaScript

Platform The platform on which the client is running the browser

Tables Whether the browser supports the use of HTML tables

VbScript Whether the browser supports the use of VBScript

Version The browser’s version number
Accessory Files/Required DLL Files 251

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Accessory Files/Required DLL Files
Boolean (indicating whether a specific property is supported) or an integer. If
it is an integer, the value is prefixed with a pound sign. The
strDefaultProperty name cannot contain spaces.

The following is a (highly abbreviated) BrowsCap.ini file:

[Microsoft Pocket Internet Explorer/0.6]
browser=PIE
Version=1.0
majorver=1
minorver=0
frames=FALSE
tables=TRUE
cookies=FALSE
backgroundsounds=TRUE
vbscript=FALSE
javascript=FALSE
javaapplets=FALSE
ActiveXControls=FALSE
Win16=False
beta=False
AK=False
SK=False
AOL=False
platform=WinCE

[Netscape 4.00]
browser=Netscape
version=4.00
majorver=4
minorver=00
frames=TRUE
tables=TRUE
cookies=TRUE
backgroundsounds=FALSE
vbscript=FALSE
javascript=TRUE
javaapplets=TRUE
ActiveXControls=FALSE
beta=True

[Default Browser Capability Settings]
browser=Default
Version=0.0
majorver=#0
minorver=#0
frames=False
tables=True
cookies=False
backgroundsounds=False
vbscript=False
javascript=False
javaapplets=False
activexcontrols=False
252 Chapter 13 – Browser Capabilities Component

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Browser
Capabilities

Comments/Troubleshooting
AK=False
SK=False
AOL=False
beta=False
Win16=False
Crawler=False
CDF=False
AuthenticodeUpdate=

This example file demonstrates all of the features of a BrowsCap.ini file. The
browser types described by this file are limited to two. A typical BrowsCap.ini file
could be as large as 30K in size.

Instantiating the Browser
Capabilities Component
To create an instance of the Browser Capabilities object, use the Server object’s
CreateObject method. The syntax for the CreateObject method is as follows:

Set objMyObject = Server.CreateObject(strProgId)

where:

• The objMyObject parameter represents the name of a Browser Capabilities
object.

• The strProgId parameter represents the programmatic ID (ProgID) for the
Browser Capabilities component:

MSWC.BrowserType

Example
<%

' The following code uses the Server object's
' CreateObject method to instantiate a Browser
' Capabilities object on the server.
Dim objBrowsType

Set objBrowsType = Server.CreateObject("MSWC.BrowserType")

%>

For more details on the use of the CreateObject method, see its entry in Chapter 8,
Server Object.

Comments/Troubleshooting
The Browser Capabilities component is fairly easy to use. The most important
issue with its use is to include the most up-to-date version of the BrowsCap.ini
file. Microsoft helps you here by providing an updated version free of charge on
its web site. To download the latest copy of the BrowsCap.ini file from Microsoft,
navigate to http://backoffice.microsoft.com/downtrial/moreinfo/bcf.asp and follow
the directions.
Comments/Troubleshooting 253

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Properties Reference
Note, however, that you are not limited to the properties in the BrowsCap.ini file
from Microsoft. You can add you own custom properties and refer to them just as
you would to one of the standard properties.

Properties Reference

PropertyName (Customizable)
objBrowsType.strPropertyName

Determines the value of a given property of a BrowserType object. Note that these
properties represent values from the BrowsCap.ini file and are read-only. “Custom-
izable” means, as mentioned earlier, that you can add your own property names to
the BrowsCap.ini file.

Parameters

strPropertyName
The name of a standard or custom property in the BrowsCap.ini file. This
string value cannot contain spaces. If you attempt to retrieve the value of a
property that does not exist in the BrowsCap.ini file, the resulting value is the
string Unknown.

Example
<HTML>
<HEAD>
<TITLE>
Browser Capabilities
</TITLE>
</HEAD>
<BODY>
<%

' The following code example instantiates a BrowserType
' object and shows the user whether the browser
' supports various functions. Assume that the
' BrowsCap.ini file being used by the BrowserType
' object is the example file shown previously and that
' the user is using Netscape Navigator 4.0.

Dim objBrowsType

Set objBrowsType = Server.CreateObject("MSWC.BrowserType")

' The following properties will all evaluate to True
' and will result in the phrase
' "Support for property: TRUE":
%>
Support for frames: <%=objBrowsType.frames%>

Support for tables: <%=objBrowsType.tables%>

Support for cookies: <%=objBrowsType.cookies%>

<%
254 Chapter 13 – Browser Capabilities Component

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Browser
Capabilities

PropertyName (Customizable)
' However, the value of the following property will be
' the string "Unknown" resulting in the phrase
' '"Support for VRML: Unknown"
' because the vrml property is not defined in the preceding
' BrowsCap.ini file.
%>
Support for VRML: <%=objBrowsType.vrml%>

</BODY>
</HTML>
PropertyName (Customizable) 255

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Chapter 14Collaboration Data Objects
CHAPTER 14

Collaboration Data Objects for
Windows NT Server

The ability for the server to send messages to clients and vice versa is an increas-

ingly important aspect of many web sites. Using messaging back and forth
between web server and client, you can alert the webmaster of issues with the site
or send webmasters suggestions and comments. More important than either of
those, however, is the ability to send notices and reminders to your users, making
infrequent visitors into subscribers.

“Subscribers” are the most important facets of any web site. With a list of people
(or even a count of those people) who have subscribed to your web site (to be
notified of updates or changes, for example), you have a concrete, quantifiable
estimate of your site’s average users.

In the past, such messaging required that the client machine activate a mail
program and send the webmaster email. The webmaster would receive this email
and, in turn, add the sender to her site’s mailing list. As technology for web sites
evolved, you were able to send and receive mail from within server-only applica-
tions (through web forms, for example), and separate email functionality was not
required. The web applications used mail behind the scenes. Such web applica-
tions were usually CGI applications and were written in lower-level languages.
These applications are simple and work well. However, for the work that goes
into writing them, they sometimes lack flexibility. With the advent of Collabora-
tion Data Objects for NTS (formerly known as Active Messaging), you now have a
COM interface to a powerful set of objects that makes adding messaging function-
ality to your ASP application simple.

Collaboration Data Objects for Windows NT Server (CDONTS) is a collection of
COM objects that work with Windows NT, IIS, and SMTP (or Microsoft Exchange)
to enable your applications to easily send and receive electronic mail. It does not
require Microsoft Exchange (or another mail server) but can use it if it exists on
the same server on which the application is running. Without a mail server,
CDONTS works with SMTP to route all messaging to a mail server on the network
or Internet.
256

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Collaboration
Data O

bjects
Instantiating Collaboration Data Objects
Like most messaging subsystems, CDONTS receives messages from an Inbox and
writes messages to an Outbox. These mail bins exist in different places, depending
on the server component with which CDONTS is working. If SMTP is being used,
the Inbox and Outbox are actually mapped directly to file system files on the web
server. In this instance, CDONTS sends all messages immediately through SMTP,
and the Outbox is empty. Likewise, any incoming messages are removed from the
Inbox and placed into the file system directly.

You may have heard of CDO before IIS. It is called CDO for Exchange, and its
object library is almost exactly the same as that of CDO for NTS. The only differ-
ence in functionality is that CDONTS uses the Session object’s LogonSMTP method
to log on, whereas CDO for Exchange uses the Logon method. The only other
difference is the presence of the NewMail object in the CDO for NTS library. This
object has no counterpart in CDO for Exchange.

A full explanation of Collaboration Data Objects for NTS, like one for ActiveX Data
Objects, would require an entire book to itself. In the interest of space in this
book, I will provide only a brief overview of the majority of features of CDONTS,
since most ASP applications will not use the bulk of the functionality supported by
CDONTS. Instead, I will cover in depth all the properties and methods of the
NewMail object. This addition to the CDO library makes it possible to send mail—
including attachments—from any ASP application script to any email address using
just a few lines of code.

Accessory Files/Required DLL Files
Cdonts.DLL

The dynamic link library and type library for the CDO for NTS COM objects.
You must install this on the web server (using the latest executable setup file
from Microsoft) before you can instantiate or use any of the CDO objects. It is
installed by default when you install IIS 4.0. Microsoft Exchange does not
have to be installed before installing CDO. However, SMTP (or Exchange)
must be installed before you can successfully send and receive messages.

Instantiating Collaboration Data Objects
To create an instance of a Collaboration Data Object, use the Server.CreateObject
method. Its syntax is as follows:

Set objMyObject = Server.CreateObject(strProgId)

where:

• objMyObject represents the name of the collaboration data object variable
you are instantiating.

• strProgId represents the programmatic ID (ProgID) for the specific Collabo-
ration Data Object you are instantiating. The possible values for this parame-
ter can be found in Table 14-1.
Instantiating Collaboration Data Objects 257

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Comments/Troubleshooting
Example
<%

' The following code uses the CreateObject method to
' instantiate a NewMail object on the server.
Dim objNewMail

Set objNewMail = Server.CreateObject("CDONTS.NewMail")

%>

For more details on the use of the CreateObject method, see its entry in Chapter 8,
Server Object.

To use the CDO constants listed in this chapter, you must declare the CDO type
library. The following code demonstrates this:

[Excerpt from GLOBAL.ASA]

<!-- METADATA TYPE="TypeLibrary"
FILE="CDONTS.DLL"
VERSION="1.2"
-->

All examples in this chapter assume you have declared the type library
beforehand.

In this chapter, any CDO constant is followed by the constant’s value
in parentheses.

Comments/Troubleshooting
The only aspect of the properties and methods of the CDO that I might suggest
you pay particular attention to is the use of the various Delete methods. The
Delete method for nearly every object that has one allows you to delete the
current object. This is intuitive for objects. However, you might expect that the

Table 14-1: Values for Collaboration Data Objects

Collaboration Data Object ProgID

AddressEntry CDONTS.AddressEntry

Attachment CDONTS.Attachment

Folder CDONTS.Folder

Message CDONTS.Message

NewMail CDONTS.NewMail

Recipient CDONTS.Recipients

Session CDONTS.Session
258 Chapter 14 – Collaboration Data Objects for Windows NT Server

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Collaboration
Data O

bjects
The CDO Object Model
Delete method of a collection would allow you to remove a specific item from the
collection, whereas in fact it removes all the members of the collection!

Sending email messages from within your ASP application is simple, especially
using the NewMail object. However, one thing that I’ve taken for granted is the
architecture that exists between your web server, your mail server, and the
Internet. Unfortunately, this can be quite complex and the source of almost all the
errors you will experience trying to message-enable your ASP applications.

If you have CDONTS set up properly on the server, the calls to any of its methods
and properties will work flawlessly, in my experience. Place your web server on
the other side of a firewall from your mail server or place a proxy server anywhere
along the path and you will likely run into issues.

The most important thing to remember when constructing the architecture for
messaging from ASP applications on your web server is to ensure that you have
the SMTP ports on the firewall set to allow traffic from the web server to reach
your mail server. Proxy settings must be addressed on a case-by-case basis. These
issues aren’t difficult to resolve, just time consuming, especially in larger compa-
nies where the web development group is totally different (physically and
politically) from the architecture security group that handles the organization’s fire-
walls and proxy servers.

The CDO Object Model
Figure 14-1 shows the 10 objects and collections that make up the CDO object
hierarchy. This section lists and very briefly describes all of the properties, collec-
tions, and methods (CDO objects do not respond to any events) of each object in
the model. As stated before, this is meant only as an overview.

For the properties and methods of the NewMail object in the object model, see the
in-depth coverage that follows this overview.

Common Properties

All the objects in the CDONTS object model—except the NewMail object—share
four common properties: Application, Class, Parent, and Session. These properties
are all read-only. If you ascertain the value of the Application or Session proper-
ties from one CDO object, their values will be the same for any other object in the
object model.

As you can see from the object model in Figure 14-1, the Session object is the
highest object in the hierarchy. As such, it has no Parent or Session property
values. These properties always have a value of Nothing for any Session object.
The CDO Object Model 259

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The CDO Object Model
The NewMail object has none of these common properties. Any attempt to retrieve
the value of any of the properties listed in Table 14-2 for a NewMail object results
in a runtime error.

Figure 14-1: The CDO object model

Table 14-2: Common Properties of CDO Objects

Property Description

Application Always contains the string value “Collaboration Data Objects for
NTS Version 1.2.” It represents the name of the application using
the current session.

Class An integer value representing the type of CDO object:
cdoAddressEntry (8) = AddressEntry
cdoAttachment (5) = Attachment
cdoAttachments (18) =Attachments Collection
cdoFolder (2) = Folder
cdoMsg (3) = Message
cdoMessages (16) = Messages Collection
cdoRecipient (4) = Recipient
cdoRecipients (17) = Recipients Collection
cdoSession (0) = Session

Session Object

Folder (Inbox or Outbox)

Messages Collection

Message

AddressEntry

Attachments Collections

Attachment

Recipients Collection

Recipient

NewMail
260 Chapter 14 – Collaboration Data Objects for Windows NT Server

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Collaboration
Data O

bjects
The CDO Object Model
AddressEntry Object

Parent object: Message object. An object reference is obtained through the Sender
Property of a Message object.

Represents information about the sender of a specific Message object, including
the sender’s email address, name, and email address type. You can obtain a refer-
ence to the AddressEntry object only from the Message object’s Sender property.
The properties of the AddressEntry object are shown in Table 14-3; the properties
are all read-only.

Parent The immediate parent object of the current object in the CDO
object model. This is the parent according to the object model,
not the logical parent. For example, the Parent property of an
Attachment object is the Attachments collection, not a Message
object, even though you add email attachments to an email
message. The value for this property for the Session object is
Nothing. This property holds an object pointer and is not simply
a string containing the name of the parent object.
The following lists the objects in the CDO object library and their
immediate parents according to the hierarchy. Note that the
parent of the Session object is Nothing:
— AddressEntry: Message
— Attachment: Attachments Collection
— Attachments Collection: Message
— Folder: Session
— Message: Messages Collection
— Messages Collection: Folder
— Recipient: Recipients Collection
— Recipients Collection: Message
— Session: Nothing

Session The Session property represents the session within which the
current CDO object has been instantiated. If you attempt to
retrieve the value of the Session property of a Session object, you
will retrieve the Session object itself.

Table 14-3: AddressEntry Object Properties

Property Description

Address A string value representing the information required to send email to
the person or process represented by the current AddressEntry
object.

Name A string value representing the alias or display name for the person
represented by the current AddressEntry object.

Type A string value that identifies the sender’s messaging service. For the
current version of CDO for NTS, the Type property always holds the
string “SMTP.”

Table 14-2: Common Properties of CDO Objects (continued)

Property Description
The CDO Object Model 261

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The CDO Object Model
Attachment Object

Parent object: Attachments collection. A new object reference is returned from the
Add method of the Attachments Collection.

A file or message that is attached to the current Message object. If the current
Message object is still in the Inbox, the properties of the Attachment object are all
read-only. If, however, the Message object is being prepared for delivery, these
properties are all read/write. Remember that CDO for NTS does not control how
(or if) the Attachment is displayed in the final Message object. This is controlled by
the mail client being used. Tables 14-4 and 14-5 list the properties and methods of
the Attachment object, respectively.

Table 14-4: Attachment Object Properties

Property Description

ContentBase The Content-Base header of a MIME message attachment.
For example, if all the relative URLs in your MIME message
are valid only for http://www.mycorp.com, then the Content-
Base value should be http://www.mycorp.com/. Once the
ContentBase is set, the relative URLs in the message have
meaning. For example, suppose you have a MIME email
message containing an image with the SRC property set to
/images/myimg.jpg. The ContentBase lets the mail client
know that this means http://www.mycorp.com/images/
myimg.jpg.

ContentID The Content-ID header of a MIME message attachment. This
is read-only for messages coming in. CDO does not generate
Content-ID headers for outgoing messages and attachments.
For more information on Content-ID headers, see RFC 2111.

ContentLocation The Content-Location header of a MIME message attachment.

Name The name of the Attachment in the current Message object.
This is the default property for Attachment objects.

Source A string value that represents the physical location on the
sender’s machine of the contents of the attachment. The
attachment contents will be added to the Message object
from the location listed here.

Type The type of attachment. The possible values of the Type
property are cdoFileData (1) (the attachment is the
contents of a file) or cdoEmbeddedMessage (4) (the attach-
ment is an embedded message).

Table 14-5: Attachment Object Methods

Method Description

Delete Removes the current Attachment object from the Attachments
collection

ReadFromFile Reads the contents of a file into an Attachment object

WriteToFile Writes the contents of an Attachment object to the file system
262 Chapter 14 – Collaboration Data Objects for Windows NT Server

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Collaboration
Data O

bjects
The CDO Object Model
Attachments Collection

Parent object: Message object. An object reference to an Attachments collection is
returned from a call to the Attachments property of a Message object.

The Attachments collection is a child of a Message object and contains zero or
more Attachment objects. Use the Attachments collection to add new Attachment
objects to a message or to access the attachments that are already part of the
current message. Tables 14-6 and 14-7 list the properties and methods of the
Attachments collection, respectively.

Folder Object

Parent object: Session object. An object reference to a Folder object can be
returned from a call to the GetDefaultFolder method or from the InBox or OutBox
properties of a Session object.

The Folder object represents the Inbox or Outbox for the current session. Use the
Folder object to access, add, or delete Message objects in the default Inbox or
Outbox for the current messaging system and session. Tables 14-8 and 14-9 list the
properties and the single collection, respectively, of the Folder object.

Table 14-6: Attachments Collection Properties

Property Description

Count An integer value that represents the number of Attachment objects in
the Attachments collection. This property is read-only.

Item Returns a reference to a single Attachment object in the collection.
This property is read-only.

Table 14-7: Attachments Collection Methods

Method Description

Add Adds an Attachment object to the Attachments collection. You can
add Attachment objects to an Attachments collection only for a
message you are sending.

Delete Removes all the Attachment objects from the current Attachments
collection. Be cautious when using the Delete method of the Attach-
ments collection, since it deletes every Attachment object in the
collection. To remove a single Attachment object from a collection,
use the Delete method of the Attachment object.

Table 14-8: Folder Object Properties

Property Description

Messages Returns a pointer to the current Folder object’s Messages collection

Name A read-only string that represents the name of the folder
The CDO Object Model 263

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The CDO Object Model
Message Object

Parent object: Messages collection. An object reference to a Message object is
returned from a call to the Add method of a Messages collection.

Each Message object in the Messages collection contains a single email message or
document. Each Message object is the child of a Messages collection. A Message
object can contain embedded Attachment objects. Tables 14-10, 14-11, and 14-12
list the properties, collections, and methods, respectively, of the Message object.

Table 14-9: Folder Object Collection

Collection Description

Messages Each Folder object has a child Messages collection. The Messages
collection contains zero or more Message objects

Table 14-10: Message Object Properties

Property Description

Attachments Points to either a single Attachment object or to the Message
object’s Attachments collection.

ContentBase The Content-Base header of a MIME message content body.

ContentID The Content-ID header of a MIME message content body.

ContentLocation The Content-Location header of a MIME message content
body.

HTMLText A string value that represents the HTML version of the
content body of the Message object.

Importance An integer value that represents the priority of a Message
object. This priority is used by the messaging system to
schedule sending messages.

MessageFormat An integer value that indicates whether the message is MIME
encoded or simple text.

Recipients An object pointer either to a single Recipient object for the
current Message object or to the Recipients collection of the
Message object.

Sender The email address of the sender of the current Message
object. This is an AddressEntry object.

Size An integer value that represents the size in bytes of the
Message object.

Subject A string value representing the subject line that will be sent
with the current Message object.

Text A string value that contains the plain text of the message
content body.

TimeReceived A date/time value that represents the time and date when the
current Message object was received into the Inbox.

TimeSent A date/time value that represents the time and date when the
current Message object was sent from the Outbox.
264 Chapter 14 – Collaboration Data Objects for Windows NT Server

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Collaboration
Data O

bjects
The CDO Object Model
Messages Collection

Parent object: Folder object. An object reference to a Messages collection is
returned from the Messages property of a Folder object.

The Messages collection contains all the Message objects in the current Folder
object. Through the Messages collection, you can add Message objects to the
current folder (Inbox only). Tables 14-13 and 14-14 list the properties and
methods, respectively, of the Messages collection.

NewMail Object

Parent object: None.

The NewMail object is an addition to the original CDO library specifically for
adding messaging functionality to an application. It makes sending a mail message
as simple as writing a few lines of code. The NewMail object was built solely to

Table 14-11: Message Object Collections

Collection Description

Attachments Contains all the Attachment objects for the current message

Recipients Contains all the Recipient objects for the current message

Table 14-12: Message Object Methods

Method Description

Delete Removes the current Message object from the Messages collection

Send Sends the current Message object to all recipients represented in the
current Message object’s Recipients collection

Table 14-13: Messages Collection Properties

Property Description

Count An integer value that represents the number of Message objects
currently contained in the Messages collection

Item An object pointer that allows you to retrieve a specific Message
object from the Messages collection

Table 14-14: Messages Collection Methods

Method Description

Add Adds a Message object to the Messages collection

Delete Removes all the Message objects currently in the Messages
collection

GetFirst Retrieves the first Message object in the Messages collection

GetLast Retrieves the last Message object in the Messages collection

GetNext Retrieves the next Message object in the Messages collection in
relation to a specific Message object

GetPrevious Retrieves the previous Message object in the Messages collection
in relation to a specific Message object
The CDO Object Model 265

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The CDO Object Model
quickly generate messages from within an application. There is no user interac-
tion allowed for the NewMail object, and there is no support for an interface for
logging into a mail server.

None of the properties common to the other CDO library items are supported by
the NewMail object. The properties of the NewMail object are write-only. If you
add Recipient objects or Attachment objects to a NewMail object, those items
cannot be removed.

You cannot access the properties of any of the other CDO objects from within a
NewMail object. The NewMail object is not part of the CDO hierarchy but is
instantiated by itself.

You cannot remove the NewMail object from memory until you explicitly set the
NewMail object variable to Nothing.

All of the properties and methods of the NewMail object listed in Tables 14-15 and
14-16 are detailed in the “NewMail Object Properties Reference” and “Methods
Reference” sections of this chapter.

Table 14-15: NewMail Object Properties

Property Description

Bcc A string value that represents the recipients that will receive
a blind copy of the current message.

Body A string value that represents the NewMail’s content body
text.

BodyFormat An integer value that represents the text format for the
message content body text.

Cc A string value that represents the recipients who will receive
a copy of the current message.

ContentBase A string value that represents the base root URL for all URLs
relating to the NewMail object’s content.

ContentLocation An absolute or relative path for all URLs relating to the
NewMail object’s content.

From A string value containing the email address of the NewMail
message sender.

Importance An integer value that represents the priority of the NewMail
message. It is used by the messaging subsystem in sched-
uling the delivery of the current message.

MailFormat An integer value that represents the encoding method for the
NewMail object message’s content.

Subject A string value containing the subject string for the current
message.

To A string value that represents the email address of the recipi-
ents of the NewMail object’s message.

Value A string property that allows you to add headers, such as
File, Keywords, or Reference, to the current message. The
messaging subsystem must recognize these headers or they
will be ignored.

Version A string value that represents the version of the CDO library.
266 Chapter 14 – Collaboration Data Objects for Windows NT Server

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Collaboration
Data O

bjects
The CDO Object Model
Recipient Object

Parent object: Recipients collection

Allows you to set and retrieve the properties for a specific recipient of your
message. The properties and the single method of the Recipient object are shown
in Tables 14-17 and 14-18, respectively.

Recipients Collection

Parent object: Message object

The Recipients collection contains all the Recipient objects, representing the
receivers of the current message. Its properties and methods are listed in Tables
14-19 and 14-20, respectively.

Table 14-16: NewMail Object Methods

Method Description

AttachFile Attaches a file to the current message

AttachURL Attaches a file to the current message and associates a URL with
that attachment

Send Sends the current message to all the recipients listed in the To,
Cc, and Bcc properties

SetLocaleIDs Identifies the messaging user’s locale

Table 14-17: Recipient Object Properties

Property Description

Address A string value that represents the email address of the current
message recipient

Name A string value that represents the common name or alias for a
specific recipient of the current message

Type An integer value that represents the type of a specific recipient (To,
Cc, or Bcc):
cdoTo (1) = To
cdoCc (2) = Cc
cdoBcc (3) = Bcc

Table 14-18: Recipient Object Method

Method Description

Delete Deletes the current Recipient object from the Recipients collection.

Table 14-19: Recipients Collection Properties

Property Description

Count An integer value that indicates the number of Recipient objects
currently contained in the collection

Item An object property that returns a specific Recipient object in the
collection
The CDO Object Model 267

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

NewMail Object Properties Reference
Session Object

Parent object: None.

The Session object is the top-level object in the CDONTS hierarchical object
model. Unless you use the NewMail object, you must have an active Session object
to send messages using the CDONTS library. The Session object’s properties and
methods are shown in Tables 14-21 and 14-22, respectively.

NewMail Object Properties Reference

Bcc
objNewMail.Bcc = strBCCRecipListString

A string value containing a list of recipients who will receive a blind copy of the
current message.

Table 14-20: Recipients Collection Methods

Method Description

Add Adds a Recipient object to the collection

Delete Removes all the current Recipient objects from the collection

Table 14-21: Session Object Properties

Property Description

InBox A Folder object that represents the current Inbox of the
current session

MessageFormat An integer value that represents the default message encoding
for any Message object instantiated within the current session

Name A string value that represents the display name used to log
into the mail system for this session

OutBox A Folder object that represents the current Outbox of the
current session

Version A string value that represents the version of the CDO library

Table 14-22: Session Object Methods

Method Description

GetDefaultFolder Retrieves the default Folder object for the current session

Logoff Closes the current session with the mail system and logs off
from the system

LogonSMTP Initializes the current session

SetLocaleIDs Sets the default locale ID for messages sent or received
during this session
268 Chapter 14 – Collaboration Data Objects for Windows NT Server

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Collaboration
Data O

bjects
Body
Parameters

strBCCRecipListString
A string containing one or more recipient email addresses separated by semi-
colons (;)

Example

The following example demonstrates how to add a recipient to the Bcc list for the
current message.

<%

' Dimension local variables.
Dim objNewMail
Dim strBCCRecipList

' Instantiate a NewMail object.
Set objNewMail = Server.CreateObject("CDONTS.NewMail")

' Set the Bcc property of the NewMail object to the following
' email addresses: (1) tom@execucom.com, (2) billw@firebird.com
' and (3) helen@zoologyzine.com.
strBCCRecipList = _
 "tom@execucom.com;billw@firebird.com;helen@zoologyzine.com"

objNewMail.Bcc = strBCCRecipList

' Set the body string for the message.
objNewMail.Body = _
 "Wow, this message takes just a few lines of code."

' Send the message. For details about the Send method,
' see that section in this chapter.
objNewMail.Send(,,"This is the subject",,cdoHigh)

%>

Notes

As demonstrated in the example, the string you use to set the Bcc property of the
NewMail object can contain a single email address or multiple email addresses
separated by semicolons.

Body
objNewMail.Body = strBody

A string value that represents the body content text of the current mail message.

Parameters

strBody
A string value that contains the text you want sent as the body of your
message
Body 269

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

BodyFormat
Example

The following example demonstrates how to set the Body property for the current
message.

<%

' Dimension local variables.
Dim objNewMail

' Instantiate a NewMail object.
Set objNewMail = Server.CreateObject("CDONTS.NewMail")

' Set the body string for the message.
objNewMail.Body = _
 "Wow, this message takes just a few lines of code."

' Send the message. For details about the Send method,
' see that section in this chapter.
objNewMail.Send("me@here.com","you@there.com", _
 "This is the subject",,cdoHigh)

%>

Notes

The string you use to set the value of the Body property can contain either text or
HTML. If you wish to use HTML in the Body property, you must set the Body-
Format property to reflect this content type. The possible values for BodyFormat
are as follows:

BodyFormat
objNewMail.BodyFormat = intFormatType

An integer value that you can use to set whether the content of the current
message is plain text or HTML.

Parameters

intFormatType
An integer that can be set to either of the following constants:

CdoBodyFormatHTML(0)
The Body property represents HTML.

CdoBodyFormatText (1)
The Body property represents plain text.

Value Description

0 The value in the Body property includes some HTML.

1 The value in the Body property includes only text.
270 Chapter 14 – Collaboration Data Objects for Windows NT Server

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Collaboration
Data O

bjects
Cc
Example

The following example demonstrates how to set the BodyFormat property for the
current message.

<%

' Dimension local variables.
Dim objNewMail
Dim strBodyContent

' Instantiate a NewMail object.
Set objNewMail = Server.CreateObject("CDONTS.NewMail")

' Set the body string for the message.
strBodyContent = _
 "<HTML><HEAD><TITLE>My HTML Content</TITLE></HEAD><BODY>"
strBodyContent = strBodyContent & _
 "Wow, this message takes just a few lines of code.</BODY>"

' Set the BodyFormat so that the NewMail object
' treats the body contents as HTML.
objNewMail.BodyFormat = cdoBodyFormatHTML

' Set the body content string for the NewMail object.
objNewMail.Body = strBodyContent

' Send the message. For details about the Send method,
' see that section in this chapter.
objNewMail.Send("me@here.com","you@there.com", _
 "This is the subject",,cdoHigh)

%>

Notes

If you do not set the BodyFormat property, the default is cdoBodyFormatText.

Cc
objNewMail.Cc = strBCCRecipListString

A string value that contains a list of recipients who will receive a copy of the
current message.

Parameters

strCCRecipListString
A string containing one or more recipient email addresses separated by semi-
colons (;)

Example

The following example demonstrates how to add a recipient to the Cc list for the
current message.
Cc 271

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ContentBase
<%

' Dimension local variables.
Dim objNewMail
Dim strCCRecipList

' Instantiate a NewMail object.
Set objNewMail = Server.CreateObject("CDONTS.NewMail")

' Set the Bcc property of the NewMail object to the following
' email addresses: (1) billw@firebird.com and
' (2) helen@zoologyzine.com.
strCCRecipList = _
 "billw@firebird.com;helen@zoologyzine.com"

objNewMail.Cc = strCCRecipList

' Set the body string for the message.
objNewMail.Body = _
 "Wow, this message takes just a few lines of code."

' Send the message. For details about the Send method,
' see that section in this chapter.
objNewMail.Send(,,"This is the subject",,cdoHigh)

%>

Notes

As demonstrated in the example, the string you use to set the Cc property can
contain a single email address or multiple email addresses separated by
semicolons.

ContentBase
objNewMail.ContentBase = strContentBase

A string representing the base for all URLs referenced within the body of the
message content. This property is used only for MIME HTML (for more informa-
tion on MHTML, see RFC 2110). The ContentBase property represents the URL on
which all relative URLs in the HTML section of the body are based.

Parameters

strContentBase
A string containing a base URL for all URLs in the content HTML for the
current message

Example

The following example demonstrates the use of the ContentBase property in
conjunction with the ContentLocation property (see its entry later in the following
section).
272 Chapter 14 – Collaboration Data Objects for Windows NT Server

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Collaboration
Data O

bjects
ContentBase
<%

' Dimension local variables.
Dim objNewMail
Dim strBodyContent

' Instantiate a NewMail object.
Set objNewMail = Server.CreateObject("CDONTS.NewMail")

' Set the body string for the message.
strBodyContent = "<HTML><HEAD><TITLE>"
strBodyContent = strBodyContent & "My HTML Content"
strBodyContent = strbodyContent & "</TITLE></HEAD><BODY>"
strBodyContent = strBodyContent & "Here is an excellent image:"
strBodyContent = strBodyContent & "
"
strBodyContent = strBodyContent & ""
strBodyContent = strBodyContent & _
 "
I hope you like today's picture.</BODY>"

' Set the ContentBase and ContentLocation so the messaging
' system knows how to resolve the simple URL in the preceding
' image tag.
objNewMail.ContentBase = "http://www.MyPrimarySvr.com/"
objNewMail.ContentLocation = "graphics/dailypics/"

' Now the preceding img tag can be resolved to:
' www.MyPrimarySvr.com/graphics/dailypics/TodaysPic.jpg
' when it is displayed on the recipient's mail client.

' Set the BodyFormat so that the NewMail object
' treats the body contents as HTML.
objNewMail.BodyFormat = cdoBodyFormatHTML

' Set the body content string for the NewMail object.
objNewMail.Body = strBodyContent

' Send the message. For details about the Send method,
' see that section in this chapter.
objNewMail.Send("me@here.com","you@there.com", _
 "This is the subject",,cdoHigh)

%>

Notes

The ContentBase and ContentLocation properties are useful only for message body
content containing HTML.

The ContentBase property is to the URLs in the body HMTL content what the
ContentBase argument of the AttachURL method is to URLs in attached HTML files.
ContentBase 273

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ContentLocation
ContentLocation
objNewMail.ContentLocation = strContentLocation

A string property representing the absolute or relative path for all URLs referenced
within the body of the message content.

Parameters

strContentLocation
A string containing a relative or absolute path for all URLs in the content
HTML for the current message

Example

See the example for the ContentBase property in the preceding section.

Notes

The ContentBase and ContentLocation properties are useful only for message body
content containing HTML.

The ContentLocation property of the NewMail object is to the URLs in the body
HMTL content what the ContentLocation argument of the AttachURL method is to
URLs in attached HTML files.

From
objNewMail.From = strSenderAddr

A string value that represents the full messaging address of the sender of the
current message.

Parameters

strSenderAddr
A string value containing the messaging address of the person or process that
is sending the current NewMail object. This address is not resolved (checked)
before it is placed in the mail header sent with the NewMail object.

Example

This example demonstrates the use of the From property. It also shows that if you
set the From property and also include a From string in the Send method call, the
setting you used for the From property is ignored and only the string sent to the
Send method is actually used.

<%

' Dimension local variables.
Dim objNewMail

' Instantiate a NewMail object.
Set objNewMail = Server.CreateObject("CDONTS.NewMail")

' Set the body string for the message.
274 Chapter 14 – Collaboration Data Objects for Windows NT Server

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Collaboration
Data O

bjects
Importance
objNewMail.Body = _
 "Wow, this message takes just a few lines of code."

' Set the From property to the sender's email address.
objNewMail.From = "sender@usacom.com"

' Send the message. For details about the Send method,
' see that section in this chapter.
' NOTE: Because we are including a value for the From
' parameter to the Send method call, the value here
' is actually sent to the message's recipient.
objNewMail.Send("me@here.com","you@there.com", _
 "This is the subject",,cdoHigh)

%>

Notes

If you set the value of the From property and then also include a From parameter
in your call to the NewMail object’s Send method, the argument sent as a param-
eter to the Send method is the value actually placed in the message’s mail header.

You cannot include more than one address in setting the From property, nor can
you include a semicolon in the single address.

Importance
objNewMail.Importance = intPriority

An integer value that allows you to set the mail message’s priority, which is used
by the mail messaging system to schedule delivery of mail.

Parameters

intPriority
An integer that can contain any of the following CDO constants:

CdoLow (0)
Low. Schedule delivery during off-hours or times of low system use.

CdoNormal (1)
Normal. Schedule delivery during regular delivery schedules for normal
messages.

CdoHigh (2)
High. Attempt to deliver immediately.

Example
<%

' Dimension local variables.
Dim objNewMail

' Instantiate a NewMail object.
Set objNewMail = Server.CreateObject("CDONTS.NewMail")
Importance 275

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

MailFormat
' Set the body string for the message.
objNewMail.Body = _
 "Wow, this message takes just a few lines of code."

' Set the importance for the message to high.
objNewMail.Importance = cdoHigh

' Send the message. For details about the Send method,
' see that section in this chapter.
objNewMail.Send("me@here.com","you@there.com", _
 "This is the subject",,cdoHigh)

%>

Notes

If you do not set the Importance property, normal priority is assumed. If you set
the Importance property explicitly, then later use the Importance argument in your
call to the Send method, the second value (the argument to Send) is used and the
earlier setting is ignored.

The underlying mail messaging system must support this feature or it is ignored.

Finally, you have no way of ascertaining how the recipient’s mail messaging
system will handle your priority settings.

MailFormat
objNewMail.MailFormat = intFormatSetting

An integer value that allows you to set whether the current message body is MIME
encoded or simple text.

Parameters

intFormatSetting
An integer value that can contain either of the following constants:

CdoMailFormatMIME (0)
The contents of the current message will be in the MIME format.

CdoMailFormatText (1)
The contents of the current message will be plain text. This is the default.

Example

This example demonstrates the use of the MailFormat property of the NewMail
object.

<%

' Dimension local variables.
Dim objNewMail
Dim strRecipList

' Instantiate a NewMail object.
Set objNewMail = Server.CreateObject("CDONTS.NewMail")
276 Chapter 14 – Collaboration Data Objects for Windows NT Server

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Collaboration
Data O

bjects
Subject
' Set the MailFormat property to plain text (although
' this isn't strictly necessary since it's the default).
objNewMail.MailFormat = cdoMailFormatText

' Set the body string for the message.
objNewMail.Body = _
 "Wow, this message takes just a few lines of code."

' Send the message. For details about the Send method,
' that section in this chapter.
objNewMail.Send("me@here.com","you@there.com", _
 "This is the subject",,cdoHigh)

%>

Notes

The value of the MailFormat property becomes the default setting for the
EncodingMethod parameter of the NewMail object’s AttachURL and AttachFile
methods.

Subject
objNewMail.Subject = strSubjectString

The string that will be sent as the subject line for the current mail message.

Parameters

strSubjectString
A string that holds the subject line to be sent with the message. This can be
set to an empty string, but doing so defeats the purpose of the subject line.

Example
<%

' Dimension local variables.
Dim objNewMail
Dim strRecipList

' Instantiate a NewMail object.
Set objNewMail = Server.CreateObject("CDONTS.NewMail")

' Set the Subject property.
objNewMail.Subject = "RE: An important note for you"

' Set the body string for the message.
objNewMail.Body = _
 "Wow, this message takes just a few lines of code."

' Send the message. For details about the Send method,
' see that section in this chapter. Note that the
' subject parameter is not sent.
Subject 277

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

To
objNewMail.Send("me@here.com","you@there.com", _
 "This is the subject",,cdoHigh)

%>

Notes

You should always set the Subject property of a NewMail object (or include a
subject parameter in the call to the Send method for the current message).

If you set the Subject property of the NewMail property and also supply a subject
parameter when calling the Send method, the parameter value is used and the
Subject property setting is ignored.

To
objNewMail.To = strRecipListString

A string value that contains a list of recipients who will receive the current message.

Parameters

strRecipListString
A string containing one or more recipient email addresses separated by semi-
colons (;)

Example

The following example demonstrates how to add a recipient to the To list for the
current message.

<%

' Dimension local variables.
Dim objNewMail
Dim strRecipList

' Instantiate a NewMail object.
Set objNewMail = Server.CreateObject("CDONTS.NewMail")

' Set the Newail object's To property to the following
' email addresses: (1) tom@execucom.com,
' (2) billw@firebird.com, and (3) helen@zoologyzine.com.
strRecipList = _
 "tom@execucom.com;billw@firebird.com;helen@zoologyzine.com"

objNewMail.To = strRecipList

' Set the body string for the message.
objNewMail.Body = _
 "Wow, this message takes just a few lines of code."

' Send the message. For details about the Send method,
' see the section on this chapter.
objNewMail.Send(,,"This is the subject",,cdoHigh)

%>
278 Chapter 14 – Collaboration Data Objects for Windows NT Server

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Collaboration
Data O

bjects
Value
Notes

As the example shows, the string assigned to the To property can contain a single
email address or multiple email addresses separated by semicolons.

Value
objNewMail.Value(strHeaderName) = strHeaderValue

A string value that represents an additional header to be added to the mail
message. The Value property allows you to set the value of this header.

Parameters

strHeaderName
A string containing the name of the header you wish to add to your mail
message

strHeaderValue
A string containing the value of the header represented by strHeaderName

Example

The following example demonstrates how to use the Value property to add a new
header to your current message.

<%

' Dimension local variables.
Dim objNewMail
Dim strRecipList

' Instantiate a NewMail object.
Set objNewMail = Server.CreateObject("CDONTS.NewMail")

' Set the Value property to add a ReplyTo header to
' the current message before it is sent.
objNewMail.Value("ReplyTo") = "Keyton<me@here.com>"

' Set the body string for the message.
objNewMail.Body = _
 "Wow, this message takes just a few lines of code."

' Send the message. For details on the Send method,
' see that ssection in this chapter
objNewMail.Send("me@here.com","you@there.com", _
 "This is the subject",,cdoHigh)

%>

Notes

The Value property of the NewMail object should be used sparingly and only
when you know with certainty that the receiving mail messaging system will
process the added header(s) correctly.
Value 279

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Version
You can set the value of a header more than once. However, this does not over-
write the first value, but rather adds a second header with the second value.

The header name you include must match exactly what the receiving mail
messaging system expects, or your header will be ignored or misinterpreted. For
example, the ReplyTo header added in the example is not the same as the
popular Reply-To header, and would thus be misinterpreted.

Version
objNewMail.Version

A read-only string value holding the current version of CDONTS being used.

Parameters

None

Example
<%

' Dimension local variables.
Dim objNewMail
Dim strCDOVersion

' Instantiate a NewMail object.
Set objNewMail = Server.CreateObject("CDONTS.NewMail")

' The Version property for this version of CDONTS will
' always return the string "1.2".
strCDOVersion = objNewMail.Version

%>

Notes

The Version property is read-only. This property has limited functionality in typical
applications.

Methods Reference

AttachFile
objNewMail.AttachFile (strSource [, strFileName]
[, lngEncodingSetting])

Embeds an attachment from a file into a mail message.

Parameters

strSource
A string containing the pathname and filename of the file to embed
280 Chapter 14 – Collaboration Data Objects for Windows NT Server

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Collaboration
Data O

bjects
AttachURL
strFileName
A string containing the name that will be displayed in the mail message to
represent the embedded attachment

lngEncodingSetting
A Long that can contain either of the following CDO constants:

CdoEncodingUUEncode (0)
The attachment you embed in your message will be encoded in the
UUEncode format. This is the default value.

cdoEncodingBase64 (1)
The attachment you embed in your message will be encoded in the base
64 format.

Example
<%

' Dimension local variables.
Dim objNewMail
Dim strRecipList

' Instantiate a NewMail object.
Set objNewMail = Server.CreateObject("CDONTS.NewMail")

 ' Set the body string for the message.
objNewMail.Body = _
 "Wow, this message takes just a few lines of code."

' Attach a file in the current message.
objNewMail.AttachFile "c:\Data\Proposal.doc", _
 "Proposal.Doc", cdoEncodingBase64

' Send the message. For details about the Send method,
' see that section in this chapter.
objNewMail.Send("me@here.com","you@there.com", _
 "This is the subject",,cdoHigh)

%>

Notes

If you set the MailFormat property of the NewMail object, you do not have to
include a lngEncodingSetting parameter in your call to the AttachFile method.

AttachURL
objNewMail.AttachURL(strSource [, strContentLocation] _
[, strContentBase] [, lngEncodingSetting])

Associates a URL with the attachment embedded in your message.
AttachURL 281

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

AttachURL
Parameters

strSource
A string containing the pathname and filename for the file that you want to
embed in your message

strContentLocation
A string containing a relative or absolute path for all URLs in the content
HTML for the current message

strContentBase
A string containing a base URL for all URLs in the content HTML for the
current message

lngEncodingSetting
A Long parameter that can contain either of the following CDO constants:

CdoEncodingUUEncode (0)
The attachment you embed in your message will be encoded in the
UUEncode format. This is the default value.

cdoEncodingBase64 (1)
The attachment you embed in your message will be encoded in the base
64 format.

Example
<%

' Dimension local variables.
Dim objNewMail
Dim strRecipList

' Instantiate a NewMail object.
Set objNewMail = Server.CreateObject("CDONTS.NewMail")

 ' Set the body string for the message.
objNewMail.Body = _
 "Wow, this message takes just a few lines of code."

' Attach an attachment to your file and associate a URL
' with it.
objNewMail.AttachURL "Proposal.htm", "htmdocs/april/", _
 http://www.mysvr.com/graphics/, cdoEncodingBase64

' Send the message. For details about the Send method,
' see tha section in this chapter.
objNewMail.Send("me@here.com","you@there.com", _
 "This is the subject",,cdoHigh)

%>

Notes

The AttachURL method allows you to add an attachment and an associated URL.
This is particularly important when the attachment internally references various
282 Chapter 14 – Collaboration Data Objects for Windows NT Server

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Collaboration
Data O

bjects
Send (NewMail Object)
images or hyperlinks containing only relative links. For example, an attached
HTML document might contain the following hyperlink:

Help Document

When this attached document is opened by the message recipient, he will see the
following hyperlink, assuming the sender used the syntax in the preceding
example:

Help Document

Send (NewMail Object)
objNewMail.Send (strFrom [, strTo] [, strSubject] [,strBody] _
[,intImportance])

Sends the current message to its recipients.

Parameters

strFrom
A string value containing the full messaging address of the message’s sender.
You cannot have semicolons in this string, nor can you specify multiple
senders.

strTo
A string value containing the message’s primary recipients. You can have
multiple recipient addresses in this string, but each must be separated from
the last using a semicolon.

strSubject
A string value containing the subject line for the message.

strBody
A string value containing the body content for the message.

intImportance
An integer value corresponding to the priority of the message. The possible
values for this parameter are as follows:

CdoLow (0)
The importance is low. Schedule delivery during off-hours or times of
low system use.

CdoNormal (1)
The importance is normal. Schedule delivery during regular delivery
schedules for normal messages.

CdoHigh (2)
The importance is high. Attempt to deliver immediately.

Example
<%

' Dimension local variables.
Send (NewMail Object) 283

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SetLocaleIDs (NewMail Object)
Dim objNewMail
Dim strRecipList

' Instantiate a NewMail object.
Set objNewMail = Server.CreateObject("CDONTS.NewMail")

 ' Set the body string for the message.
objNewMail.Body = _
 "Wow, this message takes just a few lines of code."

' Send the message.
objNewMail.Send("me@here.com","you@there.com", _
 "This is the subject",_
 "This is the body of the message",cdoHigh)

%>

Notes

The Send method does not require any arguments. However, if you include argu-
ments, the values you include in your call override the values set using the
corresponding property. For example, if you set the Importance property for your
NewMail object to cdoHigh and then include an intImportance parameter of
cdoLow in your call to the Send method, the message will be sent with low
priority.

SetLocaleIDs (NewMail Object)
objNewMail.SetLocaleIDs (lngCodePageID)

Sets the message sender’s locale. This locale setting controls how certain internal
features of the message, such as dates, will be evaluated.

Parameters

lngCodePageID
A required Long value that represents the code page identifier for the message

Example
<%

' Dimension local variables.
Dim objNewMail
Dim strRecipList
Dim lngChineseCodePage 950

' Instantiate a NewMail object.
Set objNewMail = Server.CreateObject("CDONTS.NewMail")

 ' Set the body string for the message.
objNewMail.Body = _
 "Wow, this message takes just a few lines of code."
284 Chapter 14 – Collaboration Data Objects for Windows NT Server

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Collaboration
Data O

bjects
SetLocaleIDs (NewMail Object)
' Set the LocaleID to that of Chinese for this message.
lngChineseCodePage = 950
objNewMail.SetLocaleID = lngChineseCodePage
...[additional code]
%>

Notes

The LocaleID setting for a sender’s message indicates how the sender’s machine
formats dates and times. It also dictates the character selection for the page. You
can obtain the current CodePage for a WinNT system by calling the GetCPInfo API
function.

If you do not use this method to set a LocaleID, your messaging system assumes
that your message should use the value stored for this property in your system’s
registry database.

The SetLocaleIDs method will check the validity of your argument before setting
the Locale ID for the current message.
SetLocaleIDs (NewMail Object) 285

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Chapter 15Content Linking
CHAPTER 15

Content Linking Component

Webmasters attempting to reach a wider audience often model their web sites to

fit a paradigm familiar to the site’s clients. One popular paradigm is that of a book
or a newspaper. Users unfamiliar with the web and the power of hyperlinking are
often looking for just such a paradigm to help ease them from paper-based infor-
mation to web-based information. The familiar context of a current page, previous
page, and next page is very familiar and easy to understand.

The links from page to page are simple and easy to navigate. Each page has only
a link to the previous page (if it exists) and a link to the next page (if it exists).
This simple theme has helped not only to reach a wider audience but also to
present large quantities of information, such as that in a newspaper archive, for
example.

The only problem with such a system is that maintenance, while simple, can be
extremely tedious. For example, imagine that you have four pages and decide to
remove the third, thus altering the Next link on the second page and the Previous
link on the fourth. This change is a simple one. Now, imagine you have a thou-
sand pages, and you must remove 90 of them from various places in the series.
Such a task would be tedious and therefore error prone, to say the least. Thank-
fully, there is a better way.

Starting as an unsupported add-on, Microsoft introduced the Content Linking
component. Using the Content Linking component, you can perform maintenance
much more easily. Here’s how it works: You instantiate a NextLink object from the
Content Linking component in your ASP application. This NextLink object main-
tains the current, previous, and next documents in a stream of documents by
reading each page’s entry (and its surrounding entries) from a special text file
called the Content Linking file. This file must reside in a virtual directory on your
web site and be accessible from the page containing the instantiated NextLink
object. The Content Linking file contains a list of URLs of web pages with a text
description for each page. This file is detailed in the section “Content Linking List.”
286

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Content
Linking

Accessory Files/Required DLL Files
Using a NextLink object and a Content Linking file, maintenance of a long list of
interlinked web pages is as simple as altering the text file. To remove a page from
the stream of web pages, you simply remove its entry from the Content Linking
file. To change a page, you simply open the Content Linking file and change the
page’s URL.

Accessory Files/Required DLL Files

Nextlink.DLL

The dynamic link library containing the Content Linking component. It must be
registered on the web server before it can be instantiated in your web
applications.

Content Linking List

The list of documents you wish to link one after another in your web site. For
each entry in this list, there is a URL, a text description for the page, and an
optional comment about the page. This file can reside anywhere on your server as
long as it is within the directory structure of a virtual root. You can assign this file
any legal filename.

Each line of the Content Linking file must match the following format:

DocumentURL [DocumentDesc [Comment]]

where each segment per line is separated by a single Tab character, and each line
is separated from the next using a single carriage return/linefeed combination. The

Content Linking Summary
Properties

None

Collections
None

Methods
GetListCount
GetListIndex
GetNextDescription
GetNextURL
GetNthDescription
GetNthURL
GetPreviousDescription
GetPreviousURL

Events
None
Accessory Files/Required DLL Files 287

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Instantiating a Content Linking Object
first segment, the DocumentURL, is the only required segment. This and the other
two segments are described here:

DocumentURL
A mandatory part of each content line in the list, it is a string value repre-
senting the full virtual or relative path to the web document. You cannot use
physical paths, and you cannot use absolute URLs (those beginning with
HTTP://, //, or \\). If you do so and attempt to call one of the following
methods, an error will be raised. When filling your Content Linking list file,
ensure that each line is distinct and that you avoid any pages with a next or
previous page that references the same URL.

DocumentDesc
An optional string describing the web page pointed to by the DocumentURL
string. You can use it to display a name or other descriptive information for its
link. You cannot have a tab within the DocumentDesc segment.

Comments
An optional string commenting the web page pointed to by the DocumentURL
string. The user will not see this string, and it should be thought of only as a
way to help the webmaster maintain this file. No method of the Content
Linking component processes this segment of a line.

The following is a sample Content Linking list containing eight items:

/newinfo/headlines.asp Headlines New headline stories.
/newinfo/Page2header.htm Human Interest Variety section.
/Ad1/AdPage1.asp Advertisement Page1 First Ad Page.
/newinfo/Sports.asp Sports Sports section.
/newinfo/OpEd.asp Opinions Editor opinion.
/Ad1/AdPage1.asp Advertisement Page1 Second Ad Page.
/Class1/Class1.asp Classifieds
/Class2/Class2.asp Classifieds

Though it is hard to distinguish where each segment begins and ends, the compo-
nent looks for the Tab character. Notice that you do not have to have a comment.
Also, a page can exist in more than one place in the file, as long as a loop does
not arise from its improper placement. Finally, the document description field can
be the same for more than one page listed in the Content Linking file.

Instantiating a Content Linking Object
To create an object variable containing an instance of the Content Linking compo-
nent, use the Server object’s CreateObject method. The syntax for the CreateObject
method is as follows:

Set objMyObject = Server.CreateObject(strProgId)

where:

• The objMyObject parameter represents the name of the Content Linking
object.

• The strProgId parameter represents the programmatic ID (ProgID) of the
Content Linking component, which is MSWC.NextLink.
288 Chapter 15 – Content Linking Component

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Content
Linking

Comments/Troubleshooting
Example
<%

' The following code uses the CreateObject method of the
' Server object to instantiate a Content Linking object
' on the server.
Dim objNextLink

Set objNextLink = Server.CreateObject("MSWC.NextLink")

%>

For more details on the use of the CreateObject method, see its documentation in
Chapter 8, Server Object.

Comments/Troubleshooting
Using the Content Linking component is simple. Remember to separate each field
in the Content Linking file with a tab character and each line with a single carriage
return/linefeed combination.

One excellent use of the Content Linking component that I have seen is to dynam-
ically generate a table of contents for your site. For example, the following code
reads the Content Linking list called MyContentList.TXT and from it generates a
table of contents. For more details about the methods used, see the following
Methods reference.

<%
' Dimension local variables.
Dim objNextLink
Dim intTotalCount
Dim intCounter

' Instantiate a NextLink object for this script.
Set objNextLink = Server.CreateObject("MSWC.NextLink")

' Retrieve a total count of items in the Content Linking
' file.
intTotalCount = _
 objNextLink.GetListCount("/MyContentList.TXT")

' Iterate through all the items in the Content Linking
' list and generate an entry in an ordered list.
%>

<%
For intCounter = 1 to intTotalCount
 strOutput = objNextLink.GetNthURL("/MyContentList.TXT", _
 intCounter)

%>

 <!-- Create a hyperlink to the URL for the current item -->
Comments/Troubleshooting 289

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Methods Reference
 <!-- in the list. -->
 <a href= "<%=strOutput%>">

 <!-- Retrieve the text description for that URL. -->
 objNextLink.GetNthDescription("/MyContentList.TXT", _
 intCounter)

<%
Next
%>

<%

' Release the memory held for the NextLink object.
Set objNextLink = Nothing
%>

Methods Reference

GetListCount
objNextLink.GetListCount(strContentLinkList)

Retrieves an integer representing the total number of entries in the Content Linking list.

Parameters

strContentLinkList
A string value representing the virtual or relative pathname and filename of
your Content Linking file. You cannot use physical paths or absolute URLs
(those beginning with HTTP://, //, or \\) for this parameter.

Example
<%

 ' Dimension local variables.
Dim objNextLink
Dim intListCount

' Create an instance of the NextLink object.
Set objNextLink = Server.CreateObject("MSWC.NextLink")

' Retrieve a count of the pages listed in the Content
' Linking list file.
intListCount = _
 objNextLink.GetListCount("/Content/MyContentLinkList.txt")

' Free the memory consumed by the NextLink object.
Set objNextLink = Nothing

%>

See the full example at the end of this chapter.
290 Chapter 15 – Content Linking Component

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Content
Linking

GetListIndex
GetListIndex
objNextLink.GetListIndex(strContentLinkList)

Returns an integer containing the position (starting with position 1) of the current
item in the Content Linking list. You can use this method to determine if you are
at the last item in the content linking list or whether there are more items to which
to navigate.

Parameters

strContentLinkList
A string value representing the virtual or relative pathname and filename of
your Content Linking file. You cannot use physical paths or absolute URLs
(those beginning with HTTP://, //, or \\) for this parameter.

Example
<HTML>
<HEAD>
<TITLE>Document List</TITLE>
<BODY>
<%

' Dimension local variables.
Dim objNextLink
Dim intCurrentPos

' Create an instance of the NextLink object.
Set objNextLink = Server.CreateObject("MSWC.NextLink")

' Retrieve a position of the current page listed in
' the Content Linking list file.
intCurrentPos = _
 objNextLink.GetListIndex("/Content/MyContentLinkList.txt")

' In this instance, calling GetListIndex will return the
' number 1 if this page is in the content linking list.
' Otherwise, it will return 0.

' Free the memory consumed by the NextLink object.
Set objNextLink = Nothing

%>
...[additional code]

Notes

The return value is zero (0) if the current page is not in the Content Linking list
file.

In addition to the previous example, see the full example at the end of this
chapter.
GetListIndex 291

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

GetNextDescription
GetNextDescription
objNextLink.GetNextDescription(strContentLinkList)

Returns a string containing the description of the next document listed in the
Content Linking list.

Parameters

strContentLinkList
A string value representing the virtual or relative pathname and filename of
your Content Linking file. You cannot use physical paths or absolute URLs
(those beginning with HTTP://, //, or \\) for this parameter.

Example
<HTML>
<HEAD>
<TITLE>Document List</TITLE>
<BODY>
<%

 ' Dimension local variables.
Dim objNextLink
Dim strNextDesc

' Create an instance of the NextLink object.
Set objNextLink = Server.CreateObject("MSWC.NextLink")

' Retrieve a description text for the next item in the
' Content Linking list file.
strNextDesc = _
 objNextLink.GetNextDescription("/MyContentLinkList.txt")

 ' Display the next description to the client.
%>

<%= strNextDesc%>

<%
' Free the memory consumed by the NextLink object.
Set objNextLink = Nothing

%>
...[additional HTML and code]

Notes

If the current document is not listed in the Content Linking list file, the description
text for the last item in the list file is returned by default. If the current item is the
last item in the list, calling GetNextDescription returns an empty string (“”).

In addition to the previous example, see the full example at the end of this
chapter.
292 Chapter 15 – Content Linking Component

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Content
Linking

GetNextURL
GetNextURL
objNextLink.GetNextURL(strContentLinkList)

Returns a string containing the URL entry of the next document listed in the
Content Linking list.

Parameters

strContentLinkList
A string value representing the virtual or relative pathname and filename of
your Content Linking file. You cannot use physical paths or absolute URLs
(those beginning with HTTP://, //, or \\) for this parameter.

Example
<%

' Dimension local variables.
Dim objNextLink
Dim strNextDesc
Dim strNextURL

' Create an instance of the NextLink object.
Set objNextLink = Server.CreateObject("MSWC.NextLink")

' Retrieve a description text for the next item in the
' Content Linking list file.
strNextDesc = _
 objNextLink.GetNextDescription("/MyContentLinkList.txt")

' Retrieve a URL for the next item in the Content Linking
' list file.
strNextURL = _
 objNextLink.GetNextURL("/MyContentLinkList.txt")

' Use strNextURL to create a link to the item whose
' description you retrieved using GetNextDescription.
%>

<A HREF = "<%= strNextURL %>"><%= strNextDesc%>

<%
' Free the memory consumed by the NextLink object.
Set objNextLink = Nothing

%>
...[additional HTML and code]

Notes

If the current document is not listed in the Content Linking list file, the URL text
for the last item in the list file is returned by default.

Using GetNextURL with a Content Linking file, you do not have to change the
code within your HTML to update a “NEXT PAGE” hyperlink, for example. You
GetNextURL 293

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

GetNthDescription
have only to change the Content Linking list, and the component will automati-
cally update this link for you.

In addition to the previous example, see the full example at the end of this
chapter.

GetNthDescription
objNextLink.GetNthDescription(strContentLinkList, intItemIndex)

Returns a string containing the description for the item in the Nth position (on the
Nth line) in the Content Linking list.

Parameters

strContentLinkList
A string value representing the virtual or relative pathname and filename of
your Content Linking file. You cannot use physical paths or absolute URLs
(those beginning with HTTP://, //, or \\) for this parameter.

intItemIndex
An integer indicating the index of the item whose description you wish to
retrieve from the Content Linking list.

Example
<%
' Dimension local variables.
Dim objNextLink
Dim intTotalCount
Dim intCounter

' Instantiate a NextLink object for this script.
Set objNextLink = Server.CreateObject("MSWC.NextLink")

' Retrieve a total count of items in the Content Linking file.
intTotalCount = _
 objNextLink.GetListCount("/MyContentList.TXT")

' Iterate through all the items in the Content Linking
' list and generate an entry in an ordered list.
%>

<%
For intCounter = 1 to intTotalCount
%>

 <!-- Create a hyperlink to the URL for the current item -->
 <!-- in the list. -->
 <a href "<%=
 objNextLink.GetNthURL("/MyContentList.TXT", _
 intCounter)%>">

 <!-- Retrieve the text description for that URL. -->
294 Chapter 15 – Content Linking Component

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Content
Linking

GetNthURL
 objNextLink.GetNthDescription("/MyContentList.TXT", _
 intCounter)

<%
Next
%>

<%

' Release the memory held for the NextLink object.
Set objNextLink = Nothing
%>

Notes

If there is not an item in the position sent in the intItemIndex parameter, an
error results. To prevent this, you can compare the value to be supplied as the
intItemIndex argument with the value returned by a call to the GetListCount
method.

In addition to the previous example, see the full example at the end of this
chapter.

GetNthURL
objNextLink.GetNthURL(strContentLinkList, intItemIndex)

Returns a string containing the URL for the item in the Nth position (on the Nth
line) in the Content Linking list.

Parameters

strContentLinkList
A string value representing the virtual or relative pathname and filename of
your Content Linking file. You cannot use physical paths or absolute URLs
(those beginning with HTTP://, //, or \\) for this parameter.

intItemIndex
The index of the item in the Content Linking list whose URL you wish to
retrieve. This is an integer parameter.

Example
<%
' Dimension local variables.
Dim objNextLink
Dim intTotalCount
Dim intCounter

' Instantiate a NextLink object for this script.
Set objNextLink = Server.CreateObject("MSWC.NextLink")

' Retrieve a total count of items in the Content
' Linking file.
intTotalCount = _
GetNthURL 295

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

GetPreviousDescription
 objNextLink.GetListCount("/MyContentList.TXT")

' Iterate through all the items in the Content Linking
' list and generate an entry in an ordered list.
%>

<%
For intCounter = 1 to intTotalCount
%>

 <!-- Create a hyperlink to the URL for the current -->
 <!-- item in the list. -->
 <a href "<%=
 objNextLink.GetNthURL("/MyContentList.TXT", _
 intCounter)%>">

 <!-- Retrieve the text description for that URL. -->
 objNextLink.GetNthDescription("/MyContentList.TXT", _
 intCounter)

<%
Next
%>

<%

' Release the memory held for the NextLink object.
Set objNextLink = Nothing
%>

Notes

If there is not an item in the position indicated by the intItemIndex parameter,
an error results. To prevent this, you can compare the value to be supplied as the
intItemIndex argument with the value returned by a call to the GetListCount
method.

In addition to the previous example, see the full example at the end of this
chapter.

GetPreviousDescription
objNextLink.GetPreviousDescription(strContentLinkList)

Returns an ASCII string containing the description of the previous document listed
in the Content Linking list.
296 Chapter 15 – Content Linking Component

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Content
Linking

GetPreviousURL
Parameters

strContentLinkList
A string value representing the virtual or relative pathname and filename of
your Content Linking file. You cannot use physical paths or absolute URLs
(those beginning with HTTP://, //, or \\) for this parameter.

Example
<HTML>
<HEAD>
<TITLE>Document List</TITLE>
<BODY>
<%

' Dimension local variables.
Dim objNextLink
Dim strPrevDesc

' Create an instance of the NextLink object.
Set objNextLink = Server.CreateObject("MSWC.NextLink")

' Retrieve a description text for the previous item in
' the Content Linking list file.
strPrevDesc = _
 objNextLink.GetPreviousDescription("/MyContentLinkList.txt")

 ' Display the previous description to the client.
%>

<%= strPrevDesc%>

<%
' Free the memory consumed by the NextLink object.
Set objNextLink = Nothing

%>
...[additional HTML and code]

Notes

If the current page cannot be found in the Content Linking list file, the description
text for the first item in the list file is returned by default. If the current item is the
first item in the list, calling GetPreviousDescription will return an empty string (“”).

In addition to the previous example, see the full example at the end of this
chapter.

GetPreviousURL
objNextLink.GetPreviousURL(strContentLinkList)

Returns a string containing the URL entry of the previous document listed in the
Content Linking list.
GetPreviousURL 297

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

GetPreviousURL
Parameters

strContentLinkList
A string value representing the virtual or relative pathname and filename of
your Content Linking file. You cannot use physical paths or absolute URLs
(those beginning with HTTP://, //, or \\) for this parameter.

Example
<%

' Dimension local variables.
Dim objNextLink
Dim strPrevDesc
Dim strPrevURL

' Create an instance of the NextLink object.
Set objNextLink = Server.CreateObject("MSWC.NextLink")

' Retrieve a description text for the previous item in
' the Content Linking list file.
strPrevDesc = _
 objNextLink.GetPreviousDescription("/MyContentLinkList.txt")

' Retrieve a URL for the previous item in the Content
' Linking list file.
strPrevURL = _
 objNextLink.GetPreviousURL("/MyContentLinkList.txt")

' Use strNextURL to create a link to the item whose
' description you retrieved using GetPreviousDescription.
%>

<A HREF = "<%= strPrevURL %>"><%= strPrevDesc%>

<%
' Free the memory consumed by the NextLink object.
Set objNextLink = Nothing

%>
...[additional HTML and code]

Notes

If the current page cannot be found in the Content Linking list file, the URL text
for the first item in the list file is returned by default.

Using GetPreviousURL with a Content Linking file, you do not have to change the
code within your HTML to update a “PREVIOUS PAGE” hyperlink, for example.
You only have to change the Content Linking list, and the component will auto-
matically update this link for you.

In addition to the previous example, see the full example at the end of this
chapter.
298 Chapter 15 – Content Linking Component

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Content
Linking

Content Linking Component Example
Content Linking Component Example
The following example code demonstrates a complete Content Linking compo-
nent example in one place to illustrate the overall mechanism of the Content
Linking component and its accessory content list file.

The scenario is simple. The following set of scripts demonstrates the dynamic
construction of the first few pages of an online book introducing programming.
There are five content files (Content1.ASP through Content5.ASP). For each file,
you want to provide your users with an indicator of current page number (out of
the total number of pages), a previous-page link, and a next-page link. You know
the content files will change and pages will be inserted and removed often. This is
a good example of a programming problem in which the Content Linking compo-
nent can help.

The following script is the HTML version of the fourth page in our online book:

<HTML>
<HEAD><TITLE>Introduction to Programming: Lesson 4 Looping</
TITLE></HEAD>
<BODY>
Welcome to the Introduction to Programming, Lesson 4:
Looping.

[TEXT ABOUT LOOPING AND LOOP STRUCTURES]

<!-- Begin navigation section construction -->
<HR>
You are currently viewing page # 4 of 5.

Use the following links to navigate:

<A HREF "Content3.asp">Previous: Lesson 3 Variables

<A HREF "Content1.asp">Home: Lesson 1 Introduction

<A HREF "Content5.asp">Next: Lesson 5 Pointers

<!-- End navigation section construction -->
</BODY>
</HTML>

This HTML page could be easily created by hand and kept up-to-date manually
when pages are inserted and removed. However, you can see that with many
pages, such upkeep would be tedious, at best. For example, suppose we had to
insert a page (Lesson 3a: Advanced Variables) between lessons 3 and 4. To do this
manually, everything in bold in the previous example would have to be changed
by hand. If we removed the current home page and added a new one (with a
different name and description), we would have to make even more changes.

The Content Linking component can help us here. We start by creating a Content
Linking list, whose filename is ONLINE_CONTENT_LIST.TXT:

Content1.asp Lesson 1 Background
Content2.asp Lesson 2 Code Style
Content3.asp Lesson 3 Variables
Content4.asp Lesson 4 Looping
Content5.asp Lesson 5 Pointers
Content Linking Component Example 299

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Content Linking Component Example
The file contains one line for each of our five content pages. Each line consists of
a filename and a file description, separated by a Tab character. We can now add
the following code to the navigation section of each page in our online book:

<!-- Begin navigation section construction -->
<HR>
<%
Dim objContentLink

Set objContentLink = Server.CreateObject("MSWC.NextLink")

' Retrieve the index of the current page.
intCurrentPageNumber = _
 objContentLink.GetListIndex("ONLINE_CONTENT_LIST.TXT")

' Retrieve the total number of pages.
intTotalPageCount = _
 objContentLink.GetListCount("ONLINE_CONTENT_LIST.TXT")

' Retrieve the URL for the first page in the series.
strHomeURL = _
 objContentLink.GetNthURL("ONLINE_CONTENT_LIST.TXT", 1)

' Retrieve the description for the first page in the series
strHomeDesc = objContentLink.GetNthDescription(_
 "ONLINE_CONTENT_LIST.TXT", 1)

' If the current page index is greater than 1 (i.e., it
' is after the home page), then retrieve information
' about the previous page.
If intCurrentPageNumber > 1 Then
 ' Retrieve the description for the first page in the
 ' series.
 strPrevURL = objContentLink.GetPreviousURL(_
 "ONLINE_CONTENT_LIST.TXT", 1)

 ' Retrieve the description for the previous page in
 ' the series.
 strPrevDesc = objContentLink.GetPreviousDescription(_
 "ONLINE_CONTENT_LIST.TXT", 1)
End If

' If the current page index is less than the total page
' count (i.e., it is before the last page), then retrieve
' information about the next page.
If intCurrentPageNumber < intTotalPageCount Then

 ' Retrieve the URL for the previous page in the series.
 strNextURL = objContentLink.GetNextURL(_
 "ONLINE_CONTENT_LIST.TXT", 1)

 ' Retrieve the description for the next page in the series.
 strNextDesc = objContentLink.GetNextDescription(_
 "ONLINE_CONTENT_LIST.TXT", 1)
300 Chapter 15 – Content Linking Component

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Content
Linking

Content Linking Component Example
End If

' Now use the preceding information to construct the
' navigation section of the current page.
%>

You are currently viewing page #
<%=intCurrentPageNumber%> of
<%=intTotalPageCount%>.

Use the following links to navigate:

<%If intCurrentPageNumber > 1 Then%>
<A HREF "<%=strPrevURL%>">Previous:
<%=strPrevDesc%>

<%End If%>

<A HREF "<%=strHomeURL%>">Home: <%=strHomeDesc%>

<%If intCurrentPageNumber < intTotalPageCount%>
<A HREF "<%=strNextURL%>">Next: <%=strNextDesc%>

<%End If%>
<!-- End navigation section construction -->

If we were to replace the following code in bold:

<HTML>
<HEAD><TITLE>Introduction to Programming: Lesson 4 Looping</
TITLE></HEAD>
<BODY>
Welcome to the Introduction to Programming, Lesson 4:
Looping.

[TEXT ABOUT LOOPING AND LOOP STRUCTURES]

<!-- Begin navigation section construction -->
<HR>
You are currently viewing page # 4 of 5.

Use the following links to navigate:

<A HREF "Content3.asp">Previous: Lesson 3 Variables

<A HREF "Content1.asp">Home: Lesson 1 Introduction

<A HREF "Content5.asp">Next: Lesson 5 Pointers

<!-- End navigation section construction -->
</BODY>
</HTML>

with the Content Linking component code segment preceding it, the result would
be a navigation links section that stays current with the Content Linking list. All
you would have to do to update the links is to update the Content Linking list file.

We could even go one step further and save the previous code as an include file
(called NavConstruct.INC) and include it anywhere in the content pages for our
online book:

<HTML>
<HEAD><TITLE>Introduction to Programming: Lesson 4 Looping
</TITLE></HEAD>
Content Linking Component Example 301

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Content Linking Component Example
<BODY>
Welcome to the Introduction to Programming, Lesson 4:
Looping.

[TEXT ABOUT LOOPING AND LOOP STRUCTURES]

<!-- #INCLUDE FILE = NavConstruct.INC-->
</BODY>

Now suppose we must add a page between pages 3 and 4. All that we must do,
after creating the page itself (and including our NavConstruct.INC include file), is
to update the ONLINE_CONTENT_LIST.TXT Content Linking list file:

Content1.asp Lesson 1 Background
Content2.asp Lesson 2 Code Style
Content3.asp Lesson 3 Variables
Content3a.asp Lession 3a Advanced Variables
Content4.asp Lesson 4 Looping
Content5.asp Lesson 5 Pointers

All the links constructed using the Content inking list component are updated
upon the code’s execution and the links stay correct. You can avoid the task of
going into each affected file and updating hardcoded links. It is all done for you.
302 Chapter 15 – Content Linking Component

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Chapter 16Content Rotator
CHAPTER 16

Content Rotator Component

More often than not, the greatest challenge facing a webmaster has little to do with
Content
Rotator
the technology running her web site. The biggest challenge is providing enough
different content quickly enough so that her clients keep coming back to the site
and keep telling others about the site. Clients today have millions of sites to
choose from—often several hundred on any given subject. Why frequent yours if
the content doesn’t change often enough to make the few clicks it takes to get
there worth the effort?

One solution to this problem is to provide, on a regular basis, a small change to
your web site or its more popular pages. This small change—if clever or original
enough—can keep a user on the site just long enough for him to see something
that he may not have seen before—even if the content in question has been
present for some time. More important, for some sites this change could keep the
user long enough to notice an advertisement and click on it.

If the change is really clever, the user may frequent your site (and see your
content and view your sponsors’ advertisements) just to see that small change in
content.

Microsoft recognized this strategy as a common one and introduced an Active
Server Pages component that makes rotating HTML content on an otherwise-
unchanging document very easy. The server component is called the Content
Rotator component. This component, in conjunction with a content schedule text
file, allows you to set up a simple ASP script that retrieves a small bit of HTML.
The component then displays this HTML snippet to the client without changing
any part of your script’s other functions and without the hassle of having to switch
files on your web server in and out.

Note that this chapter documents the Content Rotator component 2.0 (Beta 3). It is
available from Microsoft at http://www.microsoft.com/windows/downloads/default.asp.
303

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Accessory Files/Required DLL Files
Accessory Files/Required DLL Files

Controt.DLL

Controt.DLL is the dynamic link library containing the Content Rotator compo-
nent. It must be registered on the web server before it can be instantiated in your
web applications. This DLL is not installed by default when you install IIS.

Content Schedule File

The content schedule file contains HTML snippets that the Content Rotator compo-
nent retrieves and displays to the client. Each HMTL snippet is in the following
format:

%% [#uintWeight] [//Comment]
HTMLContentString

where:

%%
Signals the beginning of an HTML snippet. Each entry must begin with the
double percent sign or the Content Rotator component cannot distinguish it
from the previous snippet.

#uintWeight
A pound sign followed by an unsigned integer value (between 1 and 65,535)
that represents the relative weight of the current HTML snippet. This optional
parameter represents the relative probability that the Content Rotator compo-
nent will select this HTML snippet from the list of snippets. The actual
probability of this HTML snippet being selected by the Content Rotator
component is uintWeight divided by the total of all the snippets’ weights.
For example, assume you have three snippets with weights of 33, 34, and 33.
The first snippet would be selected 33% percent of the time, the second 34%
percent, and the third 33% of the time. If a snippet’s weight is zero, that
snippet is never chosen. The default weight is 1.

Content Rotator Summary
Properties

None

Collections
None

Methods
ChooseContent
GetAllContent

Events
None
304 Chapter 16 – Content Rotator Component

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Content
Rotator

Accessory Files/Required DLL Files
//Comment
An optional string of comments describing the HTML snippet or its relevance.
It is for your use in maintaining the content schedule file and is never
displayed to the client. If a snippet requires more than one line of comments,
start each comment with a double percent sign (%%) followed immediately
with a double forward slash (//).

HTMLContentString
The actual HTML snippet that will be added to the client’s display. This HTML
can contain anything legal in HTML. However, you cannot have ASP script in
the HTMLContentString parameter. The Content Rotator component identi-
fies the beginning and end of an HTML snippet using the double percent
signs. For this reason, you can have as many lines in your HTML snippet as
you like.

The following is an example content schedule file containing five entries:

%% #33 // This identifies the first snippet of HTML.
%% // This is a second line of comments.
Click here
to learn where the following movie line originated:

"Most excellent."

%% #5 // This is snippet two.
Click here
to learn today's horoscope.

%% #10 // This is snippet three.
This line came from a great movie:

"Humor. It is a difficult concept."

%% #27 // This is snippet four.
Comment your code; your replacement will appreciate
the work.

%% #450 // This is snippet five.

The probabilities that each snippet in the example content schedule file will be
selected are shown in the following table:

Snippet Weight Percentage

1 33/525 6%

2 5/525 1%

3 10/525 2%

4 27/525 5%

5 450/525 86%
Accessory Files/Required DLL Files 305

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Instantiating the Content Rotator Component
Instantiating the Content Rotator Component
To create an object variable containing an instance of the Content Rotator compo-
nent, use the Server object’s CreateObject method. The syntax for the CreateObject
method is:

Set objMyObject = Server.CreateObject(strProgId)

where:

• The objMyObject parameter represents the name of a Content Rotator object.

• The strProgId parameter represents the programmatic ID (ProgID) for the
Content Rotator component, which is IISSample.ContentRotator.

Example
<%

' The following code uses the CreateObject method of the
' Server object to instantiate a Content Rotator object
' on the server.
Dim objContentRotator

Set objContentRotator = Server.CreateObject(_
 "IISSample.ContentRotator”)

%>

For more details on the use of the CreateObject method, see its documentation in
Chapter 8, Server Object.

Comments/Troubleshooting
The Content Rotator component is very simple to use. The few problems I’ve
heard of have all stemmed from errors in the syntax of the content schedule file.

This component can be used for all sorts of “so-and-so-of-the-day” additions to
any site. Creating a “Tip of the day” for your site is a very popular use for this
component.

Methods Reference

ChooseContent
objContentRotator.ChooseContent(strContentSchedFile)

Selects an HTML snippet from the content schedule file. The snippet chosen by
the Content Rotator component is selected from all the other snippets in the
schedule file according to that snippet’s weight relative to the other snippets.
When you call the ChooseContent method, the component calls the MapPath
method of the Server object to determine the physical path for the virtual path you
pass as an argument to ChooseContent. The result of this method call is a small
HTML snippet that can be placed in the HTML sent to the client.
306 Chapter 16 – Content Rotator Component

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Content
Rotator

GetAllContent
Parameters

strContentSchedFile
A string value representing the virtual or relative pathname and filename of
your content schedule file. You cannot use physical paths or absolute URLs
(those beginning with HTTP://, //, or \\) for this parameter.

Example
<HTML>
<HEAD>
<TITLE>Document List</TITLE>
<BODY>
<%

 ' Dimension local variables.
Dim objContentRotr
Dim strSelHTMLContent

' Create an instance of the Content Rotator object.
Set objContentRotr = _
 Server.CreateObject("IISSample.ContentRotator")

' Retrieve a quotation from the Quote content schedule
' file for December.
strSelHTMLContent = objContentRotr.ChooseContent(_
 "/SchedFiles/DecemberQuotes.txt")

' Now you can add the content thus retrieved to the
' HTML sent to the client.
%>
Today's quote:

<%= strSelHTMLContent %>
...[additional HTML and code]

Notes

Obviously, the more snippets of HTML code you add to the content schedule file,
the less likely any one will be selected more than once in a row, assuming all
have the same weight.

You will receive an error if you attempt to call the ChooseContent method from
within the GLOBAL.ASA file.

GetAllContent
objContentRotator.GetAllContent(strContentSchedFile)

Retrieves all the HTML snippets listed in the content schedule file. When you
display the content from the call to GetAllContent, each snippet will be separated
by a horizontal rule tag (<HR>) in the HTML.
GetAllContent 307

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

GetAllContent
Parameters

strContentSchedFile
A string value representing the virtual or relative pathname and filename of
your content schedule file. You cannot use physical paths or absolute URLs
(those beginning with HTTP://, //, or \\) for this parameter.

Example
<HTML>
<HEAD>
<TITLE>Document List</TITLE>
<BODY>
<%

 ' Dimension local variables.
Dim objContentRotr
Dim strAllHTMLContent

' Create an instance of the Content Rotator object.
Set objContentRotr = _
 Server.CreateObject("IISSample.ContentRotator")

' Retrieve all the quotes from the Quote content
' schedule file for December. The call to GetAllContent
' will separate each HTML snippet from the Content
' Schedule file with an <HR> tag.
strAllHTMLContent = objContentRotr.GetAllContent(_
 "/SchedFiles/DecemberQuotes.txt")

' Now you can add the content thus retrieved to the
' HTML sent to the client.
%>
All quotes:

<%= strAllHTMLContent %>
...[additional HTML and code]

Notes

The primary use for this method is for maintenance of the content schedule file.
308 Chapter 16 – Content Rotator Component

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Chapter 17Counters
CHAPTER 17

Counters Component

Chapter 4, Application Object, demonstrated how to instantiate an application-
Counters
scoped variable and use it throughout your application. Such a variable maintains
the same value for every user of your application and lasts until the last user
session ends or until the web server is restarted. Such application-level variables
can be very useful, but what happens when the application ends and restarts? The
value of these application variables must be reinitialized. In that chapter, I
suggested that you could save the application variables to a text file at the end of
the application and reinitialize the variable using the saved value each time the
application is restarted. If you have several application-level variables, this process
can be problematic. Luckily, for numeric variables anyway, there is a better way.
You can use a Counters component.

The Microsoft Counters component allows you to create, increment, decrement,
store, and remove any number of unique counters. You declare one Counters
component for your entire site in GLOBAL.ASA. A Counters object is instantiated
once for your site (not once per application) and, from that time, is limitless in
scope. No matter what session or application is available, the Counters compo-
nent is always accessible from anywhere. You need only one Counters object for
your entire site.

As you might guess, a Counters object allows you to create web-site-scoped
counter variables that hold the same value for every user of every application on
your site. For example, suppose you have two different applications defined by
two separate virtual directories. If there is a Counters object instantiated for the
site, a user of Application1 can add a counter to the Counters object and a user of
Application2 can increment or decrement the same counter. The value of all the
counters in the Counters object is saved to the web server’s hard drive (in a file
called Counters.TXT) so if the web server is restarted, you won’t lose the value of
your counter.
309

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Accessory Files/Required DLL Files
Accessory Files/Required DLL Files
Counters.DLL

The dynamic link library containing the Counters component. It must be
registered on the web server before it can be instantiated in your web appli-
cations. This DLL is not installed by default when you install IIS.

Counters.TXT
A text file that contains the actual values of the counters that have been
added to the site’s Counters object, if one exists. This is a UTF8-encoded file.
This file can contain any number of counters’ values and should not be edited
manually. The Counters component is hardcoded to look for this file, so don’t
rename it. Also, don’t move it from its installation location, since this will
cause the component to be unable to find it.

Instantiating the Counters Component
To create an object variable containing an instance of the Counters component,
use the Server object’s CreateObject method. The syntax for the CreateObject
method is as follows:

Set objMyObject = Server.CreateObject(strProgId)

where:

• objMyObject represents the name of the Counters object

• strProgId represents the programmatic ID (ProgID) for the Counters compo-
nent, which is MSWC.Counters

Example
<SCRIPT LANGUAGE = VBScript RUNAT SERVER>
' The following code uses the Server object's
' CreateObject method to instantiate a Counters

Counters Summary
Properties

None

Collections
None

Methods
Get
Increment
Remove
Set

Events
None
310 Chapter 17 – Counters Component

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Counters
Comments/Troubleshooting
' component in the Application_OnStart event
' in the GLOBAL.ASA file.

Sub Application_OnStart
 Dim objCounter

 Set objCounter = Server.CreateObject("MSWC.Counters")
End Sub
</SCRIPT>

For more detail on the use of the CreateObject method, see its entry in Chapter 8,
Server Object.

Comments/Troubleshooting
The Counters component provides a powerful way to keep track of counters that
are the same throughout your site. It can contain as many counter variables as
memory permits, and each counter name can contain any Unicode character.

The most important thing to remember about the Counters component is that it is
scopeless. This component is basically a repository for “ultraglobal” variables and
should be treated accordingly. Any script in any application that alters a counter’s
value changes that counter’s value for every other script that uses that counter for
the entire site.

One important use for this component is to store and display user vote tallies. For
example, several sites have a quick survey on their home pages. You are asked a
simple question with a few radio buttons for your vote and a Submit button that
allows you to see the vote tallies for each item for which you can vote. This way,
you can maintain the counts for each option indefinitely. The examples in this
chapter demonstrate this concept.

If you are using Windows 9x with Personal Web Server for your development, be
aware that a Counters object is instantiated in the GLOBAL.ASA file created by
Personal Web Server by default. For this reason, you can treat the Counters
component exactly as if it were a built-in object, like the Application, Session, or
Server objects. Note also that although the SCOPE parameter of the OBJECT tag that
you use to instantiate a Counters object has a value of Application, a Counters
component is not limited to application scope.

The following shows how you instantiate a Counters object:

<OBJECT RUNAT="Server" SCOPE = "Application"
ID = "MyCounter" PROGID = "MSWC.Counters">
</OBJECT>
Comments/Troubleshooting 311

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Methods Reference
Methods Reference

Get
objCounter.Get(strCounterName)

Retrieves the current value of any counter held in the Counters component. If the
counter name you provide is not yet stored by the Counters component, a new
counter is added and given a value of zero (0).

Parameters

strCounterName
A string that represents the name of the counter variable you wish to manipu-
late. This name can contain any Unicode character.

Example

The following example assumes a Counters object already exists (see “Instanti-
ating the Counters Component” earlier in this chapter) and demonstrates the use
of the Get method. It assumes a Counters component (gobjOptionCounter) has
been instantiated elsewhere.

<HTML>
<HEAD>
<TITLE>Favorite Games</TITLE>
<BODY>
<%

' Dimension local variables.
Dim intDoom
Dim intQuake
Dim intQuake2

' Initialize the preceding variables using the current
' values of the corresponding counters in the Counters
' object (instantiated elsewhere).
intDoom = gobjOptionCounter.Get("FavGameCounter_Doom")
intQuake = gobjOptionCounter.Get("FavGameCounter_Quake")
intQuake2 = gobjOptionCounter.Get("FavGameCounter_Quake2")

' Display the current vote tallies for favorite game.
%>
Here are the current vote counts for favorite game:

<TABLE WIDTH = 50%>
<TR>
 <TD WIDTH = 50%>
 Doom
 <TD>
 <TD WIDTH = 50%>
 <%= intDoom %>
 <TD>
</TR>
<TR>
312 Chapter 17 – Counters Component

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Counters
Increment
 <TD WIDTH = 50%>
 Quake
 <TD>
 <TD WIDTH = 50%>
 <%= intQuake %>
 <TD>
</TR>

<TR>
 <TD WIDTH = 50%>
 Quake 2
 <TD>
 <TD WIDTH = 50%>
 <%= intQuake2 %>
 <TD>
</TR>
</TABLE>
</BODY></HTML>

Notes

The value of a counter is limited to the range of an integer. Note that the number
of counters held in the Counters component has little effect on the memory it
holds on the web server, since the values of its counters are written to the hard
drive.

Increment
objCounter.Increment(strCounterName)

Increments a counter in the Counters component. If you attempt to increment a
counter that does not yet exist, the counter is created and its value is set to 1. The
new value of the counter is returned.

Parameters

strCounterName
A string that represents the name of the counter variable you wish to manipu-
late. This name can contain any Unicode character.

Example

The following example assumes a Counters object (gobjOptionCounter) has
been instantiated elsewhere (see “Instantiating the Counters Component” earlier in
this chapter) and demonstrates the use of the Increment method.

<HTML>
<HEAD>
<TITLE>Favorite Games</TITLE>
<BODY>
<%

' The following line of code increments the
' FavGameCounter_Doom counter in the gobjOptionCounter
' object and returns the new value of the counter.
Increment 313

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Remove
' Note that if FavGameCounter_Doom does not yet exist
' in the gobjOptionCounter object, the returned value
' is 1.
%>
You are user number
<%= gobjOptionCounter.Increment("FavGameCounter_Doom") %>
to vote for Doom as your favorite game.

%>
...[additional HTML and code]

Remove
objCounter.Remove(strCounterName)

Removes a counter from the Counters component and deletes its entry from the
Counters.TXT file. This method has no return value.

Parameters

strCounterName
A string that represents the name of the counter variable you wish to remove.
This name can contain any Unicode character.

Example

The following example demonstrates the use of the Remove method of the
Counters object. This example assumes a Counters object (gobjOptionCounter)
has been instantiated elsewhere.

<%

' The following code removes the FavGameCounter_Wolf3D
' counter from the gobjOptionCounter object.
gobjOptionCounter.Remove("FavGameCounter_Wolf3D")

%>

Notes

See the explanation of the Get method earlier in this chapter.

Set
objCounter.Set(strCounterName, intCounterValue)

The Set method allows you to create a counter in the Counters component and
add its entry to the Counters.TXT file. The new counter’s value is returned.

Parameters

strCounterName
A string that represents the name of the counter variable you wish to manipu-
late. This name can contain any Unicode character.
314 Chapter 17 – Counters Component

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Counters
Set
intCounterValue
An integer that represents the new value of the counter variable you wish to
set.

Example

The following example demonstrates the use of the Set method. This example
assumes a Counters object (gobjOptionCounter) has been instantiated
elsewhere.

<%

' The following code sets the value of the
' FavGameCounter_Unreal counter to an arbitrary number
' (high) to inflate its perceived popularity. If it does
' not already exist, it is created and initialized to the
' value 987.
gobjoptionCounter.Set("FavGameCounter_Unreal", 987)

%>
Set 315

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Chapter 18File Access
CHAPTER 18

File Access Component

In addition to the native ASP objects (Request, Response, etc.) and the various

installable components (Ad Rotator, Browser Capabilities, etc.), you also have
access to a third group of objects. These objects are instantiated directly from the
Microsoft Scripting Runtime DLL (scrrun.dll). This DLL contains functionality that
is neither in the native ASP objects nor in the VBScript runtime (vbscript.dll) itself.
From the scripting DLL, you can instantiate objects that provide your application
with extensive file manipulation capabilities. (From this DLL, you also can create a
Dictionary object that provides you with a way to perform collection-type func-
tions without true collections.)

All file manipulation is performed by the FileSystemObject object. Your applica-
tion will have only one of these, and it represents your application’s “window”
onto the system’s file structures. With this object, you are able to perform some
simple functions such as opening and closing files, but the real strength of this
object is that through it you are able to instantiate the other file manipulation
objects: Drive, Folder, and File. Through these objects, your application has almost
all the power over the file system that you have through a command-line interface.

Accessory Files/Required DLL Files
Scrrun.DLL

The dynamic link library that contains all the scripting objects. This DLL is
installed by default when you install IIS 4.0 on your web server.

Instantiating Installable Components
To create an object variable containing an instance of the FileSystemObject
component, use the CreateObject method of the Server object. The syntax for the
CreateObject method is as follows:

Set objMyObject = Server.CreateObject(strProgId)
316

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

File Ac
Object Model
where:

• objMyObject represents the name of the FileSystemObject component

• strProgId represents the programmatic identifier (ProgID) for the
FileSystemObject component, which is Scripting.FileSystemObject

Example
<%

' The following code uses the CreateObject method of
' the Server object to instantiate a FileSystemObject.
Dim fsFileSystemObject
Set fsFileSystemObject = _
 Server.CreateObject("Scripting.FileSystemObject")

%>

For more details on the use of the CreateObject method, see its entry in Chapter 8,
Server Object.

Comments/Troubleshooting
The File Access components of scrrun.dll are straightforward to use. When errors
occur, the various properties and methods all return error messages that are in
accordance with what you would expect if you were to perform a given file opera-
tion through the command line. For example, if you attempt to write or read files
on the floppy drive on your computer, but you have no disk in the drive, you will
receive a “disk not ready” error.

One final note: Microsoft has recently released for public download an unsup-
ported Document Summary component that will allow you to view the contents of
a directory and display useful information (such as file dates, etc.) from an ASP.
This was just released as this book was nearing its last stages of development, so it
is not covered here. Download it from http://www.microsoft.com/windows/
downloads/default.asp and experiment on your own.

Object Model
The diagram in Figure 18-1 illustrates the hierarchical object model representing
the file system and all its constituents. (Figure 18-1 offers a simplified view of the
model. Each collection is in fact made up of its constituent objects; the Folders
collection, for example, contains individual Folder objects that, in turn, have Files
collections of their own.) The following sections list each object in the model,
along with its properties, collections, and methods. Items marked with an asterisk
are documented in detail in the Properties Reference and the Methods Reference
in this chapter.

Drive Object

The Drive object represents a physical drive. This drive can exist on your machine,
or it can be a drive shared by another machine. The Drive object’s properties and
Object Model 317

cess

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Object Model
its single collection are listed in Tables 18-1 and 18-2, respectively. The properties
in Table 18-1 are all read-only.

Figure 18-1: The FileSystemObject object model

Table 18-1: Drive Object Properties

Property Description

AvailableSpace* Indicates the amount of space (in bytes) left on the drive or
network share represented by the Drive object.

DriveLetter A string value representing the physical drive letter or share
name for the Drive object.

DriveType One of the following integer values representing the type of
drive:
0—Unknown
1—Removable
2—Fixed
3—Network
4—CD-ROM
5—RAM Disk

FileSystem* A string value representing the file system used to format the
drive represented by the Drive object. Some possible return
values are FAT, NTFS, and CDFS.

FreeSpace A long integer representing the number of bytes of space
available on the drive. This is the same value as that for the
AvailableSpace property unless the drive represented by the
Drive object supports quotas.

IsReady* A Boolean value that indicates whether the drive represented
by the Drive object is ready for operation.

Path The physical path of the drive represented by the Drive
object.

RootFolder Returns the Folder object (described later in this chapter) that
is the root folder for the drive represented by the Drive
object.

SerialNumber A decimal number that represents a uniquely identifying
number for the drive represented by the Drive object.

FileSystemObject

Drives Collection

Folders Collections

Files Collection

TextStream Object
318 Chapter 18 – File Access Component

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

File Ac
Object Model
Drives Collection

The Drives collection contains Drive objects representing the collection of all the
drives on the current machine. This collection includes both physical drives and
drives shared by other machines. This is a read-only collection; you cannot use
this collection to add or remove a drive. The Drives collection’s properties are
shown in Table 18-3.

File Object

The File object represents a given file on the local machine or on a network share.
This object makes all the properties of that file accessible to your code. The File
object’s properties and methods are listed in Tables 18-4 and 18-5, respectively.

ShareName A string value that represents the network share name of the
drive represented by the Drive object, if it’s shared.

TotalSize A long integer that represents the total size in bytes (used
and unused) of the drive represented by the Drive object.

VolumeName A string value representing the file system volume name of
the drive represented by the Drive object.

Table 18-2: Drive Object Collections

Collection Description

Folders All the top-level folders located immediately under the current
drive. Within the Folders collection’s Folder objects exist Files
collections containing File objects and lower-level Folders collec-
tions.

Table 18-3: Drives Collection Properties

Property Description

Count An integer that represents the total number of Drive objects in the
collection.

Item Returns a specific Drive object from the Drives collection. It works
exactly as does the Item property of the Contents collection of the
Application or Session objects. You can retrieve a specific Drive
object by index (Drives(1)) or by name (Drives("C")).

Table 18-4: File Object Properties

Property Description

Attributes* The operating system attributes for that file. Depending on
the specific file attribute, this property could be either
read/write or read-only.

DateCreated* The date the file was created.

DateLastAccessed* The date of the last time a user accessed the file.

Table 18-1: Drive Object Properties (continued)

Property Description
Object Model 319

cess

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Object Model
Files Collection

The Files collection represents the collection of all the files in a Folder object. Its
properties are shown in Table 18-6.

FileSystemObject Object

The FileSystemObject object is the top-level object through which all access to a
file system occurs. Table 18-7 lists its single collection, while Table 18-8 lists its

DateLastModified* The date the file was last modified.

Drive* The drive letter of the drive that holds the current file.

Name A string value that contains the name of the file.

ParentFolder* The name of the folder in which the file resides.

Path The physical path of the file.

ShortName The 8.3 format name of the file.

ShortPath The 8.3 format physical path of the file.

Size The size in bytes of the current file.

Type The file type for the file, as determined using your
machine’s file associations (if one exists). For example, on
a machine with Microsoft Word installed, the file test.doc
would have a Type property of Microsoft Word Document.

Table 18-5: File Object Methods

Method Description

Copy* Copies the file from one location to another

Delete* Deletes the file

Move* Moves the file from one location to another

OpenAsTextStream* Opens the file for reading, writing, or appending

Table 18-6: Files Collection Properties

Property Description

Count The total number of files in the collection.

Item Retrieves a particular file from the collection. Again, the Item prop-
erty is similar to the same property of the Application and Session
Contents collections. You can retrieve a specific File object using its
index in the collection or its name. For example, either of the
following two lines will work:
Set filObj1 = Files(1)
Set filObj2 = Files("help.txt")

Table 18-4: File Object Properties (continued)

Property Description
320 Chapter 18 – File Access Component

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

File Ac
Object Model
methods. Note that many of these methods are only parsing functions and have no
real correlation with the underlying file system.

Table 18-7: FileSystemObject Object Collections

Property Description

Drives Returns the Drives collection containing all the drives accessible
through the current FileSystemObject.

Table 18-8: FileSystemObject Object Methods

Method Description

BuildPath Appends a folder name or a relative path to a path.
For example, you could append the folder name
Documents to the path C:\MyStuff\Personal. The
result would be C:\MyStuff\Personal\Documents. The
extra backslash is automatically provided, if necessary.

CopyFile Copies a file from one location to another. This
method is similar to the File object’s Copy method,
but no File object is required.

CopyFolder Copies a folder and all its contents from one location
to another.

CreateFolder* Creates a new folder.

CreateTextFile Creates a new text file.

DeleteFile Deletes a specific file. This method is similar to the
File object’s Delete method, but no File object is
required.

DeleteFolder Deletes a folder and all its contents.

DriveExists Determines whether a specific drive exists on your
machine. It does not, however, guarantee that the
drive is available.

FileExists Determines whether the specified file exists.

FolderExists Determines whether the specified folder exists.

GetAbsolutePathName Determines the physical path from the root of a
specific file or folder.

GetBaseName* Determines the last element in a physical path string
minus any file extension, if one exists.

GetDrive Retrieves the Drive object for a given file or folder.

GetDriveName Retrieves the name of the drive associated with a
particular file or folder.

GetExtensionName Retrieves the file extension for the last element in a
file specification, if one exists.

GetFile Retrieves a File object associated with a specified file.

GetFileName Retrieves the name of the last element of a file path.
For example, given the argument C:\docs\mystuff\
test.txt, you would retrieve test.txt.
Object Model 321

cess

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Object Model
Folder Object

A Folder object represents an actual file folder on the current machine. Its proper-
ties, collections, and methods are listed in Tables 18-9, 18-10, and 18-11,
respectively.

GetFolder Retrieves the name of the last folder in a physical
path. For example, given the argument C:\docs\
mystuff, you would retrieve the string mystuff.

GetParentFolderName* Retrieves the name of the parent folder for the file or
folder you specify as an argument.

GetSpecialFolder* Retrieves the physical path for any of the special
Windows-related folders: Windows, Windows\System,
or the Temp folder. You can use this method on any
Windows platform.

GetTempName Generates a random temporary file or folder for those
methods that require one. This method only returns a
temporary filename but does not create the actual file.

MoveFile Moves a specific file from one location to another.
This method is similar to the File object’s Move
method, but no File object is required.

MoveFolder* Moves a folder and all its contents from one location
to another

OpenTextFile Opens a specified text file. You can then read from,
write to, or append to this file.

Table 18-9: older Object Properties

Property Description

Attributes* The operating system attributes for that folder. Depending
on the specific folder attribute, this property could be
either read/write or read-only.

DateCreated* The date the folder was created on the current drive.

DateLastAccessed* The date of the last time a user accessed the folder.

DateLastModified* The date the folder was last modified.

Drive* A string value containing the drive letter of the drive that
holds the current folder.

IsRootFolder* A Boolean value indicating whether the current Folder
object represents the root folder on a specific drive.

Name A string value representing the name of the folder.

ParentFolder* Returns a reference to the current Folder object’s parent
folder.

Path A string value representing the full physical path of the
current folder.

ShortName The 8.3 format name of the folder.

Table 18-8: FileSystemObject Object Methods (continued)

Method Description
322 Chapter 18 – File Access Component

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

File Ac
Object Model
Folders Collection

The Folders collection represents all the folders that exist within the current folder
on a particular drive. It does not contain subfolders within the folders on this
drive. To retrieve information from subfolders, you must access the Folders collec-
tion returned from a call to the SubFolders property of a Folder object. The
Folders collection’s properties are shown in Table 18-12, while its single method
appears in Table 18-13.

ShortPath The 8.3 format physical path of the folder.

Size The size in bytes of all of the current folder’s contents.

SubFolders Returns a Folders collection that represents all the folders
existing within the current folder.

Table 18-10: Folder Object Collections

Collection Description

Files The collection of Files within the current folder only. It does not
represent files existing in subfolders of the current folder.

Folders The collection of subfolders (retrieved through the SubFolders
property of a Folder object) within the current Folder object.

Table 18-11: Folder Object Methods

Method Description

Copy* Copies the folder and its contents from one location to another

Delete* Deletes the folder and all its contents

Move* Moves the folder and all its contents from one location to
another

CreateTextFile Opens a new text file

Table 18-12: Folders Collection Properties

Property Description

Count The total number of folders in the current collection.

Item Returns a reference to a particular folder in the collection. The Item
property is similar to the same property of the Application and
Session Contents collections. You can retrieve a specific Folder
object using its index in the Folders collection or its name.

Table 18-13: Folders Collection Methods

Method Description

Add Adds a new folder to the Folders collection

Table 18-9: older Object Properties (continued)

Property Description
Object Model 323

cess

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Properties Reference
TextStream Object

The TextStream object allows you to access text files sequentially. This allows you
to read, write, or append characters or lines to a text file. The TextStream object’s
properties and methods are listed in Tables 18-14 and 18-15, respectively.

Properties Reference

AtEndOfLine (TextStream Object)
fsoObj.AtEndOfLine

A Boolean value that indicates whether the file pointer is at the end of the current
line. This is a read-only property.

Table 18-14: TextStream Object Properties

Property Description

AtEndOfLine* A Boolean value that indicates whether the current position
within the file is at the end of a line

AtEndOfStream* A Boolean value that indicates whether the current position
within the file is at the end of the text file

Column An integer value that indicates the column number of the
current position in a line of text

Line An integer value that indicates the line number within a text
file

Table 18-15: TextStream Object Methods

Method Description

Close* Closes the current text file. Once closed, the file must be
reopened before you can read from or write to it.

Read Reads a specified number of characters from an open text
file.

ReadAll Reads all the characters from an open text file into a string.

ReadLine* Reads an entire line of text from an open text file.

Skip Skips over a specified number of characters in an open text
file. In conjunction with the Read method, the Skip method
allows you to read a number of characters starting at a
specific position.

SkipLine Skips over a specified number of lines in an open text file.

Write* Writes a specified string to an open text file.

WriteBlankLines Writes a specified number of newline characters to an open
text file.

WriteLine* Writes an entire line of text to an open text file. You specify
the string to be written, and the method will include a
newline character at the end of the line.
324 Chapter 18 – File Access Component

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

File Ac
AtEndOfStream (FileSystemObject Object)
Parameters

None

Example

The following code instantiates a FileSystemObject and a TextStream object. It
then uses the Read method to read one character at a time until the end of the line
is reached. Notice that the use of the AtEndOfStream and AtEndOfLine properties
are identical.

<%

' Set up constants.
Const constForReading = 1
Const constTristateFalse = 0

' Dimension local variables.
Dim fsoObject ' FileSystemObject
Dim tsObject ' TextStream Object
Dim strReturned ' String variable to hold file contents

' Instantiate the FileSystemObject variable.
Set fsoObject = Server.CreateObject(_
 "Scripting.FileSystemObject")
' Using the CreateTextFile method of fsoObject,
' create a text file.
Set tsObject = _
 fsoObject.OpenTextFile("d:\docs\test.txt", _
 constForReading, constTristateFalse)

' Read one character at a time until the end of the
' line has been reached.
Do While Not tsObject.AtEndOfLine
 StrReturned = strReturned & tsObject.Read(1)
Loop
...[additional code]
%>

Notes

If you attempt to use the AtEndOfLine property with a text file opened for any
purpose other than reading, you will receive an error.

The AtEndOfLine property will not inform you that you have reached the end of
the file.

AtEndOfStream (FileSystemObject Object)
fsoObj.AtEndOfStream

A Boolean value that indicates whether you have reached the end of the current
text file. This is a read-only property.
AtEndOfStream (FileSystemObject Object) 325

cess

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Attributes (File Object, Folder Object)
Parameters

None

Example

The following code instantiates a FileSystemObject and a TextStream object. Then
it uses the Read method to read one character at a time until the end of the file is
reached. Notice that the use of the AtEndOfStream and AtEndOfLine properties are
identical.

<%

' Set up constants.
Const constForReading = 1
Const constTristateFalse = 0

' Dimension local variables.
Dim fsoObject ' FileSystemObject
Dim tsObject ' TextStream Object
Dim strReturned ' String variable to hold file contents.

' Instantiate the FileSystemObject variable.
Set fsoObject = Server.CreateObject(_
 "Scripting.FileSystemObject")
' Using the CreateTextFile method of fsoObject, create
' a text file.
Set tsObject = _
 fsoObject.OpenTextFile("d:\docs\test.txt", _
 constForReading, constTristateFalse)

' Read one character at a time until the end of the
' line has been reached
Do While Not tsObject.AtEndOfStrean
 StrReturned = strReturned & tsObject.Read(1)
Loop
...[additional code]
%>

Notes

If you attempt to use the AtEndOfStream property with a text file opened for any
purpose other than reading, you will receive an error.

Attributes (File Object, Folder Object)
Obj.Attributes [= intNewAttributes]

An integer containing a combination of values representing various file system
attributes. This property is read-only or read/write depending on the specific file
attribute in question.

The following table lists the values that the Attributes property can contain. To
determine whether a File or Folder object has a particular value, use the bitwise
And operator to compare the Attributes property value and the specific constant in
326 Chapter 18 – File Access Component

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

File Ac
Attributes (File Object, Folder Object)
which you’re interested. If the result is True, then that specific attribute is True.
See the following examples.

Parameters

intNewAttributes
An integer containing the sum of a file’s or folder’s attributes. For example, if
you wanted to set the Archived and Hidden attributes to True,
intNewAttributes would have a value of Hidden + Archive, or 34 (2 +
32). When assigned to the Attributes property, this integer would set these
two attributes to True.

Example

The following code uses the Attributes property first with a File object, and then
with a Folder object.

<%

' Dimension local variables.
Dim fsoObject ' FileSystemObject
Dim filObject ' File Object
Dim fdrObject ' Folder Object

' Declare constants.
Const Hidden = 2
Const Archive = 32

' Instantiate the FileSystemObject variable.
Set fsoObject = Server.CreateObject(_
 "Scripting.FileSystemObject")
' Using the GetFile method of fsoObject, initialize the
' File object.
Set filObject = fsoObject.GetFile("d:\docs\test.txt")

' Set the Hidden (value = 2) and Archive (value = 32)

Attributes Constant Value Description

Normal 0 No attributes are set.

ReadOnly 1 Read-only. This attribute is read/write.

Hidden 2 Hidden. This attribute is read/write.

System 4 System file. This attribute is valid only for File
objects and is read/write.

Volume 8 The drive’s volume label. This attribute is read-
only.

Directory 16 Directory. This attribute is read-only.

Archive 32 Archived. This attribute is read/write.

Alias 64 A link or shortcut for another file. This attribute
is valid only for File objects and is read-only.

Compressed 128 Compressed. This attribute is valid only for File
objects and is read-only.
Attributes (File Object, Folder Object) 327

cess

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

AvailableSpace (Drive Object)
' attributes for the Test.TXT file.
filObject.Attributes = (Hidden + Archive)

' Using the GetFolder method of fsoObject, initialize
' the Folder object.
Set fdrObject = fsoObject.GetFolder("d:\docs")

' Determine whether the folder is itself hidden.
If (fdrObject.Attributes And Archive) Then
 ' Folder is hidden.
Else
 ' Folder is NOT hidden.
End If
...[additional code]
%>

Notes

If you attempt to use the read-only attributes that deal only with File objects with a
Folder object, the result is always a False value. However, if you attempt to set
any of the read-only attributes for File or Folder objects, the result is an error.

Note that you must explicitly declare constants for use with the File Access
components.

AvailableSpace (Drive Object)
drvObj.AvailableSpace

The number of bytes of space left on the current drive. This is a read-only
property.

Parameters

None

Example
<%
' Dimension local variables.
Dim fsoObject ' FileSystemObject
Dim drvObject ' Drive Object
Dim lngAvailBytes ' Number of bytes available

' Instantiate the FileSystemObject variable.
Set fsoObject = Server.CreateObject(_
 "Scripting.FileSystemObject")
' Using the GetDrive method of fsoObject, initialize a
' Drive object.
Set drvObject = fsoObject.GetDrive("\\PublicDocs")
' Retrieve the amount of space (in bytes) available
' on the drive.
lngAvailBytes = drvObject.AvailableSpace
...[additional code]
%>
328 Chapter 18 – File Access Component

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

File Ac
Drive (File Object, Folder Object)
Notes

The only time the value for the AvailableSpace property and the value for the
FreeSpace property will be different is if the drive supports quotas. For all prac-
tical purposes, you can use these two properties interchangeably.

DateCreated (File Object, Folder Object)
Obj.DateCreated

A date value that represents the date the file or folder was created. This is a read-
only value controlled by the operating system.

Parameters

None

Example
<%

' Dimension local variables.
Dim fsoObject ' FileSystemObject.
Dim fdrObject ' Folder object.
Dim datCreated ' Date variable.

' Instantiate the FileSystemObject variable.
Set fsoObject = Server.CreateObject(_
 "Scripting.FileSystemObject")
' Using the GetFolder method of fsoObject, initialize
' a Folder object
Set fdrObject = fsoObject.GetFolder("c:\Docs")
' Retrieve the date the folder was created.
datCreated = fdrObject.DateCreated
...[additional code]
%>

Notes

The value of this property indicates the date the file was created, not the date the
file was written to the current drive.

Drive (File Object, Folder Object)
Obj.Drive

Returns a Drive with which the File or Folder object is associated. This property is
read-only.

Parameters

None
Drive (File Object, Folder Object) 329

cess

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

FileSystem (Drive Object)
Example
<%

' Dimension local variables.
Dim fsoObject ' FileSystemObject
Dim filObject ' File Object
Dim objDrive ' Drive name

' Instantiate the FileSystemObject variable.
Set fsoObject = Server.CreateObject(_
 "Scripting.FileSystemObject")
' Using the GetFile method of fsoObject, initialize
' a File object.
Set filObject = fsoObject.GetFile("PublicDocs.txt")
' Retrieve the drive name with which the File object
' is associated.
Set objDrive = filObject.Drive
' Note that this drive is actually the current drive
' in this case.
...[additional code]
%>

Notes

The Drive property can represent either a physical, local, or mapped drive or a
network share.

Because the Drive object’s default property is Path, you can assign the drive name
to a string as follows:

strDrive = filObject.Drive

This is really a shorthand version of:

strDrive = filObject.Drive.Path

If you wish to manipulate the Drive object, though, you must use the Set state-
ment to assign the reference to an object variable. For example:

Set objDrive = filObject.Drive

FileSystem (Drive Object)
drvObj.FileSystem

A string value that represents the file system type used to format the current drive.
The recognized file system types are CDFS, NTFS, and FATS. This is a read-only
property.

Parameters

None
330 Chapter 18 – File Access Component

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

File Ac
IsReady (Drive Object)
Example
<%

' Dimension local variables.
Dim fsoObject ' FileSystemObject
Dim drvObject ' Drive Object
Dim strFileSys ' File system of drive

' Instantiate the FileSystemObject variable.
Set fsoObject = Server.CreateObject(_
 "Scripting.FileSystemObject")
' Using the GetDrive method of fsoObject, initialize
' a Drive object.
Set drvObject = fsoObject.GetDrive("\\PublicDocs")
' Retrieve the file system for the drive. This value
' will contain one of the following strings:
' NTFS, FAT, or CDFS.
strFileSys = drvObject.FileSystem
...[additional code]
%>

Notes

You can rely on the value of the FileSystem property of a Drive object to reflect
cluster sizes and security features available for the current drive.

IsReady (Drive Object)
drvObj.IsReady

A Boolean value representing whether the current drive is available for reading or
writing. Use this property, for example, to determine whether a floppy disk or CD
has been placed in a drive. This is a read-only property.

Parameters

None

Example
<%

' Dimension local variables.
Dim fsoObject ' FileSystemObject
Dim drvObject ' Drive Object

' Instantiate the FileSystemObject variable.
Set fsoObject = Server.CreateObject(
 "Scripting.FileSystemObject")
' Using the GetDrive method of fsoObject, initialize a
' Drive object.
Set drvObject = fsoObject.GetDrive("\\PublicDocs")
' Check to see if the drive is ready.
If drvObject.IsReady Then
 ' Drive is ready for read/write.
IsReady (Drive Object) 331

cess

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

IsRootFolder (Folder Object)
Else
 ' Drive is not ready.
End If
...[additional code]
%>

Notes

It is a good idea to use the IsReady property before attempting to do any drive
access. It can be used to determine the readiness of removable-media drives
(floppy and CD-ROM drives) and fixed-media drives.

IsRootFolder (Folder Object)
fdr.IsRootFolder

A Boolean value that allows you to determine if the current folder is the root
folder. This is a read-only property.

Parameters

None

Example
<%

' Dimension local variables.
Dim fsoObject ' FileSystemObject
Dim fdrObject ' Folder Object

' Instantiate the FileSystemObject variable.
Set fsoObject = Server.CreateObject(_
 "Scripting.FileSystemObject")
' Using the GetFolder method of fsoObject, initialize a
' File object.
Set fdrObject = fsoObject.GetFolder("PublicDocs.txt")
' Determine whether the current folder is a root folder
' or if it is nested.
If fdrObject.IsRootFolder Then
 ' Folder is located directly off the drive letter
 ' or share name.
Else
 ' The folder is nested within at least one other
 ' folder.
End If
...[additional code]
%>

Notes

The Microsoft documentation shows how to use this property to determine to how
many levels the current folder is nested. For convenience, the following code
demonstrates this:
332 Chapter 18 – File Access Component

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

File Acce
ParentFolder (File Object, Folder Object)
<%

' Dimension local variables.
Dim fsoObject ' FileSystemObject
Dim fdrObject ' Folder Object
Dim intNestedLevel ' Level to which the folder is nested

' Instantiate the FileSystemObject variable.
Set fsoObject = Server.CreateObject(_
 "Scripting.FileSystemObject")
' Using the GetFolder method of fsoObject, initialize a
' File object.
Set fdrObject = fsoObject.GetFolder("PublicDocs.txt")
' Determine whether the current folder is a root folder
' or if it is nested.
If fdrObject.IsRootFolder Then
 ' Folder is located directly off the drive letter or
 ' share name.
Else
 ' For more on the ParentFolder property of the
 ' Folder object, see the following.
 Do Until fdrObject.IsRootFolder
 Set fdrObject = fdrObject.ParentFolder
 intNestedLevel = intNestedLevel + 1
 Loop
End If
...[additional code]
%>

ParentFolder (File Object, Folder Object)
Obj.ParentFolder

Returns a Folder object representing the folder in which the file or folder is
located. This is a read-only property.

Parameters

None

Example

The following code demonstrates the use of the ParentFolder property when used
with a File object and then with a Folder object. Note that, because Name is the
default property of a Folder object, the code in the ASP page appears to treat the
value returned by the ParentFolder property as a string.

<%

' Dimension local variables.
Dim fsoObject ' FileSystemObject
Dim filObject ' File Object
Dim fdrObject ' Folder Object
Dim strFileParent ' Parent folder of file object
Dim strFolderParent ' Parent folder of folder object
ParentFolder (File Object, Folder Object) 333

ss

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Methods Reference
' Instantiate the FileSystemObject variable.
Set fsoObject = Server.CreateObject(_
 "Scripting.FileSystemObject")
' Using the GetFile method of fsoObject, initialize the
' File object.
Set filObject = fsoObject.GetFile("d:\docs\test.txt")

' Retrieve the name of the folder containing the file Test.TXT.
' In this example, the value of strFileParent is "docs".
strFileParent = filObject.ParentFolder
' Using the GetFolder method of fsoObject, initialize
' the Folder object.
Set fdrObject = fsoObject.GetFolder("d:\mystuff\docs")

' Retrieve the name of the folder that contains the
' folder "docs". In this example, the value of
' strFileParent is "mystuff".
strFolderParent = fdrObject.ParentFolder
...[additional code]
%>

Methods Reference

Close (TextStream Object)
tsObj.Close

Closes a text file that has been opened as a TextStream object.

Parameters

None

Example
<%

' Dimension local variables.
Dim fsoObject ' FileSystemObject
Dim tsObject ' TextStream Object

' Instantiate the FileSystemObject variable.
Set fsoObject = Server.CreateObject(_
 "Scripting.FileSystemObject")
' Using the OpenTextFile method of fsoObject, initialize
' the File object.
Set tsObject = fsoObject.OpenTextFile(_
 "d:\docs\test.txt", ForReading, False)

' Read into the string the contents of the text file.
strContents = tsObject.ReadAll
' Close the open text file.
tsObject.Close
...[additional code]
%>
334 Chapter 18 – File Access Component

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

File Ac
CopyFolder (FileSystemObject Object)
Notes

You can have only a limited number of open files in your application (similar to
the use of open files in Visual Basic), so it is important to close all open text files
after you are finished with them.

Copy (File Object, Folder Object)
obj.Copy strDestination [, blnOverWrite]

Copies a file from one location to another.

Parameters

strDestination
A string value that represents the full path of the location to which you wish
to copy the current file.

blnOverWrite
A Boolean value that indicates whether a file of the same name as the file to
be copied will be overwritten. The default is True.

Example
<%

' Dimension local variables.
Dim fsoObject ' FileSystemObject
Dim filObject ' File Object

' Instantiate the FileSystemObject variable.
Set fsoObject = Server.CreateObject(_
 "Scripting.FileSystemObject")
' Using the GetFile method of fsoObject, initialize
' the File object.
Set filObject = fsoObject.GetFile("d:\docs\test.txt")

' Copy the file to a temporary directory.
filObject.Copy "e:\storage\temp\test_copy.txt", True
...[additional code]
%>

Notes

The Copy method performs exactly the same function as the CopyFile and Copy-
Folder methods of the FileSystemObject object. However, it is important to note
that the CopyFile and CopyFolder methods will allow you to copy more than one
file at a time.

CopyFolder (FileSystemObject Object)
fsoObj.CopyFolder strSource, strDestination [, blnOverWrite]

Allows you to copy a folder and all of its contents from one location to another.
CopyFolder (FileSystemObject Object) 335

cess

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

CreateFolder (FileSystemObject Object)
Parameters

strSource
A string value that represents the full path of the location from which you
wish to copy the current file.

strDestination
A string value that represents the full path of the location to which you wish
to copy the current file.

blnOverWrite
A Boolean value that indicates whether a file of the same name as the file to
be copied will be overwritten. The default is True.

Example
<%

' Dimension local variables.
Dim fsoObject ' FileSystemObject
' Instantiate the FileSystemObject variable.
Set fsoObject = Server.CreateObject(_
 "Scripting.FileSystemObject")
' Use the FileSystemObject object's CopyFolder method
' to copy the Temp directory and all its contents from
' the C drive to the D drive, overwriting if necessary.
fsoObject.CopyFolder "c:\temp", "d:\temp", True
...[additional code]
%>

Notes

If an error is raised when calling CopyFolder, the method stops immediately and
does not reverse any actions already performed.

The CopyFolder method is as fast as copying the folder using the command line.

CreateFolder (FileSystemObject Object)
fsoObj.CreateFolder(strFolderName)

Creates a folder in a specified location.

Parameters

strFolderName
A string value that represents the full physical path of the folder you want to
create

Example
<%

' Dimension local variables.
Dim fsoObject ' FileSystemObject
' Instantiate the FileSystemObject variable.
Set fsoObject = Server.CreateObject(_
 "Scripting.FileSystemObject")
336 Chapter 18 – File Access Component

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

File Ac
GetBaseName (FileSystemObject Object)
' Create a new directory.
fsoObject.CreateFolder("e:\storage\newdir")
...[additional code]
%>

Notes

If you attempt to create a folder that already exists, an error will be raised.

Delete (File Object, Folder Object)
Obj.Delete blnForce

Deletes a file or folder.

Parameters

blnForce
A Boolean value that indicates whether to delete files or folders, even if they
are marked as read-only

Example
<%

' Dimension local variables.
Dim fsoObject ' FileSystemObject
Dim filObject ' File Object

' Instantiate the FileSystemObject variable.
Set fsoObject = Server.CreateObject(_
 "Scripting.FileSystemObject")
' Using the GetFile method of fsoObject, initialize the
' File object.
Set filObject = fsoObject.GetFile("d:\docs\test.txt")

' Delete the TEST.TXT file—even if the file is marked
' as read-only.
filObject.Delete True
...[additional code]
%>

Notes

The Delete method of the File and Folder objects is functionally the same as the
DeleteFile and DeleteFolder methods of the FileSystemObject object. If you use
the Delete method of a Folder object, that folder and all of its contents will be
deleted. The method will not warn you if you attempt to delete a directory that
contains files.

GetBaseName (FileSystemObject Object)
fsoObj.GetBaseName(strPath)

Extracts the name of a file—minus any file extension—from a full file path.
GetBaseName (FileSystemObject Object) 337

cess

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

GetParentFolderName (FileSystemObject Object)
Parameters

strPath
A string representing the full file path of a given file whose base name you
want to retrieve

Example
<%

' Dimension local variables.
Dim fsoObject ' FileSystemObject
' Instantiate the FileSystemObject variable.
Set fsoObject = Server.CreateObject(_
 "Scripting.FileSystemObject")
' Using the GetBaseName method, retrieve the base
' names of several path strings.
' This example returns "searchstart" as the base name.
Response.Write fsoObject.GetBaseName(_
 "/apps/search/searchstart.asp")
' This example returns "search" as the base name.
Response.Write fsoObject.GetBaseName("/apps/search/")
' This example returns "search" as the base name.
Response.Write fsoObject.GetBaseName("/apps/search")
' This example returns "nofile" as the base name—even
' though the nofile.txt file does not exist.
fsoObject.GetBaseName("/apps/search/nofile.txt")
...[additional code]
%>

Notes

GetBaseName attempts to retrieve the base name for a file from a path string. If
the last element in the path string is a folder, the folder name is returned—even if
you include a closing slash (/) or backslash (\) character. The path string is not
checked for its validity or its existence as a real path on the server. The method
just looks at the path as a string. For this reason, the association of this method
with the FileSystemObject object is deceiving, since no file manipulation actually
occurs.

GetParentFolderName (FileSystemObject Object)
fsoObj.GetFolderName (strPath)

Determines the name of the last parent folder in a given path string.

Parameters

strPath
A string representing the full file path of a given file or folder whose parent
folder name you are attempting to retrieve
338 Chapter 18 – File Access Component

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

File Ac
GetSpecialFolder (FileSystemObject Object)
Example
<%

' Dimension local variables.
Dim fsoObject ' FileSystemObject
' Instantiate the FileSystemObject variable.
Set fsoObject = Server.CreateObject(
 "Scripting.FileSystemObject")
' Using the GetParentFolderName method, retrieve the
' parent folder names of several path strings.
' This example returns "search" as the parent folder
' name.
Response.Write fsoObject.GetParentFolderName(_
 "/apps/search/searchstart.asp")
' This example return "apps" as the parent folder name
Response.Write fsoObject.GetParentFolderName ("/apps/search/")
' This example also returns "apps" as the parent folder
' name.
Response.Write fsoObject.GetParentFolderName ("/apps/search")
' This example returns "nofile" as the parent folder
' name—even though nofile.txt does not exist.
Response.Write fsoObject.GetParentFolderName(_
 "/apps/search/nofile.txt")
...[additional code]
%>

Notes

Like the GetBaseName method of the FileSystemObject object, the GetParentFol-
derName method acts only on the path string itself. The path string argument is
not checked for validity or existence.

GetSpecialFolder (FileSystemObject Object)
fsoObj.GetSpecialFolder (intSpecialFolderType)

Retrieves the full physical path of a special folder on the web server.

Parameters

intSpecialFolderType
An integer that represents the type of special folder whose full physical path
you wish to retrieve. The possible values for this parameter are as follows:

Constant Value Description

WindowsFolder 0 The Windows or WinNT folder into which your
operating system was installed

SystemFolder 1 The System folder into which libraries and device
drivers are installed

TemporaryFolder 2 The Temp folder as it is declared in the environ-
ment variables
GetSpecialFolder (FileSystemObject Object) 339

cess

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

MoveFolder (FileSystemObject Object)
Example
<%

' Dimension local variables.
Dim fsoObject ' FileSystemObject
' Declare file constants.
Const WindowsFolder = 0
Const SystemFolder = 1
Const TemporaryFolder = 2

' Instantiate the FileSystemObject variable.
Set fsoObject = Server.CreateObject(_
 "Scripting.FileSystemObject")
' Use GetSpecialFolder to retrieve the physical path
' for the Windows, System, and Temp directories.
' This example returns something similar to "C:\WINNT".
fsoObject.GetSpecialFolder(WindowsFolder)
' This example returns something similar to
' "C:\WINNT\SYSTEM32".
fsoObject.GetSpecialFolder(SystemFolder)

' This example returns something similar to
' "C:\WINNT\TEMP"
fsoObject.GetSpecialFolder(TemporaryFolder)
...[additional code]
%>

Notes

Note that you must explicitly declare constants for use with the file access
components.

MoveFolder (FileSystemObject Object)
fsoObj.MoveFolder strSourcePath, strDestinationPath

Moves a folder and all its contents from one location to another.

Parameters

strSourcePath
A string representing the path to the folder or folders you wish to move. You
can include wildcard characters in the strSourcePath argument in the last
segment of the path only.

strDestinationPath
A string representing the path to which you wish to move the folders refer-
enced in the strSourcePath parameter. The strDestinationPath
parameter cannot contain any wildcard characters.

Example
<%

' Dimension local variables.
340 Chapter 18 – File Access Component

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

File Ac
OpenAsTextStream (File Object)
Dim fsoObject ' FileSystemObject
' Instantiate the FileSystemObject variable.
Set fsoObject = Server.CreateObject(_
 "Scripting.FileSystemObject")
' Using the MoveFolder method, move all the folders
' under C:\APPS to the D: drive.
fsoObject.MoveFolder "C:\APPS*.*", "D:\"
...[additional code]
%>

Notes

If you attempt to move a folder to a destination that is already a filename, you will
receive an error. If the destination you provide represents the name of a preex-
isting folder, you will receive an error unless the source argument ends with a
wildcard or a backslash (\). In this case, the source folder (or folders) and all its
contents will be moved to the destination folder. For example, the following code
results in an error:

<%
' Assume FileSystemObject object is instantiated
'already. Also assume that D:\ apps already exists.
fsoObject.MoveFolder "C:\apps", "d:\apps"
%>

whereas the following code would not result in an error:

<%
' Assume FileSystemObject object is instantiated
' already. Also assume that D:\ apps already exists.
fsoObject.MoveFolder "C:\apps*.*", "d:\apps"
' This last line create an apps folder in the D:\apps
' folder (making D:\apps\apps)
%>

Note that if the web server experiences an error when calling MoveFolder, all
actions stop without any rollback of previous actions. For example, if you attempt
to move a series of three folders with all their contents and an error occurs on the
third folder to be moved, the first two folders remain moved even though the third
is not. You must include your own code to check for which files and folders were
actually moved and which were not.

If you attempt to move folders between volumes, the underlying operating system
must support this, and user security on the web server must allow for this.

OpenAsTextStream (File Object)
filObj.OpenAsTextStream ([intAccessMode)[, intFormat]])

Opens a file and creates a TextStream object that you can use to read or modify
the text file.
OpenAsTextStream (File Object) 341

cess

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

OpenAsTextStream (File Object)
Parameters

intAccessMode
An integer that indicates the input/output mode in which you wish to open
the text file. Possible values for this parameter are as follows:

intFormat
An integer that indicates the format of the file to be opened as a TextStream
object. The possible values for this parameter are thought of as a single
tristate value. The file is Unicode, ASCII, or whichever is the system default.
Possible values for this parameter are:

Example
<%

' Dimension local variables.
Dim fsoObject ' FileSystemObject
Dim filObject ' File Object

' Declare File Access constants.
Const ForAppending = 8
Const TristateTrue = -1

' Instantiate the FileSystemObject variable.
Set fsoObject = Server.CreateObject(_
 "Scripting.FileSystemObject")
' Using the GetFile method of fsoObject, initialize the
' File object.
Set filObject = fsoObject.GetFile("d:\docs\test.txt")

' Use the OpenAsTextStream method to open the file for
' appending and in Unicode format.
filObject.OpenAsTextStream(ForAppending, TristateTrue)
%>

Constant Value Description

ForReading 1 The file will be opened as read-only and cannot be
modified by the current TextStream object.

ForWriting 2 The file will be opened for writing. If the file already
exists when you call the OpenAsTextStream method,
the original file is overwritten.

ForAppending 8 The file is opened for appending only. You can only
add characters to the end of this file.

Constant Value Description

TristateUseDefault –2 The file format will be the same as the
default for the web server (Unicode or
ASCII).

TristateTrue –1 The file format will be Unicode.

TristateFalse 0 The file format will be ASCII.
342 Chapter 18 – File Access Component

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

File Ac
ReadLine (TextStream Object)
Notes

The OpenAsTextStream method is virtually equivalent to the OpenTextFile method
of the FileSystemObject object. The only difference is that the OpenAsTextStream
method also can be used to create a new text file if one does not already exist.

Note that you must explicitly declare constants for use with the File Access
components.

ReadLine (TextStream Object)
tsObj.ReadLine

The ReadLine method is similar to the Read method of the TextStream object in
that it allows you to read from a text file into a string variable or compare the
results of such a read to another entity. However, unlike the Read method, which
uses an argument to determine how many characters to read, the ReadLine
method reads all characters from the current pointer location to the next newline
character.

Parameters

None

Example
<%

' Dimension local variables.
Dim fsoObject ' FileSystemObject
Dim filObject ' File Object
Dim strBuffer ' Holding buffer

' Declare file access constants.
Const ForReading = 1
Const TristateFalse = 0

' Instantiate the FileSystemObject variable.
Set fsoObject = Server.CreateObject(_
 "Scripting.FileSystemObject")
' Using the GetFile method of fsoObject, initialize the
' File object.
Set filObject = fsoObject.GetFile("d:\docs\test.txt")

' Use the OpenAsTextStream method to open the file for
' reading and in ASCII format.
filObject.OpenAsTextStream(ForReading, TristateFalse)
' Use the ReadLine method to read the next line of text
' from the text file into the strBuffer variable.
strBuffer = filObject.ReadLine
%>
ReadLine (TextStream Object) 343

cess

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Write (TextStream Object)
Notes

After calling the ReadLine method, the current location of the pointer within the
file is the character immediately after the last newline character or at the end of
file marker.

Note that you must explicitly declare constants for use with the File Access
components.

Write (TextStream Object)
tsObj.Write(strWriteString)

Writes a specified string to an open text file at the current location of the file
pointer.

Parameters

strWriteString
A string that represents the text you wish to write to the open file

Example
<%

' Dimension local variables.
Dim fsoObject ' FileSystemObject
Dim filObject ' File Object
Dim strEnding
' Declare file access constants.
Const ForAppending = 8
Const TristateFalse = 0

' Initialize string variable. This string will be
' written to the end of the file opened next.
strEnding = "This is the end, my only friend, the end..."
' Instantiate the FileSystemObject variable.
Set fsoObject = Server.CreateObject(_
 "Scripting.FileSystemObject")
' Using the GetFile method of fsoObject, initialize the
' File object.
Set filObject = fsoObject.GetFile("d:\docs\test.txt")

' Use the OpenAsTextStream method to open the file for
' appending and in Unicode format.
filObject.OpenAsTextStream(ForAppending, TristateFalse)
' Write a short string to the end of the opened file.
filObject.Write strEnding
...[additional code]
%>

Notes

The Write method does not place any characters at the beginning or end of each
written string. For this reason, if you use the Write method to add to a file, make
344 Chapter 18 – File Access Component

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

File Ac
WriteLine (TextStream Object)
sure that you include any desired characters (like spaces or newline characters) at
the beginning or end of the strings you write to the file.

WriteLine (TextStream Object)
tsObj.WriteLine([strWriteString])

Writes a string’s value into an open file at the location of the pointer within the
file. This method also writes a newline character to the end of the added string.
Otherwise, it is exactly the same as the Write method.

strWriteString
A string that represents the text you wish to write to the open text file

Example
<%

' Dimension local variables.
Dim fsoObject ' FileSystemObject
Dim filObject ' File Object
Dim strEnding
' Declare file access constants.
Const ForAppending = 8
Const TristateFalse = 0

' Initialize a string variable that will be written to
' the end of the file opened next.
strEnding = "This is the end, my only friend, the end..."
' Instantiate the FileSystemObject variable.
Set fsoObject = Server.CreateObject(_
 "Scripting.FileSystemObject")
' Using the GetFile method of fsoObject, initialize the
' File object.
Set filObject = fsoObject.GetFile("d:\docs\test.txt")

' Use the OpenAsTextStream method to open the file for
' appending and in Unicode format.
filObject.OpenAsTextStream(ForAppending, TristateFalse)
' Write a short string plus a newline character to the
' end of the opened file.
filObject.WriteLine strEnding
...[additional code]
%>

Notes

After calling the WriteLine method, the file pointer will point to the character
located immediately after the newline character added to the file.
WriteLine (TextStream Object) 345

cess

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Chapter 19MyInfo
CHAPTER 19

MyInfo Component

The MyInfo component allows you to maintain an encapsulated list of named

string values that you use often throughout your site. This component was osten-
sibly designed (according to the documentation) for use with Personal Web Server
(PWS), but it is also useful within Internet Information Server (IIS) ASP
applications.

Each site can have only a single MyInfo component, and this component can
contain as many values as you wish. This component helps you maintain this
information by giving you a convenient, easy-to-use interface. Each value you
store using the MyInfo object is stored in a text file on the web server. To access
the value, you simply refer to the name of the object, followed by the dot oper-
ator, followed by the name of the value—exactly as if your value were another
property of the MyInfo object.

Assuming your site has a single MyInfo object called myinfoObj defined with
application-level scope, you can retrieve any of its values (custom or not) using
simply the syntax ObjName.PropertyName that you have used repeatedly. The
example code at the end of this chapter demonstrates this.

Accessory Files/Required DLL Files
myinfo.dll

The dynamic link library for the MyInfo component. It is installed with IIS.

myinfo.xml
The file in which your MyInfo component stores its values. (Note: You cannot
change this filename. The component is hardcoded to look in this file.) This is
a standard XML file.* The following is an example of a myinfo.xml file on an
IIS web server:

* The latest XML specification can be found at http://www.w3.org/TR/REC-xml.
346

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

M
yInfo

Accessory Files/Required DLL Files
MyInfo Summary
Properties

Background
CommunityLocation
CommunityName
CommunityPopulation
CommunityWords
CompanyAddress
CompanyDepartment
CompanyName
CompanyPhone
CompanyWords
Guestbook
HomeOccupation
HomePhone
HomeWords
Messages
OrganizationAddress
OrganizationName
OrganizationPhone
OrganizationWords
PageType
Personal Address
PersonalMail
PersonalName
PersonalPhone
PersonalWords
SchoolAddress
SchoolDepartment
SchoolName
SchoolPhone
SchoolWords
Style
Title
URL
URLWords

Collections
None

Methods
None

Events
None
Accessory Files/Required DLL Files 347

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Accessory Files/Required DLL Files
<XML>
<PersonalName>A. Keyton Weissinger</>
<PersonalAddress>Addr1</>
<PersonalPhone>Phone1</>
<PersonalMail>Mail1</>
<PersonalWords>Words1</>
<CompanyName>CompName1</>
<CompanyAddress>CompAddr1</>
<MyInfo1></>
<AdRot1></>
<Addr1></>
<Phone1></>
<Mail1></>
<Words1></>
<CompName1></>
<CompAddr1></>
<objprop></>
</XML>

The following is an example of a myinfo.xml file on a Personal Web Server (mine):

<XML>
<theme>journal</>
<ranWizard>-1</>
<sync></>
<guestbook>0</>
<messages>-1</>
<title>Keyton's Home Homepage</>
<name>Keyton Weissinger</>
<Email>keyton@home.com</>
<Phone>555-1000</>
<faxPhone>555-1001</>
<Department>AtHome Books</>
<Address1>123 Main Street</>
<Address2>USA</>
<Address3></>
<Address4></>
<Heading1>Here's a little about me:</>
<Words1>I enjoy spending time with my family,
programming, reading Patrick O'Brian novels,
and Age of Sail history.</>
<Heading2></>
<Words2></>
<Heading3></>
<Words3></>
<Heading4></>
<Words4></>
<intUrl>1</>
<checkEmail></>
<url1>http://www.avault.com</>
<urlWords1>Adrenaline Vault</>
<urlWords0>null</>
<url0>null</>
<favoriteLinks>-1</>
</XML>
348 Chapter 19 – MyInfo Component

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

M
yInfo

Comments/Troubleshooting
Finally, note that MyInfo.XML is only updated by PWS upon a reboot. Simply stop-
ping and restarting PWS will not accomplish the task.

Comments/Troubleshooting
The MyInfo component is useful for storing and maintaining the many administra-
tive values that correspond to properties of your web site in general. You may use
items like the name of the webmaster, her phone number, and her email address
in your applications repeatedly. You could simply declare them all as application-
level variables, but this is problematic, since you must save these values through
code if you want them maintained through the course of a restart on your web
server, for example.

There are two points to remember when using the MyInfo component:

• Once a property has been created, it is in the MyInfo.XML file forever. You
must edit this file by hand to remove it. As this is a small text file, this isn’t a
huge problem, but it’s worth mentioning.

• You should have only one MyInfo object per site (i.e., you should instantiate
just one object per application) because there is only one MyInfo.XML file.
This file could conceivably be in flux due to the actions of one MyInfo object
while you are attempting to read or change a value from a second object.
Contrary to the Microsoft documentation, your MyInfo object should have
application-level, not session-level scope.

You can use either of the following two pieces of code to instantiate a MyInfo
object. The first uses Global.asa to call the Server.CreateObject method:

[FROM GLOBAL.ASA]
<%
' Declare local variables.
Dim appMyInfo

' Instantiate a MyInfo object with Application level scope
Set Application("appMyInfo") = _
 Server.CreateObject("MSWC.MyInfo")

' You can now initialize the values
Application("appMyInfo").PersonalName = _
 "A. Keyton Weissinger"
...[additional code]
%>

The second uses the <OBJECT> tag:

[FROM GLOBAL.ASA]
<OBJECT
RUNAT = SERVER
SCOPE = APPLICATION
ID = appMyInfo
PROGID = "MSWC.MyInfo">
</OBJECT>
Comments/Troubleshooting 349

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Properties Reference
Properties Reference

[All Properties]
infoObject.PropertyName [= strPropertyValue]

The meaning of the default properties is shown in Table 19-1.

Parameters

PropertyName
The name of the desired property. If the property does not exist and you are
attempting to retrieve its value, an empty string is the result. If, however, you
use a nonexistent property name and include a value, that property is created
and initialized to the designated value. Although you can add as many prop-
erty names to a MyInfo object as you like, the properties shown in Table 19-1
are set up by default by Personal Web Server (those marked with an asterisk
are also set up by Microsoft Internet Information Server).

Table 19-1: Property Name and Description

Property Name Description

Background A string representing the background image for the
site.

CommunityLocation A string representing the location of the web site’s
community.

CommunityName A string representing the name of the web site’s
community.

CommunityPopulation A string representing the population of the web site’s
community.

CommunityWords A string describing the web site’s community.

CompanyAddress* The address of the web site’s company.

CompanyDepartment The department within the web site’s company.

CompanyName* The name of the web site’s company.

CompanyPhone The phone number of the web site’s company.

CompanyWords A string representing any additional text associated
with the web site’s company.

Guestbook A string indicating whether or not the guest book
(from PWS) should be available on the site.

HomeOccupation The occupation of the web site’s owner.

HomePhone The home phone number of the webmaster’s phone
number.

HomeWords A string representing any additional text associated
with the web site’s owner.
350 Chapter 19 – MyInfo Component

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

M
yInfo

[All Properties]
Messages Personal Web Server stores information about your
personalized home page (if it is created through the
wizard) using a MyInfo component. One option you
have on your personal home page is a drop box that
allows the user of your PWS web site to send you a
personal message. The Messages property of the
MyInfo component is a string that reflects whether or
not this Messages form should appear on your home
page. The value is “” by default (before you build your
web page using the wizard), –1 if you have chosen to
have the Messages form, and 0 if you have chosen not
to have the Messages form.

OrganizationAddress A string representing the address of the web site’s
organization.

OrganizationName A string representing the name of the web site’s orga-
nization.

OrganizationPhone A string representing the phone number of the web
site’s organization.

OrganizationWords Any additional text associated with the web site’s orga-
nization.

PageType This property is also a reflection of information you
choose through the use of the Personal Web Server
Home Page Wizard. However, it is from the older
version (3.0) of PWS and is not the Home Page wizard
for PWS 4.0. This property’s value is a number that
represents whether the current site is (1) About My
Company, (2) About My Life, (3) About My School, (4)
About My Organization, or (5) About My Community.

PersonalAddress* A string representing the address of the web site’s
owner.

PersonalMail* The email address of the web site’s owner.

PersonalName* A string representing the name of the web site owner.

PersonalPhone* A string representing the phone number of the web
site’s owner.

PersonalWords* The additional text associated with the web site’s
owner.

SchoolAddress The address of the web site’s school.

SchoolDepartment The department of the web site’s school.

SchoolName A string representing the name of the web site’s
school.

SchoolPhone The phone number of the web site’s school.

SchoolWords A string representing any additional text associated
with the web site’s school.

Style A string representing the relative URL of a style sheet
for the web site.

Table 19-1: Property Name and Description (continued)

Property Name Description
[All Properties] 351

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

[All Properties]
strPropertyValue
A string that represents the new value for a given property. If the property
name does not exist, it is created and initialized with the value of
strPropertyValue.

Example

The following example code demonstrates both the instantiation of a MyInfo
object and its use. First, a MyInfo object named appMyInfo is instantiated in
GLOBAL.ASA:

[FROM GLOBAL.ASA]
<%
' Declare local variables.
Dim appMyInfo

' Instantiate a MyInfo object with application-level scope.
Set Application("appMyInfo") = _
 Server.CreateObject("MSWC.MyInfo")
...[additional code]
%>

The following is from elsewhere in the ASP application and shows how to assign
values to and retrieve values from the MyInfo object:

<%

' You can set the default values.
Application("appMyInfo").PersonalName = _
 "A. Keyton Weissinger"

' You can also create (or set) new values.
Application("appMyInfo").MyNewProp = _
 "Custom Property Value"
...[additional code]
' Now you can use these values as you would any other
' application-level values.
%>

The value of the PersonalName property is
<%= Application("appMyInfo").PersonalName %>

Title A string representing the user-defined title for the
home page.

URL(N) A string representing the Nth user-defined URL. This
collection allows you to store multiple user-defined
URLs for easy access.

URLWords(N) A string representing the description of the Nth user-
defined URL. This collection allows you to store the
descriptions for the URLs in the URL collection.

Table 19-1: Property Name and Description (continued)

Property Name Description
352 Chapter 19 – MyInfo Component

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

M
yInfo

[All Properties]
The value of the MyNewProp property is
<%= Application("appMyInfo").MyNewProp %>

Notes

The only properties whose values are in any way unusual are the URL and
URLWords collections. These allow you to create a collection of URLs for later use
in your site. The following demonstrates the use of these properties:

<%

' Set the URL for the first URL in the collection.
Application("appMyInfo").URL(1) = _
 "/Apps/HomeDir/Home.asp"

' Set the description for the first URL in the
' collection.
Application("appMyInfo").URLWords(1) = _
 "My Site's Home Page"
.
.
.
' Now you can use these values to create a link (with a
' descriptive name) to a particular URL.
%>

<%=Application("appMyInfo").URLWords(1)%>

[All Properties] 353

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Chapter 20Page Counter
CHAPTER 20

Page Counter Component

There was a time that I’m sure many of you remember (not that long ago) when a

page counter on a web site’s home page was a novelty. Back then, adding a page
counter required—or so it seemed—far more work than it was worth, involving at
least a CGI application or maybe a Java applet.

The alternative was easier but fraught with difficulties of its own. It involved using
a counter service. This involved adding an tag to your site that referenced a
CGI application on the counter service-maintained server. The service maintained
the counter for you. The problem was that such services often were out of
commission for long periods of time and would go down completely under heavy
loads. Because counter services were problematic, many developers decided to
create their own, often simply reinventing the wheel.

Now, however, the web is beginning to show signs that it has moved from infancy
to its toddler years, and such mundane items as page counters have become
everyday occurrences. There are now at least a dozen easily obtainable versions of
the ever-present page counter. Microsoft has its own version; its Page Counter
component is the topic of this chapter.

Microsoft’s version of the Page Counter is a simple component that stores the
current page count for a specific page to a text file. Code on your active server
page increases the counter and retrieves the current count programmatically
through calls to methods of the Page Counter object.

This chapter documents the Page Counter component 2.0 (Beta 3),
which is available for download from Microsoft’s web site.
354

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Page Counter
Instantiating the Page Counter Component
Accessory Files/Required DLL Files
pagecnt.dll

The dynamic link library for the Page Counter component. This DLL comes
with the IIS installation media but is not installed by default. You must
register this DLL by hand before you can use it.

Hit Count Data File
The hit count data file contains the current hit count for every page for which
the Page Counter object is being used. Microsoft suggests that you do not
modify this file by hand. However, doing so does not adversely affect the
page counter’s functionality unless the format of the entries is changed. The
name and location of this file is specified by the File Location value entry
in the registry key HKEY_CLASSES_ROOT\MSWC.PageCounter. The default
name for this page count file is hitcnt.cnt.

Note that the Page Counter object will save the current hit count for a page if the
count rises above a certain number. This number is located in the Save_Count
value (under the same registry key as the File_Location value). The default
number for this setting is 25.

Instantiating the Page Counter Component
To create an object variable containing an instance of the Page Counter compo-
nent, use the CreateObject method of the Server object. The syntax for the
CreateObject method is as follows:

Set objMyObject = Server.CreateObject(strProgId)

where:

• objMyObject represents the name of a Page Counter object.

• strProgId represents the programmatic identifier (ProgID) for the Page
Counter component; its ProgID is IISSample.PageCounter.

Page Counter Summary
Properties

None

Collections
None

Methods
Hits
Reset

Events
None
Instantiating the Page Counter Component 355

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Comments/Troubleshooting
Example
<%

' The following code uses the CreateObject method of the
' Server object to instantiate a Page Counter object on
' the server.
Dim objPgCounter

Set objPgCounter = _
 Server.CreateObject("IISSample.PageCounter")

%>

For more details on the use of the CreateObject method see its documentation in
Chapter 8, Server Object.

Comments/Troubleshooting
The Page Counter component uses an internal object called a Central Manage-
ment object that is part of the IIS architecture. This object is what actually counts
the number of times each page has been hit.

What if you want to create an application-wide counter, rather than just a page-
level counter? Unfortunately, the Page Counter component cannot help you. You
must use either the Counters component or an application-scoped variable that is
saved on the system manually.

The other limitation of the Page Counter component is that there is no way to
prevent the page count from being artificially incremented by the user’s clicking
the Refresh button or reloading the page repeatedly.

The Page Counter component is simple to use and works as documented.

Methods Reference

Hits
objPgCntr.Hits([strPathInfo])

Retrieves a Long from the Page Counter hits file representing the total number of
times a given page has been requested.

Parameters

strPathInfo
The virtual path and filename for the page whose hit count you wish to
retrieve. If you do not include a strPathInfo argument, the Page Counter
object will retrieve the number of times the current page has been requested.

Example
<%

' Declare local variables.
356 Chapter 20 – Page Counter Component

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Page Counter
Reset
Dim objPgCntr
Dim lngHitCount

' Instantiate a Page Counter object.
Set objPgCntr = Server.CreateObject(_
 "IISSample.PageCounter")

' Retrieve the hit count for the home page.
lngHitCount = objPgCntr.Hits("/Apps/Homepage.asp")
%>

The home page has been served <%= lngHitCount %> times.

Notes

As explained earlier, a page’s hit count is updated automatically (assuming that
page contains a Page Counter object) any time a user requests it. This number
shows both “new” requests and those produced from simply clicking on the
Refresh button.

Reset
objPgCntr.Reset([strPathInfo])

Resets the page counter for a web page. Once called, the page count for the page
is reset to zero in the Page Count hits file.

Parameters

strPathInfo
A string value that represents the virtual path and filename for the page
whose hit count you wish to reset. If you do not include a strPathInfo
argument, the Page Counter object will reset the count for the current page to
zero.

Example
<%

' Declare local variables.
Dim objPgCntr
Dim lngHitCount

' Instantiate a Page Counter object.
Set objPgCntr = Server.CreateObject(_
 "IISSample.PageCounter")

' Reset the hit count for the home page.
objPgCntr.Reset("/Apps/Homepage.asp")
...[additional code]
%>

Notes

If the hits file becomes corrupted or is deleted, the hit counts for all pages are
essentially reset.
Reset 357

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Chapter 21Permission Checker
CHAPTER 21

Permission Checker Component

One of the benefits of using Microsoft’s Internet Information Server is its close

connection to Windows NT and its security model. The Permission Checker
component allows you to utilize this connection to determine whether a user on
your web site has permission to view a given file stored on an NTFS volume. This
allows you to customize your site’s pages according to the permissions granted a
given user. For example, you could use the Permission Checker component to
check whether a user has access to a certain downloadable file before creating a
link to the file. This way, if the user does not have access to the file, she does not
even see the link to it. Conceivably, you could use this strategy to prevent unau-
thorized users from ever seeing any indication that files to which they do not have
access exist.

There are two requirements for using the Permission Checker component. The first
is that your site must be running on Windows NT (Personal Web Server for
Windows 95/98 will not work). Second, your web site must not rely exclusively on
anonymous connections and the (low-level) security such an access method
provides. You must have either Basic Clear Text or Windows NT Challenge
Response authentication selected as a security option for your web site. These
authentication methods provide the Permission Checker object with a security
context in which to test for various permissions. If you do not have Basic or NT
Challenge Response, the Permission Checker is unable to distinguish between one
anonymous user and another.

Note that this chapter documents the Permission Checker compo-
nent 2.0 (Beta 3) that can be downloaded from Microsoft’s web site.
358

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Perm
ission

Checker
Instantiating the Permission Checker
Accessory Files/Required DLL Files
permchk.dll

The dynamic link library for the Permission Checker component. This DLL
comes with the IIS installation media but is not installed by default. You must
register this DLL by hand before you can use it.

Instantiating the Permission Checker
To create an object variable containing an instance of a Permission Checker object,
use the Server object’s CreateObject method. The syntax for the CreateObject
method is as follows:

Set objMyObject = Server.CreateObject(strProgId)

where:

• objMyObject represents the name of the Permission Checker object.

• The strProgId parameter represents the programmatic ID (ProgID) for the
Permission Checker component, which is IISSample.PermissionChecker.

Example
<%

' The following code uses the CreateObject method of the
' Server object to instantiate a Permission Checker
' object on the server.
Dim objPermChkr

Set objPermChkr = _
 Server.CreateObject("IISSample.PermissionChecker")

%>

For more details on the use of the CreateObject method see its documentation in
Chapter 8, Server Object.

Permission Checker Summary
Properties

None

Collections
None

Methods
HasAccess

Events
None
Instantiating the Permission Checker 359

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Comments/Troubleshooting
Comments/Troubleshooting
Suppose that your web site consists of several pages that must be accessible to all
users—even anonymous users. It also contains several pages that require that the
user use a specific account or be a member of a specific group. To allow for both
types of users on your site, select the Anonymous option and either the Basic
Clear Text or Windows NT Challenge Response using the Internet Information
Server Management Console. Then set the file permissions on the restricted files so
that anonymous users are forbidden access. Alternatively, you could check the
LOGON_USER element of the Request object’s ServerVariables collection and, if it’s
blank, set the Status property of the Response object to “401 Unauthorized.” This
will force the user to log on to the site using a valid username and password.

Note that Basic Clear Text authentication is by no means secure. However,
Windows NT Challenge Response, though more secure, is supported only by
Microsoft’s Internet Explorer. Also, it may not work when your users are
connecting to your site (and providing security information) through a proxy
server. In my experience, the typical result in this latter case is that you receive
two empty strings for the username and password.

Even if you exclusively use anonymous access to your site, the Permission
Checker component still has a useful purpose. In attempting to determine the
security on a given file, the Permission Checker object must determine if the file
exists. Although there are other ways to determine this information, this may be
the easiest.

Methods Reference

HasAccess
objPermChkr.HasAccess(strPath)

Determines whether the current user has access to the file specified in the
strPath argument. The return value is a Boolean.

Parameters

strPath
A string value that represents the relative path to the file to which you are
determining accessibility. This path can be a virtual or a physical path.

Example
<%

' Declare local variables.
Dim objPermChkr
Dim blnPermission

' Instantiate a Permission Checker object.
Set objPermChkr = Server.CreateObject(_
 "IISSample.PermissionChecker")
360 Chapter 21 – Permission Checker Component

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Perm
ission

Checker
HasAccess
' Determine whether the current user has access to the
' security page using a virtual path.
blnPermission = objPermChkr.HasAccess("/Apps/SecPage.asp")

' Determine whether the current user has access to the
' security page using a physical path.
blnPermission = objPermChkr.HasAccess(_
 "c:\inetpub\wwwroot\Apps\SecPage.asp")
...[addition code]
' You can then use the results of these tests to determine
' whether or not to create a hyperlink to the restricted
' page
If blnPermission Then
%>
 Congratulations, you have access to the security page.
 Security Page
<%
End If
%>

Notes

If the file does not exist, the call to HasAccess returns a value of False.
HasAccess 361

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

PART IV

Appendixes
The appendixes treat such diverse topics as migrating from CGI to
WinCGI to ASP, configuring IIS for ASP applications, and running ASP
applications on web servers other than Microsoft’s Internet Information
Server. The appendixes consist of the following:

Appendix A, Converting CGI/WinCGI Applications into ASP
Applications

Appendix B, ASP on Alternative Platforms

Appendix C, Configuration of ASP Applications on IIS
ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Appendix ACGI/WinCGI to ASP
CG
I

APPENDIX A

Converting CGI/WinCGI Applications
into ASP Applications

Complete coverage of how to convert a CGI application (standard or WinCGI)
 /W
inCG

Ito
ASP
would require an entire book to itself. However, this appendix should provide a

starting point for your conversion.

The CGI Application
In this example, I will convert a simple CGI application to an ASP. I have written
this application in two forms: one version in Perl and one in Visual Basic. Each
version provides exactly the same functionality. It retrieves the user’s name and
programming language preference from a posted HTML form, then saves this
information into a Microsoft Access database using ActiveX Data Objects.
Figure A-1 shows the CGI application in a browser window.

Figure A-1: The HTML interface for our CGI application
365

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The CGI Application
The HTML code for the form in Figure A-1 is straightforward and is shown in
Example A-1.

I will use the same form with three separate values for the <FORM> tag’s ACTION
attribute, as shown in Table A-1.

Example A-1: HTML Source for the Sample CGI Application

<HTML>
<HEAD>
<TITLE>Sample Form</TITLE>
</HEAD>
<BODY bgcolor = #cccccc>
<form action="XXXXXXXX SEE BELOW XXXXXXXXXX" method="POST">
<center>
<h2>Welcome to the Programming Language Survey.</h2>
<h3>Please enter your name and your programming language preference
below.</h3>
<TABLE WIDTH = 40%>
 <TR VALIGN = TOP>
 <TD WIDTH = 40%>
 Name:
 </td>
 <TD WIDTH = 60%>
 <input type="Text" name="UsrName" size="20"
 maxlength="80">

 </TD>
 </tr>
 <TR VALIGN = TOP>
 <TD WIDTH = 40%>
 Language:
 </td>
 <TD WIDTH = 60%>
 <select name="ProgLang">
 <option value="Perl">Perl
 <option value="Python">Python
 <option value="Visual Basic">Visual Basic
 </select>
 </TD>
 </tr>
</TABLE>

<input type="Submit" name="Submit" value="Submit Form"
align="MIDDLE">
</form>
</center>

</BODY>
</HTML>
366 Appendix A – Converting CGI/WinCGI Applications into ASP Applications

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

CG
I/W

inCG
Ito

ASP
The Perl CGI Script
The Microsoft Access database consists of one table, LangPrefStorage, with two
text fields, Name and LangPref. The database’s data source name (DSN) in this
example is LangPref. All three server solutions will perform the same steps to
add the submitted information to the database:

1. Instantiate an ADO connection to the database.

2. Construct a SQL INSERT statement based on the name and language prefer-
ence submitted by the user (retrieved from the server).

3. Execute the SQL statement.

4. Return a “Thank You” message in an HTML page back to the user that will
allow him to return to the form.

The Perl CGI Script
Our first CGI script, which is shown in Example A-2, is written in Perl. I used
ActivePerl (from www.ActiveState.com) on a Windows NT Workstation 4.0
machine. The Perl 5 CGI script is very straightforward. Read the comments (those
lines starting with a “#” character) to understand the code line by line.

Table A-1: Values for the ACTION Attribute

Server
Method ACTION Parameter Value Description

CGI/Perl /cgi-shl/LangForm/Post_CGI.cgi CGI script written in Perl 5

CGI/VB /cgi-win/VB_CGI_32.exe Visual Basic executable written
using CGI32.BAS (from
O’Reilly’s CGI framework for
Visual Basic programmers)

ASP /LangPref/SavePref.asp Active Server Pages version

Example A-2: The Perl Version of the CGI Script

Use the CGI and OLE perl modules.
use CGI qw(:standard);
use OLE;

Instantiate an ADO Connection object and open the database.
$conn = CreateObject OLE "ADODB.Connection" || die "CreateObject:
$!”;
$conn->Open('LangPref');

Retrieve the Name and Language Preference of the user.
$Name = param("UsrName");
$LangPref = param("ProgLang");

Construct the SQL INSERT statement.
$sql = "INSERT INTO LangPrefStorage (Name, LangPref) VALUES (\
‘$Name\’, \'$LangPref\’)”;

Execute the SQL INSERT statement and close the ADO connection.
$conn->Execute($sql);
The Perl CGI Script 367

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Visual Basic CGI Application
Once the user has entered her name and programming language preference and
clicked on the Submit button, this script will save the information to the database
and send the response shown in Figure A-2 back to the user.

The Perl code is straightforward. First the script imports code from the OLE and
CGI Perl modules. The Active Data Object (ADO) connection object is created and
initialized. Next, the user’s input is retrieved from the submitted HTTP request.
The information is inserted into the database. Finally, the response is written back
to the user.

The Visual Basic CGI Application
I wrote the second CGI application using Microsoft Visual Basic 6.0. I used
O’Reilly’s Windows CGI framework for Visual Basic Programmers (which comes
with O’Reilly’s WebSite Pro 2.0), which is defined by the CGI32.BAS code module.
This code module does much of the CGI work for you by retrieving all of the CGI
environment variables (among other things) from the temporary file created on the
server when the user submits the HTML form. For more information on the

$conn->Close();

Print out the "Thank You" message in an HTML
form to the user.
print header,start_html("Language Preference Storage"),h1("Thank
you, $Name.”);
print p("Click here</
a> to reset the form.
”);
print end_html;

Figure A-2: The CGI reply

Example A-2: The Perl Version of the CGI Script (continued)
368 Appendix A – Converting CGI/WinCGI Applications into ASP Applications

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

CG
I/W

inCG
Ito

ASP
The Visual Basic CGI Application
WinCGI specification or on O’Reilly’s CGI framework for Visual Basic program-
mers, see the “Creating Dynamic Content” section of the documentation for
WebSite Pro 2.0. For more information on CGI variables (and their mapping to
ASP variables), see the second half of this appendix.

Example A-3 shows the Visual Basic code for our CGI application.

Example A-3: The Visual Basic Version of the CGI Script

' +-------------------------------------+
' | Force variable declarations. |
' +-------------------------------------+
Option Explicit
Sub Inter_Main()

 ' +-------------------------------------+
 ' | If a user of the web server machine |
 ' | inadvertently attempts to run |
 ' | this program as a standalone |
 ' | application, let them know it is a |
 ' | CGI app. |
 ' +-------------------------------------+
 MsgBox "This is a Windows CGI program."

End Sub

Sub CGI_Main()

 ' +-------------------------------------+
 ' | Local variable declarations. |
 ' +-------------------------------------+
 Dim strUserName As String
 Dim strPrefLang As String
 Dim adoCon As Object
 Dim strSQL As String

 ' +-------------------------------------+
 ' | Create the ADO Connection object. |
 ' +-------------------------------------+
 Set adoCon = CreateObject("ADODB.Connection")
 adoCon.Open "LangPref"

 ' +-------------------------------------+
 ' | Retrieve the name and preference |
 ' | field values from the posted form. |
 ' +-------------------------------------+
 strUserName = GetSmallField("UsrName")
 strPrefLang = GetSmallField("ProgLang")

 ' +-------------------------------------+
 ' | Create the INSERT statement. |
 ' +-------------------------------------+
 strSQL = "INSERT INTO LangPrefStorage (Name, "
 strSQL = strSQL & "LangPref) VALUES ('"
 strSQL = strSQL & strUserName & "', '"
The Visual Basic CGI Application 369

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The Active Server Pages
Even if you are not familiar with Visual Basic, this code is very simple. The
Option Explicit statement simply forces the developer to declare variables. The
Inter_Main subroutine is called any time a user mistakenly attempts to execute this
application in a standalone context (i.e., not as a CGI application). The next code
block retrieves the user’s submitted information from the temporary file created by
the web server (the real work is constructed in the GetSmallField function in the
CGI32.BAS module). Next, the information is stored into the database (for more on
the ActiveX Data Objects code, see Chapter 11, ActiveX Data Objects 1.5). Finally,
the CGI32.BAS subroutines for sending HTML back to the client are called to
return a response to the user.

The Active Server Pages
The Active Server Pages equivalent to the earlier CGI applications, which is shown
in Example A-4, is perhaps the simplest of the three applications. First I’ll show
you the code, then I’ll discuss it a bit.

 strSQL = strSQL & strPrefLang & "')"

 ' +-------------------------------------+
 ' | Execute the SQL statement and close |
 ' | the ADO connection. |
 ' +-------------------------------------+
 adoCon.Execute strSQL
 adoCon.Close

 ' +-------------------------------------+
 ' | Send the HTTP request header and |
 ' | HTML page back to the client. |
 ' +-------------------------------------+
 Send ("Content-type: text/html")
 Send ("")
 Send ("<HTML><HEAD><TITLE>")
 Send ("Language Preference Storage</TITLE>")
 Send ("</HEAD><BODY>")
 Send ("<H1>Thank you, " & strUserName & ".</H1>")
 Send ("Click <A HREF = _
'/~wsdocs/langform/formsample.htm'>here to reset the form.

“)
 Send ("</BODY></HTML>")

End Sub

Example A-4: The ASP Equivalent of the CGI Application

<HTML>
<HEAD>
<TITLE>Language Preference Storage</TITLE>
</HEAD>
<BODY>
<%

Example A-3: The Visual Basic Version of the CGI Script (continued)
370 Appendix A – Converting CGI/WinCGI Applications into ASP Applications

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

CG
I/W

inCG
Ito

ASP
The Active Server Pages
Example A-4 is written using VBScript only because all the code samples in this
book are written in VBScript (and because it is relatively easy to read). However,
as always with ASP, you can use any scripting language you like.

The ASP equivalent to our CGI application is very similar to the Visual Basic CGI
application, with the only significant difference coming in how we retrieve the
information from the HTML form. Instead of retrieving the information from a
temporary file created by the server (by calling the GetSmallField function from

' +-------------------------------------+
' | Local variable declarations. |
' +-------------------------------------+
Dim strUserName
Dim strPrefLang
Dim adoCon
Dim strSQL

' +-------------------------------------+
' | Create the ADO Connection object. |
' +-------------------------------------+
Set adoCon = Server.CreateObject("ADODB.Connection")
adoCon.Open "LangPref"

' +-------------------------------------+
' | Retrieve the name and preference |
' | field values from the posted form. |
' +-------------------------------------+
strUserName = Request.Form("UsrName")
strPrefLang = Request.Form("ProgLang")

' +-------------------------------------+
' | Create the INSERT statement. |
' +-------------------------------------+
strSQL = "INSERT INTO LangPrefStorage (Name, "
strSQL = strSQL & "LangPref) VALUES ('"
strSQL = strSQL & strUserName & "', '"
strSQL = strSQL & strPrefLang & "')"

' +-------------------------------------+
' | Execute the SQL statement and close |
' | the ADO connection. |
' +-------------------------------------+
adoCon.Execute strSQL
adoCon.Close
%>
<H1>Thank you, <%=strUserName%>.</h1>
Click

here to reset the form.

</BODY>
</HTML>

Example A-4: The ASP Equivalent of the CGI Application (continued)
The Active Server Pages 371

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Converting Environment Variables
the CGI32.BAS module), as I did in the VB application, I was able to retrieve the
information from the ASP Request object’s Form collection. The only other real
difference from a code perspective is that the final response display is written as
straight HTML in the ASP, whereas we were forced to rely on some functions in
the VB application.

Behind the scenes, there are some fundamental differences in how ASP retrieves
information. For more on this, see Chapter 1, Active Server Pages: An Introduc-
tion, and Chapter 2, Active Server Pages: Server-Side Scripting.

Converting Environment Variables
CGI applications often make use of information residing in environment variables.
These variables contain information about the web server itself or about the HTTP
request sent by the client browser. In CGI written in Perl, these variables’ values
are retrieved from the %ENV associative array. In WinCGI written using O’Reilly’s
CGI framework for Visual Basic programmers, these values are retrieved from the
contents of global variables made available by the CGI.BAS or CGI32.BAS code
modules.

Active Server Pages applications also make use of these variables. In ASP, this
information is retrieved from the Request object’s ServerVariables collection.
Table A-2 will help you convert your CGI environment variables to ASP, while
Table A-3 will aid in converting WinCGI to ASP. Note that the general syntax
required to retrieve the ASP variable is:

varname = Request.ServerVariables("ASP_Variable")

Note also that there are other environment-type variables available to ASP applica-
tions that are not available to CGI or WinCGI.

Table A-2: Converting CGI Environment Variables to ASP Variables

CGI Environment
Variable ASP Variable Description

AUTH_TYPE AUTH_TYPE Authentication method used
to validate user.

CONTENT_LENGTH CONTENT_LENGTH Length of the query data (in
bytes or number of charac-
ters) passed through stan-
dard input to the CGI
application.

CONTENT_TYPE CONTENT_TYPE The media type of the query
data (for example “text/
html”) sent to the CGI appli-
cation.

DOCUMENT_ROOT APPL_PHYSICAL_PATH Directory from which web
pages are served. This direc-
tory is the root parent for
your web site.

GATEWAY_INTERFACE GATEWAY_INTERFACE The version of CGI running
on your web server.
372 Appendix A – Converting CGI/WinCGI Applications into ASP Applications

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

CG
I/W

inCG
Ito

ASP
Converting Environment Variables
HTTP_ACCEPT HTTP_ACCEPT List of media types the
user’s browser can accept.

HTTP_COOKIE HTTP_COOKIE List of cookies on the client
machine defined for the
particular URL.

HTTP_FROM HTTP_FROM Email address of user
sending HTTP request
(rarely supported).

HTTP_REFERER HTTP_REFERER URL of document from
which user accesses CGI
application.

HTTP_USER_AGENT HTTP_USER-AGENT Browser used by user.
Note: You must use a
hyphen instead of an under-
score for this one. See
Chapter 6 and the discus-
sion of the ServerVariables
collection of the Request
object for more details.

PATH_INFO PATH_INFO Any extra path information
sent with the CGI request.

PATH_TRANSLATED PATH_TRANSLATED Physical path represented
by PATH_INFO variable.

QUERY_STRING QUERY_STRINGa Query passed to the CGI
application. This consists of
all character data following
the “?” at the end of the
URL.

REMOTE_ADDR REMOTE_ADDR Remote IP address of the
sender of the HTTP request.
This could be the address of
the user or a proxy server.

REMOTE_HOST REMOTE_HOST Remote hostname from
which the CGI request is
being sent.

REMOTE_IDENT NA Username of user making
the request.

REMOTE_USER LOGON_USER Authenticated name of user
sending the request to CGI
(if one exists).

REQUEST_METHOD REQUEST_METHOD Method used by user’s
browser in sending CGI
request (for example GET,
POST, etc.).

SCRIPT_NAME SCRIPT_NAME Virtual path of currently
executing CGI script.

Table A-2: Converting CGI Environment Variables to ASP Variables (continued)

CGI Environment
Variable ASP Variable Description
Converting Environment Variables 373

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Converting Environment Variables
SERVER_NAME SERVER_NAME Server’s hostname or IP
address.

SERVER_PORT SERVER_PORT Number of the port on the
host on which the server is
running.

SERVER_PROTOCOL SERVER_PROTOCOL Name/revision of the infor-
mation protocol by which
the CGI request was sent.

SERVER_SOFTWARE SERVER_SOFTWARE Name/version information
for the web server software.

a A better way to manipulate the information in the QueryString HTTP request information is
to use the Request object’s QueryString collection. See Chapter 6, Request Object, for more de-
tails.

Table A-3: Converting WinCGI Environment Variables to ASP Variables

WinCGI Environment
Variable ASP Variable Description

CGI_AcceptTypes HTTP_ACCEPT List of media types the
user’s browser can accept.

CGI_AuthPass NA Password of authenticated
user, if supported on the
web server.

CGI_AuthRealm NA Realm or domain of
authorized user, if
supported.

CGI_AuthType AUTH_TYPE Authentication method
used to validate user.

CGI_AuthUser LOGON_USER Authenticated name of
user sending request to
CGI (if one exists).

CGI_ContentFile NA Full pathname of the file
created by the web server
that contains any attached
data (i.e., any POSTed
information).

CGI_ContentLength CONTENT_LENGTH Total length in bytes or
number of characters of
the user’s CGI request.

CGI_ContentType CONTENT_TYPE MIME type of the request
data POSTed.

CGI_DebugMode NA CGI tracing flag from the
web server.

CGI_ExecutablePath SCRIPT_NAME Path of CGI application
being executed.

Table A-2: Converting CGI Environment Variables to ASP Variables (continued)

CGI Environment
Variable ASP Variable Description
374 Appendix A – Converting CGI/WinCGI Applications into ASP Applications

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

CG
I/W

inCG
Ito

ASP
Converting Environment Variables
CGI_ExtraHeaders NAa Any extra HTTP headers
sent by the browser.

CGI_FormTuples NAb Name=Value pairs sent in
the form data of the CGI
request, if any exist.

CGI_From HTTP_FROM Email address of user
sending HTTP request
(rarely supported).

CGI_GMTOffset NA Number of seconds +/-
from GMT.

CGI_HugeTuples NAb Large Name=Value pairs
in the form data sent with
the CGI request.

CGI_LogicalPath SCRIPT_NAME Logical path or extra path
information for the CGI
application being
executed.

CGI_NumAcceptTypes NAc Number of accepted
media types of the user’s
browser.

CGI_NumExtraHeaders NAc Number of extra HTTP
headers sent by the
browser.

CGI_NumFormTuples NAc Number of Name=Value
pairs submitted through a
form with the CGI request
sent by the user.

CGI_NumHugeTuples NAc Number of large
Name=Value pairs in the
form data sent with the
CGI request.

CGI_OutputFile NA Full pathname of the file
in which the web server
expects to find the results
of the CGI application’s
execution.

CGI_PhysicalPath NAd Physical path represented
by the logical path.

CGI_QueryString QUERY_STRING1 Query passed to the CGI
application. This consists
of all character data
following the “?” at the
end of the URL.

CGI_Referer HTTP_REFERER URL of document from
which user accesses CGI
application.

Table A-3: Converting WinCGI Environment Variables to ASP Variables

WinCGI Environment
Variable ASP Variable Description
Converting Environment Variables 375

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Converting Environment Variables
CGI_RemoteAddr REMOTE_ADDR Remote IP address of the
sender of the HTTP
request. This could be the
address of the user or a
proxy server.

CGI_RemoteHost REMOTE_HOST Remote hostname from
which the CGI request is
being sent.

CGI_RequestMethod REQUEST_METHOD Method used by user’s
browser in sending CGI
request (for example GET,
POST, etc).

CGI_RequestProtocol SERVER_PROTOCOL Name and version of the
request protocol used in
the query to the CGI
application.

CGI_ServerAdmin NAe Email address of the web
server admin, if available.

CGI_ServerName SERVER_NAME Server’s hostname or IP
address.

CGI_ServerPort SERVER_PORT Number of the port on
the host on which the
server is running.

CGI_ServerSoftware SERVER_SOFTWARE Name and version of the
web server software.

CGI_Version GATEWAY_INTERFACE Version of the CGI
running on the web
server.

a You can retrieve all HTTP headers sent by the user with ALL_HTTP.
b You can retrieve this information from the Form collection of the Request object. See
Chapter 6 for more details.
c You can retrieve this information programmatically.
d You can derive this using the Server object’s MapPath method in conjunction with the Re-
quest.ServerVariables (“SCRIPT_NAME”) variable. See Chapter 8, Server Object, for more infor-
mation on the MapPath method.
e You could use the MyInfo component to define a similar property. See Chapter 19, MyInfo
Component, for more details.

Table A-3: Converting WinCGI Environment Variables to ASP Variables

WinCGI Environment
Variable ASP Variable Description
376 Appendix A – Converting CGI/WinCGI Applications into ASP Applications

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Appendix BMultiplatform ASP
APPENDIX B

ASP on Alternative Platforms

Throughout this book, I have discussed ASP in terms of its use on Microsoft web
M
ultiplatform

ASP
servers (Internet Information Server, Peer Web Services, and Personal Web Server)
using servers running Microsoft operating systems. However, as ASP applications
gain in popularity, there is increasing demand for this web application develop-
ment platform. Several third-party vendors are beginning to answer this demand
by providing solutions that range in maturity from beta to full-strength production-
quality software.

In this appendix, I will briefly describe the few available options for developing
ASP on non-Microsoft platform products.

Chili!ASP from Chili!Soft
Chili!Soft’s Chili!ASP product is the most evolved alternative environment available
for running your ASP applications. It is a functional and syntactic equivalent of
Microsoft’s Active Server part of IIS, allowing developers to build ASP applications
that run on many web servers on both Windows NT and Sun Solaris. See
Table B-1 for details. Support for other platforms (notably AIX and OS/390) is in
the works.

Table B-1: Platforms Supported by Chili!ASP

Operating System Web Server Status

Windows NT Apache 1.3.3 Beta

Netscape Enterprise 2.01, 3.0, 3.51
Netscape FastTrack 2.01, 3.01

Production

IBM ICSS 4.2 Production

Lotus Go Webserver 4.6 Production

Lotus Domino 4.6.1 Production
377

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Instant ASP (I-ASP) from Halcyon Software
Comments

Chili!Soft’s implementation of ASP is by far the most advanced of the non-
Microsoft alternatives. My experience with their products was good. The products
installed as their instructions suggested they would, and I was able to write for my
Windows NT server and then run the same code on another platform.

Chili!Soft’s Chili!ASP is a complete production-quality ASP solution for large firms
looking to write ASP on high-volume servers. However, if you have only a small
number of users or a small bandwidth connection, the cost of Chili!ASP is some-
what prohibitive.

Contact Information

Chili!Soft
2700 Richards Road
Suite 103
Bellevue, WA 98005
Phone: (425) 957-1122
Fax: (425) 562-9565
http://www.chilisoft.com

Instant ASP (I-ASP) from Halcyon Software
Halcyon Software’s Instant ASP (I-ASP) is currently under development, and I was
unable to obtain a copy before this book went to press. However, it looks like it
will be a real contender for Chili!Soft’s implementation, Chili!ASP.

I-ASP is being developed in Java as a Java servlet. As such, Halcyon claims, you
will be able to use it on most web servers that implement Java runtimes. See
Table B-2 for the advertised list of web servers. Furthermore, Halcyon claims that
it will provide developers with the capability to use not only ActiveX (including
Active Data Objects), but also Enterprise JavaBeans or CORBA-compliant objects.
Finally, I-ASP will also support JavaServer Pages and remote debugging.

Sun Solaris Netscape Enterprise 3.51
Netscape FastTrack 2.0

Production

Apache In development

AIX Unknown In development

OS/390 Unknown In development

Table B-2: Platforms Supported by I-ASP

Operating System Web Server Status

Sun Sparc/Intel Apache, Sun WebServer, Java
WebServer, FastTrack, Enterprise
Server

In development

Table B-1: Platforms Supported by Chili!ASP (continued)

Operating System Web Server Status
378 Appendix B – ASP on Alternative Platforms

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

M
ultiplatform

ASP
OpenASP from the ActiveScripting Organization
Comments

The claims that Halcyon makes about I-ASP sound very promising. They hope to
go to beta about the time this book goes to press.

Contact Information

Halcyon Software
50 W San Fernando St. #1015
San Jose, CA 95113
Phone: (408) 998-1998
http://www.halcyonsoft.com

OpenASP from the ActiveScripting
Organization
The ActiveScripting Organization, started in August of 1998, is a group within
Summit Software Company. This group is constructing Open Source software solu-
tions that will allow developers to host ASP applications on several non-Microsoft
web servers. Currently this project’s focus is the creation of ASP support for the
Apache web server. See Table B-3 for details.

IBM RS/6000 Apache, FastTrack, Enterprise
Server, WebSphere, Lotus Domino

In development

IBM AS/400 Apache, WebSphere, Lotus
Domino

In development

IBM OS/2 Apache In development

Linux/Intel Apache In development

Novell Netware 4.0/5.0 FastTrack, Enterprise Server In development

SCO Apache, FastTrack, Enterprise
Server

In development

Macintosh Apache, WebStar, WebTen In development

HPUX Apache In development

SGI Apache In development

Windows NT/98 Apache, IIS, FastTrack, Enterprise
Server

In development

Table B-3: Platforms Supported by OpenASP

Operating System Web Server Status

Windows NT Apache 1.3.x Beta

Sun Solaris Apache In development

Linux Apache In development

Table B-2: Platforms Supported by I-ASP (continued)

Operating System Web Server Status
OpenASP from the ActiveScripting Organization 379

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

OpenASP from the ActiveScripting Organization
Comments

Like many authors at O’Reilly, I’m a big supporter of additions to the free soft-
ware arena. I’m very excited about OpenASP. Currently, however, this is a very
immature product in terms of support for ASP. Table B-4 (from the readme.txt file
from OpenASP for Apache) reports the level of support for various ASP features.

Table B-4: OpenASP’s Support for ASP Functionality

Feature Supported

ObjectContext Object No

Request Partial (collection must be specified)

Request.ClientCertificate No

Request.QueryString Yes

Request.Form Yes

Request.Cookies Yes

Request.ServerVariables Yes

Request.TotalBytes No

Request.BinaryRead No

Response Partial

Response.Buffer Yes

Response.CacheControl No

Response.Charset No

Response.ContentType Yes

Response.Expires Yes

Response.ExpiresAbsolute No (almost supported)

Response.IsClientConnected No

Response.Pics No

Response.Status No

Response.AddHeader Yes

Response.AppendToLog Yes

Response.BinaryWrite Yes

Response.Clear Yes

Response.End Yes

Response.Flush Yes

Response.Redirect Yes

Response.Write Yes

Server Partial

Server.CreateObject Yes

Server.HTMLEncode Yes

Server.MapPath Yes

Server.ScriptTimeout No

Server.URLEncode Yes
380 Appendix B – ASP on Alternative Platforms

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

M
ultiplatform

ASP
OpenASP from the ActiveScripting Organization
Contact Information

http://www.activescripting.org

Session Yes

Session.Abandon Yes

Session.CodePage No

Session.Contents Yes

Session.LCID No

Session.SessionID Yes

Session.StaticObjects No

Session.Timeout Yes

Session_OnStart Yes

Session_OnEnd No

Application Yes

Application.Contents Yes

Application.Lock Yes

Application.Unlock Yes

Application.StaticObjects No

Application_OnStart Yes

Application_OnEnd No

Standard Base Components No

GLOBAL.ASA No

Table B-4: OpenASP’s Support for ASP Functionality (continued)

Feature Supported
OpenASP from the ActiveScripting Organization 381

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Appendix CASP on IIS
APPENDIX C

Configuration of ASP
Applications on IIS

To cover all aspects of configuration for Internet Information Server is beyond the

scope of this book. However, it is important to understand, at an introductory
level, how information for IIS is stored and how to configure your virtual directo-
ries for your ASP applications

Microsoft Management Console
and the Metabase
Microsoft’s new Management Console (MMC) allows you to configure and admin-
ister several server applications in your enterprise, from SQL Server 7.0 to Site
Server to Transaction Server to Internet Information Server. This console applica-
tion allows you to administer several aspects of your enterprise that previously
required you to master several separate applications without a consistent inter-
face. Microsoft’s goal is that MMC eventually be used to control all segments of
Microsoft BackOffice.

It is important to note, however, that MMC itself is not actually doing anything.
MMC is simply a container for administration programs called snap-ins. The inter-
face of the MMC is published, and third parties can write their own snap-ins in
addition to those provided by Microsoft.

The snap-in for administration of Internet Information Server is similar to all other
snap-ins. Each snap-in consists of two panes (see Figure C-1). The left pane, called
the scope pane, displays a hierarchical view of all the items that can be adminis-
tered by this snap-in. As you would expect, administering high-level items in this
pane affects those items located hierarchically below them. For example, if you
administer the properties of the web server itself, all the web sites located under it
also are affected.

This simplification of IIS administration is not the only thing to change since IIS 3.0.
Also changed is the location where information about your web server’s adminis-
382

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ASP on IIS
Microsoft Management Console and the Metabase
tration is stored. In IIS 3.0, this information was stored in the system registry; now
it is stored in the metabase.

The metabase is a memory-resident data store that was designed to be faster and
more flexible than the registry. You use a snap-in called IIS Admin Objects to
administer the metabase directly. This makes direct manipulation of the metabase
more complex than manipulation of the registry. It is important to note that when
you are changing the properties of various items in IIS, you are actually changing
IIS Admin Objects behind the scenes. After changes have been made, the IIS snap-
in writes them to the metabase. Finally, the metabase is stored to your server’s
drive upon exiting IIS. It is loaded into memory each time you open the IIS snap-
in.

The metabase can also be backed up and restored using a Windows Scripting Host
(WSH) script that is included in the IIS samples directory when you install WSH.
You must have WSH installed to use these scripts.

Similar to the registry in architecture, information in the metabase is stored in
metabase keys that correspond to the various items in IIS. Each key has corre-
sponding metabase properties. These metabase properties have values that change
to reflect your administration of the item in question. Almost all the properties
from IIS that were stored in the registry in IIS 3.0 are now stored in the metabase.

For more information on the metabase, visit www.microsoft.com.

Figure C-1: The Microsoft Management Console
Microsoft Management Console and the Metabase 383

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Microsoft Management Console and the Metabase
ASP Application Configuration

Before you can create an ASP application, you must create a virtual directory. To
create a virtual directory on your web server, follow these steps (see Figure C-2):

1. Right-click the web server on which you wish to create a virtual directory.

2. From the pop-up menu, select New ➝ Virtual Directory.

3. Select a name for your virtual directory.

4. Select a physical directory to which your virtual directory is mapped.

5. Leave the default access (Allow Read Access and Allow Script Access) for ASP
applications.

Now that you have created your virtual directory, you must configure it for your
ASP application. To do this, right-click your virtual directory and select Properties
from the pop-up menu to open the Properties dialog shown in Figure C-3.

From this Virtual Directory tab, you can configure several features of your virtual
directory. Before discussing those properties that affect ASP, let’s briefly go over
what the other tabs on this dialog do. The Documents tab allows you to set the
default document for your virtual directory and/or enable document footers. The
Directory Security tab, as its name implies, allows you to set various security
settings for the virtual directory, including NT rights to the underlying physical
directory. The HTTP Headers tab allows you to enable content expiration, add
custom HTTP headers, edit your Content Rating settings, or edit your MIME Map.
Finally the Custom Errors tab allows you to set the paths to custom error files that
the web server will use instead of its default files.

Use the Virtual Directory tab shown in Figure C-3 to configure your ASP settings.
At the top of the page, you can define where the content for your virtual directory
should come. This is straightforward. The bottom allows you to set various proper-
ties, such as the physical directory, access (read/write) settings for your directory,

Figure C-2: Selecting access permissions
384 Appendix C – Configuration of ASP Applications on IIS

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ASP on IIS
Microsoft Management Console and the Metabase
logging settings, and whether you want your virtual directory indexed. It also
allows you to set the permissions (Read/Script/Execute) for your virtual directory.
If you are only going to be using ASP (and not CGI) within your virtual directory,
then leave the default setting (Script).

Finally, this page allows you to define whether you want your ASP application to
run in the same memory space as the web server (the default) or in a separate
memory space. Leaving the default allows for faster execution time for your script,
but running your application in its own memory space avoids bringing down the
web server if your application commits a critical error. The choice is yours.

Also from the page shown in Figure C-3, you can click on the Configuration
button to configure the application options for your application. The first settings
that you can configure from this page are the application mappings. The App
Mappings tab, which is shown in Figure C-4, allows you to map file extensions to
the ISAPI filters that IIS will use to execute or read that file. For example, for .ASP
files, IIS uses c:\WINNT\SYSTEM32\INETSRV\ASP.DLL. If you wanted to use Perl
scripts in your virtual directory, you would use this tab to map the Perl file exten-
sions (.PL or .PLX) to your Perl executable or your PerlIS DLL.

The App Options tab, which is shown in Figure C-5, allows you to configure
various application options. From here, you can enable or disable the use of
session state and define how long session information is saved on the server. You
can control whether you want all ASP output buffered before it is sent. (See
Chapter 7, Response Object, for more on buffering.) You can determine whether to
allow your ASP applications access to information in parent directories using rela-

Figure C-3: The Virtual Directory Properties page
Microsoft Management Console and the Metabase 385

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Microsoft Management Console and the Metabase
tive paths (the “../” syntax). If you leave this set to True, make sure the parent
directories of the current ASP directories have their Execute permission set to
False. Otherwise, an ASP script could execute an application on the server using
this syntax.

This page also allows you to set the default scripting language to any supported
language. Not surprisingly, VBScript is the default. Finally, this page allows you to
set the ASP script timeout in seconds. If you do not want any script in your virtual

Figure C-4: The App Mappings tab

Figure C-5: The App Options tab
386 Appendix C – Configuration of ASP Applications on IIS

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ASP on IIS
Microsoft Management Console and the Metabase
directory to be executed on the server for longer than 30 seconds, set this value to
30, for example.

App Debugging, the final tab in the Application Configuration dialog, is shown in
Figure C-6; it allows you to set up debugging. If your development environment
supports server-side debugging, you can enable it here. The client-side debugging
checkbox is ignored by the server. The last option on this page is whether to send
your users detailed ASP error information or a custom message. Often, for security
reasons, it may be best to create a detailed custom message. Otherwise, your web
server could reveal details about the script that you might want to keep secret.

Figure C-6: The App Debugging tab
Microsoft Management Console and the Metabase 387

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Index

instantiating, 240
. and .. for directories, 119
<%…%> delimiters, 15
<%@ ... %> directive syntax, 141
<%=…%> delimiters, 16–19

A
Abandon method (Session), 136–138
aborting transactions, 42, 43
AbsolutePage property (Recordset), 171
AbsolutePosition property (Recordset),

171, 174–176
Access component, 316–345

file system object model, 317–324
methods reference, 334–345
properties reference, 324–334

ACTION attribute (<FORM>), 71
Active Messaging (see CDO for NTS)
ActiveConnection property, 176–177

Connection object, 164
Recordset object, 171

ActiveScripting Organization, 379
ActiveX controls

HTML forms with, 73
ActiveX Data Objects (see ADO)
ActualSize property (Field), 168
Ad Rotator component, 236–247

example of using, 244–247
GetAdvertisement method, 236, 243

properties reference, 241–243
required files, 237
rotator schedule file, 238–239, 245

Add method
Attachments collection, 263
Contents collection and, 33
Folders collection, 323
Messages collection, 265
Recipients collection, 268

AddHeader method (Response), 104
AddNew method (Recordset), 173,

207–209
Address property

AddressEntry object, 261
Recipient object, 267

AddressEntry object, 261
ADO (ActiveX Data Objects), 159–235

application-level objects to maintain
connections, 29

DLLs required for, 161
Errors collection (Connection), 206
instantiating, 161–162
methods reference, 207–235
object model, 163–173
properties reference, 174–206

adovbs.inc file, 161
Adrot.dll library, 237
advertisements (see Ad Rotator

component)
389

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ALL_HTTP element (ServerVariables),
77

ALL_HTTP environment variable, 376
ALL_RAW element (ServerVariables), 78
App Debugging tab (MMC), 387
App Mappings tab (MMC), 385
App Options tab (MMC), 385
AppendChunk collection

Field object, 169
Parameter object, 170

AppendToLog method (Response), 105,
139

APPL_MD_PATH element
(ServerVariables), 78

APPL_PHYSICAL_PATH element
(ServerVariables), 78

APPL_PHYSICAL_PATH environment
variable, 372

Application object, 10, 27–40
collections reference, 30–36
methods reference, 36–38
OnStart and OnEnd events, 10, 38–40

GLOBAL.ASA file for, 150, 151–153
Application property (CDO), 259, 260
application-level scope, 10, 28–30

corresponding type libraries, 155
creating objects with, 117
objects added with <OBJECT>, 34
transactional objects and, 43, 136

applications
counter variables and, 309
file manipulation capabilities,

316–345
page-level counters, 356
user sessions and, 123

arrays
adding to Contents collection, 33, 132

ASN.1 identifiers, 61
ASP (Active Server Pages)

configuring on IIS, 382–387
converting CGI to, 365–376
functions, 19–22
introduction and demonstration, 6–9
non-Microsoft platforms, 377–381
object model, 9–11
scripts calling themselves, 71–73

ASPBufferingOn setting, 87
AspScriptTimeout property, 115

AtEndOfLine property (TextStream),
324

AtEndOfStream property
FileSystemObject object, 325
TextStream object, 324

AttachFile method (NewMail), 267, 280
Attachment object, 262
Attachments collection (Message), 263,

265
Attachments property (Message), 264
attachments to messages, 262–263,

280–283
AttachURL method (NewMail), 267,

281–283
Attributes property, 319, 322, 326–328

Parameter object, 169
Property object, 170

Attributes property (Connection), 165
Attributes property (Field), 168
AUTH_PASSWORD element

(ServerVariables), 78
AUTH_TYPE element (ServerVariables),

78
AUTH_TYPE environment variable, 372,

374
AUTH_USER element (ServerVariables),

78
authentication information in HTTP

request, 78
AvailableSpace property (Drive), 318,

328

B
Background property (MyInfo), 350
Basic Clear Text authentication, 358,

360
batch-update mode, 208

deleting recordsets, 214
Bcc property (NewMail), 266, 268
BeginTrans method (Connection), 166
BinaryRead method (Request), 82–84
BinaryWrite method (Response),

106–108
blind carbon copies, 268
Body property (NewMail), 266, 269
<BODY> tags, server-side functions in,

21
390 Index

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

BodyFormat property (NewMail), 266,
270

BOF property (Recordset), 171, 178–179
Bookmark property (Recordset), 171
Border property (Ad Rotator), 241
borders around advertisement graphics,

241
BrowsCap.dll library, 249
BrowsCap.ini file, 249–253
Browser Capabilities component, 23,

248–255
instantiating, 253
PropertyName property, 254
required files, 249–253

browsers (see web browsers)
BrowserType object, creating, 248–255
Buffer property (Response), 87–90

clearing, 108
End method and, 109

BuildPath method (FileSystemObject),
321

C
CacheControl property (Response), 90
CacheSize property (Recordset), 171
caching web pages, 90

expiring cache, 93–95
CancelBatch method (Recordset), 173
CancelUpdate method (Recordset), 173
carbon copies, 271
carriage return, writing, 112
Cc property (NewMail), 266, 271
CDO for Exchange, 257
CDO for NTS, 256–285

instantiating CDOs, 257
object model, 259–268
version of, 280

Cdonts.DLL library, 257
ceCertPresent constant, 60
CERT_COOKIE element

(ServerVariables), 78
CERT_FLAGS element (ServerVariables),

78
CERT_ISSUER element

(ServerVariables), 79
CERT_KEYSIZE element

(ServerVariables), 79

CERT_SECRETKEYSIZE element
(ServerVariables), 79

CERT_SERIALNUMBER element
(ServerVariables), 79

CERT_SERVER_ISSUER element
(ServerVariables), 79

CERT_SERVER_SUBJECT element
(ServerVariables), 79

CERT_SUBJECT element
(ServerVariables), 79

Certificate value (Key property), 60
certificates (see digital certificates)
ceUnrecognizedIssuer constant, 60
CGI applications, 3

converting to ASP applications,
365–376

environment variables, 372–376
version used by web server, 79

CGI_ variables (WinCGI), 374–376
character sets

code page for dynamic content, 125
setting, 142

character sets for HTTP responses, 91
Charset property (Response), 91
Chili!ASP product, 377
ChooseContent method (Content

Rotator), 306
Chr function, 112
Class property (CDO), 259, 260
Clear method (Response), 108
Clickable property (Ad Rotator), 242
client certificates (see digital

certificates)
ClientCertificate collection (Request),

59–63, 78
ClientCustomHeader header, 104
client-side scripting, 12–14

as dynamic script output, 16
Clone method (Recordset), 173,

209–211
Close method, 211–212

Connection object, 166
Recordset object, 173
TextStream object, 324, 334

closing
text files, 334
data servers or recordsets, 211–212

code reuse, 19–22
CODEPAGE directive, 126, 142
Index 391

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

CodePage property (Session), 125–126,
142

Collaboration Data Objects (see CDO
for NTS)

Column property (TextStream), 324
COM objects

ADO (see ADO)
CDO for NTS (see CDO for NTS)
type libraries, 155–156

Command object (ADO), 163–165
commands, database (see database

commands)
CommandText property

Command object, 179–181
Connection object, 164

CommandTimeout property, 164, 165,
181–183

CommandType property
Command object, 183–185
Connection object, 164

comments and troubleshooting
Ad Rotator component, 240
ADO with ASP, 163
Browser Capabilities component, 253
CDO for NTS, 258
Content Linking component, 289
Content Rotator component, 306
Counters component, 311
File Access components, 317
global variables, 28–30
GLOBAL.ASA file, 150
MyInfo component, 349
Page Counter component, 356
Permission Checker, 360
preprocessor directives, 142
QueryString collection length, 75
Request object, 57
Response object, 86
server-side includes, 146
Session object, 123–125
transactional scripts, 42

committing transactions, 42, 45
CommitTrans method (Connection),

166
Common Gateway Interface (CGI), 3

version used by web server, 79
CommunityLocation property (MyInfo),

350

CommunityName property (MyInfo),
350

CommunityPopulation property
(MyInfo), 350

CommunityWords property (MyInfo),
350

CompanyAddress property (MyInfo),
350

CompanyDepartment property
(MyInfo), 350

CompanyName property (MyInfo), 350
CompanyPhone property (MyInfo), 350
CompanyWords property (MyInfo), 350
configuring ASP on IIS, 382–387
Connection object, 165–167

closing, 211–212
Errors collection, 206
Recordset objects and, 170
selecting for Recordset or Command,

176–177
connection, checking, 95
connections to database servers,

165–167
opening, 224–225
timeouts (wait lengths), 187–188
(see also database servers)

ConnectionString property
(Connection), 165, 185–187

ConnectionTimeout property
(Connection), 165, 187–188

Content Linking component, 286–302
example, 299–302
instantiating, 288
methods reference, 290–298

Content Linking list file, 287
counting entries in, 290
description of item in, 292, 294, 296
position in, 291
retrieving URL from, 293, 295, 297

Content Rotator component, 303–308
content schedule file, 304–305
instantiating, 306
methods reference, 306–308

content schedule file, 304–305
content, dynamic, 3–6

ASP (see ASP)
CGI applications, 3
code page for, 125
ISAPI, 4–6
392 Index

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

JavaScript and VBScript, 12–14, 22
locale for, 126–127
page counters, 354–357
table of contents (example), 289
user information (see Session object)

content, static, 3
HTML, 12

CONTENT_LENGTH element
(ServerVariables), 79

CONTENT_LENGTH environment
variable, 372, 374

CONTENT_TYPE element
(ServerVariables), 79

CONTENT_TYPE environment variable,
372, 374

ContentBase property
Attachment collection, 262
Message object, 264
NewMail object, 266, 272

ContentID property
Attachment collection, 262
Message object, 264

ContentLocation property
Attachment collection, 262
Message object, 264
NewMail object, 266, 274

Contents collection
Application object, 133
Session object, 129–134

Contents collection (Application), 30–34
Content-Type header, 91
ContentType property (Response), 92
Controt.DLL library, 304
cookie dictionary, 66
Cookie: header, 65
cookies, 63–68, 99–103, 122

expiration dates, 64, 100
session identifiers, 123, 127

Cookies collection (Response), 99–103
Cookies collection (Request), 65–68
Copy method

File object, 320, 335
Folder object, 323, 335

CopyFile method (FileSystemObject),
321

CopyFolder method (FileSystemObject),
321, 335

copying
files and folders, 335–336
recordsets, 209–211

Count property
Attachments collection, 263
Contents collection, 31
Contents collection (Session), 130
Cookies collection (Request), 66
Cookies collection (Response), 100
Drives collection, 319
Files collection, 320
Folders collection, 323
Form collection, 69
Messages collection, 265
QueryString collection, 74, 76
Recipients collection, 267
ServerVariables collection, 77
StaticObjects collection (Application),

35
StaticObjects collection (Session), 134

counters, 309–315
page counters, 354–357

Counters component, 309–315
instantiating, 310
methods reference, 312–315

Counters.DLL library, 310
Counters.TXT file, 310
counting records in recordsets, 201–203
CreateFolder method

(FileSystemObject), 321, 336
CreateObject method (Server), 11, 23,

116–118
StaticObjects collection and, 36, 136
(see also instantiating)

CreateParameter method (Connection),
165

CreateTextFile method
FileSystemObject object, 321
Folder object, 323

CursorLocation property
Connection object, 166
Recordset object, 171

cursors
determining type of, 188–190
opening into data source, 226–228

CursorType property (Recordset), 171,
188–190

Custom Errors tab (MMC), 385
custom library packages, 43
customized named strings, 346–353
Index 393

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

D
DAO (Data Access Objects), 160
Data Access Objects (DAO), 160
database commands

executing, 215–219
manipulating with Command object,

163–165
maximum records retrieved, 196–198
parameters, 169
reexecuting queries, 228–229
text of, 179–181
type of, 183–185

database servers
closing, 211–212
connections to, 165–167

information for establishing,
185–187

opening, 224–225
timeouts (wait lengths), 187–188

custom properties of, 170
errors, 167

application or object source,
203–204

code numbers for, 200–201
descriptions of, 190–191

saving recordset changes, 233–235
selecting connection, 176–177

DateCreated property, 319, 322, 329
DateLastAccessed property

File object, 319
Folder object, 322

DateLastModified property
File object, 320
Folder object, 322

debugging
Response object for, 86

DefaultDatabase property (Connection),
166

DefinedSize property (Field), 168
Delete method

Attachment object, 262
Attachments collection, 263
File object, 320, 337
Folder object, 323, 337
Message object, 265
Messages collection, 265
Recipient object, 267
Recipients collection, 268

Delete method (Recordset), 173,
212–214

DeleteFile method (FileSystemObject),
321

DeleteFolder method
(FileSystemObject), 321

deleting
counters, 314
files and folders, 337
recordsets, 212–214

Denali, 6
description

Content Linking list item, 292, 294,
296

Description property (Error), 167,
190–191

descriptions of database server errors,
190–191

dictionary, cookie, 66, 99
digital certificates

client certificate field access, 59–63
information in HTTP requests, 78–79
issuer information, 60, 79

Direction property (Parameter), 169
directory notation, MS-DOS, 119
Directory Security tab (MMC), 384
disk space on drives, 328
DLLs with ISAPI, 5
Document Summary component, 317
DOCUMENT_ROOT environment

variable, 372
Documents tab (MMC), 384
Domain attribute

Cookies collection (Response), 100
domain attribute (Set-Cookie header),

64
domains

cookies, comparing domain
attributes, 64

Drive object, 317–319
Drive property, 320, 322, 329
DriveExists method (FileSystemObject),

321
DriveLetter property (Drive), 318
drives, 317–319

disk space remaining, 328
format type, 330
for particular file system objects, 329

Drives collection, 319
394 Index

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Drives property (FileSystemObject), 321
DriveType property (Drive), 318
duplicating recordsets, 209–211
dynamic content, 3–6

ASP (see ASP)
CGI applications, 3
code page for, 125
Content Rotator component, 303–308
ISAPI, 4–6
JavaScript and VBScript, 12–14, 22
locale for, 126–127
page counters, 354–357
table of contents (example), 289
user information (see Session object)

dynamic link libraries (DLLs) with
ISAPI, 5

E
ECMAScript language, 13
EditMode property (Recordset), 171
ENABLESESSIONSTATE directive, 143
encoding

query strings for URLs, 120
encoding HTMLs for display, 118
ENCTYPE parameter, 79
End method (Response), 109
environment variables

converting CGI to ASP, 372–376
environment variables for web servers,

10, 76–82
EOF property (Recordset), 172, 192–193
Error object (ADO), 167
errors

Clear method for sending, 109
database servers, 167

application or object source,
203–204

code numbers for, 200–201
descriptions of, 190–191

HTTP status codes for, 98
include files for handing, 148–149
reporting with type libraries, 155
response buffers and, 88
type library declarations, 156
(see also comments and

troubleshooting)
Errors collection (Connection), 166, 206

events
Application object, 10, 38–40

creating objects in, 117
ObjectContext object, 42, 45–47
Session object, 138–140

creating objects in, 117
Execute method

Command object, 215–217
database command type, 183

Connection object, 165, 166, 217–219
executing

database commands, 215–219
queries again, 228–229

expires attribute (Set-Cookie header),
64

Expires property
Cookies collection (Response), 100
Response object, 93

ExpiresAbsolute property (Response),
94

expiring
cached web page data, 93–95
cookies, 64, 100
digital certificates, 61
response buffering, 88
rotated advertisements, 238–239
rotated content, 304–305
script processing on server, 115
user session-level variables, 124
user sessions (inactive), 128
waiting for database command

execution, 181–183

F
Field object (ADO), 168
Fields collection (Recordset), 173
fields, record, 168

refreshing all in recordset, 230–231
File Access components, 316–345

file system object model, 317–324
methods reference, 334–345
properties reference, 324–334

File object, 319
FileExists method (FileSystemObject),

321
files

attaching to messages (CDO),
262–263, 280–283
Index 395

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

attributes of, 326–328
copying, 335–336
date created, 329
deleting, 337
determining if at end, 324–326
Document Summary component, 317
file system object model, 317–324
inserting into scripts/content,

147–150
manipulating from applications,

316–345
moving, 340
names of, 337
opening/closing, 334, 341–343
reading from/writing to, 343–345

Files collection (Folder), 320, 323
FileSystem property (Drive), 318, 330
FileSystemObject object, 316, 320–322

instantiating, 316
Filter property (Recordset), 172,

193–196
Flags value (Key property), 60
Flush method (Response), 110

Response.Buffer property and, 88–89
Folder object, 263, 322–323
FolderExists method

(FileSystemObject), 321
folders, 322–323

attributes of, 326–328
copying, 335–336
creating new, 336
date created, 329
deleting, 337
determining if root, 332
moving, 340
names of, 338
parent folders, 333

Folders collection (Folder), 323
For Each construct

iterating Contents collection, 32
For...Next construct

iterating Contents collection, 32
Form collection (Request), 56, 68–73
form submissions, 53
<FORM> tags, 53

ACTION attribute, 71
format

message data (CDO), 270, 276
physical drives, 330

forms, 68–73
converting from CGI to ASP, 365–376

frames for advertising graphics, 243
FreeSpace property (Drive), 318
From property (NewMail), 266, 274
functions, ASP, 19–22

G
GATEWAY_INTERFACE element

(ServerVariables), 79
GATEWAY_INTERFACE environment

variable, 372, 376
Get method

Counters component, 312
GET request type, 52–53

retrieving data sent with, 73–76
sending to ASP scripts, 55

GetAbsolutePathName method
(FileSystemObject), 321

GetAdvertisement method (Ad Rotator),
236, 243

GetAllContent method (Content
Rotator), 307

GetBaseName method
(FileSystemObject), 321, 337

GetChunk method (Field), 169
GetDefaultFolder method (Session), 268
GetDrive method (FileSystemObject),

321
GetDriveName method

(FileSystemObject), 321
GetExtensionName method

(FileSystemObject), 321
GetFile method (FileSystemObject), 321
GetFileName method

(FileSystemObject), 321
GetFirst method

Messages collection, 265
GetFolder method (FileSystemObject),

322
GetFolderName method

(FileSystemObject), 338
GetLast method

Messages collection, 265
GetListCount method (NextLink), 290
GetListIndex method (NextLink), 291
GetNext method

Messages collection, 265
396 Index

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

GetNextDescription method (NextLink),
292

GetNextURL method (NextLink), 293
GetNthDescription method (NextLink),

294
GetNthURL method (NextLink), 295
GetParentFolderName method

(FileSystemObject), 322
GetPrevious method

Messages collection, 265
GetPreviousDescription method

(NextLink), 296
GetPreviousURL method (NextLink),

297
GetRows method (Recordset), 173
GetSpecialFolder method

(FileSystemObject), 322, 339
GetTempName method

(FileSystemObject), 322
global variables, 10, 28–30

transactional objects and, 43, 136
GLOBAL.ASA file, 28–30, 150–156

Application object events and scope,
151–153

counter variables in, 309–315
Session object events and scope,

153–154
type library declarations, 154–156

graphics, advertising (see Ad Rotator)
Guestbook property (MyInfo), 350

H
Halcyon Software, 378
HasAccess method (Permission

Checker), 360
HasKeys attribute

Cookies collection (Response), 101
HasKeys property

Cookies collection, 66
headers, adding to messages (CDO),

279
headers, HTTP, 54

custom, adding to responses, 104
PICS system for, 96–97
requests, 50, 54
responses, 50, 54, 85
ServerVariables elements for, 77–80

User-Agent header, interpreting,
248–255

HelpContext property (Error), 167
HelpFile property (Error), 167
hit count data file, 355
hit counters, 354–357
Hits method (Page Counter), 356
HomeOccupation property (MyInfo),

350
HomePhone property (MyInfo), 350
HomeWords property (MyInfo), 350
HTML (Hypertext Markup Language),

12
CDO messages in, 270
encoding for browser display, 118
frames for advertising graphics, 243
rotating content, 303–308

<HTML> tags, server-side functions in,
21

HTMLEncode method (Server), 118
HTMLText property (Message), 264
HTTP (Hypertext Transfer Protocol),

48–57, 111–113
cookies, 63–68
example of, 48–52
form submissions, 53
headers

custom, adding to responses, 104
User-Agent header, interpreting,

248–255
request headers, 50, 54
request types, 52
requests, 10, 57–84

reading bytes from, 82–84
redirecting, 111
Request object and, 55–57
size of request body, 58
(see also Request object)

response headers, 50, 54
responses, 10, 85–113

buffering, 87–90, 108, 109–111
character sets for, 91
headers, 85
writing, 106–108

ServerVariables elements for headers,
77–80

status codes, 98
HTTP Headers tab (MMC), 384
Index 397

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

HTTP_... elements (ServerVariables), 80
HTTP_ACCEPT environment variable,

373, 374
HTTP_COOKIE environment variable,

373
HTTP_FROM environment variable,

373, 375
HTTP_QUERYSTRING parameter, 76
HTTP_REFERER environment variable,

373, 375
HTTP_USER_AGENT environment

variable, 373
HTTP_USER-AGENT environment

variable, 373
HTTPS element (ServerVariables), 80
HTTPS_KEYSIZE element

(ServerVariables), 80
HTTPS_SECRETKEYSIZE element

(ServerVariables), 80
HTTPS_SERVER_ISSUER element

(ServerVariables), 80
HTTPS_SERVER_SUBJECT element

(ServerVariables), 80

I
IIS (Internet Information Server), 4

configuring ASP on, 382–387
IIS metabase, 78, 80, 383–387
images, advertising (see Ad Rotator)
immediate-update mode, 208

deleting recordsets, 214
Importance property

Message object, 264
NewMail object, 266, 275

Inbox folder, 263
adding messages to, 265

InBox property (Session), 268
.INC file extension, 146
#include directive, 147–150
Increment method (Counters), 313
initializing

Application object, 27
application-level variables, 31

initiating user sessions, 123
<INPUT> tags

NAME= attribute, 53
inserting files into scripts/content,

147–150

INSTANCE_ID element
(ServerVariables), 80

INSTANCE_META_PATH element
(ServerVariables), 80

Instant ASP (I-ASP), 378
instantiating

Ad Rotator component, 240
ADO, 161–162
Browser Capabilities component, 253
Collaboration Data Objects, 257
Content Linking component, 288
Content Rotator component, 306
Counter component, 310
FileSystemObject object, 316
Page Counter component, 355
Permission Checker component, 359

Internet
static content, 3

Internet Information Server (IIS), 4
Internet Server API (ISAPI), 4–6
IP address

server accepting requests, 81
server making requests, 81

ISAPI DLL, metabase-specific path for,
78

ISAPI filters, 5
ISAPI technology, 4–6
IsClientConnected property (Response),

95
IsolationLevel property (Connection),

166
IsReady property (Drive), 318, 331
IsRootFolder property (Folder), 322,

332
Issuer value (Key property), 60
issuer, certificate (see digital

certificates)
Item property

Attachments collection, 263
ClientCertificate collection, 59
Contents collection, 30
Contents collection (Session), 129
Cookies collection (Request), 65
Cookies collection (Response), 99
Drives collection, 319
Files collection, 320
Folders collection, 323
Form collection, 68
Messages collection, 265
398 Index

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

QueryString collection, 74
Recipients collection, 267
ServerVariables collection, 76
StaticObjects collection (Application),

34
StaticObjects collection (Session), 134

ITU Recommendation X.509, 59, 62

J
Java, ASP for, 378
JavaScript language, 12–14, 22

K
Keep-Alive header

buffering response content, 88
Key property

ClientCertificate collection, 59
Contents collection, 31
Contents collection (Session), 129
Cookies collection (Request), 66
Cookies collection (Response), 99
Form collection, 69
QueryString collection, 74
ServerVariables collection, 77
StaticObjects collection (Application),

35
StaticObjects collection (Session), 134

L
LANGUAGE attribute (<SCRIPT>), 14
LANGUAGE directive, 143
@LANGUAGE preprocessor, 22
LCID directive, 144
LCID property (Session), 126–127, 145
library packages, custom, 43
line feed, writing, 112
Line property (TextStream), 324
LiveScript language, 12–14
LOCAL_ADDR element

(ServerVariables), 81
locale, 126–127

of message sender, 284
setting identifier for, 144

Lock method (Application), 36–38
locking/unlocking

Application object, 36–38

LockType property (Recordset), 172
logging

web site activity, 105
when sessions start/end, 138, 140

Logoff method (Session), 268
LOGON_USER element (Request), 125
LOGON_USER element

(ServerVariables), 81
LOGON_USER environment variable,

373, 374
LogonSMTP method (Session), 268

M
Macintosh character sets, 92
MailFormat property (NewMail), 266,

276
Management Console (MMC), 382–387
MapPath method (Server), 119, 139
MarshalOptions property (Recordset),

172
MaxRecords property (Recordset), 172,

196–198
memory

Recordset and Connection objects
(ADO), 170

user sessions
releasing, 136–138
Timeout property and, 129

Message object, 264
MessageFormat property

Message object, 264
Session object, 268

Messages collection (Folder), 264, 265
Messages property (Folder), 263
Messages property (MyInfo), 351
messaging with CDO

attachments to messages, 262–263,
280–283

carbon copies, 268, 271
custom headers, 279
generating messages from

applications, 265–267
message actions (reference),

280–285
message properties (reference),

268–280
Inbox and Outbox folders, 263
message data, 264, 269
Index 399

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

message data format, 270, 276
priority of messages, 275
recipient information, 267, 278
sender information, 261, 274, 284
sending messages, 283
subject of messages, 277
URLs as attachments, 281–283
URLs referenced in messages,

272–274
metabase, IIS, 78, 80, 383–387
METHOD attribute (<FORM>), 53
methods of ADO objects

reference for, 207–235
Microsoft Transaction Server, 41

(see also ObjectContext object)
MIME type, 79
MMC (Management Console), 382–387
Mode property (Connection), 166
Move method

File object, 320
Folder object, 323

Move method (Recordset), 173,
219–221

MoveFile method (FileSystemObject),
322

MoveFirst method (Recordset), 173,
221–222

MoveFolder method (FileSystemObject),
322, 340

MoveLast method (Recordset), 173,
221–222

MoveNext method (Recordset), 173,
221–222

MovePrevious method (Recordset), 173,
221–222

moving
files and folders, 340
record pointer in recordsets, 219–222

msado15.dll file, 161
MS-DOS relative directory notation, 119
MTS (Microsoft Transaction Server), 41

(see also ObjectContext object)
multithreading (see threading)
MyInfo component, 346–353

properties reference, 350–353
myinfo.dll library, 346
myinfo.xml library, 346

N
Name property, 198–200

CDO objects
AddressEntry object, 261
Attachment object, 262
Folder object, 263
Session object, 268

Connection object, 164
Field object, 168
File object, 320
Folder object, 322
Parameter object, 169
Property object, 170
Recipient object, 267

NAME= attribute (<INPUT>), 53
names

ADO objects, 198–200
files and folders, 337–339

NativeError property (Error), 167
NewMail object, 260, 265–267

methods reference, 280–285
properties reference, 268–280

NextLink object, 286–302
example, 299–302
instantiating, 288
methods reference, 290–298

Nextlink.DLL library, 287
NextRecordset method (Recordset),

173, 222–224
Number property (Error), 167, 200–201
NumericScale property

Field object, 168
Parameter object, 169

O
object model

file system, 317–324
<OBJECT> tags

application-level objects added with,
34

session-level objects added with,
134–136

ObjectContext object, 10, 41–47
application-level scope and, 33
method and event reference, 43–47
object scope and, 43, 136

objects
ADO object model, 163–173
400 Index

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ASP object model, 9–11
CDO object model, 259–268
instantiating, 117
scope (see scope)

OLE DB, 159
OnEnd event

Application object, 10, 38
Session object, 138–139

OnStart event
Application object, 10, 39

locking/unlocking Application
object, 38

calling CreateObject in, 117
GLOBAL.ASA file, 150–156
Session object, 139–140

OnStop event
GLOBAL.ASA file, 150–156

OnTransactionAbort event
(ObjectContext), 42, 45

OnTransactionCommit event
(ObjectContext), 42, 46

Open method
Connection object, 166, 224–225
Recordset object, 173, 226–228

Open Source ASP environment,
379–381

OpenASP, 379–381
OpenAsTextStream method (File), 320,

341–343
opening

database server connections, 224–225
recordsets, 226–228
text files, 341–343

OpenSchema method (Connection),
167

OpenTextFile method
(FileSystemObject), 322

OrganizationAddress property (MyInfo),
351

OrganizationName property (MyInfo),
351

OrganizationPhone property (MyInfo),
351

OrganizationWords property (MyInfo),
351

OriginalValue property (Field), 168
Outbox folder, 263
OutBox property (Session), 268

P
Page Counter component, 354–357

instantiating, 355
methods reference, 356–357

pagecnt.dll library, 355
PageCount property (Recordset), 172
page-level scope

creating objects with, 117
PageSize property (Recordset), 172
PageType property (MyInfo), 351
Parameter object (ADO), 169
Parameters collection (Connection), 165
parameters, database commands, 169
Parent property (CDO), 259, 261
ParentFolder object (Folder), 333
ParentFolder property

File object, 320
Folder object, 322

password for authentication, 78
path attribute (Set-Cookie header), 64
Path property

Cookies collection (Response), 101
Drive object, 318
File object, 320
Folder object, 322

PATH_INFO element (ServerVariables),
81, 120

PATH_INFO environment variable, 373
PATH_TRANSLATED element

(ServerVariables), 81
PATH_TRANSLATED environment

variable, 373
paths

determining for web pages, 81
determining with MapPath(), 119

performance
ISAPI vs. CGI applications, 5

Perl CGI script, 367
permchk.dll library, 359
Permission Checker

HasAccess method, 360
Permission Checker component,

358–361
PersonalAddress property (MyInfo), 351
PersonalMail property (MyInfo), 351
PersonalName property (MyInfo), 351
PersonalPhone property (MyInfo), 351
PersonalWords property (MyInfo), 351
Index 401

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

physical drives, 317–319
disk space remaining, 328
format type, 330
for particular file system objects, 329

PICS property (Response), 96–97
PICS rating system, 96–97
“please wait” pages, 89
pooling library packages, 43
port, web server, 81
position in Content Linking list, 291
position in recordset, 174–176
POST request type, 52–53

sending to ASP scripts, 56
Precision property

Field object, 168
Parameter object, 169

Prepared property (Connection), 164
preprocessing directives, 141–146
priority, message, 275
Properties collection

Connection object, 165, 166
Field object, 168
Parameter object, 169
Recordset object, 173

Properties dialog (MMC), 384
properties of ADO objects

Property object for, 170
reference for, 174–206

Property object (ADO), 170
PropertyName property (Browser

Capabilities), 254
Provider property (Connection), 166
proxy servers

caching web pages, 90

Q
queries (see database commands)
query strings, encoding, 120
QUERY_STRING element

(ServerVariables), 81
QUERY_STRING environment variable,

373
QUERY_STRING1 environment

variable, 375
QueryString collection, 81
QueryString collection (Request), 56,

73–76

accessing data with ServerVariables,
76

length limit, 75
quotation marks, writing, 112

R
rating web pages, 96–97
RDO (Remote Data Objects), 160
Read method

TextStream object, 324, 343
ReadAll method (TextStream), 324
ReadFromFile method (Attachment),

262
reading text files, 343
reading from HTTP requests, 82–84
ReadLine method (TextStream), 324,

343
reason phrase, 55
recipient information (CDO), 267, 278
Recipient object, 267
Recipients collection (Message), 265,

267
Recipients property (Message), 264
record source, 205–206
RecordCount property (Recordset), 172,

201–203
records

creating new, 207–209
deleting all, 212–214
fields

refreshing, 230–231
fields of, 168
moving pointer within recordset,

219–222
resulting from queries

based on recordset position,
174–176

counting in recordset, 201–203
maximum number of, 196–198
retrieving new recordset, 222–224
viewing subset of recordset,

193–196
saving changes, 233–235

Recordset object (ADO), 170–173
recordsets, 170–173

closing, 211–212
counting records in, 201–203
402 Index

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

cursor type for creating, retrieving,
188–190

deleting, 212–214
determining if at end, 178–179,

192–193
duplicating, 209–211
feature support testing, 231–233
moving pointer within, 219–222
opening, 226–228
refreshing all record fields, 230–231
retrieving next, 222–224
returning records based on position,

174–176
saving changes, 233–235
source of records in, 205–206
update modes, 208
viewing record subset, 193–196

Redirect method (Response), 111
redirecting requests, 111
redirection file (Ad Rotator), 237, 246
reexecuting database queries, 228–229
refreshing record fields, 230–231
relative directory notation, 119
Remote Data Objects (RDO), 160
REMOTE_ADDR environment variable,

373, 376
REMOTE_ATTR element

(ServerVariables), 81
REMOTE_HOST element

(ServerVariables), 81
REMOTE_HOST environment variable,

373, 376
REMOTE_IDENT environment variable,

373
REMOTE_USER environment variable,

373
Remove method

Contents collection, 33
Counters component, 314

Requery method (Recordset), 173,
228–229

Request object, 10, 57–84
BinaryRead method, 82–84
collections reference, 59–82
HTTP requests and, 55–57
TotalBytes property, 58

request types, 52
REQUEST_METHOD element

(ServerVariables), 81

REQUEST_METHOD environment
variable, 373, 376

request-line, 54
requests, HTTP, 10, 57–84

headers, 50, 54
reading bytes from, 82–84
redirecting, 111
Request object and, 55–57
size of request body, 58

Reset method (Page Counter), 357
Response object, 10, 85–113

clearing contents, 108
Cookies collection, 99–103
methods reference, 104–113
properties reference, 87–99

responses, HTTP, 10, 85–113
buffering, 87–90, 108

sending buffer remains, 109–111
characters sets for, 91
headers, 50, 54, 85

custom, 104
writing, 106–108, 111–113

Resync method (Recordset), 173,
230–231

RollbackTrans method (Connection),
167

root folder, 332
RootFolder property (Drive), 318
rotating advertisements (see Ad Rotator

component)
rotating HTML content, 303–308
rotator schedule file (Ad Rotator),

238–239, 245
RUNAT attribute (<SCRIPT>), 20

S
SafeArray variant, 82
saving recordset changes, 233–235
SchoolAddress property (MyInfo), 351
SchoolDepartment property (MyInfo),

351
SchoolName property (MyInfo), 351
SchoolPhone property (MyInfo), 351
SchoolWords property (MyInfo), 351
scope

application-level, 10, 28–30, 34
creating objects with CreateObject,

117
Index 403

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

session-level, 123–125, 134–136
site-level counter variables, 309–315
transactional objects, 43, 136
user-specific information, 123

SCOPE parameter, 117
<SCRIPT> tags, 13–14
SCRIPT_NAME element

(ServerVariables), 81
SCRIPT_NAME environment variable,

373, 374, 375
scripting languages, 12–14, 22

setting default for processing, 143
ScriptTimeout property (Server), 115
Scrrun.DLL library, 316
secure attribute (Set-Cookie header), 64
Secure property

Cookies collection (Response), 101
security

cookie information, 64, 101
identifying secure ports, 82
Permission Checker component,

358–361
Send method

Message object, 265
NewMail object, 267, 283

sender information (CDO), 261, 274,
284

Sender property (Message), 264
sending messages (CDO), 283
SerialNumber property (Drive), 318
SerialNumber value (Key property), 61
Server object, 11, 114–121

methods reference, 116–121
ScriptTimeout property, 115

SERVER_NAME element
(ServerVariables), 81

SERVER_NAME environment variable,
374, 376

SERVER_PORT element
(ServerVariables), 81

SERVER_PORT environment variable,
374, 376

SERVER_PORT_SECURE element
(ServerVariables), 82

SERVER_PROTOCOL element
(ServerVariables), 82

SERVER_PROTOCOL environment
variable, 374, 376

SERVER_SOFTWARE element
(ServerVariables), 82

SERVER_SOFTWARE environment
variable, 374, 376

servers (see web servers)
servers, database (see ADO; database

servers)
server-side functions, 19–22
server-side includes, 146–150
server-side scripting, 15–19
ServerVariables collection (Request), 10,

76–82
accessing QueryString collection

data, 76
Session object, 11, 122–140

Abandon method, 136–138
collections reference, 129–136
OnStart and OnEnd events, 138–140

GLOBAL.ASA file for, 150, 153–154
properties reference, 125–129

Session object (CDO), 268
Session property (CDO), 259, 261
SessionID property (Session), 123,

127–128
session-level scope, 123–125

corresponding type libraries, 155
creating objects with, 117
objects added with <OBJECT>,

134–136
transactional objects and, 43, 136
user-specific information, 123

sessions
counter variables and, 309

sessions (see user sessions)
Set method

Counters component, 314
SetAbort method (ObjectContext), 42,

43
SetComplete method (ObjectContext),

42, 45
Set-Cookie header, 63, 99, 103
SetLocaleIDs method

NewMail object, 267, 284
Session object, 268

ShareName property (Drive), 319
ShortName property

File object, 320
Folder object, 322
404 Index

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ShortPath property
File object, 320
Folder object, 323

size
HTTP request body, 58
HTTP requests, 79
QueryString collection length limit,

75
Size property

File object, 320
Folder object, 323

Size property (Message), 264
Size property (Parameter), 169
Skip method (TextStream), 324
SkipLine method (TextStream), 324
Source property

Attachment object (CDO), 262
Error object, 167, 203–204
Recordset object, 172, 205–206

SQL statements (see database
commands)

SQLState property (Error), 167
SSI (server-side includes), 146–150
State property

Connection object, 164, 166
Recordset object, 172

static content, 3
HTML, 12

StaticObjects collection
Application object, 34–36
CreateObject method and, 36, 136
Session object, 134–136

status code, 55
Status property (Recordset), 172
Status property (Response), 98
status-line, 55
stored procedures (see database

commands)
storing

user information, 143
strings, named, 346–353
Style property (MyInfo), 351
SubFolders property (Folder), 323
Subject property

Message object, 264
NewMail object, 266, 277

Subject value (Key property), 61
subject, message (CDO), 277
Sun Solaris, ASP on, 377

Supports method (Recordset), 173,
231–233

System folder, 339

T
TargetFrame property (Ad Rotator), 243
TCP/IP address for web servers, 81
Temp folder, 339
text

custom named strings, 346–353
files (see files)

text files (see files)
text of database commands, 179–181
Text property (Message), 264
TextStream object, 324

closing, 334
opening, 341–343
reading from/writing to, 343–345

threading
application-level scope and, 33

Timeout property (Session), 128
timeouts

database command execution,
181–183

database server connections, 187–188
TimeReceived property (Message), 264
TimeSent property (Message), 264
Title property (MyInfo), 352
To property (NewMail), 266, 278
TotalBytes property (Request), 58
TotalSize property (Drive), 319
TRANSACTION directive, 42, 145
transactional scripts, 10, 41–47, 145
transactions

object scope and, 43, 136
troubleshooting (see comments and

troubleshooting)
type library declarations, 154–156
type of database command, 183–185
Type property

CDO objects
AddressEntry object, 261
Attachment object, 262

Field object, 168
File object, 320
Parameter object, 169
Property object, 170
Recipient object, 267
Index 405

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

U
Unlock method (Application), 38
unlocking (see locking/unlocking)
unrecognized certificate issuers, 60
Update method (Recordset), 173,

233–235
update modes for recordsets, 208

deleting recordsets, 214
UpdateBatch method (Recordset), 173
URL element (ServerVariables), 82
URL property (MyInfo), 352
URLEncode method (Server), 120
URLs

for advertising graphics, 242
attaching to messages, 281–283
Content Linking component, 286–302

retrieving from list, 293, 295, 297
cookies (see cookies)
encoding query strings, 120
redirecting requests to, 111
referenced in messages, 272–274
saving as named strings, 353

URLWords property (MyInfo), 352
user account information, 81
user sessions, 11, 122–140

enabling user information storage,
143

maintaining inactive, 128
memory for

releasing, 136–138
Timeout property and, 129

session identifiers, 123, 127–128
User-Agent header, interpreting,

248–255
users

information on, 123, 125
enabling storage of, 143

V
ValidFrom value (Key property), 61
ValidUntil value (Key property), 61
Value property

Field object, 168
NewMail object, 266, 279
Parameter object, 169
Property object, 170

variables
counter variables, 309–315

scope (see scope)
user-specific, expiring, 124
web server environment, 10, 76–82

VBScript language, 13–14, 22
Version property

NewMail object, 266, 280
Session object (CDO), 268

Version property (Connection), 166
Virtual Directory tab (MMC), 384
virtual paths

determining for web pages, 81
determining with MapPath(), 119

Visual Basic CGI application, 368–370
VolumeName property (Drive), 319
vote tallies with counters, 311

W
waiting (see expiring; timeouts)
web browsers

Browser Capabilities component, 23,
248–255

CGI applications, 3
encoding HTML for, 118
errors, HTTP status codes for, 98
HTTP interaction, example, 48–52
messaging (see messaging with

CDO)
web pages

buffering downloads, 87–90, 108
sending buffer remains, 109–111

caching, 90
expiring cached data, 93–95

Content Linking component, 286–302
example, 299–302

counter variables for, 309–315
determining paths for, 81
hit counters for, 356
locale-specific formatting, 126–127
logging site activity, 105
“please wait” pages, 89
rating (PICS system), 96–97
scope of (see page-level scope)

web servers, 11, 114–121
ASP demonstration (example), 6–9
caching

expiring cache, 93–95
caching web pages, 90
checking connection to, 95
counter variables and, 309
406 Index

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

environment variables for, 10, 76–82
errors, HTTP status codes for, 98
executing code (see server-side

scripting)
HTTP interaction, example, 48–52
ISAPI technology, 4–6
logging site activity, 105
messaging (see messaging with

CDO)
paths on (see paths)
sessions on (see user sessions)
special folders on, 339
TCP/IP address for, 81
type library declaration errors, 156

WinCGI (see CGI applications)
Windows folder, 339
Windows NT

CDO for (see CDO for NTS)
Challenge Response authentication,

358, 360
Windows Scripting Host (WSH), 383
WinNT folder, 339
Write method

Response object, 16, 111–113
TextStream object, 324, 344

WriteBlankLines method (TextStream),
324

WriteLine method (TextStream), 324
WriteToFile method (Attachment), 262
writing

HTTP responses, 111–113
response content, 106–108
to text files, 344–345

WSH (Windows Scripting Host), 383

X
X.509 Recommendation, 59, 62
XA protocol, 41
Index 407

ASP in a Nutshell: A Desktop Quick Reference, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

About the Author

Keyton Weissinger is a technical manager with USWeb/CKS in Atlanta, Georgia.
Before that, he worked for Arthur Andersen as the senior engineer for the Business
Consulting KnowledgeSpace.

Colophon

The animal appearing on the cover of ASP in a Nutshell is an asp, which is a term
applied to various venomous snakes, including the depicted asp viper (Vipera aspis)
of Europe as well as the Egyptian cobra (Naja haje), thought to have been the means
of Cleopatra’s suicide.

Needing to eat at least 5–6% of their body weight in food per week, European asp
vipers hunt by lying in wait for approaching prey. After grabbing and biting a small
rodent or other prey, they release it and wait several minutes for it to stop moving;
the generally sluggish viper rarely chases prey. Vipers know their home territory very
well, which allows quick escape from their asp-kicking natural enemies, serpent
eagles and hedgehogs. This trick hasn’t helped them escape from their greatest
threat, the expansion of human civilization, which frequently wipes out large sec-
tions of their territory.

The chemical composition of asp viper venom can vary from one population to the
next, hampering initial antivenin development until 1896, but few viper bite fatalities
occur in Europe today.

Clairemarie Fisher O’Leary was the production editor for ASP in a Nutshell. Sheryl
Avruch was the production manager; Jeff Liggett, Norma Emory, and John Files pro-
vided production support and quality assurance. Mike Sierra provided tools support.
Seth Maislin wrote the index.

Edie Freedman designed the cover of this book using a 19th-century engraving from
the Dover Pictorial Archive. The cover layout was produced with QuarkXPress 3.32
using the ITC Garamond font.

The inside layout was designed by Nancy Priest and implemented in FrameMaker
by Mike Sierra. The text and heading fonts are ITC Garamond Light and Garamond
Book. The illustrations that appear in the book were created in Macromedia Free-
hand 7.0 and screen shots were created in Adobe Photoshop 4.0 by Robert Romano
or Rhon Porter. This colophon was written by Nancy Kotary.

The production editors for ASP in a Nutshell: A Desktop Quick Reference, eMatter Edi-
tion were Ellie Cutler and Jeff Liggett. Linda Walsh was the product manager.
Kathleen Wilson provided design support. Lenny Muellner, Mike Sierra, Erik Ray,
and Benn Salter provided technical support. This eMatter Edition was produced with
FrameMaker 5.5.6.

	Copyright
	Table of Contents
	Preface
	Who Is This Book For?
	How to Use This Book
	How This Book Is Structured
	Conventions Used in This Book
	How to Contact Us
	Acknowledgments

	Part I: Introduction to Active Server Pages
	Chapter 1 - Active Server Pages: An Introduction
	The Static Internet
	The Dynamic Internet Part I: CGI Applications
	The Dynamic Internet Part II: ISAPI
	Active Server Pages and Active Server Pages 2.0
	ASP: A Demonstration
	The ASP Object Model

	Chapter 2 - Active Server Pages: Server-Side Scripting
	Client-Side Scripting
	Server-Side Scripting
	ASP Functions
	Scripting Languages

	Chapter 3 - Extending Active Server Pages
	Part II: Object Reference
	Chapter 4 - Application Object
	Comments/Troubleshooting
	Collections Reference
	Contents Collection
	StaticObjects

	Methods Reference
	Lock
	Unlock

	Events Reference
	OnEnd
	OnStart

	Chapter 5 - ObjectContext Object
	Comments/Troubleshooting
	Methods Reference
	SetAbort
	SetComplete

	Events Reference
	OnTransactionAbort
	OnTransactionCommit

	Chapter 6 - Request Object
	How HTTP Works
	The ASP Request Object
	Comments/Troubleshooting
	Properties Reference
	TotalBytes

	Collections Reference
	ClientCertificate
	Cookies
	Form
	QueryString
	ServerVariables

	Methods Reference
	BinaryRead

	Chapter 7 - Response Object
	Comments/Troubleshooting
	Properties Reference
	Buffer
	CacheControl
	Charset
	ContentType
	Expires
	ExpiresAbsolute
	IsClientConnected
	PICS
	Status

	Collections Reference
	Cookies

	Methods Reference
	AddHeader
	AppendToLog
	BinaryWrite
	Clear
	End
	Flush
	Redirect
	Write

	Chapter 8 - Server Object
	Comments/Troubleshooting
	Properties Reference
	ScriptTimeout

	Methods Reference
	CreateObject
	HTMLEncode
	MapPath
	URLEncode

	Chapter 9 - Session Object
	Comments/Troubleshooting
	Properties Reference
	CodePage
	LCID
	SessionID
	Timeout

	Collections Reference
	Contents Collection
	StaticObjects Collection

	Methods Reference
	Abandon

	Events Reference
	Session_OnEnd
	Session_OnStart

	Chapter 10 - Preprocessing Directives, Server-Side Includes, and GLOBAL.ASA
	Preprocessing Directives
	Preprocessing Directives Reference
	CODEPAGE
	ENABLESESSIONSTATE
	LANGUAGE
	LCID
	TRANSACTION

	Server-Side Includes
	#include
	GLOBAL.ASA
	GLOBAL.ASA Reference
	Application Object Events and Application Scope
	Session Object Events and Session Scope
	Type Library Declarations

	Part III: Installable Component Reference
	Chapter 11 - ActiveX Data Objects 1.5
	Accessory Files/Required DLL Files
	Instantiating Active Data Objects
	Comments/Troubleshooting
	Object Model
	Properties Reference
	AbsolutePosition (Recordset Object)
	ActiveConnection (Command, Recordset Object)
	BOF (Recordset Object)
	CommandText (Command Object)
	CommandTimeout (Command, Connection Object)
	CommandType (Command Object)
	ConnectionString (Connection Object)
	ConnectionTimeout (Connection Object)
	CursorType (Recordset Object)
	Description (Error Object)
	EOF (Recordset Object)
	Filter (Recordset Object)
	MaxRecords (Recordset Object)
	Name (Command, Field, Parameter, Property Object)
	Number (Error Object)
	RecordCount (Recordset Object)
	Source (Error Object)
	Source (Recordset Object)

	Collections Reference
	Errors Collection

	Methods Reference
	AddNew (Recordset Object)
	Clone (Recordset Object)
	Close (Connection Object, Recordset Object)
	Delete (Recordset Object)
	Execute (Command Object)
	Execute (Connection Object)
	Move (Recordset Object)
	MoveFirst, MoveLast, MoveNext, MovePrevious (Recordset Object)
	NextRecordset (Recordset Object)
	Open (Connection Object)
	Open (Recordset Object)
	Requery (Recordset Object)
	Resync (Recordset Object)
	Supports (Recordset Object)
	Update (Recordset Object)

	Chapter 12 - Ad Rotator Component
	Accessory Files/Required DLL Files
	Instantiating the Ad Rotator
	Comments/Troubleshooting
	Properties Reference
	Border
	Clickable
	TargetFrame

	Methods Reference
	GetAdvertisement

	Ad Rotator Example

	Chapter 13 - Browser Capabilities Component
	Accessory Files/Required DLL Files
	Instantiating the Browser Capabilities Component
	Comments/Troubleshooting
	Properties Reference
	PropertyName (Customizable)

	Chapter 14 - Collaboration Data Objects for Windows NT Server
	Accessory Files/Required DLL Files
	Instantiating Collaboration Data Objects
	Comments/Troubleshooting
	The CDO Object Model
	NewMail Object Properties Reference
	Bcc
	Body
	BodyFormat
	Cc
	ContentBase
	ContentLocation
	From
	Importance
	MailFormat
	Subject
	To
	Value
	Version

	Methods Reference
	AttachFile
	AttachURL
	Send (NewMail Object)
	SetLocaleIDs (NewMail Object)

	Chapter 15 - Content Linking Component
	Accessory Files/Required DLL Files
	Instantiating a Content Linking Object
	Comments/Troubleshooting
	Methods Reference
	GetListCount
	GetListIndex
	GetNextDescription
	GetNextURL
	GetNthDescription
	GetNthURL
	GetPreviousDescription
	GetPreviousURL

	Content Linking Component Example

	Chapter 16 - Content Rotator Component
	Accessory Files/Required DLL Files
	Instantiating the Content Rotator Component
	Comments/Troubleshooting
	Methods Reference
	ChooseContent
	GetAllContent

	Chapter 17 - Counters Component
	Accessory Files/Required DLL Files
	Instantiating the Counters Component
	Comments/Troubleshooting
	Methods Reference
	Get
	Increment
	Remove
	Set

	Chapter 18 - File Access Component
	Accessory Files/Required DLL Files
	Instantiating Installable Components
	Comments/Troubleshooting
	Object Model
	Properties Reference
	AtEndOfLine (TextStream Object)
	AtEndOfStream (FileSystemObject Object)
	Attributes (File Object, Folder Object)
	AvailableSpace (Drive Object)
	DateCreated (File Object, Folder Object)
	Drive (File Object, Folder Object)
	FileSystem (Drive Object)
	IsReady (Drive Object)
	IsRootFolder (Folder Object)
	ParentFolder (File Object, Folder Object)

	Methods Reference
	Close (TextStream Object)
	Copy (File Object, Folder Object)
	CopyFolder (FileSystemObject Object)
	CreateFolder (FileSystemObject Object)
	Delete (File Object, Folder Object)
	GetBaseName (FileSystemObject Object)
	GetParentFolderName (FileSystemObject Object)
	GetSpecialFolder (FileSystemObject Object)
	MoveFolder (FileSystemObject Object)
	OpenAsTextStream (File Object)
	ReadLine (TextStream Object)
	Write (TextStream Object)
	WriteLine (TextStream Object)

	Chapter 19 - MyInfo Component
	Accessory Files/Required DLL Files
	Comments/Troubleshooting
	Properties Reference
	[All Properties]

	Chapter 20 - Page Counter Component
	Accessory Files/Required DLL Files
	Instantiating the Page Counter Component
	Comments/Troubleshooting
	Methods Reference
	Hits
	Reset

	Chapter 21 - Permission Checker Component
	Accessory Files/Required DLL Files
	Instantiating the Permission Checker
	Comments/Troubleshooting
	Methods Reference
	HasAccess

	Part IV: Appendixes
	Appendix A - Converting CGI/WinCGI Applications into ASP Applications
	The CGI Application
	The Perl CGI Script
	The Visual Basic CGI Application
	The Active Server Pages
	Converting Environment Variables

	Appendix B - ASP on Alternative Platforms
	Chili!ASP from Chili!Soft
	Instant ASP (I-ASP) from Halcyon Software
	OpenASP from the ActiveScripting Organization

	Appendix C - Configuration of ASP Applications on IIS
	Microsoft Management Console and the Metabase

	Index
	About the Author/Colophon

