

Ant: The Definitive Guide

Jesse Tilly
Eric Burke

Publisher: O'Reilly

First Edition May 2002

ISBN: 0-596-00184-3, 288 pages

Ant is the premier build-management tool for Java environments. Ant is part of Jakarta,
the Apache Software Foundation's open source Java project repository. Ant is written entirely
in Java, and is platform independent. Using XML, a Java developer describes the modules
involved in a build, and the dependencies between those modules. Ant then does the rest,
compiling components as necessary in order to build the application.

Table of Contents
Dedication ... 1
Foreword ... 2
Preface ... 5

Structure of This Book ... 5
Audience... 7
What You Should Know .. 7
Which Platform and Version.. 7
Conventions Used in This book ... 7
Comments and Questions... 8
Acknowledgments .. 9

Chapter 1. Ant Jumpstart ... 10
1.1 Files and Directories... 10
1.2 The Ant Buildfile ... 11
1.3 Running Ant ... 13
1.4 Ant Command-Line Reference .. 15
1.5 Buildfile Outline... 17
1.6 Learning More.. 17

Chapter 2. Installation and Configuration .. 18
2.1 The Distribution ... 18
2.2 Installation.. 18
2.3 Configuration ... 25

Chapter 3. The Buildfile .. 28
3.1 Why XML? .. 28
3.2 Ant Building Blocks... 29
3.3 An Example Project and Buildfile ... 33
3.4 The Buildfile Execution Process .. 45
3.5 AINASL: Ant Is Not a Scripting Language ... 54
3.6 Buildfile Authoring Issues ... 56

Chapter 4. Ant DataTypes... 58
4.1 DataTypes Defined... 59
4.2 XML Attribute Conventions .. 59
4.3 Argument DataType... 61
4.4 Environment DataType .. 64
4.5 FileList DataType... 66
4.6 FileSet DataType.. 67
4.7 PatternSet DataType... 70
4.8 FilterSet DataType ... 72
4.9 Path DataType .. 74
4.10 Mapper DataType... 76

Chapter 5. User-Written Tasks... 80
5.1 The Need for Custom Tasks... 80
5.2 Ant's Task Model ... 81
5.3 The Task Life Cycle... 89
5.4 An Example Through Analysis: The jar Task.. 92
5.5 Miscellaneous Task Topics .. 106

Chapter 6. User-Written Listeners ... 109
6.1 The BuildEvent Class... 109
6.2 The BuildListener Interface ... 111

6.3 An Example: XmlLogger ... 113
6.4 The Parallel Problem.. 115

Chapter 7. Core Tasks ... 117
7.1 Task Summary.. 117
7.2 Common Types and Attributes .. 119
7.3 Project and Target .. 121
7.4 Core Task Reference .. 124

Chapter 8. Optional Tasks... 212
8.1 Task Summary.. 212
8.2 Optional Task Reference.. 213

Appendix A. The Future of Ant .. 300
A.1 Ant2 ... 300
A.2 Ant1 RIP 2002? ... 301

Appendix B. Ant Solutions .. 302
B.1 Testing Library Availability .. 302
B.2 Cleaning Up Does More Than Keep Things Neat... 303
B.3 Using Ant to Consolidate Libraries ... 303
B.4 Documenting the Buildfile's Targets ... 305
B.5 Setting Properties Outside of the Buildfile.. 305
B.6 Using pathconvert.. 306
B.7 Usage Statements... 307
B.8 Forking Processes .. 308
B.9 Using Cascading Projects and Buildfiles... 309

Colophon ... 312

Ant: The Definitive Guide

1

Dedication
For my grandmother, Dorothy Tilly.

—Jesse Tilly

For Mom.

—Eric M. Burke

Ant: The Definitive Guide

2

Foreword
I have to confess that I had absolutely no idea that Ant, the little build tool that could, would
go as far as it did and make such a mark on the Java developer community. When I wrote
the first version of Ant, it was a simple hack to help me solve a cross-platform build problem
that I was having. Now it's grown up and being used by thousands of developers all over
the planet. What's the magic behind this? How did this little program end up being used by so
many people? Maybe the story of how Ant came to be holds some clues.

Ant was first written quite some time before it was checked into Apache's CVS servers. In
mid-1998, I was given the responsibility at Sun Microsystems to create the Java Servlet 2.1
specification and a reference implementation to go with it. This reference implementation,
which I named Tomcat, was to be a brand new codebase, since the previous reference
implementation was based somewhat on code from the Java Web Server, a commercial
product that was migrated from JavaSoft to iPlanet. Also, the new implementation had to be
100% Pure Java.

In order to get the 100% Pure Java certification, even for those of us working on the Java
Platform at Sun, you had to show Key Labs (an independent certification company) that you
could run on three different platforms. To ensure that the servlet reference implementation
would run anywhere, I picked Solaris, Windows, and the Mac OS. And not only did I want
Tomcat to run on these three platforms, but I wanted to be able to build and develop on all
three platforms as well as on Linux. I tried using GNU Make. And shell scripts. And batch
files. And God knows what else. Each approach had its own unique problem. The problems
stemmed from the fact that all of the existing tools had a worldview rooted in building C
programs. When these practices were applied to Java, they worked, but slowly. Even though
Java programs themselves can perform well, the startup overhead associated with the Java
Virtual Machine is lengthy. And when Make creates a new instance of the VM with every file
that needs to be compiled, compile times grow linearly with the number of source files in
a project.

I tried many approaches to write a make file that would cause all of the source files in
a project that needed to be recompiled to be passed to javac in one go. But, no matter how
hard I tried, and how many Make wizards I consulted with, I couldn't get an approach that
would work the same way on multiple platforms. I got very, very tired of the !&#$%#ing tab
formatting of make files. As much as I've been a proponent of Emacs in my life, any tool that
requires Emacs to properly write its files so that you can make sure that no unintended spaces
creep in should not be tolerated.1

It was on a flight back from a conference in Europe that I finally got fed up once and for all of
trying to create some make file that would work the same way everywhere. I decided to
"make" my own tool: one that would examine all the Java source files in a project, compare
them with any compiled classes, and pass the list of sources that needed to be compiled
directly to javac. In addition, it would do a couple of other things like stuff all the classes into
a JAR file and copy some other files around to make a distributable version of the software. In
order to ensure that things would work the same way on every supported platform, I decided
to write the tool in Java.

1 I've been told that the original designer of the make file format knew after the first week that the tab thing would be a problem. But he already had
dozens of users and didn't want to break compatibility.

Ant: The Definitive Guide

3

A few hours later, I had a working tool. It was simple, crude, and consisted of just a few
classes. It used the functionality of java.util.Properties to serve as its data layer. And it
worked. Beautifully. My compile times dropped by an order of magnitude. When I got back
to the states and tested it out on Solaris, Linux, and Mac OS, it worked just fine on all of
them. Its biggest problem at that time was that the number of things it could do was limited to
compiling files and copying files — and that this functionality was hardcoded.

A few weeks later I showed the tool, which I had named Ant because it was a little thing that
could build big things,2 to my friend Jason Hunter (author of Java Servlet Programming,
published by O'Reilly). Jason thought that it was a decent enough tool, but didn't really think
it was a big deal. That is, until I mentioned that I was thinking of using Java's reflection
abilities to provide a clean way to extend Ant's abilities so that a programmer could write their
own tasks to extend it. Then the light bulb went off over his head and I had my first Ant user
as well as evangelist. Jason also has an uncanny ability to find a bug in any piece of software
within moments and helped me stomp out quite a few problems.

Once the reflection layer was in place, I wrote a few more tasks and Ant became useful to
other groups at Sun. However, the build file format was getting a bit bulky. Properties files
don't really lend themselves to hierarchical grouping well, and with the introduction of tasks
came the idea of targets (collections of tasks). I played around with a few different ways of
solving the problem, but hit on the solution when I was on another flight back from Europe.
This solution structured the project-target-task hierarchy to follow an XML document
hierarchy. It also leveraged the reflection work I had done earlier to associate XML tag names
with task implementations.

Evidently I do my best coding while flying over the ocean. I wonder if there's something
about the increased radiation at high altitude that helps. Or maybe trips to Europe bring out
something creative in me. Only more experimentation will tell.

Ant, as we know it, had come into being. Everything that you see in the version of Ant that
you use today (the good and the bad) is a result of the decisions made up to that point. To be
sure, a lot has changed since then, but the basics were there. It was essentially this source
code that was checked into Apache's CVS repository alongside Tomcat in late 2000. I moved
on to other things, principally being Sun's representative to the Apache Software Foundation
as well as working on XML specifications such as JAXP from Sun and DOM from the W3C.

Amazingly enough, people all over the world started talking about Ant. The first people to
find it were those that worked on Tomcat at Apache. Then they told their friends about it. And
those friends told their friends, and so on. At some point more people knew about and were
using Ant than Tomcat. A strong developer and user community grew up around Ant at
Apache, and many changes have been made to the tool along the way. People now use it to
build all manner of projects, from very small ones to incredibly huge J2EE applications.

The moment I knew that Ant had gone into the history books was during JavaOne in 2001. I
was at a keynote presentation in which a new development tool from a major database
software company was being demoed. The presenter showed how easy it was to draw lines
between boxes to design software, and then hit the build button. Flashing by in the console

2 Also, the letters ANT could stand for "Another Neato Tool." Silly, I know. But true.

Ant: The Definitive Guide

4

window were those familiar square brackets that every user of Ant sees on a regular basis. I
was stunned. Floored.

The number of Ant users continues to increase. Evidently the little itch that I scratched is
shared by Java developers world wide. And not just Java developers. I recently stumbled
across NAnt, an implementation of Ant's ideas for .NET development.3

If I had known that Ant was going to be such a runaway success, I would have spent a bit
more time on it in the first place polishing it up and making it something more than the simple
hack it started out as. Yet that might have defeated exactly the characteristic that made it take
off in the first place. Ant might have become over-engineered. If I had spent too much time
trying to make it work for more than just my needs, it might have become too big a tool and
too cumbersome to use. We see this all the time in software, especially in many of the Java
APIs currently being proposed.

It might be that the secret to Ant's success is that it didn't try to be successful. It was a simple
solution to an obvious problem that many people were having. I just feel honored to be the
lucky guy who stumbled across it.

The book you now hold in your hands will guide you in using Ant as it exists today. Jesse and
Eric will teach you how to use Ant effectively, extend it, and tell you how all the various
tasks, both the built-in ones as well as widely used optional ones, can be used. In addition,
they will give you tips to avoid the pitfalls created by some of Ant's design decisions.

Before placing you in their capable hands, I want to leave you with just one last thought:
always scratch your own itch where possible. If a tool out there doesnt do what you need it to
do, then look around for one that will. If it doesnt exist, then create it. And be sure to share it
with the world. Thousands of other people might have just the same itch that you do.

—James Duncan Davidson

San Francisco, CA, April 2002

3 You can find NAnt at http://nant.sourceforge.net/.

Ant: The Definitive Guide

5

Preface
Compilation of all Java™ source files is no longer the only step necessary to build many
Java-based projects. For the typical HelloWorld program, book examples, and simple applets,
source file compilation is sufficient. Complex Java-based projects, like web applications or
Swing-based programs (such as JBuilder), require much more. Up-to-date sources must be
retrieved from source control. Dependencies not automatically handled by the Java compiler
need to be managed. Various classes must be bundled and delivered to multiple locations,
sometimes as JAR or WAR files. Some Java technologies, such as Enterprise Java Beans
(EJB) and Remote Method Invocation (RMI) classes, need separate compilation and code
generation steps not performed by the Java compiler. While shell scripts and GNU Make are
often the first choice tools for performing these alternative tasks — in terms of "getting
the job done," these tools perform adequately — they turn out to be poor choices in the long
run.

As functional as it may be, GNU Make leaves a lot to be desired in terms of ease-of-use.
Makefiles have their own language syntax, requiring a separate knowledge set for their
authors. GNU Make lacks platform-independence, requiring multiple versions of the same
makefile (one for each target platform) to be maintained and distributed. The nature of shell
scripts and GNU Make (remembering that GNU Make is simply a language extension on top
of an existing shell) makes moving from operating system to operating system, and even from
shell to shell, difficult or impossible for anyone but an expert user. While it is not unusual to
use GNU Make, the time and maintenance required to follow this path is too high for modern
Java-based projects.

Sun provides Java versions of all their SDK tools. Executables such as javac are simply
wrappers executing the Java code. Other vendors' tools, like BEA's EJB compiler for
WebLogic, JUnit, and the Jakarta tools and libraries are all written in Java. GNU Make can
only call executables from the command line. For example, to invoke a Java class, GNU
Make must use the java command to invoke the JVM, and pass the class name as a command-
line argument. Make is incapable of programmatically using any of the Java tools' libraries,
such as exception and error objects. These libraries allow for a more flexible build process. A
tool written in Java (such as WebLogic's ejbc compiler) can share information from
exceptions and errors with other objects (such as Ant task objects) available inside the same
JVM. This serves to enhance the build process beyond command-line return codes and after-
the-fact error-message string parsing.

The problems with GNU Make and the possibilities of a build tool written in Java influenced
James Duncan Davidson to write Ant. Ant runs the Java compiler as a class, not as a call from
the command line. Remaining inside the JVM allows for specialized code to handle errors,
and for action on results Sun provides through its compiler. Ant uses XML as its buildfile
syntax, therefore enhancing, rather than straining, developers' and project managers' skill sets.
Ant extends the build process beyond just running programs, and is more properly termed a
build environment than a build tool.

Structure of This Book

Ant: The Definitive Guide contains all of the knowledge a newcomer to Ant needs. For
the Ant expert, Ant: The Definitive Guide is a reference, providing detailed definitions of

Ant: The Definitive Guide

6

Ant's core tasks, discussing the main features of Ant, providing some best practices for
managing projects with Ant, and explaining workarounds for some of Ant's problems.

Chapter 1, walks through a very basic Ant buildfile example, with the intent of getting you up
and running quickly. We show how to create directories, compile code, and generate a JAR
file, but do not delve into the details of how everything works. The chapter also includes
detailed information on Ant's command-line usage. We conclude with a rough outline of a
buildfile for use as a starter template.

Chapter 2, shows how to get Ant, install it, and configure it on Windows and Unix platforms.
We list some of the pitfalls found with these development platforms, as well as provide
workarounds and solutions.

Chapter 3, shows an example Ant buildfile in the context of a sample project. We dissect and
describe the major parts and structures of the buildfile, explaining such things as the general
flow of the Ant engine and the benefits of Ant using XML, highlighting the major parts of a
buildfile.

Chapter 4, describes each of the Ant DataTypes in detail. While DataTypes are used in earlier
chapters, this is where we really dig into them. We show how to use environment variables
and pass command-line arguments to processes, as well as how to work with lists of files and
patterns.

Chapter 5, covers one of Ant's best features: the ability to extend Ant. With the capability to
write extensions, you are able to handle anything a particular project may require. As a bonus,
you can reuse your tasks in future projects, reaping benefits from your effort well beyond the
initial implementation. Your tasks can even be shared and distributed publicly so that people
you don't even know can benefit from your work.

Chapter 6, covers how to design and develop your own build-event listeners. With these, you
can write classes that perform operations based on the flow related to buildfile processing.
These operations range from sending emails when certain complex tasks complete, to
redirecting the same events to a centralized "build-listening framework." The possibilities,
just like with user-written tasks, are endless. The chapter also covers a further extension to
listeners: user-written loggers. With these, you can augment or even replace Ant's default
logging system.

Chapter 7, is a comprehensive reference to the entire set of core Ant tasks. For each task,
you'll find a description, a list of Ant versions supporting the task, and definitions for all task
attributes. You'll also find helpful samples of task usage.

Chapter 8, provides a reference, similar in form to Chapter 7, for Ant's rich library of optional
tasks.

Appendix A, discusses just that. We cover future directions and expected new features, as
well as suggest steps you can take to avoid using soon-to-be-obsolete features.

Appendix B, delves into some of the more common ways Ant is used to solve various build
problems. Additionally, we talk about using buildfiles with cascading project structures.
These are project structures with a primary project directory and many subproject

Ant: The Definitive Guide

7

subdirectories. Each subproject contains its own buildfile, and the master project has a master
buildfile capable of building all of the subprojects.

Audience

This book is targeted primarily at Java developers, especially those who develop enterprise-
level Java applications and need a robust build tool that can do more than just invoke
command-line compilers and utilities. This book will also be useful to build managers on
large projects, and to project managers who have responsibility for build-management.

What You Should Know

For most of the book, only a basic understanding of Java and XML is required. The chapters
on writing extensions for Ant ask that you also have a firm understanding of Java inheritance
and interfaces. Ant is best used as a system for building and deploying Java-based projects.
While some Ant tasks are available that provide the ability to compile and run other languages
such as Perl, Python, C, and C#, this book focuses on Ant's use with Java.

Which Platform and Version

As an open source project under Apache's Jakarta project, Ant undergoes nightly code
revisions and builds. These nightly builds create Ant's "non-stable versions." Every so often,
the primary maintainers declare the functionality and stability of a nightly build as release
quality. As of this writing, there have been five such releases: 1.1, 1.2, 1.3, 1.4, and 1.4.1.
This reference's main focus is on 1.4.1, released in October of 2001. Some tasks, copydir for
example, are deprecated as of Release 1.2, but are still covered in this book since they have
not been completely removed from the list of core tasks.

Conventions Used in This book

The following typographical conventions are used in this book:

Italic

Used for Unix and Windows commands, filenames and directory names, emphasis,
and first use of a technical term.

Constant width

Used in code examples and to show the contents of files. Also used for Java class
names, Ant task names, tags, attribute names, and environment variable names
appearing in the text.

Constant width italic

Used in syntax descriptions to indicate user-defined items.

Constant width bold

Used for user input in examples showing both input and output.

Ant: The Definitive Guide

8

Terminology

For consistency, in this book we refer to an Ant instruction file as a buildfile. In other Ant-
related forums and documentation, you may encounter the terms build.xml and antfile. These
terms are interchangeable, but buildfile is the preferred term.

When referring to XML, we use the convention that a tag refers to a bracket-delimited
markup in the buildfile. For example, <path> is a tag. The term element refers to both a tag
and its children, should it have any. The following XML markup is an example of a <path>
element. The distinction between tag and element is that the term tag refers only to <path>,
while element refers to everything from <path> through </path>.

<path>
 <fileset dir="src">
 <includes name="**/*.java"/>
 </fileset>
</path>

XML elements and tags define Ant tasks and DataTypes in the buildfile. Tasks perform
operations and act as the modular part of the Ant engine. DataTypes define complex
groupings of data, typically paths or file sets, for the Ant engine.

Filename and Path Conventions

Ant is a Java program and adopts Java's "agnostic" viewpoint towards filesystems. When run,
Ant checks for the path separator and directory separator characters, provided by the
underlying JVM, and uses those values. It successfully interprets either the ';' or the ':' inside
of the buildfile. For example, when run on a Unix machine, Ant interprets the path
dir;dir\\subdir (note the escaped '\') correctly as dir:dir/subdir. Separators must be used
consistently within the same value type; the string dir;dir/subdir, combining a Windows path
separator (;) and a Unix directory separator (/), is not good form. Throughout this book, Unix
and Windows file path conventions will be interspersed in the examples to emphasize the fact
that Ant does not care which you use.

Ant does not handle drive letters across platforms. Using drive letters in Ant path elements
will restrict a buildfile's use to Windows environments.

Comments and Questions

We have tested and verified the information in this book to the best of our ability, but you
may find that features have changed or that we have made mistakes. If so, please notify us by
writing to:

O'Reilly & Associates
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (FAX)

Ant: The Definitive Guide

9

You can also send messages electronically. To be put on the mailing list or request a catalog,
send email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

We have a web site for this book, where you can find examples and errata (previously
reported errors and corrections are available for public view there). You can access this page
at:

http://www.oreilly.com/catalog/anttdg/

For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com/

Acknowledgments

From Jesse

I'd like to begin by thanking my wife, Melissa, and my two kids, Natalie and Peter, who had
to put up with many lost family weekends. Without their love and support I could have never
finished this book. Thanks also go out to Keyton Weissinger, who inspired me to write a book
in the first place. The entire Ant community played an important role in support of the
knowledge effort Eric and I went through to write this text. In particular, I'd like to thank
Stefan Bodewig and Conor MacNeil, who took time from their busy schedules to help me
understand some of the deeper functions of Ant. They always offered their information gladly,
and I thank them for their time.

In addition, I'd like to thank our tech reviewers: Diane, Dean, Jeff, and Paul. Your
contributions to the book made quite a difference. I had to keep telling myself "critiques only
serve to make the book better"...and they did.

Finally, I'd like to thank the employees at Caribou Coffee in Roswell, GA, who had to put up
with me for 4-8 hours every Saturday while I commandeered a table and electricity. Good
coffee and friendly people made writing the book there very enjoyable.

From Eric

I want to thank my family for helping to make this book possible. To my wife, Jennifer, thank
you for enduring all of those evenings and weekends while I was writing this book. To my
son Aidan, I'll always find time to take you to the zoo, no matter how much work I have to do.
I love you both.

I'd also like to thank each of the tech reviewers for the contributions they made to this book.
Diane Holt, Dean Wette, Jeff Brown, and Paul Campbell took a great deal of time out of their
personal schedules to help with this book, and I am grateful for that.

Ant: The Definitive Guide

10

Chapter 1. Ant Jumpstart
It is likely that you have already downloaded and installed Ant and are ready to see
an example of how it works. If so, then this chapter is for you. Here, we walk through a very
basic buildfile example, followed by a full description of Ant's command-line options. If you
prefer to walk through the step-by-step installation procedure first, you might want to skip
ahead to Chapter 2 and then come back to this material.

We do not attempt to explain every detail of the buildfile in this chapter. For a more
comprehensive example, see Chapter 3.

1.1 Files and Directories

For our example, we start with the directory and file structure shown in Figure 1-1.
The shaded boxes represent files, and the unshaded boxes represent directories.

Figure 1-1. Starting point for our example buildfile

You can download this example from this book's web page, located at
http://www.oreilly.com/catalog/anttdg/.

The Ant buildfile, build.xml, exists in the project base directory. This is typical, although you
are free to use other filenames or put the buildfile somewhere else. The src directory contains
the Java source code organized into an ordinary package structure. For the most part, the
content of the source files is not important. However, we want to point out that
PersonTest.java is a unit test that will be excluded from the generated JAR file.

Our sample buildfile causes Ant to create the directory tree and files shown inside the shaded,
dashed block in Figure 1-2. It also compiles the Java source code, creates oreilly.jar, and
provides a "clean" target to remove all generated files and directories.

Ant: The Definitive Guide

11

Figure 1-2. Directories and files created by our sample buildfile

Now let's look at the buildfile that makes this possible.

1.2 The Ant Buildfile

Ant buildfiles are written using XML. Example 1-1 shows the complete Ant buildfile for our
example. This is simpler than most real-world buildfiles, but does illustrate several core
concepts required by nearly every Java project.

Example 1-1. build.xml

<?xml version="1.0"?>

<!-- build.xml - a simple Ant buildfile -->
<project name="Simple Buildfile" default="compile" basedir=".">

 <!-- The directory containing source code -->
 <property name="src.dir" value="src"/>

 <!-- Temporary build directories -->
 <property name="build.dir" value="build"/>
 <property name="build.classes" value="${build.dir}/classes"/>
 <property name="build.lib" value="${build.dir}/lib"/>

 <!-- Target to create the build directories prior to the -->
 <!-- compile target. -->
 <target name="prepare">
 <mkdir dir="${build.dir}"/>
 <mkdir dir="${build.classes}"/>
 <mkdir dir="${build.lib}"/>
 </target>

Ant: The Definitive Guide

12

 <target name="clean" description="Removes all generated files.">
 <delete dir="${build.dir}"/>
 </target>

 <target name="compile" depends="prepare"
 description="Compiles all source code.">
 <javac srcdir="${src.dir}" destdir="${build.classes}"/>
 </target>

 <target name="jar" depends="compile"
 description="Generates oreilly.jar in the 'dist' directory.">
 <!-- Exclude unit tests from the final JAR file -->
 <jar jarfile="${build.lib}/oreilly.jar"
 basedir="${build.classes}"
 excludes="**/*Test.class"/>
 </target>

 <target name="all" depends="clean,jar"
 description="Cleans, compiles, then builds the JAR file."/>

</project>

XML Considerations
Ant buildfiles are XML files that can be created with any text editor. Keep the
following points in mind as you create your own buildfiles:

• The first line is the XML declaration. If present, it must be the very first line
in the XML file; no preceding blank lines are allowed. In fact, even a single
blank space before <?xml causes the XML parser to fail.

• XML is very picky about capitalization, quotes, and proper tag syntax. If any
of these items are incorrect, Ant fails because its underlying XML parser
fails.

Here is an example of an error that occurs if the </project> end tag is typed
incorrectly as </Project>:

Buildfile: build.xml

BUILD FAILED

C:\antbook\build.xml:41: Expected "</project>" to terminate
element starting on line 4.

Total time: 2 seconds

1.2.1 Buildfile Description

Our buildfile consists of several XML comments, the required <project> element, and many
properties, tasks, and targets. The <project> element establishes the working directory for
our project: ".". This is the directory containing the buildfile. It also specifies the default
target, which is "compile." The purpose of the default target will become apparent shortly
when we describe how to run Ant.

Ant: The Definitive Guide

13

The property definitions allow us to avoid hardcoding directory names throughout the
buildfile. These paths are always relative to the base directory specified by the <project>
element. For example, the following tag sets the name of our source directory:

<property name="src.dir" value="src"/>

Next, our buildfile defines several targets. Each target has a name, such as "prepare," "clean,"
or "compile." Developers interact with these when invoking Ant from the command line.
Each target defines zero or more dependencies, along with an optional description attribute.
Dependencies specify targets that Ant must execute first, before the target in question is
executed. For example, "prepare" must execute before "compile" does. The description
attribute provides a human-readable description of a target that Ant will display on command.

Within targets we have tasks, which do the actual work of the build. Ant 1.4.1 ships with over
100 core and optional tasks; you can find all of the tasks described in detail in Chapter 7 and
Chapter 8. These tasks perform functions ranging from creating directories to playing music
when the build finishes.1

1.3 Running Ant

We are going to assume that Ant is installed properly. If you have any doubts on this point,
now is the time to read Chapter 2 and get everything up and running.

1.3.1 Examples

To execute the tasks in the default target, compile, type the following command from
the directory containing our sample build.xml file:

 ant

Ant will open the default buildfile, which is build.xml, and execute that buildfile's default
target (which in our case is compile). You should see the following output, assuming your
directory is called antbook:

Buildfile: build.xml

prepare:
 [mkdir] Created dir: C:\antbook\build
 [mkdir] Created dir: C:\antbook\build\classes
 [mkdir] Created dir: C:\antbook\build\lib

compile:
 [javac] Compiling 3 source files to C:\antbook\build\classes

BUILD SUCCESSFUL

Total time: 5 seconds

As Ant runs, it displays the name of each target executed. As our example output shows, Ant
executes prepare followed by compile. This is because compile is the default target, which

1 See the sound task in Chapter 8.

Ant: The Definitive Guide

14

has a dependency on the prepare target. Ant prints the name of each task within brackets,
along with other messages unique to each task.

In our sample output, [javac] is the name of the Ant task, not necessarily
the name of the Java compiler. If you are using IBM's Jikes, for
instance, [javac] is still displayed because that is the Ant task that is
running Jikes behind the scenes.

When you invoke Ant without specifying a buildfile name, Ant searches for a file named
build.xml in the current working directory. You aren't limited to this default; you can use any
name you like for the buildfile. For example, if we call our buildfile proj.xml, we must type
this command, instead:

ant -buildfile proj.xml

We can also explicitly specify one or more targets to run. We can type ant clean to remove
all generated code, for instance. If our buildfile is called proj.xml, and we want to execute the
clean target, we type ant -buildfile proj.xml clean . Our output would look something
like this:

Buildfile: proj.xml

clean:
 [delete] Deleting directory C:\antbook\build

BUILD SUCCESSFUL

Total time: 2 seconds

We can also execute several targets with a single command:

ant clean jar

This invokes the clean target followed by the jar target. Because of the target dependencies
in our example buildfile, Ant executes the following targets in order: clean, prepare,
compile, jar. The all target takes advantage of these dependencies, allowing us to clean and
rebuild everything by typing ant all :

<target name="all" depends="clean,jar"
 description="Cleans, compiles, then builds the JAR file."/>

all is dependent on clean and jar. jar, in turn, is dependent on compile, and compile is
dependent on prepare. The simple command ant all ends up executing all our targets, and in
the proper order.

1.3.2 Getting Help

You may have noticed that some of our targets include the description attribute, while
others do not. This is because Ant distinguishes between main targets and subtargets. Targets
containing descriptions are main targets, and those without are considered subtargets. Other

Ant: The Definitive Guide

15

than documentation differences, main targets and subtargets behave identically. Typing ant -
projecthelp from our project base directory produces the following output:

Buildfile: build.xml
Default target:

 compile Compiles all source code.

Main targets:

 all Cleans, compiles, then builds the JAR file.
 clean Removes all generated files.
 compile Compiles all source code.
 jar Generates oreilly.jar in the 'dist' directory.

Subtargets:

 prepare

BUILD SUCCESSFUL

Total time: 2 seconds

This project help feature is particularly useful for large projects containing dozens of targets,
provided you take the time to add meaningful descriptions.

For a summary of the Ant command-line syntax, type ant -help . You will see a brief
description of Ant's command-line arguments, which we cover next.

1.4 Ant Command-Line Reference

The syntax to use to invoke Ant from the command-line is as follows:

ant [option [option...]] [target [target...]]

option := {-help
 |-projecthelp
 |-version
 |-quiet
 |-verbose
 |-debug
 |-emacs
 |-logfile filename
 |-logger classname
 |-listener classname
 |-buildfile filename
 |-Dproperty=value
 |-find filename}

The syntax elements are as follows:

-help

Displays help information describing the Ant command and its options.

Ant: The Definitive Guide

16

-projecthelp

Displays any user-written help documentation included in the buildfile. This is text
from the description attribute of any <target>, along with any text contained
within a <description> element. Targets with description attributes are listed as
"Main targets," those without are listed as "Subtargets."

-version

Causes Ant to display its version information and exit.

-quiet

Suppresses most messages not originated by an echo task in the buildfile.

-verbose

Displays detailed messages for every operation during a build. This option is exclusive
to -debug.

-debug

Displays messages that Ant and task developers have flagged as debugging messages.
This option is exclusive to -verbose.

-emacs

Formats logging messages so that they're easily parsed by Emacs' shell-mode; i.e.,
prints the task events without preceding them with an indentation and a [taskname].

-logfile filename

Redirects logging output to the specified file.

-logger classname

Specifies a class to handle Ant logging. The class specified must implement the
org.apache.tools.ant.BuildLogger interface.

-listener classname

Declares a listening class for Ant to add to its list of listeners. This option is useful
when integrating Ant with IDEs or other Java programs. Read more about listeners in
Chapter 6. The specified listening class must be written to handle Ant's build
messaging.

-buildfile filename

Specifies the buildfile Ant should operate on. The default buildfile is build.xml.

Ant: The Definitive Guide

17

-Dproperty=value

Defines a property name-value pair on the command line.

-find filename

Specifies the buildfile on which Ant should operate. Unlike the -buildfile option, -find
causes Ant to search for the specified file in the parent directory if it is not found in
the current directory. This searching continues through ancestor directories until the
root of the filesystem is reached, at which time the build fails if the file is not found.

1.5 Buildfile Outline

Shown next is a generic buildfile good for using as a template. A buildfile consists of the
<project> element with its nested <target>, <property>, and <path> elements.

<project default="all">
 <property name="a.property" value="a value"/>
 <property name="b.property" value="b value"/>

 <path id="a.path">
 <pathelement location="${java.home}/jre/lib/rt.jar"/>
 </path>

 <target name="all">
 <javac srcdir=".">
 <classpath refid="a.path"/>
 </javac>
 </target>
</project>

Some notes about buildfiles to remember:

• All buildfiles require the <project> element and at least one <target> element.
• There is no default value for the <project> element's default attribute.
• Buildfiles do not have to be named build.xml. However, build.xml is the default name

for which Ant searches.
• You can have only one <project> element per buildfile.

1.6 Learning More

We have only scratched the surface in this chapter, but this does give you an idea of what Ant
buildfiles look like and how to run the command-line ant script. As mentioned earlier,
Chapter 3 presents a much more sophisticated example with a great deal more explanation of
what is going on in each step.

Ant: The Definitive Guide

18

Chapter 2. Installation and Configuration
This chapter describes where to get Ant, explains the differences between the various
distributions, and covers the most common installation scenarios. As a portable Java
application, Ant works very consistently on many different platforms. This should not be
a surprise, given that Ant was written as an alternative to platform-specific make utilities.
Most differences manifest themselves in the Ant startup scripts, which are understandably
different on Windows and Unix systems. Once Ant is installed and configured, it does
a remarkable job of insulating you from differences between platforms.

2.1 The Distribution

Ant is open source software from the Apache Software Foundation, available in binary and
source forms.1 It is available from the Ant home page located at http://jakarta.apache.org/ant/;
you can choose either a release build or a nightly build. To ease installation, different
distributions are provided for Unix and Windows systems.

The direct link to the list of nightly builds is http://jakarta.apache.org/builds/jakarta-
ant/nightly/. The nightly builds include the latest bug fixes and features, and are a constantly
changing target. The vast majority of software development teams should opt instead for
a release version of Ant, available at the following URLs:

http://jakarta.apache.org/builds/jakarta-ant/release/v1.4.1/bin/

The binary distribution.

http://jakarta.apache.org/builds/jakarta-ant/release/v1.4.1/src/

The source distribution corresponding to the current binary distribution.2

For earlier releases of Ant, merely substitute 1.1, 1.2, or 1.3 for the
version number in these URLs.

Each directory contains .tar.gz files for Unix users, .zip files for Windows users, .asc files,
and a .jar file. The .asc files contain PGP signatures, useful for determining the authenticity of
the distributions. Usually, you can safely ignore these files. The jakarta-ant-1.4.1-optional.jar
file contains Ant's optional tasks, and is described later in this chapter. We recommend that
you download this file.

2.2 Installation

Regardless of platform, downloading Ant is the first step to installing the software. The files
can be downloaded to a temporary directory and then uncompressed to any desired directory.

1 The Apache Software License can be found at http://www.apache.org/licenses/LICENSE.
2 The very latest Ant source code is available from a publicly accessible CVS repository. Retrieving the latest source code is useful if you need
recently committed bug fixes and features, or wish to see a complete history of changes to files comprising Ant. See Ant's web site for detailed
instructions on how to access the repository. Be warned that no one guarantees the latest source code to run or even compile!

Ant: The Definitive Guide

19

After the download step, the process differs depending on whether you've downloaded the
binary distribution or the source distribution.

Windows users should avoid directories with spaces such as "Program
Files," as this can cause problems with the provided batch files.

The Ant documentation warns against installing Ant's JAR files in Java's lib/ext directory.3 If
you do, you are likely to encounter class-loading problems with some Ant tasks. Instead, you
should leave Ant's JAR files in the Ant distribution directory.

Ant does not provide an installation program; it runs from wherever you choose to copy the
files and directories. Table 2-1 lists the directories that ultimately get created under your main
Ant directory.

Table 2-1. Directories provided with Ant
Directory Description
bin Batch files, Perl scripts, and shell scripts for running Ant.
docs Ant documentation.
lib Libraries required by Ant to run.
src Source code for Ant. Provided only in the source distribution.4

2.2.1 Binary Installation

We will cover the binary installation first, which should suffice for most users. The term
"binary" just means that everything is compiled and packaged into JAR files for easy
execution — you don't need to compile Ant from source. The source distribution, covered
later in this chapter, must be compiled before it is usable.

Installation of the binary distribution is broken down into the following quick steps:

1. Unzip (or untar) the distribution to the desired directory.
2. Set the ANT_HOME environment variable to point to this location.
3. Set the JAVA_HOME environment variable to point to the JDK location.
4. Add ANT_HOME/bin to your system's PATH environment variable.

Because of filename limitations, the Unix distribution must be expanded using a GNU-
compatible version of tar; the tar utility included with Solaris and Mac OS/X will not work.
GNU tar is available at http://www.gnu.org/software/tar/tar.html. Under OS X, you can use
the gnutar command. The command to expand the Ant 1.4.1 distribution is:

tar xzvf jakarta-ant-1.4.1-bin.tar.gz

Once installed, type ant -version to verify that Ant is located in the path. If this works, it is
a good indication that Ant is installed properly. You should see output like this:

Ant version 1.4.1 compiled on October 11 2001

3 Java's lib/ext directory is intended for Java "Optional Packages," which extend the functionality of the core Java platform. The documentation
included with Sun's JDK explains this in detail.
4 Prior to Ant 1.3, source code was included with the binary distribution.

Ant: The Definitive Guide

20

Like other Apache Java tools, Ant depends on a few key environment variables. When you
run the ant command, you are actually running a shell script or batch file found in the
ANT_HOME/bin directory. This is why the PATH environment variable must include that
directory.

The ant script uses the ANT_HOME and JAVA_HOME environment variables to configure the
CLASSPATH used by the JVM running Ant. If these variables are not set, the startup script
attempts to infer the correct values, subject to operating system limitations. On Windows
NT/2000/XP, for example, ant.bat uses the %~dp0 batch file variable to determine its
containing directory. It then defaults ANT_HOME to the parent directory if necessary. This trick
does not work on Windows 9x because %~dp0 is not supported. Properly setting ANT_HOME
and JAVA_HOME is the best way to avoid problems. (Along with the CLASSPATH considerations,
which are discussed later in this chapter.)

The binary distributions of Ant Versions 1.1 and 1.2 (but not later) include source code,
which is useful for tracking down bugs and learning how to write tasks. Those binary
distributions do not, however, include the buildfiles and scripts that are necessary to build
Ant. For those, you must download the source distribution as described shortly. However,
before we go on to that, optional tasks deserve mention.

2.2.2 Optional Tasks Installation

When downloading Ant, be sure to also download and install the optional tasks JAR file. This
is found in the binary distribution directory on the Ant web site. In Versions 1.1 and 1.2, it is
named optional.jar. For Versions 1.3 and 1.4.1, it has been renamed to jakarta-ant-1.3-
optional.jar and jakarta-ant-1.4.1-optional.jar, respectively. To install, download the
appropriate optional tasks JAR file and copy it to your ANT_HOME/lib directory.

In many cases, optional tasks require additional libraries and programs to function. For
instance, the junit task requires junit.jar,5 which you must copy to ANT_HOME/lib or add to
your CLASSPATH environment variable prior to running Ant. In some cases, Apache cannot
distribute these libraries due to licensing restrictions. Other tasks may be marked as optional
because they deal with specialized tools that fewer numbers of people use or are proprietary.
There are numerous helpful optional tasks that most development teams end up using,
however, so installing the optional tasks JAR file is a good step to follow.6

2.2.3 Source Installation

Installing the Ant source distribution requires a little more work than installing the binary
distribution. As expected, downloading and uncompressing the distribution is the first step.
You generally want to place the source files in a directory separate from any existing Ant
installations. Next, ensure that JAVA_HOME points to the JDK distribution. As with the binary
installation, you should also set ANT_HOME and update your PATH.

5 The Ant optional tasks JAR file contains org.apache.tools.ant.taskdefs.optional.junit.JUnitTask in this particular case,
which implements the task itself. JUnitTask, in turn, has dependencies on files found in junit.jar, which is distributed separately from Ant.
6 For an up-to-date list of optional task JAR file requirements, refer to the user manual included with the Ant distribution. Search for the "Installing
Ant" section, then search for the "Library Dependencies" heading.

Ant: The Definitive Guide

21

2.2.3.1 Preparing optional tasks

You must now decide which optional tasks you care to compile. Ant will try to compile all of
the optional tasks, but omits those that do not compile. In order for an optional task to compile
successfully, you must add required JAR files to the CLASSPATH or copy them to Ant's lib
directory. Once you've done that, you can proceed with the build. Again, the Ant
documentation for each optional task indicates which libraries are required.

2.2.3.2 Building the Ant binaries

You're now ready to compile Ant. If you are using Ant 1.3 or 1.4.1, type the following
command from the source distribution directory:

build -Ddist.dir=destination_directory dist (Windows)
build.sh -Ddist.dir=destination_directory dist (Unix)

The build script creates a complete binary distribution of Ant in the specified destination
directory. When omitted, dist.dir defaults to build.

Unless you have installed all of the optional task JAR files, you will probably see a lot of
warnings about missing imports and classes. These can be safely ignored unless, of course,
you need to build and use those optional tasks. Here is an example error message, shown
when bsf.jar (required by the script task) is not included in the CLASSPATH:

C:\ant1.4.1src\src\main\org\apache\tools\ant\taskdefs\optional\Script.java:
56:
Package com.ibm.bsf not found in import.
import com.ibm.bsf.*;

If you don't want to use the script task, then you don't need to build it, and this warning is
nothing to worry about. However, if you do wish to build and use the script task, you'll need
to place the JAR file for the com.ibm.bsf package into your CLASSPATH (or into Ant's lib
directory) and redo the build.

If you wish to install directly to ANT_HOME, the following alternate command line is available:

build install (Windows)
build.sh install (Unix)

This approach works only when ANT_HOME is set, and should be used with caution. When
using the install option, ANT_HOME is always used as the destination, even if you specify -
Ddist.dir. Using the install option is not a particularly safe approach if ANT_HOME points to
your existing Ant installation, because your existing installation will then be overwritten by
the new build. If you overwrite your current build, you won't be able to easily fall back if the
new build doesn't work.

2.2.3.3 Avoiding JavaDoc generation

Generating JavaDoc documentation is quite time-consuming. You can avoid JavaDoc
generation by using either the dist-lite or install-lite options in place of the dist or install
options, respectively. Other than avoiding the JavaDoc generation, these operate identically to

Ant: The Definitive Guide

22

their counterparts. Avoiding JavaDoc results in a faster build, and is useful if you are making
changes to Ant and do not wish to wait for the JavaDoc generation.

2.2.3.4 Building Ant 1.2

Under Ant 1.3 and 1.4.1, the build script automatically "bootstraps" Ant, meaning that it first
creates a minimal build of Ant. It then uses this minimal Ant build in order to finish the
remainder of the build process. Parameters passed to the build script are passed to the Ant
buildfile. For Ant 1.2, you must manually bootstrap Ant by typing the following command
first:

bootstrap (Windows)
bootstrap.sh (Unix)

Once this is complete, you may proceed with the build script using a slightly different system
property name:

build -Dant.dist.dir=destination_directory dist (Windows)
build.sh -Dant.dist.dir=destination_directory dist (Unix)

Unlike Ant 1.3 and 1.4.1, the destination directory defaults to ../build instead of build. You
can also use the install option to copy the build results to ANT_HOME, with the same caveat that
any existing installation will be overwritten. Once Ant is built, it behaves the same as if you
had downloaded the binary distribution.

2.2.4 Windows Installation Issues

Ant is a relatively nonintrusive application. It does not alter the Windows registry in any way,
relying instead on environment variables and batch files as described earlier.

2.2.4.1 Setting environment variables

If you have administrative rights to your machine, you can set the ANT_HOME, JAVA_HOME, and
PATH environment variables using the System Properties applet, found under the System icon
on the Control Panel. Otherwise, you can create a simple batch file that sets these variables.
One such file is shown in Example 2-1.

Example 2-1. Batch file to configure Ant environment

@echo off
REM This batch file configures the environment to use Ant 1.4.1

set ANT_HOME=C:\ant\ant_1.4.1
set JAVA_HOME=C:\java\jdk1.4
set PATH=%ANT_HOME%\bin;%PATH%

While a batch file like this works, you can improve on this approach. Its main drawback is the
fact that you must manually execute the file before executing Ant. While we could add code
to the end of our batch file that directly executes Ant, it is probably a lot easier to directly edit
ant.bat, which is included with the Ant distribution. As an added bonus, ant.bat already
accounts for many differences between Windows 9x and Windows NT/2000/XP.

Ant: The Definitive Guide

23

Editing ant.bat is rarely required unless you do not have sufficient
access rights to set environment variables using the Windows Control
Panel.

If you choose to modify ant.bat, simply hardcode the three environment variables at the
beginning of the batch file. You may also wish to copy the batch file to a new location that is
already on the system path, making it possible to type ant from any command prompt. This
avoids the need to have %ANT_HOME%/bin in your system path.

2.2.4.2 Avoiding CLASSPATH problems

You may want to edit ant.bat for a totally different reason. By default, this batch file builds an
environment variable called LOCALCLASSPATH containing all the JAR files in the ANT_HOME/lib
directory. It then appends the current system CLASSPATH to the LOCALCLASSPATH, and passes
the resulting path to the Java process running Ant. The command that invokes Java looks
something like this:

java -classpath %LOCALCLASSPATH% ...

Ant's use of the current system CLASSPATH is particularly troublesome for multiperson
development projects, because each individual may have a different system CLASSPATH. A
build that works successfully for one developer may fail for another, simply because his
CLASSPATH is different. If this is an issue for your project, you can edit the following line in
ant.bat:7

set LOCALCLASSPATH=%CLASSPATH%

Simply change it to this:

set LOCALCLASSPATH=

This way, the system CLASSPATH of the current user is not visible to Ant. This is fine, because
Ant finds its own JAR files by looking in the ANT_HOME/lib directory. If your project requires
additional JAR files and directories in its CLASSPATH, you should list those in your buildfiles
rather than relying on users to set up the CLASSPATH before running Ant. See the <path>
portion of Example 4-1 for an example of this technique.

Under Ant 1.2, Windows NT/2000/XP users may also wish to add setlocal and endlocal
commands to the beginning and end of ant.bat. This ensures that any environment variables
set in the batch file are only scoped within the context of the batch file.

2.2.4.3 Customizing Ant 1.3 and 1.4.1

Beginning with Ant 1.3, ant.bat includes the setlocal and endlocal commands if running on
Windows NT, 2000, or XP. It also adds a new capability that allows you to execute one batch
file at the beginning of ant.bat, and another at the end. These are useful if you wish to
configure some environment variables just before running Ant, and then restore them to old
values after Ant runs.

7 Ant 1.1 and 1.2 scripts include quotes around %CLASSPATH%.

Ant: The Definitive Guide

24

Before running Ant, ant.bat searches for a file named %HOME%\antrc_pre.bat. If this file exists,
it is executed before anything else happens. This is your hook for setting up your environment
just before Ant runs. At the end of the build process, ant.bat searches for
%HOME%\antrc_post.bat, executing it if found. This is your hook for restoring everything back
to its initial state.

Ant does not ship with either of these batch files, and it is unlikely that the HOME environment
variable is set. If you want to use these files, you must create them and then configure HOME to
point to the directory containing them. Once this is done, however, both batch files are
automatically executed when ant.bat runs.

One environment variable you may wish to set is ANT_OPTS. The value of this variable is
passed as a JVM argument. Specifying system properties is a common use. In this simple
example, we pass the log.dir system property to the JVM running Ant:

$ set ANT_OPTS=-Dlog.dir=C:\logs
$ ant run

Now this property is available within the buildfile, for instance:

<echo>Log directory is set to: ${log.dir}</echo>

If the buildfile runs a Java application, the property may be retrieved from within it as
follows:

String logDir = System.getProperty("log.dir");

Setting the maximum heap size is another common use of ANT_OPTS. Here is how we set the
maximum size to 128 MB when using Sun's JDK:

set ANT_OPTS=-Xmx128m

And finally, you may specify a value for the JAVACMD environment variable. This defaults to
%JAVA_HOME%\bin\java, typically invoking the JVM provided in Sun's Java Development Kit.
Ant provides JAVACMD for those who wish to specify an alternate JVM.

2.2.5 Unix Installation Issues

Ant provides a Bourne-shell script called ant that works very similarly to the Windows
ant.bat batch file. Just like its Windows counterpart, ant utilizes the same set of environment
variables: ANT_HOME, JAVA_HOME, CLASSPATH, ANT_OPTS, and JAVACMD. Each works the same
under Unix as under Windows.

Unlike on Windows, Ant does not have a set of pre- and post-execution files on Unix. Under
Unix, you have only the option of executing a command file when Ant starts. If ant finds a
file named .antrc in the current user's home directory, that file is executed before any other
part of the ant shell script. And this is your hook for customizing environment variables used
by Ant. Here is an excerpt from the ant shell script showing the code used to invoke .antrc:

Ant: The Definitive Guide

25

#! /bin/sh
if [-f $HOME/.antrc] ; then
 . $HOME/.antrc
fi

Because Unix is a multiuser operating system, Ant is commonly installed in a shared directory
for system-wide use. For instance, the Ant distribution may be installed in /opt, and the ant
Bourne-shell script may be installed in /opt/bin. (Sometimes /usr/local and /usr/local/bin are
used instead) Such an installation almost certainly requires a system administrator; however,
it does make it easy to configure Ant for a group of developers.

As with the Windows batch file, the Unix shell script also passes the current system
CLASSPATH to the Ant process. You may wish to remove references to CLASSPATH, thus
ensuring that every developer builds with the same configuration. Reiterating the point made
earlier in this chapter, your buildfiles should define the CLASSPATH, rather than relying on
users to set their own CLASSPATH before running Ant.

In case you prefer to use Perl or Python, Ant also includes runant.pl and
runant.py, which perform the same tasks as the Unix and Windows
scripts.

2.3 Configuration

Once Ant is installed properly, it requires very little additional configuration. Provided the
ant.bat batch file (or ant shell script) is installed in a directory that is included in your system
path, you should be able to run Ant from any command prompt.

You do not technically have to use the provided ant or ant.bat script to run Ant. You can run
Ant manually, as long as the following items are configured:8

• The system CLASSPATH includes ant.jar and any JAXP-compliant XML parser.
• For JDK 1.1, classes.zip must be added to the CLASSPATH. For Java 2, tools.jar must

be added. This is necessary for tasks like javac.
• Many tasks require that the ant.home Java system property be set to the Ant

installation directory. This is accomplished by launching the JVM with the -D flag, as
shown shortly.

• JAR files for optional tasks must be added to the CLASSPATH.

Provided that these items are all set properly, you can use the following command to invoke
Ant:9

java -Dant.home=pathToAnt org.apache.tools.ant.Main

Understanding how to set up and run Ant manually might be useful if
you are making customizations to Ant and wish to run it using your
IDE's debugger.

8 Setting these items is exactly what ant.bat and ant do.
9 Or you can specify the CLASSPATH using the -classpath command-line option.

Ant: The Definitive Guide

26

2.3.1 XML Issues

Early versions of Ant (prior to Version 1.4) include Sun's Java API for XML Parsing (JAXP)
Version 1.0. Ant Versions 1.4 and later ship with JAXP 1.1, as described in the next
paragraph. JAXP is an API allowing Java programs to use XML parsers from different
vendors in a portable way. The JAXP JAR files, jaxp.jar and parser.jar, are found in
ANT_HOME/lib. These, along with any other JAR files found in this directory, are automatically
added (by ant or ant.bat) to the CLASSPATH used by Ant. jaxp.jar contains the JAXP API,
while parser.jar is an XML parser implementation from Sun.

If you require DOM Level 210 or SAX 2.011 XML support, then JAXP 1.0 is insufficient. For
this level of XML, you should upgrade Ant to support JAXP 1.1,12 available at
http://java.sun.com/xml/. This won't affect you if you are using Ant 1.4 or later, since it ships
with JAXP 1.1. Since JAXP 1.1 is backwards compatible with JAXP 1.0, you can safely
replace the jaxp.jar and parser.jar files in your ANT_HOME/lib directory with jaxp.jar and
crimson.jar from the JAXP 1.1 distribution. If you prefer a different JAXP-compliant XML
parser, such as Apache's Xerces (http://xml.apache.org/), you can substitute its JAR file in
place of crimson.jar.

Support for XSL Transformations (XSLT) is another feature of JAXP 1.1. Ant supports
XSLT via the style task, which can utilize any JAXP 1.1-compliant XSLT processor. Just
like the XML parser, your XSLT processor's JAR file must be copied to ANT_HOME/lib or
added to the CLASSPATH. The JAXP 1.1 distribution includes Apache's xalan.jar, or you can
select a different processor.

As a final note, Sun released J2SE 1.4 in February, 2002. This version of Java includes JAXP
1.1, an XML parser, and an XSLT processor. Since these are now a core part of Java, they get
loaded by the "bootstrap" class loader. This means that the corresponding XML libraries in
ANT_HOME/lib are not even used when you are running under J2SE 1.4. To install updated
XML support under J2SE 1.4, see the "Endorsed Standards" documentation at
http://java.sun.com/j2se/1.4/docs/guide/standards/.

XML parsers and XSLT processors are rapidly improving. Although
installing jaxp.jar, crimson.jar, and xalan.jar from Sun's reference
implementation of JAXP 1.1 is the easiest route to XML and XSLT
functionality, you should investigate newer XML parsers and XSLT
processors for optimal performance.

2.3.2 Proxy Configuration

Ant network tasks, such as get, require a network connection in order to operate. For dial-up
users, this means the modem must be dialed up and connected before such tasks can run.
Many corporate users, however, will run Ant from within a company firewall. If this is
the case, you must often configure the JVM to use a proxy server before you can reach remote
computers.

10 Document Object Model, at http://www.w3.org/DOM/
11 Simple API for XML, at http://www.saxproject.org/
12 As of JAXP 1.1, the acronym now stands for "Java API for XML Processing."

Ant: The Definitive Guide

27

This is easily accomplished by setting the proxySet, proxyHost, and proxyPort JVM
system properties. You can set these properties by either modifying Ant's startup script, or by
using the ANT_OPTS environment variable. The following example shows the Windows
commands to specify these properties using ANT_OPTS, and then to invoke Ant:

set ANT_OPTS=-DproxySet=true -DproxyHost=localhost -DproxyPort=80
ant mytarget

The same trick works on Unix, although the syntax is slightly different depending on which
shell you use:

$ export ANT_OPTS="-DproxySet=true -DproxyHost=localhost -DproxyPort=80"
$ ant mytarget

You can issue the command to set ANT_OPTS from the command line, from antrc_pre.bat
(Windows), or from .antrc (Unix).

Ant: The Definitive Guide

28

Chapter 3. The Buildfile
Building projects with Ant requires you to focus on two things: project organization and
the Ant buildfile. Rather than distinct focal points, these subjects are two sides of the same
coin; they are closely related and any decision made in the design of one affects the design
and implementation of the other. In this chapter, we show how to design a project using Ant
to manage the build process, and how to write a buildfile for that project. As we go through
the sample project, we explain how we arrive at particular design decisions for the layout of
the project, as well as for the various parts of the buildfile. Not every project can fit the model
we present, but many can; we hope this exercise will prepare you for writing buildfiles in
other development projects.

Before we begin, however, you should understand the features of the buildfile itself. The
buildfile is the most important aspect of Ant, and many details need explaining. Your
understanding of the buildfile's use of XML is essential. With this, you will be better
equipped to examine the major parts of a buildfile. To that end, we'll begin our discussion in
this chapter with a look at the reasons behind Ant's use of XML. Then we'll take the sample
project and its corresponding layout and define our build requirements. These elements come
together and create our example buildfile.

With the buildfile written, we can examine how Ant reads the buildfile and executes the steps
defined within it. You can see how the flexibility of Ant results in a complex process. We
explain the process so you can use this knowledge in not only writing buildfiles, but also
when extending Ant — for example, with a user-written task. Last, we cover some of Ant's
oddities, talk about what's missing, and discuss how to work around some of the resulting
issues. So, let's get on with it!

3.1 Why XML?

Rather than being defined in terms of dependencies, a model other build tools use, Java
projects are best described in terms of packages and components, thus closely following the
package and object model of the Java language. No current build tool did this when Ant was
first developed, and the idea comes from the need for something better for Java than the
existing build tools of the time. Because Sun provides a Java library for its tools, which gives
users programmatic access to the Java compiler, the jar tool, and so on, the best language
choice for a new Java project build engine is Java. With a plan and a language, the only thing
left for Ant's designer, James Duncan Davidson, to do was to choose the buildfile descriptor
syntax.

James had several requirements in mind for the buildfile syntax. First, the syntax should be
simple so new users could easily pick it up. Next, it should have available (read: free) Java
libraries so the new Java-based build engine would be easy to implement and maintain. Of
utmost importance was the concept that writing a new engine shouldn't require writing a new
syntax parser — an existing library was crucial. Another design goal was the ability to
express a build structure that was a hierarchical tree. And the syntax should be capable of
simultaneously describing builds in terms of components and packages and as operations.
Let's look at why XML satisfies these requirements.

Developers understand XML since they use it in many areas of Java development, such as
Enterprise Java Beans (EJB), Java Server Pages (JSP's), and with data transports such as

Ant: The Definitive Guide

29

Simple Object Access Protocol (SOAP). Outside of the Java world, XML finds equally great
acceptance, giving Ant a wide potential user base. XML's parser and model libraries are freely
available as Java libraries. Documentation is not a problem; there are hundreds of books,
magazines, and web sites dedicated to XML technology. As a general-purpose description
language, XML fits the complex use-case requirements set forth earlier. It can describe
operations, data types, data values, and project layout. These attributes of XML map closely
to Ant's design requirements. XML is the best choice for Ant.

3.2 Ant Building Blocks

With XML elements and tags, we can look at the primary components of an Ant buildfile as
components or building blocks. We build the buildfile using these blocks. Some pieces have
very specialized uses, while others are more common and used more frequently. Let's look at
the primary components of the Ant buildfile.

3.2.1 The Project

We call the set of tags and elements in an XML file from the root element — in this case
<project> — to the lowest-nested tag, the document object model (or DOM). The first or
root element of any buildfile is always the <project> tag. No buildfile can be without one,
nor can it have more than one. The DOM lays elements out in a tree-like hierarchy, making
the buildfile more of an object model than simply a plain process-description document. The
following example shows a valid project tag:

<project name="MyProject" default="all" basedir=".">
...
</project>

The <project> tag has three attributes: name, default, and basedir. The name attribute
gives the project a name. A project name is valuable for purposes of identifying log output (to
know what project you're building). For systems that manage buildfiles, such as an IDE that
can read buildfiles, the project name acts like an identifier for the buildfile. The default
attribute refers to a target name within the buildfile. If you run Ant without specifying a target
on the command line, Ant executes the default target. If the default target doesn't exist, Ant
returns an error. While we do not recommend it, the value of default does not have to be a
valid target name (i.e., a name corresponding to an actual target name in the buildfile). We
suggest either making the default target compile everything or display help for using the
buildfile. The basedir attribute defines the root directory of a project. Typically, it is ".", the
directory in which the buildfile resides, regardless of the directory you're in when you run
Ant. However, basedir can also define different points of reference. For example, a buildfile
that is part of a hierarchical project structure needs a different reference point, referring to the
project's root directory. You can use the basedir to specify this point of reference.

3.2.2 Targets

Targets map directly to the broad goals set forth in a build's requirements specification. For
example, compiling the latest source code for the package org.jarkarta and placing it into a
JAR is a broad goal and, thus, would be a target in a buildfile. Targets consist of tasks that do
the actual work of accomplishing the target goal.

Ant: The Definitive Guide

30

The following target compiles a set of files and packages them into a JAR called finallib.jar.

<target name="build-lib">
 <javac srcdir="${src.ejb.dir}:${src.java.dir}"
 destdir="${build.dir}"
 debug="on"
 deprecation="on"
 includes="**/*.java"
 excludes="${global.exclude}">
 <classpath>
 <pathelement location="."/>
 <pathelement location="${lib.dir}/somelib.jar"/>
 </classpath>
 </javac>
 <jar jarfile="${dist}/lib/finallib.jar" basedir="${build.dir}"/>
</target>

If necessary, targets can be more fine-grained, as in the following example, which contains
one target to compile the source code, and another to package the JAR file:

<target name="build-lib">
 <javac srcdir="${src.ejb.dir}:${src.java.dir}"
 destdir="${build.dir}"
 debug="on"
 deprecation="on"
 includes="**/*.java"
 excludes="${global.exclude}">
 <classpath path="${classpath.compile}" />
 </javac>
</target>

<target name="package-lib">
 <jar jarfile="${dist}/lib/lib.jar" basedir="${build.dir}"/>
</target>

Such granularity may be required, for example, if the failure of one task (e.g., a task that
compiles source code) should not stop the execution of another, related task (e.g., a task
building the JAR). In this example, the library JAR builds regardless of the compilation
target's success.

In general, it is better that targets are coarse-grained operations. Tasks solve fine-grained
goals better than targets. While not every attempt at writing a buildfile will follow the model
we are showing, if you at least attempt to maintain a consistent granularity in your targets,
you will be much better off in the end. Haphazardly writing buildfiles means more work in the
future for you, since everyone on your project team will look to you, the original buildfile
author, for guidance as new functions and build goals complicate the project. Your goal
should be to create something requiring little modification, if any, and this effort begins with
target design.

3.2.3 Tasks

Tasks are the smallest building blocks of a buildfile and solve the more granular goals of a
build. They perform the actual work, compiling source code, packaging classes, retrieving file
revisions from CVS, or copying files and/or directories. Rather than provide a direct conduit
to the underlying shell like some other build tools, Ant wraps all operations into task

Ant: The Definitive Guide

31

definitions, each correlating to a Java object within Ant's object model. There are no tasks in
Ant that do not have a corresponding object. Contrast this to shells that not only can run
executable programs (a similar pattern to Ant's task objects), but also have commands that do
not correspond to executables — for example, the Win32 shell's dir command. The "every
task is an object" architecture provides Ant with its flexible extensibility, which we discuss
later in Chapter 5 and Chapter 6.

The following task example uses the copy task to copy all the files (and subdirectories) from
jsp in the project's www source directory to the jsp directory in the system's WebLogic
installation. The "/" path separator works in Windows and Unix, which is one of Ant's
benefits:

<copy todir="${weblogic.dir}/${weblogic.server.home}/public_html/jsp">
 <fileset dir="${src.www.dir}/jsp"/>
</copy>

Tasks can do pretty much anything their implementers design them to do. You could even
write a task that deleted the buildfile and all the directories in the project. It would not be
useful (at least we don't think it would be) but nothing in Ant stops you from doing this.

While tasks, both as Java objects and as XML tags, follow an object hierarchy, these
hierarchies are not related. For instance, you cannot look at a copy task and imply that, since
it has nested <fileset> elements, the Fileset object is a subclass of the Copy object.
Conversely, although the Jar object extends from the Zip object, this does not imply that a
<jar> tag can nest within a <zip> tag.

3.2.4 Data Elements

Data elements are probably the most confusing aspects of Ant. Part variable, part abstract data
type, these elements represent data rather than represent a task to be performed. Data elements
fall into two categories: properties and DataTypes. To avoid confusion, let's clarify some
terminology used in this chapter and throughout the rest of the book:

property

A name-value pair represented by the <property/> tag in a buildfile.

DataType

A class of elements that represent complex sets of data. Examples include fileset
and path.

data element

This term encompasses both properties and DataTypes.

In Chapter 4, we go into more detail as to how Ant's DataTypes work and how you can use
them in your buildfiles.

Ant: The Definitive Guide

32

3.2.4.1 Properties

Properties are the simpler of the two data elements. They represent nothing more than name-
value pairs of string data. No other data type besides a string can be associated with a
property. As a bonus for Java programmers, properties relate, indirectly, to the Property
object found in the Java SDK. This means that you can dynamically define properties at build
time, using such things as property files or JVM command-line property settings.

The following are some examples of properties being set in a buildfile using the <property>
tag. The first two elements set one property to a given value, and the third <property>
element loads a properties file. The code looks for the properties file inside the directory
designated by the <project> element's basedir attribute.

<property name="my.first.property" value="ignore me"/>
<property name="my.second.property" value="a longer, space-filled string"/>
<property file="user.properties"/>

Reference properties, or more precisely, their values, by using the ${<property-name>}
syntax, as in the following example.

<property name="property.one" value="one"/>
<property name="property.two" value="${property.one}:two"/>

In Section 3.4.2 later in this chapter, we describe how Ant uses properties and how they fit in
the processing scheme.

An upside of properties, as opposed to DataTypes, is that their values are type-agnostic (i.e.,
they're always strings. What does this mean? Take, for example, a property representing a
directory name. The property doesn't know its value is a directory and it doesn't care if the
directory actually exists. This is great if you need to represent the names of temporary build
directories that exist only during the build process. However, properties are not always the
ideal data element for paths; sometimes, you may want more control over defining a path. For
this, you can use a DataType.

3.2.4.2 DataTypes

Paths and file lists are cumbersome and error-prone as property definitions. For example, say
your project has a library directory containing 25 JARs. Represent those using a path string,
and you'll end up with a very long property definition, such as the following:

<property name="classpath"
value="${lib.dir}/j2ee.jar:${lib.dir}/activation.jar:
${lib.dir}/servlet.jar:${lib.dir}/jasper.jar:${lib.dir}/crimson.jar:${lib.d
ir}/jaxp.
jar"/>

Adding and removing JARs to and from your library means you have to add and remove them
to and from this path string. There is a better way. You can use a fileset DataType instead
of one long path string in a property. For example:

Ant: The Definitive Guide

33

<path id="classpath">
 <fileset dir="${lib.dir}">
 <include name="j2ee.jar"/>
 <include name="activation.jar"/>
 <include name="servlet.jar"/>
 ...
 </fileset>
 </path>

Even better, since all your JARs are under the same directory, you can use wildcard characters
and specify only one <include> pattern. (Properties cannot use patterns.) For example:

 <path id="classpath">
 <fileset dir="${lib.dir}">
 <include name="**/*.jar"/>
 </fileset>
 </path>

This is much easier! Aside from the obvious typing savings, the use of the fileset DataType
has another advantage over the use of the property tag. Regardless of whether there are 2 or
25 JARs in the project's library directory, the fileset DataType (shown in the most recent
example) will set the classpath to represent them all. On the other hand, you still need to
change a path-property value, adding or changing JAR filenames, every time you add or
change a JAR.

Some DataTypes, but not all, can be defined at the "project level" of a buildfile DOM,
meaning they are nested within the <project> element. This capability is inherent to Ant and
you cannot change it, unless you want to maintain your own version of Ant. Refer to
Chapter 4 for more information on DataTypes, and Chapter 7 and Chapter 8 for details as to
how particular tasks use DataTypes.

3.3 An Example Project and Buildfile

To provide an example buildfile for this book, we need an example project. We use a project
that already exists as a GNU Make-based project called irssibot, an IRC bot1 written by Matti
Dahlbom (the original can be found at http://dreamland.tky.hut.fi/IrssiBot). This project
requires all the features of a typical build: compiling source code, packaging classes, cleaning
directories, and deploying the application. As an exercise, we took this project and converted
it to use Ant.

3.3.1 Understanding the Project Structure

Let's begin by looking at how we configure the directories for the irssibot project. Java project
organization methods vary — sometimes considerably so — depending on the project (e.g.,
web applications have very different project structures from GUI tools). Many times, the tools
dictate a project's structure. Some IDE's, for example VisualAge versions prior to 3.5, require
that all source code is in one file. EJB and CORBA compilers require naming conventions for
source files and directories. For all cases, the project model should fit the requirements of
your revision control system (you use a revision control system, right?). Because of such

1 IRC, or Internet Relay Chat, consists of a series of servers that allow users to communicate in real-time using IRC clients. People communicate, or
"chat," in channels. Frequently, these channels have "bots," or automated IRC clients that manage the channel and keep it open. Otherwise, if no one is
in a channel, it goes away. Irssibot is an example of such a bot.

Ant: The Definitive Guide

34

varied requirements and dependencies, a perfect project organizational pattern does not exist
and we do not propose to suggest one here. The layout and organization we describe,
however, is simple enough to work with many projects, and it works especially well with Ant.

Designing and implementing a project structure is not a trivial task, so do not assign and
dedicate less than an hour of work to it and think you will do a good job. It's not just hard, it's
tedious. Most Java programs have cross-platform capabilities, and you may be thinking of
how to organize projects with this goal in mind. Traditionally, this thinking applies to
working across operating systems and/or hardware configurations. However, in development
teams, a different platform also means changes as small as toolset differences between
heterogeneous workstations. Clean separation of functionality, the ability to be self-contained,
and the lack of outside requirements should all be goals for Java projects. The benefits of
working out such a structure for your project will not be immediately apparent, but as more
developers use your build system, and as functionality is added to your project, you'll be glad
you thought ahead. It is much easier to change the buildfile than it is to change an established
project with 45 directories and 1,000 classes.

The directories in Figure 3-1 illustrate the directory and file structure we devised to meet
the goals just discussed for the example project.

Figure 3-1. irssibot directory structure

Let's begin from the top by talking about build.xml, which is the buildfile.2 Placing the
buildfile in the project's root directory provides us with the ability to use relative paths for
project directory definitions in data elements and properties. Avoid the use of absolute paths
since it breaks the distributable property of your project. Our Java source package roots begin
in the /src directory. This setup allows us to separate the source from the resulting class files.

The class files are placed in /build. Sometimes (but not with our project) it is necessary to
break the classes apart into groups — for example, into a library and the application. You
should make this separation below the /src and /build directories, leaving the root directory
alone. For one thing, this cuts down on clutter in your project's root directory. On a more
technical note, proper segregation makes file manipulation easier on a broad scale. When you
delete the /build directory, for example, you delete all of the compiled classes. This method
remains valid no matter how much you break down your project. You can always add targets
and tasks to handle the more specific details, but you cannot always change the project layout.

2 Reminder: build.xml is the default buildfile name. If you invoke Ant without specifying a buildfile on the command line, Ant will assume
the buildfile name is build.xml.

Ant: The Definitive Guide

35

JARs and directories of a libraries' classes that are not built as part of the project are in the /lib
directory. Redistributing libraries can be a tricky endeavor, but don't ignore this issue. You
may assume that you can explain which libraries are necessary and where to get them in some
README file, leaving everything up to the developer. Try to avoid this!3 Developers
probably have every version of a library known to man stored somewhere on their system
because of other projects they work with. You'll never be able to predict what they have.
Redistributing the libraries that you know work with your project helps these developers.
They'll have fewer problems running your application on their machines because you've given
them the proper libraries. Redistributing the libraries increases the size of your application
package, but the benefits are worth the extra pain.

We put the application's scripts (whether they are installation or execution scripts) in the /bin
directory. The example project provides scripts that run the IRC bot for Windows (bot.bat)
and Unix (via a Bourne Shell script, bot.sh). Sometimes, projects have hard-to-find or custom
executables necessary to build the project. These belong in /bin, also. While relying upon
executables may be your easiest option for performing functions not supported by current Ant
tasks, consider writing a custom task instead since executables usually eliminate the cross-
platform capabilities of Ant.

As for documentation, we place non-JavaDoc documentation in the /doc directory. This may
include READMEs for the project, end-user documentation, and documentation for the
included libraries. Basically, any documentation the build cannot generate.

The /dist directory is where we distribute the finished product. Nonarchive class packages,
JARs, WARs, EARs, and TARs, among other files, go here. Under the /dist directory, we
have a lib directory (/dist/lib) for JARs and other package files needed by the newly built
application. There is a dist/doc directory for both the distributed documentation and generated
javadoc, if necessary. The dist/bin directory is for scripts and executables that make running
the application easier. A distribution directory facilitates installations since, in most cases,
installation is as simple as copying the files from /dist to some other named location on the
filesystem.

3.3.2 Designing and Writing the Example Buildfile

Now that we have our directory structure, let's design and write the buildfile for our example
project. To better illustrate the relationship between project goals and parts of the buildfile,
we display the resulting buildfile syntax after defining and describing a particular goal. It is
almost always better to describe and design your build first before you begin writing the
buildfile.

One method to designing and implementing a buildfile for the project is via a set of questions.
The answers to these questions make up the various parts of the buildfile, and together
constitute the complete solution. Following are the questions, in no particular order:

• How does the buildfile begin?
• What properties and DataTypes should we define for use throughout the build?
• What directories need to be created before any compiling or packaging goals?

3 This is not a hard and fast rule, but it works more often than not. Even large projects like Tomcat and JBoss ship with libraries normally available
elsewhere.

Ant: The Definitive Guide

36

• What constitutes the complete program? What about libraries? What about scripts for
installation or execution? What about static and generated documentation?

• How do we rebuild the project after changing files? Do we need to delete all of the
class files? Do we delete generated JARs?

• What directories need to be created prior to preparing the application for distribution?
Do we need to distribute the source as well as the application? What constitutes an
application distribution?

In day-to-day work, you are likely to come up with many more questions during your own
brainstorming sessions. You should expect this since many questions relate directly to a
project's particulars. For instance, you would never ask about building EJBs for this project,
but you may for your own. It is much easier to whittle away functionality and scope during
the initial project analysis phase than it is to find out that you need to add a particular function
or step later on. Therefore, do not be afraid to add questions. You can always combine
questions or eliminate them later. Now, let's answer the questions we did ask, and get on with
writing a properly organized buildfile.

3.3.2.1 The project descriptor

Our first question is:

• How does the buildfile begin?

All buildfiles begin with a project descriptor, which specifies such things as the project name,
the default buildfile target, and the project base directory. We call the project "irssibot." The
default target is all; we'll write that target later in such a way that it compiles the application
and bundles it into a JAR file. The current working directory for the project is the base
directory of the buildfile, represented by ".". The <?xml?> tag is standard for XML files, and
is used by the XML parser libraries, not by Ant itself. It should be the first line in the
buildfile, and should contain no trailing spaces.

<?xml version="1.0"?>

<!-- Comments are just as important in buildfiles, do not -->
<!-- avoid writing them! -->
<!-- Example build file for "Ant: The Definitive Guide" -->
<!-- and its sample project: irssibot -->

 <project name="irssibot" default="all" basedir=".">

3.3.2.2 Global values

The next question we consider is the following:

• What properties and DataTypes should we define for use throughout the build?

The project directories all extend from the root project directory. Thus, all of the directory-
related data elements should be relative. We define a property for every major subdirectory
and name it accordingly to reflect its use. Doing this provides a single location in the buildfile
where changes can be made if directory names change.

Ant: The Definitive Guide

37

 <!-- Project-wide settings. All directories are relative to the -->
 <!-- project root directory -->

 <!-- Project directories -->
 <property name="src.dir" value="src"/>
 <property name="doc.dir" value="doc"/>
 <property name="dist.dir" value="dist"/>
 <property name="lib.dir" value="lib"/>
 <property name="bin.dir" value="bin"/>

 <!-- Temporary build directory names -->
 <property name="build.dir" value="build"/>
 <property name="build.classes" value="${build.dir}/classes"/>
 <property name="build.doc" value="${build.dir}/doc"/>
 <property name="build.lib" value="${build.dir}/lib"/>

Aside from globally defining directory names, properties are also good for globally defining
values for some tasks. Here, we define a global property telling the javac task whether to
produce bytecode with debug pointers. All instances of the javac task use this property.

 <!-- Global settings -->
 <property name="javac.debug" value="on"/>

The next property we set is build.compiler. The value here, modern, means that javac uses
the latest version of the Sun compiler available in the Java SDK toolkit (i.e., Java SDK
Versions 1.3 and higher). This is a "magic property," and some of the negative side effects of
these are discussed later in this chapter. Even though it's likely you'll use this value in every
buildfile you write, it still makes sense to document its purpose. Many people new to Ant will
be understandably confused if they see this property here, but never see it used in the buildfile
again.

 <!-- Global "magic" property for <javac> -->
 <property name="build.compiler" value="modern"/>

We have one last step before we delve into defining (and meeting) our project's major goals.
The irrsibot project ships with a set of libraries, mysql.jar and xerces.jar. We define a globally
available classpath that includes these libraries and any future ones we (or another developer)
may add later. The file set and include pattern ('**/*.jar') means that all files in the library
directory (lib/) and its subdirectories should form a path suitable for use with path-compatible
tasks,4 such as javac.

 <path id="classpath">
 <fileset dir="${lib.dir}">
 <include name="**/*.jar"/>
 </fileset>
 </path>

3.3.2.3 Directory creation

Now we need to answer the question:

• What directories need to be created before any compiling or packaging goals?

4 A path-compatible task is capable of operating on a set of directories or files rather than on one directory or file. These tasks typically correspond to
tools that exhibit the same behavior, such as javac or rm.

Ant: The Definitive Guide

38

For our project, the compile-related directory (in which Ant saves all compiled classes) is the
build directory, build, and its subdirectories, if any. We will define a preparation target to
create the build directory.

Furthermore, we add a little bit to this preparation step and timestamp the build, which is most
useful with automated, unattended builds.

 <!-- Target to create the build directories prior to a compile target-->
 <!-- We also mark the start time of the build, for the log. -->
 <target name="prepare">
 <mkdir dir="${build.dir}"/>
 <mkdir dir="${build.lib}"/>
 <mkdir dir="${build.classes}"/>
 <mkdir dir="${build.classes}/modules"/>

 <tstamp/>

 <echo message="${TSTAMP}"/>
 </target>

3.3.2.4 Compiling

To compile our project, we need to answer a number of questions:

• What constitutes the complete program?
• What about libraries?
• What about scripts for installation or execution?
• What about static and generated documentation?

We tackle these questions with one target for each. The term "complete program" can mean
many things. For most projects, including ours, the answer is simple. The complete
application consists of all the compiled classes, the scripts to execute the application, and the
program's configuration file.

First, we compile the application and bundle it neatly into a JAR. In some cases, you may
want to separate the compilation and JAR'ing steps. To keep things simple, we made this one
target in our example.

 <!-- Build the IRC bot application -->
 <target name="bot" depends="prepare">
 <!-- Compile the application classes, not the module classes -->
 <javac destdir="${build.classes}"
 debug="${debug.flag}"
 deprecation="on">
 <!-- We could have used javac's srcdir attribute -->
 <src path="${src.dir}"/>
 <exclude name="irssibot/modules/**"/>
 <classpath refid="classpath"/>
 </javac>
 <!-- Package the application into a JAR -->
 <jar jarfile="${build.lib}/irssibot.jar"
 basedir="${build.classes}" >
 <exclude name="irssibot/modules/**"/>
 </jar>
 </target>

Ant: The Definitive Guide

39

The irssibot application also consists of a set of modules that extend the functionality of the
bot. Separating the class files between modules and application classes makes updating the
application a bit easier. In the future, it is more likely that developers will modify and add
modules rather than modify parts of the main application. By separating the packages, we
give developers the ability to update only the class files that need updating. We compile and
package the modules as a separate JAR.

 <!-- Build the IRC bot modules -->
 <target name="modules" depends="prepare,bot">
 <!-- Compile just the module classes -->
 <javac destdir="${build.classes}/modules"
 debug="${debug.flag}"
 deprecation="on" >
 <!-- We could have used javac's srcdir attribute -->
 <src path="${src.dir}"/>
 <include name="irssibot/modules/**"/>
 <classpath refid="classpath"/>
 </javac>

 <!-- Bundle the modules as a JAR -->
 <jar jarfile="${build.lib}/irssimodules.jar"
 basedir="${build.classes}/modules" >
 <include name="irssibot/modules/**"/>
 </jar>
 </target>

The irssibot scripts require no processing during a build, so we provide no target to process
them. The same goes for the configuration files. Even though we do not write a target for
making changes to or packaging the scripts and configuration files, it is still important to
consider these files for the future. In your own builds, such consideration may change the
implementations of other targets.

When we started all this, we mentioned the default target for the buildfile called all. This is
simply a target that uses Ant's dependency mechanism to force both the bot and modules
targets to run, building the application. Ant executes the all target if you invoke ant with no
arguments. All we need to write for all is the following:

 <target name="all" depends="bot,modules"/>

In your own buildfiles, you don't always need to have a target like all. Another option is to
provide a default target that does nothing. Our suggestion is to write a help target (you should
have one even if it won't be your default). If users invoke ant with no arguments, they'll be
presented with your buildfile's help documentation. For example, you might display
something like the following:

Build the foo application with Ant. Targets include:
 full - build the entire application and its libraries
 app - build just the application (no libraries)
 lib - build just the libraries (no application)
 install - install the application. Read README for details
 help - display this information

Ant: The Definitive Guide

40

If you're familiar with "usage statements" from console programs, you have some idea of
what we're talking about. We show an example of a buildfile target that creates a usage
statement in Appendix B.

The last part of our current question, relating to documentation, requires a target that produces
JavaDoc for the project. JavaDoc is a tricky concept to manage in a project. The JavaDoc tool
cannot process code that cannot compile. In addition, compared to compilation steps, JavaDoc
processing is very slow. It is not something you would want your developers to have to wait
on for every build. Consider these issues when writing your own JavaDoc targets.

 <!-- Generate the API documentation irssibot and the -->
 <!-- modules -->
 <target name="javadoc" depends="bot">
 <mkdir dir="${doc.dir}/api"/>
 <javadoc packagenames="irssibot.*"
 sourcepath="${src.dir}"
 destdir="${doc.dir}/api"
 author="true"
 version="true"
 use="true" >
 <classpath refid="classpath"/>
 </javadoc>
 </target>

3.3.2.5 Cleanup

One or more cleanup targets are sometimes necessary as a result of asking the following
questions:

• How do we rebuild the project after changing files?
• Do we need to delete all of the class files?
• Do we delete the generated JARs?

Developers sometimes forget to clean up after themselves. This can be a problem since Java
compilers' dependency checkers are not the best at determining every dependency between
classes. Furthermore, to do its own dependency checking, the javac task performs timestamp
checks on the compiled class files versus their corresponding source code files. While
effective in most cases, timestamp checks are not perfect. Classes with no dependencies,5
classes with static finals, and other special cases can result in successful builds (from Ant's
standpoint) even though the compilation steps overlook some classes. Because of this,
developers should always have the ability to delete everything generated by the build process
and start the build fresh. Only then can you guarantee that everything that needed to be
compiled was compiled. We call this a clean build.

The following example defines two targets that can be used to ensure clean builds:

5 This is a big issue when building Ant itself, since Ant calls most of its classes using introspection; no direct dependencies exist to any of the tasks.

Ant: The Definitive Guide

41

 <!-- Delete class files built during previous builds. Leave
directories -->
 <target name="clean">
 <delete>
 <fileset dir="${build.classes}" includes="**/*.class"/>
 </delete>

 </target>

 <!-- Delete any created directories and their contents -->
 <target name="cleanall" depends="clean">
 <delete dir="${build.dir}"/>
 <delete dir="${dist.dir}"/>
 <delete dir="${doc.dir}/api"/>
 </target>

In these targets, we present two different clean build solutions for the irssibot build. The
clean target deletes the class files, a step that should be sufficient to guarantee a successful
dependency check during the compilation step. The cleanall target deletes everything
generated by previous builds — in effect, returning the project to a state in which no builds
seem to have taken place.

In our example, cleanall doesn't need to depend on clean. However,
in practice, the clean target may do more than just delete files. In this
case, we want Ant to process it during a cleanall. To be safe, it's good
practice to include the dependency by default.

Sometimes, it may be necessary to include a distribution clean target in a project
buildfile. A distribution clean deletes all generated files, directories, and all of the source
code. While this may sound crazy (in a way, it is), it is most useful for projects under revision
control. Hence, if your project isn't under revision control, don't delete the source code!
Theoretically, it should be possible to distribute a project as just a buildfile with targets to
retrieve or update the source code from a revision control system such as CVS.6 For our
example, we do not provide a distribution clean target because irssibot is not under
revision control.

3.3.2.6 Distribution

The final thing we need to worry about when writing a buildfile for the example project is
how to distribute that project. We need to answer the following questions:

• What directories need to be created prior to preparing the application for distribution?
• Do we need to distribute the source as well as the application?
• What constitutes an application distribution?

We can achieve the goals for these questions by defining just one target. Our directory layout
for the project provides us with the desired end result. The distribution directories already
exist — all that is left is for the build to copy files to those directories. The following target
creates the distribution directories and copies the class files, scripts, and other components of
the final application:

6 This is really convenient if you have stringent bandwidth restrictions on your distribution servers, but not on your CVS servers.

Ant: The Definitive Guide

42

 <!-- Deploy the application in a "ready-to-run" state -->
 <target name="deploy" depends="bot,javadoc">
 <!-- Create the distribution directory -->
 <mkdir dir="${dist.dir}"/>
 <mkdir dir="${dist.dir}/bin"/>
 <mkdir dir="${dist.dir}/lib"/>
 <mkdir dir="${dist.dir}/doc"/>
 <mkdir dir="${dist.dir}/config"/>

 <!-- Copy the primary program and modules -->
 <copy todir="${dist.dir}/lib">
 <fileset dir="${build.classes}"/>
 <fileset dir="${build.lib}" includes="irssibot.jar"/>
 <fileset dir="${build.lib}" includes="irssimodules.jar"/>
 <fileset dir="${lib.dir}" includes="*.jar"/>
 </copy>

 <!-- Copy the documentation -->
 <copy todir="${dist.dir}/doc">
 <fileset dir="${doc.dir}"/>
 </copy>

 <!-- Copy the pre-fab configuration files -->
 <copy todir="${dist.dir}/config">
 <fileset dir="${lib.dir}" includes="*.xml"/>
 </copy>

 <!-- Copy the running scripts -->
 <copy todir="${dist.dir}/bin">
 <fileset dir="${bin.dir}" includes="bot.sh"/>
 <fileset dir="${bin.dir}" includes="bot.bat"/>
 </copy>
 </target>

Notice that we place target dependencies on the bot and javadoc targets. We're simply
requiring that the application is up-to-date before we deploy it. Of all the targets, deploy
makes the most use of Ant's filesets since the target's tasks do a lot of file operations. Each
fileset attempts to group only the files we want to deploy. Look, for example, at the task
that copies the configuration files:

 <!-- Copy the pre-fab configuration files -->
 <copy todir="${dist.dir}/config">
 <fileset dir="${lib.dir}" includes="*.xml"/>
 </copy>

This task copies only XML files. Everything else in the configuration directory (denoted by
${lib.dir}) is left alone.

Example 3-1 shows the complete buildfile.

Example 3-1. Complete buildfile for the irssibot project

<?xml version="1.0"?>

<!-- Comments are just as important in buildfiles, do not -->
<!-- avoid writing them! -->
<!-- Example build file for "Ant: The Definitive Guide" -->

Ant: The Definitive Guide

43

<project name="irssibot" default="all" basedir=".">

 <!-- Project-wide settings. All directories are relative to the -->
 <!-- project directories -->
 <property name="src.dir" value="src"/>
 <property name="doc.dir" value="doc"/>
 <property name="dist.dir" value="dist"/>
 <property name="lib.dir" value="lib"/>
 <property name="bin.dir" value="bin"/>

 <!-- Build directories -->
 <property name="build.dir" value="build"/>
 <property name="build.classes" value="${build.dir}/classes"/>
 <property name="build.doc" value="${build.dir}/doc"/>
 <property name="build.lib" value="${build.dir}/lib"/>

 <!-- Global settings -->
 <property name="debug.flag" value="on"/>
 <property name="java.lib" value="${java.home}/jre/lib/rt.jar"/>

 <!-- Global property for <javac> -->
 <property name="build.compiler" value="modern"/>

 <path id="classpath">
 <fileset dir="${lib.dir}">
 <include name="**/*.jar"/>
 </fileset>
 </path>

 <target name="prepare">
 <mkdir dir="${build.dir}"/>
 <mkdir dir="${build.lib}"/>

 <tstamp/>

 <echo message="${TSTAMP}"/>
 </target>

 <target name="all" depends="bot,modules"/>

 <!-- Build the IRC bot application -->
 <target name="bot" depends="prepare">
 <mkdir dir="${build.classes}"/>
 <javac destdir="${build.classes}"
 debug="${debug.flag}"
 deprecation="on">
 <!-- We could have used javac's srcdir attribute -->
 <src path="${src.dir}"/>
 <exclude name="irssibot/modules/**"/>
 <classpath refid="classpath"/>
 </javac>
 <jar jarfile="${build.lib}/irssibot.jar"
 basedir="${build.classes}" >
 <exclude name="irssibot/modules/**"/>
 </jar>
 </target>

Ant: The Definitive Guide

44

 <!-- Build the IRC bot modules -->
 <target name="modules" depends="prepare,bot">
 <mkdir dir="${build.classes}/modules"/>
 <javac destdir="${build.classes}/modules"
 debug="${debug.flag}"
 deprecation="on" >
 <!-- We could have used javac's srcdir attribute -->
 <src path="${src.dir}"/>
 <include name="irssibot/modules/**"/>
 <classpath refid="classpath"/>
 </javac>
 <jar jarfile="${build.lib}/irssimodules.jar"
 basedir="${build.classes}/modules"
 manifest="MANIFEST.MF" >
 <manifest>
 <attribute name="ModuleType" value="irssibot"/>
 </manifest>
 <include name="irssibot/modules/**"/>
 </jar>
 </target>

 <!-- Deploy the application in a "ready-to-run" state -->
 <target name="deploy" depends="bot,javadoc">
 <!-- Create the distribution directory -->
 <mkdir dir="${dist.dir}"/>
 <mkdir dir="${dist.dir}/bin"/>
 <mkdir dir="${dist.dir}/lib"/>
 <mkdir dir="${dist.dir}/doc"/>
 <mkdir dir="${dist.dir}/config"/>

 <!-- Copy the primary program and modules -->
 <copy todir="${dist.dir}/lib">
 <fileset dir="${build.classes}"/>
 <fileset dir="${build.lib}" includes="irssibot.jar"/>
 <fileset dir="${build.lib}" includes="irssimodules.jar"/>
 <fileset dir="${lib.dir}" includes="*.jar"/>
 </copy>

 <!-- Copy the documentation -->
 <copy todir="${dist.dir}/doc">
 <fileset dir="${doc.dir}"/>
 </copy>

 <!-- Copy the pre-fab configuration files -->
 <copy todir="${dist.dir}/config">
 <fileset dir="${lib.dir}" includes="*.xml"/>
 </copy>

 <!-- Copy the running scripts -->
 <copy todir="${dist.dir}/bin">
 <fileset dir="${bin.dir}" includes="bot.sh"/>
 <fileset dir="${bin.dir}" includes="bot.bat"/>
 </copy>
 </target>

Ant: The Definitive Guide

45

 <!-- Generate the API documentation for the IRC library and the -->
 <!-- IRC bot using the library -->
 <target name="javadoc" depends="bot">
 <mkdir dir="${doc.dir}/api"/>
 <javadoc packagenames="irssibot.*"
 sourcepath="${src.dir}"
 destdir="${doc.dir}/api"
 classpath="${lib.dir}/xerces.jar:${lib.dir}/mysql.jar"
 author="true"
 version="true"
 use="true" />
 </target>

 <!-- Delete class files built during previous builds. Leave
directories -->
 <target name="clean">
 <delete>
 <fileset dir="${build.classes}" includes="**/*.class"/>
 </delete>
 <delete dir="${doc.dir}/api"/>

 </target>

 <!-- Delete any created directories and their contents -->
 <target name="cleanall" depends="clean">
 <delete dir="${build.dir}"/>
 <delete dir="${dist.dir}"/>
 <delete dir="${doc.dir}/api"/>
 </target>

</project>

3.4 The Buildfile Execution Process

We have the buildfile, but what happens when Ant runs? Understanding how Ant parses the
buildfile and executes the targets is key to writing good, solid buildfiles.

3.4.1 Error Handling

Ant interprets the buildfile's XML, meaning that it processes the elements as it parses them.
The XML library that Ant uses represents a hierarchal tree structure; Ant follows this tree's
path during processing. At the project level, the level of XML just inside the <project>
element, Ant does a breadth-first traversal of the XML elements. This means that it loads and
processes all of the elements just below the level of the <project> element first, and then
moves on to the first target. Inside a target, Ant does a depth-first traversal. This means that,
starting with a target's first element, Ant processes each element as deep as it can before it
moves on to the next element.

Understanding this design is most important when trying to understand how Ant processes its
own errors (as opposed to errors from bad compilation or failed file copies). At the project
level, Ant does a kind of syntax check before it actually processes any elements. In general,
when speaking of Ant processing an element, we mean that Ant goes through the full
processing life cycle on that element. Assuming a syntactically correct element declaration,
the processing appears to be atomic from the outside; you cannot insert any operations
between the time Ant parses the element and when Ant performs the operations that form the

Ant: The Definitive Guide

46

basis of the element's definition. Errors, however, occur within two distinct phases during the
processing of an element, and understanding these phases alleviates some frustration.

3.4.1.1 Project-level errors

At the project level, Ant loads all of the elements in the buildfile. It processes every element
type except targets. This means any project-level tasks or DataTypes are processed.
Processing a target means running the tasks and DataTypes within that target. You do not
want Ant to execute all targets when it loads the buildfile. Instead, think of Ant as making a
list of targets for future use. The list consists only of target names and attributes, and any
invalid values in these particular items cause Ant to fail.

With project-level tasks and DataTypes, errors occur as you might expect. Errors in reading a
DataType's element or executing the DataType's operations are build errors, and Ant handles
them as such. If Ant discovers a particular element it does not "expect" (e.g., it finds
<notatag/> as a subelement of <project>), this is an error, and the build stops and fails.
With all of these errors, keep one very important fact in mind: by default, Ant breaks at the
first error. There can be 100 attribute and elements errors in the buildfile, and Ant still
discovers them one by one (and so do you), with every execution. Furthermore, Ant has no
concept of "rollback," so errors break the build immediately with possibly dire consequences.
There is nothing to catch, and there is no chance to clean up. You must extend Ant using a
listener to have any impact on controlling errors. For these reasons, be careful when you write
a buildfile, and be extremely careful editing a working buildfile for a stable project. Syntax
and processing errors can leave your project in an undefined state, requiring you (or worse,
your developers) to do a full rebuild. This can waste valuable time if your build is a long one.

3.4.1.2 Target-level errors

Errors at the target level have repercussions similar to those at the project level, except that
the times at which these errors occur can differ slightly. Rather than load every element
nested within a <target> element (thus, creating a list like Ant's target list), Ant loads and
processes each element one by one. This, of course, makes their order important. If Ant makes
it to the second element, Ant considers the operations from the first element successful. Ant
considers data, file, or project states associated or created by the completed element to be
successful as well. Conversely, when an error occurs in a project-level task or DataType, Ant
considers the elements that follow it to be unknown.

3.4.1.3 Error-handling examples

Let's illustrate the error processing concepts just discussed with a few, invalid buildfiles. We'll
look at the following buildfile as a start:

<project name="mybad" basedir="." default="all">
 <property naame="oblivion" value="nil"/>
 <notarealtag/>
</project>

What will happen if Ant processes this buildfile? Because property is a project-level
DataType, the invalid attribute naame causes Ant to fail when it tries to call the setter method
associated with the naame attribute and finds none. Ant doesn't display any messages about
the <notarealtag/> element because Ant stops when the first failure occurs. Note as well

Ant: The Definitive Guide

47

that the buildfile has no all target, even though we set the <project> element's default
attribute to all. Once you fix the first two problems (the invalid attribute naame and the
invalid <notarealtag/>), a third run results in an error stating there is no all target. Ant
(and you) discovers each error one at a time.

Following is another erroneous buildfile, based on the earlier example:

<project name="mybad" basedir="." default="all">
 <target name="all">
 <notarealtag/>
 </target>
 <property naame="oblivion" value="nil"/>
</project>

What happens when Ant process this buildfile? We moved the property DataType to follow
the newly added default target, all. Does Ant see the invalid tag before it sees the invalid
attribute on the property DataType? No. At the target level, Ant thinks all is well with the
all target and moves headlong into the invalid attribute error. Of course, once you fix the
attribute error, Ant gladly informs you it cannot process <notarealtag/>.

Modifying the previous examples, we'll correct the attribute and target errors. Additionally,
we add a new target, chaos, containing the invalid element, <notarealtag/>. Here is the
resulting code snippet:

<project name="mybad" basedir="." default="all">
 <property name="oblivion" value="nul"/>
 <target name="all">
 <echo message="Hello there, all you happy people."/>
 </target>
 <target name="chaos">
 <notarealtag/>
 </target>
</project>

What does Ant do now? Ant displays the message we instruct it to: "Hello there, all you
happy people." There are no errors. Surprised? Unless you make chaos a dependency of the
all target, or call the chaos target directly from the command line, Ant misses the error
within the chaos target. This is an example of what we call a festering error. Errors like this
go unnoticed over long periods of time and rear their ugly heads at inopportune moments.
Prevent these festering errors by testing early and testing often.

This is how Ant handles and processes nonbuild related errors. Now that you know where
errors can come from and how to avoid them, let's take a look at what Ant does when
everything is okay.

3.4.2 Project-Level Data Elements and Tasks

Before Ant executes any targets, it takes care of all data elements and tasks defined at the
project level. Of course, Ant also makes a list of the targets, as explained in the previous
section, but that's not important right now.

Ant: The Definitive Guide

48

There are very few project-level tasks and data elements. Introducing
one requires many changes to the core Ant engine, so it's unlikely many
will be added in the future. For now, consider the project-level elements
to be: property, path, taskdef, patternset, filterset, mapper, and
target.

In the case of our project example, project-level data elements consist of the properties that
define directories, the global property for the javac task, and the compilation classpath as a
path DataType. Ant processes all of these in the order they appear, making them globally
available to the rest of the buildfile. Order, as it turns out, is very important for related
properties.

Let's take a moment to talk about properties. Properties have two prominent characteristics.
They are immutable and they always have global scope, regardless of where they're defined.
Being immutable means a property's value cannot change once Ant processes the property's
name-value pair for the first time. This is very important to keep in mind when designing your
project and writing your buildfile. Many newcomers to Ant make the mistake of treating
properties like variables in a script and expect them to behave as such. To add to the
confusion, Ant allows properties to be redeclared, throwing no errors when you try to change
the value. Ant defines an order of precedence for declaring properties. Properties declared on
Ant's command line always take precedence over properties defined elsewhere. After that,
Ant determines precedence based on when it first sees a property declared.

Immutability impacts how property values resolve. Let's use the following code example to
illustrate:

<property name="property.one" value="${property.two}:one"/>
<property name="property.two" value="two"/>

What is the value of property.one? Because of Ant's ordered property resolution, the value
is ${property.two}:one, not two:one. Usually, you'll rely on this behavior when defining
directories with increasing depths. It can be very disconcerting to suddenly discover that
you're creating a directory called ${property.two}. Remember that order counts, and you won't
go wrong.

The other prominent property characteristic is properties are always global in scope. A
property's global scope means it is a global variable. Look at the following buildfile segment:

<property name="prop1" value="one"/>

<target name="target1">
 <property name="prop2" value="two"/>
 <echo message="${prop1}:${prop2}"/>
</target>

<target name="target2" depends="target1">
 <echo message="${prop1}:${prop2}"/>
</target>

target1 defines the property prop2. Because all properties are global in scope, prop2
becomes available to the rest of the buildfile once Ant processes target1.

Ant: The Definitive Guide

49

Cascading Buildfiles
Cascading buildfiles can change the rules of property immutability and scope.
Developers sometimes use cascading buildfiles in large projects with many
subprojects, and each subproject has its own buildfile. A master buildfile at the root
of the project executes one or more of the subproject buildfiles to build parts of
the project or the whole thing. Developers wanting to build individual subprojects
run the buildfile in that subproject's directory and can effectively ignore the other
subprojects in their day to day work (hence the reason for the design). A public
example of such a project using cascading buildfiles is Jakarta's taglibs. In
Appendix B, we provide a section on writing cascading buildfiles, as well as tips on
how to manage the problems that the immutability (and possible mutability) of
properties may present.

3.4.3 Targets

When you run ant with no arguments, Ant reads the <project> element and uses the
default attribute to get the name of the first target to execute. In our example, that target is
called all. The all target in turn has dependencies on the bot and module targets, meaning
that Ant executes these targets before running anything inside of all (let's ignore, for the
moment, that the all target contains no elements); and these targets must complete
successfully in order for Ant to start processing all. Since there are no elements in our all
target, the success of bot and module targets equates to the success of the all target.

3.4.3.1 The bot target

Since it is the first dependency in the list for the all target, the bot target runs first. The
purpose of the bot target is to compile the application and then package it up into a JAR file.
The bot target also has a dependency: the prepare target. The prepare target creates the
temporary build directories needed by the compilation steps. The mkdir task it uses is usually
successful, even if the directories mkdir is trying to create already exist. The mkdir task fails
only if the I/O system throws an exception because of file permissions, space limitations, or
some hardware or operating system error. In addition to creating directories, the prepare
target also timestamps the build using the tstamp task. The tstamp task has no attributes and
outputs nothing to the console or log. Instead, it sets properties that can be used later,
primarily in echo tasks, but also in any other tasks requiring the date and time. See Chapter 7
for details on the tstamp task.

The javac task compiles the Java source code. Let us take a close look at the javac task, as
it's defined in the bot target:

 <javac destdir="${build.classes}"
 debug="${debug.flag}"
 deprecation="on">
 <src path="${src.dir}"/>
 <exclude name="irssibot/modules/**"/>
 <classpath refid="classpath"/>
 </javac>

There are three required settings for every javac task:

Ant: The Definitive Guide

50

• The source directory
• The classpath
• The destination directory

We specify the source directory (the place in which the Java source files are stored) with the
src nested DataType.7 We could have used the srcdir attribute, but chose instead to use a
DataType for demonstration purposes. In practice, it is probably more common to see the
srcdir attribute used. We specify the compiler's classpath in a similar manner, using the
classpath DataType. This time, we use a reference ID to reference an earlier path definition.
Earlier in the buildfile, we defined a classpath consisting of all the JARs in the /lib project
directory, and we gave it the reference ID classpath. To use that path later, as we do in the
javac task, we declare a similar DataType having the attribute refid. We set refid to the
reference ID of another DataType, defined earlier (the classpath path DataType). Ant
manages the values of these DataTypes so that you can define a DataType once and reference
it other times. It's important to note that DataType references, unlike properties, work only
within the same buildfile.[8]

[8] Ant 1.5, expected to be released after this book is published, will have a solution for referencing DataTypes across buildfile
contexts.

As for the destination for the compiled classes, we use the destdir attribute to specify that
information. Since the destination directory is always a single directory and not a collection of
files or a directory path, we use an attribute and a property rather than a DataType.

So far, we've discussed the required settings for javac, but, if you notice, we also specify a
couple of optional attributes and DataTypes. The optional attributes are debug and
deprecation. The optional DataType is exclude.

Since we are still developing irssibot, it's likely we will try to run it within a debugger. This
requires that the debug flag is on at compile time, and we denote this with the debug attribute
of javac. Since we need this to be a global option, we use a property, set once at the
beginning of the buildfile. Note that values of yes|no and true|false work for Boolean
attributes such as debug.

By default, the various Java compilers do not provide detailed information concerning
deprecated method calls.9 Should irssibot use a deprecated method or field, the compiler
notifies us only that we use deprecated calls in general. It does not tell us which method or
even which class used the deprecated call. To get detailed information, we use javac's
deprecation attribute and set it to "true" (or "yes").

To distinguish between module code and application code, the class package structure is
separated into two subpackages, one being modules. We do not want these classes becoming
part of the application JAR, so we use the <excludes> element to tell javac not to compile
them. Our <excludes> element tells javac to exclude all files in its fileset — in this case,
nondependent source code below the modules package directory.

All together, we tell javac to do the following:

7 Through a slight trick of introspective methods, the javac task class hides the fact that <src> is just a <path> element under a different name.
There is no DataType called src available to other tasks, although other tasks can duplicate javac's programming trick.
9 For more information on deprecated methods and fields, refer to Java in a Nutshell, by David Flanagan (O'Reilly).

Ant: The Definitive Guide

51

• Compile the source code found in ${src.dir}, excluding Java files in the modules
package.

• Send newly built class files to the build directory, as defined by the ${build.dir}
property.

• Include debug information with the class files for use in a debugger.
• Present detailed deprecation error messages stating which classes and calls are

deprecated.
• Cause the bot target to fail if any operation in javac fails.

Sit back and consider that with about 11 lines of XML, we define a step in a build that will
always compile the correct Java files with the correct classpath, no matter how many source
files or libraries you add or remove in the future. Unless the project's requirements (and not
just the parameters) change, we will never have to modify this part of the buildfile again. If
the requirements do change, then we rework our goals and modify the targets appropriately.
This is expected. As an added bonus, XML's verbose and human-readable nature creates an
easy-to-maintain build description file. Remember, a new goal means editing the buildfile, but
minor project changes require no modifications. If you find yourself modifying your own
buildfile frequently, try to take some time and refactor your build's design. The goal is to
write the buildfile once and forget about it as much as possible.

3.4.3.2 Dependency checking

Even though the javac task specifies exclusions, you may notice the compiler compiling
source code under the module subpackage. From a build perspective, we cannot avoid this if
code in the application references code from the modules.10 Per the Java compiler
specification, the Java compiler is responsible for resolving all dependencies during compile-
time. It performs dependency checks on a class-by-class basis as it compiles each class. In
other words, if class A is dependent on classes B and C, then, when compiling A, the Java
compiler must find compiled versions of B and C. If they do not exist, the compiler must find
the source code for classes B and C and compile it before compiling class A.

The job of managing dependencies falls squarely on the shoulders of the developers creating
their project's object model. Therefore, Java class dependencies and methods to manage them
is a concept that is beyond the scope of this book. As it applies to working with Ant,
dependency checking is an automatic behavior.

3.4.3.3 Packaging the class files

After Ant compiles the source files, which generate the class files, the bot target uses the jar
task to package the class files into a JAR. We do this with only four more lines of XML:

 <jar jarfile="${build.lib}/irssibot.jar"
 basedir="${build.classes}" >
 <exclude name="irssibot/modules/**"/>
 </jar>

The jar task places all of the files from the build.classes directory, excluding those beneath
the modules package directory, into a file called irssibot.jar.

10 We could always write the code to make sure such circular dependencies do not exist. We chose this particular application because it exhibited this
codependent behavior, allowing us to discuss it.

Ant: The Definitive Guide

52

3.4.3.4 The module target

The module target is almost identical to the bot target. The javac and jar tasks use nearly
the same attributes and DataTypes. The only difference is in what these DataTypes exclude
from javac and jar. For the bot target, we explicitly exclude files from below the modules
subpackage directory. In the case of the module target, we explicitly include files from the
modules directories. Indirectly, we exclude all other files.

The result of including the files in the modules subpackage directory, and of our de-facto
exclusion of the other source files, is that our build produces two JARs with mutually
exclusive sets of class files. This result meets our requirements set earlier, which state we
need two packages: one for the application and one for the modules.

The module and bot targets are those that will run by default, because of the all target's
dependency on them. The all target does not include dependencies on distribution,
documentation, or cleanup, so Ant doesn't execute these targets unless the user explicitly
requests it on the command line at runtime.

3.4.4 The Other Targets

In addition to the bot and modules targets used for compiling and packaging the irssibot
project, our buildfile has targets for generating documentation, post-build cleanup, and for
deployment.

3.4.4.1 The javadoc target

The javadoc target compiles the dynamically generated code documentation with the
JavaDoc tool. The javadoc task operates similarly to the javac task. Both perform syntax
checking on the Java code: javac as a precompile step and javadoc to guarantee that the
documentation at least represents code that will compile. Most JavaDoc comes from the class,
field, and method comments written by the developers, but some of it is dynamically
generated; hence the reason why the code must compile.

For our target, we add the dynamic documentation to the existing documentation directory,
doc/, under a separate directory called api/. This way, when the distribution target executes,
we need only to package or copy what exists in the doc/ directory. With the javadoc target,
we also give the distribution target a dependency. This is helpful for distribution. It will make
sure javadoc runs, giving us the latest code documentation, and fails if it can't create the most
up-to-date documents. Of course, as we mentioned earlier, no other targets should be
dependent on the javadoc target. The JavaDoc tool can take an extraordinary amount of time
to complete — sometimes longer than the compile step itself.

3.4.4.2 Cleanup

Targets that clean the project directories are the most important targets of any build — even
more important than the compilation targets. Why do we say this? Software development is a
deterministic operation. Your project, no matter how simple or complex it may be, should run
in a deterministic fashion. Your build is no different. At no point should you be unable to
explain why a build performed at 8 a.m. is different than one performed at 9 a.m., given no

Ant: The Definitive Guide

53

other changes in the project. This deterministic behavior should be the very reason you're
creating a build process in the first place.

Clean targets achieve this goal by giving you and your developers a sort of "reset switch."
You can and should always be able to return the project to the state prior to compilation. We
use two targets for this because there are, technically, two starting points. The first is the fresh
project. This project state exists after you first download the zip/tar/jar or run a checkout from
your revision control system. When projects get to be 700+ classes and cover multiple
packages and subprojects, tracking all the changes you make can become very cumbersome.
Having a build step that effectively resets the project for a developer is very important, almost
essential. Without such a step, developers must reverse-engineer the build process to figure
out all the changes made on their systems.

3.4.4.3 Deployment and installation

Deploying and installing Java projects can be a tricky endeavor. In fact, we suggest that, if
you're just beginning to manage projects and write buildfiles, you hold off on writing
installation targets until the project is in stable condition. If we were writing programs for one
platform, say a RedHat distribution of Linux, we have an easy installation goal to solve. We
make an RPM (the deploy step) and run some RPM commands (the install step). For Java
developers, life is not this easy. Note, we have an entire chapter on installing and configuring
Ant, and Ant distributes with an install target in its own buildfile. The catch with all
installations is that you, the project manager, rarely know how other administrators and
developers manage their own servers and workstations. The Ant project actually has it easy. It
assumes only a JRE on the workstation and has scripts that should run on many platforms.
Installation requires a root installation directory like /usr/local/ant or c:\ant and everything is
fine.

For irssibot, we took the tack of creating a distributable package for the deploy target, but
leaving it up to the individual using the program to decide how to use the package
installations. To keep things simple, we do not try to understand the structure of other
workstations. You could say irssibot is self-contained; it does not attempt to do anything
outside of its own project directory. We create a dist/ directory, placing in it all of the JARs,
documentation, and scripts that constitute the final program. As an exercise, you may consider
writing an installation target similar to Ant's. You require some property to be set on the
command line (the installation directory), and the target uses it to copy everything from the
dist/ directory to the installation directory.

So far, installation looks somewhat easy and you may be wondering why we omit such a
target in our own project. The reason is because of the other portion of Java developers: the
server-side developers. Up to the deploy step, our example touches upon all facets of Java
development. For web applications or EJB applications, the deploy target builds the WARs
and EARs. Of course, not all application servers support WARs and EARs (e.g., BEA's
WebLogic 5.1 does not support EARs). Installation for these developers is very difficult and
we do not want it to appear that it's an easy step. It's better if you make your build create a
deployable set of directories and package files, then stop. From there, review how you're
installing the application and see if you can move on.

Ant: The Definitive Guide

54

3.5 AINASL: Ant Is Not a Scripting Language

After looking at the example project and buildfile, you may begin to look at Ant as a sort of
scripting language for builds. With this bit of insight, you may charge forward writing
buildfiles with this concept in mind...until the wheels fall off and you're stuck wondering why
Ant can't do something you'd expect of any scripting language. Here's why they fell off: XML
does not make for a good scripting language.

In a way, you're excused for seeing Ant as a sort of XML scripting language and
accompanying parser. The difference is that, viewed as a scripting language, Ant is not very
good. In fact, it's horrible. This little oddity of perception can cause a lot of confusion and
frustration. Viewing the build as a design and not as a series of steps helps alleviate this
confusion. We champion this authoring technique. So where does Ant's XML syntax fail as a
scripting language?

3.5.1 Look Ma, No Data Structures!

A more concrete example of an oddity in Ant's syntax is its management of data. Here, the
closest analogy to a language variable is the <property> tag. This, of course, completely
ignores the rich data capabilities of XML, and Ant's developers know this. In addition to the
property, there is the concept of an Ant data element — for example, the path DataType.
The limitation is you cannot create DataTypes "in-language," as you can with a scripting
language. Instead, you must write a class (or a set of classes) to represent a new data type in
Ant; this is probably more effort than you are willing to put in for simply encapsulating
groups of data values. If you're looking at Ant as an XML-based build scripting language and
want to create your own data elements, you'll run into this dead-end fairly quickly.

So, how to avoid it? You can, of course, fix some of these shortcomings programmatically,
but only if you're willing to make the effort of writing extensions and tasks for Ant.
Alternatively, if you're not willing or not able to extend Ant programmatically, there's not
much else you can do. Consider following the Ant mailing lists and reading the archives to
find out more about the efforts Ant's developers are making to refactor this design limitation.
The odds are good that refactoring will happen sooner rather than later. For instance, Ant
developers introduced the concept of the path DataType between two revisions of Ant, and
within a six-month period (Ant 1.1 in April 2000 to Ant 1.2 in October 2000). Being an open
source project means Ant's developers can move fast and refactor the project in a matter of
months.

3.5.2 Where's the DTD?

If Ant's not a scripting language, and since it uses XML, we should be able to validate the
buildfile when Ant parses it. Such validation requires a DTD. There are a few reasons we
don't have this luxury.

Didn't you consider the description for runtime and parse-time processing to be very
complex? This is because the internal processing design for Ant is complex. It's more out of
necessity than from a purposeful design that Ant behaves this way. Because Ant uses a
language with well-defined syntax rules, it must obey these rules at all times; it does this
using existing XML libraries to load the buildfile. The buildfile is verified as "well-formed"
when and as it is loaded. Read that statement again. Rather than validating the file in its

Ant: The Definitive Guide

55

entirety, Ant validates XML elements as it reads them. In addition, "syntactically correct" and
"well-formed" are not synonyms. To be syntactically correct when loaded, the XML needs to
have a corresponding DTD (or schema). It doesn't have one. It can't have one (more on this
soon). To compensate for this, Ant iterates across the XML, parsing and executing only the
elements it needs to execute, and checking the syntax along the way. This has the side benefit
of making Ant faster, because if it attempted to do a full syntax check, especially on a large
buildfile, Ant would be slow and, more than likely, a memory hog — well, a greater memory
hog than it is now.

Without a DTD or schema, well-formed but syntactically incorrect XML can exist
undiscovered for long periods. The problems intensify when the Jakarta team releases a new
version of Ant. Consider an infrequently used target. Make a change to the target and test it
with Ant 1.4.1. It works fine and everything is good. Usage patterns show that developers use
the target once or twice a month, if ever. Three months later, the Jakarta group releases Ant
Version 1.5, and now the task that worked in 1.4.1 has a new syntax. Because of its infrequent
use, the target goes on without being regression tested. You'll discover that the task is broken
only after a build failure far in the future.

Should there be a DTD? Technically, we can't have one. Because of the custom task model,
Ant's buildfile DTD would change with each new task. A task to create a DTD exists
(antstructure), but it only creates a DTD of the core task model. Furthermore, it is unaware
of attributes that are required by tasks. As the Ant XML syntax settles down, many users have
put in the effort to make their own DTD using antstructure's output as a starting point.
Unfortunately, due to the earlier point about new tasks, no solution will ever be perfect. To
verify your buildfile, test it and test it often.

3.5.3 Flow Control

When you first think of your build design, it's hard not to look at it in terms of a process flow.
You may even use a flow chart to describe the various steps. Flow control requires two
important features that are (mostly) missing from Ant: conditions and iteration.

Conditions allow us to change the flow of a build depending on values set at or during
runtime. For example, you may want the build to run a specific target if another target fails.
This level of general conditional control is missing from a normal release of Ant.11 If a target
fails, any targets that depend on it fail. There's nothing you can do to stop this aside from
rewriting or redesigning the task to handle such error events. More likely, you'll need to write
a different task that understands the specific conditions and executes the various build steps
required under some conditional control. This is okay for simple tasks, but rewriting entire
groups of tasks (e.g., two or three Java compilations, some file copying, and JAR'ing) is,
understandably, too much effort.

Iteration, as it applies to a build, means to execute a task (such as compiling files), or a group
of tasks multiple times, based on some condition or set of conditions. You probably think that
without explicit conditionals in the Ant syntax, there can be no iteration. You're right.
However, even if there is, we cannot tell Ant to execute a group of tasks across, say, a
changing set of DataTypes. A common example of the need for iteration involves recursive
file operations. Let's say you have a project with four subprojects. The only difference

11 Conditional tasks do exist, but we consider them experimental. Do not confuse conditonal tasks with flow control.

Ant: The Definitive Guide

56

between each subproject is the name of the subproject's root directory. You want each
subproject compiled and packaged, and you've laid the project directories out to do this in a
very efficient manner (thanks to this book). As a good designer, you realize that you can re-
use the target of one subproject for every subproject, changing only a few properties each
time. As you ponder the solution, the wheels begin to fall off. Ant has no way to re-use targets
like this. Begrudgingly, you cut and paste the target three times to represent each subproject,
and you define each subproject explicitly. If you later remove or add a subproject, you have to
edit the buildfile again. The same holds true if you use some form of cascading buildfiles. At
some point, you have to define the subprojects explicitly, meaning something (maybe a
properties file, an XML data file, or another buildfile) must be edited to make such a change
complete.

Without the concept of custom tasks, Ant would be short-lived. You can perhaps solve the
condition or iteration problem with an XML file, some XSLT, and some custom tasks, but it's
still your solution, not Ant's. The buildfile you create is now not portable because you must
distribute your Ant modifications with your buildfile. It's a minor annoyance, but an
annoyance all the same. Short of extending Ant, there's not much else you can do when it
comes to these missing features. Your design, therefore, must consider these limitations so
that you don't reach a dead-end and wind up seriously refactoring (or more likely, rewriting)
your buildfile.

3.6 Buildfile Authoring Issues

The example buildfile we present in this chapter is simple compared to the capabilities Ant
presents. Our goal is to show how to take a project, organize the files, and write a buildfile
that makes life easier for the developers and project managers. The project and the steps we
take are exaggerated and expanded to better demonstrate how we came to the decisions we
make concerning the design of the project's organization and buildfile.

Beyond these first steps, your best path towards writing better buildfiles is experience. This
includes both working with buildfiles and writing new ones. Most major open source Java
applications now use Ant, giving you a virtual repository of best (and worst) practices. As an
exercise, you may wish to take one of those buildfiles and, using this book as a reference,
comment them, making note of what you think is happening and why.

The following issues have not yet been mentioned because they're more workarounds for
Ant's shortcomings than buildfile design guidelines. Ideally, Ant's developers will refactor the
design to eliminate the need for these workarounds.

Magic properties

Some properties are set but never explicitly used in any target or task. Ant's object
model allows any build component to see all of a build's properties. The lack of an in-
buildfile reference for these properties has led to their labeling as magic properties. A
good example of a magic property is the build.compiler property for the javac task.
No attribute exists for specifying the type of compiler the javac task uses. Instead, it
relies upon the buildfile defining build.compiler. If a task uses a magic property, we
specify this in the task definition provided in Appendix B.

Ant: The Definitive Guide

57

When writing your own tasks, try to avoid using magic properties, as it makes the
buildfile unreadable and hard to maintain.

When failure is success

Consider the following buildfile snippet:

<copy todir="newdir">
 <fileset dir="foo">
 <include name="**/*.xml"/>
 </fileset>
</copy>

This copy task element copies any XML files from foo to newdir, creating newdir if it
doesn't exist. But what should happen if foo doesn't exist? Or what if there are no
XML files?

What does happen, in the case of a nonexistent source directory (foo in our example),
is that copy fails. In the case in which there are no files to copy, copy succeeds, but
doesn't create a target (newdir in our case) directory. This behavior leads to an
interesting problem: what if your build creates the foo directory and generates XML
files only in special cases? In instances in which XML is not generated, do you want
your entire build to fail when it hits the copy task? Yes? No? Maybe? Up until Ant
1.4.1, you couldn't control this. A workaround may be to create the foo directory
manually in order to keep the task from failing. Beginning in Ant 1.4.1, copy has a
failonerror attribute, allowing you to control its failure state. Using failonerror,
you can cause Ant to consider a failed copy to still be successful.

The lesson is to be aware of what makes a task fail before you assume its behavior fits
in your build's flow. You wouldn't want your 4 a.m. automatic build to fail, causing
the loss of a day's worth of testing, because you misunderstood the failure states of a
task.

If you get frustrated when designing your build and project layout, remember there is no one
correct way to construct a project and write a buildfile. There will always be extenuating
circumstances and unique requirements that prevent you from following layouts and patterns
we present here and in other chapters. Furthermore, Ant is relatively young and bound to
change, requiring you to change with it. Improvements to Ant, together with future custom-
tasks, may make some techniques described in this book obsolete; not bad, mind you, just
obsolete.

Use the layout of the sample project and the steps we followed as guides to help ensure you're
not creating more work for yourself when you design and write your own buildfiles. Our
process comes from observation and experience garnered from working with Ant since its
first public release. You'll find many project layout and buildfile techniques duplicated in
projects such as JBoss, Tomcat, and even Ant itself. This doesn't mean these project designs
are the best — it just means that they're popular and have remained popular for quite a while.

Ant: The Definitive Guide

58

Chapter 4. Ant DataTypes
In the previous chapter's buildfile example, you saw the fileset DataType being used to
identify groups of files to copy in order to deploy the irssibot application. DataTypes are
important when using Ant, and fileset is just one of the many available to you:

argument

Passes command-line arguments to programs that you invoke from an Ant buildfile.

environment

Specifies environment variables to pass to an external command or program that you
execute from an Ant buildfile.

filelist

Defines a named list of files that do not necessarily need to actually exist.

fileset

Defines a named list of files that must actually exist.

patternset

Groups a set of patterns together.

filterset

Groups a set of filters together.

path

Specifies paths (such as a classpath) in a way that is portable between operating
systems.

mapper

Defines a complex relationship between a set of input files and a set of output files.

Let's dig in and learn more about these fundamental Ant DataTypes. They are building blocks
used by tasks and are essential to using Ant effectively. In this chapter, we'll talk about each
DataType in detail. Before doing that, however, we discuss briefly how DataTypes fit into
Ant's overall design, and explain the notation used in this chapter to describe the attributes for
the different DataTypes.

Ant: The Definitive Guide

59

4.1 DataTypes Defined

Ant DataTypes are found in the org.apache.tools.ant.types package, usually extending
from the org.apache.tools.ant.types.DataType base class. EnumeratedAttribute,
Commandline, Environment, and Reference are also treated as DataTypes, although they do
not extend from DataType. Figure 4-1 contains a basic UML class diagram illustrating this
aspect of Ant's design.

Figure 4-1. Ant DataTypes

The base class, org.apache.tools.ant.ProjectComponent, provides logging functionality
as well as access to the Project object. Not shown here, ProjectComponent is also the base
class for every Ant task. These tasks are detailed in Chapter 7 and Chapter 8.

While the class diagram helps to explain what DataTypes are, understanding the internal
structure of Ant is rarely necessary. In most cases you simply want to write buildfiles and use
Ant. For this reason, the remainder of this chapter focuses on how these types are used, rather
than how their internal implementation works.

4.2 XML Attribute Conventions

DataTypes, like tasks, are defined using attributes. As we discuss each DataType in this
chapter, we also list all the available attributes for it. These listings describe each attribute,
specify which versions of Ant support it, and indicate whether it is required. The attribute
listings take on the following form:

attribute_name (version, type, required_flag)

Is a description of an attribute and its function.

Ant: The Definitive Guide

60

In which:

attribute_name

Is the name of the attribute. Use this to refer to the attribute when you specify it for a
task.

version

Indicates the version of Ant supporting this attribute. "all" means Ant Versions 1.2
and later.

type

Indicates the type of data that an attribute can hold. For example, String indicates
that an attribute holds textual data. See Table 4-1.

required_flag

Indicates whether a given attribute is required when using the task. If this flag is a
asterisk (*), then see the notes immediately following the list.

Description of attribute

Is a description of the attribute and its function.

Table 4-1 summarizes the attribute types frequently referenced throughout this chapter. In all
cases, text from XML attributes is converted into one of the basic types listed here. The
"Description" column describes how each conversion happens. The "Implemented by"
column lists the Java class that Ant uses to represent each of these attribute types.

Table 4-1. XML attribute type summary
Type name Implemented by Description

boolean N/A

Performs a case-insensitive
string comparison,
converting on, true, and
yes to true. All other
values are false.

Enum org.apache.tools.ant.types.EnumeratedAttribute
Used in cases in which a
fixed set of string values are
allowed.

File java.io.File

Specifies the name of an
individual file or directory.
Unless stated otherwise, file
and directory names are
relative to the project base
directory. fileset and
filelist, described
shortly, allow you to specify
multiple files.

Ant: The Definitive Guide

61

int,
long,
etc...

N/A

The standard Java type
wrapper classes like
java.lang.Integer
handle conversion from text
in the buildfile to primitive
types.

Path org.apache.tools.ant.types.Path

Most commonly used by
classpath and
sourcepath attributes,
representing a list of paths
separated by :or;. This is
described in detail under
"Path DataType."

Reference org.apache.tools.ant.types.Reference

Commonly used in refid
attributes, and contains a
reference to a type defined
elsewhere. See the example
for the java task in Chapter
7, which shows how to
reference a classpath defined
elsewhere in the buildfile.

String java.lang.String

The most commonly used
type in Ant. Strings (along
with other attributes) are
subject to XML attribute
limitations. For instance, the
< character must be written
as <.

4.3 Argument DataType

The apply, exec, and java tasks accept nested <arg> elements, specifying command-line
arguments for their respective process calls. The
org.apache.tools.ant.types.Commandline.Argument class implements this DataType.1
If several <arg> elements are specified, each is treated as a separate argument to the process
call. Following is a list of all <arg> attributes:

file (all, File,*)

A filename as a single argument. In the buildfile, this filename is relative to the current
working directory. The "current working directory" varies depending on the context
this type is used in. The name is converted to an absolute path when passed as an
argument.

line (all, String,*)

A space-delimited list of multiple arguments.

path (all, Path, *)

A path, as explained later in the section "Path DataType."

1 Argument is treated as a DataType, although it does not extend from the DataType base class.

Ant: The Definitive Guide

62

value (all, String, *)

A single command-line argument. Use this if your argument has spaces, but you still
want to treat it as a single value.

Exactly one of these attributes is required.

4.3.1 Example

Let's look at a complete buildfile to put things into perspective. In Example 4-1, we use
the java task to invoke Apache's Xalan XSLT processor, transforming an XML file into
HTML using XSLT.2 As you might expect, the java task invokes any Java class with a
main() method. Use <arg> elements to pass arguments to the java task.

Example 4-1. <arg> usage

<?xml version="1.0"?>
<project name="arg demo" default="xslt" basedir=".">

 <property name="xalan.home" value="C:/java/xalan-j_2_1_0"/>
 <property name="xalan.jar" value="${xalan.home}/bin/xalan.jar"/>
 <property name="xerces.jar" value="${xalan.home}/bin/xerces.jar"/>

 <property name="xmldata" value="familyTree.xml"/>
 <property name="stylesheet" value="familyTree.xslt"/>
 <property name="result" value="Family Tree.html"/>

 <path id="project.class.path">
 <pathelement location="${xalan.jar}"/>
 <pathelement location="${xerces.jar}"/>
 </path>

 <target name="clean">
 <delete file="${result}"/>
 </target>

 <target name="xslt">
 <echo message="Transforming '${xmldata}' using '${stylesheet}'"/>

 <java fork="true" classname="org.apache.xalan.xslt.Process"
 failonerror="true">
 <arg line="-IN"/>
 <arg value="${xmldata}"/>
 <arg line="-XSL"/>
 <arg value="${stylesheet}"/>
 <arg line="-OUT"/>
 <arg value="${result}"/>
 <classpath refid="project.class.path"/>
 </java>

 <echo message="Success! See '${result}' for the output."/>
 </target>
</project>

2 The style task is normally used for XSLT transformations; see Chapter 7.

Ant: The Definitive Guide

63

We'll look at other interesting facets of this buildfile later in this chapter. For now, let's focus
on the command-line arguments. Here is what the command line looks like if you invoke
Xalan directly from a shell:

java org.apache.xalan.xslt.Process -IN familyTree.xml
 -XSL familyTree.xslt -OUT "Family Tree.html"

You are free to use as many <arg> tags as you want, and the arguments are passed to the
command in the order in which they are listed in the buildfile. You can also mix and match
usages of the various attributes for each <arg> tag. You might be wondering why we didn't
specify all of the arguments at once, like this:

<arg line="-IN ${xmldata} -XSL ${stylesheet} -OUT ${result}"/>

The answer lies in the final argument, "Family Tree.html". In this example, the filename
contains a space. Remember that the line attribute expects several space-delimited
arguments, and will treat "Family Tree.html" as two arguments: "Family" and
"Tree.html". Since we want to pass the entire filename as a single argument, space included,
we must use the value attribute:

<arg value="${result}"/>

Since we defined each of our filenames as Ant properties, someone might change the XML
and XSLT filenames to something else in the future. Since these names may also contain
spaces, we chose to use the value attribute for all three filename arguments. We are able to
use the line attribute for the "-IN", "-XSL", and "-OUT" arguments because they never
contain spaces, although the value attribute would yield the same results in this case.

You may also be wondering why we use the value attribute instead of path for this example.
With value, the attribute text is passed unmodified to the process being executed. With the
path attribute, text like "familyTree.xml" is converted into a platform-specific path such as
C:\path\to\file\familyTree.xml before it is passed to the process. Applications that need
absolute pathnames require you to use the path attribute. Our Xalan example works
regardless of whether you use value or path because it works with both absolute and relative
pathnames.3

4.3.2 Additional Examples

This section shows a few additional examples of the argument DataType. argument allows
several variations, all of which can be used together to pass several arguments to a process.
As we already mentioned, multiple arguments are always passed in the order listed in the
buildfile. Here is how you can pass two separate command-line arguments to a process:

<arg line="-mode verbose"/>

Here is how you pass a single command-line argument containing a space character:

<arg value="Eric Burke"/>

3 Technically, Xalan expects URLs rather than filenames as arguments. For this reason, the platform-specific filename produced by the path attribute
is less desirable than the relative URL possible with the value attribute.

Ant: The Definitive Guide

64

Finally, here is how you pass a path-like structure as a command-line argument:

<arg path="/temp;/tmp"/>

This is converted to C:\temp;C:\tmp4 on Windows systems, and /temp:/tmp on Unix systems.

4.4 Environment DataType

The apply and exec tasks, which execute system commands, accept zero or more nested
<env> elements. These elements specify which environment variables are passed to the
system command being executed, and they are implemented by the
org.apache.tools.ant.types.Environment.Variable class. The <env> element accepts
the following attributes:

file (all, File,*)

A filename as the value of the environment variable. The name is converted to an
absolute path.

key (all, String,Y)

The environment variable name.

path (all, Path, *)

A path as the value of the environment variable. Ant converts this to local
conventions, as explained in "Path DataType." For instance, foo.txt is converted into
C:\path\to\file\foo.txt on Windows platforms.

value (all, String, *)

A literal value for the environment variable.

Exactly one of file, path, or value is required.

4.4.1 Example

The following example calls a batch file named deploy.bat. Within the batch file, the
TOMCAT_HOME environment variable is available because of the <env> element:

<property name="tomcat.home" value="/path/to/tomcat"/>

<target name="deploy">
 <!-- Call a deployment script, setting up the TOMCAT_HOME -->
 <!-- environment variable. -->
 <exec executable="deploy.bat">
 <env key="TOMCAT_HOME" value="${tomcat.home}"/>
 </exec>
 </target>

4 Or some other drive letter, depending on where your base directory resides.

Ant: The Definitive Guide

65

4.4.2 Using Environment Variables in Buildfiles

The preceding example shows how you can pass environment variables to system commands
using exec and env. Ant also allows you to use environment variables within your own
buildfiles. This is an excellent way to avoid hardcoding, although it can limit portability.
Because it deals with environment variables, using environment variables in buildfiles is
closely related to the environment DataType. However, the environment DataType is not
used to access environment variables from within Ant. Instead, this use of environment
variables is implemented as a special feature of the property task, which is described in
Chapter 7.

JDK 1.1.x applications can access environment variables using
the System.getenv() method. As of JDK 1.2, however,
System.getenv() is no longer supported. It is deprecated and throws
an Error when called. Sun made the decision to deprecate this method
because environment variables are not available on all platforms
supported by Java. The designers of Ant, however, have implemented
their own support for reading environment variables — but only on
some platforms. Test this feature on platforms you are interested in
before relying on it.

As an example, consider a weakness of the buildfile presented in Example 4-1. Look at this
line:

 <property name="xalan.home" value="C:/java/xalan-j_2_1_0"/>

While this might work on your PC, it is highly unlikely to work on most other developers'
PCs. This is because they probably installed Xalan to a different directory. It is better if your
buildfile requires developers to set the XALAN_HOME environment variable before they run it.
Here are some changes to Example 4-1 that make this possible:

<?xml version="1.0"?>
<project name="arg demo" default="xslt" basedir=".">
 <!-- Set up the 'env' prefix for environment variables -->
 <property environment="env"/>
 <property name="xalan.home" value="${env.XALAN_HOME}"/>

 <!-- Abort the build if XALAN_HOME is not set -->
 <target name="checkXalanHome" unless="env.XALAN_HOME">
 <fail message="XALAN_HOME must be set!"/>
 </target>

 <target name="xslt" depends="checkXalanHome">
 ...
 </target>

</project>

The magic happens in this line:

 <property environment="env"/>

Ant: The Definitive Guide

66

Now, you can reference any environment variable by prefixing the variable name with
"env.". We also added another target that verifies the environment variable is set. If not, it
warns the user and fails the build:

 <target name="checkXalanHome" unless="env.XALAN_HOME">
 <fail message="XALAN_HOME must be set!"/>
 </target>

4.5 FileList DataType

A filelist is a DataType supporting a named list of files, implemented by
org.apache.tools.ant.types.FileList. The files do not have to exist in order to be
included in a filelist. Following are the allowable attributes:

dir (1.4, File, *)

The directory used to compute absolute filenames.

files (1.4, String, *)

A comma-separated list of filenames.

refid (1.4, Reference, N)

A reference to a <filelist> defined elsewhere. The <filelist> being referred to
defines a list of files. This is useful if you wish to define a list of files once, and then
refer to it from several places in your buildfile.

Both dir and files are required, unless refid is specified, in which case neither dir nor
files is allowed.

4.5.1 Example

The filelist DataType was introduced in Ant 1.4, along with the dependset task. (Since
filelist is only used with dependset, we must talk about the dependset task to explain the
filelist DataType). The dependset task compares one or more input files to one or more
output files. If any of the input files are newer, then all of the output files are erased.
Additionally, if any of the input files are missing, all of the output files are erased. Comparing
output files to a set of input files that may not yet exist is why the filelist DataType is
necessary.

Let's illustrate why the combination of the filelist DataType and the dependset task is
valuable. In this example, we are comparing a list of XML and XSLT files to a single HTML
file. The HTML file, employeeDirectory.html, should be erased if any input file is missing or
newer than it.

Ant: The Definitive Guide

67

<?xml version="1.0"?>
<project name="filelist demo" default="xslt" basedir=".">

 <filelist id="stylesheets" dir="."
 files="header.xslt,footer.xslt,body.xslt"/>
 <filelist id="xmlfiles" dir="." files="employees.xml"/>

 <target name="xslt">
 <!-- erase employeeDirectory.html if any of the XML files or
 XSLT stylesheets are newer -->
 <dependset>
 <srcfilelist refid="stylesheets"/>
 <srcfilelist refid="xmlfiles"/>
 <targetfilelist dir="." files="employeeDirectory.html"/>
 </dependset>

 <echo message="Transforming Files..."/>
 ...
 </target>
</project>

employeeDirectory.html is dependent on four files: header.xslt, footer.xslt, body.xslt, and
employees.xml. If any of these files are modified, employeeDirectory.html is erased by the
dependset task. employeeDirectory.html is also erased if any of the input files are missing.

We defined two filelists, one for the XSLT files and another for the XML file. We could
have just as easily defined a single filelist containing all files, although the buildfile is
probably easier to understand if files are logically grouped together by type. We reference
both of these filelists within the dependset task:

<dependset>
 <srcfilelist refid="stylesheets"/>
 <srcfilelist refid="xmlfiles"/>
 <targetfilelist dir="." files="employeeDirectory.html"/>
</dependset>

The <srcfilelist> tags use the refid attribute to refer back to the filelists defined
earlier in the buildfile. The <targetfilelist> tag shows an alternate syntax, allowing the
filelist to be defined inline. If you plan on referring to a filelist more than once in a
buildfile, you should consider the refid approach. Otherwise, it is probably easier to define
the filelist inline.

Although we are talking about the filelist DataType, the XML tags
are called <srcfilelist> and <targetfilelist>. XML tag names
frequently do not match DataType names.

4.6 FileSet DataType

The fileset DataType defines a group of files and is commonly represented by the
<fileset> element. However, many Ant tasks form implicit filesets, which means they
support all fileset attributes and nested elements. Unlike the filelist type, files
represented by fileset must exist. Filesets may also be specified as target-level buildfile

Ant: The Definitive Guide

68

elements (i.e., children of <project>) and referenced by their ids. Following is a list of
fileset attributes:

dir (all, Path, Y)

The base directory for the fileset.

casesensitive (1.4.1, boolean N)

If set to false, the fileset is not case-sensitive when matching filenames. Defaults
to true. Ant versions prior to 1.4.1 use case-sensitive matching.

defaultexcludes (all, boolean, N)

Determines whether to use default excludes. Defaults to true. Default excludes
consists of: **/*~, **/#*#, **/.#*, **/%*%, **/CVS, **/CVS/**, **/.cvsignore,
/SCCS, **/SCCS/, and **/vssver.scc.

excludes (all, String, N)

A comma-separated list of file patterns to exclude. These are in addition to the default
excludes.

excludesfile (all, File, N)

The name of a file containing one exclude pattern per line. These are in addition to the
default excludes.

includes (all, String, N)

A comma-separated list of file patterns to include.

includesfile (all, File, N)

The name of a file containing one include pattern per line.

In addition to the attributes listed, a fileset may also contain the following:

0..n nested patternset elements: <exclude> , <include> , <patternset>
(all); <excludesfile> , <includesfile> . (1.4)

These define which files are included and/or excluded from the fileset. All are
described shortly in Section 4.7. Other than <patternset>, these nested elements are
used in place of their corresponding attributes.

4.6.1 Examples

The following examples produce identical results. Since fileset depends heavily on
patternset, you should continue on and read the "Patternset DataType" section after

Ant: The Definitive Guide

69

studying these examples. The first example uses includes and excludes attributes to select
all .java files in the src directory, excluding any such files underneath any directories named
test:

<fileset id="sources1" dir="src"
 includes="**/*.java"
 excludes="**/test/**/*.java">
</fileset>

The next example uses nested <include> and <exclude> tags in place of the includes and
excludes attributes:

<fileset id="sources2" dir="src">
 <include name="**/*.java"/>
 <exclude name="**/test/**/*.java"/>
</fileset>

By using the nested <include> or <exclude> element, you gain the ability to selectively
include or exclude files based on properties. For instance, you can selectively include using
the following syntax, which is described shortly under "PatternSet DataType":

<!-- Skip unit tests unless the includeTests property is set -->
<exclude name="**/test/**/*.java" unless="includeTests"/>

You may also use a nested <patternset> element to achieve the same results:

<fileset id="sources3" dir="src">
 <patternset>
 <include name="**/*.java"/>
 <exclude name="**/test/**/*.java"/>
 </patternset>
</fileset>

And finally, we define a <patternset> in one place and refer to it in two other places. This is
more useful than the previous example, because it allows you to reuse a common patternset
throughout a buildfile:

<patternset id="non.test.source">
 <include name="**/*.java"/>
 <exclude name="**/test/**/*.java"/>
</patternset>

<!-- later in the same buildfile -->
<fileset id="sources4" dir="src">
 <patternset refid="non.test.source"/>
</fileset>
<fileset id="sources5" dir="othersrc">
 <patternset refid="non.test.source"/>
</fileset>

Ant: The Definitive Guide

70

Include and Exclude Pattern Syntax
Ant uses patterns to include and exclude files. For instance, **/*.java matches all
.java files in any subdirectory. The syntax is straightforward:

* matches zero or more characters. *.java matches Account.java and
Person.java, but not settings.properties.
? matches one character. File?.java matches FileA.java and FileB.java, but
not FileTest.java.
** matches zero or more directories. /xml/** matches all files and directories
under /xml/.

Combinations of patterns are allowed. For instance, a more sophisticated pattern,
com/oreilly/**/*Test.java, matches any of these files:

com/oreilly/antbook/AccountTest.java
com/oreilly/antbook/util/UnitTest.java
com/oreilly/AllTest.java

4.7 PatternSet DataType

While filesets group files together, patternsets group patterns. These are closely related
concepts, because filesets rely on patterns to select files. The <patternset> element may
appear as a target-level buildfile element (i.e., as a child of <project>), and later be
referenced by its id. As shown in the previous examples, it may also appear as a nested
element of <fileset>. Tasks that are implicit filesets also support nested <patternset>
elements.

The <patternset> element supports four attributes: includes, excludes, includesfile,
and excludesfile. These are described in the previous section on filesets. In addition to
these attributes, patternsets allow the following nested elements:

0..n nested <include> and <exclude> elements

These support the following attributes:

name (all, String, Y)

The pattern to include or exclude.

if (all, String, N)

The name of a property. Ant will only use this pattern if the property is set.

unless (all, String, N)

The name of a property. Ant will only use this pattern if the property is not set.

Ant: The Definitive Guide

71

0..n nested <includesfile> and <excludesfile> elements

These support the following attributes:

name (all, String, Y)

Name of a file containing include and exclude patterns, one per line.

if (all, String, N)

The name of a property. Ant will only read the file if the property is set.

unless (all, String, N)

The name of a property. Ant will only read the file if the property is not set.

4.7.1 Examples

We now present two uses of the patternset DataType. The first shows a patternset being
used to copy a related group of files from one directory to another. The second shows a
patternset being used to conditionally include files in a compilation.

4.7.1.1 Copying files

The following is how we can set up a patternset to represent all XML-related filenames in a
directory tree:

<patternset id="xml.files">
 <include name="**/*.dtd,**/*.xml,**/*.xslt"/>
</patternset>

Now we can use the copy task to copy these files from a source directory to a destination
directory:

<copy todir="${deploy.dir}">
 <!-- select the files to copy -->
 <fileset dir="${src.dir}">
 <patternset refid="${xml.files}"/>
 </fileset>
</copy>

4.7.1.2 Conditionally including files

In this next example, we exclude all unit tests unless the includetests property is set:

<?xml version="1.0"?>
<project name="patternset_test_project" default="compile" basedir=".">

 <!-- exclude tests unless the 'includetests' property is set -->
 <patternset id="sources">
 <include name="**/*.java"/>
 <exclude name="**/*Test.java" unless="includetests"/>
 </patternset>

Ant: The Definitive Guide

72

 ...remainder of buildfile omitted

 <target name="compile" depends="prepare">
 <javac destdir="build">
 <!--the directory from which the patternset finds files to compile-->
 <src path="src"/>

 <!-- refer to the patternset which selects the source files -->
 <patternset refid="sources"/>
 </javac>
 </target>

</project>

Now, to include unit tests in the build, we can set the includetests property when invoking
Ant from the command line:

$ ant -Dincludetests=true compile

4.8 FilterSet DataType

The filterset DataType was introduced in Ant 1.4, and allows for the definition of groups
of filters. These filters (implemented by the filter task) perform text substitution in files as
they are moved or copied. This is known as token filtering. The text substitution occurs when
certain tokens are found in the input files. As the files are moved or copied, the tokens are
replaced by text defined in the matching filter. Prior to Ant 1.4, the filter task always used @
characters as token delimiters. filterset allows you to customize the beginning and ending
token delimiters.

The filterset DataType is represented by the <filterset> element. <filterset>
elements may appear as nested content within the copy and move tasks, or as target-level
buildfile elements (i.e., children of <project>). Following are the allowable filterset
attributes:

begintoken (1.4, String, N)

The string marking the beginning of a token that nested filters search for. Defaults to
@.

endtoken (1.4, String, N)

The string marking the end of a token that nested filters search for. Defaults to @.

id (1.4, String, N)

A unique identifier for this filter. This is required when the filter is defined as a target-
level buildfile element and must be referenced later.

refid (1.4, Reference, N)

A reference to a filter defined elsewhere in the buildfile.

Ant: The Definitive Guide

73

A filterset may also contain the following:

0..n nested <filter> elements (1.4)

Each nested <filter> element defines a token and the replacement text. <filter>
requires the following attributes:

token (1.4, String, Y)

Specifies the token to replace, not including the delimiter characters. If this filter is
intended to replace @VERSION@, use VERSION as this attribute value.

value (1.4, String, Y)

Specifies the replacement text whenever the token is encountered.

0..n nested <filtersfile> elements. (1.4)

Each specifies a Java properties file from which to load additional filters. Each line of
the file contains a token, followed by a colon (:), followed by a value. <filtersfile>
requires the following attribute:

file (1.4, File, Y)

The name of the properties file containing filters.

4.8.1 Example

This example target shows how to replace the %COPYRIGHT! and %BUILD_DATE! tokens as
files are copied:

 <target name="tokenFilterDemo" depends="prepare">
 <!-- set up the timestamp -->
 <tstamp>
 <format property="now" pattern="MMMM d yyyy hh:mm aa"/>
 </tstamp>

 <copy todir="build" filtering="true">
 <fileset dir="src">
 <include name="**/*.java"/>
 </fileset>

 <!-- search for %COPYRIGHT! and %BUILD_DATE! -->
 <filterset begintoken="%" endtoken="!">
 <filter token="BUILD_DATE" value="${now}"/>
 <filter token="COPYRIGHT" value="Copyright (C) 2002 O'Reilly"/>
 </filterset>
 </copy>
 </target>

Notice that filtering="true" must be set on the copy task in order for token filtering to
occur. Our filterset consists of two different filters, and we explicitly specify the
begintoken and endtoken because we do not want to use the default @ characters.

Ant: The Definitive Guide

74

Here is a source file before it is copied:

// %COPYRIGHT!
// Built on %BUILD_DATE!

public class Whatever {
 ...
}

And here is what the target file looks like after the copy operation:

// Copyright (C) 2002 O'Reilly
// Built on March 12 2002 03:10 PM

public class Whatever {
 ...
}

Tokens may appear numerous times in each source file; all are replaced. For another example,
see the filter task in Chapter 7.

4.9 Path DataType

The path DataType appears frequently, and is sometimes referred to as a path-like structure.
It may be used as an attribute or a nested element. It is most commonly used to represent a
classpath, although it is also used to represent paths for other purposes. When used as an
attribute, entries in the path are separated by semicolon (;) or colon (:) characters, which are
replaced at build time with whatever path separator character the current platform prefers.

The path DataType, like others, is not always represented by the
<path> XML element. For instance, the javac task accepts nested
<classpath> elements that are implemented by the path DataType.

The path DataType offers a lot more flexibility when used as an XML element, rather than as
an attribute. Following is a list of path attributes:

location (all, File, *)

Represents a single file or directory. Ant expands this into an absolute filename
internally.5

path (all, String, *)

A list of file and pathnames, delimited by ; or :.

refid (all, Reference, *)

A reference to a path defined elsewhere in the current buildfile. This is useful if you
wish to refer to the same path definition from many places in the buildfile.

5 Ant handles the details of converting paths into forms compatible with whatever operating system you are running on.

Ant: The Definitive Guide

75

Both location and path are optional, unless refid is specified, in which case neither
location nor path is allowed. You can't have nested elements when refid is specified.

The path DataType also supports the following nested elements:

0..n nested <pathelement> elements

Defines one or more files to include in the path. Each nested <pathelement> also
supports the location and path attributes, just like the containing path DataType.

0..n nested <fileset> elements

Provides another syntax for including files in the path.

0..n nested <path> elements

Recursively nests paths within other paths.

Here is how a path-likestructurerepresents a path consisting of two JAR files and two
directories. The path is built in the order listed in the buildfile:

<path>
 <pathelement location="${libdir}/servlet.jar"/>
 <pathelement location="${libdir}/logging.jar"/>
 <pathelement path="${builddir}"/>
 <pathelement path="${utilpath}"/>
</path>

The path DataType also supports an abbreviated syntax. For instance, suppose we are using
the <classpath> element within a task to define a path:

<!-- The classpath element is implemented with the path DataType -->
<classpath>
 <pathelement path="${builddir}"/>
</classpath>

This can be abbreviated as follows:

<classpath path="${builddir}"/>

The location attribute works similarly. As a final variation, one or more filesets can be
nested inside path-likestructures:

<classpath>
 <pathelement path="${builddir}"/>
 <fileset dir="${libdir}" includes="**/*.jar"/>
</classpath>

In this example, the fileset includes all .jar files in all directories underneath the directory
specified by ${libdir}.

Ant: The Definitive Guide

76

4.10 Mapper DataType

We conclude this chapter with a discussion of mappers, which is a feature added in Ant 1.3.
mappers define how a set of source files relates to a set of target files. <mapper>6 elements
support the following attributes:

classname (1.3, 1.4, String, *)

The name of the class implementing the mapper. Used for creating custom mappers
when the built-in mappers are not sufficient.

classpath (1.3, 1.4, Path, N)

The classpath used when looking up a custom mapper.

classpathref (1.3, 1.4, Reference, N)

Reference to a classpath defined elsewhere.

from (1.3, 1.4, String, *)

The meaning of this attribute depends on which mapper it is used with. The upcoming
examples show where this is used.

refid (1.3, 1.4, Reference, N)

A reference to another mapper. If specified, this should be the only attribute listed.
This allows you to define a mapper once and use it in several places throughout a
buildfile. The upcoming examples show where this is of use.

to (1.3, 1.4, String, *)

The meaning of this attribute depends on which mapper it is used with.

type (1.3, 1.4, Enum, *)

One of identity, flatten, glob, merge, or regexp. Defines the type of built-in
mapper to use.

Exactly one of the type or classname attributes is required. The from and to attributes may
be required, depending on the mapper.

4.10.1 Example

Let's look at a quick example before we talk about the specific types of mappers. Example 4-2
presents a buildfile that creates a backup copy of all .java files, appending the .bak extension
to each filename.

6 In Ant 1.4.1, the mapper DataType is always represented by a <mapper> XML element. Other DataTypes are not so consistent.

Ant: The Definitive Guide

77

Example 4-2. Backing up files with a glob mapper

<?xml version="1.0"?>
<project name="mapper demo" default="backupFiles" basedir=".">

 <!-- define a mapper for backing up files -->
 <mapper id="backupMapper" type="glob" from="*.java" to="*.java.bak"/>

 <target name="clean">
 <delete dir="bak"/>
 </target>

 <target name="prepare">
 <mkdir dir="bak"/>
 </target>

 <target name="backupFiles" depends="prepare">
 <copy todir="bak">
 <!-- select the files to copy with a fileset -->
 <fileset dir="src" includes="**/*.java"/>
 <mapper refid="backupMapper"/>
 </copy>
 </target>
</project>

The example also shows another usage of the fileset DataType, used by the copy task to
select which files are copied. The copy task is what copies the files. The nested fileset
defines the set of files to be copied. The nested mapper references the mapper created earlier
in the buildfile, as well as specifies how the files are to be renamed as they are copied. As the
files are copied, they are renamed according to the pattern specified by the mapper.

This example used a type of mapper known as a glob mapper, which generates a set of target
filenames based on a simple wildcard pattern that is applied to a set of input file names. There
are several mapper types available. Let's look at each of them.

4.10.2 The Identity Mapper

The identity mapper maps source files to target files with the same name. It is the default
mapper used by the copy task, so you rarely need to define your own identity mapper.
Table 4-2 shows results from the following identity mapper:

<mapper type="identity"/>

Table 4-2. Identity mapper results
Source file Target file
Customer.java Customer.java
com/oreilly/data/Account.java com/oreilly/data/Account.java

4.10.3 The Flatten Mapper

The flatten mapper removes all path information from filenames. This might be useful if you
want to copy a set of files from several different directories into a single target directory.
Table 4-3 shows results from the following flatten mapper:

Ant: The Definitive Guide

78

<mapper type="flatten"/>

Table 4-3. Flatten mapper results
Source file Target file
Customer.java Customer.java
com/oreilly/data/Account.java Account.java

4.10.4 The Glob Mapper

The glob mapper determines target filenames based on simple wildcard patterns. This is
useful when you want to rename groups of files that already have consistent filenames, such
as all those that end in Test.java. The to and from attributes define patterns containing at
most one * character. When a source filename matches the from pattern, a target filename is
created. The to attribute's * is replaced by matching text from the from attribute's *. Table 4-4
shows results from the following glob mapper:

<mapper type="glob" from="*Test.java" to="*UnitTest.java">

Table 4-4. Glob mapper results
Source file Target file
Customer.java none
com/oreilly/data/Account.java none
CustomerTest.java CustomerUnitTest.java
com/oreilly/tests/CustomerTest.java com/oreilly/tests/CustomerUnitTest.java

The "none" text in the first two rows of Table 4-4 indicates that in a copy operation using a
glob mapper, the files that do not map are simply not copied.

4.10.5 The Merge Mapper

The merge mapper maps any set of source filenames to the same target filename, as specified
by the to attribute. The from attribute is ignored. The merge mapper is useful when you want
to compare timestamps of a set of source files against a single target file. This is how the
uptodate task works, as described in Chapter 7. Table 4-5 shows results from the following
merge mapper:

<mapper type="merge" to="oreilly.zip">

Table 4-5. Merge mapper results
Source file Target file
Customer.java oreilly.zip
com/oreilly/data/Account.java oreilly.zip

4.10.6 The Regexp Mapper

The regexp mapper is similar to the glob mapper, but uses regular expressions instead of
simple * characters. The exact syntax of those regular expressions entirely depends on which
underlying regular expression library is being used. The mechanism Ant uses for selecting the
library is described shortly.

Ant: The Definitive Guide

79

A class implementing the org.apache.tools.ant.util.regexp.RegexpMatcher interface
must be provided by the library, regardless of which regular expression library you choose to
use in support of the regexp mapper. Ant includes implementation classes for the following
libraries:

JDK 1.4

Included with J2SE 1.4, available at http://java.sun.com/

jakarta-regexp

Available at http://jakarta.apache.org/regexp/

jakarta-ORO

Available at http://jakarta.apache.org/oro/

To determine which library to use, Ant first looks at the ant.regexp.matcherimpl system
property. If this specifies a class implementing the RegexpMatcher interface, then that library
is used. Otherwise, it tries searching the classpath for a suitable library in the order just listed,
beginning with JDK 1.4. If none is found, the task fails.

Ant: The Definitive Guide

80

Chapter 5. User-Written Tasks
The concept of extending Ant through customization has been and still is its most important
and acclaimed feature. The creators of Ant provide us with a system robust enough to work
with the languages and tools available today and the ability to grow and work with the
languages and tools of tomorrow. For example, tasks exist for working with the C# language,
which did not exist when Ant first appeared in early 2000. Users have written tasks for
working with third-party tools from groupware products, such as StarTeam (a version control
system), to application servers such as BEA's WebLogic or the JBoss Group's JBoss. These
changes and improvements came about with little or no changes to Ant's core processing
engine. Extending Ant without modifying its core engine is very important because it means
the core Ant engine can be improved and modified separately from extension development.
Development in both areas is done concurrently, resulting in modifications being made faster
than had Ant been a monolithic system.

All Ant tasks are Java classes, and any programmer can extend the functionality of Ant by
writing a new Java task class. These are user-written tasks, and take advantage of the same
interface to Ant used by the core tasks shipped with an Ant distribution. The only differences
between a user-written task and a core task are the author and the package location of the task
(and sometimes that's the same!). Otherwise, they both function on the same level playing
field. In this chapter, we'll show you how to extend Ant by writing your own tasks.

5.1 The Need for Custom Tasks

Ant has two tasks, java and exec, which are capable of executing any Java class or
command-line executable on a system. This ability may make you wonder why there is a need
for custom tasks. Technically, you can use these tasks to work with any classes or to run any
programs. As it turns out, some custom tasks do, in fact, wind up being nothing more than an
execution wrapper, running a Java class or program much in the same way the java or exec
tasks would. The difference is that custom tasks work more closely with the Ant engine.
A custom task can provide more detailed messages and handle errors with greater precision.
On the other hand, the java and exec tasks are limited in their ability to handle unforeseen
errors and make detailed announcements to the user. No matter the nature of an event or error,
it's all the same to these tasks, giving you very little control.

A custom task, in most cases, is a better solution to the problem of extending Ant
functionality than is the use of the java or exec tasks. Build errors, events, and messages are
all initiated from tasks and managed by the Ant engine. Ant responds to these events and
works with them in a controlled manner, propagating them to its own listeners or to other,
user-written listeners (see Chapter 6 for more on user-written listeners). Such fine-grained
management of tasks is better for the end users (the software developers who need better
information about how their project's build process takes place). It's also better for other
developers writing custom tasks as they can extend existing tasks, inheriting their abilities and
creating a consistent behavior across a range of related operations. These features alone make
custom tasks a good thing. However, there are other benefits to the use of custom tasks.

Tasks are good at abstracting simple operations and making them more powerful with a
consistent interface and extra functionality. Some Ant tasks even have the ability to handle the
inconsistencies found between some of the commonly used shell functions across platforms.

Ant: The Definitive Guide

81

For example, copying and deleting files and directories across platforms is a pain since the
names and arguments of the commands change from shell to shell and operating system to
operating system. Since it has tasks to abstract the file operations, Ant eliminates this pain and
provides a consistent interface to its user. In Ant, there is only one way to copy or delete a
file, and it works no matter what platform Ant is running on. This is not the only benefit
abstraction provides. Without the limitations of the feature sets in the command-line tools, an
abstracted task increases the feature set available to you. One Window's del command cannot
delete all files ending in .java and leave alone all the files that begin with Abstract. The Ant
task delete cando this, demonstrating greater flexibility than its command-line cousin can.
Even better, it does this on any platform. Task design focuses on a build's needs, never
limiting itself to the features of tools whose design focus on a shell and operating system's
needs.

With the power available in custom task classes, you can improve upon almost any tool. Don't
think of custom tasks as being a Band-Aid™ for fixing Ant's shortcomings. Ant and its task
model is more like Lego™. Adding tasks increases and enhances Ant's feature set, but does
not increase Ant's bulk. Ant remains modular and extendable the entire time.

5.2 Ant's Task Model

Understanding custom tasks means understanding the task model. Ant, being a Java-based
program, uses Java's class hierarchy and reflection capabilities to perform its duties. All Ant
tasks derive, directly or indirectly, from the abstract class org.apache.tools.ant.Task. The
Ant engine manages all task objects at this level, manipulating only Task objects. For the
engine, every task derives from the same class and has the same core methods and properties
as every other task. The combination of XML parsing and a method-naming scheme allows
Ant to use all of Task's subclasses. Additionally, Ant processes tasks in a fixed manner — in
other words, Ant processes every task in a cycle. While understanding this model and process
in detail is not a requirement to writing simple tasks, complex tasks may exhibit undesirable
behaviors unless you understand the entire task model and execution process.

Writing Custom DataTypes
In addition to tasks, Ant's model handles DataTypes as well. An example of
a DataType is the path task. The path task performs no direct action. Instead, it
creates a data set, based on rules and other information given within the XML. As of
Ant 1.4, users technically have the ability to write their own DataTypes. However,
the method used to declare a DataType (the typedef task) is buggy, and does not
work. A fix is expected by Release 1.5.

5.2.1 The Parts of a Task

A task has two faces. To an Ant end user, a task is nothing more than the XML in a buildfile.
You can dissect this XML and identify the parts of a task for that face. To the task
programmer, however, a task looks different. While the XML is still there, it serves only as a
guide for the Java code. The Java code is only the tip of the iceberg. Technically speaking,
there are many other facets to a task.

Ant: The Definitive Guide

82

5.2.1.1 The common superclasses

Deriving from a superclass (which, at some point, derives from Task) is a requirement for all
task classes. The Ant engine strictly operates on Task objects and pays no attention to any of
the additions developers have made to children of the Task class. However, this does not
mean you should ignore the Task class hierarchy. Understanding it helps you as much as
ignoring it hampers your efforts. Task's children not only represent tasks for the buildfile, but
they also represent classes containing functionality useful with other tasks. Sometimes, a child
class isn't even a task. For example, if your task has requirements to use file sets and patterns,
you should extend org.apache.tools.ant.main.taskdef.MatchingTask. This class
implements many of these file set and pattern operations, alleviating the tedious effort of
implementing them yourself. It does you good to stand on the shoulders of powerful giants
such as this and other task classes.

You should know the tasks with designs similar to your requirements. A good example of
efficient re-use in Ant is the zip family of tasks. Since JARs extend the zip-packaging model,
the jar task derives from zip, borrowing most of its functionality and implementing only
JAR-specific operations. Taking it a step further, a WAR (Web ARchive) is a JAR with a
standard directory structure and an additional, required file: the deployment descriptor
web.xml. Hence, the war task derives from jar. In the case of war, the implementation for
creating the standard directory structure and verifying the descriptor file is in the War task
class, with the remaining bits of functionality inherited. Later in this chapter, we'll analyze the
jar task and its hierarchy as an example of a custom task.

5.2.1.2 Attributes

Attributes are the name-value pairs describing a particular XML tag. Programmatically
speaking, Ant parses and loads the attribute name-value pairs from the XML, and passes them
on to the individual task objects. Ant redefines the string values to become primitives, File
objects, or even Class objects. Typically, attribute values represent boolean primitives,
acting as process flags for tasks. For example, the debug attribute for javac is a boolean.
With this flag on, javac compiles classes with debug information. With the flag off, javac
compiles classes normally.

5.2.1.3 Nested elements

Nested elements are, more or less, mutually exclusive alternatives to attributes. They can be
tasks or DataTypes. As with attributes, tasks explicitly handle their nested elements.
Unfortunately, dealing with nested elements is not as simple and straight forward as the
handling of name-value pairs.

The complexity of nested elements can be puzzling because there is no definitive model to
which you can design your use of nested elements. Theoretically, your custom task can take
any task as a nested element. For example, you could treat javac as a nested element.
However, such a nested element won't work until you explicitly handle the use of javac's
corresponding class, Javac. You must be aware of and handle all the quirks of the javac
implementation; no small feat. Even if you do this, javac may perform operations that make
it impossible to for you to use it as a nested element. This is because there is no standard way
to implement tasks. Since nothing stops you programmatically from using a task such as
javac as a nested element, you'll only find out it doesn't work when the build breaks.

Ant: The Definitive Guide

83

Tasks use introspective calls to handle nested elements, just as is done to handle attributes.
The difference is that a nested element's corresponding class has data and functionality all to
itself. Attributes are just name-value pairs. An element needs its class to be instantiated, its
own attributes parsed and processed, and its primary functions to be executed. Errors can
happen at any time during this process.

The difference between attributes and nested elements is better illustrated by comparing and
contrasting a task's use of attributes with its use of nested elements. Consider this copy task:

<copy destdir="newdir/subdir">
 <fileset dir="olddir">
 <include name="**/*.java"/>
 </fileset>
</copy>

The copy task takes the attribute destdir and the nested element <fileset>. The copy task's
handling of destdir is simple. Ant passes the task's class a File object corresponding to the
directory. With one call, the attribute is set. Compare this to how Ant must handle the
<fileset> element. There are three ways Ant can pass the Fileset object to the task's class.
In each case, Ant must put the fileset DataType through the same life cycle as a task (since,
at this level, tasks and DataTypes are identical to the Ant engine). Ant's processing of these
tasks and DataTypes is a recursive process. The point we're trying to make is that Ant's
process for handling DataTypes is much more involved than its process for handling an
element's attributes.

While attributes are easier to use and understand than DataTypes, they are less readable and
less flexible. Paths, for example, make for ugly and hard-to-maintain attributes. Path values
can get long and must change every time the path structure changes. Nested path elements are
more readable and easier to maintain. They're certainly more powerful in terms of how they
represent paths since they can use complex file patterns (e.g., *.* works in the path DataType
but not as a path attribute).

Like everything in life, deciding between implementing a task's attributes and implementing
its nested elements has its trade-offs. Although we gain in maintenance and readability when
using DataTypes, we lose in initial development time versus using attributes. There are many
ways to use nested elements (three method calls, to be exact), and each is prone to mistakes or
odd behaviors that can be difficult to debug. For this reason, some task authors support both
methods, having, for example, a classpath attribute and a classpath nested DataType.

Remember this can be a confusing solution for users, so document your task accordingly.
You'll need to explicitly define what happens if a user specifies both an attribute and a nested
element representing the same data. Ant doesn't know how to determine the difference and
will attempt to operate on both, with undefined consequences.

5.2.2 Communication Between Ant and Tasks

Now that you have an understanding of the various pieces that can go into the makeup of a
task, we can turn our attention towards the mechanisms by which the Ant build engine
communicates with tasks. There are three communication mechanisms that you need to
understand when writing custom tasks:

Ant: The Definitive Guide

84

The Project class

The Project class is available in every task as a public instance variable. The class
represents the entire buildfile and everything contained therein, providing you with
access to all tasks, targets, properties, and other buildfile parts.

Build Exceptions

Build exceptions, implemented via the BuildException class, provide a mechanism
for tasks to signal error conditions to the Ant build engine.

The logging system

A logging system, accessible via the Project class, provides tasks with a way to
display progress information for a user to see.

The next three sections describe each of these mechanisms in detail.

5.2.2.1 The Project class

One class facilitates most of the communication between a task and the Ant engine: the
Project class. The inclusion of this instance variable for the parent Task class1 makes this
communication possible. Use it as you use any instance variable in any task. A lot of power
resides in the Project class, so pay close attention to what it can do, and be aware of
incidents where you may accidentally abuse this power (you wouldn't purposely abuse power,
would you?). Also, keep in mind that some of the clever things you can do with Project may
go away in the next release of Ant. Have a backup design plan or be prepared to maintain
your own version of Ant.

The Project class represents the entire buildfile. This class grants access to every one of a
buildfile's tasks, targets, properties, and even to some of the core settings defining how the
buildfile should execute. Developers rarely use this access, but the functionality and the
ability to use it is there. Primarily, task developers use Project to provide access to the
engine's core auditing system via log method calls.

Additionally, Project defines system-wide constants and global methods for all tasks. The
constants are for system-call parameters, such as for logging. The global methods provide
functionality ranging from translating paths to a native form to providing a boolean translator
for task attributes with boolean values.

Within a task, the Project class' field name is, appropriately enough, project. Here are
some common method calls and constants available through project:

project.getGlobalFilterSet()

Returns a FilterSet object that is global with respect to the build. It is possible to
define a global filter set, excluding or including a set of files for every task that makes

1 Since Ant 1.4, the core component is now the ProjectComponent, not Task. The Project object is now a protected instance variable of
the ProjectComponent class.

Ant: The Definitive Guide

85

a file or directory operation. If your task needs to obey this global filter, you can get it
with a call to project.getGlobalFilterSet(). See the Ant API JavaDoc for more
information on FilterSet.

project.getBaseDir()

Returns the value of the basedir attribute in the <project> element. If your task
needs to perform file operations from or within the project directory, this is the best
way to get the path to that directory.

project.translatePath()

Translates a path to the native format for the operating system being used. Buildfile
authors can write paths and filenames in a generic manner, ignoring differences like
directory separator characters. When your task needs to perform an actual file
operation, you need the native file or directory string to prevent errors. The
translatePath() method in the Project class translates generic paths into
operating system-specific paths. The Project class knows the platform in use, and
translates the filename or directory to the correct format. For example:

File f = new File(dir, project.translatePath(filePath));

This example demonstrates creating a file. The task creating the file doesn't require
any platform-detection code to generate a valid path for the platform used (e.g.,
Windows or Unix). Instead, the task's programmer calls translatePath(), knowing
that it works no matter what platform is under the JVM.

project.toBoolean()

Checks a boolean value. Tasks with Boolean attributes (e.g., a flag) can take values of
yes|no, true|false, or on|off. This is made possible with the method
toBoolean(). This eliminates the need to rewrite this simple string-to-Boolean
method and provides a consistent interface across all tasks. All tasks with flag-like
attributes can use the three combinations of Boolean values. For example,
project.toBoolean("yes") and project.toBoolean("on") both return true.

In addition to using the Project class to get information from the build engine, as we've
demonstrated in this section, you can also use it to send information to the build engine. But
this is a subversive use, and a dangerous one to boot. The Project class holds the keys to
many of the build engine's operations, meaning you could make changes where you see fit.
However, do this only in extreme cases, or, better yet, don't do it at all. We mention this
ability only to be complete in our information, not as a recommendation for implementation.
The safest and best way to communicate to the build engine is with build exceptions and log
messages. This is because the only types of communication a task should make are those of
the informative kind, and not anything that can possibly be destructive. This can mean
providing status messages for runtime feedback or gracefully failing if an error occurs.

Ant: The Definitive Guide

86

5.2.2.2 Build exceptions

Build exceptions are thrown using BuildException classes, and provide a mechanism for a
task to signal error conditions to the Ant build engine. You can throw BuildExceptions from
any point within a task. The engine expects a potential BuildException from every method
call it makes on task objects. Look at this example, which shows a BuildException being
thrown:

 if (!manifestFile.exists()) {
 throw new BuildException("Manifest file: " + manifestFile +
 " does not exist.", getLocation());
 }

If the specified manifest file doesn't exist at the point the task tries to use it, the task enters
into an error state and fails. It informs the Ant engine of this failure by throwing
a BuildException containing an error message and a Location object (retrieved using the
getLocation() method). The Location class contains the name of the buildfile and the line
number the engine is currently interpreting. In a way, it's also a class like Project through
which a task receives communication from the engine. However, most developers confine
the use of information from the Location class to create messages to put in
BuildExceptions.

Throwing a BuildException stops a task immediately. A target is not successful unless all of
its tasks are. With BuildException, Ant knows when to fail a task, its target, and the build.

One exception to the rule that a target is not successful unless all its tasks is the occasional use
of a failOnError attribute within a task. A task using this attribute can avoid throwing
a BuildException, thus allowing the build to continue. Of course, nothing like this is
automatic, and you, as the task author, are responsible for implementing this feature. Here is
some code from the Cvs class showing how to implement failOnError.

The XML:

<cvs failOnError="true"
cvsroot=":pserver:anonymous@cvs.phpwiki.sourceforge.net:/usr/phpwiki"
dest="${src.dir}"/>

The implementation (an excerpt from the Cvs.java source code):

/**
 * The task's instance variable, representing the failOnError flag
 * If true it will stop the build if cvs exits with error.
 * Default is false.
 */
private boolean failOnError = false;

...

// Sets the instance variable through the attribute
public void setFailOnError(boolean failOnError) {
 this.failOnError = failOnError;
}

// some method code, blah blah blah

Ant: The Definitive Guide

87

// Throw a build exception from this method, only
// if the task is supposed to fail
public void execute() throws BuildException {
 // more code...

 // Handle an error, but only throw an exception when
 // failOnError is true
 if(failOnError && retCode != 0) {
 throw new BuildException("cvs exited with error code "+ retCode);
 }
 // more code...
}

Simply put, if the failOnError attribute is false, the Cvs class will not throw a
BuildException and create an error state for a target containing the cvs task. As an aside, it
would be good if, instead of doing nothing, the error condition at least generated some log
message so that the end user knows something is going wrong. For example, a better
implementation is:

// some method code, blah blah blah
// Throw a build exception only if the task is supposed to fail
if(failOnError && retCode != 0) {
 throw new BuildException("cvs exited with error code "+ retCode);
}

if (!failOnError && retCode != 0) {
 log("cvs existed with error code " + retCode);
}

5.2.2.3 The logging system

The Project class allows a task to get system-wide information regarding the buildfile. It
also provides methods to access the build engine's auditing system. These methods are log(
) in various forms. All messages display, depending on an engine-wide setting called the
message level.

Messages display at one of the following five levels, in order of "verbosity":

• ERROR
• WARNING
• INFO
• VERBOSE
• DEBUG

These levels dictate to Ant at which state a message should appear. For example, if you tell
Ant to display only INFO-level messages, all messages sent with ERROR, WARNING, and
INFO settings display in the log. Message-level values are available through the following
public, static fields of the Project class:

Project.MSG_ERR
Project.MSG_WARN
Project.MSG_INFO
Project.MSG_VERBOSE
Project.MSG_DEBUG

Ant: The Definitive Guide

88

The VERBOSE and DEBUG levels are special in that they seem identical, but they're really
not. When running Ant, you can specify VERBOSE and DEBUG-level messages as separate
arguments. Specifying DEBUG-level messages does not result in the display of VERBOSE-
level messages and vice versa.

The log() method sends messages to the registered log listener of a build. The listener then
processes the message strings per its design. The default log listener prints everything to the
console. log() is available in three flavors:

log(message)

In tasks, messages make their way to the log via the Project class's log() method.
By default, a call on log() is an INFO-level (designated by the MSG_INFO
variable) message. The following examples send identical, informative messages to
the build engine at the default level, MSG_INFO.

project.log("This build step has completed successfully with " +
numfiles + " processed");

log("This build step has completed successfully with " + numfiles + "
processed");

As the example shows, there is also a default log() method (defined in the Task
class) so that tasks do not need to even use their Project instance variable. It's a good
idea to use this default log() method since task-level access to the Project class
may go away in some future release of Ant.

log (message, level)

Another version of the log() method takes a second, message-level parameter. This
is useful sending for DEBUG and VERBOSE-level messages. For example:

// Use the project variable's log method to log messages
project.log("For loop to process files begins", Project.MSG_DEBUG);

// Use the log method from Task to log messages
log("For loop to process files begins", Project.MSG_DEBUG);

Note there are two ways to call log(). In addition to the Project class, the Task
class has an implementation of a two-parameter version of log(). You should use
the two-parameter method, log(message,level), from Task whenever you can.

log(message, level, task)

The third version of the log() method from the Project object takes a third
parameter, a Task object. You should not use this call within a user-written task. It is
for use within the build engine; we mention it here only for completeness.

Ant: The Definitive Guide

89

5.3 The Task Life Cycle

Complex tasks, which perform operations on many files, rely on nested tasks, and use multiple
libraries (e.g., the optional ejbjar task), require an in-depth understanding of a task's
relationship with Ant. Consider this a warning. This section delves into the dark and dirty
details involving the life cycle of a task. If you feel that your custom tasks will not meet the
complexity level described here, skip this section and move on to our example. You can
always come back and read this section later. Understanding the engine and the task life cycle
is important for becoming an expert task writer, but it is not a requirement for writing custom
tasks that are relatively simple.

Ant processes all tasks identically. Ant sets attributes and processes nested elements at fixed
intervals. We can predict how a task operates and design it accordingly. A task's life can be
broken down into two primary phases of time: parse-time and runtime. The parse-time phase
begins when Ant reads the task from the XML (think of the engine as interpreting the XML,
element by element). The runtime phase begins when the parse-time phase completes
successfully.

5.3.1 The Parse Phase

Ant parses a task after its XML parser loads the element. The task's name, attributes, and
nested elements are wrapped into a single XML element object and stored in Ant's in-memory
DOM.2 During parse-time, operations can fail if the task XML is poorly formed or if actions
taken within a task's constructor throw exceptions. Here is a detailed list of the actions Ant
performs on a task during parse-time:

1. Instantiate the task's class.

Ant, using the name of the XML element and introspection, instantiates the task's
corresponding class. Keep in mind that the attributes are not set and links back to the
build system (e.g., the project instance variable) are not available at this time.

2. Create references to the project and parent target objects.

Tasks communicate with the task engine using objects made available to them by the
engine. At this time, Ant creates these references, making them available for use.

3. Add id references.

Ant stores, in an internal table, a list of tasks that have the id attribute. This step, when
it occurs, is only important to other tasks and DataTypes. It's especially important to
those tasks and DataTypes performing some form of parallel processing. See
Chapter 7 for more on the parallel task, as this is the only task distributed with Ant
that does parallel nested element processing.

2 If you're confused about programming for elements, DOMs, etc, refer to Java & XML, 2nd Edition (O'Reilly) by Brett McLaughlin.

Ant: The Definitive Guide

90

4. Call init().

The init() method in the task object is now called. Remember that task attributes
are not available at this time. In addition, information your task needs from nested
elements is also unavailable. As a side note, many of the distributed tasks don't
implement this method.

5. Nested elements are parsed and processed using addXXX(), addConfiguredXXX(),
and createXXX() methods.

This is probably the most important (and most difficult) step to understand in the
entire life cycle. Intuitively, you might think that Ant defines and processes task
attributes during parse-time, but this is not the case. Ant does not look at task
attributes until runtime. This also means that the inclusion of unsupported attributes in
the buildfile goes unnoticed until runtime. However, Ant processes nested elements
during parse-time. Therefore, it catches the use of unsupported elements before it
catches the use of any unsupported attributes.

So how does Ant process nested elements? It calls createXXX(),
addConfiguredXXX(), or addXXX() on your task, where XXX is the capitalized
name of the nested element. What is the difference between the createXXX(),
addConfiguredXXX(), and addXXX() methods? It depends on how you plan to use
the nested element and the nature of the element's corresponding object. If your task
needs to instantiate the element object itself, or, if the object has no default
constructor, then use create; think of it as "your task creates the nested object." If
your task needs a reference to an already instantiated object, then use add; think of this
as "Ant adds the object reference to your object." If you need Ant to fully process the
element before it passes the references, use addConfigured; think of this as "Ant adds
the configured object reference to your task object." Review existing task
implementations if these differences still confuse you. Incidentally, Ant calls
createXXX() methods first. If you implement more than one method for a particular
element type, Ant calls them all. The consequences of doing this can be dire, so try not
to do it!

5.3.2 The Runtime Phase

The runtime phase is the moment of reckoning for a task. It begins when the parse-time phase
of the task is successfully complete. Other targets and tasks may have already run successfully
by the time your task enters the runtime phase. While you may wish to rely upon certain
expected behaviors and states set prior to your task's runtime step, resist the temptation! Your
task should operate atomically, and be capable of running as the first or last task of a build.
Here's a list of what happens at task runtime:

1. All the task's attributes are set.

Think of attributes as properties for a task. Ant delivers the values to a task object by
calling the setXXX() method for every attribute, where XXX is the capitalized name
of the attribute. If a set method is missing, Ant errors out and the task and build fail.

Ant: The Definitive Guide

91

2. Process CDATA text from the XML file.

XML gives you the ability to place raw text in a file using the <![CDATA[]]>
construct (i.e., character data). You can send this raw text to your task. Ant calls the
method addText(String msg), passing in a String object representing the character
data from the XML file. Here's an example of a CDATA section:

<taskname>
 <![CDATA[Naturalized language to be displayed by an Ant task]]>
</taskname>

When Ant reads the CDATA section, it calls addText("Naturalized language to
be displayed by an Ant task") on your task. If your task (or its parent) does not
implement the addText() method and you include a CDATA element, the build
fails. There is no default implementation for handling character data.

Many task authors don't use the CDATA feature. Raw character data typically is
useful only in messaging tasks or tasks that must incorporate text that uses no escape
codes. For example, the script task uses CDATA for the actual script text, since
characters like < and [, typical programming language operators, can cause problems
in XML if not placed within a CDATA section.

3. All the nested elements' attributes are set.

Ant parses the attributes of all elements as it reads their XML. However, it doesn't set
attributes until runtime. This applies to all elements, including nested elements of a
task. You rarely need to worry about the state of attributes with your nested elements.
You will likely not use them until your task executes (the next step in this phase), at
which time the attributes are available.

4. execute() is called.

Everything up to this point has primarily been data gathering and validation. With
execute(), your task performs the actions it was designed to do. From this moment
onward, you must handle or raise all error conditions. Ant does not expect a return
error code and will make no more calls to methods on your task.

Again, you don't need to fully understand the task life cycle in order to write a task. Knowing
the life cycle helps you most when you're trying to figure out why a particular thing you're
doing in your task is not working. In rare cases, you may find ways to exploit the life cycle to
have certain things happen. Avoid this if you can. Certain details of how tasks work will not
remain the way they are now and can change with little notice. Unless you plan to maintain
your own internal version of Ant, you can find yourself stuck on a release of Ant, as your task
will work in one version of Ant but not another.

The life cycle is important because it allows Ant to work with tasks consistently. Borrowing
ideas and code from other tasks becomes an easy and common exercise.

Ant: The Definitive Guide

92

5.4 An Example Through Analysis: The jar Task

Now that the theoretical stuff is behind us, let's look at what happens when rubber meets the
road. To develop your own Ant task, write a Java class that implements your design. The
complexity or simplicity of your task is up to you. It's only important that your Java class
conform to the conventions set forth in Ant's object model.

As an example of how to write tasks, we present an analysis of an existing task: jar. The jar
task touches upon all of the topics we need to cover. The Jar task class is part of a deep
hierarchy, demonstrating re-use through inheritance. It derives from Zip, which, in turn,
derives from MatchingTask. The Jar task object does not have its own execute() method
implementation, relying, instead, on that method's implementation in the Zip classes. This
shows how loose some of the requirements are in regards to your own implementations. The
jar task also uses a multitude of attributes and nested elements, giving us good examples of
how to handle all of these features. Using an existing task as an example reinforces the
concept that there is no difference between user-written tasks and those included with the Ant
distribution.

Analyzing jar gives us some insight into how to design a task. It has unique and easy-to-
understand design goals. We have a task design with object re-use that is open for future
extension. War and Ear derive from Jar, obtaining the same benefits. However, we will not
cover every feature and aspect of the real jar task. For further information, take time to look
at the code in the source distribution. Learning more about the implementation of not just the
jar task, but of all tasks, serves to make you a stronger Ant-task developer.

Where to look: The source for Jar, Zip, and MatchingTask is found in
the source distribution of Ant (http://jakarta.apache.org/builds/jakarta-
ant/release/v1.4.1/src). We analyze the jar task with code snippets from
these source files. If you fail to follow some of our decisions or don't
understand how a code snippet fits in with the descriptions, feel free to
follow along with the full source code at hand.

Understand, also, that our analysis is not comprehensive in terms of creating a working task.
We touch upon and explain the major points of designing and writing the jar task, but leave
out implementation details like the handling of input streams for JARs. It's an analysis, not a
tutorial. If you follow this analysis trying to write and compile the code, you will find that
some things won't work. In the conflict between being concise or complete, we chose
conciseness, sacrificing, of course, a full-blown user-written task tutorial. However, our
analysis accurately describes the effort required to write the jar and other tasks. If you need
more detail than we provide, there is no better compliment to learning than the tasks' source
code.

To begin, imagine Ant having no jar task. Without it, our example project from Chapter 2
has no task to create JARs of its classes. Using java or exec to run the command-line jar tool
is too cumbersome and error prone (as discussed in this chapter's introduction).

Ant: The Definitive Guide

93

5.4.1 Design the jar Task

What are the requirements for a task that creates JARs? A good place to start is to the
command-line tool, jar. At a minimum, our task should replicate the JAR-creating features of
the tool (as opposed to all of the tool's features). This distinction is important. We're not re-
implementing the jar tool, we're creating an operation for our build, satisfying only our build's
requirements. The command-line tool only facilitates reaching that goal. Our build requires
that we create JARs, so our task design should focus on JAR creation, nothing more. Should
we later define a need, for example, to unpackage JARs, we would need an implementation of
those features.

The command-line tool creates a zip-compatible archive with a special directory called
META-INF. It places a special file called MANIFEST.MF into this directory. Without going
into too much detail, we describe JARs as smart zip files: archives capable of not only
packaging a set of files into one file, but also having a type of package-descriptor (the
manifest). At a minimum, our task should create JARs and allow the specification of a user-
written manifest file, if one exists.

From a build perspective, our design should allow us to create JARs using large sets of files
from multiple directories and file types. Since a JAR maintains the directory structure of the
classfile locations, we may need to modify how certain groups of files are stored within the
JAR file. Experienced Ant users will identify this with file sets and file patterns. (After this
chapter, you'll be able to identify this too!) Cursory research across existing tasks reveals
some with similar file set designs, such as copy and zip.

Briefly, here are the requirements for our jar task:

Duplicate the command-line tool's JAR creation capabilities

The command-line tool creates JARs given a name, a manifest filename, and a set of
files or directories. Our task should do the same.

Operate across a range of files, directories, and file patterns

Many tasks have the ability to run user-defined file set information as well as user-
defined file patterns. We should be prepared to leverage this functionality.

Add and/or modify the manifest file from XML descriptions.

This is an example of a task expanding beyond the functionality of its equivalent
command-line tool. Rather than maintain a separate manifest file, we allow manifest
settings to be made in-buildfile, using, of course, XML elements.

From our requirements analysis, we should have some idea of what the task syntax looks like
in XML. When you define this syntax for your own tasks, don't be surprised if the design
changes as you go along.

Our task's XML design:

Ant: The Definitive Guide

94

<jar jarfile="somefile.jar"
 manifest="somemanifest.mf"
 basedir="somedir">
 <fileset dir="somedir">
 <include name="**/*.class"/>
 </fileset>
 <manifest>
 <attribute name="SomeAttribute" value="SomeValue"/>
 </manifest>
</jar>

5.4.2 Leverage Prior Work

Assuming that we have exhausted all other efforts to get the build to work without the jar
task, we now know we need to write a custom task. There's one more bit of research we must
perform: we must make sure that we're the first one to do it! Dozens of custom tasks exist,
and Ant distributions contain some, but not all of them. Since Ant 1.4, the Jakarta team has
been maintaining a list on the Ant web site so that users have access to some of the more
commonly used user-written tasks (see: http://jakarta.apache.org/ant/external.html). In
addition to the web site, we should search the Ant mailing lists, the Web, or USENET to find
existing tasks that might implement the functionality we need. In the future, there may even
be a task repository, something similar to Perl's CPAN library system.

We find no existing jar task. Next, we look to existing tasks for those whose functionality
resembles the jar task. In practice, you may not have enough experience to see relationships
between the task you are writing and existing tasks. Review Chapter 7 and Chapter 8 carefully
to determine if a desired task's functionality, or parts of it, exist in some other currently
existing task.

As we mentioned earlier, JARs are simply ZIP files with a manifest file and a different file
extension. Because of this, we look to the zip task for possible reuse. The zip task performs a
similar operation, creating a single packaged file from a set of patterns and rules. In fact, the
operation differs only in the concept of a MANIFEST and in the resulting filename (.zip
versus jar). Decision made! We derive our object from Zip.

Here's our Jar class signature:

package org.oreilly.ant.tasks;

// Need to import it to derive from it
import org.apache.tools.ant.taskdefs.Zip;

/**
 * Implementation class for the <jar> task in Ant.
 *
 * In your task, be sure to show examples of your task in use
 * here. Also, if you plan on having others extend your implementation,
 * describe how some of your methods apply and how your task works in
 * general.
 */
public class Jar extends Zip {
// Implementation code
}

Ant: The Definitive Guide

95

When we derive from Zip, our derived class automatically becomes part of Ant's task
framework. The primary task framework class, org.apache.tools.ant.Task, defines
the rudimentary methods needed by a task.3 These methods, in addition to those you provide
in your task implementation, allow a task to determine the attributes given by the buildfile's
XML element, and determine other properties set in the project.

org.apache.tools.ant.taskdefs.MatchingTask extends org.apache.tools.ant.Task
and implements file and directory methods needed by tasks with those needs. Tasks such as
copy and zip extend from MatchingTask to inherent these methods. Chapter 4 contains
a complete explanation of patterns and file sets.

The key here is to look for re-usability. Having a task object model means tasks with common
sets of functionality can derive from the same parent task object. Leveraging prior work
doesn't just mean looking for code implementations that duplicate effort, but also looking for
objects that compliment effort. This object model is very powerful and explains why Ant has
expanded so quickly in less than two years. Working hard on the design and initial research
pays off in the end. Beneficial changes in the framework benefit all tasks with little or no
maintenance.

5.4.3 Implement the Attribute Setter Methods

Ant sets a task's attributes via a group of setter methods defined by the task author.
The method names follow a convention similar to JavaBeans property setters: set followed
by the capitalized attribute name. The methods must be public visibility and return nothing
to the caller. The parameter is usually a String, but can be any object in the list below, any
primitive (they are converted from the String object), or any user-defined type with
a constructor that takes a String. Valid attribute-setter parameter types are:

String

The most commonly used parameter. Ant passes the raw value from the XML
element's attribute to the setter method.

A File object

If Ant determines the setter method takes a File parameter, it tries to create the File
object relative to the directory set in the <project> element's basedir attribute.

A Class object

If the attribute value is a fully qualified class name, Ant attempts to load it via the
classloader. Within the core and optional Ant 1.4.1 distribution, there is no example of
a task using this behavior.4

3 Remember that, as of Ant 1.4, the real framework class is ProjectComponent, from which DataTypes and Tasks derive. However, Tasks
always derive from org.apache.tools.ant.Task.
4 While theoretical, this technique may have applicable uses. Providing a runtime class instance during the task's execution may be useful with
complex operations that can only be given definition at runtime.

Ant: The Definitive Guide

96

User-defined objects

If your new class has a constructor taking only a String, then you can use your class
in any setter-method signatures. As a rule, it's best to make your class a private
member of your task object. The class' implementation and visibility remains
consistent and restricted to the containing task. This way, you prevent people from
trying to use your object as a task if they see it in some class list from a JAR.

Keep in mind that for our jar task we're not implementing setters for all of the attributes, just
the ones that the zip task doesn't handle, or those zip-attributes that need to be processed
differently (overriding the parent object's setter method). Table 5-1 lists the attributes for our
jar task (see the XML sample for jar shown earlier).

Table 5-1. JAR-specific attributes of the jar task
Attribute
name Description Need to implement in Jar task object?

jarfile Name of the resulting JAR file. Yes, it is not available in the Zip task object.

manifest Name of the manifest file to validate and
include. Yes, it is not available in the Zip task object.

basedir Root directory from which the JARs files
will come from.

No, the Zip task object implements the setter
method for this attribute.

Following is the implementation of the setJarfile() attribute setter method. It takes a
File object as a parameter. Ant detects this through introspection and tries to create a File
object with the attribute value from the XML. Failures in creating a File come from within
Ant itself; you don't have to worry about handling invalid filenames, etc. Also, since we're
borrowing methods from zip, we need only to call zip's setZipFile() method, since that
method sets the task-instance's File object.

/**
 * Set the value of the JAR filename
 * The instance variable is zipFile
 */
public void setJarFile(File pValue) {
 log("Using Zip object 'setZipFile' to identify the JAR filename",
MSG_DEBUG);
 super.setZipFile(pValue);
}

For another example, we'll show a setter of an attribute unique to jar: manifest. Like
setJarFile(), the setManifest() method takes a File object as its parameter:

/**
 * Set the manifest file to be packaged with the JAR
 * The manifest instance variable can be used to add new
 * manifest attribute entries with nested elements of the
 * jar task.
 */
public void setManifest(File manifestFile) {
 // This attribute is a File

Ant: The Definitive Guide

97

 // Check to make sure the file is where it says it is.
 // If it isn't, throw a BuildException, failing the task
 if (!manifestFile.exists()) {
 throw new BuildException("Manifest file: " + manifestFile +
 " does not exist.", getLocation());
 }

 // Set the instance variable of the manifest file object
 this.manifestFile = manifestFile;

 InputStream is = null;
 // load the manifest file. An object to handle manifest files
 // was written by Conor MacNeil and is available with Ant. This
 // object guarantees that the manifest file is properly formatted
 // and has the right default values.
 try {
 is = new FileInputStream(manifestFile);
 Manifest newManifest = new Manifest(is);
 if (manifest == null) {
 manifest = getDefaultManifest();
 }

 manifest.merge(newManifest);
 // Let's log this operation for task developers
 log("Loaded " + manifestFile.toString(), Project.MSG_DEBUG);
} catch (ManifestException e) {
 // ManifestException is thrown from the Manifest object

 // Just like the Manifest object, a custom object exists
 // to warn about manifest file errors.
 log("Manifest is invalid: " + e.getMessage(), Project.MSG_ERR);
 throw new BuildException("Invalid Manifest: " +
 manifestFile, e,getLocation());
} catch (IOException e) {
 // IOException is thrown from any file/stream operation,
 // like FileInputStream's constructor
 throw new BuildException("Unable to read manifest file: " +
 manifestFile, e);
} finally {
 // Since we're done reading the file into an object, let's close
 // the stream.
 if (is != null) {
 try {
 is.close();
 } catch (IOException e) {
 // do nothing but log this exception
 log("Failed to close manifest input stream", Project.MSG_DEBUG);
 }
 }
 }
 }

As noted in the attribute table, we do not need an implementation of the setBasedir()
method.

5.4.4 Implement Nested Element Handling

Implementing code to handle nested elements is the most complicated part of writing tasks.
Similar to attributes, you handle the processing of nested elements via methods with naming

Ant: The Definitive Guide

98

conventions. Ant takes each nested element's corresponding task object and attempts to call
one of three methods. In this case, the method naming convention is addXXX(),
addConfiguredXXX(), and createXXX(), where XXX is the capitalized name of the nested
element (e.g., addFileset() handles a task's <fileset> nested element). Knowing which
method to implement can be difficult and confusing. The subtle differences between the
methods lie in how Ant manipulates the individual nested-element objects. The following list
provides a loose definition of when to implement an addXXX(), addConfiguredXXX(), or
createXXX() method for a nested element. Typically, you will choose the technique that is
best for your needs and implement the corresponding method. Even understanding how the
definitions apply to your needs can be difficult. However, our analysis of the jar task later on
should help clear this up.

addXXX()

When you "add" a nested element, you're telling Ant to instantiate the class before it
calls your addXXX() method. If the nested element's corresponding object has no
default constructor, Ant cannot do this and an error is thrown. If it does, Ant passes the
instantiated nested element object on to your task object where you may deal with the
object as you wish (e.g., storing it in a collection, and so on). We suggest waiting until
the execute phase of your task to actually use nested element objects (i.e., call methods
or extract values on), if only to avoid possible problems with the fact that the nested
elements' attributes are unset.

addConfiguredXXX()

So now you're thinking, "I need to use that nested element before the execute phase!"
Luckily, Ant provides an alternative method for adding objects.
The addConfiguredXXX() methods direct Ant to not just instantiate, but to configure
the nested element object before passing it to the task object. In other words, Ant
guarantees that the attributes and nested elements for the given nested element are set
and processed before it reaches the task object. Since this technically breaks the task
life cycle, there is some danger in using this method, although it's minor in its impact.
Even though Ant configures this element for you, remember that Ant has not finished
configuring the task at hand. You'll find that the parent task's attributes are null
during an addConfiguredXXX() call. If you try to use these attributes, you'll cause
errors, ending the running build. You are limited to which types you can use in your
method parameters. Just like with the addXXX() methods, if the object in question
does not have a default constructor, you can't use the nested elements' objects as
parameters for addConfiguredXXX() methods.

createXXX()

If Ant calls a createXXX() method, it gives complete control of parsing the nested
element to the task object. Instead of passing an object to the task, Ant expects the task
to return the nested element's object. This has some side benefits; most notably, it
eliminates the requirement that nested element objects have default constructors.
The downside is that you are responsible for understanding how the element object
works when it's initialized. You may not have the documentation or source code on
hand, so this can be a formidable job.

Ant: The Definitive Guide

99

These are loose definitions because there is nothing programmatically forcing you to use
them. As long as you have an implementation for one of the three methods corresponding to
the nested element, Ant will be able to use your task and its nested elements. However, as you
look at Ant's source code distribution — specifically, source code for other user-written tasks
— you will notice places where developers defy these definitions, and, in fact, mix them up.
Without any hard and fast rules for writing element-handler methods, there will always be
alternate uses that defy the definitions set forth here.

The jar task requires the ability to specify a set of patterns for including and excluding
various files and directories. It also requires a way to add entries to the JAR's manifest file. In
our design, we chose to implement this ability with nested elements. The first requirement,
pattern handling, is already part of the implementation of the MatchingTask object. The
second requirement, specifying attributes for the manifest file, needs explicit handling in our
implementation of jar. Look again at the task's XML, in particular at the nested elements:

<jar jarfile="test.jar"
 manifest="manifest.mf"
 basedir="somedir">
 <manifest>
 <attribute name="SomeAttribute" value="SomeValue"/>
 </manifest>

 <fileset dir="somedir">
 <include name="**/*.class"/>
 </fileset>
</jar>

From this sample XML, we can make a table (see Table 5-2) of the jar task's nested
elements. We specify their description and note whether the class must implement the related
functionality. Remember that nested elements each have their own corresponding class. We
assume, in this analysis, that those classes are written and working. Their implementations
differ little in concept from the implementation of the jar task.

Table 5-2. Nested elements of the jar task
Nested element
name Description Need to implement in Jar task object?

Manifest Add entries to the JAR's manifest
file.5 Yes, it is not available in the Zip object.

Fileset Create file patterns for inclusion and
exclusion to and from the JAR.

No, the MatchingTask object implements these
methods. Zip inherits from MatchingTask.

5 For more information on JARs and their manifests, see Sun's documentation on the JAR specification.

Ant: The Definitive Guide

100

The JAR Manifest File
Manifest files are a traditionally underused part of the JAR specification. With
a manifest file, you can add descriptions of what an archive contains. Usually, these
descriptions are version numbers or library names. Being able to specify manifest
entries in a buildfile can alleviate the need to manage a manifest file within
the source code itself. In writing the original jar task, the developers provide
a Manifest object that manages manifest information (such as its attributes and their
values) and can write it to disk for inclusion with a JAR. Additionally, the Manifest
object knows about and can process nested <attribute> elements. For our
purposes, we assume this class already exists and is in working order.

Initially, it appears we need Ant to process the <manifest> element during the normal
"nested element" phase. That follows the normal task life cycle. However, waiting to process
the <manifest> element means that the values and data from the element will not be available
until the execute phase of the life cycle. This requires us to actually implement the Jar task
object's execute() method, which we're trying to avoid. We expect to use the Zip object's
execute() method. We need Ant to process the <manifest> element before the execute
phase. Enter the addConfiguredManifest() method (for the Jar class):

 public void addConfiguredManifest(Manifest newManifest)
 throws BuildException {
 if (manifest == null) {
 throw new BuildException();
 }
 manifest.merge(newManifest);
 }

The addConfiguredXXX() family of methods tells Ant to process the element when it is
parsed rather than waiting for the runtime phase. In our case, the newManifest parameter
should be a fully populated Manifest object. The method has nothing left to do but perform
some rudimentary error checks and merge the contents with the existing manifest file. The
existing manifest file comes from the manifest attribute on the jar task. If no current
manifest exists, however, the merge method forces Manifest to create a new one; the method
is a feature of the Manifest object.

File pattern matching is common with many Ant tasks, so understanding its implementation is
very important. You'll rarely have to implement the code to handle file patterns yourself. To
view the full implementation of file pattern matching, review the Zip and MatchingTask
source code inside the Ant source distribution. Here is the implementation of the <fileset>
nested element processing method, addFileset():

 /**
 * Adds a set of files (nested fileset attribute).
 */
 public void addFileset(FileSet set) {
 // Add the FileSet object to the instance variable
 // filesets, a Vector of FileSet objects.
 filesets.addElement(set);
 }

Ant: The Definitive Guide

101

After all that talk about life cycles and nested elements being complex, you thought things
would be more complicated, right? The neat thing about Ant is its heavy reliance on object-
oriented designs and introspection. The nature of object programming means that the designs
are sometimes complex, with the trade-off being ease of coding and code maintenance. The
very concept of the XML tag-to-class relationship is what makes the preceding code segments
short. When you write a task like jar, you can assume the FileSet object takes care of
everything. You need only worry about the nice, well-designed interface.

Since the Jar class needs to maintain a list of FileSet objects, it also needs something to
store them in. Thankfully, Java is rich with collection classes — in this case, we use
a Vector.6 Of course, what we actually do with the Vector of FileSet objects is much
more complicated. Luckily, we only have to write that implementation in one place,
the execute() method; for the jar task, we don't even have to write it ourselves!

5.4.5 Implement the execute() Method

The execute() method implements the core logic of any task. When writing tasks,
implementing the execute() portion of a task is the easiest part. The Ant engine calls
execute() when it reaches the final phase of a task's processing. The execute() method
neither takes arguments nor returns any value. It is the last method Ant ever calls on a task,
so, by this time, your task class should have all the information it needs to do its work.

In an earlier section, we mentioned that Zip implements a perfectly acceptable version of the
execute() method; we don't need to write one for the Jar class. That's not a cop-out on our
part, it's just a good example of efficient code re-use. To explain why we don't have to write
our own execute() method, we'll go ahead and analyze Zip's execute()method. We
won't cover ZIP/JAR-specific operations in our analysis, since we're concentrating on learning
how to write Ant tasks, not how to programmatically build and manage JARs.

We divide the analysis of execute() into three parts: validation, performing the actual
work, and error handling. These are simple and generic ways to describe how to implement a
task's core operations. Keep these parts in mind when writing your own tasks, as it could help
you design a better task. Before getting into the individual parts of the execute() method,
however, let's look at the method signature:

 public void execute() throws BuildException {

There is nothing special here. No parameters or return values to worry about. Errors propagate
via BuildExceptions, just as in all of the other task-interface methods.

5.4.5.1 Validation

The first part of our analysis concerns validation. We need to validate the values of the jar
task's attributes. Additionally, we must test to see if the task needs to run at all, based on the
attributes' values. Valid attributes are non-null, and represent values within the parameters of
how the task uses the attribute. For the most part, this validation takes place within the setter
methods. However, since there is no order in how Ant calls the setter methods (e.g., given six
attributes, it's technically impossible to specify which will get set first), any relational

6 You may be thinking, "Why not a List or ArrayList? Why the synchronized Vector?!?" Ant's design requirements call for compatibility with
JDK 1.1. The collection classes were not added until Java2; hence the use of Vector.

Ant: The Definitive Guide

102

validation between two or more attributes must be made in execute(). All runtime
validation must also take place within execute().

In the following code segment, we check the "required" attributes and elements of the task. In
our case, we need only the basedir attribute and the <fileset> elements.

 if (baseDir == null && filesets.size() == 0) {
 throw new BuildException("basedir attribute must be set, " +
 "or at least one fileset must be given!");
 }

Here, we check to make sure that the name is valid (not null) for the ZIP file — or, in our
case, the JAR file.

 if (zipFile == null) {
 throw new BuildException("You must specify the " + \
 archiveType + " file to create!");
 }

That's all for validation. Not much to it, actually, but these little snippets are great at
preventing future errors. Hours of effort are saved when good validation is part of a task's
implementation.

5.4.5.2 Doing the actual work

The second part of our execute() method analysis concerns the creation of the JAR file
using Ant-provided objects for creating collections of files. Here, we introduce two helper
objects, FileSet and FileScanner. Both represent different ways to store collections of files
and directories, but they are not identical in function. The FileSet object relates directly to
the <fileset> element and its subelements. A FileScanner is an object capable of doing
platform-agnostic analysis of the underlying filesystem. It can compare file sets or other
scanners to itself to determine if files have changed or are missing. Once Ant processes the
<fileset> element, the FileSet object has many powerful methods that extract information
from the populated object.

The following segment uses the base-directory attribute (basedir) and the file sets to create a
list of scanners. In this case, we create a list of scanners to compare against the archive file, if
it exists (e.g., from a previous build). It's an up-to-date check, eliminating unnecessary effort,
if possible. The getDirectoryScanner method comes from MatchingTask.

// Create the scanners to pass to isUpToDate().
Vector dss = new Vector ();

// Create a "checkable" list of the files/directories under the base
// directory.
if (baseDir != null) {
 // getDirectoryScanner is available from the MatchingTask object
 dss.addElement(getDirectoryScanner(baseDir));
}

Ant: The Definitive Guide

103

// Create a "checkable" list of the files/directories
// from the FileSet, using the FileSet's characteristics
// We pass the project object in so the list can include
// global filters set in the project's properties.
for (int i=0; i<filesets.size(); i++) {
 FileSet fs = (FileSet) filesets.elementAt(i);
 dss.addElement (fs.getDirectoryScanner(project));
}

// Create the FileScanner array for the isUpToDate method
int dssSize = dss.size();
FileScanner[] scanners = new FileScanner[dssSize];
dss.copyInto(scanners);

// quick exit if the target is up to date
// can also handle empty archives
if (isUpToDate(scanners, zipFile)) {
 return;
}

The next code segment takes place within a try-catch block, which catches an IOException
and has a finally clause that closes the ZIP archive's file stream. (We analyze the catch
block in the next part our analysis.) This segment adds the files from the file sets and under
the base directory to the input stream that is the ZIP/JAR archive. The implementation of
addFiles isn't that important. It uses the FileSet object to get individual file names and
place them into an InputStream.

try {
// Add the implicit fileset to the archive.
// The base direcory is set via the basedir attribute
if (baseDir != null) {
 addFiles(getDirectoryScanner(baseDir), zOut, "", "");
}

// Add the explicit filesets to the archive.
// addFiles is made available with the Zip object
addFiles(filesets, zOut);
}

The part of the try block providing the actual functionality for creating archive files and
streams is not shown in this chapter. Briefly, it uses its helper objects to create explicit file
lists for the archive file. It cleans up any temporary files and closes the streams and file
objects. If there are any errors, the Zip object must throw a BuildException, causing the
build to fail. That's why the file and stream-related cleanup and closing routines are in the
finally clause. Those files and streams must close, regardless of the error state of the build.
Let's look at that a little more closely in the next section.

5.4.5.3 Error handling

The third part of our analysis concerns error handling. You might assume that our earlier
validation handles all errors, but that's not the case. Since we're dealing with files and
filesystems, the threat of an IOException looms. We communicate errors back to Ant with
BuildException, so everything that represents an error, null objects, and IOException
eventually turns into a BuildException. For accuracy and better communication to the user,
analyze your errors and create descriptive error messages. These are messages that show up in

Ant: The Definitive Guide

104

the build log, so they should be humanreadable while providing a consistent text layout at the
same time so you and other users can run text searches on your logs.

The following snippet is the catch block for the try block shown in the previous section.
Should an IOException occur when manipulating streams or files, the code creates a
descriptive message. This includes showing the results of some tests on the archive file before
it's deleted. The BuildException consists of the message, the original error exception, and
the location. Recall that Ant maintains an object named location as a kind of execution
pointer. It has the line number of the XML and name of the buildfile from which the error
comes from.

} catch (IOException ioe) {
// Some IO (probably file) has failed. Let's check it out.

// Create a descriptive message
 String msg = "Problem creating " + archiveType + ": " + ioe.getMessage(
);

// delete a bogus ZIP file
// This essentially rids us of the partially created zip/jar
 if (!zipFile.delete()) {
 msg += " (and the archive is probably corrupt but I could not "
 "delete it)";
 }

// This functionality deals with updating jars
 if (reallyDoUpdate) {
 if (!renamedFile.renameTo(zipFile)) {
 msg+=" (and I couldn't rename the temporary file "+
 renamedFile.getName()+" back)";
 }
 }

// the message has been built. Send it back to Ant.
 throw new BuildException(msg, ioe, location);
 }

5.4.6 Compile the Task

Compiling a task involves using the current Ant library file, ant.jar, and some rudimentary
package structure for your task. Many people put their custom tasks in the
org.apache.tools.ant.taskdefs.optional package, although there is no requirement by
Ant to do this. Pick a package and project organization that's best for you. Unless you're
writing many tasks, changing the packages later should be an easy operation anyway.

You can always write an Ant buildfile to build your tasks. Here's a small one to get you
started.

<!-- Build the custom tasks in this project directory. We'll
 assume that all the custom task classes are packaged under
 the 'src' directory and that the results will wind up in
 'dist'. Users must change the value for the Ant directory
 and include any further libraries they choose to use with their
 tasks.
-->

Ant: The Definitive Guide

105

<project name="customtasks" basedir="." default="all">
 <property name="src.dir" value="./src"/>
 <!-- Note the absolute directory. CHANGE THIS BEFORE BUILDING -->
 <!-- It would be possible to use environment variables, but we do
 not assume they are set -->
 <property name="ant.dir" value="/opt/ant"/>
 <property name="ant.lib" value="${ant.dir}/lib"/>

 <proptery name="build.dir" value="./build"/>
 <property name="dist.dir" value="./dist"/>

 <!-- Compile all of the task object classes -->
 <target name="all">
 <mkdir name="${build.dir}"/>
 <javac srcdir="${src.dir}"
 destdir="${build.dir}">
 <classpath>
 <fileset dir="${ant.lib}">
 <include name="**/*.jar"/>
 </fileset>
 </classpath>
 </javac>
 <copy todir="${dist.dir}">
 <fileset dir="${build.dir}"/>
 </copy>
 </target>
</project>

This buildfile compiles your custom task objects, found in the subdirectory src and the
corresponding package directories. It then copies the resulting classes into the right package
structure under the dist directory. Once we have the classes, we only need to deploy and
define the task, making it visible to Ant. We use the <taskdef> element for this (see more on
this element in Section 5.4.7).

For this chapter's version of jar, a project setup like the following should work:

mytasks/
build.xml
dist/
build/ (temp build directory)
src/org/myorg/tasks/*.java

Keep it simple. If you're only writing one task, there's no point in going overboard in
managing your task project beyond this directory structure. Once we build the jar task, we
put it into a JAR inside the dist directory.

Between the directory and the buildfile, creating a new JAR with your task(s) should be a
piece of cake. All that's left to do now is deploy the task and make it available for your
buildfiles.

5.4.7 Deploy and Declare the Task

User-written tasks deploy in two ways as open classes or as JARs, the difference being
nothing more than a maintenance preference. To give some comparison, all of the built-in
tasks deploy as a JAR; they are part of the Ant JAR (ant.jar). Within that archive is a file,
defaults.properties. In this, the maintainers declare each task available for Ant by default.

Ant: The Definitive Guide

106

Being a properties file, it's a list of name-value pairs. We can extend that property list to
declare our own custom task.

If you add a task in Ant's source tree, in theory you can modify the default.properties file,
adding your new task. In this case, rather than compile your task separately, you must rebuild
Ant entirely, creating a new Ant JAR. This method is best for system-wide distributions of
Ant, where you need all developers in a team to maintain and use a homogenous development
environment. Your team must maintain its own internal version of Ant, but it's probably
already maintaining other sets of tools, so one more will not be much of a change.

Here is an example. If you want to add the task foo (with the corresponding object
org.apache.tools.ant.taskdefs.optional.Foo) to the core task collection in Ant, open
the file defaults.properties, in src/main/org/apache/tools/ant/taskdefs, and add the line:

foo=org.apache.tools.ant.taskdefs.optional.Foo

As a result, the next time you build Ant, your task's class and its declaration will become part
of the core task list. If you are interested in more details on building Ant, see
docs/manual/install.html#buildingant in Ant's source distribution.

If you do not use the aforementioned method, you must declare a user-written task to Ant with
a <taskdef> element in every buildfile that uses the new task. You may place these elements
at the project level or target level of your buildfile, depending on the functional scope you
desire for each custom task you are declaring. Project-level tasks are available throughout a
buildfile in every target, while target-level tasks are available only within that particular
target. In the case of target-level declarations, the position of the declaration is important. You
cannot use a custom target-level task before you declare it.

Following is an example of a <taskdef> element that defines the task jar and specifies Jar
as the implementation class:

<taskdef name="jar" classname="org.apache.tools.ant.taskdefs.Jar"/>

The <taskdef> element has a set of attributes from which it determines which property set(s)
to use. Typically, you use the name and classname attributes to define the name of the task
(the element name) and its class implementation. You can also specify a resource of, say,
a property file where a list of task names and task classes reside. See the documentation for
taskdef in Chapter 7 for complete details on all of its attributes.

5.5 Miscellaneous Task Topics

Being something that changes every six months, Ant is by no means in a perfect state. Some
of its behaviors are not always immediately obvious. There are quirks, open issues (read:
bugs), and hidden features not in the distributed documentation. The following sections
describe items you need to be aware of when writing your own tasks. If you want to live
dangerously, implement your task, deploy it, and see what happens. When you have
a problem you can't explain, jump back to this section and see if one of these items help.
Some issues, such as System.exit(), will never go away unless the JVM specification
changes. Other problems, such as magic properties, may go away after some new task model

Ant: The Definitive Guide

107

implementation finds its way to release in the future. Of course, you can try to avoid all issues
in the future by implementing a task test.

5.5.1 Magic Properties

Many moons ago, the javac task came to be. Many people said it was good and many others
nodded in agreement. At the time, at least three different compilers were available for the
primary Java platforms (Solaris, Linux, and Windows). These compilers were javac (and its
different compile modes), IBM's jikes, and Symantec's sj. Rather than have the compiler type
defined as an attribute of the <javac> element, the developers decided that there should be a
global setting, affecting all uses of the javac task. This global setting applies to every
occurrence of javac or any related task that derives from the Javac class. For example, with
one line change, an Ant user could switch from jikes to javac. This is good, right? Yes and no.

A global compiler flag is good in that it guarantees consistency in the generated bytecode. On
average, you don't compile one part of your project with jikes and another part with javac. In
practice, a flag such as the compiler flag is a good idea. However, the downside is that it is
all-encompassing. What if you actually want some <javac> elements in the buildfile to use
jikes and others to use javac? Ant's answer would be "tough, you can't." It would not be good
for your task's design to take on the same attitude. So why do we have to worry about magic
properties now, even after we know the consequences?

The implementation that makes magic properties possible depends on what some consider a
design hole in Ant's task model. All tasks have references to the Project object. Simply put,
the Project object is the all-powerful object in the Ant engine. It holds references to all
properties, targets, tasks, DataTypes, etc. With the Project object, any task can see any
property (including magic properties), even if a task is not explicitly stated in the task
element's markup. As long as you use this power in a reasonable, read-only manner,
everything should be fine, programmatically speaking.

To illustrate our point that magic properties are not a good idea, let's look at the problem from
the eyes of a buildfile writer — specifically, in terms of the buildfile's XML markup. In the
XML, tasks are self-contained elements. A task's "scope" begins at its opening tag and ends at
its closing tag. When you introduce properties that affect a task's operation but are defined
outside of the task's opening and closing tags, you break the readability of the XML and
eliminate any visual and intuitive concept of scope.

It is possible to argue that everyday property substitution (for example,
attribute="${some.predefined.property}") is part of the problem we're describing, but
we're talking about something different. Even though you may define a property outside of a
task's scope, or even outside of the buildfile's scope, the place where you use that property is
very apparent in the task's XML markup. Use the property as the value for a task's attribute or
for an attribute of a task's nested elements. In either case, an attribute is a clear indication in
the buildfile of what the property value is for. In contrast, you declare a magic property once
and never mention it again. Nothing forces you to connect the declaration of a magic property
to the task that uses it. Of course, you could always add some XML comments to the
buildfile, but Ant does not force you to write comments. Ant forces you to set an attribute if a
task requires it.

Ant: The Definitive Guide

108

With small buildfiles, you probably won't notice a problem with magic properties. In these
buildfiles, scope is rarely an issue. In large projects, especially those using cascading project
directories and buildfiles, magic properties can cause problems. It's possible to declare a
magic property in the master buildfile, having its value cascade down to the other buildfiles.
In other words, a build's behavior can change because of a not-so-obvious declaration of
properties. This creates confusion and can cause errors that are hard to trace.

With javac, there's nothing you can do short of making changes to the source code and
maintaining your own version of Ant, which is something you probably want to avoid. When
you use javac's magic property, document it well and let your users know why the buildfile
must use one compiler instead of another. When writing your own tasks, avoid referring to
project-level properties at all costs.

5.5.2 The Problem with System.exit()

As with many good things, there are dark linings around the silver clouds. One of these dark
linings is the common misuse of the System.exit() call in Java programs. Copying the C
programming model, Java developers implement many of their programs using
System.exit() to stop execution, either when an unhandled error occurs or when the
program is ordered to stop by the user. The System.exit() call returns an error code back
to the system (more precisely, back to the JVM). Tradition dictates that 0 means success or no
error, and any nonzero value means failure (some programs attach meaning to various
nonzero values). The problem lies in the fact that System.exit() talks to the JVM directly,
regardless of how a class is instantiated or how deep into the call stack a program might be.
People mistakenly think Java programs can handle the exit calls, when, in fact, they cannot.
The JVM handles the exit call, period. So how does this seemingly unrelated problem affect
Ant in general, and you, specifically?

If a task or the classes used by a task call System.exit(), the Ant engine dies because its
JVM dies. Since the effect is similar to turning off a computer (you're "turning off" a virtual
machine, after all), the build stops with no error messages. The build just stops. With regards
to you as a task writer, you should not write a task using a class that you know calls
System.exit().7 If you can't avoid the call, you need to use the exec or java tasks, or
borrow these tasks' implementations for your own task. exec and java fork the JVM process
from Ant's JVM, meaning the System.exit() call is never made inside Ant's JVM. If think
you need to implement something like this, read about the java task and forking in Chapter 7
and in Appendix B. You can always look at the source code for the java task's class, Java.

Calls to System.exit() may be responsible for odd, unexpected behaviors during a build.
For instance, if you use java to call that new XSLT program you found on the Internet and
the build dies unexpectedly during the program's execution, it's likely that a call to
System.exit() within the new XSLT program is your culprit. Just remember, for future
reference, that System.exit() is not your friend. It should exist only in the main()
method of any class, if anywhere.

7 Unless you're absolutely certain you can avoid the method call completely.

Ant: The Definitive Guide

109

Chapter 6. User-Written Listeners
Writing a log is intrinsic to Ant. As you might expect, this functionality is built-in, and always
on by default. What you might not expect is that you can modify the way Ant writes its logs.
In fact, you're not limited to just changing the logging mechanism. You can change the way
Ant behaves during certain steps of a build. Ant provides this wonderful bit of flexibility in
the form of an event model. Those familiar with GUI development have heard this term
before, as GUI programming libraries are the most common libraries to put event models into
practice. The concept of the event model is simple. The Ant engine maintains a list of objects
that have requested to "listen" to the build's various "events." During processing, Ant
announces these events, in the form of BuildEvent objects, to each of its listeners. The
listeners, incidentally, are called BuildListeners. The BuildListener is a Java interface.
Any time you want to write a new listener, implement the BuildListener interface in your
new class and fill in the logic for each of the interface methods.

Writing your own class implementing the BuildListener interface is a straightforward
undertaking, especially if you compare the effort to the effort required for writing an Ant task.
The typical user-written listener turns out to be some form of specialized logger, replacing
Ant's built-in logging mechanism. Knowing this, Ant's developers provide a BuildLogger
class, extending from BuildListener and adding the privilege of being able to write directly
to Ant's log. This is important because users can control Ant's output at build time. By default,
Ant directs its log output to stdout, but it can also direct log output to a log file using the
command-line option -logfile <filename>. If you're writing a BuildLogger instead of just a
BuildListener, your class inherits this ability to use Ant's output, making it easier for
developers to use your new class with their builds. Otherwise, you would force them to
manage Ant's output as well as your class' own output.

Keep in mind that listeners aren't just limited to being replacements for Ant's logging system.
With a listener, you may incorporate Ant-functionality within a bug tracking system such as
Bugzilla, for example. To do this, write a listener to act as a bridge between Ant and Bugzilla.
On one side of this bridge, Ant's build events arrive for processing. The bridge translates the
events and propagates them to Bugzilla, making the appropriate HTTP requests with the
appropriate parameters. Rather than changing the log output, this listener makes changes to
Ant, or, more appropriately, increases its processing abilities. The neat part is neither Ant nor
Bugzilla have designs explicitly meant to integrate one with the other. It's all done using Ant's
listener-producer event system, and it's easy to use.

To provide an example of a BuildListener, we borrow (again) from the Ant source
distribution, taking a close look at the XmlLogger class. As its name implies, this listener
writes logging output, just like the default logger, except it writes the output as XML markup.

6.1 The BuildEvent Class

Ant and all its listeners, including their cousins the loggers, use the BuildEvent class to
communicate. Ant dispatches seven types of events, representing various stages Ant goes
through to process a buildfile. We describe these events in the next section. Note that the
seven types of events are in no way related to the task life cycle.

Ant: The Definitive Guide

110

The BuildEvent class acts as an information container for events passed between Ant and its
listeners. The Ant engine places vital information into a BuildEvent object and passes it on
to its listeners so that they have more information about the build. Sometimes, due to
constraints in implementation and design, Ant might restrict the amount of information in
these objects. There's no pattern to where or why these restrictions occur. Just be aware that
these restrictions exist, so that when you write your own listener, you don't get too frustrated
wondering why, for example, you're not getting a task's name.1

Here are the globally available property methods on the BuildEvent object:

getProject()

Returns the Project object for the running build. This object controls all aspects of
the build, so be careful when using it.

getTarget()

Returns the Target object corresponding to the active target at the time the event is
sent.

getTask()

Returns the Task object corresponding to the active task at the time the event is sent.

The next method is available only when a task, target, or the build has finished:

getException()

Returns the active BuildException thrown at the time of the event. Especially useful
for stack traces.

The next methods are available only when Ant is logging a message:

getPriority()

Returns the priority level for the message. Levels correspond to the logging message
levels stored as public static fields in the Project object. See Chapter 3 for
a summary of the logging levels.

getMessage()

Returns the content of the message for logging. Never assume the code logging the
message has formatted the text in any way.

A listener that you write can use these methods on the BuildEvent objects that Ant passes to
perform all sorts of powerful operations. The Project, Target, and Task objects give your
listener access to detailed information about the build. Tasks are especially good to write

1 You could always dig down into Ant and figure out why you're not getting the information. If it's a case of someone lazily forgetting to add it to
the BuildEvent object, you're more than welcome to fix this problem and submit the change to Ant's maintainers. That's the community
development process!

Ant: The Definitive Guide

111

combined with listeners if you need more control over your build process than XML elements
provide. You can always add more public methods to your task class. Your listener class can
then use these additional methods for added functionality.

6.2 The BuildListener Interface

Ant, via its event framework, tracks a variety of build-processing events using listener classes
implementing the BuildListener interface. The design of the BuildListener interface and
its implementation follows a pattern similar to the AWT2 concept of listeners. In both models,
an engine propagates events, whether the events are system or user-driven. Classes that wish
to receive these events register themselves as listeners (in this case to the Ant engine), usually
making restrictions through interface types on the kinds of events they wish to receive. When
an event occurs, the engine tells all of the listeners that have registered for the event type in
question. Using BuildEvent objects, the Ant engine passes detailed information to the
listeners. This communication model makes Ant the most flexible build system available,
because it doesn't force the user to rely on complicated parsing of Ant's output.

Below are the event types and their corresponding interface methods:

buildStarted(BuildEvent event)

Ant fires the buildStarted event when it begins processing the buildfile. Listeners
implementing this method can perform actions when the build starts.

buildFinished(BuildEvent event)

Ant fires the buildFinished event when it has finished processing. Nothing happens
in the Ant engine after this event. Consider this the final message for any given build.

targetStarted(BuildEvent event)

Ant fires the targetStarted event just before processing a target's first task.

targetFinished(BuildEvent event)

Ant fires the targetFinished event after it has processed the last task of a target. Ant
fires the event regardless of the error state.

taskStarted(BuildEvent event)

Ant fires the taskStarted event just before starting a task's or a DataType's life cycle.

taskFinished(BuildEvent event)

Ant fires the taskFinished event immediately after completing a task's or
a DataType's life cycle. Ant fires the event regardless of the task's or DataType's error
state.

2 Abstract Windowing Toolkit, Java's cross-platform GUI library. Modern GUI's are written using a methodology called event-driven programming.
Rather than continuously processing information, event-driven programs perform actions only when a particular event tells them to.

Ant: The Definitive Guide

112

messageLogged(BuildEvent event)

Ant fires the messageLogged event after any part of Ant calls one of the log methods.
The event parameter contains the message from the method call as well as its priority.

Please take note of the descriptions for taskFinished() and
taskStarted(). The names of these events are a bit misleading since
they refer to tasks. This harks back to the early days of Ant when every
element in the buildfile was considered a task. It would be better to
think of these events as "elementStarted" and "elementFinished,"
meaning that Ant calls these events when it processes any element in the
buildfile, not just tasks.

Whenever you write a class implementing the BuildListener interface, you must, of course,
write implementations for every interface method. This holds true even if you do not plan on
doing anything with a given event. When you don't want to handle an event, leave its interface
method's implementation empty. Ant still calls the method, but nothing happens. The design
of Ant's event model does not require you to resend each event in case you run across an error
or can't handle the event.3 Theoretically, if any errors occur during your listener's processing,
you throw a BuildException. However, if your object happens to be a logger, you handle
things a bit differently. Throwing BuildExceptions from a logger is not good practice. You
cannot make a call to the logging system from the messageLogged() method. Your logger
class would be, in effect, calling itself, resulting in a circular operation and possibly an
infinite loop (assuming the error keeps happening). In order to avoid any possibility of
circular calls and infinite loops, your messageLogged() method needs to display error and
debugging messages directly to the console (e.g., with calls to System.err.println()) or
to some other mechanism that does not involve Ant.

Probably the simplest and most common use of the listener model is for augmenting or
replacing Ant's own logging system. Ant's own default log module is technically a listener,
the class org.apache.tools.ant.DefaultLogger. Through this, Ant takes build events and
sends messages to an output stream; this is, by default, standard output. Barring the occasional
"direct-to-console" messages using System.out.println() calls (used by poorly written
tasks), Ant generates all logging messages via build events. User-written loggers typically
redirect the messages to either different message formats, such as XML, or to different
auditing systems, like Log4J.

In the next section's example, we take a closer look at one such user-written logger: the
XmlLogger. This class augments, rather than replaces the default logger in Ant. The design is
simple. Take all of the build events and use the information available during each event to
create some XML markup. The XML output follows no schema or design. The
implementation is more of a proof-of-concept rather than a useful tool.4

3 As opposed to some event models, such as the original Java GUI library, which require event handlers to propagate messages instead of consuming
them.
4 However, the source distribution ships with a stylesheet that the XML logger references in its output. With this stylesheet, it is possible to transform
the XML output into HTML, SVG, or whatever format you can imagine (and implement).

Ant: The Definitive Guide

113

6.3 An Example: XmlLogger

The XmlLogger source code is included with every source distribution of Ant. If you wish to
follow along with the code, you'll need to download the source distribution.5 The XmlLogger
redirects the normal logging output from Ant and writes it to a file in XML markup. Its
simplicity and wide availability in source form make it a good example for learning how to
write build listeners.

If you're interested in seeing how XmlLogger works, test it with your standard Ant
installation. There's no need to download the source distribution as the XmlLogger class
comes with all binary distributions. Unlike the case when adding tasks, there's no need for
you to declare a listener using markup in the buildfile like <taskdef>. Instead, declare it on
the command line. First, insure the class is visible to Ant. You can do this by adding it to your
system's classpath or by packaging it into a JAR and placing the JAR in ANT_HOME/lib. Then,
specify the listener class as an argument to the ant command. The -listener listenerClass
argument notifies the Ant engine that it must add the specified listener class to the internally
managed list of build listeners. You may specify more than one listener argument, with no
limit on the total number. Well, there's almost no limit. Any command-line byte-length
limitations inherent to your shell still apply. To use the XmlLogger listener, you call ant like
so:

ant -listener org.apache.tools.ant.XmlLogger

Running this command and its argument against a buildfile results in Ant writing the build
messages to the console and to an XML markup file called log.xml. The logger writes the
XML file to the current working directory.

The following code examples show the implementation for three of XmlLogger's interface
methods: taskStarted(), taskFinished(), and messageLogged(). The examples
represent only a portion of the source for the XmlLogger class. Most of the XML-specific
method calls and classes are missing, saving print space, and, hopefully, avoiding any
confusion you might have about what constitutes a logger and what constitutes code for
building XML files. Because some of the code is missing, the example does not compile. The
XML-specific classes and method calls are unimportant for our demonstration purposes.

The TimedElement class, used to manage XML data (and which you'll see in the following
code example), is a private, static class encapsulating an absolute time value (a long class)
and an XML element object (an Element class). Without going into too much detail, think of
the Element class as an object representing an XML element, its attributes, and its nested
elements, if applicable. The following example shows the code for the XmlLogger's
taskStarted() method (ellipses denote places where code has been omitted for clarity):

5 In the source distribution, the source file is located at src/main/org/apache/tools/ant/XmlLogger.java.

Ant: The Definitive Guide

114

package org.apache.tools.ant;

import java.io.*;
import java.util.*;
import javax.xml.parsers.*;
import org.w3c.dom.*;
import org.apache.tools.ant.util.DOMElementWriter;

/**
 * Generates a "log.xml" file in the current directory with
 * an XML description of what happened during a build.
 *
 * @see Project#addBuildListener(BuildListener)
 */
public class XmlLogger implements BuildListener {

...

 static private class TimedElement {
 long startTime;
 Element element;
 }

...

 public void taskStarted(BuildEvent event) {
 // Get the task object from the BuildEvent
 Task task = event.getTask();

 // Create a new <task> XML element with the
 // current time as the start time and the
 // label "task" from TASK_TAG
 TimedElement taskElement = new TimedElement();
 taskElement.startTime = System.currentTimeMillis();
 taskElement.element = doc.createElement(TASK_TAG);

 // Derive the name of the task from the task's class
 // name
 String name = task.getClass().getName();
 int pos = name.lastIndexOf(".");
 if (pos != -1) {
 name = name.substring(pos + 1);
 }

 // Set the attributes of the <task> element and
 // place it into the element stack.
 taskElement.element.setAttribute(NAME_ATTR, name);
 taskElement.element.setAttribute(LOCATION_ATTR,\
 event.getTask().getLocation().toString());
...
 }

When Ant calls XmlLogger's taskStarted() method, XmlLogger takes the BuildEvent
object and uses its information to populate the element's logging XML markup (with
a TimedElement). From the system time, XmlLogger populates the TimedElement's start
time. This is used later in taskFinished() to calculate a total processing time for
the element in question. XmlLogger retrieves the name of the currently executing task and
the physical location (i.e., line number) of the task in the buildfile from the BuildEvent
object (event).

Ant: The Definitive Guide

115

In taskFinished(), XmlLogger uses the event object to get the name of the element Ant
just finished processing. It uses this name to retrieve the already created TimedElement from
a list of elements maintained by the class. Once this object is found, the logger takes this
opportunity to calculate the processing time of the element and set the appropriate attribute.
Following is the code for XmlLogger's taskFinished() method. Again, some code has been
omitted, which is denoted by ellipses:

 public void taskFinished(BuildEvent event) {
 Task task = event.getTask();
 TimedElement taskElement = (TimedElement)tasks.get(task);
 if (taskElement != null) {
 long totalTime = System.currentTimeMillis() –
 taskElement.startTime;
 taskElement.element.setAttribute(TIME_ATTR,
 DefaultLogger.formatTime(totalTime));
...
 }

Next is the messageLogged() method for XmlLogger. Before calling messageLogged(),
Ant has already made a decision about the logging level. It is not up to your loggers to decide
when to display certain messages. XmlLogger's messageLogged() method uses the level
value from the event object to set the proper attribute in the markup. The method then
retrieves the message from the event object and places it into a CDATA field. Therefore, the
resulting XML from the logger presents strings from the build messages in their raw character
format.

 public void messageLogged(BuildEvent event) {
 Element messageElement = doc.createElement(MESSAGE_TAG);

 String name = "debug";
 switch(event.getPriority()) {
 case Project.MSG_ERR: name = "error"; break;
 case Project.MSG_WARN: name = "warn"; break;
 case Project.MSG_INFO: name = "info"; break;
 default: name = "debug"; break;
 }
 messageElement.setAttribute(PRIORITY_ATTR, name);

 Text messageText = doc.createCDATASection(event.getMessage());
 messageElement.appendChild(messageText);

...

}

Message events are slightly different from the other events in that the Ant engine is not the
exclusive originator (as it is with the other build events). The nonmessage events all come
from the Project object as it enters and leaves the elements of a buildfile. Log messages can
come from classes other than Project. These messages still travel through the Ant engine,
making their way out as events passed to messageLogged().

6.4 The Parallel Problem

Ant versions since 1.4 include a task that runs other tasks in parallel. Before 1.4, tasks within
a target ran sequentially — in most cases, this was okay and to be expected. However, targets

Ant: The Definitive Guide

116

that, for example, compile mutually exclusive sets of code or create unrelated directories can
benefit from threading these operations so that they are run simultaneously. Users with
multiple-CPU systems see performance benefits from parallelizing such tasks. Another
benefit of parallelization is for those people who wish to run unit tests against application
servers. Their application servers and tests must run simultaneously, which was not easily
done in Ant before Version 1.4. Unfortunately, for those who write or have written custom
build listeners, parallelization can break their previously working code.

Some build event listeners rely upon certain events occurring in a particular order. For
example, if a listener expects to see a taskFinished() event after the taskStarted()
event for the javac task, the listener would fail or act strangely if two javac tasks were run in
parallel. The second javac may end before the first. Listener code, while watching for the
event saying Ant is finished with the second javac task, may prematurely trigger operations
intended for the first javac task, or vice versa. Consequently, the output from, or operations
of, the listener would be wrong, possibly leading to further problems. If you're ever given a
buildfile using the parallel task, it's best to test your custom listeners to see whether
nonsequential behavior is okay.

XmlLogger is a good example of a listener that handles tasks run in parallel. Let's look at an
execution flow in which XmlLogger listens to the following set of operations from a buildfile:

 <parallel>
 <copy todir="test">
 <fileset dir=".\irssibot-1.0.4" includes="**/*.java"/>
 </copy>
 <mkdir dir="testxml"/>
 <mkdir dir="testxml2"/>
 <copy todir="test">
 <fileset dir=".\oak-0.99.17" includes="**/*.java"/>
 </copy>
 <mkdir dir="testxml3"/>
 </parallel>

Let's assume that the engine, being multithreaded, executes the tasks such that they complete
in the following order:

1. MKDIR(TESTXML)
2. MKDIR(TESTXML2)
3. MKDIR(TESTXML3)
4. COPY(irssibot)
5. COPY(oak)

Because it was written to handle out-of-order events, XmlLogger's resulting XML markup
does not output any elements out of order. The tasks' markup appears in the order listed
above, with their nested elements intact. While there is no "right" way to write a
multithreaded aware listener, XmlLogger shows that some clever foresight in design can
thwart future catastrophes. This foresight makes a listener long-lived, even with the
possibility of future dramatic changes in the task library.

Ant: The Definitive Guide

117

Chapter 7. Core Tasks
This chapter lists core tasks and attributes from Ant Versions 1.2, 1.3, 1.4, and 1.4.1.
Whenever the word "all" appears in reference to a version, it means that all of these versions
of Ant support a given feature. Ant 1.1 is not considered; tasks and attributes that work only
in Ant 1.1 are not described in this chapter.

This chapter is comprised of the following major sections:

Task Summary

Provides a quick summary of Ant tasks

Common Types and Attributes

Describes attribute types, followed by a list of attributes used by all Ant tasks

Project and Target

Describes the syntax of the <project> and <target> elements

Core Task Reference

Describes each of the core Ant tasks

Each task description includes the following information:

• A brief summary of the task
• A list of Ant versions supporting the task
• The name of the Java class implementing the task
• A list of XML attributes for the task
• A description of the allowable content, which is either nested XML elements or text
• Example usage

7.1 Task Summary

Table 7-1 summarizes all of Ant's core tasks. The remainder of this chapter describes each
task in detail.

Table 7-1. Core task summary

Task name Ant
versions Synopsis

ant all Invokes Ant on another buildfile.
antcall all Calls a target in the current buildfile.
antstructure all Creates an XML Document Type Definition (DTD) for Ant buildfiles.
apply 1.3, 1.4 Executes a system command on a set of files.
available all Sets a property if a resource is available.
chmod all Changes permissions on files and directories (Unix platforms only).
condition 1.4 Sets a property if a condition is true.

Ant: The Definitive Guide

118

copy all Copies files and directories.
copydir all Deprecated in Ant 1.2; use the copy task instead.
copyfile all Deprecated in Ant 1.2; use the copy task instead.
cvs all Executes Concurrent Versions System (CVS) commands.
cvspass 1.4 Adds passwords to a .cvspass file; equivalent to the CVS login command.
delete all Deletes files and directories.
deltree all Deprecated in Ant 1.2; use the delete task instead.

dependset 1.4 Manages dependencies between files, removing all target files if any are out-of-
date with respect to their source files.

ear 1.4 Builds Enterprise Application Archive (EAR) files.
echo all Writes a message to the Ant log or a file.
exec all Executes a native system command.
execon all Deprecated in Ant 1.4; use the apply task instead.
fail all Throws a BuildException, causing the current build to terminate.
filter all Sets token filters for the current project.

fixcrlf all Cleans up special characters in source files, such as tabs, carriage returns,
linefeeds, and EOF characters.

genkey all Generates a key in a keystore.
get all Gets a file from a URL.
gunzip all Unzips a GZip file.
gzip all Creates a GZip file.
jar all Creates a JAR file.
java all Executes a Java class.
javac all Compiles Java source code.
javadoc all Runs the JavaDoc utility to generate source code documentation.
mail all Sends email using SMTP.
mkdir all Creates a directory.
move all Moves files and directories.
parallel 1.4 Executes multiple tasks in concurrent threads.
patch all Applies a diff file to originals.
pathconvert 1.4 Converts Ant paths into platform-specific paths.
property all Sets properties in the project.
record 1.4 Logs output from the current build process.
rename all Deprecated in Ant 1.2; use the move task instead.
replace all Performs string replacement in one or more files.
rmic all Runs the rmic compiler.
sequential 1.4 Executes multiple tasks sequentially; designed for use with the parallel task.
signjar all Executes the javasign command-line tool.
sleep 1.4 Pauses the build for a specified interval.
sql all Executes SQL commands using JDBC.
style all Performs XSLT transformations.
tar all Creates a tar archive.
taskdef all Adds custom tasks to the current project.
touch all Updates the timestamp of one or more files.
tstamp all Sets the DSTAMP, TSTAMP, and TODAY properties.
typedef 1.4 Adds a DataType to the current project.
unjar 1.3, 1.4 Expands a ZIP file, WAR file, or JAR file.
untar all Expands a tar file.

Ant: The Definitive Guide

119

unwar 1.3, 1.4 Expands a ZIP file, WAR file, or JAR file.
unzip 1.3, 1.4 Expands a ZIP file, WAR file, or JAR file.

uptodate all Sets a property if one or more target files are up-to-date with respect to
corresponding source files.

war all Creates a Web Application Archive (WAR) file.
zip all Creates a ZIP file.

7.2 Common Types and Attributes

All Ant tasks are written using XML — for instance:

<copy file="logo.gif" todir="${builddir}"/>

In this example, file and todir are attributes. The attribute values, "logo.gif" and
"${builddir}", have specific data types. This section summarizes the allowable data types
for task attributes, followed by a list of attributes common to all tasks.

7.2.1 XML Attribute Conventions

There are many XML attribute listings in this chapter. They take the following form:

attribute_name (version, type, required_flag)

Is a description of the attribute and its function.

In which:

attribute_name

Is the name of the attribute. Use this to refer to the attribute when you specify it for a
task.

version

Indicates the version of Ant supporting this attribute. all means Ant Versions 1.2 and
later.

type

Indicates the type of data that an attribute can hold. For example, String indicates
that an attribute holds textual data. See Table 7-2.

required_flag

Indicates whether a given attribute is required when using the task. If this flag is an
asterisk (*), then see the notes immediately following the list.

Description of attribute

Is a description of the attribute and its function.

Ant: The Definitive Guide

120

Table 7-2 summarizes the attribute types frequently referenced throughout this chapter. In all
cases, text from XML attributes is converted into one of the basic types listed here.
The "Description" column describes how each conversion happens. The "Implemented by"
column lists the Java class that Ant uses to represent each of these attribute types.

Table 7-2. XML attribute type summary
Type name Implemented by Description

boolean N/A

Performs a case-insensitive
string comparison,
converting on, true, and
yes to true. All other
values are false.

Enum org.apache.tools.ant.types.EnumeratedAttribute
Used in cases in which a
fixed set of string values are
allowed.

File java.io.File

Specifies the name of an
individual file or directory.
Unless stated otherwise, file
and directory names are
relative to the project base
directory. Fileset and
filelist, described
shortly, allow you to specify
multiple files.

int,
long,
etc.

N/A

Standard Java type wrapper
classes, such as
java.lang.Integer,
handle conversion from text
in the buildfile to primitive
types.

Path org.apache.tools.ant.types.Path

Most commonly used by
classpath and
sourcepath attributes,
representing a list of paths
separated by : or ;. This is
described in detail under
"Path DataType," in Chapter
4.

Reference org.apache.tools.ant.types.Reference

Commonly used in refid
attributes, and contains a
reference to a type id
defined elsewhere. See the
example for the java task,
which shows how to
reference a classpath defined
elsewhere in the buildfile.

String java.lang.String

This is the most commonly
used type in Ant. Strings
(along with other attributes)
are subject to XML attribute
limitations. For instance, the
< character must be written
as <.

To understand what this table means, consider the following task:

Ant: The Definitive Guide

121

<copy file="src/com/oreilly/ejb/manifest.mf"
 tofile="build/META-INF/manifest.mf"/>

For the copy task, both the file and tofile attributes are of type File. Ant converts the
XML attribute values, which are always character data, into java.io.File objects. This is
useful to know because you need to list valid filenames for these arguments. If you do not, the
build fails. Now, let's look at three attributes available to all of the Ant tasks.

7.2.2 Common Attributes

The following list describes attributes supported by every Ant task. Since these attributes are
available for every task, they are listed once here rather than once for each task.

id (all, String, N)

Unique identifier for a task instance; used with the Reference type.

taskname (all, String, N)

A name for the task instance that shows up in logging output.

description (all, String, N)

Comments about the task.

7.3 Project and Target

The <project> and <target> elements are not tasks; however, they are found in every
buildfile. Each buildfile must contain one <project> element, which in turn contains one or
more <target> elements.

7.3.1 project

The <project> element is found in every buildfile, and is always the root XML element. It
specifies a descriptive name for the buildfile, the default target, and the base directory. It also
contains all of the <target> in the buildfile.

7.3.1.1 Attributes

basedir (all, File, N)

The base directory from which all relative paths in the project are computed. Defaults
to the directory containing the buildfile. And if this attribute is not specified, then you
can set the basedir property when you invoke Ant as follows: ant -
Dbasedir=mydirectory target

default (all, String, Y)

Specifies the target to execute when no target is specified on the ant command line.

Ant: The Definitive Guide

122

name (all, String, N)

A descriptive name for the Ant project. This name is used for documentation purposes
and is displayed when you type ant -projecthelp .

7.3.1.2 Content

0..n nested <description> elements (1.4)

Defines a description of the project for documentation purposes. Each <description>
element contains text content. Multiple descriptions are appended and displayed when
you type ant -projecthelp .

0..n nested <filelist> elements (all)

Defines project-wide filelists that can be referenced throughout the buildfile. See
Chapter 4 for a description of the filelist DataType.

0..n nested <fileset> elements (all)

Defines project-wide filesets that can be referenced throughout the buildfile. See
Chapter 4 for a description of the fileset DataType.

0..n nested <filterset> elements (1.4)

Defines project-wide filtersets that can be referenced throughout the buildfile. See
Chapter 4 for a description of the filterset DataType.

0..n nested <mapper> elements (1.3, 1.4)

Defines project-wide mappers that can be referenced throughout the buildfile. See
Chapter 4 for a description of the mapper DataType.

0..n nested <path> elements. (all)

Defines project-wide paths that can be referenced throughout the buildfile. See
Chapter 4 for a description of the path DataType.

0..n nested <property> elements (all)

Defines project-wide property name-value pairs. See the property task for more
information.

1..n nested <target> elements (all)

Defines named groups of tasks, and dependencies between targets.

Ant: The Definitive Guide

123

0..n nested <taskdef> elements (all)

Adds custom task definitions to the project. See the taskdef task for more
information.

7.3.2 target

Every buildfile contains one or more <target> elements, which in turn contain tasks. The
tasks do the actual work of the build, while the targets define dependencies. This is fully
explained in Chapter 3.

7.3.2.1 Attributes

depends (all, String, N)

A comma-separated list of other targets on which this target depends. Each listed
target is executed in order before this target is executed.

description (all, String, N)

A descriptive name for this target. The description is used for documentation purposes
and is displayed when you type ant -projecthelp .

if (all, String, N)

Specifies the name of a property. This target executes only if the named property is
set.

name (all, String, Y)

The name of this target. The name is how the user executes targets from the command
line, and is used for listing dependencies between targets.

unless (all, String, N)

Specifies the name of a property. This target executes unless the named property is set.

7.3.2.2 Content

Targets may contain nested DataTypes and tasks. DataTypes are described in Chapter 4. Now,
let's look at all of Ant's core tasks.

Ant: The Definitive Guide

124

7.4 Core Task Reference

The remainder of this chapter provides detailed information on Ant's core tasks.

ant all

org.apach.tools.ant.taskdefs.Ant

Invokes Ant on a specific target in another buildfile. This is particularly useful for large
projects that break up the build process into multiple Ant buildfiles, each of which builds a
smaller portion of the overall application.

It instantiates a new Ant project (as an instance of the org.apache.tools.ant.Project
class). The way that properties propagate from the calling project to the new project has
evolved with different versions of Ant. In Ant 1.1, the properties of the calling project are
visible in the new project. If both projects define the same property, the calling project takes
precedence. Ant 1.2 added the ability to specify nested <property> elements as shown later
in this section, and Ant 1.4 added the inheritall attribute.

This task sets the ant.file property in the newly created Project object to the same value
as the calling project, which is the name of the buildfile.

Attributes

antfile (all, String, N)

The name of the buildfile to invoke. Defaults to build.xml.

dir (all, File, N)

The base directory used by the new project; the antfile attribute is relative to the
directory specified by dir. Defaults to the current working directory.

inheritall (1.4, boolean, N)

Controls how properties are passed from the current project to the new project.
Defaults to true, meaning that all properties in the current project are available in the
new project. This is how Ant versions prior to 1.4 work. If set to false, properties
defined in the current project are not passed to the new project unless they are defined
on the ant command line (i.e., exist as "user properties"). Properties explicitly passed
by nested <property> elements are not affected by this attribute, meaning that they
always take precedence over properties in the callee.

output (all, String, N)

The filename to write output to.

Ant: The Definitive Guide

125

target (all, String, N)

The name of the target to invoke in the new project. If omitted, the new project's
default target is invoked.

Content

0..n nested <property> elements (all)

Passes a property to the new build process.

Example Usage

Invoke the default target on util_buildfile.xml in the current directory:

<ant antfile="util_buildfile.xml"/>

Invoke the clean target on build.xml in the gui directory:

<ant dir="gui" target="clean"/>

Invoke another buildfile, passing a new value for the builddir property. The value is
explicitly set to utiloutput even if the property was defined elsewhere in the calling
buildfile:

<ant antfile="util_buildfile.xml">
 <property name="builddir" value="utiloutput"/>
</ant>

See Also

See the property task for allowable attributes on nested <property> elements.

antcall all

org.apache.tools.ant.taskdefs.CallTarget

Invokes a target in the current buildfile. Properties are passed to the new target using nested
<param> elements. An investigation of the Ant source code reveals that antcall instantiates
and calls the ant task using the current buildfile. This means that a new project instance is
created and properties work the same as they do for ant.

Attributes

inheritall (1.4, boolean, N)

Defines how properties are propagated to the new target. Defaults to true, meaning all
properties in the current build process are inherited by the new target. Prior to Ant 1.4,

Ant: The Definitive Guide

126

this was the only behavior. When false, properties set by users on the command line
are the only ones passed to the new target.

target (all, String, Y)

The name of the target to call.

Content

0..n nested <param> elements (all)

Passes a property to the new build process. Each <param> element is implemented
using the same class as the property task; all property attributes are applicable.

Example Usage

Call the cleandir target and specify the dir-to-clean property:

<target name="clean">
 <antcall target="cleandir">
 <param name="dir-to-clean" value="javadocs"/>
 </antcall>
</target>

Delete a directory specified by the dir-to-clean property:

<target name="cleandir">
 <delete dir="${dir-to-clean}"/>
</target>

See Also

See the property task for allowable attributes on nested <param> elements.

antstructure all

org.apache.tools.ant.taskdefs.AntStructure
Creates a
DTD for Ant
buildfiles

Creates an XML Document Type Definition (DTD) for Ant buildfiles. This uses Java
reflection to determine allowable attributes and content for all tasks. Since the underlying
Ant task API does not indicate which attributes are required, the DTD marks all attributes as
#IMPLIED.1

Attributes

1 In DTDs, #IMPLIED means optional.

Ant: The Definitive Guide

127

output (all, File, Y)

The name of the DTD file to generate.

Content

None.

Example Usage

Create project.dtd in the current directory:

<target name="createdtd">
 <antstructure output="project.dtd"/>
</target>

apply 1.3, 1.4

org.apache.tools.ant.taskdefs.Transform

Executes a system command. As of Ant 1.4, the deprecated execon task is merely an alias
for apply. Unlike the exec task, this task requires a nested <fileset> specifying one or
more files and directories as arguments to the command.

Attributes

dest (1.3, 1.4, File, *)

The destination directory for any target files generated by the command.

dir (1.3, 1.4, File, N)

The working directory for the command.

executable (1.3, 1.4, String, Y)

The name of the command to execute. Does not include command-line arguments.

failonerror (1.3, 1.4, boolean, N)

If true, the build fails when the command returns anything other than 0. Defaults to
false.

newenvironment (1.3, 1.4, boolean, N)

If true, do not propagate existing environment variables to the new process. Defaults
to false.

os (1.3, 1.4, String, N)

Ant: The Definitive Guide

128

A list of operating systems this task applies to. Executes only if the list contains a
string matching the return value from System.getProperty("os.name").

output (1.3, 1.4, File, N)

A file to redirect the command output to.

outputproperty (1.4, String, N)

The name of a property that stores the command output.

parallel (1.3, 1.4, boolean, N)

If true, the command is executed once, passing all files as arguments. If false, the
command is executed once for each file. Defaults to false.

skipemptyfilesets (1.4, boolean, N)

If true, do not execute the command if no source files are found, or if source files are
up-to-date with respect to destination files. Defaults to false.

timeout (1.3, 1.4, int, N)

The number of milliseconds to wait before stopping the command. Waits infinitely if
not specified.

type (1.3, 1.4, Enum, N)

Determines if names of plain files or directories are sent to the command. Allowable
values are file, dir, or both. Defaults to file.

vmlauncher (1.4, boolean, N)

Specifies whether to attempt using the JVM's built-in command launcher, rather than
an antRun script. Defaults to true.

dest is required if you specify a nested <mapper>.

Content

0..n nested <arg> elements (1.3, 1.4)

Defines command-line arguments.

0..n nested <env> elements (1.3, 1.4)

Specifies environment variables to pass to the command.

1..n nested <fileset> elements (1.3, 1.4)

Ant: The Definitive Guide

129

Specifies which files and directories are passed as arguments to the command. Unless
the <srcfile> element is specified, files are appended to the end of the command
line.

0,1 nested <mapper> elements (1.3, 1.4)

When defined, compares timestamps of target files to timestamps of source files.

0,1 nested <srcfile> elements (1.3, 1.4)

When present, controls where files specified by the <fileset> elements are placed on
the command line. The <srcfile> element does not have any attributes, and is placed
between the appropriate <arg> elements.

0,1 nested <targetfile> elements (1.3, 1.4)

This element is only allowed when a <mapper> element and the destdir attribute are
specified. It has no attributes, and is used to mark the position of target filenames on
the command line. It works the same as the <srcfile> element.

Example Usage

Show the contents of build.xml using the type command — only if running Windows 2000:

<!-- Set vmlauncher="false", otherwise this fails when using
 JDK 1.4beta1 on Windows 2000 -->
<apply executable="type" vmlauncher="false" os="Windows 2000">
 <fileset dir=".">
 <include name="build.xml"/>
 </fileset>
</apply>

See Also

See the exec task for another way to execute system commands, particularly when you do not
want to pass a list of filenames to the command. See Chapter 4 for more information on
<arg>, <env>, <fileset>, and <mapper>.

available all

org.apache.tools.ant.taskdefs.Available

Conditionally sets a property if a resource is available at runtime. The resource can be a
class, file, directory, or Java system resource. If the resource is present, the property is set to
true, or whatever the optional value attribute is set to. Otherwise, the property is not set.

Attributes

Ant: The Definitive Guide

130

classname (all, String, *)

A Java class name to look for, such as com.oreilly.book.Author.

classpath (all, Path, N)

The classpath to use when looking up a class name or resource.

classpathref (all, Reference, N)

A reference to a classpath defined elsewhere in the buildfile.

file (all, File, *)

The name of a file to look for.

filepath (1.4, Path, N)

The path of the file.

property (all, String, Y)

The name of the property this task sets if the resource is found.

resource (all, String, *)

A Java resource to look for. For more information on what constitutes a resource, see
the various getResource() methods in java.lang.ClassLoader.

type (1.4, String, N)

Specifies what the file attribute represents. In Ant 1.4, legal values are "file" or
"dir". If not specified, the file attribute represents either a file or directory.

value (all, String, N)

The value assigned to the property if the resource is found. Defaults to "true".

One of classname, file, or resource is required.

Content

0,1 nested <classpath> elements (all)

Path element used in place of the classpath attribute.

0,1 nested <filepath> elements (1.4)

Ant: The Definitive Guide

131

Path element used in place of the filepath attribute.

Example Usage

The following example sets the Servlet23.present property to true if Version 2.3 or later
of the Java servlet API is available on the classpath:

<available classname="javax.servlet.ServletRequestWrapper"
 property="Servlet23.present"/>

This works because the javax.servlet.ServletRequestWrapper class was not included in
earlier versions of the servlet API.

chmod all

org.apache.tools.ant.taskdefs.Chmod

Changes permissions on one or more files, just like the Unix chmod command. This task
only works on Unix platforms.

Attributes

defaultexcludes (all, boolean, N)

Determines whether to use default excludes, as described in Chapter 4 under "FileSet
DataType." Defaults to true.

dir (all, File, *)

The directory holding files whose permissions will be changed.

excludes (all, String, N)

A comma-separated list of file patterns to exclude. These are in addition to the default
excludes.

excludesfile (all, File, N)

The name of a file containing one exclude pattern per line.

file (all, File, *)

The name of a file or directory to change permissions on.

includes (all, String, N)

Ant: The Definitive Guide

132

A comma-separated list of file patterns to include.

includesfile (all, File, N)

The name of a file containing one include pattern per line.

parallel (all, boolean, N)

If true, change permissions of all files using a single chmod command. Defaults to
true.

perm (all, String, Y)

The new permissions to apply, such as g+w.

type (all, Enum, N)

Determines if names of plain files or directories are sent to the command. Allowable
values are file, dir, or both. Defaults to file.

Exactly one of dir or file must be specified, or at least one nested <fileset> element.

Content

0..n nested patternset elements: <exclude> , <include> , <patternset>
(all); <excludesfile> , <includesfile> (1.4)

Used in place of their corresponding attributes, these specify the set of included and
excluded source files.

0..n nested <fileset> elements (all)

Specifies which files and directories are passed as arguments to the command.

Example Usage

Change the permissions to read-only (444) for all HTML files in the JavaDoc output tree:

<chmod perm="444">
 <fileset dir="${javadocs}">
 <include name="**/*.html"/>
 </fileset>
</chmod>

condition 1.4

Ant: The Definitive Guide

133

org.apache.tools.ant.taskdefs.ConditionTask

Sets a property if a condition is true. This task combines basic Boolean expressions with
the available and uptodate tasks.

Attributes

property (1.4, String, Y)

The name of a property to set if the condition is true. If the condition is false, the
property is not set.

value (1.4, String, N)

The value assigned to the property if the condition is true. Defaults to true.

Content

The following elements are considered to be conditions. Exactly one condition must be nested
directly within this task. These, in turn, may contain other nested conditions as outlined here.

<not>

Contains exactly one nested condition, negating its result. Does not have any
attributes.

<and>

Contains any number of nested conditions, evaluating to true if all nested conditions
are true. Conditions are evaluated left-to-right, and evaluation stops if a condition
evaluates to false.2 Does not have any attributes.

<or>

Contains any number of nested conditions, evaluating to true if any nested condition
is true. Conditions are evaluated left-to-right, and evaluation stops when a condition
evaluates to true.3 Does not have any attributes.

<available>

Identical to the available task, except its property and value attributes are ignored.

<uptodate>

Identical to the uptodate task, except its property and value attributes are ignored.

2 This is the same behavior as Java's && operator.
3 This is the same behavior as Java's || operator.

Ant: The Definitive Guide

134

<os>

Evaluates to true if the current operating system is of a given type. This element has
an optional family attribute of type String. Legal values are windows, dos, mac, and
unix. The dos attribute includes OS/2 as well as Windows systems. When family is
not specified, this condition evaluates to false.

<equals>

Evaluates to true if two Strings are equal. Does not allow nested conditions.
The two Strings are specified using the arg1 and arg2 required attributes.

Example Usage

This example sets the Environment.configured property to true if Version 2.3 of the
servlet API and Version 1.1 of JAXP are on the classpath, and if the version of Java is any
one of those listed.

<condition property="Environment.configured">
 <and>
 <!-- test for servlet version 2.3 -->
 <available classname="javax.servlet.ServletRequestWrapper"/>
 <!-- test for JAXP 1.1 -->
 <available classname="javax.xml.transform.TransformerFactory"/>
 <or>
 <equals arg1="${java.version}" arg2="1.3.0"/>
 <equals arg1="${java.version}" arg2="1.4.0-beta"/>
 <equals arg1="${java.version}" arg2="1.4.0"/>
 </or>
 </and>
</condition>

The entire example is equivalent to: (servlet 2.3 is available) AND (JAXP 1.1 is available)
AND ((Java=1.3.0) OR (Java=1.4.0-beta) OR (Java=1.4.0)).

copy all

org.apache.tools.ant.taskdefs.Copy

Copies files and directories to new locations. A file is copied when the destination file does
not exist or when the source file is newer than the destination.

Attributes

file (all, File, *)

Specifies a single file to copy. Use nested <fileset>s to copy multiple files.

filtering (all, boolean, N)

Ant: The Definitive Guide

135

If true, token filtering (see the filter task) using any global buildfile filters takes
place. Nested filters that are specified using <filterset> are always applied,
regardless of this attribute. Defaults to false.

flatten (all, boolean, N)

If true, the directory structure of the source files is not preserved, and all files are
copied to a single destination directory. You can achieve the same results using a
nested <mapper>. Defaults to false.

includeemptydirs (all, boolean, N)

If true, empty directories are also copied. Defaults to true.

overwrite (all, boolean, N)

If true, files are copied even when destination files are newer. Defaults to false.

preservelastmodified (1.3, 1.4, String, N)

If true, destination files are given the same last modified timestamp as source files.
Defaults to false.

todir (all, File, *)

The destination directory to which files are copied.

tofile (all, File, *)

The destination file, applicable only when a single file is copied using the file
attribute.

Either the file attribute must be set, or at least one nested <fileset> must be specified.
When the file attribute is set, either the todir or tofile attribute is required. When nested
<fileset> elements are used, only todir is allowed.

Content

0..n nested <fileset> elements (all)

Selects files to copy. The todir attribute is required when <fileset>s are present.

0..n nested <filterset> elements (1.4)

Defines token filters for text substitution as files are copied. See the filter task for
more info.

0,1 nested <mapper> elements (1.3, 1.4)

Ant: The Definitive Guide

136

Defines how filenames are transformed when copied. By default, an identity
transformation is performed, meaning that filenames are not modified.

Example Usage

This example copies all Java source files to a new directory, replacing all occurrences of
@VERSION@ with the value of app.version.

<copy todir="${builddir}/srccopy">
 <fileset dir="${srcdir}">
 <include name="**/*.java"/>
 </fileset>
 <filterset>
 <filter token="VERSION" value="${app.version}"/>
 </filterset>
</copy>

See Also

See Chapter 4 for more information on <fileset> and <mapper>. See the filter task for
information on the <filterset> element and token filtering.

copydir

This task was deprecated in Ant 1.2. Use the copy task instead.

copyfile

This task was deprecated in Ant 1.2. Use the copy task instead.

cvs all

org.apache.tools.ant.taskdefs.Cvs

Executes CVS commands. CVS is an open source version control system, available at
http://www.cvshome.org/.

For information about CVS, see the CVS Pocket Reference by Gregor N. Purdy (O'Reilly).

Attributes

Ant: The Definitive Guide

137

command (all, String, N)

The name of the CVS command. Defaults to checkout.

cvsroot (all, String, N)

Specifies where the repository is located. Equivalent to the CVSROOT environment
variable.

date (all, String, N)

Specifies that this command applies to files up to and including the specified date.
Equivalent to the -D CVS option.

dest (all, File, N)

Specifies where to put checked-out files. Defaults to the project base directory.

error (all, File, N)

A file for logging standard error output from the CVS command. Defaults to the Ant
log using the MSG_WARN log level.

noexec (all, boolean, N)

When true, do not do anything that modifies the filesystem. Equivalent to the -n CVS
option. Defaults to false.

output (all, File, N)

A file for logging standard output from the CVS command. Defaults to the Ant log
using the MSG_INFO log level.

package (all, String, N)

Specifies the CVS module to retrieve.

passfile (1.4, File, N)

The name of a CVS password file. Defaults to ~/.cvspass.

port (1.4, int, N)

The port number CVS uses to communicate with a server. Defaults to 2401.

quiet (all, boolean, N)

Ant: The Definitive Guide

138

When true, CVS output is less verbose. This is equivalent to the -q CVS option.
Defaults to false.

tag (all, String, N)

Specifies a CVS tag name. Equivalent to the -tag CVS option.

Content

None.

Example Usage

This simple example displays the version of CVS:

<cvs command="-version"/>

This next example checks out all files in the antbook module with the release1.1 tag,
placing the checked-out files in the directory specified by ${builddir}. This hints at how
CVS makes it possible to rebuild previous versions of software packages:

<cvs dest="${builddir}"
 cvsroot=":local:C:\cvsrepository\cvsroot"
 tag="release1.1"
 package="antbook"/>

See Also

The cvspass task.

cvspass 1.4

org.apache.tools.ant.taskdefs.CVSPass

Updates the .cvspass file. This is equivalent to executing the cvs login command.

Attributes

cvsroot (1.4, String, Y)

Specifies where the repository is located. Equivalent to the CVSROOT environment
variable.

passfile (1.4, File, N)

Specifies the name of the password file. Defaults to the .cvspass file in the user.home
directory.

password (1.4, String, Y)

Ant: The Definitive Guide

139

The password to add.

Content

None.

Example Usage

This example adds the anttester password to the .cvspass file in the current user's home
directory:

<cvspass cvsroot=":local:C:\cvsrepository\cvsroot" password="anttester"/>

See Also

The cvs task.

delete all

org.apache.tools.ant.taskdefs.Delete

Deletes one or more files and directories.

This is the most dangerous task in Ant. You can very easily erase your
entire project with a single tag: <delete dir="."/>.

Attributes

defaultexcludes (all, boolean, N)

Determines whether to use default excludes, as described in Chapter 4 under "FileSet
DataType." Defaults to true.

dir (all, File, *)

The directory to delete, including all its files and subdirectories. Somewhat
surprisingly, this attribute has nothing to do with the file attribute or nested
<fileset>. Specifically, it does not specify the directory where a file given in the
file attribute is found. Instead, this attribute tells the task to "brutally" delete an
entire directory tree.

excludes (all, String, N)

A comma-separated list of file patterns to exclude. These are in addition to the default
excludes.

excludesfile (all, File, N)

Ant: The Definitive Guide

140

The name of a file containing one exclude pattern per line.

failonerror (1.4, boolean, N)

If true, the build process fails when this task fails. Defaults to true.

file (all, File, *)

The name of a file to delete.

includeemptydirs (1.3, 1.4, boolean, N)

If true, directories are deleted even if they are empty. Relevant only when using
nested <fileset>s. Defaults to false.

includes (all, String, N)

A comma-separated list of file patterns to include.

includesfile (all, File, N)

The name of a file containing one include pattern per line.

quiet (1.3, 1.4, boolean, N)

If true, do not fail if a file or directory cannot be deleted. Defaults to false.

verbose (all, boolean, N)

When true, show the names of files as they are deleted. Defaults to false.

At least one of either dir or file is required, or a nested <fileset>.

Content

0..n nested patternset elements: <exclude> , <include> , <patternset>
(all); <excludesfile> , <includesfile> (1.4)

Used in place of their corresponding attributes, these specify the set of included and
excluded source files.

0..n nested <fileset> elements (all)

Selects files to delete. Deletes only empty directories when includeemptydirs=true.

Example Usage

Ant: The Definitive Guide

141

Here is a common target found in just about every Ant buildfile. It deletes the build directory
and all of its contents:

<target name="clean" description="Remove all generated code">
 <delete dir="${builddir}"/>
</target>

deltree

This task was deprecated in Ant 1.2. Use the delete task instead.

dependset 1.4

org.apache.tools.ant.taskdefs.DependSet

Manages dependencies between files, removing all target files if any are out-of-date with
respect to a group of source files. This task does not perform a positional, file-by-file
timestamp comparison. Instead, it compares the most recent timestamp from the group of
source files to the most recent timestamp from the group of all target files.

Attributes

None.

Content

Requires at least one of either <srcfileset> or <srcfilelist>, as well as at least one
<targetfileset> or <targetfilelist>. The fileset elements are used when missing files
are not important. When using filelists, on the other hand, any missing files cause all
target files to be removed.

0..n nested <srcfileset> elements (1.4)

All files in this fileset are compared against all files specified by the
<targetfileset> and <targetfilelist> elements.

0..n nested <srcfilelist> elements (1.4)

All files in this filelist are compared against all files specified by the
<targetfileset> and <targetfilelist> elements.

0..n nested <targetfileset> elements (1.4)

All files in this fileset are compared against all files specified by the <srcfileset>
and <srcfilelist> elements. If any are older, all are deleted.

Ant: The Definitive Guide

142

0..n nested <targetfilelist> elements (1.4)

All files in this filelist are compared against all files specified by the
<srcfileset> and <srcfilelist> elements. If any are older, all are deleted.

Example Usage

This example erases all .class files in the build directory if the Ant buildfile or any one of the
.java files are newer than any of the .class files.

<dependset>
 <srcfileset dir="${basedir}" includes="build.xml"/>
 <srcfileset dir="${srcdir}" includes="**/*.java"/>
 <targetfileset dir="${builddir}" includes="**/*.class"/>
</dependset>

See Also

The fileset and filelist types are described in Chapter 4.

ear 1.4

org.apache.tools.ant.taskdefs.Ear

Creates Enterprise Application Archive (EAR) files. Although the jar task is also capable
of creating EAR files, the ear task simplifies the process. EAR files are the deployment
mechanism for J2EE applications, and are little more than JARs consisting of well-defined
directories and files.

Attributes

appxml (1.4, File, Y)

Specifies the location of the deployment descriptor, which is always renamed to
META-INF/application.xml in the generated EAR file. The source file does not have
to be named application.xml.

basedir (1.4, File, N)

Specifies the base directory from which to add files to the EAR file.

compress (1.4, boolean, N)

If true, compress the EAR file. Defaults to true.

defaultexcludes (1.4, boolean, N)

Determines whether to use default excludes, as described in Chapter 4 under "FileSet
DataType." Defaults to true.

Ant: The Definitive Guide

143

earfile (1.4, File, Y)

Specifies the name of the EAR file to create.

encoding (1.4, String, N)

Specifies the character encoding for filenames inside the EAR file. Defaults to UTF-8.
The Ant specification warns that changing this attribute probably renders the EAR file
unusable by Java.

excludes (1.4, String, N)

A comma-separated list of file patterns to exclude. These are in addition to the default
excludes.

excludesfile (1.4, File, N)

The name of a file containing one exclude pattern per line.

filesonly (1.4, boolean, N)

If true, do not create empty directories. Defaults to false.

includes (1.4, String, N)

A comma-separated list of file patterns to include.

includesfile (1.4, File, N)

The name of a file containing one include pattern per line.

manifest (1.4, File, N)

The name of the manifest file to use.

update (1.4, boolean, N)

If true, update the existing EAR file when changes are made, rather than erasing and
creating it from scratch. Defaults to false.

whenempty (1.4, Enum, N)

The behavior used when no files match. Legal values are fail (abort the build), skip
(don't create the EAR file), or create. Defaults to create, meaning create an empty
EAR file when no files are present.

Ant: The Definitive Guide

144

Content

0..n nested patternset elements: <exclude> , <include> , <patternset>
(all); <excludesfile> , <includesfile> (1.4)

Used in place of their corresponding attributes, these specify the set of included and
excluded source files.

0,1 nested <metainf> elements (1.4)

Defines a fileset containing all files placed in the META-INF directory of the EAR
file. If a file named MANIFEST.MF is found, it is ignored and a warning is issued.

0..n nested <fileset> elements (1.4)

Specifies the files and directories to include in the EAR file.

0..n nested <zipfileset> elements (1.4)

See the documentation for the zip task for more information.

Example Usage

These two examples produce identical results. This first example uses attributes:

<ear earfile="${builddir}/myapp.ear"
 appxml="ear_deploy_descriptor/application.xml"
 basedir="${builddir}"
 includes="*.jar,*.war"/>

This example uses a nested <fileset> in place of the basedir and includes attributes:

<ear earfile="${builddir}/myapp2.ear"
 appxml="ear_deploy_descriptor/application.xml">
 <fileset dir="${builddir}" includes="*.jar,*.war"/>
</ear>

See Also

See the jar task. The implementation class for ear extends from jar's implementation class.

echo all

org.apache.tools.ant.taskdefs.Echo

Writes a message to the Ant log or a file. The verbosity defaults to Project.MSG_WARN,
which means that messages appear on the console.

Ant: The Definitive Guide

145

Attributes

append (all, boolean, N)

If true, append to an existing file. Defaults to false.

file (all, File, N)

The file to write the message to.

message (all, String, *)

The text to write.

The message attribute is required unless text is included as content of the XML tag, as shown
in the example that follows.

Content

Text content (all)

Text content is allowed when the message attribute is not specified. Property
references such as ${builddir} are allowed.

Example Usage

The first of the following examples specifies the text to write using the message attribute. The
second example specifies the text to write by enclosing it within <echo>...</echo> tags.

<echo message="Building to ${builddir}"/>
<echo>You are using version ${java.version}
of Java! This message spans two lines.</echo>

exec all

org.apache.tools.ant.taskdefs.ExecTask

Executes a system command. Like the apply task, this provides a way to access native
functionality outside of the Java and Ant build environment.

The apply task requires a nested <fileset>, specifying a list of files and directories passed
as arguments to the system command. The exec task differs in that it does not allow this
nested <fileset>.

Attributes

command (1.1, CommandLine, *)

The command to execute, including arguments. Deprecated as of Ant 1.2.

Ant: The Definitive Guide

146

dir (all, File, N)

The working directory for the command.

executable (all, String, *)

The name of the command to execute. Does not include command-line arguments.

failonerror (all, boolean, N)

If true, the build fails when the command returns anything other than 0. Defaults to
false.

newenvironment (1.3, 1.4, boolean, N)

If true, do not propagate existing environment variables to the new process. Defaults
to false.

os (all, String, N)

A list of operating systems this task applies to. Executes only if the list contains a
string matching the return value from System.getProperty("os.name").

output (all, File, N)

A file to redirect the command output to.

outputproperty (1.4, String, N)

The name of a property that stores the command output.

timeout (all, int, N)

The number of milliseconds to wait before stopping the command. Waits infinitely if
not specified.

vmlauncher (1.4, boolean, N)

Specifies whether to attempt using the JVM's built-in command launcher, rather than
an antRun script. Defaults to true.

Technically, exactly one of command or executable must be set. Since command has been
deprecated since Ant 1.2, executable is recommended.

Content

0..n nested <arg> elements (all)

Each specifies command-line arguments, as described in Chapter 4.

Ant: The Definitive Guide

147

0..n nested <env> elements (all)

Each specifies an environment variable.

Example Usage

Executes dir /b in the build directory on Windows 2000:

<exec executable="dir" dir="${builddir}"
 vmlauncher="false" os="Windows 2000">
 <arg line="/b" />
</exec>

See Also

See the apply task. The syntax for command-line arguments and environment variables is
described in Chapter 4.

execon 1.2, 1.3 (deprecated in 1.4)

org.apache.tools.ant.taskdefs.ExecuteOn

Executes a system command. This task was deprecated in Ant 1.4; use the apply task
instead.

Attributes

dir (1.2, 1.3, File, N)

The working directory for the command.

executable (1.2, 1.3, String, Y)

The name of the command to execute. Does not include command-line arguments.

failonerror (1.2, 1.3, boolean, N)

If true, the build fails when the command returns anything other than 0. Defaults to
false.

newenvironment (1.3, boolean, N)

If true, do not propagate existing environment variables to the new process. Defaults
to false.

os (1.2, 1.3, String, N)

A list of operating systems this task applies to. Executes only if the list contains a
string matching the return value from System.getProperty("os.name").

Ant: The Definitive Guide

148

output (1.2, 1.3, File, N)

A file to redirect the command output to.

parallel (1.2, 1.3, boolean, N)

If true, the command is executed once, passing all files as arguments. If false, the
command is executed once for each file. Defaults to false.

timeout (1.2, 1.3, int, N)

The number of milliseconds to wait before stopping the command. Waits infinitely if
not specified.

type (1.2, 1.3, Enum, N)

Determines if names of plain files or directories are sent to the command. Allowable
values are file, dir, or both. Defaults to file.

Content

See the apply task.

Example Usage

See the apply task.

fail all

org.apache.tools.ant.taskdefs.Exit

Throws a BuildException, causing the current build to fail.

Attributes

message (all, String, N)

Specifies the message displayed when this task executes.

Content

Text content. (1.4)

Ant 1.4 adds the ability to specify nested text. This is useful when the message spans
multiple lines.

Ant: The Definitive Guide

149

Example Usage

The following example aborts the build without any descriptive message:

<fail/>

In this case, Ant displays the following message, where 104 is the line number in the buildfile
of the line invoking fail:

BUILD FAILED
C:\cvsdata\ant\mysamples\build.xml:104: No message

The following call to fail results in a message being displayed. The message is specified
between the <fail> and </fail> tags.

<fail>Java version ${java.version} is not allowed!</fail>

The next example produces the same results as the previous one; the only difference is that
the message is specified using the message attribute.

<fail message="Java version ${java.version} is not allowed!"/>

See Also

Use the echo task to write messages without aborting the build.

filter all

org.apache.tools.ant.taskdefs.Filter

Defines token filters. These are used to perform text substitution, known as token filtering,
when copying files. In Ant 1.2 and 1.3, tokens are always of the form @token@. Ant 1.4 adds
the ability to use a character other than @ with the <filterset> element. Filters should not
be used with binary files.

The <filter> element can appear inside of targets, or as a nested element in various tasks
that copy files.

Attributes

filtersfile (all, File, *)

A file containing token/value pairs, formatted as a Java properties file.

token (all, String, *)

The text to replace in the source file, not including the @ characters.

Ant: The Definitive Guide

150

value (all, String, *)

The text to substitute in place of @token@. The @ characters are not preserved.

You must specify either the filtersfile attribute, or both token and value.

Content

None.

Example Usage

Let's start with the following source file:

// %COPYRIGHT!
/**
 * @version @VERSION@
 */
public class Hello {
 ...
}

We want to replace %COPYRIGHT! with a copyright notice, and @VERSION@ with the correct
version number. Here is a target within a buildfile that does this:

<target name="tokenFilterDemo" depends="prepare">
 <filter token="VERSION" value="1.0"/>
 <copy todir="build" filtering="true">
 <!-- select files to copy -->
 <fileset dir="src">
 <include name="**/*.java"/>
 </fileset>
 <filterset begintoken="%" endtoken="!">
 <filter token="COPYRIGHT"
 value="Copyright (C) 2002 O'Reilly"/>
 </filterset>
 </copy>
</target>

The first <filter> element takes care of replacing @VERSION@ with 1.0 as the files are
copied. In order for this to work, the filtering attribute of the copy task must be set to
true.

The <filterset> element, new to Ant 1.4, is required for the %COPYRIGHT! token because it
does not use @ characters as delimiters. With <filterset>, we can use whatever tokens we
desire. <filterset> elements may contain one or more <filter> elements, so we could
have listed both <filter>s as content.

Here is what the file looks like after copying:

Ant: The Definitive Guide

151

// Copyright (C) 2002 O'Reilly
/**
 * @version 1.0
 */
public class Hello {
 ...
}

See Also

See the copy task.

fixcrlf all

org.apache.tools.ant.taskdefs.FixCRLF

Cleans up special characters in source files, such as tabs, carriage returns, linefeeds, and
EOF characters.

Attributes

cr (all, Enum, N)

Deprecated in Ant 1.4. Specifies how CR characters are modified. Legal values are
add, asis, and remove. On Unix platforms, defaults to remove, converting Windows-
style CRLF to LF. On Windows platforms, defaults to add, converting Unix-style LF
characters to CRLF.

defaultexcludes (all, boolean, N)

Determines whether to use default excludes, as described in Chapter 4 under "FileSet
DataType." Defaults to true.

destdir (all, File, N)

Specifies where "fixed" files are placed. If unspecified, source files are overwritten.

eof (all, Enum, N)

Specifies how DOS-style EOF characters (Ctrl-Z) are handled. Supports the same
attributes and default values as the cr attribute. When the default remove, remove the
EOF character if present. When it is add, add an EOF character if necessary. When it
is asis, do nothing.

eol (1.4, Enum, N)

Replaces the deprecated cr attribute, adding better support for Macintosh. Legal
values are asis, cr, lf, and crlf. Each of these values specifies what EOL characters

Ant: The Definitive Guide

152

are placed in the "fixed" files. Defaults to lf on Unix, cr on Macintosh, and crlf on
Windows.

excludes (all, String, N)

A comma-separated list of file patterns to exclude. These patterns are in addition to the
default excludes.

excludesfile (all, File, N)

The name of a file containing one exclude pattern per line.

includes (all, String, N)

A comma-separated list of file patterns to include.

includesfile (all, File, N)

The name of a file containing one include pattern per line.

javafiles (1.4, boolean, N)

If true, indicates the nested <fileset> specifies a set of Java files. This ensures that
tab characters are not modified inside of Java string and character constants. Defaults
to false.

srcdir (all, File, Y)

The directory containing files to fix.

tab (all, Enum, N)

Controls how tab characters are modified. Legal values are add, asis, and remove.
Defaults to asis, meaning tab characters are preserved. When add, consecutive spaces
are converted to tabs. remove converts tabs to spaces.

tablength (all, int, N)

The number of spaces that a tab character represents. Legal values are 2-80, inclusive.
Defaults to 8.

Content

0..n nested patternset elements: <exclude> , <include> , <patternset>
(all); <excludesfile> , <includesfile> (1.4)

Used in place of their corresponding attributes, these specify the set of included and
excluded source files.

Ant: The Definitive Guide

153

Example Usage

The following example converts tab characters into sequences of four spaces in Java source
files. It preserves existing EOL and EOF characters:

<fixcrlf srcdir="${srcdir}"
 destdir="${builddir}"
 eol="asis"
 tab="remove"
 tablength="4"
 eof="asis"
 includes="**/*.java"
 javafiles="true"/>

genkey all

org.apache.tools.ant.taskdefs.GenerateKey

Generates a key-pair, adding them to a keystore file. This is essentially a wrapper around the
keytool -genkey command. The keytool application is included with the JDK, and manages
private keys and public certificates.

Attributes

alias (all, String, Y)

The identity of the new keystore entry.

dname (all, String, *)

The X.500 distinguished name associated with the alias.

keyalg (all, String, N)

The algorithm used to generate the entry.

keypass (all, String, *)

The password used to protect the private key.

keysize (all, String, N)

The size of the generated key.

keystore (all, String, N)

The name of the keystore file. Defaults to .keystore in the user's home directory.

Ant: The Definitive Guide

154

sigalg (all, String, N)

The algorithm used to sign the certificate.

storepass (all, String, Y)

The password used to protect the keystore.

storetype (all, String, N)

The keystore type.

validity (all, String, N)

Number of days the generated certificate is valid.

verbose (all, boolean, N)

Verbose mode. Defaults to false.

The dname attribute is only required if the <dname> content is not specified. keypass is
required if the private key password is different than the keystore password.

Content

0,1 nested <dname> elements (all)

Optionally used in place of the dname attribute. Contains 0-n nested <param> elements
as shown in the example.

Example Usage

The following example generates a new keystore entry:

<genkey dname="CN=Eric Burke, OU=Authors, O=O'Reilly,
 L=Sebastopol, S=California, C=US"
 alias="ericb"
 storepass="aidansdaddy" />

This next example accomplishes the same task using a nested <dname> element:

<genkey alias="ericb" storepass="aidansdaddy">
 <dname>
 <param name="CN" value="Eric Burke"/>
 <param name="OU" value="Authors"/>
 <param name="O" value="O'Reilly"/>
 <param name="L" value="Sebastopol"/>
 <param name="S" value="California"/>
 <param name="C" value="US"/>
 </dname>
</genkey>

Ant: The Definitive Guide

155

See Also

See the documentation included with Sun's Java Development Kit for the keystore command-
line program.

get all

org.apache.tools.ant.taskdefs.Get

Retrieves a file from a URL.

Attributes

dest (all, File, Y)

The local name to store the file as.

ignoreerrors (all, boolean, N)

If true, log errors but do not abort the build. Defaults to false.

src (all, URL, Y)

The URL of the remote file to retrieve.

usetimestamp (all, boolean, N)

If true, download only the file if the remote timestamp is newer than the local file.
Works only with the HTTP protocol. When the file is downloaded, its timestamp is set
to the timestamp on the remote machine. Defaults to false.

verbose (all, boolean, N)

When true, display a "." for every 100 KB of data retrieved. Defaults to false.

Content

None.

Example Usage

Get the O'Reilly home page:

<get src="http://www.oreilly.com/" dest="${builddir}/oreilly_home.html"/>

If behind a firewall, specify proxy server configuration using the ANT_OPTS environment
variable (as explained in Chapter 2) before running Ant.

Ant: The Definitive Guide

156

gunzip all

org.apache.tools.ant.taskdefs.GUnzip

Expands a GZip file. The file is only expanded if the destination file does not exist or is
older than the source file.

Attributes

dest (all, String, N)

The destination file or directory name. If omitted, dest defaults to the directory
containing the source file. When dest is a directory, the destination filename is the
src name, minus any .gz filename extension.

src (all, String, Y)

The name of the file to unzip.

Content

None.

Example Usage

Expand manuscript.tar.gz to manuscript.tar in the same directory:

<gunzip src="manuscript.tar.gz"/>

Expand manuscript.tar.gz to ${builddir}/manuscript.tar:

<gunzip src="manuscript.tar.gz" dest="${builddir}"/>

Use the untar task to expand the tar file after unzipping it.

See Also

The gzip task, and the untar task.

gzip all

org.apache.tools.ant.taskdefs.GZip

Creates a GZip archive.

Ant: The Definitive Guide

157

Attributes

src (all, File, Y)

The name of the file to compress.

zipfile (all, File, Y)

The name of the file to create.

Content

None.

Example Usage

Compresses manuscript.tar to manuscript.tar.gz:

<gzip src="manuscript.tar" dest="manuscript.tar.gz"/>

See Also

The gunzip task.

jar all

org.apache.tools.ant.taskdefs.Jar

Creates a JAR file from one or more source files and directories.

Attributes

basedir (all, File, N)

Specifies the base directory containing files to be added to the JAR file.

compress (all, boolean, N)

If true, compress the JAR file. Defaults to true.

defaultexcludes (all, boolean, N)

Determines whether to use default excludes, as described in Chapter 4 under "FileSet
DataType." Defaults to true.

Ant: The Definitive Guide

158

encoding (1.4, String,N)

Specifies the character encoding for filenames inside the JAR file. Defaults to UTF-8.
The Ant specification warns that changing this attribute probably renders the JAR file
unusable by Java.

excludes (all, String, N)

A comma-separated list of file patterns to exclude. These are in addition to the default
excludes.

excludesfile (all, File, N)

The name of a file containing one exclude pattern per line.

filesonly (1.4, boolean, N)

If true, do not create empty directories. Defaults to false.

includes (all, String, N)

A comma-separated list of file patterns to include.

includesfile (all, File, N)

The name of a file containing one include pattern per line.

jarfile (all, File, Y)

The name of the JAR file to create.

manifest (all, File, N)

The name of an existing manifest file to place in the JAR file. If not specified, Ant
generates a new manifest file containing the version of Ant used.

update (1.4, boolean, N)

If true, update the existing JAR file when changes are made, rather than erasing and
creating it from scratch. Defaults to false.

whenempty (all, Enum, N)

The behavior used when no input files are found. Defaults to create. Legal values
are:

fail

Abort the build.

Ant: The Definitive Guide

159

skip

Don't create the JAR file.

create

Create an empty JAR file when there are no files present.

Content

0..n nested <attribute> elements (1.4)

Each specifies a name-value pair to place in the "unnamed" section of the JAR file's
manifest. Manifest sections are separated by blank lines, and may optionally have
names. Use the <section> element to create named manifest sections. Following are
the allowable attributes for the <attribute> nested element.

name (1.4, String, Y)

The attribute name.

value (1.4, String, Y)

The attribute value.

0..n nested patternset elements: <exclude> , <include> , <patternset>
(all); <excludesfile> , <includesfile> (1.4)

Used in place of their corresponding attributes, these specify the set of included and
excluded source files.

0..n nested <fileset> elements (all)

Specifies the files and directories to include in the JAR file.

0,1 nested <metainf> elements (1.4)

Defines a fileset containing all files placed in the META-INF directory of the JAR
file. If a file named MANIFEST.MF is found in this fileset, its content is merged
with the MANIFEST.MF placed in the generated JAR file.

0..n nested <section> elements (1.4)

Each defines a named manifest section. Each <section> can contain zero or more
nested <attribute> elements. The <section> element requires the following
attribute:

Ant: The Definitive Guide

160

name (1.4, String, Y)

The section name.

0..n nested <zipfileset> elements (1.3, 1.4)

See the documentation for the zip task for more information.

Example Usage

Create sample.jar containing all .class files in the build directory tree:

<jar jarfile="${builddir}/sample.jar"
 basedir="${builddir}"
 includes="**/*.class"/>

This example does the same thing, but uses a nested <fileset> element instead of the
includes attribute:

<jar jarfile="${builddir}/sample2.jar">
 <fileset dir="${builddir}" includes="**/*.class"/>
</jar>

This last example shows how to use Ant 1.4's <section> and <attribute> elements to
create the JAR file's manifest:

<jar jarfile="build/sample.jar" basedir="src" includes="**/*.java">
 <manifest>
 <attribute name="Version" value="3.2"/>
 <attribute name="Release-Date" value="20 Mar 2002"/>
 <section name="drinks">
 <attribute name="favoriteSoda" value="Coca Cola"/>
 <attribute name="favoriteBeer" value="Amber Bock"/>
 </section>
 <section name="snacks">
 <attribute name="cookie" value="chocolateChip"/>
 <attribute name="iceCream" value="mooseTracks"/>
 </section>
 </manifest>
</jar>

Here is the resulting META-INF/MANIFEST.MF file:

Manifest-Version: 1.0
Release-Date: 20 Mar 2002
Version: 3.2
Created-By: Ant 1.4.1
Name: snacks
cookie: chocolateChip
iceCream: mooseTracks
Name: drinks
favoriteBeer: Amber Bock
favoriteSoda: Coca Cola

Ant: The Definitive Guide

161

See Also

The gunzip task.

java all

org.apache.tools.ant.taskdefs.Java

Executes a Java class using Ant's VM instance or by forking a new VM process. If the
executed application calls System.exit(), be sure to set fork="true" or Ant will exit.

Attributes

args (all, String, N)

Deprecated in Ant 1.2; use nested <arg> elements instead.

classname (all, String, *)

The name of the Java class to execute.

classpath (all, Path, N)

The classpath to use. This is added to Ant's classpath unless fork="true".

classpathref (all, Reference, N)

A reference to a classpath defined elsewhere in the buildfile.

dir (all, File, N)

The working directory for the VM. Ignored unless fork="true".

failonerror (all, boolean, N)

If true, the build fails when the command returns anything other than 0. Defaults to
false. Ignored unless fork="true".

fork (all, boolean, N)

If true, the class is executed in a new VM instance. Defaults to false.

jar (1.4, File, *)

The name of an executable JAR file to execute. The JAR file must contain a Main-
Class manifest entry, and fork must be true.

Ant: The Definitive Guide

162

jvm (all, String, N)

The command name of the Java interpreter (may be a full pathname to the command).
Defaults to java. Ignored unless fork="true".

jvmargs (all, String, N)

Deprecated in Ant 1.2; use nested <jvmarg> elements instead.

maxmemory (all, String, N)

Maximum amount of memory allocated for the forked VM. Ignored unless
fork="true". Equivalent to -mx or -Xmx Java command-line options, depending on
which version of Java is in use.

output (1.3, 1.4, File, N)

A filename to write output to.

Either classname or jar is required.

Content

0..n nested <arg> and <jvmarg> elements (all)

Specifies command-line arguments to the application and to the JVM, respectively.
See Section 4.3 in Chapter 4.

0..n nested <sysproperty> elements (all)

Each specifies a system property.

0,1 nested <classpath> elements (all)

Uses path element in place of the classpath or classpathref attributes.

Example Usage

This example shows how various command-line arguments are passed to an application:

<java classname="com.oreilly.antbook.JavaTest">
 <sysproperty key="oreilly.home" value="${builddir}"/>
 <arg value="Eric Burke"/>
 <arg line="-verbose -debug"/>
 <arg path="/home;/index.html"/>
 <classpath>
 <pathelement path="${builddir}"/>
 </classpath>
</java>

Ant: The Definitive Guide

163

First, the oreilly.home system property is specified. This is equivalent to invoking the
following command:

java -Doreilly.home=build etc...

Additionally, the following four command-line arguments are specified:

• Eric Burke
• -verbose
• -debug
• C:\home;C:\index.html4

This next example shows how to reference a classpath defined elsewhere in the Ant buildfile:

<!-- this is defined at the "target level", parallel to <target>s -->
<path id="thirdparty.class.path">
 <pathelement path="lib/crimson.jar"/>
 <pathelement path="lib/jaxp.jar"/>
 <pathelement path="lib/xalan.jar"/>
</path>
<target name="rundemo">
 <java classname="com.oreilly.antbook.JavaTest">
 <classpath refid="thirdparty.class.path"/>
 </java>
</target>

javac all

org.apache.tools.ant.taskdefs.Javac

Compiles Java source code. This task compares .java files with .class files. Affected source
files are compiled when the class files do not exist, or when the source files are newer than
their respective class files.

This task makes no effort to analyze source code or to perform logical dependency analysis.
For example, Ant does not know if subclasses need compiling after the source code for a
base class is modified.

Numerous compilers are supported. For JDK 1.1/1.2, the default compiler is classic. For
JDK 1.3/1.4, it defaults to modern. To choose a different compiler, set the build.compiler
property as shown in Table 7-3. The "Alias" column lists alternate property values having
the same effect as the value in the "Property" column.

Table 7-3. Compiler selection properties
Property Alias Description
classic javac1.1 or javac1.2 The standard JDK 1.1 or 1.2 compiler.
modern javac1.3 or javac1.4 The standard JDK 1.3 or 1.4 compiler.
jikes IBM's Jikes compiler.
jvc Microsoft Microsoft's Java SDK compiler.
kjc The kopi compiler.

4 Notice how the command line is converted into platform-specific pathnames. This was discussed in Chapter 4.

Ant: The Definitive Guide

164

gcj The gcj compiler from gcc.
sj Symantec The Symantec compiler.
extJavac Run either modern or classic in a JVM of its own.

Attributes

bootclasspath (all, Path, N)

The bootstrap5 classpath to use.

bootclasspathref (all, Reference, N)

A reference to a bootstrap classpath defined elsewhere in the buildfile.

classpath (all, Path, N)

The classpath to use. This is added to Ant's classpath unless fork="true".

classpathref (all, Reference, N)

A reference to a classpath defined elsewhere in the buildfile.

debug (all, boolean, N)

If true, compile source with debug information. Defaults to false.

defaultexcludes (all, boolean, N)

Determines whether to use default excludes, as described in Chapter 4 under "FileSet
DataType." Defaults to true.

depend (all, boolean, N)

If true, enables dependency checking for compilers that support it, such as jikes and
classic. Defaults to false.

deprecation (all, boolean, N)

If true, display deprecation warnings. Defaults to false.

destdir (all, File, N)

The destination directory for class files.

encoding (all, String, N)

5 When using Sun's JVM, the bootstrap classpath includes those classes implementing the Java 2 Platform. These are found in the rt.jar and i18n.jar
files in the jre/lib directory.

Ant: The Definitive Guide

165

Character encoding of source files.

excludes (all, String, N)

A comma-separated list of file patterns to exclude. These are in addition to the default
excludes.

excludesfile (all, File, N)

The name of a file containing one exclude pattern per line.

extdirs (all, Path, N)

Override the usual location for Java-installed optional packages.

failonerror (1.3, 1.4, boolean, N)

If true, the build fails when errors occur. Defaults to true.

fork (1.4, boolean, N)

If true, execute the Java compiler as a separate process. When set, this attribute
overrides the build.compiler property, and Ant executes the actual javac executable
in JAVA_HOME/bin rather than the compiler's Main class. Defaults to false.

includeantruntime (1.3, 1.4, boolean, N)

If true, include the Ant runtime libraries in the classpath. Defaults to true.

includejavaruntime (1.3, 1.4, boolean, N)

If true, include the default runtime libraries from the executing VM. Defaults to
false.

includes (all, String, N)

A comma-separated list of file patterns to include.

includesfile (all, File, N)

The name of a file containing one include pattern per line.

memoryinitialsize (1.4, String, N)

Works only when fork=true. Specifies the initial memory size for the VM — for
instance 64000000, 64000k, or 64m.

memorymaximumsize (1.4, String, N)

Ant: The Definitive Guide

166

Works only when fork=true. Specifies the maximum memory size for the VM.

nowarn (1.4, boolean, N)

If true, pass the -nowarn switch to the compiler. Defaults to false.

optimize (all, boolean, N)

If true, instruct the compiler to optimize the code. Defaults to false.

source (1.4.1, String, N)

If specified, the text from this attribute is passed as the -source command-line option
to the underlying javac executable. Legal values are 1.3 and 1.4. Passing 1.4 allows
JDK 1.4 to use its new assertion facility.

srcdir (all, Path, *)

Location of the source code files.

target (all, String, N)

Generate class files for a specific VM version, such as 1.1 or 1.2.

verbose (all, boolean, N)

If true, instruct the compiler to produce verbose output. Defaults to false.

The srcdir attribute is required unless nested <src> elements are specified.

Content

0..n nested patternset elements: <exclude> , <include> , <patternset>
(all); <excludesfile> , <includesfile> (1.4)

Used in place of their corresponding attributes, these specify the set of included and
excluded source files.

0..n nested path elements: <bootclasspath> , <classpath> , <extdirs> , and
<src> (all)

Used in place of their corresponding attributes.

Example Usage

Compile all Java source files in the com.oreilly.antbook package and subpackages, placing
results in ${builddir}:

<javac srcdir="${srcdir}"

Ant: The Definitive Guide

167

 destdir="${builddir}"
 includes="com/oreilly/antbook/**"/>

javadoc all

org.apache.tools.ant.taskdefs.Javadoc

Invokes the javadoc utility. Unlike other Ant tasks, this task performs no dependency
analysis, so all documentation is generated with each usage.

Older versions of javadoc simply ignore attributes that are not supported.

Attributes

access (1.4, Enum, N)

One of public, protected, package, or private. Defaults to protected, meaning
that all protected and public classes and members are included in the output. These
directly correspond to JavaDoc's -public, -protected, -package, and -private command-
line flags.

additionalparam (all, String, N)

Additional parameters for the JavaDoc command line. Use " for parameters
requiring quotes.

author (all, boolean, N)

If true, include @author tags. Defaults to true.

bootclasspath (all, Path, N)

The bootstrap classpath to use.

bootclasspathref (all, Reference, N)

A reference to a bootstrap classpath defined elsewhere in the buildfile.

bottom (all, String, N)

HTML to include in the bottom of each page.

charset (all, String, N)

Charset for cross-platform viewing of generated documentation.

Ant: The Definitive Guide

168

classpath (all, Path, N)

The classpath to use.

classpathref (all, Reference, N)

A reference to a classpath defined elsewhere in the buildfile.

defaultexcludes (1.4, boolean, N)

Determines whether to use default excludes, as described in Chapter 4 under "FileSet
DataType." Defaults to true.

destdir (all, File, *)

Destination directory for generated documentation.

docencoding (all, String, N)

Output character encoding name — for example, "UTF-8" .

doclet (all, String, N)

The class name of a custom doclet. This corresponds to JavaDoc's -doclet parameter.

docletpath (all, Path, N)

The classpath for the custom doclet.

docletpathref (all, Reference, N)

A reference to a doclet classpath defined elsewhere in the buildfile.

doctitle (all, String, N)

The HTML to include on the package index page.

encoding (all, String, N)

Character encoding of source files.

excludepackagenames (1.4, String, N)

A comma-separated list of packages to exclude.

extdirs (all, String, N)

Override the usual location for Java installed optional packages.

Ant: The Definitive Guide

169

failonerror (all, boolean, N)

If true, the build fails when the command returns anything other than 0. Defaults to
false.

footer (all, String, N)

The HTML to include in the footer of each generated page.

group (all, String, N)

Group-specified packages together in an overview page. This attribute is specified as a
comma-delimited string. Each entry contains a title for the HTML page, followed by a
space, followed by a colon-delimited list of Java package names. This follows the
syntax specified by JavaDoc's -group command-line parameter.

header (all, String, N)

The HTML to include in the header of each generated page.

helpfile (all, File, N)

The file the help link links to.

link (all, String, N)

Create links to JavaDoc output at the given URL.

linkoffline (all, String, N)

A space-separated list of two URLs. Link to docs at the first URL using the package
list at the second URL.

locale (all, String, N)

The locale name to use, such as en_US.

maxmemory (all, String, N)

The maximum heap size available to the Java VM.

nodeprecated (all, boolean, N)

If true, do not include @deprecated tags. Defaults to false.

nodeprecatedlist (all, boolean, N)

If true, do not include the deprecated list. Defaults to false.

Ant: The Definitive Guide

170

nohelp (all, boolean, N)

If true, do not generate a help link. Defaults to false.

noindex (all, boolean, N)

If true, do not generate an index page. Defaults to false.

nonavbar (all, boolean, N)

If true, do not generate a navigation bar. Defaults to false.

notree (all, boolean, N)

If true, do not generate a class hierarchy. Defaults to false.

old (all, boolean, N)

If true, emulate the JDK 1.1 doclet. Defaults to false.

overview (all, File, N)

The name of a file containing HTML overview documentation.

package (all, boolean, N)

If true, show package classes and members. Defaults to false.

packagelist (all, String, N)

The name of a file containing packages to process.

packagenames (all, String, *)

A comma-separated list of package names, such as com.foo.*,com.bar.*.

private (all, boolean, N)

If true, show all classes and members. Defaults to false.

protected (all, boolean, N)

If true, show protected classes and members. Defaults to true.

public (all, boolean, N)

If true, show only public classes and members. Defaults to false.

Ant: The Definitive Guide

171

serialwarn (all, boolean, N)

If true, generate warning about @serial tag. Defaults to false.

sourcefiles (all, String, *)

A comma-separated list of source files.

sourcepath (all, Path, *)

The location of source code files.

sourcepathref (all, Reference, *)

A reference to a source path defined elsewhere.

splitindex (all, boolean, N)

If true, split the JavaDoc index page into one HTML page per letter. Defaults to
false.

stylesheetfile (all, File, N)

The name of a CSS file to use.

use (all, boolean, N)

If true, create class and package usage pages. Defaults to false.

useexternalfile (1.4, boolean, N)

If true, source filenames and package names are written to a temporary file before
executing the javadoc command, making the command line shorter. Defaults to
false.

verbose (all, boolean, N)

Defaults to false.

version (all, boolean, N)

If true, include @version tags. Defaults to true.

windowtitle (all, String, N)

Specifies the HTML page title.

Ant: The Definitive Guide

172

Content

0..n nested path elements: <bootclasspath> , <classpath> , and
<sourcepath> (1.3, 1.4)

Used in place of their corresponding attributes.

0,1 nested elements containing HTML: <bottom> , <doctitle> , <footer> , and
<header> (1.4)

Used in place of their corresponding attributes.

0,1 nested <doclet> elements (1.3, 1.4)

References a custom doclet. The following attributes are supported for <doclet>
elements.

name (all, String, Y)

The class name of the doclet.

path (all, Path, N)

The classpath to the doclet.

pathref (all, Reference, N)

A reference to a classpath defined elsewhere in the buildfile.

<doclet> accepts any number of nested <param> elements. These have name and
value attributes, and are used to pass command-line parameters to the doclet. For
example:

<doclet name="MyDoclet" path="${mydoclet.path}">
 <param name="-loglevel" value="verbose"/>
 <param name="-outputdir" value="${mydoclet.output}"/>
</doclet>

0..n nested <excludepackage> and <package> elements (1.4)

Use each in place of one entry in the list specified by the excludepackagenames and
packagenames attributes, respectively. For example:

<package name="com.oreilly.util.*"/>
<excludepackage name="com.oreilly.test.*"/>

0..n nested <group> elements (1.3, 1.4)

Used in place of the group attribute. Following are the valid <group> element
attributes.

Ant: The Definitive Guide

173

title (all, String, *)

The group title.

packages (all, String, *)

A colon-delimited list of packages to include in the group.

<group> supports 0..n nested <title> and <package> elements. These may be used
in place of their corresponding attributes.

0..n nested <link> elements (1.3, 1.4)

Used in place of the link attribute. Following are the valid <link> element attributes.

href (all, String, Y)

The URL for the external documentation to link to.

offline (all, boolean, N)

If true, the link is not available when JavaDoc is being generated. Defaults to false.

packagelistloc (all, File, *)

The location of the directory containing the package list file.

packagelistloc is required if offline=true.

0..n nested <source> elements. (1.4)

Each is used in place of one entry in the list specified by the sourcefiles attribute.
Following is the valid <source> element attribute:

file (all, File, Y)

The source file to document.

Example Usage

This example creates documentation in the docs directory. The directory must already exist or
the build fails. It also shows how to include HTML content using the <bottom> element. The
same technique works for <doctitle>, <footer>, and <header>.

Ant: The Definitive Guide

174

<javadoc excludepackagenames="com.oreilly.test.*"
 destdir="docs"
 windowtitle="My Documentation">
 <package name="com.oreilly.antbook.*"/>
 <package name="com.oreilly.util.*"/>
 <sourcepath location="${srcdir}"/>
 <classpath location="${builddir}"/>
 <bottom>
 <![CDATA[Copyright (C) 2001, O'Reilly

All Rights Reserved]]>
 </bottom>
</javadoc>

mail all

org.apache.tools.ant.taskdefs.SendEmail

Sends SMTP email.

Attributes

files (all, String, *)

A comma-separated list of filenames. Each specifies a text file to include in the mail
body.

from (all, String, Y)

The sender's email address.

mailhost (all, String, N)

The mail server hostname.

message (all, String, *)

The message content.

subject (all, String, N)

The mail subject.

tolist (all, String, Y)

A comma-separated list of recipient email addresses.

Either files or message is required.

Ant: The Definitive Guide

175

Content

None.

Example Usage

Send email with build results:

<property name="my.mailhost" value="mail.oreilly.com"/>
<mail from="ant@foobar.com"
 tolist="developers@foobar.com"
 subject="Build Results"
 mailhost="${my.mailhost}"
 files="buildlog.txt"/>

See Also

Use the mimemail optional task listed in Chapter 8 when binary attachments are required.

mkdir all

org.apache.tools.ant.taskdefs.Mkdir

Creates a directory if it does not already exist. Also creates parent directories as needed.

Attributes

dir (all, File, Y)

The directory to create.

Content

None.

Example Usage

This task is commonly used in a prepare target that other targets depend on. This ensures that
necessary destination directories are created before other targets are executed.

<target name="prepare">
 <mkdir dir="${builddir}"/>
 <mkdir dir="${deploydir}/docs"/>
</target>
<target name="compile" depends="prepare">
 ...
</target>

See Also

See the delete task for information on removing files and directories.

Ant: The Definitive Guide

176

move all

org.apache.tools.ant.taskdefs.Move

Moves one or more files and directories.

Attributes

file (all, File, *)

Specifies a single file to move. Use nested <fileset>s to move multiple files and
directories.

filtering (all, boolean, N)

If true, token filtering using any global buildfile filters takes place. Nested filters are
always applied, regardless of this attribute. Defaults to false.

flatten (all, boolean, N)

If true, the directory structure of the source files is not preserved, moving all files to a
single destination directory. A nested <mapper> can achieve the same results. Defaults
to false.

includeemptydirs (all, boolean, N)

If true, empty directories are also moved. Defaults to true.

overwrite (all, boolean, N)

If true, files are moved even when destination files are newer. Defaults to false.

todir (all, File, *)

The directory to move files to.

tofile (all, File, *)

The file to move to.

Either file or a nested fileset element is required. When the file attribute is used, one of
either tofile or todir is required. When a nested fileset is used, only todir is allowed: it's
also required.

Ant: The Definitive Guide

177

Content

0..n nested <fileset> elements (all)

Selects files to move. The todir attribute is required when <fileset>s are present.

0..n nested <filterset> elements (1.4)

Defines token filters for text substitution as files are moved. See the filter task for
more info.

0,1 nested <mapper> elements (1.3, 1.4)

Defines how filenames are transformed when moved. By default, an identity
transformation is performed, meaning that filenames are not modified.

Example Usage

Moves all .class files to new location:

<move todir="${builddir}/foo">
 <!-- the files to move -->
 <fileset dir="${builddir}">
 <include name="**/*.class"/>
 </fileset>
</move>

See Also

See the copy task.

parallel 1.4

org.apache.tools.ant.taskdefs.Parallel

This is a container for other tasks. Each contained task executes in its own thread,
potentially improving overall build performance. The main build process blocks until all
nested tasks are complete. If any nested task fails, the parallel task also fails once all
threads are complete.

Use parallel only when the contained tasks are independent of one
another. For instance, do not execute a code generator in parallel with a
task that attempts to compile the generated code. Unless you are
comfortable with multithreading concepts, avoid this task.

The sequential task is used in conjunction with parallel in order to execute groups of
tasks sequentially.

Ant: The Definitive Guide

178

Attributes

None.

Content

Any task, including nested parallel tasks.

Example Usage

In this example, the client and server portion of an application are independent of each other
and can be compiled concurrently. Before compiling the client, however, some critical files
are copied and code is generated using a custom Java program. While all of this is happening
inside of the <sequential> task, the server code is compiling.

<parallel>
 <sequential>
 <!-- copy some critical files first... -->
 <copy ... />
 <!-- run a code generator -->
 <java ... />
 <!-- now compile the client code -->
 <javac srcdir="${client_srcdir}"
 destdir="${client_builddir}"
 includes="com/oreilly/client/**"/>
 </sequential>
 <!-- compile the server code in parallel with everything
 contained in the <sequential> task -->
 <javac srcdir="${server_srcdir}"
 destdir="${server_builddir}"
 includes="com/acme/server/**"/>
</parallel>

See Also

The sequential task.

patch all

org.apache.tools.ant.taskdefs.Patch

Applies a diff file to originals. CVS includes the patch command-line utility, which must
be located on the path for this task to execute.

Attributes

backups (all, boolean, N)

If true, keep backup copies of unpatched files. Defaults to false.

Ant: The Definitive Guide

179

ignorewhitespace (all, boolean, N)

If true, ignore whitespace differences when applying the patch file. Defaults to
false.

originalfile (all, File, N)

The file to patch.

patchfile (all, File, Y)

The file containing the diff output.

quiet (all, boolean, N)

If true, work silently unless an error occurs. Defaults to false.

reverse (all, boolean, N)

If true, assume patch file was created with old and new files swapped. Defaults to
false.

strip (all, int, N)

Strips the smallest prefix containing this number of leading slashes from filenames.
Equivalent to patch's -p option.

Content

None.

Example Usage

Apply the diff included in foo.patch, guessing filenames from the diff output:

<patch patchfile="foo.patch"/>

See Also

See the cvs task.

pathconvert 1.4

org.apache.tools.ant.taskdefs.PathConvert

Converts Ant paths, or filesets, into platform-specific paths, storing the result in a
property.

Ant: The Definitive Guide

180

Attributes

dirsep (1.4, String, *)

The character used as a directory separator, such as ":". Defaults to File.separator
on the current JVM.

pathsep (1.4, String, *)

The character used as a path separator, such as "/". Defaults to File.pathSeparator
on the current JVM.

property (1.4, String, Y)

The property in which to store the converted path.

refid (1.4, Reference, *)

A reference to the path to convert.

targetos (1.4, String, *)

A shortcut for defining both pathsep and dirsep. Legal values are unix and
windows. dirsep and pathsep values are then chosen in conformance with specified
operating systems.

Must specify either targetos or both dirsep and pathsep. Either the refid attribute or a
nested <path> element is required.

Content

0..n nested <map> elements (1.4)

Each specifies the mapping of path prefixes between Unix and Windows. Ant applies
only the first matching <map> element. Following are the valid <map> attributes in this
context.

from (1.4, String, Y)

The prefix to map, such as C:. This is case-insensitive when Ant runs on Windows,
and case-sensitive when Ant runs on Unix.

to (1.4, String, Y)

The replacement to use when from matches — for example, /usr.

0,1 nested <path> elements (1.4)

A path element used in place of the refid attribute.

Ant: The Definitive Guide

181

Example Usage

The following example defines a fileset:

<fileset id="sources1" dir="src"
 includes="**/*.java"
 excludes="**/test/**/*.java"/>

Here is how pathconvert converts the fileset into a Unix-style path, storing the result in
the p1 property:

<pathconvert targetos="unix" property="p1" refid="sources1"/>

The value of the p1 property is now something like:

/home/aidan/src/com/oreilly/Book.java:/home/aidan/src/com/oreilly/
Chapter.java

property all

org.apache.tools.ant.taskdefs.Property

Sets properties in the project. Properties specified by users always take precedence over
properties defined by this task. The same is true for properties defined by parent projects
that invoke this project using the ant task.

Attributes

classpath (1.3, 1.4, Path, N)

The classpath to use when looking up a resource.

classpathref (1.3, 1.4, Reference, N)

A reference to a classpath defined elsewhere in the buildfile.

environment (1.3, 1.4, String, *)

A prefix used for retrieving environment variables. We use this in the upcoming
example to retrieve the value of TOMCAT_HOME. This was also covered in Chapter 4
under "Environment DataType."

file (all, File, *)

The name of a properties file. This defines a set of properties (name-value pairs)
according to the contents of the properties file.

Ant: The Definitive Guide

182

location (all, File, *)

Sets the property value to an absolute filename. If this attribute contains an absolute
path, any "/" and "\" characters are converted to current system conventions. If
the path is relative to the project, it is expanded to an absolute path.

name (all, String, N)

The name of the property to set.

refid (all, Reference, *)

A reference to a path or property defined elsewhere in the project.

resource (all, String, *)

The Java resource name of a properties file. Uses a ClassLoader to load the
properties file.

value (all, String, *)

An explicit value for the property.

When name is specified, one of value, location, or refid is required. Otherwise, one of
resource, file, or environment is required.

Content

0,1 nested <classpath> elements (1.3, 1.4)

May be used in place of the classpath attribute.

Example Usage

Define the builddir and srcdir properties, relative to the project base directory:

<property name="builddir" value="build"/>
<property name="srcdir" value="src"/>

The following example defines two properties based on the contents of test.properties in the
com.oreilly.antbook package:

<property resource="com/oreilly/antbook/test.properties">
 <classpath>
 <pathelement path="${srcdir}"/>
 </classpath>
</property>
<!-- display the property values... -->
<echo message="book.title = ${book.title}"/>
<echo message="book.author = ${book.author}"/>

Ant: The Definitive Guide

183

This example first retrieves all environment variables, prefixing them with env.. It then
assigns the value of the TOMCAT_HOME environment variable to the tomcat.home property:

<property environment="env"/>
<property name="tomcat.home" value="${env.TOMCAT_HOME}"/>

record 1.4

org.apache.tools.ant.taskdefs.Recorder

Creates a listener to the current build process, recording output to a file. Multiple recorders
can exist for the same file.

Attributes

action (1.4, Enum, N)

Defines whether the recorder should start or stop recording. Legal values are start
and stop. Defaults to start when this task is first encountered. On subsequent calls,
the recorder state remains unchanged.

append (1.4, boolean, N)

If true, append to the file when this recorder is first created, rather than replacing the
file. Defaults to true. Subsequent calls during the same build always append to the
file.

loglevel (1.4, Enum, N)

Determines the logging level. Legal values are error, warn, info, verbose, and
debug. The level may be changed with each recorder instance.

name (1.4, String, Y)

The name of the file to log to.

Content

None.

Example Usage

This example shows how to write detailed logging information to a file while code compiles.

<record name="javac.log" loglevel="debug"
 action="start" append="false"/>
<javac srcdir="${srcdir}" destdir="${builddir}"
 includes="com/oreilly/antbook/**">
</javac>
<record name="javac.log" action="stop"/>

Ant: The Definitive Guide

184

rename

This task was deprecated in Ant 1.2; use the move task instead.

replace all

org.apache.tools.ant.taskdefs.Replace

Performs string replacement in one or more files. The original files are replaced rather than
copied.

Attributes

defaultexcludes (all, boolean, N)

Determines whether to use default excludes, as described in Chapter 4 under "FileSet
DataType." Defaults to true.

dir (all, File, *)

The base directory used when specifying multiple files.

excludes (all, String, N)

A comma-separated list of file patterns to exclude. These are in addition to the default
excludes.

excludesfile (all, File, N)

The name of a file containing one exclude pattern per line.

file (all, File, *)

An individual file to perform replacements in.

includes (all, String, N)

A comma-separated list of file patterns to include.

includesfile (all, File, N)

The name of a file containing one include pattern per line.

Ant: The Definitive Guide

185

propertyfile (1.3, 1.4, File, *)

Specifies a properties file containing properties referenced by nested
<replacefilter> elements.

summary (1.4, boolean, N)

If true, display a summary report of this operation. Defaults to false.

token (all, String, *)

The token to replace.

value (all, String, N)

The new value for the token. Defaults to an empty string.

Exactly one of file or dir is required. The token attribute is required if a nested
<replacetoken> element is used. The propertyfile attribute is required if the property
attribute of a nested <replacefilter> element is specified.

Content

0..n nested patternset elements: <exclude> , <include> , <patternset>
(all); <excludesfile> , <includesfile> (1.4)

Used in place of their corresponding attributes, these specify the set of included and
excluded source files.

0..n nested <replacefilter> elements (1.3, 1.4)

Allows multiple replacements, and works in conjunction with the propertyfile
attribute. <replacefilter> attributes are as follows:

token (1.3, 1.4, String, Y)

The token to search for.

value (1.3, 1.4, String, *)

The replacement text.

property (1.3, 1.4, String, *)

The name of a property whose value is used as the replacement text.

Either value or property may be specified, or neither.

Ant: The Definitive Guide

186

0,1 nested <replacetoken> and <replacevalue> elements (all)

Used in place of the token and value attributes, supporting multiline text.

Example Usage

Replace all occurrences of @builddate@ with the current date:

<replace file="${builddir}/replaceSample.txt"
 token="@builddate@"
 value="${DSTAMP}"/>

This next example performs a multiline token replacement. It uses XML <![CDATA[...]]>
to represent literal text containing a newline character:

<replace file="${builddir}/replaceSample.txt">
 <replacetoken><![CDATA[Token line 1
Token line 2]]></replacetoken>
 <replacevalue><![CDATA[Line 1
Line 2]]></replacevalue>
</replace>

Use a properties file containing token replacement values. Apply to all source files:

<replace dir="${srcdir}" includes="**/*.java"
 propertyfile="tokens.properties">
 <replacefilter token="@vendor@" property="vendor.name"/>
 <replacefilter token="@version@" property="version.name"/>
</replace>

rmic all

org.apache.tools.ant.taskdefs.Rmic

Invokes the rmic compiler, generating stubs and skeletons for Java Remote Method
Invocation.

Attributes

base (all, File, Y)

The location in which to store compiled files.

classname (all, String, N)

Run rmic on this class.

classpath (all, Path, N)

The classpath to use.

Ant: The Definitive Guide

187

classpathref (all, Reference, N)

A reference to a classpath defined elsewhere in the buildfile.

debug (1.3, 1.4, boolean, N)

If true, pass -g to rmic. Defaults to false.

defaultexcludes (all, boolean, N)

Determines whether to use default excludes, as described in Chapter 4 under "FileSet
DataType." Defaults to true.

excludes (all, String, N)

A comma-separated list of file patterns to exclude. These are in addition to the default
excludes.

excludesfile (all, File, N)

The name of a file containing one exclude pattern per line.

extdirs (1.4, Path, N)

Override the usual location for Java-installed optional packages.

filtering (all, boolean, N)

If true, token filtering should take place. Defaults to false.

idl (1.3, 1.4, boolean, N)

Instructs rmic to produce IDL output files.

idlopts (1.3, 1.4, String, N)

Additional arguments when idl=true.

iiop (1.3, 1.4, boolean, N)

When true, generate portable RMI/IIOP stubs. Defaults to false.

iiopopts (1.3, 1.4, String, N)

Additional arguments when iiop=true.

includeantruntime (1.4, boolean, N)

If true, include the Ant runtime libraries in the classpath. Defaults to true.

Ant: The Definitive Guide

188

includejavaruntime (1.4, boolean, N)

If true, include the default runtime libraries from the executing VM. Defaults to
false.

includes (all, String, N)

A comma-separated list of file patterns to include.

includesfile (all, File, N)

The name of a file containing one include pattern per line.

sourcebase (all, File, N)

When specified, passes the -keepgenerated option to rmic. The generated source file
is moved to the specified directory.

stubversion (all, String, N)

Set this to 1.1 to pass the -v1.1 option to rmic.

verify (all, boolean, N)

When true, verify that classes implement Remote before passing them to rmic.
Defaults to false.

Content

0..n nested patternset elements: <exclude> , <include> , <patternset>
(all); <excludesfile> , <includesfile> (1.4)

Used in place of their corresponding attributes, these specify the set of included and
excluded source files.

0,1 nested <classpath> elements (all)

May be used in place of the classpath and classpathref attributes.

0..n nested <extdirs> elements (1.4)

May be used in place of the extdirs attribute.

Example Usage

Run the rmic compiler for all classes in the com.oreilly.remote package:

<rmic base="${builddir}" includes="com/oreilly/remote/*.class"/>

Ant: The Definitive Guide

189

sequential 1.4

org.apache.tools.ant.taskdefs.Sequential

This is a container task designed for use with the parallel task. It ensures that a group of
tasks are executed in order.

Attributes

None.

Content

Any nested tasks.

Example Usage

See the example for the parallel task.

See Also

The parallel task.

signjar all

org.apache.tools.ant.taskdefs.SignJar

Executes the jarsigner command-line tool.

Attributes

alias (all, String, Y)

Specifies the alias to sign under.

internalsf (all, boolean, N)

If true, include the .SF file inside the signature block. Defaults to false.

jar (all, String, Y)

The JAR file to sign.

keypass (all, String, *)

The password for the private key.

Ant: The Definitive Guide

190

keystore (all, String, N)

The keystore location.

sectionsonly (all, boolean, N)

If true, don't compute the hash of the entire manifest. Defaults to false.

sigfile (all, String, N)

The name of the .SF or .DSA file.

signedjar (all, String, N)

The name of the signed JAR file.

storepass (all, String, Y)

The password for keystore integrity.

storetype (all, String, N)

The keystore type.

verbose (all, boolean, N)

If true, produce verbose output. Defaults to false.

keypass is required if the private key password is different than the keystore password.

Content

0..n nested <fileset> elements (1.4)

Use in place of the jar attribute to sign multiple files.

Example Usage

<signjar jar="${builddir}/server.jar" alias="oreilly"
 storepass="${password}"/>

sleep 1.4

org.apache.tools.ant.taskdefs.Sleep

Pause the build for a specified amount of time.

Ant: The Definitive Guide

191

Attributes

failonerror (1.4, boolean, N)

If true, the build fails when any error occurs while sleeping. Defaults to true.

hours (1.4, int, N)

The number of hours.

milliseconds (1.4, int, N)

The number of milliseconds.

minutes (1.4, int, N)

The number of minutes.

seconds (1.4, int, N)

The number of seconds.

Content

None.

Example Usage

<!-- start a web server, then wait a few seconds for it to initialize -->
<sleep seconds="10"/>
<!-- now start the client unit tests -->

sql all

org.apache.tools.ant.taskdefs.SQLExec

Executes SQL statements using JDBC.

Attributes

autocommit (all, boolean, N)

If true, set the JDBC autocommit flag. Defaults to false.

classpath (all, Path, N)

The classpath to use when loading the JDBC driver.

Ant: The Definitive Guide

192

classpathref (all, Reference, N)

A reference to a classpath defined elsewhere in the buildfile.

delimiter (1.4, String, N)

A string separating SQL statements. Defaults to ";".

delimitertype (1.4, Enum, N)

Legal values are row and normal. Defaults to normal, meaning that any occurrence of
the delimiter terminates the SQL command. row means the delimiter must appear on a
line by itself.

driver (all, String, Y)

The class name of the JDBC driver.

onerror (all, Enum, N)

Controls what happens when a statement fails. Defaults to abort. Legal values are as
follows:

continue

This task attempts to continue executing statements even after one or more statements
fail.

abort

The transaction is explicitly rolled back by the task when errors occur, just prior to
aborting the build.

stop

The build fails without attempting to rollback a failed transaction. Nonetheless, the
database should roll back the transaction once the JVM exits.

output (all, File, N)

The output file for result sets when print=true. Defaults to System.out.

password (all, String, Y)

The database password.

print (all, boolean, N)

If true, print all result sets. Defaults to false.

Ant: The Definitive Guide

193

rdbms (all, String, N)

Specifies an RDBMS brand, and restricts execution of this task to that RDBMS. This
should equal the value returned from the getDatabaseProductName() method of
DatabaseMetaData.

showheaders (all, boolean, N)

If true, show header columns when printing result sets. Defaults to true.

src (all, File, *)

A file containing SQL statements to execute.

url (all, String, Y)

The database connection URL.

userid (all, String, Y)

The database user ID.

version (all, String, N)

Specifies a version number. The task is only executed if the RDBMS version matches
this value. The product version is obtained from DatabaseMetaData.

The src attribute is not required if the SQL statements to be executed are specified as text
content of the tag.

Content

Text content (all)

Used in place of the src attribute for SQL statements. The character specified by the
delimiter attribute separates multiple statements. Lines beginning with //, --, or
REM are comments.

0,1 nested <classpath> elements (all)

May be used in place of the classpath attribute.

0..n nested <fileset> elements (1.4)

Used in place of the src attribute to specify multiple files containing SQL statements.
The files are executed in the order listed.

Ant: The Definitive Guide

194

0..n nested <transaction> elements (all)

Each defines a block of commands for execution within a single transaction. One
attribute is supported:

src (all, String, *)

The name of a file containing SQL statements

The src attribute may be omitted if SQL statements are nested as text within the
<transaction> element.

Example Usage

Executes the statement(s) contained in report.sql:

<sql driver="${db.driver}"
 url="${db.url}"
 userid="${db.userid}"
 password="${db.password}"
 src="report.sql"/>

Execute the SQL statements specified as the content of the sql task:

<sql driver="${db.driver}"
 url="${db.url}"
 userid="${db.userid}"
 password="${db.password}">
 SELECT *
 FROM ReportTbl;
 // additional statements follow...
 SELECT ... ;
</sql>

style all

org.apache.tools.ant.taskdefs.XSLTProcess

Performs XSLT transformations. XSLT stylesheets define how XSLT processors transform
XML into other text formats.

Attributes

basedir (all, File, N)

Specifies where to find the XML files to transform. Defaults to the project's base
directory.

classpath (1.4, Path, N)

The classpath to use when looking up the XSLT processor.

Ant: The Definitive Guide

195

classpathref (1.4, Reference, N)

A reference to a classpath defined elsewhere in the buildfile.

defaultexcludes (all, boolean, N)

Determines whether to use default excludes, as described in Chapter 4 under "FileSet
DataType." Defaults to true.

destdir (all, File, *)

Specifies where transformation results are stored.

excludes (all, String, N)

A comma-separated list of file patterns to exclude. These are in addition to the default
excludes.

excludesfile (all, File, N)

The name of a file containing one exclude pattern per line.

extension (all, String, N)

The default file extension used for transformation results. Defaults to .html.

force (1.4, boolean, N)

If true, create target files even if they are newer than their source XML or XSLT
files. The default is false.

in (1.3, 1.4, File, N)

Specifies a single XML file for transformation. Used in conjunction with the out
attribute.

includes (all, String, N)

A comma-separated list of file patterns to include.

includesfile (all, File, N)

The name of a file containing one include pattern per line.

out (1.3, 1.4, File, N)

Specifies the filename for the transformation result. Used in conjunction with the in
attribute.

Ant: The Definitive Guide

196

processor (all, String, N)

The XSLT processor to use. The default (and recommended) value is trax. Legal
values are as follows:

trax

Supports any processor compatible with Sun's JAXP 1.1.

xslp

Is deprecated.

xalan

Supports Apache Xalan Version 1.x.

style (all, String, Y)

The XSLT stylesheet name.

The destdir attribute is required unless the in and out attributes are specified.

Content

0..n nested patternset elements: <exclude> , <include> , <patternset>
(all); <excludesfile> , <includesfile> (1.4)

Used in place of their corresponding attributes, these specify the set of included and
excluded XML files.

0,1 nested <classpath> elements (1.4)

May be used in place of the classpath attribute.

0..n nested <param> elements (1.3, 1.4)

Each passes a parameter to the XSLT stylesheet using the following attributes:

name (1.3, 1.4, String, Y)

The XSLT parameter name.

expression (1.3, 1.4, String, Y)

Ant: The Definitive Guide

197

The parameter value. Literal text must be passed in single quotes, or the stylesheet
treats it as an expression.6

Example Usage

Transform customers.xml using customers.xslt, placing results in the build directory:

<style destdir="${builddir}" style="customers.xslt">
 <param name="date" expression="${DSTAMP}"/>
 <include name="customers.xml"/>
</style>

tar all

org.apache.tools.ant.taskdefs.Tar

Creates a tar archive.

Attributes

basedir (all, File, N)

Specifies the base directory from which to add files to the tar file.

defaultexcludes (all, boolean, N)

Determines whether to use default excludes, as described in Chapter 4 under "FileSet
DataType." Defaults to true.

excludes (all, String, N)

A comma-separated list of file patterns to exclude. These are in addition to the default
excludes.

excludesfile (all, File, N)

The name of a file containing one exclude pattern per line.

includes (all, String, N)

A comma-separated list of file patterns to include.

includesfile (all, File, N)

The name of a file containing one include pattern per line.

longfile (1.3, 1.4, String, N)

6 Although the Ant manual says that literal text must be escaped with single quotes, this does not appear to be the case. The stylesheet always seems to
treat the value as text, rather than as an expression.

Ant: The Definitive Guide

198

Controls handling of files with long (>100 character) filenames. Legal values are
truncate, fail, warn, omit, and gnu. Defaults to warn.

tarfile (all, File, Y)

The tar file to create.

Content

0..n nested patternset elements: <exclude> , <include> , <patternset>
(all); <excludesfile>, <includesfile> (1.4)

Used in place of their corresponding attributes, these specify the set of included and
excluded source files.

0..n nested <tarfileset> elements (1.3, 1.4)

Each support all fileset attributes and content (includes, excludes, etc.), as well
as the following additional attributes:

mode (1.3, 1.4, String, N)

A 3-digit octal string specifying user, group, and other modes.

username (1.3, 1.4, String, N)

The username for the tar entry.

group (1.3, 1.4, String, N)

The group name for the tar entry.

Example Usage

Creates a tar archive containing all class files in the build directory:

<tar tarfile="${dist}/classes.tar"
 basedir="${builddir}"
 includes="**/*.class"/>

See Also

See the gzip task.

taskdef all

Ant: The Definitive Guide

199

org.apache.tools.ant.taskdefs.Taskdef

Adds a task to the current project. This is used to define tasks not already defined in
the ant.jar's default.properties file.

Attributes

classname (all, String, *)

The class that implements the task.

classpath (all, Path, N)

The classpath to use.

file (1.4, File, N)

The name of a properties file containing one or more task definitions. Each line is
formatted like this:

taskname=full.package.name.TaskClass
name (all, String, *)

The name of the task.

resource (1.4, String, N)

The Java resource name of a properties file containing one or more task definitions.
This is identical to the file attribute, except it uses a ClassLoader to locate the
properties file.

The name and classname attributes are required unless the file or resource attributes are
specified.

Content

0,1 nested <classpath> elements (all)

May be used in place of the classpath attribute.

Example Usage

Defines a custom task that can then be used throughout a project:

<taskdef name="mycodegen" classname="com.foobar.tasks.MyCodeGen"/>

touch all

Ant: The Definitive Guide

200

org.apache.tools.ant.taskdefs.Touch

Updates the timestamp of one or more files.

Attributes

datetime (all, String, N)

The new modification time for the file(s), in the format MM/DD/YYYY HH:MM AM or
PM. Defaults to the current time.

file (all, File, *)

Name of a file to touch. The file is created if it does not exist. To touch directories, use
nested <fileset> elements.

millis (all, long, N)

The new modification time for the file, expressed as the number of milliseconds since
January 1, 1970.

The file attribute is required unless a nested <fileset> is specified.

Content

0..n nested <fileset> elements (1.4)

Specifies files and directories to touch.

Example Usage

Update the timestamp of build.xml with the current time:

<touch file="build.xml"/>

Change the timestamp of all files and directories in the build directory:

<touch datetime="06/25/1999 6:15 AM">
 <fileset dir="${builddir}"/>
</touch>

tstamp all

org.apache.tools.ant.taskdefs.Tstamp

Sets the DSTAMP, TSTAMP, and TODAY properties. Additionally, each property is formatted
using java.text.SimpleDateFormat according to the formats listed in Table 7-4.

Table 7-4. tstamp formats

Ant: The Definitive Guide

201

Property Format Example
DSTAMP yyyyMMdd 20010916
TSTAMP HHmm 1923
TODAY MMMM d yyyy September 16 2001

Attributes

None.

Content

0..n nested <format> elements (1.3, 1.4)

Supports custom formats. The results of each are placed in a property. Following are
the <format> element attributes:

property (1.3, 1.4, String, Y)

The name of the property to place the formatted timestamp in.

pattern (1.3, 1.4, String, Y)

The format pattern as defined by java.text.SimpleDateFormat.

offset (1.3, 1.4, int, N)

The numeric offset to the current time.

unit (1.3, 1.4, String, N)

Defines what the offset parameter is affecting. Legal values are: millisecond,
second, minute, hour, day, week, month, and year.

locale (1.4, String, N)

The locale used when constructing the SimpleDateFormat object. See the
documentation for java.util.Locale.

Example Usage

Produce three properties containing the current time, one hour prior to the current time, and
one minute after the current time. All are formatted like September 16 2001 07:37 PM:

<tstamp>
 <format property="now"
 pattern="MMMM d yyyy hh:mm aa"/>

Ant: The Definitive Guide

202

 <format property="hour_earlier"
 pattern="MMMM d yyyy hh:mm aa"
 offset="-1"
 unit="hour"/>
 <format property="minute_later"
 pattern="MMMM d yyyy hh:mm aa"
 offset="1"
 unit="minute"/>
</tstamp>
<!-- now display one of the values -->
<echo>now = ${now}</echo>

typedef 1.4

org.apache.tools.ant.taskdefs.Typedef

Adds one or more custom DataType definitions to the current project.

Attributes

name (1.4, String, *)

The name of the DataType to add.

classname (1.4, String, *)

The Java class implementing the DataType.

file (1.4, File, N)

A properties file containing DataType definitions. Each line is of the form:

name=classname
resource (1.4, String, N)

The Java resource name of a properties file. Uses a ClassLoader to load the
properties file.

classpath (1.4, Path, N)

The classpath to use.

The name and classname attributes are required unless the file or resource attribute is
specified.

Content

Ant: The Definitive Guide

203

0,1 nested <classpath> elements (1.4)

May be used in place of the classpath attribute.

Example Usage

The following example creates the custom DataType customer, which is implemented by the
class com.oreilly.domain.Customer.

<typedef name="customer" classname="com.oreilly.domain.Customer"/>

unjar

The unjar, unwar, and unzip tasks are identical. The
org.apache.tools.ant.taskdefs.Expand class implements them all. See the section on
unzip for attributes and examples.

untar all

org.apache.tools.ant.taskdefs.Untar

Expands a tar archive.

Attributes

dest (all, File, Y)

The destination directory.

overwrite (1.4, boolean, N)

If true, overwrite files even if they are newer than those in the tar file. Defaults to
true.

src (all, File, Y)

The tar file to expand.

Content

None.

Example Usage

Ant: The Definitive Guide

204

<untar src="foo.tar" dest="${builddir}"/>

See Also

See the tar task.

unwar

The unjar, unwar, and unzip tasks are identical. The
org.apache.tools.ant.taskdefs.Expand class implements them all. See the section on
unzip for attributes and examples.

unzip (also unjar and unwar) all

org.apache.tools.ant.taskdefs.Untar

Unzips a ZIP file, a JAR file, or a WAR file.

Attributes

dest (all, File, Y)

The destination directory.

src (all, File, Y)

The file to expand.

overwrite (1.4, boolean, N)

If true, overwrite files even if they are newer than those in the archive. Defaults to
true.

Content

None.

Example Usage

<unzip src="dist.jar" dest="${builddir}"/>

See Also

The jar, war, and zip tasks.

Ant: The Definitive Guide

205

uptodate all

org.apache.tools.ant.taskdefs.UpToDate

Sets a property if one or more target files are up-to-date with respect to corresponding
source files. The property is set if the target is newer than all source files.

Attributes

property (all, String, Y)

The property to set.

targetfile (all, File, *)

A target file to check.

value (1.4, String, N)

The value to set the property to. Defaults to true.

The targetfile attribute is required unless a nested <mapper> is specified.

Content

0..n nested <srcfiles> elements (all)

Each is a fileset defining a set of source files to compare.

0,1 nested <mapper> elements (1.3, 1.4)

Defines how source files relate to target files. If not specified, this task uses a merge
mapper whose to attribute is set to the value of the uptodate task's targetfile
attribute.

Example Usage

The following example sets the jar_ok property if classes.jar is newer than the .class files
found in the project directory and all its subdirectories.

<uptodate property="jar_ok" targetfile="${builddir}/classes.jar">
 <srcfiles dir="${builddir}" includes="**/*.class"/>
</uptodate>

This next example assumes we have a custom code generator that creates .java files based on
.template files. It uses a nested <mapper> and sets the codegen_uptodate property whenever
all .java files are up-to-date with respect to their corresponding .template files.

Ant: The Definitive Guide

206

<uptodate property="codegen_uptodate">
 <srcfiles dir="src" includes="**/*.template"/>
 <mapper type="glob" from="*.template" to="*.java"/>
</uptodate>

See Also

mappers are discussed in Chapter 4.

war all

org.apache.tools.ant.taskdefs.War

Creates a Web Application Archive (WAR) file. WAR files are the deployment mechanism
for servlets.

Attributes

basedir (all, File, N)

Specifies the base directory from which to add files to the WAR file.

compress (all, boolean, N)

If true, compress the WAR file. Defaults to true.

defaultexcludes (all, boolean, N)

Determines whether to use default excludes, as described in Chapter 4 under "FileSet
DataType." Defaults to true.

encoding (1.4, String, N)

Specifies the character encoding for filenames inside the JAR file. Defaults to UTF-8.
The Ant specification warns that changing this attribute probably renders the JAR file
unusable by Java.

excludes (all, String, N)

A comma-separated list of file patterns to exclude. These are in addition to the default
excludes.

excludesfile (all, File, N)

The name of a file containing one exclude pattern per line.

filesonly (1.4, boolean, N)

If true, do not create empty directories. Defaults to false.

Ant: The Definitive Guide

207

includes (all, String, N)

A comma-separated list of file patterns to include.

includesfile (all, File, N)

The name of a file containing one include pattern per line.

manifest (all, File, N)

The name of the manifest file to use.

update (1.4, boolean, N)

If true, update the existing WAR file when changes are made, rather than erasing and
creating it from scratch. Defaults to false.

warfile (all, File, Y)

The name of the WAR file to create.

webxml (all, File, Y)

The name of the deployment descriptor. It is placed in the WEB-INF directory and
renamed to web.xml.

whenempty (all, Enum, N)

The behavior used when no files to include are found. Defaults to create. Legal
values are as follows:

fail

Abort the build.

skip

Don't create the WAR file.

create

Create an empty WAR file when no include files are present.

Ant: The Definitive Guide

208

Content

0..n nested patternset elements: <exclude> , <include> , <patternset>
(all); <excludesfile> , <includesfile> (1.4)

Used in place of their corresponding attributes, these specify the set of included and
excluded source files.

0..n nested <classes> elements (all)

zipfileset elements defining which files are placed in the WEB-INF/classes
directory of the WAR file.

0..n nested <fileset> elements (all)

fileset elements defining which files are placed in top-level directory of the WAR
file.

0..n nested <lib> elements (all)

zipfileset elements defining which files are placed in the WEB-INF/lib directory of
the WAR file.

0..n nested <metainf> elements (1.4)

zipfileset elements defining which files are placed in the META-INF directory of
the WAR file.

0..n nested <webinf> elements (all)

zipfileset elements defining which files are placed in the WEB-INF directory of the
WAR file.

0..n nested <zipfileset> elements (1.3, 1.4)

zipfileset elements defining which files are placed in top-level directory of the
WAR file.

Example Usage

The following example creates a WAR file named ecom.war. Files in the src/docroot
directory are placed in the root directory of the WAR file. All class files are placed under
WEB-INF/classes, and JAR files are placed under WEB-INF/lib.

<war warfile="${builddir}/ecom.war"
 webxml="src/metadata/web.xml">
 <fileset dir="src/docroot"/>
 <classes dir="${builddir}" includes="**/*.class"/>
 <lib dir="${builddir}" includes="*.jar"/>
</war>

Ant: The Definitive Guide

209

See Also

See the zip task for a description of zipfileset.

zip all

org.apache.tools.ant.taskdefs.Zip

Creates a ZIP file.

Attributes

basedir (all, File, N)

Specifies the base directory from which to add files to the ZIP file.

compress (all, boolean, N)

If true, compress the ZIP file. Defaults to true.

defaultexcludes (all, boolean, N)

Determines whether to use default excludes, as described in Chapter 4 under "FileSet
DataType." Defaults to true.

encoding (1.4, String, N)

Specifies the character encoding for filenames inside the ZIP file. Defaults to whatever
encoding the current VM uses.

excludes (all, String, N)

A comma-separated list of file patterns to exclude. These are in addition to the default
excludes.

excludesfile (all, File, N)

The name of a file containing one exclude pattern per line.

filesonly (1.4, boolean, N)

If true, do not create empty directories. Defaults to false.

includes (all, String, N)

A comma-separated list of file patterns to include.

Ant: The Definitive Guide

210

includesfile (all, File, N)

The name of a file containing one include pattern per line.

update (1.4, boolean, N)

If true, update the existing ZIP file when changes are made, rather than erasing and
creating it from scratch. Defaults to false.

whenempty (all, Enum, N)

The behavior used when no files match. Defaults to create. Legal values are as
follows:

fail

Abort the build.

skip

Don't create the ZIP file.

create

Create an empty ZIP file when no files are present.

zipfile (all, File, Y)

The name of the ZIP file to create.

Content

0..n nested patternset elements: <exclude> , <include> , <patternset>
(all); <excludesfile> , <includesfile> (1.4)

Used in place of their corresponding attributes, these specify the set of included and
excluded source files.

0..n nested <fileset> elements (all)

fileset elements defining which files are placed in the ZIP file.

0..n nested <zipfileset> elements (1.3, 1.4)

Each is a zipfileset, which is an extension of fileset.

zipfileset adds the following attributes to fileset:

Ant: The Definitive Guide

211

fullpath (String, N)

Can only be set for a single file. Specifies the full pathname for a file once it is added
to the archive.

prefix (String, N)

If specified, all files are prefixed with this path when placed in the archive.

src (File, *)

Specifies an existing ZIP file whose contents will be extracted and then inserted into
the new ZIP file.

Exactly one of dir or src is required. (dir is inherited from fileset.)

Example Usage

Create a ZIP file containing all source code:

<zip zipfile="${builddir}/src.zip" basedir="src"/>

See Also

See the ear, jar, tar, and war tasks, all of which are based on the same code that zip uses.

Ant: The Definitive Guide

212

Chapter 8. Optional Tasks
This chapter lists optional tasks available with Ant Versions 1.2, 1.3, and 1.4.
The presentation follows the same format as is used in Chapter 7.

8.1 Task Summary

Table 8-1 summarizes all of Ant's optional tasks.

Table 8-1. Optional task summary

Task name Ant
versions Synopsis

antlr 1.3, 1.4 Runs the ANTLR parser and translator generator tool.

blgenclient 1.4 Creates a client JAR file from an existing ejb-jar file. The name is derived from
"Borland Generated Client."

cab all Creates Microsoft .cab archives.
cccheckin 1.3, 1.4 Performs a Rational ClearCase checkin command.
cccheckout 1.3, 1.4 Performs a ClearCase checkout command.
ccmcheckin 1.4 Performs a Continuus1 ci command.
ccmcheckintask 1.4 Performs a Continuus ci default command.
ccmcheckout 1.4 Performs a Continuus co command.
ccmcreatetask 1.4 Performs a Continuus create_task command.
ccmreconfigure 1.4 Performs a Continuus reconfigure command.
ccuncheckout 1.3, 1.4 Performs a ClearCase uncheckout command.
ccupdate 1.3, 1.4 Performs a ClearCase update command.
csc 1.3, 1.4 Compiles C# source code.
ddcreator all Creates serialized EJB deployment descriptors from text files.

depend 1.3, 1.4 Determines which class files are out-of-date based on analysis of content, in
addition to comparing class file timestamps to source file timestamps.

ejbc all Executes BEA WebLogic Server's ejbc tool, generating code necessary to
deploy EJB components in that environment.

ejbjar all Creates ejb-jar files compatible with EJB 1.1.
ftp all Implements a basic FTP client.
icontract 1.4 Executes the iContract Design By Contract preprocessor.
ilasm 1.3, 1.4 Assembles .NET Intermediate Language files.
iplanet-ejbc 1.4 Compiles EJB stubs and skeletons for iPlanet Application Server Version 6.0.
javacc all Executes the JavaCC compiler compiler on a grammar file.

javah 1.3, 1.4 Executes the javah tool, generating Java Native Interface (JNI) headers from
one or more Java classes.

jdepend 1.4 Executes the JDepend tool.
jjtree all Executes the JJTree preprocessor for JavaCC.

jlink all Builds a JAR or ZIP file, optionally merging contents of existing JAR and ZIP
archives.

jpcoverage 1.4 Executes the JProbe Coverage tool.
jpcovmerge 1.4 Merges several JProbe Coverage snapshots into one.
jpcovreport 1.4 Creates a report from a JProbe Coverage snapshot.
junit all Executes unit tests using the JUnit testing framework.

1 Although the Ant tasks still refer to Continuus commands, the product is now known as Telelogic Synergy, available at http://www.telelogic.com/.

Ant: The Definitive Guide

213

junitreport 1.3, 1.4 Creates a formatted report based on several XML files from the junit task.

maudit 1.4 Executes the WebGain Quality Analyzer to analyze Java source code for
programming errors.

mimemail 1.4 Sends SMTP mail with MIME attachments.

mmetrics 1.4 Executes the WebGain Quality Analyzer on a set of Java files, reporting on
code complexity and other metrics.

mparse all Executes the now obsolete Metamata MParse compiler compiler on a grammar
file.

native2ascii all Converts files with native encoding to ASCII containing escaped Unicode
characters.

netrexxc all Compiles a set of NetRexx files.
p4change 1.3, 1.4 Requests a new changelist from a Perforce server.
p4counter 1.4 Gets and sets a Perforce counter value.
p4edit 1.3, 1.4 Opens files from Perforce for editing.
p4have 1.3, 1.4 Lists Perforce files in the current client view.
p4label 1.3, 1.4 Creates a label for files in the current Perforce workspace.
p4reopen 1.4 Moves files between Perforce changelists.
p4revert 1.4 Reverts opened Perforce files.
p4submit 1.3, 1.4 Checks files in to a Perforce depot.
p4sync 1.3, 1.4 Synchronizes a workspace with the Perforce depot.
propertyfile 1.3, 1.4 Creates or edits Java properties files.
pvcs 1.4 Extracts files from a PVCS repository.

renameext all Renames filename extensions. This task was deprecated in Ant 1.3. Use the
move task with a glob mapper instead.

rpm 1.4 Builds a Linux RPM file.
script all Executes a BSF script.
sound 1.3, 1.4 Plays a sound file at the end of the build process.
starteam all Checks out files from StarTeam.
stylebook 1.3, 1.4 Executes the Apache Stylebook documentation generator.
telnet 1.3, 1.4 Executes a telnet session.
test 1.3, 1.4 Executes a unit test in the org.apache.testlet framework.
vsscheckin 1.4 Checks in files to Visual SourceSafe.
vsscheckout 1.4 Checks out files from Visual SourceSafe.
vssget all Gets files from Visual SourceSafe.
vsshistory 1.4 Shows history for files and projects in Visual SourceSafe.
vsslabel 1.3, 1.4 Assigns a label to files and projects in Visual SourceSafe.
wljspc all Precompiles JSP files using BEA WebLogic Server's JSP compiler.
wlrun all Starts an instance of the BEA WebLogic Server.
wlstop all Stops an instance of the BEA WebLogic Server.

xmlvalidate 1.4 Verifies that XML documents are well-formed and optionally valid, using any
SAX parser.

8.2 Optional Task Reference

The remainder of this chapter provides detailed information on each of Ant's optional tasks.
Attribute descriptions are formatted exactly like the previous chapter.

Ant: The Definitive Guide

214

antlr 1.3, 1.4

org.apache.tools.ant.taskdefs.optional.ANTLR

Runs the ANTLR parser and translator generator tool. ANTLR must be installed for this
task to run. It is available at http://www.antlr.org/. This task compares the grammar file
against the target files, running ANTLR only if the grammar file is newer.

Attributes

dir (1.3, 1.4, File, N)

The working directory for the forked JVM. Only valid when fork=true.

fork (1.3, 1.4, boolean, N)

If true, run ANTLR in its own JVM. Defaults to false.

outputdirectory (1.3, 1.4, File, N)

The destination directory for the generated files. Defaults to the directory containing
the grammar file.

target (1.3, 1.4, File, Y)

The name of the grammar file.

Content

None.

blgenclient 1.4

org.apache.tools.ant.taskdefs.optional.ejb.BorlandGenerateClient

Creates a client JAR file from an existing ejb-jar file. blgenclient is derived from
"Borland Generated Client." It is designed for use with Borland Application Server v4.5.

Attributes

classpath (1.4, Path, N)

The classpath used by the java task. Only valid when mode is java.

classpathref (1.4, Reference, N)

Ant: The Definitive Guide

215

A reference to a classpath defined elsewhere in the buildfile. Only valid when mode is
java.

clientjar (1.4, File, N)

The name of the client JAR to create. If omitted, the task appends client to the
filename. For instance, foo.jar becomes fooclient.jar.

debug (1.4, boolean, N)

If true, the task passes the -trace command-line option to the underlying command.
Defaults to false.

ejbjar (1.4, File, Y)

The ejb-jar file from which to generate the client JAR.

mode (1.4, String, N)

Specifies how the command is launched. Defaults to java. Legal values are as
follows:

fork

Use the exec core task.

java

Use the java core task.2

Content

0,1 nested <classpath> elements (1.4)

A path element used in place of the classpath or classpathref attributes.

cab all

org.apache.tools.ant.taskdefs.optional.Cab

Creates Microsoft CAB archives. On Windows platforms, you must include the Microsoft
cabarc tool on the path. On non-Windows platforms, you can use libcabinet, available at
http://trill.cis.fordham.edu/~barbacha/cabinet_library/.

2 Even in "java" mode, this task forks a new JVM.

Ant: The Definitive Guide

216

Attributes

basedir (all, File, Y)

The directory from which to archive files.

cabfile (all, File, Y)

The name of the CAB file to create.

compress (all, boolean, N)

If true, compress files. Defaults to true.

defaultexcludes (all, boolean, N)

Determines whether to use default excludes. Defaults to true.

excludes (all, String, N)

A comma-separated list of file patterns to exclude.

excludesfile (all, File, N)

The name of a file containing one exclude pattern per line.

includes (all, String, N)

A comma-separated list of file patterns to include.

includesfile (all, File, N)

The name of a file containing one include pattern per line.

options (all, String, N)

Specifies additional command-line arguments for the underlying cabarc command.

verbose (all, boolean, N)

If true, the task instructs the cabarc command to operate in verbose mode. Defaults
to false.

Ant: The Definitive Guide

217

Content

0..n nested patternset elements: <exclude> , <include> , <patternset>
(all); <excludesfile> , <includesfile> (1.4)

Used in place of their corresponding attributes, these specify the set of included and
excluded source files.

0..n nested <fileset> elements (all)

fileset elements specifying files included in the CAB archive.

cccheckin 1.3, 1.4

org.apache.tools.ant.taskdefs.optional.clearcase.CCCheckin

Performs a ClearCase checkin command.

Attributes

cleartooldir (1.3, 1.4, String, N)

Specifies the directory in which cleartool is located.

comment (1.3, 1.4, String, *)

A comment to use when checking in the file.

commentfile (1.3, 1.4, String, *)

A file containing a comment used when checking in the file.

identical (1.3, 1.4, boolean, N)

If true, the task checks in the file even if it is identical to its original. Defaults to
false.

keepcopy (1.3, 1.4, boolean, N)

If true, the task keeps a copy of the file with a .keep extension. Defaults to false.

nowarn (1.3, 1.4, boolean, N)

If true, the task does not show warning messages. Defaults to false.

preservetime (1.3, 1.4, boolean, N)

If true, the task preserves the file-modification time. Defaults to false.

Ant: The Definitive Guide

218

viewpath (1.3, 1.4, String, N)

The path to the ClearCase view file or directory.

The comment and commentfile attributes are optional, but you cannot specify both.

Content

None.

cccheckout 1.3, 1.4

org.apache.tools.ant.taskdefs.optional.clearcase.CCCheckout

Performs a ClearCase checkout command.

Attributes

branch (1.3, 1.4, String, N)

Specifies the branch used when checking out files.

cleartooldir (1.3, 1.4, String, N)

Specifies the directory in which cleartool is located.

comment (1.3, 1.4, String, *)

A comment to use when checking out the file.

commentfile (1.3, 1.4, String, *)

A file containing a comment used when checking out the file.

nodata (1.3, 1.4, boolean, N)

If true, the task checks out the file but does not create a file containing editable data.
Defaults to false.

nowarn (1.3, 1.4, boolean, N)

If true, the task does not show warning messages. Defaults to false.

out (1.3, 1.4, String, N)

Specifies a different filename to check the file out to.

Ant: The Definitive Guide

219

reserved (1.3, 1.4, boolean, Y)

If true, the task checks out the file as reserved. Defaults to true.

version (1.3, 1.4, boolean, N)

If true, the task allows checking out a version other than latest. Defaults to false.

viewpath (1.3, 1.4, String, N)

The path to the ClearCase view file or directory.

The comment and commentfile attributes are optional, but you cannot specify both.

Content

None.

ccmcheckin 1.4

org.apache.tools.ant.taskdefs.optional.ccm.CCMCheckin

Performs a Continuus ci command. This and other ccm tasks are wrappers around the
Continuus Source Manager product. Although these tasks still refer to Continuus, the
product was purchased by Telelogic in September 2000, and is now known as Telelogic
Synergy. It is available at http://www.telelogic.com/.

Attributes

ccmdir (1.4, String, N)

The directory containing the ccm executable. The task searches the path if this is not
specified.

comment (1.4, String, N)

A comment for the file. Defaults to "Checkin " + current date and time.

file (1.4, File, Y)

The file to check in.

task (1.4, String, N)

The Continuus task number used when checking in the file.

Ant: The Definitive Guide

220

Content

None.

ccmcheckintask 1.4

org.apache.tools.ant.taskdefs.optional.ccm.CCMCheckinDefault

Performs a Continuus ci default command.

Attributes

ccmdir (1.4, String, N)

The directory containing the ccm executable. The task searches the path if this is not
specified.

comment (1.4, String, N)

A comment to use when checking in the file(s).

task (1.4, String, N)

The Continuus task number used when checking in the file.

Content

None.

ccmcheckout 1.4

org.apache.tools.ant.taskdefs.optional.ccm.CCMCheckout

Performs a Continuus co command.

Attributes

ccmdir (1.4, String, N)

The directory containing the ccm executable. The task searches the path if no directory
is specified.

comment (1.4, String, N)

A comment used when checking out the file.

Ant: The Definitive Guide

221

file (1.4, File, Y)

The file to check out.

task (1.4, String, N)

The Continuus task number used when checking out the file.

Content

None.

ccmcreatetask 1.4

org.apache.tools.ant.taskdefs.optional.ccm.CCMCreateTask

Performs a Continuus create_task command.

Attributes

ccmdir (1.4, String, N)

The directory containing the ccm executable. The task searches the path if this is not
specified.

comment (1.4, String, N)

A comment for the operation.

platform (1.4, String, N)

The /plat command-line option.

release (1.4, String, N)

The /release command-line option.

resolver (1.4, String, N)

The /resolver command-line option.

subsystem (1.4, String, N)

The /subsystem command-line option.

task (1.4, String, N)

The Continuus task number to use.

Ant: The Definitive Guide

222

Content

None.

ccmreconfigure 1.4

org.apache.tools.ant.taskdefs.optional.ccm.CCMReconfigure

Performs a Continuus reconfigure command.

Attributes

ccmdir (1.4, String, N)

The directory containing the ccm executable. The task searches the path if this is not
specified.

ccmproject (1.4, String, Y)

The name of the project for this command.

recurse (1.4, boolean, N)

If true, the task recursively processes subprojects. Defaults to false.

verbose (1.4, boolean, N)

If true, the task prints verbose information. Defaults to false.

Content

None.

ccuncheckout 1.3, 1.4

org.apache.tools.ant.taskdefs.optional.clearcase.CCUnCheckout

Performs a ClearCase uncheckout command.

Attributes

cleartooldir (1.3, 1.4, String, N)

Specifies the directory in which cleartool is located.

Ant: The Definitive Guide

223

keepcopy (1.3, 1.4, boolean, N)

If true, the task keeps a copy of the file with a .keep extension. Defaults to false.

viewpath (1.3, 1.4, String, N)

Path to the ClearCase view file or directory.

Content

None.

ccupdate 1.3, 1.4

org.apache.tools.ant.taskdefs.optional.clearcase.CCUpdate

Performs a ClearCase update command.

Attributes

cleartooldir (1.3, 1.4, String, N)

Specifies the directory in which cleartool is located.

currenttime (1.3, 1.4, boolean, *)

If true, the task sets the file-modification time to the current system time. Defaults to
false.

graphical (1.3, 1.4, boolean, N)

If true, the task shows the GUI window. Defaults to false.

log (1.3, 1.4, String, N)

The name of a log file ClearCase should write to.

overwrite (1.3, 1.4, boolean, N)

If true, the task overwrites hijacked files.3 Defaults to false.

preservetime (1.3, 1.4, boolean, *)

If true, the task preserves the file-modification time from the Version Object Base
(VOB). Defaults to false.

3 ClearCase considers a file "hijacked" when you modify it without checking it out.

Ant: The Definitive Guide

224

rename (1.3, 1.4, boolean, N)

If true, indicates that hijacked files should be renamed with a .keep extension.
Defaults to false.

viewpath (1.3, 1.4, String, N)

Specifies the path to the ClearCase view file or directory.

The currenttime and preservetime attributes are optional, but you cannot specify both.

Content

None.

csc 1.3, 1.4

org.apache.tools.ant.taskdefs.optional.dotnet.CSharp

Compiles C# source code. Currently works on platforms containing the csc.exe executable,
i.e., various flavors of Windows.

Attributes

additionalmodules (1.3, 1.4, String, N)

A semicolon-delimited list of additional modules, which are DLLs containing
metadata. This is equivalent to csc's /addmodule parameter.

debug (1.3, 1.4, boolean, N)

If true, include debug information. Defaults to true.

defaultexcludes (1.3, 1.4, boolean, N)

Determines whether to use default excludes. Defaults to true.

definitions (1.3, 1.4, String, N)

List of definitions passed to csc.exe, delimited by ";", ":", or "," — for instance,
DEBUG;BETA_TEST.

docfile (1.3, 1.4, File, N)

The name of a file for generated XML documentation.

Ant: The Definitive Guide

225

excludes (1.3, 1.4, String, N)

A comma-separated list of file patterns to exclude.

excludesfile (1.3, 1.4, File, N)

The name of a file containing one exclude pattern per line.

extraoptions (1.3, 1.4, String, N)

Extra options passed directly to the csc.exe command.

failonerror (1.3, 1.4, boolean, N)

If true, the task fails the build when the compile returns an error. Defaults to true.

fullpaths (1.4, boolean, N)

If true, the task prints the full path of files when errors occur. Defaults to true.

includedefaultreferences (1.3, 1.4, boolean, N)

If true, the task includes common assemblies found in .NET beta 1, and in links in
mscore.dll. Defaults to true.

includes (1.3, 1.4, String, N)

A comma-separated list of file patterns to include.

includesfile (1.3, 1.4, File, N)

The name of a file containing one include pattern per line.

incremental (1.3, 1.4, boolean, N)

If true, the task instructs csc.exe to perform an incremental build. Defaults to false.

mainclass (1.3, 1.4, String, N)

The name of the main class for executables.

noconfig (1.4, boolean, N)

If true, the task passes the /noconfig flag to csc.exe. Defaults to false.4

4 Although this attribute is documented in the Ant user manual, its implementation method is protected instead of public, preventing its use in Ant 1.4.

Ant: The Definitive Guide

226

optimize (1.3, 1.4, boolean, N)

If true, the task instructs csc.exe to apply optimizations. Defaults to false.

outputfile (1.3, 1.4, File, N)

The target filename, such as mygui.exe.

referencefiles (1.3, 1.4, Path, N)

A path of references to include.

references (1.3, 1.4, String, N)

A semicolon-delimited list of .dll files to refer to.

srcdir (1.3, 1.4, File, N)

A directory containing source code.

targettype (1.3, 1.4, String, N)

Specifies the type of target. Allowable values are exe, module, winexe, and library.
Defaults to exe.

unsafe (1.3, 1.4, boolean, N)

If true, the task enables the unsafe keyword. Defaults to false.

utf8output (1.4, boolean, N)

If true, the task uses UTF-8 encoding for output files. Defaults to false.

warnlevel (1.3, 1.4, int, N)

A warning level, ranging from 1..4, where 4 is strictest. Defaults to 3.

win32icon (1.3, 1.4, File, N)

The filename of an icon to use, such as foo.ico.

win32res (1.4, File, N)

The filename of a Win32 resource, such as foo.res.

Ant: The Definitive Guide

227

Content

0..n nested patternset elements: <exclude> , <include> , <patternset>
(1.3, 1.4); <excludesfile> , <includesfile> (1.4)

Used in place of their corresponding attributes, these specify the set of included and
excluded source files.

ddcreator all

org.apache.tools.ant.taskdefs.optional.ejb.DDCreator

Creates serialized EJB deployment descriptors from text files. This task is designed for BEA
WebLogic Server 4.5.1.

Attributes

classpath (all, String, N)

The classpath used when running the weblogic.ejb.utils.DDCreator class.

defaultexcludes (all, boolean, N)

Determines whether to use default excludes. Defaults to true.

descriptors (all, String, Y)

The base directory containing text deployment descriptors.

dest (all, String, Y)

The destination directory.

excludes (all, String, N)

A comma-separated list of file patterns to exclude.

excludesfile (all, File, N)

The name of a file containing one exclude pattern per line.

includes (all, String, N)

A comma-separated list of file patterns to include.

includesfile (all, File, N)

The name of a file containing one include pattern per line.

Ant: The Definitive Guide

228

Content

0..n nested patternset elements: <exclude> , <include> , <patternset>
(all); <excludesfile> , <includesfile> (1.4)

Used in place of their corresponding attributes, these specify the set of included and
excluded source files.

depend 1.3, 1.4

org.apache.tools.ant.taskdefs.optional.depend.Depend

Determines which class files are out of date based on analysis of content, in addition to
comparing class file timestamps to source file timestamps. It then removes class files that
are out of date, either because source files are newer or because some logical dependency
has changed. For instance, changing source code for a base class causes all derived classes
to be removed, because they have a logical dependency on their base class.

Attributes

cache (1.3, 1.4, File, N)

A directory in which this task caches dependency information. If omitted, a cache is
not used.

classpath (1.4, Path, N)

Specifies where additional (with respect to destdir) classes and JAR files are located.
This task checks dependencies against classes specified by this attribute. You should
not include third-party libraries and JDK libraries in this path, because they rarely
change and will slow down dependency analysis. This is useful if you wish to check
dependencies against a utility JAR file, for example.

classpathref (1.4, Reference, N)

A reference to a classpath defined elsewhere in the buildfile.

closure (1.3, 1.4, boolean, N)

If true, the task deletes only class files that directly depend on out-of-date classes.
Otherwise, indirect dependencies are considered as well. Defaults to false.

defaultexcludes (1.3, 1.4, boolean, N)

Determines whether to use default excludes. Defaults to true.

Ant: The Definitive Guide

229

destdir (1.3, 1.4, Path, N)

Directory in which class files are found. If omitted, defaults to the value specified by
srcdir.

dump (1.4, boolean, N)

If true, the task writes dependency information to the logging output. Defaults to
false.

excludes (1.3, 1.4, String, N)

A comma-separated list of file patterns to exclude.

excludesfile (1.3, 1.4, File, N)

The name of a file containing one exclude pattern per line.

includes (1.3, 1.4, String, N)

A comma-separated list of file patterns to include.

includesfile (1.3, 1.4, File, N)

The name of a file containing one include pattern per line.

srcdir (1.3, 1.4, Path, Y)

The directory containing source files.

Content

0,1 nested <classpath> elements (1.4)

The Path element used in place of the classpath and classpathref attributes.

0..n nested patternset elements: <exclude> , <include> , <patternset>
(1.3, 1.4); <excludesfile> , <includesfile> (1.4)

Used in place of their corresponding attributes, these specify the set of included and
excluded source files.

ejbc all

org.apache.tools.ant.taskdefs.optional..ejb.Ejbc

Executes BEA WebLogic Server's ejbc tool, generating code necessary to deploy EJB
components in that environment. This task is designed for WebLogic 4.5.1.

Ant: The Definitive Guide

230

Attributes

classpath (all, String, N)

The classpath to use. This must include all necessary supporting classes, such as the
remote and home interfaces for the bean(s).

defaultexcludes (all, boolean, N)

Determines whether to use default excludes. Defaults to true.

descriptors (all, String, Y)

A base directory containing serialized deployment descriptors.

dest (all, String, Y)

A destination directory for generated classes, stubs, and skeletons.

excludes (all, String, N)

A comma-separated list of file patterns to exclude.

excludesfile (all, File, N)

The name of a file containing one exclude pattern per line.

includes (all, String, N)

A comma-separated list of file patterns to include.

includesfile (all, File, N)

The name of a file containing one include pattern per line.

keepgenerated (1.3, 1.4, String, N)

If true, keep the generated Java source code. Defaults to false. Note that this is a
String attribute, not a Boolean; legal values are true and false.

manifest (all, String, Y)

The name of the manifest file to create.

src (all, String, Y)

The base of the source tree, containing home interfaces, remote interfaces, and bean
implementation classes.

Ant: The Definitive Guide

231

Content

0..n nested patternset elements: <exclude> , <include> , <patternset>
(all); <excludesfile> , <includesfile> (1.4)

Used in place of their corresponding attributes, these specify the set of included and
excluded deployment descriptors.

ejbjar all

org.apache.tools.ant.taskdefs.optional.ejb.EjbJar

Creates ejb-jar files compatible with EJB 1.1. This task supports a set of generic attributes
and nested elements, along with several vendor-specific nested elements.

Attributes

basejarname (all, String, *)

The base name used for generated JAR filenames.

basenameterminator (all, String, N)

Used to determine filenames based on deployment descriptor names. For instance,
suppose this attribute is set to "-". With this value, a deployment descriptor named
Customer-ejb-jar.xml results in a base name of Customer. This attribute is only used
when basejarname is specified. Defaults to "-".

classpath (1.3, 1.4, Path, N)

A classpath used to locate classes that are added to the ejb-jar file.

defaultexcludes (all, boolean, N)

Determines whether to use default excludes. Defaults to true.

descriptordir (all, File, N)

The base of a directory tree containing deployment descriptors. Defaults to the value
specified by srcdir.

destdir (all, File, Y)

A destination directory for generated JAR files. Files are placed in subdirectories
corresponding to deployment descriptor subdirectories.

Ant: The Definitive Guide

232

excludes (all, String, N)

A comma-separated list of file patterns to exclude.

excludesfile (all, File, N)

The name of a file containing one exclude pattern per line.

flatdestdir (all, boolean, N)

Used instead of destdir when generated JAR files should not be placed into
subdirectories.

genericjarsuffix (all, String, N)

The name appended to the base name of the deployment descriptor when generating
generic ejb-jar files. Defaults to -generic.jar.

includes (all, String, N)

A comma-separated list of file patterns to include.

includesfile (all, File, N)

The name of a file containing one include pattern per line.

manifest (1.4, File, N)

Specifies a manifest file to include.

naming (1.4, Enum, *)

Configures how the JAR file name is determined. Defaults to descriptor. Legal
values are as follows:

ejb-name

The JAR filename is based on the EJB name. For example, a Customer bean results in
Customer.jar.

directory

The JAR filename is based the last part of a directory containing the deployment
descriptor. For example, com/oreilly/sales/accounting-ejb-jar.xml becomes sales.jar.

descriptor

The JAR filename is based on the deployment descriptor name. For example,
com/oreilly/sales/accounting-ejb-jar.xml becomes accounting.jar.

Ant: The Definitive Guide

233

basejarname

Only legal when the basejarname attribute is set. When it is set, the ejbjar task uses
the basejarname attribute value when determining JAR filenames. For example,
when basejarname is "Book", the resulting JAR is Book.jar.

srcdir (all, File, Y)

A directory containing class files comprising the beans.

The basejarname attribute is only allowed when naming="basejarname".

Content

0..n nested patternset elements: <exclude> , <include> , <patternset>
(all); <excludesfile> , <includesfile> (1.4)

Used in place of their corresponding attributes, these specify the set of included and
excluded deployment descriptors.

0,1 nested <classpath> elements (1.3, 1.4)

Used in place of the classpath attribute.

0..n nested <dtd> elements (1.3, 1.4)

Specifies local locations for DTD references in XML files. This is useful because
loading DTDs from a local file is faster than loading DTDs remotely, and works when
disconnected from a network or running behind a firewall. This element requires the
following two attributes:

location (1.3, 1.4, String, Y)

The local copy of the DTD. This is either a filename or a Java resource name.

publicid (1.3, 1.4, String, Y)

The public ID of the DTD.

0..n nested <support> elements (1.3, 1.4)

fileset elements specifying additional files to include in the generated JAR files.
When generating multiple JAR files, these support files are added to each one.

The ejbar task supports numerous vendor-specific nested elements. These account for
deployment differences across various EJB servers.

Ant: The Definitive Guide

234

0,1 nested <borland> elements (1.4)

Supports Borland Application Server Version 4.5. Generates and compiles stubs and
skeletons, creates the JAR file, then verifies its contents. Attributes are as follows:

classpath (1.4, Path, N)

Classpath used when generating stubs and skeletons. This is appended to the classpath
specified in the ejbjar parent class. A nested <classpath> element is also supported.

debug (1.4, boolean, N)

If true, run the Borland tools in debug mode. Defaults to false.

destdir (1.4, File, Y)

The base directory for generated JAR files.

generateclient (1.4, boolean, N)

If true, generate the corresponding client JAR file. Defaults to false.

suffix (1.4, String, N)

The text appended to the base name of the deployment descriptor. This is used when
generating the JAR filename. Defaults to -ejb.jar.

verify (1.4, boolean, N)

If true, verify the generated JAR files. Defaults to false.

verifyargs (1.4, String, N)

The extra arguments used when verify=true.

0,1 nested <iplanet> elements. (1.4)

Supports iPlanet Application Server (iAS) Version 6.0. Attributes are as follows:

classpath (1.4, Path, N)

Classpath used when generating stubs and skeletons. This is appended to the classpath
specified in the ejbjar parent class. A nested <classpath> element is also supported.

debug (1.4, boolean, N)

If true, log debugging information as the ejbjar task runs. Defaults to false.

Ant: The Definitive Guide

235

destdir (1.4, File, Y)

The base directory for generated JAR files.

iashome (1.4, File, N)

The home directory for the iAS distribution, used to locate the ejbc utility when it is
not on the path.

keepgenerated (1.4, boolean, N)

If true, keep generated Java source files. Defaults to false.

suffix (1.4, String, N)

Appended to each generated JAR filename. Defaults to .jar.

0,1 nested <jboss> elements (1.4)

Supports the JBoss server. Since JBoss supports hot deployment, it does not require
generated stubs and skeletons. This task searches for jboss.xml and jaws.xml, adding
them to the generated JAR file. One attribute is supported:

destdir (1.4, File, Y)

Base directory for generated JAR files.

0,1 nested <weblogic> elements (all)

Supports the weblogic.ejbc compiler. The following attributes are supported:

args (all, String, N)

The additional arguments for weblogic.ejbc.

classpath (all, Path, N)

The classpath used when running the weblogic.ejbc tool.

compiler (all, String, N)

Select a different Java compiler.

destdir (all, File, Y)

The base directory for generated JAR files.

Ant: The Definitive Guide

236

genericjarsuffix (all, String, N)

The filename suffix used when generating an intermediate, temporary JAR file.
Defaults to -generic.jar.

keepgenerated (all, boolean, N)

If true, keep generated Java files. Defaults to false.

keepgeneric (all, boolean, N)

If true, keep the intermediate generic JAR files. Defaults to false.

newCMP (1.3, 1.4, boolean, N)

If true, use the new method for locating CMP descriptors. Defaults to false.

noEJBC (1.4, boolean, N)

If true, do not run weblogic.ejbc on the JAR file. Defaults to false.

rebuild (1.3, 1.4, boolean, N)

If true, force execution of weblogic.ejbc without checking file timestamps. Defaults
to true.

suffix (all, String, N)

Appended to each generated JAR filename. Defaults to .jar.

wlclasspath (1.3, 1.4, Path, N)

Use this attribute to avoid a WebLogic 6.0 warning that is issued when home and
remote interfaces for a bean are located on the classpath used to run weblogic.ejbc. Set
this attribute to include the standard WebLogic classes, and use the classpath
attribute to include bean-related classes.

0,1 nested <weblogictoplink> elements (all)

Used when using TOPLink with WebLogic for CMP. This task supports all of the
<weblogic> attributes, plus the following additional attributes:

toplinkdescriptor (all, String, Y)

The name of the locally stored TOPLink deployment descriptor file. This is relative to
the descriptordir attribute of the containing ejbjar task.

Ant: The Definitive Guide

237

toplinkdtd (all, String, N)

The location of the TOPLink DTD file. A local file path or URL is recommended, but
not required. Defaults to the DTD found at http://www.objectpeople.com/.

ftp all

org.apache.tools.ant.taskdefs.optional.net.FTP

Implements a basic FTP client. This task depends on netcomponents.jar, available at
http://www.savarese.org/oro/downloads.

Attributes

action (all, String, N)

The FTP command to execute. Legal values are send, put, recv, get, del, delete,
list, and mkdir. Defaults to send.

binary (all, boolean, N)

If true, use binary-mode transfers instead of text-mode. Defaults to true.

depends (all, boolean, N)

If true, transfer only new or changed files. Defaults to false.

ignorenoncriticalerrors (1.4, boolean, N)

If true, ignore noncritical error codes sent by some FTP servers. Defaults to false.

listing (all, File, *)

Name of a file to store output from the list action.

newer (all, boolean, N)

An alias for depends.

passive (1.3, 1.4, boolean, N)

If true, use passive-mode transfers. Defaults to false.

password (all, String, Y)

The login password for the FTP server.

Ant: The Definitive Guide

238

port (all, int, N)

The port number. Defaults to 21.

remotedir (all, String, N)

A directory on the remote server.

separator (all, String, N)

The file separator on the FTP server. Defaults to "/".

server (all, String, Y)

The URL of the remote server.

skipfailedtransfers (1.4, boolean, N)

If true, continue transferring files even if some failures occur. Defaults to false.

userid (all, String, Y)

The login ID for the FTP server.

verbose (all, boolean, N)

If true, operate in verbose mode. Defaults to false.

The listing attribute is required when action="list".

Content

0..n nested <fileset> elements (all)

Specifies files and directories to include and exclude from transfers.

icontract 1.4

org.apache.tools.ant.taskdefs.optional.IContract

Executes the iContract Design By Contact preprocessor. iContract is available at
http://www.reliable-systems.com/tools/. This task uses whatever Java compiler the javac
task uses. You can specify an alternate Java compiler by setting the build.compiler
property.

Ant: The Definitive Guide

239

Attributes

builddir (1.4, File, N)

The destination for compiled instrumented classes. The Ant user manual warns against
using the same directory for instrumented and uninstrumented classes, because this
breaks dependency checking.

classdir (1.4, File, N)

The source directory containing compiled, uninstrumented classes.

classpath (1.4, Path, N)

The classpath used when instrumenting and compiling files.

classpathref (1.4, Reference, N)

A reference to a classpath defined elsewhere in the buildfile.

controlfile (1.4, File, *)

The name of the control file passed to iContract.

defaultexcludes (1.4, boolean, N)

Determines whether to use default excludes. Defaults to true.

excludes (1.4, String, N)

A comma-separated list of file patterns to exclude.

excludesfile (1.4, File, N)

The name of a file containing one exclude pattern per line.

failthrowable (1.4, String, N)

The class name of an exception or error to throw when an assertion is violated.
Defaults to java.lang.Error.

includes (1.4, String, N)

A comma-separated list of file patterns to include.

includesfile (1.4, File, N)

The name of a file containing one include pattern per line.

Ant: The Definitive Guide

240

instrumentdir (1.4, File, Y)

The destination directory for instrumented source files.

invariant (1.4, boolean, N)

If true, instrument for invariants. Defaults to true unless controlfile is specified.

post (1.4, boolean, N)

If true, instrument for postconditions. Defaults to true unless controlfile is
specified.

pre (1.4, boolean, N)

If true, instrument for preconditions. Defaults to true unless controlfile is
specified.

quiet (1.4, boolean, N)

If true, execute in quiet mode. Defaults to false.

repbuilddir (1.4, File, N)

The destination directory for compiled repository classes. Defaults to the value
specified by repositorydir.

repositorydir (1.4, File, Y)

The destination directory for repository source files.

srcdir (1.4, File, Y)

The location of original Java source files.

targets (1.4, File, N)

The name of a file that this task creates, listing all classes that iContract will
instrument. If specified, the file is not deleted after execution. Otherwise, a temporary
file is created, then deleted after execution.

updateicontrol (1.4, boolean, N)

If true, update the properties file for iControl in the current directory, or create a new
one if necessary. Defaults to false.

Ant: The Definitive Guide

241

verbosity (1.4, String, N)

A comma-separated list of verbosity levels. Any combination of error*, warning*,
note*, info*, progress*, and debug* is allowed. Defaults to error*.

The controlfile attribute is required if updateicontrol=true.

Content

0..n nested patternset elements: <exclude> , <excludesfile> , <include> ,
<includesfile> , and <patternset> (1.4)

Used in place of their corresponding attributes, these specify the set of included and
excluded source files.

0,1 nested <classpath> elements (1.4)

May be used in place of the classpath and classpathref attributes.

ilasm 1.3, 1.4

org.apache.tools.ant.taskdefs.optional.dotnet.Ilasm

Assembles .NET Intermediate Language files. Works only on Windows; csc.exe and
ilasm.exe must be on the path.

Attributes

debug (1.3, 1.4, boolean, N)

If true, include debug information. Defaults to true.

defaultexcludes (1.3, 1.4, boolean, N)

Determines whether to use default excludes. Defaults to true.

excludes (1.3, 1.4, String, N)

A comma-separated list of file patterns to exclude.

excludesfile (1.3, 1.4, File, N)

The name of a file containing one exclude pattern per line.

extraoptions (1.3, 1.4, String, N)

Extra options passed directly to the csc.exe command.

Ant: The Definitive Guide

242

failonerror (1.3, 1.4, boolean, N)

If true, fail the build when this task fails. Defaults to true.

includes (1.3, 1.4, String, N)

A comma-separated list of file patterns to include.

includesfile (1.3, 1.4, File, N)

The name of a file containing one include pattern per line.

keyfile (1.4, File, N)

The name of a file containing a private key.

listing (1.3, 1.4, boolean, N)

If true, produce a listing to the current output stream. Defaults to false.

outputfile (1.3, 1.4, File, N)

The target filename, such as mygui.exe.

owner (1.3, 1.4, String, N)

Specifies the /owner parameter to ilasm.exe.

resourcefile (1.3, 1.4, File, N)

The name of a resource file to include.

srcdir (1.3, 1.4, File, N)

The directory containing sources.

targettype (1.3, 1.4, String, N)

Specifies the type of target. Allowable values are exe and library (to create a DLL).
Defaults to exe.

verbose (1.3, 1.4, boolean, N)

If true, operate in verbose mode. Defaults to false.

Ant: The Definitive Guide

243

Content

0..n nested patternset elements: <exclude> , <include> , <patternset>
(1.3, 1.4); <excludesfile> , <includesfile> (1.4)

Used in place of their corresponding attributes, these specify the set of included and
excluded source files.

iplanet-ejbc 1.4

org.apache.tools.ant.taskdefs.optional.ejb.IPlanetEjbcTask

Compiles EJB stubs and skeletons for iPlanet Application Server Version 6.0.

Attributes

classpath (1.4, Path, N)

The classpath used when generating stubs and skeletons.

debug (1.4, boolean, N)

If true, log additional debugging information. Defaults to false.

dest (1.4, File, Y)

The base directory in which generated stubs and skeletons are placed. The class files
for beans, home interfaces, and remote interfaces must also exist in this directory, and
the directory must exist before the task is executed.

ejbdescriptor (1.4, File, Y)

Location of the EJB 1.1 deployment descriptor, generally named ejb-jar.xml.

iasdescriptor (1.4, File, Y)

The iPlanet EJB deployment descriptor, generally named ias-ejb-jar.xml.

iashome (1.4, File, N)

The home directory for the iPlanet distribution.

keepgenerated (1.4, boolean, N)

If true, this task keeps generated Java source code. Defaults to false.

Ant: The Definitive Guide

244

Content

0,1 nested <classpath> elements (1.4)

May be used in place of the classpath attribute.

javacc all

org.apache.tools.ant.taskdefs.optional.javacc.JavaCC

Executes the Java Compiler Compiler (JavaCC) on a grammar file. JavaCC is available at
http://www.webgain.com/products/java_cc/.

Attributes

buildparser (all, boolean, N)

If specified, the task sets the BUILD_PARSER grammar option to the value of this
attribute.

buildtokenmanager (all, boolean, N)

If specified, the task sets the BUILD_TOKEN_MANAGER grammar option to the value of
this attribute.

cachetokens (all, boolean, N)

If specified, the task sets the CACHE_TOKENS grammar option to the value of this
attribute.

choiceambiguitycheck (all, int, N)

If specified, the task sets the CHOICE_AMBIGUITY_CHECK grammar option to the value
of this attribute.

commontokenaction (all, boolean, N)

If specified, the task sets the COMMON_TOKEN_ACTION grammar option to the value of
this attribute.

debuglookahead (all, boolean, N)

If specified, the task sets the DEBUG_LOOKAHEAD grammar option to the value of this
attribute.

Ant: The Definitive Guide

245

debugparser (all, boolean, N)

If specified, the task sets the DEBUG_PARSER grammar option to the value of this
attribute.

debugtokenmanager (all, boolean, N)

If specified, the task sets the DEBUG_TOKEN_MANAGER grammar option to the value of
this attribute.

errorreporting (all, boolean, N)

If specified, the task sets the ERROR_REPORTING grammar option to the value of this
attribute.

forcelacheck (all, boolean, N)

If specified, the task sets the FORCE_LA_CHECK grammar option to the value of this
attribute.

ignorecase (all, boolean, N)

If specified, the task sets the IGNORE_CASE grammar option to the value of this
attribute.

javacchome (all, File, Y)

The directory containing the JavaCC distribution.

javaunicodeescape (all, boolean, N)

If specified, the task sets the JAVA_UNICODE_ESCAPE grammar option to the value of
this attribute.

lookahead (all, int, N)

If specified, the task sets the LOOKAHEAD grammar option to the value of this attribute.

optimizetokenmanager (all, boolean, N)

If specified, the task sets the OPTIMIZE_TOKEN_MANAGER grammar option to the value
of this attribute.

otherambiguitycheck (all, int, N)

If specified, the task sets the OTHER_AMBIGUITY_CHECK grammar option to the value of
this attribute.

Ant: The Definitive Guide

246

outputdirectory (all, File, N)

The destination directory for generated files. Defaults to the directory containing the
grammar file.

sanitycheck (all, boolean, N)

If specified, the task sets the SANITY_CHECK grammar option to the value of this
attribute.

static (all, boolean, N)

If specified, the task sets the STATIC grammar option to the value of this attribute.

target (all, File, Y)

The grammar file to process.

unicodeinput (all, boolean, N)

If specified, the task sets the UNICODE_INPUT grammar option to the value of this
attribute.

usercharstream (all, boolean, N)

If specified, the task sets the USE_CHAR_STREAM grammar option to the value of this
attribute.

usertokenmanager (all, boolean, N)

If specified, the task sets the USER_TOKEN_MANAGER grammar option to the value of
this attribute.

Content

None.

javah 1.3, 1.4

org.apache.tools.ant.taskdefs.optional.Javah

Executes the javah tool, generating Java Native Interface (JNI) headers from one or more
Java classes. This task uses the default Java compiler, unless the build.compiler property
is set to something else, as explained in the javac task description in Chapter 7.

Ant: The Definitive Guide

247

Attributes

bootclasspath (1.3, 1.4, Path, N)

The bootstrap classpath to use.

bootclasspathref (1.3, 1.4, Reference, N)

Reference to a bootstrap classpath defined elsewhere in the buildfile.

class (1.3, 1.4, String, Y)

A comma-separated list of class names to process.

classpath (1.3, 1.4, Path, N)

The classpath to use.

classpathref (1.3, 1.4, Reference, N)

A reference to a classpath defined elsewhere in the buildfile.

destdir (1.3, 1.4, File, *)

The destination directory for generated files.

force (1.3, 1.4, boolean, N)

If true, the task always writes output files. Defaults to false.

old (1.3, 1.4, boolean, N)

If true, the task uses JDK 1.0-style header files. Defaults to false.

outputfile (1.3, 1.4, File, *)

If specified in place of destdir, the task concatenates all output into this single file.

stubs (1.3, 1.4, boolean, N)

Used when old=true. If true, the task generates C declarations. Defaults to false.

verbose (1.3, 1.4, boolean, N)

If true, the task executes javah in verbose mode. Defaults to false.

Exactly one of either outputfile or destdir is required.

Ant: The Definitive Guide

248

Content

0,1 nested <bootclasspath> elements (1.3, 1.4)

May be used in place of the bootclasspath or bootclasspathref attributes.

0..n nested <class> elements (1.3, 1.4)

May be used in place of the class attribute to specify classes to generate. Each
<class> element has a required name attribute. For example:

<class name="com.oreilly.util.Foobar"/>

0,1 nested <classpath> elements (1.3, 1.4)

The path element used in place of the classpath or classpathref attributes.

jdepend 1.4

org.apache.tools.ant.taskdefs.optional.jdepend.JDependTask

Executes the JDepend tool. JDepend analyzes Java source files, producing design quality
metrics for each package. This task requires JDepend Version 1.2 or later, which is available
at http://www.clarkware.com/software/JDepend.html.

Attributes

classpath (1.4, Path, N)

The classpath to use.

classpathref (1.4, Reference, N)

A reference to a classpath defined elsewhere in the buildfile.

dir (1.4, File, N)

The working directory for the JVM.

fork (1.4, boolean, N)

If true, the task forks a new JVM instance. Defaults to false.

haltonerror (1.4, boolean, N)

If true, the task halts the build when errors occur. Defaults to false.

Ant: The Definitive Guide

249

jvm (1.4, String, N)

The command used to invoke the JVM. Ignored if fork=false. Defaults to java.

outputfile (1.4, File, N)

The task sends output to this file, or to the current output stream if omitted.

Content

0,1 nested <classpath> elements (1.4)

A path element used in place of the classpath or classpathref attributes.

0..n nested <jvmarg> elements (1.4)

Command-line arguments as described in Chapter 4. Only valid when fork=true.

1..n nested <sourcespath> elements (1.4)

The path elements defining where Java source files are located.

jjtree all

org.apache.tools.ant.taskdefs.optional.javacc.JJTree

Executes the JJTree preprocessor for the Java Compiler Compiler (JavaCC), which is
available at http://www.webgain.com/products/java_cc/.

Attributes

buildnodefiles (all, boolean, N)

If specified, the task sets the BUILD_NODE_FILES grammar option to the value of this
attribute.

javacchome (all, File, Y)

The directory containing the JavaCC distribution.

multi (all, boolean, N)

If specified, the task sets the MULTI grammar option to the value of this attribute.

nodedefaultvoid (all, boolean, N)

If specified, the task sets the NODE_DEFAULT_VOID grammar option to the value of this
attribute.

Ant: The Definitive Guide

250

nodefactory (all, boolean, N)

If specified, the task sets the NODE_FACTORY grammar option to the value of this
attribute.

nodepackage (all, String, N)

If specified, the task sets the NODE_PACKAGE grammar option to the value of this
attribute.

nodeprefix (all, String, N)

If specified, the task sets the NODE_PREFIX grammar option to the value of this
attribute.

nodescopehook (all, boolean, N)

If specified, the task sets the NODE_SCOPE_HOOK grammar option to the value of this
attribute.

nodeusesparser (all, boolean, N)

If specified, the task sets the NODE_USES_PARSER grammar option to the value of this
attribute.

outputdirectory (all, File, N)

The destination directory for the generated file. If omitted, output goes to the directory
containing the grammar file.

static (all, boolean, N)

If specified, the task sets the STATIC grammar option to the value of this attribute.

target (all, File, Y)

The JJTree grammar file to process.

visitor (all, boolean, N)

If specified, the task sets the VISITOR grammar option to the value of this attribute.

visitorexception (all, String, N)

If specified, the task sets the VISITOR_EXCEPTION grammar option to the value of this
attribute.

Ant: The Definitive Guide

251

Content

None.

jlink all

org.apache.tools.ant.taskdefs.optional.jlink.JlinkTask

Builds a JAR or ZIP file, optionally merging contents of existing JAR and ZIP archives.
When duplicate files exist, the first is accepted and subsequent entries are ignored. When
merging archives, existing META-INF directories are ignored.

Attributes

addfiles (all, Path, *)

A list of files for addition to the archive. These are added as individual files, even if
they are JAR or ZIP archives. Use the mergefiles attribute or nested element to
merge contents of existing JAR or ZIP archives.

compress (all, boolean, N)

If true, compress the output. Defaults to false.

defaultexcludes (all, boolean, N)

Determines whether to use default excludes. Defaults to true.

excludes (all, String, N)

A comma-separated list of file patterns to exclude.

excludesfile (all, File, N)

The name of a file containing one exclude pattern per line.

includes (all, String, N)

A comma-separated list of file patterns to include.

includesfile (all, File, N)

A comma-separated list of file patterns to include.

mergefiles (all, Path, *)

A list of files for addition to the archive. Contents of .jar and .zip files are merged into
the output archive, rather than added as JAR and ZIP files.

Ant: The Definitive Guide

252

outfile (all, File, Y)

The target archive — for example, myproj.jar.

At least one of addfiles or mergefiles is required, or else the corresponding nested
elements are.

Content

0..n nested patternset elements: <exclude> , <include> , <patternset>
(all); <excludesfile> , <includesfile> (1.4)

Used in place of their corresponding attributes, these specify the set of included and
excluded source files.

0..n nested <addfiles> elements. (all)

The Path elements used in place of the addfiles attribute. Entries are added as
individual files, even if they end in .jar or .zip. For example, utils.jar is added to the
resulting archive as an individual file, without being expanded. When paths point to
directories, all files found in subdirectories are recursively added.

0..n nested <mergefiles> elements. (all)

May be used in place of the mergefiles attribute. Entries are added as individual files
unless they end in .jar or .zip. In those cases, the contents of the archives are extracted
and then added to the new archive. META-INF directories are ignored.

jpcoverage 1.4

org.apache.tools.ant.taskdefs.optional.sitraka.Coverage

Executes the JProbe Coverage tool, which runs a class and analyzes which lines of code are
executed. This task is designed to work with JProbe Suite Server Side Version 3.0, which is
available at http://www.sitraka.com/.

Attributes

applet (1.4, boolean, N)

If true, indicates that the classname attribute specifies an applet. Defaults to false.

classname (1.4, String, Y)

The class to analyze.

Ant: The Definitive Guide

253

exitprompt (1.4, String, N,)

Controls when the console prompt displays "Press Enter to close this window." Legal
values are always, never, and error. Defaults to never.

finalsnapshot (1.4, String, N)

Configures the type of snapshot to take when the program ends. Legal values are
none, coverage, and all. Defaults to coverage.

home (1.4, File, Y)

The directory in which JProbe is installed.

inputfile (1.4, File, N)

A JProbe Coverage parameter file. If specified, all other attributes are ignored.

javaexe (1.4, File, N)

The path to the java executable. Only used when vm="java2".

recordfromstart (1.4, Enum, N)

Configures the analysis performed when the program starts. Legal values are none,
coverage, and all. Defaults to coverage.

seedname (1.4, String, N)

The base name for temporary snapshot files. If this attribute is foo, files are named
foo.jpc, foo1.jpc, foo2.jpc, etc. Defaults to snapshot.

snapshotdir (1.4, File, N)

The destination directory for snapshots. Defaults to the project base directory.

tracknatives (1.4, boolean, N)

If true, the task tracks native methods. Defaults to false.

vm (1.4, Enum, N)

Specifies the JVM for the task to run. Legal values are jdk117, jdk118, and java2.

warnlevel (1.4, int, N)

Specifies the warning level, ranging from 0..3. Defaults to 0, which yields the least
amount of warnings.

Ant: The Definitive Guide

254

workingdir (1.4, File, N)

The working directory for the JVM.

Content

0..n nested <arg> elements (1.4)

The command-line application arguments as described in Chapter 4.

0,1 nested <classpath> elements (1.4)

The path element specifying the classpath.

0..n nested <jvmarg> elements (1.4)

The command-line JVM arguments as described in Chapter 4.

0,1 nested <filters> elements (1.4)

Defines JProbe filters for classes and methods. For example:

 <filters>
 <include class="com.oreilly.*" method="*"/>
 <exclude class="com.oreilly.test.*" method="*"/>
 </filters>

This supports one attribute:

defaultexclude (1.4, boolean, N)

If true, exclude all classes and methods. Defaults to true.

<filters> supports the following nested elements:

0..n nested <include> elements (1.4)

Defines which classes and methods are included. The following attributes are
supported:

class (1.4, String, N)

A regular expression specifying which classes to include or exclude.

enabled (1.4, boolean, N)

If true, this element is enabled. Defaults to true.

Ant: The Definitive Guide

255

method (1.4, String, N)

A regular expression specifying which methods to include or exclude.

0..n nested <exclude> elements (1.4)

Defines which classes and methods are excluded. The following attributes are
supported:

class (1.4, String, N)

A regular expression specifying which classes to include or exclude.

enabled (1.4, boolean, N)

If true, this element is enabled. Defaults to true.

method (1.4, String, N)

A regular expression specifying which methods to include or exclude.

0,1 nested <socket> elements (1.4)

Defines the host and port number for remote viewing. Attributes are as follows:

host (1.4, String, N)

The host to connect to. Defaults to localhost.

port (1.4, int, N)

The port number. Defaults to 4444.

0,1 nested <triggers> elements (1.4)

Defines JProbe triggers, which are actions to take when certain events occur. The
following nested elements are supported:

0..n nested <method> elements (1.4)

Each defines a new trigger. The following attributes are supported:

action (1.4, String, Y)

The action to perform. Must be one of clear, exit, pause, resume, snapshot, or
suspend.

Ant: The Definitive Guide

256

event (1.4, String, Y)

The event that triggers the action. Must be either enter or exit.

name (1.4, String, Y)

The name of the method(s) as a simple regular expression. An example would be
com.oreilly.util.DateUtil.getCurrentTime.

param (1.4, String, N)

The optional parameter appended to the end of the -jp_trigger flag.

jpcovmerge 1.4

org.apache.tools.ant.taskdefs.optional.sitraka.CovMerge

Merges several JProbe Coverage snapshots into one.

Attributes

home (1.4, File, Y)

The directory in which JProbe is installed.

tofile (1.4, File, Y)

The output filename.

verbose (1.4, boolean, N)

If true, operate in verbose mode. Defaults to false.

Content

1..n nested <fileset> elements (1.4)

fileset elements defining the list of snapshots to merge.

jpcovreport 1.4

org.apache.tools.ant.taskdefs.optional.sitraka.CovReport

Generates a printable report of a JProbe Coverage snapshot.

Ant: The Definitive Guide

257

Attributes

filters (1.4, String, N)

A comma-delimited list of filters, each formatted like <package>.class:?, in which
? can be I for Include, or E for Exclude.

format (1.4, Enum, N)

The format of the report. Legal values are xml, html, or text. Defaults to html.

home (1.4, File, Y)

The directory in which JProbe is installed.

includesource (1.4, boolean, N)

If true, include source code in the report. Only applies when format="xml" and
type="verydetailed". Defaults to true.

percent (1.4, int, N)

The threshold for printing methods, ranging from 0..100. Defaults to 100.

snapshot (1.4, File, Y)

The name of the snapshot to report on.

tofile (1.4, File, Y)

The name of the report to generate.

type (1.4, Enum, N)

The type of report to generate. Legal values are executive, summary, detailed, and
verydetailed. Defaults to detailed.

Content

0..n nested <sourcepath> elements (1.4)

The Path elements specifying where source files are found.

0,1 nested <reference> elements (1.4)

Applicable only when format="xml". Specifies additional classes to check for
coverage information. <reference> elements can contain the following content:

Ant: The Definitive Guide

258

0,1 nested <classpath> elements (1.4)

The Path element defining where to find classes.

0,1 nested <filters> elements (1.4)

The syntax of <filters> is defined under the jpcoverage task.

junit all

org.apache.tools.ant.taskdefs.optional.junit.JUnitTask

Executes unit tests using the JUnit testing framework. This task requires JUnit 3.0 or later,
available at http://www.junit.org/.

Attributes

dir (all, File, N)

The working directory for the JVM. Used only when fork=true.

errorproperty (1.4, String, N)

A property to set when a test error occurs.

failureproperty (1.4, String, N)

A property to set when a test failure occurs.

fork (all, boolean, N)

If true, fork a new JVM for the tests. Defaults to false.

haltonerror (all, boolean, N)

If true, stop the build if a test error occurs. Defaults to false.

haltonfailure (all, boolean, N)

If true, stop the build if a test failure occurs. Defaults to false.

jvm (all, String, N)

The command used to invoke the JVM. Defaults to java. Used only when fork=true.

maxmemory (all, String, N)

The maximum amount of memory used when fork=true.

Ant: The Definitive Guide

259

printsummary (all, Enum, N)

Configures how statistics are printed for each test case. Legal values are on, off, and
withOutAndErr. withOutAndErr is the same as on, except the test output is also
written to both standard output and standard error. Defaults to off.

timeout (all, int, N)

The maximum number of milliseconds to wait for an individual test before timing out.
Used only when fork=true.

Content

0..n nested <batchtest> elements (all)

Defines a collection of tests based on naming conventions. The following attributes
are supported:

errorproperty (1.4, String, N)

Overrides the errorproperty attribute specified in junit. Defaults to false.

failureproperty (1.4, String, N)

Overrides the failureproperty attribute specified in junit.

fork (all, boolean, N)

Overrides the fork attribute specified in junit. Defaults to false.

haltonerror (all, boolean, N)

Overrides the haltonerror attribute specified in junit. Defaults to false.

haltonfailure (all, boolean, N)

Overrides the haltonfailure attribute specified in junit. Defaults to false.

if (all, String, N)

Specifies a property. Tests are only run if the specified property is set.

todir (1.3, 1.4, String, N)

The destination directory for reports.

unless (all, String, N)

Specifies a property. Tests are run unless the specified property is set.

Ant: The Definitive Guide

260

0,1 nested <classpath> elements (all)

The path element used when running tests.

0..n nested <formatter> elements (all)

Configures how test results are written out. The following attributes are supported:

type (all, Enum, *)

Specifies which predefined formatter to use. Legal values are xml, plain, and brief.

classname (all, String, *)

A custom formatter class.

extension (all, String, *)

The output filename extension. Works in conjunction with the outfile attribute of
<test>.

usefile (all, boolean, N)

If true, the task sends output to a file. The filename is determined by the test name, or
is specified by the outfile attribute of the <test> element. Defaults to true.

Exactly one of type or classname must be specified. extension is required if
classname is specified.

0..n nested <jvmarg> elements (all)

The command-line arguments as described in Chapter 4. Only valid when fork=true.

0..n nested <sysproperty> elements (1.3, 1.4)

The environment variables as described in Chapter 4.

0..n nested <test> elements. (all)

Each defines a single test. The following attributes are supported:

errorproperty (1.4, String, N)

Overrides the errorproperty attribute specified in junit. Defaults to false.

failureproperty (1.4, String, N)

Overrides the failureproperty attribute specified in junit.

Ant: The Definitive Guide

261

fork (all, boolean, N)

Overrides the fork attribute specified in junit. Defaults to false.

haltonerror (all, boolean, N)

Overrides the haltonerror attribute specified in junit. Defaults to false.

haltonfailure (all, boolean, N)

Overrides the haltonfailure attribute specified in junit. Defaults to false.

if (all, String, N)

Specifies a property. Tests are run only if the specified property is set.

name (all, String, Y)

The name of the test class.

outfile (all, String, N)

The base name for test result. The extension specified by <formatter> is appended
to this. Defaults to TEST-, followed by the value of the name attribute.

todir (1.3, 1.4, File, N)

The destination directory for reports.

unless (all, String, N)

Specifies a property. Tests are run unless the specified property is set.

junitreport 1.3, 1.4

org.apache.tools.ant.taskdefs.optional.junit.XMLResultAggregator

Creates a formatted report based on several XML files from the junit task. This task
applies an XSLT stylesheet. Apache's Xalan XSLT Processor (http://xml.apache.org/) is
required.5

Attributes

todir (1.3, 1.4, File, N)

The destination directory for the XML file.

5 Xalan 1.2.2 is supported, but Xalan 2.x is recommended.

Ant: The Definitive Guide

262

tofile (1.3, 1.4, String, N)

The destination XML filename. Individual XML files from the junit task are
aggregated into this file. Defaults to TESTS-TestSuites.xml.

Content

0..n nested <fileset> elements (1.3, 1.4)

fileset elements selecting XML reports to merge together into the file specified by
tofile. These are the output files from the junit task.

0..n nested <report> elements (1.3, 1.4)

Each specifies how an XSLT transformation is performed in order to generate a
formatted report. The following attributes are supported:

todir (1.3, 1.4, File, N)

The destination directory for transformation results. Defaults to the current directory.

styledir (1.3, 1.4, File, N)

The directory containing junit-frames.xsl and junit-noframes.xsl. If unspecified, the
task loads the files from the Ant optional tasks JAR file.

format (1.3, 1.4, Enum, N)

Selects which of the stylesheets to use. Legal values are frames or noframes. Defaults
to frames.

maudit 1.4

org.apache.tools.ant.taskdefs.optional.metamata.MAudit

Executes the WebGain Quality Analyzer to analyze Java source code for programming
errors. This task is based on Metamata Audit, which was purchased by WebGain in October
2000. On January 3, 2002, WebGain Quality Analyzer was integrated into WebGain Studio,
and is no longer offered as a standalone product. For more information, refer to
http://www.webgain.com/.

Attributes

fix (1.4, boolean, N)

If true, automatically fix certain types of errors. Defaults to false.

Ant: The Definitive Guide

263

list (1.4, boolean, N)

If true, create a .maudit listing file for each audited file. Defaults to false.

maxmemory (1.4, String, N)

The maximum memory for the JVM.

metamatahome (1.4, File, Y)

The directory containing the Metamata distribution.

tofile (1.4, File, Y)

The destination XML file for the audit report.

unused (1.4, boolean, N)

If true, find unused declarations in search paths. Used with the <searchpath> nested
element. Defaults to false.

Content

0,1 nested <classpath> elements (1.4)

The path element specifying the classpath.

0,1 nested <fileset> elements (1.4)

The fileset element specifying where .java files are found.

0..n nested <jvmarg> elements (1.4)

The command-line arguments as described in Chapter 4. Valid only when fork=true.

0,1 nested <searchpath> elements (1.4)

The path element specifying where to look for unused global declarations. This is
required when unused=true. The task issues a warning when a <searchpath> is
specified but unused=false.

0,1 nested <sourcepath> elements (1.4)

The path element overriding the SOURCEPATH environment variable.

Ant: The Definitive Guide

264

mimemail 1.4

org.apache.tools.ant.taskdefs.optional.net.MimeMail

Sends SMTP mail with MIME attachments. This task requires the JavaMail API and the
JavaBeans Activation Framework. This differs from the core mail task in that it supports
attachments.

Attributes

bcclist (1.4, String, *)

A comma-delimited list of BCC recipients.

cclist (1.4, String, *)

A comma-delimited list of CC recipients.

failonerror (1.4, boolean, N)

If true, abort the build on failure. Defaults to true.

from (1.4, String, Y)

The sender's email address.

mailhost (1.4, String, N)

The mail server name. Defaults to localhost.

message (1.4, String, *)

The message body.

messagefile (1.4, File, *)

A file containing the message body.

messagemimetype (1.4, String, N)

MIME type of attached message when using message or messagefile attributes.
Defaults to text/plain.

subject (1.4, String, N)

The email subject line.

Ant: The Definitive Guide

265

tolist (1.4, String, *)

A comma-delimited list of TO recipients.

Specify exactly one of message or messageFile, or specify a nested <fileset>. At least one
of tolist, cclist, or bcclist must be specified.

Content

0..n nested <fileset> elements (1.4)

fileset elements specifying files to attach.

mmetrics 1.4

org.apache.tools.ant.taskdefs.optional.metamata.MMetrics

Executes the WebGain Quality Analyzer on a set of Java files, reporting on code complexity
and other metrics. See the maudit task for background information on the WebGain Quality
Analyzer, formerly known as Metamata Quality Analyzer.

Attributes

granularity (1.4, String, Y)

Specifies the metrics granularity. Legal values are files, types, and methods.

maxmemory (1.4, String, N)

The maximum memory available to the JVM.

metamatahome (1.4, File, Y)

The directory containing the WebGain Quality Analyzer distribution.

tofile (1.4, File, Y)

The destination XML file for the metrics report.

Content

0,1 nested <classpath> elements (1.4)

The path element specifying the classpath.

0..n nested <fileset> elements (1.4)

The fileset elements specifying source files to analyze.

Ant: The Definitive Guide

266

0..n nested <jvmarg> elements (1.4)

The command-line JVM arguments as described in Chapter 4.

0,1 nested <path> elements (1.4)

The path element specifying directories scanned for source code.

0,1 nested <sourcepath> elements (1.4)

The path element overriding the SOURCEPATH environment variable.

mparse all

org.apache.tools.ant.taskdefs.optional.metamata.MParse

Executes the Metamata MParse compiler compiler on a grammar file. Metamata was
purchased by WebGain in October 2000, and MParse is no longer available.

Attributes

cleanup (1.3, 1.4, boolean, N)

If true, remove the temporary Sun JavaCC file created during transformation of
the grammar file. Defaults to false.

debugparser (1.3, 1.4, boolean, N)

If true, enable parser debugging. Defaults to false.

debugscanner (1.3, 1.4, boolean, N)

If true, enable scanner debugging. Defaults to false.

maxmemory (1.3, 1.4, String, N)

Sets the maximum memory for the JVM.

metamatahome (all, File, Y)

The directory containing the Metamata distribution.

target (all, File, Y)

The .jj grammar file to process. Its timestamp is compared to the generated .java file,
and this task runs only if the .jj file is newer.

Ant: The Definitive Guide

267

verbose (1.3, 1.4, boolean, N)

If true, operate in verbose mode. Defaults to false.

Content

0,1 nested <classpath> elements (1.3, 1.4)

May be used in place of the classpath or classpathref attributes.

0..n nested <jvmarg> elements (1.3, 1.4)

The command-line JVM arguments as described in Chapter 4.

0,1 nested <sourcepath> elements (1.3, 1.4)

The path element defining where source files are located.

native2ascii all

org.apache.tools.ant.taskdefs.optional.Native2Ascii

Converts files with native encoding to ASCII containing escaped Unicode characters.

Attributes

defaultexcludes (all, boolean, N)

Determines whether to use default excludes. Defaults to true.

dest (all, File, Y)

The destination directory for output.

encoding (all, String, N)

The character encoding of the source files. Defaults to the platform default encoding.

excludes (all, String, N)

A comma-separated list of file patterns to exclude.

excludesfile (all, File, N)

The name of a file containing one exclude pattern per line.

Ant: The Definitive Guide

268

ext (all, String, N)

The file extension used for renaming output files. If unspecified, files are not renamed.

includes (all, String, N)

A comma-separated list of file patterns to include.

includesfile (all, File, N)

The name of a file containing one include pattern per line.

reverse (all, boolean, N)

If true, convert from ASCII to native. Defaults to false.

src (all, File, N)

The directory containing files to convert. Defaults to the project base directory.

Content

0..n nested patternset elements: <exclude> , <include> , <patternset>
(all); <excludesfile> , <includesfile> (1.4)

Used in place of their corresponding attributes, these specify the set of included and
excluded deployment descriptors.

0,1 nested <mapper> elements (1.3, 1.4)

Defines how filenames are renamed. If both <mapper> and the ext attribute are
specified, the mapper takes precedence. mappers are described in Chapter 4.

netrexxc all

org.apache.tools.ant.taskdefs.optional.NetRexxC

Compiles a set of NetRexx files. NetRexx is a "human-oriented" programming language that
aims to be simpler than Java, yet produces Java bytecode and interacts seamlessly with Java
classes. It is freely available at http://www2.hursley.ibm.com/netrexx/.

Attributes

binary (all, boolean, N)

If true, treat literals as the binary rather than NetRexx types. Defaults to false.

Ant: The Definitive Guide

269

classpath (all, String, N)

The classpath used for compilation.

comments (all, boolean, N)

The NetRexx compiler generates Java source code. When this flag is true, NetRexx
comments are carried through to the generated Java code. Defaults to false.

compact (all, boolean, N)

If true, display compact (rather than verbose) error messages. Defaults to false.

compile (all, boolean, N)

If true, compile the generated Java code. Defaults to true.

console (all, boolean, N)

If true, write messages to the console. Defaults to false.

crossref (all, boolean, N)

If true, generate variable cross references. Defaults to false.

decimal (all, boolean, N)

If true, use decimal arithmetic in the NetRexx code. Defaults to true.

defaultexcludes (all, boolean, N)

Determines whether to use default excludes. Defaults to true.

destdir (all, File, Y)

The directory to which NetRexx source files are copied before they are compiled.

diag (all, boolean, N)

If true, generate diagnostic information about the compile. Defaults to false.

excludes (all, String, N)

A comma-separated list of file patterns to exclude.

excludesfile (all, File, N)

The name of a file containing one exclude pattern per line.

Ant: The Definitive Guide

270

explicit (all, boolean, N)

If true, variables must be explicitly declared before use. Defaults to false.

format (all, boolean, N)

If true, try to format the generated Java source code. Otherwise, generate code so line
numbers match the NetRexx source for debugging purposes. Defaults to false.

includes (all, String, N)

A comma-separated list of file patterns to include.

includesfile (all, File, N)

The name of a file containing one include pattern per line.

java (all, boolean, N)

If true, generate Java source code. Defaults to false.

keep (all, boolean, N)

If true, keep generated Java source code using the .java.keep filename extension.
Defaults to false.

logo (all, boolean, N)

If true, display the compiler text logo when compiling. Defaults to true.

replace (all, boolean, N)

If true, replace generated .java files when compiling. Defaults to false.

savelog (all, boolean, N)

If true, write compiler messages to the NetRexxC.log file in addition to the console.
Defaults to false.

sourcedir (all, boolean, N)

If true, store class files in the same directory as source files. Otherwise, use the
working directory. Defaults to true.

srcdir (all, File, Y)

The directory in which NetRexx sources are located.

Ant: The Definitive Guide

271

strictargs (all, boolean, N)

If true, NetRexx method calls must use parentheses even when they do not take
parameters. Defaults to false.

strictassign (all, boolean, N)

If true, assignments must match on type. Defaults to false.

strictcase (all, boolean, N)

If true, NetRexx source is case-sensitive. Defaults to false.

strictimport (all, boolean, N)

If true, classes must be explicitly imported. Defaults to false.

strictprops (all, boolean, N)

If true, local properties must be explicitly referenced using this. Defaults to false.

strictsignal (all, boolean, N)

If true, exceptions must be explicitly caught by type. Defaults to false.

symbols (all, boolean, N)

If true, include debug symbols in generated class files. Defaults to false.

time (all, boolean, N)

If true, print compilation time to the console. Defaults to false.

trace (all, String, N)

When specified, enables one of the NetRexx tracing options. Legal values are trace,
trace1, trace2, and notrace. Defaults to trace2.

utf8 (all, boolean, N)

If true, assume the source files use UTF-8 encoding. Defaults to false.

verbose (all, String, Y)

When specified, operate in verbose mode. Defaults to verbose3. Legal values are
verbose1 through verbose5. verbose5 outputs the most detailed information.

Ant: The Definitive Guide

272

Content

0..n nested patternset elements: <exclude> , <include> , <patternset>
(all); <excludesfile> , <includesfile> (1.4)

Used in place of their corresponding attributes, these specify the set of included and
excluded source files when selecting files to compile.

p4change 1.3, 1.4

org.apache.tools.ant.taskdefs.optional.perforce.P4Change

Requests a new changelist from a Perforce server.

Attributes

client (1.3, 1.4, String, N)

Specifies the p4 -c option. Defaults to the value of the p4.client property, if set.

description (1.3, 1.4, String, N)

The comment for the changelist. Defaults to AutoSubmit By Ant.

port (1.3, 1.4, String, N)

Specifies the p4 -p option. Defaults to the value of the p4.port property, if set.

user (1.3, 1.4, String, N)

Specifies the p4 -u option. Defaults to the value of the p4.user property, if set.

view (1.3, 1.4, String, N)

The client, branch, or label view this command operates on.

Content

None.

p4counter 1.4

org.apache.tools.ant.taskdefs.optional.perforce.P4Counter

Gets and sets a Perforce counter value.

Ant: The Definitive Guide

273

Attributes

client (1.3, 1.4, String, N)

Specifies the p4 -c option. Defaults to the value of the p4.client property, if set.

name (1.4, String, Y)

The counter name. If this is the only specified attribute, the task prints the value of the
counter to standard output.

port (1.3, 1.4, String, N)

Specifies the p4 -p option. Defaults to the value of the p4.port property, if set.

property (1.4, String, *)

The property to set with the retrieved counter value.

user (1.3, 1.4, String, N)

Specifies the p4 -u option. Defaults to the value of the p4.user property, if set.

value (1.4, int, *)

When specified, set the counter to this value.

view (1.3, 1.4, String, N)

The client, branch, or label view this command operates on.

You cannot set both property and value, since you are retrieving a counter value when
property is specified, and setting a counter value when value is specified.

Content

None.

p4edit 1.3, 1.4

org.apache.tools.ant.taskdefs.optional.perforce.P4Edit

Opens files from Perforce for editing.

Ant: The Definitive Guide

274

Attributes

change (1.3, 1.4, String, N)

Assign files to this existing changelist number.

client (1.3, 1.4, String, N)

Specifies the p4 -c option. Defaults to the value of the p4.client property, if set.

port (1.3, 1.4, String, N)

Specifies the p4 -p option. Defaults to the value of the p4.port property, if set.

user (1.3, 1.4, String, N)

Specifies the p4 -u option. Defaults to the value of the p4.user property, if set.

view (1.3, 1.4, String, Y)

The client, branch, or label view this command operates on.

Content

None.

p4have 1.3, 1.4

org.apache.tools.ant.taskdefs.optional.perforce.P4Have

Lists Perforce files in the current client view.

Attributes

client (1.3, 1.4, String, N)

Specifies the p4 -c option. Defaults to the value of the p4.client property, if set.

port (1.3, 1.4, String, N)

Specifies the p4 -p option. Defaults to the value of the p4.port property, if set.

user (1.3, 1.4, String, N)

Specifies the p4 -u option. Defaults to the value of the p4.user property, if set.

Ant: The Definitive Guide

275

view (1.3, 1.4, String, N)

The client, branch, or label view this command operates on.

Content

None.

p4label 1.3, 1.4

org.apache.tools.ant.taskdefs.optional.perforce.P4Label

Creates a label for files in the current Perforce workspace.

Attributes

client (1.3, 1.4, String, N)

Specifies the p4 -c option. Defaults to the value of the p4.client property, if set.

desc (1.3, 1.4, String, N)

A label comment.

lock (1.4, String, N)

If set to locked, causes the label to lock. Defaults to an empty string. No other values
are allowed.

name (1.3, 1.4, String, Y)

The label name.

port (1.3, 1.4, String, N)

Specifies the p4 -p option. Defaults to the value of the p4.port property, if set.

user (1.3, 1.4, String, N)

Specifies the p4 -u option. Defaults to the value of the p4.user property, if set.

view (1.3, 1.4, String, N)

The client, branch, or label view this command operates on.

Content

None.

Ant: The Definitive Guide

276

p4reopen 1.4

org.apache.tools.ant.taskdefs.optional.perforce.P4Reopen

Moves files between Perforce changelists.

Attributes

client (1.3, 1.4, String, N)

Specifies the p4 -c option. Defaults to the value of the p4.client property, if set.

port (1.3, 1.4, String, N)

Specifies the p4 -p option. Defaults to the value of the p4.port property, if set.

tochange (1.4, String, Y)

Move files to the specified changelist.

user (1.3, 1.4, String, N)

Specifies the p4 -u option. Defaults to the value of the p4.user property, if set.

view (1.3, 1.4, String, N)

The client, branch, or label view this command operates on.

Content

None.

p4revert 1.4

org.apache.tools.ant.taskdefs.optional.perforce.P4Revert

Reverts opened Perforce files.

Attributes

change (1.4, String, N)

The changelist to revert.

Ant: The Definitive Guide

277

client (1.3, 1.4, String, N)

Specifies the p4 -c option. Defaults to the value of the p4.client property, if set.

port (1.3, 1.4, String, N)

Specifies the p4 -p option. Defaults to the value of the p4.port property, if set.

revertonlyunchanged (1.4, boolean, N)

If true, revert only unchanged files. Defaults to false.

user (1.3, 1.4, String, N)

Specifies the p4 -u option. Defaults to the value of the p4.user property, if set.

view (1.3, 1.4, String, N)

The client, branch, or label view this command operates on.

Content

None.

p4submit 1.3, 1.4

org.apache.tools.ant.taskdefs.optional.perforce.P4Submit

Checks files in to a Perforce depot.

Attributes

change (1.3, 1.4, String, Y)

Submit the specified changelist.

client (1.3, 1.4, String, N)

Specifies the p4 -c option. Defaults to the value of the p4.client property, if set.

port (1.3, 1.4, String, N)

Specifies the p4 -p option. Defaults to the value of the p4.port property, if set.

user (1.3, 1.4, String, N)

Specifies the p4 -u option. Defaults to the value of the p4.user property, if set.

Ant: The Definitive Guide

278

view (1.3, 1.4, String, N)

The client, branch, or label view this command operates on.

Content

None.

p4sync 1.3, 1.4

org.apache.tools.ant.taskdefs.optional.perforce.P4Sync

Synchronizes a workspace with the Perforce depot.

Attributes

client (1.3, 1.4, String, N)

Specifies the p4 -c option. Defaults to the value of the p4.client property, if set.

force (1.3, 1.4, String, N)

If set to a nonempty string, set the -f Perforce flag. Forces a refresh of files.6

label (1.3, 1.4, String, N)

If set, the task synchronizes a workspace with files from a Perforce depot using the
specified label.

port (1.3, 1.4, String, N)

Specifies the p4 -p option. Defaults to the value of the p4.port property, if set.

user (1.3, 1.4, String, N)

Specifies the p4 -u option. Defaults to the value of the p4.user property, if set.

view (1.3, 1.4, String, N)

The client, branch, or label view this command operates on.

Content

None.

6 A Boolean attribute makes more sense in this case. Ant optional tasks are not as consistent as the core tasks.

Ant: The Definitive Guide

279

propertyfile 1.3, 1.4

org.apache.tools.ant.taskdefs.optional.PropertyFile

Creates or edits Java properties files. This task can add and edit entries. It does not preserve
existing properties file comments.

Attributes

comment (1.3, 1.4, String, N)

A comment to add to the properties file.

file (1.3, 1.4, File, Y)

The name of the properties file to create or modify.

Content

0..n nested <entry> elements (1.3, 1.4)

Each entry defines a name-value pair to write to or modify in the properties file. The
following attributes are supported:

default (1.3, 1.4, String, N)

Initial value for a property if it is not already defined. For a date type, the value may
also be set to now or never to indicate the current time or a null time respectively.
Perhaps surprisingly, if a property does not exist and both default and value are
specified, value is assigned to the property rather than default.

key (1.3, 1.4, String, Y)

The property name.

operation (1.3, 1.4, Enum, N)

Controls how the value attribute modifies the property value indicated by the key
attribute. One of + or = for all data types, and also - for date and int types. +
performs addition, = performs assignment, and - performs subtraction.

pattern (1.3, 1.4, String, N)

Controls how date and int types are formatted. Uses SimpleDateFormat and
DecimalFormat, respectively.

Ant: The Definitive Guide

280

type (1.3, 1.4, Enum, N)

Legal values are int, date, and string. Defaults to string.

value (1.3, 1.4, String, Y)

Specifies a value to add, subtract, or assign to/from the property specified by key.
Works with the operation attribute. For the date type, may also be set to now or
never.

Example Usage

This example creates a properties file if it does not exist, and updates several values:

<target name="test_propertyfile">
 <propertyfile comment="Edited by the propertyfile task"
 file="stats.properties">
 <entry key="numRuns" type="int" default="1" operation="+" value="1"/>
 <entry key="lastRun" type="date" operation="=" value="now"
 pattern="MMM dd, yyyy"/>
 <entry key="runBy" operation="="
 value="${user.name}"/>
 </propertyfile>
</target>

Here is what the properties file looks like after running the build four times:

#Edited by the propertyfile task
#Thu Jan 17 10:42:40 CST 2002
runBy=ericb
lastRun=Jan 17, 2002
numRuns=4

pvcs 1.4

org.apache.tools.ant.taskdefs.optional.pvcs.Pvcs

Extracts files from a PVCS repository. This task requires the PVCS Version Manager
system from Merant, available at http://www.merant.com/.

Attributes

force (1.4, String, N)

If yes, existing files are overwritten. Defaults to no.

ignorereturncode (1.4, boolean, N)

If true, do not abort the build when the command fails. Defaults to false.

Ant: The Definitive Guide

281

label (1.4, String, N)

Specifies a label. When specified, only files with the specified label are extracted.

promotiongroup (1.4, String, N)

Specifies a promotion group. When specified, only files belonging to the specified
promotion group are extracted.

pvcsbin (1.4, String, N)

Specifies the location of the bin directory of the PVCS distribution.

pvcsproject (1.4, String, N)

The project from which to extract files. Defaults to "/".

repository (1.4, String, Y)

The location of the PVCS repository.

updateonly (1.4, boolean, N)

If true, get only files if they are newer than existing local files. Defaults to false.

workspace (1.4, String, N)

A workspace to which files are extracted. Workspaces are configured via the PVCS
client application.

Content

0..n nested <pvcsproject> elements (1.4)

Each has a required name attribute, specifying the name of a PVCS project from which
to extract files. Use more than one element to specify multiple projects. These are in
addition to any project already specified by the pvcsproject attribute.

renameext 1.2 (deprecated in 1.3)

Renames filename extensions. For example, it can be used to rename *.java to *.java.bak.
This task was deprecated in Ant 1.3. Use the move task with a glob mapper instead.

Ant: The Definitive Guide

282

rpm 1.4

org.apache.tools.ant.taskdefs.optional.Rpm

Builds a Linux RPM file. Works only on Linux platforms.

Attributes

cleanbuilddir (1.4, boolean, N)

If true, remove generated files in the BUILD directory. Defaults to false.

command (1.4, String, N)

An argument passed to the rpm executable. Defaults to -bb.

error (1.4, File, N)

The destination file for standard error.

output (1.4, File, N)

The destination file for standard output.

removesource (1.4, boolean, N)

If true, remove the source files from the SOURCES directory. Defaults to false.

removespec (1.4, boolean, N)

If true, remove the spec file from the SPECS directory. Defaults to false.

specfile (1.4, String, Y)

The name of the spec file to use.

topdir (1.4, File, N)

The destination directory. It contains SPECS, SOURCES, BUILD, and SRPMS
subdirectories.

Content

None.

Ant: The Definitive Guide

283

script all

org.apache.tools.ant.taskdefs.optional.Script

Executes a Bean Scripting Framework (BSF) script. This task requires IBM's Bean Scripting
Framework, as well as a supported scripting language such as Rhino or Jython. BSF is
available at http://oss.software.ibm.com/developerworks/projects/bsf. ReleaseNotes.html,
found in the BSF distribution, indicates where supported scripting languages are available.

Attributes

language (all, String, Y)

The script language name.

src (all, String, N)

The location of a script source file, if the script is not inline.

Content

The script task accepts text content containing inline script code. This is the alternative to
the src attribute. An XML CDATA section is required when scripts contain illegal XML
characters such as '<' or '&', or when linefeeds must be preserved. For example:

<script language="javascript"><![CDATA[
 // some JavaScript code here...
 if (a < b) {
 ...
 }
]]></script>

sound 1.3, 1.4

org.apache.tools.ant.taskdefs.optional.sound.SoundTask

Plays a sound file at the end of the build process. The <sound> element must appear in one
of the Ant targets that is executed during the build, but the sound is not played until the
build is complete. This task relies on Sun's Java Media Framework (JMF), which is included
in JDK 1.3 and later. For earlier versions of Java, JMF is available for download at
http://java.sun.com/products/java-media/sound/.

Attributes

None.

Ant: The Definitive Guide

284

Content

0,1 nested <fail> elements (1.3, 1.4)

Defines the sound to play when the build fails.

0,1 nested <success> elements (1.3, 1.4)

Defines the sound to play when the build succeeds.

Both nested elements are implemented by the same class, supporting the following attributes:

source (1.3, 1.4, File, Y)

The name of a sound file to play. If this is a directory, one file is picked at random.
For this reason, all files in the directory must be sound files. The task is tested with
WAV and AIFF files.

duration (1.3, 1.4, long, N)

The maximum number of milliseconds to play the sound.

loops (1.3, 1.4, int, N)

The number of times to repeat the sound. Defaults to 0. If 1, the sound repeats once
and therefore plays twice. Even if several iterations are requested, the total time spent
by this task does not exceed the value specified by duration.

Example Usage

Plays applause at the end of the build, or plays a bomb exploding if an error occurs:

<target name="compile" depends="prepare">
 <sound>
 <!-- limit the applause to 2 seconds -->
 <success duration="2000" source="APPLAUSE.WAV"/>
 <fail source="EXPLODE.WAV"/>
 </sound>
 <javac ...> ... </javac>
</target>

starteam 1.3, 1.4

org.apache.tools.ant.taskdefs.optional.scm.AntStarTeamCheckOut
Checks out files from StarTeam, a commercial product from http://www.starbase.com/. This
task is only available to licensed users of StarTeam, and starteam-sdk.jar must be on the
classpath.

Ant: The Definitive Guide

285

Attributes

excludes (all, String, N)

A space-delimited list of files to exclude from the checkout. Takes precedence over
includes.

foldername (all, String, N)

The subfolder in the project from which to check out files.

force (all, boolean, N)

If true, overwrite existing folders. Defaults to false.

includes (all, String, N)

Space-delimited list of files to include in the checkout.

password (all, String, Y)

The password to log in with.

projectname (all, String, Y)

The StarTeam project name.

recursion (all, boolean, N)

If true, include subfolders when checking out. Defaults to true.

servername (all, String, Y)

The StarTeam server name.

serverport (all, String, Y)

The server port number.

targetfolder (all, String, Y)

The directory to check files out to.

username (all, String, Y)

The username to log in with.

Ant: The Definitive Guide

286

verbose (all, boolean, N)

If true, operate in verbose mode. Defaults to false.

viewname (all, String, Y)

The StarTeam view name.

Content

None.

stylebook 1.3, 1.4

org.apache.tools.ant.taskdefs.optional.StyleBook

Executes the Apache Stylebook documentation generator. It depends on stylebook.jar,
available from http://xml.apache.org/. An appropriate JAR file is also included with
the Apache Xalan distribution.

Attributes

book (1.3, 1.4, File, Y)

The book XML file to generate documentation from.

classpath (1.3, 1.4, Path, N)

The classpath to use.

classpathref (1.3, 1.4, Reference, N)

A reference to a classpath defined elsewhere in the buildfile.

skindirectory (1.3, 1.4, File, Y)

A directory containing the Stylebook skin.

targetdirectory (1.3, 1.4, File, Y)

The destination directory for the documentation.

Content

0,1 nested <classpath> elements (1.3, 1.4)

May be used in place of the classpath or classpathref attributes.

Ant: The Definitive Guide

287

telnet 1.3, 1.4

org.apache.tools.ant.taskdefs.optional.net.TelnetTask

Executes a telnet session.

Attributes

initialcr (1.3, 1.4, boolean, N)

If true, send a carriage return character after connecting. Defaults to false.

password (1.3, 1.4, String, N)

The login password.

port (1.3, 1.4, int, N)

The port number of the server. Defaults to 23.

server (1.3, 1.4, String, Y)

The hostname to connect to.

timeout (1.3, 1.4, int, N)

Number of seconds to wait before timing out. Defaults to no timeout.

userid (1.3, 1.4, String, N)

The login name.

Content

0..n nested <read> elements (1.3, 1.4)

Each contains a string of text to wait for from the server.

0..n nested <write> elements (1.3, 1.4)

Each contains a string of text to send to the server.

Ant: The Definitive Guide

288

test 1.3, 1.4

org.apache.tools.ant.taskdefs.optional.Test

Executes a unit test in the org.apache.testlet framework.

Attributes

classpath (1.3, 1.4, Path, N)

Specifies the classpath to use.

classpathref (1.3, 1.4, Reference, N)

A reference to a classpath defined elsewhere in the buildfile.

forceshowtrace (1.3, 1.4, boolean, N)

If true, show a stack trace on any failure. Defaults to false.

showbanner (1.3, 1.4, String, N)

If specified, show a banner when starting the testlet engine.

showsuccess (1.3, 1.4, boolean, N)

If true, show a message when the tests succeed. Defaults to false.

showtrace (1.3, 1.4, boolean, N)

If true, show a stack trace on errors, but not normal test failure. Defaults to false.

Content

0,1 nested <classpath> elements (1.3, 1.4)

A path element specifying the classpath.

0..n nested <testlet> elements (1.3, 1.4)

Each contains a class name to test. For example:

<testlet>com.oreilly.util.test.CustomerTestlet</testlet>

Ant: The Definitive Guide

289

vsscheckin 1.4

org.apache.tools.ant.taskdefs.optional.vss.MSVSSCHECKIN

Checks in files to Visual SourceSafe.

Attributes

autoresponse (1.4, String, N)

Specifies the value for the -I flag. Legal values are Y and N. When omitted, the task
passes -I to VSS. Otherwise, it passes -I-Y or -I-N.

comment (1.4, String, N)

The comment applied to the files.

localpath (1.4, Path, N)

Overrides the local working directory.

login (1.4, String, N)

A username/password combination, formatted like username,password, where
,password is optional.

recursive (1.4, boolean, N)

If true, operate recursively on subprojects. Defaults to false.

serverpath (1.4, String, N)

The directory in which srcsafe.ini resides.

ssdir (1.4, String, N)

The directory containing ss.exe. Ant searches the path if this is omitted.

vsspath (1.4, String, Y)

The path to the SourceSafe project, without the leading $ character.

writable (1.4, boolean, N)

If true, files are made writeable after check-in. Defaults to false.

Ant: The Definitive Guide

290

Content

None.

vsscheckout 1.4

org.apache.tools.ant.taskdefs.optional.vss.MSVSSCHECKOUT

Checks out files from Visual SourceSafe.

Attributes

autoresponse (1.4, String, N)

Specifies the value for the -I flag. Legal values are Y and N. When omitted, the task
passes -I to VSS. Otherwise, it passes -I-Y or -I-N.

date (1.4, String, *)

The date stamp used when checking out files.

label (1.4, String, *)

The label used when checking out files.

localpath (1.4, Path, N)

Overrides the local working directory.

login (1.4, String, N)

A username/password combination, formatted like username,password, where
,password is optional.

recursive (1.4, boolean, N)

If true, operate recursively on subprojects. Defaults to false.

serverpath (1.4, String, N)

The directory in which srcsafe.ini resides.

ssdir (1.4, String, N)

The directory containing ss.exe. Searches the PATH if omitted.

Ant: The Definitive Guide

291

version (1.4, String, *)

The version number used when checking out files.

vsspath (1.4, String, Y)

The path to the SourceSafe project, without the leading $ character.

One of version, date, or label may be specified; all are optional.

Content

None.

vssget all

org.apache.tools.ant.taskdefs.optional.vss.MSVSSGET

Gets files from Visual SourceSafe.

Attributes

autoresponse (1.3, 1.4, String, N)

Specifies the value for the -I flag. Legal values are Y and N. When omitted, the task
passes -I to VSS. Otherwise, passes -I-Y or -I-N.

date (all, String, *)

The date stamp used when getting files.

label (all, String, *)

The label used when getting files.

localpath (all, Path, N)

Overrides the local working directory.

login (all, String, N)

A username/password combination, formatted like username,password, where
,password is optional.

quiet (1.4, boolean, N)

If true, operate in quiet mode. Defaults to false.

Ant: The Definitive Guide

292

recursive (all, boolean, N)

If true, operate recursively on subprojects. Defaults to false.

serverpath (1.4, String, N)

Directory where srcsafe.ini resides.

ssdir (all, String, N)

Directory containing ss.exe. Searches the PATH if omitted.

version (all, String, *)

The version number used when getting files.

vsspath (all, String, Y)

The path to the SourceSafe project, without the leading $ character.

writable (all, boolean, N)

If true, files are made writable after getting them. Defaults to false.

One of version, date, or label may be specified; all are optional.

Content

None.

vsshistory 1.4

org.apache.tools.ant.taskdefs.optional.vss.MSVSSHISTORY

Shows history for files and projects in Visual SourceSafe.

Attributes

dateformat (1.4, String, N)

The format that is used by the fromdate and by the todate attributes. The task uses
java.text.SimpleDateFormat, defaulting to DateFormat.SHORT.

fromdate (1.4, String, *)

The start date for comparison.

Ant: The Definitive Guide

293

fromlabel (1.4, String, N)

The start label for comparison.

login (1.4, String, N)

A username/password combination, formatted like username,password, where
,password is optional.

numdays (1.4, int, *)

The number of days relative to either fromdate or todate. May be a negative
number.

output (1.4, File, N)

The destination file to write the diff to.

recursive (1.4, boolean, N)

If true, process projects recursively. Defaults to false.

serverpath (1.4, String, N)

The directory where srcsafe.ini resides.

ssdir (1.4, String, N)

The directory containing ss.exe. The task searches the PATH if omitted.

style (1.4, Enum, N)

The format for the history report. Legal values are brief, codediff, default, or
nofile. Defaults to default.

todate (1.4, String, *)

The end date for comparison.

tolabel (1.4, String, N)

The end label for comparison.

user (1.4, String, N)

If specified, the task passes a user command (the -U option) to SourceSafe.

Ant: The Definitive Guide

294

vsspath (1.4, String, Y)

The path to the SourceSafe project, without the leading $ character.

Various combinations of fromdate, todate, and numdays specify the time range for this task.

Content

None.

vsslabel 1.3, 1.4

org.apache.tools.ant.taskdefs.optional.vss.MSVSSLABEL

Assigns a label to files and projects in Visual SourceSafe.

Attributes

autoresponse (1.4, String, N)

Specifies the value for the -I flag. Legal values are Y and N. When omitted, the task
passes -I to VSS. Otherwise, it passes -I-Y or -I-N.

comment (1.4, String, N)

The comment to associate with this label.

label (1.3, 1.4, String, Y)

The label to apply to files.

login (1.3, 1.4, String, N)

A username/password combination, formatted like username,password, where
,password is optional.

serverpath (1.4, String, N)

The directory where srcsafe.ini resides.

ssdir (1.3, 1.4, String, N)

The directory containing ss.exe. The task searches the path if omitted.

version (1.3, 1.4, String, N)

The version to label. Defaults to the current version.

Ant: The Definitive Guide

295

vsspath (1.3, 1.4, String, Y)

The path to the SourceSafe project, without the leading $ character.

Content

None.

wljspc all

org.apache.tools.ant.taskdefs.optional.jsp.WLJspec

Precompiles JSP files using BEA WebLogic Server's JSP compiler. This task requires
WebLogic Version 4.5.1, and is only documented to work on Windows NT 4.0, Solaris 5.7,
and Solaris 5.8.

Attributes

classpath (all, Path, N)

The classpath used when compiling the JSPs.

defaultexcludes (all, boolean, N)

Determines whether to use default excludes. Defaults to true.

dest (all, File, Y)

The destination directory for compiled JSPs.

excludes (all, String, N)

A comma-separated list of file patterns to exclude.

excludesfile (all, File, N)

The name of a file containing one exclude pattern per line.

includes (all, String, N)

A comma-separated list of file patterns to include.

includesfile (all, File, N)

The name of a file containing one include pattern per line.

Ant: The Definitive Guide

296

package (all, String, Y)

The destination package for compiled JSPs.

src (all, File, Y)

The document root directory containing the JSPs to compile.

Content

0..n nested patternset elements: <exclude> , <include> , <patternset>
(all); <excludesfile> , <includesfile> (1.4)

Used in place of their corresponding attributes, these specify the set of included and
excluded source files.

0,1 nested <classpath> elements (all)

May be used in place of the classpath attribute.

wlrun all

org.apache.tools.ant.taskdefs.optional.ejb.WLRun

Starts an instance of the BEA WebLogic Server. This task does not return until the server
stops.

Attributes

args (all, String, N)

Additional arguments for the WebLogic instance.

beahome (1.3, 1.4, File, Y)

The directory containing the server's config file. Applicable only for WebLogic 6.0.
The task assumes WebLogic 6.0 when this attribute is specified.

classpath (all, Path, Y)

The classpath used to run the server. Under WebLogic 6.0, this should include all
WebLogic JARs.

domain (1.3, 1.4, String, Y)

The domain of the server. Applicable only for WebLogic 6.0.

Ant: The Definitive Guide

297

home (all, File, Y)

The WebLogic distribution directory.

jvmargs (all, String, N)

Additional arguments for the JVM.

name (all, String, N)

The name of the server within the WebLogic home. Defaults to myserver.

password (1.3, 1.4, String, Y)

The server's management password. Applicable only for WebLogic 6.0.

pkpassword (1.3, 1.4, String, N)

The private key password. Applicable only for WebLogic 6.0.

policy (all, String, N)

The name of the security policy file within the WebLogic home directory. Defaults to
weblogic.policy.

properties (all, String, Y,)

The name of the properties file within the WebLogic home directory. Applicable only
for WebLogic 4.5.1 and 5.1.

username (1.3, 1.4, String, N)

The server's management username. Applicable only for WebLogic 6.0.

weblogicmainclass (all, String, N)

The name of the WebLogic main class. Defaults to weblogic.Server.

wlclasspath (all, Path, N)

The classpath used by the WebLogic server. Applicable only for WebLogic 4.5.1 and
5.1.

Content

0,1 nested <classpath> elements (1.3, 1.4)

May be used in place of the classpath attribute.

Ant: The Definitive Guide

298

0,1 nested <wlclasspath> elements (1.3, 1.4)

May be used in place of the wlclasspath attribute.

wlstop all

org.apache.tools.ant.taskdefs.optional.ejb.WLStop

Stops an instance of the BEA WebLogic Server.

Attributes

beahome (1.3, 1.4, File, N)

The directory containing the server's config file. The task assumes WebLogic 6.0
when this attribute is specified.

classpath (all, Path, Y)

The classpath used when executing the WebLogic shutdown command.

delay (all, String, N)

The number of seconds to wait before shutting down the server.7 Defaults to 0.

password (all, String, Y)

The password associated with the specified user.

url (all, String, Y)

The URL to the port on which the server is listening to T3 connections — for
example, t3://myserver:7001.

user (all, String, Y)

The username of the account used to shut down the server.

Content

0,1 nested <classpath> elements (1.3, 1.4)

May be used in place of the classpath attribute.

7 The task uses Integer.parseInt() to convert this String attribute value into an int.

Ant: The Definitive Guide

299

xmlvalidate 1.4

org.apache.tools.ant.taskdefs.optional.XMLValidateTask

Verifies that XML documents are well-formed, and optionally, whether they are valid, using
any SAX parser.

Attributes

classname (1.4, String, N)

The Java class name of the SAX parser to use.

classpath (1.4, Path, N)

The classpath to use.

classpathref (1.4, Reference, N)

Reference to a classpath defined elsewhere in the buildfile.

failonerror (1.4, boolean, N)

If true, abort the build on failures. Defaults to true.

file (1.4, File, N)

The XML file to validate. Use nested <fileset> elements to specify multiple files.

lenient (1.4, boolean, N)

If true, verify the XML is well-formed, but do not validate. Works only when using a
SAX2 parser. Defaults to false.

warn (1.4, boolean, N)

If true, write warnings to the log. Defaults to true.

Content

0,1 nested <classpath> elements (1.4)

A path element used in place of the classpath or classpathref attributes.

0..n nested <fileset> elements (1.4)

One or more fileset elements specifying XML files to validate, used in place of the
file attribute.

Ant: The Definitive Guide

300

Appendix A. The Future of Ant
Most open source projects evolve at an almost alarming rate, and Ant is no exception. Over
the course of just over two years, Ant moved from a prototype build tool for building Tomcat
to becoming the preferred build tool for many Java projects. On the bright side, rapid changes
mean more features and more solutions for the many problems developers face in building
and distributing their projects. On the dark side, rapid changes mean instability — developers
have to stay on their toes to make sure releases with new features don't break the current
features they're using.

The maintainers of the Ant project are aware of how their contributions can affect thousands
of people's projects and work. In early 2001, they set forth on a plan to refactor Ant's design.
Over time, Ant's library has become bloated. Features of some tasks overlap features of
others. There is no contract between the developers of the Ant engine and developers of Ant
tasks and listeners. Some implementations in the Ant engine are poorly written and need
refactoring; this refactoring could affect the design in many objects. The effort for all of these
changes could take months, even years. It is unacceptable to leave a working project in a state
of constant development for this long. Because of this, the maintainers elected to go forward
with a fork, to create Ant2.

A.1 Ant2

The maintainers of Ant are taking proposals from the user and developer base for redesign
and refactoring. A new set of design requirements and functionality expectation have come
from the proposals. There will be a contract defining how task developers and Ant-engine
developers work together. No longer will some tasks require internal changes to Ant and vice
versa, a practice that goes on too frequently with Ant1. Another change affects the core task
library, the library of tasks shipped with Ant. There will be an attempt to manage the task
library in a more "CPAN-like" manner.A A repository of tasks will reside online, available to
everyone. A buildfile would need to refer to the online library to download a JAR or class for
a particular task. Developers will no longer have to manage their internal deployments of Ant.

In addition to the new design requirements, the maintainers are attempting to refactor many of
Ant's old known weaknesses, especially in the XML-processing routines. Currently, Ant
interprets the XML but still loads the entire buildfile into memory, which is a rather
inefficient methodology. Large buildfiles can cause Ant's JVM to suck up huge amounts of
system memory, degrading performance. Considering that developers may run a build 5, 10,
or even 20 times a day on their machines, a 5-minute difference in build time can cost up to 3
hours of productive work.

Overall, the goal is to have a system bereft of the warts and blemishes of its predecessor. You
can view the new goals and keep track of what's in and what's out by reading the
documentation found in docs/ant2. All Ant distributions since Release 1.3 include this
documentation. Expect at least a beta release version of Ant2 some time in 2002.

A This refers to Perl's distributed CPAN library, which allows for any number of modules to be automatically referred to in-code without any end-user
interaction.

Ant: The Definitive Guide

301

A.2 Ant1 RIP 2002?

So what does this mean for users of Ant1? Is it going away the day Ant2 becomes final? Not
quite. Even though many of the design proposals mentioned earlier are subject to debate and
change (incidentally, delaying release), one thing remains a constant in the design of Ant2:
Ant1 buildfiles will not work with Ant2. Regardless, Ant1's life support forms its basis in its
wide user base. Ant1 has become fairly entrenched within many projects and products. For
example, IBM's VisualAge for Java now includes support for Ant Version 1.2 within its IDE.
WebLogic 6.1 ships with the Ant 1.3 release libraries built in; all of Ant 1.3's example
documentation uses Ant for building the included examples. All of the Jakarta projects use
Ant1 buildfiles, although some only work with Ant Release 1.2 (but most keep up with the
latest version). Given Ant1's current use and its sizeable inertia, it's unlikely that Ant1 will
just go away the day Ant2 becomes Version 1.0 — er, 2.0. More likely, the transition will be a
slow one, if a transition takes place at all. If you're well into the life cycle of your project, it
will just not make sense to change what already works for you. Because Ant1 is open source,
its support can never be taken away by some company. This book and a slew of online
documentation will always exist to help you maintain projects based on Ant1.

Does this mean Ant2 is unlikely to take off? This too is doubtful since Ant is part of the
Jakarta project. Many of the same developers that help with Ant help with the other Jakarta
subprojects. When new versions or new subprojects for Jakarta come out, there's a good
chance the developers will use Ant2. Only time will tell. As with all open source tools, it's
best if you keep your eyes out for changes as they happen. We've made a list here of some
things that are very likely to change that may affect the way you write buildfiles now. Being
considerate of Ant2's design may make a future transition easier if you plan to make one.

• If you rely on properties being immutable (their values set once and only once), you
will see this design go away in Ant2 (and, to some extent, Ant 1.5). The current Ant2
design proposals call for properties that can be set and reset at any time.

• Some seemingly duplicate tasks will be consolidated into one supertask. For example,
jar, unjar, zip, unzip — all of which perform operations on a ZIP-like file — will
be combined into a task called archive.

• The concept of magic properties will go away.
• The use of SYSTEM XML entities, which allows you to dynamically include buildfile

fragments using XML operators, is likely to go away in favor of a built-in Ant
"include" system.

• Most importantly, regardless of how they're declared or implemented, Ant1 tasks will
not work in Ant2. According to the design proposals, there will be adapters and
utilities to facilitate the porting of Ant1 tasks.

Ant2 aims to be a marked improvement over Ant1. Most build and project design concepts
formed with Ant1 should carry over. Everything you've learned with Ant in a "build-design"
sense will not go to waste.

Ant: The Definitive Guide

302

Appendix B. Ant Solutions
Over time, developers have created good, consistent solutions for builds. Unfortunately, many
of these solutions remain "locked away" within their projects' buildfiles and rarely find light
in articles or documentation. In Chapter 3, we organize the irssibot project in a manner that
has proven successful with many other projects. Like these other projects, our example project
closely ties the buildfile to file and directory organization. Due to the rather simple nature of
the irssibot project, we are unable to demonstrate some other successful build designs such as
those found in projects like Tomcat, the Jakarta Taglibs, and the Ant project. In this
Appendix, however, we get a chance to discuss these other common build solutions as well as
to clarify the ones we use in other parts of the book.

We should note that the following solutions are not patterns in the academic sense. To
emphasize this difference, we've broken the solutions down into sections and started each
solution with a question. If you find the question fits a problem you've come across in writing
buildfiles, read the solution to see if the suggestion fits your needs.

B.1 Testing Library Availability

Q: We use the Java SDK Version 1.4 for our Windows 2000 workstations, but our Linux boxes
are still using Java SDK Version 1.2. Some of our classes use classes available only in Java
SDK Version 1.4. Currently, this situation means we get build errors on the Linux machines.
How do we prevent these errors without writing two different buildfiles?

Use the available task to avoid library version problems, and to build only the necessary
parts of your application, based on a developer's environment. In this case, you can determine
the Java SDK Version by checking for the existence of certain classes. For the Java SDK
Versions 1.4 and higher, the class java.lang.CharSquence is unique. This class does not
exist in Java SDKs prior to 1.4. Ant's own buildfile does this type of checking. We will use
Ant's buildfile to show an example.

In Ant's buildfile, the following target exists (edited to preserve space):

<target name="check_for_optional_packages">
 <available property="jdk1.2+" classname="java.lang.ThreadLocal" />
 <available property="jdk1.3+" classname="java.lang.StrictMath" />
 <available property="jdk1.4+" classname="java.lang.CharSequence" />
</target>

Later in the buildfile, we don't compile a file if the proper libraries aren't available:

<exclude name="${ant.package}/util/regexp/Jdk14RegexpMatcher.java"
 unless="jdk1.4+" />

This exclude is part of Ant's primary build target that compiles all of Ant's source code. It
excludes the compilation of the class in Jdk14RegexpMatcher.java unless the Sun JDK
Version 1.4 libraries are present. This solution is great when you know that the developers'
environments can vary wildly, as is the case with Ant. With a few extra lines, a buildfile using
available tasks and a combination of exclude DataType's with unless attributes enables
developers to worry more about the project and to worry less about having a specific but
maybe unnecessary set of libraries and tools. Conversely, build managers have the power to

Ant: The Definitive Guide

303

prevent compilation problems that you normally detect with ClassDefNotFound exceptions
and errors; this situation is very difficult and tedious to debug in projects with large,
distributed development teams.

B.2 Cleaning Up Does More Than Keep Things Neat

Q: Our developers are having problems testing the application. For example, two builds with
no code changes result in differing behaviors. Technically, this shouldn't happen, but since
the compilation steps are hidden, we're never sure what's being built each time. How can we
fix this?

Every build should be able to return the project directory to its initial state. This may seem
like "common sense," and, while this rule is followed in most build environments —
including Linux's kernel build, our example in Chapter 2, Ant, and Tomcat — the reasons
aren't always made clear. This pattern stems from three common build goals: distribution of
the compiled project, distribution of the source, and testing.

In distributing the compiled project, the build manager desires that only the files needed to
install, run, and support the finished product are made available to the end user. This is more
for keeping the user's life simple and easy than for any other reason. The best solution is to
have a completely separate space for creating the distribution (e.g., the dist directory). This
gives the buildfile one location in which to place distributable components, and one location
to clean up when a new distribution is needed.

Distributing the source is similar. Use a separate directory for managing the source to be
packaged and distributed. Have one place to copy files and one place to delete files (i.e., one
ring to rule them all). This makes more sense than trying to copy and package specific
directories in the project's source code. Even better, adding and removing components from a
distribution is made easier with a separate distribution staging area (this applies to distributing
the binary version as well). Clean up, like with the binary distribution, is quick and easy. Just
delete the directory. While you may consider distributing the source a secondary goal for your
project, also consider this: by making the source distributable, you've made your project easy
to be "picked up" by new developers. Long-lived projects that carry over years rarely have the
same development team for their entire lifetime. Making development easier for new
developers coming on to a project in midstream makes those developers reach full
productivity that much faster.

Combining the solutions from the previous two rules gives us the solution to the third rule,
which makes testing easier. Testing requires deterministic states of a project. By separating
the distribution of a project from its work and source locations, we have an easy way to verify
which version of the project we're working with. If we're ever unsure, thinking an old class
file is messing things up, we delete the distribution and recreate it. No muss, no fuss. As an
added bonus, we can send this easy-to-manage distribution in an easy-to-manage package
(e.g., a JAR) to other developers to corroborate errors and verify test cases.

B.3 Using Ant to Consolidate Libraries

Q: Our project uses at least 15 different JARs. The command line has reached its byte limit
and the buildfile properties are ugly and hard to maintain. To make matters worse, we'll
probably be adding more JARs later on. What can we do?

Ant: The Definitive Guide

304

Use the power of tasks to make your life better. Far too often, developers use powerful tools
to solve the simple problems and then rely on conventions and "developer's honor" to solve
the complex problems. Take, for instance, a web application that relies upon a large, common
set of libraries. The quick solution for including all of the libraries is to make a classpath
property listing each JAR file or class directory in a path. When running the web application,
this list is duplicated with different directories, of course, in the startup and configuration files
for the particular application server. Any changes to the library list require modification of at
least two files.

We can manage many libraries as one JAR with a target such as the following:

<target name="makesuperjar">
 <jar jarfile="superjar.jar" destdir="${some.common.lib.dir}">
 <zipfileset src="${some.common.lib.dir}/jaxp.jar"/>
 <zipfileset src="${some.common.lib.dir}/jaxen.jar"/>
 <zipfileset src="${some.common.lib.dir}/parser.jar"/>
 <zipfileset src="${some.common.lib.dir}/netcomponents.jar"/>
 <zipfileset src="${some.common.lib.dir}/oracle816JDBC.jar"/>
 </jar>
</target>

<property name="classpath" value="${some.common.lib.dir}\superjar.jar"/>

Here, we've told Ant to combine all the JARs needed by an application into one superJAR for
use throughout the build. We've also made distribution and installation easier by eliminating
the need to track all the various libraries used by the application. Startup scripts and
configuration files can now refer to superjar.jar with the understanding that it contains all the
third-party libraries for the project in one place.

In Ant 1.2, the jar task cannot contain a nested <zipfileset> element.

The benefits from this technique extend beyond simple library management. EJBs have
extraordinary library management issues. Furthermore, it doesn't help that the leading
application servers handle system-wide libraries and the sharing of EJB classes differently.
You may need to re-package the same classes and JARs multiple times for inclusion with a
WAR or an EAR, depending on the target application server. Using the war, ear, and jar
tasks effectively manages these issues with little management overhead.

Like every silver lining, this solution has a dark cloud. Projects like Ant, with large,
distributed developer bases and a loosely managed development environment, cannot use this
solution. Missing JARs causes the jar task to fail, and the possibility of missing JARs is part
of Ant's project design. However, projects with a tightly managed library list, especially those
projects with no "optional" libraries, benefit greatly from this pattern. By enforcing the library
set using one JAR, the project eliminates the possibility of rogue libraries causing problems in
running and testing the application. It requires that the third-party libraries are distributed with
the application, which is a good thing in this case since library version and availability is
important. Additionally, the pesky command-line limit, which can plague the administration
of some application servers, is gone. Whether there are 2 or 20 JARs, the classpath will
always be defined with one, leaving room in the command for other options and paths. We've

Ant: The Definitive Guide

305

made the build and project manager's life easier by providing one place to manage all of an
application's third-party libraries, and also by enforcing the inclusion of these libraries and
eliminating any confusion with versions.

B.4 Documenting the Buildfile's Targets

Q: We have a complex buildfile. When new developers join the project, the learning curve on
how to use the buildfile is high. We feel like we waste a lot of time teaching what the buildfiles
do instead of better integrating the new employee with the team. We've placed some
documentation on an intranet site, and this helps, but, as we all know, not everyone reads the
documentation. What else can we do?

Don't ignore the description attribute for targets. Being able to run Ant with the -
projecthelp option and get detailed feedback is another way to shorten developers' ramp-up
time on a project and increase productivity.

For example, the following target uses the description attribute to include some
documentation:

<target name="do-something-really-complex"
 depends="less-complex-stuff"
 description="Perform a lot of checks and tests so you know your
project
works right. You wouldn't know this target did this unless we provided a
decription. It's good that you know now, eh?">
...
</target>

Of course, there's a chance to go overboard here. Describe only the targets you want executed
from the command line. While -projecthelp will list all targets, it separates the list into those
with descriptions and those without. Most developers pick up on this quickly and know to
avoid running the descriptionless targets. If you really do want to document targets that
shouldn't run from the command line, include a message such as the following in those target
descriptions: "DON'T RUN THIS FROM THE COMMAND LINE!"

B.5 Setting Properties Outside of the Buildfile

Q: We've tried to make a universal buildfile, but have run into issues where certain property
values will differ on each developer's workstation. We don't want developers to edit the
buildfile. How do we do this?

Ant's property task has an attribute that takes a filename. If the file is structured as a
properties file (name-value pairs, one per line), Ant includes these values in the property
table. If a name conflicts with a name specified in the buildfile, and the property file is
included before the in-buildfile definition (this part's very important), the value overrides the
buildfile's value. The key is that the first definition of a property takes precedence.

By declaring an external property file for use in the build, you give developers a way to
override buildfile property values without editing the buildfile. The following buildfile
snippet shows an example of how the buildfile includes an external properties file in case the
codebase property needs to be overridden:

Ant: The Definitive Guide

306

<project name="ExtenisbleProject" default="all" basedir=".">
 <property name="build.properties"/>
 <property name="codebase" value="/export/home/builduser"/>
...the rest of the properties and buildfile
...

This buildfile imports properties from build.properties before setting the properties internally.
If a developer specifies a value for codebase in the build.properties file, that developer-
specific setting takes precedence because it was defined first. Otherwise, if the developer does
not specify a codebase value in his properties file, the value set for codebase inside the
buildfile is used instead.

Properties files are simply text files. The following is an example of the syntax you should use
to set a property (codebase in this case) in a properties file:

codebase=c:/src

Remember that Ant processes the command line first, so any value for codebase on the
command line takes utmost precedence:

ant -Dcodebase=c:/src

In this case, because codebase is specified on the command line, the value c:/src is used
regardless of any other settings in the buildfile or in a properties file.

B.6 Using pathconvert

Q: I set up a bunch of paths using the path DataType. Now I have this task that only takes
paths as an attribute. Do I need to rewrite everything using properties? I thought path solved
this problem?

When paths were first introduced, this was a legitimate gripe. Some people wrote their own
tasks to handle the conversion while others suffered the pain of maintaining two sets of data,
or just stuck with using properties. However, when the pathconvert task came out, all was
good.

Look at this example buildfile:

<project name="test" default="test" basedir=".">

 <path id="classpath">
 <pathelement location="lib"/>
 <pathelement location="lib/test.jar"/>
 </path>
 <property name="somepath" value="lib:lib/test.jar"/>
 <target name="test">
 <java classname="org.oreilly.Test" fork="yes" \
 classpath="${somepath}"/>
 </target>

</project>

Ant: The Definitive Guide

307

Assume for the moment that the java task must use the classpath attribute instead of a path
DataType.A The only way to have both a property and DataType represent a path (without
pathconvert) is to define both. In this example, that doesn't seem like a big deal, but these
paths can get long and complex. You only want to define them once. The following example
uses pathconvert to convert a path DataType into a property setting:

<project name="test" default="test" basedir=".">

 <path id="classpath">
 <pathelement location="lib"/>
 <pathelement location="lib/test.jar"/>
 </path>
 <target name="test">
 <pathconvert targetos="windows" property="somepath" \
 refid="classpath"/>
 <java classname="org.oreilly.Test" fork="yes" \
 classpath="${somepath}"/>
 </target>
</project>

With pathconvert, we've eliminated the need for two paths. The pathconvert task converts
the path DataType into a property, which is then referenced by the java task.

Not all is perfect, however. The pathconvert task requires you to define a target operating
system (or a path separator). Normally, Ant takes care of this for you, but unfortunately not in
the case of pathconvert. You may want to use an extra buildfile property to denote which
platform the buildfile is being processed on.

Converting DataTypes to properties isn't the only job pathconvert can
do. Check out its documentation in Chapter 7 for more details.

B.7 Usage Statements

Q: In the example from Chapter 3, you have an all target that builds everything. I don't want
the build to do anything by default. Is there a good way to pull this off?

It's not the way, but a good way to do this is to make a "usage statement" target. Typically this
target is called help and it simply echoes messages about the common targets in the build.
This behavior is similar to some Unix (and some Windows) console programs. If you're not
familiar with these console programs, they normally do nothing if called from the command
line with no arguments. Instead, they display a message, starting with the text "Usage" that
shows the various command-line arguments you can use with the program. Our help target
does the same thing, as the following example shows:

A This is not that wild of a concept. If the buildfile is part of a cascading buildfile design, the path-requiring tasks can't rely on paths stored in path
DataTypes. They would all need to use a property, or the subproject buildfiles would need to redefine the paths themselves.

Ant: The Definitive Guide

308

<project name="usage_example" default="help" basedir=".">
 <!-- some properties -->
 <!-- some paths -->

 <target name="build-lib"/>
 <target name="build-app"/>
 <target name="deploy-app"/>
 <target name="makedoc"/>

 <target name="help">
 <echo message="Build the usage_example project"/>
 <echo message="Usage: ant [ant options] <target1> \
 [target2 | target3 | ...]"/>
 <echo message=""/>
 <echo message=" build-lib - build just the project's library"/>
 <echo message=" build-app - build the library and \
 the application"/>
 <echo message=" deploy-app - ready the \
 application for deployment"/>
 <echo message=" makedoc - generate all the \
 documentation for the project"/>
 <echo message=" -projecthelp - (An Ant option) Display all \
 target descriptions"/>
 </target>
</project>

Now, if developers just call ant from the command line, they'll get the message shown in the
following example:

src%: ant
Buildfile: build.xml

help:
 [echo] Build the usage_example project
 [echo] Usage: ant [ant options] <target1> [target2 | target3 | ...]
 [echo] build-lib - build just the project's library
 [echo] build-app - build the library and the application
 [echo] deploy-app - ready the application for deployment
 [echo] makedoc - generate all the documentation for the project
 [echo] -projecthelp - (An Ant option) Display all target descriptions

BUILD SUCCESSFUL

Total time: 0 seconds
src%:

Such usage text can be a good introduction for people using your buildfiles, and having the
help target as the default prevents accidental execution of other targets. Creating help targets
for your buildfiles is a good habit to get into, and writing such a target doesn't take all that
much effort.

B.8 Forking Processes

Q: We need to run a Java utility on some of our files during the build. When some errors
happen in this utility, we've noticed that the build just dies. We get no success or fail
messages, and the log just abruptly ends. I think it may have something to do with the

Ant: The Definitive Guide

309

System.exit() issue mentioned in Chapter 5, but we still don't know how to fix it. What do
we do?

Ah yes, the System.exit() problem. To recap, the problem is the result of developers'
misuse of the System.exit() call in their code. The System.exit() call speaks directly to
the JVM, causing it to die immediately. Since a Java program running from Ant is running in
Ant's JVM, any calls to System.exit() will kill Ant's JVM. This is bad. Lucky for you, the
java task has an attribute called fork.

<java classname="org.oreilly.SpecialTool" fork="yes"/>

The fork attribute on the java task gives you the ability to avoid this problem. The attribute
tells the java task to run the class in a separate JVM. Being in a separate JVM means the
program's System.exit() call can't kill Ant's JVM. While this keeps your build from
breaking unexpectedly, the problem isn't completely solved. The second JVM is still dying
and the Java program is dying without warning. It's still in your best interest to try to solve the
root problem and get rid of the System.exit() call, if possible.

B.9 Using Cascading Projects and Buildfiles

Q: We've noticed projects like JBoss and Jakarta's Taglibs do not use the project structure
suggested in Chapter 3. Instead, they seem to have multiple buildfiles, one for each
subproject. This seems to follow the design discussed when "cascading buildfiles" were
mentioned. Just what are these things and how should I use them?

There are two options as to how to build a big project that has many sub-projects. One views
the project as a monolithic whole, thus using one buildfile to build everything. The single
buildfile defines all the targets necessary to build the project as well as all the data elements
and other bits necessary for the entire build. Dependencies between subprojects in a single
buildfile can be easily defined and maintained. Packaging and deployment targets can be
properly related to every subproject target. The single buildfile describing this project's build
is called a monolithic buildfile.

Some complex projects consist of many segregated subprojects making up one application or
framework. The organization is such that each subproject can be built on its own, without
worrying much about the other subprojects. The set of buildfiles making up this type of
project's build is called a cascading buildfile.

For small projects or projects with complex dependencies between subprojects, a monolithic
buildfile is the ideal choice. For projects that are well-defined and whose subprojects are
encapsulated, a cascading buildfile system may be a better choice.

Cascading buildfiles in Ant take their cue from large Unix projects like the Linux kernel. The
kernel is an example of a cascading build using makefiles. In the Java world, one of the best-
organized cascading builds belongs to JBoss. JBoss consists of a root project directory
containing only a buildfile. With this, you can build everything that makes up JBoss. Here's a
list of subdirectories under the root directory from the JBoss 2.4.4 source tree:

Ant: The Definitive Guide

310

 JBoss-2.4.4-src/
 build.xml
 /contrib
 /jboss
 /jboss-j2ee
 /jbosscx
 /jbossmq
 /jnp
 /jbosspool
 /jbosstest
 /jbosssx

The root directory contains a buildfile, and each of the subdirectories also contains buildfiles.
Since the pattern for calling buildfiles from subdirectories repeats for each level, it suffices to
show you how the root buildfile calls the others. Aside from some directory name changes,
everything else stays the same.

Following is the build target from JBoss' buildfile:

<target name="build" depends = "cvs-co,init">
 <ant antfile="src/build/build.xml" dir="jboss" target="main" />
 <ant antfile="src/build/build.xml" dir="jnp" target="src-install" />
 <ant antfile="src/build/build.xml" dir="jbosssx" \
 target="src-install" />
 <ant antfile="src/build/build.xml" dir="jbossmq" \
 target="src-install" />
 <ant antfile="src/build/build.xml" dir="jbosscx" \
 target="src-install" />
 <ant antfile="src/build/build.xml" dir="jbosspool" \
 target="src-install" />
 <ant antfile="src/build/build.xml" dir="jboss-j2ee" \
 target="src-install" />
</target>

As you can see, the target uses the ant task to call each subproject's buildfile. If we call ant
build in JBoss' main source directory, Ant will try to build the entire project. The ant task is
considered successful only when its target buildfile is successful. Thus, for the build target to
be successful, all the other buildfiles it calls must also be successful.

So far, this cascading buildfile looks simple, but there are some rules you should understand
about calling buildfiles in this manner. Some attributes can change how Ant behaves in ways
you might not expect.

The first rule deals with properties and property scope. Remember that you can set properties
on the command line or in the buildfile via the <property> data element. By default, any
property from the parent buildfile or from the command line propagates to any child buildfiles
called by the ant task. If a property is re-declared in the subproject buildfile, it doesn't matter.
Immutability of properties still applies; the root buildfile's properties (and the command-line
properties) stand. If, however, we add the following inheritall attribute to the first ant
task, we do not see this "immutable property" behavior:

 <ant antfile="src/build/build.xml" dir="jboss" \
 inheritAll="false" target="main" />

Ant: The Definitive Guide

311

By setting inheritall to false, we are telling Ant not to make the current buildfile's
properties available to the subproject's buildfile, with one exception: command-line
properties. Just think of command-line properties as being set in stone. These properties
cannot be changed and they cannot be ignored.

The second rule of cascading buildfiles is, unfortunately, less flexible than the property rule.
DataType references (DataTypes with id attributes) do not propagate down the project tree.
Period. Other than converting paths to properties with the pathconvert task (see earlier),
there's nothing else you can do to alleviate this limitation.

Both of these rules point to a general solution, which remains true for a lot of programming:
document everything and document it well. If your project uses cascading buildfiles,
comment the buildfiles and write READMEs that explain why some properties make it to the
third-level subproject and some don't. Explain why some paths are redefined in every
buildfile. This also helps you when you have to make changes to a buildfile you haven't
touched in three months.

Ant: The Definitive Guide

312

Colophon
Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical
topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Ant: The Definitive Guide is a horned lizard. There are 13 species
of the horned lizard in North America. Horned lizards prefer a dry, warm climate, such as the
desert or a dry woodland, and they can be found in Texas, Oklahoma, Kansas, and New
Mexico. Adults grow to 3-5 inches. They depend on their environment to control their body
temperature, and use burrows and shade to prevent overheating. The horned lizard has a wide,
flat body ideal for desert camouflage, and a short neck and short legs. It has spines on its body
and prominent horns on its head. It is also known as the horny "toad."

Despite the horned lizards' fierce appearance, they are not aggressive. Their primary diet
consists of ants, although they sometimes eat beetles, grasshoppers, and other insects, which
they catch with their long tongues. The horned lizards' first line of defense from predators is
their camouflage, but they are also known to hiss and inflate their bodies to appear more
intimidating. As a last resort, they have the ability to squirt blood from the corners of their
eyes in an attempt to confuse attackers. In Texas and Oklahoma, horned lizards are considered
a threatened species. It is illegal to possess a horned lizard without a scientific permit. More
information on the conservation of horned lizards is available at
http://www.hornedlizards.org/.

Colleen Gorman was the production editor and proofreader, and Mary Brady was the
copyeditor for Ant: The Definitive Guide. Linley Dolby and Jane Ellin provided quality
control. Nancy Crumpton wrote the index.

Hanna Dyer designed the cover of this book, based on a series design by Edie Freedman. The
cover image is a 19th-century engraving from the Dover Pictorial Archive. Emma Colby
produced the cover layout with QuarkXPress 4.1 using Adobe's ITC Garamond font. David
Futato designed the interior layout. This book was converted into FrameMaker 5.5.6 with a
format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that
uses Perl and XML technologies. The text font is Linotype Birka; the heading font is Adobe
Myriad Condensed; and the code font is LucasFont's TheSans Mono Condensed. The
illustrations that appear in the book were produced by Robert Romano and Jessamyn Read
using Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and warning icons were
drawn by Christopher Bing. This colophon was written by Colleen Gorman.

	Cover
	Table of Contents
	Dedication
	Foreword
	Preface
	Structure of This Book
	Audience
	What You Should Know
	Which Platform and Version
	Conventions Used in This book
	Comments and Questions
	Acknowledgments

	1. Ant Jumpstart
	1.1 Files and Directories
	1.2 The Ant Buildfile
	1.3 Running Ant
	1.4 Ant Command-Line Reference
	1.5 Buildfile Outline
	1.6 Learning More

	2. Installation and Configuration
	2.1 The Distribution
	2.2 Installation
	2.3 Configuration

	3. The Buildfile
	3.1 Why XML?
	3.2 Ant Building Blocks
	3.3 An Example Project and Buildfile
	3.4 The Buildfile Execution Process
	3.5 AINASL: Ant Is Not a Scripting Language
	3.6 Buildfile Authoring Issues

	4. Ant DataTypes
	4.1 DataTypes Defined
	4.2 XML Attribute Conventions
	4.3 Argument DataType
	4.4 Environment DataType
	4.5 FileList DataType
	4.6 FileSet DataType
	4.7 PatternSet DataType
	4.8 FilterSet DataType
	4.9 Path DataType
	4.10 Mapper DataType

	5. User-Written Tasks
	5.1 The Need for Custom Tasks
	5.2 Ant's Task Model
	5.3 The Task Life Cycle
	5.4 An Example Through Analysis: The jar Task
	5.5 Miscellaneous Task Topics

	6. User-Written Listeners
	6.1 The BuildEvent Class
	6.2 The BuildListener Interface
	6.3 An Example: XmlLogger
	6.4 The Parallel Problem

	7. Core Tasks
	7.1 Task Summary
	7.2 Common Types and Attributes
	7.3 Project and Target
	7.4 Core Task Reference

	8. Optional Tasks
	8.1 Task Summary
	8.2 Optional Task Reference

	A. The Future of Ant
	A.1 Ant2
	A.2 Ant1 RIP 2002?

	B. Ant Solutions
	B.1 Testing Library Availability
	B.2 Cleaning Up Does More Than Keep Things Neat
	B.3 Using Ant to Consolidate Libraries
	B.4 Documenting the Buildfile's Targets
	B.5 Setting Properties Outside of the Buildfile
	B.6 Using pathconvert
	B.7 Usage Statements
	B.8 Forking Processes
	B.9 Using Cascading Projects and Buildfiles

	Colophon

