

Praise for Building a Web 2.0 Portal with ASP.NET 3.5

“Omar and his collaborators have applied their awesome talents and a huge amount of time
to crafting what might be the most advanced web site yet that’s based on ASP.NET and
Ajax. In this book, Omar distills everything he’s learned from his experience, going in-
depth into design goals, architecture, and implementation, including many pitfalls that he
teaches you how to avoid. If you’re serious about creating a high-performance, modern,
Ajax-based ASP.NET web site, Building a Web 2.0 Portal with ASP.NET 3.5 is for you.”

— Mike Pope, Microsoft User Education, Microsoft Corporation

“An outstanding overview of the technologies, techniques, and best practices involved in
working with today’s most popular web application model. Highly recommended for any
web developer who wants to stay relevant.”

— Craig Wills, Training Manager, Infusion

Building a Web 2.0 Portal
with ASP.NET 3.5

Other Microsoft .NET resources from O’Reilly

Related titles C# 3.0 Cookbook™

C# 3.0 Design Patterns

C# 3.0 in a Nutshell

Learning ASP.NET 2.0 with
AJAX

Programming ASP.NET

Programming ASP.NET AJAX

Programming C# 3.0

Programming .NET 3.5

.NET Books
Resource Center

dotnet.oreilly.com is a complete catalog of O’Reilly’s books on
.NET and related technologies, including sample chapters and
code examples.

ONDotnet.com provides independent coverage of fundamental,
interoperable, and emerging Microsoft .NET programming and
web services technologies.

Conferences O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in docu-
menting the latest tools and systems, translating the
innovator’s knowledge into useful skills for those in the
trenches. Visit conferences.oreilly.com for our upcoming
events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

Building a Web 2.0 Portal
with ASP.NET 3.5

Omar AL Zabir

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Building a Web 2.0 Portal with ASP.NET 3.5
by Omar AL Zabir

Copyright © 2008 Omar AL Zabir. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: John Osborn
Production Editor: Laurel R.T. Ruma
Copyeditor: Laurel R.T. Ruma
Proofreader: Mary Brady

Indexer: John Bickelhaupt
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrators: Robert Romano and Lesley Borash

Printing History:

December 2007: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Building a Web 2.0 Portal with ASP.NET 3.5, the image of a giant green sea
anemone, and related trade dress are trademarks of O’Reilly Media, Inc.

Microsoft, MSDN, the .NET logo, Visual Basic, Visual C++, Visual Studio, and Windows are registered
trademarks of Microsoft Corporation.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-51050-0

ISBN-13: 978-0-596-51050-3

[C]

http://safari.oreilly.com
mailto:corporate@oreilly.com

vii

Table of Contents

Preface . xi

1. Introducing Web Portals and Dropthings.com . 1
Defining a Web Portal 2
Defining a Web 2.0 Portal 4
Using a Web Portal 4
Navigating Dropthings 5
Using ASP.NET AJAX 8
Using C# 3.0 and .NET 3.5 9
Summary 10

2. Architecting the Web Portal and Widgets . 12
Using a Widget Framework 20
Adding Widgets 26
Maximizing the First-Visit Experience 28
Rendering a Second-Visit Experience 30
Improving ASP.NET AJAX Performance 31
Adding Authentication and Authorization 36
Preventing Denial-of-Service Attacks 38
Summary 40

3. Building the Web Layer Using ASP.NET AJAX . 41
Implementing the Start Page of a Web Portal 41
Building a Custom Drag-and-Drop Extender for a Multicolumn Drop Zone 60
Implementing WidgetContainer 74
Building Widgets 81
Page Switching: Simulating a Nonpostback Experience 92

viii | Table of Contents

Using the Profile Object Inside a Web Service 94
Implementing Authentication and Authorization 95
Implementing Logout 98
Summary 100

4. Building the Data and Business Layers Using .NET 3.5 101
Introducing LINQ to SQL 101
Building the Data Access Layer Using LINQ to SQL 104
Introducing Windows Workflow Foundation 112
Building the Business Layer Using WF 113
Implementing the DashboardFacade 127
Summary 133

5. Building Client-Side Widgets . 134
Delaying Server-Side Widget Loading 135
Content Proxy 138
Building a Client-Side RSS Widget 142
Building a Client-Side Flickr Widget 146
Summary 151

6. Optimizing ASP.NET AJAX . 152
Combining Multiple Ajax Calls into One Call 152
Timing and Ordering Ajax Calls to the Server 154
Using HTTP GET Calls Instead of HTTP POST 165
Working with the this Function 166
Summary 168

7. Creating Asynchronous, Transactional, Cache-Friendly Web Services 169
Scalability Challenges with Web Services 169
Asynchronous Web Methods 171
Modifying the ASP.NET AJAX Framework to Handle Web Service Calls 175
Developing Your Own Web Service Handler 177
Making an Asynchronous and Cache-Friendly Proxy 189
Scaling and Securing the Content Proxy 191
Summary 196

Table of Contents | ix

8. Improving Server-Side Performance and Scalability 197
Instrumenting Your Code to Identify Performance Problems 198
Optimizing the HTTP Pipeline 199
Optimizing ASP.NET 2.0/3.5 Before Going Live 200
Optimizing Queries in the ASP.NET Membership Tables 201
Optimizing the ASP.NET 2.0/3.5 Profile Provider Before You Go Live 203
ASP.NET Production Challenges 219
Redirecting Traffic from an Old Web Site to a New One 221
Summary 223

9. Improving Client-Side Performance . 224
Understanding Web Caching 224
Content Delivery Networks 234
Optimizing Internet Explorer JavaScript Performance 238
Reducing the Web Service Call Payload 246
Loading the UI on Demand 247
Using Read-Ahead Caching for Ajax Calls 250
Hiding HTML Inside <textarea> 250
Summary 253

10. Solving Common Deployment, Hosting, and Production Challenges 254
Deploying Your Web Site in a Web Farm 254
Thirteen Production Disasters That Could Happen at Anytime 260
Choosing the Right Hosting Provider 272
Choosing a Web Site Monitoring Tool 274
Configuring Proper Performance Counters 276
Summary 282

Index . 283

xi

Preface1

Web 2.0 Ajax portals are among the most successful web applications of the Web
2.0 generation. iGoogle and Pageflakes are the pioneers in this market and were
among the first to show Ajax’s potential. Portal sites give users a personal homepage
with one-stop access to information and entertainment from all over the Web, as
well as dashboards that deliver powerful content aggregation for enterprises. A Web
2.0 portal can be used as a content repository just like a SharePoint or DotNetNuke
site. Because they draw on Ajax to deliver rich, client-side interactivity, Web 2.0 por-
tals improve usability and provide faster performance compared to non-Ajax web
sites. Also, because portals are commonly composed of widgets (small plug-and-play
type applications), there’s no limit to how much functionality you can provide, sim-
ply by adding more and more widgets. Their use also keeps the core architecture of
the portal clean and simple because widgets are developed and maintained indepen-
dently. DotNetNuke is a great example of a widget-powered portal concept that has
created a new era in highly decoupled enterprise web applications.

This book takes a fresh new look at portal solutions using the latest cutting-edge
technologies from Microsoft. In developing personal, educational, community, and
enterprise portals, I have had to deal with many interesting design, development,
scalability, performance, and production challenges. In this book, I have tried to
show solutions to some of these challenges by building an open source Web 2.0 Por-
tal prototype, and then walk you through through the design and architectural chal-
lenges, advanced Ajax concepts, performance optimization techniques, and server-
side scalability challenges involved. The prototype also shows you practical imple-
mentation of the cutting-edge .NET 3.0 and 3.5 frameworks, including LINQ and the
Windows Workflow Foundation. Moreover, it explores Ajax web site details, browser
performance and compatibility challenges, security challenges, and ASP.NET AJAX
framework advantages and shortcomings.

xii | Preface

The project is available at www.dropthings.com. Dropthings is an open source exam-
ple of what can be done with the new technologies from Microsoft. It is intended for
educational purposes only. Although it does come close to real web portal (like Page-
flakes) in terms of its feature set, performance, security, and scalability, it does a
good job of showing you how to put together several new technologies in a working
web application.

Who This Book Is for
This book is primarily for ASP.NET 2.0 or 3.5 developers who have already devel-
oped one or more web applications and have a good grip on JavaScript and ASP.NET
2.0. The reader is also expected to have basic understanding of ASP.NET AJAX. This
information is available in numerous publications, including several from O’Reilly
that are listed in the Roadmap page for this book.

Intermediate developers, looking for ways to gain insight into web development chal-
lenges and learn how a successful production web site is built and run, will greatly
benefit from this book. Advanced developers will learn how to build a rock solid web
application that can withstand millions of hits every day around the clock, survive
sudden scalability demands, prevent hack attempts and denial of service attacks,
deploy and run a web site on a distributed cluster environment utilizing Content
Delivery Networks (CDN), face real-life production challenges, and much more.

How This Book Is Organized
This book first describes what an Ajax web portal (aka a Web 2.0 portal) is and
how it can be useful as a model for personal web sites, corporate intranets, or a
mass consumer web application. Then it walks you through the architectural chal-
lenges of such an application and provides a step-by-step guide to solving design
issues. It explains what a widget is and how widget architecture can create a highly
decoupled web application that allows the addition of an infinite number of fea-
tures to a web site.

It following chapters, you’ll find step-by-step guides for developing several compo-
nents of the web project using ASP.NET 2.0/3.5 and ASP.NET AJAX 1.0, the busi-
ness layer in Workflow Foundation, and the data access layer using LINQ to SQL.
Once the basic foundation is up, it goes deep into difficult challenges like first-time
visit performance, browser compatibility and memory leaks, advanced caching tech-
niques, putting too much content and functionality on a single page and so on. It
then goes into some real-life Ajax and ASP.NET 2.0/3.5 challenges that I have solved
in building high-volume commercial portals.

http://www.dropthings.com

Preface | xiii

I have also sprinkled a number of real-life war stories throughout the book that high-
light some of the real-life problems I have encountered in building portals like
Dropthings. You’ll find them, not surprisingly, wherever you encounter the heading,
“Real-Life.”

Finally, it presents some hard-to-solve scalability and security challenges of Ajax por-
tals and 13 production disasters that are common to web applications that reach mil-
lions of users all over the world.

Here’s a chapter-by-chapter summary:

Chapter 1, Introducing Web Portals and Dropthings.com
Introduces you to the attributes of a web portal and to the applications that you
will learn to build throughout the book. Chapter 1 also shows you how ASP.NET
AJAX and .NET 3.5 are used in the product.

Chapter 2, Architecting the Web Portal and Widgets
Gives you an architectural overview of Dropthings.com. It also explains the wid-
get architecture and how to build highly decoupled web applications using wid-
gets. It touches on some performance and security challenges of Ajax web sites.

Chapter 3, Building the Web Layer Using ASP.NET AJAX
Gives a detailed explanation on how the web application is built, starting from the
homepage and the widgets. It shows how the drag-and-drop functionality is pro-
vided using ASP.NET AJAX 1.0, how a real widget is built, and how ASP.NET 3.5
is used to build the server-side part of the web layer.

Chapter 4, Building the Data and Business Layers Using .NET 3.5
Shows how LINQ is used to build the data access later and .NET 3.0 is used to
build the business layer by extensively using Workflow Foundation.

Chapter 5, Building Client-Side Widgets
Shows how to build widgets using JavaScript for faster performance and better
caching. It shows how a content bridge or proxy service is built that allows wid-
gets to fetch content from external sources.

Chapter 6, Optimizing ASP.NET AJAX
Goes deep into Ajax-enabled principles for making sites faster, more cache
friendly, and scalable. It talks about browser specific challenges and many
under-the-hood techniques to get maximum performance out of the Ajax
framework.

Chapter 7, Creating Asynchronous, Transactional, Cache-Friendly Web Services
Shows you how to build a custom web service call handler for Ajax calls in order
to overcome some shortcomings in ASP.NET AJAX 1.0 and enable your web ser-
vices to become asynchronous, transactional, and more cache-friendly. It also
talks about scalability and security challenges of web applications that rely
heavily on web services.

xiv | Preface

Chapter 8, Improving Server-Side Performance and Scalability
An ASP.NET 2.0 web application has many scalability and performance surprises
as it grows from a hundred-user to a million-user web site. Learn how to solve per-
formance, reliability, and scalability challenges of a high volume web site.

Chapter 9, Improving Client-Side Performance
Ajax web sites provide a lot of functionality on the client-side browser that intro-
duces many browser specific challenges and JavaScript performance problems.
This chapter provides many tips and tricks for overcoming speed and memory
problems on the browser and making the UI load faster and be more responsive.

Chapter 10, Solving Common Deployment, Hosting, and Production Challenges
Last step of a web project development is to successfully deploy the product and
run it 24x7. Learn what it takes to deploy and run a high volume production
web site solving software, hardware, hosting, and internet infrastructure prob-
lems that can bring down your web site and cause great harm to your business.

What You Need to Use this Book
You need Visual Studio 2008 Professional Edition and SQL Server 2005 Developer
Edition. You can download the latest source code of the open source project from
www.codeplex.com/dropthings and set it up locally.

The open source project running at Dropthings will greatly benefit from your contri-
bution. You are welcome to participate in its development by extending the core
framework or building new widgets for the project.

Conventions Used in This Book
The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Ctrl).

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, path-
names, directories, and Unix utilities.

Constant width
Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values,
objects, events, event handlers, XML tags, HTML tags, macros, the contents of
files, or the output from commands.

Constant width bold
Shows commands or other text that should be typed literally by the user.

http://www.dropthings.com

Preface | xv

Constant width italic
Shows text that should be replaced with user-supplied values.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Building a Web 2.0 Portal with ASP.
NET 3.5, by Omar AL Zabir. Copyright 2008 Omar AL Zabir, 978-0-596-51050-3.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your
favorite technology book, that means the book is available online
through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

mailto:permissions@oreilly.com
http://safari.oreilly.com

xvi | Preface

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

There is a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596510503

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

The author of this book and Dropthings project can be reached at:

omar.zabir@mvps.org

The code for this book can be found here:

www.codeplex.com/dropthings

Acknowledgments
My deepest respect and appreciation to my parents for their support in writing this
book. Special thanks to Mike Pope at Microsoft and Craig Wills at Infusion for their
sincere support, ideas, and thorough reviews.

http://www.oreilly.com/catalog/9780596510503
mailto:bookquestions@oreilly.com
http://www.oreilly.com
mailto:omar.zabir@mvps.org
http://www.dropthings.com

1

Chapter 1 CHAPTER 1

Introducing Web Portals
and Dropthings.com1

In this book, I will show you how to develop an Ajax-enabled Web 2.0-style portal.

The portal is built using ASP.NET 3.5, ASP.NET AJAX, and .NET 3.5, as well as
Language-Integrated Query (LINQ) and SQL Server 2005. While building this appli-
cation, you’ll learn about the:

• Design decisions that must be made for and usability issues involved in a Web
2.0 user interface

• Architectural complexities and development challenges of JavaScript-rich, widget-
enabled web sites

• Production and maintenance challenges of running a high-volume web application

Ajax web portals are among the most extreme implementations of client-side tech-
nologies you’ll find on the Web. They not only use large amounts of JavaScript, CSS,
and HTML, but also push the Ajax and server-side technologies to their limits for
interactivity, performance, and scalability. By the time you finish reading this book,
you will be equipped with enough technical know-how to launch a Web 2.0 Internet
startup on your own.

The application example, which I have named Dropthings, for reasons that will
become clear shortly, is a reduced feature set prototype of a real web portal, like Goo-
gle’s iGoogle or Pageflakes. You will be able to deploy the Dropthings on a produc-
tion server and run it as your own personal web site, a group site, or even as a
corporate intranet. Including drag-and-drop enabled widgets, complete support for
personalization, the ability to place widgets on multiple pages, centralized authentica-
tion and authorization, and much more.

As you work through this book, you will see how Dropthings is architected and imple-
mented. It’s a real, living, breathing, open source web portal that you’ll find at http://
www.dropthings.com. Although the application does not compare to a real web portal
in terms of its code quality, feature set, scalability, performance, and other aspects of
the product, it works as a good proof of concept for several nascent technologies.

http://www.dropthings.com
http://www.dropthings.com

2 | Chapter 1: Introducing Web Portals and Dropthings.com

However, you can use it for your current day-to-day personal use, and you are wel-
come to support continued development of the project by adding more features to it
or by making cool new widgets for it.

The open source project for Dropthings is hosted at http://www.
codeplex.com/dropthings. Anyone can contribute.

Figure 1-1 shows the Dropthings site, which you will learn how to build in this book.

Defining a Web Portal
A web portal is a page that allows a user to customize his homepage by dragging and
dropping widgets onto it. This approach gives the user complete control over what
content he sees on his home page, where on the page he wants to see it, and how he
wants to interact with it.

A widget is a discrete piece on a web page that performs a particular function and
comes with its own UI and set of features. Examples of widgets include to-do lists,
address books, contact lists, RSS feeds, clocks, calendars, playlists, stock tickers,
weather reports, traffic reports, dictionaries, games, or almost anything you can
imagine that can be packaged up and dropped onto a web page. In a corporate envi-
ronment, widgets can connect to internal systems; for example, an expense tracker
widget can interact directly with the internal accounting system. If you are familiar

Figure 1-1. The Dropthings site is a widget-enabled Web 2.0 portal; you’ll build one like it using
ASP.NET 3.5, ASP.NET AJAX, the .NET Framework 3.5, and SQL Server 2005

http://www.codeplex.com/dropthings
http://www.codeplex.com/dropthings

Defining a Web Portal | 3

with the SharePoint Portal, then you already know about widgets, which are called
Web Parts in SharePoint and ASP.NET 2.0.

Specifically, an Ajax-powered web portal is a web portal that uses Ajax technologies
to create richer experiences for its users. It is one step ahead of the previous genera-
tion of web portals, including pioneer sites such as MSN or AOL, because it gives
you a state-of-the-art UI that behaves more like a Windows client application with
widgets, animations, pop ups, client-side data grids, and other effects not usually
found on a non-Ajax web portal. Not surprisingly, MSN and AOL have already
adopted many of the practices discussed in this book.

Some of the most popular Ajax web portals include iGoogle (www.google.com/ig),
My Yahoo (http://my.yahoo.com), and Pageflakes (www.pageflakes.com; see
Figure 1-2).

A web portal, especially one that is Ajax-powered, gives users a fun way to browse
the Internet. Users can add photos, videos, music, podcasts, and video blogs to their
Start page. The web portal can also help users become more productive by allowing
them to check email, read news, and get weather reports from a single page. They
can organize their digital life by putting appointment calendars, to-do-lists, and
address books in a central place on the Web. No matter where they happen to be—
in the office, home or airport—as long as they can get to the Web, users can access
this information directly from their web portal. It’s like bringing the whole Internet
onto a single page, displayed exactly the way you want it to be. Gone are the days of
running after content—now information and entertainment comes to you.

Figure 1-2. Pageflakes uses widgets to deliver functionality, including local weather, local news,
videos, local photos, podcasts, stock portfolio, local events with Google Maps, and more

http://www.google.com/ig
my.yahoo.com
http://www.pageflakes.com

4 | Chapter 1: Introducing Web Portals and Dropthings.com

Defining a Web 2.0 Portal
The term “Web 2.0” defines a set of principles and practices for web applications,
which, when followed, entitle a web application to wear the Web 2.0 crown. A web
site can claim to be a Web 2.0 site if it:

• Allows users to control data presented on the web site

• Presents a platform that enables the mixing (or mash-up) of technologies and data

• Enables services to be consumed that are beyond the boundary of the application

• Harnesses collective intelligence by enabling the following:

— Aggregation of relevant content from heterogeneous sources

— User contributed content

— User moderation of content via tagging and rating

• Uses state-of-the-art technologies that take interactivity on the Web to the next
level by use of popular technologies like Ajax, Flash, and Silverlight.

Dropthings, being a web portal, allows a user to control what the user wants to put
on the page. The widget architecture allows mashup of technologies in the form of
widgets. It exposes web services that external entities can consume. The portal
aggregates content from many different sources, such as photos from Flickr, news
from CNN, weather reports from Weather.com, and many more. It supports user-
submitted content aggregation in the form of RSS feeds. Finally, it pushes inter-
activity on the Web to the next level by using Ajax technologies.

Using a Web Portal
With a web portal, every visitor to your web site will be able to customize and set it
up exactly the way they would like to see it the next time they visit. Best of all, the
layout is saved per user, so your master layout remains unchanged. Moreover, visi-
tors can add more widgets from a widget catalog and decorate the page as they like.

How an Ajax-Powered Start Page Is Different
The advantages of Ajax and a rich client-side experience give users a fun and excit-
ing environment to do their regular work. All the functionality is developed as small
widgets that perform only a specific job, like showing messages from an Exchange
Mail server, assigning tasks from a SharePoint List, or even displaying your expenses
from an internal accounting system. Just as with a regular web portal, enterprise
users can drag the widgets around and put them anywhere they like. For example, an
email inbox can be put on the left, expenses in the middle, and a list of “Phone calls
to make” on the right. A key advantage is that these widgets can provide content
from different web servers on different platforms, including Linux, Unix, or IBM
OS/2 servers. As long as the platform speaks XML and HTTP, any functionality can

Navigating Dropthings | 5

be provided in the form of a widget. The main framework takes care of authentica-
tion, authorization, user profile, communication, and all those cool Ajax effects. As a
result, the widgets are a lightweight component with a small amount of code to do
exactly what they are supposed to.

An Ajax web portal is also quite useful for group portals or social web sites. For
example, say you want to make a .NET developer group portal. You would start with
a blank page, add lots of .NET feeds, put a link widget and fill it with useful .NET
web site links, add an address book widget and fill in useful contacts, put in a calen-
dar widget to publish events for the group, and so on. With just these basic widgets
and some rearranging, you have a dynamic, personalizable developer group portal
that is state of the art in both technology and usability.

Enterprise portals especially can benefit from using Ajax web portals. Enterprise por-
tals bring in content from many sources and different platforms. By using an Ajax
widget platform, you can make the whole portal in terms of small widgets that con-
nect to different systems and serve content to the page. The benefit of such a plat-
form is that the complexity of the entire portal is dramatically reduced because it’s
just a generic widget platform.

Navigating Dropthings
When you first visit Dropthings, which I encourage you to do now, you get a pre-
defined default setup of widgets that you can customize anyway you like. For exam-
ple, there’s a Flickr photo widget, some RSS feeds, and several community
contributed widgets for weather, news, and so on (see Figure 1-3).

Figure 1-3. Your initial visit to Dropthings gives you a predefined template that can be customized

6 | Chapter 1: Introducing Web Portals and Dropthings.com

On the Dropthings Start page, you can add widgets, remove widgets that you don’t
like, and customize individual widgets by clicking on the “edit” link on each title bar.
Clicking on the “edit” link brings up the “Settings” area for the widget where you
can change its look, feel, and behavior (see Figure 1-4).

You can also drag-and-drop widgets from one column to another and reorganize the
page as you like. When you come back to the page, your customization is preserved
even if you did not sign up. However, when you sign up, your pages are saved per-
manently and you can access them from anywhere (see Figure 1-5).

It is possible to have more than one tab (page) of widgets. There’s already a pre-
created empty second tab where you can add new widgets. So from there, you can
add as many tabs as you like. This helps you keep your tabs clean and light and
groups relevant widgets in the same location.

Clicking on the “Add stuff” link on the top right of the web page brings up a pop-up
widget gallery that shows the list of available widgets (see Figure 1-6). From the list,
you can click anywhere on the widget and have it added to your page. After adding
it, you can further customize it by clicking on the “edit” link on the widget’s title bar.

Figure 1-4. The photo widget allows you to change the photo stream by clicking on “edit” link on
the title bar of widget

Navigating Dropthings | 7

At the top part of the page, there’s a bar where you can search the Internet. Search is
the most used function on the Web. Therefore, web portals need to have convenient
search functionality; otherwise users won’t set a web portal as browser homepage.
The Live.com search bar on the top provides on-site search functionality where the
search results are shown right on the page, which allows the user to perform a search
without leaving the web portal (see Figure 1-7).

Figure 1-5. You can drag and drop widgets on the page and reorganize the page as you like

Figure 1-6. Create a “Photo” tab and add a Flickr photo widget to it with Add Stuff; each photo
widget shows a specific photo stream from Flickr as defined by the widget’s settings

Widget gallery Add stuff link

Customize newly
added widget

8 | Chapter 1: Introducing Web Portals and Dropthings.com

As you use the site, you will notice there’s not a single postback of the page. Opera-
tions are performed either via asynchronous postback or via JavaScript calls from the
browser. You can add/remove widgets, drag-and-drop widgets, and switch tabs with-
out ever causing a postback or refresh of the page. This is what makes Ajax web por-
tals really convenient and fast to use compared to non-Ajax web portals.

Using ASP.NET AJAX
The web portal you’ll learn how to build is an N-tier application with a user inter-
face (UI) layer, a business layer, and a data access layer. You’ll use ASP.NET AJAX to
implement the UI layer of the web portal application, which includes the homepage
and the widget’s UI. ASP.NET AJAX provides the framework (via UpdatePanel) for
updating widgets without doing any postbacks, and it changes page layout by drag-
ging and dropping widgets on the page. It also offers a rich collection of Control
Extenders that add cool effects like fade in/fade out, smooth transitions, and client-
side animations. You can add to the rich client-side experience by providing auto-
completion behavior on text boxes, asynchronous data loading via web service calls,
client-side paging, sorting, and much more.

The ASP.NET AJAX runtime provides a framework you can use to make XML HTTP
calls from within the widgets. It also provides the framework for building client-side
effects using Custom Extenders. The drag-and-drop behavior of widgets on the page
is built as an Extender. You’ll also reuse some extenders from the Ajax Control Tool-
kit (ACT) to enrich the client user experience within the widgets.

Figure 1-7. The Live.com search bar provides on-site search functionality

Using C# 3.0 and .NET 3.5 | 9

ASP.NET AJAX exposes a handy API that you can use to authenticate against the
ASP.NET Membership application service. A good thing about the ASP.NET Mem-
bership API is that it’s fully compatible with ASP.NET AJAX and providers for Mem-
bership, Profile properties, and so on; they all work exactly the same way as a regular
ASP.NET web site. This means you can make client-side login and signup forms, and
change user preferences without requiring any postback.

Using C# 3.0 and .NET 3.5
Dropthing’s business layer is built with the Windows Workflow Foundation (WF),
which was introduced in .NET 3.0. Major operations like a first-time user visit, a
subsequent user visit, adding a new widget, and creating a new page are all orches-
trated using workflow. The workflows contain all the business rules and activities
needed to complete each operation. For example, the New User Visit workflow cre-
ates the user account, populates the user profile with default values, creates some
default pages, populates them with specific widgets, etc. Such compound operations
are very easy to build with workflows, which enable you to break the complete oper-
ation into smaller chunks called Activities. Each Activity does a very small amount of
work. It talks to the data access layer and performs the task. The data access layer is
built with .NET 3.5, using LINQ to SQL, which vastly simplifies the querying of
databases from within your application code.

The web project and the widgets make good use of .NET 3.5 by using new function-
ality for lambda expressions, LINQ to SQL, and LINQ to XML. You will use LINQ
queries to work with collections and database rows. Widgets make good use of
LINQ to XML to consume XML from external data sources.

The application is built following a typical N-tier architecture where there’s a clear
separation between the UI, business logic, and data (see Figure 1-8). For example:

Web layer
Consists of web pages, web services, resources (e.g., graphics, CSS, JavaScript,
and .resx files), and configuration settings.

Business layer
Provides the entity classes, business rules, and middle-tier caching of data to
reduce database roundtrips.

Data access layer
Encapsulates database access and provides an interface that is database and data
source independent. It also provides object factories that create Entity classes
out of database rows and vice versa.

10 | Chapter 1: Introducing Web Portals and Dropthings.com

In Figure 1-8, the technologies are mapped to each layer.

The web portal application in this book makes use of some of the newest .NET 3.0
and .NET 3.5 technologies. The web layer uses ASP.NET AJAX for a rich user expe-
rience, and the business layer uses the new WF to orchestrate complex operations.
All three layers use LINQ to work with data structures.

C# 3.0 language extensions and LINQ queries are used in all layers to work easily
with collections, database rows, and XML. WF is used in the business layer to per-
form complex operations, such as workflows. LINQ to SQL is part of both the data
access layer and the business layer. Although the insert, update, and delete opera-
tions are mostly encapsulated inside the data access layer, some queries are faster to
implement directly from the business layer. That’s why LINQ to SQL is also part of
the business layer.

Summary
Ajax web portals push Ajax technologies to their limits. Microsoft’s ASP.NET AJAX
offers a rich set of Ajax components and a robust cross-browser compatible frame-
work to harness the full power of Ajax in web portals. The new features in .NET 3.0
and 3.5 Frameworks empower architects and developers with features like Work-
flow Foundation, LINQ to SQL, and LINQ to XML. This chapter, provided a brief
overview of what an Ajax web portal can do and what technologies are involved in
making such a project. The next chapter will discuss the architectural challenges,
performance issues, and security threats that make architecting a web portal more
challenging than typical web applications.

Figure 1-8. Mapping technologies to the different layers

Web layer
ASP.NET AJAX LINQ to Xml LINQ queries

Business layer
Workflow Foundation LINQ to SQL LINQ queries

Data access layer
SQL Server 2005 LINQ queriesLINQ to SQL

Summary | 11

Additional Resources
• “Using LINQ to SQL (Part 1)” from Scott Guthrie’s blog (http://weblogs.asp.net/

scottgu/archive/2007/05/19/using-linq-to-sql-part-1.aspx)

• LINQ to XML overviews (http://msdn2.microsoft.com/en-us/library/bb308960.aspx)

• Workflow Foundation tutorials (http://wf.netfx3.com)

• The LINQ Project (http://msdn2.microsoft.com/en-us/netframework/aa904594.aspx)

http://weblogs.asp.net/scottgu/archive/2007/05/19/using-linq-to-sql-part-1.aspx
http://weblogs.asp.net/scottgu/archive/2007/05/19/using-linq-to-sql-part-1.aspx
http://msdn2.microsoft.com/en-us/library/bb308960.aspx
http://wf.netfx3.com
http://msdn2.microsoft.com/en-us/netframework/aa904594.aspx

12

Chapter 2CHAPTER 2

Architecting the Web Portal and Widgets 2

Because it strives to deliver its functionality on a single page, an Ajax web portal that
lives up to its promise is invariably a masterpiece of Ajax technology. It is a great
architectural challenge to provide so much on one page without compromising the
performance of either the server or client. Some of the unique challenges seen only in
web portals include incorporating many features into one web application and aggre-
gating content from every kind of web site.

This chapter explains the architecture of the Dropthings portal, which you can also
use to design one of your own. We’ll examine a number of architectural challenges,
including how to run many widgets on one page, load a web portal quickly, and deal
with security threats such as denial-of-service (DoS) attacks, attempts to compro-
mise user data, and more.

The heart of any web portal is its support for widgets, which is the mechanism by which
users can customize their start pages and the means by which providers can make their
services available, whether a department inside a company or a third-party, like Reuters.

In an ASP.NET implementation like the one we use in this book, Default.aspx is the
homepage that displays the widgets and allows them to be added, removed, moved,
customized, and run within the page without ever causing a page refresh or postback.

The application remembers a user’s actions and customizations so that on her next
visit she sees the exact same widgets she saw when she left, with her customizations
preserved. Web portals typically allow anonymous users to use many of their fea-
tures, including adding widgets, editing, deleting, and creating multiple pages, and
changing preferences, without registering.

A Dropthings widget is basically an ASP.NET web control. It can be a user control or
a server control, but works just like a regular web control participating in the ASP.
NET page life cycle. Widgets support postbacks, the ViewState, sessions, and caches.
The only difference is that a Dropthings widget must implement IWidget—a custom
interface—to integrate with the widget framework and use the services provided by
the core framework we use for the application. A custom-built Ajax control

Architecting the Web Portal and Widgets | 13

extender provides the drag-and-drop feature for the widgets. The widget frame-
work and its core are explained later in this chapter (see the “Using a Widget
Framework” section).

A widget is hosted inside a frame or container. The container provides the header
bar, which consists of the title, edit link, minimize/maximize buttons, and close but-
ton. The widget itself is loaded below the header bar inside the body area. Events,
such as changing the title, clicking on the edit link, minimizing/maximizing, and
closing are notified via the IWidget interface.

In a web portal, it’s important that widgets perform asynchronous postback and
fetch data asynchronously so the user experiences as few page refreshes as possi-
ble. Widgets are developed as regular ASP.NET controls with support for post-
back. So, the core widget framework used by Dropthings, which you’ll read about
shortly, takes care of hosting the widget inside UpdatePanel to ensure all postbacks
are asynchronous.

Although you can use a site like Dropthings for quite a while without registering,
registration will save the pages permanently so that when you use a different com-
puter, you can log in and get the same pages with the same widget setup. The ASP.
NET membership and profile provider allows anonymous users to have a persistent
state but convert to a registered user after signup. The page and widget states are
stored in their own tables.

Object Model
The ASP.NET membership provider contributes the user and roles. If the user has
one or more pages, each page can contain one or more widget instances. The differ-
ence between a widget and widget instance is that a widget is like a class, whereas a
widget instance is an instance of that class. For example, the Flickr photo widget is a
widget that loads photos from Flickr. When a user adds the Flickr photo widget to
the page, it becomes an instance of the Flickr widget. Although the term widget is
used throughout this book, it will actually means an instance of a widget.

Figure 2-1 shows the entire object model.

Figure 2-1. The web portal object model consists of a User, its settings (UserSetting), and associated
pages (Pages). A Page can contain Widget instances, each of which is an instance of Widget.

User

UserSetting

Pages Widget
instances

Widget

Inherits

hashas

has

14 | Chapter 2: Architecting the Web Portal and Widgets

The object model starts with the user, which can have some settings and one or more
pages. Each page contains zero or more widget instances.

Application Components
Dropthings uses the Facade pattern to provide a single entry point to the business
layer. It provides access to internal subsystems, which deal with users, pages, wid-
gets, etc. The façade is named DashboardFacade (see Figure 2-2).

On the web layer, Default.aspx is the entry point. It uses DashboardFacade to perform
operations such as adding a new tab or widget, or storing a widget state.
DashboardFacade invokes different workflows for different operations. The workflows
do the real work and are developed using Windows Workflow Foundation (WF), as
explained in Chapter 4. Each workflow consists of one or more activities. Each activity
is like a class that performs some unit task. Activities use the DatabaseHelper and
DashboardDataContext classes to work with the database. DatabaseHelper is a class used
for performing common database operations. DashboardDataContext is generated by
LINQ to SQL and maps entities to database tables.

Data Model
To implement the data model used by the application, we use the ASP.NET mem-
bership provider’s default database tables—the aspnet_Users table contains all of the
user accounts. The schema has been extended with additional tables for other infor-
mation (see Figure 2-3).

Figure 2-2. Default.aspx calls DashboardFacade in the business layer for all operations, which, in
turn, uses workflows that work with databases via DatabaseHelper and DatabaseContext

Data access
layer

Database Helper Database Context

Business
layer

Dashboard Facade

Web
layer

Workflows

Default.aspx

Architecting the Web Portal and Widgets | 15

Some important details about the tables include:

• aspnet_Users is the default ASP.NET membership table. However, this table
contains only the anonymous user accounts. Registered user accounts are in
aspnet_membership table. They aren’t shown in Figure 2-3 because there’s no
relationship between aspnet_membership table and the tables.

• The Page table contains foreign key references on the aspnet_users table’s UserId
column.

• The Widget table contains the widget inventory or master list. It defines each
widget’s title and the location from where the widget is dynamically loaded. It
also defines the widgets created by default during a user’s first visit.

• The WidgetInstance table has the foreign key references on the PageId and
WidgetId columns, as well as the Page and Widget table’s ID columns, respectively.

• The UserSetting table has foreign key references on UserId column with aspnet_
users table’s UserId column.

Table 2-1 shows the table’s index plan and explanations.

Figure 2-3. The aspnet_Users table contains the users, while the rest of the tables are for the entities

Table 2-1. Index plan

Table Column Index type Why

Page UserID Nonclustered The user pages are loaded by WHERE UserID=<ID>.

Page ID Clustered During the page edit, the page is located by its ID, which is also the
PK.

16 | Chapter 2: Architecting the Web Portal and Widgets

Some common design guidelines for choosing the right index setup:

• A clustered index is used on fields that increase continuously, e.g., auto number
integer fields. Because SQL Server physically arranges rows in the database file
based on a clustered index field, if I choose some fields that do not continuously
increase, it will be rearrange too many pages during the INSERT and DELETE
steps.

• Foreign key fields are nonclustered index types because they are not added as
increasing values.

Solution Files
The Dropthings solution consists of an ASP.NET web project and four C# projects,
available for download at www.codeplex.com/dropthings.

Default.aspx
Controls the widgets on the Start page

WidgetService.asmx
Exposes some web service methods used to access widgets on the Start page

Proxy.asmx
Allows widgets to fetch content from external sources and other web controls
that make up different parts of the Start page

WidgetContainer.ascx
The generic widget frame that hosts a widget inside it and works as a bridge
between the core framework and the real widget

The widgets are stored inside the Widgets folder. Each widget is built as a web con-
trol, and all related resources like graphics, CSS, and JavaScript are placed inside
subfolders of the Widgets folder (see Figure 2-4).

Widget ID Clustered ID is the PK and referenced by WidgetInstance. When a widget
is added, it is located by its ID.

Widget IsDefault Nonclustered On the first visit, default widgets are automatically created on the
Start page. IsDefault determines which widgets are defaults.

WidgetInstance PageId Nonclustered Widget instances are loaded page by page.

WidgetInstance ID Clustered During a single widget instance update or delete, ID is used to iden-
tify the instance.

UserSetting UserId Clustered User setting is queried by UserId.

Table 2-1. Index plan (continued)

Table Column Index type Why

Architecting the Web Portal and Widgets | 17

Update Panels
UpdatePanels allow you to update any part of the Start page asynchronously and give
any web site an Ajax look-and-feel. However, UpdatePanels are a significant drag on
the page. The more UpdatePanels you have, the slower asynchronous postbacks
become due to the processing required to locate the page part for postback and re-
render. It becomes even more complicated when you put UpdatePanels inside of
UpdatePanels. So, it is important to carefully study the layout of the page before mak-
ing architecture decisions.

On Dropthings, the entire widget area is a good candidate for an UpdatePanel
because it needs to reload when a user switches tabs. Also, the page tabs themselves
(where new tabs are added and deleted) should also be considered for an UpdatePanel
because tab operations can happen without affecting the rest of the page. The Add
Stuff widget gallery containing the collection of widgets is also inside an UpdatePanel
so that it can asynchronously come and go (see Figure 2-5).

Putting the whole widget area inside one UpdatePanel will result in poor perfor-
mance when adding and removing widgets because that entire UpdatePanel needs to
be refreshed to reflect the current widgets on the page. This would require a large

Figure 2-4. The web project’s directory shows the files that make up the site

18 | Chapter 2: Architecting the Web Portal and Widgets

amount of HTML and JavaScript for all the widgets on the page to be delivered dur-
ing the asynchronous update. So, a better strategy is to put each column inside one
UpdatePanel. Any changes made on any column will require an asynchronous update
only on the UpdatePanel of that column, not the entire widget area (see Figure 2-6).

Figure 2-5. The Dropthings home page uses three UpdatePanels

Figure 2-6. Instead of using one UpdatePanel to hold the three widgets, use three UpdatePanels,
one for each column. When a widget is added or removed from one column, only the UpdatePanel
on that column is refreshed.

Tab bar update panel

Widget area
update panel

Widget gallery
update panel

Tab bar update panel

Column update panels

Widget gallery
update panel

Architecting the Web Portal and Widgets | 19

When you drag and drop a widget from one column to another, there is no need for an
UpdatePanel refresh because the UI is already up-to-date using JavaScript. You just need
to inform the server which widget has been moved. The server can also recalculate the
new position of all the widgets, just like the client does. So, there’s no asynchronous
postback on drag and drop; it’s only needed when a new widget is added or removed.

Drag-and-Drop Operations
There are two ways to implement drag-and-drop operations: free form and column-
wise. Protopage (www.protopage.com) is a site that uses free-form drag-and-drop
functionality, where you can drag widgets anywhere on the page. The positions of
the widgets are absolute positions. But Live.com, iGoogle, and Pageflakes follow
column-wise organization. This allows you to either reorder widgets vertically
within a column or drag a widget from one column to another. Column-wise organi-
zation maintains a clean setup of the page all the time because the widgets are nicely
ordered in columns. This approach is used by most web portals (see Figure 2-7).

To implement drag-and-drop behavior between multiple columns, the page is
divided into three columns where each column is an ASP.NET Panel control. Wid-
gets can be added to any of the Panels. The drag-and-drop functionality is provided
using a custom-made extender.

There are two types of drag behavior that need to be supported: reordering of wid-
gets on the same column and moving a widget from one column to another. If we
make each column a drop zone using the IDropTarget interface in the ASP.NET
AJAX framework, then each widget that is an IDragSource can easily be dropped on
the columns. The more challenging part is to make widgets switch position within the
same column, that is, to reorder them. For example, if you move a widget downward,

Figure 2-7. A page showing drag-and-drop behavior between columns and the drop cue that
indicates where the widget can be dropped

Dragged item

Drop cue

http://www.protopage.com

20 | Chapter 2: Architecting the Web Portal and Widgets

the widget that was below the dragged widget will jump up to fill the vacant place.
Similarly, if you drag one widget over another, the second widget needs to move
down and make enough space for the first widget to be dropped. These behaviors are
implemented as Extenders, so you can easily attach the Extender to a Panel, and it
will act like an IDropTarget and provide the reorder facility.

So, how do you send the position of the widgets asynchronously to the server after a
drag-and-drop operation completes? When you complete a drag-and-drop move, it is
reflected on the UI, but the server does not know what just happened. Any kind of
postback to inform the server of the position of the widget will create a disruptive
user experience because the whole page or column will refresh. The server needs to
be informed asynchronously behind the scenes so the user doesn’t notice the wid-
gets’ positions being transmitted to the server and saved after each drag and drop.
The second challenge is to provide this entire drag-and-drop functionality in the
form of one Extender. The Extender needs to hook onto the Column Panel and make it
a drop target, as well as connect to the widget’s drag handles, which allows widgets
to be moved to any drop target.

In the next section, you’ll see how to go about adding widgets and their containers to
the Start page.

Using a Widget Framework
Dropthings makes use of a widget framework that allows you to focus on providing
features that are relevant to the widget itself without worrying about authentication,
authorization, profile, personalization, or storage. Widgets get these functions from
the widget framework, or the core, shown in Figure 2-8.

Figure 2-8. Widgets are automatically authenticated, authorized, profiled, and personalized, and
they receive storage and utility libraries from the host, which allows you to easily add more
functionality to the web portal in the form of widgets. The core coordinates these services.

Core

Authentication
and

authorization
Profile

Persistence
and

storage
Utility libraries

Widget

Using a Widget Framework | 21

Moreover, you can build widgets independently of the host project. You don’t need
the whole web portal’s web application source code in your local development com-
puter to build widgets. All you have to do is create a regular ASP.NET 2.0 web site,
create a user control, make it do what it’s supposed to do in a regular postback
model (don’t worry about JavaScript), implement a little interface, and you are done!

You don’t have to worry about Ajax and JavaScript with the widget framework I
have created for Dropthings. The architecture allows you to use regular ASP.NET 2.0
controls, Ajax Control Toolkit controls (http://www.asp.net/ajax/ajaxcontroltoolkit/
samples), and any extender in ASP.NET AJAX. Full server-side programming sup-
port is also included, and you can use .NET 2.0, 3.0, or 3.5, as well as regular View-
State and store temporary states. ASP.NET Cache can be used to cache widget data.
This approach is far better than what you would find in any current web portal
where you have to build the whole widget using only JavaScript, abide by specific
API guidelines, and follow a strict “no postback” model (see Figure 2-8).

In the Dropthings widget framework, the core does authentication and authoriza-
tion using the ASP.NET membership provider. This allows the widgets to get the
current user’s profile when loading. The core also provides widgets with a data stor-
age service to persist their states, as well as the user’s actions, such as expanding or
collapsing a widget, moving, or deleting. The communication between the widget
and the core is done via a widget container. The widget container hosts the actual
widget and works as a middleman. The widget container knows which widget
instance it is hosting and provides it with services like persistence service or event
notification. A page hosts one or more widget containers, but each widget container
hosts only one widget inside it (see Figure 2-9).

Figure 2-9. A page contains a collection of widget containers where each widget container contains
one widget

Page

Widget

Widget container

Widget

Widget container

Widget

Widget container

Widget

Widget container

Ajax Control Toolkit
http://www.asp.net/ajax/ajaxcontroltoolkit/samples
http://www.asp.net/ajax/ajaxcontroltoolkit/samples

22 | Chapter 2: Architecting the Web Portal and Widgets

A widget’s code is straightforward, and just like a regular web control, you can do
stuff inside Page_Load. You can also get events raised from ASP.NET user controls.
Widgets are similar to SharePoint Web Parts, but one advantage over Web Parts is
that you can use ASP.NET user controls instead of custom controls. User controls
give you access to Visual Studio, which you don’t have with custom controls. You
can also make a widget in one .ascx file, which requires no compilation into DLL or
deploying that DLL to a server—just copy the .ascx file from the web folder and it is
ready to use.

For example, say you wanted a widget that shows photos, perhaps from Flickr. You
can write the widget as a user control and, in the control code, handle events the
usual way for a user control. The following bit of code displays the photos when the
control is loaded onto the page:

protected void Page_Load(object sender, EventArgs e)
{
 if(!base.IsPostBack)
 this.ShowPictures(0);
 else
 this.ShowPictures(PageIndex);
}

To give the widget LinkButton controls to move between photos, write event han-
dlers for the buttons to include navigation code, just as you would for any server-
based navigation:

protected void LinkButton1_Click(object sender, EventArgs e)
{
 if(this.PageIndex > 0) this.PageIndex --;
 this.ShowPictures(this.PageIndex);
}
protected void LinkButton2_Click(object sender, EventArgs e)
{
 this.PageIndex ++;
 this.ShowPictures(this.PageIndex);
}

The ASP.NET page cycle works the same as ordinary page processing. Inside the
widget, you can use any ASP.NET control and write code for its events.

The Container provides the widget’s container and frame, and defines a header and a
body area. The actual widget is loaded inside the body area at runtime by the widget
container. For each widget on the page, the core creates one widget container, and
then the widget container dynamically loads the real widget inside its body area. The
widget container is part of the framework and you only have to write it once (see
Figure 2-10). However, widget developers don’t have to write containers because
they write the actual widget.

Using a Widget Framework | 23

The widget container is a user control that is dynamically created on the page for
each widget instance while the page loads. The widget itself is also a user control that
is loaded dynamically by the widget container via Page.LoadControl("...").

The actual widget hosted inside the container is loaded inside an UpdatePanel con-
trol. So, no matter how many times the actual widget performs a postback, the wid-
get container does not perform a postback.

Designing the Widget Container
Designing a good widget container is a matter of finding the right combination of
UpdatePanels. It is a bit difficult to first decide the best distribution of ASP.NET con-
trols inside an UpdatePanel. Putting the whole widget container inside one
UpdatePanel works well enough, and there is only one UpdatePanel per widget con-
tainer, so the overhead is small. But a problem surfaces with the extenders that are
attached to the HTML elements inside UpdatePanel. When UpdatePanel refreshes, it
removes existing HTML elements rendered by ASP.NET controls and creates new
ones. As a result, all the extenders attached to the previous HTML elements are
destroyed, unless the extenders are also inside the UpdatePanel. Putting extenders
inside the UpdatePanel means that whenever an UpdatePanel control is refreshed, a
new instance of the extenders is created and initialized. This slows UI update after a
postback, noticeably so when working with widgets on the page.

You could separate the header and body areas into multiple UpdatePanels—one
UpdatePanel would host the header area and another would host the actual widget.
This would allow you to change something on the widget and refresh the body wid-
get, but not the header, so the extenders that are attached to the header (e.g., an
extender for drag and drop) are not lost. But this means that all the extenders
attached to the header controls must be inside the header UpdatePanel, which will

Figure 2-10. A widget container is an ASP.NET web control that has a header and a body part,
which is where the widget is loaded

Header

Body

24 | Chapter 2: Architecting the Web Portal and Widgets

affect performance. So, although separating header and body areas into multiple
extenders does provide some performance improvement, it isn’t as much as you need
(see Figure 2-11).

However, for even better performance, what if the header UpdatePanel didn’t con-
tain the whole header, just the title and header buttons? When the header
UpdatePanel refreshes (for example, when a user clicks a header button), the whole
header is not recreated, only the title and buttons that are inside the UpdatePanel
control are refreshed. This way, the drag-and-drop extender that attaches to the
header panel can be put outside the UpdatePanel (see Figure 2-12).

Figure 2-11. A widget container with two UpdatePanels, one for the header area and one for the
body area where the real widget is loaded

Figure 2-12. The final design of the widget container with some elements outside the UpdatePanel
control to optimize the performance of the widget

Widget container

Update panel

Header panel
Title

Update panel

Body panel

Widget

Widget container

Header panel

Update panel
Title

Update panel

Body panel

Widget

Using a Widget Framework | 25

The WidgetContainer implementation is quite simple. There is a header area that con-
tains the title and the expand/collapse/close buttons, and a body area where the
actual widget is hosted. In the Dropthings solution folder shown in Figure 2-4, the file
WidgetContainer.ascx contains the markup for WidgetContainer (see Example 2-1).

The whole widget container is inside a panel control named Widget. The first child is
the header panel, which includes the WidgetHeaderUpdatePanel and contains the con-
tent of the header area. Inside of that is the title of the widget, some buttons to

Example 2-1. The .ascx content for the WidgetContainer

<asp:Panel ID="Widget" CssClass="widget" runat="server">
<asp:Panel id="WidgetHeader" CssClass="widget_header" runat="server">

 <asp:UpdatePanel ID="WidgetHeaderUpdatePanel" runat="server"
 UpdateMode="Conditional">
 <ContentTemplate>
 <table class="widget_header_table" cellspacing="0"
 cellpadding="0">

 <tbody>
 <tr>
 <td class="widget_title"><asp:LinkButton ID="WidgetTitle"
 runat="Server" Text="Widget Title" /></td>
 <td class="widget_edit"><asp:LinkButton ID="EditWidget"
 runat="Server" Text="edit" OnClick="EditWidget_Click" /></td>
 <td class="widget_button"><asp:LinkButton ID="CollapseWidget"
 runat="Server" Text="" OnClick="CollapseWidget_Click"
 CssClass="widget_min widget_box" />

 <asp:LinkButton ID="ExpandWidget" runat="Server" Text=""
 CssClass="widget_max widget_box" OnClick="ExpandWidget_Click"/>
 </td>
 <td class="widget_button"><asp:LinkButton ID="CloseWidget"
 runat="Server" Text="" CssClass="widget_close widget_box"
 OnClick="CloseWidget_Click" /></td>
 </tr>
 </tbody>
 </table>
 </ContentTemplate>

 </asp:UpdatePanel>
 </asp:Panel>
 <asp:UpdatePanel ID="WidgetBodyUpdatePanel" runat="server"
 UpdateMode="Conditional" >
 <ContentTemplate><asp:Panel ID="WidgetBodyPanel" runat="Server">
 </asp:Panel>
</ContentTemplate>
 </asp:UpdatePanel>

</asp:Panel>
<cdd:CustomFloatingBehaviorExtender ID="WidgetFloatingBehavior"
DragHandleID="WidgetHeader" TargetControlID="Widget" runat="server" />

26 | Chapter 2: Architecting the Web Portal and Widgets

change the edit area, and buttons for expanding and collapsing the widget. The
WidgetBodyUpdatePanel, which hosts the real widget at runtime, is also included in
the header panel. The real widget is loaded by calling Page.LoadControl(...), and
then it’s added to the body panel. The CustomFloatingBehavior extender is also
included; it attaches to the widget header and makes the whole widget draggable.

Adding Widgets
A widget is made up of settings and body parts. The body part is always shown as
long as the widget is not minimized. The settings part is only shown when user clicks
the “edit” link on the widget header. The settings part stores customization options
for the widget. For example, with a Flickr photo widget, settings could include allow
the user to choose what type of photos to show, to enter tags, or to enter a user ID.
The settings area hides customization options from the UI until the user wants them,
but there can be as many choices as you like. The settings part can be made using a
regular ASP.NET Panel that contains all the elements for the customization area. By
default, the Panel is invisible, but the widget makes it visible when it is notified that a
user has clicked the “edit” link.

As noted earlier, widgets are created as ordinary web server controls. To integrate
widget functionality, implement the IWidget interface, which defines how the widget
container communicates with the widget (see Example 2-2).

The IWidget interface defines a way to inform the widget when to initialize the wid-
get area and restore its state. When a user clicks the “edit” link, ShowSettings
informs the widget to show the settings area. When a user clicks the maximize or
minimize links (the plus or minus icons), Maximized and Minimized functions are
called. The same happens when a user closes the widget—Closed is called and the
widget cleanups any information stored in database. These are all post-event callback
methods—actions the user has already performed and the widget reacts to.

Widgets are regular ASP.NET web controls with IWidget—a simple
interface implementation.

Example 2-2. IWidget interface

public interface IWidget
{
 void Init(IWidgetHost host);
 void ShowSettings();
 void HideSettings();
 void Minimized();
 void Maximized();
 void Closed();
}

Adding Widgets | 27

Widgets get references to an interface implementation named IWidgetHost via the
IWidget.Init method. This interface exposes methods to communicate with the con-
tainer as well as the services provided by the container. IWidgetHost allows the wid-
get to consume services provided by the framework, including authentication,
notification, and state persistence. For example:

public interface IWidgetHost
{
 void SaveState(string state);
 string GetState();
 void Maximize();
 void Minimize();
 void Close();
 bool IsFirstLoad { get; }
}

The various methods IWidgetHost uses are as follows:

SaveState
Stores arbitrary data as XML (or any other format), but because the data needs to
be serialized in a string format, XML is the preferred choice. Whatever is stored as
the state can be retrieved using the GetState method on the second-time load.

GetState
Gets the state that you stored using SaveState.

Maximize
Maximizes the widget and shows the widget body. It’s the same as a user click-
ing the “+” button, only the widget does it itself from code.

Minimize
Minimizes the widget and hides the body area. It’s the same as a user clicking
the “-” button, only the widget does it itself from code.

Close
Removes the widget from the page permanently.

IsFirstLoad
Determines whether it’s the first-time load on the page or if an asynchronous
postback is happening either on the widget or on some other widget.

The IWidget.Init method executes before the Page_Load method of the
web control. By having the reference to IWidgetHost earlier than Page_
Load, you can use it to determine whether it’s a postback or first-time
load.

The IsFirstLoad property is tricky. Think about what happens when a user clicks
some button on a widget and the widget goes through a postback. Basically the
whole page is instantiated again and all the widgets are loaded on the server side.
Because widgets are user controls, ASP.NET fires the Page_Load method of all the
widgets on the page. Now, the widgets need to know if it’s a postback or a first-time

28 | Chapter 2: Architecting the Web Portal and Widgets

load because the content is loaded from different sources. For example, for a first-
time load, the Flickr photo widget loads the photos directly from Flickr, but on post-
back it can get the photos from ViewState or some other cache. The IWidgetHost.
IsFirstLoad property tells the widget whether it is a first-time or postback load.

You might be wondering, why not use Page.IsPostback, which comes with ASP.NET?
It will surely tell whether it’s a postback or first visit to the page. The multi-tab nature
of the Ajax web portal redefines what a first-time load is because not all tabs are
loaded on the first visit; and widgets on a tab are loaded only when the tab is acti-
vated. Imagine a user switching tabs and loading a different set of widgets, but all of
the tabs are on the same ASP.NET page. So, when you click on a tab, it’s a regular
ASP.NET asynchronous postback to the ASP.NET page. Now you are loading the
widgets on the new tab, not on the old tab. If the widgets on the new tab call Page.
IsPostback, they will find it true because clicking on a tab is a regular postback for
ASP.NET. But for the widgets that are loading for the first time on the new tab, it’s
not a postback for them. They will fail when trying to read data from ViewState
because no ViewState exists for them yet. This means the user cannot use the regular
ASP.NET postback concept for the widgets. This is why the IWidgetHost differenti-
ates regular ASP.NET postback with our own definition of postback for Widgets.

Maximizing the First-Visit Experience
The most challenging part of a web portal is the first-visit experience. On first visit, a
new user gets a page that is set up with predefined widgets that are ready for further
customization (see Figure 2-13).

Figure 2-13. The first visit to a web portal requires setting up the user account, creating pages, and
populating with predefined widgets that user can further customize

Download
ASP.NET AJAX
Core Runtime

Download HTML of
the page and start
rendering widgets

Download additional
ASP.NET AJAX
runtime scripts

Download Extender
scripts, widgets scripts

Initialize drag and drop
and other client-side
behaviors

Client-side activities

Create anonymous
user account

Create default
pages

Create default
widgets on first
page

Pre-customize
the widgets

Render the pages
and widgets on
first page

Server-side activities

Maximizing the First-Visit Experience | 29

During a first-time visit, the page does the following before the user sees it:

• Creates a new user account using a ASP.NET 2.0 membership provider

• Creates a new profile using a ASP.NET 2.0 profile provider

• Creates new pages for the user

• Creates default widgets on the first page

• Sets up widgets with default data, e.g., shows the weather in the user’s city by
inferring the user’s location based on the IP address

• Renders the widgets and any associated client script

• Delivers the entire client framework to support the web portal functionality

The challenge here is to execute server-side tasks instantly so the server does not
have a noticeable delay before it starts to deliver the page content to the browser.
Once the response is delivered, the browser needs to download the Ajax framework,
widget scripts, graphics, CSS, etc., which takes a long time. To give the user per-
ceived fast speed, the server needs to deliver the content almost instantly and pro-
gressively download the rest while the user is looking at the content of the page.

Basically, during the first visit, the application needs to deliver almost every aspect of
the web portal, because you don’t know what user might do once the page becomes
functional. With Dropthings, users can use all the features of the application on the
first visit. For example, a user can drag widgets, add new pages, and organize the
content in pages, and then sign up to continue using the customized page. The user
does all of this from a single web page with absolutely zero postback and no naviga-
tion to other pages. If postback was allowed on the page or the page was broken into
multiple pages, then we could deliver only basic content and client-side features, like
drag and drop. The rest of the functionality would be delivered when the user does
something that makes a postback to the server or navigates to a different page.
Because postback or navigation to other pages is not allowed, if the entire client
framework is not ready by the time the user starts interacting with the page, there
will be JavaScript errors and actions will fail.

At the same time, you need to ensure that providing all these features on the first
visit does not slow down first-time loading of the page. Otherwise, the first visit
experience will be slow and the user will lose interest in the site. It’s a big challenge
to make the first visit as fast as possible for the user so she can use the site immedi-
ately without getting bored looking at the browser progress bar.

The following are some ideas on how you can avoid a slow first-visit experience:

• Send HTML of the page and scripts in parallel so that the user sees something is
happening on the page while the scripts and pictures download in the back-
ground. This increases the site’s perceived speed.

30 | Chapter 2: Architecting the Web Portal and Widgets

• Download the scripts in multiple steps. First, download the core Ajax runtime
and then render the UI. This way, the user sees that something is happening and
does not become impatient.

• Start downloading the other scripts that add additional features once the wid-
gets are rendered on the UI. For example, extenders can download after the con-
tent is rendered.

• Delay downloading scripts that aren’t immediately necessarily and download
those at a later stage. Generally, users don’t use features like drag and drop
right away, which allows you to delay scripts for dialog boxes, tool tips, and
animations.

• Combine multiple small scripts in one large script file. You could create one
JavaScript file for each particular functionality. For example, each ASP.NET
extender has one or more JavaScript files. Try to keep JavaScript files small and
introduce many small files in the web applications. The browser takes about 200
to 400 ms to reach the server and come back to the browser to download a file.
So, each script file can waste 200 to 400 ms, and if there are five scripts, then the
application spends one second on each network roundtrip. Now, add the total
download time for the files, and it could easily take 10 seconds for 5 large
scripts. So, you need to seriously think about (and test) how to optimize script
file size and reduce network roundtrips as much as possible. Ideally, you should
try to deliver only one large JavaScript file that combines all the smaller Java-
Script files that are essential for the web portal to be fully functional on first visit.

Rendering a Second-Visit Experience
The second visit is piece of cake. The user account is already available from a
browser cookie, which you get via the ASP.NET membership provider. All the Ajax
scripts are already in the browser’s cache. So, you just load existing pages and wid-
gets on the page and render the page to the browser (see Figure 2-14).

Here’s what the web portal does on the second visit:

Figure 2-14. On the second visit, the user account, pages, and widgets are already created so the
user page loads very fast

Load user page
including widgets

Render page
content

Download scripts
from browser’s
cache

Download Extender
scripts, widget scripts
from cache

Initialize drag and drop
and other client-side
behaviors

Server- and client-side activities

Improving ASP.NET AJAX Performance | 31

• Gets user from encrypted browser cookie via theASP.NET membership provider

• Loads user pages and creates tabs for each page

• Finds the current page

• Loads all widgets on the current page

• Allows widgets to load their previous state

• Renders the widgets and scripts

• Delivers the client-side framework (should be cached on browser already)

Because the client-side framework, widget scripts, and extender scripts are already
cached on the browser, the duration of a second-time visit is basically the time spent
on the server and the time the browser spends initializing scripts. However, in the
meantime, the browser cache might expire and the cached JavaScript can get lost. If
this happens, the browser will download the scripts again and the user will notice
some delay during the next visit.

Improving ASP.NET AJAX Performance
There are several ways to improve your ASP.NET AJAX performance.

Server-Side Rendering Versus Client-Side Rendering
The Ajax web portal can be rendered in two ways: from the server or from the client.
Server rendering means that the HTML on a page, along with all the widgets, is cre-
ated in server code, rendered by the server code, and delivered statically to browser.
So, the browser just renders the HTML, loads the JavaScript (or Ajax framework,
extenders, widget scripts, etc.), and initializes it. iGoogle is a good example of server-
side rendering.

In contrast, client rendering means the content of the widget is not sent along with
the page content. Once the scripts download and initialize, the page calls a web ser-
vice to get the content of the widgets and dynamically creates the widgets on the
page, one after another.

The advantages of server rendering include:

• Uses server-side technologies to their full potential. For example, it makes full
use of ASP.NET features.

• Renders and delivers entire page to the client in one shot. If the page does not
have too many widgets, the perceived speed is better than client-side rendering
approach.

• Shows the content and then downloads the Ajax runtime, core scripts, widget
scripts, etc., and initializes them later. Because the user sees the widgets before
the whole page is downloaded, she feels it is a fast-loading page.

32 | Chapter 2: Architecting the Web Portal and Widgets

The disadvantages of server-side rendering include:

• The page’s cache output is delivered every time the user visits the site because it
doesn’t know if the user has already changed the page on another computer or if
the page’s content has changed by other means.

• All widgets need to be developed mostly using server-side technology like ASP.
NET. You cannot have JavaScript-only widgets.

• If a widget does not follow the ASP.NET-style postback model, it will need a lot
of support from a client-side framework. For example, you will have to provide
support for features, such as expanding, collapsing, closing, and resizing, in the
client framework and make sure the server is kept in sync with such client-side
activities via web service calls.

The advantages of client-side rendering are:

• A server-side framework for widgets is not needed.

• Widgets can provide all functionality from the client side.

• Completely client-side web portals and widgets require zero postback, not even
any asynchronous postback, which improves responsiveness.

• The response can be cached via a web service call. Thus, the next time the user
comes back, the cached response is loaded from browser cache and rendered
very fast. Just as Default.aspx is rendered from the server on every visit, you can
easily decide whether to load page content from the cache or make a fresh call to
get fresh page content if it has changed between the visits.

But the disadvantages of client-side rendering include:

• Widgets are mostly developed with JavaScript so they are a lot more difficult to
develop than regular ASP.NET web controls.

• Too much JavaScript on the client side makes the browser slow unless the user
has a powerful computer.

• Browsers’ debugging support is still very poor compared to server-side debug-
ging support.

Runtime Size Analysis
ASP.NET AJAX has a pretty big runtime that consists of the core framework, scripts
for UpdatePanel, and a preview script that is required for drag-and-drop functional-
ity. Additionally, we need the Ajax Control Toolkit. These requirements total a stag-
gering 564 KB of download for 12 script references on the page. The download size
mostly depends on the usage of extenders and Ajax features, so moderately using an
extender creates the output in Figure 2-15.

Improving ASP.NET AJAX Performance | 33

To capture traffic and simulate slow Internet speed by throttling data transfer speed,
I used a tool called Charles (www.xk72.com/charles). From the durations, you can
see almost 20 seconds is spent on downloading the runtime over a 256 kbps line!
Surely this is unacceptable speed.

The following is an explanation of what each script in Figure 2-15 does. Entries start-
ing with /Dashboard/WebResource.axd or /Dashboard/ScriptResource.axd are Java-
Script and the following list details functions by the size of the file.

21.64 KB
Handy script for postbacks

83.38 KB
Microsoft Ajax core runtime

30.16 KB
UpdatePanel, partial update, asynchronous postback scripts

136.38 KB
Preview version of Ajax that allows drag-and-drop script

36.02 KB
The actual drag-and-drop script in Preview library

45.25 KB
Ajax Control Toolkit

4.08 KB
Timer script

140.86 KB
ACT animation framework

Figure 2-15. A 256 kbps Internet speed simulation shows, which files are downloaded on the first
visit to a site

http://www.xk72.com/charles

34 | Chapter 2: Architecting the Web Portal and Widgets

18.05 KB
ACT behavior base implementation, which is required for Ajax Control Toolkit
behaviors

16.48 KB
ACT animation behavior

7.32 KB
My custom drag-and-drop behavior

9.73 KB
My custom floating behavior

The total payload for the runtime only is too high—you cannot make a user wait 20
seconds just to download Ajax scripts before she can actually start interacting with
the page. So, to reduce the size of the download:

• Eliminate the preview version of Ajax completely and use ACT for drag-and-
drop functionality

• Use IIS 6 compression to deliver compressed scripts from the client

• Combine multiple script files into one file

ACT comes with its own DragDropManager, which is needed for drag-and-drop func-
tionality. You could use Sys.Preview.UI.DragDropManager, but the DragDropManager
alone adds nearly 180 KB of scripts for the entire preview library runtime.

By using ACT’s DrgaDropManager, you can get rid of the preview runtime and improve
response delay by seven seconds.

Without the preview scripts, the scripts downloaded are shown in Figure 2-16.

When IIS 6 compression is enabled, the situation improves dramatically as shown in
Figure 2-17.

Figure 2-16. The scripts loaded without the CTP version of ASP.NET AJAX, which saves about
180 KB

Improving ASP.NET AJAX Performance | 35

The total download comes down from 448 KB to 163 KB, which is a 64 percent
reduction!

The scripts are downloaded in two steps. First the core runtimes download, and then
ACT and other scripts download. The content is displayed after the core runtime is
downloaded. So, the time it takes to show content on the browser is reduced signifi-
cantly because only 50 KB is needed to download before something is visible on the
screen, compared to 130 KB in the noncompressed mode.

ScriptManager control has a LoadScriptsBeforeUI property that you can set to false to
postpone the download of several scripts after the content is downloaded. This adds
the script references to the end of the <body> tag. As a result, you see the content
first, and then the additional scripts, extenders, and ACT scripts:

<asp:ScriptManager ID="ScriptManager1" runat="server" EnablePartialRendering="true"
LoadScriptsBeforeUI="false" ScriptMode="Release">

You can explicitly set ScriptMode=Release to emit highly optimized Ajax runtime
scripts during local debugging to gauge their size on a production server.

Reducing Extenders and UpdatePanels to Improve Browser
Response
Because extenders are downloaded and initialized, the fewer you have, and the faster
the page will download and initialize. Each extender is initialized using a statement
such as the following from the output of Default.aspx:

Sys.Application.add_init(function() {
 $create(CustomDragDrop.CustomDragDropBehavior, {"DragItemClass":
"widget","DragItemHandleClass":"widget_header","DropCallbackFunction":
"WidgetDropped","DropCueID":"DropCue1","id":"CustomDragDropExtender1"}, null, null,
$get("LeftPanel"));
});

Here CustomDragDropBehavior is initialized. If the extender operates a lot during ini-
tialization, then browsers will get stuck, especially Internet Explorer 6. Sometimes

Figure 2-17. IIS compression dramatically decreases the download size of each script

36 | Chapter 2: Architecting the Web Portal and Widgets

IE 6 will freeze while several initializations are happening. To avoid this, you need to
avoid putting many extenders on widgets and yet somehow deliver a rich client-side
experience. You could load extenders on demand when they are needed, e.g., post-
pone the drag-and-drop initialization. Generally, a user looks at the page for a while
before interacting with it, so you could easily postpone the drag-and-drop initializa-
tion using a delay timer. Another idea is to create extenders programmatically
instead of putting them on the ASPX or ASCX code, which will group the initializa-
tion of extenders for a later time. So, instead of this:

<cdd:CustomFloatingBehaviorExtender ID="WidgetFloatingBehavior"
DragHandleID="WidgetHeader" TargetControlID="Widget" runat="server" />

You can force it to happen later once the page is fully loaded and the browser is free
for some heavy JavaScript operations:

var floatingBehavior = $create(CustomDragDrop.CustomFloatingBehavior,
{"DragHandleID":handleId, "id":behaviorId, "name": behaviorId}, {}, {}, child);

Comparing Debug Mode Versus Release Mode
During performance testing, make sure you turn off debug mode. If it is on, Ajax will
deliver debugged version of the scripts that are gigantic and full of debug statements.
They are so slow that you will hardly be able to drag-and-drop widgets on IE 6, even
on a dual-core machine. Once you switch to release mode, an optimized version of
the scripts is used, which is quite fast.

Adding Authentication and Authorization
Because it makes use of web services and asynchronous postbacks, a web portal is
faced with four challenges:

• Authenticating the caller and ensuring the caller is a legitimate user on all asyn-
chronous postback and web service calls.

• Authorizing calls to web services and asynchronous postbacks. Making sure the
caller has the right to make that call.

• Preventing flooding. Making sure the caller cannot continuously call the service
and flood the system.

• Preventing bots from hitting Default.aspx.

Web portals treat anonymous users the same way as a registered user. Although you
might want to disable some features for anonymous users and make them available
only to registered users, the main reason for registering is to save the pages perma-
nently because anonymous cookies can get lost. Almost all web services can be
called by any user except a user profile-related service, such as changing a user
email address.

Adding Authentication and Authorization | 37

Although it sounds like security would be easier with web portal architectures, it is
actually more complicated. For security purposes, you need to make sure each and
every web service call is made on the caller’s pages or widgets. For example, when
deleting a widget from a page, you need to verify that the widget belongs to one of
the user’s pages that just made the call. If it isn’t, then it’s definitely a hacking
attempt. Similarly, when you remove a page, you need to make sure that it belongs
to that user and not someone else. This is a big performance concern because such
checks always require database calls. If you had a registration-only site or an intra-
net-only site, you could skip these checks because you trust registered users more
than anonymous users. But, since you have to support anonymous users, you can-
not leave any web service method call unchecked. For example, when checking for a
widget, you need to get the containing page of the widget and make sure it belongs
to the user making the call. Once you are satisfied that the call is legitimate, you can
update the widget’s position. If you don’t do this, anyone can run a program and call
the service by passing an arbitrary widget ID and change other users’ page setups.

Flood attempts are another problem. Anyone can continuously call “create a new
widget” to the web service and flood the widget database with garbage widgets and
thus make the database large and slow. So, you need to implement a quota on web
service calls, e.g., a maximum of 100 calls per minute, 100 widgets per page, or 10
registrations per IP per day, etc.

Web service calls can be flooded with automated calls. DoS attempts
can render the system nonresponsive to valid web requests.

The fourth problem is related to repeated page hits. Imagine hitting a web portal
with cookies disabled. Every hit would be a first-time visit, which would force the
web portal to generate a new user, create pages, and populate the page with widgets,
which would create high database activity and enlarge database tables. So, you need
to make sure no one is flooding your system by hitting the Default.aspx continu-
ously. Also, you need to:

• Isolate bots and web crawlers

• Deliver different results from Default.aspx when a bot visits the site

• Prevent ASP.NET from creating a new anonymous user

• Create a maximum limit of cookieless hits to a page from the same IP

This last point is important, for example, an IP like 192.168.1.1 can only hit Default.
aspx 50 times an hour. But you can’t just set this to a very low value because several
users using a proxy server will show the same IP. So, the challenge is to select a thresh-
old value that does not bring down your server but also does not limit users using
proxy servers. DoS attacks and prevention are covered in detail in the next section.

38 | Chapter 2: Architecting the Web Portal and Widgets

Preventing Denial-of-Service Attacks
Web services are the most attractive target for hackers because even an unsophisti-
cated hacker can bring down a server by repeatedly calling a web service. Ajax web
portals are a good target for such DoS attacks because if you just visit the home page
repeatedly without preserving a cookie, every hit is producing a new user, a new page
setup, and new widgets.

You can try this yourself with a simple code like this:

for(int i = 0; i < 100000; i ++)
{
 WebClient client = new WebClient();
 client.DownloadString("http://www.dropthings.com/default.aspx");
}

To your great surprise, you will notice that after a couple of calls, you will simply get
no response. It’s not that you brought down the server, but that your requests are
being rejected. You no longer get any service, thus you achieve denial of service (for
yourself), and the site is happy to deny you of service (DYoS).

A simple trick to remember how many requests are coming from a particular IP is to
record a caller’s IP in the ASP.NET cache and count the requests per IP. When the
count exceeds a predefined limit, reject further requests for a specific duration, say
10 minutes. After 10 minutes, allow requests from that IP again.

The ActionValidator class maintains a count of specific actions such as first visit,
revisit, asynchronous postbacks, adding a new widget, adding a new page, etc. It
checks whether the count for a specific IP exceeds the threshold value or not. The
following code shows the enumeration that contains the type of actions to check for
and their threshold value for a specific duration, which is 10 minutes:

public static class ActionValidator
{
 private const int DURATION = 10; // 10 min period

 public enum ActionTypeEnum
 {
 FirstVisit = 100, // The most expensive one, choose the value wisely
 ReVisit = 1000, // Welcome to revisit as many times as the user likes
 Postback = 5000, // Not much of a problem
 AddNewWidget = 100,
 AddNewPage = 100,
 }

A static method named IsValid does the check. It returns true if the request limit is
not passed and false if the request needs to be denied. Once you return false, you can
call Request.End() and prevent ASP.NET from proceeding further. You can also
switch to a page that shows something like “Congratulations! You have succeeded in
a denial-of-service attack (for you).”

Preventing Denial-of-Service Attacks | 39

public static bool IsValid(ActionTypeEnum actionType)
 {
 HttpContext context = HttpContext.Current;
 if(context.Request.Browser.Crawler) return false;

 string key = actionType.ToString() + context.Request.UserHostAddress;

 var hit = (HitInfo)(context.Cache[key] ?? new HitInfo());

 if(hit.Hits > (int)actionType) return false;
 else hit.Hits ++;

 if(hit.Hits == 1)
 context.Cache.Add(key, hit, null, DateTime.Now.AddMinutes(DURATION),
 System.Web.Caching.Cache.NoSlidingExpiration, System.Web.Caching.
 CacheItemPriority.Normal, null);

 return true;
 }

The cache key is built with a combination of action types and client IP addresses. It
first checks if there’s any entry in the cache for the action and the client IP. If not,
start the count and remember it for the IP cache for the specific duration. The abso-
lute expiration on a cache item ensures that after the duration, the cache item will be
cleared and the count will restart. When there’s already an entry in the cache, it will
get the last hit count and check if the limit has been exceeded. If not, then the
counter will be increased. There is no need to store the updated value in the cache
again by calling Cache[url]=hit; because the hit object is determined by reference, it
is changed in the cache every time as well. In fact, if you put it in the cache again, the
cache expiration counter will restart and fail the logic of restarting count after spe-
cific duration.

The usage is very simple:

protected override void OnInit(EventArgs e)
{
 base.OnInit(e);

 // Check if revisit is valid or not
 if(!base.IsPostBack)
 {
 // Block cookie less visit attempts
 if(Profile.IsFirstVisit)
 {
 if(!ActionValidator.IsValid(ActionValidator.ActionTypeEnum.FirstVisit))
Response.End();
 }
 else
 {
 if(!ActionValidator.IsValid(ActionValidator.ActionTypeEnum.ReVisit))
Response.End();
 }
 }

40 | Chapter 2: Architecting the Web Portal and Widgets

 else
 {
 // Limit number of postbacks
 if(!ActionValidator.IsValid(ActionValidator.ActionTypeEnum.Postback)) Response.
End();
 }
}

Of course you can put in a Cisco firewall and you get a guarantee from your hosting
provider that its entire network is immune to DoS and distributed DoS (DDoS)
attacks. But what they guarantee is protection against a network-level attack, such as
TCP SYN attacks or malformed packet floods. There is no way your hosting pro-
vider can analyze the packet to find out if a particular IP is trying to load the site too
many times without supporting cookies or adding too many widgets. These are
application-level DoS attacks that cannot be prevented with hardware, operating sys-
tems, or firewalls, and must be implemented in your own code.

There are very few web sites that take such precautions against application-level DoS
attacks. Therefore, it’s quite easy to make servers go mad by writing a simple loop
and hitting expensive pages or web services continuously from your home broad-
band connection.

Summary
In this chapter you learned the basics of the web portal architecture used to build
Dropthings, which encapsulates most of the client functionality that makes it easy
for developers to create widgets that plug into a web portal. In particular, you’ve
seen how use of a widget framework greatly facilitates their development and
deployment.

It can be quite challenging to provide a rich client-side experience in a web portal;
the biggest challenge is the first visit, where huge scripts must be downloaded. A web
portal is also vulnerable to certain security risks, so you must implement mitigations
that prevent them. Now that you know about the architectural challenges, let’s use
ASP.NET AJAX to build the web layer in the next chapter.

41

Chapter 3 CHAPTER 3

Building the Web Layer Using
ASP.NET AJAX3

The biggest challenge you’ll face developing an Ajax web portal is providing almost
all of your web application’s functionality on a single page. A web portal is all about
aggregating many services in one place. It’s a never-ending challenge to have as many
features on one page as possible yet keep them small, simple, and fast. So, the
Default.aspx is the most complicated of all the pages in your application because it
does everything from loading Ajax frameworks to serving the widgets on the page.
Sometimes it is the only page users will see during their entire stay on the web site.

In this chapter, you will learn to code the Start page Default.aspx, the widget container,
and the IWidget and IWidgetHost interfaces. Then you will put it all together and build a
Flickr photo widget and a RSS widget. Finally, you will use ASP.NET 2.0 Membership
and Profile providers to implement authentication, authorization, and profiles.

Implementing the Start Page of a Web Portal
The Default.aspx page in this web project is the Start page of the Ajax web portal.
(see Figure 3-1).

It contains the following:

• The header which shows a search box

• The Add Stuff area where users can add more widgets

• The tab bar

• The columns

• The footer

The Default.aspx page starts with regular ASP.NET page syntax (see Example 3-1).

42 | Chapter 3: Building the Web Layer Using ASP.NET AJAX

The code block in Example 3-1 does the following:

• Registers the WidgetContainer control, which is the web control for the widget
container.

• Adds a reference to the CustomDragDrop assembly, which contains the
CustomDragDropExtender and the CustomFloatingBehavior.

• Turns off all caching because the page must be downloaded from the server
every time a user visits. If the page is cached, then users will not see the latest
content in widgets after making changes on the page.

• Registers the header and footer web controls.

Figure 3-1. The Default.aspx page contains almost everything in the Start page

Example 3-1. Default.aspx, part 1: Declarations of external components

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default.aspx.cs" Inherits="_
Default" Theme="Default" EnableSessionState="False" %>
<%@ OutputCache Location="None" NoStore="true" %>
<%@ Register Src="Header.ascx" TagName="Header" TagPrefix="uc1" %>
<%@ Register Src="Footer.ascx" TagName="Footer" TagPrefix="uc2" %>
<%@ Register Assembly="AjaxControlToolkit" Namespace="AjaxControlToolkit"
TagPrefix="ajaxToolkit" %>
<%@ Register Assembly="CustomDragDrop" Namespace="CustomDragDrop" TagPrefix="cdd" %>
<%@ Register Src="WidgetContainer.ascx" TagName="WidgetContainer" TagPrefix="widget" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>Ajax Web Portal</title>

Header area

Add stuff area

Tab bar

Widget area

Implementing the Start Page of a Web Portal | 43

Real-Life Example: When Caching Works Against You

Problem: Caching the Default.aspx page on the user’s browser made site fail to work.

Solution: Turn off caching from Default.aspx and serve it directly from the server.

At Pageflakes, we used to cache the Default.aspx page on the user’s browser. But we
began receiving complaints that after the page loaded from the browser’s cache, user
actions—like clicking a button on a widget or adding a new widget—always failed.
We tried our best to locate the problem but could never produce it.

Sometime after this, I was in the U.S. to attend Microsoft’s MIX06. While I was at
the hotel and using the hotel’s Internet connection, I encountered the problem
myself. Pageflakes was my browser homepage, and it loaded as soon as I started the
browser for the first time. But when I tried to use the site, all XML HTTP calls failed.
If I did a hard refresh, everything worked fine. After using the Fiddler Tool for a bit,
which shows all HTTP requests and responses, I found that hotel had an intermedi-
ate Welcome page that loaded when you accessed the Internet for the first time to
make sure the user is legitimate. As the Default.aspx page was coming from the
cache, there was no request sent to the server and thus the hotel Internet provider
could not validate who was using the Internet. So, all XML HTTP calls trying to
reach the server were redirected to the Welcome page and failed. The same problem
happened when I tried to access Pageflakes from Starbucks or from airport Wi-Fi
zones. So, we turned off caching from Default.aspx and instead made sure that it was
always served from our server and the problem disappeared. We stopped receiving
complaints too.

The Header Area
The header area displays the logo, the search bars for Live.com and Google, and the
Login link. After the header area, there’s a script block that contains some client-side
scripts that I will explain later on. These scripts are used to provide some client-side
behaviors like calling a web service when dragging and dropping, showing/hiding ele-
ments, and so on.

Example 3-2 shows the start of the <body> tag in Default.aspx.

Example 3-2. Default.aspx, part 2: HTML snippet for the header part

<body>
 <form id="form1" runat="server">

 <!-- Render header first so that user can start typing search criteria while the
 huge runtime and other scripts download -->
 <uc1:Header ID="Header1" runat="server" />

44 | Chapter 3: Building the Web Layer Using ASP.NET AJAX

Browsers render HTML top to bottom. Put HTML elements before
script blocks so that browser can render the HTML block before it
starts downloading scripts.

The header control is put before the ScriptManager block. This makes the header emit
its HTML right after the body tag. Because browsers render top to bottom, putting the
HTML block for the search bar at the top of the page will help the browser render the
search bar as soon as the user visits the site. Users typically launch their browsers many
times a day for the sole purpose of web searching, so they need to be able to get to the
search bar as soon as possible. Otherwise, they will by-pass your page. The HTML
block in Example 3-2 gives us the Google and Live.com search bars (see Figure 3-2).

The Live Search box is pretty cool. It shows the search result in a pop-up right on the
page as shown in Figure 3-3.

The HTML snippet shown in Example 3-3 downloads the necessary components for
providing the Live.com search functionality right on the page. Just put the snippet
anywhere on the page and you have search functionality in that exact spot. Best of
all, you don’t need to register on the Live.com web site to get code snippets nor do
you need to make web service calls to get search result. Both the UI and the function-
ality is provided inside the snippet.

 <div id="body">

 <asp:ScriptManager ID="ScriptManager1" runat="server"
 EnablePartialRendering="true" LoadScriptsBeforeUI="false" ScriptMode="Release">
 <Services>

<asp:ServiceReference InlineScript="true" Path="WidgetService.asmx" />
 </Services>
 </asp:ScriptManager>

Figure 3-2. The header needs to be rendered as soon as possible because it contains the search bar,
which is usually one of the first tools used

Example 3-2. Default.aspx, part 2: HTML snippet for the header part (continued)

Implementing the Start Page of a Web Portal | 45

Figure 3-3. Live.com search shows the results on a popup DIV right on the page, which is very
handy for web portals because users can stay on the page and see search results

Example 3-3. HTML snippet for adding Live.com search bar on any page

<div id="WLSearchBoxDiv" style="width:325px;">
 <table cellpadding="0px" cellspacing="0px">
 <tr id="WLSearchBoxPlaceholder">
 <td style="white-space:nowrap; color: White; padding-right: 5px; font-size
 12pt">Live Search</td>
 <td style="border-style:solid none solid solid;border-color:#4B7B9F;border
 width:2px;">
 <input id="WLSearchBoxInput" type="text" value="loading..." disabled="disabled"
 style="background-image:url(http://search.live.com/s/siteowner/searchbox_
 background.png);background-position-x:right;background-position-y:50;background-r
 epeat:no-repeat;height:16px;width:293px;border:none 0px #FFFFFF;"/>
 </td>
 <td style="border-style:solid;border-color:#4B7B9F;border-width:2px;">
 <input id="WLSearchBoxButton" type="image" src="http://search.live.com/s/
 siteowner/searchbutton_normal.PNG" align="absBottom" style="border-style:
 none"/>
 </td>
 </tr>
</table>

46 | Chapter 3: Building the Web Layer Using ASP.NET AJAX

Add Stuff Area: The Widget Gallery
This pop-up area appears when the user clicks on the Add Stuff link. This widget gal-
lery showcases all the available widgets. Users can choose which widget to add to the
page from this area. It renders a five-column view of widgets as shown in Figure 3-4.

The Add Stuff area is inside a single UpdatePanel control that contains buttons for
adding and hiding widgets, plus the collection (list) of available widgets. The
UpdatePanel control makes sure that user actions, such as adding a widget, happen
asynchronously, without any postbacks (see Example 3-4).

<script type="text/javascript" charset="utf-8">
 var WLSearchBoxConfiguration=
 {
 "global":{
 "serverDNS":"search.live.com"
 },
 "appearance":{
 "autoHideTopControl":false,
 "width":600,
 "height":400
 },
 "scopes":[
 {
 "type":"web",
 "caption":"Web",
 "searchParam":""
 }
]
 }
</script>
<script language="javascript" defer="defer" src="http://search.live.com/bootstrap.
js?ServId=SearchBox&ServId=SearchBoxWeb&Callback=WLSearchBoxScriptReady"></script>
</div>

Figure 3-4. Add Stuff area shows where all the widgets in the database are available

Example 3-3. HTML snippet for adding Live.com search bar on any page (continued)

Implementing the Start Page of a Web Portal | 47

The update panel contains the Add Stuff and Hide Stuff link buttons. They toggle on
the user’s click. When the user clicks the Add Stuff link, the widget collection is
loaded and displayed inside a panel named AddContentPanel. The HTML markup of
AddContentPanel is shown in Example 3-5.

Example 3-4. Default.aspx, part 3(a): HTML snippet for the add stuff area (partial)

<asp:UpdatePanel
 ID="AddContentUpdatePanel"
 runat="server"
 UpdateMode="conditional">

 <ContentTemplate>
 <asp:LinkButton
 ID="ShowAddContentPanel"
 runat="server"
 Text="Add stuff »"
 CssClass="add_stuff_toggle"
 OnClick="ShowAddContentPanel_Click"/>

 <asp:LinkButton
 ID="HideAddContentPanel"
 runat="server"
 Text="Hide Stuff"
 CssClass="add_stuff_toggle"
 Visible="false"
 OnClick="HideAddContentPanel_Click" />

Example 3-5. Default.aspx, part 3(b): AddContentPanel HTML snippet

<asp:Panel ID="AddContentPanel" runat="Server"
 Visible="false"
 CssClass="widget_showcase" >
 <div style="float:left">
 Click on any of the item to add it to your page.
 </div>
 <div style="float:right">
 <asp:LinkButton ID="WidgetListPreviousLinkButton" runat="server"
 Visible="false"
 Text="< Previous"
 OnClick="WidgetListPreviousLinkButton_Click" />
 |
 <asp:LinkButton ID="WidgetListNextButton" runat="server"
 Visible="false"
 Text="Next >"
 OnClick="WidgetListNextButton_Click" />
 </div>

 <asp:DataList ID="WidgetDataList" runat="server"
 RepeatDirection="Vertical"
 RepeatColumns="5"
 RepeatLayout="Table"

48 | Chapter 3: Building the Web Layer Using ASP.NET AJAX

The AddContentPanel appears when the user clicks the Add Stuff link. Inside, the
DataList named WidgetDataList is bound to the widget collection in the database at
runtime from the code. The Add Stuff area fades in when a user clicks the Add Stuff
link. An AnimationExtender runs the fade-in and fade-out effect (see Example 3-6).

The widget list is loaded by the LoadAddStuff function in Default.aspx.cs. The func-
tion just binds a list of widgets to the DataList control, and the rendering is done via
simple data binding (see Example 3-7).

 CellPadding="3"
 CellSpacing="3"
 EnableViewState="False"
 ShowFooter="False"
 ShowHeader="False">
 <ItemTemplate>
 <asp:Image ID="Icon" runat="server"
 ImageUrl='<%# Eval("Icon") %>'
 ImageAlign="AbsMiddle" />
 <asp:LinkButton ID="AddWidget" runat="server"
 CommandArgument='<%# Eval("ID") %>'
 CommandName="AddWidget" >
 <%# Eval("Name") %>
 </asp:LinkButton>
 </ItemTemplate>
 </asp:DataList>
</asp:Panel>

Example 3-6. Default.aspx, part 3(c): The AnimationExtender fades in and out in the Add Stuff area

 <ajaxToolkit:AnimationExtender ID="AddContentPanelAnimation" runat="server"
 TargetControlID="AddContentPanel">
 <Animations>
 <OnLoad>
 <FadeIn minimumOpacity=".2" />
 </OnLoad>
 </Animations>
 </ajaxToolkit:AnimationExtender>
 </ContentTemplate>
</asp:UpdatePanel>

Example 3-7. Default.aspx.cs: LoadAddStuff function

private void LoadAddStuff()
 {
 this.WidgetDataList.ItemCommand += new DataListCommandEventHandler(WidgetDataList_
 ItemCommand);

 var itemsToShow = WidgetList.Skip(AddStuffPageIndex*30).Take(30);
 this.WidgetDataList.DataSource = itemsToShow;
 this.WidgetDataList.DataBind();

 // Enable/Disable paging buttons based on paging index

Example 3-5. Default.aspx, part 3(b): AddContentPanel HTML snippet (continued)

Implementing the Start Page of a Web Portal | 49

Inside the LoadAddStuff function, you will load the widget list from the database.
List<Widget> WidgetList is a private variable that loads all the widgets from the data-
base only once and then stores in the cache. Example 3-8 uses the DashboardFacade to
load the widget list.

WidgetList returns all the widgets defined in the widget table. You can’t show all the
widgets at once on the data list, so you need to do paging on the WidgetList collec-
tion. Paging can be done by using two new function extensions—Skip and Take—
that were introduced in LINQ. LINQ adds these two functions on all lists so you can
easily do paging on any List<> instance. In the LoadAddStuff function, Skip skips 30
widgets per page and Take takes 30 widgets from the current page. The result after
Skip and Take is another generic List<T> of widgets of type List<Widget>, which
always contains 30 or fewer items.

When a user clicks on any of the widget links on the widget list, a new instance of
the widget is added on the first column of the page. This is handled in the
ItemCommand event of the WidgetDataList as shown in Example 3-9.

 WidgetListPreviousLinkButton.Visible = AddStuffPageIndex > 0;
 WidgetListNextButton.Visible = AddStuffPageIndex*30+30 < WidgetList.Count;
 }

Example 3-8. Loading WidgetList once and cache it for the lifetime of the application

private List<Widget> WidgetList
{
 get
 {
 List<Widget> widgets = Cache["Widgets"] as List<Widget>;
 if(null == widgets)
 {
 widgets = new DashboardFacade(Profile.UserName).GetWidgetList();
 Cache["Widgets"] = widgets;
 }

 return widgets;
 }
}

Example 3-9. Creating new widget when user clicks on a widget from the widget list

void WidgetDataList_ItemCommand(object source, DataListCommandEventArgs e)
{
 int widgetId = int.Parse(e.CommandArgument.ToString());

 DashboardFacade facade = new DashboardFacade(Profile.UserName);
 WidgetInstance newWidget = facade.AddWidget(widgetId);

 ...
 ...
}

Example 3-7. Default.aspx.cs: LoadAddStuff function (continued)

50 | Chapter 3: Building the Web Layer Using ASP.NET AJAX

The Tab Bar
The tab area shown in Figure 3-5 is inside an UpdatePanel because you want the user
to add, edit, and delete tabs without refreshing the page. Actions like adding a new
tab or editing a tab title do not require the widget area to be refreshed. However,
when the user switches tabs by clicking on another tab, both the tab bar and the wid-
get area refresh to show the new widgets on the new tab.

The HTML snippet for the tab bar is shown in Example 3-10.

The tabs are generated at runtime inside the named tabs. Each tab is repre-
sented by one tag containing one LinkButton for the Tab title. Example 3-11
shows how the tab bar is generated from the user’s Page collection.

Figure 3-5. Each tab represents a virtual page where the user can put more widgets

Example 3-10. Default.aspx, part 4: HTML snippet for the tab bar

<asp:UpdatePanel ID="TabUpdatePanel" runat="server"
 UpdateMode="conditional">
 <ContentTemplate>
 <div id="tabs">
 <ul class="tabs" runat="server" id="tabList">
 <li class="tab inactivetab">
 <asp:LinkButton id="Page1Tab" runat="server"
 Text="Page 1">
 </asp:LinkButton>

 <li class="tab activetab">
 <asp:LinkButton id="Page2Tab" runat="server"
 Text="Page 2">
 </asp:LinkButton>

 </div>
 </ContentTemplate>
</asp:UpdatePanel>

Example 3-11. Creating tabs dynamically

 private void SetupTabs()
 {
 tabList.Controls.Clear();

 var setup = _Setup;
 var currentPage = setup.CurrentPage;

Implementing the Start Page of a Web Portal | 51

You create one inside the for each page. You will notice that I have marked
the tag as runat="server", which means the tag is now a server control and
is available from behind the code. There are two types of created, one for the
active tab (current page) and one for inactive tabs (other pages). Each contains
one LinkButton that acts as a clickable tab title. When you click the title of the active
tab, it allows you to change the tab title. But when you click on an inactive tab, it just
switches to that tab and loads the widgets on that page.

At the end of the tab bar, there’s a “new tab” link that adds one new Page object to
the user’s Page collection. The new page is represented as a new tab on the tab bar.
The “new tab” link is a dynamically created LinkButton, as shown in Example 3-12.

When the user clicks on the Add New Tab link, he creates a new Page object with
the default setting, makes the new page a current page, reloads the tab bar, and
refreshes columns to show the widgets on the new page. The click handler is defined
in Example 3-13.

 foreach(Page page in setup.Pages)
 {
 var li = new HtmlGenericControl("li");
 li.ID = "Tab" + page.ID.ToString();
 li.Attributes["class"] = "tab " + (page.ID == currentPage.ID ? "activetab" :
 "inactivetab");

 var linkButton = new LinkButton();
 linkButton.ID = page.ID.ToString();
 linkButton.Text = page.Title;
 linkButton.CommandName = "ChangePage";
 linkButton.CommandArgument = page.ID.ToString();

 if(page.ID == currentPage.ID)
 linkButton.Click += new EventHandler(PageTitleEditMode_Click);
 else
 linkButton.Click += new EventHandler(PageLinkButton_Click);

 li.Controls.Add(linkButton);
 tabList.Controls.Add(li);
 }

Example 3-12. Creating a Add New Tab button, which adds a new tab on the tab bar and creates a
brand new page for user

 var addNewTabLinkButton = new LinkButton();
 addNewTabLinkButton.ID = "AddNewPage";
 addNewTabLinkButton.Text = "new tab";
 addNewTabLinkButton.Click += new EventHandler(addNewTabLinkButton_Click);
 var li2 = new HtmlGenericControl("li");
 li2.Attributes["class"] = "newtab";
 li2.Controls.Add(addNewTabLinkButton);
 tabList.Controls.Add(li2);

Example 3-11. Creating tabs dynamically (continued)

52 | Chapter 3: Building the Web Layer Using ASP.NET AJAX

The ReloadPage function loads the widgets on the current page. A lambda expres-
sion—wi => true—is used here. The details of the ReloadPage function are explained
later in this chapter. But basically, it informs the function that all the widgets on this
page will have the FirstVisit flag set to true. This means the widgets will not see
that this is a postback, but instead see it as a first visit. Remember, widgets use
IWidgetHost.IsPostback to determine whether it’s a postback or a first visit. Because
tab switching is like a first visit for the widgets on the new tab, you need to tell all
widgets that it’s a first visit, not a postback. This makes IWidgetHost.IsPostback
return false. Details about how tab switching works and how widgets know whether
they should assume that the visit is postback or nonpostback are explained in the
upcoming section “Page Switching: Simulating a Nonpostback Experience.”

When a user clicks on an inactive tab, it changes to active. The widgets on that page
appear on the columns. The new page becomes the user’s current page. So, when the
user comes back to the site, he is taken to the last active tab, not the first tab. The
user’s last active tab is stored in a UserSetting table. The click handler for inactive
tabs is defined in Example 3-14. All inactive tabs call the same event handler.

Example 3-13. Handling click on “Add New Tab” link and creating new page for user

 void addNewTabLinkButton_Click(object sender, EventArgs e)
 {
 new DashboardFacade(Profile.UserName).AddNewPage();

 this.ReloadPage(wi => true);

 this.RefreshAllColumns();
 }

Example 3-14. The click handler on the inactive tab makes the tab active when clicked

 void PageLinkButton_Click(object sender, EventArgs e)
 {
 var linkButton = sender as LinkButton;

 // Get the page ID from the title link button ID
 var pageId = int.Parse(linkButton.ID);

 if(_Setup.UserSetting.CurrentPageId != pageId)
 {
 DatabaseHelper.Update<UserSetting>(_Setup.UserSetting, delegate(UserSetting
 u)
 {
 u.CurrentPageId = pageId;
 });
...

 }
 }

Implementing the Start Page of a Web Portal | 53

The user can edit a tab title by clicking on the active tab title. When a user clicks on
the title LinkButton, it replaces itself with a text box and a “save” button as shown in
Figure 3-6.

The click on the tab is handled by PageTitleEditMode_Click, the server-side event
handler, which replaces the title LinkButton with one TextBox and a Button. The
event handler is defined in Example 3-15.

Because these two controls are created dynamically, they must have a fixed ID. Other-
wise they will fail to postback.

Notice that there’s no click handler for the saveButton in Example 3-15. So, how
does the changed page title get saved? If you use the standard click handler and
server-side event approach of ASP.NET, you have to do the following:

• Remember which page is being edited in ViewState

• Render the tabs in SetupTabs function

— Check to see if the tab is being edited before creating a tab

Figure 3-6. When a user clicks on the My First Page tab, it switches to Edit Mode and allows the
user to change the tab title

Example 3-15. The event handler when the user switchs to edit mode on a tab

 void PageTitleEditMode_Click(object sender, EventArgs e)
 {
 var linkButton = sender as LinkButton;

 var editTextBox = new TextBox();
 editTextBox.ID = "PageNameEditTextBox";
 editTextBox.Text = linkButton.Text;

 var saveButton = new Button();
 saveButton.Text = "Save";

 linkButton.Parent.Controls.Add(editTextBox);
 linkButton.Parent.Controls.Add(saveButton);
 linkButton.Parent.Controls.Remove(linkButton);
 }

54 | Chapter 3: Building the Web Layer Using ASP.NET AJAX

— Render the LinkButton for the title, instead of rendering a text box and a
save button

— Hook the click handler on the button

This was too much effort. So, let’s try a quick hack. Whenever there’s a postback,
you can access the posted controls’ values directly from Request object. So, you can
easily get the value of the text box when it is posted back (see Example 3-16).

In Example 3-16, the value of the TextBox is read directly from the Request object and
the page title in the database is changed accordingly. There’s no need to recreate
TextBox and Button just to read the page name. Another advantage of this approach
is that these functions are never recreated during the postback, so you don’t have to
remove them and switch back to view mode after the edit. It’s a quick way to imple-
ment in-place edit modules that pop up and go away. At the click of a button, you
can create the controls that will serve the in-place edit area and then read the value of
the controls directly from the Request object in the Page_Load handler.

Why a Fixed ID for Dynamically Created Controls Is Needed
When ASP.NET creates a dynamic control, it assigns a sequential ID to it, e.g., ctrl0.
The ID is assigned according to the order it is added in the parent control’s Controls
collection. This means that if a button is dynamically created on the first visit, it can
get an ID like ctrl0. But on a postback, if some other UI elements are created in the
same Controls collection before you create the button again, it will get a different ID—
say, ctrl1. As a result, when the button tries to restore its state from ViewState, it will
look for entries against ID ctrl1, not ctrl0. But on the first visit, the button persisted
its state against ctrl0. So, it will fail to restore its state properly. To avoid this, assign
a unique ID to each dynamically created control.

Example 3-16. Code called during the Page_Load event

 if(ScriptManager1.IsInAsyncPostBack)
 {
 ...
 ...
 string pageName = Request["PageNameEditTextBox"];
 if(!string.IsNullOrEmpty(pageName))
 {
 new DashboardFacade(Profile.UserName).ChangePageName(pageName);
 _Setup.CurrentPage.Title = pageName;
 this.SetupTabs();
 }
 ...
 }

Implementing the Start Page of a Web Portal | 55

However, if you want server-side validation, then you have to go back to compli-
cated approach of always recreating the controls on asynchronous postback because
you need to show validation errors, and the controls need to be there to show their
invalid content error message. For simplicity, I skipped validation here.

The Widget Area: The Three-Column Widget View
There are the three columns below the tab bar reserved for widgets, which we will
refer to as the widget area. The widget area is a simple three-column HTML table.
Each column contains one UpdatePanel and one DropCue, as shown in Example 3-17.

Widgets are loaded inside Panels named LeftPanel, MiddlePanel, and RightPanel.
Each widget is dynamically loaded and added inside these panels. If a widget is on
the first column, it is added inside LeftPanel. The CustomDragDropExtender attached
to these Panels provides the drag-and-drop support for widgets, as shown in
Figure 3-7.

Example 3-17. Default.aspx, part 7: Defining the three-column view of the widget area

<table width="98%" cellspacing="10" border="0" align="center" class="table_fixed"
height="100%">
<tbody>
 <tr>
 <td class="column">
 <asp:UpdatePanel ID="LeftUpdatePanel" runat="server"
 UpdateMode="Conditional" >
 <ContentTemplate>
 <asp:Panel ID="LeftPanel" runat="server"
 class="widget_holder"
 columnNo="0">
 <div id="DropCue1" class="widget_dropcue">
 </div>
 </asp:Panel>

 <cdd:CustomDragDropExtender ID="CustomDragDropExtender1"
 runat="server"
 TargetControlID="LeftPanel"
 DragItemClass="widget"
 DragItemHandleClass="widget_header"
 DropCueID="DropCue1"
 OnClientDrop="onDrop" />

 </ContentTemplate>
 </asp:UpdatePanel>
 </td>

56 | Chapter 3: Building the Web Layer Using ASP.NET AJAX

Loading the Start Page
Unlike regular ASP.NET pages, there is no code in the Page_Load event; instead, it is
in the CreateChildControls function. ASP.NET calls this function when it needs to
create server-side controls on the page. During postback processing on a page, unless
all the dynamically created controls are already in place by the time the page loads
ViewState, the events on those dynamic controls will not get fired properly. The
Page_Load event happens too late to do this. In Default.aspx, the entire page is con-
structed dynamically, including the page bar. So, the controls must be created before
they load their ViewState and process postback information, as shown in
Example 3-18. In the ASP.NET page life cycle, CreateChildControls is the best place
to create all dynamic controls that need to load states from ViewState and process
postback information.

Figure 3-7. With the three-column view of widgets, each column contains one UpdatePanel where
the widgets are loaded

Example 3-18. Dynamically create all controls and widgets on the page

protected override void CreateChildControls()
 {
 base.CreateChildControls();

 this.LoadUserPageSetup(false);
 this.SetupTabs();
 this.LoadAddStuff();

 if(ScriptManager1.IsInAsyncPostBack)
 {
...
...
 }
 else
 {
 // First visit, non postback

Implementing the Start Page of a Web Portal | 57

There are three steps involved in loading the full page:

1. Load the user page setup and user setting (the false passed to the method tells
the method not to look for cached information)

2. Render the tabs that shows user’s pages

3. Load the widgets on the current page

The first step is to load the user’s page setup, which includes the following:

• User’s setting, e.g., current page

• User’s page collection

• Widgets only on the current page

The LoadUserPageSetup method checks whether this is a first-time user visiting the
site. On the very first visit, the user’s page setup is created. On subsequent visits, the
user’s existing page setup is loaded, as shown in Example 3-19.

 this.SetupWidgets(wi => true);
 this.SetupTabs();
 }
 }

Example 3-19. For a new user, create the page setup; for an existing user, load the existing page
setup

private void LoadUserPageSetup(bool noCache)
 {
 if(Profile.IsAnonymous)
 {
 if(Profile.IsFirstVisit)
 {
 // First visit
 Profile.IsFirstVisit = false;
 Profile.Save();

 _Setup = new DashboardFacade(Profile.UserName).NewUserVisit();
 }
 else
 {
 _Setup = Cache[Profile.UserName] as UserPageSetup;
 if(noCache || null == _Setup)
 _Setup = new DashboardFacade(Profile.UserName).LoadUserSetup();
 }
 }
 else
 {
 _Setup = Cache[Profile.UserName] as UserPageSetup;
 if(noCache || null == _Setup)
 _Setup = new DashboardFacade(Profile.UserName).LoadUserSetup();
 }

Example 3-18. Dynamically create all controls and widgets on the page (continued)

58 | Chapter 3: Building the Web Layer Using ASP.NET AJAX

In Example 3-19, the user’s page setup is stored in an ASP.NET cache so that the
whole setup is not repeatedly loaded from the database during asynchronous post-
backs from widgets. Because there’s no chance of a user’s page setup being changed
unless the user adds, edits, or deletes widgets or pages, you can safely cache the
whole setup. However, the cache works for single-server and single-process hosting.
If you have multiple servers in a web farm or if you have just one server, but Applica-
tion Pool is configured to use multiple processes in web garden mode, then this
cache approach will not work. For example, say two servers in your web farm have
cached a user’s page setup. The user now deletes the current page. Say Server A
received the postback. The page is deleted from database and the latest page setup is
now cached in Server A. But Server B still has the old page setup cached where the
deleted page still exists. If the user adds a new widget and the request goes to Server
B, it will try to add the widget on the nonexistent page and fail.

In web garden mode, multiple processes serve the application pool for the web site
and suffer from a similar problem as requests from the same user go to different pro-
cesses. The solution is to use commercial distributed cache solutions, but they are
quite expensive. Such solutions give you a cache that is synchronized between all
servers. If Server A updates an entry in the cache, it will be synchronized with Serv-
ers B, C, and D. When you have a large amount of traffic on the site, you won’t be
able to repeatedly load the whole page setup because it will put a lot of stress on the
database server. In that case, you will have to go for caching the whole setup for as
long as possible and use a distributed cache solution.

The next step is to dynamically create the widgets on the three columns. The func-
tion SetupWidgets shown in Example 3-20 does this difficult job.

 // Cache the user setup in order to avoid repeated loading during postback
 Cache[Profile.UserName] = _Setup;
 }

Example 3-20. Dynamically create widget controls inside column panels

 private void SetupWidgets(Func<WidgetInstance, bool> isWidgetFirstLoad)
 {
 var setup = Context.Items[typeof(UserPageSetup)] as UserPageSetup;

 var columnPanels = new Panel[] {
 this.FindControl("LeftPanel") as Panel,
 this.FindControl("MiddlePanel") as Panel,
 this.FindControl("RightPanel") as Panel };

 // Clear existing widgets if any
 foreach(Panel panel in columnPanels)

Example 3-19. For a new user, create the page setup; for an existing user, load the existing page setup
(continued)

Implementing the Start Page of a Web Portal | 59

The reference to Func<> in the method parameters pertains to new functionality in C#.

This function first clears all the widgets from the three Panels. During asynchronous
postback, SetupWidgets is called once to recreate the controls and give ASP.NET the
exact same control hierarchy so that it can restore ViewState and fire events prop-
erly. After the events are processed, if there’s any change on the widget area, such as
a widget deleted or added, then SetupWidgets is called again to render the latest wid-
gets. It’s like calling a Bind method on a DataGrid or DataList again when something
changes on the data source.

When SetupWidgets is called for a second time within the same request, the Panels
already have the widgets. Thus, some widgets are created twice unless the Panels are
cleared. Example 3-21 uses some C# 3.0 language extensions. We use the OfType<>
function to get only the widgets inside the Panels, not any other control. The pur-
pose is to delete only the widgets and preserve everything else, like the extenders and
the drop cue.

After clearing the panels, one widget container is created for each widget instance.
Now comes the Func<> part, which is another very useful extension in C# 3.0. It is
called predicate. You can create lambda expressions and pass them as predicate

 {
 List<WidgetContainer> widgets = panel.Controls.OfType<WidgetContainer>().
 ToList();
 foreach(var widget in widgets) panel.Controls.Remove(widget);
 }

 foreach(WidgetInstance instance in setup.WidgetInstances)
 {
 var panel = columnPanels[instance.ColumnNo];

 var widget = LoadControl(WIDGET_CONTAINER) as WidgetContainer;
 widget.ID = "WidgetContainer" + instance.Id.ToString();
 widget.IsFirstLoad = isWidgetFirstLoad(instance);
 widget.WidgetInstance = instance;

 widget.Deleted += new Action<WidgetInstance>(widget_Deleted);

 panel.Controls.Add(widget);
 }

 }

Example 3-21. Clearing all WidgetContainers from a panel using the OfType<> extension method
in C# 3.0

 List<WidgetContainer> widgets = panel.Controls.OfType<WidgetContainer>().
 ToList();
 foreach(var widget in widgets) panel.Controls.Remove(widget);

Example 3-20. Dynamically create widget controls inside column panels (continued)

60 | Chapter 3: Building the Web Layer Using ASP.NET AJAX

during a function call. Lambda expressions are shorthand for delegates. Instead of
creating a delegate function for simple expressions, you can pass them in a lambda
expression form. For example, when a page is loaded for the first time, SetupWidgets
is called with a lambda expression, which always returns true for all widget
instances.

SetupWidgets(wi => true);

This means, the following statement is always true for all widget instances:

widget.IsFirstLoad = isWidgetFirstLoad(instance);

But you can also specify expressions that return true or false based on a specific
condition:

SetupWidgets(wi => wi.ColumnNo == 1);

This will evaluate as true only for those widget instances that are on the middle col-
umn (column 1). By doing this, we are telling the function to load middle column
widgets as if they are being loaded for the first time. An equivalent C# 2.0 imple-
mentation would be as follows:

delegate bool SetupWidgetsDelegate(WidgetInstance wi);

SetupWidgets(new SetupWidgetsDelegate(delegate(WidgetInstance wi)
{
 return wi.ColumnNo == 1;
}));

The reason why a lambda expression is used here instead of a simple Boolean true/
false is explained in the section “Page Switching: Simulating a Nonpostback Experi-
ence” later in this chapter. The idea is to set widget.IsFirstLoad = true for some wid-
get instances and set widget.IsFirstLoad = false for some other widget instances.
This decision depends on who is calling the SetupWidgets function. The expression
that can take this decision is only known to the function that calls SetupWidgets.
Thus, by using predicates, the caller can easily pass the expression to SetupWidgets
and simplify the logic inside SetupWidgets.

Building a Custom Drag-and-Drop Extender for a
Multicolumn Drop Zone
I first considered a plain vanilla JavaScript-based solution for my drag-and-drop func-
tionality. It required less code, less architectural complexity, and was faster. Another
reason was the high learning curve for properly making extenders in ASP.NET AJAX,
given that there’s hardly any documentation available on the Web (or at least that was
the case when I was writing this book). However, writing a proper extender that
pushes ASP.NET AJAX to the limit is a very good way to learn the ASP.NET AJAX
framework’s under-the-hood secrets. So, the two extenders introduced here will tell
you almost everything you need to know about ASP.NET AJAX extenders.

Building a Custom Drag-and-Drop Extender for a Multicolumn Drop Zone | 61

Before I wrote my own implementation of drag and drop, I carefully looked at exist-
ing solutions. The Ajax Control Toolkit comes with a DragPanel extender that could
be used to provide drag-and-drop support to panels. It also has a ReorderList con-
trol, which could reorder the items into a single list. Widgets are basically panels that
flow vertically in each column. So, it could be possible to create a reorder list in each
column and use the DragPanel to drag the widgets. But ReorderList couldn’t be used
because:

• It strictly uses the HTML table to render its items in a column. But I have no
table inside the columns, only one UpdatePanel per column.

• It takes a drag handle template and creates a drag handle for each item at run-
time. But there already is a drag handle created inside a widget, which is the wid-
get header, so ReorderList can’t create another drag handle.

• It must have client-side callback to JavaScript functions during drag and drop to
make Ajax calls and persist the widget positions. The callback must provide the
Panel where the widget is dropped, depending on which widget is dropped, and
at what position.

The next challenge is with the DragPanel extender. The default implementation of
drag and drop in the Ajax Control Toolkit doesn’t work for these reasons:

• When you start dragging, the item becomes absolutely positioned, but when you
drop it, it does not become statically positioned. A small hack is needed for
restoring the original positioning to static.

• It does not bring the dragging item on top of all the items. As a result, when you
start dragging, you see the item being dragged below other items, which makes
the drag get stuck, especially when there’s an IFrame.

For all these reasons, I made CustomDragDropExtender and CustomFloatingExtender.
CustomDragDropExtender is for the column containers where widgets are placed. It
provides the reordering support. You can attach this extender to any Panel control.

Example 3-22 shows how you can attach this extender to any Panel and make that
Panel support dragging and dropping widgets.

Example 3-22. How to attach CustomDragDropExtender to a Panel

<asp:Panel ID="LeftPanel" runat="server" class="widget_holder" columnNo="0">
 <div id="DropCue1" class="widget_dropcue">
 </div>
</asp:Panel>

<cdd:CustomDragDropExtender ID="CustomDragDropExtender1"
 runat="server"
 TargetControlID="LeftPanel"
 DragItemClass="widget"
 DragItemHandleClass="widget_header"
 DropCueID="DropCue1"
 OnClientDrop="onDrop" />

62 | Chapter 3: Building the Web Layer Using ASP.NET AJAX

<cdd:CustomDragDropExtender> offers the following properties:

TargetControlID
ID of the Panel that becomes the drop zone.

DragItemClass
All child elements inside the Panel having this class will become draggable, e.g.,
the widget DIV has this class so that it can become draggable.

DragItemHandleClass
Any child element having this class inside the draggable elements will become
the drag handle for the draggable element, e.g., the widget header area has this
class, so it acts as the drag handle for the widget.

DropCueID
ID of an element inside the Panel, which acts as DropCue.

OnClientDrop
Name of a JavaScript function that is called when the widget is dropped on the
Panel.

LeftPanel becomes a widget container that allows widgets to be dropped on it and
reordered. The DragItemClass attribute on the extender defines the items that can be
ordered. This prevents nonwidget HTML DIVs from getting ordered. Only the DIVs
of the class “widget” are ordered. Say there are five DIVs with the class named wid-
get. It will allow reordering of only the five DIVs, not any other element (see
Example 3-23).

When a widget is dropped on the panel, the extender fires the function specified in
OnClientDrop. It offers standard Ajax events. But unlike basic Ajax events where you
have to programmatically bind to events, you can bind the event handler declara-
tively. So, instead of doing this:

function pageLoad(sender, e) {

 var extender1 = $get('CustomDragDropExtender1');

Example 3-23. CustomDragDropExtender allows only drag-and-drop support for elements with a
specific class

<div id="LeftPanel" class="widget_holder" >
 <div class="widget"> ... </div>
 <div class="widget"> ... </div>

 <div class="widget"> ... </div>
 <div class="widget"> ... </div>
 <div class="widget"> ... </div>

 <div>This DIV will not move</div>
 <div id="DropCue1" class="widget_dropcue"></div>
</div>

Building a Custom Drag-and-Drop Extender for a Multicolumn Drop Zone | 63

 extender1.add_onDrop(onDrop);

}

you can do this:

<cdd:CustomDragDropExtender ID="CustomDragDropExtender1"
 runat="server"

OnClientDrop="onDrop" />

When the event is raised, the function named onDrop gets called. This is done with
the help of some library functions available in ACT project. When the event is fired,
it passes the container, the widget, and the position of where the widget is dropped
as an event argument, as specified by the code in Example 3-24.

The widget location is updated on the server by calling the WidgetService.
MoveWidgetInstance.

CustomDragDropExtender has three files:

CustomDragDropExtender.cs
The server side extender implementation

CustomDragDropDesigner.cs
Designer class for the extender

CustomDragDropExtender.js
Client-side script for the extender

The code for the server-side class CustomDragDropExtender.cs is shown in
Example 3-25.

Example 3-24. Client-side JavaScript event handler for receiving drag-and-drop notification

 function onDrop(sender, e)
 {
 var container = e.get_container();
 var item = e.get_droppedItem();
 var position = e.get_position();

 var instanceId = parseInt(item.getAttribute("InstanceId"));
 var columnNo = parseInt(container.getAttribute("columnNo"));
 var row = position;

 WidgetService.MoveWidgetInstance(instanceId, columnNo, row);
 }

Example 3-25. Code for CustomDragDropExtender.cs

[assembly: System.Web.UI.WebResource("CustomDragDrop.CustomDragDropBehavior.js", "text/
 javascript")]

namespace CustomDragDrop

64 | Chapter 3: Building the Web Layer Using ASP.NET AJAX

{
 [Designer(typeof(CustomDragDropDesigner))]
 [ClientScriptResource("CustomDragDrop.CustomDragDropBehavior",
 "CustomDragDrop.CustomDragDropBehavior.js")]
 [TargetControlType(typeof(WebControl))]
 [RequiredScript(typeof(CustomFloatingBehaviorScript))]
 [RequiredScript(typeof(DragDropScripts))]
 public class CustomDragDropExtender : ExtenderControlBase
 {
 [ExtenderControlProperty]
 public string DragItemClass
 {
 get
 {
 return GetPropertyValue<String>("DragItemClass", string.Empty);
 }
 set
 {
 SetPropertyValue<String>("DragItemClass", value);
 }
 }

 [ExtenderControlProperty]
 public string DragItemHandleClass
 {
 get
 {
 return GetPropertyValue<String>("DragItemHandleClass", string.Empty);
 }
 set
 {
 SetPropertyValue<String>("DragItemHandleClass", value);
 }
 }

 [ExtenderControlProperty]
 [IDReferenceProperty(typeof(WebControl))]
 public string DropCueID
 {
 get
 {
 return GetPropertyValue<String>("DropCueID", string.Empty);
 }
 set
 {
 SetPropertyValue<String>("DropCueID", value);
 }
 }

 [ExtenderControlProperty()]
 [DefaultValue("")]
 [ClientPropertyName("onDrop")]

Example 3-25. Code for CustomDragDropExtender.cs (continued)

Building a Custom Drag-and-Drop Extender for a Multicolumn Drop Zone | 65

Most of the code in the extender defines the properties. The important part is the
declaration of the class shown in Example 3-26.

The extender class inherits from ExtenderControlBase as defined in the Ajax Control
Toolkit (ACT) project. This base class has additional features beyond those found
with the extender base class that ships with ASP.NET AJAX. The ACT extender
allows you to use the RequiredScript attribute, which makes sure all the required
scripts are downloaded before the extender script is downloaded and initialized. The
CustomDragDrop extender has a dependency on another extender named
CustomFloatingBehavior. It also depends on ACT’s DragDropManager. So, the
RequiredScript attribute makes sure required scripts are downloaded before the
extender script downloads. The ExtenderControlBase is a pretty big class and does a
lot of work for us. It contains default implementations for discovering all the script
files for the extender and then renders them in proper order so that the browser
downloads the scripts in correct order.

 public string OnClientDrop
 {
 get
 {
 return GetPropertyValue<String>("OnClientDrop", string.Empty);
 }
 set
 {
 SetPropertyValue<String>("OnClientDrop", value);
 }
 }

 }
}

Example 3-26. Declaration of the class CustomDragDropExtender defines the required scripts for
the extender and the type of control it can attach to

[assembly: System.Web.UI.WebResource("CustomDragDrop.CustomDragDropBehavior.js", "text/
 javascript")]

namespace CustomDragDrop
{
 [Designer(typeof(CustomDragDropDesigner))]
 [ClientScriptResource("CustomDragDrop.CustomDragDropBehavior", "CustomDragDrop.
 CustomDragDropBehavior.js")]
 [TargetControlType(typeof(WebControl))]
 [RequiredScript(typeof(CustomFloatingBehaviorScript))]
 [RequiredScript(typeof(DragDropScripts))]
 public class CustomDragDropExtender : ExtenderControlBase
 {

Example 3-25. Code for CustomDragDropExtender.cs (continued)

66 | Chapter 3: Building the Web Layer Using ASP.NET AJAX

The [assembly:System.Web.UI.WebResource] attribute defines the script file contain-
ing the script for the extender. The script file is an embedded resource file.

The [ClientScriptResource] attribute defines the scripts required for the extender.
This class is also defined in ACT. ExtenderControlBase uses this attribute to find out
which JavaScript files are working for the extender and renders them properly.

The challenge is in writing the client side JavaScript for the extender. On the
CustomDragDrop.js file, there’s a JavaScript class that is the extender implementa-
tion, as shown in Example 3-27.

During initialization, this extender hooks on the Panel and the DropCue while the
widget is being dragged and dropped over the Panel. See Example 3-28.

After initializing the DragDropManager and marking the Panel as a drop target, a timer
is started to discover the draggable items inside the Panel and apply FloatingBehavior

to them. FloatingBehavior makes a DIV draggable.

FloatingBehavior makes one DIV freely draggable on the page. But it
does not offer drop functionality. DragDropBehavior offers the drop
functionality that allows a freely moving DIV to rest on a fixed position.

Example 3-27. The JavaScript implementation of the extender class’s constructor

Type.registerNamespace('CustomDragDrop');

CustomDragDrop.CustomDragDropBehavior = function(element) {

 CustomDragDrop.CustomDragDropBehavior.initializeBase(this, [element]);

 this._DragItemClassValue = null;
 this._DragItemHandleClassValue = null;
 this._DropCueIDValue = null;
 this._dropCue = null;
 this._floatingBehaviors = [];
}

Example 3-28. Initialize the CustomDragDrop extender and hook on the items

CustomDragDrop.CustomDragDropBehavior.prototype = {

 initialize : function() {
 // Register ourselves as a drop target.
 AjaxControlToolkit.DragDropManager.registerDropTarget(this);

 // Initialize drag behavior after a while
 window.setTimeout(Function.createDelegate(this, this._initializeDraggableItems
), 3000);

 this._dropCue = $get(this.get_DropCueID());
 },

Building a Custom Drag-and-Drop Extender for a Multicolumn Drop Zone | 67

Discovering and initializing FloatingBehavior for the draggable items is challenging
work, as you see in Example 3-29.

Here’s the algorithm:

• Run through all immediate child elements of the control to which the extender is
attached.

• If the child item has the class for draggable item, then:

— Find any element under the child item that has the class for a drag handle; if
such an item is found, then attach a CustomFloatingBehavior with the child
item.

The _findChildByClass function recursively iterates through all the child elements
and looks for an element that has the defined class. The code is shown in
Example 3-30. It’s an expensive process. So, it is important that the drag handle is

Example 3-29. Discovering draggable items and creating FloatingBehavior for each of item

 // Find all items with the drag item class and make each item
 // draggable
 _initializeDraggableItems : function()
 {
 this._clearFloatingBehaviors();

 var el = this.get_element();

 var child = el.firstChild;
 while(child != null)
 {
 if(child.className == this._DragItemClassValue && child != this._dropCue)
 {
 var handle = this._findChildByClass(child, this._
 DragItemHandleClassValue);
 if(handle)
 {
 var handleId = handle.id;
 var behaviorId = child.id + "_WidgetFloatingBehavior";

// make the item draggable by adding floating behaviour to it
 var floatingBehavior = $create(CustomDragDrop.CustomFloatingBehavior,
 {"DragHandleID":handleId, "id":behaviorId, "name":
 behaviorId}, {}, {}, child);

 Array.add(this._floatingBehaviors, floatingBehavior);
 }
 }
 child = child.nextSibling;
 }
 },

68 | Chapter 3: Building the Web Layer Using ASP.NET AJAX

very close to the draggable element. Ideally, the drag handle should be the first child
of the draggable element, so the search for a widget header doesn’t have to iterate
through too many elements.

When a user drags an item over the Panel to which the extender is attached,
DragDropManager fires the events shown in Example 3-31.

While drag and drop is going on, you need to deal with the drop cue. The challenge
is to find out the right position for the drop cue (see Figure 3-8).

We need to find out where we should show the drop cue based on where the user
wants to put the item. The idea is to find the widget that is immediately underneath
the dragged item. The item underneath is pushed down by one position and the drop
cue takes its place. While dragging, the position of the drag item can be found easily.
Based on that, you can locate the widget below the drag item with the _findItemAt
function shown in Example 3-32.

Example 3-30. Handy function to find HTML elements by class name

 _findChildByClass : function(item, className)
 {
 // First check all immediate child items
 var child = item.firstChild;
 while(child != null)
 {
 if(child.className == className) return child;
 child = child.nextSibling;
 }

 // Not found, recursively check all child items
 child = item.firstChild;
 while(child != null)
 {
 var found = this._findChildByClass(child, className);
 if(found != null) return found;
 child = child.nextSibling;
 }
 },

Example 3-31. Events raised by DragDropManager

 onDragEnterTarget : function(dragMode, type, data) {
 this._showDropCue(data);
 },

 onDragLeaveTarget : function(dragMode, type, data) {
 this._hideDropCue(data);
 },

 onDragInTarget : function(dragMode, type, data) {
 this._repositionDropCue(data);
 },

Building a Custom Drag-and-Drop Extender for a Multicolumn Drop Zone | 69

The _findItemAt function returns the widget that is immediately underneath the
dragged item. Now you can add the drop cue immediately above the widget to show
the user where the widget being dragged can be dropped. The _repositionDropCue
function, whose code is shown in Example 3-33, relocates the drop cue to the posi-
tion where a widget can be dropped.

Figure 3-8. When you drag a widget, a drop cue shows you where the widget will be dropped when
mouse is released

Example 3-32. Find the widget at the x,y coordinate of the mouse

_findItemAt : function(x, y, item)
 {
 var el = this.get_element();

 var child = el.firstChild;
 while(child != null)
 {
 if(child.className == this._DragItemClassValue && child != this._dropCue &&
 child != item)
 {
 var pos = Sys.UI.DomElement.getLocation(child);

 if(y <= pos.y)
 {
 return child;
 }
 }
 child = child.nextSibling;
 }

 return null;
 },

70 | Chapter 3: Building the Web Layer Using ASP.NET AJAX

One exception to consider here is that there may be no widget immediately below
the dragged item. This happens when the user is trying to drop the widget at the bot-
tom of a column. In that case, the drop cue is shown at the bottom of the column.

When the user releases the widget, it drops right on top of the drop cue, and the
drop cue disappears. After the drop, the onDrop event is raised to notify where the
widget is dropped, as shown in Example 3-34.

Example 3-33. Move the drop cue to the place where a widget can be dropped

_repositionDropCue : function(data)
 {
 var location = Sys.UI.DomElement.getLocation(data.item);
 var nearestChild = this._findItemAt(location.x, location.y, data.item);

 var el = this.get_element();

 if(null == nearestChild)
 {
 if(el.lastChild != this._dropCue)
 {
 el.removeChild(this._dropCue);
 el.appendChild(this._dropCue);
 }
 }
 else
 {
 if(nearestChild.previousSibling != this._dropCue)
 {
 el.removeChild(this._dropCue);
 el.insertBefore(this._dropCue, nearestChild);
 }
 }
 },

Example 3-34. Place the dropped widget on the right place and raise the onDrop event

_placeItem : function(data)
 {
 var el = this.get_element();

 data.item.parentNode.removeChild(data.item);
 el.insertBefore(data.item, this._dropCue);

 // Find the position of the dropped item
 var position = 0;
 var item = el.firstChild;
 while(item != data.item)
 {
 if(item.className == this._DragItemClassValue) position++;
 item = item.nextSibling;
 }
 this._raiseDropEvent(/*Container*/ el, /*dropped item*/ data.item, /*position*/
 position);
 }

Building a Custom Drag-and-Drop Extender for a Multicolumn Drop Zone | 71

Generally, you can define events in extenders by adding two functions in the
extender as shown in Example 3-35.

But this does not give you the support for defining the event listener name in the
ASP.NET declaration:

<cdd:CustomDragDropExtender ID="CustomDragDropExtender1"
 runat="server"
 TargetControlID="LeftPanel"
 DragItemClass="widget"
 DragItemHandleClass="widget_header"
 DropCueID="DropCue1"

OnClientDrop="onDrop" />

Such declarative approaches allows only properties of a control. To support such a
declarative assignment of events, you need to first introduce a property named
OnClientDrop in the extender. Then, during assignment of the property, you need to
find the specified function there and attach an event notification to that function.
The discovery of the function from its name is done by CommonToolkitScripts.
resolveFunction, which is available in the ACT project and used in Example 3-36.

Raising the event is the same as basic Ajax events:

_raiseEvent : function(eventName, eventArgs) {
 var handler = this.get_events().getHandler(eventName);

Example 3-35. Provide event subscription support in ASP.NET Ajax Extenders

 add_onDrop : function(handler) {
 this.get_events().addHandler("onDrop", handler);
 },

 remove_onDrop : function(handler) {
 this.get_events().removeHandler("onDrop", handler);
 },

Example 3-36. Allow the event name to be specified as a property on the extender

// onDrop property maps to onDrop event
 get_onDrop : function() {
 return this.get_events().getHandler("onDrop");
 },

 set_onDrop : function(value) {
 if (value && (0 < value.length)) {
 var func = CommonToolkitScripts.resolveFunction(value);
 if (func) {
 this.add_onDrop(func);
 } else {
 throw Error.argumentType('value', typeof(value), 'Function', 'resize
 handler not a function, function name, or function text.');
 }
 }
 },

72 | Chapter 3: Building the Web Layer Using ASP.NET AJAX

 if(handler) {
 if(!eventArgs) eventArgs = Sys.EventArgs.Empty;
 handler(this, eventArgs);
 }
 },

The next challenge is to make CustomFloatingBehavior. The server-side class
CustomFloatingBehavior.cs is declared, as shown in Example 3-37.

There’s only one property—DragHandleID, in which the widget’s header works as the
drag handle. So, the header ID is specified here. This extender has dependency on
DragDropManager, which requires the [RequiredScript(typeof(DragDropScripts))]
attribute.

Besides the designer class, there’s one more class that CustomDragDropExtender needs
to specify its dependency over this FloatingBehavior:

 [ClientScriptResource(null, "CustomDragDrop.CustomFloatingBehavior.js")]
 public static class CustomFloatingBehaviorScript
 {
 }

This class can be used inside the RequiredScript attribute. It defines only which
script file contains the client-side code for the extender.

Example 3-37. CustomFloatingBehavior.cs content

[assembly: System.Web.UI.WebResource("CustomDragDrop.CustomFloatingBehavior.js", "text/
javascript")]

namespace CustomDragDrop
{
 [Designer(typeof(CustomFloatingBehaviorDesigner))]
 [ClientScriptResource("CustomDragDrop.CustomFloatingBehavior", "CustomDragDrop.
 CustomFloatingBehavior.js")]
 [TargetControlType(typeof(WebControl))]
 [RequiredScript(typeof(DragDropScripts))]
 public class CustomFloatingBehaviorExtender : ExtenderControlBase
 {
 [ExtenderControlProperty]
 [IDReferenceProperty(typeof(WebControl))]
 public string DragHandleID
 {
 get
 {
 return GetPropertyValue<String>("DragHandleID", string.Empty);
 }
 set
 {
 SetPropertyValue<String>("DragHandleID", value);
 }
 }
 }
}

Building a Custom Drag-and-Drop Extender for a Multicolumn Drop Zone | 73

The client-side JavaScript is same as FloatingBehavior, which comes with ACT. The
only difference is a hack when the drag starts. DragDropManager does not return the
item being dragged to the static position once it makes it absolute. It also does not
increase the zIndex of the item. If the drag item does not become the top-most item
on the page, then it goes below other elements on the page during drag. So, I have
made some changes in the mouseDownHandler attribute of the behavior to add these
features, shown in Example 3-38.

Setting el.originalPosition = "static" fixes the bug in DragDropManager. It incor-
rectly stores absolute as the originalPosition when startDragDrop is called. So, after
calling this function, reset to the correct originalPosition, which is “static.”

When drag starts, zIndex is set to a very high value so that the dragged item remains
on top of everything on the page. When drag completes, the original zIndex is
restored and the left, top, width, and height attributes are cleared. DragDropManager
makes the item position static, but it does not clear the left, top, width, and height
attributes. This moves the element away from the place where it is dropped. This
bug is fixed in the onDragEnd event, as coded in Example 3-39.

Example 3-38. Revised mouseDownhandler in CustomFloatingBehavior.js

 function mouseDownHandler(ev) {
 window._event = ev;
 var el = this.get_element();

 if (!this.checkCanDrag(ev.target)) return;

 // Get the location before making the element absolute
 _location = Sys.UI.DomElement.getLocation(el);

 // Make the element absolute
 el.style.width = el.offsetWidth + "px";
 el.style.height = el.offsetHeight + "px";
 Sys.UI.DomElement.setLocation(el, _location.x, _location.y);

 _dragStartLocation = Sys.UI.DomElement.getLocation(el);

 ev.preventDefault();

 this.startDragDrop(el);

 // Hack for restoring position to static
 el.originalPosition = "static";
 el.originalZIndex = el.style.zIndex;
 el.style.zIndex = "60000";
 }

Example 3-39. onDragEnd event fixes the zIndex related problem

 this.onDragEnd = function(canceled) {
 if (!canceled) {
 var handler = this.get_events().getHandler('move');

74 | Chapter 3: Building the Web Layer Using ASP.NET AJAX

That’s all folks! Now you have two handy extenders that you can attach to HTML
elements and provide complete drag-and-drop support.

Implementing WidgetContainer
WidgetContainer dynamically creates a widget inside its body area. The container
consists only of header and body areas. The rest is provided by the actual widget
loaded dynamically inside the container’s body area. The settings area that you see
when you click “edit” on the header also comes from the actual widget.
WidgetContainer informs the widget only when to show it. The “Building Widgets”
section later in this chapter shows how the widget handles this notification.
WidgetContainer acts as a bridge between widgets and the core. The core communi-
cates to the widgets via the container, and the widgets use the core’s features via the
container.

WidgetContainer’s header contains the title text, the expand and collapse button, the
“edit” link, and the close button within an UpdatePanel, as shown in Example 3-40.

By doing this, we are preventing the body area from refreshing when something
changes in the header. If the body area refreshes, the widget hosted inside it will
unnecessarily refresh. To avoid downloading and refreshing a large amount of data
in the whole widget, the header and body contain separate UpdatePanel controls.

 if(handler) {
 var cancelArgs = new Sys.CancelEventArgs();
 handler(this, cancelArgs);
 canceled = cancelArgs.get_cancel();
 }
 }

 var el = this.get_element();
 el.style.width = el.style.height = el.style.left = el.style.top = "";
 el.style.zIndex = el.originalZIndex;
 }

Example 3-40. WidgetContainer’s header panel

<asp:Panel ID="Widget" CssClass="widget" runat="server">
 <asp:Panel id="WidgetHeader" CssClass="widget_header" runat="server">
 <asp:UpdatePanel ID="WidgetHeaderUpdatePanel" runat="server"
 UpdateMode="Conditional">
 <ContentTemplate>
 ...
 ...
 ...
 </ContentTemplate>
 </asp:UpdatePanel>
 </asp:Panel>

Example 3-39. onDragEnd event fixes the zIndex related problem (continued)

Implementing WidgetContainer | 75

There is an UpdateProgress extender attached to the header UpdatePanel, which
shows a “Working…” indicator when the header is going through asynchronous
postback. This happens when a user clicks on the title to change it or clicks some
button on the header area.

<asp:UpdateProgress ID="UpdateProgress2" runat="server"
 DisplayAfter="10"
 AssociatedUpdatePanelID="WidgetHeaderUpdatePanel" >
 <ProgressTemplate>
 <center>Working...</center>
 </ProgressTemplate>
</asp:UpdateProgress>

After this comes the UpdatePanel body, where the actual widget is loaded.

<asp:UpdatePanel ID="WidgetBodyUpdatePanel" runat="server"
 UpdateMode="Conditional" >
 <ContentTemplate>
 <asp:Panel ID="WidgetBodyPanel" runat="Server"></asp:Panel>
 </ContentTemplate>
</asp:UpdatePanel>

The widget is not directly added inside the UpdatePanel. Instead it is added inside
another regular Panel named WidgetBodyPanel (see Figure 3-9).

When a widget is collapsed, the body area goes away. This is done by setting
Visible=False to the UpdatePanel. But that does not hide the DIV, which is gener-
ated for the UpdatePanel, nor does it clear the content of that DIV. But if you put a
Panel inside the UpdatePanel and make it invisible, the UpdatePanel will become
blank because there’s nothing to show anymore. This is exactly what needs to hap-
pen when a widget is collapsed. By using an HTTP tracer tool like Fiddler or Charles,
you can observe that the following data is transferred by the asynchronous postback
when the widget is collapsed and the WidgetBodyPanel is hidden:

Figure 3-9. WidgetContainer layout showing distribution of UpdatePanels

Widget container

Header panel

Update panel
Title

Update panel

Body panel

Widget

76 | Chapter 3: Building the Web Layer Using ASP.NET AJAX

933|updatePanel|WidgetContainer89605_WidgetHeaderUpdatePanel|
 <table class="widget_header_table" cellspacing="0" cellpadding="0">
 <tbody>
 <tr>
 <td class="widget_title"><a id="WidgetContainer89605_WidgetTitle" ...
 <td class="widget_edit"><a id="WidgetContainer89605_EditWidget" ...
 <td class="widget_button"><a id="WidgetContainer89605_ExpandWidget" ...

<td class="widget_button"><a id="WidgetContainer89605_CloseWidget" ...
 </tr>
 </tbody>
 </table>
 |20|updatePanel|WidgetContainer89605_WidgetBodyUpdatePanel|

 |0|hiddenField|_ _EVENTTARGET||0|hiddenField|_ _EVENTARGUMENT||...

The response contains the header UpdatePanel’s ID (WidgetContainer89605_
WidgetHeaderUpdatePanel) that was updated, followed by the new HTML snippet
that needs to be placed inside the header update panel. The new HTML contains the
expand button, and the collapse button is no longer present. Once the HTML is set
to the header area, the collapse button disappears and the expand button appears.

After the header’s UpdatePanel HTML, the body’s UpdatePanel
(WidgetContainer89605_WidgetBodyUpdatePanel) HTML is sent. Because there’s no
visible control inside the body’s UpdatePanel, there’s no HTML sent to the
UpdatePanel. As a result, the representative DIV’s innerHTML is set to blank. This
clears the WidgetContainer’s body area and the real widget disappears.

After the body area’s UpdatePanel, there’s only one UpdateProgress extender
attached, which shows a “Working…” message when the body area is going through
any asynchronous postback due to some activity on the widget itself.

<asp:UpdateProgress ID="UpdateProgress1" runat="server" DisplayAfter="10"
AssociatedUpdatePanelID="WidgetBodyUpdatePanel" >
 <ProgressTemplate><center>Working...</center></ProgressTemplate>
</asp:UpdateProgress>

That’s all inside the WidgetContainer.ascx. The code behind the file is, however,
quite challenging.

WidgetContainer.cs
The WidgetContainer class implements the IWidgetHost interface because containers
host widgets.

public partial class WidgetContainer : System.Web.UI.UserControl, IWidgetHost
{

The container maintains a reference to the hosted widget via the IWidget interface. It
also stores a reference to the WidgetInstance object, which represents the instance of
the widget it contains.

Implementing WidgetContainer | 77

 private WidgetInstance _WidgetInstance;

 public WidgetInstance WidgetInstance
 {
 get { return _WidgetInstance; }
 set { _WidgetInstance = value; }
 }

 private IWidget _WidgetRef;

The Default.aspx notifies WidgetContainer about a first- or second-time load via a
public property called IsFirstLoad.

 private bool _IsFirstLoad;

 public bool IsFirstLoad
 {
 get { return _IsFirstLoad; }
 set { _IsFirstLoad = value; }
 }

WidgetContainer then passes this property’s value to the widget via the IWidgetHost.
IsFirstLoad property.

During the OnInit event of WidgetContainer, it loads the widget using LoadControl
and hosts it inside its body area:

 protected override void OnInit(EventArgs e)
 {
 base.OnInit(e);
 var widget = LoadControl(this.WidgetInstance.Widget.Url);

 widget.ID = "Widget" + this.WidgetInstance.Id.ToString();

 WidgetBodyPanel.Controls.Add(widget);
 this._WidgetRef = widget as IWidget;
 this._WidgetRef.Init(this);
 }

If you do not set the widget.ID to a specific ID that is always the same for the same
widget instance, asynchronous postbacks will fail. You will get a message box saying
an invalid asynchronous postback has been performed. When the asynchronous
postback happens, ASP.NET needs to know which control has produced the post-
back. To do this, it needs to load the page with all the controls exactly in the same
state as before the postback occurred. Otherwise, it won’t be able to find the control
that produced the postback by the ID it received from the Ajax framework.

Also, if the WidgetContainer’s ID isn’t set to a specific value, ASP.NET will assign
ctrl0 or ctrl1, whatever it finds free. This will vary the ID, and postbacks will map
to nonexistent controls and fail. Setting WidgetContainer’s ID to the widget instance
ID ensures the container will always have the same ID for a particular widget
instance.

78 | Chapter 3: Building the Web Layer Using ASP.NET AJAX

When the WidgetContainer is expanded or collapsed, the following events get fired:

 protected void CollapseWidget_Click(object sender, EventArgs e)
 {
 (this as IWidgetHost).Minimize();
 }

 protected void ExpandWidget_Click(object sender, EventArgs e)
 {
 (this as IWidgetHost).Maximize();
 }

Here you call the interface implementations where the actual work is done:

 void IWidgetHost.Maximize()
 {
 DatabaseHelper.Update<WidgetInstance>(this.WidgetInstance,
 delegate(WidgetInstance i)
 {
 i.Expanded = true;
 });

 this.SetExpandCollapseButtons();
 this._WidgetRef.Maximized();

 WidgetBodyUpdatePanel.Update();
 WidgetHeaderUpdatePanel.Update();
 }

 void IWidgetHost.Minimize()
 {
 DatabaseHelper.Update<WidgetInstance>(this.WidgetInstance,
 delegate(WidgetInstance i)
 {
 i.Expanded = false;
 });

 this.SetExpandCollapseButtons();
 this._WidgetRef.Minimized();

 WidgetBodyUpdatePanel.Update();
 WidgetHeaderUpdatePanel.Update();
 }

Updating

We now need to update the Expanded property of the WidgetInstance object, as well
as the database row to persist the widget’s visibility. The details of how the
DatabaseHelper works are discussed in Chapter 4. For the time being, let’s assume
the following code updates one row of WidgetInstance:

 DatabaseHelper.Update<WidgetInstance>(this.WidgetInstance,
 delegate(WidgetInstance i)

Implementing WidgetContainer | 79

 {
 i.Expanded = false;
 });

After updating the database row, update the header area by switching between the
expand and collapse buttons, inform the widget about the Minimize or Maximize
events, and update both the header and body UpdatePanel. The header update panel
is updated to reflect the change in the expand/collapse button. The body update
panel is updated to toggle the widget’s visibility inside the body area.

Saving and editing

When a user clicks on the title of the WidgetContainer header, it switches to a text
box and a save button. Users can enter a new title and save to set the new title for the
widget instance. This is done by switching between LinkButton, TextBox, and Button.
When the title LinkButton is clicked, the following event is fired:

 protected void WidgetTitle_Click(object sender, EventArgs e)
 {
 WidgetTitleTextBox.Text = this.WidgetInstance.Title;
 WidgetTitleTextBox.Visible = true;
 SaveWidgetTitle.Visible = true;
 WidgetTitle.Visible = false;
 }

When the user clicks save, it switches back to the LinkButton showing the new title
and hides the text box and save button. After the UI changes, the WidgetInstance
object is updated in database with the new title.

 protected void SaveWidgetTitle_Click(object sender, EventArgs e)
 {
 WidgetTitleTextBox.Visible = SaveWidgetTitle.Visible = false;
 WidgetTitle.Visible = true;
 WidgetTitle.Text = WidgetTitleTextBox.Text;

 DatabaseHelper.Update<WidgetInstance>(this.WidgetInstance,
 delegate(WidgetInstance wi)
 {
 wi.Title = WidgetTitleTextBox.Text;
 });
 }

When a user clicks the edit button, WidgetContainer informs the widget to show its
settings area. The edit button then switches itself with “cancel edit” button. Both the
edit and cancel edit buttons, when clicked, fire the same event:

protected void EditWidget_Click(object sender, EventArgs e)
 {
 if(this.SettingsOpen)
 {
 this.SettingsOpen = false;
 this._WidgetRef.HideSettings();
 EditWidget.Visible = true;

80 | Chapter 3: Building the Web Layer Using ASP.NET AJAX

 CancelEditWidget.Visible = false;
 }
 else
 {
 this.SettingsOpen = true;
 this._WidgetRef.ShowSettings();
 (this as IWidgetHost).Maximize();
 EditWidget.Visible = false;
 CancelEditWidget.Visible = true;
 }

 WidgetBodyUpdatePanel.Update();
 }

The SettingsOpen property is stored in ViewState to remember whether the settings
area is already open or not.

public bool SettingsOpen
 {
 get
 {
 object val = ViewState[this.ClientID + "_SettingsOpen"] ?? false;
 return (bool)val;
 }
 set { ViewState[this.ClientID + "_SettingsOpen"] = value; }
 }

Remember, ViewState will always return null until the user clicks the edit button and
a true value is set to it. You should always check ViewState entries for null before
casting them to a data type. Check whether it’s null, and if so, then the default value
is false.

Adding InstanceID

During the rendering of WidgetContainer, one more attribute is added to the DIV:
InstanceID. The onDrop event on the client side needs to know the WidgetInstance ID
of the widget that is moved so it can call the web service and notify the server about
which WidgetInstance was moved. The additional attribute is rendered by overriding
the RenderControl function:

 public override void RenderControl(HtmlTextWriter writer)
 {
 writer.AddAttribute("InstanceId", this.WidgetInstance.Id.ToString());
 base.RenderControl(writer);
 }

This results in the following HTML on the client:

 <div InstanceId="151" id="WidgetContainer151_Widget" class="widget">

The onDrop function on the client side reads this InstanceID and calls the web service:

 function onDrop(sender, e)
 {
 var container = e.get_container();

Building Widgets | 81

 var item = e.get_droppedItem();
 var position = e.get_position();

var instanceId = parseInt(item.getAttribute("InstanceId"));
 var columnNo = parseInt(container.getAttribute("columnNo"));
 var row = position;

 WidgetService.MoveWidgetInstance(instanceId, columnNo, row);
 }

Closing the widget

Closing is more complicated than other behavior because WidgetContainer cannot
close itself—it needs to be closed from outside and removed from the page’s con-
trols collection. The container just raises the Deleted event when it is closed, and the
Default.aspx handles the UI update and database changes. The following is the code
when the close button is clicked:

 protected void CloseWidget_Click(object sender, EventArgs e)
 {
 this._WidgetRef.Closed();
 (this as IWidgetHost).Close();
 }

First, the contained widget gets notification and it can then perform cleanup opera-
tions, like removing widget-specific information from the database. Then the Deleted
event is raised:

 void IWidgetHost.Close()
 {
 Deleted(this.WidgetInstance);
 }

The Default.aspx removes the widget from the database and refreshes the column:

void widget_Deleted(WidgetInstance obj)
{
 new DashboardFacade(Profile.UserName).DeleteWidgetInstance(obj);

 this.ReloadPage(wi => false);

 this.RefreshColumn(obj.ColumnNo);
}

Building Widgets
Now that you’ve seen how to implement WidgetContainer, let’s look at how you
build the widgets it hosts. First, we’ll create a simple widget to display Flickr photos,
followed by another widget to display RSS and Atom feeds.

82 | Chapter 3: Building the Web Layer Using ASP.NET AJAX

Building a Flickr Photo Widget
Let’s look first at a simple Flickr photo widget that downloads photos from Flickr
and displays them in a 3 × 3 grid, as shown in Figure 3-10.

The widget downloads Flickr photos as an XML feed from the Flickr web site and
then renders a 3 × 3 grid with the pictures. The Flickr photo stream is available as an
XML feed (not a RSS feed) at http://www.flickr.com/services/rest/?method=flickr.
photos.getRecent&api_key.

You need to first obtain an application key from the Flickr developer zone and pass it
at the end of the URL. The key I have embedded inside the project may not work if
the request quota has already been exceeded.

The URL returns recent Flickr photos uploaded by the user as XML:

<?xml version="1.0" encoding="utf-8" ?>
<rsp stat="ok">
<photos page="1" pages="10" perpage="100" total="1000">
 <photo id="431247461" owner="25524911@N00" secret="cb9370fd16" server="162"
 farm="1" title="P1020899" ispublic="1" isfriend="0" isfamily="0" />
 <photo id="431247462" owner="46871506@N00" secret="036edda0e9" server="188"
 farm="1" title="black" ispublic="1" isfriend="0" isfamily="0" />
 <photo id="431247458" owner="91583992@N00" secret="6cd9a27d6d" server="153"
 farm="1" title="DSC00647" ispublic="1" isfriend="0" isfamily="0" />

However, the XML does not contain the URL of the photo file. It needs to be built
dynamically.

Figure 3-10. The Flickr widget downloads the Flickr photo stream as XML and parses using LINQ
to XML and the photo grid is dynamically rendered

http://www.flickr.com/services/rest/?method=flickr.photos.getRecent&api_key
http://www.flickr.com/services/rest/?method=flickr.photos.getRecent&api_key

Building Widgets | 83

The first step is to download and parse the XML using LINQ to XML, which is avail-
able in .NET 3.5. Here’s an easy way to prepare a XElement from an URL:

var xroot = XElement.Load(url);

Next we convert each photo node inside the XML to an object of the PhotoInfo class
for convenient processing:

var photos = (from photo in xroot.Element("photos").Elements("photo")
select new PhotoInfo
{
 Id = (string)photo.Attribute("id"),
 Owner = (string)photo.Attribute("owner"),
 Title = (string)photo.Attribute("title"),
 Secret = (string)photo.Attribute("secret"),
 Server = (string)photo.Attribute("server"),
 Farm = (string)photo.Attribute("Farm")
})

This will produce one PhotoInfo object for each <photo> node in the XML. Paging
support has been added to it to select nine photos at a time by using the Skip and
Take functions:

var photos = (from photo in xroot.Element("photos").Elements("photo")
select new PhotoInfo
{
...
}).Skip(pageIndex*Columns*Rows).Take(Columns*Rows);

This takes only nine photos from the current pageIndex. Page index is changed when
the user clicks the next or previous links. The Skip method skips the number of items
in the XML, and the Take method takes only the specified number of nodes from XML.

A 3 × 3 HTML table renders the photos from the collection of PhotoInfo objects:

foreach(var photo in photos)
{
 if(col == 0)
 table.Rows.Add(new HtmlTableRow());

 var cell = new HtmlTableCell();

 var img = new HtmlImage();
 img.Src = photo.PhotoUrl(true);
 img.Width = img.Height = 75;
 img.Border = 0;

 var link = new HtmlGenericControl("a");
 link.Attributes["href"] = photo.PhotoPageUrl;
 link.Attributes["Target"] = "_blank";
 link.Attributes["Title"] = photo.Title;
 link.Controls.Add(img);

 cell.Controls.Add(link);
 table.Rows[row].Cells.Add(cell);

84 | Chapter 3: Building the Web Layer Using ASP.NET AJAX

 col ++;
 if(col == Columns)
 {
 col = 0; row ++;
 }

 count ++;
}

The reasoning behind using HtmlGenericControl instead of HtmlLink is that HtmlLink
does not allow you to add controls inside its Controls collection. This is a limitation
of the HtmlLink class in ASP.NET 2.0.

The PhotoPageUrl property of PhotoInfo class gives the URL of the photo. There’s no
special logic inside the PhotoInfo class besides the public properties:

public class PhotoInfo
{
 private const string FLICKR_SERVER_URL="http://static.flickr.com/";
 private const string FLICKR_PHOTO_URL="http://www.flickr.com/photos/";

 public string Id;
 public string Owner;
 public string Title;
 public string Secret;
 public string Server;
 public string Farm;
 public bool IsPublic;
 public bool IsFriend;
 public bool IsFamily;
 public string PhotoUrl(bool small)
 {
 return FLICKR_SERVER_URL + this.Server + '/' + this.Id + '_' + this.Secret +
 (small ? "_s.jpg" : "_m.jpg");
 }
 public string PhotoPageUrl
 {
 get { return FLICKR_PHOTO_URL + this.Owner + '/' + this.Id; }
 }
}

When the widget loads, it checks whether it’s a first-time load or a postback. If it’s a
first-time load, then it fetches the XML photo feed from Flickr and stores it in the
cache. When it’s a postback, it renders the photos from the cached XML.

protected void Page_Load(object sender, EventArgs e)
 {
 if(this._Host.IsFirstLoad)
 {
 this.LoadState();
 this.LoadPictures();
 this.PageIndex = 0;
 this.ShowPictures(0);

Building Widgets | 85

 }
 else
 {
 this.ShowPictures(this.PageIndex);
 }
 }

First the widget loads its UI state, downloads the Flickr photo XML, and shows the
pictures in the grid. But when the page is having a postback, the widget just shows
the last pictures. The reason you need to render the pictures again on postback is
that the pictures are shown dynamically and are not part of the HTML markups that
ASP.NET creates. If they are declaratively specified in the .ascx file, then ASP.NET
would have created that itself.

The content of the FlickrWidget.ascx page is the following:

<%@ Control Language="C#" AutoEventWireup="true" CodeFile="FlickrWidget.ascx.cs"
Inherits="FlickrWidget" %>
<asp:Panel ID="settingsPanel" runat="server" Visible="False">
 <asp:RadioButton ID="mostInterestingRadioButton" runat="server"
 AutoPostBack="True"
 Checked="True" GroupName="FlickrPhoto" OnCheckedChanged="photoTypeRadio_
 CheckedChanged"
 Text="Most Interesting" />

 <asp:RadioButton ID="mostRecentRadioButton" runat="server" AutoPostBack="True"
 GroupName="FlickrPhoto"
 OnCheckedChanged="photoTypeRadio_CheckedChanged" Text="Most Recent" />

 <asp:RadioButton ID="customTagRadioButton" runat="server" AutoPostBack="True"
 GroupName="FlickrPhoto"
 OnCheckedChanged="photoTypeRadio_CheckedChanged" Text="Tag: " />
 <asp:TextBox ID="CustomTagTextBox" runat="server" Text="Pretty" />
 <hr />
</asp:Panel>
<asp:Panel ID="photoPanel" runat="server">

</asp:Panel>
<center>
 <asp:LinkButton ID="ShowPrevious" runat="server" OnClick="ShowPrevious_Click">
 <Prev</asp:LinkButton>
 <asp:LinkButton ID="ShowNext" runat="server" OnClick="ShowNext_Click">Next >
 </asp:LinkButton></center>

In the Visual Studio designer, the Flickr widget web control looks pretty simple, as
shown in Figure 3-11.

There’s a blank panel in the middle of the control that shows the pictures. The Prev
and Next LinkButtons do the pagination. The radio buttons are part of the settings
area that you see only when you click on the edit link on the widget header area, as
shown in Figure 3-12.

86 | Chapter 3: Building the Web Layer Using ASP.NET AJAX

Figure 3-11. At design view, the widget is nothing but a regular web control; use Visual Studio’s
Visual Designer to design the UI

Figure 3-12. Settings contain options to customize a widget, such as different types of photo streams
from Flickr

Building Widgets | 87

Flickr widget UI controls

Let’s explain what the controls do on the Flickr widget UI. The simplest part is the
pagination where the click handlers of the Previous and Next LinkButtons do the
paging:

protected void ShowPrevious_Click(object sender, EventArgs e)
 {
 this.PageIndex --;
 this.ShowPictures(this.PageIndex);
 }
 protected void ShowNext_Click(object sender, EventArgs e)
 {
 this.PageIndex ++;
 this.ShowPictures(this.PageIndex);
 }

When a user changes the type of photo to show, this information is stored in the
widget’s state. The widget’s state is simple XML in this format:

<state>
 <type>MostRecent</type>
 <tag>Pretty</tag>
</state>

The state is loaded using LINQ to XML’s XElement class:

private XElement _State;
private XElement State
{
 get
 {
 if(_State == null)
 {
 string stateXml = this._Host.GetState();
 if (string.IsNullOrEmpty(stateXml))
 {
 _State = new XElement("state",
 new XElement("type", "MostPopular"),
 new XElement("tag", ""));
 }
 else
 {
 _State = XElement.Parse(stateXml);
 }
 }
 return _State;
 }
}

This is a read-only property that loads the widget instance’s state XML and returns
an XElement reference to it. The host that is the widget container for this widget
returns the state content. If no state was stored before, it creates a default state XML
with default selections.

88 | Chapter 3: Building the Web Layer Using ASP.NET AJAX

Reading and writing to individual properties in the state is very easy when we have a
XElement object to work with:

 public PhotoTypeEnum TypeOfPhoto
 {
 get { return (PhotoTypeEnum)Enum.Parse(typeof(PhotoTypeEnum), State.
 Element("type").Value); }
 set { State.Element("type").Value = value.ToString(); }
 }
 public string PhotoTag
 {
 get { return State.Element("tag").Value; }
 set { State.Element("tag").Value = value; }
 }

After changing the state, it is saved permanently in the database by calling the
IWidgetHost.SaveState function. Here’s the code that collects current settings from
the UI and stores in widget instance’s state:

private void SaveState()
{
 if(mostRecentRadioButton.Checked)
 this.TypeOfPhoto = PhotoTypeEnum.MostRecent;
 else if(mostInterestingRadioButton.Checked)
 this.TypeOfPhoto = PhotoTypeEnum.MostPopular;
 else if(customTagRadioButton.Checked)
 {
 this.TypeOfPhoto = PhotoTypeEnum.Tag;
 this.PhotoTag = this.CustomTagTextBox.Text;
 }

 this._Host.SaveState(this.State.Xml);
}

Whatever is stored here is stored permanently in the database. If the user closes the
browser and visits again, these states will be retrieved from the database. However,
temporary state variables, like PageIndex, are not stored as state. They are stored in
the ViewState:

private int PageIndex
 {
 get
 {
 return (int)(ViewState[this.ClientID + "_PageIndex"] ?? 0);
 }
 set { ViewState[this.ClientID + "_PageIndex"] = value; }
 }

So far we made a regular ASP.NET web control. This control becomes a widget when
the IWidget interface is implemented on it. The implementation is straightforward:

 void IWidget.Init(IWidgetHost host)
 {
 this._Host = host;
 }

Building Widgets | 89

 void IWidget.ShowSettings()
 {
 settingsPanel.Visible = true;
 }
 void IWidget.HideSettings()
 {
 settingsPanel.Visible = false;
 }
 void IWidget.Minimized()
 {
 }
 void IWidget.Maximized()
 {
 }
 void IWidget.Closed()
 {
 }

Most of implementations are blank because there’s nothing special to do here other
than show and hide the settings area.

The Flickr photo widget is now ready. Put it in the widgets folder, create a row in
widget table in the database, and it’s good to go. The user will see the widget listed in
the Add Stuff area, as shown in Figure 3-13, and can add it to the page.

The widget is marked as IsDefault=True, so it is added automatically to the first page
for first-time visitors.

Building an Atom or RSS Widget
In this section, you will see how to build a simple RSS widget, like the one shown in
Figure 3-14.

Figure 3-13. Widget table entry for the Flickr photo widget

Figure 3-14. The RSS widget shows feed items as links

90 | Chapter 3: Building the Web Layer Using ASP.NET AJAX

RSS is arguably the most popular widget for a start page because it serves the core
functionality of web portals, to aggregate content from different sources. Users use
RSS to read news and blogs, and to subscribe to groups, bulletins, notifications, and
so on. Nowadays RSS is an almost universal format for content syndication. It is
nothing but a fixed and formatted XML feed that is universally agreed upon. Atom,
which is another format, is also quite popular. So, the widget you will make will be
able to parse both RSS and Atom format feeds.

The RSS widget stores the URL and the number of articles to show on the widget
inside its State. Just like a Flickr photo widget, you can customize the number of
items you want to see from the settings area. You can also change the feed URL and
read a different feed. State handling is handled the same way as a Flickr photo wid-
get, by storing the count and feed URL inside State.

The UI contains the settings panel and a DataList that is bound to a collection of
feed items at runtime, as shown in Example 3-41.

Example 3-41. RSS Widget .ascx content

<%@ Control Language="C#" AutoEventWireup="true" CodeFile="RSSWidget.ascx.cs"
Inherits="Widgets_RSSWidget" EnableViewState="false" %>
<asp:Panel ID="SettingsPanel" runat="Server" Visible="False" >
URL: <asp:TextBox ID="FeedUrl" Text="" runat="server" MaxLength="2000" Columns="40" />

Show
<asp:DropDownList ID="FeedCountDropDownList" runat="Server">
<asp:ListItem>1</asp:ListItem>
<asp:ListItem>2</asp:ListItem>
<asp:ListItem>3</asp:ListItem>
<asp:ListItem>4</asp:ListItem>
<asp:ListItem>5</asp:ListItem>
<asp:ListItem>6</asp:ListItem>
<asp:ListItem>7</asp:ListItem>
<asp:ListItem>8</asp:ListItem>
<asp:ListItem>9</asp:ListItem>
</asp:DropDownList>
items
<asp:Button ID="SaveSettings" runat="Server" OnClick="SaveSettings_Click" Text="Save" />
</asp:Panel>

<asp:DataList ID="FeedList" runat="Server" EnableViewState="False">
<ItemTemplate>
<asp:HyperLink ID="FeedLink" runat="server" Target="_blank" CssClass="feed_item_link"
NavigateUrl='<%# Eval("link") %>' ToolTip='<%# Eval("description") %>'>
<%# Eval("title") %>
</asp:HyperLink>
</ItemTemplate>
</asp:DataList>

Building Widgets | 91

The DataList shows a list of hyperlinks where each hyperlink is bound to a title,
description, and a link property at runtime. From the code, a projection with proper-
ties named title, description, and link is bound to the DataList. The function
ShowFeeds loads the feeds using LINQ to XML and then converts the feed XML to a
projection using a LINQ expression, as shown in Example 3-42.

Example 3-42. Loading feeds and converting to a projection

private void ShowFeeds()
{
 string url = State.Element("url").Value;
 int count = State.Element("count") == null ? 3 : int.Parse(State.Element("count").
 Value);

 var feed = Cache[url] as XElement;
 if(feed == null)
 {
 if(Cache[url] == string.Empty) return;
 try
 {

HttpWebRequest request = WebRequest.Create(url) as HttpWebRequest;
 request.Timeout = 15000;
 using(WebResponse response = request.GetResponse())
 {
 XmlTextReader reader = new XmlTextReader(
 response.GetResponseStream());

 feed = XElement.Load(reader);

 if(feed == null) return;

 Cache.Insert(url, feed, null, DateTime.MaxValue, TimeSpan.
 FromMinutes(15));
 }
 }
 catch
 {
 Cache[url] = string.Empty;
 return;
 }
 }

 XNamespace ns = "http://www.w3.org/2005/Atom";

 // RSS Format
 if(feed.Element("channel") != null)
 FeedList.DataSource = (from item in feed.Element("channel").Elements("item")
 select new
 {
 title = item.Element("title").Value,
 link = item.Element("link").Value,
 description = item.Element("description").Value
 }).Take(this.Count);

92 | Chapter 3: Building the Web Layer Using ASP.NET AJAX

The ShowFeeds function first loads the XML feed from the feed URL using
HttpWebRequest. Then it passes the response stream to an XmlReader, which, in turn,
gets passed into a XElement.Load function. XElement.Load loads the XML, parses it,
and builds an XElement object model of nodes and attributes. Based on the XML feed
format (RSS or Atom), different type of nodes and attributes appear in XElement. So,
a LINQ expression converts both types of object models to a projection with title,
description, and link properties. Once the projection is prepared, it is bound to the
FeedList DataList control. The DataList binds one hyperlink for each item in the
project and thus shows the feed items.

Now that you have learned how to build widgets, you will learn some framework-
level challenges that need to be solved to make widgets work properly on the Start
page. Some of these challenges are handling postback in different scenarios, imple-
menting security, and handling Profile objects from web services.

Page Switching: Simulating a Nonpostback Experience
Widgets load on page in three ways:

• The very first time they are created; they have no state at this stage

• When a user revisits the page; they load in nonpostback mode and restore their
state from persisted state data

• During asynchronous postback; they load in postback mode and restore their
state from both ViewState and persisted states

Normally, on a regular visit to the page (i.e., nonpostback, second scenario), widgets
load their settings from their persisted state and render the UI for the first time.
Upon postback, widgets don’t always restore settings from persisted state and
instead update the state or reflect small changes on the UI. For example, when you
click the Next button on the Flickr photo widget, it’s a postback experience for the

 // Atom format
 else if(feed.Element(ns + "entry") != null)
 FeedList.DataSource = (from item in feed.Elements(ns + "entry")
 select new
 {
 title = item.Element(ns + "title").Value,
 link = item.Element(ns + "link").Attribute("href").
 Value,
 description = item.Element(ns + "content").Value
 }).Take(this.Count);

 FeedList.DataBind();
}

Example 3-42. Loading feeds and converting to a projection (continued)

Page Switching: Simulating a Nonpostback Experience | 93

widget. It does not go and fetch Flickr photos again, it just updates the current page
index in its ViewState. So, it’s important for widgets to know when they are being
rendered for the first time or when it is a postback.

The definition of nonpostback and postback is different when you have multiple tabs
on one page. When you click on another tab, it’s a regular asynchronous postback
for ASP.NET because a LinkButton gets clicked inside an UpdatePanel. This makes
the tab’s UpdatePanel postback asynchronously, and on the server side you can see
which tab is clicked. You can then load the widgets on the newly selected tab. But
when widgets load, they call Page.IsPostBack, and they get true. So, widgets assume
they are already on the screen and try to do a partial rendering or access their own
ViewState. But this is not the case because they are not rendered yet and there’s no
ViewState. As a result, the widgets behave abnormally and any ViewState access fails.

So, we need to make sure that during the tab switch, even though it’s a regular ASP.
NET postback, the widgets don’t see it as postback. The idea is to inform widgets
whether it is a regular visit or a postback via the IWidgetHost interface.

On Default.aspx, the SetupWidgets function creates the WidgetContainer and loads
the widgets. Here’s how it works:

private void SetupWidgets(Func<WidgetInstance, bool> isWidgetFirstLoad)
{
...
foreach(WidgetInstance instance in setup.WidgetInstances)
{
var panel = columnPanels[instance.ColumnNo];

var widget = LoadControl(WIDGET_CONTAINER) as WidgetContainer;
widget.ID = "WidgetContainer" + instance.Id.ToString();
widget.IsFirstLoad = isWidgetFirstLoad(instance);
widget.WidgetInstance = instance;

widget.Deleted += new Action<WidgetInstance>(widget_Deleted);

panel.Controls.Add(widget);
}

The public property IsFirstLoad is determined by what calls the SetupWidget and
when. SetupWidget’s job is to render the widgets on the page. So, it gets called dur-
ing the first visit and subsequent postbacks. The caller knows whether it’s postback
or not and can pass a predicate, which decides the value of the IsFirstLoad prop-
erty. WidgetContainer just passes the value of the property to its contained widget via
the IWidgetHost interface.

So, why not just send true when it’s postback and false when it’s not and declare
the function as SetupWidgets(bool)?

When a new widget is added on the page, it is a first-time loading experience for the
newly added widget, but it’s a regular postback for existing widgets already on the

94 | Chapter 3: Building the Web Layer Using ASP.NET AJAX

page. If true or false is passed for all widgets, then the newly added widget will see
it as a postback just like all other existing widgets on the page and thus fail to load
properly. To make sure it’s a nonpostback experience for only the newly added wid-
get, and a postback experience for existing widgets already on the page, use this
predicate feature:

DashboardFacade facade = new DashboardFacade(Profile.UserName);
WidgetInstance newWidget = facade.AddWidget(widgetId);

this.ReloadPage(wi => wi.Id == newWidget.Id);

Here the predicate will return true for the newly added widget, but false for any
other widget. As a result, the newly added widget get IsFirstLoad = true, where
existing widgets get IsFirstLoad = false.

Using the Profile Object Inside a Web Service
The web project uses a Profile object like IsFirstVisit to store a user’s state.
Profile object is also used to get the currently visiting user’s name from the Profile.
UserName property. The Default.aspx is already full of Profile.Something, and so are
the widget container and the widgets. The next step is to add a new web service and
access the Profile object, but when you type context.Profile from the web service
code, IntelliSense doesn’t show any of your custom properties.

At runtime, ASP.NET generates a class looking at the specification provided in web.
config, which becomes the Profile object in .aspx pages and .ascx controls. But this
object is not available in the web service (.asmx.cs) and you cannot see the custom
properties you have added in the Profile object. Although HttpContext.Current.
Profile will reference the Profile object, its type is ProfileBase, which does not
show your custom properties because the class is generated at runtime.

To overcome this problem, you have to handcode the profile class in your App_Code
folder and then configure web.config so it doesn’t autogenerate a class but instead
uses yours. Here’s what you do in web.config:

<profile enabled="true" inherits="UserProfile">

Now go to App_Code and make a UserProfile class like this:

public class UserProfile : System.Web.Profile.ProfileBase
{
[SettingsAllowAnonymousAttribute(true)]
public virtual int Timezone
{
get
{
return ((int)(this.GetPropertyValue("Timezone")));
}
set

Implementing Authentication and Authorization | 95

{
this.SetPropertyValue("Timezone", value);
}
}

This is an example property implementation. Don’t forget to add the
[SettingsAllowAnonymousAttribute(true)] to the properties that you want to make
available to anonymous users. At the end of the class, add this method:

public virtual ProfileCommon GetProfile(string username)
{
return ((ProfileCommon)(ProfileBase.Create(username)));
}

Here’s an easy way to avoid handcoding this class and generate it automatically
instead. Before you make the changes in web.config and create the UserProfile class,
run your web project as it was before. But before running it, turn off SQL Server.
This will make the ASP.NET execution break on the first call to a Profile object’s
property. For example, if you have defined a custom property TimeZone in the
Profile object in web.config, execution will break on this line:

public virtual int Timezone
{
get
{
return ((int)(this.GetPropertyValue("Timezone")));

It will fail to load the Profile object values from the database because the database is
down. If you scroll up, you will see that this is the class that ASP.NET generates at
runtime. All the properties are already declared on this class. So, you can just copy
and paste it in your own class easily! However, after copying, you will realize there’s
no [SettingsAllowAnonymousAttribute(true)] attribute in the generated class. So,
you will have to add it manually. Once you have made the class, you will have to
remove all the custom properties declared inside <properties> node in the web.config.

Now that you have your own Profile class, you can cast (HttpContext.Current.
Profile as UserProfile) and use all the custom properties inside the web service.

If you don’t want to have strict coding on the web service, then you can use the old
way of accessing the Profile properties via Profile.GetPropertyValue("TimeZone").
This will work for both web pages and web services. You don’t need to handcode a
Profile class if you go for this approach, then again you don’t get the strong typing
and the IntelliSense feature.

Implementing Authentication and Authorization
The ASP.NET membership provider and profile provider take care of the authentica-
tion and authorization for the application. In addition to this, an anonymous identi-
fication provider is used, which is not common among web applications because,

96 | Chapter 3: Building the Web Layer Using ASP.NET AJAX

unlike web portals, other web apps don’t require anonymous user creation on the
first visit. The anonymous identification provider creates anonymous users when-
ever there is a cookieless visit, and takes care of creating entries in the aspnet_users
table for the new anonymous user.

The web.config defines the providers in Example 3-43.

Example 3-43. Defining the providers with web.config

<authentication mode="Forms">
 <forms
 name=".DBAUTH" loginUrl="Login.aspx"
 protection="All" timeout="20160"
 path="/" requireSSL="false"
 slidingExpiration="true" defaultUrl="Default.aspx"
 cookieless="UseDeviceProfile" enableCrossAppRedirects="false"/>
 </authentication>
 <membership defaultProvider="DashboardMembershipSqlProvider"
 userIsOnlineTimeWindow="15">
 <providers>
 <add name="DashboardMembershipSqlProvider"
 type="System.Web.Security.SqlMembershipProvider,
 System.Web, Version=2.0.0.0,
 Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a"
 connectionStringName="DashboardConnectionString"
 enablePasswordRetrieval="true"
 enablePasswordReset="true"
 requiresQuestionAndAnswer="false"
 applicationName="Dashboard"
 requiresUniqueEmail="false"
 passwordFormat="Clear"
 minRequiredPasswordLength="1"
 passwordStrengthRegularExpression=""
 minRequiredNonalphanumericCharacters="0"/>
 </providers>
 </membership>
 <roleManager enabled="true" cacheRolesInCookie="true"
 defaultProvider="DashboardRoleManagerSqlProvider"
 cookieName=".ASPXROLES" cookiePath="/"
 cookieTimeout="30" cookieRequireSSL="false"
 cookieSlidingExpiration="true" createPersistentCookie="false"
 cookieProtection="All">
 <providers>
 <add name="DashboardRoleManagerSqlProvider"
 type="System.Web.Security.SqlRoleProvider, System.Web,
 Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a"
 connectionStringName="DashboardConnectionString"
 applicationName="Dashboard"/>
 </providers>
 </roleManager>
 <profile enabled="true" automaticSaveEnabled="false"
 defaultProvider="DashboardProfileSqlProvider"
 inherits="UserProfile">

Implementing Authentication and Authorization | 97

However, there are several performance issues involved with anonymous identifica-
tion providers, which are addressed later.

The anonymous identification provider is defined as:

<anonymousIdentification
 enabled="true"
 cookieName=".DBANON"
 cookieTimeout="43200"
 cookiePath="/"
 cookieRequireSSL="false"
 cookieSlidingExpiration="true"
 cookieProtection="All"
 cookieless="UseCookies"/>

An anonymous identification provider generates a cookie in the browser that identi-
fies the anonymous user for 43,200 minutes (a little over 29 days) after the last hit.
(The timeout is on a sliding scale, so each visit restarts the 29-day clock.) This means
if a user closes the browser and comes back within a month, the user will be identi-
fied and will get the same page setup as it before. As a result, users can keep using
the web portal without actually ever signing up. But if the browser cookie is cleared,
the page setup will be lost forever. The only solution is to register using a login name
and password, so even if the cookie is lost, the user can log in to see his pages.

Web services, which let you modify data, are vulnerable to malicious attacks. For
example, there is a web service method that moves a widget from one position to
another. Imagine someone trying to call this web service with an arbitrary widget
instance ID. The attacker will be able to mess up page setups by trying instance IDs
from 1 to 1,000. To prevent such attempts, each web service operation needs to
ensure operations are performed only on the objects that the caller owns. Remember
from the previous example that you cannot the move position of a widget unless you
are the owner. Such security checks are implemented in the business layer because if
they were implemented in web layer, the logic for checking ownership, which is a
business rule, would get into the web layer. Some might argue that such checks can
easily be put on the web layer to kick out malicious calls before they reach the busi-
ness layer. But this pollutes the web layer with business rules. Besides maintaining
such architectural purity, business layer methods are called from many sources, such

 <providers>
 <clear/>
 <add name="DashboardProfileSqlProvider"
 type="System.Web.Profile.SqlProfileProvider"
 connectionStringName="DashboardConnectionString"
 applicationName="Dashboard"
 description="SqlProfileProvider for Dashboard"/>
 </providers>
 </profile>

Example 3-43. Defining the providers with web.config (continued)

98 | Chapter 3: Building the Web Layer Using ASP.NET AJAX

as a Windows service or a different web frontend. So, it becomes a maintenance issue
to preserve conformance to such validations in all places. This topic is covered in
more detail in Chapter 7.

Implementing Logout
Wait, wait! Don’t skip this section. A simple logout can be very cool.

First question: why do people implement a logout page as an .aspx file when it just
calls FormsAuthentication.Signout and redirects to a homepage? You really don’t
need to make ASP.NET load an .aspx page, produce HTML, and process through the
page life cycle only to do a cookie cleanup and redirect. A simple HTTP 302 can tell the
browser to go back to the homepage. So, the logout page is a great candidate for
HTTP handlers without any UI.

Example 3-44 shows how to implement a logout handler inside a file named
Logout.ashx:

Example 3-44. Implementing a logout handler in the web application

<%@ WebHandler Language="C#" Class="Logout" %>

using System;
using System.Web;
using System.Web.Security;
using System.Collections.Generic;

public class Logout : IHttpHandler {

 public void ProcessRequest (HttpContext context) {

 /// Expire all the cookies so browser visits us as a brand new user
 List<string> cookiesToClear = new List<string>();
 foreach (string cookieName in context.Request.Cookies)
 {
 HttpCookie cookie = context.Request.Cookies[cookieName];
 cookiesToClear.Add(cookie.Name);
 }

 foreach (string name in cookiesToClear)
 {
 HttpCookie cookie = new HttpCookie(name, string.Empty);
 cookie.Expires = DateTime.Today.AddYears(-1);

 context.Response.Cookies.Set(cookie);
 }

 context.Response.Redirect("~/Default.aspx");
 }

Implementing Logout | 99

Handlers
Handlers are a lot lighter than the .aspx page because they have a very simple life
cycle, are instance reusable, and generate a small amount of code when compiled at
runtime.

The idea here is to remove all cookies related to the site instead of just removing the
forms authentication cookie. When you use an anonymous identification provider,
you will find two cookies: .DBAUTH and .DBANON. The form’s authentication provider
generates the first one and the other one is from the anonymous identification pro-
vider. These cookies are because an anonymous user is different than the user that is
logged in. If you call FormAuthentication.Signout(), it will just clear the .DBAUTH
cookie, but the other one will remain as is. So, after logout, instead of getting a brand
new setup, you will get the old setup that you saw when you were an anonymous
user during your first visit. The anonymous user is converted to a registered user by
directly modifying the aspnet_users table. So, the anonymous user no longer exists in
the database. This means the cookie for the anonymous user points to something
that no longer exists. So, when the ASP.NET membership provider tries to find the
user from the anonymous cookie, it fails.

In a web portal, we want the user to start over with a fresh setup. So, we need to
clear both cookies and any other cookie that the widget scripts have used for storing
temporary states. You never know what widgets will do with the cookie. Some wid-
gets can secretly keep track of your logged-in session by storing info in a different
cookie. When you log out and become an anonymous user, the widget can still
access that secret cookie and find out about you. For example, it can easily store
your email address when it is loaded in a logged-in session, and after you log out, it
can still read that email address from the cookie. It’s a security risk to have any
cookie left from your logged-in session after logging out.

 public bool IsReusable {
 get {
 return true;
 }
 }

}

Example 3-44. Implementing a logout handler in the web application (continued)

100 | Chapter 3: Building the Web Layer Using ASP.NET AJAX

Summary
The web layer is the most difficult part of a web portal application because it is so UI
intensive. Although ASP.NET AJAX offers a lot of off-the-shelf features, there are
some tweaks that need to be made when using it in a real application. The business
and the data access layers that I explain in next chapter are quite simple compared to
the web layer. However, they use two hot technologies—Workflow Foundation and
LINQ to SQL. Brace yourself for some really cool implementation of these cutting-
edge technologies.

Additional Resources
• ASP.NET AJAX Control Toolkit Project (http://www.asp.net/ajax/ajaxcontroltoolkit)

• AJAX Application Architecture, Part 1 on MSDN (http://msdn.microsoft.com/
msdnmag/issues/07/09/cuttingedge/default.aspx)

• AJAX Application Architecture, Part 2 on MSDN (http://msdn.microsoft.com/
msdnmag/issues/07/10/cuttingedge/default.aspx)

• Scott Guthrie’s blog post, “ASP.NET AJAX in .NET 3.5 and VS 2008” (http://
weblogs.asp.net/scottgu/archive/2007/07/30/asp-net-ajax-in-net-3-5-and-vs-
2008.aspx)

• My article on CodeProject, “ASP.NET AJAX Under the Hood Secrets” (www.
codeproject.com/Ajax/aspnetajaxtips.asp)

http://www.asp.net/ajax/ajaxcontroltoolkit/
http://msdn.microsoft.com/msdnmag/issues/07/09/cuttingedge/default.aspx
http://msdn.microsoft.com/msdnmag/issues/07/09/cuttingedge/default.aspx
http://msdn.microsoft.com/msdnmag/issues/07/10/CuttingEdge/default.aspx
http://msdn.microsoft.com/msdnmag/issues/07/10/CuttingEdge/default.aspx
http://weblogs.asp.net/scottgu/archive/2007/07/30/asp-net-ajax-in-net-3-5-and-vs-2008.aspx
http://weblogs.asp.net/scottgu/archive/2007/07/30/asp-net-ajax-in-net-3-5-and-vs-2008.aspx
http://weblogs.asp.net/scottgu/archive/2007/07/30/asp-net-ajax-in-net-3-5-and-vs-2008.aspx
http://www.codeproject.com/Ajax/aspnetajaxtips.asp
http://www.codeproject.com/Ajax/aspnetajaxtips.asp

101

Chapter 4 CHAPTER 4

Building the Data and Business Layers
Using .NET 3.54

The data and business layers of the Dropthings portal use two of the hottest features
of the .NET 3.0 and 3.5 frameworks: Windows Workflow Foundation (WF) and
LINQ. The data layer makes good use of LINQ to SQL, a feature of .NET 3.5. The
business layer is built largely with the WF released with .NET 3.0, using new lan-
guage extensions in C# 3.0.

Introducing LINQ to SQL
LINQ, or Language integrated query, is a set of C# 3.0 language and .NET 3.5
framework features for writing structured queries over local object collections and
remote data sources. With LINQ, you can query any collection that implements
IEnumerable<>, including tables in a database.

LINQ to SQL is a lot of fun to work with and makes the task of writing a data access
layer that generates highly optimized SQL amazingly simple. If you haven’t used
LINQ to SQL before, brace yourself.

With LINQ to SQL, you design the database that the application will use and then
use the Visual Studio 2008 Object/Relational Designer (sqlmetal.exe in LINQ Pre-
view) to generate a class that represents the database with an appropriate object
model. This is a giant step beyond having to handcode the entity and data access
classes. Formerly, whenever the database design changed, you had to modify the
entity classes and modify the insert, update, delete, and get methods in the data
access layer. Of course, you could use third-party object-relational mapping (ORM)
tools or some kind of code generator that generates entity classes from database
schema and data access layer code. But now, LINQ to SQL does it all for you!

A great thing about LINQ to SQL is that it can generate objects known as projec-
tions that contain only the fields you want to receive from a specific query, not the
entire row. There’s no ORM tool or object-oriented database library that can do this
today because the operation requires a custom compiler to support it. The benefit

102 | Chapter 4: Building the Data and Business Layers Using .NET 3.5

of projection is pure performance. You select only fields that you need, and you
don’t have to build a jumbo-sized object with every field from the tables you query.
LINQ to SQL selects only the required fields and creates objects that contain only
the selected fields. Let’s take a look at some example queries used in the business
layer. Example 4-1 shows how easy it is to create a new Page object in a database.

Here DashboardData is the DataContext generated by the Visual Studio 2008 Object
Relational Designer. It contains all the database access methods and entities for
tables in the database. DataContext takes care of generating queries for objects that
are requested from the database, executing the queries, and populating objects from
the database. It also keeps track of changes made to the objects and when they are
updated, and knows exactly which fields to update in the tables. DataContext com-
pletely encapsulates database access and provides a nice, clean, object-oriented way
of working with data that is persisted in a database. Moreover, DataContext allows
you to run arbitrary queries as well; you can use regular stored procedures to read
and write rows in database tables.

Example 4-2 shows how to get a Page and change its name. You can use lambda
expressions similar to those you have seen in Chapter 3 to define the condition for
the where clause.

Another option is to select only a scalar value from the database. Reading scalar val-
ues directly from a database is faster than reading a row and then converting it to an
object repeatedly. Example 4-3 shows how to do it.

Example 4-1. Inserting a new Page object in a database using LINQ to SQL

var db = new DashboardData(ConnectionString);

var newPage = new Page();
newPage.UserId = UserId;
newPage.Title = Title;
newPage.CreatedDate = DateTime.Now;
newPage.LastUpdate = DateTime.Now;

db.Pages.Add(newPage);
db.SubmitChanges();
NewPageId = newPage.ID;

Example 4-2. Get an object by primary key and updating

var page = db.Pages.Single(p => p.ID == PageId);
page.Title = PageName;
db.SubmitChanges();

Example 4-3. Read scalar values

var UserGuid = (from u in db.AspnetUsers
where u.LoweredUserName == UserName
select u.UserId).Single();

Introducing LINQ to SQL | 103

You can also read specific fields and create an object on the fly that contains only the
specific fields. This is called projection and is shown in Example 4-4.

In Example 4-4, only two fields from the Aspnet_Users table are selected. LINQ to
SQL returns an object that has only these two fields, and not all the fields in the
table.

Database paging is very easy in LINQ to SQL. For example, if you want to select 20
rows starting at the 100th row, just use the Skip and Take functions as shown in
Example 4-5.

It’s easy to provide transaction support in LINQ to SQL. You just write code inside a
using block, and the code inside it falls into a transaction scope (see Example 4-6).

Example 4-4. Create projection

var users = from u in db.AspnetUsers
select { UserId = u.UserId, UserName = u.LoweredUserName };

foreach(var user in users)
{
Debug.WriteLine(user.UserName);
}

Example 4-5. Paging using Skip and Take

var users = (from u in db.AspnetUsers
select { UserId = u.UserId, UserName = u.LoweredUserName }).Skip(100).Take(20);

foreach(var user in users)
{
Debug.WriteLine(user.UserName);
}

Example 4-6. Using transaction

using(var ts = new TransactionScope())
{
List<Page> pages = db.Pages.Where(p => p.UserId == oldGuid).ToList();
foreach(Page page in pages)
page.UserId = newGuid;

// Change setting ownership
UserSetting setting = db.UserSettings.Single(u => u.UserId == oldGuid);
db.UserSettings.Remove(setting);

setting.UserId = newGuid;
db.UserSettings.Add(setting);
db.SubmitChanges();

ts.Complete();
}

104 | Chapter 4: Building the Data and Business Layers Using .NET 3.5

When there’s any exception, the using block will call the Dispose function on ts, and
the transaction will abort unless it is already completed. But if the code reaches the
end of the block, it calls ts.complete() and the transaction commits.

Building the Data Access Layer Using LINQ to SQL
The first step to using LINQ to SQL is to build a DataContext, which contains all
entity classes and their data access methods. You will generate one Entity class per
table, e.g., the Page Entity class for the Page table in the database. Visual Studio
2008’s ORM designer allows you to easily drag and drop tables onto a designer sur-
face and generate entity classes. The next step will be to create a simple helper class
that makes working with LINQ to SQL even easier. Let’s start with designing the
ORM in Visual Studio 2008.

Generating a Data Model Using the Visual Studio 2008 Designer
Visual Studio 2008 comes with an object relational mapping designer, which allows
you to create a LINQ to SQL classes file and then drag and drop tables from the
server explorer to the designer surface. Visual Studio will then automatically gener-
ate classes from those tables. You can further modify the associations, turn on or off
lazy loading of properties, add validation, and much more. Nothing special was done
to generate Figure 4-1 in the data model, besides putting all the tables from the data-
base onto the designer surface.

After you create the designer and build the project, the data access and entity classes will
be ready for use. DashboardData is the data context class that’s included in the project.

Manipulating Data with a Database Helper
Example 4-7 shows the code for a DatabaseHelper that makes working with LINQ to
SQL a lot easier.

Example 4-7. DatabaseHelper, part 1

public static class DatabaseHelper
{
 public const string ConnectionStringName = "DashboardConnectionString";
 public const string ApplicationID = "fd639154-299a-4a9d-b273-69dc28eb6388";
 public readonly static Guid ApplicationGuid = new Guid(ApplicationID);

 public static DashboardData GetDashboardData()
 {
 var db = new DashboardData(ConfigurationManager.
 ConnectionStrings[ConnectionStringName].ConnectionString);
 return db;
 }

Building the Data Access Layer Using LINQ to SQL | 105

DatabaseHelper also takes care of configuration management and initialization of the
DataContent class. It has a GetDashboardData function that returns a reference to the
DashboardData instance already configured with the connection string. Insert, Update,
and Delete methods offer shortcuts for performing common database operations.

DatabaseHelper reads the connection string from the <connectionString> block in
the web.config or app.config file. It also stores the ApplicationId for the ASP.NET
membership provider.

Although it would be sensible to place the ApplicationID in web.config,
I’ve placed it in DatabaseHelper just to simplify this discussion.

Whenever you create a new application using an ASP.NET membership, ASP.NET
creates an entry in the Aspnet_Applications table. This ApplicationID is also used
in the aspnet_users table to identify which application a user belongs to.

Figure 4-1. Database model that shows LINQ to SQL classes

106 | Chapter 4: Building the Data and Business Layers Using .NET 3.5

The membership provider is built for hosting multiple applications in the same
database. So, all the root objects such as user, personalization, etc. belong to an
application.

Here’s a problem with LINQ to SQL. If an entity travels through multiple tiers, then
it gets detached from the DataContext that created it. This means that as soon as an
entity is out of the data access layer and into the business or web layer, it is detached
from the DataContext because the DataContext is only available within the data access
layer. So, when you try to update entities again using a different DataContext, you
first need to attach the entity instance to the new data context, then make the
changes and call SubmitChanges. Now the problem is that from the business layer you
do not have access to the DataContext, which is created by the data access layer when
the entity object is being updated. The business layer will just send the entity object
to the data access component, and then the component will update by creating a
new DataContext.

LINQ to SQL requires that you attach the entity object before making changes to it
so that it can track which properties are being changed and determine what kind of
UPDATE or INSERT statement to generate. However, a typical business layer will make
the object modifications first and then send them to the data access component. So,
a traditional attempt like Example 4-8 will fail.

Somehow you need to do what is shown in Example 4-9.

However, Example 4-9 is not possible because you can’t make DashboardData state-
less. You need to create DataContext inside methods and then store the reference to
DataContext between function calls. This will be fine for a single-user scenario, but
not an acceptable solution for multiuser web sites. So, I made a workaround (see
Example 4-10).

Example 4-8. Common way of updating objects in the database

Page p = DashboardData.GetSomePage();
...
...

// Long time later may be after a page postback
p.Title = "New Title";
DashboardData.UpdatePage(p);

Example 4-9. Proper way of updating objects in the database using LINQ to SQL

Page p = DashboardData.GetSomePage();
...
...
// Long time later may be after a page postback
DashboardData.AttachPage(p);
p.Title = "New Title";
DashboardData.UpdatePage(p);

Building the Data Access Layer Using LINQ to SQL | 107

Here, the Update<> method first attaches the page object to DataContext and then
calls the delegate passing the reference to the attached object. You can now modify
the passed object as if you were modifying the original object inside the delegate.
Once the delegate completes, the object will be updated using DataContext.
SubmitChanges();.

The implementation of the Update<> method is shown in Example 4-11.

The widget container uses DatabaseHelper to update objects in the database as
shown in Example 4-12.

The delegate in Update<T> allows you to be in the context of the business layer or the
caller. So, you can access the UI elements or other functions/properties that you need
to update the entity’s properties.

Similarly, there’s an UpdateAll<> function that updates a list of objects in the data-
base (see Example 4-13).

Example 4-10. Workaround for stateless data persistence

// Load the object from database
Page p = DashboardData.GetSomePage();
...
...
// Long time later may be after a page postback
DashboardData.Update<Page>(p, delegate(Page p1)
{
 p1.Title = "New Title";
});

Example 4-11. The DashboardData.Update<T> updates an object in the database

public static void Update<T>(T obj, Action<T> update)
{
 var db = GetDashboardData();
 db.GetTable<T>().Attach(obj);
 update(obj);
 db.SubmitChanges();
}

Example 4-12. The widget container uses DatabaseHelper to update objects

WidgetInstance widgetInstance = DatabaseHelper.GetDashboardData().
 WidgetInstances.Single(wi => wi.Id == WidgetInstanceId);

DatabaseHelper.Update<WidgetInstance>(widgetInstance,
 delegate(WidgetInstance wi)
{
 wi.ColumnNo = ColumnNo;
 wi.OrderNo = RowNo;
});

108 | Chapter 4: Building the Data and Business Layers Using .NET 3.5

For convenience, I have made Insert<> an Delete<> also. But they are not required
because they do not have an “Attach first, modify later” requirement (see
Example 4-14).

The Delete<> method is a tricky one. First you need to attach the object to the Table
and then call the table’s Remove function. This means you need to first get the object
before you can call Delete, which adds a read overhead while deleting an object (see
Example 4-15).

Example 4-13. DashboardData.UpdateAll<T> updates multiple objects

public static void UpdateAll<T>(List<T> items, Action<T> update)
{
 var db = GetDashboardData();

 foreach(T item in items)
 {
 db.GetTable<T>().Attach(item);
 update(item);
 }

 db.SubmitChanges();
}

Example 4-14. Insert<> and Delete<> functions in DashboardData

public static void Delete<T>(Action<T> makeTemplate) where T:new()
{
 var db = GetDashboardData();
 T template = new T();
 makeTemplate(template);
 db.GetTable<T>().Remove(template);
 db.SubmitChanges();
}
public static void Insert<T>(T obj)
{
 var db = GetDashboardData();
 db.GetTable<T>().Add(obj);
 db.SubmitChanges();
}

Example 4-15. Delete<T> takes the object to delete and then removes it from the database

public static void Delete<T>(T entity) where T : class,new()
{
 using (var db = GetDashboardData())
 {
 db.GetTable<T>().Attach(entity);
 db.GetTable<T>().Remove(entity);
 db.SubmitChanges();
 }
}

Building the Data Access Layer Using LINQ to SQL | 109

Now that you have learned how to build the data access layer, let’s address some of the
challenges you’ll face while running the portal project in a production environment.

Cleaning Up Inactive User and Related Data
An Ajax web portal has a unique challenge when it comes to cleaning up unused
data that is generated by anonymous users who never return. Every first visit creates
one anonymous user, a page setup, widgets, etc. If the user doesn’t come back, that
information remains in the database permanently. It is possible that the user might
come back within a day, or a week or a month, but there’s no guarantee. Generally,
sticky users—users who return to your site frequently—make up 30 to 50 percent of
the total users who come to an Ajax web portal. So, you end up with 50 to 70 per-
cent unused data. Dropthings requires daily data cleanup to keep the database size
down—user accounts expire, RSS feeds get old, anonymous sessions expire, and
users never come back.

This is a huge cleanup operation once a web portal becomes popular and starts
receiving thousands of users every day. Think about deleting millions of rows from
20 or 30 tables, one after another, while maintaining foreign key constraints. Also,
the cleanup operation needs to run while the site is running, without hampering its
overall performance. The whole operation results in heavily fragmented index and
space in the MDF file. The log file also becomes enormous to keep track of the large
transactions. Hard drives get really hot and sweat furiously. Although the CPU keeps
going, it’s really painful to watch SQL Server go through this every day. But there is
no alternative to keep up with SQL Server’s RAM and disk I/O requirements. Most
importantly, this avoids counting users in monthly reports that are not valid users.

When a user visits the site, the ASP.NET membership provider updates the
LastActivityDate of the aspnet_users table. From this field, you can find out how
long the user has been idle. The IsAnonymous bit field shows whether the user account
is anonymous or registered. If it is registered, then there is no need to worry. But if it
is anonymous and more than 30 days old, you can be sure that the user will never
come back because the cookie has already expired. However, we can’t avoid creat-
ing an anonymous user because the user might want a fresh start (see the “Imple-
menting Authentication and Authorization” section in Chapter 3). Another scenario
is a user logging out on a shared computer (e.g., a cyber café) and the next person
using it as an anonymous user.

Here’s how the whole cleanup process works:

1. Find out the users that are old enough to be discarded and are anonymous

2. Find out the pages the user has

3. Delete all of the widget instances on those pages

4. Delete those pages

110 | Chapter 4: Building the Data and Business Layers Using .NET 3.5

5. Remove rows from child tables related to aspnet_users like aspnet_profile,
aspnet_UsersInRoles, and aspnet_PersonalizationPerUser

6. Remove rows for users to be deleted

7. Remove the users from aspnet_users

Example 4-16 is the giant DB script that does it all. I have added inline comments to
explain what the script is doing.

Example 4-16. Cleaning up old anonymous users and their related data

-- Number of days after which we give users the 'bye bye'
DECLARE @Days int
SET @Days = 29

-- Number of users to delete per run. If it's too high, the database will get stuck
-- for a long time. If it's too low, you will end up having more trash than
-- you can clean up. Decide this number based on how many anonymous users are
–- created per day and how frequently you run this query. The correct formula
-- for this number is: @NoOfUsersToDelete > AnonUsersPerDay / FrequencyOfRun
DECLARE @NoOfUsersToDelete int
SET @NoOfUsersToDelete = 1000

-- To find other tables, create temporary tables that hold users and pages to delete
-- as the user and page are used.
-- Having them in a temp table is better than repeatedly running SELECT ID FORM ...
IF EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N'[dbo].
[PagesToDelete]') AND type in (N'U'))
DROP TABLE [dbo].[PagesToDelete]
IF EXISTS (SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N'[dbo].
[aspnetUsersToDelete]') AND type in (N'U'))
DROP TABLE [dbo].[AspnetUsersToDelete]

create table PagesToDelete (PageID int NOT NULL PRIMARY KEY)
create table AspnetUsersToDelete (UserID uniqueidentifier NOT NULL PRIMARY KEY)

-- Find inactive anonymous users and store the UserID in the temporary
-- table
insert into AspnetUsersToDelete
select top(@NoOfUsersToDelete) UserID from aspnet_Users where
(isAnonymous = 1) and (LastActivityDate < (getDate()-@Days))
order by UserID -- Saves SQL Server from sorting in clustered index again

print 'Users to delete: ' + convert(varchar(255),@@ROWCOUNT)
GO

-- Get the user pages that will be deleted
insert into PagesToDelete
select ID from Page where UserID in
(
select UserID from AspnetUsersToDelete
)

Building the Data Access Layer Using LINQ to SQL | 111

Now the question is, when can I run this script? The answer depends on several
factors:

print 'Pages to delete: ' + convert(varchar(255),@@ROWCOUNT)
GO

-- Delete all widget instances on the pages to be deleted
delete from WidgetInstance where PageID IN
(SELECT PageID FROM PagesToDelete)

print 'Widget Instances deleted: ' + convert(varchar(255), @@ROWCOUNT)
GO

-- Delete the pages
delete from Page where ID IN
(SELECT PageID FROM PagesToDelete)
GO

-- Delete UserSetting
delete from UserSetting WHERE UserID IN
(SELECT UserID FROm AspnetUsersToDelete)
GO

-- Delete profile of users
delete from aspnet_Profile WHERE UserID IN
(SELECT UserID FROm AspnetUsersToDelete)
GO

-- Delete from aspnet_UsersInRoles
delete from aspnet_UsersInRoles WHERE UserID IN
(SELECT UserID FROm AspnetUsersToDelete)
GO

-- Delete from aspnet_PersonalizationPerUser
delete from aspnet_PersonalizationPerUser WHERE UserID IN
(SELECT UserID FROm AspnetUsersToDelete)
GO

-- Delete the users
delete from aspnet_users where userID IN
(SELECT UserID FROm AspnetUsersToDelete)

PRINT 'Users deleted: ' + convert(varchar(255), @@ROWCOUNT)
GO

drop table PagesToDelete
drop table AspnetUsersToDelete
GO

Example 4-16. Cleaning up old anonymous users and their related data (continued)

112 | Chapter 4: Building the Data and Business Layers Using .NET 3.5

• The period of lowest traffic on your site. For example, in the U.S., most users are
asleep at midnight. Of course, that works only if the majority of your users are
from the U.S.

• Other maintenance tasks, such as index defrag or database backup, are the least
likely to be running. If by any chance any other maintenance task conflicts with
this enormous delete operation, SQL Server is dead.

• The time it takes to run the script. The operation will take anywhere from 10
minutes to a number of hours depending on the volume of trash to clean up. So,
consider the amount of time it will take to run this script and plan other mainte-
nance jobs accordingly.

• When you typically run index defrag. It’s best to run the script 30 minutes
before the index defrag jobs run, because after the script completes, the tables
will be heavily fragmented. So, you need to defrag the indexes.

Before running this script, first:

• Turn off auto shrink from database property. Database size will automatically
reduce after the cleanup. Shrinking a database requires a lot of disk I/O activity
and it slows the database down. Turn off auto shrink because the database will
eventually grow again.

• Ensure that the log file’s initial size is big enough to hold such enormous transac-
tions. You can specify one-third of the MDF size as LDF’s initial size. Also make
sure the log file did not shrink—let it occupy HD space. It saves SQL Server
from expanding and shrinking the file. Both of these require high disk I/O.

Once the cleanup job is done and the index defrag runs, the performance of your
database will improve significantly. Because the tables are now smaller, the indexes
are smaller, and SQL Server doesn’t have to run through large indexes anymore.
Future index defrags take less time because there’s not much data left to optimize.
SQL Server also takes less RAM because it has to work with much less amount of
data. Database backup size is also reduced because the MDF size does not keep
increasing indefinitely. As a result, the significant overhead of this cleanup operation
is quite acceptable when compared to all the benefits.

Introducing Windows Workflow Foundation
Windows Workflow Foundation (WF), included in .NET 3.0, provides the program-
ming model, engine, and tools for quickly building workflow-enabled applications. It
gives developers the ability to model business processes in a visual designer by draw-
ing flow chart diagrams. Complex business operations can be modeled as a work-
flow in the visual workflow designer included in Visual Studio 2008, and coded
using any .NET programming language. WF consists of the following parts:

Building the Business Layer Using WF | 113

Activity model
Activities are the building blocks of workflow—think of them as a unit of work
that needs to be executed. Activities are easy to create, either from writing code
or by composing them from other activities. Out of the box, there are a set of
activities that mostly provide structure, such as parallel execution, if/else, and
calling a web service.

Workflow designer
This is the design surface in Visual Studio, which allows for the graphical com-
position of workflow, by placing activities within the workflow model.

Workflow runtime
Workflow runtime is a lightweight and extensible engine that executes the activi-
ties that make up a workflow. The runtime is hosted within any .NET process,
enabling developers to bring workflow to anything, from a Windows forms
application to an ASP.NET web site or a Windows service.

Rules engine
WF has a rules engine that enables declarative, rule-based development for
workflows and any .NET application to use. Using the rule engine, you can elim-
inate hardcoded rules in your code and move them from the code to a more
maintainable declarative format on the workflow diagram.

Although a workflow is mostly used in applications that have workflow-type busi-
ness processes, you can use a workflow in almost any application as long as the
application does complex operations. In this Start page application, some opera-
tions, like first visit, are complex and require multistep activities and decisions. So,
such applications can benefit from workflow implementation.

Building the Business Layer Using WF
The entire business layer is developed using WF. Each of the methods in the
DashboardFacade do nothing but call individual workflows. There’s absolutely no
business code that is not part of any workflow.

“This is insane!” you are thinking. I know. Please listen to why I went for this
approach. Architects can “design” business layer operations in terms of activities, and
developers can just fill in a small amount of unit code to implement each activity.

This is actually a really good reason because architects can save time by not having to
produce Word documents on how things should work. They can directly go into
Workflow designer, design the activities, connect them, design the data flow, and
verify whether all input and output are properly mapped or not. This is lot better
than drawing flow charts, writing pseudocode, and explaining in stylish text how an
operation should work. It’s also helpful for developers because they can see the
workflow and easily understand how to craft the whole operation. They just open up

114 | Chapter 4: Building the Data and Business Layers Using .NET 3.5

each activity and write a small amount of very specific reusable code inside each one.
They know what the activity’s input (like function parameters) will be and they
know what to produce (return value of function). This makes the activities reusable,
and architects can reuse an activity in many workflows.

Workflows can be debugged right in Visual Studio Designer for WF. So, developers
can easily find defects in their implementation by debugging the workflow. Archi-
tects can enforce many standards like validations, input output check, and fault han-
dling on the workflow. Developers cannot but comply and, therefore, produce really
good code. Another great benefit for both architect and developer is that there’s no
need to keep a separate technical specification document up to date because the
workflow is always up to date and it speaks for itself. If someone wanted to study
how a particular operation works, they could just print out the workflow and read it
through.

Mapping User Actions to a Workflow
Each user action can be mapped to a workflow that responds to that action. For
example, when a user wants to add a new widget, a workflow can take care of cre-
ating the widget, positioning it properly on the page, and configuring the widget
with the default value. The first visit of a brand new user to the site is a complex

Performance Concerns with WF
But what about performance? You will read from some blog posts that WF is a pretty
big library and can be a memory hog. Also, the workflow runtime is quite big and takes
time to start up. So, I did some profiling on the overhead of workflow execution, and
it is actually very fast for synchronous execution. Here’s proof from Visual Studio’s
output window log:

334ec662-0e45-4f1c-bf2c-cd3a27014691 Activity: Get User Guid 0.078125
b030692b-5181-41f9-a0c3-69ce309d9806 Activity: Get User Pages 0.0625
b030692b-5181-41f9-a0c3-69ce309d9806 Activity: Get User Setting 0.046875
b030692b-5181-41f9-a0c3-69ce309d9806 Activity: Get Widgets in page: 189 0.0625
334ec662-0e45-4f1c-bf2c-cd3a27014691 Total: Existing user visit 0.265625

The first four entries are the time taken by individual activities during data access only,
not the total time it takes to execute the whole activity. The time entries here are in sec-
onds, and the first four entries represent the duration of database operations inside the
activities. The last one is the total time for running a workflow with the four activities
shown and some extra code. If you sum up all of the individual activity execution time
for only database operations, it is 0.2500, which is just 0.015625 seconds less than the
total execution time. This means that executing the workflow itself along with the
overhead of running activities takes about 0.015 seconds, which is almost nothing
(around 6 percent) compared to the total effort of doing the complete operation.

Building the Business Layer Using WF | 115

operation, so it is a good candidate to become a workflow. This makes the architec-
ture quite simple on the web layer—just call a workflow on various scenarios and
render the UI accordingly, as illustrated in Figure 4-2.

Instead of using complex diagrams and lines of documentation to explain how to
handle a particular user or system action, you can draw a workflow and write code
inside it. This serves both as a document and a functional component that does the
job. The next sections show scenarios that can easily be done in a workflow.

Dealing with First Visit by a New User (NewUserSetupWorkflow)
Handling the first visit of a brand new user is the most complex operation your web
site will handle. It’s a good candidate for becoming a workflow. Figure 4-3 shows a
workflow that does all the business layer work for the first-time visit and returns a
complete page setup. The Default.aspx just creates the widgets as it receives them
from the workflow and is not required to perform any other logic.

The operations involved in creating the first-visit experience for a new user are as
follows:

1. Create a new anonymous user

2. Create two default pages

3. Put some default widgets on the first page

4. Construct a object model that contains user data, the user’s page collection, and
the widgets for the first page

If you put these operations in a workflow, you get the workflow shown in Figure 4-3.

Figure 4-2. User actions are mapped to a workflow. For example, when a user adds a new tab, the
request goes to a workflow. The workflow creates a new tab, makes it current, configures tab
default settings, adds default widgets, etc. Once done, the workflow returns success and the page
shows the new tab.

User performs an action

Execute workflow

Update user interface

116 | Chapter 4: Building the Data and Business Layers Using .NET 3.5

The workflow takes the ASP.NET anonymous identification provider generated by
UserName as an input to the workflow from the Default.aspx page.

The first step in passing this input parameter to the workflow while running the
workflow is to call the GetUserGuidActivity to get the UserId from the aspnet_users
table for that user (see Example 4-17).

Figure 4-3. New user visit workflow creates a new user account and configures the account with
the default setup

GetUserGuide

CreateFirstPage

FirstPageCreateCheck

IfCreated

CreateDefaultWidgets...

Create2ndPages

SecondPageChecks

Else

SetException

CallWorkflow

IfCreated1 Else1

SetException1

Building the Business Layer Using WF | 117

This activity is used in many places because it is a common requirement to get the
UserId from the username found from the ASP.NET Context object. All the tables
have a foreign key in the UserId column but ASP.NET gives only the UserName. So, in
almost all the operations, UserName is passed from the web layer and the business
layer converts it to UserId and does its work.

The using(TimedLog) block records the execution time of the code inside
the using block. It prints the execution time in the debug window as you
read earlier in the “Performance Concerns with WF” section.

The next step is to create the first page for the user using CreateNewPageActivity
shown in Example 4-18.

Example 4-17. GetUserGuidActivity Execute function

protected override ActivityExecutionStatus Execute(ActivityExecutionContext
executionContext)
{
 using(new TimedLog(UserName, "Activity: Get User Guid"))
 {
 var db = DatabaseHelper.GetDashboardData();

 this.UserGuid = (from u in db.AspnetUsers
 where u.LoweredUserName == UserName && u.ApplicationId == DatabaseHelper.
 ApplicationGuid
 select u.UserId).Single();

 return ActivityExecutionStatus.Closed;
 }
}

Example 4-18. CreateNewPageActivity Execute function

protected override ActivityExecutionStatus Execute(ActivityExecutionContext
executionContext)
{
 DashboardData db = DatabaseHelper.GetDashboardData();

 var newPage = new Page();
 newPage.UserId = UserId;
 newPage.Title = Title;
 newPage.CreatedDate = DateTime.Now;
 newPage.LastUpdate = DateTime.Now;

 db.Pages.Add(newPage);
 db.SubmitChanges(ConflictMode.FailOnFirstConflict);
 NewPageId = newPage.ID;

 return ActivityExecutionStatus.Closed;
}

118 | Chapter 4: Building the Data and Business Layers Using .NET 3.5

This activity takes the UserID as input and produces the NewPageId property as
output. It creates a new page, and default widgets are added on that page.
CreateDefaultWidgetActivity creates the default widgets on this page as shown in
Example 4-19.

This is what needs to happen next:

1. Decide how many widgets to add per column.

2. Compute the number of widgets to put in each column so they have an even dis-
tribution of widgets based on the number of default widgets in the database.

3. Run the foreach loop through each default widget and created widget instances.

Example 4-19. CreateDefaultWidgetActivity Execute function

protected override ActivityExecutionStatus Execute(ActivityExecutionContext
executionContext)
{
 var db = DatabaseHelper.GetDashboardData();

 var defaultWidgets = db.Widgets.Where(w => w.IsDefault == true).ToList();
 var widgetsPerColumn = (int)Math.Ceiling((float)defaultWidgets.Count/3.0);

 var row = 0;
 var col = 0;

 foreach(Widget w in defaultWidgets)
 {
 var newWidget = new WidgetInstance();
 newWidget.PageId= this.PageId;
 newWidget.ColumnNo = col;
 newWidget.OrderNo = row;
 newWidget.CreatedDate = newWidget.LastUpdate = DateTime.Now;
 newWidget.Expanded = true;
 newWidget.Title = w.Name;
 newWidget.VersionNo = 1;
 newWidget.WidgetId = w.ID;
 newWidget.State = w.DefaultState;

 db.WidgetInstances.Add(newWidget);

 row ++;
 if(row >= widgetsPerColumn)
 {
 row = 0;
 col ++;
 }
 }

 db.SubmitChanges();

 return ActivityExecutionStatus.Closed;
}

Building the Business Layer Using WF | 119

4. Create the second empty page.

5. Call another workflow named UserVisitWorkflow to load the page setup for the
user. This workflow was used on both the first visit and subsequent visits
because loading a user’s page setup is same for both cases.

The InvokeWorkflow activity that comes with WF executes a workflow asynchro-
nously. So, if you are calling a workflow from ASP.NET that in turn calls another
workflow, the second workflow is going to be terminated prematurely instead of exe-
cuting completely. This is because the workflow runtime will execute the first work-
flow synchronously and then finish the workflow execution and return. If you use
InvokeWorkflow activity to run another workflow from the first workflow, it will start
on another thread, and it will not get enough time to execute completely before the
parent workflow ends, as shown in Figure 4-4.

So, InvokeWorkflow could not be used to execute the UserVisitWorkflow from
NewUserSetupWorkflow. Instead it is executed using the CallWorkflow activity, which
takes a workflow and executes it synchronously. It’s a handy activity I found on Jon
Flanders’ blog (http://www.masteringbiztalk.com/blogs/jon/PermaLink,guid,7be9fb53-
0ddf-4633-b358-01c3e9999088.aspx).

The beauty of this activity is that it properly maps both inbound and outbound prop-
erties of the workflow that it calls, as shown in Figure 4-5.

The UserName property is passed from the NewUserVisitWorkflow, and it is returning
the UserPageSetup, which contains everything needed to render the page for the user.

Dealing with the Return Visit of an Existing User
(UserVisitWorkflow)
UserVisitWorkflow creates a composite object named UserPageSetup that holds the
user’s settings, pages, and widgets on the current page. The Default.aspx gets every-
thing it needs to render the whole page from UserPageSetup, as shown in Figure 4-6.

Figure 4-4. InvokeWorkflow executes a workflow asynchronously, so if the calling workflow
completes before the called workflow, it will terminate prematurely

Activity 1 Activity 2 Invoke
workflow Activity 3 End

Activity 1 Activity 2 Activity 3

Workflow 1

Workflow 2

http://www.masteringbiztalk.com/blogs/jon/PermaLink,guid,7be9fb53-0ddf-4633-b358-01c3e9999088.aspx
http://www.masteringbiztalk.com/blogs/jon/PermaLink,guid,7be9fb53-0ddf-4633-b358-01c3e9999088.aspx

120 | Chapter 4: Building the Data and Business Layers Using .NET 3.5

Figure 4-5. You can map CallWorkflow to a workflow and it will call that workflow
synchronously. You can also see the parameters of the workflow and map them with properties in
the current workflow.

Figure 4-6. UserVisitWorkflow design view

GetUserGuide

GetUserPages

GetUserSetting

GetWidgetsInCurrentP...

RateUserPageSetup

Building the Business Layer Using WF | 121

Just like the previous workflow, UserVisitWorkflow takes UserName and converts it to
UserGuid. It then calls the GetUserPagesActivity, which loads the pages of the user
(see Example 4-20).

After that, it calls the GetUserSettingActivity, which gets or creates the user’s set-
ting. The UserSetting object contains the user’s current page, which is used by
GetUserSettingActivity to load the widgets of the current page.

The code in GetUserSettingActivity is not straightforward (see Example 4-21). It
first checks if UserSetting has been created for the user and, if not,
GetUserSettingActivity creates it.

Example 4-20. GetUserPagesActivity’s Execute function

protected override ActivityExecutionStatus Execute(ActivityExecutionContext
executionContext)
{
 using(new TimedLog(UserGuid.ToString(), "Activity: Get User Pages"))
 {
 var db = DatabaseHelper.GetDashboardData();

 this.Pages = (from page in db.Pages
 where page.UserId == UserGuid
 select page).ToList();

 return ActivityExecutionStatus.Closed;
 }
}

Example 4-21. GetUserSettingActivity Execute function

protected override ActivityExecutionStatus Execute(ActivityExecutionContext
executionContext)
{
 using(new TimedLog(UserGuid.ToString(), "Activity: Get User Setting"))
 {
 DashboardData db = DatabaseHelper.GetDashboardData();

 var query = from u in db.UserSettings
 where u.UserId == UserGuid
 select u;

 IEnumerator<UserSetting> e = query.GetEnumerator();

 if(e.MoveNext())
 {
 this.UserSetting = e.Current;
 }
 else
 {
 // No setting saved before. Create default setting

122 | Chapter 4: Building the Data and Business Layers Using .NET 3.5

Loading the existing user’s settings is optimized by getting only the CurrentPageId
instead of the whole UserSetting object. This results in a very small query that does a
scalar selection, which is a bit faster than a row selection because it doesn’t involve
constructing a row object or sending unnecessary fields to a row.

The final activity loads the widgets on the current page (see Example 4-22). It takes
the PageId and loads widget instances on the page, including the widget definition
for each instance.

 UserSetting newSetting = new UserSetting();
 newSetting.UserId = UserGuid;
 newSetting.CurrentPageId = (from page in db.Pages
 where page.UserId == UserGuid
 select page.ID).First();

 db.UserSettings.Add(newSetting);
 db.SubmitChanges();

 this.UserSetting = newSetting;
 }

 this.CurrentPage = db.Pages.Single(page => page.ID == this.UserSetting.CurrentPageId);

 return ActivityExecutionStatus.Closed;
 }
}

Example 4-22. GetWidgetsInPageActivity Execute function

protected override ActivityExecutionStatus Execute(ActivityExecutionContext
executionContext)
{
 using(new TimedLog(UserGuid.ToString(), "Activity: Get Widgets in page: " + PageId))
 {
 var db = DatabaseHelper.GetDashboardData();

 // Load widget instances along with the Widget definition
 // for the specified page
 this.WidgetInstances = (from widgetInstance in db.WidgetInstances
 where widgetInstance.PageId == this.PageId
 orderby widgetInstance.ColumnNo, widgetInstance.OrderNo
 select widgetInstance)
 .Including(widgetInstance => widgetInstance.Widget)
 .ToList();

 return ActivityExecutionStatus.Closed;
 }
}

Example 4-21. GetUserSettingActivity Execute function (continued)

Building the Business Layer Using WF | 123

The LINQ query that loads the widget instances has two important actions:

• Loads widget instances on the page and orders them by column, and then row.
As a result, you get widget instances from left to right and in proper order within
each column.

• Fetches the widget object by producing an INNER JOIN between Widget and the
WidgetInstance table.

The collection of the widget instance is mapped to the WidgetInstance property of
the activity. The final code block—ReturnUserPageSetup—populates the
UserPageSetup property of the workflow with loaded data (see Example 4-23).

The workflow takes an empty UserPageSetup object; when it completes, it populates
the empty object with the loaded data. So, from ASP.NET, the UserPageSetup object
is passed and emptied. Once the workflow completes, the instance is fully populated.

Adding a New Tab (AddNewTabWorkflow)
Adding a new tab is quite simple, requiring only two steps, after the GUID is
assigned (see Figure 4-7):

1. Create a new blank page.

2. Update the user settings and set the new page as the current page.

Moving Widgets (MoveWidgetInstanceWorkflow)
To move a widget, you must do the following (see Figure 4-8):

1. Ensure the current user who is calling the workflow owns the widget instance.

2. Fetch the widget instance and put in workflow context so that other activities
can use it.

3. Pull the widget up from its previous position, which means all the widgets below
are shifted up.

4. Push the widget onto its new position so that all widgets on the new column
move down.

5. Update the widget’s position.

Example 4-23. PopulateUserPageSetup property with widgets, pages, and user settings needed to
render the page

private void ReturnUserPageSetup_ExecuteCode(object sender, EventArgs e)
{
 this.UserPageSetup.Pages = this.GetUserPages.Pages;
 this.UserPageSetup.UserSetting = this.GetUserSetting.UserSetting;
 this.UserPageSetup.WidgetInstances = this.GetWidgetsInCurrentPage.WidgetInstances;
}

124 | Chapter 4: Building the Data and Business Layers Using .NET 3.5

MoveWidgetInstanceWorkflow verifies whether the widget being moved is really the
current user’s widget. This is necessary to prevent malicious web service hacking (see
the “Implementing Authentication and Authorization” section in Chapter 3). The
EnsureOwnerActivity can check both the page and the widget’s ownership (see
Example 4-24).

Figure 4-7. AddNewTabWorkflow design view

Figure 4-8. MoveWidgetInstanceWorkflow design view

GetUserGuide

CreateNewPage

SetNewPageAsCurrent

EnsureWidgetOwner

PutWidgetInstanceW...

PushWidgetDownInN...

ChangeColumnAndR...

PullWidgetsUpInOldCo...

Building the Business Layer Using WF | 125

EnsureOwnerActivity takes UserName and either WidgetInstanceId or PageId and veri-
fies the user’s ownership. It should climb through the hierarchy from WidgetInstance
to the Page and then to AspnetUser to check whether the username matches or not. If
the username is different than the one specified, then the owner is different and it’s a
malicious attempt.

Checking Page ownership requires just going one level up to AspnetUser. But checking
WidgetInstance ownership requires going up to the container page and then checking
ownership of the page. This needs to happen very fast because it is called on almost
every operation performed on Page or WidgetInstance. This is why you want to make
sure it does a scalar select only, which is faster than selecting a full row.

Example 4-24. EnsureOwnerActivity Execute function

protected override ActivityExecutionStatus Execute(ActivityExecutionContext
executionContext)
{
 var db = DatabaseHelper.GetDashboardData();

 if(this.PageId == 0 && this.WidgetInstanceId == 0)
 {
 throw new ApplicationException("No valid object specified to check");
 }

 if(this.WidgetInstanceId > 0)
 {
 // Gets the user who is the owner of the widget. Then sees if the current user is the
 same.
 var ownerName = (from wi in db.WidgetInstances
 where wi.Id == this.WidgetInstanceId

select wi.Page.AspnetUser.LoweredUserName).First();

 if(!this.UserName.ToLower().Equals(ownerName))
 throw new ApplicationException(string.Format("User {0} is not the owner of the
 widget instance {1}", this.UserName, this.WidgetInstanceId));
 }

 if(this.PageId > 0)
 {
 // Gets the user who is the owner of the page. Then sees if the current user is the
 same.
 var ownerName = (from p in db.Pages
 where p.ID == this.PageId

select p.AspnetUser.LoweredUserName).First();

 if(!this.UserName.ToLower().Equals(ownerName))
 throw new ApplicationException(string.Format("User {0} is not the owner of the page
 {1}", this.UserName, this.PageId));
 }

 return ActivityExecutionStatus.Closed;
}

126 | Chapter 4: Building the Data and Business Layers Using .NET 3.5

Once the owner has been verified, the widget can be placed on the right column. The
next activity, PutWidgetInstanceInWorkflow, does nothing but put the WidgetInstance
object into a public property according to its ID so the object can be manipulated
directly. The other activities in the workflow work with the object’s ColumnNo and
OrderNo properties. The next step, PushWidgetsDownInNewColumn, calls the
PushDownWidgetsOnColumnActivity, which pushes widgets down one row so there’s a
room for a new widget to be dropped (see Example 4-25).

The idea is to move all the widgets right below the position of the widget being
dropped and push them down one position. Now we have to update the position of
the dropped widget using the activity ChangeWidgetInstancePositionActivity (see
Example 4-26).

Example 4-25. PushDownWidgetsOnColumnActivity Execute function

protected override ActivityExecutionStatus Execute(ActivityExecutionContext
executionContext)
{
 var db = DatabaseHelper.GetDashboardData();
 var query = from wi in db.WidgetInstances

 where wi.PageId == PageId && wi.ColumnNo == ColumnNo && wi.OrderNo >= Position
 orderby wi.OrderNo

 select wi;
 List<WidgetInstance> list = query.ToList();

 int orderNo = Position+1;
 foreach(WidgetInstance wi in list)
 {
 wi.OrderNo = orderNo ++;
 }

 db.SubmitChanges();

 return ActivityExecutionStatus.Closed;
}

Example 4-26. ChangeWidgetInstancePositionActivity Execute function

protected override ActivityExecutionStatus Execute(ActivityExecutionContext
executionContext)
{
 WidgetInstance widgetInstance = DatabaseHelper.GetDashboardData().WidgetInstances.
 Single(wi => wi.Id == WidgetInstanceId);

 DatabaseHelper.Update<WidgetInstance>(widgetInstance, delegate(WidgetInstance wi)
 {
 wi.ColumnNo = ColumnNo;
 wi.OrderNo = RowNo;
 });

 return ActivityExecutionStatus.Closed;
}

Implementing the DashboardFacade | 127

The widget is placed on a new column, and the old column has a vacant place. But
now we need to pull the widgets one row upward on the old column.
ReorderWidgetInstanceOnColumnActivity fixes row orders on a column, eliminating
the gaps between them (see Example 4-27). The gap in the column will be fixed by
recalculating the row number for each widget on that column, starting from zero.

That’s all that is required for a simple drag-and-drop operation.

Implementing the DashboardFacade
DashboardFacade provides a single entry point to the entire business layer. It provides
easy-to-call methods that run workflows. For example, the NewUserVisit function
executes the NewUserSetupWorkflow (see Example 4-28).

Example 4-27. ReorderWidgetInstanceOnColumnActivity Execute function

protected override ActivityExecutionStatus Execute(ActivityExecutionContext
executionContext)
{
 var db = DatabaseHelper.GetDashboardData();
 var query = from wi in db.WidgetInstances
 where wi.PageId == PageId && wi.ColumnNo == ColumnNo
 orderby wi.OrderNo
 select wi;
 List<WidgetInstance> list = query.ToList();

 int orderNo = 0;
 foreach(WidgetInstance wi in list)
 {
 wi.OrderNo = orderNo ++;
 }

 db.SubmitChanges();

 return ActivityExecutionStatus.Closed;
}

Example 4-28. DashboardFacade.NewUserVisit calls NewUserSetupWorkflow and creates a
complete setup for a new user on the first visit

public UserPageSetup NewUserVisit()
{
 using(new TimedLog(this._UserName, "New user visit"))
 {
 var properties = new Dictionary<string,object>();
 properties.Add("UserName", this._UserName);
 var userSetup = new UserPageSetup();
 properties.Add("UserPageSetup", userSetup);

 WorkflowHelper.ExecuteWorkflow(typeof(NewUserSetupWorkflow), properties);

128 | Chapter 4: Building the Data and Business Layers Using .NET 3.5

Here the input parameter to the workflow is UserName. Although the UserPageSetup
object is passed as if it was an input parameter, it’s not an input. You are passing a
null object, which the workflow will populate with loaded data. It’s like an out
parameter in function calls. The workflow will populate this parameter’s value once
it completes the execution.

Other methods, like LoadUserSetup, DeleteWidgetInstance, and MoveWidgetInstance,
behave the same way. They take necessary parameters as input and pass them to
their own workflows, e.g., the MoveWidgetInstance function (see Example 4-29).

However, getting a return object from a workflow is quite complicated. The
AddWidget function in the façade needs to get the newly added widget instance out of
the workflow (see Example 4-30).

 return userSetup;
 }
}

Example 4-29. DashboardFacade.MoveWidgetInstance calls MoveWidgetInstanceWorkflow to
move a widget from one position to another

public void MoveWidgetInstance(int widgetInstanceId, int toColumn, int toRow)
{
 using(new TimedLog(this._UserName, "Move Widget:" + widgetInstanceId))
 {
 var properties = new Dictionary<string,object>();
 properties.Add("UserName", this._UserName);
 properties.Add("WidgetInstanceId", widgetInstanceId);
 properties.Add("ColumnNo", toColumn);
 properties.Add("RowNo", toRow);

 WorkflowHelper.ExecuteWorkflow(typeof(MoveWidgetInstanceWorkflow), properties);
 }
}

Example 4-30. DashboardFacade.AddWidget function calls AddWidgetWorkflow to add a new
widget for the user’s current page

public WidgetInstance AddWidget(int widgetId)
{
 using(new TimedLog(this._UserName, "Add Widget" + widgetId))
 {
 var properties = new Dictionary<string,object>();
 properties.Add("UserName", this._UserName);
 properties.Add("WidgetId", widgetId);

 // New Widget instance will be returned after the workflow completes
 properties.Add("NewWidget", null);

Example 4-28. DashboardFacade.NewUserVisit calls NewUserSetupWorkflow and creates a
complete setup for a new user on the first visit (continued)

Implementing the DashboardFacade | 129

A null object is being passed here to the NewWidget property of the workflow:
AddWidgetWorkflow, which will populate this property with a new instance of Widget
when it completes. Once the workflow completes, the object can be taken from the
dictionary.

Implementing the WorkflowHelper Class
WorkflowHelper is a handy class that makes implementing a workflow a breeze, espe-
cially when used with ASP.NET. In the business layer, the workflow needs to be syn-
chronously executed, but the default implementation of WF is to work
asynchronously. Also, you need return values from workflows after their execution is
complete, which is not so easily supported due to the asynchronous nature of the
workflow. Both of these tasks require some tweaking with the workflow runtime to
successfully run in the ASP.NET environment.

The WorkflowHelper.Init function initializes workflow runtime for the ASP.NET
environment. It makes sure there’s only one workflow runtime per application
domain. Workflow runtime cannot be created twice in the same application domain,
so it stores the reference of the workflow runtime in the application context.
Example 4-31 shows its partial code.

 WorkflowHelper.ExecuteWorkflow(typeof(AddWidgetWorkflow), properties);

 return properties["NewWidget"] as WidgetInstance;
 }
}

Example 4-31. WorkflowHelper.Init, part 1

public static WorkflowRuntime Init()
{
 WorkflowRuntime workflowRuntime;

 // Running in console/winforms mode, create an return new runtime and return
 if(HttpContext.Current == null)
 workflowRuntime = new WorkflowRuntime();
 else
 {
 // running in web mode, runtime is initialized only once per
 // application
 if(HttpContext.Current.Application["WorkflowRuntime"] == null)
 workflowRuntime = new WorkflowRuntime();
 else
 return HttpContext.Current.Application["WorkflowRuntime"] as WorkflowRuntime;
 }

Example 4-30. DashboardFacade.AddWidget function calls AddWidgetWorkflow to add a new
widget for the user’s current page (continued)

130 | Chapter 4: Building the Data and Business Layers Using .NET 3.5

The initialization takes care of both ASP.NET and the Console/Winforms mode.
You will need the Console/Winforms mode when you test the workflows from a
console application or from unit tests. After the initialization, it registers
ManualWorkflowSchedulerService, which takes care of synchronous execution of the
workflow. CallWorkflow activity, which is explained in NewUserSetupWorkflow, uses
the Activities.CallWorkflowService to run another workflow synchronously within
a workflow. These two services make WF usable from the ASP.NET environment
(see Example 4-32).

Workflow runtime is initialized from the Application_Start event in Global.asax.
This ensures the initialization happens only once per application domain (see
Example 4-33).

The runtime is disposed from the Application_End event in Global.asax (see
Example 4-34).

Inside the WorkflowHelper, most of the work is done in the ExecuteWorkflow function.
DashboardFacade calls this function to run a workflow, which:

Example 4-32. WorkflowHelper.Init, part 2

 var manualService = new ManualWorkflowSchedulerService();
 workflowRuntime.AddService(manualService);

 var syncCallService = new Activities.CallWorkflowService();
 workflowRuntime.AddService(syncCallService);

 workflowRuntime.StartRuntime();

 // on web mode, store the runtime in application context so that
 // it is initialized only once. On console/winforms mode, e.g., from unit tests, ignore
 if(null != HttpContext.Current)
 HttpContext.Current.Application["WorkflowRuntime"] = workflowRuntime;

 return workflowRuntime;
}

Example 4-33. Initializing WorkflowHelper from Global.asax

void Application_Start(object sender, EventArgs e)
{
 // Code that runs on application startup

 DashboardBusiness.WorkflowHelper.Init();
}

Example 4-34. Disposing the workflow runtime from Global.asax

 void Application_End(object sender, EventArgs e)
 {
 // Code that runs on application shutdown
 DashboardBusiness.WorkflowHelper.Terminate();
 }

Implementing the DashboardFacade | 131

1. Executes the workflow synchronously

2. Passes parameters to the workflow

3. Gets output parameters from the workflow and returns them

4. Handles exceptions raised in the workflow and passes to the ASP.NET exception
handler

In the first step, ExecuteWorkflow creates an instance of workflow and passes input
parameters to it as shown in Example 4-35.

Then ManualWorkflowSchedulerService service executes the workflow synchronously.
Next, hook the workflow runtime’s WorkflowCompleted and WorkflowTerminated events
to capture output parameters and exceptions and handle them properly, as shown in
Example 4-36.

Example 4-35. ExecuteWorkflow function takes care of initializing workflow runtime and preparing
a workflow for execution

public static void ExecuteWorkflow(Type workflowType, Dictionary<string,object>
properties)
{
 WorkflowRuntime workflowRuntime = Init();

 ManualWorkflowSchedulerService manualScheduler = workflowRuntime.
GetService<ManualWorkflowSchedulerService>();

WorkflowInstance instance = workflowRuntime.CreateWorkflow(workflowType, properties);
 instance.Start();

Example 4-36. Handle the workflow completion event to capture the output parameters from the
workflow instance

EventHandler<WorkflowCompletedEventArgs> completedHandler = null;
completedHandler = delegate(object o, WorkflowCompletedEventArgs e)
{
 if (e.WorkflowInstance.InstanceId ==instance.InstanceId)
 {
 workflowRuntime.WorkflowCompleted -= completedHandler;

 // copy the output parameters in the specified properties dictionary
 Dictionary<string,object>.Enumerator enumerator = e.OutputParameters.GetEnumerator();
 while(enumerator.MoveNext())
 {
 KeyValuePair<string,object> pair = enumerator.Current;
 if(properties.ContainsKey(pair.Key))
 {
 properties[pair.Key] = pair.Value;
 }
 }
 }
};

132 | Chapter 4: Building the Data and Business Layers Using .NET 3.5

When the workflow completes, WorkflowCompletedEventArgs produces the
OutputParameters dictionary, which contains all of the workflow’s public proper-
ties. Next, read all of the entries in OutputParameters and update the
InputParameters dictionary with the new values. This is required in the AddWidget
function of DashboardFacade, where you need to know the widget instance created
by the workflow.

WorkflowTerminated fires when there’s an exception. When any activity inside the
workflow raises an exception, this event fires and the workflow execution aborts.
This exception is captured and thrown again so ASP.NET can trap it using its default
exception handler, as shown in Example 4-37.

This helps show exceptions in the ASP.NET exception handler. Exceptions thrown
from workflow instances are captured and rethrown. As a result, they jump up to the
ASP.NET exception handler, and you see the “yellow page of death” on your local
computer (see Figure 4-9).

Example 4-37. Handle exceptions raised by the workflow runtime to find out whether there are any
exceptions in a particular execution of a workflow instance

Exception x = null;
EventHandler<WorkflowTerminatedEventArgs> terminatedHandler = null;
terminatedHandler = delegate(object o, WorkflowTerminatedEventArgs e)
{
 if (e.WorkflowInstance.InstanceId == instance.InstanceId)
 {
 workflowRuntime.WorkflowTerminated -= terminatedHandler;
 Debug.WriteLine(e.Exception);

 x = e.Exception;
 }
};
workflowRuntime.WorkflowCompleted += completedHandler;
workflowRuntime.WorkflowTerminated += terminatedHandler;

manualScheduler.RunWorkflow(instance.InstanceId);

if (null != x)
 throw new WorkflowException(x);

Summary | 133

Summary
In this chapter, you learned how to harness the power of LINQ to SQL to build a
data access layer. You used Workflow Foundation to create a well-designed and
well-implemented business layer. WF makes it easy for both architects and develop-
ers to be in sync during the design and implementation of an application, which
leaves little room for developers to do anything outside the scope and functional
requirements of the project. This saves time for architects, developers, and unit
testers. In the next chapter, we will make some cool widgets that put the core to its
practical use and delivers rich features to the users.

Figure 4-9. Handling exceptions in the workflow and escalating them so that they propagate to
ASP.NET’s exception handler

134

Chapter 5CHAPTER 5

Building Client-Side Widgets 5

In Chapter 3, you learned how to build two server-side widgets: one for RSS/Atom
feeds and one to display Flickr photos. The benefit of a server-side widget is that you
can use Visual Studio’s comfortable development environment to write and debug
code, but also use your favorite programming language, like C# or VB.NET. How-
ever, server-side widgets slow down page loading and require too many postbacks.
All the widgets on the page are loaded on the server side during page load and asyn-
chronous postback. So, if the widgets load data from an external source, the page
load time becomes the cumulative loading time of all widgets. Moreover, server-side
widgets require too many postbacks on simple actions like paging or editing items on
a grid. There’s no way to avoid the postback because you are storing the object
model on the server side and you fetch data from server side. Nothing is stored on
the client that can help facilitate client-side operations. Although server-side widgets
are easier to develop and maintain, they actually offer poor performance compared
to client-side widgets.

On the other hand, client-side widgets use mostly JavaScript, so they can offer a lot
more interactivity and functionality on the browser without requiring any postback.
Because client-side widgets fetch data from external sources right from the Java-
Script and maintain object model and state on the client, they offer functionality like
paging, editing, and sorting right on the client without making any postback. More-
over, client-side widgets can cache external data on the browser, so subsequent vis-
its for client-side widgets become a lot faster than for server-side widgets because the
data needed for the widget is cached on the browser. In this chapter, you will see
how you can improve page load time by delaying server-side widget loading. You will
also learn how to make page loading much faster by making client-side RSS and
Flickr photo widgets, you will develop a proxy web service for client-side widgets
that can be used to fetch content from external sources and cache on the browser.

Delaying Server-Side Widget Loading | 135

Delaying Server-Side Widget Loading
When a page executes on the server side, it executes all the widgets on the page. This
makes the first-time visit, future visits, and tab switching slower because the server-
side execution takes quite some time. Because widgets fetch data from the database
or external sources right on Page_Load event, it takes quite some time to fire Page_
Load for all the widget web controls on the page. To improve the perceived speed of
page load, first you need to deliver the page on the browser with a widget skeleton
and some loading progress messages and then incrementally populate the widgets
with their content.

Sites like Pageflakes exhibit this behavior; the widget skeletons download first, and each
widget shows a loading progress message. Then each widget makes a web service call to
fetch its data and show its content. Although the page’s total load time is quite high
with this approach (there is at least one web service call per widget), the perceived speed
is lot better because the user sees the page downloading. As previously mentioned, load-
ing widgets from top to bottom will also give the page a fast-loading feel.

Delayed loading means widgets will not load their content at the Page_Load event, but
will instead load after receiving an asynchronous postback from a timer. The widget will
first deliver a loading progress message and then use the Timer object to fire an asyn-
chronous postback. During that asynchronous postback, the widget will fetch external
data and render the output. This ensures Page_Load is not stuck waiting for external data
and the page’s load time is not affected by the delay in fetching external content. One
easy way to do this is to use a MultiView control where one view contains a progress
message and the next view contains the main UI. A Timer control could fire a postback
after, say, 100 ms, which will then change the view to the main UI and disable itself.

Delaying RSS/Atom Widget Loading
First, we will convert the RSS widget to delay loading and make a page full of RSS wid-
gets load in two phases. The page will load instantly and show a “Loading…” script in
the RSS widgets. Then each widget will load one after another in a progressive manner.

The UI of the RSS widget is split into two views using a MultiView control: a progress
message and the FeedList DataList control, as shown in Example 5-1.

Example 5-1. RSS widget in two views for delay loading

<%@ Control Language="C#" AutoEventWireup="true" CodeFile="RSSWidget.ascx.cs"
Inherits="Widgets_RSSWidget" EnableViewState="false" %>
<asp:Panel ID="SettingsPanel" runat="Server" Visible="False" >
...
</asp:Panel>

<asp:MultiView ID="RSSMultiview" runat="server" ActiveViewIndex="0">

<asp:View runat="server" ID="RSSProgressView">

136 | Chapter 5: Building Client-Side Widgets

The timer calls the LoadRSSView function on the server by doing an asynchronous
postback. This function changes the current view to RSSFeedView and shows the
feed, as seen in Example 5-2. This function is defined in the code behind the RSS
web control’s file.

So now Page_Load does nothing on first load. It loads only the feed during the asyn-
chronous postback. As the Page_Load event completes instantly, the load time of the
widget no longer depends on fetching external content, as shown in Example 5-3.

Page_Load fires only the LoadRSSView function during postback. On subsequent post-
back, LoadRSSView will execute instantly because the content will be already cached
in the ASP.NET cache.

 <asp:image runat="server" ID="image1" ImageAlign="middle"
 ImageUrl="~/indicator.gif" />
 <asp:Label runat="Server" ID="label1" Text="Loading..." Font-Size="smaller"
 ForeColor="DimGray" />
</asp:View>

<asp:View runat="server" ID="RSSFeedView">

 <asp:DataList ID="FeedList" runat="Server" EnableViewState="False">
 <ItemTemplate>
 <asp:HyperLink ID="FeedLink" runat="server" Target="_blank" CssClass="feed_item_link"
 NavigateUrl='<%# Eval("link") %>' ToolTip='<%# Eval("description") %>'>
 <%# Eval("title") %>
 </asp:HyperLink>
 </ItemTemplate>
 </asp:DataList>

</asp:View>

</asp:MultiView>

<asp:Timer ID="RSSWidgetTimer" Interval="1" OnTick="LoadRSSView" runat="server" />

Example 5-2. TheLoadRSSView function in the RSS widget code is fired by the timer

protected void LoadRSSView(object sender, EventArgs e)
{
 this.ShowFeeds();
 this.RSSMultiview.ActiveViewIndex = 1;
 this.RSSWidgetTimer.Enabled = false;
}

Example 5-3. The widget’s Page_Load event does nothing on first load

protected void Page_Load(object sender, EventArgs e)
{
 if (!this._Host.IsFirstLoad) this.LoadRSSView(sender, e);
}

Example 5-1. RSS widget in two views for delay loading (continued)

Delaying Server-Side Widget Loading | 137

Delay Flickr Photo Widget Loading
It is exactly the same process to delay loading the Flickr photo widget. MultiView is
used to show a progress message, and then on the second view, the page loads the
photos. During Page_Load, the widget does absolutely nothing on first load so there
isn’t any delay on first-time page load. Once the progress message is delivered on the
UI, a timer fires an asynchronous postback and only then is the photo stream loaded
from Flickr and the UI rendered.

Problems with Delaying Widget Loading
Although the page-loading speed seems faster, the total load time is significantly higher
because it requires one asynchronous postback per widget. Moreover, it’s a significant
load on Default.aspx because each widget makes an asynchronous postback during the
first load. So, instead of Default.aspx being hit once, it is actually hit n times with n
widgets delaying the loading feature. Asynchronous postbacks are HTTP POST, so
there’s no way to cache the content on the browser that widgets fetch from external
sources. So, if one RSS feed doesn’t change for a week, the asynchronous postback for
the RSS widget returns the same output for seven days. The output does not get cached
on the browser so it doesn’t improve the widget’s second-time loading.

Figure 5-1 shows four asynchronous postbacks to Default.aspx because there are
four RSS widgets on the page delaying loading, which are all HTTP POST.

Figure 5-1. Asynchronous postback’s response content while delaying a widget’s loading

138 | Chapter 5: Building Client-Side Widgets

On subsequent visits, these four asynchronous postbacks repeatedly return the exact
same data from the server because the feed source isn’t changing as frequently.

However, there’s no way to cache the response and avoid repeated postbacks
because asynchronous postback, being HTTP POST, is not cacheable, as we
noted previously.

To improve widget load time on subsequent visits, you need to fetch data from the
browser via a HTTP GET call and produce response headers that indicate the response
to the browser’s cache. You need to use JavaScript to fetch data from the original
source, parse it, and render the HTML. And because you cannot use server-side render-
ing logic, you need to make client-side widgets to benefit from fast subsequent visits.

However, the browser does not allow cross-domain calls. So, you cannot use XML
HTTP to get data from external domains directly. For example, you cannot fetch an
XML feed from http://msdn.microsoft.com/rss.xml. You need to make a call to one of
your own web services, which will act as a proxy (bridge) to fetch data from original
source. In the next section, we will build such a proxy that can serve data from exter-
nal URLs and perform intelligent caching.

Content Proxy
Content proxy is a web service on your server that can fetch data from external URLs
and return it to the browser (see Figure 5-2).

The proxy can cache the response on the server for some period and thus save
repeated calls to same external URL. For example, if a hundred users subscribe to the
same RSS feed and the feed does not change for days, the proxy can cache the
response from the feed source for one day and serve hundreds and thousands of
users directly from its server-side cache (see Figure 5-3).

Server-side caching greatly improves load time for users because there’s only one net-
work roundtrip. The server doesn’t have to go to the external source. The proxy can
also produce response headers that will tell the browser to cache the response on the
browser for a period of time. During this time, the same call to the proxy will be
served from the browser cache and complete blazingly fast. There’ll be no network
roundtrip at all on subsequent calls to same data from the proxy (see Figure 5-4).

Figure 5-2. The browser makes a call to the proxy to fetch data from an external URL

ProxyBrowser Source

http://msdn.microsoft.com/rss.xml

Content Proxy | 139

This means if we use a proxy to fetch RSS feeds and cache the response in the
browser for an hour, and the user goes to another web site and comes back, the RSS
widgets will load instantly without making a call to the server. So, if you have only
RSS widgets on your page, the whole page will load in just one call to Default.aspx.
Everything else is already cached on the browser. Chapter 9 explains how client-side
caching can be used to speed up RSS loading.

Content Proxy Web Service
Proxy.asmx is the content proxy web service. It has three methods:

GetString(url, cacheDuration)
Returns data from the URL in string format and caches on the browser for a
specified duration

GetXml(url, cacheDuration)
Returns XML from a specified URL and caches the response on the browser for a
specified duration

Figure 5-3. The proxy caches data on the server and prevents repeatedly calling the same external
source for multiple users

Figure 5-4. When a response is cached on the browser, it does not make call to the proxy and thus
there’s no network roundtrip at all

Proxy
Source

ProxyBrowser Source

140 | Chapter 5: Building Client-Side Widgets

GetRss(url, count, cacheDuration)
Returns the RSS feed converted to a LINQ projection (discussed in Chapter 3)
from a specified URL and caches the feed on the server for 15 minutes and on
the client for a specified cache duration

GetString and GetXml are simple; they just use WebClient to get data from the origi-
nal URL and cache the response (see Example 5-4).

The only difference between GetString and GetXml is that GetString returns a JSON
representation of string content, whereas GetXml returns XML content as a string.
The ResponseFormat attribute on the GetXml method tells ASP.NET AJAX to emit
XML in plain-text format instead of delivering JSON.

However, GetRss is a bit more complicated. It downloads the feed and caches it using
ASP.NET cache for 15 minutes. So, subsequent calls to the same feed are returned
from the ASP.NET cache. GetRss also generates a proper response cache header to
cache the response on the browser for a specified duration. So, the widget consum-
ing RSS via proxy can control how long to cache the response on the browser.

Example 5-5 shows the same RSS loading and parsing code that was in the RSS wid-
get in Chapter 3.

Example 5-4. GetString and GetXml methods of the proxy web service

[WebMethod]
[ScriptMethod(UseHttpGet=true)]
public string GetString(string url, int cacheDuration)
{
 using(WebClient client = new WebClient())
 {
 string response = client.DownloadString(url);

this.CacheResponse(cacheDuration);
 return response;
 }
}

[WebMethod]
[ScriptMethod(UseHttpGet = true, ResponseFormat=ResponseFormat.Xml)]
public string GetXml(string url, int cacheDuration)
{
 return GetString(url, cacheDuration);
}

Example 5-5. GetRss on a proxy web service

[WebMethod]
[ScriptMethod(UseHttpGet = true)]
public object GetRss(string url, int count, int cacheDuration)
{
 var feed = Context.Cache[url] as XElement;
 if(feed == null)

Content Proxy | 141

 {
 if(Context.Cache[url] == string.Empty) return null;
 try
 {
 HttpWebRequest request = WebRequest.Create(url) as HttpWebRequest;

 request.Timeout = 15000;
 using(WebResponse response = request.GetResponse())
 {
 using(XmlTextReader reader = new XmlTextReader(response.
 GetResponseStream()))
 {
 feed = XElement.Load(reader);
 }
 }

 if(feed == null) return null;
 Context.Cache.Insert(url, feed, null, DateTime.MaxValue, TimeSpan.
 FromMinutes(15));

 }
 catch
 {
 Context.Cache[url] = string.Empty;
 return null;
 }
 }

 XNamespace ns = "http://www.w3.org/2005/Atom";

 // see if RSS or Atom

 try
 {
 // RSS
 if(feed.Element("channel") != null)
 return (from item in feed.Element("channel").Elements("item")
 select new
 {
 title = item.Element("title").Value,
 link = item.Element("link").Value,
 description = item.Element("description").Value
 }).Take(count);

 // Atom
 else if(feed.Element(ns + "entry") != null)
 return (from item in feed.Elements(ns + "entry")
 select new
 {
 title = item.Element(ns + "title").Value,
 link = item.Element(ns + "link").
 Attribute("href").Value,

Example 5-5. GetRss on a proxy web service (continued)

142 | Chapter 5: Building Client-Side Widgets

Challenges with the Proxy Web Service
The proxy web service will become your most frequently used web service once you
start making client-side widgets. Anytime the browser’s JavaScript needs to fetch
content from an external domain, it will have to call the proxy service. As a result,
you will hit scalability challenges with the proxy web service. Thousands of widgets
making calls to this service, which, in turn, results in external web service calls, will
create a significant load on the ASP.NET process. The external services’ response
time is unpredictable and unreliable. Sometimes a heavily loaded external service
might take 20 to 30 seconds to complete, which means the call to the proxy will get
stuck for 20 to 30 seconds. If that happens to 100 incoming requests within a 20-
second period, all of the available ASP.NET worker thread will be used. Your web
application will no longer serve any requests until the proxy requests either com-
plete or timeout and release the ASP.NET worker thread. This will create a slow-
loading web site or a completely nonresponsive web site. Chapter 6 discusses the
scalability challenges web applications have that heavily depend on web services
and fetch a majority of the content from external services.

Now we have the necessary methods to download data from external domains directly
from the browser using the proxy. The next step is to make a JavaScript client-side
widget that uses the proxy to download and cache data on the browser.

Building a Client-Side RSS Widget
First, let’s make a client-side RSS widget. RSS will benefit from client-side caching
because not all RSS feeds change frequently, e.g., you can safely cache a feed for an
hour. Also, popular RSS feeds are subscribed by many users, so caching a popular
feed on the server and serving it to hundreds of thousands users will save the server
from fetching the same feed again and again from the source.

Some fundamental differences in a client-side RSS widget include:

 description = item.Element(ns + "content").Value
 }).Take(count);

 // Invalid
 else
 return null;
 }
 finally
 {
 this.CacheResponse(cacheDuration);
 }
}

Example 5-5. GetRss on a proxy web service (continued)

Building a Client-Side RSS Widget | 143

• It does not load the RSS feed from the server-side code. So, there’s no LINQ to
XML code in the widget’s code that downloads the RSS XML. The LINQ to
XML code is now inside the proxy service.

• It does not have MultiView. Instead, client-side JavaScript shows the progress
message.

• It has no DataList on the widget web control because JavaScript generates the
HTML for the feeds.

• A JavaScript class named FastRssWidget in FastRssWidget.js takes care of load-
ing the feed on the browser by calling a proxy web service and rendering the
feed.

• The server-side control creates an instance of the FastRssWidget JavaScript class
and injects the necessary startup script to pass the feed’s URL and load it on the
client.

In Example 5-6, you will see that there’s no UI except a blank Panel, other than the
settings area. This Panel acts as a container for the rendering.

On the widget server-side code, the Page_Load event registers a script include tag for
the FastRssWidget.js (see Example 5-7).

Example 5-6. FastRssWidget.ascx now contains almost no UI elements

<%@ Control Language="C#" AutoEventWireup="true" CodeFile="FastRssWidget.ascx.cs"
Inherits="Widgets_FastRssWidget" EnableViewState="false" %>
<asp:Panel ID="SettingsPanel" runat="Server" Visible="False" >
...
</asp:Panel>

<asp:Panel ID="RssContainer" runat="server"></asp:Panel>

Example 5-7. The Page_Load event of FastRssWidget control adds a script tag to download
FastRssWidget.js and then initializes the class to show the feeds on the client

protected void Page_Load(object sender, EventArgs e)
{
 if (this._Host.IsFirstLoad)
 {
 ScriptManager.RegisterClientScriptInclude(this,
 typeof(Widgets_FastRssWidget),
 "FastRssWidget",
 this.ResolveClientUrl(
 this.AppRelativeTemplateSourceDirectory
 + "FastRssWidget.js"));

 ScriptManager.RegisterStartupScript(this,
 typeof(Widgets_FastRssWidget),
 "LoadRSS",
 string.Format("
 var rssLoader{0} =
 new FastRssWidget('{1}', '{2}', {3});

144 | Chapter 5: Building Client-Side Widgets

It then injects a JavaScript statement that constructs an instance of the class and
passes the URL, the container panel’s client ID, and the number of feed items to
show. This only happens once on the first load of the widget. The client-side class
uses these parameters to make a call to the proxy, downloads the RSS, and renders
the feed item links inside the container panel. The ID of the panel is passed down to
the client-side JavaScript class. From this ID, the class knows which div to use to
render the feed links.

However, during postback we need to render the content again on the client-side
because an asynchronous postback will send a blank container panel to the browser
and remove the links that were created by the JavaScript. In fact, any work that the
client-side JavaScript does on the UI is undone whenever an asynchronous postback
happens. So, we need to inform the JavaScript to restore the UI after every asynchro-
nous postback. This is done in the OnPreRender event. A script block is sent to the cli-
ent to reset the URL and count parameter and then fire the load function on the
previously created class instance. It is the same as first load where the class is con-
structed with parameters and the load function is called. The only difference is that
this time no new instance of the class is created, and instead an existing instance is
assumed to be there already (see Example 5-8).

 rssLoader{0}.load();",
 this.UniqueID,
 this.Url,
 this.RssContainer.ClientID,
 this.Count),
 true);
 }
}

Example 5-8. During OnPreRender a script block is sent to refresh UI on the client

protected override void OnPreRender(EventArgs e)
{
 base.OnPreRender(e);

 if (!this._Host.IsFirstLoad)
 ScriptManager.RegisterStartupScript(this,
 typeof(Widgets_FastRssWidget),
 "LoadRSS",
 string.Format("
 rssLoader{0}.url = '{1}';
 rssLoader{0}.count = {2};
 rssLoader{0}.load();",
 this.UniqueID,
 this.Url,
 this.Count),
 true);
}

Example 5-7. The Page_Load event of FastRssWidget control adds a script tag to download
FastRssWidget.js and then initializes the class to show the feeds on the client (continued)

Building a Client-Side RSS Widget | 145

That’s all on the server. However, the client-side class is a bit more complicated as
we move most of the code to the client from the server. The class is available in the
FeedRssWidget.js file.

Example 5-9 shows the constructor and load function.

The constructor takes the parameters like the URL, container ID, and number of
feed links to show. Then the load function calls the Proxy.GetRss function to get the
feed. It passes the URL, the number of feed items to return, and the cache duration
in minutes. The response is cached for 10 minutes, so loading the page again or
returning to the page from another web site within 10 minutes will deliver the
response directly from the browser cache without making any call to the proxy web
service (see Example 5-10).

Example 5-9. The client-side FeedRssWidget class

var FastRssWidget = function(url, container, count)
{
 this.url = url;
 this.container = container;
 this.count = count;
}

FastRssWidget.prototype = {

 load : function()
 {
 var div = $get(this.container);
 div.innerHTML = "Loading...";

 Proxy.GetRss (this.url, this.count, 10, Function.createDelegate(this, this.
 onContentLoad));
 },

Example 5-10. Proxy.GetRss fires the onContentLoad function as callback and it renders the feed
links

onContentLoad : function(rss)
{
 var div = $get(this.container);
 div.innerHTML = "";

 for(var i = 0; i < rss.length; i ++)
 {
 var item = rss[i];

 var a = document.createElement("A");
 a.href = item.link;
 a.innerHTML = item.title;
 a.title = item.description;
 a.className = "feed_item_link";
 a.target = "_blank";

146 | Chapter 5: Building Client-Side Widgets

On the onContentLoad function, it creates the hyperlinks for the feed items on the
client side. There are some benefits to this client-side widget over the server-side
widget:

• No ViewState is delivered because there’s minimal UI on the web control, so first
load and asynchronous postback have very little payload

• Content is cached on the browser and saves roundtrips to the network

• Content is fetched via the proxy instead of asynchronous postback, so it bene-
fits from server-side caching

Building a Client-Side Flickr Widget
The client-side Flickr widget is developed following the same principles as the client-
side RSS widget. The server-side code does not fetch the Flickr HTML; instead, the
client-side class does this via the Proxy.GetXml method. It downloads the entire Flickr
feed’s XML to the client, which allows the client-side class to offer paging functional-
ity through all the photos it received right on the browser without making any asyn-
chronous postbacks or proxy calls. The user can look through the photos very
quickly, and the returned XML is cached on the browser for 10 minutes. Subsequent
visits within 10 minutes delivers the photo’s XML from browser cache, and the wid-
get loads instantly on the client without requiring any asynchronous postback or
proxy calls.

The client-side class FastFlickrWidget is in the same format as the FastRssWidget
class. It’s available in Widgets\FastFlickrWidget.js (see Example 5-11).

 div.appendChild(a);
 }
}

Example 5-11. Constructor of load function of FastFlickrWidget

var FastFlickrWidget = function(url, container, previousId, nextId)
{
 this.url = url;
 this.container = container;
 this.pageIndex = 0;
 this.previousId = previousId;
 this.nextId = nextId;
 this.xml = null;
}

FastFlickrWidget.FLICKR_SERVER_URL="http://static.flickr.com/";
FastFlickrWidget.FLICKR_PHOTO_URL="http://www.flickr.com/photos/";

FastFlickrWidget.prototype = {

Example 5-10. Proxy.GetRss fires the onContentLoad function as callback and it renders the feed
links (continued)

Building a Client-Side Flickr Widget | 147

It takes the Flickr feed URL, a container div ID, and the next and previous link ID.
These links are needed because the class toggles previous/next links based on page
index during paging.

The showPhotos function (shown in Example 5-12) does all the work for creating a
3 × 3 table, images, and hyperlinks for the photo items.

 load : function()
 {
 this.pageIndex = 0;

 var div = $get(this.container);
 div.innerHTML = "Loading...";

 Proxy.GetXml(this.url, 10, Function.createDelegate(this, this.onContentLoad));
 },
 onContentLoad : function(xml)
 {
 this.xml = xml;
 this.showPhotos();
 },

Example 5-12. The showPhotos function inFastFlickrWidget.js

showPhotos : function()
{
 var div = $get(this.container);
 div.innerHTML = "";

 if(null == this.xml)
 return (div.innerHTML = "Error occured while loading Flickr feed");

 var photos = this.xml.documentElement.getElementsByTagName("photo");

 var row = 0, col = 0, count = 0;

 var table = document.createElement("table");
 table.align = "center";
 var tableBody = document.createElement("TBODY");
 table.appendChild(tableBody);
 var tr;

 for(var i = 0; i < 9; i ++)
 {
 var photo = photos[i + (this.pageIndex * 9)];

 if(photo == null)
 {
 Utility.nodisplay(this.nextId);
 break;
 }

Example 5-11. Constructor of load function of FastFlickrWidget (continued)

148 | Chapter 5: Building Client-Side Widgets

This is basically a direct convert of the server-side Flickr photo widget’s C# code
to equivalent JavaScript code. You will see some reference to the Utility class in
JavaScript. It’s a custom-made class that has some handy JavaScript functions like

 if(col == 0)
 {
 tr = document.createElement("TR");
 tableBody.appendChild(tr);
 }

 var td = document.createElement("TD");

 var img = document.createElement("IMG");
 img.src = this.getPhotoUrl(photo, true);
 img.style.width = img.style.height = "75px";
 img.style.border = "none";

 var a = document.createElement("A");
 a.href = this.getPhotoPageUrl(photo);
 a.target = "_blank";
 a.title = this.getPhotoTitle(photo);

 a.appendChild(img);
 td.appendChild(a);
 tr.appendChild(td);

 if(++ col == 3) { col = 0; row ++ }

 }

 div.appendChild(table);

 if(this.pageIndex == 0) Utility.nodisplay(this.previousId);
},
previous : function()
{
 this.pageIndex --;
 this.showPhotos();

 Utility.display(this.nextId, true);
 if(this.pageIndex == 0)
 Utility.nodisplay(this.previousId);

},

next : function()
{
 this.pageIndex ++;
 this.showPhotos();
 Utility.display(this.previousId, true);
}

Example 5-12. The showPhotos function inFastFlickrWidget.js (continued)

Building a Client-Side Flickr Widget | 149

displaying/hiding UI elements, dealing with DOM elements in a cross-browser
fashion, and more. The Utility class is defined in the MyFramework.js file, which
is available at the web root of the project.

The server-side web control contains minimal UI besides the settings panel. It con-
tains an empty container and the previous/next links (see Example 5-13).

In Page_Load event’s code behind class the FastFlickrWidget JavaScript class is con-
structed with parameters from State (shown in Example 5-14). It also injects some
script on the previous/next link’s click event so that it fires the client-side class’s pre-
vious and next function.

Example 5-13. FastFlickrWidget.ascx

<%@ Control Language="C#" AutoEventWireup="true" CodeFile="FastFlickrWidget.ascx.cs"
Inherits="Widgets_FastFlickrWidget" EnableViewState="false" %>
<asp:Panel ID="settingsPanel" runat="server" Visible="False">
...
</asp:Panel>

<asp:Panel ID="FlickrPhotoPanel" runat="server">

</asp:Panel>

<div style="text-align: center; width:100%; white-space:nowrap">
<asp:LinkButton ID="ShowPrevious" runat="server" >< Prev</asp:LinkButton>

<asp:LinkButton ID="ShowNext" runat="server" >Next ></asp:LinkButton></center>
</div>

Example 5-14. FastFlickrWidget web control’s Page_Load event

protected void Page_Load(object sender, EventArgs e)
{
 if (this._Host.IsFirstLoad)
 {
 ScriptManager.RegisterClientScriptInclude(this,
 typeof(Widgets_FastFlickrWidget),
 "FastFlickrWidget",
 this.ResolveClientUrl(
 this.AppRelativeTemplateSourceDirectory + "FastFlickrWidget.js"));

 ScriptManager.RegisterStartupScript(this,
 typeof(Widgets_FastFlickrWidget),
 "LoadFlickr",
 string.Format("
 var flickrLoader{0} =
 new FastFlickrWidget('{1}', '{2}', '{3}', '{4}');
 flickrLoader{0}.load();",
 this.UniqueID,
 this.GetPhotoUrl(),
 this.FlickrPhotoPanel.ClientID,

150 | Chapter 5: Building Client-Side Widgets

Page_Load event produces the necessary script block to instantiate the
FlickrRssWidget class on the client and then fires its load function. Just like the RSS
widget, it calls the client-side class’s load function when the OnPreRender handler
code executes so that after asynchronous postback, the JavaScript can refresh the UI
based on new settings (shown in Example 5-15).

The following are some benefits of the client-side widget over the server-side version:

• ViewState is not delivered to client during the first load or asynchronous post-
back because there’s almost no UI element.

• The Flickr photo XML is cached on the browser and saves roundtrips to the
network.

• The proxy’s server-side caching (e.g., thousands of users requesting the same
interesting photos will not make thousands of calls to Flickr).

• Paging through photos is instant because it is done entirely on the client side,
which makes this version a lot faster.

 this.ShowPrevious.ClientID,
 this.ShowNext.ClientID),
 true);

 this.ShowPrevious.OnClientClick =
 string.Format("flickrLoader{0}.previous(); return false;", this.UniqueID);
 this.ShowNext.OnClientClick =
 string.Format("flickrLoader{0}.next(); return false;", this.UniqueID);
 }
}

Example 5-15. FastFlickrWidget web control’s OnPreRender event

protected override void OnPreRender(EventArgs e)
{
 base.OnPreRender(e);

 if(!this._Host.IsFirstLoad)
 ScriptManager.RegisterStartupScript(this,
 typeof(Widgets_FastFlickrWidget), "LoadFlickr",
 string.Format("
 flickrLoader{0}.url = '{1}';
 flickrLoader{0}.load();",
 this.UniqueID,
 this.GetPhotoUrl(),
 this.FlickrPhotoPanel.ClientID),
 true);
}

Example 5-14. FastFlickrWidget web control’s Page_Load event (continued)

Summary | 151

Summary
In this chapter, you learned how to make your pages load faster by using the delay
loading approach. This can solve the immediate need for faster page loads. For even
more speed and better utilization of the browser cache, you learned how to make
client-side widgets that offer rich client-side interactivity without requiring asyn-
chronous postback. Then you learned how to make one of the most important com-
ponents of a Start page: a content proxy. In the next chapter, we will address some
scalability challenges for Ajax web sites that depend too much on web services and
communicate with a variety of external web services.

152

Chapter 6CHAPTER 6

Optimizing ASP.NET AJAX 6

Just like other frameworks, the ASP.NET AJAX Framework is not capable of serving
all of the specific needs for every type of Ajax application. Frameworks are kept sim-
ple and generic enough to satisfy 70 percent of the Ajax application’s requirements.
But the remaining 30 percent of requirements require you to go deep into the frame-
work to make the necessary modifications. Moreover, off-the-shelf Ajax frameworks
don’t solve all real-life problems, and new and unique challenges always come up
every now and then. In this chapter, we will review several challenges posed by Ajax
applications that must be resolved for high-volume Ajax web sites. There are also
several design decisions that must be made if you release it as a mass consumer Ajax
web site.

Combining Multiple Ajax Calls into One Call
Network roundtrip is the most expensive part of Ajax applications. You need to do
everything you can to reduce the number of calls made to the server. Because each
call has the overhead of connecting to the server and then downloading the response,
each call wastes some time on the network. When you have five calls going to the
server within a short time for some particular operation, you are wasting about one
second (assuming 200 ms network latency) on the network. So, a popular practice
among Ajax developers is to batch multiple consecutive single calls into one large
call. This saves the network roundtrip as there’s only one network roundtrip to do,
and thus the whole operation executes faster than making individual calls.

For example, say a user clicks on five different widgets from the widget gallery to add
those widgets on the page. If the user is clicking quickly, instead of making one web
service call per click and showing the newly added widget on the browser, the batch
feature waits until the user has clicked several times and then makes a batch call to
the server, sending all the widget names at once. All the widgets are downloaded and
created in one shot. This saves a network roundtrip and condenses multiple single
calls to the web service. Although the total time for a batch call will always be less

Combining Multiple Ajax Calls into One Call | 153

than each individual call, it does not always make the user experience faster. The
actual response time might be reduced, but the perceived delay is higher because the
user will see nothing happen until multiple widgets are downloaded and created on
the browser.

If three web service calls are batched into one call, the first single call doesn’t finish
first—all three calls finish at the same time. If you are doing some UI updates that
wait for the completion of each web service call, all of the calls complete in one shot
and then the UI is updated. As a result, you do not see incremental updates on the
UI—instead, a long delay before the UI updates. If any of the calls download a lot of
data, the user will see nothing happen until all three calls complete. So, the duration
of the first call becomes nearly the duration of the sum of all three calls. Although
the total duration is reduced, the perceived duration is higher. Batch calls are handy
when each call is transmitting a small amount of data because the calls are executed
in one roundtrip and the perceived speed is good.

Let’s work on a scenario where three calls are made one at a time. Figure 6-1 shows
how the calls are executed.

The second call takes a bit more time to reach the server because the first call is eat-
ing up the bandwidth. For the same reason, it takes longer to download. Figure 6-2
shows these three calls batched into one.

The total download time is also reduced if the IIS response compression is enabled
and if there is only one network latency. All three calls are executed on the server in
one request, and the combined response is downloaded to one call. The total dura-
tion to complete the whole batch is always less than that for two calls.

Figure 6-1. The browser makes two calls at a time, so the third call needs to wait until one of the
earlier calls completes

Figure 6-2. The batch call function combines multiple unit calls and executes them in one shot,
which means there’s only one request to server and one response to download

Download responseServer
executionLatencySend

request

Download
response

Server
executionLatencySend

request

Wait Send
request Latency Download

response
Server

execution

UI
updateDownload 1, 2, 3Exec 1, 2, 3LatencyCall 1, 2, 3

154 | Chapter 6: Optimizing ASP.NET AJAX

Timing and Ordering Ajax Calls to the Server
Browsers will always make a maximum of two concurrent Ajax calls to a domain. If
five Ajax calls are made, the browser will first make two calls and queue the remain-
ing three calls, wait for either one of them to complete, and then make another call
until all queued calls are complete. However, the calls will not execute in the same
order as you make them (see Figure 6-3).

As Figure 6-3 shows, the third call is large and takes longer than the fifth call to
download. So, the fourth and fifth calls are actually executed before the third call
finishes.

Bad Calls Make Good Calls Time Out
If two HTTP calls somehow get stuck for too long, they will make some good
queued calls time out too (see Example 6-1).

Figure 6-3. The browser makes two calls at a time to the server, so the smaller but later calls might
finish before the larger calls that are made first

Example 6-1. Testing bad calls that make good calls time out

function TestTimeout()
{
 debug.trace("--Start--");
 TestService.set_defaultFailedCallback(
 function(result, userContext, methodName)
 {
 var timedOut = result.get_timedOut();
 if(timedOut)
 debug.trace("Timedout: " + methodName);
 else
 debug.trace("Error: " + methodName);
 });

DownloadStartCall 1

DownloadStartCall 2

DownloadStartCall 3

DownloadStartCall 4

DownloadStartCall 5

Timing and Ordering Ajax Calls to the Server | 155

Example 6-1 calls a TestService, which is a web service with two methods:
HelloWorld and Timeout. The idea is to find out which calls time out by hooking onto
the web service’s default fail handler. If a call fails, that fail handler will be fired.

The web service’s code is simple, as shown in Example 6-2.

 TestService.set_defaultSucceededCallback(function(result)
 {
 debug.trace(result);
 });

 TestService.set_timeout(5000);

 TestService.HelloWorld("Call 1");
 TestService.Timeout("Call 2");
 TestService.Timeout("Call 3");
 TestService.HelloWorld("Call 4");
 TestService.HelloWorld("Call 5");
 TestService.HelloWorld(null); // This one will produce Error
}

Example 6-2. The test web service calls timeout

using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;
using System.Web.Script.Services;
using System.Threading;

[WebService(Namespace = "http://tempuri.org/")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
[ScriptService]
public class TestService : System.Web.Services.WebService {

 public TestService () {

 //Uncomment the following line if using designed components
 //InitializeComponent();
 }

 [WebMethod][ScriptMethod(UseHttpGet=true)]
 public string HelloWorld(string param) {
 Thread.Sleep(1000);
 return param;
 }

 [WebMethod][ScriptMethod(UseHttpGet=true)]
 public string Timeout(string param) {
 Thread.Sleep(10000);
 return param;
 }
}

Example 6-1. Testing bad calls that make good calls time out (continued)

156 | Chapter 6: Optimizing ASP.NET AJAX

Example 6-2 calls the Timeout method on the server, which does nothing but wait
until the call is timed out. After that, you call a method that does not time out.
Figure 6-4 shows the output.

Only the first call succeeded. So, if the browser’s two connections get jammed, then
other waiting calls will time out too.

Real-Life: Resolving Timeout Error Reports

Problem: Bad web service calls get stuck causing excessive timeout errors.

Solution: Modify the ASP.NET AJAX runtime and introduce automatic retry.

At one community web portal company I worked at, we used to get 400 to 600 time-
out error reports from users’ browsers. We first suspected a slow Internet connec-
tion, but that couldn’t happen for so many users. We then thought something was
wrong with the hosting provider’s network and did a lot of network analysis to find
any problems on the network but there weren’t. We used SQL Profiler to see if there
were any long-running queries that timed out the ASP.NET request execution time,
but that wasn’t it either.

We finally discovered that it mostly happened when some bad web service calls got
stuck and made the good calls time out while waiting in the browser’s “maximum of
two calls at a time” queue. So, we modified the ASP.NET AJAX runtime and intro-
duced automatic retry on it. The problem disappeared almost completely. However,
this auto retry requires sophisticated open-heart surgery on the ASP.NET AJAX
Framework itself. The idea is to make each and every call retry once when it times
out. To do that, we need to intercept all web method calls and implement a hook on
the onFailed callback, which called the same web method again if the failure reason
was a timeout.

Figure 6-4. Testing the Ajax call timeout

Timing and Ordering Ajax Calls to the Server | 157

Common problems

Sometimes the first web service call gets an intermediate page or an invalid HTTP
status instead of the expected result so the first call fails. Retrying it solves the prob-
lem (see the “Web Cache Problems” section in Chapter 3).

Another common problem is wireless Internet users and slow Internet users. Wire-
less connections drop randomly and sometimes wireless access points get stuck. And
dial-up connection drops have an automated redial sequence. All these problems can
make Ajax calls wait for too long and they eventually time out or fail. We can pre-
vent a majority of these problems with an auto retry mechanism in place.

In the ASP.NET AJAX Framework, the SysNetWebServiceProxy$invoke function is
responsible for making all web service calls. So, we replace this function with a cus-
tom implementation that passes a custom onFailure callback. That custom callback
gets fired whenever there’s an error or timeout. When there’s a timeout, it calls the
invoke function again and thus a retry happens. Example 6-3 shows the code block
that replaces the ASP.NET AJAX Framework’s invoke function adds the auto retry
capability to it. You do not need to open the Ajax runtime JavaScript files and modify
the implementation—just put this block of JavaScript inside a <SCRIPT> tag on your
page after the Ajax scripts download. It adds a retry capability on top of the original
invoke function and eventually calls the original invoke function. It also does not
break when newer version of the ASP.NET AJAX Framework is released. As long as
Microsoft does not completely change the invoke function, it is safe to add this patch.

Example 6-3. Implementing the auto retry at failure

Sys.Net.WebServiceProxy.retryOnFailure =
 function(result, userContext, methodName, retryParams, onFailure)
{
 if(result.get_timedOut())
 {
 if(typeof retryParams != "undefined")
 {
 debug.trace("Retry: " + methodName);
 Sys.Net.WebServiceProxy.original_invoke.apply(this, retryParams);
 }
 else
 {
 if(onFailure) onFailure(result, userContext, methodName);
 }
 }
 else
 {
 if(onFailure) onFailure(result, userContext, methodName);
 }
}

Sys.Net.WebServiceProxy.original_invoke = Sys.Net.WebServiceProxy.invoke;
Sys.Net.WebServiceProxy.invoke =

158 | Chapter 6: Optimizing ASP.NET AJAX

Each call is retried, as shown in Figure 6-5.

The first method succeeded, and all the others timed out and were retried. Although
you see them time out again because the TestService always times out, that won’t
happen in a real-world implementation because the second attempt will not time out
unless there’s a real problem on this call that makes the server time out on every
attempt.

Browsers Fail to Respond with Two or More Calls in Queue
Try this: go to any Start page that loads many RSS feeds or widgets on the first visit.
While the page is loading, try clicking on a link that takes you to another web site, or
try visiting another site by entering a URL on the browser address bar. The browser
is stuck. Until all queued Ajax calls in the browser complete, the browser will not
accept any other request. All browsers have this problem, but this problem is worse
in Internet Explorer.

 function SysNetWebServiceProxy$invoke(servicePath, methodName, useGet,
 params, onSuccess, onFailure, userContext, timeout)
{
 var retryParams = [servicePath, methodName, useGet, params,
 onSuccess, onFailure, userContext, timeout];

 // Call original invoke but with a new onFailure
 // handler which does the auto retry
 var newOnFailure = Function.createDelegate(this,
 function(result, userContext, methodName)
 {
 Sys.Net.WebServiceProxy.retryOnFailure(result, userContext,
 methodName, retryParams, onFailure);
 });

 Sys.Net.WebServiceProxy.original_invoke(servicePath, methodName, useGet,
 params, onSuccess, newOnFailure, userContext, timeout);
}

Figure 6-5. Auto retry test

Example 6-3. Implementing the auto retry at failure (continued)

Timing and Ordering Ajax Calls to the Server | 159

As discussed earlier, the browser keeps all calls in a queue and executes a maximum
two of them in parallel. The browser has to wait for running calls to complete before
it can take another call. The solution to this problem is to prevent more than two
calls to be queued in the browser at a time. The solution is tricky: maintain a queue
yourself and send the calls to the browser’s queue from your own queue one at a
time (see Example 6-4).

Example 6-4. GlobalCallQueue prevents the browser from getting stuck

var GlobalCallQueue = {
 _callQueue : [], // Maintains the list of web methods to call
 _callInProgress : 0, // Number of calls currently in progress by browser
 _maxConcurrentCall : 2, // Max number of calls to execute at a time
 _delayBetweenCalls : 50, // Delay in ms between execution of calls
 call : function(servicePath, methodName, useGet,
 params, onSuccess, onFailure, userContext, timeout)
 {
 var queuedCall = new QueuedCall(servicePath, methodName, useGet,
 params, onSuccess, onFailure, userContext, timeout);

 Array.add(GlobalCallQueue._callQueue,queuedCall);
 GlobalCallQueue.run();
 },
 run : function()
 {
 /// Execute a call from the call queue

 if(0 == GlobalCallQueue._callQueue.length) return;
 if(GlobalCallQueue._callInProgress <
 GlobalCallQueue._maxConcurrentCall)
 {
 GlobalCallQueue._callInProgress ++;
 // Get the first call queued
 var queuedCall = GlobalCallQueue._callQueue[0];
 Array.removeAt(GlobalCallQueue._callQueue, 0);

 // Call the web method
 queuedCall.execute();
 }
 else
 {
 // cannot run another call. Maximum concurrent
 // web service method call in progress. Don't run
 // the call and wait until one call completes or fails
 }
 },
 callComplete : function()
 {
 GlobalCallQueue._callInProgress --;
 GlobalCallQueue.run();
 }
};

QueuedCall = function(servicePath, methodName, useGet, params,

160 | Chapter 6: Optimizing ASP.NET AJAX

The QueuedCall class encapsulates one web method call. It takes all the parameters of
the actual web service call and overrides the onSuccess and onFailure callbacks. We
want to know when a call completes or fails so that we can issue another call from
our queue. The GlobalCallQueue maintains a list of all web service calls that get into
the queue. Whenever a web method is called, the call is queued in the
GlobalCallQueue, and calls are executed from the queue one at a time. This ensures
that the browser does not get more than two web service calls at a time, which means
the browser doesn’t get stuck.

To enable the queue-based call, you have to override the ASP.NET AJAX web
method invocation again, as done in the “Bad Calls Make Good Calls Time Out”
section (see Example 6-5).

 onSuccess, onFailure, userContext, timeout)
{
 this._servicePath = servicePath;
 this._methodName = methodName;
 this._useGet = useGet;
 this._params = params;

 this._onSuccess = onSuccess;
 this._onFailure = onFailure;
 this._userContext = userContext;
 this._timeout = timeout;
}

QueuedCall.prototype =
{
 execute : function()
 {
 Sys.Net.WebServiceProxy.original_invoke(
 this._servicePath, this._methodName, this._useGet, this._params,
 Function.createDelegate(this, this.onSuccess), // Handle call complete
 Function.createDelegate(this, this.onFailure), // Handle call complete
 this._userContext, this._timeout);
 },
 onSuccess : function(result, userContext, methodName)
 {
 this._onSuccess(result, userContext, methodName);
 GlobalCallQueue.callComplete();
 },
 onFailure : function(result, userContext, methodName)
 {
 this._onFailure(result, userContext, methodName);
 GlobalCallQueue.callComplete();
 }
};

Example 6-4. GlobalCallQueue prevents the browser from getting stuck (continued)

Timing and Ordering Ajax Calls to the Server | 161

The override in Example 6-5 ensures that all web service calls get into the queue
instead of executing immediately. The GlobalCallQueue takes care of making the call
at the right time. And just like the previous auto retry implementation, this is an add-
on to the ASP.NET AJAX Framework. When you upgrade the framework, you don’t
need to change the GlobalCallQueue again as long as Microsoft does not change the
invoke function approach completely.

Caching Web Service Responses on the Browser
You already know browsers can cache images, JavaScript, and CSS files on a user’s
hard drive. They can also cache XML HTTP calls if the call is an HTTP GET and not
an HTTP POST because the cache is based on the URL. If it’s the same URL and it’s
cached on the computer, then the response is loaded from the cache, not from the
server when it is requested again. Basically, the browser can cache any HTTP GET
call and return cached data based on the URL. If you make an XML HTTP call as
HTTP GET and the server returns a special header that informs the browser to cache
the response, the response will be immediately returned from the cache on future
calls and saves the delay of a network roundtrip and download time. Such client-side
caching of XML HTTP can dramatically increase client-side performance as well as
decrease server-side load.

You can also cache a user’s state so that when the same user visits again the follow-
ing day, the user gets a cached page that loads instantly from the browser cache, not
from the server. This makes the second time load very fast. Other small actions can
also be cached, such as clicking on the Start button, which shows you a list of wid-
gets. When the user does the same action again, a cached result is loaded immedi-
ately from the local cache and thus saves the network roundtrip time. The user gets a
responsive fast-loading site and the perceived speed increases dramatically.

The idea is to make HTTP GET calls while making ASP.NET AJAX web service calls
and return some specific HTTP response headers that tell the browser to cache the
response for some specified duration. If you return the Expires header during the
response, the browser will cache the XML HTTP response.

There are two headers that you need to return with the response to instruct the
browser to cache the response:

Example 6-5. Override the default invoke function implementation and replace it with a queue
implementation

Sys.Net.WebServiceProxy.original_invoke = Sys.Net.WebServiceProxy.invoke;
Sys.Net.WebServiceProxy.invoke =
 function SysNetWebServiceProxy$invoke(servicePath, methodName,
 useGet, params, onSuccess, onFailure, userContext, timeout)
{
 GlobalCallQueue.call(servicePath, methodName, useGet, params,
 onSuccess, onFailure, userContext, timeout);
}

162 | Chapter 6: Optimizing ASP.NET AJAX

HTTP/1.1 200 OK
Expires: Fri, 1 Jan 2030
Cache-Control: public

This will instruct the browser to cache the responses until January 2030. As long as
you make the same XML HTTP calls with the same parameters, you will get a cached
response from the computer and no call will go to the server. There are more
advanced ways to gain further control over response caching. For example, here is a
header that will instruct the browser to cache for 60 seconds and get a fresh response
after 60 seconds from the server. It will also prevent proxies from returning a cached
response when the browser’s local cache expires after 60 seconds. You can learn
more about caching strategies for performance improvement in Chapter 9.

HTTP/1.1 200 OK
Cache-Control: private, must-revalidate, proxy-revalidate, max-age=60

Example 6-6 tries to produce such headers from the web service as per ASP.NET
documentation.

However, the results are the HTTP response headers shown in Figure 6-6.

The Expires header is set properly, but the problem is with the Cache-Control
header. It is showing that the max-age is set to zero, which will prevent the browser
from doing any kind of caching. Looks like instead of caching the response, the exact
opposite happened. The headers actually tell the browser to never cache the
response, and always get fresh content from the server no matter what.

Example 6-6. Failed attempt to produce necessary response headers for caching on the client side

[WebMethod][ScriptMethod(UseHttpGet=true)]
public string CachedGet()
{
 TimeSpan cacheDuration = TimeSpan.FromMinutes(1);
 Context.Response.Cache.SetCacheability(HttpCacheability.Public);
 Context.Response.Cache.SetExpires(DateTime.Now.Add(cacheDuration));
 Context.Response.Cache.SetMaxAge(cacheDuration);
 Context.Response.Cache.AppendCacheExtension(
 "must-revalidate, proxy-revalidate");

 return DateTime.Now.ToString();
}

Figure 6-6. Incorrect HTTP response headers are generated from the web method when you try to
produce the headers as documented

Timing and Ordering Ajax Calls to the Server | 163

The output is incorrect and not cached. If you repeatedly call the web method, you
will get a noncached response. Figure 6-7 shows the output of the web method call
where it always produces a distinct timestamp. This means the browser is making a
call to the server every time and no caching occurs.

There’s a bug in ASP.NET 2.0 that does not let you change the max-age header once
it is set. Because the max-age is set to zero by the ASP.NET AJAX Framework by
default, ASP.NET 2.0 sets the Cache-Control to private because max-age = 0 means
“Prevent caching at any cost.” So, there’s no way you can make ASP.NET 2.0 return
proper headers that cache the response.

Time for a hack. I found the code after decompiling the HttpCachePolicy class’s code
(Context.Response.Cache object’s class; see Figure 6-8).

From the ASP.NET AJAX Framework code, this._maxAge is being set to zero and if
(... || (delta < this._maxAge)) is preventing it from being set to a larger value.

Figure 6-7. Continuous calls to the web method return unique timestamps, which means the call is
not being cached and the browser is requesting the server all the time

Figure 6-8. The decompiled code in the HttpCachePolicy class in the ASP.NET 2.0 Framework that
deals with the maxAge value

164 | Chapter 6: Optimizing ASP.NET AJAX

We need to bypass the SetMaxAge function and set the value of the _maxAge field
directly, using reflection (see Example 6-7).

This will return the headers in Figure 6-9.

Now max-age is set to 60, and the browser will cache the response for 60 seconds. If
you make the same call again within 60 seconds, it will return the same response.
Figure 6-10 shows a test output that shows the date time returned from the server.

Example 6-7. Set _maxAge field’s value directly by bypassing the SetMaxAge function

[WebMethod][ScriptMethod(UseHttpGet=true)]
public string CachedGet2()
{
 TimeSpan cacheDuration = TimeSpan.FromMinutes(1);

 FieldInfo maxAge = Context.Response.Cache.GetType().GetField("_maxAge",
 BindingFlags.Instance|BindingFlags.NonPublic);
 maxAge.SetValue(Context.Response.Cache, cacheDuration);

 Context.Response.Cache.SetCacheability(HttpCacheability.Public);
 Context.Response.Cache.SetExpires(DateTime.Now.Add(cacheDuration));
 Context.Response.Cache.AppendCacheExtension(
 "must-revalidate, proxy-revalidate");

 return DateTime.Now.ToString();
}

Figure 6-9. The proper response headers for the cache

Figure 6-10. Cache successful

Cached

Cache expired

Using HTTP GET Calls Instead of HTTP POST | 165

After one minute, the cache expires and the browser makes a call to the server again.
The client-side code for this experiment is like this:

function testCache()
{
 TestService.CachedGet(function(result)
 {
 debug.trace(result);
 });
}

But there’s another problem to solve. In web.config, ASP.NET AJAX will add:

<system.web>
 <trust level="Medium"/>

This prevents us from setting the _maxAge field of the Response object because it
requires reflection, which requires full permission. So, you will have to change the
trust level to Full:

<system.web>
 <trust level="Full"/>

You can create an HTTP module that intercepts all web service calls and returns the
proper cache header for HTTP GET calls, which will save you from writing the same
code in many web methods.

Using HTTP GET Calls Instead of HTTP POST
ASP.NET AJAX, by default, uses HTTP POST for all web service calls, but HTTP
POST is more “expensive” than HTTP GET. It transmits more bytes over the wire,
which hogs precious network time, and makes ASP.NET AJAX do extra processing
on the server end. So, you should use HTTP GET as much as possible. However,
HTTP GET does not allow you to pass objects as parameters, only numerics, strings,
and dates.

When you make an HTTP GET call, ASP.NET AJAX builds an encoded URL and
hits that URL. So, you can’t pass too much content that makes the URL larger than
2,048 characters. This is the maximum length for URLs in many browsers.

To enable HTTP GET on a web service method, you need to decorate the method
with the [ScriptMethod(UseHttpGet=true)] attribute:

[WebMethod] [ScriptMethod(UseHttpGet=true)]
public string HelloWorld()
{
}

Another problem of POST versus GET is that POST makes two network transfers.
When you first make a POST, the web server sends an “HTTP 100 Continue” mes-
sage, which means that the web server is ready to accept the content. After that, the
browser sends the actual data. So, initiation of a POST request takes more time than

166 | Chapter 6: Optimizing ASP.NET AJAX

GET. And network latency (the roundtrip time between your computer and the
server) is the biggest concern with Ajax applications because Ajax makes many small
calls that need to be done in milliseconds or the application won’t feel smooth and
the user is annoyed.

Ethereal (http://www.ethereal.com) is a nice tool that shows what happens under the
hood on POST and GET calls (see Figure 6-11).

You can see that POST requires a confirmation from the web server—"HTTP/1.1 100
Continue"—before sending the actual data. After that, it transmits the data. How-
ever, GET transmits the data without waiting for any confirmation. So, you should
use HTTP GET when downloading data from a server including parts of pages, con-
tents in a grid, or a block of text, etc. But you should not use HTTP GET to send
data, such as username submissions, passwords, or anything that will make the URL
exceed the 2,000 character limit, to a server.

Working with the this Function
XML HTTP callbacks are not executed on the same context where they are called.
For example, if you are making a web method call from a JavaScript class:

function SampleClass()
{
 this.id = 1;
 this.call = function()
 {
 TestService.DoSomething("Hi", function(result)
 {
 debug.dump(this.id);
 });
 }
}

What happens when you call the call method? Do you get "1" on the debug con-
sole? No, you get null on the debug console because this is no longer the instance of
the class, which is a common mistake everyone makes, especially because it is not yet
documented in Ajax documentations.

Figure 6-11. HTTP POST and GET calls viewed in a packet tracer

POST

GET

Working with the this Function | 167

We know whenever JavaScript events are raised that this refers to the HTML ele-
ment that produces the event. So, if you run this code:

function SampleClass()
{
 this.id = 1;
 this.call = function()
 {
 TestService.DoSomething("Hi", function(result)
 {
 debug.dump(this.id);
 });
 }
}
var o = new SampleClass();

<input type="button" id="ButtonID" onclick="o.onclick" />

and if you click the button, you see "ButtonID" instead of "1" because the button is
making the call. So, the call is made within the button object’s context and thus this
refers to the button object, not the instance of the class.

Similarly, when XML HTTP raises the event onreadystatechanged and ASP.NET
AJAX traps and fires the callback, the code execution is still on the XML HTTP’s
context. It’s the XML HTTP object that raises the event. As a result, this refers to
the XML HTTP object, not your own class where the callback is declared.

To make the callback fire in the context of the class’s instance so that this refers to
the instance of the class, you need to make the following change:

function SampleClass()
{
 this.id = 1;
 this.call = function()
 {
 TestService.DoSomething("Hi",
 Function.createDelegate(this, function(result)
 {
 debug.dump(this.id);
 }));
 }
}

Here, the Function.createDelegate is used to create a delegate that calls the given
function under the this context when passed as the first parameter. Function.
createDelegate is defined in Ajax runtime as:

Function.createDelegate = function(instance, method) {
 return function() {
 return method.apply(instance, arguments);
 }
}

168 | Chapter 6: Optimizing ASP.NET AJAX

Summary
The hacks and workarounds you’ve seen in this chapter will help you avoid many
problems that you may never see in your development environment, but are likely to
encounter in a large-scale deployment. Implementing these tricks right from the
beginning will save you a lot of development and customer support effort.

169

Chapter 7 CHAPTER 7

Creating Asynchronous, Transactional,
Cache-Friendly Web Services7

Web applications that expose a majority of their features via web services or
depend on external web services for their functionality suffer from scalability prob-
lems at an early stage. When hundreds of users concurrently hit your site, long-
running external web service calls start blocking ASP.NET worker threads, which
makes your site slow and sometimes unresponsive. Sometimes requests fail from
timeout errors and leave user data in an inconsistent state. Moreover, lack of
response caching support in the ASP.NET AJAX Framework makes it even harder
because servers serve the same requests again and again to the same browser. In
this chapter, you will learn how to rewrite ASP.NET AJAX web service handlers to
handle web method calls on your own and make your web methods asynchro-
nous, transactional, and cache-friendly.

Scalability Challenges with Web Services
Ajax web sites tend to be very chatty because they make frequent calls to web ser-
vices, e.g., auto complete on text boxes, client-side paging on data grids, and client-
side validations require frequent web service calls. Thus, Ajax web sites produce
more ASP.NET requests than similar non-Ajax web sites. Moreover, it gets worse
when the web service calls make another web service call to external services. Then
you not only have an incoming request but also an outgoing request. This means
double the load on ASP.NET. ASP.NET has a limited number of worker threads that
serve the requests. When there’s no threads left free, ASP.NET cannot execute
requests. Requests are queued in a waiting queue, and only when a worker thread
becomes free does a request from the queue gets the chance to execute. When web
service calls perform long I/O operations, like calls to an external web service, long-
running queries in the database, or long file operations, the thread that is executing
the request is occupied until the I/O operation completes. So, if such long requests
are made more frequently than they complete execution, the ASP.NET worker
thread pool will be exhausted. Which means further requests will be queued in the
application queue and your web site will become nonresponsive for some time.

170 | Chapter 7: Creating Asynchronous, Transactional, Cache-Friendly Web Services

Fetching Flickr photo widget’s XML takes a couple of seconds. So, when hundreds
of users load the Flickr photo widget concurrently, too many web service calls will
get stuck while fetching the XML. If Flickr somehow becomes slow and takes 10 sec-
onds to complete each request, all such proxy web service calls will get stuck for 10
seconds as well. If there’s high traffic during these 10 seconds, ASP.NET will run out
of worker threads, and it will not execute new requests and the site will appear very
slow to users. Moreover, if requests in the application queue are stuck for more than
30 seconds, they will time out and the site will become nonresponsive to users.

In Figure 7-1, you can see a production server’s state when it has exceeded its limit.
External web service calls are taking too long to execute, which makes the request
execution time too high. Some requests are taking more than 200 seconds to com-
plete. As a result, 72 requests are stuck in calling external services, and additional
incoming requests are getting queued in the application queue. The number of
requests completing successfully per second is very low as shown in the Requests/Sec
counter. Also, requests are waiting in the queue for more than 82 seconds to get a
free worker thread.

Figure 7-1. When there are too many requests for ASP.NET to handle, Requests In Application
Queue starts to increase and Requests/Sec decreases. High Request Execution Time shows how long
external web services requests are stuck.

Asynchronous Web Methods | 171

Real-Life: Fixing a Traffic Jam in the Request Pipeline

Problem: A popular widget took too long to execute, the web servers got stuck, and
the web site was unusable.

Solution: Changed the proxy web service to an asynchronous HTTP handler.

One time at Pageflakes, the external stock quote service was taking too long to exe-
cute. Our web servers were all getting stuck. After they were restarted, the web serv-
ers would get stuck again within 10 minutes. The stock quote widget is very popular,
and thousands of users have that widget on their page. So, as soon as they visited
their page, the stock quote widget made a call via our proxy web service to fetch data
from the external stock quote service. Requests to the proxy got stuck because the
external web service was neither executing quickly nor timing out. Moreover, we had
to use a high timeout because the external stock quote service is generally very slow.
As a result, when we had a large traffic spike during the morning in the U.S., all our
web servers repeatedly got stuck, and the web site became unusable. We had no
choice but to disable the stock quote widget for an immediate solution. For a long-
term solution, we had to change the stock quote proxy web service to an asynchro-
nous HTTP handler because ASP.NET AJAX does not support asynchronous web
methods.

Finding out what caused the web servers to get stuck was rather difficult. We went
through the HTTP.sys error logs that are found under C:\windows\system32\Logfiles\
HTTPERR. The logfiles were full of timeout entries on many different URLs includ-
ing the stock quote service URL. So, we had to turn off each URL one at a time to
figure out which one was the real culprit.

Asynchronous Web Methods
By default, all web methods declared on a web service are synchronous on the server
side. However, the call from the browser via XML HTTP is asynchronous, but the
actual execution of the web method at the server is synchronous. This means that
from the moment a request comes in to the moment the response is generated from
that web method call, it occupies a thread from the ASP.NET worker pool. If it takes
a relatively long period of time for a request to complete, then the thread that is pro-
cessing the request will be in use until the method call is done. Unfortunately, most
lengthy calls are due to something like a long database query or perhaps a call to
another web service. For instance, if you make a database call, the current thread
waits for the database call to complete. The thread simply has to wait around doing
nothing until it hears back from its query. Similar issues arise when a thread waits for
a call to a TCP socket or a backend web service to complete.

172 | Chapter 7: Creating Asynchronous, Transactional, Cache-Friendly Web Services

When you write a typical ASP.NET web service using web methods, the compiler
compiles your code to create the assembly that will be called when requests for its
web methods are received. When your application is first launched, the ASMX han-
dler reflects over the assembly to determine which web methods are exposed.

For normal synchronous requests, it is simply a matter of finding which methods
have a [WebMethod] attribute associated with them.

To make asynchronous web methods, you need to ensure the following rules are met:

• There is a BeginXXX and EndXXX web method where XXX is any string that repre-
sents the name of the method you want to expose.

• The BeginXXX function returns an IAsyncResult interface and takes an
AsyncCallback and an object as its last two input parameters, respectively.

• The EndXXX function takes an IAsyncResult interface as its only parameter.

• Both the BeginXXX and EndXXX methods must be flagged with the WebMethod
attribute.

If the ASMX handler finds two methods that meet all these requirements, then it will
expose the XXX method in its WSDL as if it were a normal web method.

Example 7-1 shows a typical synchronous web method and Example 7-2 shows how
it is made asynchronous by introducing a Begin and End pair.

The ASMX handler will expose a web method named Sleep from the pair of web
methods. The method will accept the parameters defined before the AsyncCallback
parameter in the signature for BeginXXX as input and return with the EndXXX function.

After the ASMX handler reflects on the compiled assembly and detects an asynchro-
nous web method, it must handle requests for that method differently than it han-
dles synchronous requests. Instead of calling the Sleep method synchronously and

Example 7-1. Example of a synchronous web method

[WebMethod]
public string Sleep(int milliseconds)
{
 Thread.Sleep(milliseconds);
}

Example 7-2. Asynchronous web methods

[WebMethod]
public IAsyncResult BeginSleep(
 int milliseconds,
 AsyncCallback cb,
 object s) {...}

[WebMethod]
public string EndSleep(IAsyncResult call) {...}

Asynchronous Web Methods | 173

producing responses from the return value, it calls the BeginSleep method. It deseri-
alizes the incoming request into the parameters to be passed to the function—as it
does for synchronous requests—but it also passes the pointer to an internal callback
function as the extra AsyncCallback parameter to the BeginSleep method.

After the ASMX handler calls the BeginSleep function, it will return the thread to the
process thread pool so it can handle another request. The HttpContext for the request
will not be released yet. The ASMX handler will wait until the callback function that
it passed to the BeginSleep function is called to finish processing the request.

Once the callback function is called, a thread from the thread pool is taken out to exe-
cute the remaining work. The ASMX handler will call the EndSleep function so that it
can complete any processing it needs to perform and return the data to be rendered as
a response. Once the response is sent, the HttpContext is released (see Figure 7-2).

The asynchronous web method concept is hard to grasp. It does not match with any-
thing that we do in regular development. There are some fundamental differences
and limitations to consider:

Figure 7-2. How the asynchronous web method works

Browser

Source

ASMX handler Web service Component

GetStock BeginGetStock

Thread A

BeginXXX
I/O Thread

Fetch data

Data arrivedAsync callback

EndGetStock

Thread B

Thread A

Thread A

Thread B

EndXXX

Thread B

174 | Chapter 7: Creating Asynchronous, Transactional, Cache-Friendly Web Services

• You cannot use asynchronous web methods when you use a business layer to
read or write data that’s not asynchronous itself. For example, a web method
calling some function on DashboardFacade will not benefit from an asynchronous
approach.

• You cannot use the asynchronous method when you are calling an external web
service synchronously. The external call must be asynchronous.

• You cannot use the asynchronous method when you perform database opera-
tions using regular synchronous methods. All database operations must be
asynchronous.

• There’s no benefit in making an asynchronous web method when there’s no wait
on some I/O operation such as HTTP requests, web service calls, remoting,
asynchronous database operations, or asynchronous file operations. You won’t
benefit from simple Delegate.BeginInvoke calls, which run a function asynchro-
nously, because asynchronous delegates take threads from the same thread pool
as ASP.NET.

So, in Example 7-1, neither the simple sleep function nor any of the methods that we
have used in our proxy web service can be real asynchronous functions (see
Chapter 5). We need to rewrite them to support the asynchronous call nature. Before
we do so, remember one principle—you can only benefit from the asynchronous
method when the BeginXXX web method ends up calling a BeginYYY method on some
other component, and your EndXXX method calls that component’s EndYYY method.
Otherwise, there’s no benefit in making web methods asynchronous.

Example 7-3 shows the code for a simple stock quote proxy web service. The proxy
web service’s BeginGetStock method ends up calling the BeginGetStock method on a
component that fetches the stock data from external source. When data arrives, the
component calls back via the AsyncCallback cb. The ASMX handler passes down this
callback to the web method. So, when it is called, ASP.NET’s ASMX handler receives
the callback, and it restores the HttpContext, calls EndGetStock, and renders the
response.

Example 7-3. Example of a stock quote proxy web service

[WebService]
public class StockQuoteProxy : System.Web.Services.WebService
{
 [WebMethod]
 public IAsyncResult BeginGetStock(AsyncCallback cb, Object state)
 {
 net.stockquote.StockQuoteService proxy
 = new net.stockquote.StockQuoteService();
 return proxy.BeginGetStock("MSFT",
 cb,
 proxy);
 }

Modifying the ASP.NET AJAX Framework to Handle Web Service Calls | 175

The problem is ASP.NET’s ASMX handler has the capability to call asynchronous
web methods and return threads to the ASP.NET thread pool, but ASP.NET AJAX
Framework’s ASMX handler does not have that capability. It supports only synchro-
nous calls. So, we need to rewrite the ASMX handler of ASP.NET AJAX to support
asynchronous web method execution and then bypass ASP.NET AJAX’s ASMX han-
dler when web methods are called via XML HTTP. In the next section, you will see
how the ASP.NET AJAX Framework’s ASMX handler works and how you can
rewrite such a handler yourself and introduce new features to it.

Modifying the ASP.NET AJAX Framework to Handle Web
Service Calls
When you make a web service call from the browser via the ASP.NET AJAX Frame-
work, it uses XML HTTP to make a call to a server-side web service. Usually all calls
to ASMX files are handled by ASP.NET’s ASMX handler. But when you add ASP.
NET AJAX to your web application, you need to make some changes in the web.
config where you explicitly remove the default ASMX handler and add the ASP.NET
AJAX Framework’s own ScriptHandler as the ASMX handler (see Example 7-4).

You also add a ScriptModule in the HTTP modules pipeline. It intercepts each and
every HTTP request and checks whether the call is to an ASPX page and is calling a
page method. It intercepts only page method calls, not web service calls. So, you
don’t need to bypass it.

ScriptHandler is a regular HTTP handler that finds out which web service and web
method is called by parsing the URL. It then executes the web method by reflecting
on the web service type. The steps involved in calling a web method are as follows:

 [WebMethod]
 public string EndGetStock(IAsyncResult res)
 {
 net.stockquote.StockQuoteService proxy
 = (net.stockquote.StockQuoteService)res.AsyncState;
 string quotes = proxy.EndGetStock(res);
 return quotes;
 }
}

Example 7-4. ASP.NET AJAX handles all calls to ASMX

<httpHandlers>
 <remove verb="*" path="*.asmx" />
 <add verb="*" path="*.asmx" validate="false" type="System.Web.Script.Services.
 ScriptHandlerFactory, System.Web.Extensions, Version=1.0.61025.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35" />

Example 7-3. Example of a stock quote proxy web service (continued)

176 | Chapter 7: Creating Asynchronous, Transactional, Cache-Friendly Web Services

1. Confirm it’s an Ajax web method call by checking Content-Type to see whether it
has application/json. If not, raise an exception.

2. Find out which .asmx is called by parsing a requested URL and getting the
assembly, which has the compiled code for the .asmx.

3. Reflect on the assembly and find the web service class and method that repre-
sents the web method being called.

4. Deserialize input parameters into the proper data type. In case of HTTP POST,
deserialize the JSON graph.

5. See the parameters in the method and map each parameter to objects that have
been deserialized from JSON.

6. Initialize the cache policy.

7. Invoke the method via reflection and pass the parameter values that match from
JSON.

8. Get the return value. Serialize the return value into JSON/XML.

9. Emit the JSON/XML as the response.

To add asynchronous web method call support, you need to first change the way it
reflects on the assembly and locates the web method. It needs to call the Begin and
End pair, instead of the real web method. You also need to make the handler imple-
ment the IHttpAsyncHandler interface and execute the Begin and End pair in
BeginProcessRequest and EndProcessRequest.

But there’s no step that facilitates .NET 2.0 transactions. The only way to imple-
ment them is to use System.EnterpriseServices transactions or use your own .NET
2.0 TransactionScope class inside your web method code. .NET 2.0 introduced the
new System.Transaction namespace, which has a much better way to handle transac-
tions. It would be great if you could add a [Transaction] attribute in your web meth-
ods so they could work within a transaction managed by the ScriptHandler. But
ScriptHandler does not deal with .NET 2.0 transactions.

Initializing the Cache Policy
In the ASP.NET AJAX Framework, initialization of cache policy comes before invok-
ing the web method. Example 7-5 shows the ASP.NET AJAX 1.0 code for the
InitializeCachePolicy function that sets the cache policy before invoking the web
method.

Example 7-5. ScriptHandler’s InitializeCachePolicy function initializes the cache settings before the
web method is called

private static void InitializeCachePolicy(WebServiceMethodData methodData, HttpContext
context) {
 int cacheDuration = methodData.CacheDuration;
 if (cacheDuration > 0) {
 context.Response.Cache.SetCacheability(HttpCacheability.Server);
 context.Response.Cache.SetExpires(DateTime.Now.AddSeconds(cacheDuration));

Developing Your Own Web Service Handler | 177

If you do not have cache duration set in the [WebMethod] attribute, it will set the
MaxAge to zero. Once MaxAge is set to zero, it can no longer be increased; therefore,
you cannot increase MaxAge from your web method code dynamically and thus make
the browser cache the response.

Developing Your Own Web Service Handler
In this section, you will learn how to develop your own web service handler and
overcome the limitation of the ASP.NET AJAX Framework’s built-in ASMX handler.
The first step is to add asynchronous method invocation support to web methods.
Then add .NET 2.0 transactions on the synchronous method calls. Unfortunately, I
haven’t found a way to make asynchronous functions transactional. The third step is
to set the cache policies after invoking the web method (be careful not to overwrite
the cache policies that the web method has already set for itself). Finally, some minor
modifications are needed to generate responses with a proper Content-Length header,
which helps browsers optimize a response’s download time by using persisted connec-
tions and less strict exception handling to prevent event logs being flooded with errors.

Basics of Asynchronous Web Service Handlers
First you need to create a HTTP handler that will intercept all calls to web services.
You need to map that handler to the *.asmx extension in web.config’s
<httphandlers> section. By default, ASP.NET AJAX will map its ScriptHandler,
which handles the *.asmx extension, so you will have to replace that with your own
HTTP handler.

In the accompanying source code, the AJAXASMXHandler project is the new web
service handler. ASMXHttpHandler.cs is the main HTTP handler class. The
ASMXHttpHandler class implements IHttpAsyncHandler. When this handler is invoked

 context.Response.Cache.SetSlidingExpiration(false);
 context.Response.Cache.SetValidUntilExpires(true);

 if (methodData.ParameterDatas.Count > 0) {
 context.Response.Cache.VaryByParams["*"] = true;
 }
 else {
 context.Response.Cache.VaryByParams.IgnoreParams = true;
 }
 }
 else {
 context.Response.Cache.SetNoServerCaching();

context.Response.Cache.SetMaxAge(TimeSpan.Zero);
 }
}

Example 7-5. ScriptHandler’s InitializeCachePolicy function initializes the cache settings before the
web method is called (continued)

178 | Chapter 7: Creating Asynchronous, Transactional, Cache-Friendly Web Services

during calls to web services, the ASP.NET Framework first calls BeginProcessRequest.
In this function, the handler parses the requested URL and finds out which web ser-
vice and web method to invoke (see Example 7-6).

WebServiceDef is a class that wraps the Type class and contains information about a
web service’s type. It maintains a collection of WebMethodDef items where the item
contains the definition of a web method. WebMethodDef has the name of each method,
the attributes associated to the method, whether it supports HTTP GET or not, and
a reference to the Begin and End function pair, if there’s any. If there’s no Begin and
End pair, the function is executed synchronously, as in Example 7-7. Both of these
classes are used to cache information about web services and web methods, so
there’s no need to repeatedly use reflection to discover the metadata.

Example 7-6. The ASMXHttpHandler class BeginProcessRequest’s function starts the execution of a
request asynchronously

IAsyncResult IHttpAsyncHandler.BeginProcessRequest(HttpContext context, AsyncCallback cb,
object extraData)
{
 // Proper content-type header must be present to make an Ajax call
 if (!IsRestMethodCall(context.Request)) return GenerateErrorResponse(context, "Not a
 valid AJAX call", extraData);

 string methodName = context.Request.PathInfo.Substring(1);

 WebServiceDef wsDef = WebServiceHelper.GetWebServiceType(context, context.Request.
 FilePath);
 WebMethodDef methodDef = wsDef.Methods[methodName];

 if (null == methodDef) return GenerateErrorResponse(context, "Web method not
 supported: " + methodName, extraData);

 // GET request will only be allowed if the method says so
 if (context.Request.HttpMethod == "GET" && !methodDef.IsGetAllowed)
 return GenerateErrorResponse(context, "Http Get method not supported",
 extraData);

 // If the method does not have a BeginXXX and EndXXX pair, execute it synchronously
 if (!methodDef.HasAsyncMethods)
 {

Example 7-7. BeginProcessRequest: synchronous execution of web methods when there’s no Begin
and End pair

// If the method does not have a BeginXXX and EndXXX pair, execute it synchronously
if (!methodDef.HasAsyncMethod)
{
 // Do synchronous call
 ExecuteMethod(context, methodDef, wsDef);

Developing Your Own Web Service Handler | 179

BeginProcessRequest returns immediately when the method is executed synchro-
nously. It returns an AsmxHandlerSyncResult instance that indicates the request has
executed synchronously and there’s no need to fire EndProcessRequest.
AsmxHandlerSyncResult implements the IAsyncResult interface. It returns true from
the CompletedSynchronously property (see Example 7-8).

Going back to BeginProcessRequest, when there is a Begin and End pair, it calls the
BeginXXX method of the web method and returns from the function. Execution goes
back to the ASP.NET Framework, and it returns the thread to the thread pool.

 // Return a result that says method was executed synchronously
 return new AsmxHandlerSyncResult(extraData);
}

Example 7-8. AsmxHandlerSyncResult implements IAsyncResult and returns true from the
CompletedSynchronously property. It also returns a ManualReset event with state set to true
indicating that the call has completed.

public class AsmxHandlerSyncResult : IAsyncResult
{
 private object state;
 private WaitHandle handle = new ManualResetEvent(true);

 public AsmxHandlerSyncResult(object state)
 {
 this.state = state;
 this.handle = handle;
 }

 object IAsyncResult.AsyncState { get { return this.state; } }
 WaitHandle IAsyncResult.AsyncWaitHandle { get { return this.handle; } }
 bool IAsyncResult.CompletedSynchronously { get { return true; } }
 bool IAsyncResult.IsCompleted { get { return true; } }
}

Dynamically Instantiating a Web Service
Web services inherit from System.Web.Services.WebService, which implements the
IDisposable interface. Activator.CreateInstance is a .NET Framework class that can
dynamically instantiate any class from its type and return a reference to the object. In
Example 7-9, a web service class instance is created, and the IDisposable interface ref-
erence is used. IDisposable interface is used because we need to dispose of it when we
are done.

Example 7-7. BeginProcessRequest: synchronous execution of web methods when there’s no Begin
and End pair (continued)

180 | Chapter 7: Creating Asynchronous, Transactional, Cache-Friendly Web Services

Example 7-9 show the preparation step for calling the BeginXXX function on the web
service. First, all the parameters are properly mapped from the request parameters
except for the last two parameters, where one is the AsyncCallback and the other is
the object state.

Once the preparation is complete, the BeginXXX method is invoked. Now the
BeginXXX method can execute synchronously and return immediately. In that case,
you need to generate the response right out of BeginXXX and complete execution of
the request. But if BeginXXX needs more time to execute asynchronously, then you
need to return the execution to the ASP.NET Framework so that it can put the
thread back into the thread pool. When the asynchronous operation completes, the
EndProcessRequest function will be called back and you resume processing the
request (see Example 7-10).

Example 7-9. BeginProcessRequest: Preparing to invoke the BeginXXX web method on the web
service

else
{
 // Create an instance of the web service
 IDisposable target = Activator.CreateInstance(wsDef.WSType) as IDisposable;

 // Get the BeginXXX method and extract its input parameters
 WebMethodDef beginMethod = methodDef.BeginMethod;
 int allParameterCount = beginMethod.InputParametersWithAsyc.Count;

 // Map HttpRequest parameters to BeginXXX method parameters
 IDictionary<string, object> inputValues = GetRawParams(context, beginMethod.
 InputParameters);
 object[] parameterValues = StrongTypeParameters(inputValues, beginMethod.
 InputParameters);

 // Prepare the list of parameter values, which also includes the AsyncCallback and
 the state
 object[] parameterValuesWithAsync = new object[allParameterCount];
 Array.Copy(parameterValues, parameterValuesWithAsync, parameterValues.Length);

 // Populate the last two parameters with asynchonous callback and state
 AsyncWebMethodState webMethodState = new AsyncWebMethodState(methodName, target,
 wsDef, methodDef, context, extraData);

 parameterValuesWithAsync[allParameterCount - 2] = cb;
 parameterValuesWithAsync[allParameterCount - 1] = webMethodState;

Example 7-10. BeginProcessRequest: Invoke the BeginXXX function on the web service and return
the IAsyncResult

try
{
 // Invoke the BeginXXX method and ensure the return result has AsyncWebMethodState.
 // This state contains context and other information that we need to call
 // the EndXXX

Developing Your Own Web Service Handler | 181

The EndProcessRequest function is fired when the asynchronous operation com-
pletes and the callback is fired. For example, if you call an external web service asyn-
chronously inside the BeginXXX web method, you need to pass an AsyncCallback
reference. This is the same callback that you receive on BeginProcessRequest. The
ASP.NET Framework creates a callback reference for you that fires the
EndProcessRequest on the HTTP handler. During the EndProcessRequest, you just
need to call the EndXXX method of the web service, get the response, and generate
output (see Example 7-11).

 IAsyncResult result = beginMethod.MethodType.Invoke(target,
 parameterValuesWithAsync) as IAsyncResult;

 // If execution has completed synchronously within the BeginXXX function, then
 // generate response immediately. There's no need to call EndXXX
 if (result.CompletedSynchronously)
 {
 object returnValue = result.AsyncState;
 GenerateResponse(returnValue, context, methodDef);

 target.Dispose();
 return new AsmxHandlerSyncResult(extraData);
 }
 else
 {
 if (result.AsyncState is AsyncWebMethodState) return result;
 else throw new InvalidAsynchronousStateException("The state passed
 in the " + beginMethod.MethodName + " must inherit from "
 + typeof(AsyncWebMethodState).FullName);
 }
}
catch(Exception x)
{
 target.Dispose();
 WebServiceHelper.WriteExceptionJsonString(context, x, _serializer);
 return new AsmxHandlerSyncResult(extraData);
}

Example 7-11. EndProcessRequest function of ASMXHttpHandler

void IHttpAsyncHandler.EndProcessRequest(IAsyncResult result)
{
 if (result.CompletedSynchronously) return;

 AsyncWebMethodState state = result.AsyncState as AsyncWebMethodState;

 if (result.IsCompleted)
 {
 MethodInfo endMethod = state.MethodDef.EndMethod.MethodType;

 try

Example 7-10. BeginProcessRequest: Invoke the BeginXXX function on the web service and return
the IAsyncResult (continued)

182 | Chapter 7: Creating Asynchronous, Transactional, Cache-Friendly Web Services

When the EndXXX web method completes, you will get a return value if the function is
not a void type function. In that case, you need to convert the return value to a JSON
string and return to the browser. However, the method can return an XML string
also instead of JSON. So, just write the string to the HttpResponse (see
Example 7-12).

 {
 object returnValue = endMethod.Invoke(state.Target,
 new object[] { result });
 GenerateResponse(returnValue, state.Context, state.MethodDef);
 }
 catch (Exception x)
 {
 WebServiceHelper.WriteExceptionJsonString(state.Context, x, _serializer);
 }
 finally
 {
 state.Target.Dispose();
 }

 state.Dispose();
 }
}

Example 7-12. TheGenerateResponse function of ASMXHttpHandler prepares the response JSON
or the XML string according to the web method definition

private void GenerateResponse(object returnValue, HttpContext context, WebMethodDef
methodDef)
{
 string responseString = null;
 string contentType = "application/json";

 if (methodDef.ResponseFormat == System.Web.Script.Services.ResponseFormat.Json)
 {
 responseString = _serializer.Serialize(returnValue);
 contentType = "application/json";
 }
 else if (methodDef.ResponseFormat == System.Web.Script.Services.ResponseFormat.Xml)
 {
 responseString = returnValue as string;
 contentType = "text/xml";
 }

 context.Response.ContentType = contentType;

 // If we have a response and no redirection is happening and the client is
 // still connected, send response
 if (responseString != null
 && !context.Response.IsRequestBeingRedirected
 && context.Response.IsClientConnected)

Example 7-11. EndProcessRequest function of ASMXHttpHandler (continued)

Developing Your Own Web Service Handler | 183

Basically this is how a web method is executed synchronously and asynchronously
and response is prepared. Although there are more complicated steps in preparing
the web service and web method definition, serialization/deserialization of JSON,
and mapping deserialized objects to input parameters of web method, I will skip
these areas. You can review the code of the HTTP handler and learn in detail how all
these work. A lot of code has been reused from ASP.NET AJAX; I also used the
JSON serializer that comes with the Framework.

Adding Transaction Capability to Web Methods
Up to this point, the web method execution doesn’t support transaction. The
[TransactionalMethod] attribute defines the scope of transaction to use, as well as the
isolation level and timeout period (see Example 7-13).

 {
 // Convert the return value to response encoding, e.g., UTF-8
 byte[] unicodeBytes = Encoding.Unicode.GetBytes(responseString);
 byte[] utf8Bytes = Encoding.Convert(Encoding.Unicode,
 context.Response.ContentEncoding, unicodeBytes);

 // Instead of Response.Write, which will convert the output to UTF-8,
 // use the internal stream
 // to directly write the UTF-8 bytes
 context.Response.OutputStream.Write(utf8Bytes, 0, utf8Bytes.Length);
 }
 else
 {
 // Send no body as response and abort it
 context.Response.AppendHeader("Content-Length", "0");
 context.Response.ClearContent();
 context.Response.StatusCode = 204; // No Content
 }

Example 7-13. An example of implementing a transactional web method

[WebMethod]
[TransactionalMethod(
 TransactionOption=TransactionScopeOption.RequiresNew,
 Timeout=10,
 IsolationLevel=IsolationLevel.Serializable)]
public void TestTransactionCommit()
{
 Debug.WriteLine(string.Format(
 "TestTransactionCommit: Status: {0},
 Isolation Level: {1}",
 Transaction.Current.TransactionInformation.Status,
 Transaction.Current.IsolationLevel));

Example 7-12. TheGenerateResponse function of ASMXHttpHandler prepares the response JSON
or the XML string according to the web method definition (continued)

184 | Chapter 7: Creating Asynchronous, Transactional, Cache-Friendly Web Services

A web method that has the TransactionalMethod attribute will automatically execute
inside a transaction. We will use .NET 2.0 transactions here. The transaction man-
agement is done entirely in the HTTP handler and thus the web method doesn’t have
to do anything. The transaction is automatically rolled back when the web method
raises an exception; otherwise, the transaction is committed automatically.

The ExecuteMethod function of the ASMXHttpHandler invokes web methods synchro-
nously and provides transaction support. Currently, transaction support for asyn-
chronous methods has not been implemented because execution switches from one
thread to another, so the TransactionScope is lost from the thread local storage (see
Example 7-14).

 using (SqlConnection con = new SqlConnection(
 ConfigurationManager.ConnectionStrings["default"].ConnectionString))
 {
 con.Open();
 using (SqlCommand cmdInsert = new SqlCommand("INSERT INTO Widget
 (Name, Url, Description, CreatedDate, LastUpdate,
 VersionNo, IsDefault, DefaultState, Icon)
 VALUES ('', '', '', GETDATE(), GETDATE(), 0, 0, '', '');
 SELECT @@IDENTITY", con))
 {
 object id = cmdInsert.ExecuteScalar();

 using (SqlCommand cmdDelete = new SqlCommand(
 "DELETE FROM Widget WHERE ID=" + id.ToString(), con))
 {
 cmdDelete.ExecuteNonQuery();
 }
 }
 }
}

Example 7-14. The ExecuteMethod of ASMXHttpHandler invokes a web method synchronously
within a transaction scope

private void ExecuteMethod(
 HttpContext context,
 WebMethodDef methodDef,
 WebServiceDef serviceDef)
{
IDictionary<string, object> inputValues =
 GetRawParams(context, methodDef.InputParameters);
object[] parameters =
 StrongTypeParameters(inputValues, methodDef.InputParameters);

object returnValue = null;
using (IDisposable target =
 Activator.CreateInstance(serviceDef.WSType) as IDisposable)
{

Example 7-13. An example of implementing a transactional web method (continued)

Developing Your Own Web Service Handler | 185

Example 7-14 shows a web method executing properly and generating a response.
The web method executes within a transaction scope defined in the
TransactionalMethod attribute. But when the web method raises an exception, it goes
to the catch block where a exception message is produced. Finally, the
TransactionScope is disposed and it checks whether it has been already committed. If
not, TransactionScope rolls back the transaction (see Example 7-15).

 TransactionScope ts = null;
 try
 {
 // If the method has a transaction attribute,
 // then call the method within a transaction scope
 if (methodDef.TransactionAtt != null)
 {
 TransactionOptions options = new TransactionOptions();
 options.IsolationLevel = methodDef.TransactionAtt.IsolationLevel;
 options.Timeout =
 TimeSpan.FromSeconds(methodDef.TransactionAtt.Timeout);

 ts = new TransactionScope(
 methodDef.TransactionAtt.TransactionOption, options);
 }

 returnValue = methodDef.MethodType.Invoke(target, parameters);

 // If transaction was used, then complete the transaction
 // because no exception was generated
 if(null != ts) ts.Complete();

 GenerateResponse(returnValue, context, methodDef);
 }

Example 7-15. ExecuteMethod: When a web method raises an exception, the transaction is rolled
back

 catch (Exception x)
 {
 WebServiceHelper.WriteExceptionJsonString(context, x, _serializer);
 }
 finally
 {
 // If the transaction was started for the method, dispose the transaction.
 // This will roll back if not committed
 if(null != ts) ts.Dispose();

 // Dispose the web service
 target.Dispose();
 }

Example 7-14. The ExecuteMethod of ASMXHttpHandler invokes a web method synchronously
within a transaction scope (continued)

186 | Chapter 7: Creating Asynchronous, Transactional, Cache-Friendly Web Services

The entire transaction management is inside the HTTP handler, so there’s no need to
worry about transactions in web services. Just add one attribute, and web methods
become transaction enabled.

Adding Cache Headers
The previous section “Modifying the ASP.NET AJAX Framework to Handle Web
Service Calls” described how ASP.NET AJAX initializes the cache policy before
invoking the web method. Due to a limitation in HttpCachePolicy, once the MaxAge is
set to a value, it cannot be increased. Because ASP.NET AJAX sets the MaxAge to zero,
there’s no way to increase that value from within the web method code. Moreover, if
you use Fiddler or any other HTTP inspection tool to see responses returned from
web service calls, you will see the responses are missing Content-Length attribute.
Without this attribute, browsers cannot use HTTP pipelining, which greatly
improves the HTTP response download time.

Example 7-16 shows some additions made to the GenerateResponse function to deal
with the cache policy. The idea is to confirm that the web method has already set
some cache policy in the HttpResponse object so it will not change any cache setting.
Otherwise, it will look at the WebMethod attribute for cache settings and then set the
cache headers.

Example 7-16. The GenerateResponse function handles cache headers properly by respecting the
cache policy set by the web method

// If we have a response and no redirection is happening and the client is still
//connected, send response
if (responseString != null
 && !context.Response.IsRequestBeingRedirected
 && context.Response.IsClientConnected)
{
 // Produces proper cache. If no cache information is specified on the method and
 // there's been no cache-related
 // changes done within the web method code, then the default cache will be private,
 // no cache.
 if (IsCacheSet(context.Response))
 {

// Cache has been modified within the code; do not change any cache policy
 }
 else
 {
 // Cache is still private. Check to see if CacheDuration was set in WebMethod
 int cacheDuration = methodDef.WebMethodAtt.CacheDuration;
 if (cacheDuration > 0)
 {
 // If CacheDuration attribute is set, use server-side caching
 context.Response.Cache.SetCacheability(HttpCacheability.Server);
 context.Response.Cache.SetExpires(DateTime.Now.AddSeconds(cacheDuration));
 context.Response.Cache.SetSlidingExpiration(false);
 context.Response.Cache.SetValidUntilExpires(true);

Developing Your Own Web Service Handler | 187

The IsCacheSet function checks to see whether there’s been any change in some of
the common cache settings. If there has been a change, then the web method wants
to deal with the cache itself, and GenerateResponse does not make any change to the
cache policy (see Example 7-17).

 if (methodDef.InputParameters.Count > 0)
 {
 context.Response.Cache.VaryByParams["*"] = true;
 }
 else
 {
 context.Response.Cache.VaryByParams.IgnoreParams = true;
 }
 }
 else
 {
 context.Response.Cache.SetNoServerCaching();
 context.Response.Cache.SetMaxAge(TimeSpan.Zero);
 }
 }

 // Convert the response to response encoding, e.g., UTF-8
 byte[] unicodeBytes = Encoding.Unicode.GetBytes(responseString);
 byte[] utf8Bytes = Encoding.Convert(Encoding.Unicode, context.Response.
 ContentEncoding, unicodeBytes);

 // Emit content length in UTF-8 encoding string
 context.Response.AppendHeader("Content-Length", utf8Bytes.Length.ToString());

 // Instead of Response.Write, which will convert the output to UTF-8, use the
 // internal stream
 // to directly write the UTF-8 bytes
 context.Response.OutputStream.Write(utf8Bytes, 0, utf8Bytes.Length);
}

Example 7-17. The IsCacheSet function checks whether the cache policy has already been set by the
web method

private bool IsCacheSet(HttpResponse response)
{
 // Default is private. So, if it has been changed, then the web method
 // wants to handle cache itself
 if (response.CacheControl == "public") return true;

 // If maxAge has been set to a nondefault value, then the web method
 // wants to set maxAge itself.
 FieldInfo maxAgeField = response.Cache.GetType().GetField("_maxAge",
 BindingFlags.GetField | BindingFlags.Instance | BindingFlags.NonPublic);
 TimeSpan maxAgeValue = (TimeSpan)maxAgeField.GetValue(response.Cache);

Example 7-16. The GenerateResponse function handles cache headers properly by respecting the
cache policy set by the web method (continued)

188 | Chapter 7: Creating Asynchronous, Transactional, Cache-Friendly Web Services

Real-Life: Exception Handling

Problem: The ASMX handler kept firing exceptions.

Solution: Used the reflection-based maxAge hack in the “Caching Web Service
Responses on the Browser” section in Chapter 6.

On an earlier portal project I worked on, our web servers’ event logs were being
flooded with this error:

Request format is unrecognized for URL unexpectedly ending in /SomeWebServiceMethod

In ASP.NET AJAX 1.0 version, Microsoft added a check for all web service calls to have
Content-Type: application/json in the request headers. Unless this request header was
present, ASMX handler fired an exception. This exception was raised directly from the
ScriptHandler, which handled all web service calls made via ASP.NET AJAX. This
resulted in an UnhandledException and was written in the event log.

This is done for security reasons; it prevents someone from feeding off your web ser-
vices. For example, you might have a web service that returns some useful informa-
tion that others want. So, anyone could just add a <script> tag pointing to that web
service URL and get the JSON. If that web service is a very expensive web service in
terms of I/O and/or CPU, then other web sites feeding off your web service could
easily bog down your server.

Now, this backfires when you have HTTP GET supported web service calls that pro-
duce response headers to cache the response in the browser and proxy. For example,
you might have a web method that returns stock quotes. You have used response
caching so the browser caches the response of that web method, and repeated visits
do not produce repeated calls to that costly I/O web service. Because it has a cache
header, proxy gateways or proxy servers will see that their client users are requesting
this frequently and it can be cached. So, they will make periodic calls to that web ser-
vice and try to precache the headers on behalf of their client users. However, during
the precache process, the proxy gateways or proxy servers will not send the Content-
Type: application/json header. As a result, an exception is thrown and your event
log is flooded.

The reason why this went undetected is because there’s no way to make a HTTP
GET response cacheable on the browser from web service calls unless you do the
reflection-based maxAge hack in the “Caching Web Service Responses on the
Browser” section in Chapter 6.

 if (maxAgeValue != TimeSpan.Zero) return true;

 return false;
}

Example 7-17. The IsCacheSet function checks whether the cache policy has already been set by the
web method (continued)

Making an Asynchronous and Cache-Friendly Proxy | 189

So, the ASMXHttpHandler just returns HTTP 405 saying the call is not allowed if it
does not have the application/json content type. This solves the event log flood
problem and prevents browsers from getting a valid response when someone uses a
<script> tag on your web method.

Using the Attributes
You have seen that the BeginXXX and EndXXX functions don’t have the [WebMethod]
attribute, but instead only have the [ScriptMethod] attribute. If you add WebMethod
attribute, the Ajax JavaScript proxy generator will unnecessarily generate function
wrappers for those methods in the JavaScript proxy for the web service. So, for the
JavaScript proxy generator, you need only to put the WebMethod attribute on the XXX
web method. Moreover, you cannot have a WebMethod attribute on BeginXXX, EndXXX,
and the XXX functions at the same time because the WSDL generator will fail to gen-
erate. So, the idea is to add the WebMethod attribute only to the XXX function, and the
JavaScript proxy generator will generate a JavaScript function for the web method
and add only the ScriptMethod attribute on the BeginXXX and EndXXX functions.

Handling the State Object
The last parameter passed in the BeginXXX function, the object state parameter,
needs to be preserved. It contains a reference to the HttpContext, which is needed by
the ASMX handler to call the EndXXX function on proper context. So, if you create a
custom state object and pass that to a BeginYYY function of some component, e.g.,
File.BeginRead, then you need to inherit that custom state object from the
AsyncWebMethodState class. You must pass the state parameter in the constructor.
This way, your custom state object will carry the original state object that is passed
down to your BeginXXX function.

Making an Asynchronous and Cache-Friendly Proxy
You can make proxy methods asynchronous by using the new Ajax ASMX handler.
This will solve a majority of the proxy web service’s scalability problems. Moreover,
the proxy service will become cache-friendly for browsers, and they will be able to
download responses faster from the proxy by using the Content-Length header.

The GetString and GetXml method can become asynchronous very easily by using the
HttpWebRequest class and its asynchronous methods. HttpWebRequest has the
BeginGetResponse function, which works asynchronously. So, you just need to call
BeginResponse in the BeginGetString class of the proxy (see Example 7-18).

190 | Chapter 7: Creating Asynchronous, Transactional, Cache-Friendly Web Services

The BeginGetString method has two modes. It executes them synchronously when
the content is cached in the ASP.NET cache. Then there’s no need to return the
thread to the thread pool because the method can complete right away. If there isn’t
any content in the cache, it makes a BeginGetResponse call and returns execution to
the ASMX handler. The custom state object, GetStringState, inherits from the
AsyncWebMethodState defined in the AJAXASMXHandler project. In its constructor, it
takes the original state object passed down to the BeginGetString function. The
ASMXHttpHandler needs the original state so that it can fire the EndGetString function
on proper context.

When HttpWebRequest gets the response, it fires the ASMX handler’s callback. The
ASMX handler, in turn, calls EndGetString to complete the response. EndGetString
downloads the response, caches it, and returns it as a return value (see Example 7-19).

Example 7-18. A proxy’s BeginGetString function asynchronously downloads responses from an
external source

private class GetStringState : AsyncWebMethodState
{
 public HttpWebRequest Request;
 public string Url;
 public int CacheDuration;
 public GetStringState(object state) : base(state) {}
}

[ScriptMethod]
public IAsyncResult BeginGetString(string url, int cacheDuration, AsyncCallback cb, object
state)
{
 // See if the response from the URL is already cached on server
 string cachedContent = Context.Cache[url] as string;
 if (!string.IsNullOrEmpty(cachedContent))
 {
 this.CacheResponse(Context, cacheDuration);
 return new AsmxHandlerSyncResult(cachedContent);
 }

 HttpWebRequest request = WebRequest.Create(url) as HttpWebRequest;

 GetStringState myState = new GetStringState(state);
 myState.Request = request;
 myState.Url = url;
 myState.CacheDuration = cacheDuration;

 return request.BeginGetResponse(cb, myState);
}

Example 7-19. The EndGetString method of a proxy web service

[ScriptMethod]
public string EndGetString(IAsyncResult result)

Scaling and Securing the Content Proxy | 191

Keep in mind that the Context object is unavailable in the EndGetString function
because this function is fired on a different thread that is no longer tied to the origi-
nal thread that initiated the HTTP request. So, you need to get a reference to the
original Context from the state object.

Similarly, you can make GetRss asynchronous by introducing a BeginGetRss and
EndGetRss pair.

Scaling and Securing the Content Proxy
As widgets start using the proxy service, described in Chapter 5, more and more, this
single component will become the greatest scalability bottleneck of your entire web
portal project. It’s not unusual to spend a significant amount of development
resources to improve scalability, reliability, availability, and performance on the con-
tent proxy. This section describes some of the challenges you will face when going
live to millions of users with such a proxy component.

Maintaining Speed
Widgets call a proxy service to fetch content from an external source. The proxy ser-
vice makes the call, downloads the response on server, and then transmits the
response back to the browser. There are two latencies involved here: between the
browser and your server, and your server and the destination. If the response’s pay-
load is high, say 500 KB, then there’s almost 1 MB of transfer that takes place during

{
 GetStringState state = result.AsyncState as GetStringState;

 HttpWebRequest request = state.Request;
 using(HttpWebResponse response =
 request.EndGetResponse(result) as HttpWebResponse)
 {
 using(StreamReader reader = new
 StreamReader(response.GetResponseStream()))
 {
 string content = reader.ReadToEnd();
 state.Context.Cache.Insert(state.Url, content, null,
 Cache.NoAbsoluteExpiration,
 TimeSpan.FromMinutes(state.CacheDuration),
 CacheItemPriority.Normal, null);

 // produce cache headers for response caching
 this.CacheResponse(state.Context, state.CacheDuration);

 return content;
 }
 }
}

Example 7-19. The EndGetString method of a proxy web service (continued)

192 | Chapter 7: Creating Asynchronous, Transactional, Cache-Friendly Web Services

the call. So, you need to put a limit on how much data transfer you allow from the
proxy (see Example 7-20). HttpWebResponse class has a ContentLength property that
tells you how much data is being served by the destination. You can check whether it
exceeds the maximum limit that you can take in. If widgets are requesting a large
amount of data, it not only slows that specific request, but also other requests on the
same server, since the server’s bandwidth is occupied during the megabyte transfer.
Servers generally have 4 Mbps, 10 Mbps, or, if you can afford it, 100 Mbps connec-
tivity to the Internet. At 10 Mbps, you can transfer about 1 MB per second. So, if one
proxy call is occupied transferring megabytes, there’s no bandwidth left for other
calls to happen and bandwidth cost goes sky high. Moreover, during the large trans-
fer, one precious HTTP worker thread is occupied streaming megabytes of data over
a slow Internet connection to the browser. If a user is using a 56 Kbps ISDN line, a 1
MB transfer will occupy a worker thread for about 150 seconds.

Sometimes external sources do not generate the content length header, so there’s no
way to know how much data you are receiving unless you download the entire byte
stream from the server until the server closes the connection. This is a worst-case sce-
nario for a proxy service because you have to download up to your maximum limit
and then abort the connection. Example 7-21 shows a general algorithm for dealing
with this problem.

Example 7-20. Putting a limit on how much data you will download from external sources via a
HttpWebRequest

HttpWebResponse response = request.GetResponse() as HttpWebResponse;

if (response.StatusCode == HttpStatusCode.OK)
{
 int maxBytesAllowed = 512 * 1024; // 512 K
 if (response.ContentLength > maxBytesAllowed)
 {
 response.Close();
 throw new ApplicationException("Response too big.
 Max bytes allowed to download is: " + maxBytesAllowed);
 }

Example 7-21. An algorithm for downloading external content safely

Get content length from the response header.

If the content length is present, then
 Check if content length is within the maximum limit
 If content length exceeds maximum limit, abort

If the content length is not present
 And there are more bytes available to download
 Read a chunk of bytes, e.g., 512 bytes,
 Count the total number of bytes read so far
 If the count exceeds the maximum limit, abort

Scaling and Securing the Content Proxy | 193

Connection management

Every call to the proxy makes it open an HTTP connection to the destination, down-
load data, and then close it. Setting up an HTTP connection is expensive because
there’s network latency involved in establishing a connection between the browser
and the server. If you are making frequent calls to the same domain, like Flickr.com,
it will help to maintain an HTTP connection pool, just like an ADO.NET connec-
tion pool. You should keep connections open and reuse open connections when you
have frequent requests going to the same external server. However, the HTTP con-
nection pool is very complicated to make because, unlike SQL Servers in fast private
networks, external servers are on the Internet, loaded with thousands of connection
from all over the world, and are grumpy about holding a connection open for long
period. They are always eager to close down an inactive connection as soon as possi-
ble. So, it becomes quite challenging to keep HTTP connections open to frequently
requested servers that are quite busy with other clients.

DNS resolution

DNS resolution is another performance obstacle. If your server is in the U.S., and a
web site that you want to connect to has a DNS in Australia, it’s going to take about
1 second just to resolve the web site’s IP. DNS resolution happens in each and every
HttpWebRequest. There’s no built-in cache in .NET that remembers the host’s IP for
some time. You can benefit from DNS caching if there’s a DNS server in your data
center. But that also flushes out the IP in an hour. So, you can benefit from maintain-
ing your own DNS cache. Just a static thread-safe dictionary with the key as the
domain name and the value as the IP will do. When you open HttpWebRequest,
instead of using the URI that is passed to you, replace the domain name with the
cached IP on the URI and then make the call. But remember to send the original
domain as the host header’s value.

The HttpWebRequest class has some parameters that can be tweaked for performance
and scalability for a proxy service. For example, the proxy does not need any keep-
alive connections. It can close connections as soon as a call is finished. In fact, it
must do that or a server will run out of TCP sockets under a heavy load. A server can
handle a maximum of 65,535 TCP connections that connect one a time. However,
your application’s limit is smaller than that because there are other applications run-
ning on the server that need free TCP sockets. Besides closing a connection as soon
as you are finished, you need to set a much lower Timeout value for HttpWebRequest.
The default is 100 seconds, which is too high for a proxy that needs content to be
served to a client in seconds. So, if an external service does not respond within 3 to 5
seconds, you can give up on it. Every second the timeout value increases, the risk of
worker threads being jammed is increased as well. ReadWriteTimeout is another prop-
erty that is used when reading data from the response stream. The default is 300 sec-
onds, which is too high; it should be as low as 1 second. If a Read call on the response
stream gets stuck, not only is an open HTTP connection stuck but so is a worker

194 | Chapter 7: Creating Asynchronous, Transactional, Cache-Friendly Web Services

thread on the ASP.NET pool. Moreover, if a response to a Read request takes more
than a second, that source is just too slow and you should probably stop sending
future requests to that source (see Example 7-22).

Most of the web servers now support gzip compression on response. Gzip compres-
sion significantly reduces the response size, and you should always use it. To receive
a compressed stream, you need to send the Accept-Encoding: gzip header and enable
AutomaticDecompression. The header will tell the source to send the compressed
response, and the property will direct HttpWebRequest to decompress the compressed
content. Although this will add some overhead to the CPU, it will significantly
reduce bandwidth usage and the content’s fetch time from external sources. For text
content, like JSON or XML where there are repeated texts, you will get a 10 to 50
times speed gain while downloading such responses.

Avoiding Proxy Abuse
When someone uses your proxy to anonymously download data from external
sources, it’s called proxy abuse. Just like widgets, any malicious agent can download
content from external sources via your proxy. Someone can also use your proxy to
produce malicious hits on external servers. For example, a web site can download
external content using your proxy instead of downloading it itself, because it knows
it will benefit from all the optimization and server-side caching techniques you have
done. So, anyone can use your site as their own external content cache server to save
on DNS lookup time, benefit from connection pooling to your proxy servers, and
bring down your server with additional load.

This is a really hard problem to solve. One easy way is to limit number of connec-
tions per minute or day from a specific IP to your proxy service. Another idea is to
check cookies for some secure token that you generate and send to the client side.
The client will send back that secure token to the proxy server to identify it as a legit-
imate user. But that can easily be misused if someone knows how to get the secure
token. Putting a limit on the maximum content length is another way to prevent a
large amount of data transfer. A combination of all these approaches can save your
proxy from being overused by external web sites or malicious clients. However, you

Example 7-22. Optimizing the HttpWebRequest connection for a proxy

HttpWebRequest request = WebRequest.Create("http://... ") as HttpWebRequest;
request.Headers.Add("Accept-Encoding", "gzip");
request.AutomaticDecompression = DecompressionMethods.GZip;
request.AllowAutoRedirect = true;
request.MaximumAutomaticRedirections = 1;
request.Timeout = 15000;
request.Expect = string.Empty;
request.KeepAlive = false;
request.ReadWriteTimeout = 1000;

Scaling and Securing the Content Proxy | 195

still remain vulnerable to some misuse all the time. You just have to pay for the addi-
tional hardware and bandwidth cost that goes into misuse and make sure you always
have extra processing power and bandwidth to serve your own need.

Defending Against Denial-of-Service Attacks
The proxy service is the single most vulnerable service on the whole project. It’s so
easy to bring down a site by maliciously hitting a proxy that most hackers will just
ignore you, because you aren’t worth the challenge.

Here’s one way to bring down any site that has a proxy service:

1. Create a web page that accepts an HTTP GET call.

2. Make that page sleep for as long as possible.

3. Create a small client that will hit the proxy to make requests to that web page.
Every call to that web page will make the proxy wait for a long time.

4. Find the timeout of the proxy and sleep it so that proxy will always time out on
each call (this may take some trial and error).

5. Spawn 100 threads from your small client and make a call to the proxy from
each thread to fetch content from that slow page. You will have 100 worker
threads stuck on the proxy server. If the server has two processors, it will run out
of worker threads and the site will become nonresponsive.

You can take this one step further by sleeping until timeout minus 1 second. After
that sleep, start sending a small number of bytes to the response as slowly as possi-
ble. Find the ReadWriteTimeout value of the proxy on the network stream. This will
prevent the proxy from timing out on the connection. When it’s just about to give
up, it will start getting some bytes and not abort the connection. Because it is receiv-
ing bytes within the ReadWriteTimeout, it will not time out on the Read calls. This
way, you can make each call to the proxy go on for hundreds of seconds until the
ASP.NET request times out. Spawn 100 threads and you will have 100 requests stuck
on the server until they time out. This is the worst-case scenario for any web server.

To prevent such attacks, you need to restrict the number of requests allowed from a
specific IP per minute, hour, and day. Moreover, you need to decrease the ASP.NET
request timeout value on machine.config, e.g., you can set it to 15 seconds so that no
request is stuck for more than 15 seconds, including calls to the proxy (see
Example 7-23).

Example 7-23. The machine.config setting for ASP.NET request timeout; set it as low as you can

<system.web>
...
...
<httpRuntime executionTimeout="15/>
...
...
</system.web>

196 | Chapter 7: Creating Asynchronous, Transactional, Cache-Friendly Web Services

Another way to bog down your server is to produce unique URLs and make your
proxy cache those URLs. For example, anyone can make your proxy hit http://msdn.
microsoft.com/rss.xml?1 and keep adding some numbers in the query string to make
the URL unique. No matter what you add on the query string, it will return the same
feed. But because you are using an URL as the key for cache, it will cache the large
response returned from MSDN against each key. So, if you hit the proxy with 1 to
1,000 query strings, there will be 1,000 identical copies of the MSDN feed on the
ASP.NET cache. This will put pressure on the server’s memory, and other items from
the cache will purge out. As a result, the proxy will start making repeated requests
for those lost items and become significantly slower.

One way to prevent this is to set CacheItemPriority as Low for such items in the
cache. It will prevent more important items in the cache from purging out. More-
over, you can maintain another dictionary where you store the content’s MD5 hash
as key and the URL as value. Before storing an item in the cache, calculate the con-
tent’s MD5 hash and check if it’s already in the dictionary. If it is, then this item is
already cached, regardless of the URL. So, you can get the original cached URL from
the hash dictionary and then use that URL as the key to get the cached content from
the ASP.NET cache.

Summary
In this chapter, you learned how to rewrite the Ajax ASMX handler to add asynchro-
nous, transactional, cache-friendly, and faster web service response download capa-
bilities than those provided by the ASP.NET AJAX 1.0 Framework. You also learned
the scalability challenges of a proxy service and how to overcome them. The princi-
ples introduced here apply to many types of web services, and knowing these in
advance will help you eliminate common bottlenecks.

197

Chapter 8 CHAPTER 8

Improving Server-Side Performance
and Scalability8

Running a large consumer web application for a mass audience is challenging, to say
the least. You will face many scalability, maintainability, extensibility, and perfor-
mance challenges as you grow from hundreds to thousands to, eventually, millions
of users. As the number of concurrent users grows, you will face challenges in soft-
ware that will require significant re-engineering and sometimes a rewrite of major
components. Any type of re-engineering or rewrite of components becomes very
expensive in the later stages of the project when you have a production site running
and performing poorly. You have to go through rigorous impact analysis, careful
coding while maintaining backward-compatibility, and many rounds of regression
testing. So, acknowledging such challenges up front while the project is small, and
provisioning for them will help mitigate complexity later in the project and save a lot
of time and money.

Before you address scalability, maintainability, and performance issues, the first
thing you need is very good instrumentation, which includes logging, performance
metrics, and exception handling. You will first have to log key areas of your applica-
tion before you can identify where the bottleneck is and what kind of problems your
users are facing on the production site. Remember, there’s no way to attach a Visual
Studio debugger on a production site, set the breakpoint, and debug the application
while thousands of users are hitting the site. The only way you can identify prob-
lems is by thoroughly logging what key components are doing. After that, you will
have to record performance metrics that isolate areas that need improvement. These
metrics will help you benchmark your application and see what areas become slow
during peak load. The most important thing to remember is to record exception logs
in such a way that you can easily analyze them; they contain sufficient context to
help you identify the problem areas quickly.

Once you have identified and fixed key problem areas of the application, the next step
is to re-engineer some framework components such as the HTTP pipeline, implement
intelligent caching, and optimize the business and data access layers. I will also share
with you some best and proven practices that I have implemented at previous compa-
nies, as well as Pageflakes, to mitigate scalability and performance issues.

198 | Chapter 8: Improving Server-Side Performance and Scalability

Instrumenting Your Code to Identify Performance
Problems
You need to record the execution time of web service calls, page loads, and expen-
sive code blocks before you can identify scalability issues. Example 8-1 shows a way
to calculate the execution time of a code block.

You can measure the execution time of a function and a smaller block of code.
Whatever is inside the using block is timed and logged, and you get an output like
Example 8-2.

The TimedLog class measures execution time of code blocks as shown in Example 8-3.

Example 8-1. Record executing time of code block for instrumentation

private void SomeFunction()
{
 using (new TimedLog(Profile.UserName, "Some Function"))
 {
 ...
 ...
 }
}

Example 8-2. Output from TimedLog class

6/14/2006 10:58:26 AM omar@pageflakes.com SomeFunction 9.578125

Example 8-3. The TimedLog class records the time of its creation and disposal. The execution time is
the difference between these two timestamps.

public class TimedLog : IDisposable
{
 private string _Message;
 private long _StartTicks;
 public TimedLog(string userName, string message)
 {
 this._Message = userName + '\t' + message;
 this._StartTicks = DateTime.Now.Ticks;
 }
 #region IDisposable Members
 void IDisposable.Dispose()
 {
 Debug.WriteLine(this._Message + '\t' + TimeSpan.FromTicks(DateTime.Now.Ticks -
 this._StartTicks).TotalSeconds.ToString());
 }
 #endregion
}

Optimizing the HTTP Pipeline | 199

The benefit of such a log is you get a tab-delimited output, which you can use to do
many types of analysis using Microsoft Excel. For example, you can generate graphs
to see how the performance goes up and down during peak and nonpeak hours. You
can also see whether there are high response times and determine the pattern. All
these give you valuable indications of where the bottleneck is. You can also find out
which calls take the most time by doing a sort on the duration column.

You can use logging utilities, such as Log4net or the Enterprise Library Logging
Application Block, to log text files. Logging has a very small overhead and won’t
have a significant effect on the timing of execution.

Logging the code block execution time is an invaluable tool for debugging perfor-
mance issues. When you have problems with an action being timed out or taking a
noticeably long time, open up the logs and analyze the average delay in the code
blocks. You can then further narrow the problem down to smaller blocks of code
and pinpoint which block is the culprit. It is a good idea to have a timed log added to
all web service calls and business layer functions. A timed log has been added to all
DashboardFacade public functions. So, whenever there’s any performance issue, you
can isolate the slow Facade method.

Optimizing the HTTP Pipeline
There are some HTTP Modules that sit in the ASP.NET request pipeline by default
that you may not need. You can remove those modules and eliminate some extra
processing. For example, in web.config, these modules can be removed as shown in
Example 8-4. This is a very easy way to get a small boost on request processing.

In this example, Session has been removed from the modules. ASP.NET Member-
ship uses a cookie to store the current username, and Profile provider loads its data
from SQL Server continually. So, there’s no need to store the user state in Session.
Moreover, you need Session to be on a web farm or web garden (multiple processes
per application pool) with SQL Server. So, there’s no need for ASP.NET default
Session support when you are using Profile provider. Windows and Passport authen-
tication is not needed because ASP.NET Membership provider is being used.

UrlAuthorization might be useful to protect administrative folders by defining roles
in web.config.

Example 8-4. Remove unnecessary HTTP Modules from the ASP.NET request pipeline for faster
request processing

 <httpModules>
 <remove name="Session" />
 <remove name="WindowsAuthentication" />
 <remove name="PassportAuthentication" />
 <remove name="UrlAuthorization" />
 <remove name="FileAuthorization" />

200 | Chapter 8: Improving Server-Side Performance and Scalability

FileAuthorization uses Windows Access Control List (ACL) on files. There’s no
need for using Windows file access permissions to authenticate or authorize here
because we aren’t using Windows authentication.

Optimizing ASP.NET 2.0/3.5 Before Going Live
The following are some tweaks that should be made to web.config before you go live on
your production server, if you are using the ASP.NET 2.0/3.5 Membership provider.

1. Add the applicationname attribute in Profile provider. If you do not add a spe-
cific name here, Profile provider will use a GUID. So, on your local machine you
will have one GUID and on the production server you will have another GUID.
If you copy your local database to the production server, you won’t be able to
reuse the records available in your local database, and ASP.NET will create a
new application on the production server (see Example 8-5).

2. Turn off auto profile save. Profile provider will automatically save the profile
whenever a page request completes, even if you have already saved the profile or
you don’t want it to save anything. So, this might result in an unnecessary
UPDATE on your database, which is a significant performance penalty. So, turn
off automatic save and do it explicitly from your code using Profile.Save();
(see Example 8-6).

3. Configure RoleManager to use cookies. RoleManager always queries the database
to get the user roles, which has a significant performance penalty. You can
avoid this by letting RoleManager cache role information on cookies. However,
this will work only for users that don’t have many assigned roles that exceed
Cookie’s 2 KB limit. It’s unlikely you would have many roles with a kilobyte of
storage after encryption. So, you can safely store role info on a cookie and save
one database roundtrip on every request to .aspx and .asmx whenever you
check for a user’s role. The cookie is encrypted using Triple DES algorithm and
is safe enough to store such information (see Example 8-7).

Example 8-5. Add a fixed application name in the Profile provider configuration section so that when
you move a prepopulated database from the development server to production, the application ID
does not change

<profile enabled="true">
<providers>
<clear />
<add name="..." type="System.Web.Profile.SqlProfileProvider"
connectionStringName="..." applicationName="YourApplicationName"
description="..." />
</providers>

Example 8-6. Turning off automatic save in Profile provider configuration

<profile enabled="true" automaticSaveEnabled="false" >

Optimizing Queries in the ASP.NET Membership Tables | 201

These small changes in web.config will protect you from significant scalability prob-
lems when site traffic increases, such as 50 to 100 requests per second per server.
These changes will save 2 to 3 database calls per request, and you will save about 100
to 300 database calls per second on such a load, which puts much less stress on your
database server and lets you grow more on the same hardware.

Optimizing Queries in the ASP.NET Membership Tables
With ASP.NET Membership provider, you can find a user with UserName or get pro-
file information with the user’s ID. You can also change a user’s email address by
locating the user with UserName. Example 8-8 shows an example of such queries.

But when you have a giant database on your production server, running any of these
queries will bring your server down. Although they look obvious, and you might
need to run them frequently, these queries don’t use an index, which results in a
“table scan” on millions of rows on respective tables, which is the worst-case sce-
nario for any query.

Real-Life: Querying ASP.NET Membership Tables

Problem: Generating reports slowed the server and increased CPU usage.

Solution: Put the ApplicationID in the WHERE clause.

In a previous portal project that I worked on, we used fields, such as UserName, Email,
UserID, and IsAnonymous, on many marketing reports, which were used only by the
marketing team. Now, the site ran fine, but we would get calls several times a day
from marketing and customer support telling us that the site was slow, users were
reporting extremely slow performance, and that some pages were timing out. Usu-
ally when they called we would check SQL profiler for a long-running query. But we
couldn’t find any problem on the profiler, and the CPU load was within parame-
ters. The site ran nice and smooth while we investigated the problem. So, why was
the site really slow several times during the day but not while we were investigating
the problem?

Example 8-7. Configure the role manager to use Cookie to store the user’s roles instead of doing a
database lookup on every request

<roleManager enabled="true" cacheRolesInCookie="true" >

Example 8-8. Some common queries in ASP.NET Membership tables

Select * from aspnet_users where UserName = 'john@hotmail.com'
Select * from aspnet_profile where userID = '......'

Update aspnet_membership
SET Email = 'newemailaddress@somewhere.com'
Where Email = '...'

202 | Chapter 8: Improving Server-Side Performance and Scalability

The marketing team used to generate reports several times every day, which meant
running a query that worked on large number of rows. Those queries made the
server’s disk I/O and CPU spike, like you see on Figure 8-1.

We had SAS drives that spun at 15,000 RPM—very expensive, very fast—and the
CPU was Dual-Core Dual Xeon 64 bit. Still, those queries brought us down due to
the huge database, which was about 70 GB at that time. However, the problem
occurred only when the marketing team tried to generate any of the reports.

Let’s look at the indexes and see whether our queries really match any index on the
ASP.NET Membership tables. Table 8-1 shows the default index available on ASP.
NET Membership tables.

Most of the indexes have ApplicationID. This means that unless you put
ApplicationID='...' in the WHERE clause, it’s not going to use any of the indexes.
As a result, all the queries were suffering from table scan. So, if I put ApplicationId
in the queries, they should become blazingly fast, but in reality, they didn’t. This was
because Email and UserName fields were not part of the indexes, but instead
LoweredUserName and LoweredEmail were in the fields in conjunction with
ApplicationID in those indexes.

Figure 8-1. The CPU sees a spike when an index is not used on tables with many rows

Table 8-1. ASP.NET Membership table index plan

Table Index type Indexed fields

aspnet_users Clustered ApplicationID,
LoweredUserName

aspnet_users NonClustered ApplicationID,
LastActivityDate

aspnet_users NonClustered UserID

aspnet_membership Clustered ApplicationID, LoweredEmail

aspnet_membership NonClustered UserID

aspnet_Profile Clustered UserID

Optimizing the ASP.NET 2.0/3.5 Profile Provider Before You Go Live | 203

ApplicationID is used in these tables to support multiple applications running on the
same database tables. ASP.NET allows you to run several applications on the same
database and on the same aspnet_users tables. If you are running only one applica-
tion in a single database, then you don’t need the ApplicationID at all. But because it
is part of the index, you need to put the ApplicationID in the WHERE clause.

Our admin site had many such reports, and each had lots of queries on the aspnet_
users, aspnet_membership, and aspnet_Profile tables. As a result, whenever the mar-
keting team tried to generate reports, they took all the power from the CPU and
HDD and the rest of the site became very slow and sometimes nonresponsive.

However, the solution was not just using the right index. Sometimes the marketing
reports ran queries that required a table scan no matter how many indexes were on a
table. Imagine if you ran a query that makes SQL Server go through thousands of
index entries and lookup rows one by one. SQL Server would be better off doing a
clustered index scan. Example 8-9 shows such a query where a large number of rows
can be returned.

If you have 10,000 users in your aspnet_users table that were active before 2007,
then even if you put a nonclustered index on LastActivityDate, it won’t hit the index
if there are 20,000 rows in the table. In fact, it is better not to use the index because it
will then go through 10,000 index entries and look up table rows for each entry,
which means it will need 10,000 row lookups from the table. In this scenario, it’s bet-
ter to just do a table scan, which means you can never run such queries on a produc-
tion server. You must move data to a staging server and then run these queries.

Optimizing the ASP.NET 2.0/3.5 Profile Provider Before
You Go Live
Did you know there are two important stored procedures in ASP.NET 2.0/3.5 Pro-
file provider that can be significantly optimized? If you use them without doing the
necessary optimization, your servers will sink and take your business down with
them during a heavy load.

Real-Life: Optimizing Stored Procedures

Problem: An ASP.NET Membership stored procedure caused the server to fail.

Solution: Eliminate use of temporary tables from SP.

Example 8-9. Running queries that run through a lot of rows

SELECT * FROM aspnet_users WHERE LastActivityDate < '1/1/2007'

204 | Chapter 8: Improving Server-Side Performance and Scalability

Pageflakes was demoed at Microsoft’s MIX06 conference when we were in early beta
stage. We were featured on Microsoft’s ASP.NET AJAX, site and the number of vis-
its per day skyrocketed. Then one day we noticed that the server was gone; we
restarted it, brought it back, and it died within an hour. After doing a lot of post-
mortem analysis on the server’s remaining body parts, we found that it had 100 per-
cent CPU, super-high I/O usage, and that the hard drives were overheated and had
turned themselves off. So, we went through hundreds of megabytes of logs hoping to
find a web service function that was killing our server. We suspected one web ser-
vice in particular—the first function that loads a user’s page setup. So, we broke it
up into smaller parts to see which part was taking most of the time (see
Example 8-10).

We also timed smaller parts that we suspected could be taking most of the resources.
But we could not find a single place in our code that was taking any significant time.
Meanwhile, the users were shouting, management was screaming, the support staff
was complaining, and the developers were furiously sweating.

Now, you are saying, “You could have used SQL Profiler!” However, we were using
the SQL Server workgroup edition back then, which did not have SQL Profiler. So,
we had to hack our way through to get SQL Profiler running on a server somehow
(don’t ask how). And after running the SQL Profiler, boy, were we surprised! The
settings property that was giving us so much trouble was aspnet_Profile_
GetProfiles. Let’s analyze aspnet_Profile_GetProfiles in detail. First, it looks up the
ApplicationID (see Example 8-11).

Example 8-10. Pageflake’s most complicated function

 private GetPageflake(string source, string pageID, string userUniqueName)
 {
 if(Profile.IsAnonymous)
 {
 using (new TimedLog(Profile.UserName,"GetPageflake"))
 {

Example 8-11. Part of aspnet_profile_GetProfiles, which looks up the application ID from the
application name

DECLARE @ApplicationId
 uniqueidentifier
 SELECT @ApplicationId = NULL
 SELECT @ApplicationId = ApplicationId
 FROM aspnet_Applications

 WHERE LOWER(@ApplicationName)
 = LoweredApplicationName
 IF (@ApplicationId IS NULL)

 RETURN

Pageflakes
Pageflakes
Microsoft�
Microsoft�

Optimizing the ASP.NET 2.0/3.5 Profile Provider Before You Go Live | 205

It then creates a temporary table to store profiles of users (see Example 8-12).

If it is frequently called, the I/O will be too high due to the temporary table creation.
It also runs through two very big tables—aspnet_Users and aspnet_Profile. The set-
tings property is written in such a way that if one user has multiple profiles, it will
return all of the user’s profiles. But because we normally store one profile per user,
there’s no need to create a temporary table. Moreover, there’s no need for doing LIKE
LOWER(@UserNameToMatch), which was always being called with a full username that
can be matched directly using the equal operator.

So, we opened up the stored procedure and operated (see Example 8-13).

Example 8-12. Part of aspnet_profile_GetProfiles that creates a temporary table to store results

 -- Create a temp table to store the select results
 CREATE TABLE #PageIndexForUsers
 (
 IndexId
 int IDENTITY (0, 1) NOT NULL,
 UserId
 uniqueidentifier
)

 -- Insert into
 our temp table
 INSERT INTO #PageIndexForUsers (UserId)

Example 8-13. aspnet_profile_GetProfiles gets a bypass code for running faster

IF @UserNameToMatch IS NOT NULL

 BEGIN

 SELECT u.UserName, u.IsAnonymous, u.LastActivityDate, p.LastUpdatedDate,

 DATALENGTH(p.PropertyNames)
 + DATALENGTH(p.PropertyValuesString) + DATALENGTH(p.
 PropertyValuesBinary)

 FROM dbo.aspnet_Users u

 INNER JOIN dbo.aspnet_Profile p ON u.UserId = p.UserId

 WHERE

 u.LoweredUserName = LOWER(@UserNameToMatch)

 SELECT @@ROWCOUNT

 END

 ELSE
 BEGIN -- Do the original bad things

206 | Chapter 8: Improving Server-Side Performance and Scalability

It ran fine locally. Now it was time to run it on the server. If we do something wrong
here, we might not be able to see the problem immediately, but later realize the users
profiles are messed up and there is no way to get them back. So, a tough decision
had to be made: do we run this on a live production server directly without testing?
We didn’t have time for testing anyway; we were already down. So, we gathered
around, said a prayer, and hit the execute button on SQL Server Management Studio.

The settings property ran fine. The server decreased from 100 percent CPU usage to
30 percent. The I/O usage also came down to 40 percent. We went live again. We
were saved that day!

Accessing the Use of Profile Provider
aspnet_Profile_GetProperties is another settings property that is called on every
page load and web service call because we use Profile provider extensively. It is called
whenever you access properties on Profile object (see Example 8-14).

Example 8-14. aspnet_Profile_GetProperties is called whenever you try to access Profile object in
Context

CREATE PROCEDURE [dbo].[aspnet_Profile_GetProperties]
 @ApplicationName nvarchar(256),
 @UserName
nvarchar(256),
 @CurrentTimeUtc datetime
AS
BEGIN
 DECLARE @ApplicationId uniqueidentifier
 SELECT @ApplicationId = NULL
 SELECT @ApplicationId = ApplicationId
 FROM dbo.aspnet_Applications
 WHERE LOWER(@ApplicationName) = LoweredApplicationName
 IF (@ApplicationId IS NULL)

 RETURN

 DECLARE @UserId uniqueidentifier
 SELECT @UserId = NULL

 SELECT @UserId = UserId
 FROM dbo.aspnet_Users
 WHERE ApplicationId = @ApplicationId
 AND LoweredUserName =
 LOWER(@UserName)

 IF (@UserId IS NULL)

 RETURN
 SELECT TOP 1 PropertyNames, PropertyValuesString, PropertyValuesBinary
 FROM dbo.aspnet_Profile

Optimizing the ASP.NET 2.0/3.5 Profile Provider Before You Go Live | 207

Example 8-15 shows aspnet_Profile_GetProperties’s statistics.

First it does a SELECT on aspnet_application to find the application ID from the
application name. You can easily replace this with a hardcoded application ID inside
the settings property and save one SELECT that happens on every call. Usually we
run only one application on our production server, so there’s no need to look up the
application ID on every single call. ASP.NET Membership provider is built to support

 WHERE UserId = @UserId

 IF (@@ROWCOUNT > 0)
 BEGIN

 UPDATE dbo.aspnet_Users

 SET LastActivityDate=@CurrentTimeUtc

 WHERE UserId = @UserId
 END
END

Example 8-15. aspnet_Profile_GetProperties’s statistics

Table 'aspnet_Applications'. Scan count 1, logical reads 2, physical reads 0,
 read-ahead reads 0, lob logical reads 0, lob physical
 reads 0, lob read-ahead reads
 0.

(1 row(s) affected)
Table 'aspnet_Users'. Scan count 1, logical reads 4, physical reads 0,
 read-ahead reads 0, lob logical reads 0, lob physical
 reads 0, lob read-ahead reads
 0.

(1 row(s) affected)

(1 row(s) affected)
Table 'aspnet_Profile'. Scan count 0, logical reads 3, physical reads 0,
 read-ahead reads 0, lob logical reads 0, lob physical
 reads 0, lob read-ahead reads
 0.

(1 row(s) affected)
Table 'aspnet_Users'. Scan count 0, logical reads 27, physical reads 0,
 read-ahead reads 0, lob logical reads 0, lob physical
 reads 0, lob read-ahead reads
 0.

(1 row(s) affected)

(1 row(s) affected)

Example 8-14. aspnet_Profile_GetProperties is called whenever you try to access Profile object in
Context (continued)

208 | Chapter 8: Improving Server-Side Performance and Scalability

multiple applications on the same database, and as a result, all the tables and settings
properties try to first identify the application and then do their job. It’s a real waste of
processing power and space when you have only one application on your database.

The I/O statistics may not look that bad, but from client statistics you can see how
expensive it is (see Figure 8-2).

Now look at the last block where the aspnet_users table is updated with
LastActivityDate. This is the most expensive block. Figure 8-3 shows the cost of that
line is 82 percent compared to the cost of the whole settings property.

The update is done to ensure Profile provider remembers when the last time a user’s
profile was accessed. We do not need to do this on every single page load and web
service call, perhaps just when a user first logs in or logs out. In our case, many web
services are called while user is still on the page (the only page—the Start page). So,

Figure 8-2. GetProperties’s client statistics taken from SQL Server Management Studio—you can
turn on Include Client Statistics from the Query menu

Figure 8-3. The cost of a single UPDATE statement is 82 percent of the whole setting property’s
cost. The query plan is generated from SQL Server Management Studio by turning on Include
Actual Execution Plan from Query menu.

Optimizing the ASP.NET 2.0/3.5 Profile Provider Before You Go Live | 209

we can easily remove the UPDATE statement to save a costly update on the giant
aspnet_users table on every single web service call that needs the Profile object.

Using Email for a Username
The Membership class has a method—CreateUser—that can be used to create user
accounts. You can specify anything in the username and password fields as long as it
satisfies the password policy defined in web.config. This function creates an entry in
both aspnet_users and aspnet_membership tables.

Real-Life: Troubleshooting Using Email for a Username

Problem: Using email as a username broke the password recovery option.

Solution: Include the email address during account creation.

In Dropthings, we use an email address as the username in the ASP.NET 2.0/3.5
Membership provider. During signup, a user account is created using the
Membership.CreateUser function (see Example 8-16).

However, users started complaining:

Hi,

I got the email invitation. I went to your site and tried login, and it said the username
or password is wrong. So, I tried Signup. Signup said my username was already taken.
Then I went to forgot password to retrieve the password. It shows something is wrong
and the password email cannot be sent.

I am stuck. Please help!

Here’s the problem. When we use the code in Example 8-16, it creates a row in
aspnet_users table using the email address as the username. But in the aspnet_
membership table, the row it creates contains null in the email column. Therefore, the
user cannot use the “forgot password” option to request the password because the
email address is null. So, we had to run the SQL shown in Example 8-17 to fix it.
This code sets the user’s email address in the aspnet_membership table from the user-
name field in aspnet_users table.

Example 8-16. Creating user using Membership class

Membership.CreateUser(email, password);

Example 8-17. Cleaning up users’ invalid email addresses

update aspnet_membership
set email = (select username from aspnet_users
 where applicationID = '...'
 and userID = aspnet_membership.userID)
,loweredemail = (select loweredusername from aspnet_users
 where applicationid = '...'
 and userid = aspnet_membership.userID)

210 | Chapter 8: Improving Server-Side Performance and Scalability

However, the applicationID is something that you need to specify for your own
application. You can find the ID from aspnet_application table.

To fix this problem we then added the email address as the third parameter to the
CreateUser function. See Example 8-18.

We had not noticed that this overloaded function had created users accounts in the
aspnet_membership table, which had the email address set to null. Unless you specify
the email address while creating new user accounts, a user cannot use the “forgot
password” option to get his password emailed to him.

Changing a Username in the ASP.NET 2.0/3.5 Membership Provider
Profile.UserName is a read-only field. So, how do you change a username? This is an
important capability when a user wants to change his email address, which, in turn,
changes his username. Although there is no way with Membership provider to
change the username of a user, there is a workaround (see Example 8-19):

1. Create a new user using the new email address.

2. Get the password of the old account and set it to the new account. If you can’t
get the old password via Membership provider (the password is hashed), then
ask the user for the password.

3. Create a new profile for the new user account.

4. Copy all the properties from the old profile to the new profile object.

5. Log out the user from the old account.

6. Auto log in to the new account.

where loweredemail is null and
applicationID = '...'

Example 8-18. The Proper way of creating user account using Membership class

Membership.CreateUser(email, password, email);

Example 8-19. Changing a username from code

if (Profile.UserName != newUserName)
{
 // Changing email address of user. Delete current user account and create
 // a new one using the new email address but the same password
 if (null != Membership.GetUser(newUserName))

throw new ApplicationException("There's another user with the same email. Please enter
 a different email.");

 MembershipUser newUser = Membership.CreateUser(newUserName, currentPassword);

Example 8-17. Cleaning up users’ invalid email addresses (continued)

Optimizing the ASP.NET 2.0/3.5 Profile Provider Before You Go Live | 211

You can also go directly to the aspnet_membership and aspnet_users tables and
change the LoweredUserName, UserName, Email, and LoweredEmail fields if you want.
But that’s an unsupported way of doing it. If the table schema changes in a later ver-
sion of Membership provider, your code will break. The best way to do it is to use
Membership provider’s own functions.

Rendering Page Parts As JavaScript
A giant page full of HTML works best if the whole page can be cached on the
browser. You can do this by using HTTP response caching headers, either by inject-
ing them manually or by using the @OutputCache tag directive on ASPX pages:

<%@ OutputCache Location="Client" Duration="86400" VaryByParam="*" VaryByHeader="*"
%>

But this caches the entire page on the browser for one day. If you have a page with
static and dynamic parts, you cannot use this output caching at page level. Generally,
the header, logo, left-side navigation menu, and footer are static parts. Sometimes there
are many static sections in the body part that do not change frequently. All these, when
combined, take up a significant amount of download time. Users have to download the
entire page again and again when a significant part never changes. If you could cache
those static parts on the browser, you could save a lot of bytes every time the page
downloads. If the whole page size is 50 KB, at least 20 KB is static and 30 KB might be
dynamic. If you can use the page fragment’s client-side caching (not ASP.NET’s server-
side page output cache), you can save 40 percent in download time easily. Moreover,
no request is sent to the server for those static parts because they are already cached on
the browser. Thus, the server doesn’t have to process the giant page at every load.

 // Create profile for the new user and copy all values from current profile
 // to new profile

ProfileCommon newProfile = ProfileCommon.Create(newUserName, true) as ProfileCommon;
 newProfile.IsInvited = Profile.IsInvited;
 newProfile.IsRealUser = Profile.IsRealUser;
 newProfile.Name = newUserName;
 newProfile.Save();

 if (Membership.ValidateUser(newUserName, currentPassword))
 {
 FormsAuthentication.SignOut();
 Session.Abandon();
 // Delete the old profile and user
 ProfileManager.DeleteProfile(Profile.UserName);
 Membership.DeleteUser(user.UserName);

 FormsAuthentication.RedirectFromLoginPage(newUserName, true);
 }
}

Example 8-19. Changing a username from code (continued)

212 | Chapter 8: Improving Server-Side Performance and Scalability

ASP.NET offers page fragment caching using @Outputcache, which is good, but that
caching is on the server side. It caches the output of user controls and serves them from
the server-side cache. But you cannot eliminate the download of those costly bytes. It
just saves some CPU power on the server, which doesn’t have much benefit for users.

The only way to cache part of the page is to allow the browser to download those
parts separately and make those parts cacheable just like images, CSS, or JavaScript.
So, we need to download page fragments separately and cache them on the browser’s
cache. IFrame is an easy way to do this, but it makes the page heavy and does not
follow the parent’s page CSS. Inside IFrame, you need to download Ajax frame-
works again along with any other JavaScript that you might need. Although the down-
load can be fast because files are coming from the cache, downloading the whole
framework and lots of JavaScript again will put significant stress on the browser.

There is a better way: use JavaScript to render the content of the page; that Java-
Script will get cached on the browser’s cache. Here’s the idea:

1. Split the whole page into multiple parts.

2. Generate page content using JavaScript. Each cacheable part is JavaScript, which
is then rendered to HTML.

3. Cache the cacheable parts with the browser so they aren’t downloaded again
(until the user does a hard refresh or clear cache). The parts that are non-cachable
and change frequently do not get cached by the browser. Consider the page lay-
out shown in Figure 8-4.

Because only the body section is dynamic, the rest of the page is fully cacheable. So,
the Default.aspx that renders this whole page looks like Example 8-20.

Figure 8-4. Typical homepage layout where the body section is dynamic and the header, footer, left
menu, and logo are static

Example 8-20. Default.aspx with cacheable parts

<%@ Page Language="VB" AutoEventWireup="false" %>
<%@ OutputCache NoStore="true" Location="None" %>

Logo Header

Navigation
menu

Body

Footer

Optimizing the ASP.NET 2.0/3.5 Profile Provider Before You Go Live | 213

The output looks like Figure 8-5.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
<title>My Big Fat Page</title>
</head>
<body>
<form id="form1" runat="server">
<table width="100%" border="1">
 <tr>
 <td>Some logo here</td>
 <td><script id="Script1" src="Header.aspx" type="text/javascript"></script></td>
 </tr>
 <tr>
 <td><script id="LeftMenu" src="LeftMenu.aspx" type="text/javascript"></script></td>
 <td bgcolor="lightgrey">
 <div>This is the dynamic part which gets changed on every load.
 Check out the time whenit was generated: <%= DateTime.Now %></div></td>
 </tr>
 <tr>
 <td colspan="2">
<script id="Footer" src="Footer.aspx" type="text/javascript"></script>

 </td>
 </tr>
</table>
</form>
</body>
</html>

Figure 8-5. Caching parts of a page on a browser eliminates downloading static blocks. For
example, the header, left menu, and footer do not change much, so they are cached on repeat visit,
but the body part is delivered fresh from the server on every visit.

Example 8-20. Default.aspx with cacheable parts (continued)

Cached for a long time

214 | Chapter 8: Improving Server-Side Performance and Scalability

The cached parts are 30 minutes older because the browser has not downloaded
them at all and saved a significant amount of data transfer. Only the body part was
downloaded from the server.

On the first visit, the page parts are downloaded one after another, as you see on
Figure 8-6.

But on second visit, only the Default.aspx downloads and the parts are instantly
loaded from cache. Figure 8-7 shows the instant loading of different cached parts of
the page.

The download time for the parts is between 5 and 7 ms the second time, compared
to the first time where each of them took more than 1 second to download. This
shows you how fast the second visit is with cached page parts.

Figure 8-6. On first visit, all the parts are downloaded from the server. The date in each block
shows the same date time, which means it was just delivered from the server. Look at the time it
took to download each block; the total page download time was three seconds.

Optimizing the ASP.NET 2.0/3.5 Profile Provider Before You Go Live | 215

Let’s look at one of the files named Header.aspx in Example 8-21, which gets cached.

Figure 8-7. On second visit, the cached parts are served from browser cache instantly. So, the total
downloaded bytes are only for the Default.aspx, not for the smaller parts of the page. Therefore,
the download time is reduced significantly and the second visit becomes blazingly fast.

Example 8-21. The cached Header.aspx; notice the ContentType is the only change compared to a
standard ASPX page

<%@ Page Language="C#" AutoEventWireup="false" ContentType="text/html/javascript" %>
<%@ OutputCache Location="Client" Duration="86400" VaryByParam="*" VaryByHeader="*" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>This is the big fat header</title>
</head>
<body>

216 | Chapter 8: Improving Server-Side Performance and Scalability

The content type has been set to text/html/javascript, which is something that must
be done by hand.

When you put an ASPX inside a Script tag, it doesn’t work because <script
id="Script1" src="Header.aspx" type="text/javascript"> expects JavaScript output,
not HTML output. If HTML output is provided, the browser simply ignores it. So,
first of all, the Header.aspx must emit JavaScript instead of HTML in order to work
on a <script> tag. Second, the JavaScript needs to render the Header.aspx’s HTML
output using document.writeln.

An HTTP Module intercepts all the .aspx calls. When a page is ready to be sent to
the browser, check to see if the content type is text/html/javascript. If it is, then con-
vert the page output to a similar JavaScript representation.

For details about HTTP Module and how to use the response filter to
modify page output, please read this wonderful article: http://www.
aspnetresources.com/articles/HttpFilters.aspx.

Create a response filter named Html2JSPageFilter.cs to override the response stream’s
Write method and convert the page’s HTML to a JavaScript representation. So, ASP.
NET gives you generated HTML, and you convert it to a JavaScript representation
that renders the original HTML on the browser.

Using HttpModule

You might wonder if you can use an HTTP handler to do this. For example, you
need to intercept calls going to an *.aspx extension that is handled by ASP.NET’s
default page handler, but you can’t register another handler to the same extension. In
this situation, you need to use HttpModule, which intercepts any incoming request to
the ASP.NET pipeline. To do this, you:

1. Get the entire page output as HTML.

2. Filter out what is inside the <form> tag. ASP.NET always generates a <form> tag,
and the content of the page is available inside of that (see Example 8-22).

 <form id="form1" runat="server">
 <div>
 <h1>This is the big fat header. Lots of HTML</h1>
 Generated on server at: <%= DateTime.Now %>
 </div>
 </form>
</body>
</html>

Example 8-21. The cached Header.aspx; notice the ContentType is the only change compared to a
standard ASPX page (continued)

http://www.aspnetresources.com/articles/HttpFilters.aspx
http://www.aspnetresources.com/articles/HttpFilters.aspx

Optimizing the ASP.NET 2.0/3.5 Profile Provider Before You Go Live | 217

3. Remove the ViewState hidden field, otherwise it will conflict with the ViewState
on the Default.aspx (the default page already has its own ViewState). So, the
ViewState <input> tag cannot be sent again to the browser. This means you can-
not use Control, which uses ViewState and is one shortcoming of this approach.
Generally, cached parts are static content, so there should not be much need for
ViewState anyway (see Example 8-23).

4. Convert the entire HTML output to a JavaScript string format. The string con-
tains an escaped HTML that can be set as innerHTML or can be used inside the
document.write('') statement (see Example 8-24).

Example 8-22. Getting the generated HTML from the ASPX page and parsing out the content inside
the <form> tag

public override void Write(byte[] buffer, int offset, int count)
{
 string strBuffer = System.Text.UTF8Encoding.UTF8.GetString (buffer, offset, count);

 // ---------------------------------
 // Wait for the closing </html> tag
 // ---------------------------------
 Regex eof = new Regex ("</html>", RegexOptions.IgnoreCase);

 if (!eof.IsMatch (strBuffer))
 {
 responseHtml.Append (strBuffer);
 }
 else
 {
 responseHtml.Append (strBuffer);
 string finalHtml = responseHtml.ToString ();

 // extract only the content inside the form tag tag ASP.NET generates in all .aspx
 int formTagStart = finalHtml.IndexOf("<form");
 int formTagStartEnd = finalHtml.IndexOf('>', formTagStart);
 int formTagEnd = finalHtml.LastIndexOf("</form>");

 string pageContentInsideFormTag = finalHtml.Substring(formTagStartEnd + 1, formTagEnd
 - formTagStartEnd - 1);

Example 8-23. Removing the ViewState <input> field so that it does not conflict with Default.aspx
page’s ViewState

Regex re = new Regex("(<input.*?_ _VIEWSTATE.*?/>)",RegexOptions.IgnoreCase);
pageContentInsideFormTag = re.Replace(pageContentInsideFormTag, string.Empty);

Example 8-24. Convert the HTML output to a JavaScript string representation and eliminate new
lines, spaces, apostrophes, etc. The resulting string can be set to an element’s innerHTML or it can be
passed to document.write.

string javascript2Html =
 pageContentInsideFormTag.Replace("\r", "")
 .Replace("\n", "")

218 | Chapter 8: Improving Server-Side Performance and Scalability

5. Emit document.write, which writes the JavaScript string to the browser. The
HTML is added to the page content (see Example 8-25).

That’s pretty much the trick. Use a response filter to get the .aspx output, then con-
vert it to a JavaScript representation. Use document.write to render the HTML on the
browser DOM and get that JavaScript cached. For convenience, an HttpModule is
used here to hook into the ASP.NET pipeline and wait for .aspx files to emit text/
html/javascript content. Then hook the response filter into the ASP.NET request
pipeline.

The HttpModule in detail

The HttpModule is very simple. It hooks the context’s ReleaseRequestState event,
which is fired when the page output is ready to be sent to the browser. Inside the
event handler, the response filter is called to convert the HTML to a JavaScript
representation (see Example 8-26).

 .Replace(" ", " ")
 .Replace(" ", " ")
 .Replace(" ", " ")
 .Replace("\\", "\\\\")
 .Replace("'", "\\'");

Example 8-25. Generate a document.write statement that will write the HTML on the browser

string pageOutput = "document.write('" + javascript2Html + "');";
byte[] data = System.Text.UTF8Encoding.UTF8.GetBytes (pageOutput);
responseStream.Write (data, 0, data.Length);

Example 8-26. HttpModule hooks the response filter and intercepts the page render

void IHttpModule.Init(HttpApplication context)
{
 context.ReleaseRequestState += new EventHandler(InstallResponseFilter);
}

private void InstallResponseFilter(object sender, EventArgs e)
{
 HttpResponse response = HttpContext.Current.Response;

 if (response.ContentType == "text/html/javascript")
 {
 response.ContentType = "text/javascript";
 response.Filter = new Html2JSPageFilter(response.Filter);
 }
}

Example 8-24. Convert the HTML output to a JavaScript string representation and eliminate new
lines, spaces, apostrophes, etc. The resulting string can be set to an element’s innerHTML or it can be
passed to document.write. (continued)

ASP.NET Production Challenges | 219

Finally, the module is registered in web.config by adding an entry in the
<httpModules> section (see Example 8-27).

You can use this approach in your .aspx files and save a significant amount of down-
load time on the user’s end. Although it slightly increases the first-time visit down-
load—it takes an average of 200 ms for each script tag on network roundtrip—it
makes the second-time visit a breeze. See the performance difference yourself: visit
www.pageflakes.com and let the site load fully. Then close your browser, open it, and
enter the URL again. See how fast it loads second time. If you use a HTTP debugger
to monitor how much data is transferred, you will see that it takes only 10 to 12 KBs
the second time, compared to about 400 KB on first time. All the page fragments are
cached on the browser’s cache and require no download time on subsequent visits as
long as the cache doesn’t expire.

ASP.NET Production Challenges
Now we will look at two ASP.NET-related production challenges: solving the
authentication cookie problem on web farms and changing hosting providers while
your site is publicly available.

Fixing Cookie Authentication Problems
When you turn on a web garden or create a multiserver load balance deployment
where many servers are serving the same web site, you will have forms authentica-
tion problems. Users will frequently be automatically logged out or see the “yellow
screen of death” (the ASP.NET error page). This happens because ASP.NET encrypts
the login information in a cookie, but the encryption key is unique for each machine
and process in the web garden. If a user hits server No. 1 and gets an encrypted key,
and the next hit goes to server No. 2, it will fail to decrypt the cookie and log the user
out or throw the user an ASP.NET general error message.

This is what Stefan Schackow on the Microsoft ASP.NET AJAX team said:

In order to prevent this on your production server, you need to remember this before
you go live:

The reasons for a forms auth ticket failing are normally that either the validation key
or the decryption key are not in sync across all servers in a web farm. Another poten-
tial reason can be if both ASP.NET 1.1 and ASP.NET 2.0 applications are issuing
forms auth tickets with the same domain and path.

Example 8-27. Registering the web.config entry

<httpModules>
 <add name="Html2JSModule" type="Html2JavascriptModule" />
</httpModules>

http://www.pageflakes.com

220 | Chapter 8: Improving Server-Side Performance and Scalability

For the first case, setting the validationKey and decryptionKey attributes explicitly on
<machineKey /> on each web server will solve the problem.

For the second case, setting the validationKey and decryptionKey attributes explicitly in
<machineKey /> for *both* the ASP.NET 1.1 and ASP.NET 2.0 applications is necessary.
Additionally on the ASP.NET 2.0 apps, the “decryption” attribute in <machineKey />
should be set to “3DES”.

Example 8-28 shows how the machine.config should look.

You need to introduce the <machineKey> in the <system.web> node if it doesn’t already
exist. Be sure to back up machine.config before making such change. If you make any
mistake here, none of the web applications on the server will run properly.

Generating the key

How do you generate the machine key? You need to use a utility to produce the key
for your PC. I have made a tool that can generate such keys for you. Example 8-29
shows how you run it.

Download the tool from http://omar.mvps.org/pics/SecurityKey.exe.

The two parameters in the download are the length of the security keys—the valida-
tion key and decryption key, respectively. They need to be exactly the same as speci-
fied in the example.

Each machine requires a key

You have put the same machine keys in all the web servers in your production envi-
ronment, but event logs show users are still having a problem. You’ve restarted IIS
and all your servers, but you still see lots of event log error entries that show users are
getting the dreaded “Forms authentication failed for the request. Reason: The ticket
supplied was invalid.” So, what did you do wrong? You call Microsoft support and go
to the forums looking for solutions, but everyone says what you did was correct.

Here’s what you need to do: wait. Wait for two or three days until all those users
come back to your web site at least once. Many users will have a cookie encrypted
with the previously assigned encryption key pair. Naturally, it will fail to decrypt
with the new key pair you have just specified in machine.config. Until all those users
get a new key, you will keep having the error message. So, every returning user will

Example 8-28. Configuring machine.config with fixed validation keys in all servers

<system.web>
<processModel autoConfig="true"/>
<machineKey validationKey="..." decryptionKey="..." validation="SHA1"/>

Example 8-29. Running the security key generator

SecurityKey.exe 24 64

http://omar.mvps.org/pics/SecurityKey.exe

Redirecting Traffic from an Old Web Site to a New One | 221

get the error once after the machine.config change. Don’t be alarmed if you see this
randomly happening even after one week or a month. This just means some user vis-
ited you after a long time.

Redirecting Traffic from an Old Web Site to a New One
When you change hosting providers, you get new a IP for your servers. If you change
your DNS configuration for your site to the new IP, it takes about four days to prop-
agate through all the ISPs. During this time, users will hit the old IP, get no response,
and assume the site is down. So, we need a way to redirect users to the new IP when
they go to the old one.

Real-Life: Avoiding Downtime When Switching Hosting Providers

Problem: Changing hosting providers threatens the user experience and costs you
money.

Solution: Redirect traffic to an intermittent subdomain.

At Pageflakes, we had all sorts of problems with our hosting providers and, at one
point, had changed hosting providers almost once every four months. So, we had to
come up with a solution that works transparently and without any downtime. Here’s
what we do:

1. Map a new subdomain, such as new.pageflakes.com, to the new server IP. Then
we create a new web site (not virtual directory) on the old web server called
Redirector. It maps to a folder that has nothing but global.asax and web.config
(see Figure 8-8).

Figure 8-8. Setup a Redirector web site on an old server that forwards users to the new server

Pageflakes

222 | Chapter 8: Improving Server-Side Performance and Scalability

2. Go to Redirector, navigate to Web site Properties ➝ Home Directory ➝ Configu-
ration, and map ASP.NET to receive all web requests. This includes all URLs,
including .html, .gif, .css, and .js, etc. (see Figure 8-9).

3. Write the code in Example 8-30 to Global.asax, which redirects all traffic to the
new server.

Figure 8-9. Configure ASP.NET to receive all requests including requests for .html files

Example 8-30. In Global.asax, theApplication_BeginRequest intercepts all calls and redirects users
to the new server

protected void Application_BeginRequest(Object sender, EventArgs e)
{
 string url = HttpContext.Current.Request.Url.AbsolutePath;
 string QueryParams = HttpContext.Current.Request.QueryString.ToString();
 if (QueryParams != "") {
 Response.Redirect("http://new.pageflakes.com" + url + "?"+ QueryParams);
 } else {
 Response.Redirect("http://new.pageflakes.com" + url);
 }
}

Summary | 223

Now, anyone trying to go to www.pageflakes.com/aboutus.html is redirected to
new.pageflakes.com/aboutus.html. The Redirector keeps the query string and
logical path intact. So, complicated URLs like www.pageflakes.com/something/
somefile.html?someparam=somevalue are converted nicely.

4. Stop the default web site that is listening to port 80 and turn the Redirector web
site on. Before you turn off the default web site, ensure the new server is already
up and running on the new subdomain. Change the DNS and map the new
server’s IP to your main domain site (e.g., www.pageflakes.com).

So, users that still have the old IP in their DNS cache go to the old server and are
redirected to the new server. But after a while, when their DNS cache is refreshed
and they get the new IP, their requests go to the new server and no redirection is
required. After four or five days, you can safely bring down the old server.

Summary
In this chapter, you have learned about some best practices for working with ASP.
NET 2.0/3.5 Membership and Profile providers. You have seen how some tweaking
of their configurations can greatly improve request throughput. Moreover, you have
learned how to optimize some of the key stored procedures for ASP.NET Member-
ship and Profile providers and tailor them to your specific needs. We reviewed some
caching strategies to break pages into smaller parts and eliminate the repeated down-
load of static parts. Finally, you have learned two production challenges that can be
solved with ASP.NET. In the next chapter, we will focus more on client-side perfor-
mance and talk about many advanced caching strategies that can add a significant
boost to Ajax web sites.

http://www.pageflakes.com/aboutus.html
new.pageflakes.com/aboutus.html

224

Chapter 9CHAPTER 9

Improving Client-Side Performance 9

There are three major reasons for an Ajax site to slow down: large amount of con-
tent loaded in one single page, frequent web service calls, and repeated web service
calls. Unless these three reasons are handled effectively, the site becomes slow to
load and feels sluggish to use. However, intelligent caching can solve both problems.
Besides caching, there are some browser-specific issues and design decisions that
need to be made for a smoother user experience after the whole page is loaded. In
this chapter, you will learn some advanced caching techniques, how to load pages
progressively, and how to give the browser a chance to render content in a fast and
smooth way.

Understanding Web Caching
Let’s get into the details of the various ways to make web caching work in your favor.
Web caching needs careful thinking and planning. Sometimes it requires architec-
tural changes to make various parts of the site cacheable. In this section, we will dis-
cuss in detail how web caching works and how it can be used for a faster download
experience. If you plan your site well, caches can help your web site load faster and
reduce the load on your server and Internet link. The difference can be dramatic—a
site that is difficult to cache may take several seconds to load, while one that takes
advantage of caching can seem instantaneous in comparison. Users will appreciate a
fast-loading site and will visit more often.

Basics of Web Caching
Web caches preserve a local version of responses served from origin servers to the cli-
ent browser. The web cache keeps track of responses served for specific URL
requests, and if there are instructions to store the response in the cache, it remem-
bers them for a certain period. Next time when the same URL is requested, the web
cache intercepts the request and returns the stored response from its storage (cached
response) to the client browser.

Understanding Web Caching | 225

Web caching has three benefits:

Reduces latency between request and response
Because content is served from the local store, there’s no need to go to the ori-
gin server to fetch the response. The delay between the request and response is
always lower than making a call to the origin server.

Saves network bandwidth
The response is served from the web cache, not from the origin server. If your
proxy acts as the web cache, then there’s no data transfer between your proxy
and origin server. If your browser acts as the web cache, then there’s no network
activity at all.

Reduces server load
The origin server doesn’t have to execute the request and produce the response
for the same request repeatedly.

Types of Web Caches
There are a number of web caches.

Browser caches
The browser cache is the fastest cache of all because the response is stored right
on your computer. All modern browsers have finite storage dedicated for cache,
usually about 100 MB. This means the browser can store 100 MB worth of data
locally on a user’s computer and not request it again from the origin server.
However, this 100 MB is shared among all the web sites user visits. So, you need
to only store critical information that is accessed frequently and takes the most
download time, e.g., ASP.NET AJAX Framework JavaScript files.

Proxy caches
Proxies serve hundreds or thousands of users in the same way and large corpora-
tions and ISPs often set them up behind their firewalls or as standalone devices
(also known as intermediaries).

Proxy caches are a type of shared cache. This means if you have five users com-
ing from the same proxy, the content is delivered to the proxy from the origin
server just once for the first user hitting the site. For the other users, the content
is served directly from the proxy server although it may be their very first visit to
your site.

Gateway caches
Gateway caches are deployed by webmasters in the user’s network and the ori-
gin server. They are not part of your production environment nor are they part
of end user’s network. They work as intermediaries between user (or proxy serv-
ers) and origin server. Requests are routed to gateway caches by a number of
methods, but typically some form of load balancer is used to make one or more
of them look like the origin server to clients.

226 | Chapter 9: Improving Client-Side Performance

Content delivery networks (CDNs) have cache servers in many different loca-
tions. Whenever a client requests a resource that is cached by a CDN, the
request goes to nearest server, which saves network roundtrip time and delivers
the resource faster. Moreover, CDNs have very high-speed networks optimized
to deliver content as fast as possible. So, storing content on the CDN signifi-
cantly increases site load time.

Web Cache Problems
When you implement effective caching, users don’t hit your site like they used to.
This means you are being hit less than you should be, so you get an inaccurate traf-
fic report.

Another concern is that caches can serve out-of-date or stale content. Caching
requires very careful planning or your users will see old content instead of what you
want to serve them. You will learn how to control caching and make sure this does
not happen in the upcoming section “Controlling Response Cache.”

How Web Caches Work
Web caches work based on the following conditions:

• If the response’s headers tell the cache not to keep it, it won’t. The “no cache”
mode is the default. But sometimes proxies and browsers cache content if there’s
no explicit cache header present.

• If the request is authenticated or secure, it won’t be cached. HTTPS content is
never cached.

• A cached representation is considered fresh (that is, able to be sent to a client
without checking with the origin server) if:

— It has an expiry time or other age-controlling header set but is still within the
fresh period.

— If a browser cache has recently cached the content but does not need to
check it until the next launch.

— If a proxy cache has seen the content recently but it was modified a rela-
tively long time ago.

• Cached content is directly served from the web cache. There’s no communica-
tion between origin and client.

• If a cached content has become stale, the web cache will forward the request to
the origin server transparently and serve fresh content from origin server. The
client browser will not notice what the web cache is doing. It will only experi-
ence a delay.

Understanding Web Caching | 227

Details about how HTTP 1.1 caching works can be found in RFC 2616: Hypertext
Transfer Protocol Section 14.9 (http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.
html#sec14.9).

Controlling Response Cache
You can define caching at the server level (through IIS Administration) or at the page
level using some special tags in the HTML files. With dynamic content, you have
complete control on how and when to cache a particular response.

HTML metatags and HTTP headers

HTML authors can put metatags in a document’s <HEAD> section that describe its
attributes. Besides describing what’s in the content, metatags can be used to cache
pages or prevent pages from being cached.

Metatags are easy to use, but aren’t very effective because they’re only honored by a
few browser caches (which actually read the HTML), not proxy caches (which
almost never read the HTML in the document). You can put a Pragma: no-cache
metatag into a web page, but it won’t necessarily prevent it from being cached
because an intermediate proxy might be caching the page.

If your site is hosted at an ISP or hosting farm but they don’t give you
the ability to set arbitrary HTTP headers (like Expires and Cache-
Control), you will not be able to implement caching effectively.

Cache control in response header

HTTP headers give you a lot more control over how browser caches and proxies han-
dle your representations compared to metatags. HTTP headers are not part of the
response body and thus not available in the HTML and are usually automatically
generated by the web server. However, you can control them to some degree,
depending on the server you use.

HTTP headers are sent by the server before the HTML and are only seen by the
browser and any intermediate caches. Typical HTTP 1.1 response headers might
look like Example 9-1.

Example 9-1. Example of response header that says the response should be cached

HTTP/1.1 200 OK
Date: Fri, 30 Oct 1998 13:19:41 GMT
Server: IIS 6.0Cache-Control: max-age=3600, must-revalidate
Expires: Fri, 30 Oct 1998 14:19:41 GMT
Last-Modified: Mon, 29 Jun 1998 02:28:12 GMT
ETag: "3e86-410-3596fbbc"
Content-Length: 1040
Content-Type: text/html

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9

228 | Chapter 9: Improving Client-Side Performance

The Cache-Control, Expires, Last-Modified, and ETag headers are responsible for con-
trolling how to cache the entire response.

Pragma HTTP headers

Many people believe that assigning a Pragma: no-cache HTTP header to a HTTP
response will make it uncacheable. This is not necessarily true, because the HTTP
specification does not set guidelines for Pragma response headers, but instead Pragma
request headers (the headers that a browser sends to a server). Although a few caches
may honor this header, the majority won’t, and it won’t have any effect.

Controlling caches with the Expires HTTP header

The Expires HTTP header is a basic way to control caches; it tells all caches how
long the response can be stored in cache. After the expiry date, browsers will ignore
what’s on the cache and make a call to the origin server to get the fresh content.
Expires headers are supported by practically every cache.

Most web servers allow you to set the expiration in a number of ways. Commonly,
they will allow setting an absolute time to expire, the last time that the client saw the
representation (last access time), or the last time a document changed on your server
(last modification time).

The only value valid in an Expires header is a HTTP date—anything else will most
likely be interpreted as “in the past,” so that the response is uncacheable. Also, remem-
ber that the time in a HTTP date is Greenwich Mean Time (GMT), not local time.

For example:

Expires: Fri, 30 Oct 1998 14:19:41 GMT

Although the Expires header is useful, it has some limitations. First, because there’s
a date involved, the clocks on the web server and the cache must be synchronized. If
they aren’t, the intended results won’t be achieved and the caches might wrongly
consider stale content as fresh.

Using the Expires Header for Static Content
The Expires header is especially good for making static images (like navigation bars
and buttons) cacheable. Because it doesn’t change much, you can set an extremely long
expiration time on it, making your site appear much more responsive to your users. It
is also useful for controlling the caching of a page that is regularly changed. For
instance, if you update a news page once a day at 6 a.m., you can set the representation
to expire at that time so caches will know when to get a fresh copy, without users hav-
ing to hit reload.

Understanding Web Caching | 229

If you use the Expires header, it’s important to make sure that your
web server’s clock is accurate. One way is to use the Network Time
Protocol (NTP, http://www.ntp.org/)—talk to your system administra-
tor to find out more. On Windows servers, you can configure the
server to check the time synchronization services on the Web and
update its clock.

Another problem with absolute Expires is that it’s easy to forget that you’ve set some
content to expire at a particular time. Although you change the expiration date to
some other date, some browser are still going to request the content on a previously
set date because they have already received the response with the previous expira-
tion date.

Cache-control HTTP headers

HTTP 1.1 introduced a new class of headers, Cache-Control response headers, to give
web publishers more control over their content and to address the limitations of
Expires.

Useful Cache-Control response headers include:

max-age=[seconds]
Specifies the maximum amount of time that a response will be considered fresh.
Similar to Expires, this directive is relative to the time of the request, rather than
absolute. [seconds] is the number of seconds from the time of the request you
wish the response to be cached for.

s-maxage=[seconds]

Similar to max-age, except that it applies only to shared (e.g., proxy) caches.

public
Indicates that the response may be cached by any cache (if max-age is not speci-
fied), even if it normally would be noncacheable or cacheable only within a non-
shared cache.

private
Indicates that all or part of the response message is intended for a single user and
must not be cached by a shared cache. This allows an origin server to state that
the specified parts of the response are intended for only one user and are not a
valid response for requests by other users. A private (nonshared) cache may
cache the response unless max-age is defined.

no-cache
Forces caches to submit the request to the origin server for validation before
releasing a cached copy, every time. This is useful to ensure that authentication
is respected (in combination with public) or to maintain rigid freshness, without
sacrificing all of the benefits of caching.

http://www.ntp.org/

230 | Chapter 9: Improving Client-Side Performance

no-store
Instructs caches not to keep a copy of the representation under any conditions.

must-revalidate
If this header is not present, the browser sometimes return cached responses that
have already expired on some special occasion, e.g., when the browser’s back
button is pressed. When the response has expired, this header instructs the
browser to fetch fresh content no matter what.

proxy-revalidate
Similar to must-revalidate, except that it applies only to proxy caches.

For example:

Cache-Control: public, max-age=3600, must-revalidate, proxy-revalidate

This header tells the browser and proxy servers to cache the content for one hour.
After one hour, both the browser and proxy must fetch fresh content from the origin
no matter what.

ETag, last-modified headers

The Cache-control header allows you to set the duration of the cache. Once the
browser or proxy caches the content for that duration, they won’t make a call to the
origin regardless of whether the content has changed or not. So, if you have set a
piece of JavaScript to be cached for seven days, no matter how many times you
change that JavaScript, the browser and proxies that have already cached it for seven
days will not ask for the latest JavaScript. This could be exactly what you want to do
in some cases because you want content to be delivered from the cache instantly, but
it isn’t always a desired result.

Say you are delivering an RSS feed from your server to the browser. You have set the
cache control to cache the feed for one day. However, the feed has already changed
and users cannot see it because they are getting cached content no matter how many
times they visit the site. So, you want to verify whether there’s a new RSS feed avail-
able by hitting the server. If it is available, then fresh content should be downloaded.
If not, then the response is served from the cache.

One way to do this is to use the Last-Modified header. When a cache has stored con-
tent that includes a Last-Modified header, it can use the Last-Modified header to ask
the server if the content has changed since the last time it was fetched with an If-
Modified-Since request. However, the Last-Modified header is applicable to content
that is date-dependent. You cannot use the Last-Modified header unless you have
timestamped your content.

HTTP 1.1 introduced a new tag called the ETag for better control over cache valida-
tions. ETags are unique identifiers that are generated by the server and changed every
time the content is updated. Because the server controls how the ETag is generated,
the server can check if the ETag matches when a If-None-Match request is made.

Understanding Web Caching | 231

Browsers will send the ETag for a cached response to the server, and the server can
check whether the content has changed or not. The server does this by using an algo-
rithm to generate an ETag out of available content and seeing whether the ETag is
the same as what the browser has sent. Some hashing of content can be used to gen-
erate the ETag. If the generated ETag does not match with the ETag that the browser
sent, then the content has changed in between. The server can then decide to send
the latest content to the browser.

In our previous example of caching an RSS feed, we can use the hash of the last item
in the feed as an ETag. So, when the user requests the same feed again, the browser
will make a call to the server and pass the last known ETag. On the server, you can
download the RSS from the feed source (or generate it), check the hash of the last
item, and compare it with ETag. If they match, then there’s no change in the RSS
feed, and you can return HTTP 304 to inform the browser to use cached content.
Otherwise, you can return the freshly downloaded feeds to the browser.

Principles for Making the Best Use of Cache
Now that you know how caching works and how to control it, here are some tips on
how to make best use of cache.

Use URLs consistently
Browsers cache content based on the URL. When the URL changes, the browser
fetches a new version from the origin server. The URL can be changed by chang-
ing the query string parameters. For example, if /default.aspx is cached on the
browser and you request /default.aspx?123, it will fetch new content from the
server. The response from the new URL can also be cached in the browser if you
return the proper caching headers. In that case, changing the query parameter to
something else like /default.aspx?456 will return new content from the server.

So, you need to make sure you use the URL consistently everywhere when you
want to get the cached response. From the homepage, if you have requested a
file with the URL /welcome.gif, make sure you request the same file from another
page using the same URL. One common mistake is to sometimes omit the
“www” subdomain from the URL. www.pageflakes.com/default.aspx is not the
same as pageflakes.com/default.aspx. Both will be cached separately.

Cache static content for longer period
Static files can be cached for longer period, like a month. If you are thinking that
you could cache for couple of days and then change the file so users will pick it
up sooner, you’re mistaken. If you update a file that was cached by the Expires
header, new users will immediately get the new file while old users will see the
old content until it expires on their browser. So, as long as you are using the
Expires header to cache static files, you should use as a high value as possible to
cache the files for as long as possible.

232 | Chapter 9: Improving Client-Side Performance

For example, if you have set the Expires header to cache a file for three days, one
user will get the file today and store it in cache for next three days. Another user
will get the file tomorrow and cache it for three days after tomorrow. If you
change the file on the day after tomorrow, the first user will see it on the fourth
day and the second user will see it on he fifth day. So, different users will see dif-
ferent versions of the file. As a result, it does not help to set a lower value and
assume all users will pick up the latest file soon. You will have to change the
file’s URL to ensure everyone gets the same exact file immediately.

You can set up the Expires header from static files in IIS Manager. You’ll learn
how to do this in the “How to Configure Static Content Caching in IIS” section
later in this chapter.

Use a cache-friendly folder structure
Store cached content in a common folder. For example, store all images of your
site in the /static folder instead of storing images separately under different sub-
folders. This will help you use consistent URLs throughout the site because you
can use /static/images/somefile.gif from anywhere. It’s easier to move to a CDN
when you have static cacheable files under a common root folder (see the “Dif-
ferent Types of CDNs” section later in this chapter).

Reuse common graphics files
Sometimes we put common graphics files under several virtual directories to
write smaller paths. For example, say you have indicator.gif in the root folder, in
some subfolders, and in a CSS folder. You did it because you don’t want to
worry about paths from different places and can use the filename as a relative
URL. This does not help with caching. Each copy of the file is cached in the
browser separately. So, eliminate the duplicates, collect all of the graphics files in
the whole solution, put them under the same root static folder, and use the same
URL from all the pages and CSS files.

Change filename when you want to expire a cache
When you want to change a static file, don’t just update the file because it’s
already cached in the user’s browser. You need to change the filename and
update all references everywhere so that the browser downloads the new file.
You can also store the filenames in database or configuration files and use data
binding to generate the URL dynamically. This way you can change the URL
from one place and have the whole site receive the change immediately.

Use a version number when accessing static files
If you don’t want to clutter your static folder with multiple copies of the same
file, use a query string to differentiate versions of same file. For example, a GIF
can be accessed with a dummy query string like /static/images/indicator.gif?v=1.
When you change the indicator.gif, you can overwrite the same file and update
all references to the file to direct to /static/images/indicator.gif?v=2. This way you
can keep changing the same file again but just update the references to access the
graphics using the new version number.

Understanding Web Caching | 233

Store cacheable files in a different domain
It’s always a good idea to put static contents into a different domain. First of all,
the browser can open two additional concurrent connections to download the
static files. Another benefit is that you don’t need to send the cookies to the
static files. When you put the static files on the same domain as your web appli-
cation, the browser sends both the ASP.NET cookies and all other cookies that
your web application is producing. This makes the request headers unnecessar-
ily large and wastes bandwidth. You don’t need to send these cookies to access
the static files. So, if you put the static files in a different domain, those cookies
will not be sent. For example, you could put your static files in the www.static-
content.com domain while your web site is running on www.dropthings.com.
The other domain doesn’t need to be a completely different web site. It can just
be an alias and share the same web application path.

SSL is not cached, so minimize SSL use
Any content that is served over SSL is not cached. So, you need to put static con-
tent outside SSL. Moreover, you should try limiting SSL to only secure pages like
the login or payment page. The rest of the site should be outside SSL over regu-
lar HTTP. Because SSL encrypts requests and responses, it puts an extra load on
the server. Encrypted content is also larger than the original content and takes
more bandwidth.

HTTP POST requests are never cached
Cache happens only for HTTP GET requests. HTTP POST requests are never
cached. So, any kind of Ajax call you want to make cacheable needs to be HTTP
GET-enabled.

Generate Content-Length response header
When you are dynamically serving content via web service calls or HTTP han-
dlers, make sure you emit a Content-Length header. A browser has several opti-
mizations for downloading contents faster when it knows how many bytes to
download from the response by looking at the Content-Length header. Browsers
can use persisted connections more effectively when this header is present. This
saves the browser from opening a new connection for each request. When
there’s no Content-Length header, the browser doesn’t know how many bytes it’s
going to receive from the server and keeps the connection open (as long as bytes
are delivered from the server) until the connection closes. So, you miss the bene-
fit of persisted connections that can greatly reduce the download time of several
small files.

How to Configure Static Content Caching in IIS
In IIS Manager, the web site properties dialog box has an HTTP headers tab where
you can define the Expires header for all requests that IIS handles (see Figure 9-1).
You can set the content to expire immediately, after a certain number of days, or on

234 | Chapter 9: Improving Client-Side Performance

a specific date. The option to Expire after uses sliding expiration, not absolute expi-
ration, which is useful because it works per request. When someone requests a static
file, IIS will calculate the expiration date based on the number of days/months from
the Expire after.

For dynamic pages that are served by ASP.NET, a handler can modify the expiration
header and override the IIS default setting.

Content Delivery Networks
A CDN (Content Delivery Network) is a system of computers networked together
across the Internet. The computers cooperate transparently to deliver content (espe-
cially large media content) to end users. CDN nodes (clusters of servers at a specific
location) are deployed in multiple locations, often over multiple backbones. These
nodes cooperate with each other to serve requests for content by end users. They
also transparently move content behind the scenes to optimize the delivery process.
A CDN serves a request by intelligently choosing the nearest server. It looks for the
fastest connectivity between your computer to the nearest node that has the content

Figure 9-1. The HTTP header is set for static content to expire in 30 days

Content Delivery Networks | 235

you are looking for. A CDN measures its strength by the number of nodes in differ-
ent countries and the amount of redundant backbone connectivity. Some of the most
popular CDNs are Akamai, Limelight, and EdgeCast. Akamai is used by large com-
panies like Microsoft, Yahoo!, and AOL. Comparatively, it is an expensive solution
but has the best performance throughout the world because it has servers in almost
every prominent city in the world.

Examining Web Site Performance Without a CDN
Every request from a browser goes to your server and travels through the Internet
backbones that span the world. The more countries, continents, and oceans a
request passes through to reach your server, the slower it is. For example, if you have
your servers in the U.S. and someone from Australia is browsing your site, each
request is crossing the planet from one end to the other to reach your server and then
come back again to the browser. If your site has a large number of static files, includ-
ing images, CSS, and JavaScript, that are sending requests, then downloading them
across the world takes a significant amount of time.

If you could set up a server in Australia and redirect users to your Australian server,
then each request would take fraction of the time it takes from reach U.S. The net-
work latency would be lower and the data transfer rate would be faster, so static con-
tent will download a lot faster. It will significantly improve the user’s performance if
your web site is rich in static content. Moreover, ISPs provide far greater speed for a
country-wide network compared to the Internet because each country generally has a
handful of connections to the Internet backbone that are shared by all ISPs within
the country. As a result, users with a 4 Mbps broadband connection will get the full
4 Mbps speed from servers that are in the same country, but the speed could drop to
512 kbps from servers that are outside the country. So, having a server in the same
country or city significantly improves site speed.

Figure 9-2 shows the average response time for www.pageflakes.com from Washing-
ton, D.C., where the servers are in Dallas, Texas. The average response time is about
0.4 seconds. This response includes server-side execution time as well. Generally, it
takes 0.3 to 0.35 seconds to execute the page on the server. So, time spent on the
network is 0.05 seconds or 50 ms. This connectivity is really fast because it takes
only four to six hops to reach Dallas from Washington D.C.

The average response time from Australia is 1.5 seconds, which is significantly higher
than Washington D.C., as you see from Figure 9-3. Moreover, it takes 17 to 23 hops
to reach Sydney from Dallas. So, the site downloads at least four times slower in Aus-
tralia than from anywhere in the U.S.

236 | Chapter 9: Improving Client-Side Performance

Different Types of CDNs
There are generally two types of CDNs:

Figure 9-2. Average page download time from Washington D.C. (taken from www.websitepulse.com)

Figure 9-3. Average response time from Sydney, Australia is significantly higher than it is from
Washington D.C.

Content Delivery Networks | 237

Upload content to the CDN’s servers via FTP
By doing this you will get a subdomain in the CDN’s domain, e.g., dropthings.
somecdn.net. You then change all of the static content URLs on your site to
download content from the CDN domain instead of from the relative URL on
your own domain. For example, a URL like /logo.gif will be renamed to http://
dropthings.somecdn.net/logo.gif. This is easy to configure, but there are mainte-
nance problems. You have to keep the CDN’s store synchronized with the files
all the time. Deployment becomes complicated because you need to update both
your web site and the CDN store at the same time. CacheFly is an example of
such a CDN (it is also very inexpensive).

Store static content on your own site but use domain aliasing
You can store your content in a subdomain that points to your own domain, e.g.,
static.dropthings.com. Then you use CNAME to map that subdomain to a CDN’s
nameserver, such as cache.somecdn.net. When a browser tries to resolve static.
dropthings.com, the DNS lookup request goes to the CDN nameserver. The
nameserver then returns the CDN node’s IP that is closest to you to give you the
best download performance. The browser next sends requests for files to that
CDN node. When the CDN node sees the request, it checks whether it has the
content already cached. If it is cached, it delivers the content directly from its
local store. If not, it makes a request to your server and then looks at the cache
header generated in response. Based on the cache header, the CDN node decides
how long to cache the response in its own cache. In the meantime, the browser
does not wait for the CDN node to get content and return to it (see Figure 9-4).

Figure 9-4. The CDN node that is closest to the browser intercepts traffic and serves a response. If
it does not have the response in the cache, it fetches it from the origin server using a faster route
and more optimized connectivity than the browser’s ISP can provide. If the content is already
cached, then it’s served directly from the node.

CDN nodeBrowser Website

Second
browser

HTTP request HTTP request

HTTP response HTTP response

HT
TP

 re
qu

es
t

HTTP response

Cached

238 | Chapter 9: Improving Client-Side Performance

The CDN does an interesting trick on the Internet backbone to actually route
the request to the origin server so that the browser gets the response directly
served from origin server while the CDN is updating its cache. Sometimes the
CDN acts as a proxy, intercepting each request and then fetching uncached con-
tent from the origin using a faster route and optimized connectivity to the origin
server.

Optimizing Internet Explorer JavaScript Performance
Ajax web portals require a lot of JavaScript to be loaded in the browser. Because
there’s only one page, the more features on the user’s Start page, the more JavaScript
needed to deliver to the page. ASP.NET AJAX Framework, extenders, and scripts
from widgets make the browser slower to run JavaScript and respond to user
actions. If the JavaScript doesn’t follow best practices, such as keeping careful con-
sideration on performance and memory allocation, then the browser starts to crawl
after some time. Old browsers, like Internet Explorer 6, are not made to run the
large amount of JavaScript that Ajax web portals require. This means sometimes re-
engineering is needed on your client-side framework, and sometimes several major
components will need to be rewritten to overcome the performance limitation of
browsers.

Re-engineering and rewriting is always expensive in the later stage of a project. So,
knowing performance- and memory-related issues with old browsers upfront will
save you lot of time and money.

Internet Explorer 6 has the worst performance when it comes to JavaScript execu-
tion speed and memory leaks; Internet Explorer 7 is much better. Firefox and Opera
provide the best performance on a large amount of JavaScript and have almost no
memory leak. Unfortunately, IE 6 is still the most used browser in the world. So, the
majority of your users will still be using IE 6, which makes it a challenge to deliver a
rich user interface to the browser while maintaining speed and reliability. In next sec-
tions, we will look at some JavaScript performance issues in IE 6 and some major
memory leak problems and their solutions.

Reducing IE Symbolic Lookups
A primary source of IE JavaScript performance issues is the constant symbolic
lookup. Symbolic lookup occurs whenever the JavaScript engine tries to pair a name
or identifier in the script with an actual object, method call, or property running in
the context of the engine. For example, document.write will result in symbolic
lookup on document object for the write function. Symbolic lookups are expensive,
especially on DOM elements, because IE has to do a lookup on the DOM element’s
interface and find the function/property that you need. To improve JavaScript per-
formance in IE, the first step is to reduce the number of symbolic lookups and help
IE limit lookups to as small scope as possible.

Optimizing Internet Explorer JavaScript Performance | 239

Evaluating local variables

A variable is accessed based on a scope chain that resolves backward from the most
specific scope to the least specific. Sometimes these symbolic lookups can pass
through multiple levels of scope and eventually wind up in generic queries to the IE
DOM, which can be quite expensive. The worst-case scenario is that your variable
doesn’t yet exist and every level of scope in the chain is investigated, only to find that
an expando variable (a dynamically defined property attached to a DOM element)
needs to be created.

Example 9-2 shows a classic example of a local variable lookup that results in creat-
ing an expando on the window object. When you try to access some_variable, IE needs
to see whether it is defined in the test() function; if not, it checks the parent func-
tion, then its grandparent until it reaches the window object. It then finds that there’s
no property named some_variable to window object. So, it creates an expando and
assigns the value to it. Next time you try to access that variable, it moves up the same
lookup chain, but this time it finds the variable on window object.

The solution to this is to use the var keyword to ensure the variable is created in the
local scope only. Example 9-3 shows how you can force a local variable and thus
limit symbolic lookup efforts for IE.

Declaring local variables with the var keyword will create fast execution and greatly
improve your JavaScript performance if you have mistakenly created a lot of vari-
ables without using the var keyword. You can easily see the difference by running
both versions of the test() function from Examples 9-2 and 9-3 inside a loop in a
low-end computer and see the difference in their execution times.

This optimization is not IE-specific—other browsers will benefit from optimized
code as well if they can do shorter symbolic lookups.

Example 9-2. Symbolic lookup on local variables

function test()
{
 some_variable = some_function();
 return some_variable + 1;
}

Example 9-3. Solution to local variable lookup

function test()
{
 var local_variable = some_function();
 return local_variable + 1;
}

240 | Chapter 9: Improving Client-Side Performance

Reducing symbolic lookup on DOM elements

All binding in JavaScript is late binding, not early binding like in compiled languages
such as C#. Moreover, because JavaScript is interpreted and not compiled, the Java-
Script engine has no idea what will be next in line to do any compiler optimization.
This means that each time you access a property, variable, or method, a lookup is
performed. Within the DOM, this could mean an extensive search of the element to
find the same property over and over again, only to return to the JavaScript engine
unchanged from the previous request.

In Example 9-4, the innerHTML property on a div is accessed several times. Each time,
the JavaScript engine does a symbolic lookup on the div. The first statement is a
plain assignment. But the following statements actually require two lookups each: to
get the existing value and to set the combined value.

In Example 9-5, the solution is to build a combined string first and then assign the
string to the innerHTML property in a single assignment. This will clear the previous
content and set the new HTML.

Speeding symbolic lookup by caching DOM elements, properties, and functions

Because local variables lookups are the fastest, you can benefit from performance
improvement by caching DOM element properties and function references in local
variables to access them easily. Local variables maintain a direct reference to the orig-
inal item (by reference) and do not create or duplicate any item.

In Example 9-6, document.body is looked up over and over, which creates repeated
lookups for the body property on the document object. Storing the document.body in a
local variable can optimize this performance.

Example 9-4. Example of performance degradation from repeated DOM lookups

function slow_function()
{
 var div = document.getElementById('someDiv');
 div.innerHTML = "";
 div.innerHTML += build_part1();
 div.innerHTML += build_part2();
 div.innerHTML += build_part3();
}

Example 9-5. Faster code by eliminating repeated lookups

function faster_function()
{
 var div = document.getElementById('someDiv');
 div.innerHTML = build_part1() + build_part2() + build_part3();
}

Optimizing Internet Explorer JavaScript Performance | 241

In Example 9-7, we have eliminated repeated lookups on the document object, which
is a big object. Caching the body object’s childNodes property in a local variable will
further optimize the code.

Example 9-8 shows the fastest implementation of this code.

Not only can you cache the DOM properties but also the functions. Functions are
also looked up on every call. If it’s not a local function, then there is an expensive
scan for it in the ancestor scopes. You can benefit from caching JavaScript functions
as well as DOM element functions like appendChild. Example 9-9 shows how
repeated calls to functions can be optimized.

Example 9-10 shows how we can optimize two functions by caching node.
appendChild and my_function.

Example 9-6. Slow code on repeated DOM lookup

function slow_code()
{
 document.body.innerHTML = document.body.div1.innerHTML + document.body.div2.
 innerHTML;
}

Example 9-7. Caching the DOM element reference will make the code faster

function faster_code()
{
 var body = document.body;
 body.innerHTML = body.childNodes[0].innerHTML + body.childNodes[1].innerHTML;
}

Example 9-8. Fastest implementation

function fastest_code()
{
 var body = document.body;
 var childNodes = body.childNodes;
 body.innerHTML = childNodes[0].innerHTML + childNodes[1].innerHTML;
}

Example 9-9. Repeated calls to functions result in slow performance

function repeated_function(items)
{
 var node = document.getElementById('someDiv');
 for(var i = 0; i < items.length; i ++)
 {
 node.appendChild(my_function(items[i]));
 }
}

242 | Chapter 9: Improving Client-Side Performance

You will benefit from caching DOM properties, as well as your own JavaScript func-
tions, especially the ones that are defined at global scope, which is the JavaScript
engine’s last step in the symbolic lookup to find them. Generally, you will have some
utility functions defined at global scope and use those utility functions repeatedly in
many places. Caching those heavily used utility functions in local variables will give
you some performance boost.

Mitigating Internet Explorer Memory Leak
A circular reference results when a DOM object contains a reference to a JavaScript
object (such as an event handling function) and that JavaScript object contains a ref-
erence back to that DOM object. The garbage collector, which is a memory man-
ager, collects objects that are not referenced by anything and reclaims their memory.
The JavaScript garbage collector understands circular references and is not confused
by them. Unfortunately, IE’s DOM is not managed by JavaScript. It has its own
memory manager that does not understand circular references. As a result, when a
circular references occurs, the garbage collector cannot reclaim the memory because
it does not know whether the JavaScript object needs the DOM object. The memory
that is not reclaimed is said to have leaked. Over time, this can result in memory star-
vation. The more IE runs and leaks memory, the slower it becomes. Lack of memory
makes other programs page to disk and become slower also. The operating system
has too much paging to do between RAM and the page file on disk, so the computer
gets slower. You have to close the browser to free up the RAM that IE has allocated
and to return to normal operational speed.

Avoid using event handlers as closures

Cyclic reference can happen if global variables holding references to DOM objects or
event handlers are defined as closures. Closures are functions that refer to free vari-
ables in their lexical context. When closures reference DOM objects, there’s no way
to know when that object will be needed, so the object is never freed.

Example 9-10. Cache functions in local variables

function faster_repeated_function(items)
{
 var node = document.getElementById('someDiv');
 var appendChild = node.appendChild;
 var cache_function = my_function;

 for(var i = 0; i < items.length; i ++)
 {
 appendChild(cache_function(items[i]));
 }
}

Optimizing Internet Explorer JavaScript Performance | 243

In Example 9-11, a closure is formed in the event handler where it references two
variables outside its local scope. For example, the closure_test execution function
completes and the local variables (img and div) are ready to be released, but the event
handler on img needs both img and div to be alive when it is fired. Therefore, the
JavaScript engine cannot release the reference to the DOM objects. So, there are
active references on both an image and a DIV. The IE garbage collector will not be
able to reclaim these elements’ memories even if explicitly removed from the DOM
element by calling removeChild. They will remain in the memory forever and never be
released, and IE will leak memory.

The first step to avoid closure leaking is to use the this keyword to refer to the ele-
ment that fires the event. Example 9-12 shows improvement in one step.

Now IE can release someImage but not someDiv as the closure still holds the reference
to the DIV. There are two workarounds to this problem:

• Get the DIV inside the event handler using its ID (if the ID is known at this
stage)

• Store enough information to resolve the DIV from within the event handler if ID
is not known (see Example 9-13)

Example 9-11. Example of a closure leaking memory

function closure_test()
{
 var img = document.getElementById('someImage');
 var div = document.getElementById('somediv');
 img.onclick = function(event) { div.innerText = "Image loaded: " + img.src"; }
}

Example 9-12. Preventing the image from leaking

function closure_step1()
{
 var img = document.getElementById('someImage');
 var div = document.getElementById('somediv');
 img.onclick = function(event) { div.innerText = "Image loaded: " + this.src"; }
}

Example 9-13. Leak-free event handling

function closure_step2()
{
 var img = document.getElementById('someImage');
 img.onclick = function(event)
 {
 var div = document.getElementById('somediv');
 div.innerText = "Image loaded: " + this.src";
 }
}

244 | Chapter 9: Improving Client-Side Performance

Use out-of-scope functions

However, there’s an even safer and better approach to event handling—out-of-scope
functions. This ensures the callback function will never be able to hold onto any ref-
erence to local variables within the main function.

Example 9-14 shows that by declaring the event handler function out of the scope,
there’s no way the function can hold onto any variable reference inside the
closure_step3 function.

A .NET developer might think that Example 9-14 is how C# code is written for
event handling. But closures are the norm for event handling in JavaScript. Most
popular frameworks, such as Prototype, Dojo, and jQuery, and utility libraries like
Script.aculo.us, are full of closures. Closure gives JavaScript developers a powerful
syntax to reduce code size significantly, so they are familiar with using closure for
many purposes including event handling.

The best way, however, is to use ASP.NET AJAX Framework’s $addHandler and
$removeHandler functions to subscribe/unsubscribe to events on DOM elements
because they provide cross-browser implementation to work safely with events:

$addHandler
Subscribes to a specific event multiple times; when the event is raised, it fires the
event handlers one after another. You generally call it using an out-of-scope
function and avoid the closure problem.

$removeHandler
Removes a specific handler from an event but leaves other handlers intact.

$clearHandlers
Removes all event handlers from an element, marking it safe to be reclaimed by
the garbage collector (see Example 9-15).

Example 9-14. Using out-of-scope functions for event callback

function closure_step3()
{
 var img = document.getElementById('someImage');
 img.onclick = image_onclick;
}

function image_onclick(event)
{
 var div = document.getElementById('somediv');
 div.innerText = "Image loaded: " + this.src";
}

Example 9-15. Using $addHandler and $removeHandler

function closure_safer()
{
 var img = document.getElementById('someImage');

Optimizing Internet Explorer JavaScript Performance | 245

It is a good practice to remove all event handlers when you are done with an element.
This ensures IE can collect the item properly. One thing to note: you can use
$removeHandler and $clearHandler only when you have used $addHandler on an ele-
ment. These functions are useless if you have used the element.event = function() { }
approach of subscribing to events. In that case, you need to set element.event = null
to release the event handler.

Example 9-16 shows a new function—$clearEvents—that calls the ASP.NET AJAX
Framework’s $clearHandlers function to clear any event attached by $addHandler and
then sets the common event handler properties to null. This ensures that all event
handlers are cleared.

Remove DOM elements

To reduce memory leaks, you will have to remove unused events from DOM ele-
ments. However, it’s always difficult to keep track of DOM elements and ensure they
are released properly. So, one handy way to clean up DOM elements and make them
ready for the garbage collector is to remove all event handlers during the window.
onunload event. There are some common elements where events are generally
attached, e.g., DIV, input, select, and hyperlinks. So, if you call $clearEvents on all
such nodes, you can get rid of the majority of event handlers and make them safe for
removal (see Example 9-17).

 $addhandler(img 'click', image_onclick);
}

function image_onclick(event)
{
 var div = document.getElementById('somediv');
 div.innerText = "Image loaded: " + this.src";
 $removeHandler(this, 'click', image_onclick);
}

Example 9-16. Backward-compatible $clearEvents

var $clearEvents = function(e)
{
 $clearHandlers(e);

 // Clear common events
 e.onmouseup = null; e.onmousedown = null; e.onmousemove = null; e.onclick = null;
 e.onkeypress = null; e.onkeyup = null;
 e.onmouseover = null; e.onmouseout = null;
 e.onreadystatechange = null;
}

Example 9-15. Using $addHandler and $removeHandler (continued)

246 | Chapter 9: Improving Client-Side Performance

The window.onunload event is fired right before browser is closed or the user navi-
gates away to a different page. During this time, cleaning up a majority of the event
handlers will ensure you have removed as much of the memory leak as possible.
However, expandos attached to DOM elements need to be released. It is difficult to
find these expandos because you have to run through each and every property of a
DOM element and set it to null. Browsers will get stuck for several seconds if you do
this for all DIV tags or all hyperlinks. There’s not much you can do about this,
except hope most of the memory leak was resolved by removing the event handlers.

Reducing the Web Service Call Payload
Generally, we exchange entity classes between the browser and a web service via
JSON, e.g., returns an array of Widget objects from a web service call. But having the
ability to exchange entity classes between the browser and server side makes Ajax
programming a lot easier. However, sometime the Entity class contains data that is
not safe or must be sent to the browser. You should exclude those sensitive proper-
ties for security reasons or to avoid sending large amount of data to the browser.

The Widget class contains the State property, which stores large amounts XML data.
So, if you store the Flickr response XML in State, it will take up about 25 to 50 KB.
The idea is not to prevent sending Entity classes, but instead create a shallow ver-
sion of Entity classes that are sent to browser. If you send such giant XML data to
the browser via a web service call when it isn’t needed, you waste bandwidth and the
response takes longer to download. Unfortunately, there’s no way to exclude a prop-
erty from JSON serialization. So, the only way to do it is to make another class that
contains only the properties that you want to send to the browser as a web service
call’s response. For example, you can create a Widget2 class that contains only Row,
Column, and Title properties. On the server-side web service code, you convert the
Widget class to Widget2 and return that to the browser. This reduces the response size.

Example 9-17. Safe way to release DOM elements during window.onunload

$disposeElements = function(tagName)
{
 var elements = document.getElementsByTagName(tagName);
 for(var i = 0; i < elements.length; i ++)
 $clearEvents(elements[i]);
}

window.onunload = function()
{
 $clearEvents(document.body);
 $disposeElements("DIV");
 $disposeElements("INPUT");
 $disposeElements("A");
 $disposeElements("SELECT");
}

Loading the UI on Demand | 247

There are also some data types that you should never send to browser via JSON,
such as byte arrays, streams, trees, etc. If any of your Entity classes contains such
properties, you must make a lightweight copy of that Entity class and exclude such
properties. Such lightweight classes will not only save download time but also save
request time if the browser wants to send such objects to the web service. Moreover,
the lightweight objects will save JSON serialization and deserialization overhead
because they are both entirely reflection-based.

Loading the UI on Demand
Ajax web sites are all about having as much functionality on one page as possible. But
you can’t deliver the entire UI of the whole web site along with all the functionality in
one shot. The Start page needs to fetch the UI from the server on demand as the user
explores different areas. For example, there’s a Help link on the top-right corner of
Dropthings.com. Clicking on that link pops up a gigantic help section (see Figure 9-5).

Figure 9-5. Loading UI on demand via XML HTTP calls

248 | Chapter 9: Improving Client-Side Performance

If you make it a hidden DIV on Default.aspx, it will waste bandwidth because it
downloads on every visit to the homepage. You can, of course, use an IFrame, but
IFrame makes browser rendering slower and has a high-memory footprint on IE 6.
Moreover, IFrame does not inherit the parent page’s stylesheet. So, the most effec-
tive way to load the UI on demand is to make XML HTTP calls to some .aspx files,
get the response, and add the response to a DIV container via innerHTML.

The ASP.NET AJAX Framework has a Sys.Net.WebRequest class that you can use to
make regular HTTP calls. You can define the HTTP method, URI, headers, and the
body of the call. It’s kind of a low-level function for making direct calls via XML
HTTP. Once you construct a web request, you can execute it using Sys.Net.
XMLHttpExecutor.

Example 9-18 shows how the help section is loaded by hitting help.aspx and injecting
its response inside the HelpDiv. The response can be cached by the output cache direc-
tive set on help.aspx. So, next time the user clicks on the link, the UI pops up immedi-
ately. The help.aspx file has no <html> block, only the content that is set inside the DIV.

Example 9-19 partially shows the help.aspx.

Example 9-18. Making XML HTTP calls directly

function showHelp()
{
 var request = new Sys.Net.WebRequest();
 request.set_httpVerb("GET");
 request.set_url('help.aspx');
 request.add_completed(function(executor)
 {
 if (executor.get_responseAvailable())
 {
 var helpDiv = $get('HelpDiv');
 var helpLink = $get('HelpLink');

 var helpLinkBounds = Sys.UI.DomElement.getBounds(helpLink);

 helpDiv.style.top = (helpLinkBounds.y + helpLinkBounds.height) + "px";

 var content = executor.get_responseData();
 helpDiv.innerHTML = content;
 helpDiv.style.display = "block";
 }
 });

 var executor = new Sys.Net.XMLHttpExecutor();
 request.set_executor(executor);
 executor.executeRequest();
}

Example 9-19. Help.aspx partial content

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="Help.aspx.cs" Inherits="Help" %>
<%@ OutputCache Location="ServerAndClient" Duration="604800" VaryByParam="none" %>

Loading the UI on Demand | 249

Using this approach, you can break the UI into smaller .aspx files. Although these .aspx
files cannot have JavaScript or stylesheet blocks, they can contain large amounts of
HTML that you need to show on the UI.

Pageflakes uses a similar approach to load the large 200 KB onsite menu on demand
(see Figure 9-6).

<div class="helpContent">
<div id="lipsum">
<p>
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis lorem
eros, volutpat sit amet, venenatis vitae, condimentum at, dolor. Nunc
porttitor eleifend tellus. Praesent vitae neque ut mi rutrum cursus.

@OutputCache Directive
ASP.NET gives you the @OutputCache directive to control caching for ASP.NET Page
or WebControl. By using this directive, you can specify where (server or client or
both) and how long to cache the response. The proper response header is generated
when the response is sent—basically, it sets the HttpCachePolicy in the Response.
Cache property. Moreover, @OutputCache can also cache responses on the server by
using ASP.NET Cache. If you mention Location="Server", the output of the page is
stored in ASP.NET Cache. When the same page is hit again within the cache expira-
tion time, ASP.NET does not execute the page at all, and instead returns the cached
response, thus saving processing time on the web server.

Figure 9-6. Loading large UI blocks on demand using XML HTTP. The black gradient box appears
when you click the big round button on the top right; this whole area is loaded on demand.

Example 9-19. Help.aspx partial content (continued)

250 | Chapter 9: Improving Client-Side Performance

By using this approach, you can keep the initial download to an absolute minimum
for loading the widgets. When the user explores new features on the site, load those
areas incrementally.

Using Read-Ahead Caching for Ajax Calls
Ajax applications are quite chatty—they make frequent web service calls. During
first load, several web service calls are made to load the initial data. And each widget
on a Start page might need one web service call to get its initial data. Sometimes such
calls return the same data over and over again.

For example, a blog feed where new blog posts appear once a week will repeatedly
return the same content. If you could know in advance that the feed is not going to
return new data, you could avoid making a web service call during page load and
thus save precious loading time. One way to avoid making calls to the server during
page load is to make those calls ahead of time in the background so that a fresh
result remains in browser cache. So, while the user is reading some feeds on the Start
page, calls to the RSS feed web service can happen behind the scene and cache the
result in the browser. So, if the user goes away to some other site and comes back, the
web service calls will get the cached data from the browser and render immediately,
which will give the user a fast-loading experience.

Read-ahead caching basically means you make some HTTP GET calls behind the
scene that you will need in future. Those calls get cached in the browser so when you
really need them, they execute instantly and return content from the cache. You can
use read-ahead caching to load content on other tabs behind the scene so that when
the user switches to another tab, the content is already available in the browser cache
and the tabs will load instantly. Similarly, widgets on your page can precache con-
tent by making behind-the-scene calls when the user is idle and keep fresh content in
cache. On the next visit, they will get content directly from the cache and the user
won’t have to wait for the calls to complete.

Hiding HTML Inside <textarea>
As soon as browser gets some HTML, it parses it and starts downloading external
resources like images, stylesheets, and JavaScript immediately. Sometimes this results
in unwanted resources downloading. For example, you might have a pop-up dialog
box hidden inside the Default.aspx that you show only on certain actions. However,
the browser will get the HTML for the pop-up dialog and download the graphics
files associated with the content, which wastes a precious HTTP connection during
site load. Of course, you can defer loading such UI elements by using the on-demand
UI loading approach, but sometimes you need to deliver some essential UI elements
instantly when the user performs some action and cannot wait for an XML HTTP
call to complete, e.g., confirmation dialog boxes.

Hiding HTML Inside <textarea> | 251

When the user deletes a widget, she sees a warning dialog box (see Figure 9-7). The
HTML for the warning dialog box is embedded inside Default.aspx.

When you put the HTML for the pop-up dialog box inside Default.aspx, the image
used in the stylesheet is downloaded even though the popup is not visible on the
screen. If the popup has multiple decorative images, such as a background picture,
icons, and button shades, they will be downloaded during page load, wasting several
HTTP calls and bandwidth (see Example 9-20).

The HTML snippet is at the end of the document to force the images to download as
late as possible. But it still does not eliminate CSS images (Example 9-21), even though
the popup is not visible on screen until the user clicks on a widget’s close button.

Figure 9-7. When a widget is deleted, a confirmation window pops up. The HTML of the popup is
inside Default.aspx.

Example 9-20. Pop-up HTML embedded inside Default.aspx makes the browser download
associated images during page load

</form>

 <div id="DeleteConfirmPopup">
 <h1>Delete a Widget</h1>
 <p>Are you sure you want to delete the widget?</p>
 <input id="DeleteConfirmPopup_Yes" type="button" value="Yes" /><input
 id="DeleteConfirmPopup_No" type="button" value="No" />
 </div>

</body>
</html>

252 | Chapter 9: Improving Client-Side Performance

By using an HTTP analyzer like Nikhil’s web development helper (http://www.
nikhilk.net), you can see the image is downloaded during page load, as shown in
Figure 9-8.

Popups occupy a significant amount of bandwidth during page load, but the solu-
tion is to deliver the HTML without letting the browser parse it. You pass a large
amount of HTML inside a <textarea> tag. The browser will get encoded HTML
inside a <textarea> tag and not parse the content. Because it will not see the HTML,
it will not download the associated images. When you need to get the HTML,
extract the value of the <textarea>, decode the content to get the HTML, and inject
the HTML inside DOM.

In Example 9-22, the HTML is encoded inside a <textarea> tag, so the browser can-
not parse the HTML and apply it to the DOM. An easy way to convert a block of
HTML to its encoded form is to copy the HTML inside Visual Studio HTML editor
and then select Edit ➝ Paste Alternative.

Example 9-21. CSS defined for the popup

#DeleteConfirmPopup
{
 display:none;
 z-index: 60000;
 position: absolute;
 left: 50%;
 top: 50%;
 margin-left: -150;
 margin-top: -60;
 width: 300px;
 height: 120px;
 border: solid 4px black;
 padding: 10px;

background: white url('warning.jpg') no-repeat 10px 10px;
 text-align: center
}

Figure 9-8. The browser downloads images for all the HTML, regardless of whether it is visible on
the UI

http://www.nikhilk.net
http://www.nikhilk.net

Summary | 253

Example 9-23 shows how the HTML is extracted from the <textarea> and injected
into the DOM.

You can create checks to make sure you do this only once because if you repeatedly
add the same elements to the DOM, you’ll duplicate the ID and won’t be able to
access the elements via the $get call.

One drawback of this approach is that resources referenced by the HTML block will
get downloaded only after they are added in the DOM. So, the HTML will appear
without graphics for a moment until the browser downloads the resources.

Summary
In this chapter, you learned how to improve client-side performance by implement-
ing an effective caching policy. Proper caching techniques maximizes browser cache-
ability and reduces network roundtrip. For both cached and noncached content, a
CDN can save roundtrip time and increase content’s download speed. Due to heavy
JavaScript usage in Ajax sites, browsers suffer from performance degradation and
memory leaks. Writing optimized JavaScript and keeping memory leaks in check
ensures good responsiveness and long-term use for your site. Finally, you learned
how to load UI blocks on-demand and thus make initial loading even faster. In the
next chapter, you will learn about some real-life problems and the solutions to build,
deploy, and run a production web site.

Example 9-22. Delivering HTML for the popup inside <textarea> tags

 </form>

 <textarea id="DeleteConfirmPopupPlaceholder">
 <div id="DeleteConfirmPopup">
 <h1>Delete a Widget</h1>
 <p>Are you sure you want to delete the widget?</p>
 <input id="DeleteConfirmPopup_Yes" type="button" value="Yes" /><input
 id="DeleteConfirmPopup_No" type="button" value="No" />
 </div>
 </textarea>

</body>
</html>

Example 9-23. Extracting HTML from <textarea> and injecting it into the DOM

var hiddenHtmlTextArea = $get('DeleteConfirmPopupPlaceholder');
var html = hiddenHtmlTextArea.value;
var div = document.createElement('div');
div.innerHTML = html;
document.body.appendChild(div);

254

Chapter 10CHAPTER 10

Solving Common Deployment, Hosting,
and Production Challenges 10

This chapter details several under-the-hood secrets for ASP.NET that you will rarely
find documented on the Internet. You will also learn about deploying web farms and
solving common production challenges. These real-world lessons will help you avoid
repeating the same mistakes and save time and money in the long run.

Deploying Your Web Site in a Web Farm
A web farm is a cluster of multiple web servers running the same copy of code, serv-
ing the same web site, and distributing traffic among them in a load-balanced envi-
ronment. Generally, you use a hardware load balancer or implement Network Load
Balancing (NLB) for Windows to make multiple web servers respond to a fixed IP.
The outside world sees only one IP; when traffic comes to that IP, it is distributed
among the web servers in the web farm.

Figure 10-1 shows a web farm configuration where a load balancer serves a public IP
69.15.89.1.

Let’s say this IP is mapped to the domain www.dropthings.com. When users go to
www.dropthings.com, traffic is sent to 69.15.89.1. The load balancer gets the incom-
ing requests, and then, based on its load table and load balancing algorithm, it
decides which of the web servers to send traffic to. Traffic never goes directly to the
web servers from the Internet.

Figure 10-1. Web farm with a load balancer

Web server 1
IP: 69.15.89.2

Web server 2
IP: 69.15.89.3

Web server 3
IP: 69.15.89.4

Load balancer
IP: 69.15.89.1

http://www.dropthings.com
http://www.dropthings.com

Deploying Your Web Site in a Web Farm | 255

Web Farm Pros and Cons
A web farm environment is critical for successful web site operations, but there are
some things that you must keep in mind.

Pros:

Easy to load balance
If a web server reaches its limit on the CPU or disk I/O, just add another server
to balance the load. There’s no need to change code as long as your code can
support the web farm scenario. Unless there’s some really bad code, you can
always add more servers to a web farm and support the higher load.

Easy to replace a malfunctioning server
If one web server is malfunctioning, take it out of the web farm, fix it, and put it
back in. Users will notice nothing. There’ll only be a temporary increase on
other servers running in the web farm.

Directs traffic away from a nonresponsive server
If one web server crashes, your site still runs fine. The load balancer can detect
nonresponsive servers and automatically divert traffic to responsive servers.

Removes slow servers from the web farm
If one server has become too slow for some reason, the load balancers can auto-
matically remove it from the web farm.

Avoids a single point of failure
There’s really no way you can run a production web site on one web server and
ensure 99 percent uptime. That web server becomes a single point of failure, and
when it goes down, your site goes down as well.

Cons:

Session cannot be used unless it is stored in a centralized database
An ASP.NET session won’t work in the in-process or out-of-process modes
because they make each server maintain its own copy of the session. So, Session
will only work in SQL Server mode when there’s one SQL Server storing the ses-
sions, and all of the web servers participating in the web farm have access to that
centralized SQL Server store. However, one good thing is that the ASP.NET Pro-
file provider acts almost like Session because you can store a user’s properties,
and it can be used instead of an ASP.NET session in a web farm.

Not all requests from a particular user will go to the same web server
It is possible that a user’s first hit to Default.aspx will go to Web Server 1, the Java-
Script files will be downloaded from Web Server 2, and subsequent web service
calls or asynchronous postback will go to Web Server 3. So, you need to make
completely stateless web applications when you deploy a web farm. There are
some very expensive load balancers that can look at a cookie, identify the user, and
send all requests containing the same cookie to same web server all the time.

256 | Chapter 10: Solving Common Deployment, Hosting, and Production Challenges

Web application logs will be distributed in web servers
If you want to analyze traffic logs or generate reports from logs, you will have to
combine logs from all web servers and then do a log analysis. Looking at one
web server’s log will not reveal any meaningful data.

The ASP.NET cache is not always available or up-to-date
One request could store something in the ASP.NET cache on Web Server 1, and
the following request might try to get it from Web Server 2. So, you can only
store static data in a cache that does not change frequently, and if it doesn’t
matter whether old data is added from the cache or not. Such data includes
configuration cache, a cache of images from a database, or content from exter-
nal sources that do not change frequently. You cannot store entities like User
object in the ASP.NET cache.

Real-Life: Building an Inexpensive Web Farm

Problem: Startups often don’t have enough money to buy expensive servers.

Solution: Load balance your servers to ensure some redundancy.

When we first went live with Pageflakes in 2005, most of us did not have any experi-
ence running a high-volume, mass-consumer web application on the Internet. We
went through all types of problems, but have grown from a thousand users to a mil-
lion users. We have discovered some of ASP.NET 2.0’s under-the-hood secrets that
solve many scalability and maintainability problems, and gained enough experience
in choosing the right hardware and Internet infrastructure that can make or break a
high-volume web application.

When Pageflakes started, we had to save every penny in hosting. When you have a
small hosting requirement, Windows is quite expensive compared to PHP hosting. So,
we came up with a solution to use only two servers and run the site in a load-balanced
mode. This ensured redundancy on both the web application and on SQL Server, and
there was no single point of failure. If one server went down completely, the other
server could serve the whole web site. The configuration is shown in Figure 10-2.

We had two windows servers, both with IIS 6.0 and SQL Server 2005, so for this
example, let’s call them Web Server and DB Server.

Web Server got 60 percent web traffic configured via NLB. We used Windows NLB
to avoid buying a separate load balancer and Windows Firewall instead of an exter-
nal firewall. SQL Server 2005 on this server was used as a log shipping standby data-
base, so we didn’t have to pay a licensing fee for the standby server.

DB Server got 40 percent of the web traffic and hosted the database in its SQL Server
2005. We started with SQL Server 2005 Workgroup Edition because it was the only
version we could afford ($99 per month). However, we couldn’t use the new data-
base mirroring feature—instead, we had to use good old transaction log shipping.

Deploying Your Web Site in a Web Farm | 257

Both servers were directly connected to each other via a network adapter using cross-
over cable. Because we had only two servers, we didn’t have to buy a separate
switch. An important lesson here is that you don’t have to pay for a SQL server
license if the server is only hosting standby databases.

So, we had two servers running the web site in NLB, and the web servers were prop-
erly load balanced and failsafe. If the DB Server went down, we could divert all traf-
fic to the Web Server, bring up its standby database, and run the site solely from
there. When the DB Server would come back online, we configured log shipping the
opposite way and diverted most of the traffic to the DB Server. Thus, if needed, the
database server could become the web server and the web server could become the
database server. It required some manual work and is not fully automated. But it was
the cheapest solution ($600 to $1,000 a month) for a reliable configuration, and it
ensured 90 percent uptime.

Figure 10-2. A two-server web farm where both servers acts as a web server but one server is
primary database server and the other is a standby database server

Transaction Log Shipping
SQL Server has a built-in transaction log shipping ability where it records each and
every change made to a database and ships the changes periodically (say every five min-
utes) to another standby server. The standby server maintains a copy of the production
database, it applies the changes (transaction logs), and keeps the database in synch
with the main database. If the main database server fails or the database becomes
unavailable for some reason, you can immediately bring in the standby database as
active and run it as a production database.

NIC crossover cable

Web server
IIS 6.0
SQL Server standby

Database server
IIS 6.0
SQL Server primary

258 | Chapter 10: Solving Common Deployment, Hosting, and Production Challenges

Real-Life: Adding Backup and Reporting Servers

Problem: When running a production server with a large database, you will soon run
into storage issues.

Solution: Add another server as a backup store.

We ran a daily, full database backup and needed a lot of space to store seven days
worth of backup. So, we added another server that acted as a backup store; it had
very poor hardware configuration but enormous hard drives.

We also had to generate weekly reports from the IIS logs. Every day we used to gener-
ate 3 to 5 GB of web logs on each server, and they had to be moved off the web server
to a reporting server so we could analyze them and generate weekly reports. Such anal-
ysis takes a lot of CPU and time and is not suitable for running directly on the web
servers. Moreover, we need to combine logs from both web servers into one place. We
had no choice but to go for a separate reporting server. After adding a backup storage
server and a reporting server, the configuration looked like Figure 10-3.

The web and database servers had SCSI drives with 15,000 RPM. But the storage and
reporting servers had cheap SATA drives because those servers didn’t need faster
drives.

Figure 10-3. Cheap hosting configuration with storage and reporting servers

HTTP and HTTPS ports open

70% 30%

Firewall
load balancer

Primary IIS
Backup DB

69.5.89.112
IIS
SQL Server
Dell 2850
2 CPU
4 GB RAM
SCSI Disks
HW RAID 1
C: 40G
E: 97G
F: 138 G

69.5.89.113
IIS
SQL Server
Dell 2850
2 CPU
4 GB RAM
SCSI Disks
HW RAID 1
C: 40G
E: 97G
F: 138 G

69.5.89.116
NAS
Dell PE850
1 CPU
512 MB RAM
SATA Disks
SW RAID 1
C: 20G
E: 678G

69.5.89.114
IIS
SQL Server
Dell PE 750
1 CPU
1 GB RAM
SATA Disks
RAID1
C: 148G

Secondary IIS
Primary DB

NAS
backup
storage

Maintenance
demo

storage
Gigabit Ethernet

Notes:
- All instances are SQL Server 2005
- All OSes are Windows 2003 Std 64 Bit SP1
- All IIS are IIS 6
- All .NET is 2.0

Deploying Your Web Site in a Web Farm | 259

The web and database servers had an F: drive dedicated for storing SQL Server 2005
database’s large MDF file. This F: drive was a physically separate disk, but the other
physical disk had two logical partitions—C: and E:. The E: drive contained the LDF
file and the web application.

If you put the MDF and LDF files on the same physical drive, the database transac-
tions will become slow. So, you must put MDF and LDF on two separate physical
disks and preferably under two separate disk controllers. If both physical disks are in
the same disk controller, you will still suffer from disk I/O bottleneck when the data-
base performs large jobs like full database backup.

Designing a Reasonable Hosting Configuration
A reasonable web-hosting configuration should include two web servers, two database
servers, a load balancer, and a firewall. It is the minimum needed to guarantee 95 per-
cent uptime. Figure 10-4 shows a reasonable configuration for a medium-scale web
application.

In this configuration, there’s redundancy in both the web and database servers. You
might wonder if the cheapest configuration has the same level of redundancy. This
configuration gives you a dedicated box for running web applications and a database
server, but the cheaper configuration had database and web applications running on
the same box. We learned that IIS 6.0 and SQL Server 2005 do not run well in the
same box and sometimes SQL Server 2005 hangs until the service is restarted. This was
the main reason why we separated the web and database servers. However, adding
more than two servers requires a switch. So, we added a gigabit switch that was con-
nected to each server’s gigabit Ethernet card via gigabit Ethernet cable. You could use

Figure 10-4. A standard web farm with redundant web and database servers

Standby
database server
SQL Server 2005

Web server
IIS 6.0

Gigabit dwitch

Web server
IIS 6.0

Primary
Database server
SQL Server 2005

100 Mbps cable
100 Mbps NIC

Firewall and
load balancer

Gigabit
cables
connected
to Gigabit NIC

260 | Chapter 10: Solving Common Deployment, Hosting, and Production Challenges

optical fiber cables for faster and more reliable connectivity, but gigabit cables are
also quite good. Both web servers have an additional 100 mbps Ethernet card that is
connected to the firewall and load balancer. We used the hosting provider’s shared
firewall and had to buy two ports from the firewall. Luckily, that firewall had load-
balancing capability built into it. If your hosting provider does not have a firewall
like this, you will have to lease a load balancer in addition to the firewall. This con-
figuration will cost about $4,000 to $6,000 per month.

Thirteen Production Disasters That Could Happen at
Anytime
Startups don’t always have adequate resources in necessary areas like system admin-
istration, database administration, tech support, QA, and so on. In a startup environ-
ment, developers sometimes end up having multiple roles and may not be prepared
for production challenges. At Pageflakes, we had several downtime and data loss
problems in our first year of operation due to production disasters. However, all of
these major problems taught us how to build a secure reliable production environ-
ment that can run a medium scale web site with 99 percent uptime.

The Hard Drive Crashes, Overheats
We experienced hard drive crashes frequently with cheap hosting providers. There
were several times when a hard drive would get overheated and turn itself off, and
some were permanently damaged. Hosting providers used cheap SATA drives that
were not reliable. If you can spend the money, go for SCSI drives. HP has a variety to
choose from and it’s always better to go for SCSI drives on web and database serv-
ers. They are costly, but will save you from frequent disasters.

Figure 10-5 shows the benchmarks for a good hard drive.

Pay attention to disk speed rather than CPU speed. Generally, the processor and
bus are standard, and their performances don’t vary. Disk I/O is generally the main
bottleneck for production systems. For a database server, the only thing you should
look at is disk speed. Unless you have some very CPU-intensive slow queries, the
CPU will never peak. Disk I/O will always be the bottleneck for database servers. So,
for databases, you need to choose the fastest storage solution. A SCSI drive at 15,000
RPM is a good solution—anything less than that is too slow.

The Controller Malfunctions
This happens when the servers aren’t properly tested and are handed over to you in a
hurry. Before you accept any server, make sure you get a written guarantee that it has
passed all sorts of exhaustive hardware tests. Dell’s server BIOS contains test suites

Thirteen Production Disasters That Could Happen at Anytime | 261

for testing controller, disks, CPU, etc. You can also use BurnInTest from PassMark
(www.passmark.com) to test your server’s capability under high disk and CPU load.
Just run the benchmark test for four to eight hours and see how your server is doing.
Keep an eye on the CPU’s temperature meters and hard drives to make sure they
don’t overheat.

The RAID Malfunctions
A RAID (Redundant Array of Inexpensive Disks) combines physical hard disks into a
single logical unit by using either special hardware or software. Often, hardware
solutions are designed to present themselves to the attached system as a single hard
drive, and the operating system remains unaware of the technical workings. Software
solutions are typically implemented in the operating system and are also presented to
the RAID drive as a single drive.

At Pageflakes, we had a RAID malfunction that resulted in disks corrupting data. We
used Windows 2003’s built-in RAID controller, but we have learned not to depend
on the software RAID and now pay extra for a hardware RAID. Make sure when you
purchase a server that it has a hardware RAID controller.

Once you have chosen the right disks, the next step is to choose the right RAID con-
figuration. RAID 1 takes two identical physical disks and presents them as one sin-
gle disk to the operation system. Thus, every disk write goes to both disks
simultaneously. If one disk fails, the other disk can take over and continue to serve
the logical disk. Nowadays, servers support “hot swap”-enabled disks where you can
take a disk out of the server while the server is running. The controller immediately
diverts all requests to the other disk. The controller synchronizes both disks once the
new disk is put into the controller. RAID 1 is suitable for web servers.

Figure 10-5. HD Tach testing hard disk speed

http://www.passmark.com
operating system

262 | Chapter 10: Solving Common Deployment, Hosting, and Production Challenges

Pros and cons of RAID 1

Pros:

• Mirroring provides 100 percent duplication of data.

• Read performance is faster than a single disk, if the array controller can perform
simultaneous reads from both devices on a mirrored pair. You should make sure
your RAID controller has this ability. Otherwise, the disk read will become
slower than having a single disk.

• Delivers the best performance of any redundant array type during a rebuild. As
soon as you insert a repaired replacement disk, it quickly synchronizes with the
operational disk.

• No re-construction of data is needed. If a disk fails, all you have to do is copy to
a new disk on block-by-block basis.

• There’s no performance hit when a disk fails; storage appears to function nor-
mally to outside world.

Cons:

• Writes the information twice. Because of this, there is a minor performance pen-
alty when compared to writing to a single disk.

• The I/O performance in a mixed read-write environment is essentially no better
than the performance of a single disk storage system.

• Requires two disks for 100 percent redundancy, doubling the cost. However,
disks are now cheap.

• The size of the drive will be the same size as the disk that has the lowest.

For database servers, RAID 5 is a better choice because it is faster than RAID 1.
RAID 5 is more expensive than RAID 1 because it requires a minimum of three
drives. But one drive can fail without affecting the availability of data. In the event of
a failure, the controller regenerates the failed drive’s lost data from the other surviv-
ing drives.

Pros and cons of RAID 5

Pros:

• Best suited for heavy read applications, such as database servers, where the
SELECT operation is used more than the INSERT/UPDATE/DELETE operations.

• The amount of useable space is the number of physical drives in the virtual drive
minus 1.

Cons:

• A single disk failure reduces the array to RAID 0, which has no redundancy at all.

• Performance is slower than RAID 1 when rebuilding.

• Write performance is slower than read (write penalty).

Thirteen Production Disasters That Could Happen at Anytime | 263

The CPU Overheats and Burns Out
One time our server’s CPU burnt out due to overheating. We were partially responsi-
ble because a bad query made the SQL Server spike to 100 percent CPU. So, the poor
server ran for four hours on 100 percent CPU and then died.

Servers should never burn out because of high CPU usage. Usually, servers have
monitoring systems, and the server turns itself off when the CPU is about to burn
out. This means the defective server did not have the monitoring system working
properly. To avoid this, you should run tools that push your servers to 100 percent
CPU for 8 hours to ensure they can withstand it. In the event of overheating, the
monitoring systems should turn the servers off and save the hardware. However, if
the server has a good cooling system, then the CPU will not overheat in eight hours.

Whenever we move to a new hosting provider, we run stress test tools to simulate
100 percent CPU load on all our servers for 8 to 12 hours. Figure 10-6 shows 7 of our
servers running at 100 percent CPU for hours without any problem. None of the
servers became overheated or turned themselves off, which means we also invested
in a good cooling system.

The Firewall Goes Down
Our hosting provider’s firewall once malfunctioned and exposed our web servers to
the public Internet unprotected. We soon found out the servers became infected and
started to automatically shut down, so we had to format and patch them, and turn

Figure 10-6. Stress testing the CPU at 100 percent load for 8 hours on all our servers

264 | Chapter 10: Solving Common Deployment, Hosting, and Production Challenges

on Windows Firewall. Nowadays, as best practice, we always turn on Windows Fire-
wall on the external network card, which is connected to the hardware firewall. In
fact, we also installed a redundant firewall just to be on the safe side.

You should turn off File and Printer Sharing on the external network card (see
Figure 10-7). And unless you have a redundant firewall, you should turn on Win-
dows Firewall as well. Some might argue that this will affect performance, but we
have seen that Windows Firewall has almost no impact on performance.

You should also disable the NetBIOS protocol because you should never need it
from an external network (see Figure 10-8). You server should be completely invisi-
ble to the public network, besides having ports HTTP 80 and 3389 (for remote desk-
top) open.

The Remote Desktop Stops Working After a Patch Installation
Several times after installing the latest patches from Windows Update, the remote
desktop stopped working. Sometimes restarting the server fixed it, but other times
we had to uninstall the patch. If this happens, you can only get into your server by
using KVM over IP or calling a support technician.

Figure 10-7. Disable File and Printer Sharing from the public network card. You should never copy
files via Windows File Sharing over the Internet.

Thirteen Production Disasters That Could Happen at Anytime | 265

KVM over IP (keyboard, video, mouse over IP) is a special hardware that connects to
servers and transmits the server’s screen output to you. It also takes the keyboard
and mouse input and simulates it on the server. KVM works as if a monitor, key-
board, and mouse were all directly connected to the server. You can use regular
remote desktop to connect to KVM and work on the server as if you are physically
there. Benefits of KVM include:

• Access to all server platforms and all server types.

• A “Direct Connect Real Time” solution with no mouse delays due to conversion
of signals. Software has to convert signals, which causes delays.

• Full use of GUIs.

• Full BIOS level access even when the network is down.

• The ability to get to the command line and rebuild servers remotely.

• Visibility into server boot errors and the ability to take action, e.g., “Non-system
disk error, please replace system disk and press any key to continue” or “Power
supply failure, press F1 to continue.”

• Complete security prevents hacking from the KVM; a physical connection is
required to access the system.

Figure 10-8. Disable NetBIOS from the public network card. NetBIOS has security vulnerabilities.

266 | Chapter 10: Solving Common Deployment, Hosting, and Production Challenges

If remote desktop is not working, your firewall is down, or your server’s external net-
work card is not working, you can easily get into the server using KVM. Make sure
your hosting provider has KVM support.

Remote Desktop Exceeds Connection Limit and Login Fails
This happens when users don’t log off properly from the remote desktop by closing
just the remote desktop client. The proper way to log off from a remote desktop is to
go to the Start Menu and select “Log off.” If you don’t, you leave a session open and
it will remain as a disconnected session. When disconnected sessions exceed the
maximum number of active sessions, it prevents new sessions, which means no one
can get into the server. If this happens, go to Run and issue a mstsc /console com-
mand. This will launch the same old remote desktop client you use every day, but
when you connect to remote desktops, it will connect you in console mode. Console
mode is when you connect to the server as if you are right in front of it and using the
server’s keyboard and mouse. Only one person can be connected in console mode at
a time. Once you get into it, it shows you the regular Windows GUI and there’s
nothing different about it. You can launch Terminal Service Manager, see the discon-
nected sessions, and boot them out.

The Database Becomes Corrupted When Files Are Copied over the
Network
Copying large files over the network is not safe; data can be corrupted at any time,
especially over the Internet. So, always use WinRAR in Normal compression mode
to compress large files and then copy the RAR file over the network. The RAR file
maintains CRC and checks the accuracy of the original file while decompressing. If
WinRAR can decompress a file properly, you can be sure that there’s no corruption
in the original file. One caution about WinRAR compression modes: do not use the
Best compression mode. Always use Normal compression mode. We have seen large
files get corrupted with the Best compression mode.

The Production Database Was Accidentally Deleted
In early stages, we did not have professional sys admins taking care of our servers.
We, the developers, used to take care of our servers ourselves. And it was disastrous
when one of us accidentally deleted the production database thinking it was a
backup database. It was his turn to clean up space from our backup server, so he
went to the backup server using remote desktop and logged into SQL Server using
the “sa” username and password. Because he needed to free up some space, he
deleted the large “Pageflakes” database. SQL Server warned him that the database
was in use, but he never reads alerts with an “OK” button and so clicked OK. We
were doomed.

Thirteen Production Disasters That Could Happen at Anytime | 267

There are some critical lessons to learn from this:

• Don’t become too comfortable with the servers. Take it seriously when working
on remote desktop because it can be routine, monotonous work.

• Use a different password for every machine. All databases had the same “sa”
password. If we had different password, at least while typing the password, you
can see where you are connecting to.

Although this guy connected to the remote desktop on a maintenance server,
from SQL Server Management Studio he connected to the primary database
server just as he did last time. SQL Server Management Studio remembered the
last machine name and username. So, all he had to do was enter the password,
hit Enter, and delete the database. Now that we learned our lesson, we put the
server’s name inside the password. So, while typing the password, we know con-
sciously what server we are going to connect to.

• Don’t ignore confirmation dialogs on remote desktops as you do on your local
machine. Nowadays, we consider ourselves to be super experts on everything
and never read any confirmation dialog. I myself don’t remember when the last
time I took a confirmation dialog seriously. This attitude must change when
working on servers. SQL Server tried its best to inform him that the database
was being used, but, as he does a hundred times a day on his laptop, he clicked
OK without reading the confirmation dialog.

• Don’t put the same administrator password on all servers. Although this makes
life easier when copying files from one server to another, don’t do it. You will
accidentally delete a file on another server (just like we used to do).

• Do not use the administrator user account to do your day-to-day work. We
started using a power user account for daily operations, which limits access to a
couple of folders only. Using the administrator account on the remote desktop
opens doors to all sorts of accidents. If you use a restricted account, there’s lim-
ited possibility of such accidents.

• Always have someone beside you when you work on the production server and
are doing something important like cleaning up free space or running scripts,
restoring, database, etc. And make sure the other person is not taking a nap!

The Hosting Service Formatted the Running Production Server
We told the support technician to format Server A, but he formatted Server B. Unfor-
tunately, Server B was our production database server that ran the whole site.

Fortunately, we had log shipping and there was a standby database server. We
brought it online immediately, changed the connection string in all web.configs, and
went live in 10 minutes. We lost about 10 minutes worth of data because the last log
ship from the production to the standby database did not happen.

268 | Chapter 10: Solving Common Deployment, Hosting, and Production Challenges

From now on, when we ask support crew to do something on a server, we remotely
log in to that server and eject the CD-ROM drive. We then ask the support crew to
go to that box and see whether there is an open CD-ROM drive. This way we could
be sure the support crew is on the right server. Another idea is to leave a file named
FormatThisServer.txt on a drive and inform the support crew to look for that file to
identify the right server.

Windows Was Corrupted Until It Was Reinstalled
The web server’s Windows 2003 64 bit got corrupted several times. Interestingly, the
database servers never got corrupted. The corruption happened mostly on servers
when we had no firewall device and used the Windows firewall only. So, this must
have had something to do with external attacks. The corruption also happened when
we were not installing patches regularly. Those security patches from Microsoft are
really important—if you don’t install them in a timely fashion, your OS will get cor-
rupted for sure. Nowadays, we can’t run Windows 2003 64 bit without SP2.

When the OS gets corrupted, it behaves abnormally. Sometimes you will see that it’s
not accepting inbound connections and this error will appear, “An operation on a
socket could not be performed because the system lacked sufficient buffer space or
because a queue was full.” Other times it takes a long time to log in and log off,
remote desktop stops working randomly, or Explorer.exe and IIS process w3wp.exe
frequently crashes. These are all good signs that the OS is getting corrupted and it’s
time for a patch installation.

We found that once the OS was corrupted, there’s no way to install the latest
patches and bring it back. At least for us, rarely did installing a patch fix the prob-
lem; 80 percent of the time we had to format and reinstall Windows and install the
latest service pack and patches immediately. This always fixed these OS issues.

Patch management is something you don’t consider a high priority unless you start
suffering from these problems frequently. First of all, you cannot turn on “Auto-
matic Update and Install” on production servers. If you do, Windows will down-
load patches, install them, and then restart itself. This means your site will go down
unexpectedly. So, you always have to manually install patches by taking out a server
from the load balancer, restart it, and put it back in the load balancer.

The DNS Goes Down
DNS providers sometimes do not have a reliable DNS server. GoDaddy was our host
and DNS provider. Its hosting was fine, but the DNS hosting was really poor both in
terms of DNS resolution time and availability—it went down seven times in two
years. When the DNS dies, your site goes down for all new users and for a majority
of the existing users who do not have the DNS result cached in a local browser or the
ISP’s DNS server.

Thirteen Production Disasters That Could Happen at Anytime | 269

When visitors visit www.pageflakes.com, the request first goes to DNS server to get
the IP of the domain. So, when the DNS server is down, the IP is unavailable and the
site becomes unreachable.

Some DNS hosting companies only do DNS hosting, e.g., NeuStar (http://www.
neustarultraservices.biz), DNS Park (www.dnspark.com), and GoDaddy (www.
godaddy.com). You should use commercial DNS hosting instead of relying on a
domain registration company for a complete package. However, NeuStar was given a
negative review in a DNSstuff (http://www.dnsstuff.com) test. Apparently, NeuStar’s
DNS hosting has a single point of failure that means both the primary and secondary
DNS was actually the same server. If that’s true, then it’s very risky. Sometimes this
report is given when the DNS server is behind a load balancer, and the load bal-
ancer’s IP only is available from the public Internet. This is not a bad thing; in fact,
it’s better to have a load balancer distributing traffic to DNS servers. So, when you
consider a DNS hosting service, test its DNS servers using DNSstuff and ensure you
get positive report on all aspects. However, if the DNS servers are under load balanc-
ers, which means multiple DNS servers are serving a shared IP, then DNSstuff will
report negative. It will see the same IP for both the primary and secondary DNS even
if they are on different boxes.

When choosing a DNS provider, make sure:

• The IPs of the primary and secondary DNS server each resolve a different IP. If
you get the same IP, make sure it’s a load balancer’s IP.

• The different IPs are actually different physical computers. The only way to do it
is to check with the service provider.

• DNS resolution takes less than 300 ms outside the U.S. and about 100 ms inside
the U.S., if your DNS provider is in the U.S. You can use external tools like
DNSstuff to test it.

The Internet Backbone Goes Down in Different Parts of the World
Internet backbones connect different countries’ Internet together. They are the infor-
mation superhighway that spans the oceans connecting continents and countries.
For example, UUNET is an Internet backbone that covers U.S. and connects with
other countries (see Figure 10-9).

There are some other Internet backbone companies, including BT, AT&T, Sprint
Nextel, France Télécom, Reliance Communications, VSNL, BSNL, Teleglobe (now a
division of VSNL International), FLAG Telecom (now a division of Reliance Com-
munications), TeliaSonera, Qwest, Level 3 Communications, AOL, and SAVVIS.

All hosting companies are either directly or indirectly connected to an Internet back-
bone. Some hosting providers have connectivity to multiple Internet backbones.

http://www.pageflakes.com
http://www.neustarultraservices.biz
http://www.neustarultraservices.biz
http://www.dnspark.com
GoDaddy
http://www.godaddy.com
http://www.godaddy.com
http://www.dnsstuff.com

270 | Chapter 10: Solving Common Deployment, Hosting, and Production Challenges

At an early stage, we used an inexpensive hosting provider that had connectivity with
one Internet backbone only. One day, the connectivity between the U.S. and Lon-
don went down on a part of the backbone. London was the entry point to the whole
of Europe. So, all of Europe and a part of Asia could not reach our server in the U.S.
This was a very rare sort of bad luck. Our hosting provider happened to be on the
segment of the backbone that was defective. As a result, all web sites hosted by that
hosting provider were unavailable for one day to Europe and some parts of Asia.

So, when you choose a hosting provider, make sure it has connectivity with multiple
backbones, does not share bandwidth with telecom companies, and does not host
online gaming servers. Both telecom companies and gaming servers have a very high
bandwidth requirement. Generally, hosting providers provide you a quota of 1,000
GB per month, but not all companies require that much bandwidth, so multiple
companies share a connection to the Internet backbone. Thus, if you and a gaming
server are on the same pipe, the gaming server will occupy so much of the shared
connection that your site’s bandwidth will be limited and you will suffer from net-
work congestion.

The tracert can reveal important information about a hosting provider’s Internet
backbone. Figure 10-10 shows very good connectivity between a hosting provider
and the Internet backbone.

Figure 10-9. The UUNET Internet backbone covers the U.S. and connects with other countries
(source: http://www.nthelp.com/images/uunet.pdf)

Thirteen Production Disasters That Could Happen at Anytime | 271

The tracert is taken from Bangladesh connecting to a server in Washington D.C.
Some good characteristics about this tracert are:

• Bangladesh and the U.S. are in two different parts of the world, but there are
only nine hops, which is very good. This means the hosting provider has chosen
a very good Internet backbone and has intelligent routing capability to decide
the best hops between different countries.

• There is only three hops from pccwbtn.net to the firewall. Also, the delay
between these hops is 1 ms or less. This proves PCCW Global has a very good
connectivity with the Internet backbone.

• There’s only one backbone company, which is PCCW Global, so it has a direct
connection with the backbone and there’s no intermediate connectivity.

Figure 10-11 shows a bad hosting company with bad Internet connectivity.

Some interesting characteristics about this tracert include:

• A total of 16 hops and 305 ms latency compared to 266 ms. Therefore, the host-
ing provider’s network connectivity is bad.

• There are two providers: PCCW Global and Cogent. This means the hosting
provider does not have connectivity with tier-1 providers like PCCW Global. It
goes via another provider to save money and introduce an additional latency and
point of failure.

Figure 10-10. Tracert to the Pageflakes server from Bangladesh

Figure 10-11. Example of a tracert showing bad connectivity

272 | Chapter 10: Solving Common Deployment, Hosting, and Production Challenges

• Two hosting providers were connected to Cogent and both of them had latency
and intermittent connectivity problems.

• There are four hops from the backbone to the web server. This means there are
multiple gateways or firewalls. Both are a sign of poor network design.

• There are too many hops on cogentco.com itself, which is an indication of poor
backbone connectivity because traffic is going between several networks to reach
the destination web server.

• Traffic goes through five different network segments: 63.218.x.x, 130.117.x.x,
154.54.x.x, 38.20.x.x, and XX.41.191.x. This is sign of poor routing capability
within the backbone.

Choosing the Right Hosting Provider
Our experience with several bad hosting companies provided valuable lessons about
choosing the right hosting company. Pageflakes started with very inexpensive host-
ing providers and gradually went to one of the most expensive hosting providers in
the U.S.—Rackspace. They solved SQL Server 2005- and IIS-related problems that
we frequently had to solve ourselves. So, when you choose a hosting provider, make
sure it has Windows 2003 and IIS 6.0 experts, as well as SQL Server 2005 experts.
While running production systems, there’s always a possibility that you will have
trouble that is beyond your capability. Onsite, skilled technicians are the only way to
survive a disaster like that.

However, the problem with such a top-tier hosting provider is the high cost. The rea-
sonable web hosting configuration in Figure 10-1 would cost about $30,000 per
month. Be sure to provision your IT budget before you sign with a top-tier hosting
company. You don’t want to get into a situation where you need the space but don’t
have the funds to pay for it.

Checklist for Choosing the Right Hosting Provider
There are a number of issues to be aware of when finding the right hosting provider:

• Test the ping time of a server in the same data center where you will be putting
the server. Ping time should be less than 40 ms within the U.S. and around 250
ms from several other world-wide locations including London, Singapore, Bra-
zil, and Germany.

• Ensure there is multiple backbone connectivity and intelligent routing capability
that chooses the best hops from different countries. Do tracert from different
countries and ensure the server is available to get anywhere in the world within
10 to 14 hops. If your hosting provider is in the U.S., the server should be avail-
able within five to eight hops from anywhere else in the U.S.

Choosing the Right Hosting Provider | 273

• Ensure there are only three hops from the Internet backbone to your server.
You can verify this by checking the last three entries in tracert. The last entry
should be your server IP and two entries back should be the Internet backbone
provider. This guarantees there’s only one gateway between your server and the
Internet backbone. If there are more hops, that means the provider has a com-
plex network and you will waste latency.

• 24 × 7 phone support to expert technicians. Call them on a weekend night and
give them a complex technical problem. If the technician says she is only filling
in for the real experts until they get back to the office on Monday, discard the
provider immediately. A good hosting provider will have expert technicians
available at 3 a.m. on Saturday night. You will usually need technicians late
night on Saturday and Sunday to do maintenance work and upgrades.

• Live chat support. This helps immensely when you are travelling and cannot
make a phone call.

• Ability to customize your dedicated servers as you want. You do not want to be
limited to a predefined package. This will provide an indication of whether they
have an in-house technician who can build and customize servers.

• It can provide you all kinds of software, including SQL Server Enterprise edition,
Microsoft Exchange 2007, Windows 2003 R2, and Windows Server 2008, once it
releases in 2008. If it can’t, it probably doesn’t have a good software vendor.

• It must be able to provide you with 15,000 RPM SCSI drives and storage area
network. If it can’t, don’t consider this provider. You won’t be able to grow your
business with a provider if it doesn’t have these capabilities.

• Before you set up a whole data center with a hosting provider, make sure you get
a server and make it something that you will need in two years. See how fast and
reliably they can hand over a server like this to you. It will be an expensive
experiment, but if you ever get in involved with a bad hosting provider without
doing this, the time and money spent to get out of the contract is much more
than the cost of this experiment.

• Make sure the service-level agreement (SLA) guarantees the following:

— 99.99 percent network uptime. Deduction in monthly rent if there is an out-
age in the amount of specified time and number of occurrences.

— Maximum two-hour delay with hardware replacement for defective hard
drives, network cards, mother board equipment, controllers, and other
input devices.

— Full cooperation if you want to get out of its service and go somewhere else.
Make sure the hosting provider doesn’t put you in a lifetime contract.

— If there is service cancellation, you will be able to delete all data stored in
any storage and backup storages.

— Maximum two-hour delay in responding to support tickets.

274 | Chapter 10: Solving Common Deployment, Hosting, and Production Challenges

This is not an exhaustive list—there are many other scenarios in which things go
wrong with a hosting provider. But these are some of the common killer issues that
you must try to prevent.

Choosing a Web Site Monitoring Tool
There are many online web site monitoring tools that ping your servers from differ-
ent locations and ensure the servers and network are performing well. These moni-
toring solutions have servers all around the world and in many different cities in the
U.S. They scan your web site or do a transaction to ensure the site is fully opera-
tional and critical functionalities are running fine.

At Pageflakes, we used WebSitePulse (www.websitepulse.com), which was a perfect
solution for our needs. We had set up a monitoring system that completes a brand
new user visit every five minutes. It called web services with proper parameters and
ensures the returned content is valid. This way we can ensure our site is running cor-
rectly. We also installed a very expensive web service call in the monitoring system to
ensure the site performance is fine. This also gave us an indication whether the site
has slowed down or not.

Figure 10-12 shows the response time of the site for a whole day. You can see that
around 2:00 p.m. the site was down because it was timing out. Also, from 11:00 a.m.
to 3:00 p.m., there’s high response time, which means the site is getting a big hit.

Figure 10-12. WebSitePulse monitors the site response time and shows high response times

Site timeout, something went wrong

High repsonse time

http://www.websitepulse.com

Choosing a Web Site Monitoring Tool | 275

All these settings give you valuable indications:

• There might be a job running at 2:00 p.m. that produces a very high response
time, possibly a full database backup.

• There is a job running at 11:30 a.m. that is causing a high response time or a
traffic surge that is causing a site-wide slowdown.

A detailed view (see Figure 10-13) shows the total response time from each test, the
number of bytes downloaded, and the number of links checked. This monitor is con-
figured to hit the homepage, find all links in it, and hit those links. It basically visits a
majority of the site in one visit on every test and ensures the most important pages
are functional.

Testing the individual page performance is important to find resource-hungry pages.
Figure 10-14 shows some slow performing pages.

The “First” column shows the delay between establishing the connection and get-
ting the first byte of response. The time you see there is the time it takes for the ASP.
NET page to execute on the server. So, when you see 3.38 seconds, it means the

Figure 10-13. A detailed view shows total response time and details of the check

Figure 10-14. Hit individual pages and see their response time. This helps diagnose slow loading
pages. The most important factor is the First column, which shows time to first byte (TTFB).

276 | Chapter 10: Solving Common Deployment, Hosting, and Production Challenges

server took 3.38 seconds to execute the page on the server, which is very bad perfor-
mance. Every hit to this page makes the server have a high CPU and disk I/O; in
other words, this page needs to be improved immediately.

By using such monitoring tools, you can keep an eye on your sites 24 × 7 and look in
on your site’s performance at different times to see which pages are performing poorly.

Configuring Proper Performance Counters
You need to keep a close eye on your production servers and monitor their perfor-
mance all the time. The Windows Performance Monitor tool is a great way to keep
an eye on important factors that tell you how well your servers are doing.

Web and database servers require a different set of performance counters. For exam-
ple, on a web server you need to monitor Request/Sec, Requests in Application
Queue, and Request Execution time carefully. These counters tell you how well the
web application is doing. On a database server, you need to keep an eye on Transac-
tions/Sec, Lock Wait, Disk Read/Write time, etc.

Monitoring Web Server Performance Counters
Figure 10-15 shows some common counters that monitor a web server. All these
counters give us valuable indications about how well the server is doing.

Anonymous Requests/Sec
Number of requests coming in to the server from anonymous users/sec. Tells
you how many users are anonymously browsing the site.

Cache API Hit Ratio
If you are using ASP.NET Cache to store data, it shows the ratio of successful hits
to the cache—the higher the value, the better the caching. If it’s too low, then you
have too many unique things in the cache, and cached data is not being used well,
or you are running low in memory and cache cannot store much more data.

Errors During Compilation
If you have more than zero, you have a page on the site that is not compiling—
must be a deployment problem.

Errors During Execution
Number of exceptions thrown. A nonzero value indicates a problem in the code.

Output Cache Hit Ratio
If you are using an output cache on page or user controls, it shows how well the
output cache is working. The higher it is, the better the output caching.

Configuring Proper Performance Counters | 277

Requests in Application Queue
Shows the number of requests waiting in the application queue to be executed.
This means users are waiting for requests to execute on the server before they
can see anything on the page.

If this is nonzero, then it means:

• You have slow performing pages that are taking too long so the request
queue is getting stuck.

• Your server has reached its limit. It cannot execute requests as fast as they
come in.

• You have requests that fetch external data and are getting stuck frequently
and eating up valuable worker threads.

Request Execution Time
The time it takes to execute a request in milliseconds, so the higher the value,
the worse the performance. If requests are spending more than 300 ms on the
server, the delay is going to be visible to the user. If it’s higher, then there are
some slow performing pages.

Figure 10-15. Web server performance monitor configuration

278 | Chapter 10: Solving Common Deployment, Hosting, and Production Challenges

Request Wait Time
Millisecond requests have to wait before they get executed. Ideally it should be
zero.

Requests Current
Shows requests currently being executed.

Requests Queued
Number of request waiting in the queue. If it’s nonzero, then it means the server
is choked up and the ASP.NET Request Queue is full.

Memory: Pages/Sec
Number of paging the OS is performing from RAM to the Paging file. It should
be zero. If nonzero, then it means server needs more RAM or there’s too much
memory allocation happening. It could be that the server is running too many
applications or services.

Physical Disk

Percent Disk Read Time
Shows the disk reads happening. If it’s 100 percent, it means the disk is
working at full capacity. If you have a RAID controller where multiple disks
are working, this will show incorrectly and sometimes you will see 300 per-
cent. However, the higher the value it is, the higher the disk activity. If you
have high disk activity and your application is not supposed to read that
much data from the disk, then you have some problem in your code or
there’s a program running on the server that is occupying too much disk I/O.

Percent Disk Write Time
Same as Disk Read time but it’s for disk writes.

Avg Disk Queue Length
Number of read/write requests waiting in the controller queue before the
controller can perform on the disk. If it’s high, then it means the controller
cannot handle that much disk activity. Either the controller is bad or you
just have too much disk activity due to some problem in your application, or
some other application in the server is doing too much disk activity. The
solution is to get faster disks or re-engineer the application code to reduce
dependency on the disk I/O.

Percent Processor Time
Shows how much of the CPU is being used. If it’s near 80 percent, it’s time for
you to get more hardware or tune your application.

TCPv4 Connections Established
Number of TCP connections open to your server. If it’s too high, then it means
too many users are connected to your server at that moment and you might want
to load balance the server. You might also want to decrease the value of HTTP
Persisted Connection Timeout from IIS Configuration. Persisted connections

Configuring Proper Performance Counters | 279

keep connections open. So, if you see too many open TCP connections, decrease
the timeout value. An Ajax application will always benefit from a high timeout
value because the more browsers can keep connections open with the server, the
less it has to close and reconnect. Remember, Ajax applications are quite chatty.
So, the higher timeout value helps browsers keep connections open for a longer
period. However, the higher value creates scalability issues because the operat-
ing system has a limited number of connections.

Web Service

Anonymous Users/Sec
Shows the number of calls being made to the web services.

Bytes Received/Sec
Bytes per second sent to the server from the browser.

Bytes Sent/Sec
Bytes per second sent from server to the browsers on web service calls.

Monitoring Database Server Performance Counters
SQL Server has many performance counters available that can give you a valuable
indication about how the database is performing, as shown in Figure 10-16.

Figure 10-16. Performance counters for the database server

280 | Chapter 10: Solving Common Deployment, Hosting, and Production Challenges

Memory

Pages/Sec
Ideally, it should be zero indicating that there is no paging between the RAM
and page file. This means the server had adequate RAM. If it’s nonzero for a
long period, then you need to add more RAM to server or remove applica-
tions or services that consumes RAM.

Physical disk
Just like the web server, the physical disk counters are more important for data-
base servers because the database requires much higher disk activity than web
applications. If the Disk Read/Write is too high, then it means you have slow-
running queries or a table scan going on. Avg Disk Queue Length indicates how
well the controller can handle the load. If it’s too high, then you need to get bet-
ter hard drives or controllers.

Processor
Measures CPU utilization. If it is too high, then there is a slow-running query.

SQLAgent
The SQL Agent comprises:

Active jobs
Number of jobs currently running. If nonzero, then a job is running and if
you see high CPU or disk activity, then it means the job is responsible for
the slowdown of the server.

Failed jobs
How many jobs failed to execute since SQL Server started. If it’s nonzero, a
jobs running in the SQL Server Agent is failing. Check each job’s log and see
what’s wrong.

Job success rate
Shows a job’s success rate. If not 100 percent, then a job is failing to execute
properly.

SQL Server: Access Methods

Full Scans/sec
Number of table scans being performed. If it’s nonzero, then you need to
optimize your database design by implementing a better index and queries
that use a better query plan. However, if you have small lookup tables, SQL
Server won’t use an index, but instead just scan the whole table. If that hap-
pens, do not be alarmed if you see a nonzero value here.

Page Splits/sec
Number of page splits per second that occur as a result of overflowing index
pages.

Configuring Proper Performance Counters | 281

Table lock escalation/sec
Number of times the table lock was escalated, which means queries locking
the whole table. This is related to the table scan also: the higher the value,
the worse the database performance. You need to check your queries and
database design to make sure they don’t try to lock the whole table. Gener-
ally, when you have a query that updates a large number of rows, it’s better
for SQL Server to lock the whole table instead of locking so many rows one
after another.

SQL Server: Buffer Manager

Buffer cache hit ratio
The percentage of pages found in the buffer pool without incurring a read
from disk. The higher the value it is, the faster SQL Server performs. Add
more RAM to the server if it’s not more than 80 percent.

Page life expectancy
Number of seconds a page will stay in the buffer pool without references.
The higher the value, the better SQL Server will perform. Increase RAM on
the server to increase page life expectancy.

SQL Server: Databases

Log Bytes Flushed/sec
How much data is being flushed to the disk from logs. The higher it is, the
more disk write it requires, which gives an indication to how much INSERT/
UPDATE/DELETE activity is going on that makes SQL Server flush logs to
disk. It should not be high unless you have a high volume OLTP applica-
tion. If you suddenly get a large number of new users coming to the site, this
counter will show a high value.

Transactions/sec
Number of transactions running per second on database. If this value is too
high, then you have a chatty web application that talks too much to the
database. Your goal would be to minimize it as much as possible because
this has direct influence on database server’s performance. Better middle-tier
caching and reading multiple record sets in one call are two effective ways to
reduce database transactions.

SQL Server: Locks

Lock Wait Time(ms)
Ideally it should be zero, meaning there’s no lock that is preventing SQL
Server from reading or writing data on tables. If it’s nonzero then you have
some poor queries that hold a lock on the table and prevent other queries
from working on those tables. You might also have too many INSERT/
UPDATE/DELETE actions going on, which requires SQL Server to lock rows
and forces other queries trying to read/write rows to the same table to wait.

282 | Chapter 10: Solving Common Deployment, Hosting, and Production Challenges

The easiest way to decrease lock wait time is to use “SET TRANSACTION
ISOLATION LEVEL READ UNCOMMITTED” on your queries. This will
not hold a lock on tables. However, it’s a calculated risk because queries will
then work on uncommitted transactions that might rollback. For noncritical
data, like RSS feeds or a Flick photo XML feed, stored in a database, you can
use this isolation level because you don’t have to have 100 percent accurate
data all the time. Moreover, you can use this on the aspnet_users table
because it’s unlikely you will have simultaneous parallel updates on the
same user’s data or that you will have to read a user that was deleted by
some other request. Try to use this transaction isolation level as much as
possible because it mitigates lock time significantly.

Lock Waits/Sec
Number of operations waiting for locks. If it’s nonzero, then queries are
waiting because of a bad query holding a lock on tables.

SQL Server: Memory Manager

Target Server Memory (KB)
Shows how much RAM SQL Server would like to allocate. If it’s higher than
the Total Server Memory, then it means SQL Server needs more RAM.

Total Server Memory (KB)
Shows how much RAM SQL Server is currently using. If it’s less than the
Target Server Memory, then you have more than enough RAM.

Summary
In this chapter, you learned about best practices for deploying a high volume web
site and how to monitor and maintain the site effectively. You also learned about
some real-life challenges that are common to web applications running on dedicated
hosting. Finally, you learned how to address some common scalability challenges
that are essential to growing your web site from thousands to millions of users.

283

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
@OutputCache directive, 211, 249
_findChildByClass function, 67
_maxAge, 164

A
ACT (Ajax Control Toolkit), 32

DragDropManager, 34
DragPanel extender, 61
ExtenderControlBase class, 65

Activities, 9, 14
activity model, 113
Add Stuff area, 46–49
AddContentPanel, 47
AddNewTabWorkflow, 123
AddWidget function, 128
Ajax Control Toolkit (see ACT)
Ajax web portals, xii, 1, 3, 4, 10

inactive user data cleanup, 109–112
AJAXASMXHandler project, 177
AnimationExtender, 48
ApplicationId, 105
applicationname attribute, 200
ASMX handlers, 172–175

ASP.NET and ASP.NET AJAX handlers,
compared, 175

ASMXHttpHandler.cs, 177
ASP.NET

cookie authentication, 219
fixed IDs for dynamically created

controls, 54
key generation, 220

membership tables, queries to, 201–203
widgets as controls, 13

ASP.NET 2.0 optimization, 200
ASP.NET 2.0 Profile provider, 203–219

aspnet_Profile_GetProperties, 206–209
email, using for usernames, 209
rendering page parts as

JavaScript, 211–219
using HttpModule, 216–219

ASP.NET AJAX, 8–9, 10
extenders, 60–74

event subscription support, 71
Framework modification for handling web

service calls, 175–177
logout handler implementation, 98
optimization (see ASP.NET AJAX

optimization)
performance, improving, 31–36

debug mode and release mode,
compared, 36

reducing extenders and
UpdatePanels, 35

runtime size analysis, 32
server-side versus client-side

rendering, 31
ASP.NET AJAX optimization, 152–168

Ajax server calls, timing and
ordering, 154–165

browser stuck with calls in
queue, 158–161

caching web service responses on
browsers, 161–165

impact of bad calls, 154

284 | Index

ASP.NET AJAX optimization (continued)
implementing auto retry, 157
resolving timeout error reports, 156

HTTP GET versus HTTP POST
calls, 165–167

this function, 166
server call optimization, 152–165

batching of calls, 153
ASP.NET Membership provider, 95, 199

query optimization in membership
tables, 201–203

stored procedures, optimizing, 203–206
username changes, 210
using email for usernames, 209

ASP.NET Profile provider, 95
aspnet_membership, 15
aspnet_Profile_GetProfiles, 204
aspnet_Users and aspnet_Users table, 15
asynchronous cache-friendly proxies, 189
asynchronous web methods, 171–175

rules, 172
asynchronous web service handlers, 177–189
Atom widgets (see RSS widgets)
attribute, 165
authentication and authorization, 36

implementing, 95

B
BeginGetString function, 190
BeginProcessRequest function, 178
bots and Default.aspx, 36
browser caches, 225
BurnInTest, 261
business layer, 8, 9

building (see WF)

C
C# 3.0, 9
cache headers, 186–188
Cache-Control response headers, 229
caching and Default.aspx, potential

problems, 43
CDNs (Content Delivery

Networks), 234–237
caching, 226
domain aliasing for static content, 237
types of CDNs, 236
upload to servers via FTP, 237
web site performance without CDNs, 235

circular reference, 242

click handler, 52
client-side performance, 224

CDNs (see CDNs)
HTML, hiding inside

<textarea>, 250–253
Internet Explorer JavaScript performance

optimization, 238–246
Internet Explorer memory leaks, 242–246
Internet Explorer symbolic lookups,

reducing, 238–242
read-ahead caching for Ajax calls, 250
UI, loading on demand, 247–249
web caching, 224–234

best use principles, 231–233
how they work, 226
problems, 226
response cache, controlling, 227–231
static content caching, configuration in

IIS, 233
types of caches, 225

web service call payload, reducing, 246
client-side rendering, 31
client-side widgets, 134

Flickr widget, 146–150
RSS widgets, building, 142–146

closure model, 242
columnwise drag-and-drop

implementation, 19
CommonToolkitScripts.resolveFunction, 71
console mode, 266
Content Delivery Networks (see CDNs)
content proxies, 138–142

abuse of, preventing, 194
denial-of-service attacks, defense

against, 195
scaling and securing, 191–196

connection management, 193
DNS resolution, 193
maintaining speed, 191–194

web services, 139
challenges of, 142

controller malfunctions, 260
corrupted Windows, 268
CPU burnout, 263
CreateDefaultWidgetActivity, 118
CreateNewPageActivity, 117
custom asynchronous web service

handlers, 177–189
CustomDragDrop

initialization, 66
CustomDragDrop assembly, 42

Index | 285

CustomDragDropExtender, 61–66
class declaration, 65
code for .cs file, 63
CustomFloatingBehavior, dependency

on, 65
files in, 63

CustomFloatingBehavior extender, 65,
72–74

D
DashboardFacade, 14, 127–133

widget list, loading with, 49
WorkflowHelper class

implementation, 129
data access layer, 8, 9
data model, 14
data model generation with Visual Studio

2008 Designer, 104
database corruption on cross-network file

copying, 266
database server performance counters,

monitoring, 279–282
database servers and disk I/O, 260
DatabaseHelper, 14, 104–109

stateless data persistence, workaround
for, 106

updating database objects, 106
DataContext, 102, 104, 106
DDoS (distributed denial-of-service), 40
Default.aspx, 12, 14, 16, 41

AddContentPanel, 47
bots, protecting from, 36
caching, potential problems, 43
complexity, 41
header area, 43–46

header control location, 44
server-side widget loading, problems with

delaying, 137
start page, loading, 56–60
tab bar, 50–55
widget area, 55
widget area three-column view, 55
widget gallery, 46–49
widgets, loading process, 92
with cacheable parts, 212

Default.aspx.cs, LoadAddStuff function, 48
Delete<> method, 108
denial-of-service attacks, 38–40, 195

network-level versus application-level
attacks, 40

DNS failure, 268
DNS hosting companies, 269
DOM elements and symbolic

lookups, 238–242
DOM objects, JavaScript objects, and circular

references, 242
DoS (see denial-of-service attacks)
DotNetNuke, xi
drag-and-drop operations, 19

custom extenders for a multicolumn drop
zone, 60–74

runtime size considerations, 32
ACT, substituting for Ajax preview

version, 34
widgets and extenders, 8
widgets, reordering and moving, 19

DragDropManager events, 68
drop cue, 59, 68
Dropthings, xii, 1, 4

data and business layers, 101
navigation of, 5–6
solution files, 16
Start page, 6
widget framework, 20–26
widgets, 12

DYoS, 38

E
EndGetString method, 190
Enterprise Library Logging Application

Block, 199
ETag tag, 230
Ethereal, 166
ExecuteMethod, 184
ExecuteWorkflow function, 131
execution time of a code block,

calculating, 198
expando variables, 239
Expires HTTP headers, 228
ExtenderControlBase, 65
Extenders, 20
extenders

download and initialization, 35

F
Façade pattern, 14
FastFlickrWidget, 146

OnPreRender event, 150
FastRssWidget, 143

286 | Index

FeedList DataList control, 135
FeedRssWidget, 145
file downloads from server, time cost, 30
firewall failure, 263
first-time visits, 115–120
first-visit experience, 28–30
Flickr photo widget, 82–89

client-side widgets, 146–150
FastFlickrWidget, 146

OnPreRender event, 150
parsing of photo stream, 82
widget loading, delaying, 137
widget UI, 87

FloatingBehavior, 66
free form drag-and-drop implementation, 19
Func<>, 59

G
gateway caches, 225
GenerateResponse function, 182, 186
GetDashboardData function, 105
GetRss method, 140
GetString method, 140
GetUserGuidActivity, 116
GetUserGuidActivity Execute function, 117
GetUserSettingActivity Execute

function, 121
GetWidgetsInPageActivity Execute

function, 122
GetXML method, 140
GlobalCallQueue, 159
Google IG (see iGoogle)
Google search bar, 44

H
handlers, 99
hard drive crashes, 260
header area, 43–46
hosting providers, 272

Internet backbones and, 269
HTML, hiding inside <textarea>, 250–253
HTML, rendering by browsers, 44
HTTP GET, 165
HTTP headers, 227
HTTP optimization, 199
HTTP POST, 165
HttpModule, 216–219

I
IEnumerable<> and LINQ, 101
iGoogle, 1, 3, 31

column-wise widget organization, 19
drag-and-drop implementation, 19

IIS Manager, static content caching
configuration in, 233

inactive user data cleanup, 109–112
index plan, 15

design choices, 16
InitializeCachePolicy function, 176
instrumentation, 197, 198
Internet backbone failure, 269
Internet Explorer JavaScript performance

optimization, 238–246
IE symbolic lookups, reducing, 238–242

caching DOM elements, properties,
and functions, 240

DOM element lookups, 240
local variables, evaluating, 239

Internet Explorer memory leaks, 242–246
closure model, 242
DOM elements, removal to prevent, 245
out-of-scope functions, using, 244

invoke function, 157
InvokeWorkflow, 119
IsCacheSet function, 187
IsFirstLoad property, 27
IWidget, 41
IWidget.Init method, 27
IWidgetHost, 27, 41

J
JavaScript, xii

client-side event handler for
drag-and-drop notification, 63

client-side widgets, 134
fetching data, 138
Flickr widget, 146–150
proxy web services, 142
RSS widgets, 142–146

CustomDragDrop extender script, 66
extender class implementation, 66
Internet Explorer performance

optimization, 238–242
reducing symbolic lookups, 238

page data, rendering as, 211–219
HttpModule, 216–219

Start pages and, 238
widgets folder and, 16

Index | 287

K
KVM over IP, 265

L
last-modified headers, 230
LINQ to SQL, xii, 9, 10, 101–104

data access layer, building, 104–112
DatabaseHelper, 104–109
DataContext, building, 104
inactive user data cleanup, 109–112

new page object insertion into a
database, 102

Pages, getting by primary key and
updating, 102

paging with Skip and Take, 103
projections, creating, 103
reading scalar values, 102
transaction support, 103

LINQ to XML, 9, 83
parsing of Flickr photo stream, 82
XElement class, 87

Live.com search bar, 7, 44–46
drag-and-drop implementation, 19

LoadAddStuff function, 48
LoadRSSView function, 136
LoadUserPageSetup method, 57
Log4net, 199
logging, 197

code block execution, 199
logout, 98

M
ManualWorkflowSchedulerService, 131
mapping user actions to workflows, 114
maxAge hack, 163–165
MoveWidgetInstanceWorkflow, 123–127
multicolumn drop zones, custom extenders

for, 60–74
MultiView control, 135

N
.NET 3.5, 9, 10
New User Visit workflow, 9
NewUserSetupWorkflow, 115–120
non-postback experience, simulating, 92

O
object relational mapping designer, 104
OfType<> function, 59
onDrop function, 80
out-of-scope functions, 244
@OutputCache directive, 211
OutputParameters dictionary, 132

P
page switching, 92
Page table, 15
Page_Load event, 56–60
Pageflakes, 3

column-wise widget organization, 19
drag-and-drop implementation, 19
server failure due to stored

procedure, 204
patch management, 268
performance counter configuration, 276
performance metrics, 197
PopulateUserPageSetup property, 123
Pragma HTTP headers, 228
production database deletion, 266
production disasters, 260–272

controller malfunctions, 260
corrupted Windows, 268
CPU burnout, 263
database corruption on cross-network file

copying, 266
DNS failure, 268
firewall failure, 263
hard drive crashes, 260
Internet backbone failure, 269
production database deletion, 266
production server, accidental format

of, 267
RAID malfunctions, 261
remote desktop login failure and

connection limits, 266
remote desktop problems and patch

installations, 264
production server, accidental format of, 267
Profile object, 94
Profile provider and GUID, 200
Profile.UserName, 210
projections, 101, 103
proxy caches, 225
Proxy.asmx, 16, 139
Proxy.GetRss function, 145

288 | Index

Q
query optimization, ASP.NET membership

tables, 201–203
QueuedCall, 160

R
RAID 1, 262
RAID 5, 262
RAID malfunctions, 261
read-ahead caching for Ajax calls, 250
real-life examples

adding backup and reporting servers, 258
ASMX handler exceptions, 188
avoiding downtime when changing

hosting providers, 221–223
building an inexpensive web farm, 256
caching, potential problems with, 43
optimizing stored procedures, 203–206
querying ASP.NET membership

tables, 201–203
request pipeline traffic jams, fixing, 171
timeout error reports, resolving, 156
troubleshooting using email for

usernames, 209
Redirector, 221
remote desktop problems, 264, 266
response cache control, 227–231
RSS widgets, 89–92, 142–146

DataList, 91
ShowFeeds function, 91
UI, 90, 135

RSS/Atom widget loading, delaying, 135
RSSFeedView, 136

S
[ScriptMethod(UseHttpGet=true)]

attribute, 165
ScriptModule, 175
second visits, 119–123
second-visit experience, 30
security patches, 268
server-side caching, advantages, 138
server-side performance and scalability, 197

HTTP pipeline optimization, 199
instrumentation, 197, 198

server-side rendering, 31
server-side widgets, 134

delaying loading, 135–137

SetupWidgets function, 58
showPhotos function, 147
solution files, 16
SQL Server 2005, xiv
SQL Server performance counters, 279
sqlmetal.exe, 101
Start pages and JavaScript, 238
stateless data persistence, workaround

for, 106
sticky users, 109
stock quote proxy web service example, 174
stuck queues, fixing, 171
symbolic lookups, 238

DOM lookups, 240
caching DOM elements, properties,

and functions, 240
Internet Explorer performance

and, 238–242
local variables, evaluating, 239

synchronous web method, 172
SysNetWebServiceProxy$invoke

function, 157
Sys.Net.WebRequest class, 248

T
tab bar, 50–55

“Add New tab” button, creating, 51
inactive tabs, activating, 52
Page_Load event code, 54
tab edit mode event handler, 53

tabs, dynamic generation of, 50
this function, 166
three-column widget view, 55
TimedLog class, 198
timeout errors, diagnosing, 156
tracert, 270
traffic redirection from old to new web

sites, 221
transaction capability, adding to web

methods, 183–186
transactional web method implementation,

example of, 183
TransactionalMethod attribute, 183

U
UI, 8

Flickr widget UI, 87
loading on demand, 247–250
RSS widgets, 90, 135

Index | 289

Update<> method, 107
UpdateAll<> function, 107
UpdatePanels, 17
UserProfile class, 94
UserSetting table, 15
UserVisitWorkflow, 119, 119–123
Utility class, 148

V
var keyword, 239
Visual Studio 2008, xiv

ASP.NET user controls and, 22
data models, generating with, 104
debuggers and production sites, 197
Object/Relational Designer, 101
ORM (object relational mapping)

designer, 104
workflow designer, 112
workflows, debugging, 114

Visual Studio 2008 Designer
UI design, 86

W
Web 2.0, xi, 4

portal, xii
web caching, 224–234

best use principles, 231–233
how they work, 226
problems, 226
response cache, controlling, 227–231

cache control in response header, 227
Cache-Control HTTP headers, 229
ETag and last-modified headers, 230
Expires HTTP headers, 228
HTML metatags and HTTP

headers, 227
Pragma HTTP headers, 228

types of caches, 225
Web Development Helper, 252
web farms, 254–260

pros and cons, 255
web layer, 9, 100
Web Parts, 3
web portals, 2–5

Ajax web portals, 1, 3
architecture, designing, 12–40

authentication and authorization,
adding, 36

denial-of-service attacks, 38–40
Default.aspx (see Default.aspx)

first-visit experience, 28–30
preventing flooding, 36
purpose, 41
search functionality, 7
second-visit experience, 30
security, 36
using, 4

web server performance counters,
monitoring, 276–279

web services
call payload, reducing, 246
chattiness of Ajax sites, 169
content proxies, scaling and

securing, 191–196
connection management, 193
DNS resolution, 193
maintaining speed, 191–194

creating, 169
ASMX handlers, 172–175
ASP.NET AJAX Framework

modification for web service
calls, 175–177

asynchronous cache-friendly
proxies, 189

asynchronous web methods, 171–175
denial-of-service attacks, defense

against, 195
dynamic instantiation of a web

service, 179
proxy abuse, avoiding, 194
scalability, 169–171
stuck cues, fixing, 171

custom web service handlers, 177–189
attributes, using, 189
cache headers, adding, 186–188
exception handling, 188
state object, handling, 189
transaction capability, adding to web

methods, 183–186
denial-of-service attacks and, 38
Profile object, 94
vulnerability to attack, 97

web site monitoring tools, 274
web.config, 94, 96

authentication and authorization,
implementing, 95

removal of unnecessary HTTP
Modules, 199

tweaks to optimize ASP.NET 2.0 before
going live, 200

WebSitePulse, 274

290 | Index

WF (Windows Workflow Foundation), 9,
10, 14, 112

adding new tabs, 123
business layer, building with, 113–127
components, 112
DashboardFacade

implementation, 127–133
WorkflowHelper class, 129–133

existing user return visits, 119–123
first visits by new users, 115–120
mapping interactions, 114
moving widgets, 123–127
performance concerns, 114
rules engine, 113
workflow designer, 113
workflow runtime, 113

widget area, 55
Widget class, 246
widget containers, 41
widget frameworks, 20–26
widget gallery, 46–49
widget instances, 13
Widget table, 15
WidgetContainer, 74–81

closing the widget, 81
header panel, 74
InstanceID, adding, 80
saving and editing, 79
updating WidgetInstance, 78
WidgetContainer.cs, 76

WidgetContainer control, 42
WidgetContainer.ascx, 16
WidgetInstance table, 15
WidgetList, 49
widgets, xi, 2, 5

adding widgets, 26–28
architecture, designing, 12–40
building, 81–92
client-side widgets, 134

Flickr widget, 146–150
RSS widgets, building, 142–146

drag-and-drop, 6
loading process, 92
object model, 13
reordering and moving, 19
server-side widgets, 134
widget containers, designing, 23–26

WidgetService.asmx, 16
WidgetService.MoveWidgetInstance, 63
Windows Performance Monitor tool, 276
Windows Update patches and remote

desktops, 264
Windows Workflow Foundation (see WF)
WinRAR, 266
WorkflowCompletedEventArgs, 132
WorkflowHelper class, 129–133
WorkflowHelper.Init function, 129
workflows, 14

(see also WF)
WorkflowTerminated, 132

About the Author
Omar AL Zabir is the CTO and co-founder of Pageflakes, a Microsoft MVP, the
author of a popular .NET blog (http://msmvps.com/omar), and a frequent contrib-
utor to Code Project (www.codeproject.com). In 2006, Pageflakes out-ranked
iGoogle, Live.com, Netvibes, and Protopage in a review conducted by Seattle-based
SEOmoz.org.

Colophon
The animal on the cover of Building a Web 2.0 Portal with ASP.NET 3.5 is a giant
green sea anemone (Anthopleura xanthogrammica). These anemones are found on
rocks in tidal pools, rocky outcroppings, and concrete pilings from Alaska to Panama
in intertidal and subtidal zones. The giant green sea anemone varies in size but can
reach heights of 30 cm, have a 17 cm base, and a crown or head of 25 cm.

The giant green sea anemone gets its color from green pigment in its epidermis, so
the more sunlight it is exposed to, the more green it becomes. This anemone is a soli-
tary and mostly stationary invertebrate from the Cnidaria phylum, which also
includes jellyfish. Like a jellyfish, the giant green sea anemone stings its prey with
poison tentacles and then draws the food to its mouth. These anemones enjoy a
carnivorous diet of mussels, sea urchins, and small fish, and have been known to eat
a giant crab in 15 minutes. Clownfish are immune to its stings and often have symbi-
otic relationships with anemones. Scientists are experimenting with the poison as a
cardiotonic to help ailing human hearts.

The enemies of the giant green anemone include starfish, snails, and sea slugs.
However, development in coastal areas, pollution, human foot traffic, and harvesting
for home aquariums also pose significant threats.

The cover image is from The Riverside Natural History. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSans Mono Condensed.

	Table of Contents
	Preface
	Who This Book Is for
	How This Book Is Organized
	What You Need to Use this Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Introducing Web Portals and Dropthings.com
	Defining a Web Portal
	Defining a Web 2.0 Portal
	Using a Web Portal
	How an Ajax-Powered Start Page Is Different

	Navigating Dropthings
	Using ASP.NET AJAX
	Using C# 3.0 and .NET 3.5
	Summary
	Additional Resources

	Architecting the Web Portal and Widgets
	Object Model
	Application Components
	Data Model
	Solution Files
	Update Panels
	Drag-and-Drop Operations
	Using a Widget Framework
	Designing the Widget Container

	Adding Widgets
	Maximizing the First-Visit Experience
	Rendering a Second-Visit Experience
	Improving ASP.NET AJAX Performance
	Server-Side Rendering Versus Client-Side Rendering
	Runtime Size Analysis
	Reducing Extenders and UpdatePanels to Improve Browser Response
	Comparing Debug Mode Versus Release Mode

	Adding Authentication and Authorization
	Preventing Denial-of-Service Attacks
	Summary

	Building the Web Layer Using ASP.NET AJAX
	Implementing the Start Page of a Web Portal
	Real-Life Example: When Caching Works Against You
	The Header Area
	Add Stuff Area: The Widget Gallery
	The Tab Bar
	The Widget Area: The Three-Column Widget View
	Loading the Start Page

	Building a Custom Drag-and-Drop Extender for a Multicolumn Drop Zone
	Implementing WidgetContainer
	WidgetContainer.cs
	Updating
	Saving and editing
	Adding InstanceID
	Closing the widget

	Building Widgets
	Building a Flickr Photo Widget
	Flickr widget UI controls

	Building an Atom or RSS Widget

	Page Switching: Simulating a Nonpostback Experience
	Using the Profile Object Inside a Web Service
	Implementing Authentication and Authorization
	Implementing Logout
	Handlers

	Summary
	Additional Resources

	Building the Data and Business Layers Using .NET 3.5
	Introducing LINQ to SQL
	Building the Data Access Layer Using LINQ to SQL
	Generating a Data Model Using the Visual Studio 2008 Designer
	Manipulating Data with a Database Helper
	Cleaning Up Inactive User and Related Data

	Introducing Windows Workflow Foundation
	Building the Business Layer Using WF
	Mapping User Actions to a Workflow
	Dealing with First Visit by a New User (NewUserSetupWorkflow)
	Dealing with the Return Visit of an Existing User (UserVisitWorkflow)
	Adding a New Tab (AddNewTabWorkflow)
	Moving Widgets (MoveWidgetInstanceWorkflow)

	Implementing the DashboardFacade
	Implementing the WorkflowHelper Class

	Summary

	Building Client-Side Widgets
	Delaying Server-Side Widget Loading
	Delaying RSS/Atom Widget Loading
	Delay Flickr Photo Widget Loading
	Problems with Delaying Widget Loading

	Content Proxy
	Content Proxy Web Service
	Challenges with the Proxy Web Service

	Building a Client-Side RSS Widget
	Building a Client-Side Flickr Widget
	Summary

	Optimizing ASP.NET AJAX
	Combining Multiple Ajax Calls into One Call
	Timing and Ordering Ajax Calls to the Server
	Bad Calls Make Good Calls Time Out
	Real-Life: Resolving Timeout Error Reports
	Common problems

	Browsers Fail to Respond with Two or More Calls in Queue
	Caching Web Service Responses on the Browser

	Using HTTP GET Calls Instead of HTTP POST
	Working with the this Function
	Summary

	Creating Asynchronous, Transactional, Cache-Friendly Web Services
	Scalability Challenges with Web Services
	Real-Life: Fixing a Traffic Jam in the Request Pipeline

	Asynchronous Web Methods
	Modifying the ASP.NET AJAX Framework to Handle Web Service Calls
	Initializing the Cache Policy

	Developing Your Own Web Service Handler
	Basics of Asynchronous Web Service Handlers
	Adding Transaction Capability to Web Methods
	Adding Cache Headers
	Real-Life: Exception Handling
	Using the Attributes
	Handling the State Object

	Making an Asynchronous and Cache-Friendly Proxy
	Scaling and Securing the Content Proxy
	Maintaining Speed
	Connection management
	DNS resolution

	Avoiding Proxy Abuse
	Defending Against Denial-of-Service Attacks

	Summary

	Improving Server-Side Performance and Scalability
	Instrumenting Your Code to Identify Performance Problems
	Optimizing the HTTP Pipeline
	Optimizing ASP.NET 2.0/3.5 Before Going Live
	Optimizing Queries in the ASP.NET Membership Tables
	Real-Life: Querying ASP.NET Membership Tables

	Optimizing the ASP.NET 2.0/3.5 Profile Provider Before You Go Live
	Real-Life: Optimizing Stored Procedures
	Accessing the Use of Profile Provider
	Using Email for a Username
	Real-Life: Troubleshooting Using Email for a Username
	Changing a Username in the ASP.NET 2.0/3.5 Membership Provider
	Rendering Page Parts As JavaScript
	Using HttpModule
	The HttpModule in detail

	ASP.NET Production Challenges
	Fixing Cookie Authentication Problems
	Generating the key
	Each machine requires a key

	Redirecting Traffic from an Old Web Site to a New One
	Real-Life: Avoiding Downtime When Switching Hosting Providers

	Summary

	Improving Client-Side Performance
	Understanding Web Caching
	Basics of Web Caching
	Types of Web Caches
	Web Cache Problems
	How Web Caches Work
	Controlling Response Cache
	HTML metatags and HTTP headers
	Cache control in response header
	Pragma HTTP headers
	Controlling caches with the Expires HTTP header
	Cache-control HTTP headers
	ETag, last-modified headers

	Principles for Making the Best Use of Cache
	How to Configure Static Content Caching in IIS

	Content Delivery Networks
	Examining Web Site Performance Without a CDN
	Different Types of CDNs

	Optimizing Internet Explorer JavaScript Performance
	Reducing IE Symbolic Lookups
	Evaluating local variables
	Reducing symbolic lookup on DOM elements
	Speeding symbolic lookup by caching DOM elements, properties, and functions

	Mitigating Internet Explorer Memory Leak
	Avoid using event handlers as closures
	Use out-of-scope functions
	Remove DOM elements

	Reducing the Web Service Call Payload
	Loading the UI on Demand
	Using Read-Ahead Caching for Ajax Calls
	Hiding HTML Inside <textarea>
	Summary

	Solving Common Deployment, Hosting, and Production Challenges
	Deploying Your Web Site in a Web Farm
	Web Farm Pros and Cons
	Real-Life: Building an Inexpensive Web Farm
	Real-Life: Adding Backup and Reporting Servers
	Designing a Reasonable Hosting Configuration

	Thirteen Production Disasters That Could Happen at Anytime
	The Hard Drive Crashes, Overheats
	The Controller Malfunctions
	The RAID Malfunctions
	Pros and cons of RAID 1
	Pros and cons of RAID 5

	The CPU Overheats and Burns Out
	The Firewall Goes Down
	The Remote Desktop Stops Working After a Patch Installation
	Remote Desktop Exceeds Connection Limit and Login Fails
	The Database Becomes Corrupted When Files Are Copied over the Network
	The Production Database Was Accidentally Deleted
	The Hosting Service Formatted the Running Production Server
	Windows Was Corrupted Until It Was Reinstalled
	The DNS Goes Down
	The Internet Backbone Goes Down in Different Parts of the World

	Choosing the Right Hosting Provider
	Checklist for Choosing the Right Hosting Provider

	Choosing a Web Site Monitoring Tool
	Configuring Proper Performance Counters
	Monitoring Web Server Performance Counters
	Monitoring Database Server Performance Counters

	Summary

	Index

