

Getting Started with Flex™ 3

Getting Started with Flex™ 3

Jack Herrington and Emily Kim

Java™ Threads
Pocket Reference

SECOND EDITION

Scott Guelich, Shishir Gundavaram
and Gunther Birznieks

with Albert Finney

translated by Hans Zimmerman

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

Getting Started with Flex™ 3
by Jack Herrington and Emily Kim

Copyright © 2008 Jack Herrington and Emily Kim. All rights reserved.
Printed in Canada.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Se-
bastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promo-
tional use. Online editions are also available for most titles (http://safari.oreil
ly.com). For more information, contact our corporate/institutional sales de-
partment: (800) 998-9938 or corporate@oreilly.com.

Editor: Steve Weiss
Copy Editor: Audrey Doyle
Proofreader: Carol Marti
Indexer: Joe Wizda
Cover Designer: Karen Montgomery
Illustrators: Robert Romano and Jessamyn Read

Printing History:
June 2008: First Edition

The O'Reilly logo is a registered trademark of O'Reilly Media, Inc. The Pocket
Reference/Pocket Guide series designations, Flex, and the image of the Brittle
Star, and related trade dress, are trademarks of O'Reilly Media, Inc.

While every precaution has been taken in the preparation of this book, the
publisher and authors assume no responsibility for errors or omissions, or
for damages resulting from the use of the information contained herein.

ISBN: 978-0-596-52064-9

[T]

1213663276

http://safari.oreilly.com
http://safari.oreilly.com

Adobe Developer Library, a copublishing partnership
between O’Reilly Media Inc., and Adobe Systems, Inc., is the
authoritative resource for developers using Adobe technolo-
gies. These comprehensive resources offer learning solutions
to help developers create cutting-edge interactive web appli-
cations that can reach virtually anyone on any platform.

With top-quality books and innovative online resources cov-
ering the latest tools for rich-Internet application develop-
ment, the Adobe Developer Library delivers expert training
straight from the source. Topics include ActionScript, Adobe
Flex®, Adobe Flash®, and Adobe Acrobat®.

Get the latest news about books, online resources, and more
at http://adobedeveloperlibrary.com.

,adobe-front.5535 Page 5 Thursday, April 3, 2008 2:28 PM

Contents

Preface xi

Chapter 1: Installing Flex Builder 3 1
Installing the IDE 1
Having Some Image Fun 2

Chapter 2: Flex in Action 7
E-Commerce 7
Online Applications 9
Multimedia 11
Plug-ins and Widgets 12
Dashboards 15
Desktop Applications 16
What Will You Do? 18

Chapter 3: Flex 101: Step by Step 19
A Flickr Viewer 20

Chapter 4: Flex Controls and Layout 37
The Application Container 37
The Box Class 39
The Canvas Container (Absolute Positioning) 41
The Canvas Container (Relative Positioning) 42

vii

The Form Container 44
Combined Layouts 46
The Panel Container 48
Controls 50
Data Grids 51
Tabs and Accordions 55
Menus 58
Divider Boxes 60
CSS 61
Filters and Effects 65

Chapter 5: Working with the Server 67
POSTing to the Server with Flex 69
Using the HTTPService Tag 70
Going on from Here 77

Chapter 6: More Flex Applications 79
A Runner’s Calculator 79
A Simple Image Viewer 83
Drag-and-Drop 86
States and Transitions 88
Creating Better Movies 95

Chapter 7: Advanced Flex Controls 101
ILOG Elixir 101
Advanced Flash Components 104
The FlexLib Project 105
Distortion Effects 105
SpringGraph 106

Chapter 8: Flex for Widgets 109
Slide Show Widget 109

viii | Table of Contents

Chat Widget 114

Chapter 9: Flex on AIR 119
Creating an AIR Version of the Runner’s Calculator 119

Chapter 10: Resources for Flex Developers 123
Flex Websites 123
Blogs and Sites 123
The Flex Cookbook 124
Community Resources 125
Books 125

Index 127

Table of Contents | ix

Preface

How many times have you gotten an idea for a killer application
in your mind, only to have the implementation fail when the
framework you use bogs you down in the detail work? I know
I certainly have experienced that. Fortunately, Flex came to my
rescue and made the process of implementing my ideas fun
again. I can think up amazing interfaces and pull them together
quickly in Flex. While I concentrate on the design, Flex handles
all the details of making it happen.

This book will inspire you to try Flex and to see just how much
fun it can be to bring your ideas to life. Let Flex make your
interface design and coding enjoyable again!

Who Should Read This Book
This book is primarily intended for people who are new to Flex
or who have tried previous versions of Flex and are interested
in what’s new in Flex 3. I’ve designed the book to be a quick
tour of the Flex world without delving too deeply into any one
topic. To provide in-depth coverage of every topic I present in
the book would require five times the page count, which could
present a health hazard to you, dear reader.

To make up for the lack of depth in every area, in Chapter 10
I provide a collection of resources from which you can glean
additional information regarding Flex. And as always, there is

xi

Google, which is your best friend when it comes to learning
about the nooks and crannies of the Flex API.

How This Book Is Organized
Here is a summary of the chapters in the book and what you
can expect from each:

Chapter 1
In this chapter, I’ll guide you through installing Flex
Builder 3 and putting together a fun image manipulator
application.

Chapter 2
This chapter presents several real-world examples of sites
that make amazing use of Flex.

Chapter 3
This chapter provides a step-by-step walkthrough of how
to build a Flex application.

Chapter 4
This chapter describes Flex layout mechanisms and con-
trols. Filters and effects are also covered.

Chapter 5
This chapter covers the different forms of network com-
munications supported by Flex applications, and includes
examples for a few of them.

Chapter 6
This chapter presents additional example applications,
including a calculator, an image viewer, a drag-and-drop
application, and more.

Chapter 7
This chapter provides a preview of several advanced con-
trols that are available for use as stock libraries. Some
choice examples include 3D graphing, as well as a flow list
that is similar to Cover Flow in iTunes.

xii | Preface

Chapter 8
This chapter discusses how to build small Flex movies for
use on other people’s web pages. A full working chat
widget is provided as an example.

Chapter 9
This chapter covers how to use Adobe’s AIR runtime to
put Flex applications on the desktop.

Chapter 10
This chapter presents numerous resources for Flex devel-
opers, including blogs, forums, podcasts, books, and
more.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames,
file extensions, pathnames, directories, and Unix utilities

Constant width
Indicates commands, options, switches, variables, attrib-
utes, keys, functions, types, classes, namespaces, meth-
ods, modules, properties, parameters, values, objects,
events, event handlers, XML tags, HTML tags, macros,
the contents of files, and the output from commands

Constant width bold
Shows commands or other text that should be typed lit-
erally by the user

Constant width italic
Shows text that should be replaced with user-supplied
values

How to Contact Us
Please address comments and nontechnical questions con-
cerning this book to the publisher:

Preface | xiii

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, exam-
ples, and any additional information. You can access this page
at:

http://www.oreilly.com/catalog/9780596520649

For more information about our books, conferences, Resource
Centers, and the O’Reilly Network, see our website at:

http://www.oreilly.com

About the Author
Jack Herrington is an engineer, author, and presenter who lives
and works in the San Francisco Bay area with his wife, daugh-
ter, and two dogs. He is the author of three additional books,
Code Generation In Action, Podcasting Hacks, and PHP
Hacks, as well as numerous articles. You can check out his
technical blog at http://jackherrington.com.

Emily Kim is the co-founder and managing partner of the com-
pany Trilemetry, Inc., which specializes in software design,
programming, and education.

Acknowledgments and Dedication
I’d like to acknowledge the help of Mike Potter at Adobe in the
inspiration, design, and writing of this book. My thanks to Jen
Blackledge for doing the technical review on the manuscript.
A big thank you to my editor, Audrey Doyle, who is as astute
with her comments as she is deft with her editing touch.

xiv | Preface

http://www.oreilly.com/catalog/9780596520649
http://www.oreilly.com
http://jackherrington.com

This book is dedicated to my beautiful wife, Lori, and awesome
daughter, Megan. They are both the reason and the inspiration
for this book.

—Jack Herrington

Publisher's Acknowledgments
O'Reilly and Adobe extend deepest thanks to Emily Kim and
the entire team at Trilemetry (www.trilemetry.com). The learn-
ing materials that inspired this book were created for Adobe
by Trilemetry as an online resource. You can find this material
at http://learn.adobe.com/wiki/display/Flex/Getting+Started.
The scope of the materials online is quite wide in contrast to
what you'll find in this book, and we heartily recommend you
use both as learning resources as you develop your Flex skills.

Preface | xv

http://learn.adobe.com/wiki/display/Flex/Getting+Started

CHAPTER 1

Installing Flex Builder 3

Getting started with Flex begins with downloading the Flex
Builder 3 integrated development environment (IDE). You can
do that for free by going to the Adobe website (http://
adobe.com/flex) and clicking on the Try Flex Builder 3 link. It’s
a pretty big download, so while you are waiting you might want
to check out Chapter 2 to get some inspiration regarding what
you can do with Flex.

Installing the IDE
Flex Builder installs just like any other software you would in-
stall on your Windows, Macintosh, or Linux box. The only
small difference is that you will need to close your browser(s)
so that the installer can upgrade your version of Flash Player
to the debugger version. You will want to do that so that you
can use the full debugging capabilities built into Flex Builder
3. The debugging system is very good, and becoming familiar
with it will be well worth your time.

I strongly suggest that when the download page prompts you
to subscribe to the email notifications from Adobe you accept
the offer. It’s a spam-free mailing list that gives you news and
information about Flex and comes in handy as you delve deep-
er into the framework.

1

http://adobe.com/flex
http://adobe.com/flex

Once you have the software installed, launch it and you should
see the splash screen shown in Figure 1-1.

On the splash screen you will see the words Built on Eclipse.
Eclipse is an extensible cross-platform IDE developed by IBM
that is popular in the Java™ world. However, you can also use
it to build PHP as well as Rails or, in this case, Flex applications.

If you are familiar with Eclipse you will be fairly familiar with
what you see in Figure 1-2.

Figure 1-2 shows the IDE when no projects are defined. On the
upper left is the project and file area. On the bottom left is the
Outline inspector that will show you the nested tags in your
Flex application files. On the top right is the Start page that
comes up by default. You should check out the links on the
Start page because they will bring you to helpful material to get
you started. The bottom-right panel, labeled Problems, is
where you are alerted to issues (e.g., syntax errors) in your Flex
code that keep Flex Builder from successfully compiling your
application.

Having Some Image Fun
To get started quickly with Flex, select a new Flex project from
the New item in the File menu. Use whatever project name you
like. I used “starter.” From there, take any image from your

Figure 1-1. The startup splash screen

2 | Chapter 1: Installing Flex Builder 3

computer, rename it to myimage.jpg, and drop it into the src
folder of your new project.

Next, double-click on the MXML file for the application and
add the code in Example 1-1.

Example 1-1. Starter.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute">
 <mx:Image source="@Embed('mypicture.jpg')" height="100"
 top="30"
left="30" rotation="−10">
 <mx:filters>
 <mx:DropShadowFilter />
 </mx:filters>
 </mx:Image>
</mx:Application>

Now use the Run command in the Run menu to run the ap-
plication. You should see your picture rotated a little bit, with
a drop shadow added. Already, you can see that Flex can do

Figure 1-2. The empty Start page

Having Some Image Fun | 3

some things that are difficult to do in the browser without any
code.

Our next step will be to add some dynamic behavior to the
example by adding controls for the rotation, the sizing, and the
visibility of the image. The updated code appears in Exam-
ple 1-2.

Example 1-2. Starter.mxml updated with controls

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute">
 <mx:HBox top="10” left="10">
 <mx:HSlider minimum="−30” maximum="30” value="−10”
 toolTip="Rotation”
 change="myimg.rotation=event.currentTarget.value”
 liveDragging="true” />
 <mx:HSlider minimum="100” maximum="300” value="100”
 toolTip="Size”
 change="myimg.height=event.currentTarget.value”
 liveDragging="true” />
 <mx:CheckBox label="Visible” change="myimg.visible=
 event.currentTarget.selected”
 selected="true"/>
 </mx:HBox>
 <mx:Image id="myimg" source="@Embed('mypicture.jpg')"
 height="100" top="60" left="30" rotation="−10">
 <mx:filters>
 <mx:DropShadowFilter />
 </mx:filters>
 </mx:Image>
</mx:Application>

Now we have two sliders and a checkbox. One slider controls
the rotation and the other controls the size of the image as the
user adjusts the setting. The checkbox will hide or show the
image. Figure 1-3 shows the result.

To have a little more fun with the example I’ll add some effects
that fade the image in or out when its shown or hidden. Ex-
ample 1-3 shows the updated image code.

4 | Chapter 1: Installing Flex Builder 3

Example 1-3. The updated image code

<mx:Image id="myimg" source="@Embed('mypicture.jpg')"
 height="100" top="60" left="30" rotation="−10">
 <mx:filters>
 <mx:DropShadowFilter />
 </mx:filters>
 <mx:showEffect>
 <mx:Fade alphaFrom="0” alphaTo="1” duration="1000” />
 </mx:showEffect>
 <mx:hideEffect>
 <mx:Fade alphaFrom="1” alphaTo="0” duration="1000” />
 </mx:hideEffect>
 </mx:Image>

I’ve chosen to use a fade effect, but there are lots of different
filters and effects that you can apply to any Flex control. You
can even combine effects in parallel or as a sequence to create
cool transitions almost always without using any ActionScript
code.

Figure 1-3. Our starter application so far

Having Some Image Fun | 5

CHAPTER 2

Flex in Action

Flash has always been a great tool for adding interactivity to a
website. But with the advent of Flex a whole new group of
engineers, designers, and enthusiasts have been able to build a
wide variety of Flash applications. This chapter will discuss a
cross section of applications to give you some ideas for what
you can do with Flex. As you are looking through these exam-
ples, bear two things in mind:

• Although these examples often look dauntingly complex
to implement, the Flex framework makes much of this
work very easy.

• All of these applications work without any changes on
Windows, Macintosh, and Linux, both in the browser
and, often, on the desktop using Adobe’s AIR technology.

I found most of the examples in this chapter in the Flex Show-
case portion of the Flex.org (http://flex.org) website (http://
flex.org/). The Showcase has an RSS feed that is worth sub-
scribing to so that you can get a sense of what other people are
producing using Flex.

E-Commerce
When your products are beautiful you want a beautiful way to
present them to your customers. With that in mind, check out
the Voelkl (http://www.voelkl-snowboards.com) snowboard se-

7

http://flex.org
http://flex.org
http://flex.org/
http://flex.org/
http://www.voelkl-snowboards.com

lector in Figure 2-1. At the top of the page you can hover your
mouse pointer over each snowboard design to find out more
about it, as well as filter the selection of boards to just those
for men, women, or rookies/kids.

Choose your weapon indeed, my friend! This site also demon-
strates how Flex applications can seamlessly integrate with
HTML pages. Flex does not need to take up the entire page.
You can use Flex to build any size page element you want. And
you can have the Flex application talk back to the JavaScript
on the page to further link the Flash application with the
HTML.

One of the most well-known Flash applications is the MINI car
Configurator (http://miniusa.com/?#/build/configurator/
mini_conv-m) shown in Figure 2-2.

This astounding Flash application will walk you through con-
figuring a MINI Cooper both inside and out. It’s inviting, fun,
and thoroughly engaging. It certainly makes me want to buy a
MINI.

When you try out the MINI Configurator, which I hope you
do, don’t be taken aback by the complexity of the interface.

Figure 2-1. Choose your weapon!

8 | Chapter 2: Flex in Action

http://miniusa.com/?#/build/configurator/mini_conv-m
http://miniusa.com/?#/build/configurator/mini_conv-m

The controls, event model, and CSS skinning in Flex make it
easy to build complex interfaces that are easy to understand
and maintain at the ActionScript level.

Online Applications
It seems like every month another company comes out with a
web version of an application that used to be available only on
the desktop. Sure, it’s nice to be able to use an application
without having to download and install it. However, I don’t
know about you, but I don’t find them all that good. Well, I
didn’t, until I saw SlideRocket (http://www.sliderocket.com/), a
Flex-based version of a slide show editor and presenter.

As you can see in Figure 2-3, the editor portion of the interface
is both full-featured and elegant.

Figure 2-2. The MINI Configurator

Online Applications | 9

http://www.sliderocket.com/

Figure 2-3. SlideRocket’s editor screen

SlideRocket is one of the most amazing applications I’ve seen
on any platform in years. It’s well worth your time to check it
out.

Another company doing some innovative application work is
Aviary (http://a.viary.com). Shown in Figure 2-4 is Aviary’s on-
line image editing application that is written in Flex.

Figure 2-4. Aviary’s image editor

10 | Chapter 2: Flex in Action

http://a.viary.com

This application shows not only the functionality and elegance
that you can achieve in Flex interfaces, but also the speed of
the Flash Player in executing image manipulation functions.

Adobe itself is making use of Flex to build an online suite of
applications. Shown in Figure 2-5 is the online version of Pho-
toshop Elements built completely in Flex.

Another impressive online application is Adobe’s Buzzword
project (http://buzzword.acrobat.com/), shown in Figure 2-6.

Not only is it beautifully designed, but it’s also fast, works
anywhere, and can be used in conjunction with other contrib-
utors. Adobe developed Buzzword in Flex.

Multimedia
Of course, what catalog of Flash applications would be com-
plete without a movie viewer? I don’t want to show you the
usual YouTube thing, so I’ll show you video integrated with e-
commerce to sell robots for a company called RobotWorx

Figure 2-5. The online version of Photoshop Elements

Multimedia | 11

http://buzzword.acrobat.com/

(http://www.robots.com/movies.php?tag=40). Figure 2-7 shows
the RobotWorx page with the embedded custom video player.

The Flex application is seamlessly embedded within the larger
HTML page. The videos available for the particular robot are
shown along the bottom in the style of YouTube. The video of
the robot (doing some arc welding in this case) is shown on the
left. And a static image of the robot is shown on the right.

Plug-ins and Widgets
You can also use Flex to implement the plug-ins and widgets
that go on sites such as Facebook. Shown in Figure 2-8 is a
Flex-based node graph, called SocioGraph (http://apps.face
book.com/sociograph/), which displays the connections be-
tween you and your Facebook friends. It’s an easy add-in ap-
plication to your Facebook account.

I admit that I don’t have a lot of Facebook friends; your graph
is probably a lot busier than mine is. But as I click around the

Figure 2-6. The Buzzword Editor

12 | Chapter 2: Flex in Action

http://www.robots.com/movies.php?tag=40
http://apps.facebook.com/sociograph/
http://apps.facebook.com/sociograph/

nodes more friends pop out and I get a better feel for how I am
connected to people simply by interacting with this control.
Even with my sparse set of data there is a lot of fun to be had.

You can also use Flex to host a set of widgets as a portal.
YourMinis (http://www.yourminis.com/start), shown in Fig-
ure 2-9, does a great job of presenting customizable portals that
look great and work well.

Figure 2-7. The RobotWorx custom movie player

Plug-ins and Widgets | 13

http://www.yourminis.com/start

Figure 2-9. The YourMinis portal built into Flex

You can have multiple pages in your portal. And you can even
place a YourMinis widget on any regular HTML page as a

Figure 2-8. SocioGraph Facebook plug-in

14 | Chapter 2: Flex in Action

standalone piece. This makes YourMinis not only a great por-
tal, but also a great place to build widgets that can go anywhere.

Dashboards
Controlling a business is one thing, but how about controlling
devices—such as a yacht, for example? Yes, Flex has done that
too. Have a look at Figure 2-10 to see the InteliSea yacht
alarm, monitoring, and control system (http://www.inteli
sea.com/demo/demo.htm).

Figure 2-10. The InteliSea yacht alarm, monitoring, and control
system

It makes me want to go out and buy a yacht just so that I can
play with this thing. Of course, there is the expense of the yacht.
Hmmm... Oh, well. I wonder if I can get this trimmed down to
work on radio-controlled boats.

ILOG Visualization Products has developed a graphing dash-
board based on the CIA World FactBook, which comprises

Dashboards | 15

http://www.intelisea.com/demo/demo.htm
http://www.intelisea.com/demo/demo.htm

U.S. government profiles of countries and territories around
the world. This is shown in Figure 2-11.

Figure 2-11. The CIA World FactBook viewer

This shows a nice combination of the controls available in the
ILOG Elixir toolkit, including 2D and 3D charts, a tree view,
interactive maps, and more. For more information on the
ILOG Elixir toolkit, visit http://www.ilog.com/products/elixir/.
I also discuss ILOG Elixir in more detail in Chapter 7.

Desktop Applications
Not only is Flex good for making great web applications, but
you also can use it to build desktop applications using exactly
the same Flex toolkit. To demonstrate I’ll show two desktop
applications. The first is a chat application, shown in Fig-
ure 2-12. The application is called Pownce (http://
pownce.com/) and it sits on the desktop using Adobe’s AIR
technology.

16 | Chapter 2: Flex in Action

http://www.ilog.com/products/elixir/
http://pownce.com/
http://pownce.com/

Figure 2-12. The Pownce chat client

I can tell you from experience that building this type of chat
application in Ajax is a real hassle. Cross-domain security be-
comes an issue that requires that you proxy all of the requests.
And making lots of HTTP requests can create memory leaks
on some browsers that will leave you banging your head against
the wall trying to fix all of the bugs that may or may not appear
at any given time. Flex gets around these hassles by sitting on
top of the robust and cross-platform Flash Player.

Another excellent example of an online application is the AIR-
based eBay Desktop (http://desktop.ebay.com), shown in Fig-
ure 2-13.

Desktop Applications | 17

http://desktop.ebay.com

Figure 2-13. The eBay Desktop application

From here, you can browse what is available for sale, bid on
items, watch your auctions, and so on. And it even maintains
the native look and feel of the operating system.

What Will You Do?
The chapters that follow will show you the parts and pieces
that were used to create all of these applications. But it’s up to
you to find the inspiration and creativity to take your applica-
tions to the next level. Thankfully, with Flex you will have all
the tools you need to take you there.

18 | Chapter 2: Flex in Action

CHAPTER 3

Flex 101: Step by Step

This chapter will walk you step by step through the process of
constructing a Flex application. That starts with learning how
Flex works. Flex is an XML-based language that is compiled
into Flash applications. You can see the process portrayed
graphically in Figure 3-1.

Figure 3-1. The flow of Flex application building

Going from the bottom left of Figure 3-1 to the top right, Flex
Builder 3 helps you write app.mxml, the Flex application. That
in turn is run through the MXML compiler that generates a
SWF file for the application. It also generates a temporary
HTML test page that hosts the SWF so that you can test it. The
SWF and the HTML are replaced after each compile, so I made
them dashed to indicate that they are temporary.

19

Flex Builder is actually a bit more useful than this in that it
really manages projects, which are sets of Flex applications and
components, as well as assets (e.g., images and audio that are
embedded in the SWF) and any libraries that your project ref-
erences. This is shown in Figure 3-2.

Now that you have a general idea of how Flex Builder 3 creates
Flex applications, it’s time to walk through the process of cre-
ating a real Flex application.

A Flickr Viewer
The final sample application in this chapter is a Flickr image
viewer. The end result looks like Figure 3-3.

With this application, you can type a search term into the text
box, click the Search button, and see the result in the list view.

This example is a bit more complex than the example in Chap-
ter 1, so I’ll walk you through building it in Flex Builder.

The first step is to create a new Flex application project named
FlickrRIA, which you can do by following these steps:

Figure 3-2. The Flex project creating a single SWF

20 | Chapter 3: Flex 101: Step by Step

1. In the Flex Builder IDE, select File→New→Flex Project
and name the project FlickrRIA.

2. Accept the default location for the project and confirm
that the Application Type is Web Application and that
the Server Technology is set to None.

3. Click Finish to create the project.

The FlickrRIA.mxml application file opens in the MXML edi-
tor. The editor is in Source mode. Now, you need to format the
display. To do so, follow these steps:

1. In the opening Application tag, delete the code lay
out="absolute".

2. For the Application tag, add a backgroundGradientCol
ors attribute with a value of [0xFFFFFF, 0xAAAAAA], a
horizontalAlign attribute with a value of left, a verti
calGap attribute with a value of 15, and a horizontal
Gap attribute with a value of 15.

Example 3-1 shows the code for the Application tag.

Figure 3-3. The Flickr viewer

A Flickr Viewer | 21

Example 3-1. The Application tag

<mx:Application xmlns:mx="http://www.adobe.com
 /2006/mxml"
 backgroundGradientColors="[0xFFFFFF,0xAAAAAA]"
 horizontalAlign="left"
 verticalGap="15" horizontalGap="15" >

Next, we’ll lay out the search form in Design mode:

1. Click the Design button to change to Design mode. Us-
ing Design mode is the easiest way to lay out a form in
Flex Builder.

2. From the Components view, drag an HBox component
from the Layout folder to the design area. Keep the de-
fault values of the component. The HBox component
contains the label, input field, and button for the form
and displays them horizontally.

NOTE
The blue lines that appear in the design area help
you position the component. When you release
the component in the design area, it snaps into
position.

3. Drag the Label component from the Controls folder to
the HBox component.

4. To change the default appearance of the Label compo-
nent, double-click the Label component and type in the
Flickr tags or terms that you want to search (see Fig-
ure 3-4).

22 | Chapter 3: Flex 101: Step by Step

Figure 3-4. The search label

5. Drag the TextInput component from the Controls fold-
er to the position following the Label component in the
HBox. The TextInput component provides the user with
a space to input search terms (see Figure 3-5).

Figure 3-5. The TextInput field

6. Drag a Button component from the Controls folder to the
position following the TextInput component in the
HBox component.

7. Double-click the Button component and enter Search to
change the default appearance.

At this point, we need to create the HTTPService object:

1. Change to Source mode.

2. Use the HTTPService component to call the Flickr service
and return the results. After the opening Application tag
and before the HBox component, create an HTTPService
component, but do not give it a closing tag.

3. To the HTTPService component, add an id attribute
with a value of photoService, a url attribute with a value
of http://api.flickr.com/services/feeds/photos_public.gne,
and a result attribute with a value of photoHan

A Flickr Viewer | 23

http://api.flickr.com/services/feeds/photos_public.gne

dler(event). The photoHandler event packages the serv-
ice results. We will create the {{photoHandler}} function
later.

Example 3-2 shows the relevant code.

Example 3-2. The HTTPService control

<mx:HTTPService id="photoService"

 url="http://api.flickr.com/services/feeds
 /photos_public.gne"
 result="photoHandler(event)"/>

Now it’s time to create a bindable XML variable in ActionScript
3.0. To do so, follow these steps:

1. Before the HTTPService component, add a Script com-
ponent by typing <mx:Script>. Flex Builder completes
the tag for you. Alternatively, you can place the Script
component after the HTTPService component, as shown
in Example 3-3.

Example 3-3. The blank script tag

<mx:Script>
<![CDATA[
]]>
</mx:Script>

2. In the mx:Script block, enter
import mx.collections.ArrayCollection. ArrayCollec
tion is the type of object that is used as a data provider.

The relevant code is shown in Example 3-4.

Example 3-4. The first import statement

<mx:Script>
<![CDATA[
 import mx.collections.ArrayCollection;
]]>
</mx:Script>

3. After the ArrayCollection import statement, enter
import mx.rpc.events.ResultEvent to import the Resul
tEvent class. The ResultEvent class is the type of event

24 | Chapter 3: Flex 101: Step by Step

that the HTTPService generates. You can see this in Ex-
ample 3-5.

Example 3-5. The second import statement

<mx:Script>
<![CDATA[
 import mx.collections.ArrayCollection;
 import mx.rpc.events.ResultEvent;
]]>
</mx:Script>

4. Create a bindable private variable named photoFeed of
the ArrayCollection class after the import statement in
the mx:Script block. The photoFeed ArrayCollection is
populated with the HTTPService response data. Exam-
ple 3-6 shows the completed script.

Example 3-6. The completed script

<mx:Script>
<![CDATA[
 import mx.collections.ArrayCollection;
 import mx.rpc.events.ResultEvent;

 [Bindable]
 private var photoFeed:ArrayCollection;
]]>
</mx:Script>

With the bindable XML variable created, it’s time to create the
Submit button click handler, and send the HTTPService request
and keywords to the Flickr API:

1. Using the Outline view, locate the Button component in
the HBox component. Clicking the Button component in
the Outline view locates the Button component code in
Source mode. This is shown in Figure 3-6.

A Flickr Viewer | 25

Figure 3-6. The Button component in the Outline view

2. To the Button component, add a click attribute with a
value of requestPhotos():

<mx:Button label="Search" click="requestPhotos()"/>

When a user clicks the button, it calls the requestPho
tos() handler, which initiates the HTTPService call.

3. Using the Outline view, locate the TextInput component
in the HBox component and add an id attribute with a
value of searchTerms. The instance name for the TextIn
put component is id, as shown here:

<mx:TextInput id="searchTerms"/>

4. In the mx:Script block, create a private function named
requestPhotos() with a return value of *void. This is the
function where the HTTPService call is initiated.

The relevant code appears in Example 3-7.

Example 3-7. The requestPhotos method

<mx:Script>
<![CDATA[
 import mx.collections.ArrayCollection;
 import mx.rpc.events.ResultEvent;

 [Bindable]
 private var photoFeed:ArrayCollection;
 private function requestPhotos():void{
 }
]]>
</mx:Script>

26 | Chapter 3: Flex 101: Step by Step

5. In the function, cancel any previous requests to photo
Service by using the cancel method. The instance name
of the HTTPService component is photoService.

6. Create an Object variable named params.

7. Create a format parameter of the params variable with a
value of rss_200_enc. This value tells Flickr how to pack-
age the response.

8. Create a tags parameter of the params variable with a
value of searchTerms.text. This is the value that was en-
tered in the search field.

9. Send the request and params variable to Flickr by using
the send method of photoService. Example 3-8 shows
the complete function.

Example 3-8. The complete requestPhotos function

<mx:Script>
<![CDATA[
 import mx.collections.ArrayCollection;
 import mx.rpc.events.ResultEvent;

 [Bindable]
 private var photoFeed:ArrayCollection;

 private function requestPhotos():void{
 photoService.cancel();
 var params:Object = new Object();
 params.format = 'rss_200_enc';
 params.tags = searchTerms.text;
 photoService.send(params);
 }
]]>
</mx:Script>

Now it’s time to create the HTTPService result handler and to
populate the photoFeed XML variable:

1. After the requestPhotos() function, create a private
function named photoHandler and pass an event of type
ResultEvent to the function. The return type is void. The
photoHandler handles the response from the HTTPSer

A Flickr Viewer | 27

vice call. At this point, your code should look like Ex-
ample 3-9.

Example 3-9. The complete script block

<mx:Script>
<![CDATA[
 import mx.collections.ArrayCollection;
 import mx.rpc.events.ResultEvent;

 [Bindable]
 private var photoFeed:ArrayCollection;

 private function requestPhotos():void{
 photoService.cancel();
 var params:Object = new Object();
 params.format = 'rss_200_enc';
 params.tags = searchTerms.text;
 photoService.send(params);
 }

 private function photoHandler(event:ResultEvent)
 :void{
 }
]]>
</mx:Script>

2. In the photoHandler() function, populate the photoFeed
variable with the data located in the event object,
event.result.rss.channel.item, and type it as ArrayCol
lection. Your code should now look like Example 3-10.

Example 3-10. Adding the photoHandler

<mx:Script>
<![CDATA[
 import mx.collections.ArrayCollection;
 import mx.rpc.events.ResultEvent;

 [Bindable]
 private var photoFeed:ArrayCollection;

 private function requestPhotos():void{
 photoService.cancel();
 var params:Object = new Object();
 params.format = 'rss_200_enc';

28 | Chapter 3: Flex 101: Step by Step

 params.tags = searchTerms.text;
 photoService.send(params);
 }

 private function photoHandler(event:ResultEvent)
 :void{
 photoFeed = event.result.rss.channel.item as
 ArrayCollection;
 }
]]>
</mx:Script>

Now we’re ready to create the Tile component in MXML, bind
the photoFeed XML data to the TileList component, and then
create the thumbnails item renderer in the Tile component:

1. We will use a TileList component to display the images.
After the HBox component and before the closing Appli
cation tag, add a TileList component with a width of
100% and a height of 100%. This TileList is shown in
Example 3-11.

Example 3-11. The TileList

<mx:TileList width="100%" height="100%">
</mx:TileList>

2. Using the Outline view, locate the TileList component
and add an attribute of dataProvider with a value of
{photoFeed} to bind the data to the tile component. (Re-
member to move the > to the end of the dataProvider
line.) Example 3-12 shows the completed TileList com-
ponent.

Example 3-12. The completed TileList

<mx:TileList width="100%" height="100%"
 dataProvider="{photoFeed}">
</mx:TileList>

3. The item renderer renders the layout for each item in the
TileList. Within the TileList component, add an item
Renderer property, using the code shown in Exam-
ple 3-13.

A Flickr Viewer | 29

Example 3-13. The itemRenderer attribute

<mx:TileList width="100%" height="100%"
 dataProvider="{photoFeed}">
 <mx:itemRenderer>
 </mx:itemRenderer>
</mx:TileList>

4. Now we’ll create a layout component for the item ren-
derer. Within the itemRenderer property, add a Compo
nent component using the code shown in Example 3-14.

Example 3-14. Adding the Component

<mx:TileList width="100%" height="100%"
 dataProvider="{photoFeed}">
 <mx:itemRenderer>
 <mx:Component
 </mx:Component>
 </mx:itemRenderer>
</mx:TileList>

5. To create the layout the item renderer will use, within
the Component add the VBox component with a width at-
tribute with a value of 125 and a height attribute with a
value of 125. Add paddingBottom, paddingLeft, padding
Top, and paddingRight attributes each with a value of 5.
The code is shown in Example 3-15.

Example 3-15. Adding the VBox

<mx:TileList width="100%" height="100%"
 dataProvider="{photoFeed}">
 <mx:itemRenderer>
 <mx:Component>
 <mx:VBox width="125” height="125”
 paddingBottom="5”
 paddingLeft="5”
 paddingTop="5”
 paddingRight="5">
 </mx:VBox>
 </mx:Component>
 </mx:itemRenderer>
</mx:TileList>

6. Within the VBox component, create an Image component.
Add a width attribute with a value of 75 and a height

30 | Chapter 3: Flex 101: Step by Step

attribute with a value of 75. The itemRenderer passes
values to the Image component through the Image com-
ponent’s data property. Add a source with a value of
{data.thumbnail.url} to the Image component to popu-
late the image. The code is shown in Example 3-16.

Example 3-16. Adding the Image tag

<mx:TileList width="100%" height="100%"
 dataProvider="{photoFeed}">
 <mx:itemRenderer>
 <mx:Component>
 <mx:VBox width="125" height="125"
 paddingBottom="5"
 paddingLeft="5"
 paddingTop="5"
 paddingRight="5">
 <mx:Image width="75” height="75”
 source="{data.thumbnail.url}"/>
 </mx:VBox>
 </mx:Component>
 </mx:itemRenderer>
</mx:TileList>

7. After the Image component, create a Text component
with the text attribute having a value of {data.credit}
to display the name of the photographer. The code is
shown in Example 3-17.

Example 3-17. Adding the Text component

<mx:TileList width="100%" height="100%"
 dataProvider="{photoFeed}">
 <mx:itemRenderer>
 <mx:Component>
 <mx:VBox width="125" height="125"
 paddingBottom="5"
 paddingLeft="5"
 paddingTop="5"
 paddingRight="5">
 <mx:Image width="75" height="75"
 source="{data.thumbnail.url}"/>
 <mx:Text text="{data.credit}"/>
 </mx:VBox>
 </mx:Component>

A Flickr Viewer | 31

 </mx:itemRenderer>
</mx:TileList>

8. Save and then run the application. You should see a
form. In the form, submit a search term and you should
see the application display the relevant image(s).

At this point, you should be ready to separate the thumbnail
display into a custom component:

1. Create a new component by selecting
File→New→MXML Component. The filename for this is
FlickrThumbnail and the component should be based on
VBox. Set the width to 125 and the height to 125.

2. Using the Outline view, locate the TileList component.

3. Cut the Image and Text components from the VBox com-
ponent in TileList, and paste them into FlickrThumb
nail.mxml. This starting code is shown in Example 3-18.

Example 3-18. The new FlickrThumbnail.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="125" height="125">
 <mx:Image width="75" height="75"
 source="{data.thumbnail.url}"/>
 <mx:Text text="{data.credit}"/>
</mx:VBox>

4. Add the following attributes to the VBox component:
paddingBottom, paddingTop, paddingRight, and paddin
gLeft, each with a value of 5; horizontalScrollPolicy
and verticalScrollPolicy, both with a value of off; and
horizontalAlign with a value of center. The updated
code is shown in Example 3-19.

Example 3-19. Updating the VBox component source

<?xml version="1.0" encoding="utf-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="125" height="125"
 paddingBottom="5” paddingLeft="5” paddingTop="5”
 paddingRight="5”
 horizontalScrollPolicy="off” verticalScrollPolicy=

32 | Chapter 3: Flex 101: Step by Step

 "off”
 horizontalAlign="center">
 <mx:Image width="75" height="75"
 source="{data.thumbnail.url}"/>
 <mx:Text text="{data.credit}"/>
</mx:VBox>

5. Using the Outline view, locate the TileList component
in the FlickrRIA.mxml template.

6. Delete the code for the itemRenderer, Component, and
VBox components.

7. Add the attribute itemRenderer to the TileList compo-
nent with a value of FlickrThumbnail. The completed
code is shown in Example 3-20.

Example 3-20. Referencing the itemRenderer

<mx:TileList width="100%" height="100%"
 dataProvider="{photoFeed}"
 itemRenderer="FlickrThumbnail">
</mx:TileList>

8. Compile and run the application.

At this point, you should see something very similar to what
you had when you created the inline component itemRenderer.

The final code for FlickrRIA.mxml is shown in Example 3-21.

Example 3-21. FlickrRIA.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 backgroundGradientColors="[0xFFFFFF, 0xAAAAAA]"
 horizontalAlign="left"
 verticalGap="15"
 horizontalGap="15">
 <mx:Script>
 <![CDATA[
 import mx.collections.ArrayCollection;
 import mx.rpc.events.ResultEvent;

 [Bindable]
 private var photoFeed:ArrayCollection;
 private function requestPhotos():void {
 photoService.cancel();

A Flickr Viewer | 33

 var params:Object = new Object();
 params.format = 'rss_200_enc';
 params.tags = searchTerms.text;
 photoService.send(params);
 }
 private function photoHandler(event:ResultEvent)
 :void {
 photoFeed = event.result.rss.channel.item as
 ArrayCollection;
 }
]]>
 </mx:Script>
 <mx:HTTPService id="photoService"

 url="http://api.flickr.com/services/feeds
 /photos_public.gne"
 result="photoHandler(event)" />
 <mx:HBox>
 <mx:Label text="Flickr tags or search terms:" />
 <mx:TextInput id="searchTerms" />
 <mx:Button label="Search"
 click="requestPhotos()" />
 </mx:HBox>
 <mx:TileList width="100%" height="100%"
 dataProvider="{photoFeed}"
 itemRenderer="FlickrThumbnail">
 </mx:TileList>
</mx:Application>

The complete code for the image item rendering component is
shown in Example 3-22.

Example 3-22. The custom image rendering component

<?xml version="1.0" encoding="utf-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml"
 width="125" height="125"
 horizontalAlign="center"
 paddingBottom="5" paddingLeft="5" paddingRight="5"
 paddingTop="5">
 <mx:Image
 width="75" height="75"
 source="{data.thumbnail.url}" />
 <mx:Text width="100" text="{data.credit}" />
</mx:VBox>

34 | Chapter 3: Flex 101: Step by Step

As you can see from this example, it is very easy to access web
services from Flex. It’s also easy to parse their contents using
the E4X syntax built directly into ActionScript 3, which makes
querying XML data as easy as using standard dot notation. It’s
nice to wrap the whole thing up with a display using a list of
images managed by TileList with a custom itemRenderer.

A Flickr Viewer | 35

CHAPTER 4

Flex Controls and Layout

The first step in building a Flex application is to create the user
interface. Flex not only has a rich set of controls. It also has a
complete set of layout mechanisms that make it easy to build
user interfaces that look good and can scale appropriately as
the display area of the Flash application is resized.

This chapter covers both layout mechanisms and controls. We
will start by covering the layout mechanisms, and then we will
discuss the available controls.

The Application Container
At the root of a Flex application is a single container, called the
Application container, which holds all other containers and
components. The Application container lays out all its children
vertically by default (when the layout property is not specifi-
cally defined). There are three possible values for the Applica
tion component’s layout property:

vertical
Lays out each child component vertically from the top of
the application to the bottom in the specified order

horizontal
Lays out each child component horizontally from the left
of the application to the right in the specified order

37

absolute
Does no automatic layout, and requires you to explicitly
define the location of each child component

If the Application component’s layout property is absolute,
each child component must have an x and y coordinate de-
fined; otherwise, the component will be displayed in the (0,0)
position.

The Application container can also be formatted using any of
the several style parameters that are available, including back
groundGradientColors and verticalGap. In Example 4-1, the
Application tag is used to lay out the child controls.

Example 4-1. The Application MXML

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 backgroundGradientColors="[#FFFFFF, #FFDE00]" verticalGap="15"
 layout="horizontal">
 <mx:Image source="assets/animals03.jpg" />
 <mx:Label text="Photographed by Elsie Weil" fontSize="15"
 fontWeight="bold" />
</mx:Application>

Figure 4-1 shows the result of this code.

Figure 4-1. Controls using the Application container

38 | Chapter 4: Flex Controls and Layout

The Box Class
The Box class is the base class for the VBox and HBox classes:

• The VBox container renders all child display objects verti-
cally.

• The HBox container renders all child display objects hori-
zontally.

The Application object behaves like a VBox by default (vertical
layout), but you can also set it to use absolute or horizontal
layout.

VBox and HBox flow like HTML, only in one direction.

Example 4-2 shows the default layout method used by the
VBox container (vertical).

Example 4-2. Using the VBox container

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 backgroundColor="#FFFFFF" backgroundAlpha="0">
 <mx:VBox>
 <mx:Button label="< prev" left="10" top="120" />
 <mx:Image source="assets/animals03.jpg" horizontalCenter="0"
 top="30"/>
 <mx:Label text="Photographed by Elsie Weil"
 horizontalCenter="0" top="250"/>
 <mx:Button label="next >" right="10" top="120"/>
 </mx:VBox>
</mx:Application>

Figure 4-2 shows the result of this code.

The Box Class | 39

Figure 4-2. A VBox layout

Example 4-3 shows the default layout method used by the
HBox container (horizontal).

Example 4-3. Using the HBox container

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 backgroundColor="#FFFFFF" backgroundAlpha="0">
 <mx:HBox>
 <mx:Button label="< prev" left="10" top="120" />
 <mx:Image source="assets/animals03.jpg" horizontalCenter="0"
 top="30"/>
 <mx:Label text="Photographed by Elsie Weil"
 horizontalCenter="0" top="250"/>
 <mx:Button label="next >" right="10" top="120"/>
 </mx:HBox>
</mx:Application>

Figure 4-3 shows the result.

You can also use both VBox and HBox to achieve a desired layout.
For instance, Example 4-4 nests an HBox inside a VBox, demon-

40 | Chapter 4: Flex Controls and Layout

strating that container controls can have other containers as
children.

Example 4-4. Using both the VBox and the HBox containers

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 backgroundColor="#FFFFFF" backgroundAlpha="0">
 <mx:VBox horizontalAlign="center" verticalGap="15">
 <mx:HBox verticalAlign="middle" horizontalGap="15">
 <mx:Button label="< prev" left="10" top="120" />
 <mx:Image source="assets/animals03.jpg"
 horizontalCenter="0" top="30"/>
 <mx:Button label="next >" right="10" top="120"/>
 </mx:HBox>
 <mx:Label text="Photographed by Elsie Weil"
 horizontalCenter="0" top="250"/>
 </mx:VBox>
</mx:Application>

Figure 4-4 shows the result of Example 4-4.

The Canvas Container (Absolute Positioning)
Canvas is the only container that lets you explicitly specify the
location of its children within the container. The Canvas object
has only one layout value: absolute. You can use the x and y
properties of child components for pixel-perfect layouts. If the
display window is resized, the child components stay fixed in
place and may appear cut off. Using absolute positioning you
can make child controls overlap if desired.

Figure 4-3. An HBox layout

The Canvas Container (Absolute Positioning) | 41

Example 4-5 is some sample code for an absolutely positioned
layout.

Example 4-5. An absolutely positioned layout

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute" backgroundColor="#FFFFFF"
 backgroundAlpha="0">
 <mx:Canvas x="23" y="34">
 <mx:Button label="< prev" x="4" y="97" />
 <mx:Image source="assets/animals03.jpg" x="85" y="4" />
 <mx:Label text="Photographed by Elsie Weil" x="85"
 y="230" />
 <mx:Button label="next >" x="381" y="97" />
 </mx:Canvas>
</mx:Application>

Figure 4-5 shows the result.

The Canvas Container (Relative Positioning)
With relative positioning, also called constraint-based layout,
you can anchor the sides or center of a component to positions
which are relative to the component’s container. The size and
position of the components change when the user resizes the

Figure 4-4. A combination VBox and HBox layout

42 | Chapter 4: Flex Controls and Layout

application window. The container’s layout property must be
set to absolute. All constraints are set relative to the edges of
the container, not to other controls in the container. The left,
right, top, bottom, horizontalCenter, and verticalCenter
properties are anchors in constraint-based layouts.

Example 4-6 shows the code for positioning children in a con-
straint-based layout using the top, bottom, left, right, horizon
talCenter, and verticalCenter styles.

Example 4-6. Photo.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute backgroundColor="#FFFFFF"
 backgroundAlpha="0">
 <mx:HDividedBox width="100%" height="300">
 <mx:Canvas backgroundColor="#FFFFCC" width="150"
 height="100%">
 <mx:Label text="Adjust this section" left="15" />
 </mx:Canvas>
 <mx:Canvas>
 <mx:Button label="< prev" left="10" top="120"/>
 <mx:Image source="animals03.jpg" horizontalCenter="0"
 top="30"/>
 <mx:Label text="Photographed by Elsie Weil"
 horizontalCenter="0" top="250"/>
 <mx:Button label="next >" right="10" top="120"/>

Figure 4-5. An absolutely positioned image

The Canvas Container (Relative Positioning) | 43

 </mx:Canvas>
 </mx:HDividedBox>
</mx:Application>

When you launch this application you should see something
similar to Figure 4-6.

You can adjust the size of the panel on the right by grabbing
the control and moving the mouse to the left or right. This will
move the image to match the size of the panel.

The Form Container
The Form container lets you control the layout of a form, mark
form fields as required or, optionally, handle error messages,
and bind your form data to the Flex data model to perform data
checking and validation.

The Form container, like all containers, encapsulates and lays
out its children. The Form container controls the size and layout
of the contents of the form. The FormHeader defines a heading
for your Form. Multiple FormHeading controls are allowed. A
FormItem container specifies a Form element consisting of the
following parts:

• A single label

Figure 4-6. A constraint-based layout

44 | Chapter 4: Flex Controls and Layout

• One or more child controls or containers, such as input
controls

You can also insert other types of components into a Form con-
tainer.

The code in Example 4-7 demonstrates use of a Form container
control.

Example 4-7. CommentForm.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute" backgroundColor="#FFFFFF"
 backgroundAlpha="0">
 <mx:Form x="50" y="50" verticalGap="15">
 <mx:FormHeading label="Send us comments" />
 <mx:FormItem label="Full Name:">
 <mx:TextInput id="fullName" />
 </mx:FormItem>
 <mx:FormItem label="Email:">
 <mx:TextInput id="email" />
 </mx:FormItem>
 <mx:FormItem label="Comments:">
 <mx:TextArea id="comments" />
 </mx:FormItem>
 <mx:FormItem>
 <mx:Button id="submit" label="submit" />
 </mx:FormItem>
 </mx:Form>
</mx:Application>

Figure 4-7 shows the result of this code.

The Form Container | 45

Figure 4-7. A form-based layout

Combined Layouts
Containers can hold other containers. You can nest them to
create sophisticated layouts, and you can create custom com-
ponents that are made up of existing components. Exam-
ple 4-8 shows an example of a complex nested layout. You
should take care to use these container classes wisely and not
to overuse them. Using too many nested containers can be the
cause of performance problems in your application.

Example 4-8. A complex nested layout

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 backgroundColor="#000000" layout="horizontal"
 horizontalGap="25">
 <mx:Style> Panel { backgroundAlpha: 1; borderAlpha: 1;
 headerColors: #c7c7c7, #ffffff;
 footerColors: #ffffff, #c7c7c7;
 paddingTop: 15; paddingRight: 15;
 paddingLeft: 15; paddingBottom: 15;
 shadowDirection: "right"; }
 .header { color: #ffffff; fontSize: 15;
 fontWeight: "bold"; }</mx:Style>
 <mx:VBox verticalGap="10">
 <mx:Panel title="Featured Photograph">
 <mx:Image source="assets/animals03.jpg" horizontalCenter="0"

46 | Chapter 4: Flex Controls and Layout

 top="30" />
 <mx:Label text="Photographed by Elsie Weil"
 horizontalCenter="0" top="250" />
 </mx:Panel>
 <mx:Panel title="Provide feedback">
 <mx:Form x="50" y="50" verticalGap="15">
 <mx:FormHeading label="Send us comments" />
 <mx:FormItem label="Full Name:"><mx:TextInput
 id="fullName" />
 </mx:FormItem>
 <mx:FormItem label="Email:"><mx:TextInput id="email" />
 </mx:FormItem>
 <mx:FormItem label="Comments:"><mx:TextArea
 id="comments" />
 </mx:FormItem>
 <mx:FormItem><mx:Button id="submit" label="submit" />
 </mx:FormItem>
 </mx:Form>
 </mx:Panel>
 </mx:VBox>
 <mx:VBox verticalGap="25">
 <mx:Canvas>
 <mx:Label text="Category: Animals" styleName="header" />
 <mx:Image source="assets/animals03_sm.jpg" y="30" />
 <mx:Image source="assets/animals08_sm.jpg" y="120" />
 <mx:Image source="assets/animals09_sm.jpg" y="120"
 x="120" />
 <mx:Image source="assets/animals10_sm.jpg" y="120"
 x="240" />
 <mx:Image source="assets/animals11_sm.jpg" y="211" />
 <mx:Image source="assets/animals12_sm.jpg" y="211"
 x="120" />
 <mx:Image source="assets/animals06_sm.jpg" y="30"
 x="120" />
 <mx:Image source="assets/animals07_sm.jpg" y="30"
 x="240" />
 </mx:Canvas>
 <mx:Canvas>
 <mx:Label text="Category: Cities" styleName="header" />
 <mx:Image source="assets/city01_sm.jpg" y="30" />
 <mx:Image source="assets/city02_sm.jpg" y="30" x="120"/>
 <mx:Image source="assets/city03_sm.jpg" y="30" x="240" />
 <mx:Image source="assets/city04_sm.jpg" y="120" x="0" />
 </mx:Canvas>
 </mx:VBox>
</mx:Application>

Combined Layouts | 47

Figure 4-8 shows the result of Example 4-8.

Figure 4-8. A complex layout using various types of layout
mechanisms

The Panel Container
The Panel container consists of a title bar, a caption, a status
message, a border, and a content area for its children. You can
use Panel containers to wrap self-contained application mod-
ules. You can control the display layout by using the layout
property set to vertical (the default), horizontal, or abso
lute. Each child must have its x and y positions set when using
an absolute layout, or they must use anchors for a constraint-
based layout.

Example 4-9 shows a sample Panel layout.

Example 4-9. Photo2.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"

48 | Chapter 4: Flex Controls and Layout

 backgroundGradientColors="[#FFFFFF, #000000]">
 <mx:Panel title="Featured Photograph"
 backgroundAlpha=".25" borderAlpha="1"
 headerColors="[#c7c7c7, #ffffff]"
 footerColors="[#ffffff, #c7c7c7]"
 paddingTop="15" paddingRight="15" paddingLeft="15"
 paddingBottom="15"
 shadowDirection="right">
 <mx:Image source="assets/animals03.jpg"
 horizontalCenter="0" top="30" />
 <mx:Label text="Photographed by Elsie Weil"
 horizontalCenter="0" top="250" />
 </mx:Panel>
</mx:Application>

Figure 4-9 shows this Panel-based layout.

Figure 4-9. A layout using the Panel container

In addition to panels, you also can use a TitleWindow class to
provide windowing-style functionality. This can come in han-
dy when you want to bring up an alert, or a modal dialog.

The Panel Container | 49

Controls
So many controls are available for you to use with Flex that it’s
almost hard to know where to begin. I suppose the best place
to start is with the basic controls, such as labels, buttons,
checkboxes, and so on. Example 4-10 shows an MXML appli-
cation that provides a heaping helping of the basic control
types.

Example 4-10. Buttons2.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="horizontal">
<mx:VBox horizontalAlign="left">
 <mx:Label text="Text label" />
 <mx:Label htmlText="HTML text" />
 <mx:Button label="Button" />
 <mx:CheckBox label="Check box" />
 <mx:RadioButtonGroup id="cardType"/>
 <mx:RadioButton label="Visa" groupName="cardType" />
 <mx:RadioButton label="MasterCard" groupName="cardType"/>
 <mx:ComboBox dataProvider="{['a','b','c']}" />
 <mx:HSlider />
 <mx:TextInput />
</mx:VBox>
<mx:VBox horizontalAlign="left">
 <mx:List dataProvider="{['a','b','c']}" width="200"
 height="100" />
 <mx:ButtonBar dataProvider="{['a','b','c']}" />
 <mx:NumericStepper />
 <mx:Image source="@Embed('megan.jpg')" />
</mx:VBox>
</mx:Application>

When I run this in Flex Builder I see Figure 4-10.

As you would expect, in addition to these controls, you also
have available labels with flat text and HTML, push buttons,
checkboxes and radio boxes, combos, text inputs, and lists, as
well as some cool new controls such as sliders, numeric step-
pers, button bars, and images, among others.

50 | Chapter 4: Flex Controls and Layout

Data Grids
We regularly have to build tables of structured information.
This is easy in Flex, thanks to two controls: the DataGrid and
the AdvancedDataGrid. I’ll start by showing the DataGrid control
(see Example 4-11).

Example 4-11. Datagrid.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="vertical">
 <mx:XMLList id="employees">
 <employee>
 <name>Christina Coenraets</name>
 <phone>555-219-2270</phone>
 <email>ccoenraets@fictitious.com</email>
 <active>true</active>
 </employee>

Figure 4-10. A collection of the basic control types

Data Grids | 51

 ...
 </mx:XMLList>
 <mx:DataGrid width="100%" height="100%" dataProvider=
 "{employees}">
 <mx:columns>
 <mx:DataGridColumn dataField="name" headerText="Name"/>
 <mx:DataGridColumn dataField="phone" headerText="Phone"/>
 <mx:DataGridColumn dataField="email" headerText="Email"/>
 </mx:columns>
 </mx:DataGrid>
</mx:Application>

When I run this in Flex Builder I see Figure 4-11.

You don’t even have to define the columns in the DataGrid un-
less you want to. The DataGrid control is smart enough to de-
tect the columns from the data and set itself up if you haven’t
defined the columns.

The AdvancedDataGrid is just like the DataGrid but with a more
powerful set of features. For example, it has the ability to roll
up sections of the data and provide users with spinners so that
they can drill down into the data.

Example 4-12 shows AdvancedDataGrid in action.

Figure 4-11. A simple data grid

52 | Chapter 4: Flex Controls and Layout

Example 4-12. Advgrid.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="vertical">
<mx:Script>
<![CDATA[
import mx.collections.ArrayCollection;
[Bindable]
private var dpHierarchy:ArrayCollection = new ArrayCollection([
 {Region:"Southwest", children: [...]}
]);
]]>
</mx:Script>

<mx:AdvancedDataGrid width="100%" height="100%">
 <mx:dataProvider>
 <mx:HierarchicalData source="{dpHierarchy}"/>
 </mx:dataProvider>
 <mx:columns>
 <mx:AdvancedDataGridColumn dataField="Region"/>
 <mx:AdvancedDataGridColumn dataField="Territory_Rep"
 headerText="Territory Rep"/>
 <mx:AdvancedDataGridColumn dataField="Actual"/>
 <mx:AdvancedDataGridColumn dataField="Estimate"/>
 </mx:columns>
</mx:AdvancedDataGrid>
</mx:Application>

When I run this in the browser and click around a little bit I
get something similar to Figure 4-12.

As with any control, you can use the itemRenderer functionality
in Flex Builder to format each cell however you choose.

In-Place Editing
The DataGrid control also allows for editing cell contents in
place. Example 4-13 shows just how easy this is.

Example 4-13. Edit_table.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="vertical">
 <mx:XMLList id="customers" xmlns="">

Data Grids | 53

 <customer><first>Jack</first>
 <last>Herrington</last></customer>
 <customer><first>Lori</first>
 <last>Herrington</last></customer>
 <customer><first>Megan</first>
 <last>Herrington</last></customer>
 </mx:XMLList>
 <mx:DataGrid dataProvider="{customers}" editable="true">
 <mx:columns>
 <mx:DataGridColumn dataField="first" />
 <mx:DataGridColumn dataField="last" />
 </mx:columns>
 </mx:DataGrid>
</mx:Application>

All I needed to do was add the editable attribute to the Data
Grid and set it to true.

When I bring this up in the browser and double-click on a cell,
I see something similar to Figure 4-13.

Of course, to make the example functional I would need to
listen to the editing events and update the backend data store
to match.

By default, the DataGrid uses a text editor to edit the cell con-
tents, but you can provide your own editor renderer to use
whatever controls you like to edit the value in the cell.

Figure 4-12. The advanced data grid

54 | Chapter 4: Flex Controls and Layout

Tabs and Accordions
Sometimes you have more content than you can reasonably fit
on the screen, so you need some way to let the user navigate
around groupings of content. Flex provides several solutions,
two of which, tabs and accordions, I’ll demonstrate here.

Tabs are very easy to create, as you can see in Example 4-14.

Example 4-14. Tabs.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="vertical">
 <mx:TabNavigator borderStyle="solid" width="100%"
 height="100%">
 <mx:VBox label="Tab One">
 <mx:Label text="Tab one's content" />
 </mx:VBox>
 <mx:VBox label="Tab Two">
 <mx:Label text="Tab two's content" />
 </mx:VBox>

Figure 4-13. The editable grid

Tabs and Accordions | 55

 <mx:VBox label="Tab Three">
 <mx:Label text="Tab three's content" />
 </mx:VBox>
 </mx:TabNavigator>
</mx:Application>

When I run this example from Flex Builder I see Figure 4-14.

Figure 4-14. The tab control

Yep, it’s really that easy. And you can reskin the tabs to be in
whatever form you please with CSS and skinning (more on that
shortly).

An accordion works exactly the same way, as you can see in
Example 4-15.

Example 4-15. Accord.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="vertical">
 <mx:Accordion borderStyle="solid” width="100%” height="100%">

56 | Chapter 4: Flex Controls and Layout

 <mx:VBox label="Tab One">
 <mx:Label text="Tab one's content" />
 </mx:VBox>
 <mx:VBox label="Tab Two">
 <mx:Label text="Tab two's content" />
 </mx:VBox>
 <mx:VBox label="Tab Three">
 <mx:Label text="Tab three's content" />
 </mx:VBox>
 </mx:Accordion>
</mx:Application>

All I did was change the tag name from TabNavigator to Accor
dion and the example works, as you can see in Figure 4-15.
These are just two of the controls that you can use to manage
the presentation of large sets of interface elements in a way that
doesn’t overwhelm the user.

Figure 4-15. The Accordion control

Tabs and Accordions | 57

Menus
Flex also has support for menus, including those that appear
at the top of the window as well as pop-up menus. Exam-
ple 4-16 shows how to create a menu bar along the top of the
window.

Example 4-16. Menu.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute">
 <mx:MenuBar labelField="@label">
 <mx:XMLList>
 <menuitem label="File">
 <menuitem label="New" />
 <menuitem label="Open"/>
 </menuitem>
 <menuitem label="Edit"/>
 <menuitem label="Source"/>
 </mx:XMLList>
 </mx:MenuBar>
</mx:Application>

When I run this in Flex Builder I see something similar to
Figure 4-16.

58 | Chapter 4: Flex Controls and Layout

Figure 4-16. An example menu

There is also a handy control called ApplicationControlBar
that gives a nice-looking control set along the top of the win-
dow. Example 4-17 is the code for a sample ApplicationCon
trolBar.

Example 4-17. Appbar.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="vertical">
<mx:ApplicationControlBar dock="true">
 <mx:ButtonBar dataProvider="{['People','Places',
 'Things']}" />
</mx:ApplicationControlBar>
</mx:Application>

When I launch this example in Flex Builder I see the nice pre-
sentation shown in Figure 4-17.

Menus | 59

Figure 4-17. An application control bar

One thing I love about Flex is that even by default, it looks
really good. I’m not a graphic designer by any stretch, so I like
the fact that Figure 4-17 looks very slick but required absolutely
no effort on my part.

Divider Boxes
Flex provides an easy way for your users to customize their own
layout with divider boxes. The code in Example 4-18 shows
just how easy it is to use a divider box.

Example 4-18. Divbox.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="horizontal">

60 | Chapter 4: Flex Controls and Layout

<mx:HDividedBox width="100%" height="100%">
<mx:HBox backgroundColor="#ff9999" width="50%" height="100%"
 borderStyle="solid">
 <mx:Label text="Left part" />
</mx:HBox>
<mx:HBox width="50%" height="100%" borderStyle="solid">
 <mx:Label text="Right part" />
</mx:HBox>
</mx:HDividedBox>
</mx:Application>

When I run this in Flex Builder I see something similar to
Figure 4-18.

I can the drag the divider control to adjust the size of the left
and right parts to match my needs.

CSS
The best way to control the look of your Flex application is
through CSS. If you are familiar with CSS for HTML you will
find the CSS that’s supported by Flex to be very familiar.

To demonstrate I’ll take a very simple data entry form, make
the font size huge, and change the colors of the text inputs
based on CSS classes (see Example 4-19).

Figure 4-18. Two sections divided by an adjustable divider

CSS | 61

Example 4-19. CSS.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute">
<mx:Style>
Application { font-size: 30; }
TextInput { color: #0000ff; }
.important { color: #ff0000; }
</mx:Style>
 <mx:Form>
 <mx:FormItem label="First Name">
 <mx:TextInput id="first" width="300" />
 </mx:FormItem>
 <mx:FormItem label="Last Name">
 <mx:TextInput id="last" width="300" />
 </mx:FormItem>
 <mx:FormItem label="Email">
 <mx:TextInput id="email" styleName="important"
 width="300" />
 </mx:FormItem>
 <mx:FormItem>
 <mx:Button label="Subscribe" />
 </mx:FormItem>
 </mx:Form>
</mx:Application>

The CSS styles are defined in the mx:Styles tag. I’ve defined
three classes. The Application class, which controls all of the
content within the Application tag, increases the font size. For
the TextInput colors I specify that the text should be blue. For
any control of the class important, the color should be red.

When I launch this in Flex Builder I see Figure 4-19 in my
browser.

In this example, I’ve defined the CSS inline, but you can refer-
ence an external CSS file if you want to maintain styles across
several applications. In addition, Flex Builder can help you
manage your classes in Design mode.

62 | Chapter 4: Flex Controls and Layout

Skinning
Flex also allows you to change the look of your whole appli-
cation in a process called skinning. You can use CSS to apply
new skins to your Flex controls. Skins are available for free as
well as for purchase on the Web. A good repository for Flex
skins is Scale Nine (http://www.scalenine.com/).

To demonstrate this I went to the Scale Nine website and found
a pretty skin called “blue plastic.” I downloaded the ZIP file
and copied the contents into my Flex Builder 3 project folder
via drag-and-drop.

I then modified my form by adding a Panel and replacing my
own styles with a reference to the “blue plastic” skin (see Ex-
ample 4-20).

Example 4-20. Styleform.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="vertical">
<mx:Style source="/blueplastic/blue_plastic.css" />

Figure 4-19. A simple CSS example

CSS | 63

http://www.scalenine.com/

<mx:Panel title="Subscription form" paddingTop="20">
 <mx:Form>
 <mx:FormItem label="First Name">
 <mx:TextInput id="first" width="300" />
 </mx:FormItem>
 <mx:FormItem label="Last Name">
 <mx:TextInput id="last" width="300" />
 </mx:FormItem>
 <mx:FormItem label="Email">
 <mx:TextInput id="email" styleName="important"
 width="300" />
 </mx:FormItem>
 <mx:FormItem>
 <mx:Button label="Subscribe" />
 </mx:FormItem>
 </mx:Form>
</mx:Panel>
</mx:Application>

Figure 4-20 shows the result.

As you can see, the panel has gotten a bit glossy. The font of
the title of the panel has changed, and the background color
for the entire design has also changed.

Figure 4-20. The skinned subscription form

64 | Chapter 4: Flex Controls and Layout

Filters and Effects
Flex supports a wide variety of filters and effects that you can
apply to any user interface object. Take, for example, how easy
it is to add a drop shadow to an image. The code for two images,
one with a shadow and one without, appears in Example 4-21.

Example 4-21. Dropfilter.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="horizontal">
 <mx:Image source="@Embed('megan.jpg')" />
 <mx:Image source="@Embed('megan.jpg')">
 <mx:filters>
 <mx:DropShadowFilter />
 </mx:filters>
 </mx:Image>
</mx:Application>

It's almost as easy to apply filters and effects to text-based con-
trols, but in many cases you'll have to embed the font. The
result, when I look at it in the browser, looks like Figure 4-21.

Figure 4-21. The drop shadow filter applied to an image

Filters and Effects | 65

You can also apply filters based on certain events, such as roll-
overs, to provide interactive effects. Example 4-22 shows a
button that glows when you roll your mouse pointer over it.

Example 4-22. Effect.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="horizontal">
 <mx:Button label="Push me!">
 <mx:rollOverEffect>
 <mx:Glow blurXTo="5" blurYTo="5" color="#ff0000" />
 </mx:rollOverEffect>
 </mx:Button>
</mx:Application>

As I roll my mouse pointer over the button, the effect looks
similar to Figure 4-22.

Figure 4-22. A button that glows

These kinds of effects can bring an interface to life for your
customers. It’s worth taking the time to learn how to use them
effectively so that you have a complete set of tools at your dis-
posal to make your applications grab people’s attention.

66 | Chapter 4: Flex Controls and Layout

CHAPTER 5

Working with the Server

Most Flex applications are going to work with a web server in
some shape or form. Thankfully, Flex makes this very easy to
do by providing a rich set of web service tools. In this chapter,
I’ll present two methods of accessing the server from a Flex
application, and the server code that is required to support
them.

You can access the server in a Flex application in five different
ways:

POST or GET
You can use a Flex application just as you would an HTML
form. Flex can bundle up the elements in a form and post
them to your web server application just as the browser
would. Your application won’t even know the difference.

Using HTTP services directly
In a manner similar to Ajax, you can make an HTTP re-
quest of the server, even supplying POST content, and re-
ceive the response asynchronously. That response can be
whatever flavor of data you want: text, XML, YAML,
JSON, whatever you like. For JSON data the as3corelib
library (http://code.google.com/p/as3corelib/) provides an
excellent JSON interpreter.

SOAP
Flex can access SOAP services directly using a set of Flex
classes designed specifically for that purpose.

67

http://code.google.com/p/as3corelib/

Remote objects
Flex applications can also make use of Flash’s remoting
capabilities by using remote objects. To make this happen
the server code needs to support AMF requests. This is a
proprietary binary format. Thankfully, there are libraries
in each of the major languages to support AMF.

Directly through sockets
When all else fails you can use TCP/IP sockets directly and
support whatever binary or ASCII protocol you choose.

I’ll be showing only two examples in this chapter, but it’s im-
portant that you know just how many ways Flash and Flex can
communicate on the web.

Figure 5-1 shows how all of this fits together.

The HTML page loaded by the browser contains a reference to
the Flash SWF file that contains the Flex application. That Flex
application is loaded and run. It then makes requests directly
to the server using a variety of transport protocols.

In the remainder of this chapter, I’ll cover the POST/GET and
HTTP service methods of accessing the server. I’ll start with an
example of using the POST/GET method.

Figure 5-1. Flex-based network access

68 | Chapter 5: Working with the Server

POSTing to the Server with Flex
In this example, I’ll post a simple subscription form to the
server. The Flex code for the interface appears in Example 5-1.

Example 5-1. Form.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute">
 <mx:HTTPService id="srv" url="http://localhost/formtest.php"
 method="POST"
 result="mx.controls.Alert.show
 (srv.lastResult.toString());">
 <mx:request>
 <first>{first.text}</first>
 <last>{last.text}</last>
 <email>{email.text}</email>
 </mx:request>
 </mx:HTTPService>
 <mx:Form>
 <mx:FormItem label="First Name">
 <mx:TextInput id="first"/>
 </mx:FormItem>
 <mx:FormItem label="Last Name">
 <mx:TextInput id="last"/>
 </mx:FormItem>
 <mx:FormItem label="Email">
 <mx:TextInput id="email"/>
 </mx:FormItem>
 <mx:FormItem>
 <mx:Button label="Subscribe" click="srv.send()"/>
 </mx:FormItem>
 </mx:Form>
</mx:Application>

This is pretty straightforward stuff. At the bottom of the ap-
plication file is a big form tag that has all of the fields and the
Subscribe button. At the top of the file is the definition for the
HTTP service that will be called when the user clicks the Sub-
scribe button.

The server code, shown in Example 5-2, is equally straightfor-
ward.

POSTing to the Server with Flex | 69

Example 5-2. Formtest.php

<?php
echo("Thanks ".$_REQUEST['first']);
?>

When I run this example in Flex Builder it starts up with the
empty form. I then fill in the form and see something similar
to Figure 5-2.

When I click the Subscribe button the data is sent to the server.
The HTTP service then fires the result event. That runs some
code that I have defined in the HTTPService tag that will display
the lastResult in an alert box. Figure 5-3 shows the result.

It doesn’t get much easier than that!

Using the HTTPService Tag
The following is an embedded application created using Flex
Builder. Users can type a five-digit zip code, such as 80401, and

Figure 5-2. The form with my details in it

70 | Chapter 5: Working with the Server

a shipping weight, such as 3, into the text boxes and click the
Get Shipping Options button to retrieve and display the plain
text data in a text box (see Figure 5-4).

Figure 5-4. The text return version of the application

A second version of the code will parse an XML response from
the server and put it into a data grid. This ends up looking like
Figure 5-5.

Stepping back from the user interface, let’s look at how the Flex
application communicates with the server. This interaction is
shown in Figure 5-6.

Figure 5-3. The alert that indicates a successful post

Using the HTTPService Tag | 71

The Flex application, which is running on the customer’s com-
puter, uses the HTTPService tag to talk directly to the web serv-
er. The code on the web server, either in PHP, ASP, JSP, or
something similar, talks to the database and then returns either
text or XML.

Example 5-3 shows the code for the Flex application which
responds to a text response from the web server.

Example 5-3. The text-based Flex application

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute" backgroundColor="#FFFFFF"
 backgroundAlpha="0"
 backgroundImage="">
 <mx:Script>

Figure 5-5. The XML return version of the application

Figure 5-6. Network access from the Flex application

72 | Chapter 5: Working with the Server

 <![CDATA[
 import mx.rpc.events.ResultEvent;
 import mx.rpc.events.FaultEvent;
 import mx.controls.Alert;

 public function handlePlain(event:ResultEvent):void {
 shippingOptions.htmlText = event.result.toString();
 }

 public function handleFault(event:FaultEvent):void {
 Alert.show(event.fault.faultString, "Error");
 }
]]>
 </mx:Script>

 <mx:HTTPService result="handlePlain(event);"
 fault="handleFault(event);"
id="plainRPC" resultFormat="text"
 url="http://examples.adobe.com/flex3/exchangingdata/text
 /plainHttpService.php"
 useProxy="false">
 <mx:request xmlns="">
 <zipcode>{zipcode.text}</zipcode>
 <pounds>{weight_lb.text}</pounds>
 </mx:request>
 </mx:HTTPService>

 <mx:Label x="56" y="32" text="Zip Code" width="55"
 height="18"
textAlign="right" fontWeight="bold"/>
 <mx:Label x="56" y="58" text="Weight" width="55" height="18"
textAlign="right" fontWeight="bold"/>
 <mx:TextInput x="130" y="32" id="zipcode" width="160"
 height="22"/>
 <mx:TextInput x="130" y="58" id="weight_lb" width="160"
 height="22"/>
 <mx:Button x="130" y="95" label="Get Shipping Options"
click="plainRPC.send();" width="160" height="22"/>
 <mx:Text x="56" y="150" id="shippingOptions" width="310"
 height="133"
 fontWeight="bold"/>
</mx:Application>

The second version of the application, which handles parsing
the XML using ActionScript 3’s E4X syntax, appears in Exam-
ple 5-4.

Using the HTTPService Tag | 73

Example 5-4. The XML version of the Flex application

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute">

<mx:Script>
<![CDATA[
import mx.rpc.events.ResultEvent;
import mx.rpc.events.FaultEvent;
import mx.controls.Alert;

[Bindable]
private var shippingInfo:XMLList;

public function handleXML(event:ResultEvent):void {
 shippingInfo = event.result.option as XMLList;
}

public function handleFault(event:FaultEvent):void {
 Alert.show(event.fault.faultString, "Error");
}
]]>
</mx:Script>

 <mx:HTTPService result="handleXML(event);"
 fault="handleFault(event);"
 id="xmlRPC" resultFormat="e4x"
 method="POST" url="http://examples.adobe.com/flex3app
 /flex3samples/
exchangingdata/xml/xmlHttpService.jsp" useProxy="false">
 <mx:request xmlns="">
 <zipcode>{zipcode.text}</zipcode>
 <pounds>{weight_lb.text}</pounds>
 </mx:request>
 </mx:HTTPService>

 <mx:Label x="56" y="32" text="Zip Code" width="55"
 height="18" textAlign="right"
 fontWeight="bold"/>
 <mx:Label x="56" y="58" text="Weight" width="55" height="18"
 textAlign="right"
 fontWeight="bold"/>
 <mx:TextInput x="130" y="32" id="zipcode" width="160"
 height="22"/>
 <mx:TextInput x="130" y="58" id="weight_lb" width="160"
 height="22"/>

74 | Chapter 5: Working with the Server

 <mx:Button x="130" y="95" label="Get Shipping Options"
 click="xmlRPC.send();"
 width="160" height="22"/>
 <mx:DataGrid dataProvider="{shippingInfo}"
 x="80" y="141" width="262" height="92"
 id="shippingOptionsList"
 editable="false" enabled="true">
 <mx:columns>
 <mx:DataGridColumn headerText="Service"
 dataField="service" />
 <mx:DataGridColumn headerText="Price" dataField="price" />
 </mx:columns>
 </mx:DataGrid>
</mx:Application>

Now that we have the Flex client side of the code, let’s take a
look at what we need on the server.

The Server Code in ColdFusion
You can write the server code in whatever server technology
you like (e.g., PHP, Java, Rails, etc.). I’ve chosen to use Cold-
Fusion here, but you can find the code for the other server
models on the O’Reilly web page for this book.

The ColdFusion version of the text return page appears in
Example 5-5.

Example 5-5. PlainHttpService.cfm

<cfsetting enablecfoutputonly="true" />
<cfinvoke component="Shipping"
 method="getShippingOptions" argumentcollection="#url#"
 returnvariable="myResult" />

<cfloop index="i" from="1" to="#ArrayLen(myResult)#">
 <cfoutput>#myResult[i].service#: #dollarFormat
 (myResult[i].price)#
</cfoutput>
</cfloop>

The XML version of the interface appears in Example 5-6.

Using the HTTPService Tag | 75

Example 5-6. XmlHttpService.cfm

<cfsetting enablecfoutputonly="true" />

<cfsilent>
 <cfinvoke component="Shipping"
 method="getShippingOptions" argumentcollection="#url#"
 returnvariable="myResult" />
 <cfoutput>
 <cfxml variable="userXML">
 <options>
 <cfloop index="i" from="1" to="#ArrayLen(myResult)#">
 <option>
 <service>#myResult[i].service#</service>
 <price>#myResult[i].price#</price>
 </option>
 </cfloop>
 </options>
 </cfxml>
 </cfoutput>
</cfsilent>
<cfcontent reset ="yes" type="text/xml; charset=UTF-8">
<cfoutput>#userXML#</cfoutput>

The backend for the XML or plain text frontend appears in
Example 5-7.

Example 5-7. Shipping.cfc

<cfcomponent>
 <cffunction name="getShippingOptions" access="remote"
 returntype="array">
 <cfargument name="zipcode" type="any" required="yes">
 <cfargument name="pounds" type="any" required="yes">
 <cfset var options=ArrayNew(1)>
 <cfset var baseCost=(zipcode / 10000) + (pounds * 5)>
 <cfset options[1] = structNew() />
 <cfset options[1].service="Next Day">
 <cfset options[1].price=baseCost * 4>
 <cfset options[2] = structNew() />
 <cfset options[2].service="Two Day Air">
 <cfset options[2].price=baseCost * 2>
 <cfset options[3] = structNew() />
 <cfset options[3].service="Saver Ground">
 <cfset options[3].price=baseCost>
 <cfreturn options>
 </cffunction>

76 | Chapter 5: Working with the Server

 <cffunction name="getShippingOptions_CFQuery" access=
 "remote" returntype="query">
 <cfargument name="zipcode" type="any" required="yes">
 <cfargument name="pounds" type="any" required="yes">
 <cfset var options=ArrayNew(1)>
 <cfset var baseCost=(zipcode / 10000) + (pounds * 5)>
 <cfscript>
 qOptions = queryNew("service, price");
 newRow = QueryAddRow(qOptions, 3);
 temp = QuerySetCell(qOptions, "service",
 "Next Day", 1);
 temp = QuerySetCell(qOptions, "price",
 baseCost * 4, 1);
 temp = QuerySetCell(qOptions, "service",
 "Two Day Air", 2);
 temp = QuerySetCell(qOptions, "price",
 baseCost * 2, 2);
 temp = QuerySetCell(qOptions, "service",
 "Saver Ground", 3);
 temp = QuerySetCell(qOptions, "price",
 baseCost, 3);
 </cfscript>
 <cfreturn qOptions>
 </cffunction>
</cfcomponent>

Going on from Here
As you can see, Flex makes it easy to communicate with your
web server no matter what protocol it’s running. Protocols
such as SOAP and AMF are as easy to use as invoking a method
on an object. And the E4X syntax built into ActionScript 3
makes parsing XML directly a snap.

Going on from Here | 77

CHAPTER 6

More Flex Applications

This chapter will show some sample Flex applications to dem-
onstrate various aspects of Flex development. You can use
these examples as templates for your own applications.

A Runner’s Calculator
Anyone who has taken up running as an exercise knows the
pain of pushing to go too far too fast. It’s commonly held wis-
dom that you should start at 1 mile and then go 10% farther
every week. So, if you want to run 3.1 miles (5K) you should
be training for 12 weeks.

To help calculate that number I’ve come up with a handy help-
er application written in Flex. The first draft of the code is
shown in Example 6-1.

Example 6-1. Runner.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute"
 creationComplete="onMilesChange(event)">
<mx:Script>
<![CDATA[
private function onMilesChange(event:Event) : void {
 var miles:Number = parseFloat(txtMiles.text);
 var mile:Number = 1.0;
 var weeks:int = 0;

79

 while(mile < miles) {
 weeks += 1;
 mile *= 1.1;
 }
 txtWeeks.text = weeks.toString();
}
]]>
</mx:Script>
 <mx:Form>
 <mx:FormItem label="Target Miles">
 <mx:TextInput id="txtMiles" change="onMilesChange(event)"
 text="3.1" />
 </mx:FormItem>
 <mx:FormItem label="Weeks">
 <mx:Label id="txtWeeks" />
 </mx:FormItem>
 </mx:Form>
</mx:Application>

The application is split into two pieces. The calculation func-
tion, onMilesChange, is located at the top of the script. The user
interface is a form containing a text input for the number of
miles and a label for the number of weeks. There is an event
handler on the creationComplete event from the application
which calls onMilesChange to do the initial calculation. There
is also an event handler on the text field that calls onMile
sChange whenever the change notification is fired.

Figure 6-1 shows the runner’s calculator on startup.

I can change the target number of miles and watch as the num-
ber of weeks changes as a result. Figure 6-2 shows what hap-
pens when I change the target miles to 2.5.

It’s nice to know the number of weeks, but what if I want to
create a training calendar? I need to know the number of miles
for each week as I go. I actually calculated the data I need in
the onMilesChange function already; I just need to store it and
display it somewhere. So, I’ll update the Flex code a little bit,
as shown in Example 6-2.

80 | Chapter 6: More Flex Applications

Example 6-2. Runner2.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="horizontal"
 creationComplete="onMilesChange(event)">

Figure 6-1. The runner’s calculator after startup

Figure 6-2. The calculator after changing the target miles to 2.5

A Runner’s Calculator | 81

<mx:Script>
<![CDATA[
private function onMilesChange(event:Event) : void {
 var miles:Number = parseFloat(txtMiles.text);
 var mile:Number = 1.0;
 var weeks:int = 0;
 var weekData:Array = [];
 while(mile < miles) {
 weeks += 1;
 weekData.push({ week: weeks, miles: Math.round(mile * 10)
 / 10 });
 mile *= 1.1;
 }
 dgWeeks.dataProvider = weekData;
 txtWeeks.text = weeks.toString();
}
]]>
</mx:Script>
 <mx:Form>
 <mx:FormItem label="Target Miles">
 <mx:TextInput id="txtMiles" change="onMilesChange(event)"
 text="3.1" />
 </mx:FormItem>
 <mx:FormItem label="Weeks">
 <mx:Label id="txtWeeks" />
 </mx:FormItem>
 </mx:Form>
 <mx:DataGrid id="dgWeeks">
 <mx:columns>
 <mx:DataGridColumn dataField="week” headerText="Week” />
 <mx:DataGridColumn dataField="miles” headerText="Miles”/>
 </mx:columns>
 </mx:DataGrid>
</mx:Application>

In this new code, I’ve added an mx:DataGrid control which dis-
plays tabular data. In that grid I’ve defined two columns, one
for the week and another for the miles. Then in the onMile
sChange function I created an array called weekData which con-
tains a list of objects that have week and miles values. I then set
the dataProvider of the data grid to the resultant array, and
voilà, I have a grid of the week and the number of miles.

Figure 6-3 shows the result.

82 | Chapter 6: More Flex Applications

Figure 6-3. The calculator with the week table

Now I can build my training calendar using this handy tool. Of
course, I can put an application such as this in any web page
just like any other Flash movie. It’s self-contained and ready to
go.

A Simple Image Viewer
Web 2.0 is all about the media; images and video. So, it’s a
good thing that Flex makes it so easy to build Flash applications
that use heaping helpings of both. I’ll start by building a very
simple image viewer that can look at a set of canned images
(see Example 6-3).

Example 6-3. Pictures.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="horizontal"
 horizontalAlign="left">
<mx:Array id="images">
 <mx:String>megan1.jpg</mx:String>
 <mx:String>megan2.jpg</mx:String>
 <mx:String>megan3.jpg</mx:String>
 <mx:String>megan4.jpg</mx:String>

A Simple Image Viewer | 83

 <mx:String>megan5.jpg</mx:String>
</mx:Array>
<mx:List id="ctlImage" dataProvider="{images}"
 selectedIndex="0" width="100" />
<mx:Image source="{ctlImage.selectedItem.valueOf()}"
 height="200" />
</mx:Application>

At the top of the application is the list of images—in this case,
five images of my daughter Megan that I have included in the
project by dragging and dropping them into Flex Builder in the
src directory.

I then use an mx:List control to display the list of image names,
and an mx:Image tag to display the currently selected image.
Flex actually does the event handling to change the source of
the image for me when the list changes.

When I run this from Flex Builder I see something similar to
Figure 6-4.

Figure 6-4. The very simple image viewer

I can click on the list and see the different images that I have
placed in the src directory with the MXML application. The

84 | Chapter 6: More Flex Applications

images don’t have to be local; they can be any URL, pointing
to any server. So, the list could be a set of URLs to various
images. And that list could easily be loaded from an external
XML file using the HTTP support in Flex.

Back to the example at hand: I like the functionality, but the
presentation is a little bland. So, let’s make it more interesting
by showing thumbnails of the images in the list. I do that in
Example 6-4.

Example 6-4. Pictures2.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="horizontal"
 horizontalAlign="left">
<mx:Array id="images">
 <mx:String>megan1.jpg</mx:String>
 <mx:String>megan2.jpg</mx:String>
 <mx:String>megan3.jpg</mx:String>
 <mx:String>megan4.jpg</mx:String>
 <mx:String>megan5.jpg</mx:String>
</mx:Array>
<mx:List id="ctlImage" dataProvider="{images}"
 selectedIndex="0" width="50">
<mx:itemRenderer>
 <mx:Component>
 <mx:Image source="{data}” width="50” height="50” />
 </mx:Component>
</mx:itemRenderer>
</mx:List>
<mx:Image source="{ctlImage.selectedItem.valueOf()}"
 height="400" />
</mx:Application>

The only thing that has changed in this code is that I have added
an itemRenderer to the list. That is an optional attribute that
you can add to Flex controls so that you can render each cell
in a table or list yourself. In this case, I provide an inline com-
ponent that creates an mx:Image for each cell in the list.

I then run this in Flex Builder; the result appears in Figure 6-5.

Now I have thumbnails instead of images. Yes, it’s really that
easy. The item rendering and component support in Flex is

A Simple Image Viewer | 85

amazing, as you will learn as you delve more deeply into Flex.
It’s also something that is easy to support as you build your
own controls.

Drag-and-Drop
Flex comes with a built-in drag-and-drop framework and many
of the controls support drag-and-drop natively. Here is an ex-
ample of dragging and dropping between two lists—one a list
of things I like and the other a list of things I hate. The code for
this appears in Example 6-5.

Figure 6-5. The image viewer with thumbnails

86 | Chapter 6: More Flex Applications

Example 6-5. Dragger.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="horizontal">
 <mx:Panel title="Things I like">
 <mx:List width="200" height="200"
 dragEnabled="true" dragMoveEnabled="true"
 dropEnabled="true">
 <mx:dataProvider>
 <mx:Array>
 <mx:String>Pizza</mx:String>
 <mx:String>Beer</mx:String>
 <mx:String>Football</mx:String>
 <mx:String>Thin Mints</mx:String>
 </mx:Array>
 </mx:dataProvider>
 </mx:List>
 </mx:Panel>
 <mx:Panel title="Things I hate">
 <mx:List width="200" height="200"
 dragEnabled="true" dragMoveEnabled="true"
 dropEnabled="true">
 <mx:dataProvider>
 <mx:Array>
 <mx:String>Working out</mx:String>
 <mx:String>Bad sci-fi</mx:String>
 </mx:Array>
 </mx:dataProvider>
 </mx:List>
 </mx:Panel>
</mx:Application>

To enable dragging I simply set the dragEnabled, dragMoveEna
bled, and dropEnabled attributes on the lists to true. Fig-
ure 6-6 shows the result.

Drag-and-Drop | 87

Figure 6-6. Dragging and dropping between two lists

This will add “Bad sci-fi” to the list of things I like.

I realize that this may seem like a silly example because you
may have custom drag-and-drop requirements. But believe me
when I tell you that building your own components so that they
work with the drag-and-drop manager is very easy to do.

States and Transitions
Built into the core of the Flex API is support for different
states in the user interface. For example, a box can be open or
closed. Or a viewing area could be in two rows or three rows.
You can define these states based on your needs and then set
the parameters for each component that changes in each state.

To demonstrate I’ll make a box that gets taller in the open state
and shorter in the closed state. The example starts with a Flex

88 | Chapter 6: More Flex Applications

application that references my open/close box that I call the
FlexiBox. The code for the application appears in Example 6-6.

Example 6-6. States.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="horizontal"
 xmlns:mycomps="mycomps.*">
 <mycomps:FlexiBox />
</mx:Application>

FlexiBox is an MXML component that you create using the
MXML Component command in the New menu item. The
code for the FlexiBox appears in Example 6-7.

Example 6-7. FlexiBox.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml" width="300"
 height="100"
 currentState="closed" cornerRadius="5" borderColor="#ff0000"
backgroundColor="#ffdddd"
 borderStyle="solid" borderThickness="3" paddingBottom="5"
 paddingLeft="5"
 paddingRight="5" paddingTop="5">
<mx:Script>
<![CDATA[
private function onChangerClick(event:Event) : void {
 currentState = (currentState == "open") ? "closed" :
 "open";
}
]]>
</mx:Script>
<mx:states>
 <mx:State name="open">
 <mx:SetProperty target="{this}" name="height"
 value="400" />
 <mx:SetProperty target="{btnChanger}" name="label"
 value="Close" />
 </mx:State>
 <mx:State name="closed">
 <mx:SetProperty target="{this}" name="height"
 value="100" />
 <mx:SetProperty target="{btnChanger}" name="label"
 value="Open" />

States and Transitions | 89

 </mx:State>
</mx:states>
<mx:Button id="btnChanger" label="Open"
 click="onChangerClick(event);" />
</mx:VBox>

The important part of the code is the array of mx:State objects
which define the two states: open and closed. In the open state
the height of the control is set to 400, and in the closed state
it’s set to 100. The label of the Open/Close button is also
changed from Open to Close based on the state.

When I bring this up in the browser the box starts in the closed
state, as shown in Figure 6-7.

Then when I click the Open button the box gets big and the
button changes to read Close because the button sets the cur
rentState to open or closed depending on the current value (see
Figure 6-8).

States make it easy to define how an interface can change in
various modes. Transitions make the change between states
sexy by applying effects to the change. To create these state
transitions I’ve added a set of mx:Transition objects to the
original example. That new application code appears in Ex-
ample 6-8.

Example 6-8. States2.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="horizontal"
 xmlns:mycomps="mycomps.*">
 <mycomps:FlexiBox2 />
</mx:Application>

The new FlexiBox code appears in Example 6-9.

Example 6-9. FlexiBox2.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:VBox xmlns:mx="http://www.adobe.com/2006/mxml" width="300"
 height="100"
 currentState="closed" cornerRadius="5" borderColor="#ff0000"

90 | Chapter 6: More Flex Applications

 backgroundColor="#ffdddd"
 borderStyle="solid" borderThickness="3" paddingBottom="5"
 paddingLeft="5"
 paddingRight="5" paddingTop="5">
<mx:Script>
<![CDATA[
import mx.effects.easing.Bounce;
private function onChangerClick(event:Event) : void {
 currentState = (currentState == "open") ? "closed" :
 "open";
}

Figure 6-7. The closed state

States and Transitions | 91

]]>
</mx:Script>
<mx:states>
 <mx:State name="open">
 <mx:SetProperty target="{this}" name="height"
 value="400" />
 <mx:SetProperty target="{btnChanger}" name="label"
 value="Close" />
 </mx:State>
 <mx:State name="closed">

Figure 6-8. The open state

92 | Chapter 6: More Flex Applications

 <mx:SetProperty target="{this}" name="height"
 value="100" />
 <mx:SetProperty target="{btnChanger}" name="label"
 value="Open" />
 </mx:State>
</mx:states>
<mx:transitions>
 <mx:Transition fromState="open" toState="closed">
 <mx:Parallel duration="500">
 <mx:SetPropertyAction target="{btnChanger}" />
 <mx:Resize target="{this}"
easingFunction="{mx.effects.easing.Bounce.easeOut}" />
 </mx:Parallel>
 </mx:Transition>
 <mx:Transition fromState="closed" toState="open">
 <mx:Parallel duration="500">
 <mx:SetPropertyAction target="{btnChanger}" />
 <mx:Resize target="{this}"
easingFunction="{mx.effects.easing.Bounce.easeOut}" />
 </mx:Parallel>
 </mx:Transition>
</mx:transitions>
<mx:Button id="btnChanger" label="Open"
 click="onChangerClick(event);" />
</mx:VBox>

Here I am specifying that the transition from open to closed
and vice versa should happen over the course of 500 millisec-
onds and should use a bouncing transition function. This
makes the box kind of jump up and down a little as it goes from
big to small and back to big again. It’s fun to watch.

Transitions can make changes in the interface really fun to play
with. And building transitions in Flex is so easy you will find
yourself using them all the time.

A Simple Video Viewer
Sure, images are easy, but what about video? As it turns out,
video is pretty easy too. The first thing you have to do is to get
your videos into Flash Video (FLV) format. To do the conver-
sion I use an application called FFmpeg (http://
ffmpeg.mplayerhq.hu/). Well, actually I use a GUI wrapper for

States and Transitions | 93

http://ffmpeg.mplayerhq.hu/
http://ffmpeg.mplayerhq.hu/

the application called ffmpegx (http://homepage.mac.com/ma
jor4/) which runs on the Mac and handles all of the nasty com-
mand-line stuff for me. If video is a central focus of your ap-
plication, you'll want to look into Adobe's Flash Media Server
which handles high volume video streaming.

Once I have my movies in FLV format, I put them up on my
localhost site so that I can point a Flex VideoDisplay control at
them. Unlike images, you can’t point the video display at a local
video resource without jumping through some security hoops.

The next step is to create the Flex application to display the
video, as shown in Example 6-10.

Example 6-10. Movies.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="horizontal">
<mx:Array id="movieList">
 <mx:String>http://localhost/megan1.flv</mx:String>
 <mx:String>http://localhost/megan2.flv</mx:String>
 <mx:String>http://localhost/megan3.flv</mx:String>
</mx:Array>
<mx:VBox>
 <mx:List id="cntlMovie" dataProvider="{movieList}"
 width="300" />
 <mx:Button label="Pause" click="cntlDisp.pause();" />
 <mx:Button label="Play" click="cntlDisp.play();" />
</mx:VBox>
<mx:VideoDisplay id="cntlDisp"
 source="{cntlMovie.selectedItem.valueOf()}"
width="400" height="300" />
</mx:Application>

Just like with the image viewer, I have an array of movies at the
top of the application. I then have a list control that shows the
movies so that I can select them, as well as buttons to play and
pause the video. Then, at the bottom of the file, I have the
VideoDisplay control that does all of the hard work of showing
the video.

When I launch this from Flex Builder I see the application
shown in Figure 6-9.

94 | Chapter 6: More Flex Applications

http://homepage.mac.com/major4/
http://homepage.mac.com/major4/

I can select the movie I want to see, and then use the Play and
Pause buttons to start and stop the playback. It is really this
easy to get started with video. From here you will likely want
to add controls to move the playback point around, and re-
spond to start and stop events generated by the control. But
that requires only a little more code and a few more controls.

Creating Better Movies
The previous movie viewer had only Play and Pause buttons.
Because video is such an important part of Flash work, I want
to present a few more examples of how to use the VideoDis
play component.

This next example will show how to have a single Play/Pause
button, how to build a scrubber to control the play head, and
how to add a Rewind button. The code for this appears in
Example 6-11.

Example 6-11. Bettermovie.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"

Figure 6-9. The simple multimovie player

Creating Better Movies | 95

 layout="vertical">
<mx:Script>
<![CDATA[
public function updateUI() : void {
 btnPlay.label = (cntlDisp.playing) ? 'Pause' : 'Play';
 sldCuePoint.value = cntlDisp.playheadTime;
}
public function onReady() : void {
 sldCuePoint.maximum = cntlDisp.totalTime;
 cntlDisp.play();
 updateUI();
}
public function onCueThumbPress(event:Event) : void {
 cntlDisp.pause();
}
public function onCueThumbRelease(event:Event) : void {
 cntlDisp.playheadTime = event.currentTarget.value;
}
public function onPlay() : void {
 if (cntlDisp.playing) cntlDisp.pause();
 else cntlDisp.play();
 updateUI();
}
]]>
</mx:Script>
<mx:VideoDisplay id="cntlDisp" source="http://localhost
 /megan2.flv" width="400"
 height="300"
 playheadUpdate="updateUI()" autoPlay="false"
 playheadUpdateInterval="150"
 ready="onReady()"
 live="false" rotation="-5">
<mx:filters>
 <mx:GlowFilter />
 <mx:DropShadowFilter />
</mx:filters>
</mx:VideoDisplay>
<mx:HBox>
 <mx:Button id="btnPlay" label="Pause" click="onPlay()" />
 <mx:Button label="Rewind" click="{cntlDisp.playheadTime =
 0;}" />
 <mx:HSlider id="sldCuePoint" liveDragging="true"
 allowTrackClick="false"
 thumbPress="onCueThumbPress(event);"
 thumbRelease="onCueThumbRelease(event);" />
</mx:HBox>
</mx:Application>

96 | Chapter 6: More Flex Applications

I also added a few effects (a rotation, glow, and drop shadow)
to the video to demonstrate how you can create a more novel
presentation for the movie using the power of Flash Player.
This is shown in Figure 6-10.

If you wanted to you could even overlay the controls on the
video and rotate the whole thing to give it a more interesting
look. Another idea is to use the masking feature to show the
video in a rough-edged container, or with a gradient alpha
mask that would dim certain parts progressively.

The next example is an application that puts a text overlay on
the video at certain cue points in the video. The code for this
appears in Example 6-12.

Example 6-12. Cuemovie.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"

Figure 6-10. A movie player with reasonable controls

Creating Better Movies | 97

 layout="vertical">
<mx:Script>
<![CDATA[
private var cues:Array = [
 { start: 0.0, stop: 1.0, text:'Megan' },
 { start: 4.0, stop: 7.0, text:'Swinging' }
];

public function updateUI() : void {
 btnPlay.label = (cntlDisp.playing) ? 'Pause' : 'Play';

 var found:Boolean = false;
 for each (var cue:Object in cues) {
 if (cntlDisp.playheadTime.valueOf() >= cue.start &&
 cntlDisp.playheadTime.valueOf() <= cue.stop)
 {
 found = true;
 txtCueText.text = cue.text;
 cnvTextArea.visible = true;
 }
 }
 if (!found)
 cnvTextArea.visible = false;
}
public function onReady() : void {
 cntlDisp.play();
 updateUI();
}
public function onPlay() : void {
 if (cntlDisp.playing) cntlDisp.pause();
 else cntlDisp.play();
 updateUI();
}
]]>
</mx:Script>
<mx:Canvas width="400" height="300">
<mx:VideoDisplay id="cntlDisp" source="http://localhost
 /megan2.flv" width="400"
 height="300" playheadUpdate="updateUI()" autoPlay="false"
playheadUpdateInterval="150"
 ready="onReady()" live="false" />
<mx:Canvas id="cnvTextArea" width="400" height="30"
 backgroundAlpha="0.6"
 backgroundColor="black" top="270" visible="false">
 <mx:Text id="txtCueText" color="white" fontSize="18"
 fontWeight="bold" text="" />
</mx:Canvas>

98 | Chapter 6: More Flex Applications

</mx:Canvas>
<mx:HBox>
 <mx:Button id="btnPlay" label="Pause" click="onPlay()" />
 <mx:Button label="Rewind" click="{cntlDisp.playheadTime =
 0;}" />
</mx:HBox>
</mx:Application>

The UpdateUI method monitors the position of the play head
and then shows or hides the overlay text depending on where
the movie is in its playback. The overlay itself has a black back-
ground with an alpha so that you can still see the video through
the overlay (see Figure 6-11).

Using the powerful states and transitions in Flex, you could
easily have the cue pop out from below the video and then
recede when the cue is no longer applicable.

Figure 6-11. A cue overlaid on top of the video display

Creating Better Movies | 99

CHAPTER 7

Advanced Flex Controls

As we already discussed, Flex has a lot of great controls baked
right into it, including a chart control, an advanced grid con-
trol, accordions, layout managers, and a full set of basic con-
trols. But even all of these might not satisfy your requirements.
The good news is that there is a thriving community of open
source and commercial groups building great components for
Flex applications. This means you can build amazing applica-
tions without spending your time writing controls. This chap-
ter provides a brief tour of some of these off-the-shelf controls.

ILOG Elixir
ILOG Visualization Products has developed a set of extremely
powerful data visualization controls designed specifically for
Flex. The ILOG Elixir toolkit (http://www.ilog.com/products/
elixir/) contains a complete set of 2D and 3D graph types, all
of which allow you to create effects-based transitions that will
make you look like a superstar. Included in the toolkit are
ready-to-use schedule displays, map displays, dials, gauges, 3D
and radar charts, Gantt charts, a treemap chart, and organiza-
tion charts.

Figure 7-1 shows a 3D graph built using ILOG Elixir.

You can use the Flex controls on the right to adjust the ILOG
graph to your taste. Source code is provided so that you can

101

http://www.ilog.com/products/elixir/
http://www.ilog.com/products/elixir/

copy and paste the graphing code directly into your applica-
tion.

Figure 7-2 shows a combination of controls that includes a U.S.
map displaying financial and sales data which in turn presents
a set of pie charts representing sales objectives for each state.
The gauge and radar charts are also shown here (the radar chart
is the one in the middle of the bottom row).

As with Figure 7-1, the source code is provided so that you can
use this in your own Flex application.

The last example I’ll show (in Figure 7-3) is a treemap visual-
ization of sales numbers that is commonly used to aggregate
large data sets into a view that shows whether an area is active
or inactive through the use of color.

Figure 7-1. A 3D chart built with ILOG Elixir

102 | Chapter 7: Advanced Flex Controls

Figure 7-3. A sample of ILOG Elixir’s treemap functionality

Figure 7-2. An interactive map created with a combination of ILOG
Elixir controls

ILOG Elixir | 103

ILOG Elixir is not free, but if highly customizable data visual-
ization is a requirement for your Flex applications it’s a lot
easier to buy this package than it would be to write it yourself.

Advanced Flash Components
Flex is built on top of Flash, so you can use Flash components
in your Flex application directly. This allows you to use a wide
variety of off-the-shelf Flash components, including the Flash
components available from Advanced Flash Components
(AFC; http://www.afcomponents.com/). Figure 7-4 shows an
application built using three of AFC’s components: a scroll
panel, a 2D carousel, and an enhanced tool tip control.

AFC also provides a mapping control that uses Google maps,
as well as a 3D flow list similar to the Cover Flow 3D interface
that you find in iTunes. And the company keeps developing
new controls every few months.

In fact, the great thing about the Flex and Flash community is
that components are being developed by open source and
commercial groups all the time. Even if you don’t find what
you need today, you might find someone releasing it a month
from now.

Figure 7-4. An example use of AFC components

104 | Chapter 7: Advanced Flex Controls

http://www.afcomponents.com/

The FlexLib Project
The FlexLib Project (http://flexlib.googlecode.com/) is an open
source set of containers, controls, and classes to which you are
free to contribute. The FlexLib Project comprises a wide variety
of controls, including a horizontal accordion, advanced sliders
and tab bars, and enhanced tree controls, among others. Fig-
ure 7-5 shows an example of an enhanced tree control showing
some made up sample data.

FlexLib is a must-have for Flex developers. It’s free; it comes
with the source code, so you can see how these things are done;
and it provides a wealth of great controls and classes that you
can use right away.

Distortion Effects
Alex Uhlmann (http://alex-uhlmann.de/flash/animationpack
age/) has developed a set of distortion effects to supplement
the effects provided in the Flex core. Shown in Figure 7-6 is an
example of the cube blur effect, which allows you to change

Figure 7-5. The enhanced tree control

The FlexLib Project | 105

http://flexlib.googlecode.com/
http://alex-uhlmann.de/flash/animationpackage/
http://alex-uhlmann.de/flash/animationpackage/

between graphical elements, such as TitleWindows, using a roll-
ing cube effect.

He also provides movie-style effects, such as flipping and gat-
ing, and a wide variety of additional effects to jazz up your
interface.

SpringGraph
Mark Shepherd has put together an amazing tree visualization
tool called SpringGraph (http://mark-shepherd.com/Spring
Graph/). Shown in Figure 7-7 is an example of his code pointed
at Amazon’s Apple iPod search.

This kind of visualization is ideal for social networks, graphing
information relationships, and anything that is formed in a
spider web of interrelated connections.

This chapter represented just a fraction of the Flex libraries and
components that are available to you. You can find out more
at http://Flex.org/ and at FlexBox (http://flexbox.mrinalwadh
wa.com/). Flex components are also available in the Flex com-
ponents portion of the Adobe Exchange site at http://
www.Adobe.com/.

Figure 7-6. The cube distortion effect

106 | Chapter 7: Advanced Flex Controls

http://mark-shepherd.com/SpringGraph/
http://mark-shepherd.com/SpringGraph/
http://Flex.org/
http://flexbox.mrinalwadhwa.com/
http://flexbox.mrinalwadhwa.com/
http://www.Adobe.com/
http://www.Adobe.com/

Figure 7-7. The SpringGraph tree visualization tool

SpringGraph | 107

CHAPTER 8

Flex for Widgets

Flex 1 was primarily a server-based technology. Flex 2 allowed
us to compile SWFs in Flex Builder and then deploy them. Flex
3 gives us a new feature called “runtime shared libraries”
(RSLs), which means that the generated SWFs can be much
smaller than in Flex 2—so small and self-contained that we can
now use Flex Builder to create real widgets for websites. These
RSLs contain the code for the Flex framework and are down-
loaded once to the client and then cached so that they don’t
have to be downloaded each time with the Flex application.

In this chapter, I’ll walk you through creating a selection of
widgets that you can use as templates for your own develop-
ment.

Slide Show Widget
The first widget I’ll build is a small slide show widget that reads
an RSS feed from Flickr and displays the images one by one,
switching out the image every two seconds. Example 8-1 shows
the code for this application.

Example 8-1. Slideshow.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute"
 paddingBottom="0" paddingLeft="0" paddingRight="0"

109

 paddingTop="0"
 creationComplete="flickReq.send();" backgroundAlpha="0"
 backgroundColor="white"
 backgroundGradientColors="[0xFFFFFF,0xFFFFFF]">
<mx:Script>
<![CDATA[
import mx.rpc.events.ResultEvent;
import mx.collections.ArrayCollection;
private var images:Array = [];
private var currentImage:int = 0;
private function onFetchResult(event:ResultEvent) : void {
 var items:ArrayCollection = event.result.rss.channel.item as
 ArrayCollection;
 for each (var item:Object in items)
 images.push(item.thumbnail.url.toString());
 flickImg.source = images[currentImage];
 var t:Timer = new Timer(2000);
 t.addEventListener(TimerEvent.TIMER, onTimer);
 t.start();
}
private function onTimer(event:Event) : void {
 currentImage += 1;
 if (currentImage >= images.length)
 currentImage = 0;
 flickImg.source = images[currentImage];
}
]]>
</mx:Script>
<mx:HTTPService id="flickReq"
 url="http://api.flickr.com/services/feeds
 /photos_public.gne?format=rss_200_enc"
 result="onFetchResult(event)" />
<mx:Image width="100" height="100" id="flickImg">
<mx:filters><mx:DropShadowFilter /></mx:filters>
</mx:Image>
</mx:Application>

At the top of the application I define two methods. The first is
onFetchResult, which handles the response from Flickr and
sets up the list of images. The onFetchResult method also sets
up a timer that calls back to the onTimer method every 2,000
milliseconds (every two seconds) to change the source of the
image. The bottom portion of the example defines the HTTPSer
vice to connect to, and the image object to use to display the
Flickr image.

110 | Chapter 8: Flex for Widgets

Once I test this in the browser, I use the Project→Export Release
Build command (shown in Figure 8-1) to build the release build
of the slide show control.

Figure 8-1. Exporting the release build

I then copy the exported slideshow.swf file into the same di-
rectory as the index.html file. The index.html file represents
another web page that would reference the slide show. The
index.html file is included in the source code download avail-
able on the O’Reilly website associated with this book.

Now I can test this out in my browser by just navigating to the
file. Figure 8-2 shows the result.

This certainly is a nice little widget to fit on the page. But it’s
actually not a little widget when it comes to download size. It
weighs in at 227 KB. Why? Because it’s merging the Flex API
code into the SWF. To reduce the size of the download we can
have the slideshow.swf file reference an RSL library that holds

Slide Show Widget | 111

the framework. Flash Player will download the RSL once and
then cache it for future use.

To enable the RSL linking I go to the Properties dialog for the
project and select Flex Build Path. I then click on the “Library
path” tab and select the RSL option from the drop down. This
is shown in Figure 8-3.

I navigate down to the framework.swc library just to make sure
that it is indeed referencing the RSL. This is shown in Fig-
ure 8-4.

Figure 8-2. The slide show widget in action

112 | Chapter 8: Flex for Widgets

Figure 8-4. Ensuring the location of the RSL

Figure 8-3. Selecting RSL linking

Slide Show Widget | 113

Now when I export the release build, using the same mecha-
nism as before, I get a slideshow.swf file that is 98 KB. That’s
far less than half the size of the original! To enable the client to
use this I need to copy the .swz file for the framework into the
same directory as the .swf file that references it.

Chat Widget
Reading stuff from the Web and displaying it is one thing. It’s
another thing to read and write data to a remote web server
from a widget that is placed on any page. To show how to do
this, I will create a very simple chat widget.

The first thing you have to understand is that for security rea-
sons, a Flash movie on your machine cannot make an arbitrary
request of just any URL. The Flash Player will first check for a
crossdomain.xml file on the target host. The crossdomain.xml
file (shown in Example 8-2) is telling Flash that “it’s OK if you
make a request of me.”

Example 8-2. Crossdomain.xml

<?xml version="1.0"?>
<!-- http://www.adobe.com/crossdomain.xml -->
<cross-domain-policy>
<site-control permitted-cross-domain-policies="all"/>
 <allow-access-from domain="*" />
</cross-domain-policy>

On the server side, I’m going to use a combination of MySQL
and PHP. The PHP code for the server is located in the code
download associated with this book on the O’Reilly website.

The Flex code for the user interface appears in Example 8-3.

Example 8-3. Chat.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="vertical"
horizontalAlign="left" creationComplete="requestMessages();">
<mx:Script>

114 | Chapter 8: Flex for Widgets

<![CDATA[
import mx.rpc.events.ResultEvent;
import mx.rpc.http.HTTPService;

private function sendMessage() : void {
 var message:String = txtMessage.text;
 message = message.replace(/[\r\n]/, '');
 var sendReq:HTTPService = new HTTPService();
 sendReq.url = 'http://localhost/aschat
 /add.php?user='+escape(txtUser.text)+
'&message='+escape(message);
 sendReq.send();
}

private function messageKeyUp(event:KeyboardEvent) : void {
 if (event.keyCode == Keyboard.ENTER) sendMessage();
}
private function requestMessages(event:Event = null) : void {
 var msgReq:HTTPService = new HTTPService();
 msgReq.url = "http://localhost/aschat
 /messages.php?t="+((new Date()).valueOf());
 msgReq.resultFormat = 'e4x';
 msgReq.addEventListener(ResultEvent.RESULT,
 onMessageFetchResult);
 msgReq.send();
}
private function onMessageFetchResult(event:ResultEvent) :
 void {
 var messages:Array = [];
 for each (var msg:XML in event.result..message) {
 var message:String = msg.text();
 message = message.replace(/[\r\n]/, '');
 messages.push({ user: msg.@user, message: message });
 }
 msgGrid.dataProvider = messages;
 var t:Timer = new Timer(1000, 1);
 t.addEventListener(TimerEvent.TIMER, requestMessages);
 t.start();
}
]]>
</mx:Script>
<mx:DataGrid id="msgGrid" width="260" height="400">
<mx:columns>
 <mx:DataGridColumn dataField="user" headerText="User"
 width="60" />
 <mx:DataGridColumn dataField="message"
 headerText="Message" width="200" />

Chat Widget | 115

</mx:columns>
</mx:DataGrid>
<mx:Form width="260">
 <mx:FormItem label="User">
 <mx:TextInput id="txtUser" text="Jack" />
 </mx:FormItem>
 <mx:FormItem label="Message">
 <mx:TextInput id="txtMessage" text=""
 keyUp="messageKeyUp(event);" />
 </mx:FormItem>
</mx:Form>
</mx:Application>

This looks like a complicated application, but it really isn’t. On
the bottom of the file is the user interface, which starts with
the data grid that shows the messages and then finishes with a
form that has text fields for the username and the message to
send.

The methods for the chat system start at the top of the file. The
sendMessage method creates a request to run the add.php script
on the server with the current contents of the User and Message
fields. This sendMessage script is run when the user presses the
Enter key after entering text in the text field. The message
KeyUp method looks for the user pressing Enter.

The requestMessages and onMessageFetchResult methods deal
with getting data from the server. The requestMessages method
starts the request. The onMessageFetchResult message parses
the response and starts a timer that will initiate another request
when the timer goes off.

When I start the chat widget in my browser I see something
similar to Figure 8-5.

I then type a message into the Message field and press Enter.
That starts the request to add.php. After the timer goes off, the
chat widget requests the current messages from the server and
puts the current list in the grid.

As with the other widgets, you can put this control onto any
page if you've properly installed the crossdomain.xml file in the
target PHP server.

116 | Chapter 8: Flex for Widgets

Figure 8-5. The startup chat widget

Chat Widget | 117

CHAPTER 9

Flex on AIR

Adobe’s AIR runtime is your ticket to the world of cross-plat-
form desktop application development. And the great news is
that you can use the tools you already know. AIR supports
building desktop applications in either Flex or DHTML. In this
chapter, I’ll concentrate on the use of Flex.

Creating an AIR Version of the Runner’s
Calculator
The process starts with creating an AIR project in Flex Builder.
Use the New→Project menu item as you normally would. Then
select “Desktop application” instead of “Web application”, as
I have done in Figure 9-1.

I’m going to create an AIR version of the runner’s calculator
example from Chapter 3. Once I’ve created the AIR project
using the New MXML Project command, I copy all of the con-
tent from my original runner application, except for the
mx:Application tag, into the AIR_runner.mxml file. This is
shown in Example 9-1.

Example 9-1. AIR_runner.mxml

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com
 /2006/mxml”

119

layout="horizontal”
 creationComplete="onMilesChange(event)">
<mx:Script>
<![CDATA[
private function onMilesChange(event:Event) : void {
 var miles:Number = parseFloat(txtMiles.text);
 var mile:Number = 1.0;
 var weeks:int = 0;
 var weekData:Array = [];
 while(mile < miles) {
 weeks += 1;
 weekData.push({ week: weeks, miles: Math.round
 (mile * 10) / 10 });
 mile *= 1.1;
 }
 dgWeeks.dataProvider = weekData;
 txtWeeks.text = weeks.toString();
}
]]>
</mx:Script>
 <mx:Form>
 <mx:FormItem label="Target Miles">
 <mx:TextInput id="txtMiles" change="onMilesChange(event)"

Figure 9-1. The Project dialog with AIR selected

120 | Chapter 9: Flex on AIR

 text="3.1" />
 </mx:FormItem>
 <mx:FormItem label="Weeks">
 <mx:Label id="txtWeeks" />
 </mx:FormItem>
 </mx:Form>
 <mx:DataGrid id="dgWeeks">
 <mx:columns>
 <mx:DataGridColumn dataField="week" headerText="Week" />
 <mx:DataGridColumn dataField="miles" headerText="Miles"/>
 </mx:columns>
 </mx:DataGrid>
</mx:WindowedApplication>

I could have created a component and shared that between the
web version and the AIR version. But I wanted to focus this
example on building AIR applications and not on the benefits
of reusable MXML components.

The next thing I need to do is to make some small changes to
the AIR_Runner-app.xml that was generated when the
AIR_Runner-app.mxml file was created. The AIR loader appli-
cation uses this XML file when it starts up. It’s populated with
all the biographical information about the application: the path
to the SWF, the dimensions of the startup window, the icon if
you have one, the name of the application, and so on.

I tweak only three things: the name of the window, and its
height and width, as shown in Example 9-2.

Example 9-2. Selected segments of AIR_Runner-app.xml

...
 <title>Runner's Calculator</title>
 <width>600</width>
 <height>250</height>
...

Then I run the AIR application in Flex Builder just as I would
any web application that I develop using Flex. You can see the
result of this in Figure 9-2.

Your customers who want to run this application are first going
to have to install the AIR runtime on their computer. They can

Creating an AIR Version of the Runner’s Calculator | 121

get that from Adobe (http://adobe.com/air), and you can link
to it on your website. Once they have AIR installed, you can
use Flex Builder to package up an AIR application into a single
file and send it to them or post it on the Web.

There is a lot more to AIR than what I covered in this short
walkthrough. AIR has extra APIs that you can use to get access
to the local filesystem, create subwindows, access local devices,
and more. In addition, you can bind in your own platform-
specific APIs to get access to any specialized API you want.
Adobe’s AIR site is your starting point for all the information
you need on this powerful API.

Figure 9-2. The desktop runner’s calculator

122 | Chapter 9: Flex on AIR

http://adobe.com/air

CHAPTER 10

Resources for Flex Developers

In addition to the resources I already talked about, lots of ad-
ditional resources are available from which you can learn more
about Flex. I’ll cover a few of them in this chapter; these will
surely lead you to even more sources of information.

Getting connected as a Flex developer starts with subscribing
to the mailing lists provided by Adobe. These are low-traffic,
high-quality, spam-free lists where Adobe posts all kinds of up-
to-date information.

Flex Websites
There are two websites you really need to know about. Flex.org
(http://flex.org) is a community site for Flex developers, and
has links to all sorts of great resources for Flex developers. The
Flex Developer Center (http://developer.adobe.com/flex) is the
official Adobe Flex community center and has tons of articles
and great information for Flex developers.

Blogs and Sites
I consider the Flex blogs to be a primary source of information
on Flex. Often, blog entries include code recipes that are too
small to warrant coverage in an article, but are nonetheless
helpful and will save you the time and effort of researching and

123

http://flex.org
http://developer.adobe.com/flex

implementing Flex solutions yourself. Here’s a list of what I
consider to be some of the best Flex blogs out there:

Flex Team Blog (http://weblogs.macromedia.com/flexteam/)
This is the official blog from the Flex team at Adobe.

Mike Morearty (http://www.morearty.com/blog/)
Mike is the brains behind the debugging portion of Flex
Builder. His blog keeps you up-to-date on what’s hap-
pening in the world of Flex.

Chet Haase (http://graphics-geek.blogspot.com/)
Chet’s blog specializes in Flex/Flash graphics techniques.

Narciso Jaramillo (http://www.rictus.com/muchado/)
NJ is a Flex expert and a great writer who is very funny.

Jack Herrington (http://jackherrington.com/)
I’ve heard this guy has a pretty good Flex blog (and that
he writes a good Flex book as well).

If you like podcasts, you can subscribe to a weekly Flex podcast
on iTunes (http://www.apple.com/search/ipoditunes/?q=flex
+broadcast). You can also subscribe to “The Flex Show”
(http://www.theflexshow.com/).

You can also learn a lot more about Flex and rich Internet ap-
plication (RIA) development in general at these sites:

RIAForge (http://www.riaforge.org/)
Hosts several open source development projects for Flex

Flex.org (http://flex.org)
The Flex community website

InsideRIA (http://www.insideria.com/)
O’Reilly’s RIA website

The Flex Cookbook
The Flex Cookbook is an invaluable resource for both Flex
beginners and experienced Flex coders. It’s a community-driv-
en repository of code fragments for Flex that solves lots of
common coding problems. If you are stumped on how to do

124 | Chapter 10: Resources for Flex Developers

http://weblogs.macromedia.com/flexteam/
http://www.morearty.com/blog/
http://graphics-geek.blogspot.com/
http://www.rictus.com/muchado/
http://jackherrington.com/
http://www.apple.com/search/ipoditunes/?q=flex+broadcast
http://www.apple.com/search/ipoditunes/?q=flex+broadcast
http://www.theflexshow.com/
http://www.riaforge.org/
http://flex.org
http://www.insideria.com/

something, the first place you will want to visit is the Flex
Cookbook (http://www.adobe.com/go/flex_cookbook).

When you think you are ready and have something to contrib-
ute, you can add recipes to the Cookbook as well to give some-
thing back to the community.

The Flex Cookbook home page even offers an Eclipse plug-in
that will show you the most recent Cookbook entries in Flex
Builder.

Community Resources
Several Flex community resources are also available. One is the
Flex Support Forums (available at http://www.adobe.com/go/
flex_forums), where you can find user-to-user discussions re-
garding Flex. What’s more, the Flex team monitors the forums
to help you out when you get into a jam.

Also, it’s a good idea to join a local Flex user group. Flex user
groups are located all over the world and are cataloged at http://
flex.org/community/. Meanwhile, a Flex “Camp”—which is an
informal gathering of Flex enthusiasts and Adobe folks who
get together to try to build real Flex applications—should be
high on your list of things to attend. You can find out when a
Flex Camp is coming to your town by visiting the Flex.org
Camp page (http://flex.org/camp/). There are also conferences,
such as the 360|Flex conference (http://www.360conferen
ces.com/360flex/), to attend if you are in the area.

If you want to find a job in which you can put your knowledge
of Flex to good use, the Flex.org (http://flex.org) site also has
information on the current Flex job market.

Books
Besides this book, lots of books on Flex 3 and ActionScript 3
are currently available. One that I strongly recommend is Flex
3 Cookbook. Its sister publication, ActionScript 3 Cookbook, is

Community Resources | 125

http://www.adobe.com/go/flex_cookbook
http://www.adobe.com/go/flex_forums
http://www.adobe.com/go/flex_forums
http://flex.org/community/
http://flex.org/community/
http://flex.org/camp/
http://www.360conferences.com/360flex/
http://www.360conferences.com/360flex/
http://flex.org
http://flex.org

also an excellent resource, as is Essential ActionScript 3, which
demonstrates use of ActionScript that will blow your mind (all
three books are published by O’Reilly). Essential ActionScript
3 also provides excellent coverage on using E4X, which is crit-
ical if you are doing a lot of XML work. And be sure to check
out Programming Flex 3 (O’Reilly), scheduled for publication
later this year, for lots of up-to-date information on using the
Flex 3 framework to build Flash-based web and desktop ap-
plications. You can check Flex.org (http://flex.org) for a com-
plete list of books for Flex developers.

126 | Chapter 10: Resources for Flex Developers

http://flex.org
http://flex.org

Index

Symbols
2D graph type, 101
3D graph type, 101

A
absolute positioning (Canvas

container), 41
absolute property

(Application
container), 38

accordions, 55–58
Advanced Flash Components

(AFC), 104
AdvancedDataGrid control,

51–55
AFC (Advanced Flash

Components), 104
AIR, 7, 119–122

desktop applications and,
16

AMF requests, 68
application container, 37

Application tag, 21
CSS and, 62

applications, 7–18
constructing, 19–35
online, 9–11

ArrayCollection statement,
24

as3corelib library, 67
aviary, 10

B
backgroundGradientColors

attribute (Application),
21

backgroundGradientColors
parameter, 38

bindable private variables, 25
bottom property (Canvas

container), 43
Box class, 39–41
buttons, 50
Buzzword project, 11

We’d like to hear your suggestions for improving our indexes. Send email to
index@oreilly.com.

127

C
cancel method, 27
Canvas container, 41–44
Cascading Style Sheets (see

CSS)
chat applications, 16
chat widgets, 114–116
checkboxes, 50
CIA World FactBook, 15
click attributes, 26
closed state (mx:State), 90
combined layouts, 46
compilers (see MXML

compiler)
complex nested layout, 46
control bars, 59
controls, 37–66

advanced, 101–106
crossdomain.xml file, 114
CSS (Cascading Style Sheets),

9, 61

D
dashboards, 15
DataGrid control, 51–55

in-place editing and, 53
debugger version (Flash

Player), 1
Design mode, 22
desktop applications, 9, 16
DHTML, 119
distortion effects, 105
divider boxes, 60
downlod page, 1
drag-and-drop, 86–88

skinning and, 63

drageMoveEnabled attribute,
87

dragEnabled attribute, 87
dropEnabled attribute, 87

E
E-Commerce applications, 7–

9
eBay Desktop application, 17
Eclipse, 2
editable attribute (DataGrid),

54
editor (MXML), 21
effects, 65

F
Facebook, using plug-ins, 12
ffmpegx, 94
filters, 65
Flash Player, 11

chat widgets and, 114
desktop applications and,

17
Flash Video (FLV), 93
FlexLib project, 105
Flickr image viewer, 20–35
FLV (Flash Video), 93
Form container, 44
FormItem control, 44

G
GET method, 67
Google maps, 104

H
Haase, Chet, 124
HBox class, 22

128 | Index

Box class and, 39–41
Herrington, Jack, 124
horizontal property

(Application
container), 37

horizontalCenter property
(Canvas container), 43

HTML (HyperText Markup
Language), 8

CSS and, 61
SWF files, compiling and,

19
HTTP requests, 67, 85
HTTPService control, 23,

110
HyperText Markup

Language (see HTML)

I
id attribute (HTTPService

component), 23
IDE (integrated development

environment)
installing, 1–2

ILOG Elixir toolkit, 101–104
ILOG Visualization Products,

15
Image component, 31
images, 2
in-place editing, 53
integrated development

environment (see IDE)
InteliSea yacht alarm, 15
itemRenderer property, 29

J
Jaramillo, Narciso, 124
Java, 2

JSON, 67

L
Label component, 22
labels, 50
layout property (Panel

container), 48
layouts, 37
left property (Canvas

container), 43
lists, 50

M
maps, creating, 102
menus, 58–60
MINI Configurator, 8
Morearty, Mike, 124
movies, creating, 95–99
multimedia applications, 11
mx:Application container,

119
mx:DataGrid control, 82
mx:List control, 84
mx:Script tag, 24
mx:State container, 90
mx:Styles tag, 62
MXML compiler, 19
MXML editor, 21
MXML files, 3

AIR, using, 121
MySQL, 114

N
nested layout (complex), 46
network access (Flex-based),

67–77
(see also servers)

Index | 129

O
Object variables, 27
onFetchResult method, 110
online applications, 9–11
open state (mx:State), 90
Outline inspector (Eclipse), 2

P
Panel container, 48
photoHandler event, 24
Photoshop Elements, 11
PHP, 2

chat widgets and, 114
plug-ins, 12
POST method, 67, 69
Pownce, 16
projects, 20

R
radio boxes, 50
Rails, 2
relative positioning (Canvas

container), 42
remote objects, accessing

servers, 68
ResultEvent class, 24
right property (Canvas

container), 43
RobotWorx, 11
RSS feeds, 109
Run command, 3

S
servers, 67–77

POSTing to, 69
Shepherd, Mark, 106
skinning, 63–65

slide show widgets, 109–114
SlideRocket, 9
SOAP, 67
SocioGraph Facebook plug-

in, 12
splash screen (startup), 2
SpringGraph, 106
startup splash screen, 2
states, 88–95
Submit buttons, 25
SWF files, 19

T
tab controls, 55–58
TCP/IP sockets, 68
Text component, 31
text inputs, 50
TextInput component, 23
TextInput components, 26
Tile components, 29
top property (Canvas

container), 43
transitions, 88

U
Uhlmann, Alex, 105
url attributes, 23

V
VBox class

Box class and, 39–41
VBox components, 30
vertical property (Application

container), 37
verticalCenter property

(Canvas container), 43
verticalGap parameter, 38

130 | Index

VideoDisplay component, 95
VideoDisplay control, 94

W
widgets, 12, 109–116

Y
YourMinis portal, 13

Index | 131

	Getting Started with Flex 3
	Table of Contents
	Preface
	Who Should Read This Book
	How This Book Is Organized
	Conventions Used in This Book
	How to Contact Us
	About the Author
	Acknowledgments and Dedication
	Publisher's Acknowledgments

	Chapter 1. Installing Flex Builder 3
	Installing the IDE
	Having Some Image Fun

	Chapter 2. Flex in Action
	E-Commerce
	Online Applications
	Multimedia
	Plug-ins and Widgets
	Dashboards
	Desktop Applications
	What Will You Do?

	Chapter 3. Flex 101: Step by Step
	A Flickr Viewer

	Chapter 4. Flex Controls and Layout
	The Application Container
	The Box Class
	The Canvas Container (Absolute Positioning)
	The Canvas Container (Relative Positioning)
	The Form Container
	Combined Layouts
	The Panel Container
	Controls
	Data Grids
	In-Place Editing

	Tabs and Accordions
	Menus
	Divider Boxes
	CSS
	Skinning

	Filters and Effects

	Chapter 5. Working with the Server
	POSTing to the Server with Flex
	Using the HTTPService Tag
	The Server Code in ColdFusion

	Going on from Here

	Chapter 6. More Flex Applications
	A Runner’s Calculator
	A Simple Image Viewer
	Drag-and-Drop
	States and Transitions
	A Simple Video Viewer

	Creating Better Movies

	Chapter 7. Advanced Flex Controls
	ILOG Elixir
	Advanced Flash Components
	The FlexLib Project
	Distortion Effects
	SpringGraph

	Chapter 8. Flex for Widgets
	Slide Show Widget
	Chat Widget

	Chapter 9. Flex on AIR
	Creating an AIR Version of the Runner’s Calculator

	Chapter 10. Resources for Flex Developers
	Flex Websites
	Blogs and Sites
	The Flex Cookbook
	Community Resources
	Books

	Index

