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Chapter 1. IPv6 Versus IPv4 
IPv6 is sometimes called the Next Generation Internet Protocol, or IPng. Even though the Internet is seen 
as a relatively new technology, the protocols and technologies that make it work were developed in the 
1970s and 1980s. The current Internet and all our corporate and private intranets use IPv4. Now, with 
IPv6, the first major upgrade of the Internet protocol suite is on the horizon or maybe even closer. Close 
enough, anyway, to start taking it seriously.  

1.1 The History of IPv6 

The effort to develop a successor protocol to IPv4 was started in the early 1990s by the Internet 
Engineering Task Force (IETF). Several parallel efforts began simultaneously, all trying to solve the 
foreseen address space limitation as well as provide additional functionality. The IETF started the IPng 
area in 1993 to investigate the different proposals and to make recommendations for further procedures.  

The IPng area directors of the IETF recommended the creation of IPv6 at the Toronto IETF meeting in 
1994. Their recommendation is specified in RFC 1752, "The Recommendation for the IP Next Generation 
Protocol." The Directors formed an Address Lifetime Expectation (ALE) working group, whose job was to 
determine whether the expected lifetime for IPv4 would allow the development of a protocol with new 
functionality or if the remaining time would only allow for developing an address space solution. In 1994, 
the ALE working group projected the IPv4 address exhaustion to occur sometime between 2005 and 2011, 
based on the statistics that were available at that time.  

For those of you who are interested in the different proposals, here's some more information about it (from 
RFC 1752). There were four main proposals called CNAT, IP Encaps, Nimrod, and Simple CLNP. Three 
more proposals followed: the P Internet Protocol (PIP), the Simple Internet Protocol (SIP), and TP/IX. 
After the March 1992 San Diego IETF meeting, Simple CLNP evolved into TCP and UDP with Bigger 
Addresses (TUBA) and IP Encaps evolved into IP Address Encapsulation (IPAE). IPAE merged with PIP 
and SIP and called itself Simple Internet Protocol Plus (SIPP). The TP/IX working group changed its name 
to Common Architecture for the Internet (CATNIP). The main proposals were now CATNIP, TUBA, and 
SIPP. For a short discussion of the proposals, refer to RFC 1752.  

CATNIP is specified in RFC 1707, TUBA in RFC 1347, RFC 1526, and RFC 
1561, and SIPP in RFC 1710.  

The Internet Engineering Steering Group approved the IPv6 recommendation and drafted a Proposed 
Standard on November 17, 1994. The core set of IPv6 protocols became an IETF Draft Standard on 
August 10, 1998.  

Why is the new protocol not IPv5? The version number 5 could not be used 
because it had been allocated to an experimental stream protocol.  

1.2 Overview of Functionality 

IPv6 is one of the most significant network and technology upgrades in history. It will slowly grow into 
your existing IPv4 infrastructure and positively impact your network. Reading this book will prepare you 
for the next step of networking technology evolution. IPv6 product development and implementation 
efforts are already underway all over the world. IPv6 is designed as an evolutionary step from IPv4. It is a 
natural increment to IPv4, can be installed as a normal software upgrade in most Internet devices, and is 
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interoperable with the current IPv4. IPv6 is designed to run well on high performance networks like 
Gigabit Ethernet, ATM, and others, as well as low bandwidth networks (e.g., wireless). In addition, it 
provides a platform for new Internet functionality that will be required in the near future, such as extended 
addressing, better security, and quality of service (QoS) features.  

IPv6 includes transition and interoperability mechanisms that are designed to allow users to adopt and 
deploy IPv6 step by step as needed and to provide direct interoperability between IPv4 and IPv6 hosts. The 
transition to a new version of the Internet Protocol (IP) must be incremental, with few or no critical 
interdependencies, if it is to succeed. The IPv6 transition allows users to upgrade their hosts to IPv6 and 
network operators to deploy IPv6 in routers with very little coordination between the two groups.  

The main changes from IPv4 to IPv6 can be summarized as follows:  

Expanded addressing capability and autoconfiguration mechanisms 

The address size for IPv6 has been increased to 128 bits. This solves the problem of the limited 
address space of IPv4 and offers a deeper addressing hierarchy and simpler configuration. There 
will come a day when you will hardly remember how it felt to have only 32 bits in an IP address. 
Network administrators will love the autoconfiguration mechanisms built into the protocol. 
Multicast routing has been improved, with the multicast address being extended by a scope field. 
And a new address type has been introduced, called Anycast address, which can send a message to 
the nearest single member of a group.  

Simplification of the header format 

The IPv6 header has a fixed length of 40 bytes. This actually accommodates only an 8-byte header 
plus two 16-byte IP addresses (source and destination address). Some fields of the IPv4 header 
have been removed or become optional. This way, packets can be handled faster with lower 
processing costs.  

Improved support for extensions and options 

With IPv4, options were integrated into the basic IPv4 header. With IPv6, they are handled as 
Extension headers. Extension headers are optional and only inserted between the IPv6 header and 
the payload, if necessary. This way the IPv6 packet can be built very flexible and streamlined. 
Forwarding IPv6 packets is much more efficient. New options that will be defined in the future 
can be integrated easily.  

Extensions for authentication and privacy 

Support for authentication, and extensions for data integrity and data confidentiality, have been 
specified and are inherent.  

Flow labeling capability 

Packets belonging to the same traffic flow, requiring special handling or quality of service, can be 
labeled by the sender. Real-time service is an example where this would be used.  

For a current list of the standardization status of IPv6, you can refer to 
http://playground.sun.com/pub/ipng/html/specs/standards.html.
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1.3 Transition Aspects 

Is IPv6 worth all the migration and upgrade headaches? Will it ever become the IP of the future? Can't 
IPv4 extensions offer all that functionality? After all, we have Network Address Translation (NAT) to 
solve address space problems and IPSEC to provide security.  

The 128-bit address space is the most obvious feature of the new protocol, but it is not the only important 
change. The IPv6 package includes important features such as higher scalability, better data integrity, QoS 
features, autoconfiguration mechanisms that make it manageable even for high numbers of dynamically 
connecting devices, improved routing aggregation in the backbone, and improved multicast routing.  

Extensions for IPv4 that have been widely deployed, such as NAT, should be viewed as good solutions but 
only for limited short-term scenarios. In the long term, nothing can replace IPv6's features for inherent 
secure end-to-end connectivity. Multimedia and interactive, transaction-oriented network applications 
require high levels of connectivity that can only be provided by IPv6. In the future, an unforeseeable 
number of new devices may want to connect to our networks, including devices such as Personal Digital 
Assistants (PDAs), mobile phones, smart set-top boxes with integrated web browsers, home entertainment 
systems, coffee machines, refrigerators, and car devices. The list is endless. Only IPv6, with its extended 
address space and advanced autoconfiguration and mobility features, can manage such devices. There is no 
comparable alternative technology in sight.  

1.4 IPv6 Alive 

There are already a surprising number of global test networks and even commercial networks running over 
IPv6. I discuss some interesting examples in the next sections. In order to describe what they are doing, I 
use some IPv6-specific terms that are probably not familiar to you yet. They are all explained in this book.  

In February 2002 over 120 production networks have been allocated IPv6 address 
prefixes. For a current list, refer to 
http://www.dfn.de/service/ipv6/ipv6aggis.html.

1.4.1 The 6Bone 

The 6Bone started out as a network of IPv6 islands working over the existing IPv4 infrastructure of the 
Internet by tunneling IPv6 packets in IPv4 packets. The tunnels were mainly statically configured point-to-
point links. The 6Bone became a reality in early 1996 as a result of an initiative of several research 
institutes. The first tunnels were established between the IPv6 laboratories of G6 in France, UNI-C in 
Denmark, and WIDE in Japan.  

1.4.1.1 Structure of the 6Bone 

The 6Bone is structured as a hierarchical network of two or more layers. The top layer consists of a set of 
backbone transit providers, called pseudo Top Level Aggregators (pTLAs), which use BGP4+ as a routing 
protocol. The bottom layer is comprised of leaf sites connected via the 6Bone. Zero or more intermediate 
layers, called pseudo Next Level Aggregators (pNLAs), interconnect leaf sites and the pTLA backbone 
networks.  

1.4.1.2 Addressing 

IPv6 unicast addressing of node interfaces (for both end systems and routers) is based on RFC 2374, which 
covers the Aggregatable Global Unicast address format. 6Bone backbone networks play the role of 
experimental TLAs, called pseudo TLAs (pTLAs), and assign address space to pseudo NLAs (pNLAs) and 
leaf sites. The prefix assigned to the 6Bone is 3ffe::/16 (RFC 2471). These pTLA backbone networks 



7

are currently allocated 32-bit prefixes (previously, 24- and 28-bit prefixes were allocated) that must be 
administered according to the rules defined for pTLAs. So every pTLA plays the role of an experimental 
top-level ISP and assigns chunks of its addressing space to directly connected transit and leaf sites without 
breaking aggregation inside the 6Bone backbone.  

1.4.1.3 Growth 

The 6Bone is growing fast. In December 1997 there were 43 backbone sites and 203 leaf sites registered. 
In December 1998 there were 51 backbone sites and 332 leaf sites. In January 2000 there were 67 
backbone sites and 505 leaf sites.  

I gave up on trying to find a nice picture of the world with the 6Bone backbone sites on it. The 6Bone has 
grown too big to display it in one screenshot. If you want to get a feeling for the size and workings of the 
6Bone, go to http://www.cs-ipv6.lancs.ac.uk/ipv6/6Bone and look at the maps, statistics, and tools.  

At the time of this writing, the number of nodes in the 6Bone has just reached 1000 nodes and grows daily. 
Find an updated list at http://www.cs-ipv6.lancs.ac.uk/ipv6/6Bone/Whois/index.html#full.

1.4.1.4 Joining the 6Bone 

Membership in the 6Bone is open to anyone. Reasons for joining, besides the fun of it, would be to gain 
early experience working with IPv6, to build the expertise necessary to make decisions about when and 
how to use IPv6 for production networks, and to have working access to IPv6 servers and resources. 
Joining the 6Bone connects you with a cool crowd of people who want to be on top of technology and are 
willing to share their experience.  

The 6Bone community spans the globe and is very active and enthusiastic. By joining, you not only gain 
access to the network and the common experience of those in it; you can also participate and help develop 
protocols, programs, and procedures.  

If you are interested in joining the 6Bone, here's the link: 
http://www.6bone.net/6bone_hookup.html.

There are different ways for you to connect to either the 6Bone or production IPv6 networks:  

• Become an end site of an existing 6Bone ISP (which means you will get your 48-bit IPv6 external 
routing prefix from that ISP's TLA). You can also get temporary address allocations from tunnel 
broker sites (see the 6Bone home page for more information).  

• Apply for your own 6Bone TLA (if you are an ISP) based on the 6Bone process.  
• To get your first production IPv6 address, find a production IPv6 ISP (i.e., an ISP that has a sub-

TLA) from which to get your prefix. Note that you can partially qualify for a sub-TLA production 
prefix if you have a 6Bone pTLA prefix (at least during the early phase of production prefix 
allocation).  

• Use the "6to4" automatic tunneling mechanism. This allows you to specify the IPv4 address of 
your end user site router for an IPv6-over-IPv4 tunnel to reach your end user site. Addresses of 
this type have the first 16 bits of 2002::/16, with the next 32 bits containing the IPv4 address 
of a router on your site supporting this mechanism (thus making up the entire 48-bit external 
routing prefix). Refer to Chapter 10 for more information on the "6to4" automatic tunneling 
mechanism.  

Now all you really need is a router and a host running IPv6 stacks. Almost all router vendors have either 
production stacks or beta stacks available. Refer to http://playground.sun.com/pub/ipng/html/ipng-
implementations.html for a list of router and host implementations.  
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Obviously you need an entry point into the 6Bone. Try to find one that is close to your normal IPv4 path 
into the Internet. You can find a good 6Bone TLA on the 6Bone home page at 
http://www.6bone.net/6bone_pTLA_list.html. Use traceroute to determine the closest path.  

1.4.2 IPv6 Commercial Networks 

Since I started writing this book, a lot has happened in the development of IPv6. There are many 
production networks worldwide that have already been assigned IPv6 address prefixes. We picked four 
examples of companies that made their step into the future by offering IPv6 services.  

1.4.2.1 vBNS+ 

vBNS+ is a specialized US IP network that supports high-performance, high-bandwidth applications. The 
vBNS+ network supports both native IPv6-over-ATM connections and tunneled IPv6-in-IPv4 connections. 
The vBNS+ service has been assigned its own sTLA from ARIN, as well as a pTLA for the 6Bone, and is 
delegating address space under these assignments to vBNS-attached sites. For more information, refer to 
their site at http://www.vbns.net.

1.4.2.2 Telia Sweden 

In summer 2001, Telia, in Sweden, announced its intention to build a new generation Internet based on 
IPv6. By the end of 2001, connection points were installed in Stockholm, Farsta, Malmoe, Gothenburg 
(Sweden), Vasa (Finland), Oslo, Copenhagen, and London.  

I spoke with the project manager at Telia because I thought that his early adopter input might be interesting 
for companies that consider going into IPv6. Telia's intent was to break through the lethargy of the chicken 
and the egg problem: vendors do not develop because the market is not asking for it, and the market 
doesn't ask for it because vendors don't develop. So Telia made the decision to create a market by building 
an IPv6 network and opening it to the public. Telia's hope is that, through the publicity of its endeavor, 
other companies will follow suit, and the acceptance and development of IPv6 will increase.  

At the current stage of its rollout, Telia is keeping the IPv6 network separate from the existing IPv4 
infrastructure. There were different reasons for this decision:  

• It was easier to start by keeping the networks separate. Telia does not have to educate all of its 
IPv4 engineers to use IPv6 overnight.  

• If there are problems with the IPv6 network, the IPv4 network is not affected in any way.  
• It is less complex to configure if the networks are separate. 

The new network is primarily built as a native IPv6 network. In some instances, tunnels over IPv4 are 
used. Currently, Telia is offering an IPv6 transport service to a limited number of customers. It will add 
features and gradually open the IPv6 network as a general service for everyone. Telia uses Hitachi routers 
that support IPv6 in hardware (versus software implementations).  

After rolling out the first connection points, Telia concluded that market support for IPv6 was sufficient to 
get started. There are applications that will need to be ported to IPv6, but Telia recommends that 
companies and ISPs start right away. The foundation is here and when IPv6 is implemented on a broader 
range, vendors and application developers will be encouraged to speed up development.  

1.4.2.3 Internet Initiative Japan 

Another company that offers IPv6 transport services is Internet Initiative Japan (IIJ), Japan's leading 
Internet access and solutions provider, which targets high-end corporate customers. IIJ offers a trial IPv6 
service (tunneling through IPv4) and a native IPv6 service that is independent from existing IPv4 
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networks. In December 2001 IIJ extended its IPv6 services to individual users connecting through IIJmio 
DSL/SF, an ADSL Internet service.  

For information about IIJ's services, refer to http://www.iij.ad.jp/IPv6/index-
e.html.

1.4.2.4 NTT Communications Corporation 

NTT Laboratories started one of the largest global IPv6 research networks in 1996. Trials of their global 
IPv6 network, using official IPv6 addresses, began in December 1999. Since spring 2001, NTT 
Communications has offered commercial IPv6 services.  

In April 2001 the company started their commercial IPv6 Gateway Service. This native IPv6 backbone 
service connects sites in Japan to the NTT/VERIO Global Tier1 IPv6 backbone deployed over Asia, the 
U.S., and Europe. Monitoring and operation continues 7 days a week, 24 hours a day, through NTT 
Communications NOC in Tokyo, Japan and Verio NOC in Dallas, US. Figure 1-1 shows the layout of the 
backbone.  

Figure 1-1. NTT/VERIO's global IPv6 backbone 

The IPv6 Gateway Service offers native IPv6 transport. Also shown on the picture is the IPv6 Tunneling 
Service that NTT has offered since June 2001. It uses the existing IPv4 network to enable NTT's partners 
to access the IPv6 network, using IPv6-over-IPv4 tunneling techniques via dedicated lines. The newest 
addition is the IPv6/IPv4 Dual Access point with plug-and-play functionality, which became available in 
the first quarter of 2002. It is shown in dotted lines on Figure 1-1. The first customers to use the native 
backbone service were BIGLOBE/NEC Corporation, CHITA MEDIAS NETWORK INC., Toshiba, 
InfoSphere/NTTPC Communications, Fujitsu Matsushita Graphic Communication Systems, Inc., and 
MEX/Media Exchange, Inc. In June 2001, NTT demonstrated applications running over IPv6, including a 
remote control camera running over IPv6 and videoconferencing using IPv6.  

The routing protocols used are BGP4+ and RIPng, IS-IS (which will be on the global backbone in the near 
future), and OSPFv3 (which is used at NTT's Japan domestic backbone). What NTT lacked was ICMPv6 
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polling in commercial operational tools. They utilize their own custom-developed router configuration 
tools and network management tools that support IPv6.  

NTT offers Points Of Presence (POPs) all over the world, currently in London, Palo Alto, San Jose, 
Seattle, and Tokyo. They plan to extend their services throughout the world; the next POPs will be in Hong 
Kong and Australia. NTT's services include official IPv6 addresses from their sTLA block, IPv6 Internet 
connectivity, and DNS reverse zone delegation for the subscriber's IPv6 address space.  

For an overview of NTT's global IPv6 services and how you can participate and 
connect, refer to http://www.v6.ntt.net/globe/index-e.html.

1.4.3 Links to Other IPv6 Networks 

There are a large number of international IPv6 test and research networks. You can find some interesting 
links in the following list:  

The 6Ren 

The 6Ren is a voluntary coordination initiative of research and education networks that provide 
production IPv6 transit service to facilitate high-quality, high-performance, and operationally 
robust IPv6 networks. Participation is free and open to all research and education networks that 
provide IPv6 service. Other profit and nonprofit IPv6 networks are also encouraged to participate. 
The 6Ren web site can be found at http://www.6ren.net.

The 6Net 

The 6Net is a high-capacity IPv6 research network coordinated by Cisco, with more than 30 
members. Their home page can be found at http://www.sixnet.org.

DRENv6 

The Defense Research and Engineering Network (DREN) is a major component of the DoD High 
Performance Computing Modernization Program (HPCMP). Its purpose is to provide high-
performance network connectivity to various communities of interest in the DoD, including 
research and development, modeling and simulation, and testing and evaluation. DREN also 
provides connectivity to other high-performance backbones and Federal networks to serve the 
needs of these communities. DREN is also a research network; it provides a test bed for testing 
new protocols and applications. DREN provides both ATM cell-based services and IP frame-
based services. The DREN IPv6 network is one of the services provided as part of DREN. The 
DREN web site is at http://www.v6.dren.net.
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Chapter 2. The Structure of the IPv6 Protocol 
This chapter explains the structure of the IPv6 header and compares it to the IPv4 header. It also discusses 
Extension headers, which are new in IPv6.  

The header structure of an IPv6 packet is specified in RFC 2460. The header has a fixed length of 40 bytes. 
The two fields for source and destination addresses each use 16 bytes (128 bits), so there are only 8 bytes 
for general header information.  

2.1 General Header Structure 

In IPv6, five fields from the IPv4 header have been removed:  

• Header Length 
• Identification 
• Flags 
• Fragment Offset 
• Header Checksum 

The Header Length field was removed because it is not needed in a header with a fixed length. In IPv4 the 
minimum header length is 20 bytes, but if options are added, it can be extended in 4-byte increments up to 
60 bytes. Therefore, with IPv4, the information about the total length of the header is important. In IPv6 
options are defined by Extension headers (covered later in this chapter).  

The Identification field, the Flags field, and the Fragment Offset field handle fragmentation of a packet in 
the IPv4 header. Fragmentation happens if a large packet has to be sent over a network that only supports 
smaller packet sizes. In that case, the IPv4 router splits the packet into smaller slices and forwards multiple 
packets. The destination host collects the packets and reassembles them. If only one packet is missing or 
has an error, the whole transmission has to be redone; this is very inefficient. In IPv6, a host learns the Path 
Maximum Transmission Unit (MTU) size through a procedure called Path MTU Discovery. If a sending 
IPv6 host wants to fragment a packet, it will use an Extension header to do so. IPv6 routers along the path 
of a packet do not provide fragmentation, as they did with IPv4. So the Identification, Flags, and Fragment 
Offset fields were removed from the IPv6 header and will be inserted as an Extension header, if needed. 
Extension headers are explained later in this chapter.  

Path MTU Discovery is explained in Chapter 4.

The Header Checksum field was removed to improve processing speed. If routers do not have to check and 
update checksums, processing becomes much faster. Checksumming is done at the media access level, too, 
and the risk for undetected errors and misrouted packets is minimal. There is a checksum field at the 
transport layer (UDP and TCP). IP is a best-effort delivery protocol; it is the responsibility of upper layer 
protocols to insure integrity.  

The Type of Service field was replaced by the TrafficClass field. IPv6 has a different mechanism to handle 
preferences. Refer to Chapter 6 for more information. The Protocol Type and the Time-to-Live (TTL) 
fields were renamed and slightly modified. A Flow Label field was added.  
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2.2 The Fields in the IPv6 Header 

By becoming familiar with the fields of the IPv6 header, you will better understand how IPv6 works.  

For a detailed description of all the fields in an IPv4 header, refer to Novell's 
Guide to Troubleshooting TCP/IP (John Wiley & Sons) by Silvia Hagen and 
Stephanie Lewis.  

Figure 2-1 provides an overview of the IPv6 header. The fields are discussed in detail in the following 
paragraphs.  

Figure 2-1. Fields in the IPv6 header 

Figure 2-1 shows that even though the header has a total size of 40 bytes, which is twice as long as a 
default IPv4 header, it has actually been streamlined because most of the header is taken by the two 16-
byte IPv6 addresses. That leaves only 8 bytes for other header information.  

2.2.1 Version (4 Bits) 

This is a 4-bit field and contains the version of the protocol. In the case of IPv6, the number is 6. The 
version number 5 could not be used because it had already been assigned an experimental stream protocol 
(ST2, RFC 1819).  

2.2.2 Traffic Class (1 Byte) 

This field replaces the Type of Service field in IPv4. This field facilitates the handling of real-time data 
and any other data that requires special handling. This field can be used by sending nodes and forwarding 
routers to identify and distinguish between different classes or priorities of IPv6 packets.  

RFC 2474, "Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers," 
explains how the Traffic Class field in IPv6 can be used. RFC 2474 uses the term DS Field to refer to the 
Type of Service field in the IPv4 header, as well as to the Traffic Class field in the IPv6 header.  

2.2.3 Flow Label (20 Bits) 

This field distinguishes packets that require the same treatment, in order to facilitate the handling of real-
time traffic. A sending host can label sequences of packets with a set of options. Routers keep track of 
flows and can process packets belonging to the same flow more efficiently because they do not have to 
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reprocess each packet's header. A flow is uniquely identified by the flow label and the address of the 
source node. Nodes that do not support the functions of the Flow Label field are required to pass the field 
unchanged when forwarding a packet and to ignore the field when receiving a packet. All packets 
belonging to the same flow must have the same source and destination IP address.  

The use of the Flow Label field is experimental and still under discussion at the 
IETF at the time of this writing. Refer to Chapter 6 for more information.  

2.2.4 Payload Length (2 Bytes) 

This field specifies the payload—i.e., the length of data carried after the IP header. The calculation in IPv6 
is different from the one in IPv4. The Length Field in IPv4 includes the length of the IPv4 header, whereas 
the Payload Length field in IPv6 contains only the data following the IPv6 header. Extension headers are 
considered part of the payload and are therefore included in the calculation.  

The fact that the Payload Length field has 2 bytes limits the maximum packet payload size to 64 KB. IPv6 
has a Jumbogram Extension header, which supports bigger packet sizes, if needed. Jumbograms are 
relevant only when IPv6 nodes are attached to links that have a link MTU greater than 64 KB. 
Jumbograms are specified in RFC 2675.  

2.2.5 Next Header (1 Byte) 

In IPv4, this field is the Protocol Type field. It was renamed in IPv6 to reflect the new organization of IP 
packets. If the next header is UDP or TCP, this field will contain the same protocol numbers as in IPv4—
for example, protocol number 6 for TCP or 17 for UDP. But if Extension headers are used with IPv6, this 
field contains the type of the next Extension header. That header is located between the IP header and the 
TCP or UDP header. Table 2-1 lists possible values in the Next Header field.  

Table 2-1. Values in the Next Header field  
Value Description 

0
In an IPv4 header: reserved and not used 

In an IPv6 header: Hop-by-Hop Option Header following 
1 Internet Control Message Protocol (ICMPv4)—IPv4 support 
2 Internet Group Management Protocol (IGMPv4)—IPv4 support 
4 IP in IP (encapsulation) 
6 TCP 
8 Exterior Gateway Protocol (EGP) 
9 IGP - any private interior gateway (used by Cisco for their IGRP) 
17 UDP 
41 IPv6 
43 Routing header 
44 Fragmentation header 
45 Interdomain Routing Protocol (IDRP) 
46 Resource Reservation Protocol (RSVP) 
50 Encrypted Security Payload header 
51 Authentication header 
58 ICMPv6 
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59 No Next Header for IPv6 
60 Destination Options header 
88 EIGRP 
89 OSPF 
108 IP Payload Compression Protocol 
115 Layer 2 Tunneling Protocol (L2TP) 
132 Stream Control Transmission Protocol (SCTP) 
134-254 Unassigned 
255 Reserved 

Header type numbers derive from the same range of numbers as protocol type numbers and should 
therefore not conflict with them.  

The complete list of protocol numbers can be found in the appendix. For the most 
current list, go to IANA's web site at http://www.iana.org/assignments/protocol-
numbers.

2.2.6 Hop Limit (1 Byte) 

This field is analogous to the TTL field in IPv4. The TTL field contains a number of seconds, indicating 
how long a packet can remain in the network before being destroyed. Most routers simply decremented 
this value by one at each hop. This field was renamed to Hop Limit in IPv6. The value in this field now 
expresses a number of hops and not a number of seconds. Every forwarding node decrements the number 
by one.  

2.2.7 Source Address (16 Bytes) 

This field contains the IP address of the originator of the packet.  

2.2.8 Destination Address (16 Bytes) 

This field contains the IP address of the intended recipient of the packet. With IPv4, this field always 
contains the address of the ultimate destination of the packet. With IPv6, this field might not contain the IP 
address of the ultimate destination if a Routing header is present.  

Figure 2-2 shows the IPv6 header in the trace file. 
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Figure 2-2. The IPv6 header in a trace file 

This trace file shows all of the header fields I have discussed and how they are presented in a trace file. 
The Version field is set to 6 for IPv6. The Priority and the Flow Label fields are not used in this packet and 
are set to zero. The Payload Length is 40 and the Next Header value is set to 58 for ICMPv6. The Hop 
Limit is set to 128 and the Source and Destination addresses contain the link local addresses of my IPv6 
nodes.  

2.3 Extension Headers 

The IPv4 header can be extended from a minimum of 20 bytes to 60 bytes in order to specify options such 
as Security Options, Source Routing, or Timestamping. This capacity has rarely been used because it 
causes a performance hit. For example, IPv4 hardware forwarding implementations have to pass the packet 
containing options to the main processor (software handling).  

The simpler a packet header, the faster the processing. IPv6 has a new way to deal with options that has 
substantially improved processing. It handles options in additional headers called Extension headers.  

The current IPv6 specification (RFC 2460) defines six Extension headers:  

• Hop-by-Hop Options header  
• Routing header 
• Fragment header  
• Destination Options header  
• Authentication header  
• Encrypted Security Payload header  

There can be zero, one, or more than one Extension header between the IPv6 header and the upper-layer 
protocol header. Each Extension header is identified by the Next Header field in the preceding header. The 
Extension headers are examined or processed only by the node identified in the Destination Address field 
of the IPv6 header. If the address in the Destination Address field is a multicast address, the Extension 
headers are examined and processed by all the nodes belonging to that multicast group. Extension headers 
must be strictly processed in the order they appear in the packet header.  

There is an exception to the above rule: only the destination node will process an Extension header. If the 
Extension header is a Hop-by-Hop Options header, the information it carries must be examined and 
processed by every node along the path of the packet. The Hop-by-Hop Options header, if present, must 
immediately follow the IPv6 header. It is indicated by the value zero in the Next Header field of the IPv6 
header (see Table 2-1, earlier in this chapter).  
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The first four Extension headers are described in RFC 2460. The Authentication 
header is described in RFC 2402 and the Encrypted Security Payload header in 
RFC 2406.  

Figure 2-3 shows how Extension headers are used. 

Figure 2-3. The use of Extension headers 

Each Extension header is a multiple of 8 octets long. That way, subsequent headers can always be aligned. 
If a node is required to process the Next Header but cannot identify the value in the Next Header field, it is 
required to discard the packet and send an ICMPv6 Parameter Problem message back to the source of the 
packet. For details on ICMPv6 messages, refer to Chapter 4.

If more than one Extension header is used in a single packet, the following header order should be used 
(RFC 2460):  

1. IPv6 header 
2. Hop-by-Hop Options header 
3. Destination Options header (for options to be processed by the first destination that appears in the 

IPv6 Destination address field, plus subsequent destinations listed in the Routing header)  
4. Routing header  
5. Fragment header  
6. Authentication header  
7. Encapsulating Security Payload header  
8. Destination Options header (for options to be processed only by the final destination of the packet)  
9. Upper-Layer header  

In cases when IPv6 is encapsulated in IPv4, the Upper-Layer header can be another IPv6 header and can 
contain Extension headers that have to follow the same rules.  

2.3.1 Hop-by-Hop Options Header 

The Hop-by-Hop Options Extension header carries optional information that must be examined by every 
node along the path of the packet. It must follow the IPv6 header immediately and is indicated by a Next 
Header value of zero. For example, the Router Alert (RFC 2711) uses the Hop-by-Hop Extension header 
for protocols like Resource Reservation Protocol (RSVP) or Multicast Listener Discovery (MLD) 
messages. With IPv4, the only way for a router to determine if it needs to examine a datagram is to, at least 
partially, parse upper layer data in all datagrams. This slows down the routing process substantially. With 
IPv6, in the absence of a Hop-by-Hop Extension header, a router knows that it does not need to process 
router-specific information and can route the packet immediately to the final destination. If there is a Hop-
by-Hop Extension header, the router only needs to examine this header and not look further into the 
packet.  
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The format of the Hop-by-Hop Options header is shown in Figure 2-4.

Figure 2-4. Format of the Hop-by-Hop Options header 

The following list describes each field: 

Next Header (1 byte) 

The Next Header field identifies the type of header that follows the Hop-by-Hop Options header. 
The Next Header field uses the values listed in Table 2-1, earlier in this chapter.  

Header Extension Length (1 byte) 

This field identifies the length of the Hop-by-Hop Options header in 8-byte units. The length 
calculation does not include the first 8 bytes.  

Options (variable size) 

There can be one or more options. The length of the options is variable and determined in the 
Header Extension Length field.  

The Option Type Field, the first byte of the Options fields, contains information about how this option 
must be treated in case the processing node does not recognize the option. The value of the first two bits 
specifies the actions to be taken:  

• Value 00: skip and continue processing. 
• Value 01: discard the packet. 
• Value 10: discard the packet and send ICMP Parameter Problem, Code 2 message to the packet's 

source address, pointing to the unrecognized option type.  
• Value 11: discard the packet and send ICMP Parameter Problem, Code 2 message to the packet's 

source address only if the destination is not a multicast address.  

The third bit of the Options Type field specifies whether the option information can change en route (value 
01) or does not change en route (value 00).  

2.3.2 Routing Header 

The Routing header is used to give a list of one or more intermediate nodes that should be visited on the 
packet's path to its destination. In the IPv4 world, this is called the Loose Source and Record Route option. 
The Routing header is identified by a Next Header value of 43 in the immediately preceding header. Figure 
2-5 shows the format of the Routing header.  

 



18

Figure 2-5. Format of the Routing header 

The following list describes each field: 

Next Header (1 byte) 

The Next Header field identifies the type of header that follows the Routing header. It uses the 
same values as the IPv4 Protocol Type field (see Table 2-1, earlier in this chapter).  

Header Extension Length (1 byte) 

This field identifies the length of the Routing header in 8-byte units. The length calculation does 
not include the first 8 bytes.  

Routing Type (1 byte) 

This field identifies the type of Routing header. RFC 2460 describes Routing Type zero.  

Segments Left (1 byte) 

This field identifies how many nodes are left to be visited before the packet reaches its final 
destination.  

Type-Specific Data (Variable-length)  

The length of this field depends on the Routing Type. The length will always make sure that this 
complete header is a multiple of 8 bytes.  

If a node processing a Routing header cannot identify a Routing Type value, the action taken depends on 
the content of the Segments Left field. If the Segments Left field does not contain any nodes to be visited, 
the node must ignore the Routing header and process the next header in the packet, determined by the Next 
Header field value. If the Segments Left field is not zero, the node must discard the packet and send an 
ICMP Parameter Problem, Code 0 message to the packet's source address, pointing to the unrecognized 
Routing Type. If a forwarding node cannot process the packet because the next link MTU size is too small, 
it discards the packet and sends an ICMP Packet Too Big message back to the source of the packet.  



19

The only Routing Type described in RFC 2460 is a Type Zero Routing header. The first node that 
processes the Routing header is the node addressed by the Destination address field in the IPv6 header. 
This node decrements the Segments Left field by one and inserts the next address field from within the 
Routing header in the IPv6 header Destination address field. Then the packet is forwarded to the next hop 
that will again process the Routing header as described until the final destination is reached. The final 
destination is the last address in the Routing Header Data field. For example, Mobile IPv6 uses the Routing 
header. Any node sending a packet to a mobile node will send the packet to the mobile node's care-of-
address. It will include a Routing header with one entry, the mobile node's home address. The mobile node 
swaps the Destination address in the IPv6 header with the entry in the Routing header and will reply with 
its home address as a source address as if it received the packet attached to its home network. For further 
discussion and definition of terms regarding Mobile IPv6, refer to Chapter 7. Figure 2-6 shows the routing 
header in a trace file.  

Figure 2-6. Routing header in a trace file 

The Next Header field within the IPv6 header shows the value 43 for the Routing header. The Source and 
Destination addresses have the prefix 2002:, which is allocated to 6to4 sites. The Routing header contains 
the fields discussed earlier in this section. Next Header will be ICMPv6, value 58. The Header Length is 
two 8-byte units, which calculates to a total length of 16 bytes. The Segments Left field contains the value 
1 because there is one address entry in the Options Fields. Finally, the Options field lists the addresses to 
be visited. In this case, there is only one entry. If a number of hosts is listed here, every forwarding node 
(that is, the destination IP address in the IPv6 header) takes the next entry from this host list, uses it as a 
new destination IP address in the IPv6 header, decrements the Segments Left field by one, and forwards 
the packet. This is done until the last host in the list is reached. RFC 2460 shows an example.  

A source node S sends a packet to destination node D using a Routing header to send the packet through 
the intermediate nodes I1, I2, and I3. The Routing header changes are shown in Table 2-2.

Table 2-2. Processing the Routing header  
IPv6 Header Routing Header 

Packet from S to I1 
Source address S 

Destination address I1 

Segments Left 3 

Address (1) = I2 

Address (2) = I3 

Address (3) = D 
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Packet from I1 to I2 
Source address S 

Destination address I2 

Segments Left 2 

Address (1) = I1 

Address (2) = I3 

Address (3) = D 

Packet from I2 to I3 
Source address S 

Destination address I3 

Segments Left = 1 

Address (1) = I1 

Address (2) = I2 

Address (3) = D 

Packet from I3 to D 
Source address S 

Destination address D 

Segments Left = 0 

Address (1) = I1 

Address (2) = I2 

Address (3) = I3 

2.3.3 Fragment Header 

An IPv6 host that wants to send a packet to an IPv6 destination uses Path MTU discovery to determine the 
maximum packet size that can be used on the path to that destination. If the packet to be sent is larger than 
the supported MTU, the source host fragments the packet. Unlike IPv4, with IPv6, a packet does not get 
fragmented by a router along the path. Fragmentation only occurs on the source host sending the packet. 
The destination host handles reassembly. A Fragment header is identified by a Next Header value of 44 in 
the preceding header. The format of the Fragment header is shown in Figure 2-7.

Figure 2-7. Format of the Fragment header 

The following list describes each field: 

Next Header (1 byte) 

The Next Header field identifies the type of header that follows the Fragment header. It uses the 
same values as the IPv4 Protocol Type field. (See Table 2-1).  

Reserved (1 byte) 



21

Not used; set to zero. 

Fragment Offset (13 bits) 

The offset in 8-byte units of the data in this packet relative to the start of the data in the original 
packet.  

Reserved (2 bits) 

Not used; set to zero. 

M-Flag (1 bit) 

Value 1 indicates more fragments; value zero indicates last fragment. 

Identification (4 Bytes) 

Generated by the source host in order to identify all packets belonging to the original packet. This 
field is usually implemented as a counter, increasing by one for every packet that needs to be 
fragmented by the source host.  

The initial unfragmented packet is referred to as the original packet. It has an unfragmentable part that 
consists of the IPv6 header, plus any Extension headers that must be processed by nodes along the path to 
the destination (i.e., Hop-by-Hop Options). The fragmentable part of the original packet consists of any 
Extension headers that need only to be processed by the final destination, plus the Upper-Layer headers 
and any data. Figure 2-8 (RFC 2460) illustrates the fragmenting process.  

Figure 2-8. Fragmentation with IPv6 

The unfragmentable part of the original packet appears in every fragment, followed by the Fragmentation 
header, and then the fragmentable data. The IPv6 header of the original packet has to be slightly modified. 
The length field reflects the length of the fragment (excluding the IPv6 header) and not the length of the 
original packet.  

The destination node collects all the fragments and reassembles them. The fragments must have identical 
Source and Destination addresses and the same identification value in order to be reassembled. If all 
fragments do not arrive at the destination within 60 seconds after the first fragment, the destination will 
discard all packets. If the destination has received the first fragment (offset = zero), it sends back an 
ICMPv6 Fragment Reassembly Time Exceeded message to the source.  

Figure 2-9 shows a Fragment header. 
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Figure 2-9. Fragment header in a trace file 

I created this Fragment header by generating an oversized ping from Marvin to Ford (Win2000 to Linux). 
The whole fragment set consists of two packets, the first of which is shown in Figure 2-9. In the IPv6 
header, the Payload Length field has a value of 1456, which is the length of the fragmentation header and 
this one fragment, not the length of the whole original packet. The Next Header field specifies the value 
44, which is the value for the Fragment header. This field is followed by the Hop Limit field and by the 
Source and Destination IP addresses. The first field in the Fragment header is the Next Header field. 
Because this is a ping, it contains the value 58 for ICMPv6. And because this is the first packet in the 
fragment set, the value in the Offset field is zero and the M-Flag is set to one, which means there are more 
fragments to come. The Identification field is set to one and has to be identical in all packets belonging to 
this fragment set. Figure 2-10 shows the second packet of the fragment set.  

Figure 2-10. The last packet in the fragment set 

The second and last packet of this fragment set has an Offset value of 0x05A8, which translates to 1448 
in decimal, the length of the first fragment. The M-Flag is set to zero. This indicates that it is the last 
packet and tells the receiving host that it is time to reassemble the fragments. The Identification field is set 
to one in both packets.  
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2.3.4 Destination Options Header 

A Destination Options header carries optional information that is examined by the destination node only. 
The Next Header value identifiying this type of header is the value 60. Figure 2-11 shows the format of 
the Destination Options header.  

Figure 2-11. Format of the Destination Options header 

The following list describes each field: 

Next Header (1 byte) 

The Next Header field identifies the type of header that follows the Destination Options header. It 
uses the same values listed in Table 2-1, earlier in this chapter.  

Header Extension Length (1 byte) 

This field identifies the length of the Destination Options header in 8-byte units. The length 
calculation does not include the first 8 bytes.  

Options (variable size) 

There can be one or more options. The length of the options is variable and determined in the 
Header Extension Length field.  

The Options field is used in the same way as the Hop-by-Hop Options header, which I discussed earlier in 
this chapter. An example of the Destination Options header is Mobile IPv6. A mobile IPv6 node connected 
to a foreign network can send packets with its care-of-address as a source address and its home address in a 
home address destination option. According to the current Mobile IPv6 draft, the ability to correctly 
process a home address in a Destination Option is required in all IPv6 nodes. For a detailed explanation of 
Mobile IPv6, refer to Chapter 7 or to the current draft of Mobile IPv6 at http://www.ietf.org/internet-
drafts/draft-ietf-mobileip-ipv6-18.txt. Note that the draft number may have increased by one or more when 
you follow this link.  
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Chapter 3. IPv6 Addressing 
An IPv4 address has 32 bits and is familiar. An IPv6 address has 128 bits and looks wild. Extending the 
address space was one of the driving reasons to develop IPv6, along with optimization of routing tables, 
especially on the Internet. This chapter will help you become familiar with the extended address space and 
will also explain how IPv6 addressing works and why it has been designed the way it is. The IPv6 
addressing architecture is defined in RFC 2373, which obsoletes RFC 1884.  

3.1 Address Types 

IPv4 knows unicast, broadcast, and multicast addresses. With IPv6, the broadcast address is not used 
anymore; multicast addresses are used instead. This is good news because broadcasts are a problem in 
most networks. The anycast address, a new type of address introduced with RFC 1546, is now used with 
IPv6.  

3.1.1 Unicast, Multicast, and Anycast Addresses 

An IPv6 address can be classified into one of three categories: 

Unicast 

A unicast address uniquely identifies an interface of an IPv6 node. A packet sent to a unicast 
address is delivered to the interface identified by that address.  

Multicast 

A multicast address identifies a group of IPv6 interfaces. A packet sent to a multicast address is 
processed by all members of the multicast group.  

Anycast 

An anycast address is assigned to multiple interfaces (usually on multiple nodes). A packet sent to 
an anycast address is delivered to only one of these interfaces, usually the nearest one.  

3.1.2 Some General Rules 

IPv6 addresses are assigned to interfaces, as in IPv4, not to nodes, as in OSI, so each interface of a node 
needs at least one unicast address. A single interface can also be assigned multiple IPv6 addresses of any 
type (unicast, multicast, anycast). A node can therefore be identified by the address of any of its interfaces. 
It is also possible to assign one unicast address to multiple interfaces for load-sharing reasons, but if you 
do this, you need to make sure that the hardware and the drivers support it. With IPv6, all zeros and ones 
are legal values for any field in an address.  

A typical IPv6 address consists of three parts—the global routing prefix, the subnet ID, and the interface 
ID—as shown in Figure 3-1.
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Figure 3-1. IPv6 general address format 

The global routing prefix is used to identify a special address, such as multicast, or an address range 
assigned to a site. A subnet ID is used to identify a link within a site. (The subnet ID may also be referred 
to as subnet prefix or simply "subnet.") A subnet ID is associated with one link. Multiple subnet IDs may 
be assigned to one link. An interface ID is used to identify an interface on a link and needs to be unique on 
that link  

3.2 Address Notation 

An IPv6 address has 128 bits, or 16 bytes. The address is divided into eight, 16-bit hexidecimal blocks, 
separated by colons. For example:  

FE80:0000:0000:0000:0202:B3FF:FE1E:8329 

To make life easier, some abbreviations are possible. For instance, leading zeros in a 16-bit block can be 
skipped. The example address now looks like:  

FE80:0:0:0:202:B3FF:FE1E:8329 

A double colon can replace consecutive zeros, or leading or trailing zeros, within the address. If we apply 
this rule, our address looks as follows:  

FE80::202:B3FF:FE1E:8329 

Note that the double colon can appear only once in an address. The reason for this rule is that the computer 
always uses a full 128-bit binary representation of the address, even if the displayed address is simplified. 
When the computer finds a double colon, it expands it with as many zeros as are needed to get 128 bits. If 
an address had two double colons, the computer would not know how many zeros to add for each. So the 
IPv6 address CAFF:CA01:0000:0056:0000:ABCD:EF12:1234 can be represented in the 
following ways (note the two possible positions for the double colon):  

• CAFF:CA01:0000:0056:0000:ABCD:EF12:1234 
• CAFF:CA01::56:0:ABCD:EF12:1234 
• CAFF:CA01:0:56::ABCD:EF12:1234 

In environments where IPv4 and IPv6 nodes are mixed, another convenient form of IPv6 address notation 
is to put the values of an IPv4 address into the four low-order byte pieces of the address. An IPv4 address 
of 192.168.0.2 can be represented by x:x:x:x:x:x:192.168.0.2 and an address of 
0:0:0:0:0:0:192.168.0.2 can be written as ::192.168.0.2. If you prefer, you can also 
write ::C0A8:2.



26

3.3 Prefix Notation 

The notation for prefixes has also been specified in RFC 2373. A format prefix is the high-order bits of an 
IP address used to identify the subnet or a specific type of address (refer to Table 3-2). In newer drafts, it is 
called the global routing prefix. The prefix notation is very similar to the way IPv4 addresses are written in 
Classless Interdomain Routing (CIDR) notation, and it is also commonly used for subnetted IPv4 
addresses. The notation appends the prefix length, written as a number of bits with a slash, which leads to 
the following format:  

IPv6 address/prefix length 

The prefix length specifies how many left-most bits of the address specify the prefix. This is another way 
of noting a subnet mask. Remember, a subnet mask specifies the bits of the IPv4 address that belong to the 
network ID. The prefix is used to identify the subnet that an interface belongs to and is used by routers for 
forwarding. The following example explains how the prefix is interpreted. Consider the IPv6 prefix 
notation 2E78:DA53:12::/40. To understand this address, let's convert the hex into binary as shown 
in Table 3-1.

Table 3-1. Understanding prefix notation  
Hex notation Binary notation  Number of bits 
2E 78 

DA 53 

12 

00101110 01111000  

11011010 01010011  

00010010 

16 bits 

16 bits 

8 bits, total 40 bits 

The compressed notation (replacing a sequence of zeros with a double colon) is also applicable to the 
prefix representation. It should be used carefully, though, because there are often two or more ranges of 
zeros within an address, and only one can be compressed.  

To play with the example in the previous section, look at the prefix notation. The address is 
CAFF:CA01:0000:0056:0000:ABCD:EF12:1234/64, but now we're just interested in the 
prefix of the address. Can we compress it as follows?  

CAFF:CA01::56/64 

In order to verify this notation, we'll expand the address again. If we follow the notation rules, we end up 
with an address of CAFF:CA01:0000:0000:0000:0000:0000:0056, with 
CAFF:CA01:0000:0000 for the 64-bit prefix. This is not the same as the original address and prefix. 
To make sure the address interpretation is unambiguous, we have to note it as 
CAFF:CA01:0:56::/64 

3.4 Format Prefixes 

RFC 2373 lists a number of format prefixes (also called global routing prefixes) that are used to identify 
special addresses, such as link-local addresses or multicast addresses. Table 3-2 outlines the initial 
assignment of reserved prefixes. The major part of the address space (over 80 percent) is unassigned, 
which leaves room for future assignments.  
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Table 3-2. List of assigned prefixes 

Allocation Prefix 
binary 

Prefix 
hex 

Fraction of address 
space 

Reserved 0000 0000 ::0/128 1/256 
Reserved for NSAP allocation 

Reserved for IPX allocation (deprecated in later 
draft) 

0000 001 

0000 010 
 

1/128 

1/128 

Aggregatable global unicast addresses 001  1/8 
Link-local unicast addresses 

Site-local unicast addresses 

1111 1110 10

1111 1110 11

FE80::/10 

FEC0::/10

1/1024 

1/1024 
Multicast addresses 1111 1111 FF00::/8 1/256 

Some special addresses are assigned out of the reserved address space with the binary prefix 0000 0000. 
These include the unspecified address, the loopback address, and IPv6 addresses with embedded IPv4 
addresses, which will be discussed in detail later in this chapter. In drafts released after RFC 2373, the 
prefix for IPX has been removed. (The most recent draft, at the time of writing, is available at 
http://www.ietf.org/internet-drafts/draft-ietf-ipngwg-addr-arch-v3-08.txt.)  

Unicast addresses can be distinguished from multicast addresses by their prefix. Globally unique unicast 
addresses have a high-order byte starting with 001. An IPv6 address with a high-order byte of 1111 1111 
(FF in hex) is always a multicast address. For more information about multicast addresses, refer to Section 
3.8, later in this chapter.  

Anycast addresses are taken from the unicast address space, so they can't be identified as anycast just by 
looking at the prefix. If you assign a unicast address to multiple interfaces, thereby making it an anycast 
address, you have to configure the interfaces so that they all know this address is an anycast address. For 
more information about anycast addresses, refer to Section 3.7, later in this chapter.  

Addresses in the prefix range 001 to 111 should use a 64-bit interface identifier that follows the EUI-64 
(Extended Unique Identifier) format (except for multicast addresses with the prefix 1111 1111). The EUI-
64 is a unique identifier defined by the Institute of Electrical and Electronics Engineers (IEEE); for more 
information, refer to http://standards.ieee.org/regauth/oui/tutorials/EUI64.html. Appendix A of RFC 2373 
explains how to create EUI-64 identifiers, and more details can be found in the link-specific RFCs, such as 
"IPv6 over Ethernet" or "IPv6 over FDDI." Chapter 7 and this book's Appendix contain a short discussion 
and a complete list of these RFCs, respectively.  

A host uses an identifier following the EUI-64 format during autoconfiguration. For example, when our 
Windows 2000 host Marvin autoconfigures for a link-local address on an Ethernet interface, the 64-bit 
interface identifier has to be created from the 48-bit (6-Byte) Ethernet MAC address. First, the hex digits 
0xff-fe are inserted between the third and fourth bytes of the MAC address. Then the universal/local 
bit, the second low-order bit of 0x00 (the first Byte) of the MAC address, is complemented. The second 
low-order bit of 0x00 is 0, which, when complemented, becomes 1; as a result, the first Byte of the 
MAC address becomes 0x02. Therefore, the IPv6 interface identifier corresponding to the Ethernet MAC 
address 00-02-b3-1e-83-29 is 02-02-b3-ff-fe-1e-83-29. This example discusses only 
the EUI-64 creation process. Many other steps occur during autoconfiguration.  

The link-local address of a node is the combination of the prefix fe80::/64 and a 64-bit interface 
identifier expressed in IPv6 colon-hexadecimal notation. Therefore, the link-local address of the previous 
example node, with prefix fe80::/64 and interface identifier 02-02-b3-ff-fe-1e-83-29, is 
fe80::202:b3ff:fe1e:8329. This process is described in RFC 2464, "Transmission of IPv6 
Packets over Ethernet Networks."  
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To learn how IPv6 autoconfiguration works and what a stateless address is, refer 
to Chapter 4.

3.5 Address Privacy 

The privacy of autoconfigured IPv6 addresses using the interface identifier is a major issue in the IETF. If 
an IPv6 address is built using the MAC identifier, your Internet access could be traced because this 
identifier is unique to your interface. Part of the concern is the result of a misunderstanding. An IPv6 node 
can have an address based on the interface identifier, but this is not a requirement. As an alternative, the 
IPv6 device can have an address like the ones currently used with IPv4, static and manually configured or 
dynamically assigned by a DHCP server. In early 2001, RFC 3041, "Privacy Extensions for Stateless 
Address Autoconfiguration in IPv6," was published; it introduces a new kind of address, available only in 
IPv6, that contains a random number in place of the factory-assigned serial number. This address can also 
change over time. An Internet device that is a target for IP communication—for instance, a web or FTP 
server—needs a unique and stable IP address. But a host running a browser or an FTP client does not need 
to have the same address every time it connects to the Internet. With the address architecture in IPv6, you 
can choose between two types of addresses:  

Unique stable IP addresses 

Assigned through manual configuration, a DHCP server, or autoconfiguration using the interface 
identifier  

Temporary transient IP addresses 

Assigned using a random number in place of the interface identifier 

3.5.1 Link- and Site-Local Addresses 

With IPv4, organizations often use IP addresses from the private range, as defined in RFC 1918. The 
addresses reserved for private use should never be forwarded over Internet routers, but should instead be 
confined to the organization's network. For connection to the Internet, Network Address Translation 
(NAT) maps internal private addresses to publicly registered IPv4 addresses.  

IPv6 allocates two separate address spaces for link- and site-local use, both identified by their prefix. A 
link-local address is for use on a single link and should never be routed. It can be used for 
autoconfiguration mechanisms, for neighbor discovery, and on networks with no routers, so it is useful for 
creating temporary networks. Let's say you meet your friend in a conference room and you want to share 
files on your computers. You can connect your computers using a wireless network or a cross-cable 
between your Ethernet interfaces, and you can share files without any special configuration by using the 
link-local address. Site-local addresses contain subnet information within the address. They can be routed 
within a site, but routers should not forward them outside the site. Both address types can be used without 
a global prefix. The format of these two address types is shown in Figure 3-2.
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Figure 3-2. Link- and site-local address format 

In hexadecimal notation, a link-local address is identified by the prefix fe80; a site-local address is 
identified by the prefix fec0.

3.6 Aggregatable Global Unicast Address 

Aggregatable global unicast addresses are identified by the prefix 001, as shown earlier, in Table 3-2. The 
initial address specification defined provider-based addresses; the name has been changed to aggregatable 
global unicast address. The name change reflects the addition of an ISP-independent means of aggregation 
called exchange-based aggregation.

The prefix is followed by five components, as shown in Figure 3-3.

Figure 3-3. Format of the aggregatable global unicast address 

The format prefix 001 is assigned to the aggregatable global unicast address range. The top-level 
aggregation identifier (TLA) contains the highest level of routing information about the address. Its size of 
13 bits limits the number of top-level routes to 8192. In the earlier specification, the TLA was the provider-
based identifier. It was assigned to the American Registry for Internet Numbers (ARIN) in North America, 
Réseau IP Européens (RIPE) Network Coordination Center in Europe, and Asia Pacific Network 
Information Center (APNIC). With this change in the specification, the commercial touch of the TLA has 
been removed and the focus is now on routing optimization; the TLA does not need to be a provider. At 
the core of the Internet, the routing tables need just one route entry per TLA, so the 13-bit TLA is large 
enough.  

Providers and exchange points use the next-level aggregation identifier (NLA). These network access 
providers are usually public, and they will further structure the address space assigned by the TLA with 
route topology optimization as a priority.  

The site-level aggregation identifier (SLA) is the address space assigned to organizations, used for internal 
network structure. It can be subnetted further within the organization. The last part of the address is used 
for the 64-bit interface identifier, as discussed earlier in this chapter.  
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Many discussions have been going on in recent months, and the area of address assignment is still 
evolving. A number of clarifications are described in the Internet draft available at 
http://www.ietf.org/internet-drafts/draft-ietf-ipngwg-addr-arch-v3-08.txt. (Note that the draft number may 
have increased by one or more when you go there.)  

3.6.1 International Registry Services and Current Address Allocations 

Several TLA allocations have been made, as listed in Table 3-3.

Table 3-3. Current TLA allocations  
Prefix Allocation RFC 

2001::/16 

Sub-TLA Assignments 

ARIN 2001:0400::/29 

RIPE NCC 2001:0600::/29 

APNIC 2001:0200::/29 

RFC 2450 

2002::/16 6to4 RFC 3056 
3FFE::/16 6Bone Testing RFC 2471 

http://www.iana.org/ipaddress/ip-addresses.htm is a great entry point for global IP 
address services, current address allocations for both IPv4 and IPv6, and 
information about how to request IPv6 address services.  

ISPs can use the following sites to access their regional registry for information about IPv6 address 
registration. For end users, IPv6 address allocation is managed by their ISP.  

• ARIN Registration Services, http://www.arin.net/library/guidelines/ipv6_initial.html
• RIPE-NCC Registration Services, http://www.ripe.net/ripencc/mem-

services/registration/ipv6.html
• APNIC Registration FAQ, http://www.apnic.net/faq/IPv6-FAQ.html

As I've already mentioned, address allocation is a work in progress. Information about the latest status, 
clarifications, and current practices can be found at http://www.arin.net. There is also an informational 
RFC called "IAB/IESG Recommendations on IPv6 Address Allocations to Sites," numbered RFC 3177.  

3.6.2 Special Addresses 

There are a number of special addresses that we need to discuss. The first part of the IPv6 address space 
with the prefix of 0000 0000 is reserved. Out of this prefix, special addresses have been defined as 
follows:  

The unspecified address 

The unspecified address has a value of 0:0:0:0:0:0:0:0 and is therefore also called the 
all-zeros address. It is comparable to 0.0.0.0 in IPv4. It indicates the absence of a valid 
address, and it can, for example, be used as a source address by a host during the boot process 
when it sends out a request for address configuration information. If you apply the notation 
conventions discussed earlier in this chapter, the unspecified address can also be abbreviated ::.
It should never be statically or dynamically assigned to an interface, and it should not appear as a 
destination IP address or within an IPv6 routing header.  
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The loopback address 

The IPv4 loopback address, 127.0.0.1, is probably familiar. It is helpful in troubleshooting 
and testing the IP stack because it can be used to send a packet to the protocol stack, without 
sending it out on the subnet. With IPv6, the loopback address works the same way and is 
represented as 0:0:0:0:0:0:0:1, abbreviated ::1. It should never be statically or 
dynamically assigned to an interface.  

The next three sections describe three different types of addresses that have been specified to be used with 
different transition mechanisms. These virtual interfaces are called pseudo-interfaces.

3.6.2.1 IPv6 addresses with embedded IPv4 addresses 

Because the transition to IPv6 will be gradual, two special types of addresses have been defined for 
backward compatibility with IPv4. Both are described in RFC 2373:  

IPv4-compatible IPv6 address 

This type of address is used to tunnel IPv6 packets dynamically over an IPv4 routing 
infrastructure. IPv6 nodes that use this technique are assigned a special IPv6 unicast address that 
carries an IPv4 address in the low-order 32 bits.  

IPv4-mapped IPv6 address 

This type of address is used to represent the addresses of IPv4-only nodes. This address can be 
used by an IPv6 node to send a packet to an IPv4-only node. The address also carries the IPv4 
address in the low-order 32 bits of the address.  

Figure 3-4 shows the format of both these addresses. 

Figure 3-4. Format of IPv6 addresses with an embedded IPv4 address 

The two addresses are pretty much the same. The only difference is the 16 bits in the middle. When they 
are set to zero, the address is an IPv4-compatible IPv6 address; if these bits are set to one, it is an IPv4-
mapped IPv6 address.  

3.6.2.2 6to4 addresses 

The IANA has permanently assigned a 13-bit TLA identifier for 6to4 operations within the aggregatable 
global unicast address range (001). 6to4 is one of the mechanisms defined to let IPv6 hosts or networks 
communicate over an IPv4-only infrastructure without explicit tunnel setup. 6to4 is described in Chapter 
10 and in RFC 3056. The 6to4 TLA identifier is 0x0002. The address format is shown in Figure 3-5.
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Figure 3-5. Format of the 6to4 address 

The prefix has a total length of 48 bits. The IPv4 address in the prefix must be a public IPv4 address and is 
represented in hexadecimal notation. For instance, if you configure an interface for 6to4 with an IPv4 
address of 62.2.84.115, the 6to4 address is 2002:3e02:5473::/48. Through this interface, 
all IPv6 hosts on this link can tunnel their packets over the IPv4 infrastructure.  

3.6.2.3 ISATAP addresses 

A new automatic tunneling mechanism, called Intra-Site Automatic Tunnel Addressing Protocol 
(ISATAP), is currently being defined. It is designed to let IPv6 hosts communicate easily within an IPv4 
infrastructure. It is still in the draft stage, but it might become popular. Windows XP already includes an 
implementation of ISATAP (described in Chapter 11). It uses a type identifier of 0xFE for specifying an 
IPv6 address with an embedded IPv4 address. The format of an ISATAP address according to the current 
draft is shown in Figure 3-6.

Figure 3-6. Format of the ISATAP address 

The first 64 bits follow the format of the aggregatable global unicast address. IANA owns the IEEE 
Organizationally Unique Identifier (OUI) 00 00 5E and specifies the EUI-48 format interface identifier 
assignments within that OUI. The next 8 bits are used for a type identifier to indicate that this is an IPv6 
address with an embedded IPv4 address. The type identifier is 0xFE. The last 32 bits contain the 
embedded IPv4 address, which can be written in dotted decimal notation or in hexadecimal representation.  

Assume we have a host with an IPv4 address of 192.168.0.1 and the host is assigned a 64-bit prefix 
of 3FFE:1a05:510:200::/64. The ISATAP address for this host is 
3FFE:1a05:510:200:0:5EFE:192.168.0.1. Alternatively, you can use the hexadecimal 
representation for the IPv4 address, in which case the address is written 
3FFE:1a05:510:200:0:5EFE:C0A8:1. 

The link-local address for this host is FE80::5EFE:192.168.0.1 and the site-local address is 
FEC0::200:0:5EFE:192.168.0.1.

To learn how IPv6 and IPv4 can coexist using these addresses, refer to Chapter 
10.
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3.7 Anycast Address 

As already mentioned, anycast addresses are in the same address range as aggregatable global unicast 
addresses, and each participating interface must be configured as having an anycast address. Within the 
region where the interfaces containing the same anycast addresses are, each host must be advertised as a 
separate entry in the routing tables. If the anycast interfaces have no definable region, each anycast entry 
(in the worst case) has to be propagated throughout the Internet, which obviously does not scale. It is 
expected, therefore, that support for such global anycast addresses will be either unavailable or very 
restricted. Until there is more experience gained, the following restrictions are defined in RFC 2373.  

• An anycast address must not be used as the source address of an IPv6 packet.  
• An anycast address must not be assigned to an IPv6 host. It may be assigned only to an IPv6 

router.  

An expected use of anycast addresses is to identify a set of routers providing access to a particular routing 
domain. One example is the 6to4 relay anycast address that is specified in RFC 3068 and described in 
Chapter 10. Another possibility is to configure with a specific anycast address all the routers within a 
corporate network that provide access to the Internet. Whenever a packet is sent to that anycast address, it 
will be delivered to the closest router that provides Internet access.  

A required anycast address is the subnet-router anycast address , which is defined in RFC 2373 and shown 
in Figure 3-7.

Figure 3-7. Format of the subnet-router anycast address 

Basically, the address is like a regular unicast address with a prefix specifying the subnet and an identifier 
that is set to all zeros. A packet sent to this address will be delivered to one router on that subnet. All 
routers are required to support the subnet-router anycast address for subnets to which they have interfaces.  

RFC 2526 provides more information about anycast address formats and specifies other reserved subnet 
anycast addresses and IDs. A reserved subnet anycast address can have one of two formats, as shown in 
Figure 3-8.

Figure 3-8. General format of anycast addresses 

RFC 2526 specifies that within each subnet, the highest 128 interface identifier values are reserved for 
assignment as subnet anycast addresses. Currently, the anycast IDs listed in Table 3-4 have been reserved.  
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Table 3-4. Reserved anycast IDs  
Decimal Hexadecimal Description 
127 7F Reserved 
126 7E Mobile IPv6 Home-Agents anycast 
0-125 00-7D Reserved 

3.8 Multicast Address 

A multicast address is an identifier for a group of nodes, identified by the high-order byte FF, or 1111 
1111 in binary notation (refer to Table 3-2). A node can belong to more than one multicast group. 
Multicast exists in IPv4, but it has been redefined and improved for IPv6. The multicast address format is 
shown in Figure 3-9.

Figure 3-9. Format of the multicast address 

The first byte identifies the address as a multicast address. The next 4 bits are used for Flags, defined as 
follows: The first 3 bits of the Flag field must be zero; they are reserved for future use. The last bit of the 
Flag field indicates whether this address is permanently assigned—i.e., one of the well-known multicast 
addresses assigned by the IANA—or a temporary multicast address. A value of zero for the last bit defines 
a well-known address; a value of one indicates a temporary address. The Scope field is used to limit the 
scope of a multicast address. The possible values are shown in Table 3-5.

Table 3-5. Values for the Scope field  
Value Description 
0 Reserved 
1 Node-local scope (name changed to interface-local in new draft) 
2 Link-local scope 
3, 4 Unassigned 
5 Site-local scope 
6, 7 Unassigned 
8 Organization-local scope 
9, A, B, C, D Unassigned 
E Global scope 
F Reserved 

3.8.1 Well-Known Multicast Addresses 

The last 112 bits of the address carry the multicast group ID. RFC 2375 defines the initial assignment of 
IPv6 multicast addresses that are permanently assigned. Some assignments are made for fixed scopes, and 
some assignments are valid over all scopes. Table 3-6 gives an overview of the addresses that have been 
assigned for fixed scopes. Note the scope values that you learned in Table 3-5 in the byte just following the 
multicast identifier of FF (first Byte).  
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Table 3-6. Well-known multicast addresses  
Address Description 
Interface- or node-local scope 

FF01:0:0:0:0:0:0:1 

FF01:0:0:0:0:0:0:2 

All-nodes address 

All-routers address 

Link-local scope 

FF02:0:0:0:0:0:0:1 

FF02:0:0:0:0:0:0:2 

FF02:0:0:0:0:0:0:3 

FF02:0:0:0:0:0:0:4 

FF02:0:0:0:0:0:0:5 

FF02:0:0:0:0:0:0:6 

FF02:0:0:0:0:0:0:7 

FF02:0:0:0:0:0:0:8 

FF02:0:0:0:0:0:0:9 

FF02:0:0:0:0:0:0:A 

FF02:0:0:0:0:0:0:B 

FF02:0:0:0:0:0:0:D 

FF02:0:0:0:0:0:0:E 

FF02:0:0:0:0:0:1:1 

FF02:0:0:0:0:0:1:2 

FF02:0:0:0:0:1:FFXX:XXXX 

All-nodes address 

All-routers address 

Unassigned 

DVMRP routers 

OSPFIGP 

OSPFIGP designated routers 

ST routers 

ST hosts 

RIP routers 

EIGRP routers 

Mobile agents 

All PIM routers 

RSVP encapsulation 

Link name 

All DHCP agents 

Solicited-node address 

Site-local scope 

FF05:0:0:0:0:0:0:2 

FF05:0:0:0:0:0:1:3 

FF05:0:0:0:0:0:1:4 

FF05:0:0:0:0:0:1:1000 to FF05:0:0:0:0:01:13FF 

All-routers address 

All DHCP servers 

All DHCP relays 

Service location 

The term node-local scope from RFC 2375 has been changed to "interface-local scope" in later drafts, so 
you might encounter both terms. The list for the permanently assigned multicast addresses that are 
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independent of scopes is long and is available in the Appendix or in RFC 2375. All those addresses are 
noted beginning with FF0X; X is the placeholder for a variable scope value.  

As an example, let's look at the one described in RFC 2373. There is a multicast group ID defined for all 
NTP servers. The multicast group ID is 0x101. This group ID can be used with different scope values as 
follows:  

FF01:0:0:0:0:0:0:101 

All NTP servers on the same node as the sender 

FF02:0:0:0:0:0:0:101 

All NTP servers on the same link as the sender 

FF05:0:0:0:0:0:0:101 

All NTP servers on the same site as the sender 

FF0E:0:0:0:0:0:0:101 

All NTP servers in the Internet 

Temporarily assigned multicast addresses are meaningful only within a defined scope.  

Multicast addresses should not be used as a source address in IPv6 packets or 
appear in any routing header.  

To learn how multicast addresses are managed, refer to Section 4.9 in Chapter 4.

3.8.2 Solicited-Node Multicast Address 

The solicited-node multicast address is a multicast address that every node must join for every unicast and 
anycast address it is assigned. It is used in the Duplicate Address Detection (DAD) process, described in 
Chapter 4. RFC 2373 specifies the solicited-node multicast address.  

This address is formed by taking the low-order 24 bits of an IPv6 address (the last part of the host ID) and 
appending those bits to the well-known prefix FF02:0:0:0:0:1:FF00::/104. Thus, the range 
for solicited-node multicast addresses goes from FF02:0:0:0:0:1:FF00:0000 to 
FF02:0:0:0:0:1:FFFF:FFFF.

For example, our host Marvin has the MAC address 00-02-B3-1E-83-29 and the IPv6 address 
fe80::202:b3ff:fe1e:8329. The corresponding solicited-node multicast address is 
FF02::1:ff1e:8329. If this host has other IPv6 unicast or anycast addresses, each one will have a 
corresponding solicited-node multicast address.  
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3.9 Required Addresses 

The standard specifies that each host must assign the following addresses to identify itself:  

• Its link-local address for each interface  
• Any assigned unicast addresses  
• The loopback address  
• The all-nodes multicast address  
• Solicited-node multicast address for each of its assigned unicast and anycast addresses  
• Multicast addresses of all other groups to which the host belongs  

A router needs to recognize all of the above plus the following:  

• The subnet-router anycast address for the interfaces for which it is configured to act as a router on 
each link  

• All anycast addresses with which the router has been configured 
• The all-routers multicast address  
• Multicast addresses of all other groups to which the router belongs  

Now that we are familiar with the extended address space and the IPv6 address types, the next chapter 
introduces the advanced features of ICMPv6, which offer management functionality not known with 
ICMPv4.  
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Chapter 4. ICMPv6 
If you are familiar with IPv4, the Internet Control Message Protocol (ICMP) for IPv4 is probably a good 
friend of yours: it gives important information about the health of the network. ICMPv6 is the version that 
works with IPv6. It reports errors if packets cannot be processed properly and sends informational 
messages about the status of the network. For example, if a router cannot forward a packet because it is too 
large to be sent out on another network, it sends back an ICMP message to the originating host. The source 
host can use this ICMP message to determine a better packet size and then resend the data. ICMP also 
performs diagnostic functions, such as the well-known ping, which uses ICMP Echo Request and Echo 
Reply messages to test availability of a node.  

ICMPv6 is much more powerful than ICMPv4 and contains new functionality, as described in this chapter. 
For instance, the Internet Group Management Protocol (IGMP) function that manages multicast group 
memberships with IPv4 has been incorporated into ICMPv6. The same is true for the Address Resolution 
Protocol/Reverse Address Resolution Protocol (ARP/RARP) function that is used in IPv4 to map layer 2 
addresses to IP addresses (and vice versa). Neighbor discovery (ND) is introduced; it uses ICMPv6 
messages in order to determine link-layer addresses for neighbors attached to the same link, to find routers, 
to keep track of which neighbors are reachable, and to detect changed link-layer addresses. ICMPv6 also 
supports Mobile IPv6, which is described in Chapter 7. ICMPv6 is part of IPv6 and it must be 
implemented fully by every IPv6 node. It is defined in RFC 2463 (obsoletes RFC 1885). Neighbor 
discovery is defined in RFC 2461 (obsoletes RFC 1970).  

4.1 General Message Format 

There are two classes of ICMP messages:  

ICMP error messages 

Error messages have a zero in the high-order bit of their message Type field. ICMP error message 
types are therefore in the range 0 to 127.  

ICMP informational messages 

Informational messages have a one in the high-order bit of their message Type field. ICMP 
informational message types are therefore in the range 128 to 255.  

An IPv6 header and zero or more extension headers precede every ICMPv6 message. The header just 
preceding the ICMP header has a next header value of 58. This value is different from the value for 
ICMPv4 (which has the value 1).  

The values for the next header field are discussed in Chapter 2.

The following message types are described in RFC 2463: 

• ICMPv6 error messages 
o Destination Unreachable (message type 1)  
o Packet Too Big (message type 2)  
o Time Exceeded (message type 3)  
o Parameter Problem (message type 4)  

• ICMPv6 informational messages 
o Echo Request (message type 128)  
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o Echo Reply (message type 129)  

For the most current list of ICMPv6 message types, refer to the Internet Assigned 
Number Authority (IANA) at http://www.iana.org/assignments/icmpv6-
parameters. All IPv4 ICMP parameters can be found at 
http://www.iana.org/assignments/icmp-parameters.

All ICMPv6 messages have the same general header structure, shown in Figure 4-1. Notice that the first 
three fields for type, code, and checksum have not changed from ICMPv4.  

Figure 4-1. General ICMPv6 header format 

4.1.1 Type (1 Byte) 

This field specifies the type of message, which determines the format of the remainder of the message. 
Table 4-1 and Table 4-2 list ICMPv6 message types and message numbers.  

4.1.2 Code (1 Byte) 

The Code field depends on the message type and allows for more granular information in certain cases. 
Refer to Table 4-1 and Table 4-2 for a detailed list.  

4.1.3 Checksum (2 Bytes) 

The Checksum field is used to detect data corruption in the ICMPv6 header and in parts of the IPv6 header. 
In order to calculate the checksum, a node must determine the source and destination address in the IPv6 
header. If the node has more than one unicast address, there are rules for choosing the address (refer to 
RFC 2463 for details). There is also a pseudoheader included in the checksum calculation, which is new 
with ICMPv6.  

4.1.4 Message Body (Variable Size) 

Depending on the type and code, the message body will hold different data. In the case of an error 
message, it will contain as much as possible of the packet that invoked the message to assist in 
troubleshooting. The total size of the ICMPv6 packet should not exceed the minimum IPv6 MTU, which is 
1280 bytes. Table 4-1 and Table 4-2 provide an overview of the different message types, along with the 
additional code information, which depends on the message type.  
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Table 4-1. ICMPv6 error messages and code types 
Message 
number Message type Code field 

1 Destination 
Unreachable  

0 = no route to destination 

1 = communication with destination administratively prohibited 

2 = beyond scope of source address (draft) 

3 = address unreachable 

4 = port unreachable 
2 Packet Too Big Code field set to 0 (zero) by the sender and ignored by the receiver 

3 Time Exceeded 
0 = hop limit exceeded in transit 

1 = fragment reassembly time exceeded 

4 Parameter 
Problem  

0 = erroneous header field encountered 

1 = unrecognized next header type encountered 

2 = unrecognized IPv6 option encountered 

The pointer field identifies the octet offset within the invoking packet where 
the error was detected. The pointer points beyond the end of the ICMPv6 
packet if the field in error is beyond what can fit in the maximum size of an 
ICMPv6 error message.  

Note that the message numbers and types have substantially changed compared to ICMPv4. ICMP for IPv6 
is a different protocol, and the two versions of ICMP are not compatible. Your analyzer should properly 
decode all this information, so you do not have to worry memorizing it.  

Table 4-2. ICMPv6 informational messages  
Message 
number Message type Description 

128 

129 

Echo Request  

Echo Reply  
RFC 2463. Both used for the ping command. 

130 

131 

132 

Multicast Listener Query  

Multicast Listener Report  

Multicast Listener Done  

RFC 2710. Used for multicast goup management (IPv4 uses 
IGMP for this functionality).  

133 

134 

135 

136 

137 

Router Solicitation  

Router Advertisement  

Neighbor Solicitation  

Neighbor Advertisement  

Redirect Message  

RFC 2461. Used for neighbor discovery and 
autoconfiguration.  
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138 

139 

140 

Router Renumbering 

ICMP Node Information 
Query  

ICMP Node Information 
Response  

RFC 2894 

Draft number at the time of writing: 
http://www.ietf.org/internet-drafts/draft-ietf-ipngwg-icmp-
name-lookups-09.txt.

141 

142 

Inverse ND Solicitation  

Inverse ND Adv Message  

RFC 3122 

RFC 3122 

150 

151 

152 

153 

ICMP Home Agent Address 
Discovery Request Message  

ICMP Home Agent Address 
Discovery Reply Message  

ICMP Mobile Prefix 
Solicitation Message Format  

ICMP Mobile Prefix 
Advertisement Message 
Format  

Experimental / Draft—ICMPv6 Messages for Mobile IPv6 

Draft number at time of writing: http://www.ietf.org/internet-
drafts/draft-ietf-mobileip-ipv6-18.txt.

Message numbers have not yet been assigned by IANA. 

4.2 ICMP Error Messages 

Every ICMP message can have a slightly different header depending on the kind of error report or 
information it carries. The following sections outline the structure of each type of ICMPv6 message.  

4.2.1 Destination Unreachable 

A Destination Unreachable message is generated if an IP datagram cannot be delivered. A Type field with 
the value 1 identifies this message. The ICMP message is sent to the source address of the invoking packet. 
The format of the Destination Unreachable message is shown in Figure 4-2.

Figure 4-2. Format of the Destination Unreachable message 

The Type field is set to one, which is the value for the Destination Unreachable message. The Code field 
supplies more information about the reason why the datagram was not delivered. The possible codes are 
listed in Table 4-3. The data portion of the ICMP message contains parts of the original message—as much 
as will fit into the ICMP message.  
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Table 4-3. Code values of the Destination Unreachable message (type 1)  
Code Description 

0

No route to destination 

This message is generated if a router cannot forward a packet because it does not have a route in its 
table for a destination network. This can only happen if the router does not have an entry for a 
default route.  

1

Communication with destination administratively prohibited 

This type of message can, for example, be sent by a firewall that cannot forward a packet to a host 
inside the firewall because of a packet filter. It might also be sent if a node is configured not to 
accept unauthenticated Echo Requests.  

2

Beyond scope of source address 

This code is used when the multicast scope of the source address is smaller than the scope of the 
destination address. This code is a draft at the time of writing (http://www.ietf.org/internet-
drafts/draft-ietf-ipngwg-icmp-v3-02.txt).  

3

Address unreachable 

This code is used if a destination address cannot be resolved into a corresponding network address or 
if there is a data-link layer problem preventing the node from reaching the destination network.  

4

Port unreachable 

This code is used if the transport protocol (e.g., UDP) has no listener and if there is no other means 
to inform the sender. For example, if a Domain Name System (DNS) query is sent to a host and the 
DNS server is not running, this type of message is generated.  

If the destination is unreachable due to congestion, no ICMP message is generated. A host that receives a 
Destination Unreachable message must inform the upper-layer process.  

4.2.2 Packet Too Big 

If a router cannot forward a packet because it is larger than the MTU of the outgoing link, it will generate a 
Packet Too Big message (shown in Figure 4-3). This ICMPv6 message type is used as part of the Path 
MTU discovery process discussed later in this chapter. The ICMP message is sent to the source address of 
the invoking packet.  

Figure 4-3. Format of the Packet Too Big message 

The Type field has the value 2, which identifies the Packet Too Big message. In this case, the Code field is 
not used and is set to zero. The important information for this type of message is the MTU field, which 
contains the MTU size of the next hop link.  
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RFC 2463 states that an ICMPv6 message should not be generated as a response to a packet with an IPv6 
multicast destination address, a link-layer multicast address, or a link-layer broadcast address. The Packet 
Too Big message is an exception to this rule. Because the ICMP message contains the supported MTU of 
the next hop link, the source host can determine the MTU that it should use for further communication. A 
host that receives a Packet Too Big message must inform the upper-layer process.  

4.2.3 Time Exceeded 

When a router forwards a packet, it always decrements the hop limit by one. Remember, the hop limit 
makes sure that a packet does not endlessly travel through a network. If a router receives a packet with a 
hop limit of one and decrements the limit to zero, it discards the packet, generates a Time Exceeded 
message with a code value of zero, and sends this message back to the source host. This error can indicate 
a routing loop or the fact that the sender's initial hop limit is too low. It can also tell you that someone used 
the traceroute utility, which is described later in the chapter. Figure 4-4 shows the format of the Time 
Exceeded message.  

Figure 4-4. Format of the Time Exceeded message 

The Type field carries the value 3, specifying the Time Exceeded message. The Code field can be set to 0, 
which means hop limit exceeded in transit, or to 1, which means that the fragment reassembly time is 
exceeded. The data portion of the ICMP message contains parts of the original message—as much as fits 
into the ICMP message, depending on the MTU used.  

An incoming Time Exceeded message must be passed to the upper-layer process. Table 4-4 shows the 
Code fields for the Time Exceeded message.  

Table 4-4. Code values for Time Exceeded message (type 3)  
Code Description 

0
Hop limit exceeded in transit.  

Possible causes: the initial hop limit value is too low, or there are routing loops.  

1

Fragment reassembly time exceeded.  

If a fragmented packet is sent by using a fragment header (refer to Chapter 2 for more details) and 
the receiving host cannot reassemble all packets within a certain time, it notifies the sender by 
issuing this ICMP message.  

The hop limit exceeded in transit message type is commonly used to do the traceroute function. 
Traceroute is helpful in determining the path that a packet takes when traveling through the network. In 
order to do this, a first packet is sent out with a hop limit of one. The first router in the path decrements the 
hop limit to zero, discards the packet, and sends back an ICMP message type three, code zero. The source 
host now knows the address of the first hop router. Next, it sends out a second packet with a hop limit of 
two. This packet is forwarded by the first router, which decrements the hop limit to one. The second router 
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in the path decrements the hop limit to zero, discards the packet, and sends back an ICMP message type 
three, code zero. Now the source knows about the second router in the path. Raising the hop limit by one 
(with every packet sent until the packet reaches the final destination) continues this process. Every router 
in the path to the final destination sends an ICMP message back to the source host, thereby providing its IP 
address. It is important to know that if there are redundant paths to the destination, traceroute does not 
necessarily show the same route for all tests because it might choose different paths.  

4.2.4 Parameter Problem 

If an IPv6 node cannot complete the processing of a packet because it has a problem identifying a field in 
the IPv6 header or in an Extension header, it must discard the packet and it should send an ICMP 
Parameter Problem message back to the source of the problem packet. This type of message is often used 
when an error that does not fit into any of the other categories is encountered. The format of this ICMP 
message is shown in Figure 4-5.

Figure 4-5. Format of the Parameter Problem message 

The Type field has the value 4, which specifies the Parameter Problem message. The Code field can 
contain any of the three values described in Table 4-5. The Pointer field identifies at which byte in the 
original packet the error was detected. The ICMP message includes as much of the original data as fits up 
to the minimum IPv6 MTU. It is possible that the pointer points beyond the ICMPv6 message. This would 
be the case if the field in error was beyond what can fit in the maximum size of an ICMPv6 error message.  

Table 4-5 shows the Code fields for the Parameter Problem message.  

Table 4-5. Code values for Parameter Problem (type 4)  
Code Description 
0 Erroneous header field encountered  
1 Unrecognized next header type encountered  
2 Unrecognized IPv6 option encountered  

For example, if you see an ICMPv6 message of type 4 with a code value of 1 and a pointer set to 40, this 
indicates that the next header type in the header following the IPv6 header was unrecognized.  

4.3 ICMP Informational Messages 

In RFC 2463, two types of informational messages are defined: the Echo Request and the Echo Reply 
messages. Other ICMP informational messages are used for Path MTU Discovery and neighbor discovery. 
These messages are discussed at the end of this chapter and defined in RFC 2461, "Neighbor Discovery for 
IP Version 6," and RFC 1981, "Path MTU Discovery for IP version 6."  

The Echo Request and Echo Reply messages are used for one of the most common TCP/IP utilities: Packet 
INternet Groper (ping). Ping is used to determine if a specified host is available on the network and ready 
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to communicate. The source host issues an Echo Request message to the specified destination. The 
destination host, if available, responds with an Echo Reply message. In Chapter 11, you can find a 
screenshot that shows you what an IPv6 ping looks like in the trace file, as well as the command you need 
to ping over IPv6.  

4.3.1 Echo Request Message 

The format of the Echo Request message is shown in Figure 4-6.

Figure 4-6. Format of the Echo Request message 

The Type Field is set to 128, the value for the Echo Request. The Code Field is not used for this message 
and is therefore set to zero. The Identifier and Sequence Number fields are used to match requests with 
replies. The reply must always contain the same numbers as the request. Whether an identifier and a 
sequence number are used and what kind of arbitrary data is included in the Echo Request depends on the 
TCP/IP stack you are using. When you analyze trace files with Echo Request and Echo Reply messages 
and you are familiar with some stacks, you can determine the TCP/IP stack of the sender by looking at the 
arbitrary data. You can see an example of this in Figure 4-8, later in this chapter.  

4.3.2 Echo Reply 

The format of the Echo Reply message is very similar to that of the Echo Request, as shown in Figure 4-7.

Figure 4-7. Format of the Echo Reply message 

The Type field contains the value 129 for Echo Reply. The Code field is unused and set to zero. The 
Identifier and Sequence Number fields must match the fields in the request. The data of the Echo Request 
message must be copied into the reply entirely and unmodified. If an upper-layer process initiated the Echo 
Request, the reply must be passed to that process. If the Echo Request message was sent to a unicast 
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address, the source address of the Echo Reply message must be the same as the destination address of the 
Echo Request message. If the Echo Request was sent to an IPv6 multicast address, the source address of 
the Echo Reply must be a unicast address of the interface on which the multicast Echo Request was 
received.  

ICMPv6 Echo Request and Reply messages can be authenticated, using an IPv6 authentication header. 
This means that a node can be configured to ignore nonauthenticated ICMPv6 pings and provide protection 
against different sorts of ICMPv6 attacks.  

4.4 Processing Rules 

There are several rules that govern processing of ICMP packets. They can be found in RFC 2463 and are 
summarized as follows:  

• If a node receives an ICMPv6 error message of unknown type, it must pass it to the upper layer.  
• If a node receives an ICMPv6 informational message of unknown type, it must be silently 

discarded.  
• As in ICMPv4, as much as possible of the packet that caused the ICMP error message will be 

included in the ICMP message body. The ICMP packet should not exceed the minimum IPv6 
MTU.  

• If the error message has to be passed to the upper-layer protocol, the protocol type is determined 
by extracting it from the original packet (present in the body of the ICMPv6 error message). In 
case the protocol type cannot be found in the body of the ICMPv6 message (because there were 
too many extension headers present in the original packet and the part of the header that contained 
the upper-layer protocol type was truncated), the ICMPv6 message is silently discarded.  

An ICMPv6 message must not be sent in the following cases:  

• As a result of an ICMPv6 error message. 
• As a result of an ICMPv6 redirect message. 
• As a result of a packet sent to an IPv6 multicast address. There are two exceptions to this rule: the 

Packet Too Big message that is used for Path MTU discovery and the Parameter Problem with the 
code value 2 for an unrecognized IPv6 option.  

• As a result of a packet sent as a link-layer multicast (same exceptions as above apply).  
• As a result of a packet sent as a link-layer broadcast (same exceptions as above apply).  
• As a result of a packet whose source address does not uniquely identify a single node. This could 

be an IPv6 unspecified address, an IPv6 multicast address, or an IPv6 address known to be an 
anycast address.  

Every IPv6 node must implement a rate-limiting function that limits the rate of ICMPv6 messages it sends. 
The configurable limit can be either timer- or bandwidth-based. If this function is implemented properly, it 
protects against denial-of-service attacks.  

4.5 The ICMPv6 Header in a Trace File 

After reading through all that dry information, you deserve something different. The following screenshot 
(Figure 4-8) shows what a ping looks like in the trace file and provides details of many of the fields we 
have discussed so far.  
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Figure 4-8. Echo Request in a trace file 

The two frames in this trace file were captured when my Windows 2000 host issued a ping command to a 
Linux host. Note that the source address of the second frame, the Echo Reply, is the same as the 
destination address in the first frame, the Echo Request. The IPv6 header provides more information. The 
Version field indicates that this is an IPv6 packet. The Next Header field has the value 58, which is the 
value for ICMPv6. We can also see source and destination IP address. The prefix fe80: indicates that 
these two addresses are link-local addresses.  

Note the first three fields of the ICMPv6 header. They are the fields that are common for every ICMPv6 
message: Type, Code, and Checksum field. The Type field contains the value 128, which is the value for 
an Echo Request. The Identifier and Sequence Number fields are unique to the Echo Request and Echo 
Reply message. The Identifier is not used in this case and the sender has set the sequence to 38. It has to be 
identical in the matching reply that is shown in the following screenshot. The Data field contains arbitrary 
data that doesn't need to make sense to anyone.  

Oh, I almost forgot: I promised to show vendor stack related data in the Echo Request message. What you 
see here—the alphabet up to the letter w—is what Microsoft uses. Whenever you see this in a trace file, it 
is a Microsoft stack sending the request. Figure 4-9 shows the Echo Reply in detail.  
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Figure 4-9. Echo Reply in a trace file 

Again, the IPv6 header shows a value of 6 for the IP version and a Next Header value of 58 for ICMPv6. 
The destination address of the previous frame is now the source address, and the previous source address is 
now the destination address. The Type field in the ICMPv6 header shows a value of 129, which is the 
value for an Echo Reply. The Identifier and Sequence Number fields, as well as the Data field, match the 
ones in the Echo Request.  

4.6 Neighbor Discovery 

Neighbor discovery (ND) is specified in RFC 2461 (obsoletes RFC 1970). The specifications in this RFC 
relate to different protocols and processes known from IPv4 that have been modified and improved. New 
functionality has also been added. It combines Address Resolution Protocol (ARP) and ICMP router 
discovery and Redirect. With IPv4, we have no means to detect whether or not a neighbor is reachable. 
With the neighbor discovery protocol, a neighbor unreachability detection mechanism has been defined. 
Duplicate IP address detection has been implemented, too. IPv6 nodes use neighbor discovery for the 
following purposes:  

• To determine layer 2 addresses of nodes on the same link 
• To find neighboring routers that can forward their packets 
• To keep track of which neighbors are reachable and which are not, and detect changed link-layer 

addresses  

The following improvements over the IPv4 set of protocols can be noted:  

• Router discovery is now part of the base protocol set. With IPv4, the mechanism needs to get the 
information from the routing table.  

• Router advertisement packets contain link-layer addresses for the router. There is no need for the 
node receiving a Router Advertisement to send out an additional ARP request (as an IPv4 node 
would have to do) to get the link-layer address for the router interface. The same is true for 
ICMPv6 redirect messages; they contain the link-layer address of the new next-hop router 
interface.  

• Router advertisement packets contain the prefix for a link (subnet information). There is no need 
to configure subnet masks anymore. They can be learned from the Router Advertisement.  
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• Neighbor discovery provides mechanisms to renumber networks easily. New prefixes and 
addresses can be introduced and old ones can be deprecated and removed.  

• Router advertisements enable stateless address autoconfiguration and can notify hosts when to use 
stateful address configuration (e.g., DHCP).  

• Routers can advertise an MTU to be used on a link.  
• Multiple prefixes can be assigned to one link. By default, hosts learn all prefixes from the router, 

but the router can be configured not to advertise some or all of the prefixes. In that case, hosts 
assume that a non-advertised prefix destination is remote and send the packets to the router. The 
router can then issue ICMP redirect messages as needed.  

• Neighbor unreachability detection is part of the base protocol. It substantially improves packet 
delivery in case of failed routers or link interfaces that changed their link-layer address. It solves 
the issues with outdated ARP caches. ND detects failed connectivity and traffic is not sent to 
neighbors that are unreachable. The neighbor unreachability detection also detects failed routers 
and switches to live ones.  

• Router advertisements and ICMP redirects use link-local addresses to identify routers. This allows 
hosts to maintain their router associations even in the case of renumbering or use of new global 
prefixes.  

• Neighbor discovery messages have a hop limit value of 255, and requests with a lower hop limit 
are not answered. This makes Neighbor discovery immune to remote hosts that try to sneak into 
your link because their packets have decremented hop limit and are thus ignored.  

• The neighbor discovery protocol is used to detect duplicate IP addresses on a link.  
• Standard IP authentication and security mechanisms can be applied to neighbor discovery.  

This summary gives an idea of what can be expected from this part of the specification. Now let's discuss 
the different processes in detail. The neighbor discovery protocol consists of five ICMP messages: a pair of 
Router Solicitation/Router Advertisement messages, a pair of Neighbor Solicitation/Neighbor 
Advertisement messages, and an ICMP redirect message (refer to Table 4-2, earlier in this chapter, for a 
summary of ICMP informational message types).  

4.6.1 Router Solicitation and Router Advertisement 

Routers send out Router Advertisement messages in regular intervals. Hosts can request Router 
Advertisements by issuing a Router Solicitation message. This will trigger routers to issue Router 
Advertisements immediately, outside of the regular interval. The format is shown in Figure 4-10.

Figure 4-10. Router Solicitation message 

In the IP header of a Router Solicitation message, you will usually see the all-routers multicast address of 
FF02::2 as a destination address. The hop limit is set to 255. The ICMP Type field is set to 133, which 
is the value for the Router Solicitation message. The Code field is unused and set to 0. The following two 
Bytes are used for the Checksum. The next four Bytes are unused and reserved for future use. The sender 
sets them to 0 and the receiver ignores those fields. For a Router Solicitation message, valid Options are 
the link-layer address of the sending host, if known. If the source address on the IP layer is the unspecified 
(all-zeros) address, this field is not used.  
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Routers that receive this Solicitation message reply with a Router Advertisement message. Routers also 
issue those messages periodically. The format of the Router Advertisement message is shown in Figure 4-
11.

Figure 4-11. Router Advertisement message 

By inspecting the IP header of the Router Advertisement message, you can determine whether this Router 
Advertisement is periodic or was sent in reply to a Solicitation message. A periodic advertisement's 
destination address will be the all-nodes multicast address FF02::1. A solicited advertisement's 
destination address will be the address of the interface that originated the solicitation message. Again, the 
hop limit is set to 255.  

The ICMP Type field is set to 134, the value for a Router Advertisement message; the Code field is unused 
and set to 0. The Current Hop Limit field can be used to configure all nodes on a link for a default hop 
limit. The value entered in this field will be used as a default hop limit value in outgoing packets by all 
nodes on the link. A value of 0 in this field means that this option is unspecified by this router—in which 
case, the default hop limit values of the source hosts are used.  

The next 1-bit field, the M flag, specifies whether stateful configuration is to be used. Stateful 
configuration refers to what we know as DHCP with IPv4. If this bit is 0, the nodes on this link use 
autoconfiguration. If the bit is set to 1, it specifies stateful configuration. The O flag configures whether 
nodes on this link use stateful configuration for other than IP address information. A value of 1 means the 
nodes on this link use stateful configuration for non-address-related information. The remaining 6 bits of 
this byte are reserved for future use and must be 0.  

The Router Lifetime field is important only if this router is to be used as a default router by the nodes on 
the link. A value of 0 indicates that this router is not a default router and will therefore not appear on the 
default router list of receiving nodes. Any other value in this field specifies the lifetime, in seconds, 
associated with this router as a default router. The maximum value is 18.2 hours.  

The Reachable Time field is the time in which a host assumes that neighbors are reachable after having 
received a reachability confirmation. A value of 0 means unspecified. The neighbor unreachability 
detection algorithm uses this field.  

The Retrans Timer field is used by the address resolution and neighbor unreachability detection 
mechanisms; it states the time in milliseconds between retransmitted Neighbor Solicitation messages.  



51

For the Options field, there are currently three possible values: source link-layer address, MTU size to be 
used on links with variable MTU sizes (Token Ring, for example), and prefix information. This field is 
important for autoconfiguration. The router inserts all its prefixes for the link that the nodes on the link 
need to know.  

4.6.2 Neighbor Solicitation and Neighbor Advertisement 

This pair of messages fulfills two functions: the link-layer address resolution that is handled by ARP in 
IPv4 and the neighbor unreachability detection mechanism. If the destination address is a multicast 
address, the source is resolving a link-layer address. If the source is verifying the reachability of a 
neighbor, the destination address is a unicast address. This message type is also used for duplicate IP 
address detection (DAD). The format of the Neighbor Solicitation message is shown in Figure 4-12.

Figure 4-12. Format of the Neighbor Solicitation message 

In the IP header of this message type, the source address can be either the interface address of the 
originating host or, in the case of DAD, the unspecified (all-zeros) address. The hop limit is set to 255. The 
Type field in the ICMP header is set to 135, and the Code field is unused and set to 0. After the two 
checksum bytes, four unused bytes are reserved and must be set to 0. The target address is used only in 
messages that are used for unreachability detection and DAD. It must not be a multicast address.  

The Options field can contain the link-layer source address. It contains a link-layer address only if it is not 
a DAD message. In a DAD message that uses the unspecified address as a source address, the options field 
is set to 0. The link-layer option must be used in multicast solicitations (neighbor discovery and ARP 
functionality) and should be used in unicast solicitations (unreachability detection).  

Neighbor Advertisement messages are sent as a reply to Neighbor Solicitation messages or to propagate 
new information quickly. The format of the message is shown in Figure 4-13.

Figure 4-13. Format of the Neighbor Advertisement message 
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The type of address in the IP header indicates whether the message is the answer to a solicitation or an 
unsolicited message. In case of a solicited advertisement, the destination IP address is the source address of 
the interface that sent the solicitation. If the message is the reply to a DAD message that originated from an 
unspecified source address, the reply will go to the all-nodes multicast address of FF02::1. The same is 
true for all unsolicited periodic advertisements.  

The Type field in the ICMP header is set to 136, the value for Neighbor Advertisement messages. The 
Code field is unused and set to 0. When the Router flag is set, the sender is a router.  

When the Solicited flag is set, the message is sent in response to a Neighbor Solicitation. For instance, if a 
host confirms its reachability in answer to a unreachability detection message, the S bit is set. The S bit is 
not set in multicast advertisements. The Override flag indicates that the information in the Advertisement 
message should override existing neighbor cache entries and update any cached link-layer addresses. If the 
O bit is not set, the advertisement will not update a cached link-layer address, but it will update an existing 
neighbor cache entry for which no link-layer address exists. The O bit should not be set in an 
advertisement for an anycast address. The cache entries are discussed later in this chapter. The remaining 
29 bits are reserved for future use and set to 0.  

In solicited advertisements, the Target Address contains the address of the interface that sent the 
solicitation. In unsolicited advertisements, this field contains the address of the interface whose link-layer 
address has changed. A possible option for the Options field is the target link-layer address.  

4.6.3 The ICMP Redirect Message 

Routers issue ICMP Redirect messages to inform a node of a better first-hop node on the path to a given 
destination. A Redirect message can also inform a node that the destination used is in fact a neighbor on 
the same link and not a node on a remote subnet. The format of the ICMPv6 Redirect message is shown in 
Figure 4-14.

Figure 4-14. Format of the ICMP Redirect message 

The source address in the IP header must be the link-local address of the interface from which the message 
is sent. The destination address in the IP header is the source address from the packet that triggered the 
redirect message. The hop limit is set to 255.  

The Target Address field contains the link-local address of the interface that is a better next-hop to use for 
the given destination address. The Destination Address field contains the address of the destination that is 
redirected, which should be used to get to the destination address. If the address in the Target Address field 
is the same as the address in the Destination Address field, the destination is a neighbor and not a remote 
node. The Option field contains the link-layer address for the target (the best next-hop router). This is an 
improvement on the IPv4 version, in which the host needed to issue a separate ARP request to determine 
the link-layer address of the next-hop router.  
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4.6.4 Neighbor Discovery Options 

Neighbor discovery messages contain a variable-size Options field that has the format shown in Figure 4-
15.

Figure 4-15. Format of the Option field 

The Type field indicates what type of option follows. The following types are defined in RFC 2461:  

• Type 1: source link-layer address 
• Type 2: target link-layer address 
• Type 3: prefix information 
• Type 4: redirected header 
• Type 5: MTU 

The Length field indicates the length of the option. Value 0 is invalid for this field, and packets with this 
value must be discarded. The calculation of the length includes the Type and Length fields.  

The screenshot in Figure 4-16 shows the details of a Router Advertisement with two Option fields. This 
trace file was taken when we had just set up our router. Besides initializing the IPv6 stack and configuring 
it for the prefix, we have not changed any of the configuration parameters. The options used in this case 
are option 1 (source link-layer address) and option 3 (prefix information). Note the format of the Option 
fields.  

Figure 4-16. The router advertisement in a trace file 
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The Type field is set to 134, the value for a Router Advertisement. The Current Hop Limit has a value of 
64. All nodes on this link will use this value for their Hop Count field. The M and O flags are not set by 
default. The Router Lifetime is set to 1800, which also indicates that this is a default router. The first 
Option listed is type 1. The link-layer address in the detail screen shows a lot of question marks, but don't 
worry about them. The link-layer address of the router can be seen in the hex part of the window (not 
shown in the screenshot); it is just not decoded in the detail window. The second Option is of type 3 for 
prefix information. Note all the additional information that can be given with a prefix. The Prefix Length 
field specifies the number of bits valid for the prefix (i.e., the length of the subnet mask). The L bit is the 
on-link flag. If set, it indicates that this prefix can be used for on-link determination. If it is not set, the 
advertisement does not make a statement and the prefix can be used for on-link and off-link configuration. 
The A-bit is the autonomous address configuration flag. If set, it indicates that the prefix can be used for 
autonomous address configuration. In this case, the host will generate an address by adding the interface 
identifier to the prefix or, if the privacy options are used, by adding a random number. The Valid Lifetime 
field specifies how long this prefix is valid. A value of all F means infinity. The Preferred Lifetime 
specifies how long the address being configured with this prefix can remain in the preferred state. Again, a 
value of all F means infinity.  

4.6.5 Neighbor Cache and Destination Cache 

IPv6 nodes need to maintain different tables of information. Among these tables, the neighbor cache and 
destination cache are particularly important. Depending on the IPv6 stack you are working with, the 
implementation and the troubleshooting utilities will be different. But the information must be available on 
every IPv6 node.  

Neighbor cache 

The neighbor cache maintains a list of neighbors to which traffic has been sent recently. They are 
listed by their unicast IP address, and each entry contains information about the neighbor's link-
layer address and a flag that indicates whether the neighbor is a router or host. This can be 
compared to the ARP cache in an IPv4 node. The entry also contains information about whether 
there are packets queued to be sent to that destination, information about the neighbor's 
reachability, and the time the next neighbor unreachability detection event is scheduled to take 
place.  

Destination cache 

This table maintains information about destinations to which traffic has been sent recently, 
including local and remote destinations. The neighbor cache can be seen as a subset of destination 
cache information. In case of remote destinations, the entry lists the link-layer address of the next-
hop router. The destination cache is updated with information received by ICMP Redirect 
messages. It can also contain additional information about MTU sizes and roundtrip timers.  

The neighbor cache and destination cache have been mentioned in regard to the Override flag that can be 
set in a Neighbor Advertisement message. If the Override flag is set, the information in the Advertisement 
message should override existing neighbor cache entries and update any cached link-layer addresses in the 
cache of the host that receives the advertisement. If the O bit is not set, the advertisement will not update a 
cached link-layer address, but will update an existing neighbor cache entry for which no link-layer address 
exists.  

The screenshot in Figure 4-17 shows the neighbor cache entries of our Cisco router. There were two hosts 
on the link at the time the screenshot was taken.  
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Figure 4-17. Neighbor cache entries on a router 

A neighbor cache entry can be in one of five states, according to RFC 2461. The five states are explained 
in Table 4-6.

Table 4-6. States of neighbor cache entries  
State Description 

Incomplete
Address resolution is currently being performed and awaiting either a response or a timeout. 
Specifically, a Neighbor Solicitation has been sent to the solicited-node multicast address of 
the target, but the corresponding Neighbor Advertisement has not yet been received.  

Reachable This neighbor is currently reachable, which means positive confirmation was received within 
the last ReachableTime milliseconds that the neighbor was functioning properly.  

Stale 
More than ReachableTime milliseconds have elapsed since the last positive confirmation that 
the forward path was functioning properly was received. No action will take place regarding 
this neighbor until a packet is sent  

Delay 

This neighbor's Reachable Time has expired, and a packet was sent within the last 
DelayFirstProbeTime seconds. If no confirmation is received within the DelayFirstProbeTime 
seconds, then send a Neighbor Solicitation and change the neighbor state to Probe state.  

The use of Delay allows upper-layer protocols additional time to provide reachability 
confirmation. Without this extra time, possible redundant traffic would be generated.  

Probe A reachability confirmation is being actively attempted by sending Neighbor Solicitations 
every RetransTimer milliseconds until reachability is confirmed.  

4.7 Autoconfiguration 

The autoconfiguration capability of IPv6 saves network administrators a lot of work. It has been designed 
to ensure that manually configuring hosts before connecting them to the network is not required. Even 
larger sites with multiple networks and routers should not need a DHCP server to configure hosts. The 
autoconfiguration features of IPv6 will be a key feature of the protocol when all sorts of devices, such as 
TVs, refrigerators, DVD players, and mobile phones, use IP addresses. You don't want to depend on a 
DHCP server to use your home devices.  

IPv6 knows both stateless and stateful autoconfiguration. Stateful autoconfiguration is what we call DHCP 
in the IPv4 world; it is discussed in Chapter 9. What's really new with IPv6 is that hosts can autoconfigure 
their IPv6 address without any manual configuration of the host. Some configuration might be done on the 
routers, but no DHCP servers are required for this configuration mechanism. To generate their IP address, 
hosts use a combination of local information, such as their MAC address, and information received from 
routers. Routers can advertise multiple prefixes, and hosts determine prefix information from these 
advertisements. This allows for simple renumbering of a site: only the prefix information on the router has 
to be changed. For instance, if you change your ISP and the new ISP assigns a new IPv6 prefix, you can 
configure your routers to advertise this new prefix, keeping the SLA that you used with the old prefix. All 
hosts attached to those routers will renumber themselves through the autoconfiguration mechanism. If 
there is no router present, a host can generate a link-local address only with the prefix FE80. But this 
address is sufficient for communication of nodes attached with the same link.  
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Stateless and stateful autoconfiguration can also be combined. For instance, a host can use stateless 
autoconfiguration to generate an IPv6 address but then use stateful autoconfiguration for additional 
parameters.  

An IPv6 address is leased to a node for a certain lifetime. When the lifetime expires, the address becomes 
invalid. To make sure an address is unique on a link, a node runs the DAD process. The DAD algorithm is 
defined in RFC 2462. An IPv6 address can have different states:  

Tentative address 

This is an address that has not yet been assigned. It is the state prior to the assignment, when 
uniqueness is being verified.  

Preferred address 

This is the address that has been assigned to an interface and that can be used without any 
restrictions.  

Deprecated address 

The use of this address is discouraged but not forbidden. A deprecated address might be one 
whose lifetime is about to expire. It can still be used to continue a communication that would 
disrupt a service if the address changed. It is no longer used as a source address for newly 
established communications.  

When a node is autoconfigured, the following steps are performed:  

1. A link-local address is generated by using the link-local prefix of FE80 and appending the 
interface identifier. This address is a tentative address.  

2. The node joins the following multicast groups: the all-nodes multicast group (FF02::1) and the 
solicited-node multicast group for the tentative address (from step 1).  

3. A Neighbor Solicitation message is sent out with the tentative address as the target address. The IP 
source address of this message is the all-zeros address; the IP destination address is the solicited-
node multicast address. This detects if another node on the link already uses this address; i.e., this 
is DAD. If there is such a node, it replies with a Neighbor Advertisement message and the 
autoconfiguration mechanism stops. In this case, manual configuration of the host is required. If 
there is no answer to the Neighbor Solicitation, it is safe to use the address; the address is assigned 
to the interface and the state of the address changes to "preferred." IP connectivity on the local 
link is now established. So far, the process is the same for hosts and routers. Only hosts perform 
the next step.  

4. In order to determine what routers are out there and what the prefix is, the host sends a Router 
Solicitation message to the all-routers multicast group of FF02::2.

5. All routers on the link reply with a Router Advertisement. For each prefix in Router 
Advertisements with the autonomous flag set, an address is generated, combining the prefix with 
the interface identifier. These addresses are added to the list of assigned addresses for the 
interface.  

All addresses, before they are assigned, must be verified with a Neighbor Solicitation message (DAD). If 
the link-local address was generated through the autoconfiguration mechanism using the interface 
identifier, uniqueness has been verified in step 3 and may not need to be repeated for additional addresses 
that use the interface identifier. All other addresses configured manually or through stateful configuration 
need to be verified individually. Multihomed hosts perform autoconfiguration for each interface.  
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The trace shown in the screenshots in Figure 4-18 to Figure 4-20 was taken during the autoconfiguration 
process of Marvin, our Windows 2000 host. Figure 4-18 shows some of the processes and message types 
discussed earlier, and the discussion of the trace summarizes the concepts in this section.  

Figure 4-18. Autoconfiguration in the trace file 

The first two packets are sent out by the unspecified address because this host is just booting and does not 
yet have an IP address. The first packet is a Router Solicitation message and therefore sent out the the all-
routers multicast address FF02::2. According to the autoconfiguration specification, we would expect 
to see the duplicate address detection described in Figure 4-19 first. It seems that this implementation is 
trying to expedite the learning of the prefix information. The detail window shows the ICMPv6 header 
with the type number 133 for Router Solicitation. There are no neighbor discovery options specified. The 
option could be the link-layer address of the sender, but in the case of a message sent from the unspecified 
address, this option is not used. Figure 4-19 shows the details of the second packet, the Neighbor 
Solicitation.  

Figure 4-19. Neighbor Solicitation 

The address is still in the tentative state, so the source address in the IPv6 header is the unspecified address 
again. The solicitation is sent out to the solicited-node multicast address. The important field here is the 
target address in the ICMPv6 header, which is highlighted. If a node already uses this address, it will 
already be a member of this solicited-node multicast address group and will reply with a Neighbor 
Advertisement. Then the autoconfiguration process will stop.  

Now let's get to the Router Advertisement. You saw a trace file earlier in this chapter, when we discussed 
the Options fields in the Router Advertisement message. To make this topic a little more interesting, we 
have changed the router configuration in the meantime. The new Router Advertisement message can be 
seen in Figure 4-20.
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Figure 4-20. Router Advertisement 

The message type for a Router Advertisement is 134. The first field that has changed is the current hop 
limit. It now has the value 32, the value we have configured on our router. All hosts configured with this 
Router Advertisement will now use a hop limit of 32 for their communication. (And yes, we have verified 
it; even Marvin now uses the new hop limit.) The next thing we changed is the O flag. Our router now 
configures all hosts on this link to use a stateful configuration server for non-address-related information. 
The remaining fields are the same as in Figure 4-16, shown earlier in the chapter. If the router were 
configured for more than one prefix, the additional prefixes would be listed consecutively with the same 
fields.  

4.8 Path MTU Discovery 

With IPv4, every router can fragment packets, if needed. If a router cannot forward a packet because the 
MTU of the next link is smaller than the packet it has to send, the router fragments the packet. It cuts it into 
slices that fit the smaller MTU and sends it out as a set of fragments. The packet is then reassembled at the 
final destination. Depending on the network design, an IPv4 packet may be fragmented more than once 
during its travel through the network.  

With IPv6, routers do not fragment packets anymore; the sender takes care of it. Path MTU discovery tries 
to ensure that a packet is sent using the largest possible size that is supported on a certain route. The Path 
MTU is the smallest link MTU of all links from a source to a destination. The discovery of the Path MTU 
is described in RFC 1981.  

The discovery process works like this. First, a host assumes that the Path MTU is the same as the MTU of 
the first hop link and it uses that size. If the packet is too big for a certain router along the path to deliver 
the packet to the next link, the router discards the packet and sends back an ICMPv6 Packet Too Big 
message. Recall that this message type includes the MTU size of the next hop link. The host now uses this 
MTU for sending further packets to the same destination. The host will never go below the IPv6 minimum 
MTU size of 1280 bytes, however. The process of receiving a Packet Too Big message and reducing the 
size of the packets can happen more than once, before the packet reaches its destination. The discovery 
process ends when the packets arrive at the final destination.  
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The path from a given source to a given destination can change, and so can the Path MTU. Smaller MTU 
sizes are discovered by getting Packet Too Big messages. An IPv6 host will try to increase the MTU size 
from time to time in order to be able to detect a larger Path MTU. Path MTU discovery also supports 
multicast destinations. If the destination is multicast, there are many paths that copies of the packets may 
travel, and each path can have a different Path MTU. Packet Too Big messages will be generated just as 
with a unicast destination, and the packet size used by the sender is the smallest Path MTU of the whole set 
of destinations.  

If you wonder why your host doesn't use Path MTU discovery, keep in mind that IPv6 nodes are not 
required to implement Path MTU discovery and that the implementation is vendor-specific. Nodes that do 
not implement Path MTU discovery watch Packet Too Big messages and react appropriately, but they do 
not actively challenge the packet MTU size and store it in a database.  

4.9 Multicast Group Management 

In Chapter 3, we discussed the use and format of multicast addresses. Multicast group addresses are used 
as an identifier for a group of nodes. They are identified by a high-order byte of FF. A protocol is required 
to manage the efficient routing of packets with multicast group addresses as a destination.  

Multicast group management in IPv4 is done through Internet Group Management Protocol (IGMP). 
Version 2 of IGMP is defined in RFC 2236. IPv6 uses ICMPv6 messages for the same functionality; 
development was based on IGMPv2 specifications. It is now called Multicast Listener Discovery (MLD),
and is defined in RFC 2710.  

All MLD messages are sent with a link-local IPv6 source address and a hop limit of one to make sure they 
remain in the local network. If the packet has a Hop-by-Hop Options header, it has the Router Alert flag 
set. Thus, routers will not ignore the packet, even if they are not listening to the multicast group address in 
question.  

All three message types have the same format, which is shown in Figure 4-21.

Figure 4-21. MLD message format 

The Type field is 130 for Multicast Listener Queries, 131 for Multicast Listener Reports, or 132 for 
Multicast Listener Done messages. There are two types of query messages. One is a general query that is 
used to determine which multicast group addresses have listeners on a link. The other is an address-
specific query that is used to determine whether there are listeners for a specific address on a link. The 
Maximum Response Delay field is used only in query messages. This is the maximum allowed delay (in 
milliseconds) in which a node has to send a report if it has a listener. In all other messages, this field is set 
to 0. The Multicast Address field is set to 0 in a general query. In an address-specific query, it contains the 
multicast group address to be queried. In report and done messages, this field contains the multicast group 
to which a member listens or the group it is leaving.  
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Routers use MLD to discover which multicast addresses have listeners on each of their links. For each 
attached link, the router keeps a list of listener addresses.  

General queries are sent to the link-local scope all-nodes multicast address FF02::1. Any station that 
wants to send a report in answer to a query starts a timer when it receives the query and is supposed to wait 
some random delay before sending the report. The maximum delay is the one specified in the Maximum 
Response Delay field in the query. If within that delay, the station sees another station sending a report, it 
stops the process. Thus, multiple reports for the same address can be avoided. Group membership join 
reports and terminations are sent to the address in question.  

The link-local scope all-nodes address (FF02::1) is a special address. It never sends a membership 
report or a done message. If an address has a scope of 1 (node-local), MLD messages are never sent. Table 
4-7 summarizes the message types and their destination address.  

Table 4-7. Message types and their destination  
Message type IPv6 destination address 
General Query link-local scope all-nodes (FF02::1)
Multicast-Address-Specific Query The multicast address being queried 
Report The multicast address being reported 
Done link-local scope all-routers (FF02::2)

RFC 2710 contains a lot of interesting and detailed information. It discusses various states that nodes can 
go through and includes state transition diagrams. There is also much detailed information on timers: how 
they are used, their default values, and how they can be configured.  

MLD Version 2 is already in the works as a draft and is based on IGMPv3. There are already 
implementations available based on the drafts. The current draft is http://www.ietf.org/internet-drafts/draft-
vida-mld-v2-03.txt. For more information about the implementations, go to http://mldv2.lip6.fr.
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Chapter 5. Security in IPv6 
Originally designed for sharing information among researchers, the Internet is now being used for a 
growing number of business-to-business and business-to-consumer interactions. These interactions require 
a sufficient level of security, ranging from the correct identification of participants to secure, encrypted 
payment methods and nonrepudiation interactions. The Internet grew out of the academic community, so 
security mechanisms that applications could build on were not part of the original protocol and service 
design. Instead, different and incompatible mechanisms were attached to some individual applications 
(e.g., passwords for telnet and FTP), while other services (most routing protocols, SMTP, etc.) were not 
secured at all, or were secured only by limited or proprietary mechanisms.  

It is astounding that the Internet has functioned properly for more than 20 years despite these security 
flaws, which are compounded by security defects in the operating systems, middleware, and application 
software that is used on systems connected to the Internet. During the discussion on the redesign of the 
current Internet Protocol Suite, it became clear that a redesign should also incorporate some basic security 
features that could be used "as is" on every Internet-enabled platform. The intent was for these features to 
provide some minimum level of security against many Internet-based attacks and form well-known and 
tested building blocks for applications and middleware using the Internet.  

5.1 Types of Threats 

A large number of attacks have been documented on Internet systems, and several observations have been 
made.  

• Hackers could have caused much more damage than they have so far; perhaps it is too boring for 
true hackers to attack such easy targets.  

• Most of these attacks can be traced back to a few archetypal attacks that can be used individually 
or combined for various purposes, as shown in Figure 5-1.

Figure 5-1. Classification of IT security threats 

The four archetypical attacks can be described as follows:  

• A disruption or denial of service is usually easy to recognize (access to information or business 
processes is no longer possible), but it can be hard to determine and remove the real cause of the 
problem. In a brute- force attack (i.e., physical destruction through fire or violent acts), significant 
resources must be spent on repair or replacement of damaged equipment. A subtle variation of 
service disruption is the (hidden) degradation of service quality, such as by introducing artificial 
communication delays, which may disturb the proper execution of a business process but not be 
perceived as an attack.  

• The fabrication , modification, or deletion of information is much harder to detect or defend 
against than service disruption, unless specific protection mechanisms are in place. A broad 
spectrum of attack possibilities exists, ranging from the modification of individual data elements 
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(such as the sending time of an email message) to the insertion of falsified payment orders through 
masquerading, the distribution of a virus, or the complete deletion of database or log files.  

• Electronic eavesdropping , or picking up and evaluating of information, may be carried out in a 
variety of ways, from classic wiretapping to the usage of Trojan horses on systems under the 
attacker's control or the gathering of electronic radiation emanating from devices such as screens, 
printers, telephones, encryption devices, or video cards. Such passive attacks are usually 
impossible to detect directly (unless the wiretap or antenna is detected by chance or through 
exhaustive physical and electronic searches). Indirect detection (e.g., by "leaking" specific data 
whose distribution is intended to locate the path by which the information was picked up by an 
unauthorized party) is possible, but it is expensive and inherently dangerous. Besides attacks on 
the actual data content, indirect information, such as a traffic or addressing analysis (i.e., who is 
"talking" to whom, how often, etc.), can also be of interest to an attacker.  

5.2 Basic Security Requirements and Techniques 

Just as the threats outlined above can be traced back to a few archetypal forms of attack, basic security 
properties can also be classified into a few fundamental building blocks. These properties can be combined 
to satisfy more complex security requirements:  

Confidentiality 

Stored or transmitted information cannot be read or altered by an unauthorized party.  

Integrity 

Any alteration of transmitted or stored information can be detected. 

Authenticity 

The identity of the provider of information (in some cases, the identity of the intended receiver as 
well) can be proven.  

Obligation 

A specified action such as sending, receiving, or deleting of information cannot be denied by any 
of the parties involved.  

These security requirements need to be provided by two basic security elements: encryption (to provide 
confidentiality) and secure checksums (to provide integrity). Suitable combinations of these two elements 
may then be used to provide more complex services, such as authenticity and obligation.  

The oldest form of encryption is usually termed symmetric encryption, which requires the sender and 
recipient to agree on a shared secret (i.e., a key or password), which is then used to encrypt and decrypt the 
information exchanged (see Figure 5-2). A large number of symmetric cryptosystems have been devised 
over the centuries, but despite their growing strength against cryptanalysis, they share two substantial 
operational shortcomings. The first is the problem of secure, reliable, and economically practical key 
distribution. The other is the problem of missing obligation: because both parties hold the same key, it 
therefore cannot be proved which of the parties possessing the shared key actually generated the encrypted 
information.  
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Figure 5-2. Symmetric cryptography 

These unresolved problems triggered research into mathematical "one-way" functions, which are easy to 
calculate in one direction, but difficult or impossible to reverse. As an analogy, mixing paint is a one-way 
function: mixing two colors to obtain a new color is easy, but reversing the process and ending up with the 
two original colors is practically impossible. Some mathematical functions display similar characteristics, 
particularly when carried out in modular arithmetic, which operates differently than a "plain" arithmetic 
system. (Our 12-hour clocks, for instance, work in modular arithmetic: if it is 10 a.m. at the moment, and 
we have an appointment 6 hours from now, the meeting time is 4 p.m., not 16 p.m., so we have mentally 
calculated 10 + 6 = 4 modulo 12).  

Using appropriate functions and dependencies between numeric values, the problem of negotiating a 
shared key over an insecure channel was finally overcome independently by American and British 
researchers. Because the British research took place within the intelligence community and was therefore 
classified, the American researchers Diffie, Hellman, and Merkle have been credited with overcoming the 
key distribution problem.  

Based on the idea of one-way functions operating in modular arithmetic, the next step was to devise a 
scheme of asymmetric encryption : instead of a shared key, a pair of mathematically related keys is used, 
based on the one-way function arithmetic described above and using multiplication of prime numbers 
(another process that is easy to do, but hard to reverse). One key is termed the " public key" and is widely 
published. The other key is termed the "secret key" and is not revealed to any third party. The whole 
mechanism, which was first put in practice by researchers Rivest, Shamir, and Adleman as the "RSA" 
algorithm, is often termed "public key cryptography."  

Sending an encrypted message to any recipient now involves retrieving the public key and encrypting the 
message with it, as shown in Figure 5-3. Thus, everyone can encrypt information for the intended recipient 
with his public key, while only the intended recipient possesses the secret key necessary for correct 
decryption.  

Figure 5-3. Asymmetric cryptography 

The same mechanism can be used for authentication of information. A sender can calculate a 
cryptographically secure checksum or hash value for the information to be transmitted, thus creating an 
integrity code, or electronic signature. The sender then encrypts the resulting integrity code with a private 
key and transmits it together with the original information (see Figure 5-4).  
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Figure 5-4. Digital signature 

Any recipient of the information and the integrity code can retrieve the sender's public key, use it to 
decrypt the sender's integrity code, and compare the result to his own checksum calculation. If the results 
match, the recipient can be sure that the information comes from the intended sender and has not been 
modified in transit.  

In practice, information is often both encrypted and authenticated, thus fulfilling all basic security 
requirements, namely confidentiality, integrity, authenticity, and obligation.  

Another technique is often used to combine the benefits of asymmetric encryption with the increased 
performance of traditional, symmetric encryption. In a first step, a symmetric session key is generated to 
efficiently encrypt the information to be transmitted. Then the encrypted message, the session key 
asymmetrically encrypted with the public key of the recipient, and a digital checksum over both elements 
are transmitted to the recipient, as shown in Figure 5-5. The recipient is able to verify the authenticity and 
integrity of the message using the sender's public key, retrieve the session key using the private key, and 
efficiently decrypt the message using the decrypted symmetric session key.  
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Figure 5-5. Combination of symmetric and asymmetric cryptography 

While these definitions appear relatively straightforward at first sight, and while sufficient 
implementations exist for strong encryption (in particular, public key encryption) and high-quality digital 
signatures (refer to The Code-Breakers by David Kahn [Scribner]), a large number of conceptual and 
technical problems make it difficult and sometimes unfeasible to introduce and maintain such protection 
mechanisms in real-world network environments. This is true particularly when these environments do not 
operate in isolation, but are required to interoperate in a worldwide context, such as the current Internet.  

5.3 Security in the Current Internet Environment 

The original designers of the current IP protocol (IPv4) did not have to worry too much about security 
because the Internet was a trusted network for "the happy few." In addition, the design that is still in use 
today was considered a prototype that would be redesigned and extended over time. This historical 
development leads to two fundamental observations concerning security in today's Internet:  

• Many protocols base their security on the assumed authenticity of IP addresses and port numbers. 
Based on the assumption that there are networks connected to the Internet that are entirely 
controlled by their respective user groups, we must not anticipate that any element in an IP packet 
is secure or cannot be read or modified. This implies that we must not trust an IP sender address or 
port number (nor any other element in the IP or transport header).  

• Most protocols (application protocols, in most cases) that use a user identification and password 
authentication mechanism transmit the password in clear text or in a form that can easily decoded, 
such as Base 64. One-time password mechanisms or challenge/reply mechanisms are seldom used, 
although some standards have been developed to protect password/credential exchanges. This 
implies that security flaws in one of the lower protocol layers, which enable an attacker to read the 
data in transmission, can be used to attack application programs and user accounts (i.e., the 
application layer).  
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5.4 Current Solutions 

As the Internet grew larger and more business-critical applications were designed and operated, ad hoc 
security solutions were provided; these offer semi-trusted and semi-secure Internet access. These security 
solutions mostly fight symptoms instead of addressing the fundamental security issues, but are still the 
only choice to provide at least some security in an insecure environment.  

5.4.1 Packet Filters and Firewalls 

The basic idea of such hardware and/or software security solutions is to filter traffic based on predefined 
rules (from IP addresses to virus patterns in files) and possibly also to determine "unusual" behavior. (This 
determination is made by intrusion-detection mechanisms that may also be able to catch nontrivial attacks, 
such as the slow and seemingly arbitrary scanning of systems for weak spots, or the use of covert channels 
for leaking information to the outside.) Such filtering takes place either on the network/transport layer (i.e., 
header fields of protocols such as IP, ICMP, UDP, and TCP are examined) or on the application layer (i.e., 
application protocols such as HTTP or FTP, as well as the actual information content, are examined, unless 
they are encrypted and thus unavailable for analysis). Many commercial systems allow filtering on both the 
network/transport and application layers and distinguish the direction of the data flow (inbound/outbound).  

Corresponding security devices may also provide additional services, such as semi-trusted zones for 
different types of services via separate interfaces, strong authentication (using a variety of mechanisms 
from transaction code numbers to SecurID cards or smart cards), rewriting of IP addresses to disassociate 
the internal use of IP addresses from the official numbering schemes in the Internet, etc.  

There are a multitude of packet-filtering and firewalling strategies and a 
correspondingly large number of vendors and products. As there is no catch-all 
design to cover every conceivable network and application structure with their 
corresponding security requirements, the interested reader is referred to Building 
Internet Firewalls by D. Brent Chapman and Elizabeth D. Zwicky (O'Reilly), for 
a detailed discussion of firewall design and implementation.  

5.4.2 Transport Layer Protection 

The predominant security service on these lower protocol layers is Secure Sockets Layer (SSL). Originally 
designed by Netscape for securing HTTP sessions between web servers and web clients, almost all vendors 
of web software and providers of other client/server software, such as telnet and FTP, have incorporated 
SSL into their products. Meanwhile, the IETF has started formal standardization of SSL as one possible 
solution for the Transport Layer Security (TLS) standard (see RFC 2246).  

SSL is located above the reliable transport service TCP in the Internet Protocol Suite. During the setup of a 
secure communication channel between client and server, each involved party may authenticate the other 
party using X.509-based digital certificates. In most cases, this authentication process takes place only on 
the client (i.e., the client starts the authentication process and investigates a certificate transmitted by the 
server to make sure it is talking to the authentic server). To prevent "man in the middle" attacks, in which 
an intruder places itself between the client and server and masquerades as the counterparty on both sides of 
the connection, client authentication (i.e., the server makes sure that it is talking to the authentic client) 
would be a necessary prerequisite. However, this part of the authentication process is hampered by the lack 
of a ubiquitous certificate generation, distribution, and administration system on the Internet (see Section 
5.10 later in this chapter). After the (optional) authentication step, both parties agree on a session key. The 
actual handshake sequence differs, depending on the key exchange system used (in most cases, either RSA 
or the Diffie-Hellman key exchange is used; see RFC 2246). This common session key (mostly based on 
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the RC-4 algorithm using a key length between 40 and 128 bits) is then used to encrypt all data exchanged 
during the session.  

5.4.3 Application Security 

In addition to the "standard" applications using username/password combinations that are transmitted 
unencrypted, many newer Internet applications have devised and implemented their own security 
mechanisms. In most cases, these mechanisms cover authentication (i.e., some proof that data is received 
from or sent to the "right" counterparty and that the data has not been changed during transit) and 
encryption (i.e., protection against the data being read or altered) during transit. Corresponding products 
such as Secure Shell (SSH) are frequently used as a replacement for telnet and as an encrypted tunnel for 
services such as FTP and XWindows. Other application frameworks, such as MIT's Kerberos, provide 
elaborate authentication services for the programming of networked applications.  

The most notable advances in security for end users have been made in the area of electronic mail. Despite 
efforts to promote Privacy Enhanced Mail (PEM) as an Internet standard for secure (i.e., encrypted and 
authenticated) email, and despite the growing support for the S/MIME standard, security for today's email 
community is largely based on Pretty Good Privacy (PGP). PGP is intended to be used with the most 
commonly used mail clients, such as Netscape Messenger, Microsoft Outlook, Eudora, Elm, etc., and is 
available both commercially and free of charge. PGP, as well as PEM, offers the capability to digitally sign 
and/or encrypt email messages, based on cryptographic algorithms as described above, and an embedded 
key generation, distribution, and management system. Since a worldwide repository for public keys or 
digital certificates does not yet exist, PGP—in contrast to PEM—relies on a "web of trust" scheme, which 
requires each individual PGP user to cross-certify (i.e., digitally sign) public keys received from other PGP 
users. In such a scheme, if user A trusts user B and user B trusts user C, then user A may also place 
sufficient trust in user C (the common credential being user B) and accept user C's public key into her key 
repository as genuine. PGP has been extended to work with X.509 certificates, which may be managed by 
key servers on the Internet, and to offer additional security services—e.g., for the encryption and 
authentication of voice communication over the Internet.  

5.5 Open Security Issues in the Current Internet 

A vast number of problems surround these ad hoc solutions—in particular, when these services need to 
interwork in a complex environment:  

• There are too many noninteroperable encryption/authentication systems and products, with more 
to come. It is almost impossible for an organization with a deployed, heterogeneous operating 
system and network infrastructure to provide one standard over all platforms or to obtain sufficient 
interworking between a range of (unharmonized) products.  

• A generally available public key infrastructure (PKI) is still missing. While corresponding 
standards have been available for some time, a common PKI is not yet been provided on the 
Internet, and many of the regulations concerning digital certificates are still pending. In addition, 
interoperability problems have plagued the deployment of PKIs and corresponding directories, as 
well as "PKI-ready" products provided by different vendors.  

• There is an open debate as to which security services should be provided by which functional 
layer (network, operating system, middleware, application, or presentation). While some have 
championed IPv6 and its security elements as the end of all security problems on the Internet, it is 
still unknown (and consequently not reflected in the deployed IT base) which security service 
elements will be provided and accepted by the market as part of the networking base, the 
operating system, or application services.  

• The interworking of a large number of components and the corresponding dependencies create an 
additional level of complexity, which has so far substantially hampered deployment of common 
security platforms. A subtle change in one operating system covered by a security framework, for 
instance, may imply the upgrade of the security framework (or parts of it), may in turn imply 
upgrades in other deployed platforms, upgrades of middleware components, and/or upgrades of 
applications on these platforms.  
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• Externally supplied frameworks (such as SAP) utilize their own "embedded" security modules and 
methods, which may not be compatible with the security model and systems already installed. In 
some cases, it is almost impossible to obtain enough information about the inner workings of these 
systems to assess whether the embedded security is up to the standards required from all other 
systems and applications in the organization.  

• The complexity and openness of interfaces between the organization and entities in the outside 
(i.e., untrusted) world poses another problem for a coherent security environment. One financial 
information vendor, for instance, may give customers the choice to separate a financial data 
stream from an email channel (i.e., allow them to block unwanted email gatewaying between the 
organization and the Internet through the financial service provider). At the same time, another 
provider may opt to code all these functions into one proprietary data stream, thus making it 
virtually impossible to selectively block email gatewaying.  

• Many organizations suffer from severe integration problems when it comes to deploying "just 
one" security framework. Although it has become popular in the IT community (especially in the 
sales force) to term all systems sold and paid for as "legacy" in order to boost next year's sales, a 
large number of business-critical systems in the mainframe and midrange area have their own, 
well-built but incompatible security environments, while they are still perfectly suited to run the 
organization's business applications. No head of IT would be able to justify the replacement of 
these investments "just because of IT security."  

• As in every software area, bugs and deficiencies also exist in IT security software, as well as in 
particular configurations. While the IT industry as a whole has learned a lesson with respect to 
covering up security holes (also thanks to the self-organization of the Internet community into 
Computer Emergency Response Teams [CERTs] and other security communities), such security 
holes still exist and will continue to exist as the corresponding software becomes even more 
complex.  

In addition to technical and organizational shortcomings, legal and regulatory issues add another layer of 
complexity to the provision of a coherent IT security environment.  

Therefore, a redesign of security within the scope of IPv6 had to "go back to the roots" and determine the 
few important key elements of security that need to be provided by IPv6. These elements are to be used 
within IPv6 itself or by applications on top of IP without imposing organizational or legal settings that may 
render these basic services unusable for the world-wide Internet.  

5.6 The IPSEC Framework 

The security framework for the IP protocol layer has been formally defined and standardized by the IETF 
IP Security Protocol Working Group (IPSEC) in RFC 2401. 

Figure 5-6. Relationship between IPSEC components (RFC 2411) 

The framework currently consists of six distinct elements, as shown in Figure 5-6:
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• A general description of security requirements and mechanisms on the network layer  
• A specific security element for encryption (Encrypted Security Payload [ESP]; see RFC 2406)  
• A specific security element for authentication (Authentication Header [AH]; see RFC 2402)  
• Definitions for using concrete cryptographic algorithms for encryption and authentication  
• The definition of security policies and Security Associations between communicating partners  
• IPSEC key management, which is based on key management on a more general framework.  

It must be noted that these mechanisms are considered generic; they could be used in both IPv4 and IPv6 
contexts. They would have to be retrofitted into existing IPv4 software, but they are an integrated, 
mandatory part of the basic IPv6 protocol suite.  

The work of the IPSEC Working Group is closely related to work in other Working Groups in the Security 
Area, such as IP Security Policy (IPSP) and X.509 Public-Key Infrastructure (PKIX).  

5.7 IPv6 Security Elements 

The following section introduces the individual security elements of the IPv6 security framework and 
discusses how they work together.  

5.7.1 Security Associations 

Communicating partners need to agree on a common set of information before they can use the security 
elements of IPv6: a key, the authentication or encryption algorithm to be used, and some additional 
parameters specific to the algorithms used. This set of agreements constitutes a Security Association (SA) 
between communication partners. SAs are unidirectional, and one SA is required for each security service; 
thus, two communication partners wishing to both encrypt and authenticate a two-way connection require a 
total of four SAs (one for each of the two required security features, in each of two directions).  

Two types of SA are differentiated: transport mode and tunnel mode. In transport mode, the SA is defined 
between two end systems and describes either encryption or authentication for the payload contained in all 
IP packets related to that particular connection. In tunnel mode, the SA is defined between two security 
gateways, which surround the IP packet and payload with an outer IP packet "wrapper", thus being able to 
apply either encryption or authentication to the whole inner packet, including the inner IP header. Based on 
these two modes of operation, individual SAs may be bundled either through transport adjacency (i.e., the 
use of both encryption and authentication services in the same IP packet) or iterated tunneling (i.e., nested 
use of the encryption and/or authentication services within the same IP packet). This allows mapping of 
more complex security environments into a security policy, as described by the SA.  

Although the local implementation is outside the scope of IPv6 standardization, SAs are supposed to be 
administered in two nominal databases, namely the Security Association Database (SAD) and the Security 
Policy Database (SPD), which are required to be present for each security-enabled interface on the system. 
In reality, the SAD and SPD may be realized as one database with corresponding internal organization.  

The SPD specifies the policies that determine the handling of all IP traffic inbound or outbound from the 
system, not just traffic carrying encryption or authentication elements. To this end, the SPD relies on an 
ordered rule base, as well as a selector element that consists of IP and upper layer protocol header fields 
(such as IP addresses, or the type of transport protocol or port numbers) and a wildcard matching 
mechanism to map inbound or outbound traffic to a policy—i.e., to a SA or SA bundle (for example, to 
express ranges of IP addresses to be filtered). Based on the SPD settings, for each IP packet passing 
through the system, a decision is made: to discard the packet, to apply security rules for encryption and/or 
authentication, or to bypass security rules and pass on the packet "as is."  

Usually, a (correspondingly privileged) system or security administrator defined rules in the SPD. The 
Internet Security Architecture, however, does not explicitly rule out the possibility for applications to 
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request specific security settings in the SPD—provided that such requests are within the limits determined 
by the security administrator and that the requests can be secured against misuse.  

All defined SAs are held in a SAD and are uniquely identified by a value triple consisting of a Security 
Parameter Index (SPI), an IP destination address, and a security protocol (AH or ESP) identifier (although 
both security elements are optional, one of them must be present). The IP destination address may be a 
unicast, multicast, or IP broadcast address, but only SA management mechanisms for unicast addresses are 
defined so far. In a unicast communication, the SPI is chosen by each recipient of a packet and negotiated 
during connection setup. Each system needs to remember the SPI of each communication partner (i.e., the 
SPI becomes part of the local SA for that communication type). In a multicast environment, the SPI is the 
same for all members of the multicast group.  

Conversely, packets are related to an SA by the SPI in each encryption or authentication Extension header. 
Thus, an SA in the SAD determines the result of the concrete negotiation results during the connection 
setup phase (e.g., concerning the use of a specific encryption or authentication algorithm, key length, etc.). 
When a system checks individual IP packets against the definitions in a SA, it may then use all fields 
defined in the respective security extension headers (such as sequence numbers, checksums, etc.), as well 
as locally defined parameters such as SA lifetime, mode of operation, or Path MTU). Management of SA is 
assumed to be handled either manually or through an automated SA/key-management protocol.  

5.7.2 Authentication in IPv6 

Authentication alone does not provide all the security features outlined above, but in turn, not all 
applications require all those features. Routing or neighbor discovery information, for instance, is usually 
not considered a secret, but as a multitude of attacks on the routing system have demonstrated, integrity 
and authenticity of IP packets carrying routing information would be highly desirable. Likewise, 
authentication of individual IP packets would provide sufficient prevention against popular Internet-based 
attacks, such as IP address spoofing and session hijacking. This is because the associated SA may instruct 
the IP protocol implementation to drop or reject all IP packets whose cryptographically secure checksum 
cannot be correctly verified.  

To this end, the Authentication Extension header (Next Header type 51) provides integrity and 
authentication for all end-to-end data transported in an IP packet. In other words, in the sequence of 
Extension headers, the AH is located in front of the end-to-end Extension header (if present), the 
Encrypted Security Payload (ESP) Extension header (if present), and the following transport (e.g., TCP or 
UDP), network control (e.g., ICMP), or routing (e.g., OSPF) protocol header.  

Each Authentication Extension header contains a fixed sequence of protocol elements:  

Next Header (1 byte) 

The Next Header field identifies the type of header that follows the Destination Options header. It 
uses the values listed in Table 2-1.

Length of Payload (1 byte) 

Describes the number of 32-bit values following the SPI field. This length indication is necessary 
because the authentication data in the AH may differ in length, depending on the algorithm used.  

Reserved (2 bytes) 

Not used; set to zero. 

Security Parameter Index (SPI) (4 bytes) 
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Indicates which checksum algorithm has been used. 

Sequence Number (4 bytes) 

Prevents replay attacks, with the known limit that connections using more than 232 packets may 
become vulnerable to replay attacks. The receiver must also be aware that, as in IPv4, the correct 
transmission order of packets is also not guaranteed in IPv6.  

Authentication Data (variable length) 

A cryptographically secure checksum over the payload, as well as some fields of the IP and 
extension headers, concatenated with a shared secret negotiated between the communication 
partners during the setup of the SA and indexed by the SPI value.  

For the computation of the cryptographically secure checksum (also termed message digest or hash) from 
the payload, as well as from selected fields of the IP and extension headers, the following rules apply:  

• In the IP header, the Version, Class, and Flow Label are excluded from the computation and the 
Hop Count field is assumed to contain a zero.  

• All Extension headers with a change-en-route-bit set within the Option Type are computed as a 
sequence of zero bytes.  

• If a Routing Extension header is present (which requires swapping the IPv6 destination address 
and the next address listed in the Routing Header and incrementing the Next Address field value), 
the value of the IPv6 destination field is set to the address of the final destination.  

The result of this computation is a relatively short checksum (for instance, the MD-5 checksum consists of 
128 bits; for SHA-1, the checksum is 160 bits long). The checksum may then be truncated slightly to allow 
alignment of the complete Authentication Header to a multiple of 64 bits, thus allowing optimization of 
memory usage in routers.  

The IPv6 specification contains two cryptographically secure checksum algorithms that must be supported 
by every implementation by default: Keyed Message Digest No. 5 (MD-5, which was originally proposed 
as the only default but is currently considered theoretically breakable) and SecureHash Algorithm No. 1 
(SHA-1). As the name suggests, Keyed MD-5 requires a secret key (negotiated using the SPI during setup 
of the SA) to be prepended and appended to the payload to be authenticated. Computing the secure 
checksum then authenticates the concatenation pattern key-payload-key.  

Other, potentially stronger or less computation-intense algorithms may be negotiated using corresponding 
SAs and SPIs. In contrast to ongoing debates on the strength of encryption allowed by governments or 
other regulatory bodies, strong authentication for IP packets and their payload is not debated (ironically, 
even a very restrictive government is assumed to be interested in strong authentication, in order to be able 
to verify the origin of a message or data stream).  

5.7.2.1 Payload authentication 

There are two modes of operation for IP authentication. The straightforward mode is the transport mode, 
which authenticates all end-to-end payload and selected header fields, as described above and depicted in 
Figure 5-7.
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Figure 5-7. Transport mode authentication header (dark gray = authenticated) 

5.7.2.2 Header and payload authentication 

In transport mode authentication, some values in the IP header are not protected. Some application 
contexts, however, may require protection of exactly these values. In addition, rewriting IP addresses 
during Network Address Translation (NAT)—e.g., as part of a VPN environment or through the use of 
unofficially assigned IP addresses—will not work with transport mode authentication because the IP 
addresses are covered by the checksum; recent work on NAT is addressing this issue. In addition, the Next 
Header value, which is also protected by the secure checksum, may change while the IP packet is in 
transit—for example, through the insertion of a Fragmentation Extension header (despite MTU path 
discovery, fragmentation may still occur due to dynamic route changes) or the insertion of a Hop-By-Hop 
Extension header.  

In these cases, a tunnel (e.g., between two VPN security gateways) must be created by wrapping the 
original, fully protected IP packet in an outer IP packet, whose content is only partially protected by the 
authentication checksum. This is shown in Figure 5-8. The sending security gateway wraps the IP packet 
and content, while the receiving security gateway checks the checksum of the outer IP packet, unwraps the 
IP packet, and retrieves the inner IP packet, whose checksum can then be verified by the receiving end 
system holding the end-to-end SA.  

Figure 5-8. Tunnel mode authentication header (dark gray = authenticated) 

5.7.3 Encryption in IPv6 

Whenever protection against modification or even publication of information is required, some sort of 
encryption is necessary. Typical applications of encryption on the level of individual IP packets may be 
protection of telnet, FTP, mail transfer, or web sessions. Such sessions could also be protected by 
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encryption on the transport layer (e.g., through SSL) or on the application layer (e.g., through S/MIME for 
email).  

In IPv6, the Encrypted Security Payload Extension header (ESP, Next Header value 50) provides integrity 
and confidentiality for all end-to-end data transported in an IP packet. In other words, in the sequence of 
Extension headers, the ESP is located in front of the following transport (e.g., TCP or UDP), network 
control (e.g., ICMP), or routing (e.g., OSPF) protocol header.  

Each ESP Extension header contains a fixed sequence of protocol elements:  

Security Parameter Index (4 bytes) 

Indicates which encryption algorithm has been used. 

Sequence Number (4 bytes) 

Prevents replay attacks, with the limit that connections using more than 232 packets may be 
vulnerable to a replay attack. The receiver also must have some reordering capabilities because 
IPv6 does not guarantee the correct transmission order of packets.  

Payload Data (variable length) 

Contains encrypted data described by the Next Header field (see below), as well as the encryption 
initialization vector, if required by the encryption mechanism.  

Note that there is no specific Next Header field in an ESP header. To allow proper processing of the 
payload, however, ESP carries the identification of the payload type (e.g., TCP, UDP, ICMP, or a routing 
protocol) in a separate trailer. The ESP is the only Extension header that is actually split into two parts: a 
header carrying the essential information for proper processing and checking of the encrypted SA by the 
receiver, and a trailer carrying additional information:  

• Padding for 64-bit alignment, along with an indication of the actual padding length in bytes  
• Indication of the Next Header type (e.g., TCP) to allow further processing by the receiver  
• Authentication data (as in the AH, described earlier) to protect the encrypted data and the 

sequence number in the ESP header from modification by an attacker  

The IPv6 specification contains one cryptographic algorithm that must be supported by every 
implementation by default: Data Encryption Standard in Cypher Block Chaining mode (DES-CBC). In this 
mode of operation, the ESP Encryption Parameters field contains a variable-length random initialization 
vector necessary for the operation of DES; the vector is specified in the corresponding SA identified by the 
SPI.  

DES is a seasoned, well-known symmetric encryption algorithm endorsed by the US government for 
export, but is currently replaced by the AES variant of the stronger Rijndael algorithm. DES operates on a 
key length of 56 bits, out of which 8 bits are used for parity checking. The CBC mode indicates that during 
encryption of each data block, some checksum property from the preceding data block is fed into the 
encryption process, thus preventing the arbitrary swapping of encrypted data blocks by an attacker.  

Other, stronger algorithms may be negotiated using corresponding SAs and SPIs. Keeping in mind the 
then-current debate on export and free use of strong cryptography, the designers of ESP chose DES as the 
default algorithm to enforce interworking of different implementations of IPv6. Negotiation capabilities as 
in AH were foreseen, however, to allow selection of a stronger algorithm (e.g., Triple-DES or IDEA) and 
key length, provided that the vendor of the IP software is able to offer stronger cryptography and the user 
is allowed to use strong cryptographic products.  
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5.7.3.1 Payload encryption 

There are two modes of operation for IP encryption. As is the case for authentication, the simple mode is 
the transport mode, which encrypts all end-to-end payload, including the transport protocol header, as 
shown in Figure 5-9.

Figure 5-9. Transport mode encrypted security payload header (dark gray = encrypted) 

5.7.3.2 Header and payload encryption 

In transport mode encryption, the IP header and all Extension headers following it, up to the actual ESP 
header, are not encrypted and therefore not protected. Encrypting these headers would render the whole 
mechanism useless because all routers and similar devices need to view, process, and even modify these 
headers while the IP packet is in transit.  

Thus, if encryption of the whole IP packet is required, a tunnel (like that between two VPN security 
gateways, for example) must be created by wrapping the original, fully encrypted IP packet in an outer IP 
packet, whose content is unprotected by the encryption. The sending security gateway encrypts the IP 
packet and its content and wraps it in an outer IP packet, while the receiving security gateway decrypts the 
payload of the outer IP packet and retrieves the inner IP packet, which can then be passed on to the 
receiving end system (see Figure 5-10).  

Figure 5-10. Tunnel mode encrypted security payload header (dark gray = encrypted)  
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5.7.4 Combining Authentication and Encryption 

The original idea for providing integrity, authenticity, and confidentiality to an IP packet was to use both 
the AH and the ESP (in an order where the AH would precede the ESP, thus allowing the recipient to first 
check the authenticity and integrity of the packet before attempting decryption). Since it was envisaged 
that, in many cases, both Extension headers would be used together and would thus lead to an increase in 
the overall size of the IP packet, the authentication function was additionally embedded into the ESP 
trailer, protecting the ESP sequence number as well as the actual payload.  

Thus, the programmer of higher-level protocols is faced with a choice here, either to use both the AH and 
ESP headers individually in sequence or to rely solely on the ESP header, with the optional authentication 
function in the ESP trailer. In any case, the choice between transport mode and tunnel mode is available 
regardless of the combination of AH and ESP used.  

5.8 Security Association Negotiation and Key Management 

To establish a SA between communicating entities, the entities must first agree on a common security 
policy and a compatible set of cryptographic algorithms. To facilitate the secure exchange of 
corresponding information, they must also agree on a shared key or secret, which must be negotiated over 
a potentially insecure communication path (shared secret) or which must be based on previously defined 
and authenticated certificates (either through a trusted public key infrastructure or through out-of-band 
distribution and verification of certificates).  

The corresponding standard, the Internet Key Exchange (IKE, RFC 2409) describes a protocol that allows 
communicating entities to obtain authenticated keying material and to manage Security Associations for 
the use of the AH and ESP services within IPSEC. IKE is considered an application-layer protocol from an 
IPSEC point of view, and it runs on port 500/UDP. Thus, other key management frameworks besides the 
default IKE could be provided.  

IKE is a collection and selective adaptation of three more general protocols:  

• The Internet Security Association and Key Management Protocol (ISAKMP, RFC 2408) provides 
a general framework for handling SAs and key exchange, but does not define them specifically. 
To suit the IPSEC requirements, the Internet IP Security Domain of Interpretation (DOI, RFC 
2407) describes the tailoring and parameterization of ISAKMP to be used in IPSEC. In particular, 
the DOI describes the naming convention for protocol IDs, the Situation field (allowing the 
selection of an identity, secrecy, or integrity mode of operation), advice concerning the correct 
implementation of a security policy, the syntax to be used for SA descriptions and IKE payload 
formats, and any additional key exchange and notification message types. However, ISAKMP is 
designed to be independent of key exchange, so additional key exchange protocols are required.  

• The Oakley key-determination protocol (see RFC 2412) is based on the Diffie/Hellman key 
exchange discussed earlier. It describes a series of key exchanges, called modes, and specifies the 
services provided by each type of key exchange (e.g., identity protection, authentication, and 
perfect forward secrecy for keys, such that even if a key is compromised, later keys or encrypted 
material are not endangered). IKE does not require the entire Oakley protocol, however—only a 
subset necessary to satisfy its specific goals.  

• The Versatile Secure Key Exchange Mechanism for Internet (SKEME; see "A Versatile Secure 
Key Exchange Mechanism for Internet," by H. Krawczyk, in IEEE Proceedings of the 1996 
Symposium on Network and Distributed Systems Security) describes a fast key-exchange 
technique that provides anonymity, repudiability, and quick key refreshment. Again, as with 
Oakley, IKE does not require the entire SKEME protocol, just the method of public key 
encryption for authentication and the concept of fast rekeying using an exchange of special tokens 
termed nonces. Nonces are large (64- to 2048-bit) random numbers used to add entropy to the key 
negotiation process and provide limited protection against replay attacks.  
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Thus, IKE can be roughly described as a negotiation protocol that utilizes data formats defined in ISAKMP 
to exchange key and SA information based on the Oakley and SKEME key-exchange mechanisms. It 
should be noted that two other proposals, Photuris and SKIP, exist. Photuris corresponds roughly to the 
"main mode" of ISAKMP (see below). SKIP was eventually dropped by the IETF Working Group due to 
the additional overhead (each protected IP packet also has to carry a SKIP header, in addition to AH and/or 
ESP) and the directory-based, fixed key exchange protocol, despite advantages such as simplicity and 
stateless mode of operation. Future extensions may, however, reintroduce ideas and methods employed by 
SKIP. Figure 5-11 indictes the individual elements of association and key management standards and their 
relation.  

Figure 5-11. Relationship of association and key management standards 

IKE operates in two phases.  

In phase 1, ISAKMP peers negotiate a secure, authenticated channel (e.g., encryption with DES and 
authentication with MD-5, or encryption with IDEA and authentication with SHA-1), based on their SPD, 
over which all further communication takes place. This channel is set up based on the exponential 
Diffie/Hellman key exchange with 64-bit cookies (not to be confused with web cookies) to prevent 
flooding or clogging attacks on the recipient (since the response is computationally intense) and to 
demultiplex several IKE negotiations in parallel on port 500. It is also set up with encrypted identification 
tokens (containing a chosen identity ranging from an IP address to a domain name, certificate, or email 
address) to prevent man-in-the-middle attacks, in which the attacker masquerades itself as the 
corresponding communication partner to each peer. This channel forms the ISAKMP SA.  

Two different modes of operation can be used for a phase 1 exchange: Main Mode, the normal exchange, 
using six messages and providing identity protection; and Aggressive Mode, using only three messages, 
but at the cost of slightly less security, since identity protection is not available.  

Authentication of the communication partners may use different methods, such as sharing a secret prior to 
ISAKMP SA setup (e.g., on a chip card), securing the negotiation data with an RSA (or DSA) checksum 
encrypted with the sender's private key, or securing the negotiation data by encrypting it with the receiver's 
public key. The keys resulting from the original Diffie/Hellman key exchange are finally used to derive 
further keys for encryption, authentication, and refreshing the keying material, if required, to hinder 
cryptanalysis on the cyphertext.  

In phase 2, further SAs are negotiated over the secure channel on behalf of services such as IPSEC or any 
other service using Quick Mode with only three messages exchanged. Also, SAs requiring new key 
material may negotiate the corresponding data by employing the New Group Mode, using only two 
messages. An ISAKMP SA is always considered bidirectional after connection setup, so each of the 
communicating peers may initiate Quick Mode or New Group Mode exchanges at any time. Because 
multiple Quick Mode negotiations may take place in parallel, they must be differentiated by a unique 
identifier (the cookie exchanged in phase 1 of IKE is the same for all SAs between the same 
communication partners). ISAKMP SA negotiation is shown in Figure 5-12.
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Figure 5-12. ISAKMP SA negotiation 

Because the setup of a secure application connection (e.g., between a web client and a web server) requires 
the negotiation and setup of a whole SA, including the necessary computations, performance has been an 
issue with the design of IKE. Using the different ISAKMP phases, however, an implementation may, when 
necessary, employ very fast keying by reuse. A phase 1 exchange may be viewed as a generic IKE "control 
channel" and may be used for more than one phase 2 negotiation. Additionally, multiple SAs can be based 
on one individual phase 2 negotiation. The IKE specification therefore mentions, "With these 
optimizations, an implementation can see less than one message exchange per SA, as well as less than one 
Diffie/Hellman exponentiation per SA."  

As described above, much of IKE's functionality around authentication of communication peers is based 
either on preshared secrets or on some knowledge of the other party's public key or digital certificate. 
There is sufficient flexibility in the IKE protocol for eventual support of more complex infrastructure 
elements, such as Key Distribution Centers (KDC), the Kerberos framework and key distribution in 
multicast groups, or a PKI providing authentic certificates of persons or software processes. However, a 
common PKI or KDC infrastructure is still missing in the Internet, and there is no indication when and by 
whom such a service—which is also subject to substantial technical, organizational, and political debate on 
privacy versus control issues—will be provided.  

5.9 Interworking of IPv6 Security with Other Services 

The provision of IPSEC in IPv6 is a giant step forward with respect to providing security on the Internet. 
There are a variety of different uses of IPSEC within the basic Internet Protocol Suite, such as general 
confidentiality of transmission, authentication of peer entities (e.g., for routing updates, server lookups for 
DNS, DHCP-based autoconfiguration, etc.) and prevention (or at least reduction) of denial-of-service and 
man-in-the-middle attacks.  

However, the provision of IPSEC service also influences the security elements used in application-layer 
protocols. Simple services such as telnet, FTP, DNS, and SNMP-based network management may now 
rely solely on IPSEC for obtaining sufficient security (the operating system environment is considered 
outside the scope of IPSEC, although some recommendations exist concerning the handling of keying 
material within the software). Other, more complex applications, such as electronic mail, require more 
complex security elements, however, such as nonrepudiation of receipt, proof of origin, or specific 
encryption of information on the application or even user level; these elements are not directly obtainable 
from IPSEC operating solely on the network layer. Although these application-level security elements may 
profit from the provision of IPSEC services (i.e., they may rely on completely secure, authentic, and 
reliable end-to-end transport of content), they still need to provide their own security elements, which are 
not necessarily compatible with the SAs and key exchanges used by IPSEC. In some areas, such as the 
identity authentication in phase 1 of the IKE negotiation protocol, the use of application-level elements 
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such as certificates is specifically required, and corresponding standardization and deployment activities 
must be well coordinated.  

Unfortunately, there are some areas in which the IPSEC security elements do not fit in well with other 
relevant IPv6 service elements:  

• Tunneling, which is an important architectural element both of IPSEC and of phased IPv6 
deployment, creates problems when passing through existing border-level security gateways or 
firewalls; this is because an IPSEC tunnel that has been defined end-to-end will deny the firewall 
any possibility to check for dangerous or unauthorized content (such as viruses). Thus, end-to-end 
SAs must be replaced by "end-to-security-gateway" SAs. However, this process has not yet been 
designed, let alone standardized. In addition, there are subtle security problems with tunneling 
because the inner IP packet may contain routing or network control messages that can be harmful 
to the receiving network or system (such as source routing in IP, ICMP routing redirects, etc.).  

 

• A similar problem exists with NAT, which has been widely deployed on the Internet to save IP 
address space and limit administrative address change overhead when switching between Internet 
service providers. NAT gateways rewrite IP headers to masquerade systems on the internal 
network when they communicate on the Internet. In many scenarios, NAT gateways also rewrite 
transport-layer port numbers (e.g., when more than one internal system uses the same officially 
assigned address on the Internet and the port number is used to demultiplex traffic). NAT 
gateways even have to rewrite application-layer data, such as ICMP error messages that contain 
the first bits of a faulty IP header, or passive mode FTP requests that carry IP addresses. With IP 
packets protected by authentication and/or encryption, NAT becomes problematic. Currently, a 
proposal on realm-specific IP is being discussed; it allows an IPSEC client to negotiate shared 
addressing and security parameters with its local gateway. A solution or standard does not yet 
exist, however.  

 

• Quality of Service, as defined in IPv6, allows routers to drop packets, depending on priority and 
service class as specified in the corresponding Class and Flow Label IPv6 header elements. With 
IPSEC employed, dropping packets would be considered a security violation that could deny the 
requested service (e.g., an IKE exchange) in which the handling of time-outs, duplicates, and 
retransmissions has not yet been defined). Additionally, all receivers of IPSEC-protected traffic 
must employ a heuristic to deal with nonsequential arrival of IP packets (e.g., they must memorize 
the highest sequence number received so far and accept packets with a lower sequence number, up 
to a defined backward window size—usually 64 sequence numbers).  

 

• Finally, mobility (roaming and remote access) must be considered carefully in an IPSEC 
environment because corresponding protocols often assign dynamic IP addresses. When dynamic 
IP addresses are used for identity checks (e.g., in an IKE phase 1 negotiation), the key exchange 
will fail, or the SAs and security policies governing the SA setup must be so relaxed that security 
can be easily compromised by an intruder. Corresponding modifications to IKE have been 
proposed, but they have not yet been standardized. They would also introduce a further layer of 
complexity to the already complex IKE protocol. Furthermore, providers of network services will 
have to carefully administer admission policies to their networks, despite flexible and easy-to-use 
autoconfiguration mechanisms being deployed with IPv6.  
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5.10 Open Issues in IPv6 Security 

Although security was one of the foremost concerns after address-space enlargement when IPv6 was 
designed, it appears that some ad hoc solutions, such as NAT and CIDR, as well as the availability of 
security elements such as SSL (standardized by IETF as TLS), SSH, and secure email (S/MIME, PGP) in 
IPv4 networks, have delayed the deployment of IPv6. While this delay leaves the Internet open for attacks 
for a longer period of time and leads to additional complexity and management overhead, it has given 
protocol designers more time to improve their plans.  

While the base standards for IPSEC are considered stable and will be extended mostly in the area of 
allowing additional encryption or authentication algorithms, more work remains to be done in the IKE area 
and in improving protection mechanisms against traffic analysis and denial-of-service/flooding attacks. 
The full deployment of IPSEC will also largely depend on the availability of a technically, 
organizationally, and politically acceptable and workable PKI capable of handling a large number of user 
or software process certificates.  

A final issue for IPSEC is the management of its complexity. Many IPSEC mechanisms and their 
consequences are no longer easy to understand and are thus error-prone in implementation and operation, 
even though "intuitive" user interfaces for end-system configuration (e.g., for applying ESP or AH security 
to connections specified by port numbers, IP addresses, etc.) are available. Adding further functionality, 
such as various styles of tunneling, will also add complexity and thus endanger the original idea of 
providing simple, ubiquitous security in IPv6.  
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Chapter 6. Quality of Service in IPv6 
The basic Internet design handles traffic in a manner close to George Orwell's Animal Farm paradigm in 
which all animals are alike. Like the pigs in Orwell's gloomy vision, only a very few packet types, under 
special circumstances, are treated differently—in most cases only by end systems, not by intermediate 
routers during transport. This flat paradigm was well suited for uniform, best-effort services as provided by 
the original Internet. Today's applications are more differentiated and require different classes of service 
for real- or near-time traffic, e.g., for multimedia data that needs to be captured, transmitted, and played 
back with sufficient, homogeneous, consistent quality regarding throughput, delay, or jitter. As the Internet 
grows into the consumer market, expectation levels are high with respect to these services because users 
are already experiencing such real-time services from telephony and cable television services.  

Changing the Internet to handle real-time as well as traditional traffic requires changes at the very root of 
the Internet: the IP packet design and the routing and forwarding functions. Routes in IP are determined by 
the IP destination address and the state of routing tables in each router on the path to the destination. Thus, 
all IP packets follow the same route until the route changes due to congestion, topology updates, etc.; thus, 
there is no implicit route per service possible. An attempt in IPv4 to classify traffic according to a Type of 
Service (TOS) byte in the IP header did not succeed Internet-wide because the TOS byte was based on fair 
self-classification of applications with respect to other application traffic. Multimedia applications were 
scarce at the time, so no real efforts were made to address this problem in the early stages of the Internet 
and the TOS byte was never used uniformly.  

In addition, it is debated whether merely indicating the required type of service is sufficient to solve the 
problem. For true real-time support, users or programs must be able to specify acceptable upper and/or 
lower service limits, and to enforce different routing for specific services. This, in turn, requires 
information about which routes in the network are suited for real-time traffic and at what time, as well as 
information in each router about traffic streams or flows with specific quality requirements. This touches 
another basic Internet paradigm: so far, IP networks deal with individual IP packets and do not store global 
state information. This keeps the complexity at the edges of the network and the routing and forwarding as 
simple (and fast) as possible.  

The redesign of IP provided an opportunity to address the QoS issue along with other functional additions. 
However, QoS is still a topic of research and controversy, and corresponding services and protocols 
employ very complex, often heuristic, mechanisms, which will most likely coexist in the "new" Internet, 
but that must not disturb the overall operation of the Internet. Design and experimentation continue and 
designers know that there will be surprises and pitfalls along the route because results from simulation 
environments and research networks may not be the same as those in the "big" Internet.  

Thus, this chapter will provide the reader with the basic ideas, approaches, and protocols known so far, 
without being able to conclusively outline a unique QoS architecture for the Internet.  

6.1 QoS Paradigms 

There are already different schools of thought on the issue of identifying the right location for providing 
QoS. Again, no clear winner is likely to emerge soon and parallel deployment is likely. To complicate 
things further, limited combinations of these different paradigms are possible.  

6.1.1 End System-Based QoS 

The purely end system-based approach argues that a quarter century of experience with IP networks shows 
that the network is quick and stupid: it has no knowledge about traffic characteristics at all and transmits 
all packets on a best-effort basis. As there is no basis for intelligent traffic handling in the network, the end 
systems must be able to compensate for delay, jitter, etc., by themselves. Corresponding mechanisms exist 
that use extrapolation of missing data, intelligent playback buffers that can compensate for variances in 
interarrival times (like a car CD player that reads ahead and buffers enough music data to be able to 
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reposition itself after shaking without stopping to play). These mechanisms have been proven to work even 
over long Internet routes and moderately busy lines. While this type of QoS has its merits (e.g., simplicity), 
it does not scale well for true multimedia support.  

6.1.2 Service-Based QoS 

In IPv6, different service classes could also be implemented by different multicast groups, so one could 
define, for example, four different classes of the same audio traffic—each encoded with different quality 
(such as 5.5, 11, 22, and 44 KHz). In this paradigm, not even an explicit priority indication is required 
because it is implicitly bound to the respective multicast group (which must be handled accordingly 
through different queuing and processing by the routers and end systems). The existing IPv6 ICMP 
multicast feedback control message mechanism can be used to shape the traffic characteristics at the sender 
and intermediate routers (e.g., the highest quality to be generated by the sender, which links need to carry 
this multicast group because of a multicast member downstream, how to enter/leave an multicast group, 
etc.).  

On the downside, the sender will have to provide basically the same data (but of different quality) multiple 
times, and the receiver needs to know which group to subscribe to in order to match the specific 
transmission and end-system capabilities. Intelligent local decisions using this paradigm could also include 
supervision of traffic characteristics and dynamic switching between multicast channels with different 
quality.  

6.1.3 Class/Priority-Based QoS 

Another paradigm proposes that, to handle multimedia traffic requirements, routers need explicit 
information on how to deal with packets with different service requirements. To provide this information 
to routers, IP packets have to contain corresponding information, as well as signaling information 
concerning route changes. Fortunately, no new signaling protocol is required because the IPv6 Routing 
Extension header can be used for special route setup and the Hop-By-Hop Extension header can transmit 
control messages to inform all routers on the path.  

Using this paradigm, the network basically still transmits in best-effort mode, but it may implement a 
feedback loop to the sender so that the sender can adapt its multimedia coding, if necessary, or it may drop 
packets according to priority, while senders code and label packets with proper priority. For example, to 
transmit high-quality (44 KHz) audio, hierarchical coding may be used in which data is encoded as a base 
audio packet containing the data for 5.5 KHz quality, a second packet containing the difference between 
5.5 and 11 KHz, a third packet containing the difference between 11 and 22 KHz, and a fourth packet 
containing the difference between 22 and 44 KHz. Routers are then allowed to drop packets in case of 
congestion, in the order fourth, third, second, and finally first. The audio quality may differ, but the audio 
packet is completely lost only if all four packets are dropped. The negative effect of class/priority-based 
QoS is the additional overhead for the sender (e.g., for IP header management and hierarchical coding) and 
variable, unguaranteed service quality on the receiver side.  

6.1.4 Resource Reservation-Based QoS 

The most complex QoS paradigm is based on the assumption that routers must have full knowledge of 
connections and their QoS requirements to reserve sufficient resources (such as queues and buffer space, 
computing time, specific algorithms, etc.) to guarantee processing of packets within their specified QoS 
limits. With proper resource reservation setup negotiations and signaling, QoS can be guaranteed end-to-
end between sender and receiver(s), either in a unicast model or using multicast, receiver-driven group 
management mechanisms. In other words, the receiver decides on the quality versus cost ratio and signals 
requirements upstream toward the sender, while routers are multicast-aware and forward traffic according 
to current group membership.  
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While this model relies on traditional IP packet forwarding as the default case, it requires sources and 
destinations to exchange extensive signaling and control messages using, for example, the Resource 
Reservation Protocol (RSVP). RSVP establishes packet classification and forwarding status information in 
each router along the path, thus introducing state information in a previously stateless datagram-forwarding 
network.  

Main points of criticism include the substantial complexity of the protocol and the introduction of state 
information into a stateless network paradigm (the amount of state on each router scales in proportion to 
the number of concurrent reservations). There are also fears that the current Internet "for everyone" will be 
separated into a "rich" and "poor" Internet by means of chargeable reservations. Finally, the application 
support required to handle the RSVP signaling protocol is also a concern.  

6.2 Quality of Service in IPv6 Protocols 

Given the different QoS paradigms, the designers of IPv6 had to be careful not to impose a specific 
mechanism, but to provide enough flexibility to support multiple QoS mechanisms. Thus, after much 
debate and many redesigns, the IPv6 protocols carry a small number of QoS-specific service elements in 
the IP Base and Extension headers, which can be used in different ways and in several combinations.  

6.2.1 IPv6 Base Header 

The following section describes the QoS-specific service elements in the IP Base header, namely flows and 
corresponding flow labels.  

6.2.1.1 Flows 

A flow is a sequence of packets sent from a particular source to a particular (unicast or multicast) 
destination(s), for which the source requires special handling by the intermediate routers. The nature of 
that special handling can be communicated to the routers by a corresponding control protocol, such as 
RSVP, or by information within the flow's packets themselves—e.g., in an IP Base header or a Hop-By-
Hop Extension header. There may be multiple active flows from a sender to a receiver, as well as traffic 
that is not associated with any flow at all. A flow in the IP protocol is uniquely identified by the 
combination of a source IP address and a non-zero identification, the flow label. Packets that do not belong 
to a flow carry a flow label of all zeros.  

All packets belonging to the same flow must be sent with the same IP source address, IP destination 
address, and non-zero flow label. If any of these packets includes a Hop-By-Hop Extension header, they all 
must be originated with the same Hop-By-Hop Extension header contents (excluding the Next Header field 
of the Hop-By-Hop Extension header, which is allowed to differ). If any packet includes a Routing 
Extension header, they all must be created with the same contents in all Extension headers up to and 
including the Routing Extension header (again excluding the Next Header field in the Routing Extension 
header). The routers or receivers are allowed to verify that these conditions are satisfied. If a violation of 
these consistency rules is detected, a corresponding error message is returned, indicating the exact location 
of the rule violation.  

6.2.1.2 Flow Labels 

The 20-bit Flow Label field in the IPv6 header may be used by a source to label packets for which it 
requests special handling by the IPv6 routers, such as nondefault QoS or real-time service.  

A flow label is assigned to a flow by the flow's source node. New flow labels must be chosen randomly 
from the range 00001 to FFFFF. The purpose of the random allocation is to make any combination of 
bits within the Flow Label field suitable for use as a hash key by routers, for looking up the state associated 
with the flow.  
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Hosts or routers that do not support the functions of the Flow Label field (most of today's applications, 
which will not be changed to require or set a flow, or which do not need QoS handling) are required to set 
the field to all zeros when sending a packet, to pass the field on unchanged when forwarding a packet, and 
to ignore the field content when receiving a packet.  

6.2.2 Priority/Class 

In the original 1996 IPv6 proposal, a 4-bit Priority field in the IPv6 header was intended to let a source 
identify the desired priority of its packets, relative to other packets from the same source. Priorities were 
divided into two ranges: 0-7 for fixed priority , and 8-15 for real-time traffic drop priorities. The first range 
was to be used to specify the priority of traffic for which the source provides congestion control—traffic 
that limits its bandwidth requirements in response to congestion (e.g., TCP traffic); digits 0 to 7 indicated 
traffic classes, such as interactive traffic, attended transfers, unattended transfers, filler traffic, etc. The 
second range was intended to specify the priority of traffic that does not back off in response to 
congestion—e.g., real-time packets that are sent at a constant transmission rate. For this type of traffic, the 
lowest priority (8) was to be used for packets that the sender was willing to have dropped first in a 
congestion situation (e.g., high-quality video traffic), while the highest value (15) was for those packets 
that the sender was least willing to have dropped (e.g., low-quality audio traffic). No relation exists 
between the congestion-controlled priorities and the non-congestion-controlled priorities.  

After substantial discussions within the IETF, it was agreed that the original proposal's open loop 
transmission model was suboptimal in terms of bandwidth consumption and would increase the potential 
for congestions. Thus, the IPv6 header was redesigned to contain an 8-bit Class field (at the expense of the 
flow label, which was shortened from 24 to 20 bits). The underlying idea for using the QoS header fields 
changed from an isolated "how important are my flows relative to each other" view to a "network global" 
view, preferably accompanied by hierarchical coding. This allows some packets to be dropped at the router 
level while retaining real-time service at a lower quality, without the need for retransmissions or data 
extrapolation. The Class field proposal of 1997 thus contained a "D" bit for marking delay-sensitive traffic 
and three bits for network-wide priorities (allowing eight different traffic classes); the remaining four bits 
were reserved for possible use within a congestion-control protocol.  

A further redesign in 1998 (RFC 2474) finally defined a complete replacement of the Class Header field: 
the Differentiated Services field, which is intended to supersede both the existing definitions of the IPv4 
TOS byte and the IPv6 Traffic Class byte. In short, the differentiated service (DS) paradigm enables 
scalable service differentiation in the Internet without the need to define and administer status information 
per flow at every end system or router. Instead, each router offering differentiated service support contains 
a small, well-defined set of routines to deal with DS requests for performance (such as peak bandwidth) or 
for relative performance (e.g., differentiation of service classes), based on the signaling contained in the 
DS field in an IP packet requesting DS. The DS may be defined and used either end-to-end, when an IP 
packet is crossing a network boundary, or just within an Internet domain.  

The initial six bits of the DS field are used as a DS codepoint (DSCP) to select the per-hop behavior (PHB) 
that a packet requires at each router. The remaining two bits are currently unused and are ignored by DS-
compliant systems when determining the PHB for a received IP packet, as shown in Figure 6-1.

Figure 6-1. Format of the DS field 

The DSCP field within the DS field can distinguish 64 codepoints. The codepoint space has been divided 
into three pools to allow controlled codepoint assignment. A pool of 32 recommended codepoints (pool 1) 
is assigned through formal standardization, a pool of 16 more codepoints (pool 2) is reserved for 
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experimental or local use, and the final pool of 16 codepoints (pool 3) is initially available for experimental 
or local use, but should be used as an overflow pool if pool 1 is used up (Table 6-1).  

Table 6-1. The codepoint pools  
Pool Codepoint space Assignment policy 
1 xxxxx0 Standard use 
2 xxxx11 Experimental/local use 
3 xxxx01 Experimental/local use, potential standard use in the future 

A default PHB, denominated by an all-zeros DS codepoint, must be provided by any DS router. The 
default PHB describes the common, best-effort forwarding behavior available in existing routers. Such 
packets are forwarded without adhering to any priority policy; in other words, the network will deliver as 
many of these packets as possible as soon as possible, based on existing resources, such as memory or 
processing capacity. Packets received with an undefined codepoint should also be forwarded as if they 
were marked for the default behavior.  

The RFC 2474 standard assigns eight recommended class selector codepoints (xxx000), which are drawn 
from pool 1. The DSCP field within the DS field is capable of differentiating 64 different codepoints. 
PHBs that are referred to by these codepoints must satisfy the class selector PHB requirements, in addition 
to preserving the default PHB requirement as described by the codepoint 000000. A class selector 
codepoint with a larger numerical value than another class selector codepoint has a higher relative order 
and will receive correspondingly better treatment by routers; a numerically smaller class selector codepoint 
has a lower relative order. The set of PHBs that the eight possible class selector codepoints map to must 
provide at least two independently forwarded classes of traffic in a router. PHBs selected by a class 
selector codepoint should give packets a probability of timely forwarding that is not lower than the 
forwarding probability given to packets marked with a lower class selector codepoint (given reasonable 
operating conditions and traffic loads).  

To preserve some limited backward compatibility with existing uses of the TOS byte in IPv4, where IP 
precedence values 110 and 111 denominate routing traffic, PHBs selected by codepoints 11x000 must give 
packets a preferential forwarding in comparison to the PHB selected by the default codepoint 000000.  

Class selector-compliant PHBs can be realized by a variety of mechanisms within a router, including strict 
priority queuing, weighted fair queuing, or class-based queuing, depending on the implementation strategy 
chosen by the vendor of the particular routing equipment.  

6.2.3 IPv6 Extension Headers 

As already outlined, two IPv6 Extension headers can be used to signal QoS requirements:  

• The Routing Extension header can be used to request a specific route by indicating a sequence of 
IP addresses of nodes to be used (a loose source route, in IPv4 terminology). However, use of this 
Extension header requires the requester to have knowledge about the preferred route (i.e., the 
network topology and QoS-sensitive parameters, such as possible throughput, etc.). To discourage 
attacks on the routing system, a packet sent in response to a received packet that included a 
routing header must not include a routing header that was automatically generated by "reversing" 
the received routing header (as is often done in IPv4), unless the integrity and authenticity of the 
received source IP address and routing header can be verified (e.g., via an Authentication 
Extension header in the received packet).  

• The Hop-By-Hop Extension header can be used to transport a maximum of one router alert 
signaling message per IP packet (RFC 2711) to every router on the path of QoS-sensitive traffic, 
indicating that each router should specifically process the IP packet. The use of the Hop-By-Hop 
Extension header allows fast processing by the router because no analysis of higher-level protocol 
headers is required. Routers that are unable to recognize the router alert option type are required to 
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ignore this option and continue processing the header. Also, routers are not allowed to change the 
option while the packet is in transit. Router alert types that have been defined so far are shown in 
Table 6-2.

Table 6-2. Currently defined router types  
Value Description 
0 IP packet contains a Multicast Listener Discovery message. 
1 IP packet contains an RSVP message. 

2 IP packet contains an Active Networks message—the sender is attempting to load a program into 
the router for executing customized functions.  

3-
65535 Reserved to IANA for future use. 

6.2.4 RSVP 

Although the Resource Reservation Protocol (RFC 2205) is not considered part of the core IPv6 
standardization efforts, but instead an internal application on top of IPv6 (similar to ICMP or routing 
protocols), it is closely related to the "new Internet" design. It utilizes some IPv6 protocol elements—in 
particular, the flow label. Although the transport header could also characterize traffic, the flow label is 
used because the transport header is too far away from the IP header in the chain of Extension headers for 
efficient processing by a router, and it also may be encrypted by an ESP Extension header.  

The RSVP protocol is used by an application running on an end system to request specific, unidirectional 
QoS for its unicast or multicast flows from the network. Routers also use RSVP to send QoS requests to all 
other routers along the path of a flow and to establish and maintain status information (soft state with 
refresh and expiration mechanisms) in each router to provide the QoS requested. Routers along the data 
path processing RSVP requests will usually reserve resources for specified flows. The direction for QoS is 
usually from the receiver to the sender; this allows each individual receiver full control over the 
quality/cost ratio and it remains in line with the receiver-based paradigm of IPv6 multicasting.  

RSVP implements QoS for a particular data flow by executing traffic control. The traffic control, in turn, 
contains the following subsystems:  

• A packet classifier, to determine the QoS class and derived route for an IP packet  
• An admission control entity, to decide whether the system can dedicate sufficient resources to the 

requested QoS  
• A policy control entity, to decide whether the requester is permitted to obtain a specific QoS  
• A packet scheduler, to ensure timely forwarding of IP packets to the next hop  

RSVP uses a flow descriptor to describe the QoS requirements per flow. A flow descriptor contains a flow 
specification (the desired QoS, including the service class and numeric parameters) as input for the packet 
scheduler and a filter specification (the identification of the flow to receive the QoS specified) as input for 
the packet classifier. Different reservation styles (options) govern whether senders are identified explicitly 
or per wildcard, and whether reservations for the same flow but from different senders in the same session 
can be shared within a router or must be distinct per recipient.  

Although RSVP has been designed to provide QoS for applications, identified by TCP- or UDP-style port 
numbers in the flow descriptor, there is also limited support for providing QoS to lower-layer protocols. In 
particular, QoS support for IPSEC is provided with service granularity similar to port number-based 
applications (RFC 2207).  

The main RSVP protocol elements are reservation requests and path messages. Each receiver sends RSVP 
reservation requests upstream toward the sender(s) on the reverse path of the flow received. These packets 
create and maintain state information (reservations) in each router passed and inform the sender, who may 
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then adapt his traffic control, if necessary. In the opposite direction, each sender transmits "path" messages 
downstream along the same path as the data flow, informing all RSVP routers about the paths used for 
flows. (Note that routers on the path may not understand RSVP, but they are still able to forward IP 
packets with RSVP content to the next router capable of processing the RSVP protocol.) Tear-down 
messages are used to explicitly get rid of paths or reservations (although deletion of unused paths or 
reservations also happens through a timeout mechanism).  

A number of router and software vendors have implemented RSVP mechanisms in their products, although 
with limitations in functionality (note that RSVP does not rely on IPv6, but can also be retrofitted into IPv4 
installations). However, the complexity of RSVP in terms of implementation, operation, and processing, as 
well as architectural considerations as outlined in the following section, have so far limited the deployment 
of RSVP.  

6.3 QoS Architectures 

The bottom-up mechanisms described so far can be considered building blocks in a larger architecture that 
describes how the Internet may deal with real-time traffic requirements. Two different architectures exist: 
Integrated Service and Differentiated Service. Both are based on common traffic policing strategies and 
can be combined in order to allow QoS optimizations both in local and wide area network environments.  

6.3.1 Traffic Policing 

Traffic policing describes the general concept of allowing traffic to enter the network only when certain 
conditions (such as sufficient resources to handle QoS requirements) can be met, as well as supervising 
traffic behavior. This is done to adapt the network to traffic requirements or to impose restrictions in cases 
of unfair resource usage.  

There are different methods for traffic policing, ranging from fair queuing algorithms based on the QoS 
requirements within routers to the use of network-wide priority classes (which determine the handling of 
QoS-sensitive traffic within the routing/forwarding system) and adaptive mechanisms, such as random 
early detection by routers to probe traffic behavior and its sensitivity to artificially and randomly caused 
packet loss or delay.  

Traffic policing (and its corresponding administrative and technical overhead) is used not only because of 
the QoS requirements imposed by real-time, multimedia traffic. There may be economic reasons, as well—
for instance, to exercise cost control, such as when different tariffs are used by network providers at 
different weekdays or times of day.  

6.3.2 Integrated Services Architecture 

The Integrated Services Architecture (IntServ) is based on the general paradigm that bandwidth and all 
corresponding resources are reserved per flow on an end-to-end basis This is similar to the original 
telephony service, where a circuit was reserved exclusively for the communication partners and could not 
be used by any other party while the connection was active.  

Although the model uses traditional IP packet forwarding in the default case, it allows senders and 
receivers to exchange explicit signaling messages that make resource reservations, establish paths through 
the network, and manage packet classification and forwarding status information on each router along the 
path. It also requires application support for the RSVP signaling protocol because applications need to be 
able to register their QoS requirements with the underlying network environment.  

The Resource Reservation Protocol was designed specifically to support IntServ. A corresponding standard 
defines the use of RSVP within this architecture (RFC 2210).  



87

Although IntServ was the predominant school of thought in the early QoS debate, its general applicability 
has been questioned in comparison to the Differentiated Services Architecture. In addition, the complexity 
of RSVP has led to further resistance against IntServ as the general Internet QoS model.  

6.3.3 Differentiated Services Architecture 

The Differentiated Services Architecture (DiffServ, RFC 2475) is based on the general paradigm stating 
that relative priority and type-of-service markings within the codepoints of the DS byte in each QoS-
sensitive IP packet are sufficient to derive QoS-specific treatment of packets at each router, without the 
need for explicit path setup and reservation signaling. DiffServ is not considered an end-to-end service, but 
is based on the determination of the PHB in each router. Within the network, the scope of DiffServ may be 
restricted to DiffServ domains, which can in turn be connected via a non-QoS-aware routing network.  

An IP packet's DS field is used to indicate the packet's QoS requirements and is then used by each DiffServ 
router to determine the forwarding treatment for the packet; dynamic elements such as classifiers and 
traffic conditioners can therefore be used to select which packets are to be added to QoS classes (or 
aggregates). These aggregates receive differentiated treatment in a DS domain, and traffic conditioners 
change the temporal characteristics of the aggregate to be able to conform to traffic policing requirements.  

In addition to being a contender to the IntServ paradigm, DiffServ mechanisms may also work with 
IntServ—in particular, to aggregate IntServ/RSVP QoS state. This is used on local area networks with 
integrated management and service quality, in the core of the wide area transmission network, and consists 
of a sequence of subnetworks that are not uniquely managed and therefore cannot provide end-to-end QoS. 
In such a scenario, RSVP would be used only inside the LAN environments and between routers at the 
edges between providers (Figure 6-2).  

Figure 6-2. Possible common service architecture 

6.4 Mapping IP QoS to Underlying Transmission Networks 

IP is traditionally able to run over almost any network transmission layer. While this approach has a clear 
advantage in terms of connectivity and interoperability on the network layer, it also means that only 
common-denominator functionality is required from the transmission layer. Even if the underlying 
transmission protocols offer advanced services, such as fragmenting or reassembly of packets and QoS-
handling capabilities, IP standardization has a tendency to be self-sustained and either ignores these 
capabilities or redesigns them within the network or transport layer.  

Along these lines, IP QoS elements have been designed as standalone mechanisms. Any mapping onto 
lower-layer QoS elements, such as ATM traffic classes or Multi-Protocol Label Switching (MPLS) traffic 
engineering attributes, are either not foreseen or are in the early stages of design and implementation (often 
driven by interested vendors).  

While mapping IP QoS elements to fixed-quality transmission services such as ATM traffic classes may 
seem straightforward, the dynamic mapping of IP QoS to MPLS attributes is a much more difficult task. 
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For this mapping, path-forwarding state and traffic management or QoS state is defined for traffic streams 
on each router along the path. According to the general model in RFC 2475:  

"...traffic aggregates of varying granularity are associated with a label switched path at the 
ingress point, and packets/cells within each label switched path are marked with a 
forwarding label that is used to lookup the next-hop node, the per-hop forwarding 
behaviour, and the replacement label at each node. This model permits finer granularity 
resource allocation to traffic streams, since label values are not globally significant but 
are only significant on a single link; therefore resources can be reserved for the aggregate 
of packets/cells received on a link with a particular label, and the label switching 
semantics govern the next-hop selection, allowing a traffic stream to follow a specially 
engineered path through the network. This improved granularity comes at the cost of 
additional management and configuration requirements to establish and maintain the label 
switched paths..."  

Both MPLS and IP QoS are still areas of research, simultaneously being standardized by the IETF and 
implemented and improved by vendors. Substantial changes and extensions can be expected in this area, 
which in turn keeps many customers from introducing corresponding services within their networks.  

6.5 Further Issues in IP QoS 

Besides the issue of having to harmonize the competing IntServ and DiffServ architectures, a number of 
other open issues drive the further development of QoS on the Internet:  

• Some QoS services will be based on complex multicast mechanisms; thus, full interoperability 
with the Internet-wide multicasting will have to be maintained, while not disturbing the operation 
of the non-QoS Internet.  

• QoS mechanisms need to operate properly in tunneling and IPSEC environments, which may 
require a mapping function of QoS requirements between "inner" and "outer" IP packets. In some 
topologies, QoS determination may not be possible at all—in particular, when the "inner" IP 
packet is protected by encryption.  

• QoS for mobile IP networks is still a topic of research. As a mobile system uses different access 
points in the Internet, the path to the mobile system also changes, which in turn leads to varying 
QoS behavior. A recent IETF working draft proposes a new IPv6 option (QoS object) carried by a 
destination, of Hop-by-Hop Extension header and signaling QoS requirements.  

• Finally, the main issue with Internet QoS is the inherent complexity of the problem and of 
possible solutions. This complexity affects designers, vendors, managers, and users of QoS 
services alike, and it can only be compensated for by careful design, standardization, 
implementation, and deployment.  

Despite all the open issues, QoS provisioning on the Internet will eventually become a reality. It will most 
likely grow from the inside out, with QoS islands being connected by non-QoS-aware Internet trunks. QoS 
will also need more time for large-scale experimentation, but commercial pressure is mounting—not only 
by end users requiring multimedia support, but also by Internet service and content providers striving to 
better utilize their bandwidth and commercially distribute multimedia information.  
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Chapter 7. Networking Aspects 
IP sits between the Data Link layer and the Transport layer. One of the goals in the development of IPv6 
was that it be able to support as many different physical networks as possible and require no changes in the 
Transport layer. This approach is called "IP over Everything." In order to make IP as independent as 
possible from the Data Link layer, it needs an interface to this layer, which can be Ethernet, ATM, Token 
Ring, or any other media. The interface needs to be flexible and able to adapt to different requirements. For 
this purpose, features such as Path MTU discovery and fragmentation have been optimized. For UDP and 
TCP, it should not matter whether IPv4 or IPv6 is used. Obviously, changes are needed whenever IP 
addresses are used, because of the difference in the address format. All these requirements lead to changes 
built into the IP layer itself. Multicast has been enhanced and broadcast will not be used with IPv6. This 
chapter discusses the interface to the Data Link layer and IP features such as multicasting and mobility, 
and it also shows some sample network design scenarios that can be deployed.  

7.1 Layer 2 Support for IPv6 

Different terms are used when the Data Link layer is discussed. The TCP/IP model has four layers, the first 
of which is called the Link layer. The OSI model has seven layers. It subdivides the Link layer of the 
TCP/IP model into two layers, called the Physical layer and the Data Link layer. Thus, when the term 
Layer 2 is used, it refers to the second layer of the OSI model.  

IPv6's independency of the physical network media is important. When a packet is sent from one network 
to another, we do not usually know in advance the kind of physical networks the packet will travel through. 
IP cares only about the destination address and needs to find a way to get there, regardless of the network 
hardware used. Then IP passes the packet to the Data Link layer. In 802 networks, the interface driver on 
the Data Link layer applies a Media Access Control (MAC) header to the datagram and sends it out to the 
physical network. The interface driver needs to be aware of the physical requirements for transmission. 
Each network hardware technology defines a specific addressing mechanism. Neighbor discovery, as 
described in Chapter 4, is used to map between IPv6 addresses and MAC addresses.  

The rules and packet sizes for the transport of IPv6 datagrams differ depending on the topology. There is 
an RFC covering each topology in detail. This chapter summarizes the main points to consider; a complete 
list of the RFCs can be found in the Appendix B.

7.1.1 Ethernet (RFC 2464) 

Ethernet is a widely used LAN technology, developed in the early 1970s at Xerox. There are many 
different variants used these days: Twisted Pair Ethernet, also known as 10Base-T and operating at 10 
Mbps; Fast Ethernet, also known as 100Base-T and operating at 100 Mbps; Gigabit Ethernet also known as 
1000Base-T and operating at 1 Gbps; and now even 10 Gigabit Ethernet, also known as 10GE and 
operating at 10 Gbps. The Institute of Electrical and Electronic Engineers (IEEE), together with a number 
of IT and telecom companies, is working on a new proposal called Ethernet for the First Mile (EFM) or 
Long Reach Ethernet (LRE). They are investigating ways in which the Ethernet standard could be used for 
first-mile connections to homes and companies. For information about 10GE, refer to 
http://www.10gea.org; for information about EFM, refer to 
http://grouper.ieee.org/groups/802/3/efm/public/index.html.

RFC 2464 describes the format of IPv6 datagrams transmitted over Ethernet. It also describes how link-
local and stateless autoconfigured addresses are formed. It obsoletes RFC 1972. All Ethernet variants are 
supported, as well as VLAN technologies such as 802.1Q and Cisco's Inter-Switch Link (ISL).  

Ethernet hardware addresses use a 48-bit addressing scheme. Ethernet hardware manufacturers are 
assigned blocks of Ethernet addresses, known as OUI or company ID. No two Ethernet hardware interfaces 
have the same address because each vendor assigns the addresses within its block in sequence. An Ethernet 
frame can be of variable size, but it can be no smaller than 64 bytes and no larger than 1518 bytes (header, 
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data, and CRC). Packets over Ethernet have a default MTU of 1500 bytes. A smaller MTU can be 
configured through Router Advertisements containing an MTU option or through manual configuration of 
each device. If a Router Advertisement contains an MTU larger than 1500 bytes or larger than a manually 
configured MTU, the Router Advertisement must be ignored.  

The Ethernet header contains the source and destination Ethernet addresses and the Ethernet type code. 
The Ethernet type code for IPv6 is 0x86DD. Figure 7-1 shows the Ethernet header for an IPv6 datagram.  

Figure 7-1. The Ethernet header for an IPv6 datagram 

The fields for Destination and Source address each have six bytes, and the Ethernet Type field takes two 
bytes, containing the value 86DD for Ethernet.  

For stateless autoconfiguration, the MAC address is used to build the IPv6 address. Chapter 3 explains how 
this process works. If the destination address is a multicast address, the first two bytes of the MAC address 
are set to 3333 and the last four bytes are the last four bytes of the IPv6 destination multicast address. If 
the destination address is the solicited-node multicast address (described in Chapter 3), the first two bytes 
in the MAC header contain the multicast prefix 3333, the third byte contains the value FF, and the last 
three bytes contain the last three bytes of the IPv6 solicited-node multicast address. Figure 7-2 shows the 
format.  

Figure 7-2. Relation of the IPv6 multicast address to Ethernet MAC address 

In a trace file, this looks like Figure 7-3.

Figure 7-3. MAC header for an IPv6 multicast destination address 
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In the summary line at the top of the figure, you can see the IPv6 source address, which is the address of 
my Cisco router. The destination address is the all-nodes multicast address. The Ethernet destination prefix 
shows 3333, which identifies this MAC address as a multicast address, and the remaining four bytes 
contain the last four bytes of the IPv6 destination address—in this case 00-00-00-01. The Ethernet 
source address contains the MAC address of the Cisco router, and the Ethertype has the value for IPv6, 
which is 0x86DD.

For useful information about Ethernet refer to Charles E. Spurgeon's site: 
http://www.ethermanage.com/ethernet/ethernet.html. He is also the author of 
Ethernet: The Definitive Guide (O'Reilly & Associates).  

7.1.2 FDDI (RFC 2467) 

Fiber Distributed Data Interconnect (FDDI) is a LAN technology operating at 100Mbps over optical fiber 
using light pulses. FDDI is a Token Ring protocol, using a token to control transmission. A station that 
wants to transmit waits for the token circulating the ring, sends the packet, and passes the token to the next 
station in the ring. Just like Token Ring, FDDI has a lot of built-in self-healing mechanisms. An FDDI 
frame has fields measured in 4-bit units called symbols.  

RFC 2467 describes the format of IPv6 datagrams transmitted over FDDI. It also describes how link-local 
and stateless autoconfigured addresses are formed and specifies the content of the Source/Target Link-
layer Address option that is used in Router Solicitation, Router Advertisement, Neighbor Solicitation, 
Neighbor Advertisement, and Redirect messages when transmitted over an FDDI network. It obsoletes 
RFC 2019.  

An FDDI hardware address can be 4 or 12 symbols long. The maximum packet size for FDDI is 4500 
bytes (9000 symbols). 22 bytes are used for Data Link encapsulation when long-format addresses are used, 
and another 8 bytes are used for the LLC/SNAP header. This leaves a maximum size of 4470 bytes for the 
IPv6 packet. The default MTU size for IPv6 packets on FDDI networks has been set to 4352 bytes in order 
to allow possible future extensions. This size can be reduced either by Router Advertisements containing 
an MTU option or by manual configuration of each device. If a Router Advertisement contains an MTU 
value higher than 4352 bytes or higher than a manually configured value, this option is ignored. The IPv6 
datagrams are transmitted in asynchronous frames using unrestricted tokens and with a LLC/SNAP frame 
using 48-bit long-format addresses. Figure 7-4 shows the format of the FDDI header.  

Figure 7-4. The FDDI header for an IPv6 datagram 

The Frame Code field (FC) has a size of 1 byte and contains a value in the range 0x50 to 0x57. The 3 
low order bits indicate the frame priority. Both the Destination Service Access Point (DSAP) and the 
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Source Service Access Point (SSAP) fields contain the value AA, which indicates SNAP encapsulation. 
The Control field (CTL) is set to 0x03, indicating Unnumbered Information. The Organizationally 
Unique Identifier (OUI) is set to zero. The Ethertype field contains the value 0x86DD, for IPv6.  

The rules that govern how a stateless autoconfigured IPv6 address is built from the MAC address and the 
rules that govern how IPv6 multicast destination addresses are converted to MAC addresses are the same 
as those used and described in the paragraph on Ethernet.  

For tutorials and resources on FDDI, refer to http://www.iol.unh.edu/training/fddi/htmls.

7.1.3 Token Ring (RFC 2470) 

Token Ring is a well-known LAN technology developed by IBM. It is a token-ring protocol using a token 
for transmission control, as described for FDDI. It operates at either 4 or 16 Mbps. The frame size of a 
Token Ring packet varies, depending on the time a node can hold the token.  

RFC 2470 describes the format of IPv6 datagrams transmitted over Token Ring. It also describes how link-
local and stateless autoconfigured addresses are formed and specifies the content of the Source/Target 
Link-layer Address option that is used in Router Solicitation, Router Advertisement, Neighbor Solicitation, 
Neighbor Advertisement, and Redirect messages when transmitted over a Token Ring network.  

A Token Ring hardware address uses a 48-bit format. Because the frame size is variable, it should be 
configured through Router Advertisements or manually. In the absence of information, a default size of 
1500 bytes should be used. As is always the case when working with Token Ring, we have to consider that 
Token Ring adapters read the address in noncanonical rather than canonical form, meaning they read the 
bits in reverse order (last bit first). Thus, when analyzing and troubleshooting Token Ring in mixed 
environments, we need to make sure that implementations process the addresses correctly.  

The Token Ring header is shown in Figure 7-5.

Figure 7-5. The Token Ring header for an IPv6 datagram 

The first three fields for Starting Delimiter (SD), Access Control (AC), and Frame Control (FC) each have 
a size of 1 byte. The fields for Source and Destination Address each have 6 bytes. The DSAP and SSAP 
fields are set to the value AA, which indicates SNAP encapsulation. The Control field (CTL) is set to the 
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value 0x03, indicating Unnumbered Information. The OUI is set to zero. And the Ethertype field contains 
the value for IPv6 0x86DD.

The rule governing how a stateless autoconfigured IPv6 address is built from the MAC address is the same 
as that used and described in the paragraph on Ethernet. Multicast addresses are treated differently with 
Token Ring, as described in RFC 2470. Packets with multicast destination addresses are sent to Token 
Ring Functional Addresses. The RFC states ten different functional addresses, and multiple IPv6 multicast 
addresses are mapped to each. Table 7-1 lists the mappings that have been defined.  

Table 7-1. Mapping IPv6 multicast addresses to Token Ring Functional Addresses  
MAC Functional Address (canonical) Multicast addresses 

03-00-80-00-00-00 
All-nodes (FF01::1 and FF02::1) 

Solicited-node (FF02:0:0:0:0.1:FFxx:xxxx) 
03-00-40-00-00-00 All-routers (FF0X::2) 
03-00-00-80-00-00 Any other multicast address with three least significant bits = 000
03-00-00-40-00-00 Any other multicast address with three least significant bits = 001
03-00-00-20-00-00 Any other multicast address with three least significant bits = 010
03-00-00-10-00-00 Any other multicast address with three least significant bits = 011
03-00-00-08-00-00 Any other multicast address with three least significant bits = 100
03-00-00-04-00-00 Any other multicast address with three least significant bits = 101
03-00-00-02-00-00 Any other multicast address with three least significant bits = 110
03-00-00-01-00-00 Any other multicast address with three least significant bits = 111

For a great Token Ring resource, refer to Novell's Guide to LAN/WAN Analysis by 
Laura A. Chappell (John Wiley & Sons).  

7.1.4 Point-to-Point Protocol (RFC 2472) 

Point-to-Point Protocol (PPP) is a mechanism for running IP and other network protocols over a serial link. 
It supports synchronous and asynchronous lines.  

RFC 2472 describes the method for transmitting IPv6 packets over PPP and how IPv6 link-local addresses 
are formed on PPP links.  

PPP's control protocol for IPv6, IPV6CP, is responsible for establishing and configuring IPv6 
communication over PPP. One IPv6 packet can be encapsulated in a PPP Data Link layer frame, and the 
protocol field is set to 0x0057 for IPv6. If the PPP link is to support IPv6, the MTU size must be 
configured to IPv6's minimum MTU size of IPv6, which is 1280 bytes. A higher value (1500 bytes) is 
recommended.  

IPV6CP has a distinct set of options for the negotiation of IPv6 parameters. The Options field has the same 
format as that defined for the standard Link Control Protocol (LCP). The only currently defined options for 
IPV6CP are Interface-Identifier and IPv6-Compression Protocol. A PPP interface does not have a MAC 
address. The Interface-Identifier option provides a way to negotiate a 64-bit interface identifier, which 
must be unique within the PPP link. The IPv6-Compression option is used to negotiate a specific packet 
compression protocol, which applies only to IPv6 packets transmitted over the PPP link. The option is not 
enabled by default.  

IPv6 address negotiation is different from IPv4. It is done through ICMPv6 neighbor discovery and not 
through PPP, as with IPv4. For ISPs, PPP in combination with IPv6 offers many advantages. For instance, 
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it is no longer a problem to assign static addresses to customers because the IPv6 address space is large 
enough. With IPv4, due to the shortage of addresses, dynamic addresses often had to be used. The IPv6 
functionality for address autoconfiguration supports easy administration and customer configuration with 
minimal cost. Prefix assignment to the customer site can be done through router discovery or through a 
process called ICMPv6 prefix assignment protocol, currently in development. To get IPv6 to work over 
ADSL, ISPs need to choose an encapsulation that meets their needs, such as PPP over ATM (PPPoA) or 
PPP over Ethernet (PPPoE). IPv6 also has an impact on the Authentication, Authorization, Accounting 
(AAA) process. With IPV6CP, the address assignment occurs after the authentication. ISPs should note 
that Radius must support IPv6 attributes.  

7.1.5 ATM (RFC 2492) 

Asynchronous Transfer Mode (ATM) is a connection-oriented, high-speed network technology that is used 
in both LANs and WANs. It works over optical fiber and operates up to gigabit speed. It uses special 
hardware and software mechanisms to achieve this speed.  

An ATM network uses fixed-size frames called cells. Each cell is exactly 53 bytes long, and because it 
always has the same size, processing is very fast. An ATM cell has a header length of 5 bytes and 48 bytes 
of data. The ATM Adaptation Layer (AAL5, RFC 2684) is the mechanism responsible for dividing a big 
packet, such as an IP packet, into small cells. This can be compared to the way fragmentation works. The 
sender divides the packet into a set of 53 byte cells, and the receiver verifies that the packet has been 
received intact without errors and puts it back together again. If one cell is lost in transit, the whole set has 
to be resent. Because ATM does not support hardware broadcast and multicast, another mechanism that 
emulates it has been defined. All hosts in an ATM network register with the ATMARP server. If a host on 
the subnet sends a broadcast or multicast, the packet is sent to the ATMARP server, which distributes the 
packet to all registered hosts on the subnet/link. ATMARP is a variant of ARP and is defined in RFC 2225.  

RFC 2492 describes the transmission of IPv6 packets over an ATM network. It is a companion document 
to RFC 2491, "IPv6 over non-broadcast multiple access (NBMA) Networks."  

When the ATM network is used as a Permanent Virtual Circuit (PVC), each PVC connects two nodes, and 
the use of neighbor discovery is limited. IPv6 ATM interfaces have only one neighbor on each link. 
Multicast and broadcast are transmitted as a unicast on the ATM level. PVCs do not have link-layer 
addresses, so the link-layer address option is not used in neighbor discovery messages. IPv6 unicast and 
multicast packets sent over ATM are encapsulated using the LLC/SNAP encapsulation. Just as with FDDI 
and Token Ring, the DSAP and SSAP fields contain the value AA, and the CT field contains the value 
0x03. The OUI field is set to zero and the Ethertype field contains the value for IPv6, 0x86DD (see 
Figure 7-4 and Figure 7-5). The default MTU size for an ATM PVC link is 9180 bytes.  

If the ATM network is used as a Switched Virtual Circuit (SVC), unicast packets are transmitted using 
LLC/SNAP encapsulation, as described for PVC. For the transmission of multicast packets over SVC, the 
OUI field is set to 0x00005E, and the Ethertype field to 0x0001.

A good place for information about ATM is the ATM Forum at http://www.atmforum.com. Another great 
resource site can be found at http://cell-relay.indiana.edu/cell-relay.

There were a lot of discussions going on about whether IP was necessary on ATM networks: why not write 
applications to run natively on ATM? Finally, "IP over Everything" was developed. With the growing 
popularity of Fast Ethernet and Gigabit Ethernet, application designers have decided not to port their 
applications for transport over ATM directly. By writing their applications for IP, they needed to write 
only one interface and use the layer 2 functionality to run on all physical networks.  
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7.1.6 Frame Relay (RFC 2590) 

Frame Relay is a connection-oriented, high-speed network technology used in WANs. It was developed in 
the Bell Labs in the late 1980s as part of the ISDN specification. The standard was refined in the early 
1990s. By using a short, 2-byte header, Frame Relay is very efficient in forwarding packets.  

RFC 2590 specifies how IPv6 packets are transmitted over Frame Relay links, how IPv6 link-local 
addresses are formed, and how IPv6 addresses are mapped to Frame Relay addresses. It applies to Frame 
Relay devices that act as end stations ( Data Terminal Equipment [DTEs]) on public or private Frame 
Relay networks. The Frame Relay Virtual Circuits can be PVCs or SVCs, and they can be point-to-point or 
point-to-multipoint. The default IPv6 MTU size for a Frame Relay interface is 1592 bytes.  

Figure 7-6 shows the header of an IPv6 packet transmitted over Frame Relay.  

Figure 7-6. The Frame Relay header for an IPv6 datagram 

The field for the Q.922 Address can be 2 or 4 bytes, depending on the address. The Control field (CTL) is 
set to 0x03, indicating Unnumbered Information. The Next Level Protocol ID (NLPID) contains the 
value 0x8E, indicating IPv6. The mapping of IPv6 addresses follows the specification for neighbor 
discovery, as described in Chapter 3. The details regarding addressing mechanisms and formats of Frame 
Relay addresses are discussed in RFC 2590.  

A good resource for Frame Relay information can be found at http://www.frforum.com.

If you are looking for a detailed discussion of TCP/IP internetworking issues on 
all layers, refer to Douglas E. Comers's book TCP/IP: Principles, Protocols, and 
Architectures (Prentice Hall).  

7.2 Multicasting 

Multicast has been available in IPv4 since 1988 and is used to address a certain group of hosts at the same 
time. Instead of sending out a broadcast, which is not routable and has to be processed by every node on 
the subnet, the multicast packet is addressed to a multicast group address out of the Class D address range. 
Only the hosts that are members of that multicast group will process the packet. Internet Group 
Management Protocol (IGMP) manages group memberships and routing of IPv4 multicast packets. The 
deployment of IPv4 multicast capabilities was supported by the MBONE project, started in 1992. The 
MBONE is a virtual network layered on top of portions of the physical Internet to support routing of IP 
multicast packets; it was created because that function had not yet been integrated into many production 
routers. The network is composed of islands that can directly support IP multicast, such as multicast LANs 
(like Ethernet) linked by virtual point-to-point links (tunnels).  

In IPv6, multicast is an integral part of the protocol and available on all IPv6 nodes. A new multicast 
address format has been defined with added functionality by using scopes in addition to the group address. 
For example, a multicast group address can be in a link-local scope (FF02), in a site-local scope (FF05), 
or in a global scope (FF0E). For an explanation of the multicast address format and a list of scope 
identifiers, refer to Chapter 3.
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The functionality of IGMP has been incorporated in ICMPv6 and is called Multicast Listener Discovery 
(MLD). It uses three different ICMPv6 message types. For a detailed discussion of MLD, refer to Chapter 
4.

A list of assigned IPv6 multicast group addresses can be found at 
http://www.iana.org/assignments/ipv6-multicast-addresses or in Appendix B.

Multicast routing is still a topic of research and development. A number of multicast routing protocols 
have already been standardized for IPv4. Distance Vector Multicast Routing Protocol (DVMRP) was the 
first multicast routing protocol deployed on the Internet. It maintains topological knowledge via a distance-
vector routing protocol, similar to RIP, and it implements a multicast-forwarding algorithm called 
Truncated Reverse Path Broadcasting. Just like any distance-vector routing protocol, DVMRP suffers from 
scaling problems. Multicast Extension to OSPF (MOSPF) provides routing capabilities for OSPF. Protocol 
Independent Multicast (PIM) is the most popular multicast routing protocol used on the Internet. It has 
been designed specifically to support multicast routing where multicast group members are spread sparsely 
across a WAN. A newer protocol, Border Gateway Multicast Protocol (BGMP), operates more efficiently. 
It is based on BGP and was designed to manage interoperability between multicast routing protocols in 
different domains.  

IPv6 multicast routing is similar to IPv4 multicast routing. The multicast extensions for OSPF have been 
carried over in OSPFv3 (discussed in Chapter 8). PIM can be implemented with minimal changes. IPv6's 
extended address space provides a large number of multicast group addresses, and the addition of the 
multicast scope field makes multicast more flexible and scalable. PIM Version 2 is widely deployed and is 
defined in RFC 2362. The specification in this RFC is insufficient, however, and the working group is 
rewriting the RFC and has added information about IPv6. This is currently a draft but is intended to 
obsolete RFC 2362. The current draft is http://www.ietf.org/internet-drafts/draft-ietf-pim-sm-v2-new-
05.txt (the number of the draft may have increased by one or more). We can expect the multicast routing 
issue to be taken a step further with the advent of IPv6.  

7.3 Mobile IP 

In the past, we were used to making phone calls from home or from the office. Public phones allowed us to 
make phone calls while on the road.Today, the use of mobile phones is common and we make phone calls 
from almost anywhere and in any life situation. The use of notebook computers, wireless networks, and 
portable devices is expanding, and we can imagine having mobile phones or PDAs with IP addresses and 
using them from wherever we are. If these devices are to use IP as a transport protocol, we need Mobile IP 
to make this work. We expect our network communication to reconnect automatically and without 
interaction when we move around and change our point of attachment to the network, just as we are used 
to roaming from one cell to the next with our mobile phones today. For example, suppose you have a PDA 
with an 802.11 (wireless) interface and a General Packet Radio Service (GPRS) interface. In your hotel 
room, you are connected to the network through your wireless interface; when you leave your room and go 
out to the street, you switch automatically to GPRS without losing your connection. All the applications 
running on your PDA stay up. Isn't this cool? This section about Mobile IP explores the mechanisms 
needed and shows how IPv6 is ready for this challenge.  

With IPv4 and IPv6, the subnet address or prefix address changes depending on the network we are 
attached to. When a mobile node changes its point of access to the network, it will most likely need to get a 
new IP address, which disrupts its TCP or UDP connection. RFC 2002, "IP Mobility Support," describes 
protocol enhancements that allow transparent routing of IP datagrams to mobile nodes in the Internet. RFC 
2002 describes Mobile IP concepts and specifications for IPv4. Mobile IP has a lot of advantages with 
IPv6. This is currently described in a draft at http://www.ietf.org/internet-drafts/draft-ietf-mobileip-ipv6-
18.txt. (Note that the draft number may have increased by one or more.)  
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Most Internet traffic uses TCP connections. A TCP connection is defined by the combination of IP address 
and port number of both end-points of the communication. If one of these four numbers changes, the 
communication is disrupted and has to be reestablished. If a mobile node connects to a different access 
point to the network, it needs a new IP address. Mobile IP addresses the challenge of moving a node to a 
different connection point without changing its IP address by assigning the mobile node two different IP 
addresses. One is the home address; it is static and does not change. It is therefore used to identify the TCP 
connection. The second IP address is called the care-of address. It changes depending on the network to 
which the node is currently attached. To make this work, Mobile IP requires a Home Agent. When the 
mobile node is not attached to its home network, the Home Agent collects all the packets directed to the 
mobile node's home address and forwards them to the mobile node's care-of address. Whenever the mobile 
node moves to a different network, it has to register its new care-of address with its Home Agent. In 
Mobile IPv4, the foreign network has a Foreign Agent assisting the mobile node in receiving the 
datagrams. A node sending packets to a mobile node is called a correspondent node. Figure 7-7 shows the 
interaction between the mobile node and the agents.  

Figure 7-7. The Mobile IP agents 

Figure 7-7 shows the Home Agent (HA) receiving the packets addressed to the mobile node's (MN) home 
address and forwarding them to the care-of address. The Home Agent knows the care-of address because 
the mobile node has to register it whenever it moves to a different network.  

The Home Agent, when redirecting a packet addressed to the mobile node's home address, has to change 
the destination IP address to the care-of address of the mobile node. When the mobile node receives the 
datagram, the IP address is changed again so that it appears to have the home address of the mobile node as 
a destination IP address. The Home Agent does this by applying a new IP header with the care-of address 
in the destination address field and encapsulating the original packet in this new IP header. When the 
mobile node receives the packet, it removes the additional IP header, and the original packet is processed 
as usual. So what the Home Agent actually does is tunneling. The Mobile IP discovery process uses Router 
Advertisements (as defined in RFC 1256 and RFC 2461) and extends them to add mobility information 
such as the care-of address. These extended Router Advertisements are called Agent Advertisements. 
Agents advertise at regular intervals, and mobile nodes can solicit advertisements if they do not want to 
wait for the next advertising. These solicitation messages are called Agent Solicitation messages.  

A mobile node sends a registration request to its Home Agent containing the care-of address. The Home 
Agent accepts the request and sends a registration reply back. Registration requests contain parameters and 
flags regarding this specific tunnel, including a registration lifetime. The combination of Home address, 
care-of address, and registration lifetime is called a binding. When the mobile node moves to a different 
network, it issues a binding update registering the new care-of address. It is evident that this mechanism 
poses a potential security hole. The mobile node and the Home Agent need an authentication mechanism 
so the Home Agent can determine that the binding update is received from the mobile node. The mobile 
node and the Home Agent must be able to use Message Digest 5 (MD5, RFC 1321) with 128-bit keys to 
create unforgeable digital signatures for registration requests. The signature is computed by performing 
MD5's one-way hash algorithm over all the data within the registration message header and the extensions 
that precede the signature.  

The concepts discussed so far apply to both IPv4 and IPv6. The advanced features of IPv6 make Mobile IP 
easier to implement. Mobile IPv6 does not need a Foreign Agent because stateless autoconfiguration and 
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neighbor discovery offer the needed functionality and are built into IPv6. Tunneling of IPv6 within IPv6, 
which is what the Home Agent does when forwarding a packet to the care-of address of the mobile node, is 
specified in RFC 2473. With Mobile IPv4, all packets sent to the mobile node always go through the Home 
Agent. This undesirable behavior is called triangular routing. With Mobile IPv6, Extension headers are 
used to allow the sending of packets to the mobile node's care-of address directly by caching the binding of 
a mobile node's home address with its care-of address. The mobile node attached to a foreign network now 
uses its care-of address as a source address when sending packets. The mobile node's home address is 
carried in a Destination Options header, which means the session control information is piggybacked onto 
the same packet. In Mobile IPv4, those control messages had to be sent in separate UDP packets. The use 
of the care-of address as the source address also simplifies multicast routing. With Mobile IPv4, multicast 
packets had to be tunneled to the Home Agent in order to use the home address as source address of the 
multicast packet. In IPv6, this information is included in the Destination Options header and can be 
processed by every receiving node. With Mobile IPv4, all packets sent to the home address while the 
mobile node is connected to a foreign network must be encapsulated. With IPv6, packets sent to the mobile 
nodes home address must still be encapsulated, but packets exchanged directly once the binding update has 
happened can be sent using a Routing header, which is more efficient and creates less overhead. With 
Mobile IPv4, a mobile node detects a Home Agent by sending out a broadcast request and therefore 
receives separate answers from all Home Agents on its segment. With IPv6, the request is sent using an 
anycast address, which results in one reply only.  

Great reference sites about Mobile IP on the Internet include: 
http://computer.org/internet/v2n1/perkins.htm and 
http://www.computer.org/internet/v2n1/mobile.htm.

There is still development work to be done to make Mobile IP a reality, but the specification has a lot of 
potential. Much care must be taken to make it secure. Mobile IP is a solution for wireless networks and the 
demand for wireless networks has been growing considerably in recent months. Mobile IP has been studied 
in a number of wireless communication research projects at the University of California at Berkeley and 
other universities. The links mentioned in the note contain more detailed information.  

7.4 Network Designs 

When we start using IPv6, different approaches are possible. I'll give some sample scenarios here. It is 
important to understand that getting started with IPv6 does not mean you have to tear down your IPv4 
infrastructure or switch everything at one time. The specific mechanisms for coexistence of IPv4 and IPv6, 
such as 6to4 operations, tunneling, and protocol translation, are explained in Chapter 10.

The simplest way to start using IPv6 is to implement single IPv6 hosts in an IPv4 network. They will 
autoconfigure for a link-local IPv6 address and be able to communicate with one another over IPv6. They 
use ICMPv6 neighbor discovery messages to locate one another. If they also have an IPv4 stack, they can 
communicate with the IPv4 world. Using ISATAP, a large number of hosts within a site with no IPv6 
router can communicate. If one of the IPv6 nodes is configured as a 6to4 gateway and is connected to the 
Internet, other IPv6 sites on the Internet can be reached through the use of a 6to4 relay router.  

The next expansion step is to add an IPv6 router to the scenario. As discussed in Chapter 4, router 
discovery and Router Advertisement messages can be used for configuration of IPv6 hosts on the subnet. 
For instance, the router can be configured to advertise a subnet prefix and hop limit. Thus, all IPv6 hosts 
on the subnet can be configured for their address without the need for static configuration or even a DHCP 
server. This is all done by the autoconfiguration mechanisms, including the subnet prefix advertisement of 
the router. Within a corporate network, multiple combinations are possible. There can be segments with 
mixed IPv6 and IPv4 hosts and dual-stack hosts. There can also be segments with IPv6-only hosts. The 
IPv6-only segment can communicate with IPv6 hosts on the mixed segment by going through a router that 
has an IPv6 interface to the IPv6-only segment and a dual-stack interface to the mixed segment.  
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As soon as two IPv6 routers are added to the subnet, a routing protocol must be used—RIPv6, for instance. 
The routers can also be configured as 6to4 gateways connecting the internal IPv6 network to other IPv6 
sites on the Internet. At this point, DNS and DHCP servers can be added to the scenario. The DNS server 
has to run BIND 9 because that is the version that supports IPv6. If it is a third-party DNS server, it must 
be based on BIND 9 and support IPv6 functionality.  

The sample design in Figure 7-8 combines different scenarios and should help explain the scope of 
configurations that are possible.  

Figure 7-8. Example of a corporate network design 

The corporate network has different segments. Some segments are IPv6-only, some are IPv4-only, and 
some have a mixture of IPv6-only, IPv4-only, and dual-stack hosts. To simplify the picture, I show just 
one IPv6 segment and an IPv6/IPv4 segment. Router R1 has one interface connected to the IPv6-only 
segment, running IPv6 and RIPv6 and advertising the subnet prefix for the IPv6-only segment to the hosts 
out on the network. R1's other interface is connected to the mixed segment and has both protocol versions 
bound. Some hosts on that segment are IPv4-only, some hosts are IPv6-only, and some hosts run in dual-
stack mode. Router R1 advertises the subnet prefix to that subnet and runs RIPv6. R1 is connected to 
router R2. R2's internal interface is dual-stack. It is also configured as a 6to4 gateway and connected to the 
public Internet with its other interface. The other interface is IPv4-only and has a public IPv4 address. In 
the configuration of the 6to4 gateway, the address of a public 6to4 relay agent can be specified, or it can 
use the 6to4 anycast address to find the nearest 6to4 relay router. In that case, any of the IPv6 hosts within 
the corporate network can reach any other IPv6 host connected to the 6to4 relay router, such as another 
corporate site connected to the Internet. That site could also have mixed IPv6/IPv4 segments and IPv6-only 
segments. Alternatively, the IPv6 hosts on our site can connect to any of the hosts in the 6Bone or the 
growing community of public IPv6 hosts with production addresses.  

For more detailed scenarios, go to Cisco's web site at http://www.cisco.com and 
search for "IPv6 Deployment Strategies." It guides you through the planning and 
deployment tasks step by step.  

Allocation of production IPv6 addresses has started all over the world, and Chapter 1 includes some 
information about the first IPv6 production networks.  
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Chapter 8. Routing Protocols 
Forwarding an IPv6 datagram beyond local media requires a router. Routers look at the datagram's 
destination IPv6 address and search for a matching prefix in their local routing table. (A routing table is a 
list of IPv6 destinations, each in the form of an IPv6 address prefix and its length.) Once the router has 
found a matching destination entry, the datagram is forwarded according to the next-hop information 
associated with this entry in the routing table. If no match is found in the routing table, the datagram is 
dropped, so it is very important for the router to have all relevant destinations in its routing table. But how 
do they get there? The routing table could be entered manually on all routers, but this is not very 
economical. Routing protocols define exchange procedures to synchronize the routing table between 
routers dynamically. Routing information needs to be distributed either within an autonomous system (AS) 
or between autonomous systems. An AS is defined as a set of networks governed by a single authority. 
Routing protocols that distribute information within an AS are called Interior Gateway Protocols (IGP). 
RIPng and OSPF for IPv6 belong to this category. Protocols that distribute information between ASes are 
called Exterior Gateway Protocols (EGP). BGP-4 and its extension for IPv6 represent such a protocol. This 
chapter explains RIPng, OSPF for IPv6, and BGP-4. The last section of this chapter focuses on additional 
and upcoming protocols for IPv6.  

There is no distinction between network, subnet, and host routes in the routing 
table because an IPv6 address prefix is unambiguous. Throughout this document, 
IPv6 destinations will be referred to as IPv6 routes.  

8.1 RIPng 

RIPng is a routing protocol based on a distance-vector algorithm known as the Bellman-Ford algorithm. 
The theory and math behind this algorithm will be outlined briefly in this section. Most of the concepts for 
RIPng have been taken from RIPv1 and RIPv2. Please consult RFC 1058 (RIPv1) and RFC 2453 (RIPv2) 
for detailed explanations regarding the distance-vector algorithm. RIPng was defined in RFC 2080 in 
January 1997.  

8.1.1 Distance-Vector Algorithm for RIPng 

Each router keeps a routing table listing the best path to each IPv6 route. Figure 8-1 shows an example of 
such a routing table.  
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Figure 8-1. An IPv6 routing table 

For each route, the router keeps the following entries in the routing table:  

IPv6 route 

The IPv6 address prefix and prefix length of the destination address. 

Next Hop address 

The IPv6 address (normally link-local) of the first router along the path to the IPv6 route. If the 
route is directly connected to the router, there is no need for a Next Hop Address.  

Next Hop interface 

The physical interface used to reach the next hop.  

Metric 

A number indicating the total distance to the destination. In RIP, a very simple metric counts the 
number of hops to the destination. Directly connected routes are usually assigned a metric of 0. 
RIPng advertises directly connected routes with the configured outgoing metric of the link, 
normally 1.  



102

Timer 

The amount of time since the information about the route was last updated.  

Route Change flag 

Indicates that information about this entry has recently been changed. This flag is needed to 
control triggered routing updates.  

Route Source 

The entity that provided the information about the route. For example, this may be a static entry or 
directly connected, or the source may be RIP, OSPF, etc.  

The router periodically distributes information about its routes to its directly connected neighbors using 
RIPng update messages. Upon receiving RIPng update messages from its neighbor, the router adds the 
distance between the neighbor and itself (usually 1) to the metric of each route received. The router then 
processes the newly received route entry using the Bellman-Ford algorithm.  

Figure 8-2 provides a closer look at this algorithm. 

Figure 8-2. The Bellman-Ford algorithm 

Router A receives a routing update from router B and has already added the distance of 1 to each route ri
advertised by B. For each route ri, the router steps through the algorithm depicted in Figure 8-2. According 
to Figure 8-2, the routing table will be updated if the following criteria are true; otherwise, route ri is 
discarded:  

Route ri is new and the metric is reachable 

The route, metric, and next hop are added as a new entry to the routing table. The timer is set to 
zero and the Route Change flag is raised.  

Route ri is already known and the next hop is the same as the one in the routing table 

If the metric has changed, it is updated and the Route Change flag is raised. The timer is reset to 
zero in any case.  
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Route ri is already known, but the next hop is different and the metric is smaller than the entry in the 
routing table 

The metric and next hop are updated. The timer is set to zero and the Route Change flag is raised.  

Route ri is already known, but the next hop is different and the metric is equal to the one in the routing 
table 

If the routing process allows for multiple equal-cost paths to the same destination in the routing 
table, the route is treated as a new entry (see above). If the routing process does not provide for 
multiple equal-cost paths, route ri is discarded. Multiple equal-cost paths allow for load sharing of 
IPv6 traffic among multiple paths. The algorithm for distributing traffic among these paths is at 
the discretion of the routing process itself, normally based on the source and destination IPv6 
addresses.  

The next hop of ri is taken either from the information within the routing update message or from the 
source IPv6 address of the RIPng packet. See the later section Section 8.1.5 for more information.  

When the routers are first initialized, they know only their directly connected routes. This information is 
passed to all neighbors, processed, and then distributed to the neighbors of the neighbors. Eventually, all 
IPv6 routes are known by all routers. The routers keep sending update messages periodically to prevent 
valid routes from expiring.  

8.1.2 Limitations of the Protocol 

RIPng, like the earlier versions of RIP, is primarily designed for use as an IGP in networks of moderate 
size. The limitations specified for RIP Versions 1 and 2 apply to RIPng, as well. They are described in the 
following list:  

The RIPng diameter is limited 

The longest path to any IPv6 route is limited to a metric of 15 when propagated with RIPng. 
Normally, the metric is equal to the hop count, assuming the cost of 1 is used for each link 
crossed. The protocol allows for larger costs to be assigned to any link, thereby limiting the 
number of hops even further.  

Routing loops can cause high convergence time 

When IPv6 routes that are no longer valid are being propagated in a looped environment, RIPng 
depends on "counting to infinity" to eliminate these routes eventually. Counting to infinity is 
explained in the next section.  

The metric does not reflect line speed 

RIPng uses a fixed metric normally set to 1 for each link crossed. A route cannot be chosen based 
on bandwidth or real-time parameters such as measured delay, load, or reliability.  

8.1.3 Changes in Topology and Preventing Instability 

A change in topology means a newly added route or a route that has gone down. Newly added routes are 
advertised with the next update message sent by the router with the direct connection to that route. Its 
neighbors process the route and pass it on to their neighbors. Eventually, all routers know about the newly 
added route.  
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What happens if a route goes down or a router crashes? These routes will time out, as they are no longer 
being advertised. The question is how long this will take and whether this time is acceptable for the 
network? The time it takes for all routers to learn the changed topology is called convergence time. To 
keep the convergence time to a minimum, several measures can be introduced.  

8.1.3.1 Route poisoning and the hold-down timer 

If an interface goes down on a router, the router does not remove the route(s) associated with that interface 
immediately. Instead, the router keeps the route in the routing table and raises the metric to 16 
(unreachable). A garbage-collection timer, also known as a hold-down timer, determines how long the 
router keeps this unreachable route in the routing table. The route is now advertised to the neighbors with a 
metric of 16. The neighbors are running a hold timer as well, so they keep the route in the routing table to 
inform their respective neighbors of the invalidity of the route. This process is called route poisoning.  

8.1.3.2 Split horizon, with or without poison reverse 

Let's assume route r1 is directly connected to router A, as shown in Figure 8-3.

Figure 8-3. Convergence of route r1 without split horizon 

Router A advertises r1 to its neighbor, router B, with a cost of 1. Router B adds 1 to the cost and lists r1 in 
its routing table using router A as the next hop. Now r1 goes down. Router A poisons r1 and waits for the 
update timer to expire before advertising r1 to B with a cost of 16. In the meantime, however, router B 
advertises r1 back to A with a cost of 2. According to Bellman-Ford, router A changes the entry for r1,
using B as the next hop with a metric of 3. Now router A advertises r1 with a cost of 3 (not 16) to router B. 
Router B adds 1 to the cost and lists r1 in its routing table with a cost of 4. The routers send r1 back and 
forth, each time raising the cost by 1 until counting to infinity strikes and both reach a cost of 16, declaring 
r1 invalid. This will take quite some time, however. The core problem lies in the fact that router B 
advertises routes learned from A back to A. Split horizon prevents this from happening. With split horizon, 
a router never advertises a route back over its next hop interface. An additional option is split horizon with 
poison reverse. With this option, a router always advertises a route back over its next hop interface with a 
metric of 16. In the very unlikely situation that both router A and B have the same route pointing to each 
other, the routers don't have to wait for a timeout to eliminate this route because reverse poisoning 
invalidates each of them immediately. Poison reverse can, however, have the disadvantage of increasing 
the size of routing messages, especially if many destinations have to be advertised back as poisoned.  

There are very few situations in which split horizon (with or without poison reverse) cannot be used at all. 
If there is a point-to-multipoint (also called hub-and-spoke) topology using a single common IPv6 
network, split horizon prevents the spoke routers from learning routes advertised by other spoke routers. 
Split horizon must be turned off at the central router (the hub router).  

8.1.3.3 Triggered updates 

Any changes in the routing table have to wait to be advertised until the update timer has expired. Triggered 
updates speed up the process by allowing the changed route entry to be advertised almost immediately. A 
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very small hold timer is introduced before sending the update. Because only the changes are advertised, 
regular periodic updates need to stay in place.  

All these measures speed up convergence, but the world is not perfect. Erroneous information may always 
come back over larger loops, especially within a large network with a topology containing many loops. 
The process of counting to infinity will, however, always prevail to eliminate the erroneous information.  

8.1.4 Message Format 

RIPng is a UDP-based protocol using UDP port number 521; let's call it the RIPng port. The RIPng routing 
process always listens to messages arriving on this port. With the exception of specific requests, all RIPng 
messages set the source and destination port to the RIPng port. Specific queries are discussed later in this 
chapter.  

The RIPng message format is shown in Figure 8-4.

Figure 8-4. RIPng message format 

The fields of the RIPng message are explained in the following list: 

Command (1 byte) 

A value of 1 specifies a request message asking the responding system to send all or part of its 
routing table.  

A value of 2 sends an update message containing all or part of the sender's routing table. It may be 
sent as a response to a previous request or as an unsolicited update used in periodic or triggered 
routing updates.  

Version (1 byte) 

The version field is set to a value of 1. 

Route Table Entry (RTE) (20 bytes each) 

The RIPng header is followed by one or more Route Table Entries, using the format depicted in 
Figure 8-5.
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Figure 8-5. Format of a Route Table Entry 

Each RTE describes the route to be advertised by using the IPv6 Prefix (16 bytes) and its Prefix Length (1 
byte). The metric field (1 byte) contains the metric used by the sender for this route. A valid metric has a 
value between 1 and 15. A metric of 16 describes the route as unreachable by the sending router.  

Each RTE contains a Route Tag field, as well. It may be used to carry additional information about a route 
learned from another routing protocol—e.g., BGP. A router importing external routes into RIPng may set 
this tag. RIPng will preserve and redistribute this tag within its routing domain. Information within this tag 
can be used to redistribute the route out of the RIP domain. RIPng itself makes no use of this tag.  

The number of RTEs within single updates depends on the MTU of the medium between two neighboring 
routers. The formula is:  

number of RTEs = Int ((MTU - length of IPv6 headers - UDP_hdrlen - RIPng_hdrlen)/RTE_size)  

8.1.5 Next Hop 

If you are familiar with RIPv2, you probably miss the field for the next hop address. Not to worry: RIPng 
provides this feature, too. With RIPv2, each entry has a designated field specifying the next-hop address. 
This would not be very economical for RIPng because it would nearly double the size of each RTE. As 
shown in Figure 8-6, a specially constructed RTE, the next hop RTE, is introduced to indicate the next 
hop's IPv6 address. All subsequent RTEs use this next hop IPv6 address until the end of the message has 
been reached or another next hop RTE is encountered.  

Figure 8-6. The next hop RTE 

The next hop RTE is identified by a value of 0xFF in the metric field of the RTE. The IPv6 address 
within the RTE is now identified as the next hop IPv6 address to be used by the subsequent RTE. The 
route tag and the prefix length are set to zero on sending and ignored on reception.  

Specifying a value of 0:0:0:0:0:0:0:0 in the prefix field of the next hop RTE indicates that the 
next hop IPv6 address should be set to the source IPv6 address of the RIPng message. The purpose of 
naming a specific next hop is to eliminate unnecessary routing hops. For example, routers A, B, and C are 
directly connected on a common subnet. Router C does not run RIPng. Assume that router A somehow 
knows a route ri using router C as its next hop. Router A could advertise ri to B with the next hop address 
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of Router C. Router B can now forward traffic for ri directly to Router C, therefore avoiding the 
unnecessary hop through Router A.  

The next hop IPv6 address must always be a link-local address (starting with a prefix of FE80). If there is 
no next hop RTE, or if the received next hop address is not link-local, it should be considered 
0:0:0:0:0:0:0:0.

8.1.6 Addressing Considerations and the Default Route 

Any prefix with a length of zero is considered to be a default route, but normally, a prefix of 
0:0:0:0:0:0:0:0 with a prefix length of zero is used. A default route is used if the route to the 
destination is not explicitly listed in the routing table. The next hop router for the default route is called the 
default router. Sending traffic to the default router assumes that the default router knows all the routes or 
has a default router itself. It is at the discretion of the implementer to determine if and how such a path of 
default routers should be implemented. The mechanism of default routers is usually used to lead the way 
out of the autonomous system or to lead traffic from remote sites to central sites. The advantage of 
distributing the default route is to reduce the number of routing updates to be distributed throughout the 
system. Default routes should not be propagated further than intended—that is, they should not leave the 
autonomous system. A metric is assigned to the default route at its origin to establish precedence among 
multiple default routers. RIPng handles a default route in exactly the same way as any other destination.  

8.1.7 Timers 

RIPng implements different timers to control updates of the routing information. The name and purpose of 
these timers are specified in the following list:  

Update timer 

By default, every 30 seconds the RIPng process wakes up on each interface to send an unsolicited 
routing response to the neighboring routers. This response contains the entire routing table except 
routes that follow the split horizon rule.  

Timeout timer 

Each time a route entry is updated, the timeout time for this route entry is reset to zero. If the route 
entry reaches 180 seconds (default value) without another update, it is considered to have expired. 
The metric is set to 16 and the garbage collection process begins. In addition, the Route Change 
flag is raised to indicate a change. The output process uses this flag to trigger an update.  

Garbage collection timer (sometimes referred to as hold-down timer) 

This timer is set for 120 seconds for each route entry that has timed out (see timeout timer) or 
been received with a metric of 16. Only upon expiration of this timer will the route entry finally be 
removed from the routing table. If a new update to this route arrives before the garbage collection 
timer expires, the route is replaced and the garbage collection timer is cleared.  

8.1.8 Packet Processing 

Let's have a look at how the router processes incoming and outgoing RIPng messages.  

8.1.8.1 Request message 

A request message asks a router to respond with all or part of its routing table by specifying the requested 
RTE. The incoming request is processed as follows.  
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If there is exactly one RTE with a prefix of zero, a prefix length of zero, and a metric of 16, the request is 
for the entire routing table, and the router responds by sending the entire routing table. Figure 8-7 shows a 
trace of such a request message.  

Figure 8-7. RIPng request message asking for the entire routing table 

Otherwise, the request message is processed one RTE at a time. If the RTE's coresponding prefix is found 
in the routing table, the RTE's metric is placed into the metric field of the RTE; otherwise, a metric of 16 is 
placed into the metric field, indicating that the route is unknown. Once all RTEs have been processed, the 
command field in the RIPng header is changed to response and the newly formed response message is sent 
back to the requestor.  

There are two types of request messages, General and Specific, which are handled differently by the 
receiving router.  

A General Request is sent by a router that has just come up and wants to fill its routing table quickly. The 
router sends out a General Request message, asking all directly connected neighbors to send their entire 
routing table. The neighbors each reply with a response message containing the entire routing table, using 
the split horizon rule.  

A Specific Request message is sent by a monitoring station asking for all or part of the routing table. The 
queried router replies to the requestor by sending the requested information from its routing table. Split 
horizon is not used because it is assumed that the requestor is using the requested information for 
diagnostic purposes only.  
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Table 8-1 summarizes the characteristics of the two types of requests.  

Table 8-1. RIPng request messages  

Request 
type IPv6 source address IPv6 destination 

address 
Source 
UDP port 

Destination 
UDP port 

Use split 
horizon in 
response? 

General  
Link-local address of 
the requestor's sending 
interface  

ff02::9 (multicast) RIPng port 
(521) 

RIPng port 
(521) Yes 

Specific 
Global or site-local 
unicast address of the 
requestor 

Global or site-local 
unicast address of the 
queried router 

Any except 
the RIPng
port 

RIPng port 
(521) No 

8.1.8.2 Response message 

A response message carries routing information to be processed by the receiving router by using the 
Bellman-Ford Algorithm (see the earlier section Section 8.1.1). A response message is accepted by a router 
only if the IPv6 source address is a link-local address of a directly connected neighbor and the UDP source 
and destination ports are set to the RIPng port. In addition, the hop count must be set to 255 to guarantee 
that the response has not traveled over any intermediate node.  

Once the response message is accepted, each RTE must be checked for its validity. The test includes the 
prefix itself (not a multicast or link-local address), the prefix length (between 0 and 128), and the metric 
(between 1 and 16). If the RTE is accepted, the metric of the incoming interface is added to the metric of 
the RTE. The RTE is now passed to the Bellman-Ford process as described in the earlier section Section 
8.1.1. Figure 8-8 shows a trace of a response message.  
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Figure 8-8. RIPng response message 

The above rules for receiving and validating a response message do not apply for a response to a specific 
query. The hop count may be less than 255, and the source IPv6 address is not a link-local address. The 
diagnostic station uses the received RTE not for routing, but to provide input into its diagnostic software. It 
is entirely up to the implementer of such software to determine the validity of a response message.  

There are two types of response messages: Unsolicited and Solicited. An Unsolicited Response message is 
sent by a periodic or triggered update process. The periodic update process examines the entire routing 
table upon expiration of the Update Timer on any given interface. The triggered update process wakes up 
as soon as the Route Change flag is raised and examines only routes with the Route Change flag set. Both 
processes then proceed with the following: if the examined route entry has a link-local address or should 
not be used because of split horizon processing, skip it. Otherwise, put the prefix, prefix length, and metric 
into the RTE, and put the RTE into the response message. If the maximum MTU has been reached, send 
the packet and build a new packet.  

A Solicited Response message is sent as a response to a request message. See the earlier section Section 
8.1.8.1 for more detail.  
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Table 8-2 summarizes the characteristics of the two types of responses.  

Table 8-2. RIPng response messages  

Request type IPv6 source address IPv6 destination 
address 

Source  

UDP 
port 

Destination UDP 
port 

Unsolicited (periodic 
update or triggered 
update) 

Link-local address of the 
sending interface 

ff02::9 
(multicast) 

RIPng 
port (521) RIPng port (521) 

Solicited (answer a 
request) 

Link-local address (general 
request), global or site-local 
unicast address (specific 
request)  

Source IPv6 address 
of the request 
message 

RIPng 
port (521)

Source UDP port of 
the request message

Sending the Unsolicited Response message to the multicast address ensures that the response message 
reaches all neighbors on any particular directly connected network. There are cases in which this may not 
work—e.g., on a non-broadcast-capable network. A static list of all neighbors on such a network may be 
provided to send the messages directly to each neighbor. It is up to the implementer to determine how this 
should be done.  

8.1.9 Control Functions and Security 

RIPng does not provide specifications for administrative control. However, experience with existing RIP 
implementations suggests that such controls may be important. Administrative controls are filters, which 
allow or disallow certain routes to be advertised or received. In addition, a list of valid neighbors could be 
specified, and a router would accept or announce routes only to neighbors on this list. These filters can be 
used to change the update behavior to comply with routing policies set within an autonomous system. 
Again, RIPng does not need such controls to function, but it is strongly recommended that the implementer 
provide such controls. Cisco Systems, for example, implements RIPng distribution lists, and Nortel 
implements RIPng Announce and Accept Policies.  

Because RIPng runs over IPv6, it relies on the IP Authentication Header and the IP Encapsulating Security 
Payload to insure integrity and authentication of routing exchanges.  

8.2 OSPF for IPv6 (OSPFv3) 

OSPF for IPv6 modifies the existing OSPF for IPv4 to support IPv6. The fundamentals of OSPF for IPv4 
remain unchanged. Some changes have been necessary to accommodate the increased address size of IPv6 
and the changes in protocol semantics between IPv4 and IPv6. OSPF for IPv6 is defined in RFC 2740, 
which emphasizes the differences between OSPF for IPv4 and OSPF for IPv6. It contains a large number 
of references to the documentation of OSPF for IPv4, which makes it hard to read. This chapter tries to 
concatenate the two worlds to make the reading a little bit more comfortable. It starts with an overview of 
OSPF, including the area structure and external routes. After the overview, it opens up the protocol to get 
down to the implementation details: it starts with the OSPF message format, proceeds to the neighbor 
relationship, and finishes with the actual link state database and the calculation of the routing table.  

8.2.1 Overview of OSPF for IPv6 

OSPF for IPv4 (OSPFv2) is standardized in RFC 2328. In addition to this document, several extensions to 
OSPF have been defined. RFC 1584 describes IPv4 multicast extensions to OSPF. RFC 1587 adds not-so-
stubby areas (NSSAs) to OSPF. RFC 2740 modifies OSPF to support the exchange of routing information 
for IPv6. OSPF for IPv6 has a new version number: version 3.  
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OSPF is classified as an IGP, which are used within autonomous systems. It was designed to overcome 
some of the limitations introduced by RIP, such as the small diameter, long convergence time, and a metric 
that does not reflect the characteristics of the network. In addition, OSPF handles a much larger routing 
table to accommodate large number of routes.  

8.2.1.1 Differences between OSPF for IPv4 and OSPF for IPv6 

Most of the concepts of OSPF for IPv4 have been retained; the following is a brief overview of the 
changes:  

Protocol processing per-link, not per-subnet 

IPv6 connects interfaces to links. Multiple IP subnets can be assigned to a single link and two 
nodes can talk directly over a single link, even if they do not share a common IP subnet. OSPF for 
IPv6 runs per-link instead of per-subnet. The terms "network" and "subnet" used in OSPF for IPv4 
should be replaced with the term "link"; i.e., an OSPF interface now connects to a link instead of 
an IP subnet.  

Removal of addressing semantics 

IPv6 addresses are no longer present in OSPF packet headers. They are only allowed as payload 
information.  

Router-LSA and Network-LSA (yes, they still exist) do not contain IPv6 addresses.OSPF Router 
ID, Area ID, and Link State ID remain at 32 bits, so they can no longer take the value of an IPv6 
address. Designated Routers (DRs) and Backup Designated Routers (BDRs) are now always 
identified by their Router ID and no longer by their IP address.  

Flooding scope 

Each LSA type contains an explicit code to specify its flooding scope. This code is embedded in 
the LS type field. Three flooding scopes have been introduced: link-local, area, and AS.  

Explicit support for multiple instances per-link 

Multiple OSPF protocol instances can now run over a single link. This allows for separate ASes, 
each running OSPF, to use a common link. Another use of this feature is to have a single link 
belong to multiple areas.  

Use of link-local addresses 

OSPF assumes that each interface has been assigned a link-local unicast address. All OSPF 
packets use the link-local address as the source address. The routers learn the link-local addresses 
of all their neighbors and use these addresses as the next hop address. Packets sent on virtual links, 
however, must use either the global or site-local IP address as the source for OSPF packets.  

Authentication 

Authentication has been removed from OSPF for IPv6 because it relies on the authentication of 
IPv6.  

OSPF packet format changes 

See Section 8.2.3.
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LSA format changes 

Type 3 (Summary Link) has been renamed Inter-Area-Prefix-LSA.  

Type 4 (AS Summary Link) has been renamed Inter-Area-Router-LSA.  

Two new LSAs carry IPv6 prefix information in their payload. Link-LSA (Type 8) carries the 
IPv6 address information of the local links, and Intra-Area-Prefix-LSA (Type 9) carries the IPv6 
prefixes of the router and network links.  

For other changes, such as Link State ID and the Options field, see Section 8.2.5.2.

Handling unknown LSA types 

Instead of simply discarding them, OSPF for IPv6 introduces a more flexible way of handling 
unknown LSA types. A new LSA handling bit has been added to the LS Type field to allow 
flooding of unknown LSA types.  

Stub area support 

The concept of stub areas has been retained in OSPF for IPv6. An additional rule specifies the 
flooding of unknown LSAs within the stub area.  

8.2.1.2 Link state-based protocol 

Each router maintains a database describing the link states within the autonomous system. This database is 
being built by exchanging Link State Advertisements (LSAs) between neighboring routers. Depending on 
its contents, an LSA is flooded to all routers in the autonomous system (AS flooding scope), all routers 
within the same area (area flooding scope), or simply to its neighbors. The flooding always occurs along a 
path of neighboring routers, so a stable neighbor relationship is extremely important for OSPF to work 
properly. The neighbor relationship is called adjacency. The exact process of forming an adjacency is 
described in the later section Section 8.2.4.

Each router originates router LSAs advertising the local state of its interfaces to all routers within the same 
area. Additional LSAs are originated to identify links with multiple routers (multiaccess networks), IPv6 
routes from other areas, or IPv6 routes external to the OSPF autonomous system. All LSA types and the 
flooding mechanism are described in Section 8.2.5.2 and Section 8.2.7, respectively. Each router puts the 
received LSA into its LSA database, called the Link-State Database (LSDB).  

Using the LSDB as the input, each router runs the same algorithm to build a tree of least-cost paths ( 
shortest-path-first tree [SPF tree]) to each route. The LSDB is like having a map of the network used to 
plot the shortest paths to each destination. The cost is described by a single dimensionless metric, which is 
configurable on each interface of the router. The metric assigned to the interface is usually inversely 
proportional to its line speed, i.e., higher bandwidth means lower cost. A common formula, according to 
the RFC, is to divide 108 by the line speed in bits per second. You can, however, choose your own formula 
according to corporate standards.  

OSPF can put multiple equal-cost paths to the same route into the routing table. The algorithm for 
distributing traffic among these paths is at the discretion of the routing process itself, normally based on 
the source and destination IPv6 addresses. The process of building the SPF and its routing table will be 
discussed in detail in the later section Section 8.2.5.
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8.2.1.3 OSPF areas and external routes 

The LSDB can become quite large, and processing such a large database can be CPU- and memory-
intensive because changes to the database affect every router in the AS. OSPF allows the AS to be 
partitioned into areas to reduce processing overhead. In addition, OSPF can import routes derived from 
external sources (e.g., RIP, BGP, and static routes) into OSPF. Areas and external routes are discussed in 
detail in Section 8.2.2.

8.2.1.4 Authentication and security 

Because OSPF for IPv6 runs over IPv6, it relies on the IP Authentication Header and the IP Encapsulating 
Security Payload to insure integrity and authentication of routing exchanges. The authentication of OSPF 
for IPv4 has been removed. One integrity check remains, which comes in the form of the checksum that is 
calculated over the entire OSPF packet.  

8.2.2 OSPF Areas and External Routes 

Within an autonomous system, routers can be grouped together to form areas. Each area is assigned a 
unique Area ID, a 32-bit integer typically noted as a dotted decimal number. It has no addressing 
significance other than uniquely identifying the area. An LSA with area flooding scope will never be 
flooded outside the area. Together, they form the area data structure, also known as the area LSDB. The 
Router-LSA and Network-LSA belong to this category. Routers and networks from one area are hidden in 
other areas. It is like splitting the map of the network into multiple maps, each of which represents the 
topology of one area. Each router within one area calculates the SPF tree to all routes within the same area. 
These routes are called intra-area routes. Routers with all interfaces belonging to a single area are called 
internal routers. To find paths to routes outside the area, "exit points" are provided in the form of area 
border routers (ABR). Each area must always be attached to a single common area called backbone area. 
This is achieved by the ABR having at least one interface in the backbone area and one interface in the 
local area. The ABR advertises all routes of the local area to the backbone area. In return, it advertises all 
the routes of the backbone area to the local area. This ensures that all routes are distributed within the AS.  

Routing within the AS takes place at two levels. If the source and destination IP address of a packet belong 
to the same area, the packet is forwarded solely on information obtained from the area LSDB. This is 
called intra-area routing. If the destination address is outside the area, the packet will have to be forwarded 
along the path to the ABR of the local area. The ABR knows all destinations and forwards the packet either 
across the backbone to the ABR of the destination area or to the backbone area. This is called inter-area 
routing.  

The advantage of having areas is the reduction of processing overhead. Because the topology of each area 
is smaller than the entire AS, the calculation of the SPF tree takes less time. In addition, changes in the 
topology stay local, and only the routers in the local area need to recalculate the SPF tree. Routers in other 
areas are less affected because their area topology was not changed. Internal routers profit the most from 
splitting the AS into areas because their LSDB is much smaller.  

8.2.2.1 The backbone area 

The backbone area is a special area using Area ID 0.0.0.0 (area 0). The backbone area contains all 
ABRs of the autonomous system. If the AS is not split into areas, the backbone area is usually the one 
configured area. If the AS is split into areas, the backbone area is the collection of all routes from all non-
backbone areas. The backbone area must be contiguous: each router within the same area has at least one 
direct link to another router in the same area, and that link belongs to the area. However, with the 
introduction of virtual links, a backbone area doesn't have to be physically contiguous. A transit area can 
be used to create a tunnel (a virtual link) belonging to the backbone area. This will be further discussed in 
the later section Section 8.2.2.3.
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8.2.2.2 Non-backbone areas 

Non-backbone areas receive a unique Area ID other than 0.0.0.0. They must be physically contiguous. 
Each non-backbone area must have an ABR connected to the backbone, using either a physical link or a 
virtual link. An ABR advertises all routes of the non-backbone into the backbone area. In reverse, an ABR 
advertises all the routes known to the backbone area into the non-backbone area. Normally, the ABR uses 
one LSA (called the Inter-Area-Prefix-LSA) for each route advertised. The ABR can be configured to 
summarize routes using a shorter IPv6 prefix representing some or all of the routes to be advertised. This 
reduces the number of advertisements and memory and processing requirements. It is very important to 
plan the assignment of IPv6 prefixes within the area to achieve the most benefit from the summary.  

A non-backbone area can have multiple ABRs. Figure 8-9 explains ABRs advertising Inter-Area-Prefix-
LSAs.  

Figure 8-9. OSPF areas and its routing updates 

8.2.2.3 Virtual links 

A virtual link is a logical link that tunnels backbone traffic through a non-backbone area. It can be 
configured between two ABRs by using a common non-backbone area called a transit area. A virtual link 
belongs to the backbone and can only cross a single transit area. The transit area must not be a stub area. A 
remote area without a physical interface to the backbone area can be connected to the backbone by using 
virtual links. Virtual links can also be used to create redundant connections to the backbone. OSPF 
considers a virtual link a point-to-point link. The shortest path between the ABRs through the transit area 
determines the actual endpoint addresses of the tunnel. These addresses must be global or site-local unicast 
IPv6 addresses. Figure 8-10 shows an example of virtual links.  

Figure 8-10. Virtual link connecting a remote area 
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8.2.2.4 External routes 

A router can learn about IPv6 routes from different sources, such as RIP, static entries, BGP, IS-IS, etc. 
Every route from a non-OSPF source is considered to be an OSPF external route and can be imported into 
OSPF. To import external routes into OSPF, a router must have at least one interface configured with 
OSPF and know about at least one non-OSPF network. This router is called an autonomous system border 
router (ASBR). External routes are imported using a single AS-External-LSA for each external route. 
Depending on the implementation, an ASBR can summarize a range of external routes to a single external 
LSA. Figure 8-11 explains how external routes are imported into OSPF.  

Figure 8-11. External routes imported into OSPF  

AS-External-LSAs must be flooded throughout the autonomous system. Any router within the AS 
forwards packets to external networks to the ASBR or to an optional forwarding address specified by the 
ASBR. Therefore, there must be an entry to the ASBR in the Area-LSDB, or the forwarding address must 
be in the local routing table. If the ASBR is not within the local area, the ABR is responsible for 
advertising the existence of the ASBR to the local area. This is done using an Inter-Area-Router-LSA. 
Figure 8-11 shows the usage of the Inter-Area-Router-LSA.  

Metrics of external routes are not compatible with OSPF metrics. ASBRs advertise external routes using 
one of two types of metrics, external-1 and external-2 routes. External-1 routes are considered to be close 
to the ASBR. Routers within the AS add the OSPF cost to reach the ASBR or the advertised forwarding 
address to the metric of the external-1 route. External-2 routes are assumed to be further away from the 
ASBR. A metric larger than the cost of any intra-AS path will therefore be added to the metric of the 
external-2 route.  

If the same route is advertised as an OSPF internal route as well as an external route, the path to the OSPF 
internal route is always chosen over the path to the external route. This can happen if there are multiple 
ASBRs connected to the same external network. One ASBR advertises an OSPF route to the external 
routing protocol, and the other ASBR imports the same route back to OSPF.  

8.2.2.5 Stub areas 

In short, a stub area is a zone free of AS-External-LSAs. These LSAs would normally be flooded 
throughout the entire AS, which could result in quite a large LSDB consisting of many external 
advertisements. To reduce the size of the LSDB, an ABR can block AS-External-LSAs into the local area. 
As the ABR deprives the area of knowledge about external routes, it must make up for it by advertising a 
replacement route in the form of the default route. It uses the Inter-Area-Prefix-LSA, advertising the prefix 
0:0:0:0:0:0:0:0 with a prefix length of 0. The metric associated with the default route is called the 
stub metric. If there are multiple ABRs for that area, each ABR blocks AS-External-LSAs and replaces 
them with a default route. Routers internal to the area calculate the best path of the default route by adding 
the metric to get to the ABR (according to the SPF) to the stub metric. Because there are no external routes 
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within a stub area, there is no need for the ABR to advertise the presence of the ASBR into a stub area. The 
ABR therefore does not originate Inter-Area-Router-LSAs into a stub area. All routers within the stub area 
must be configured to be in a stub area by turning off the external-capability option. This external-
capability option is crucial to forming adjacencies (see Section 8.2.4), as all routers within an area have to 
agree on the same external-capability option.  

There are some restrictions for stub areas. They cannot be configured as transit areas for virtual links. In 
addition, no ASBR can be placed in a stub area because the routers in a stub area cannot import external 
information. The backbone area can never be a stub area. To prevent unknown LSA types from being 
flooded into a stub area, certain measures must be taken. An unknown LSA can be flooded only if the LSA 
has link-local or area flooding scope and the handling bit (called the U-bit) for flooding unknown LSAs is 
set to 0. Refer to Section 8.2.7 for details.  

As the ABR advertises a default route into the stub area, it could optionally stop originating routes to other 
areas as well. This can be useful if it is not crucial for the internal routers of a stub area to know the details 
of all routes to other areas. As long as they have the default route, they are happy. Such an area is 
sometimes called a totally stubby area. Figure 8-12 gives an example of stub areas.  

Figure 8-12. Stub area 

8.2.2.6 Not-so-stubby areas 

There are cases when stub areas need to connect to routers that have non-OSPF routes. The implementer 
does not want to revert the area to a normal area to allow these external routes to be imported. Because no 
AS-External-LSAs are allowed in a stub area, the OSPF designers came up with a new type of LSA called 
Type-7-LSA. Type-7-LSAs are exactly like AS-External-LSAs, but they can exist in a stub area. Stub 
areas in which Type-7-LSAs exist are humorously referred to as Not-So-Stubby Areas, or NSSAs. Type-7-
LSAs are flooded only within the NSSA. An NSSA ASBR issues one Type-7-LSA per external route. 
ABRs of the NSSA can translate Type-7-LSAs into AS-External-LSAs to advertise them to the rest of the 
AS. In addition, these ABRs still behave like ABRs in a stub area and they advertise a default route by 
using a Type-7-LSA in this case. All routers within the NSSA must be configured to be in an NSSA by 
turning the NSSA capability option on. This option must be set on all routers to form adjacencies (see 
Section 8.2.4). In addition, the external-capability option still must be turned off on all routers within the 
NSSA. The NSSA has the same restrictions as the stub area. In addition, it cannot be a totally stubby area.  

8.2.3 Message Format of OSPF for IPv6 

Let's have a closer look now at the protocol implementation. We will start with the actual OSPF packet 
encapsulation. The routers use OSPF packets to exchange LSA information and to establish and maintain 
neighbor relations.  
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When explaining packet fields, the term "this router" or "this interface" always 
refers to the originator of the packet or the interface over which the packet is sent. 

8.2.3.1 Encapsulation in IP datagrams 

OSPF packets are directly encapsulated in IPv6 specified by protocol number 89. This number should be 
inserted in the Next Header field of the encapsulating IPv6 header.  

OSPF doesn't use fragmentation, therefore relying entirely on IP fragmentation when sending packets 
larger than the MTU. Fragmentation should be avoided whenever possible. Potentially large OSPF packets 
like Database Description packets or Link State Update packets can easily be split into multiple packets by 
OSPF itself.  

OSPF messages normally use the link-local IPv6 address of the outgoing interface as their source address. 
The exception is messages sent on a virtual link. They use the link-local or global unicast address of the 
virtual link as their source. Depending on the situation, OSPF messages can be sent as a unicast to a 
specific neighbor or as a multicast to multiple neighbors. The following two multicast addresses are set 
aside for this purpose:  

AllSPFRouters (FF02::5) 

All routers running OSPF must listen to this multicast address. Hello packets are always sent to 
this address, with the exception of non-broadcast-capable networks. This address is also used for 
some packets during LSA flooding.  

AllDRouters (FF02::6) 

Both the DR and the BDR on a multiaccess medium must listen to this multicast address. This 
address is used for some packets during LSA flooding.  

OSPF packets sent to the multicast address have link-local scope and their IPv6 hop limit set to 1. They 
will never be sent over multiple hops.  

8.2.3.2 OSPF header 

There are five different packet types used by OSPF. All OSPF packets begin with a standard 16-byte 
header, shown in Figure 8-13.
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Figure 8-13. The OSPF for IPv6 packet header 

OSPF uses the word type in many instances. Carefully distinguish between OSPF 
packet type, LSA types, and Link type. This book uses the name of a particular 
type rather than the type number.  

The fields of the OSPF header are explained in detail in the following list:  

Version (1 byte) 

OSPF for IPv6 uses version number 3. 

Type (1 byte) 

This field represents the type of OSPF messages from this router. Table 8-3 lists all possible types.  

Table 8-3. OSPF for IPv3 packet types  
Packet 
type Name Description 

1 Hello 
Initializes and maintains adjacencies. Elect DR and BDR. 

See Section 8.2.4.

2 Database Description 
Exchanges database description during the formation of adjacencies. 

See Section 8.2.4.

3 Link State Request 
Requests missing or outdated LSAs. 

See Section 8.2.4.

4 Link State Update 

Exchanges LSAs either responding to requests when forming 
adjacencies or during LSA flooding.  

See Section 8.2.4 and Section 8.2.7.
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5 Link State 
Acknowledgment 

Acknowledges the reception of an LSA. Every LSA must be 
acknowledged. 

See s Section 8.2.4 and Section 8.2.7.
Packet length (2 bytes) 

This is the length of the OSPF protocol packet in bytes, including the OSPF header.  

Router ID (4 bytes) 

This is the Router ID of the router originating this packet. Each router must have a unique Router 
ID, a 32-bit number normally represented in dotted decimal notation. The Router ID must be 
unique within the entire AS.  

Area ID (4 bytes) 

This is the Area ID of the interface where this OSPF packet originated. This identifies the area this 
packet belongs to. All OSPF packets are associated with a single area. The Area ID is a 32-bit 
integer, normally represented in dotted decimal notation. Area 0 represents the backbone area.  

Checksum (2 bytes) 

OSPF uses the standard checksum calculation for IPv6 applications: the 16-bit one's complement 
of the one's complement sum of the entire contents of the packet, starting with the OSPF packet 
header and prepending a "pseudoheader" of IPv6 header fields (as specified in Chapter 9). The 
Upper-Layer Packet Length in the pseudoheader is set to the value of the OSPF packet header's 
length field. The Next Header value used in the pseudoheader is 89. If the packet's length is not an 
integral number of 16-bit words, the packet is padded with a byte of zero before checksumming. 
Before computing the checksum, the checksum field in the OSPF packet header is set to 0.  

Instance ID (1 byte) 

This identifies the OSPF instance to which this packet belongs. The Instance ID is an 8-bit number 
assigned to each interface of the router. The default value is 0. The Instance ID enables multiple 
OSPF protocol instances to run on a single link. If the receiving router does not recognize the 
Instance ID, it discards the packet. For example, routers A, B, C, and D are using a common 
multiaccess link n. A and B belong to an AS different from the one C and D belong to. To 
exchange OSPF packets, A and B will use a different Instance ID from the one C and D use. This 
prevents routers from accepting wrong OSPF packets. In OSPF for IPv4, this was done using the 
Authentication field, which no longer exists in OSPF for IPv6.  

8.2.3.3 Processing OSPF packets 

When a router sends an OSPF protocol packet, it fills in the header fields as described above. The Area ID 
and Instance ID are taken from the outgoing interface data structure. If authentication is required, it is the 
responsibility of IPv6 to add the necessary headers.  

When a router receives an OSPF protocol packet, IPv6 validates it first by checking the IPv6 headers (IPv6 
addresses, protocol field, and authentication). The packet is then given to the OSPF process. OSPF checks 
the version number (which must be 3), the checksum, the Area ID, and the Instance ID. The Area ID must 
match the Area ID configured on the incoming interface. If there is no match, but the Area ID is 0, the 
incoming interface must be the endpoint of a virtual link. The Instance ID must match the interface's 
Instance ID. If the packet's destination IPv6 address is the AllDRouters multicast address, the router must 
be either a DR or a BDR on this link. (DR and BDR will be explained in the next section.) If the packet 
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passes all the above tests, it is passed to the appropriate OSPF process for further processing. Otherwise it 
must be dropped.  

8.2.4 Forming Adjacencies 

In order to exchange LSAs, the routers must create reliable channels, called adjacencies, to its neighbors. 
These channels allow the routers to synchronize the LSDB upon initialization and to flood the LSA in case 
of a change.  

The neighbors need to be discovered first. This is done using the Hello protocol. Each interface on an 
OSPF router is assigned one of four link types: point-to-point, transit, stub, or virtual. On point-to-point or 
virtual links, only one neighbor can be discovered. On multiaccess networks, multiple neighbors can be 
discovered. OSPF calls these networks transit links. Forming adjacencies with all routers on transit links is 
not necessary. Each transit link elects a DR to form adjacencies with all routers on the transit link. This 
guarantees that all routers on this link have a synchronized LSDB. To ensure uninterrupted operation, a 
BDR is elected as well; it forms adjacencies with all routers on the transit link, too. Figure 8-14 shows 
adjacencies on point-to-point links and transit links. If no neighbor is discovered on any given link, the link 
is declared to be a stub link, and obviously no adjacencies are being formed on such a link.  

Figure 8-14. Adjacencies on point-to-point and transit links 

8.2.4.1 The Hello packet 

The Hello Protocol is responsible for initializing and maintaining adjacencies, as well as electing a 
DR/BDR. It ensures that communication between two routers is bidirectional. Hello packets are sent out 
through each interface at regular intervals. On point-to-point or broadcast-capable transit networks, OSPF 
Hello packets are sent to the multicast address AllSPFRouters. The neighbors are discovered dynamically. 
Multiaccess networks not capable of transmitting broadcast or multicast packets (e.g., X.25 and Frame 
Relay) are called non-broadcast-multi-access networks (NBMA). NBMA networks can be configured 
either as point-to-multipoint links or transit links. On point-to-multipoint links, logical point-to-point links 
are created to each neighbor. As in point-to-point links, no DR or BDR is needed. NBMA networks 
configured as transit links have static IPv6 address entries for each neighbor. A DR and BDR are elected. 
OSPF messages are sent as unicast to these statically configured neighbors.  

Figure 8-15 shows the Hello packet format. It is an OSPF packet type 1, as explained earlier in Table 8-3.
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Figure 8-15. The Hello packet 

The following list explains all the fields of the Hello packet in detail.  

Interface ID (4 bytes) 

Identifies the interface over which this Hello packet was sent by this router. Each interface of an 
OSPF router is assigned an Interface ID. The Interface ID must be unique within the same router. 
Some implementations use the MIB-II Interface Index, as specified in RFC 2233.  

Router priority (1 byte) 

Identifies the priority number assigned to this interface by this router. It is used for the election of 
the DR or BDR. This field is meaningful only on transit links. The router with the highest priority 
becomes the DR or BDR, but only if a DR or BDR has not already been elected. If this field is set 
to zero, the router on this interface can never be a DR or BDR.  

Options (3 bytes) 

Describes this router's optional capabilities. This field is set in OSPF Hello packets, Database 
Description packets and the following LSAs: Router-LSA, Network-LSA, Inter-Area-Router-
LSA, and Link-LSA. Table 8-4 explains the bits used in the Options field. Only 6 bits are 
currently used.  

Table 8-4. The Options field  
Bit Name Description 
0-
17 

Not 
used Reserved for future use. 

18 DC Handling of Demand Circuits, as described in RFC 1793. 

19 E 
External-routes capability of this router. All members of an area must agree on the external 
capability. In a stub area, all routers must set this bit to 0 to achieve adjacency. The E-bit is 
meaningful only in Hello packets (similar to the N-bit).  

20 MC Multicast capability, as defined in RFC 1584. 
21 N All routers within an NSSA must set this bit. In addition, the E-bit must be set to 0 (see RFC 
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1587).  

22 R 
Indicates that the originator of the Hello packet is an active router. If this bit is set to 0, the 
originator will not forward packets: for example, a multihomed host that wants to build an 
OSPF routing table without actually routing packets.  

23 V6 Indicates that this router supports OSPF for IPv6. If set to 0, this router/link should be 
excluded from IPv6 routing calculation.  

Hello interval (2 bytes) 

Specifies the number of seconds between Hello packets sent by this router on this interface. The 
default is 10 seconds.  

Router Dead Interval (2 bytes) 

Specifies the number of seconds before this router declares a silent router on this link to be down. 
(A silent router is no longer sending Hello packets.) The default is 40 seconds. If this interface is a 
transit link, the Router Dead Interval also determines the waiting timer during the election of the 
DR or BDR. Upon initialization of a transit link, the interface enters a waiting state to determine 
whether a DR or BDR has already been elected.  

Designated Router ID (4 bytes) 

Specifies the Router ID of the DR as seen from this router on this link. This field is set only on 
transit links. It is set to 0.0.0.0 when no DR has yet been elected, or on point-to-point links.  

Backup Designated Router ID (4 bytes) 

Specifies the Router ID of the BDR as seen from this router. This field is set only on transit links. 
It is set to 0.0.0.0 when no BDR has yet been elected, or on point-to-point links.  

Neighbor ID (4 bytes) 

Specifies the Router ID of each router from which the router received valid Hello packets on this 
link during the last Router Dead Interval.  

8.2.4.2 Election of DR/BDR 

As soon as the IPv6 on an OSPF interface is operational, the link is up, and the processing of Hello packets 
begin. A point-to-point link changes its state to point-to-point. A transit link enters the waiting state to 
discover the DR/BDR.  

Each transit link needs a DR and a BDR, which form adjacencies with all routers on that particular transit 
link. During the waiting period, the router listens to Hello packets to determine if a DR/BDR already exits. 
It also sends Hello packets with the DR/BDR field set to zero to indicate that it is in discovery mode. If a 
router already claims to be the DR, no election of a DR takes place. If no router declares itself as the DR 
(all Hello packets contain zero in their DR field), the router with the highest router priority declares itself 
the DR. If the priorities are equal, the router with the highest Router ID wins the election. The BDR is 
elected in exactly the same way. Routers that were not elected as DR/BDR are called DR-Other. Routers 
with a priority of zero never become DR/BDR. Their interfaces change immediately to DR-Other without 
entering the waiting state.  

If the DR goes silent (not sending Hellos for Router Dead Interval), the BDR becomes the DR and a new 
BDR is elected. Because the BDR has already formed all adjacencies, there is no disruption of the 
synchronized LSDB on that transit link. If the original DR comes back online, it recognizes that there is 
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already a DR and a BDR and it enters the DR-Other state. If the BDR goes silent, a new BDR is elected. 
The OSPF interface is now up and in the state of point-to-point, DR, BDR, or DR-Other.  

8.2.4.3 Processing of Hello packets 

Before a Hello packet is accepted, a number of criteria must be met. Figure 8-16 shows the decision 
process to accept a Hello packet.  

Figure 8-16. Processing a Hello packet 

The OSPF input process has already accepted the packet, as described in Section 8.2.3.3. Now the Hello 
Interval and Router Dead Interval are checked. They must match the values set on the receiving interface. 
Next the E-bit and N-bit in the Options field are examined. The setting of these bits must match the value 
set on the receiving interface.  

At this point, if all the criteria matched, the packet is accepted and the neighbor is identified by its Router 
ID. For each neighbor on each interface, the router keeps a neighbor state machine. If there is already a full 
adjacency with this neighbor, the Hello timer is simply reset. Otherwise, state of this neighbor changes to 
initialize (Init). The router examines the list of neighbors proclaimed in the received Hello packet. If the 
router identifies its own Router ID in that list, bidirectional communication has been established and the 
neighbor's state changes to two-way. The router decides whether to form an adjacency with this neighbor. 
If the interface is a point-to-point state, an adjacency is formed with this neighbor. On a transit link, if the 
router itself or this neighbor is the DR/BDR, an adjacency is formed. If the router decides not to form an 
adjacency, this neighbor stays in a two-way state.  

Figure 8-17 explains the different phases of forming an adjacency and the corresponding neighbor states.  
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Figure 8-17. Forming an adjacency 

The two routers forming an adjacency start communicating the contents of their LSDB. This phase is 
called the database description exchange. Once the routers know the contents of each other's databases, 
they request the missing or outdated information. This is the loading phase. After completing the loading 
phase, the routers are fully adjacent. Continuous sending of Hello packets prevents the adjacency from 
timing out.  

8.2.4.4 Database description exchange 

The routers change their neighbor state to exchange-start and send an initial Database Description packet 
without data. They establish a master-slave relationship to achieve an orderly exchange. Each router 
declares itself as the master in the initial Database Description packet. The only relevant information 
within the initial Database Description packet is the database description (DD) sequence number issued by 
each side. The router with the higher Router ID stays master during the entire DD exchange phase.  

The neighbors now enter the Exchange state. Starting with the slave, a series of packets describing the 
contents of their LSDB are exchanged. The master always increments the sequence number and the slave 
always uses the master's sequence number in its packet. Each router indicates that is has more data to send 
by setting the more bit (see Figure 8-17). If one router has sent its entire database description, but the other 
hasn't yet, the first router is obliged to send empty packets to keep the sequence numbers matched. To 
describe the LSDB, the router only sends the database headers (LSA headers), as described in Figure 8-18.
(The LSA header is discussed in Section 8.2.5.2.) All Database Description packets are sent as unicast to 
the neighbor. The unicast addresses are discovered by looking at the source IPv6 address of the Hello 
packet sent by the neighbor. As soon as both routers have nothing more to send, the routers enter the 
loading phase.  
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Figure 8-18. Database Description packet 

The following list explains all the fields of the Database Description packet in detail.  

Options (3 bytes) 

The optional capabilities supported by this router, according to Table 8-4. They should be the 
same options advertised in the Hello packet. Changes in the Options field during DD exchange 
will stop the exchange and the routers revert back to exchange-Start.  

Interface MTU (2 bytes) 

The largest frame size that can be sent through this interface without fragmentation. On virtual 
links, this should be set to zero. The MTU of common Internet link types can be found in RFC 
1191. If this router receives a DD packet stating an MTU larger than it can handle on this 
interface, the packet is rejected.  

Init bit (I bit) 

When set to 1, this bit indicates the first Database Description packet sent by this router. This 
packet contains no data and starts the exchange process. The M/S bit is set as well.  

More bit (M bit) 

When set to 1, this bit indicates that there are more Database Description packets to follow. When 
set to zero, it indicates that all database descriptions have been delivered.  

Master/slave bit (M/S bit) 

When set to 1, this bit indicates this router to be the master; otherwise, the slave.  

DD sequence number (4 bytes) 

This number makes the exchange reliable. The master increments the sequence number by one for 
each Database Description packet sent. The slave always quotes the last sequence number 
received by the master. A mismatch in sequence number causes the DD exchange to fail and the 
routers to revert back to exchange-start.  

 



127

List of LSA headers (20 bytes for each header) 

This list describes the entry in the LSDB. See Section 8.2.5.2.

8.2.4.5 The loading phase 

The routers are now requesting the missing or outdated LSAs learned during the exchange of database 
descriptions. Link State Request packets (OSPF packet type 3) identify the requesting LSA by its LSA 
header. Multiple requests can be sent using a single packet. A router replies to the request by sending the 
corresponding LSA from its database. The LSA is sent using Link State Update packets (OSPF packet type 
4). Multiple LSAs can be sent in a single packet. Each Link State Update must be acknowledged by using 
a Link State Acknowledgment packet (OSPF packet type 5). The Link State Acknowledgment packet 
contains the LSA header of the LSA to be acknowledged. Multiple LSAs can be acknowledged in a single 
packet. The Link State Request and Acknowledgment packets simply contain a list of requested or 
acknowledged LSA headers, so I won't discuss them in more detail. Like Database Description packets, all 
the packets just mentioned are sent to the unicast address of the neighbor. The neighbors now enter the full 
state. Hello packets keep the adjacency alive. Adjacencies must stay alive, as they are used for flooding 
changed LSA. Refer to Section 8.2.7.

8.2.5 The Link State Database 

The link state database is the most important component of OSPF. Figure 8-19 illustrates the components 
of the LSDB.  

Figure 8-19. Components of the LSDB 

The LSDB is a data structure consisting of LSAs exchanged in the AS. The link state information is 
structured to allow the building of a tree whose branches and leaves represent the shortest paths to all 
routes within the AS. Each router builds such a tree from its point of view. Most commonly, the routers use 
the algorithm developed by Dijkstra to build this tree of shortest paths (SPF tree). First, the router builds 
the intra-area tree to all destinations within its own area. Inter-area and external routes are then attached to 
the branch representing an ABR or ASBR. At the end, each route within the tree is added to one of four 
sections of the OSPF routing table: the intra-area routes, inter-area routes, external-1 routes, and finally, 
external-2 routes. The next hop is always the link-local address of first router in the shortest path to the 
route. The following sections describe each of these components, starting with the contents of the LSDB. 
Then I'll discuss how Dijkstra calculates the SPF tree and puts the routes into the routing table.  

8.2.5.1 Contents of the LSDB 

RFC 2328 describes the SPF as a system of directed graphs using vertices to build a tree. This basically 
describes the network topology as set of pointers building a tree. There are four basic pointers within the 
tree:  
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Router to router 

Describes a router's point-to-point interface identifying the Router ID of the neighboring router on 
a point-to-point link. In LSDB terminology, it points from a Router-LSA to another Router-LSA.  

Router to transit link 

Describes a router's interface to a transit link by identifying the Interface ID of the DR for this 
transit link. In LSDB terminology, it points from a Router-LSA to a Network-LSA.  

Transit link to routers 

Describes a transit link and points to all its attached routers. In LSDB terminology, it points from 
a Network-LSA to one or many Router-LSAs.  

Informational 

Associates information to its originator (e.g., IPv6 addresses, IPv6 prefixes, etc.). Using tree 
terminology, it is like adding leaves to branches. Unlike the three previous pointers, which build 
the actual tree, this pointer just adds information to the tree. LSAs belonging to this kind of 
pointer are Inter-Area-Prefix-LSA, Inter-Area-Router-LSA, AS-External-LSA, Type-7-LSA, 
Link-LSA, and Intra-Area-Prefix-LSA.  

Figure 8-20 shows the basic pointers in a sample tree structure.  

Figure 8-20. LSDB structural pointers 

8.2.5.2 LSAs 

Each LSA within the LSDB incorporates one or more of the previously mentioned pointers. It consists of 
an LSA header and an LSA body. The LSA header identifies each LSA uniquely.  

8.2.5.3 LSA header  

Each LSA starts with a common 20-byte header. Figure 8-21 shows the details of this header. The Link 
State (LS) type, the LS ID, and the Advertising Router together uniquely identify the LSA.  
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Figure 8-21. LSA header 

The LSA header fields are fully detailed in the following list: 

LS Age (2 bytes) 

LS Age is the time in seconds since the LSA was originated. If it has reached MaxAge (3,600 
seconds), the LSA is no longer considered for the SPF tree calculation. The originating router of 
this LSA must renew the LSA and increment the sequence number before MaxAge is reached to 
prevent the LSA from ageing out. It is recommended to renew an LSA after MaxAge/2.

LS type (2 bytes) 

This is the type of this advertised LSA. The first three bits of the LSA type field indicate special 
properties of the LSA.  

U-bit (handling of unknown LS Type) 

Identifies the handling of unknown LSA types by the routers. If the bit is set, the LSA must be 
stored and flooded as if the type were understood. Otherwise, if the bit is 0, the LSA has to be 
treated as if it had link-local flooding scope.  

S2 and S1 bit (flooding scope) 

Define the flooding scope of the LSA. The four values are: 

00 = Link-local, flooded only on the link on which it originated.  
01 = Area, flooded to all routers in the originating area.  
10 = AS, flooded to all routers in the AS.  
11 = Reserved.  

The last 13 bits represent the actual LSA Function Code. See Table 8-5 for details on link state 
types. The LS Type is represented in hexadecimal notation to reflect the flooding scope.  

Table 8-5. Link state types  
LS 
Type Name Flooding 

scope Advertised by Link State ID 

0x2001 Router-LSA Area Each router Router ID 

0x2002 Network-LSA Area DR DR's Interface ID of the transit 
link 
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0x2003 Inter-Area-Prefix-LSA Area ABR Any ID set by ABR 
0x2004 Inter-Area-Router-LSA Area ABR Any ID set by ABR 
0x4005 AS-External-LSA AS ASBR Any ID set by ASBR 

0x2006 Group-Membership-
LSA Area See RFC 1584 See RFC 1584 

0x2007 Type-7-LSA Area See RFC 1587 See RFC 1587 

0x0008 Link-LSA Link Each router for each 
link Interface ID 

0x2009 Intra-Area-Prefix-LSA Area Each router Any ID set by router 
Link State ID (4 bytes) 

The Link State ID is part of the link state identification. With Router-LSA and Network-LSA, the 
Link State ID serves as a value for a pointer in the tree to identify this router or network. For all 
other LSA, the originating router uses a locally unique ID.  

Advertising Router (4 bytes) 

The Advertising Router is the Router ID of the router originating this LSA.  

LS Sequence Number (4 bytes) 

The LS Sequence Number identifies the instance of this LSA. It is used to determine which LSA 
is newer in case of multiple occurrences of the same LSA. The higher the sequence number, the 
newer the LSA is. The starting sequence number is always 0x80000000. The highest sequence 
number possible is 0x7FFFFFFF. If this number has been reached, the LSA is aged out (LS 
Age equals MaxAge) and flooded before a new instance of the LSA (now using 0x80000000)
is issued.  

Checksum (2 bytes) 

This is the Fletcher checksum of the complete contents of the LSA, including the LSA header but 
excluding the LS Age field.  

Length (2 bytes) 

This is the length of the entire LSA in bytes. 

The following paragraphs explain all types of LSA in detail, with the exception of Group-Membership-
LSAs and Type-7-LSAs. Group-Membership-LSAs are defined in RFC 1584, which has not yet been 
updated for IPv6. Type-7-LSAs are explained in RFC 1587, which introduces the concept of NSSA; it also 
has not been updated to IPv6.  

8.2.5.4 Router-LSA (Type 0x2001) 

Router links describe the router's point-to-point, virtual, or transit links. Basically, it includes all links 
having at least one neighbor. Unlike OSPF for IPv4, stub links are no longer advertised within a router 
link. An ABR must originate separate router links for each attached area, containing only links belonging 
to that particular area. Virtual links always belong to area 0 and are only advertised by ABR. Figure 8-22
outlines a Router-LSA.  
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Figure 8-22. Router-LSA 

The fields of the Router-LSA are fully detailed in the following list: 

Flags (1 byte) 

The Flags field indicates the special function of this router. Table 8-6 shows the possible values 
and their corresponding functions.  

Table 8-6. Flags in Router-LSA  
Bit Name 
W bit This router is a wildcard multicast receiver. See RFC 1584 for more information.  
V bit This router is the endpoint of a virtual link using this area as a transit area.  
E bit This router is an ASBR. 
B bit This router is an ABR. 
Options (3 bytes) 

This field describes the optional capabilities supported by this router, as outlined in Table 8-4.

Link Entry (16 bytes per link) 

Table 8-7 explains the possible link types and their corresponding fields. Each link has a metric 
assigned to it based on the characteristics of the interface. The Neighbor Interface ID and Router 
ID are learned through the Hello Protocol. The Link Entries are used as pointers to build the intra-
area tree. Interface types 1 and 4 point to the Router-LSA specified in the Neighbor Router ID 
(LS-ID and Advertised Router). Interface type 2 points to Network-LSA, as specified in the 
Neighbor Interface ID (LS-ID) and Neighbor Router ID (Advertised Router).  
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Table 8-7. Link Type supported in a Router-LSA  
Link 
type Name Neighbor Interface ID Neighbor Router ID 

1 Point-to-
point 

Interface ID of the neighbor on the other 
end of the point-to-point link  

Router-ID of the neighbor on the other 
end of the point-to-point link 

2 Transit Interface ID of the DR on this link Router ID of the DR on this link. 
3 Reserved  

4 Virtual Interface ID of the neighbor on the other 
end of the virtual link 

Router ID of the neighbor on the other 
end of the virtual link 

8.2.5.5 Network-LSA (Type 0x2002) 

The designated router of each transit link in the area originates a Network-LSA. The Link State ID is set to 
the Interface ID of the DR's interface to the transit link. Figure 8-23 outlines the Network-LSA. It simply 
contains the Options field (see Table 8-4, earlier in this chapter), followed by a list of Router IDs 
identifying all routers attached to this particular transit link. This represents a pointer to all routers attached 
to this transit link.  

Figure 8-23. Network-LSA 

The Options field is set to the logical OR of the Options field received from the Link-LSA of all the routers 
attached to this transit link. (See Section 8.2.5.9.) This provides the common optional capabilities 
supported by all routers on this link.  

8.2.5.6 Inter-Area-Prefix-LSA (Type 0x2003) 

Inter-Area-Prefix-LSAs are originated by the ABR to advertise IPv6 prefixes from other areas into the area 
of this LSA. A separate Inter-Area-Prefix-LSA is originated for each route. An ABR could summarize a 
contiguous range of IPv6 prefixes into a single advertisement. For a stub area, the ABR advertises the 
default route using this LSA. Inter-Area-Prefix-LSA is the equivalent of OSPF for IPv4's Summary-LSA 
and is outlined in Figure 8-24.
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Figure 8-24. Inter-Area-Prefix-LSA 

In the tree-building process, this LSA represents an informational pointer associated with the ABR for 
attaching inter-area routes to the SPF tree. The Inter-Area-Prefix-LSA fields are detailed in the following 
list:  

Metric (20 bits) 

Defines the cost from the ABR to the IPv6 address prefix advertised with this Inter-Area-Prefix-
LSA. If this route represents a summary, the metric should be taken from the highest metric of the 
member prefixes.  

IPv6 Prefix Representation (0 to 20 bytes, in multiples of 4) 

Defines the actual IPv6 prefix advertised. It consists of four fields: the Prefix Length, the Prefix 
Options, an unused field (set to zero), and the actual IPv6 Address Prefix. The Prefix Length 
defines the length of the address prefix. The default route is represented by a prefix length of 0. 
Table 8-8 explains the prefix options. The address prefix represents the IPv6 address. If necessary, 
it is padded with zero bits to the next full 32-bit word.  

Table 8-8. Prefix options starting with the leftmost bit  
Bit Name Description 
0-
3 Reserved

4 P bit Propagate bit: if set, the NSSA ABR readvertises the prefix into the backbone. Only used in 
Type-7-LSA.  

5 MC bit Multicast bit: if set, the prefix should be included in IPv6 multicast routing calculations.  
6 LA bit Local address bit: if set, the prefix is actually a local IPv6 address of the originating router.  
7 NU bit No unicast bit: if set, the prefix should be excluded from IPv6 unicast calculation.  

8.2.5.7 Inter-Area-Router-LSA (Type 0x2004) 

Inter-Area-Router-LSAs are originated by ABRs to advertise ASBRs from other areas into this area. A 
separate Inter-Area-Router-LSA is originated for each ASBR. This is necessary to inform all routers in this 
area of the existence of an outside ASBR. Inter-Area-Router-LSA is the equivalent of OSPF for IPv4's AS-
Summary-LSA. As shown in Figure 8-25, the Inter-Area-Router-LSA contains the Options field (refer 
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back to Table 8-4), the Metric field, and the Router ID of the ASBR. The Metric field represents the cost 
from the ABR to the ASBR.  

Figure 8-25. Inter-Area-Router-LSA 

In the tree-building process, this LSA represents an informational pointer associated with the ABR for 
attaching an ASBR to the SPF tree.  

8.2.5.8 AS-External-LSA (Type 0x4005) 

AS-External-LSAs are advertised by ASBRs to import external IPv6 prefixes into the AS. Each AS-
External-LSA represents one IPv6 prefix external to OSPF—i.e., learned from RIP, BGP, static, etc. They 
are flooded throughout the entire AS and are therefore known to every router except the routers in a stub 
area. Figure 8-26 explains the AS-External-LSA.  

Figure 8-26. AS-External-LSA 

In the tree-building process, this LSA represents an informational pointer associated with the ASBR for 
attaching external routes to the SPF tree. The AS-External-LSA fields are described in the following list.  
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E bit 

If set, the specified metric is a Type 2 external metric as explained in Section 8.2.1.3. The metric 
is considered larger than any path to any route within the AS. If set to zero, the metric is a Type 1 
external metric. It is expressed using the same units as the metric used in Router-LSA, Inter-Area-
Prefix-LSA, and Intra-Area-Prefix-LSA.  

F bit 

If set, a forwarding address has been included in this LSA. 

T bit 

If set, an external router tag has been included in the LSA. 

Metric (3 bytes) 

Defines the cost from the ASBR to the external IPv6 prefix. The interpretation of the metric value 
depends on the E bit.  

IPv6 Prefix Representation (0 to 20 bytes, in multiples of 4) 

Defines the actual IPv6 prefix advertised. It consists of four fields: the Prefix Length, the Prefix 
Options, the Referenced LS Type, and the actual IPv6 Address Prefix. The Prefix Length defines 
the length of the address prefix. The default route is represented by a 0 length prefix. Table 8-8
explains the prefix options. The Address Prefix represents the IPv6 address. If necessary, it is 
padded with zero bits to the next full 32-bit word.  

Referenced LS Type (part of the IPv6 Prefix Representation) 

If set to a value other than zero, an additional LSA is associated with this external route. This LSA 
is specified in the Referenced Link State ID field.  

Forwarding address (4 bytes) 

If the F bit is set, any router in the AS forwards data traffic (to the external IPv6 prefix specified 
with this LSA) to this forwarding address. If the F bit is not set, data traffic is forwarded to the 
ASBR originating this LSA. This field must never be set to the IPv6 unspecified address 
(0:0:0:0:0:0:0:0:0). If any router within the AS cannot reach the forwarding address or 
the ASBR, the IPv6 prefix of the external route is not added to the routing table.  

External Route Tag (4 bytes) 

If the T bit is set, this field contains additional information about the external route. This 
information, however, will never be used within the OSPF AS. See RFC 1745 for more details.  

Referenced Link State ID (4 bytes) 

If and only if the Referenced LS Type is set to a value other than zero, the Referenced LS Type, 
Referenced Link State ID (this field), and the advertising router of this LSA represent an existing 
LSA in the LSDB, providing additional information for this external IPv6 prefix. This 
information, however, is not used by the OSPF protocol itself. The precise nature of such 
information is not part of the OSPF specifications.  
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8.2.5.9 Link-LSA (0x0008) 

Link-LSAs are originated by each router, one for each link of the router. They are never flooded beyond 
this link. The Link State ID is set to the Interface ID of this link. The Link-LSA serves three purposes:  

• It provides the router's link-local address to all other routers attached to this link.  
• It provides a list of IPv6 prefixes associated with this link. 
• It provides a list of options to be used by the designated router for this link.  

Figure 8-27 outlines the Link-LSA. 

Figure 8-27. Link-LSA 

In the tree-building process, this LSA represents an informational pointer associated with each link from or 
to a Router-LSA. It attaches the link-local address of the link to the SPF tree. The Link-LSA fields are 
described in the following list:  

Router Priority (1 byte) 

The priority number given to this router on this interface. 

Options (3 bytes) 

This router would like to use the options specified here (see Table 8-4). This is an indication (to 
the DR on this transit link) of which options it should use. See Section 8.2.5.5.

Link-local address (16 bytes) 

The link-local address of the originating router's interface for this link.  

Number of prefixes (4 bytes) 

The number of prefixes to be advertised with this LSA.  
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IPv6 Prefix Representation (4 to 20 bytes, in multiples of 4) 

All IPv6 prefixes will be listed here according to the number of prefixes. It consists of four fields: 
the Prefix Length, the Prefix Options, an unused field (set to zero), and the actual IPv6 Address 
Prefix. The Prefix Length defines the length of the address prefix. Table 8-8 explains the prefix 
options. The Address Prefix represents the IPv6 address. If necessary, it is padded with zero bits to 
the next full 32-bit word.  

8.2.5.10 Intra-Area-Prefix-LSA (Type 0x2009) 

A router uses the Intra-Area-Prefix-LSA to advertise one or more IPv6 prefixes associated with either this 
router or a Network-LSA. As OSPF for IPv6 has removed all addressing semantics from the Router-LSAs 
and Network-LSAs, the Intra-Area-Prefix-LSA provides this information. Each address prefix advertised is 
associated with a Router-LSA or a Network-LSA. Figure 8-28 shows the contents of an Intra-Area-Prefix-
LSA. Particular attention should be paid to the Referenced LS Type, Link State ID, and Advertising Router 
fields, as explained below.  

Figure 8-28. Intra-Area-Prefix-LSA 

In the tree-building process, this LSA represents an informational pointer associated with a router, 
attaching IPv6 prefixes of its local interfaces to the SPF tree. It can also be associated with a transit link, 
attaching its IPv6 prefixes to the SPF tree. The Intra-Area-Prefix-LSA fields are detailed in the following 
list:  

Number of prefixes (2 bytes) 

The number of prefixes to be advertised with this LSA. 

Referenced LS Type, Link State ID, Advertising Router (10 bytes) 

If the Referenced LS Type is set to 1, the address prefixes are associated with this router. The 
Referenced Link State ID is set to 0, and the Referenced Advertising Router is set to the Router ID 
of the router originating this LSA. If the Referenced LS Type is set to 2, the address prefixes are 
associated with the Network-LSA. The Referenced Link State ID is set to the Interface ID of the 
link's DR, and the Referenced Advertising Router is the Router ID of the DR.  
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IPv6 Prefix Representation (4 to 20 bytes, in multiples of 4) 

All IPv6 Prefixes are listed here according to the length of prefixes. It consists of four fields: the 
Prefix Length, the Prefix Options, the Metric, and the actual IPv6 Address Prefix. The Prefix 
Length defines the length of the address prefix. Table 8-8, earlier in this chapter, explained the 
prefix options. The Address Prefix represents the IPv6 address. If necessary, it is padded with zero 
bits to the next full 32-bit word. The Metric field defines the cost of this prefix.  

8.2.6 Calculation of the OSPF Routing Table (Dijkstra Algorithm) 

Using the LSDB as a base, each router builds an SPF tree and adds the routes to the routing table. Each 
router keeps multiple LSDBs. The Link LSDB contains all LSAs with link-local flooding scope, the Area 
LSDB contains all LSAs with area flooding scope, and finally, the AS LSDB contains all LSAs with AS 
flooding scope. The ABR has one Area LSDB for each locally attached area. The tree-building involves 
the three-step process described below. The sample network depicted in Figure 8-29 illustrates the process. 
Steps 1 and 2 must be performed on the Area LSDB. The ABR has to do them for each local area as it 
builds one SPF tree for each area.  

Figure 8-29. Sample network and its LSDB 

8.2.6.1 Step 1: Intra-area routes 

In Step 1, the router builds the core tree using the Router-LSA and Network-LSA for this area. Remember 
that these two LSAs contain actual pointers. Each router places its own Router-LSA at the root of the tree. 
Each link entry in the Router-LSA represents a pointer to another Router-LSA (link type 1 or 4) or to a 
Network-LSA (link type 2). The Neighbor ID and, on link type 2, the Interface ID identify the respective 
LSA. Each adjacent LSA is placed temporarily in the tree as a branch, along with its metric, and the least-
cost branch is made permanent because it represents the shortest path. Its LSA is examined next. If it is a 
Router-LSA, each link entry provides a new set of LSAs as candidates for the tree. If it is a Network-LSA, 
each attached router identifies a new set of LSAs as candidates, this time without a metric, because the 
metric to this transit link has already been determined. The candidates are added to the tree temporarily 
unless the candidate is already permanently in the tree and can therefore be ignored. Again, the LSA with 
the smallest metric (accumulated metric from the root) is made a permanent branch and its contents are 
examined. If this particular LSA exists as a temporary branch anywhere else in the tree, the temporary 
branch(es) can be eliminated. This process continues until there are no more Network-LSAs or Router-
LSAs to be added. In case of two or more branches having the same least costs, each branch is made 
permanent.  
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The SPF core tree is now built. The tree, however, contains no addressing information. This address 
information is provided by the Intra-Area-Prefix-LSA. The router simply adds the Intra-Area-Prefix-LSA 
to the Router-LSA or Network-LSA according to the referenced LSA. The last step is to find the next hop 
information. Next hop addresses are the link-local addresses of directly connected routers. This 
information is provided by the Link-LSA originated by the directly connected routers. The router has now 
found all routes within the area and adds them to the OSPF routing table as Intra-area routes. Figure 8-30
explains the building of the SPF tree of area 1 for Router R1.  

Figure 8-30. Intra-area tree for router R1 in area 1 

8.2.6.2 Step 2: Inter-area routes 

The router identifies all Inter-Area-Link-LSAs of this area. Its ABR must exist in the previously 
constructed tree. These LSAs are now associated with the ABR and added to the tree with the advertised 
metric. This attaches IPv6 prefixes of inter-area routes to the tree. The total cost to these routes consists of 
the cost to the ABR added to the cost advertised in the Inter-Area-Link-LSA. If the same prefix appears 
more than once, the one with the best total cost is considered. If the costs are equal, all equal-cost prefixes 
must be accepted into the inter-area routing table. The next hop is determined as the directly connected 
router on the shortest intra-area path to the ABR. Figure 8-31 illustrates this process for router R1.  
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Figure 8-31. Inter-area routes for router R1 

If the router itself is an ABR, only Inter-Area-Link-LSAs originated by other ABRs are considered. All 
Inter-Area-Link-LSAs that represent routes for directly attached areas are ignored, because there is always 
an intra-area path to that destination, and intra-area paths are always preferred.  

8.2.6.3 Step 3: External routes 

The router first identifies all Inter-Area-Router-LSAs and associates them with the ABRs as described in 
step 2. This ensures that all ASBRs have been identified. Next, the router associates all AS-External-LSAs 
with their corresponding ASBR and adds them to the SPF tree. The IPv6 prefixes of all newly added LSAs 
form the external routes. Depending on the metric type, the router now enters these routes into the 
external-1 or external-2 routing table. If the same prefix appears more than once, external-1 routes are 
preferred over external-2 routes. If the same prefix still appears more than once, the one with the best total 
cost is considered. If the costs are equal, all equal-cost prefixes must be accepted. The next hop is 
determined as the directly connected router on the shortest intra-area path to the ASBR or to the 
forwarding address, if the F bit has been set within the LSA. Figure 8-32 illustrates this process for router 
R1.  
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Figure 8-32. External routes for router R1 

The calculation of the OSPF routing table is now finished, and its content is handed to the internal routing 
process of the router.  

8.2.7 LSA Flooding 

Any change in the network causes certain link state information to change. Examples of such changes 
include the following:  

• The state of a router's interface changes. 
• A neighbor transitions from or to full state. 
• The DR changes. 
• A new prefix is added or deleted on any given interface. 
• An area's summary information changes. 
• An external route is added or withdrawn at the ASBR. 

The router detecting the change rewrites the LSA accordingly, increases the sequence number, and gives 
the LSA to the flooding process. According to Table 8-5, the LSA is then flooded to a neighbor only (link 
scope), to all neighbors in the same area (area scope), or to all neighbors (AS scope).  

Flooding means that the LSA is passed from the advertising router to its adjacent neighbors. Depending on 
the flooding scope of the LSA, the neighbors then pass it on to their neighbors, and so on. Each router 
receiving an LSA first evaluates whether the LSA is new or has a higher sequence number than the one 
already installed in the LSDB. If either of these two conditions is true, the LSA is added or replaced in the 
LSDB. Now the router considers the interfaces to be used for further flooding. It will not flood the LSA 
out the incoming interface, with one exception: if the router is a DR for the incoming interface of the LSA 
and the LSA was not sent by the BDR, it must be flooded back out the same interface. The DR is 
responsible for sending LSAs to all its neighbors. Another reason not to flood the LSA is if the LSA is 
older than or the same age as the one already installed. This prevents LSAs from looping in the network. 
LSAs are normally sent to the multicast address AllSPFRouters, with the following exceptions:  
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• On transit networks, routers in the DR-Other state send LSAs to the address AllDRouters. The 
update reaches the DR/BDR, which in turn sends it back to all other routers on this transit link 
using the AllSPFRouter address.  

• If a router requests a link state update sending a Link State Request packet, the LSA uses the 
unicast address of the requesting router.  

• On NBMA, all LSAs are sent unicast to the statically configured neighbors.  

Figure 8-33 shows the process of a DR receiving new or changed LSAs and flooding them to all routers.  

Figure 8-33. LSA flooding 

Each router receiving a new or changed LSA has to acknowledge this LSA. Sending a Link State 
Acknowledgment packet usually accomplishes this. It could also be acknowledged by sending back the 
LSA if the received LSA is older or the same age as the one already installed in the LSDB. In that case, the 
sequence number is set to the one already installed. Unacknowledged LSAs have to be retransmitted. Each 
router keeps track of which neighbor has acknowledged which LSA. Retransmissions are always sent to 
the unicast address of the neighboring router.  

A sequence number is assigned to the LSA by the advertising router to keep track of the most recent 
instance of this particular LSA. The sequence number is incremented by the advertising router each time 
the LSA is changed. When a new or changed Router-LSA or Network-LSA is received and accepted, the 
router installs it in the LSDB. It then recalculates the SPF tree. If a new or changed LSA of another type is 
received, it is not necessary to recalculate the SPF tree because these LSAs represent informational 
pointers only. They replace or remove the existing information. The new information is used to reevaluate 
the best path for the intra-area, inter-area, or external routers.  

8.2.7.1 Aging an LSA 

In addition to the sequence number, each LSA maintains an Age field. The age is expressed in seconds. 
Each router increments the Age field of its LSA continuously. If an LSA is transmitted to the neighbor 
router, a transmit delay must be added to the Age field. An LSA can never age beyond a Maximum Age 
(MaxAge), which is an architectural constant set to 3,600 seconds. Usually a router is flooding a new 
instance (increment sequence number) of its own LSA when it has reached MaxAge/2. LSAs that have 
reached MaxAge are not considered for the SPF tree and are eventually deleted from the LSDB. The 
advertising router can prematurely age an LSA to flush it from the OSPF area or AS. This would be done 
if, for example, an external route was withdrawn. Another reason to prematurely age an LSA might occur 
if the LSA has reached the biggest sequence number possible. Before wrapping the sequence number 
(starting again), the LSA has to be flushed.  

 



143

8.2.7.2 Self-originating LSAs 

A router may receive an LSA that it has issued itself. This could happen if there are redundant links within 
the area, forming a loop. Self-originated LSAs are normally discarded, unless the self-originated LSA is 
newer. Obviously, this should not happen because only the advertising router can increment the sequence 
number of the LSA. If, however, the router has been rebooted, previously issued LSA are still held in the 
other router's LSDB. If a newer, self-originated LSA is received, the router prematurely ages that LSA, 
thereby flushing it from the area or AS.  

8.2.7.3 Handling of unknown LSAs 

OSPF for IPv6 has added the capability to handle unknown LSAs. Each LSA header contains the U bit in 
its LSA Type field. If the U bit is set, the unknown LSA is flooded according to the encoded flooding 
scope. A U bit set to zero indicates link-local flooding scope. The exception to the above rule is flooding 
into a stub area. AS-External-LSAs are never flooded into a stub area. To prevent unnecessary flooding of 
LSAs into a stub area, the following rule applies: if the LSA is unknown and either its flooding scope is set 
to AS or its U bit is set, the LSA is discarded and not flooded into a stub area.  

8.3 BGP Extensions for IPv6 

There is no actual BGP for IPv6. The IPv6 support derives from the capability of BGP-4 to exchange 
information about network layer protocols other than IPv4. These multiprotocol extensions of BGP-4 are 
defined in RFC 2858, which obsoletes RFC 2283. RFC 2283 is mentioned here because it is the base 
document for RFC 2545, which defines the IPv6 extensions of BGP-4. It is important to understand BGP-4 
fully before looking at its multiprotocol extensions. The following sections start with a short overview of 
BGP-4 and its operations as defined in RFC 1771. BGP message types are then discussed. The last part 
covers the implementation of IPv6 information carried within BGP-4.  

8.3.1 BGP-4 Overview 

Each AS runs its interior routing protocol (RIP, OSPF, etc.) to distribute all routing information within the 
AS. The BGP is an exterior routing protocol whose primary function is to exchange information about the 
reachability of networks between ASes. Each AS receives a unique AS number assigned by the numbering 
authority. Figure 8-34 shows the different types of ASes that can be interconnected using BGP-4.  

Figure 8-34. BGP traffic and AS types 

The AS types are further explained in the following list: 



144

Transit AS 

A transit AS has multiple connections to other AS. Routing updates from any AS arriving at the 
transit AS may be passed through the AS and distributed out to other neighboring ASes. A transit 
AS can forward traffic to any other ASes based on the routing information received. The ASes of 
larger ISPs are usually of this type.  

Stub AS 

A stub has a single connection to another AS. All traffic to or from the stub AS passes through this 
link. Smaller ISPs and campus or corporate networks use this kind of AS.  

Multihomed nontransit AS 

A multihomed nontransit AS has multiple connections to one or more other AS. It does not pass 
routing updates through. Traffic not belonging to this AS is therefore never forwarded. A 
multihomed nontransit AS allows multiple entry/exit points to be used for load sharing of inbound 
and outbound traffic.  

Two routers exchanging routing information with BGP are called BGP Peers or BGP speakers. They 
establish a TCP session first because TCP guarantees a reliable connection. The peers then open a BGP 
connection to exchange BGP messages. The most important BGP message is the UPDATE message, 
which contains the routes to be exchanged. A BGP route is defined as a unit of information consisting of 
the Network Layer Reachability Information (NLRI) and a set of path attributes. The NLRI is basically an 
IPv4 prefix and its prefix length. Any concept of IPv4 class information has been eliminated. The NLRI 
may represent a single network or, more commonly, an aggregate (summary) of a range of addresses. Each 
NLRI is accompanied by a set of path attributes that add additional information to the BGP route, i.e., the 
next hop address, a sequence of ASes through which the route has passed during its update, or its origin. 
Routing decisions and traffic management are often based on these path attributes. One attribute must be 
emphasized here, as it plays a very important role in loop detection:it is called AS_PATH, and it carries a 
sequence of AS numbers through which the route has passed. If the receiving peer recognizes its own AS 
number within the AS_PATH, it rejects the corresponding route.  

BGP routing updates are exchanged between two peers. They are governed by a set of rules called policies. 
Outbound policies specify which NLRIs are advertised to a particular peer. A router can advertise only the 
NLRI it uses itself. Inbound policies specify which NLRIs are accepted from a particular peer. Policies 
may also be used to modify an NLRI and its attributes to change the characteristics of a route.  

8.3.1.1 Establishing a BGP connection 

In order to exchange routing updates, two peers first have to establish a BGP connection. Figure 8-35
illustrates the steps needed to establish a BGP connection, including the different BGP messages 
exchanged and the peer state. The entire state machine is explained in detail in RFC 1771. Each message 
and its fields are explained in Section 8.3.2.
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Figure 8-35. Establishing a BGP connection 

If both routers simultaneously try to establish a BGP connection to each other, two parallel connections 
might well be formed. To avoid this connection collision, one router has to back down. The connection 
initiated by the router with the higher BGP Identifier prevails. The BGP Identifier is uniquely assigned to 
each BGP router and is exchanged during the OPEN message. Once the open is confirmed, the routers 
exchange the entire routing table based on their policies. Only changes in the routing table are exchanged 
from now on. KEEPALIVE messages prevent the connection from timing out. The TCP session guarantees 
reliable delivery of each packet.  

BGP distinguishes between the following peer connections:  

IBGP connection 

The peers are in the same AS and are called internal peers. BGP routes learned from internal peers 
must not be sent back to other internal peers; they can only be sent to external peers. Each internal 
peer must have a connection to all other internal peers. Internal peers are fully meshed. The 
introduction of AS confederation for BGP (RFC 3065) or BGP route reflection (RFC 2796) 
relaxes the above rule. The AS_PATH and NEXT_HOP attributes must not be modified when 
passing updates to internal peers.  

EBGP connection 

The peers are in different ASes and are called external peers. BGP routes learned from external 
peers can be updated to all other peers. When sending an update to an external peer, the 
AS_PATH and NEXT_HOP attributes are modified. The sending router adds the local AS number 
to the AS_PATH and sets the NEXT_HOP field to its local IPv4 address.  

NOTIFICATION messages inform the peers of any errors during the open or update process. The 
connection can be shut down gracefully using a cease NOTIFICATION message.  

8.3.1.2 Route storage and policies 

BGP routes are stored in a Routing Information Base (RIB). Figure 8-36 shows the three different RIBs 
and their interaction.  
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Figure 8-36. BGP RIBs and its interactions 

Incoming messages could contain new feasible routes, replacement routes of earlier updates, or routes that 
have been withdrawn by the advertising peer. All these routes are placed into the Adj-RIB-In. For each 
new or changed route, a degree of preference is calculated based on the inbound policy. This preference is 
placed into the attribute LOCAL_PREF. If the route arrives from a internal peer, the LOCAL_PREF is 
already carried in the update and should not be recalculated. Each route in the Adj-RIB-In is now 
processed by the route selection process and entered into the Loc-RIB. The selection process first looks at 
the NEXT_HOP and AS_PATH attributes of the route. The IP address specified by the NEXT_HOP must 
be reachable through an entry in the local routing table. The AS_PATH must not contain the local AS 
number. If the two attributes comply, the route is accepted or ignored based on the inbound policy; 
otherwise, the route is ignored. In case of multiple routes to the same destination, the route with the highest 
preference is accepted. In case of the same preference, a complex tie-breaking rule ensures that only one of 
the routes to the same destination is accepted. See RFC 1771 for more details on this tie-breaking rule.  

Routes in the Loc-RIB are now placed into the local routing table. The true next hop address is taken from 
the local route entry to the IPv4 address specified in the NEXT_HOP attribute.  

All routes in the Loc-RIB and all routes in the local routing table are eligible to be advertised to external 
peers of this router. Only routes in the Loc-RIB learned from external peers are eligible to be advertised to 
all internal peers of this router unless route reflection is enabled (see RFC 2796). The outbound policy 
disseminates the routes to a peer-specific Adj-RIB-Out. The outbound policy may perform route 
aggregation or path attribute modification. Changes in the Adj-RIB-Out cause the update process to send 
an update to the peer.  

8.3.2 BGP Message Header 

BGP messages are carried on top of TCP connections, which can be established either over IPv4 or IPv6. 
The source and destination IP addresses of the datagram depend on the peer configuration. They are 
always unicast. BGP connections use the well-known TCP port 179. Remember that only one TCP 
connection is established between two peering routes. Figure 8-37 shows the BGP message header format. 
The header has a fixed size of 19 bytes.  

Figure 8-37. BGP message header format 
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The fields of the BGP header are explained in detail in the following list:  

Marker (16 bytes) 

Contains authentication data if authentication was negotiated between the peers. All bits are set to 
one if no authentication is used or in the OPEN message.  

Length (2 bytes) 

The total length of the BGP message, including headers. The value must be between 19 and 4096. 
The maximum message size of any BGP message is 4096 bytes.  

Type (1 byte)  

Indicates the BGP message types, as listed in Table 8-9.

Table 8-9. BGP message types  
Type Name Description 
1 OPEN Initializes BGP connection and negotiates session parameters 
2 UPDATE Exchanges feasible and withdrawn BGP routes 
3 NOTIFICATION Reports errors or terminates BGP connections 
4 KEEPALIVE Keeps the BGP connection from expiring 

8.3.3 OPEN Message 

As soon as the TCP connection between two BGP peers has been established, the routers send OPEN 
messages to initialize the BGP connection. This message verifies the validity of the peer and negotiates 
parameters used for the session using the fields illustrated in Figure 8-38. To verify the validity of a peer, 
each side of the connection must configure the IP address and the AS number of the peer.  

Figure 8-38. The BGP OPEN message 

The fields of the OPEN message are detailed in the following list: 

Version (1 byte) 
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Indicates the BGP version used by the sending peer. The current version is 4. Both peers have to 
agree on the same version. The version can be negotiated. Each peer usually indicates the highest 
version it supports. If the receiving peer does not support this version, it notifies the peer and 
terminates the session.  

My Autonomous System (2 bytes) 

Indicates the AS number of the sending router. The receiving router must verify this number to be 
the peer's AS number. If it is incorrect, the peer is notified and the session is terminated. If the AS 
number is the same as the receiving router's AS number, the peer is internal (IBGP); otherwise, the 
peer is external (EBGP).  

Hold time (2 bytes) 

Proposes a maximum time in seconds that may elapse before any BGP message must arrive on 
this interface. The hold timer is negotiated to the smaller value advertised by either peer. To keep 
a BGP connection from expiring, the peers send KEEPALIVE messages once every HoldTime/3 
second. A hold time of zero indicates that no KEEPALIVE messages need to be sent. The value of 
the hold time is 0 or greater than 2.  

BGP Identifier (4 bytes) 

Each router must be identified by a unique, globally assigned BGP identifier. At startup, the BGP 
Identifier is set to an IPv4 address of a local interface. This means the router must a have at least 
one IPv4 address configured locally, even in an IPv6-only environment. The message is rejected if 
the BGP Identifier equals the BGP Identifier of the receiver or if the BGP Identifier is illegal. 
During route selection, the BGP Identifier may be used to break a tie.  

Optional Parameter Length (1 byte) 

Indicates the length of optional parameters to be negotiated. A length of zero indicates that there 
are no optional parameters.  

Optional Parameters 

Each Optional Parameter consists of a <Type, Length, Value> (TLV) triplet. Both routers must 
know and agree on the optional parameter; otherwise, the peer is notified of the rejection of the 
parameter. This could lead to the termination of the session. At the moment, two parameters are 
specified, as explained in Table 8-10. The optional parameter BGP Capability is very important 
for IPv6 support.  

Table 8-10. Optional parameters  
Type Name Description 

1 Authentication
The parameter consists of two fields: Authentication Code and Authentication Data. 
The Authentication Code defines the authentication mechanism used and how the 
marker and authentication data field are to be computed.  

2 BGP 
Capability 

The parameter consists of one or more <Code, Length, Value> triplets identifying 
different BGP Capabilities. It is defined in RFC 2842. The capability parameter may 
appear more than once in the OPEN message.  

The Capability Code set to 1 indicates the Multiprotocol Extension Capability, as 
defined in RFC 2858.  
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The Multiprotocol Extension Capability has a 4-byte value field. The first 2 bytes identify the Address 
Family Identifier (AFI), byte 3 is reserved, and byte 4 defines the Subsequent Address Family Identifier 
(SAFI). AFI defines the network layer protocol used in the multiprotocol extension. SAFI defines 
additional information about the protocol, such as whether the protocol uses unicast forwarding (SAFI=1), 
multicast forwarding (SAFI=2), or both (SAFI=3). To support IPv6, the Multiprotocol Extension 
Capability is set to <Code=1, Length=4, Value=hexadecimal 0x0002 0001). 

8.3.4 UPDATE Message 

An UPDATE message carries BGP route(s) advertised by the originating peer. It is divided into three 
sections, as outlined in Figure 8-39. The first section specifies the IPv4 NLRI that the sending peer is 
withdrawing. The second section defines all path attributes associated with the feasible IPv4 NLRI 
followed in section three. Multiple NLRI with the same exact same set of path attributes can be placed in a 
single UPDATE message.  

Figure 8-39. The BGP UPDATE message 

The fields of the UPDATE message are detailed in the following list: 

Unfeasible Routes length (2 bytes) 

Defines the length of the Withdrawn Routes field. Set to zero, it indicates that the originating peer 
has no route to withdraw with this message.  

Withdrawn Routes  

A list of IPv4 NLRIs that are no longer valid. Each NLRI is encoded as <length, prefix> and 
represents an IPv4 prefix. The 1-byte Length field defines the length of the corresponding Prefix 
field. The Prefix field is padded to the full octet with zero bits. Because the NLRIs are IPv4 
prefixes, this field can never be used to withdraw IPv6 routes. See Section 8.3.7 for further details.  

Total Path Attribute length (2 bytes)  

Defines the length of the Path Attributes field.  
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Path attributes 

Contains a list of path attributes that belong the feasible NLRI advertised. Attributes are further 
explained in Section 8.3.5.

Network Layer Reachability Information 

A list of IPv4 NLRIs that are advertised with this update. Each NLRI is encoded as <length, 
prefix> and represents an IPv4 prefix. The 1-byte Length field defines the length of the 
corresponding Prefix field. The Prefix field is padded to the full octet with zero bits. The total 
length of this field is calculated as follows:  

UPDATE message length-23-Unfeasible Routes Length-Total Path 
Attribute Length 

Because the NLRIs are IPv4 prefixes, this field can never be used to advertise IPv6 routes. See 
Section 8.3.7 for further details.  

8.3.5 BGP Attributes 

Path attributes provide additional information about the advertised NLRI. Each path attribute has a 2-byte 
attribute header, as depicted in Figure 8-40.

Figure 8-40. The BGP path attributes 

The Path Attribute header is explained in detail in the following list.  

O bit (Optional bit) 

Defines whether the attribute is optional (set to one) or well known (set to zero). A well-known 
attribute must be recognized and supported by each BGP router. Optional attributes may not be 
recognized by some routers.  

T bit (Transitive bit) 

Defines whether the attribute is transitive (set to one) or nontransitive (set to zero). Transitive 
attributes must always be passed on when the NLRI is advertised to another peer. Well-known 
attributes must always be transitive.  

P bit (Partial bit) 

Applies to optional transitive attributes only. If any router along the update path does not 
recognize the optional transitive attribute, it must set the P bit to one. This indicates that at least 
one router in the path to the route does not recognize this attribute. This bit must always be set to 
zero for optional nontransitive or well-known attributes.  
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E bit (Extended length bit) 

Defines whether the attribute length field is 1 byte (set to zero) or 2 bytes (set to one). Extended 
length may be used if the attribute's data is longer than 255 bytes.  

Attribute code (1 byte) 

Defines the type of attribute. Table 8-11 lists and explains some of the most common attributes. 
Detailed explanations should be taken directly from RFC 1771 or any RFC extending BGP (e.g., 
BGP Route Reflection defines attribute types 9 and 10).  

Table 8-11. BGP attributes  
Type Name/Flags Description 

1 ORIGIN (well known) 
Defines the original source of this route.  

0=IGP, 1=EGP, 2=Incomplete  

2 AS_PATH (well known) 

A sequence of AS numbers that this route has crossed during its 
update. The rightmost AS number defines the originating AS. Each 
AS crossed is prepended. Prevents loops and can be used for 
policies.  

3 NEXT_HOP (well known) Specifies the next hop's IPv4 address. Cannot be used for IPv6.  

4 MED (optional nontransitive) 

The MULTI_EXIT_DISC (MED) indicates a desired preference (4-
byte) of this route to the peer. The lower the better. Designed for 
multiple EBGP connections between two ASes to load-share 
inbound traffic.  

5 LOCAL_PREF (well known) 

Defines a local preference (4 byte) of this route. The higher the 
better. It is usually calculated on routes arriving from external peers 
and preserved to internal peers. Designed to load-share outbound 
traffic.  

6 ATOMIC_AGGREGATE 
(well known) 

Specifies that one of the routers has selected this less-specific route 
over a more-specific route.  

7 AGGREGATOR (optional 
transitive) 

The BGP Identifier of the router that aggregated routes into this 
route.  

8 COMMUNITY (optional 
transitive) 

Carries a 4-byte informational tag. Can be used by the route 
selection process. Defined in RFC 1997.  

14 MP_REACH_NLRI (optional 
nontransitive) 

Advertises multiprotocol NLRI. Used for IPv6 prefixes. See Section 
8.3.7.

15 MP_UNREACH_NLRI 
(optional nontransitive) 

Withdraws multiprotocol NLRI. Used for IPv6 prefixes. See Section 
8.3.7.

8.3.6 NOTIFICATION and KEEPALIVE Messages 

NOTIFICATION messages are used to report errors. A 1-byte Error Code field specifies the main category 
of the error. A Subcode field providing the actual error follows the Error Code field. For troubleshooting 
reasons, additional data about the error is placed in the Data field. See RFC 1771 section 4.5 for all error 
codes. Additional documents extending BGP add error sub-codes. Error messages for the BGP Extension 
for IPv6 are specified in RFC 2858.  

KEEPALIVE messages contain no data whatsoever, just the BGP message header with the message type 4. 
They are used to prevent a BGP connection from timing out.  
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8.3.7 BGP Extension for IPv6 

BGP-4 carries only three pieces of information that are truly IPv4-specific:  

• NLRI (feasible and withdrawn) in the UPDATE message contains an IPv4 prefix.  
• NEXT_HOP path attribute in the UPDATE message contains an IPv4 address.  
• BGP Identifier is in the OPEN message and in the AGGREGATOR attribute.  

To make BGP-4 available for other network layer protocol, the multiprotocol NLRI and its next hop 
information must be added. RFC 2858 extends BGP to support multiple network layer protocols. IPv6 is 
one of the protocols supported, as emphasized in a separate document (RFC 2545). To accommodate the 
new requirement for multiprotocol support, BGP-4 adds two new attributes to advertise and withdraw 
multiprotocol NLRI. The BGP Identifier stays unchanged. BGP-4 routers with IPv6 extensions therefore 
still need a local IPv4 address. To establish a BGP connection exchanging IPv6 prefixes, the peering 
routers need to advertise the optional parameter BGP capability to indicate IPv6 support. BGP connections 
and route selection remain unchanged. Each implementer needs to extend the RIB to accommodate IPv6 
routes. Policies need to take IPv6 NLRI and next hop information into consideration for route selection.  

An UPDATE message advertising only IPv6 NLRI sets the unfeasible route length field to zero and carries 
no IPv4 NLRI. All advertised or withdrawn IPv6 routes are carried within the MP_REACH_NLRI and 
MP_UNREACH_NLRI. The UPDATE must carry the path attributes ORIGIN and AS_PATH; in IBGP 
connections; it must also carry LOCAL_PREF. The NEXT_HOP attribute should not be carried. If the 
UPDATE message contains the NEXT_HOP attribute, the receiving peer must ignore it. All other 
attributes can be carried and are recognized.  

An UPDATE message could advertise IPv6 NLRI and IPv4 NLRI with the same path attributes. In this 
case, all fields can be used. For IPv6 NLRI, the NEXT_HOP attribute should, however, be ignored. IPv4 
and IPv6 NLRI are separated in the corresponding RIB.  

8.3.7.1 MP_REACH_NLRI path attribute 

This optional nontransitive attribute allows the exchange of feasible IPv6 NLRI to a peer, along with its 
next hop IPv6 address. The NLRI and the next hop are delivered in one attribute, as depicted in Figure 8-
41.

Figure 8-41. The MP_REACH_NLRI path attribute for IPv6 
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The fields comprising the MP_REACH_NLRI path attribute are detailed in the following list:  

Address Family Identifier (AFI) ( 2 bytes) 

Defines the network layer protocol. IPv6 uses the value 0x0002 (hexadecimal) as specified in 
RFC 1700.  

Subsequent Address Family Identifier (SAFI) (1 byte) 

Defines if the protocol uses unicast forwarding (SAFI=1), multicast forwarding (SAFI=2), or both 
(SAFI=3).  

Length of the next hop network address (1 byte) 

Defines the number of bytes used for the Next Hop Address field. IPv6 sets this field to 16 or 32, 
depending on the number of the next hop address provided.  

Network address of next hop 

Contains the next hop IPv6 address of this IPv6 route. This field is updated when advertising this 
route to an external peer. The router chooses its own IPv6 global/site-local address of the link to 
the external peer. This field is generally not updated when advertising this route to an internal 
peer. If the next hop IPv6 address and the peer IPv6 address share a common link—e.g., a link 
between two external peers—the link-local address of the common link should be added as a 
second next hop address. In return, when advertising this route to an internal peer, the link-local 
address received from an external peer needs to be removed.  

Number of SNPA (1 byte) 

Defines the number of Subnetwork Points of Attachment (SNPA) to follow right after this field. 
SNPA carry additional information associated with the router associated with the next hop 
address. IPv6 does not use this field and sets it to 0. Therefore, no SNPA data field will follow.  

Network Layer Reachability Information  

A list of IPv6 NLRI that are advertised with this attribute. Each NLRI is encoded as <length, 
prefix>. The 1-byte Length field defines the length of the corresponding Prefix field. The Prefix 
field is padded to the full octet with zero bits. The length of this field is the remaining length after 
deducting the length of all previous fields from the attribute length.  

8.3.7.2 MP_UNREACH_NLRI path attribute 

This optional nontransitive attribute allows the sending peer to withdraw multiple, no longer valid IPv6 
routes. As illustrated in Figure 8-42, it basically contains a list of IPv6 prefixes that the peer should remove 
from its RIB.  
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Figure 8-42. The MP_UNREACH_NLRI path attribute for IPv6 

The fields comprising the MP_UNREACH_NLRI path attribute are detailed in the following list.  

Address Family Identifier (AFI) (2 bytes) 

Defines the network layer protocol. IPv6 uses the value 0x0002 (hexadecimal).  

Subsequent Address Family Identifier (SAFI) (1 byte) 

Defines whether the protocol uses unicast forwarding (SAFI=1), multicast forwarding (SAFI=2), 
or both (SAFI=3).  

Withdrawn routes 

A list of IPv6 NLRI that are withdrawn from service. Each NLRI is encoded as <length, prefix>. 
The 1-byte Length field defines the length of the corresponding Prefix field. The Prefix field is 
padded to the full octet with zero bits. The length of this field is the remaining length after 
deducting the length of all previous fields from the attribute length.  

8.4 Other Routing Protocols for IPv6 

The final section of this chapter is focused on upcoming routing protocols that are still in draft stage. The 
two protocols discussed are Routing IPv6 with IS-IS and EIGRPv6.  

8.4.1 Routing IPv6 with IS-IS 

IPv6 support with IS-IS defined in the draft document http://www.ietf.org/internet-drafts/draft-ietf-isis-
ipv6-02.txt. This document is based on the specifications for integrated IS-IS as defined in RFC 1195. 
Without in-depth knowledge of integrated IS-IS, the IPv6 extension cannot be understood. Note that the 
draft number may have increased by one or more when you try to find it.  

8.4.1.1 Integrated IS-IS 

Unlike the previous routing protocol discussions, this section gives only a very brief overview of integrated 
IS-IS. IS-IS originally defines the exchange of routing information between Intermediate Systems (ISes, 
otherwise known as routers) for the OSI network layer protocols CLNP and CONS. Other protocols use 
other routing protocols. Having separate routing protocols for each network layer is sometimes referred to 
as "ships in the night." Each routing protocol uses (or maybe wastes) its own resources, such as CPU and 
memory. A misbehaving routing protocol can destabilize another routing protocol.  
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An integrated routing protocol uses resources efficiently and is more stable. That is the idea behind 
integrated IS-IS (i/IS-IS), in which the routing protocol has been adapted to carry concurrently routing 
information for the OSI network protocols and for IPv4. This is achieved by introducing variable-length 
data fields in the form <Type, Length, Value> (TLVs). Each network layer protocol can use the TLVs 
according to its addressing syntax. Each supported network layer protocol is specified by its Network 
Layer Protocol Identifier (NLPID), assigned by ISO.  

Integrated IS-IS is an interior routing protocol based on link state updates. OSPF and IS-IS have many 
similarities: if you know one, the other is easy to grasp. We have already explained OSPF in detail, so we 
can briefly compare OSPF features with i/IS-IS. OSPF runs within an AS, and i/IS-IS runs within a routing 
domain. An i/IS-IS routing domain can be further split into multiple areas with a common central area. 
Routers within the central area are called Level 2 intermediate systems or L2 routers. Routers in all other 
areas are called Level 1 intermediate systems or L1 routers. L2 routers are, in most cases, L1 routers as 
well, like ABR in OSPF. Each area is identified by the first 13 bytes of the ISO NSAP address assigned to 
the router. Routers keep adjacencies with each other, initiated and maintained by IS-IS Hello packets. 
Routers can become adjacent only if they are on the same level. Once they have become adjacent, they 
advertise level 1 or level 2 Link State PDU (L1-LSP or L2-LSP). L1 routers originate L1-LSP advertising 
their local addresses. L2 routers originate L2-LSP advertising their local address, routes learned from 
directly attached areas, and external routes. Only L2 routers can advertise routes external to the routing 
domain, called ASBR in OSPF. To synchronize and acknowledge the most recent LSA, the routers use 
Sequence Number PDU (SNP), again for level 1 and level 2. A L1 router knows L1 routes in its area only 
by calculating a SPF tree to all destinations. L1 routers have no knowledge about any route outside their 
own area. Anything outside the area is reached via the closest L2 router. L2 routers, however, know all the 
routes internal and external to the routing domain. In addition, transit links are handled in i/IS-IS by 
implementing pseudonodes. The designated router of a transit link originates LSP on behalf of the 
pseudonode.  

8.4.1.2 Routing IPv6 with IS-IS 

Integrated IS-IS provides for the inclusion of variable-length fields (TLVs) in all IS-IS packets ( Hello, 
LSP, and SNP). Relevant addressing information makes use of this field. Hello packets and LSP packets 
carry a field specifying the network layer protocols. Each supported network layer protocol is specified by 
its NLPID, assigned by ISO. The value of the IPv6 NLPID is 142 (0x8E).  

The Internet draft proposes two new TLVs for IPv6. They are described in the following list. Remember 
that this is only a draft document; some of this information may change, or additional information may be 
added.  

The IPv6 Reachability TLV (Type 236)  

Defines the IPv6 prefix advertised within L1-LSP and L2-LSP. Within a L2-LSP, it can also be 
used to advertise an IPv6 prefix external to the routing domain by setting the external bit in the 
Control field. The following fields make up this TLV: Prefix Length, IPv6 Prefix, Metric (4 
bytes), and the Control field.  

IPv6 Interface Address TLV (Type 232)  

Defines the IPv6 addresses of one or more interfaces of this router. It is advertised in Hello 
packets, L1-LSP, and L2-LSP. For Hello packets, it must contain the link-local IPv6 address 
assigned to the interface that is sending the Hello packet. In LSP, it must contain the global/site-
local addresses assigned to the router.  
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8.4.2 EIGRPv6 

Enhanced IGRP is a routing protocol developed by Cisco Systems, Inc. Cisco Systems has announced 
plans to enhance EIGRP for IPv6. At the moment, there are no draft documents available.  
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Chapter 9. Upper-Layer Protocols 
The impact of IPv6 on upper-layer protocols is minimal because the datagram service has not changed 
substantially. This chapter discusses UDP and TCP over IPv6 and describes changes for upper-layer 
protocols, such as DNS, DHCP, SLP, FTP, Telnet, and HTTP, when used over IPv6. The most important 
changes are always needed where an IP address is used. Any process or application that uses an IP address 
needs to be updated to be able to handle the extended 128-bit address format. Applications that use a 
hardcoded 32-bit IPv4 address should be updated to use a DNS name instead so DNS can return either an 
IPv4 or an IPv6 address to make the IP protocol fully transparent.  

9.1 UDP/TCP 

Checksumming is done on different layers. Remember, the IPv6 header does not have a checksum. But a 
checksum is important on the transport layer to determine misdelivery of packets. Other upper-layer 
protocols may use a checksum, too. All checksum calculations that include the IP address in the calculation 
must be modified for IPv6 to accommodate the new 128-bit address.  

Transport protocols like UDP and TCP attach checksums to their packets. A checksum is generated using a 
pseudoheader. The TCP and UDP pseudoheader for IPv6 contains fields for source and destination 
address, payload length, and next header value (RFC 2460). If the IPv6 packet contains a routing header, 
the destination address used in the pseudoheader is the address of the final destination. If the source or 
destination address was changed in transit, the value of the pseudoheader at the destination will not match 
the value of the initial packet, which causes checksum calculation failure and an error report.  

Because the IPv6 address is so much longer than the IPv4 address, the IPv6 specification includes a new 
version of the pseudoheader. The IPv6 pseudoheader specification takes into account that an unknown 
number of extension headers can be present before the UDP or TCP layer, which is essential when 
calculating the payload length for the pseudoheader. With IPv4, a checksum in the UDP header was 
optional. With IPv6, the computation of a checksum is mandatory for UDP. IPv6 nodes that receive a UDP 
packet with a value of zero in the checksum field should discard the packet and log the error.  

The source node calculates and stores the checksum and the destination node verifies it. Figure 9-1 shows 
the format of the pseudoheader that is built and used to calculate TCP and UDP checksums.  

Figure 9-1. Format of the pseudoheader 

The following list describes each of the fields:  

Source Address (16 bytes) 

The source address of the IPv6 packet. 
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Destination Address (16 bytes) 

The destination address of the IPv6 packet. If there is a routing header in the packet, the address of 
the final destination is used for the checksum calculation. On the first node, this address is the last 
address in the list of the routing header. At the final destination, this is the destination address in 
the IPv6 header.  

Upper Layer Packet Length (4 bytes) 

This field contains the length of the Upper-Layer Protocol header plus data.  

Next Header (1 byte) 

The Next Header field identifies the type of the header, using the values listed in Table 2-1.

The same algorithm is used to calculate the checksum with IPv6 as is used with IPv4. The 16-bit checksum 
is computed over the entire pseudoheader. By including the source and destination addresses in the 
checksum calculation, any alteration of the addresses en route would be detected.  

9.2 DHCP 

DHCP is widely used to configure hosts with their IPv4 addresses and additional information. If you have 
an IPv6 network, you do not need DHCP to configure your hosts with address information. The stateless 
autoconfiguration mechanism will configure your hosts for their IPv6 addresses without the need to set up 
a DHCP server. All you need to do is configure your IPv6-enabled routers with the prefix information for 
the links to which they are attached. But you might still choose to have DHCP servers in some cases. Host 
configuration using DHCP with IPv6 is called stateful configuration. Maybe you have a specific IPv6 
addressing scheme, you need dynamic assignment of DNS servers, or you choose not to have the MAC 
address as a part of the IPv6 address. In these cases, you can use DHCP for address configuration. Or you 
have IPv6 hosts on links with no IPv6 router, in which case you would need to configure the IPv6 hosts 
using DHCP to distribute the prefix information. You can also combine stateless and stateful configuration 
by using autoconfiguration for the IPv6 address configuration and DHCP servers to provide additional 
configuration information.  

Note that DHCPv4 can also be used to configure hosts for IPv4-compatible IPv6 addresses (see RFC 
2893). The IPv4 address that is embedded in the four lowest order bytes of the IPv4-compatible IPv6 
address can be obtained through DHCP and then mapped into the IPv4-compatible IPv6 address by 
prepending the well-known 96-bit prefix 0:0:0:0:0:0.

9.2.1 Draft of DHCPv6 

The information in this section is based on draft http://www.ietf.org/internet-drafts/draft-ietf-dhc-dhcpv6-
23.txt, dated February, 2002. Although there will be changes to the final standard, it is interesting to look 
at parts of it to get a glance at where we are going with DHCP. If you are interested in following the 
development process, refer to the drafts at http://www.ietf.org. All references to DHCP in this chapter refer 
to DHCPv6.  

DHCP uses the following multicast addresses: 

All_DHCP_Agents address (FF02::1:2)

All DHCP agents (servers and relays) are members of this multicast group. DHCP clients use this 
link-scoped multicast address to reach DHCP agents on their link when they do not know the 
agents' link-local address.  



159

All_DHCP_Servers address (FF05::1:3)

All DHCP servers within a site are members of this multicast group. This site-scoped address is 
used by DHCP clients or relays to reach all DHCP servers within a site. They either do not know 
the server's unicast address or they want to reach all DHCP servers within the site.  

The following UDP ports are used with DHCPv6:  

UDP port 546 (Client port) 

Used by DHCP servers as the destination port to reach DHCP relays or DHCP clients. Used by 
DHCP relay agents as the destination port to reach DHCP clients.  

UDP port 547: Agent port 

DHCP clients use this port as the destination port to reach DHCP agents. DHCP relays use this 
port as the destination port to reach DHCP servers.  

The current draft defines 12 DHCP message types. Seeing how the set has been extended gives some 
information about the new functionality that we can expect. Table 9-1 summarizes the message types.  

Table 9-1. DHCPv6 message types  
Message type Description 
SOLICIT (1) Used by clients to locate DHCP servers.  
ADVERTISE (2) Used by servers as a response to SOLICIT.  
REQUEST (3) Used by clients to get information from servers.  
CONFIRM (4) Used by clients to verify that their address and configuration parameters are still valid.  

RENEW (5) Used by clients to renew their configuration parameters with their original DHCP server 
when their lease is about to expire.  

REBIND (6) Used by clients to extend the lifetime of their address(es) and renew their configuration 
parameters with any DHCP server when their lease is about to expire.  

REPLY (7) Used by DHCP servers responding to Request, Confirm, Renew, Rebind, Release, and 
Decline messages.  

RELEASE (8) Used by clients to release their IP address  

DECLINE (9) Used by clients to indicate that one or more addresses assigned to them are already in 
use on the link.  

RECONFIG-
INIT (10) 

Used by DHCP servers to inform clients that the server has new or updated configuration 
information. The clients then must initiate a request in order to obtain the updated 
information.  

INFORM (11) Sent by clients to request configuration parameters without the assignment of any IP 
addresses to the client.  

RELAY-FORW 
(12) 

Used by DHCP relays to forward client messages to servers. The relay encapsulates the 
client message in an option in the relay-forward message.  

RELAY-REPL 
(13) 

Used by DHCP servers to send messages to clients through a relay. The client message 
is encapsulated as an option in the relay-reply message. The relay decapsulates the 
message and forwards it to the client.  

The DHCP server-initiated configuration exchange is a great new feature. It can be used, for example, 
when links in the DHCP domain have to be renumbered or when new services or applications have been 
added and need to be configured on the clients. When services or applications need to be configured on the 
client, the DHCP server sends out a RECONFIGURE-INIT message (type 10). The client that receives this 
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message must initiate a REQUEST/REPLY message exchange to get the updated information. Haven't we 
been waiting for this?  

Authentication of DHCP messages is possible and can be accomplished through the use of the 
Authentication option. The authentication information carried in the Authentication option can be used to 
reliably identify the source of a DHCP message and to confirm that the contents of the DHCP message 
have not been changed. Multiple authentication protocols can be used with the Authentication option. Two 
such protocols are defined in this draft.  

According to this draft, DHCPv6 will support the following new features:  

• Configuration of dynamic updates to DNS 
• Dynamic renumbering  
• Relays can be preconfigured with server addresses or can use multicast addresses  
• Authentication 
• Requests by clients for multiple IP addresses 
• Reclamation of addresses using the RECONFIGURE-INIT message 
• Integration of stateless and stateful address autoconfiguration 
• Dynamic location of off-link servers by relays and clients 

IANA is the authority for managing multicast addresses, message types, options, and status codes. You can 
refer to their site for updated information.  

Other interesting drafts are out there. For example, http://www.ietf.org/internet-drafts/draft-ietf-dhc-
failover-10.txt defines a protocol that allows synchronization of DHCP data between DHCP servers to 
provide redundancy in the case of server failure. Another, http://www.ietf.org/internet-drafts/draft-ietf-dhc-
ldap-schema-00.txt, defines a schema for representing DHCP information in an LDAP directory, which 
allows for central administration of multiple DHCP servers in an enterprise. And the draft at 
http://www.ietf.org/internet-drafts/draft-ietf-dhc-dhcproam-00.txt defines authentication mechanisms for 
the configuration of roaming users. Other memos define options for DHCP configuration in VPN 
environments or for clients with wireless cards. Note that when you want to find those drafts, the draft 
number may have increased by one or more.  

9.2.2 Dynamic Updates to DNS 

With the widespread use of DHCP and autoconfiguration for dynamic IP address configuration, the need 
for a dynamic update of DNS for addition and deletion of records arose. RFC 2136 introduced the 
mechanism called Dynamic DNS (DDNS). It is supported by BIND Versions 8 and 9. The update 
functionality is usually used by applications like DHCP, but it can be implemented on hosts, too. With 
IPv6, dynamic addresses are often assigned using stateless autoconfiguration. A DNS update mechanism is 
necessary on each host to update its DNS records. There are important security aspects to consider when 
DDNS updates are made. It is important that you can control which nodes are authorized to make changes 
to your DNS records. Update policies must be implemented and Transaction Signatures (TSIG) or Domain 
Name System Security Extensions (DNSSEC) mechanisms should be used.  

9.3 DNS 

DNS is used in the IPv6 world to do name-to-address mappings and vice versa. Mixed IPv4/IPv6 
environments need multiple host entries in DNS. A host communicating with both versions of TCP/IP 
needs at least two entries in DNS—one with its IPv4 address and the other with its IPv6 address. Two new 
DNS record types have been defined for IPv6 hosts. RFC 1886 defines the AAAA type record (called 
quad-A), and RFC 2874 defines the A6 type record, which is designed to make renumbering of networks 
and TLA changes easier to administer.  
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For information about using DNS in combination with NAT-PT (the "PT" stands for Protocol Translation), 
which is described in Chapter 10, refer to RFC 2766.  

9.3.1 AAAA Records (RFC 1886) 

RFC 1886 describes DNS extensions for IPv6 implementations based on AAAA records. This record type 
can store a 128-bit IPv6 address, and the DNS value for this type of record is 28 (decimal). A host that has 
more than one IPv6 address has an AAAA record for each address. The corresponding reverse lookup 
domain is IP6.INT. The reverse lookup records are PTR records of type 12.  

An AAAA type record can look like this (RFC 1886): 

moon.universe.com   IN   AAAA   4321:0:1:2:3:4:567:89ab 

For reverse lookups, each subdomain level under IP6.INT represents 4 bits of the 128-bit address. The 
least significant bit appears at the far left of the domain name. Omitting leading zeros is not allowed in this 
case. So the PTR record for the previous example looks like this:  

b.a.9.8.7.6.5.0.4.0.0.0.3.0.0.0.2.0.0.0.1.0.0.0.0.0.0.0.1.2.3.4.I
P6.INT.IN    
PTR   moon.universe.com 

Note that there are several ways to represent reverse IPv6 addresses in DNS. It depends on the 
implementation, so refer to your vendor's documentation to find out what format is expected.  

9.3.2 DNAME and A6 Records (RFC 2672, RFC 2874) 

RFC 2672 describes DNAME records and RFC 2874 defines A6 records. These new record types support 
renumerable and aggregatable IPv6 addressing. The combination of DNAME and A6 records allows the 
maintenance of name-to-address mappings in a situation in which a network is renumbered or an 
organizational unit is renamed. For instance, if a company changes the NLA, all the AAAA records in 
DNS need to be changed. With the new A6 type, this is much easier. An A6 record can include a complete 
IPv6 address or just a contiguous portion of an address, such as the last 64 bits (the interface ID), and then 
refer to the rest of the address by a symbolic domain name. The resolver or name server must then follow 
the chain of A6 records from the host's domain name to the TLA ID. The delegation of the address space 
with IPv6 is not accomplished through zone partitions and NS records, but rather through DNAME 
records. Similar to the CNAME record, which provides an alias to a single host, the DNAME record 
provides an alias to an entire subtree of the name space.  

For example, a resolver looks up a qualified name of host.universe.com and finds a DNAME record of 
universe.com DNAME venus.universe.com. It resolves universe.com to 
venus.universe.com and looks up host.venus.universe.com. RFC 2874 has a detailed example 
for a multi-homed site connected to two providers. The RFC explains the prefix allocation and what kind 
of records would be in DNS to make it work. The full impact of nesting A6 chains is not measurable today. 
It is recommended that a chain go no deeper than 3 levels.  

The corresponding reverse lookup domain is rooted at IP6.ARPA. Only the first level of delegation needs 
to be under that domain. Reverse mapping with A6 records is a little more complex. It includes the use of 
the DNAME records and introduces bitstring labels defined in RFC 2673. Bitstring labels are a compact 
way of representing long sequences of binary labels in a domain name. The example in RFC 2874 also 
details the reverse lookup records for the same multi-homed site.  

The following is a summary of record type values in decimal: 
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• The value for the AAAA record type is 28. 
• The value for the A6 record type is 38.  
• The value for the DNAME record type is 39. 

Most applications on the market support and use the AAAA record type. The A6 and DNAME record 
types are experimental.  

9.3.3 DNS Servers 

BIND implements IPv6 DNS in an upgraded version of BIND 8 and completely in BIND Version 9. For 
BIND 8.2.3, a patch that adds IPv6 support is available.  

I installed BIND 9.1.2 on my SuSE Linux 7.2 with Kernel version 2.4.4. The minimum Kernel version 
required for BIND 9 is 2.4. I downloaded the bind sources from the Internet Software Consortium 
homepage at http://www.isc.org/products/BIND. The same site has a list of vendor implementations based 
on BIND at http://www.isc.org/products/BIND/vendorware.html. There are also links to versions of BIND 
that run on Windows NT and Windows 2000.  

The most important file for configuring a name server on Unix is /etc/named.conf. The file itself contains 
detailed information on how to configure it. To make name resolution work over IPv6, you need to add one 
important entry: listen on ipv6 { any }. This entry tells the name server to listen for IPv6 
queries. Then update /var/named with the entries for all IPv6 hosts.  

The entries in our zone record file are shown in Figure 9-2.

Figure 9-2. The zone record file 

Obviously, you would not usually put link-local addresses into your DNS. I did it in my lab just to show 
you how DNS replies to my queries. If you need a guide to how to configure your DNS for IPv6, go to 
Native6Group's web site at http://www.native6group.com. They have very good technical documents 
about IPv6, one of which explains in detail how to configure DNS for IPv6.  
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For a detailed explanation of BIND and DNS configuration, refer to DNS and 
BIND, by Paul Albitz and Cricket Liu (O'Reilly). It is a masterpiece, and we have 
nothing to add.  

9.3.4 Resolvers 

Resolvers must be able to handle all record types: the A record type for IPv4 and the A6 and AAAA record 
types for IPv6. Resolvers also need a mechanism for choosing the protocol on a dual-stack host. When the 
DNS server replies with a set of different addresses, resolvers need to implement a feature for a default 
choice of address, and this should be configurable. If the DNS reply contains an IPv4 and an IPv6 address, 
the resolver can either forward both addresses to the requesting application and let the application make the 
choice or make a choice on behalf of the application. If the resolver forwards the IPv4 address, the 
application will communicate over IPv4; if it forwards the IPv6 address, the application will communicate 
over IPv6. Applications written for dual-stack hosts should be able to determine whether they 
communicate with IPv6 or IPv4 peers.  

When people talk about IPv6 DNS, they are usually referring to two different aspects that are sometimes 
not pointed out clearly. One aspect is whether your DNS server supports IPv6 address records ( AAAA or 
A6 and DNAME records). The other issue is whether your resolver uses IPv4 or IPv6 as a transport when 
doing a lookup of records on a DNS server. For instance, if you have Windows 2000 or Windows XP with 
the IPv6 stack running, they both do lookups for IPv6 records, but they use IPv4 as the transport for the 
query. The support for resolving DNS names over IPv6, in the case of Microsoft, is planned for a future 
release.  

9.3.5 DNS Lookup 

For the DNS lookup of IPv6 records, your client needs a resolver that supports the new record types. In my 
case, I used SuSE Linux host Ford with BIND 9 utilities and my Windows 2000 host Marvin with the IPv6 
stack.  

I used nslookup to play with my new DNS server. You can also use dig and host for DNS lookups. They 
are installed with BIND 9. nslookup has many configuration options. It can be run in interactive mode, and 
you can specify what types of records you want to query. You can set the query mode to either A records 
for IPv4 or AAAA type records for IPv6, or you can set it to "any," in which case nslookup will request all 
records. The nslookup version I used did not support the A6 type. The DNS server still sends the 
information back, which is why you see the "unrecognized record" type in the answer.  

Hint for using nslookup: if you want to do a reverse lookup, you cannot use the 
abbreviated version for an IPv6 address. You have to type the address as, for 
example, fe80:0:0:0:a00:20ff:fe20:adc2. You can skip leading 
zeros, but you cannot replace a sequence of zeros with two colons. Newer 
implementations may change this. Use nslookup in debug mode to get additional 
information.  

Figure 9-3 shows the output of nslookup on Marvin.
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Figure 9-3. Output of nslookup 

We first used nslookup in interactive mode with the default options. nslookup defaults to query type A. 
Looking up arthur.universe.com with the default gave us the IPv4 address of arthur (192.168.0.66). 
Next, we changed the query type to AAAA. The reply gave us the IPv6 address of arthur plus additional 
information about our name server Ford: IPv4 address, AAAA type IPv6 address, and A6 type entry. 
Because this version of nslookup did not support A6 type records, the answer was shown as "unknown 
type 38."  

Being curious by nature, I traced the whole communication with Sniffer. Figure 9-4 shows how the same 
query looks in the trace file.  

Figure 9-4. DNS lookup in the trace file 

The first pair of request-replies is the standard query for the A record returning the IPv4 address 
192.168.0.66. Frame number 3 is the query for which we set the query type to AAAA. Figure 9-4
shows the part of the DNS reply that refers to arthur's IPv6 address. In the zone section, you can see what 
we have been asking for. We did nslookup for arthur.universe.com with the query type set to AAAA. The 
answer section provides the IPv6 address of arthur. You may be wondering about the "unknown type" 
message and the question marks in the nslookup output in Figure 9-3. Let's see what's actually in the reply 
coming from the server. Figure 9-5 shows the authority and additional record section in the same frame.  
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Figure 9-5. Authority and additional record section 

The authority section states that the name server for the domain universe.com is Ford.universe.com. The 
content in the authority section can be seen in the nslookup screenshot (Figure 9-3), the line just after the 
IPv6 address for the AAAA record of arthur (bottom of screenshot). Next, in the trace file, we see the 
additional record section 1. It contains the IPv4 address (A record) for the name server Ford.universe.com.
This refers to the third line in the nslookup output in Figure 9-3. The fourth line in the nslookup output is 
the one beginning with the three question marks and the unknown type 38 comment. This can also be seen 
in the trace file. Look at the additional record section 2. Sniffer doesn't decode type 38 yet, but we know 
that type 38 is the A6 record type. I checked the hexadecimal part of the reply packet in the trace, and 
following the A6 type value, the IPv6 address for Ford.universe.com can be seen. The additional record 
section 3 is not properly decoded either, but if we check the hex part of the trace, we can see that it 
contains the values seen in the nslookup output. It is the AAAA record (type 28 decimal, 1C in hex) for 
Ford.universe.com, containing the IPv6 address for Ford.

9.4 SLP 

The Service Location Protocol (SLP) discovers and selects services in IP networks. SLP Version 2 is 
specified in RFC 2608. RFC 3111 describes how SLPv2 can be used in IPv6 networks. SLP uses UDP and 
TCP, so only minor changes are necessary to use SLP on IPv6 networks. SLPv1, which was defined in 
RFC 2165, does not support IPv6. If you want to use SLP over IPv6, you have to use SLPv2.  

For a detailed discussion of SLP concepts, refer to my book Guide to Service 
Location Protocol (podbooks.com) or to 
http://playground.sun.com/srvloc/slp_white_paper.html.

The changes made for SLPv2 can be summarized as follows: 

• The use for broadcasting of SLP requests was eliminated. 
• The format of SLP URLs (service entries) must be able to hold IPv6 addresses.  
• SLP must be able to use IPv6 multicast addresses and multicast scopes. 
• The propagation of Service Advertisements must be restricted. 
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When SLP is used over IPv4, it can be configured to use broadcasts for service requests, but this is not 
recommended. IPv6 no longer supports broadcasts, so if SLP is used over IPv6, it has to use multicast 
addresses to discover service or directory agents.  

Table 9-2 shows the multicast addresses that have been defined for SLP over IPv6.  

Table 9-2. Multicast addresses for SLP over IPv6  
Multicast address Description 
FF0X:0:0:0:0:0:0:116 Service Agent (SA), used for Service Type and Attribute Request Messages.  

FF0X:0:0:0:0:0:0:123 Directory Agent (DA), used by User Agents (UA) and SAs to discover DAs. 
Also used by DA for sending unsolicited DA Advertisement messages.  

FF0X:0:0:0:0:0:1:1000 to 
FF0X:0:0:0:0:0:1:13FF 

Service Location, used by SAs to join the groups that correspond to the 
Service Types of the services they advertise. The Service Type string is used 
to determine the corresponding value in the 1000 to 13FF range, which has 
been assigned by IANA for this purpose. For an explanation of the algorithm 
used to calculate the group ID, refer to RFC 3111.  

The X in FF0X is the placeholder for the multicast scope to be used for this group ID. For instance, 2 
would be link-local scope and 5 would be site-local scope. For a list of the multicast scopes, refer to Table 
3-6.

SLP also uses scopes. All SLP agents (i.e., User Agents, Service Agents and Directory Agents) support 
scopes, and Service Registration and Service Requests work only if the SLP scope is configured on all 
agents. Using SLP over IPv6 adds multicast scopes to this scenario. For instance, an SLPv2 agent cannot 
join a multicast group that has a greater multicast scope. If the SA has only a link-local address, it will join 
scope FF01 and FF02. If the SA is configured with a site-local or global address, it will join multicast 
groups in the range FF01 to FF05. An SLPv2 agent issues requests using a source address with a scope 
no less than the scope of the multicast group it addresses. This prevents, for example, a site-local multicast 
message being sent from a link-local source address. An SA and a DA must join all multicast scopes to 
which an SLP agent may send a message. The maximum scope for SLPv2 messages is site-local (FF05). 
The service URL in an SLP message can contain a hostname instead of an IP address, in which case the 
agent has to resolve the name to a set of addresses using DNS.  

9.5 FTP 

FTP has been designed to work over IPv4 supporting 32-bit addresses. With RFC 2428, "FTP Extensions 
for IPv6 and NATs," a specification was made that allows FTP to work over IPv4 and IPv6. During the 
time in which both protocols coexist (and this will be a long time), it is important that FTP servers have a 
mechanism to negotiate the network protocol that should be used for a session.  

The RFC specifies two new FTP commands to replace the PORT and PASV commands from the earlier 
FTP specification (RFC 959). The PORT command is used to specify a port different from the default 
ports used for the data connection. It contains IPv4 address information and therefore cannot be used with 
IPv6 without modification. The PASV command is used to put the server into passive mode, which means 
the server listens on a specific data port rather than initiating the transfer. This command includes the host 
and port address of the FTP server and therefore does not work over IPv6 without modification.  

The PORT command is replaced by the EPRT command, which allows the specification of an extended 
address for the data connection. The extended address specifies the network protocol (IPv4 or IPv6, for 
instance), as well as the IP address and the port to be used. The EPSV command replaces the PASV 
command. The EPSV command has an optional argument that allows it to specify the network protocol, if 
necessary. The server's reply contains only the port number on which it listens, but the format of the 
answer is similar to the one used for the EPRT command and has a placeholder for network protocol and 
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address information that might be used in the future. The new commands not only accommodate IPv6; 
they also provide greater flexibility in using FTP through firewalls and NATs (RFC 2428).  

The FTP extensions specified in RFC 2428 work with both IPv4 and IPv6. If your FTP implementation 
supports the new extensions, you are ready to use FTP over IPv6.  

Figure 9-6 shows an FTP login over IPv6. 

Figure 9-6. FTP session over IPv6 

We installed an FTP server on our Linux host Ford. We logged in to FTP from our Windows 2000 host 
Marvin. In the detail window, you can see the layers. On the MAC layer, the Ethertype is set to 86DD for 
IPv6. The IPv6 layer specifies TCP (value 6) in the next header field (not seen in the picture). On the TCP 
layer, you can see the port number for FTP, 21. Now you know Maggy's password, right? But who is 
Maggy?  

There are other applications like Secure Copy (SCP) that provide encrypted file transfers, thus protecting 
your passwords. These are also ready for IPv6 and have been working in the IPv4 world.  

9.6 Telnet 

Telnet is a virtual terminal protocol used to log into a computer across the Internet or an intranet. RFC 854 
contains the Telnet protocol specification and RFC 855 contains the Telnet options specification. Telnet 
connects to a remote host by establishing a TCP connection over port 23 and passing keystrokes from the 
user's keyboard to the remote machine as if they had been entered on a keyboard attached to the remote 
host. The Telnet protocol uses TCP for transport. No modifications have to be made to Telnet.  

I had a Telnet server running on Windows 2000, accessing it from the Linux host Ford, and also did the 
opposite—running an IPv6-enabled Telnet server on the Linux host and accessing it with the Microsoft 
Telnet client. Both ways are no problem. The Telnet protocol works over TCP over IPv6 with the standard 
Telnet port number 23. Figure 9-7 shows the Telnet session.  
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Figure 9-7. A Telnet session over IPv6 

The figure shows the negotiation of the Telnet session. In the detail window, you can see the layers: the 
MAC layer with Ethertype 86DD, the IPv6 layer using TCP value 6 in the Next Header field, the TCP 
layer using port 23 for Telnet, and the Telnet header. Telnet also sends passwords and all session data in 
clear text that an intermediary may discover. Software like SSH provides an encrypted terminal for 
security. SSH is IPv6-ready today and available on many platforms.  

9.7 Web Servers 

If you want to surf the Internet over IPv6, you need web servers and a browser that supports IPv6.  

There are different HTTP servers that already support IPv6. Probably the best known is Apache. Whatever 
HTTP server you use, you must be able to configure it to listen on the HTTP port (usually 80) over IPv6. If 
you are using proxy servers, you need to make sure that they are enabled for IPv6, too.  

If you are looking for references on how to set up Apache 2 on Linux, refer to 
http://linuxdoc.org/HOWTO/Linux+IPv6-HOWTO. There is one chapter that explains configuration of 
different daemons, including BIND (named) and Apache 2 (httpd2).  

9.7.1 Browser Support 

What you need to browse IPv6 sites is to have DNS return an IPv6 address for the name of the web server 
you are trying to access. In some cases, you can also enter a literal IPv6 address (described in RFC 2732) 
in your browser. It would have the format http://[2010:836B:4179::836B:4179]. For instance, if you are 
using Windows NT 4 or 2000 with the IPv6 Technology Preview Stack, you can use this format. The IPv6 
stack of Windows XP no longer supports literal IPv6 addresses.  

If your browser is configured for a proxy server that is not enabled for IPv6, it cannot browse local or 
remote IPv6 web sites. In this case, you will have to disable the use of the proxy for your IPv6 trips.  

If you want to experiment, you can find a list of IPv6-accessible web sites at http://www.ipv6.org/v6-
www.html. For a list of IPv6-ready web servers and clients, go to http://www.ipv6forum.com, click on 
"Implementations" and then "IPv6 Applications," and scroll down to "Web servers and clients." For Linux 
people, the best link will probably be http://www.bieringer.de/linux/IPv6/status/.
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Chapter 10. Interoperability 
IPv6 and IPv4 will coexist for many years. A wide range of techniques has therefore been defined that 
make the coexistence possible and provide an easy transition. There are three main categories:  

• Dual-stack techniques allow IPv4 and IPv6 to coexist in the same devices and networks.  
• Tunneling techniques allow the transport of IPv6 traffic over the existing IPv4 infrastructure.  
• Translation techniques allow IPv6-only nodes to communicate with IPv4-only nodes.  

These techniques can and likely will be used in combination with one another. The migration to IPv6 can 
be done step by step, starting with a single host or subnet. You can migrate your corporate network, or 
parts of it, while your ISP still runs only IPv4. Or your ISP can upgrade to IPv6 while your corporate 
network still runs IPv4. This chapter describes the techniques available today for each category mentioned 
above. RFC 2893, "Transition Mechanisms for IPv6 Hosts and Routers," describes the initial set of 
transition mechanisms. As IPv6 grows into our networks, new tools and mechanisms will be defined to 
further ease the transition.  

10.1 Dual-Stack Techniques 

A dual-stack node has complete support for both protocol versions. This type of node is often referred to as 
an IPv6/IPv4 node. In communication with an IPv6 node, such a node behaves like an IPv6-only node, and 
in communication with an IPv4 node, it behaves like an IPv4-only node. Implementations probably have a 
configuration switch to enable or disable one of the stacks. So this node type can have three modes of 
operation. When the IPv4 stack is enabled and the IPv6 stack is disabled, the node behaves like an IPv4-
only node. When the IPv6 stack is enabled and the IPv4 stack disabled, it behaves like an IPv6-only node. 
When both the IPv4 and IPv6 stacks are enabled, the node can use both protocols. An IPv6/IPv4 node has 
at least one address for each protocol version. It uses IPv4 mechanisms to be configured for an IPv4 
address (static configuration or DHCP) and uses IPv6 mechanisms to be configured for an IPv6 address 
(static configuration or autoconfiguration).  

DNS is used with both protocol versions to resolve names and IP addresses. An IPv6/IPv4 node needs a 
DNS resolver that is capable of resolving both types of DNS address records. The DNS A record is used to 
resolve IPv4 addresses and the DNS AAAA or A6 record is used to resolve IPv6 addresses.  

For a detailed discussion of IPv6 DNS record types, refer to Chapter 9.

In some cases, DNS returns only an IPv4 or an IPv6 address. If the host that is to be resolved is a dual-
stack host, DNS might return both types of addresses. Hopefully, for this case, both the DNS resolver on 
the client and an application using DNS will have configuration options that let us specify orders or filters 
of how to use the addresses (i.e., preferred protocol settings). Generally, applications that are written to run 
on dual-stack nodes need a mechanism to determine whether it is communicating with an IPv6 peer or an 
IPv4 peer. Note that the DNS resolver may run over an IPv4 or IPv6 network, but the worldwide DNS tree 
is mainly reachable through an IPv4 network layer.  

A dual-stack network is an infrastructure in which both IPv4 and IPv6 forwarding is enabled on routers. 
The disadvantage of this technique is that you must perform a full network software upgrade to run the two 
separate protocol stacks. This means all tables (e.g., routing tables) are kept simultaneously, routing 
protocols being configured for both protocols. For network management, you have separate commands, 
depending on the protocol (e.g., ping.exe for IPv4 and ping6.exe for IPv6 on a host with a Microsoft 
operating system—both commands with different command options), and it takes more memory and CPU 
power.  
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10.2 Tunneling Techniques 

Tunneling mechanisms can be used to deploy an IPv6 forwarding infrastructure while the overall IPv4 
infrastructure is still the basis. Tunneling can be used to carry IPv6 traffic by encapsulating it in IPv4 
packets and tunneling it over the IPv4 routing infrastructure. For instance, if your provider still has an 
IPv4-only infrastructure, tunneling allows you to have a corporate IPv6 network and tunnel through your 
ISP's IPv4 network to reach other IPv6 hosts or networks. The tunneling techniques and the encapsulation 
of IPv6 packets in IPv4 packets are defined in several RFCs, such as RFC 2473, 2893, and 3056, which 
differentiate two types of tunneling:  

Manually configured tunneling of IPv6 over IPv4 

IPv6 packets are encapsulated in IPv4 packets to be carried over IPv4 routing infrastructures. 
These are point-to-point tunnels that need to be configured manually.  

Automatic tunneling of IPv6 over IPv4 

IPv6 nodes can use different types of addresses, such as IPv4-compatible IPv6 addresses or 6to4 
or ISATAP addresses, to dynamically tunnel IPv6 packets over an IPv4 routing infrastructure. 
These special IPv6 unicast addresses carry an IPv4 address in some of the IPv6 address fields.  

10.2.1 How Tunneling Works 

The concepts discussed in this paragraph apply to tunneling in general. The next two paragraphs discuss 
the difference between configured tunnels and automatic tunneling. Figure 10-1 shows two IPv6 networks 
connected through an IPv4-only network.  

Figure 10-1. Encapsulation and tunneling 

Host Marvin is on an IPv6 network and wants to send an IPv6 packet to host Ford on another IPv6 
network. The network between router R1 and router R2 is an IPv4-only network. Router R1 is the tunnel 
entry point . Marvin sends the IPv6 packet to router R1 (Step 1 in Figure 10-1). When router R1 receives 
the packet addressed to Ford, it encapsulates the packet in an IPv4 header and forwards it to router R2 
(Step 2 in Figure 10-1), which is the tunnel exit point . Router R2 decapsulates the packet and forwards it 
to its final destination (Step 3 in Figure 10-1). Between R1 and R2, any number of IPv4 routers are 
possible.  

A tunnel has two endpoints: one is the tunnel entry point, and the other, the tunnel exit point. In the 
scenario in Figure 10-1, the tunnel end points are two routers. But the tunnel can be implemented in 
different ways. It can be set up router-to-router, host-to-router, host-to-host or router-to-host. Depending 
on which scenario is used, the tunnel entry and exit point can be either a host or a router. If the tunnel exit 
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point is a host, the IPv6 destination address of the original packet is identical to the tunnel exit point and 
can be taken from the IPv6 header in the original packet. If the tunnel exit point is a router, the original 
packet's IPv6 destination address is not identical to the tunnel exit point address. In this case, the tunnel 
entry point must provide the address information to the tunnel exit point.  

The steps for the encapsulation of the IPv6 packet are the following:  

1. The entry point of the tunnel decrements the IPv6 hop limit by one, encapsulates the packet in an 
IPv4 header, and transmits the encapsulated packet through the tunnel. If necessary, the IPv4 
packet is fragmented.  

2. The exit point of the tunnel receives the encapsulated packet. If the packet was fragmented, the 
exit point reassembles it. Then the exit point removes the IPv4 header and processes the IPv6 
packet to its original destination.  

Figure 10-2 shows the encapsulation of an IPv6 packet in an IPv4 packet.  

Figure 10-2. Encapsulation 

The following fields in the IPv4 header are interesting to note: the Header Length field contains the length 
of the IPv4 header, plus the length of the IPv6 header, plus any extension headers and the length of the 
IPv6 payload. If the encapsulated packet has to be fragmented, there will be corresponding values in the 
Flags field and the Fragment Offset field. The value of the Time to Live (TTL) field depends on the 
implementation used. The Protocol Number is set to 41, the value assigned for IPv6. Thus, if you want to 
analyze your tunneled IPv6 traffic, you can set a filter in your analyzer to display the packets containing 
the value 41 in the Protocol Number field. The IPv4 Source Address is the address of the outgoing 
interface of the tunnel entry point and the IPv4 Destination Address is the IPv4 address of the tunnel exit 
point. The IPv6-over-IPv4 tunnel is considered a single hop. The hop limit field in the IPv6 header is 
therefore decremented by one. This hides the existence of a tunnel to the end user and is not detectable by 
common tools such as traceroute. Figure 10-3 shows an encapsulated IPv6 packet in the trace file.  
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Figure 10-3. Encapsulation in the trace file 

This is a ping generated on Marvin, our Windows 2000 host. We were pinging a host on the 6Bone. The 
TTL is set to 128. The Protocol field shows value 41 for IPv6, which identifies this packet as an 
encapsulated packet. The source address 62.2.84.115 is the IPv4 address of Marvin, which was 
configured for this address by a DHCP server. The destination address is the IPv4 address of a 6to4 relay 
router (6to4 concepts are explained in a separate section in this chapter) in the 6Bone, the tunnel exit point. 
This router can forward the packet to an IPv6 network, the 6Bone in this case. Compare these IPv4 
addresses with the IPv6 source and destination addresses (which can be seen in the highlighted summary 
line above the detail screen).Use your Windows calculator to find out that the IPv6 source and destination 
addresses have the 6to4 prefix of 2002 plus the IPv4 address in hexadecimal notation in the low-order 32 
bits. This is an example of a host-to-host automatic tunnel because we were actually pinging the 6to4 
router.  

If an IPv4 router from within the tunnel generates an ICMPv4 error message, the router sends the message 
to the tunnel entry point because that host is the source of that packet. If the packet contains enough 
information about the original, encapsulated IPv6 packet, the tunnel entry point may send an ICMPv6 
message back to the original source of the packet.  

When the tunnel exit point receives an IPv4 datagram with a protocol value of 41, it knows that this packet 
has been encapsulated. In case of fragmentation, it reassembles the packets, removes the IPv4 header, and 
delivers the IPv6 packet to the final destination.  

Both tunnel end points need to have a link-local IPv6 address, with the IPv4 address of that same interface 
being the interface identifier for the IPv6 address. For example, a host with an IPv4 address of 
192.168.0.2 has a link-local address of FE80::192.168.0.2/64. 

Before forwarding a decapsulated IPv6 packet, the tunnel endpoint must verify that the tunnel source 
address is acceptable. Thus, unacceptable ingress into the network can be avoided. If the tunnel is a 
bidirectional configured tunnel, this check is done by comparing the source address of the encapsulated 
packet with the configured address of the other side of the tunnel. For unidirectional configured tunnels, 
the tunnel must be configured with a list of source IPv4 address prefixes that are acceptable. By default, 
this list is empty, which means that the tunnel end point has to be explicitly configured in order to allow 
forwarding of decapsulated packets.  
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10.2.2 Automatic Tunneling (RFC 2893) 

Automatic tunneling allows IPv6/IPv4 nodes to communicate over an IPv4 infrastructure without the need 
for tunnel destination preconfiguration. The tunnel endpoint address is determined by the IPv4-compatible 
destination address. This type of IPv6 address is exclusively assigned to nodes that use automatic 
tunneling.  

Figure 10-4 shows the output of the ipv6 if command on my Windows 2000 host Marvin.

Figure 10-4. The IPv4-compatible IPv6 address 

The IPv4 address is 62.2.84.115. The IPv4-compatible address is created by taking the IPv4 address 
for the interface and prepending a 96-bit prefix of all zeroes. The interface to which this address is 
assigned is commonly called a pseudointerface. In the screenshot, this can be seen as 
::62.2.84.115. An automatic tunnel is created by extracting the IPv4 address from the lower 
portion. As long as the IPv4 address used is not from the private range, the IPv4-compatible address is 
globally unique.  

A special routing table entry can be used to direct packets through the tunnel. The entry would simply be a 
route to the all-zeros prefix with a 96-bit mask. All packets with an IPv4-compatible IPv6 address as a 
destination will match this prefix and be sent through the automatic tunnel. The destination IPv4 address is 
taken from the 32 low-order bits of the IPv6 destination address. The automatic tunnel must not send IPv4 
packets to broadcast, multicast, loopback, or the unspecified address.  

10.2.3 Configured Tunneling (RFC 2893) 

In configured tunneling, the address of the tunnel exit point is configured on the tunnel entry point. When 
encapsulating the IPv6 packet, the tunnel entry point uses this address as the destination address in the 
IPv4 header.  

IPv6/IPv4 hosts connected to network segments with no IPv6 routers can be configured with a static route 
to an IPv6 router in the Internet at the other side of an IPv4 tunnel; this enables communication with a 
remote IPv6 world. In this case, the IPv6 address of an IPv6/IPv4 router at the other end of the tunnel is 
added into the routing table as a default route. Now all IPv6 destination addresses match the route and can 
be tunneled through the IPv4 infrastructure. This default route has a mask of zero and is used only if there 
are no other routes with a more specific matching mask.  

10.2.4 Combination of Automatic and Configured Tunneling 

In many cases a combination of both tunneling techniques makes sense for IPv6/IPv4 hosts that are 
connected to segments with no IPv6 router. Such a host can have two routing entries for tunneling. One 
entry points to the all-zeros 96-bit prefix. All packets with IPv4-compatible IPv6 destination addresses will 
be sent through this route. The other routing entry points to an IPv6 router that is also configured to 
perform automatic tunneling. All packets with native IPv6 destination addresses will be routed through the 
configured tunnel. Reply packets from native IPv6 hosts will be sent to the IPv6 router, which delivers 
them back to the original host through automatic tunneling.  
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If a host sending a packet has both an IPv4-compatible IPv6 address and a global native IPv6 address, the 
host should use the IPv4-compatible address as a source address for packets to IPv4-compatible IPv6 
destinations and use the native IPv6 address as a source address for packets to native IPv6 destinations.  

To summarize this, let's check the routing table on Marvin (Figure 10-5).  

Figure 10-5. Marvin's routing table 

The command used to display the routing table is ipv6 rt. The first entry is for ::/0. The zero-length 
prefix specifies this route as a default route. It is going out through interface number 2 with the next hop 
IPv6 address ::131.107.152.32. This is the IPv4-compatible IPv6 address of a 6to4 relay router 
that has been configured on Marvin. Thus, any IPv6 traffic that does not match a more specific routing 
entry is encapsulated in an IPv4 header and routed through this default route. Routing is enabled on 
Marvin; the associated lifetime and the published flag make this a published route. Interface number 2 is 
the tunnel pseudointerface (refer to Figure 10-4, which shows the interface configuration for the tunnel 
pseudointerface). All traffic going out through interface 2 is encapsulated in an IPv4 header. The entry for 
2002::/16 is the route for the 6to4, also going out through interface 2 and being encapsulated. With 
these two routes, this host can reach the 6Bone and 6to4 hosts. The third routing entry specifies the route to 
the all-zeros prefix with a 96-bit mask, as discussed earlier. All IPv4-compatible IPv6 addresses match this 
prefix and will be routed through interface 2 if they don't match a more specific entry.  

10.2.5 Encapsulation with IPv6 (RFC 2473) 

RFC 2473 specifies the model and the generic mechanisms for encapsulation with IPv6. Most of the rules 
discussed in this chapter about tunneling in IPv4 apply to tunneling in IPv6. The main difference is that in 
tunneling in IPv6, the packets are encapsulated in an IPv6 header and sent through an IPv6 network. The 
packet being encapsulated can be an IPv6 packet, an IPv4 packet, or any other protocol. The tunnel entry 
point prepends the IPv6 header and, if needed, one or a set of Extension headers in front of the original 
packet header. Whatever the tunnel entry point prepends is called the Tunnel IPv6 headers. Figure 10-6
shows the Tunnel IPv6 headers from the packet view.  

Figure 10-6. Tunnel IPv6 headers from the packet view 

In the IPv6 header applied by the tunnel entry point, the source address is the address of the tunnel entry 
point node and the destination address is the address of the tunnel exit point node. The source node of the 
original packet can be the same node as the tunnel entry point. The original packet, including its header, 
becomes the payload of the encapsulated packet. The header of the original packet is treated according to 
standard forwarding rules. If the header is an IPv4 header, the TTL field is decremented by one. If it is an 
IPv6 header, the Hop Limit field is decremented by one. The network between the tunnel entry point and 
the tunnel exit point is thus virtually just one hop, no matter how many actual hops there are in between.  
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The Tunnel IPv6 header is processed according to the IPv6 protocol rules. Extension headers, if present, 
are processed as though the packet was a standard IPv6 packet. For example, a Hop-by-Hop Extension 
header would be processed by every node listed in the Hop-by-Hop Options field. A Destination Options 
header would be processed by the destination host—i.e., the tunnel exit point. All these options are 
configured on the tunnel entry point. An example of the use of a Destination Options header is the 
configuration of a Tunnel Encapsulation Limit Option (RFC 2473). This option may be used when tunnels 
are nested. One hop of a tunnel can be the entry point of another tunnel. In this case, we have nested 
tunnels. The first tunnel is called the outer tunnel and the second tunnel is called the inner tunnel. The 
inner tunnel entry point treats the whole packet received from the outer tunnel as the original packet and 
applies the same rules as shown in Figure 10-6. The only natural limit to the number of nested tunnels is 
the maximum IPv6 packet size. Every encapsulation adds the size of the tunnel IPv6 headers. This would 
allow for something around 1600 nested tunnels, which is not realistic. Also, consider the case in which the 
packet has to be fragmented. If it has to be fragmented again because the additional tunnel IPv6 headers 
have increased the packet size, the number of fragments is doubled. So a mechanism was needed to limit 
the number of nested tunnels. It is specified in RFC 2473 and is called the Tunnel Encapsulation Limit 
Option. This option is carried in a Destination Option header and has the format shown in Figure 10-7.

Figure 10-7. Format of the tunnel encapsulation limit option 

The Option Type field has 1 byte and the decimal value 4, specifying the Tunnel Encapsulation Limit 
Option. The Option Data Length field has the decimal value 1, specifying the length of the following 
Option field. In this case, the Option field has a size of 1 byte and contains the actual value for the Tunnel 
Encapsulation Limit Option. The value in this field specifies how many further levels of encapsulation are 
permitted. If the value is zero, the packet is discarded and an ICMP Parameter Problem message is sent 
back to the source (the tunnel entry point of the previous tunnel). If the value is non-zero, the packet is 
encapsulated and forwarded. In this case, a new Tunnel Encapsulation Limit Option has to be applied with 
a value of one less than the limit received in the packet being encapsulated. If the packet received does not 
have a tunnel encapsulation limit but this tunnel entry point has one configured, the tunnel entry point must 
apply a destination options header and include the configured value.  

Loopback encapsulation should be avoided. Loopback encapsulation happens when a node encapsulates a 
packet originating from itself and destined to itself. IPv6 implementations should prevent this by checking 
and rejecting configurations of tunnels where both the entry point and exit point belong to the same host. 
Another undesirable situation is a routing-loop nested encapsulation. This happens if a packet from an 
inner tunnel reenters an outer tunnel from which it has not yet exited. This can only be controlled by a 
combination of the original packet's hop limit plus the configuration of tunnel encapsulation limits.  

Let's have a closer look at a Tunnel IPv6 Header (Figure 10-8).  
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Figure 10-8. The tunnel IPv6 header 

The fields of a standard IPv6 header were discussed in Chapter 2. Interesting values here are the following: 
the values for Traffic Class, Flow Label, and Hop Limit can be preconfigured on the tunnel entry point. 
The Payload Length has the value for the packet length of the original packet plus the size of any extension 
headers prepended by the tunnel entry point. The Source and Destination Address of the Tunnel IPv6 
header contain the IPv6 addresses of the tunnel entry and exit point, respectively. Note that a host that is 
configured as a tunnel entry point must support fragmentation of packets that it encapsulates. Packets that 
are encapsulated may exceed the Path MTU of the tunnel. Because the tunnel entry point is considered the 
source of the encapsulated packet, it must fragment it if needed. The tunnel exit point node will reassemble 
the packet. If the original packet is an IPv4 packet with the Don't Fragment bit set, the tunnel entry point 
discards the packet and sends an ICMP Destination Unreachable message with the code "fragmentation 
needed and DF set" back to the source of the packet.  

10.2.6 6to4 (RFC 3056) 

RFC 3056, "Connection of IPv6 Domains via IPv4 Clouds," specifies a mechanism for IPv6 sites to 
communicate with each other over the IPv4 network without explicit tunnel setup. This is called 6to4. The 
wide area IPv4 network is treated as a unicast point-to-point link layer, and the native IPv6 domains 
communicate via 6to4 routers, also referred to as 6to4 gateways. This is intended as a transition 
mechanism used during the period of co-existence of IPv4 and IPv6. It will not be used as a permanent 
solution. The IPv6 packets are encapsulated in IPv4 at the 6to4 gateway. At least one globally unique IPv4 
unicast address is required for this configuration. The IANA has assigned a special TLA for the 6to4 
scheme. The address prefix is 2002::/16. Figure 10-9 shows the format of the 6to4 prefix in detail.  

Figure 10-9. Format of the 6to4 prefix 

The 32 bits after the prefix 2002::/16 are the IPv4 address of the gateway in hex representation. If you 
refer back to Figure 10-4, you can see how the IPv4 address 62.2.84.115 is converted to 
2002:3e02:5473::/48. This leaves you with 80 bits of address space for your internal network. If 
you use, let's say, 16 bits for the local network addressing, you can create 65,536 networks! The remaining 
64 bits can be used for the nodes on your network; that is, 264 nodes per network. It looks like getting 
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familiar with the extended address space has some advantages. Now all the hosts on your network can 
communicate with other 6to4 hosts on the Internet.  

If your hosts want to speak to other IPv6 hosts on remote IPv6 networks, such as the 6Bone, you need a 
6to4 relay router. The relay router is a router that is configured for 6to4 and IPv6. It connects your 6to4 
network to the native IPv6 network.  

There are a number of public 6to4 relay routers in the Internet that you can use. 
For a list, go to http://www.kfu.com/~nsayer/6to4/.

If you want to manually configure your 6to4 network for a 6to4 relay router, you can choose the best relay 
router for your site and use it as your IPv6 default route.  

RFC 3068 defines a 6to4 relay router anycast address to simplify the configuration of 6to4 gateways that 
need a default route to find a 6to4 relay router on the Internet. IANA assigned an IPv4 6to4 Relay anycast 
prefix of 192.88.99.0/24. The assigned anycast address corresponds to the first node in the prefix, 
e.g., 192.88.99.1. The 6to4 routers have to be configured with a default route pointing to this 
anycast address. Using this address means that 6to4 packets are routed to the nearest available 6to4 relay 
router automatically. If one 6to4 relay goes down, you do not need to reconfigure your 6to4 gateway; 
packets will automatically be rerouted to the next available relay. With the ongoing deployment of IPv6 in 
commercial networks, the number of public 6to4 relay routers will increase. If a host wishes to 
communicate with a node on a native IPv6 subnet (i.e., destination address 3ffe:b00:c18:1::10), 
the IPv4 header destination address will be the reserved anycast address 192.88.99.1 and will be 
delivered to the nearest 6to4 relay router. In the reverse, a native IPv6 host that wants to send packets to a 
host that is in a 6to4 cloud will route its packets to the nearest 6to4 relay router advertising the prefix 
2002::/16.

When IPv6 packets leave a 6to4 site to the external IPv4 cloud, they are encapsulated in IPv4 packets by 
the 6to4 gateway. Figure 10-10 shows the IPv4 header and the encapsulated IPv6 header in a trace file.  

The TTL field in the IPv4 header and the Hop Limit in the IPv6 header are set to the value 128, which is a 
common default value for Microsoft. The IPv4 header contains a Protocol Type field of 41, for IPv6. The 
Source Address in the IPv4 header is the globally unique IPv4 address used for the 6to4 router 
configuration. The IPv4 destination address is the IPv4 address of the relay router used. When you 
compare the IPv4 addresses with the IPv6 6to4 addresses used, you can see how the translation is done.  
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Figure 10-10. The IPv4 and IPv6 headers in the trace file 

62.2.87.127 is represented with the prefix 2002:3e02:577f::/48, and 
131.107.65.121 is represented as 2002:836b:4179::/48. Convert the decimal IPv4 address 
to hex and see how the IPv4 address is used for building the prefix.  

Figure 10-11. Pinging the 6to4 relay and a 6bone node 
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If two hosts communicate—one with only a 6to4 address and the other one with a 6to4 address plus a 
native IPv6 address—the two hosts should both use the 6to4 address for communication. If both hosts have 
a 6to4 and a native IPv6 address, they should both use either the 6to4 address or the IPv6 address. Which 
choice is made should be configurable and the default should be IPv6.  

Let me show you 6to4 in a simple example. In the public 6to4 relay router list mentioned earlier, I found 
that Zama Networks offers a public 6to4 relay with the DNS name 6to4.zama6.com. Note that this router is 
not there anymore, so don't try to use it. These are historic screenshots! Now let's find the address. The 
following pings were generated on my Windows 2000 host Marvin, which is configured for 6to4 (Figure 
10-11).  

The first ping is an IPv4 ping (ping.exe), which tells us that the 6to4 relay's IPv4 address is 
203.142.128.42. The second ping is an IPv6 ping (ping6.exe) and shows that the IPv6 address is 
2002:cb8e:802a:1::1. Thus, DNS resolution works for both record types. Again, if you convert 
the IPv4 address to hexadecimal, you get cb8e:802a. The next IPv6 ping goes to a 6Bone host, to 
www.6bone.net. It has the IPv6 address 3ffe:b00:c18:1::10. Note that the prefix 3ffe is the 
prefix assigned for 6Bone testing (refer to Chapter 3 for details about reserved prefixes).  

10.2.7 ISATAP 

The Intra-Site Automatic Tunnel Addressing Protocol (ISATAP) is designed to provide IPv6 connectivity 
between IPv6 nodes within a mainly IPv4-based intra-network that does not have an IPv6 router in the site. 
With ISATAP, you can deploy IPv6 in your corporate network, behind your firewall, even if you do not 
have an IPv6 router. ISATAP even allows you to use an automatic tunneling mechanism if you are using 
private IPv4 addresses and NAT. ISATAP addresses embed an IPv4 address in the EUI-64 interface 
identifier. ISATAP is still experimental and currently described in draft at http://www.ietf.org/internet-
drafts/draft-ietf-ngtrans-isatap-04.txt. It is expected to become very popular.  

Figure 10-12 shows the format of the ISATAP address. 

Figure 10-12. The format of the ISATAP address 

The ISATAP address has a standard 64-bit prefix that can be link-local, site-local, a 6to4 prefix, or belong 
to the global aggregatable unicast range. The Interface identifier is built using the IANA OUI 00 00 
5E, which follows the prefix. The following byte is a type field, and the value FE indicates that this 
address contains an embedded IPv4 address. The last four bytes contain the IPv4 address, which can be 
written in dotted decimal notation. The format of the address can thus be summarized as 
64bitPrefix:5EFE:IPv4address. For instance, if you have an assigned prefix of 
2001:620:600:200::/64 (guess where that is) and an IPv4 address of 62.2.84.115, your 
ISATAP address is 2001:620:600:200:0:5EFE:3e02:5473. Alternatively, you can write 
2001:620:600:200:0:5EFE:62.2.84.115. The corresponding link local address would be 
FE80::5EFE:62.2.84.115.

Using ISATAP, IPv6 hosts within an IPv4 intranet can communicate with each other. There is no need for 
an IPv6 router. If they want to communicate with IPv6 hosts on the Internet, such as 6Bone hosts, a border 
router must be configured; it can be an ISATAP router or a 6to4 gateway. The IPv4 addresses of all the 
hosts within the site do not need to be public. They are embedded in the address with the standard prefix 
and are therefore unique and routable. Large numbers of ISATAP hosts can be assigned to one ISATAP 
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prefix. If you deploy IPv6 on a segment in your corporate network, you can configure one of the native 
IPv6 nodes with an ISATAP interface, and it can act as a router between the native IPv6 segment and 
ISATAP hosts in the IPv4 segments. Because the ISATAP nodes on the IPv4 network do not have an IPv6 
router that can send them prefix information for autoconfiguration, they currently need to be configured for 
the prefix and need a default route pointing to the ISATAP router or 6to4 gateway if connectivity to the 
Internet is required. The ISATAP draft explains mechanisms that are in development to allow automatic 
intrasite IPv6 router discovery and stateless address autoconfiguration. An ISATAP router anycast address 
is in discussion and would work the same way as explained for the 6to4 anycast address described earlier 
in this chapter.  

10.2.8 Teredo 

6to4 makes IPv6 available through the IPv4 infrastructure. ISATAP enables deployment of IPv6 hosts 
within a site without the need for IPv6 routers. Teredo (called Shipworm in earlier drafts) is another 
mechanism under development. It is designed to make IPv6 available to hosts through one or more layers 
of NAT, which cannot be upgraded to 6to4, by tunneling packets over UDP. Teredo servers and Teredo 
relays are needed to make the service work. Teredo is in draft status, and many details still need to be 
defined. If you are interested in following the process, refer to http://www.ietf.org/internet-drafts/draft-ietf-
ngtrans-shipworm-06.txt. Note that the draft number may have increased by one or more when you go 
there.  

10.2.9 A Sample Network Design 

I will discuss a sample network design to summarize the tunneling concepts and give you a picture of a 
possible scenario. You will see that you can start to deploy IPv6 step by step on single hosts or subnets and 
that there is no requirement to change your whole IPv4 infrastructure overnight. If you are familiar with 
setting up NAT for your IPv4 network, these concepts will not be too difficult to master.  

Figure 10-13 shows a 6to4 scenario. 

Figure 10-13. A 6to4 design 

Marvin is your company's 6to4 gateway. It is connected to the Internet with a routable IPv4 address of 
62.2.84.144 and has a logical IPv6 interface into the corporate network advertising the 
2002:3e02:5490::/48 prefix for the 6to4 route. It has been configured with the IPv4 address of a 
6to4 relay router, in this case 6to4.zama6.com. This 6to4 gateway (Marvin) provides IPv6 transit for all 
IPv6 machines from within the corporate network. Ford is an IPv6-only machine within the network. It has 
autoconfigured its IP address of 2002:3e02:5490:2a0:24ff:fec5:3256 using the prefix 
advertised by Marvin. The 6to4 relay router used in this example is the public relay offered by Zama 
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Networks (which is not up anymore). As a relay router, it connects 6to4 sites to native IPv6 networks, such 
as the 6Bone in this example. The relay's DNS name is 6to4.zama6.com. It is a dual-stack machine, the 
IPv4 interface with an address of 203.142.128.42 and the IPv6 interface with an address of 
2002:cb8e:802a:1::1. It advertises the route 2002::/16 into the 6Bone, so native IPv6 hosts 
in the 6Bone can reach 6to4 sites. All 6to4-connected sites can get access to native IPv6 networks via this 
relay router. Figure 10-13 shows two examples for native IPv6 hosts that we can reach from Ford:
www.6bone.net, with an IPv6 address of 3ffe:b00:c18:1::10, and www.ipv6forum.com, with the 
address 2001:618:5:20:2c0:4fff:fe43:8e6c. Sad is an IPv4 host connected to the Internet 
through native IPv4 and has an IP address of 130.95.20.10.

Ford is an IPv6-only node. It can be on either a 6to4 IPv6 network or an IPv4/IPv6 network. If Ford wants 
to talk to other 6to4 sites, it will use Marvin as its 6to4 gateway. If it wants to talk to IPv6-only nodes, it 
will use the 6to4 relay router to get there. So when Marvin gets a packet for a 6Bone host, it encapsulates 
the packet in IPv4 and sends it to the other side of the tunnel to the 6to4 relay. The 6to4 relay strips off the 
IPv4 header and forwards the native IPv6 packet to the 6Bone. If hosts on the 6Bone send packets to 6to4 
sites, these packets will have a destination address beginning with the prefix 2002::/16. This way, the 
relay router knows that it has to encapsulate the packet in IPv4. The relay router can derive the IPv4 
address of the 6to4 gateway from the 6to4 address. The gateway decapsulates the packet and forwards it to 
Ford. If Ford wants to talk to other IPv6 hosts on its home segment, it can do so without using Marvin as a 
gateway. If Ford wants to talk to Sad, which has no IPv6 stack, it can do so only if translation mechanisms 
are implemented. Without translation techniques, Sad is unable to interpret the IPv6 header information.  

This design is an example of what can be done with today's tunneling mechanisms. They provide flexible 
migration order and allow step-by-step upgrades of hosts and routers. Obviously, as known from other 
tunneling techniques, the tunneling mechanism puts an additional load on the routers and makes 
troubleshooting more complex. The routers need time and CPU power for encapsulating and decapsulating 
the packets. Hop count issues, as well as MTU size and fragmentation problems, may occur due to the 
differences in the specifications for the two protocols.  

10.3 Network Address and Protocol Translation 

Address and protocol translation techniques are described in RFCs 2765 and 2766. They offer transition 
mechanisms in addition to dual-stack and tunneling techniques. The goal is to provide transparent routing 
for nodes in IPv6 networks to communicate with nodes in IPv4 networks and vice versa. The NAT 
gateway uses a pool of globally unique IPv4 addresses and binds them to IPv6 addresses. No changes to 
the end nodes are necessary.  

The following abbreviations are used in RFC 2766 and throughout this section:  

Network Address Translation (NAT) 

Translates IP address, IP, TCP, UDP, and ICMP header checksums. 

Network Address Port Translation (NAPT) 

In addition to the fields translated by NAT transport, identifiers such as TCP and UDP port 
numbers and ICMP message types are translated.  

Network Address Translation and Protocol Translation (NAT-PT) 

Translates an IPv6 packet into an equivalent IPv4 packet and vice versa.  
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Network Address Port Translation and Protocol Translation (NAPT-PT) 

Allows IPv6 hosts to communicate with IPv4 hosts using a single IPv4 address.  

These concepts are explained in the following sections. 

10.3.1 NAT 

NAT has widely been used, especially to overcome the limitations of IPv4 address space. Corporate 
networks use IPv4 addresses from the private range and a NAT router at the border of the corporate 
network translates the private addresses to a single or a limited number of public addresses. NAT,as 
described here, provides routing between an IPv6 network and an IPv4 network. With basic NAT, a block 
of IPv4 addresses is set aside and the fields for IP source addresses, IP, TCP, UDP, and ICMP header 
checksums are translated. With NAPT, further transport identifiers such as TCP and UDP port numbers 
and ICMP message types are translated. This allows a set of IPv6 hosts to share a single IPv4 address. 
NAT can be unidirectional (only IPv6 hosts can initiate a session) or bidirectional (the session can be 
initiated from both sides). Hosts in the IPv4 network use DNS to resolve names. Therefore, a DNS 
Application Layer Gateway (ALG) must be capable of translating IPv6 addresses into their IPv4 NAT 
address bindings and vice versa.  

10.3.2 How Packets Translate 

To understand how packets are translated, we'll follow a packet being sent from an IPv6 host through a 
NAPT gateway to an IPv4 host and back. Figure 10-14 illustrates the translation process.  

Figure 10-14. Communication flow over NAPT 

In this example, Ford, the IPv6 host, has an IPv6 address of ABCD:BEEF::2228:7001. Marvin, on 
the other side of the NAPT router, has an IPv4 address of 120.140.160.101. The NAPT gateway 
has been assigned a pool of 120.10.40/24. Ford initializes a session with Marvin by sending a packet 
to the destination address prefix::120.140.160.101, port 23. The prefix ::/96 is advertised 
by NAPT into the IPv6 network, and whenever a packet is sent to that prefix, it will be routed through 
NAPT. As source address, Ford uses its IPv6 address with a port number of 3056 (Step 1). The NAPT 
gateway now assigns an IPv4 address and a port number out of its pool. Let's say it uses the address 
120.10.40.10. The new IPv4 packet going out from NAPT to Marvin has a source address of 
120.10.40.10, port 1025, and a destination address of 120.140.160.101, port 23 (Step 2). 
When Marvin replies, it sends the packet with a source address of 120.140.160.101, port 23, to 
destination address 120.10.40.10, port 1025 (Step 3). NAPT translates the packet according to the 
parameters it has stored in its cache for the duration of the session and sends it from source address 
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prefix::120.140.160.101, port 23, to destination address ABCD:BEEF::2228:7001,
port 3056 (Step 4).  

10.3.3 Limitations 

The translation mechanisms described in RFC 2766 should be used only if no other transition mechanism 
is possible and dual-stack operation should be avoided for certain reasons. This mechanism has a number 
of disadvantages. For instance, it does not take full advantage of the advanced capabilities that IPv6 offers. 
But it is a choice when, for a certain time, access to IPv4-only networks and applications is needed.  

The same topology restrictions apply that also apply to IPv4 NATs. The inbound and outbound datagrams 
pertaining to one session have to traverse the same NAT router. There are applications that use IP 
addresses in the payload of IP datagrams. NAT is not aware of the application layer and does not look into 
the payload to detect IP addresses. In this case, NAT would have to be combined with ALG to support 
such applications in this type of environment. RFC 2766 describes how a DNS ALG or FTP ALG would 
have to translate to support these applications over NAT. For instance, if a DNS request goes out from the 
IPv4 network to a DNS server through a NAT-PT device in the IPv6 network or vice versa, a mechanism 
must be provided that translates IPv4 resource records types (A type) to IPv6 resource record types 
(AAAA or A6 types). FTP control sessions carry IP address information in the payload, and the format of 
the command allows only for 32-bit addresses. RFC 2428 defines two new extensions to FTP commands to 
replace the PORT and PASV commands. The new commands are designed to not only allow long 
addresses, but also carry additional information about the protocol to be used. These new extensions can 
also be used for FTP over IPv4. An FTP ALG would have to be able to translate these commands for FTP 
to work over NAT.  

Refer to Chapter 9 for more information on DNS and FTP.  

End-to-end security cannot be provided when using any form of NAT. Two end nodes that need IPSEC-
level security must use either IPv4 or IPv6 natively. This is a well-known limitation of NAT in general and 
will be one of the driving reasons to move away from NAT and start to use IPv6 natively. Because the 
DNS ALG translates DNS requests, the mechanisms of DNSSEC will not work either.  

10.3.4 Stateless IP/ICMP Translation 

For the case in which IPv4-only hosts want to communicate with IPv6-only hosts or vice versa, RFC 2765 
defines how a protocol translator has to translate the IP and ICMP headers for both parties to understand 
each other. For example, you might have a new network segment and want to roll out native IPv6 hosts. 
With the implementation of a protocol translator, it is possible to set up the new IPv6-only network 
internally and have those IPv6-only clients access the standard IPv4 Internet or any other IPv4-only node. 
For this purpose, a new address type has been introduced: the IPv4-translatable address. The format of the 
address is 0::ffff:0:0:0/96. The host identifier is an IPv4 address that has to be taken from a 
special pool and assigned to the IPv6 node that wants to communicate with IPv4 nodes.  

TCP and UDP headers generally do not need to be modified by the translator. One exception is UDP 
headers that need a checksum for IPv6 because a pseudoheader checksum is required for IPv6. The same is 
true for ICMPv4 messages that need a pseudoheader checksum for ICMPv6. In addition to the checksum, 
ICMP error messages contain the IP header of the original packet in the payload that needs to be modified 
by the translator; otherwise, the receiving node cannot understand it. IPv4 options and IPv6 Routing 
headers, Hop-by-Hop Extension headers, and Destination Option headers are not translated. Also, the 
translation techniques cannot be used for multicast traffic because IPv4 multicast addresses cannot be 
mapped into IPv6 multicast addresses and vice versa.  
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Just as with dual-stack nodes, applications running on nodes that use IP/ICMP translation need a 
mechanism to determine which protocol version to use for communication with their peers.  

10.3.4.1 Translating IPv4 to IPv6 

An IPv4-to-IPv6 translator receives an IPv4 datagram. Because it has been configured to know the pool of 
IPv4 addresses that represent the internal IPv6 nodes, the translator knows that the packet needs 
translation. It removes the IPv4 header and replaces it with an IPv6 header by translating all the 
information from the IPv4 header into the IPv6 header.  

Path MTU discovery is optional in IPv4 but mandatory in IPv6. If an IPv4 host does Path MTU discovery 
by setting the Don't Fragment bit in the header, Path MTU discovery works even through the translator. 
The sender may receive Packet Too Big messages from both IPv4 and IPv6 routers. If the Don't Fragment 
bit is not set in the IPv4 packet, an IPv6 translator has to ensure that the packet can safely travel through 
the IPv6 network. It does this by fragmenting the IPv4 packet, if necessary, using the minimum packet size 
for IPv6, which is 1280 bytes. IPv6 guarantees that 1280-byte packets will be delivered without a need for 
further fragmentation. In this case, the translator always includes a fragment header to indicate that the 
sender allows fragmentation. Should this packet travel through an IPv6-to-IPv4 translator, the translator 
knows it can fragment the packet.  

The information that will be translated to the IPv6 header is detailed in Table 10-1.

Table 10-1. Translated IPv6 header fields  
Header field Information 
Version 6 
Traffic Class All 8 bits from the Type of Service and Precedence Field are copied. 
Flow Label Zero 
Payload 
Length 

The Total Length from the IPv4 header field minus the size of the IPv4 header (including 
options, if present).  

Next Header Protocol Field copied from the IPv4 header. 

Hop Limit 
TTL value copied from the IPv4 header. Since the translator is a router, the value has to be 
decremented by one (either before or after translation) and checked on the value. If zero, an 
ICMP TTL exceeded message must be generated.  

Source 
Address 

Combination of IPv4-mapped address prefix and the IPv4 address in the 32 low-order bits, 
for example: ::ffff:0:0:192.168.0.1.

Destination 
Address 

Combination of IPv4-translatable address prefix and the IPv4 destination address, for 
example: 0::ffff:0:0:0:192.168.0.99.

IPv4 Options
If any IPv4 options are present, they are ignored. If a source route option is present, the 
packet must be discarded and an ICMPv4 "destination unreachable/source route failed" 
(Type3, Code 5) error message should be returned to the sender.  

If a Fragment header needs to be added, the information listed in Table 10-2 is inserted into the IPv6 
packet.  

Table 10-2. IPv6 header fields with fragmentation  
Header field Information 
Header fields  

Payload Length The Total Length from the IPv4 header field minus the size of the IPv4 header 
(including options, if present) plus 8 bits for the size of the Fragment header.  

Next Header 44 (Fragment Header) 
Fragment Header 
fields  
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Next Header Protocol field copied from IPv4 header. 
Fragment Offset Fragment Offset field copied from IPv4 header. 
M-Flag More Fragments bit copied from the IPv4 header. 

Identification The high-order 16 bits are set to zero; the low-order 16 bits are copied from the 
Identification field in the IPv4 header.  

For a UDP packet with a zero checksum, the translator must calculate a valid checksum for IPv6. If a 
translator receives the first fragment of a fragmented UDP packet with a zero checksum, it should drop the 
packet and generate a system message specifying the IP address and the port number. Further fragments 
should silently be discarded.  

10.3.4.2 Translating ICMPv4 to ICMPv6 

For all ICMPv4 messages, the translator has to compute a valid checksum, because it is required with 
ICMPv6. In addition to this, the type values have to be translated and, for error messages, the included IP 
header also needs to be translated. Table 10-3 shows the translation in ICMP query messages.  

Table 10-3. Translation of ICMPv4 query messages  
Message type Translation 

Echo and Echo Reply (types 8 
and 0) 

Adjust the type to 128 or 129, respectively and adjust the ICMP checksum 
to take the type change into account and include the ICMPv6 
pseudoheader.  

Information Request/Reply 
(types 15 and 16) Obsoleted in ICMPv6. Silently discard. 

Timestamp and Timestamp 
Reply (types 13 and 14) Obsoleted in ICMPv6. Silently discard. 

Address Mask Request/Reply 
(types 17 and 18) Obsoleted in ICMPv6. Silently discard. 

Router Advertisement (type 9) Single hop message. Silently discard. 
Router Solicitation (type 10) Single hop message. Silently discard. 
Unknown ICMPv4 types Silently discard. 

IGMP messages are single-hop messages and should not be forwarded over routers. Therefore they do not 
require translation and are silently discarded.  

Table 10-4 shows the translation for ICMP error messages.  

Table 10-4. Translation of ICMPv4 error messages  
Message type Translation 
Destination Unreachable (type 3) For all codes not listed here, the type is set to one. 
Code 0/1, Network/Host Unreachable Type 1, Code 0 - No Route to Destination. 

Code 2, Protocol Unreachable Type 4, Code 1 - Port Unreachable. Make the pointer point to the 
IPv6 Next Header field.  

Code 3, Port Unreachable Type 1, Code 4 - Port Unreachable. 

Code 4, Fragmentation needed but DF 
set 

Type 2, Code 0 - Packet Too Big. The MTU field needs to be 
recalculated to reflect the difference between the IPv4 and the 
IPv6 header sizes.  

Code 5, Source Route Failed Type 1, Code 0 - No Route to Destination (note that source routes 
are not translated).  

Code 6, 7, Destination Network/Host Type 1, Code 0 - No Route to Destination. 
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Unknown 
Code 8, Source Route Isolated Type 1, Code 0 - No Route to Destination. 
Code 9, 10, Communication with 
Destination Administratively 
Prohibited 

Type 1, Code 1 - Communication with Destination 
Administratively Prohibited.  

Code 11, 12, Network/Host 
Unreachable for TOS Type 1, Code 0 - No Route to Destination. 

Redirect, Type 5 Single hop message. Silently discard. 
Source Quench, Type 4 Obsoleted in ICMPv6. Silently discard. 
Time Exceeded, Type 11 Type 3 - Time Exceeded. Code field unchanged. 

Parameter Problem, Type 12 
Type 4 - Parameter Problem. The pointer needs to be updated to 
point to the corresponding field in the translated and included IP 
header.  

The IP header included in an ICMP error message is translated using the same mechanisms discussed 
above.  

10.3.4.3 Translating IPv6 to IPv4 

This process is not much different from the translation discussed previously. In this case, the translator 
knows that it has to translate from IPv6 to IPv4 based on the IPv4-mapped destination address. It removes 
the IPv6 header and replaces it with an IPv4 header. The minimum MTU for IPv4 is 68 bytes; the 
minimum MTU for IPv6 is 1280 bytes. If a translator receives a packet for an IPv4 network with a smaller 
MTU, it creates 1280 byte packets and fragments them after translation. Table 10-5 shows the translation 
for the IPv4 header.  

Table 10-5. Translated IPv4 header  
Header field Information 
Version 4 
Internet 
Header Length 5 (no options) 

TOS and 
Precedence All 8 bits from the Traffic Class are copied. 

Total Length Payload Length from the IPv6 header plus length of the IPv4 header. 
Identification Zero 
Flags More Fragments Flag set to zero; Don't Fragment Flag set to one.  
Fragment 
Offset Zero 

Time to Live 
Hop Limit value copied from the IPv6 header. Since the translator is a router, the value has 
to be decremented by one (either before or after translation) and checked on the value. If 
zero, an ICMP TTL exceeded message has to be generated.  

Protocol Next Header field copied from the IPv6 header. 
Header 
Checksum Computed after generation of the IPv4 header. 

Source 
Address 

If the IPv6 address is an IPv4-translated address, the low-order 32 bits of the IPv4-
translated source address are copied to the IPv4 Source Address field. Otherwise, NAT 
will assign an IPv4 address out of the configured address pool and copy it into the IPv4 
Source Address field.  

Destination 
Address 

The low-order 32 bits of the IPv4-mapped destination address are copied to the IPv4 
Destination Address field.  

Options If an IPv6 Hop-by-Hop Options header, Destination Options header, or a routing header 
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with the Segments Left field equal to zero are present, they are not translated. In this case, 
the Total Length field and the Protocol field have to be adjusted accordingly. If a routing 
header is present with a Segments Left field of non-zero, an ICMPv6 Parameter Problem 
message (Type 4, Code 0) has to be returned to the sender with the Pointer field pointing 
to the first byte of the Segment Left field.  

If the IPv6 packet contains a Fragment header, the respective fields are translated as shown in Table 10-6.

Table 10-6. Translating the Fragment header  
Header field Information 

Total Length Payload Length from the IPv6 header, minus 8 for the Fragment header, plus the size of the 
IPv4 header.  

Identification Copied from the low-order 16 bits in the Identification field in the Fragment header.  

Flags More Fragment flag copied from the M flag in the Fragment header. The Don't Fragment 
flag is set to zero so IPv4 routers can fragment the packet.  

Fragment 
Offset Fragment Offset field copied from IPv6 header. 

Protocol Next Header value copied from the Fragment header. 

10.3.4.4 Translating ICMPv6 to ICMPv4 

Again, similar changes must be done when translating from ICMPv4 to ICMPv6, just in reverse order. 
Table 10-7 lists the details.  

Table 10-7. Translation of ICMPv6 informational messages  
Message type Translation 

Echo Request and Echo Reply (types 
128 and 129) 

Adjust the type to 8 and 0, respectively, and adjust the ICMP 
checksum to take the type change into account and to exclude the 
ICMPv6 pseudoheader.  

MLD Multicast Listener 
Query/Report/Done (types 130, 131, 
132) 

Single-hop message. Silently discard. 

Neighbor Discover Messages (types 
133 to 137) Single-hop message. Silently discard. 

Unknown Informational Messages Silently discard. 
Address Mask Request/Reply (types 
17 and 18) Obsoleted in ICMPv6. Silently discard. 

Router Advertisement (type 9) Single hop message. Silently discard. 
Router Solicitation (type 10) Single hop message. Silently discard. 
Unknown ICMPv4 types Silently discard. 

Error messages are treated as shown in Table 10-8.

Table 10-8. Translation of ICMPv6 error messages  
Message type Translation 
Destination Unreachable (type 
1) Set the Type field to 3 and the code field as follows: 

Type 1, Code 0 - No Route to 
Destination Type 3, Code 1 - Host Unreachable. 

Type 1, Code 1 - Type 3, Code 10 - Communication with Destination Administratively 
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Communication with 
Destination Administratively 
Prohibited  

Prohibited.  

Type 1, Code 2 - Beyond Scope 
of Source Address Type 3, Code 1 - Host Unreachable. 

Type 1, Code 3 - Address 
Unreachable Type 3, Code 1 - Host Unreachable. 

Type 1, Code 4 - Port 
Unreachable Type 3, Code 3 - Port Unreachable. 

Packet Too Big (type 2) 
Type 3, Code 4 - Fragmentation Needed but DF set. The MTU field 
needs to be adjusted for the difference between the IPv6 and IPv4 
headers, including a Fragment header, if present.  

Time Exceeded (type 3) Type 11, Code field unchanged. 

Parameter Problem (type 4) 

If the Code field is set to 1, translate to a Type 3, Code 2 - Protocol 
Unreachable, otherwise to Type 12, Code 0 - Parameter Problem. The 
pointer needs to be updated to point to the corresponding field in the 
translated and included IP header.  

Unknown Error messages Silently discard. 

Again, the IP header included in the ICMP error message is translated following the same rules so the 
destination host can understand the information.  

10.4 Comparison 

Now that you know the available techniques, I'll summarize them by listing advantages and disadvantages. 
This summary should help you determine which way to go.  

10.4.1 Dual Stack 

This technique is easy to use and flexible. Hosts can communicate with IPv4 hosts using IPv4 or 
communicate with IPv6 hosts using IPv6. As soon as everything has been upgraded to IPv6, the IPv4 stack 
can simply be disabled or removed. Disadvantages of this technique include the following: you have two 
separate protocol stacks running, so you need additional CPU power and memory on the host. All the 
tables are kept twice, one per protocol stack. Also, you need to deal with different commands for each 
protocol because each command has a different set of command-line options. A DNS resolver running on a 
dual-stack host must be capable of resolving both IPv4 and IPv6 address types. Generally, all applications 
running on the dual-stack host must be capable of determining whether this host is communicating with an 
IPv4 or IPv6 peer. If you are using dual-stack techniques, make sure that you have firewalls in place that 
protect not only your IPv4 network, but also your IPv6 network.  

10.4.2 Tunneling  

Tunneling allows you to migrate to IPv6 just the way you want to. There is no specific upgrade order that 
needs to be followed. You can even upgrade single hosts or single subnets within your corporate network 
and connect separated IPv6 clouds through tunnels. You don't need your ISP to support IPv6 in order to 
access remote IPv6 networks because you can tunnel through their IPv4 infrastructure.  

The disadvantages are already known from other tunneling techniques used in the past. Additional load is 
put on the router. The tunnel entry and exit points need time and CPU power for encapsulating and 
decapsulating packets. They also represent single points of failure. Troubleshooting gets more complex 
because you might run into hop count or MTU size issues, as well as fragmentation problems.  
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10.4.3 NAT 

This technique should be used only if no other technique is possible and should be viewed as a temporary 
solution until one of the other techniques can be implemented. The disadvantages are that it does not 
support the advanced features of IPv6, such as end-to-end security. It poses limitations on the design 
topology because replies have to come through the same NAT router from which they were sent. The NAT 
router is a single point of failure, and flexible routing mechanisms cannot be used. All applications that 
have IP addresses in the payload of the packets will stumble. The advantage of this method is that it allows 
IPv6 hosts to communicate directly with IPv4 hosts and vice versa.  

10.4.4 When to Choose IPv6 

A golden rule says never to touch a running system. This also applies to your IPv4 networks. As long as 
they do what you need them to do, let them run. But when an IPv4 network hits the limits for some reason 
(if you run out of public address space, if you run into limitations because of using NAT and private 
addresses and need end-to-end security, or if you need to extend your network by a whole new segment), 
choose IPv6. IPv6 is mature enough to be used in corporate and commercial networks. Do not make high 
investments in new setups or complex configurations for IPv4 anymore. When you reach the point where 
this would be needed, choose the future and invest in IPv6. It is recommended that companies that do 
business on the Internet today look at the technology as soon as possible. IPv6 is inevitable and it is 
important that IT staff and engineers get up to speed in time. There are a number of companies that have 
experience in migrating to IPv6 and offer consulting and training services; one example is Native6Group at 
http://www.native6group.com.

10.5 Vendor Support 

The techniques described in this chapter do not help if your hardware and applications do not support IPv6. 
The number of vendors who support IPv6 is growing daily. To give you a list here doesn't make sense. By 
the time this book hits the shelves, this list would be outdated. In our test lab, we have used the 
implementations of Microsoft (Windows 2000 research stack and Windows XP built in stack), Suse Linux 
7.0, Sun Solaris, and Cisco. These vendors have been helpful in providing information and supporting us. 
Many other vendors have stacks ready. The following sites can help you get updated information when you 
need it:  

For information on implementations that are updated to IPv6, refer to 
http://www.ipv6.org/impl/index.html. Another good site for this kind of information can be found at 
http://playground.sun.com/pub/ipng/html/ipng-implementations.html. For a list of IPv6-enabled 
applications, go to http://www.ipv6.org/v6-apps.html.
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Chapter 11. Get Your Hands Dirty 
This chapter is your quick-start guide to using different IPv6 stacks. Mastering technology is not done by 
reading about it, so get your hands dirty and play with it. You have plenty of options.  

This chapter offers an overview of some common stacks that can be used. It is not a complete list. I 
decided to focus on Windows 2000, Sun Solaris, and a Linux implementation in the beginning. During the 
later stages of the writing process, Windows XP came out, so I added information about Windows XP's 
IPv6 stack. This chapter describes where to get the stacks, how to install them, and lists the most common 
utilities for configuring and troubleshooting IPv6. Once you are familiar with one of the stacks, you will 
have no problems applying your know-how to other stacks.  

A good overview of different implementations, with links, can be found at 
http://www.ipv6.org/impl/index.html.

11.1 Sun Solaris 

IPv6 support is available on Solaris 8. This is the version I used in my test network. The Solaris 8 software 
is downloadable from Sun Microsystem's homepage, or you can buy a CD.  

To find information, whitepapers, FAQs, and the download page for cool utilities for Sun's IPv6 stack, go 
to http://www.sun.com/solaris/ipv6. There is, for instance, a tool called Socket Scrubber, which is written 
for developers and can identify lines of IPv4 socket code or review IPv6 code in your applications. It is 
downloadable for free and helps you port your applications to IPv6.  

11.1.1 Enable IPv6 and Get Started 

If you want to use IPv6 on Sun Solaris, you must enable it during the OS installation. For the configuration 
of the IPv6 address, a choice between static or automatic address definition is possible. Automatic means 
that the system will use neighbor discovery to obtain an IPv6 address; static means that the administrator 
defines the IPv6 address manually. In my tests, I used the automatic address configuration. All IPv6-
specific adapter configuration is stored in /etc/hostname6.<interface>.

11.1.2 Utilities 

All utilities described below are available after the Solaris 8 installation and have IPv6 support. The online 
documentation contains a good description of the command-line utilities and possible parameters.  

If you want to display IPv6 related information by default when using the tools ifconfig and netstat, you 
need to change the file /etc/default/inet_type and add the entry DEFAULT_IP=BOTH.

ifconfig 

There are new parameters available to get IPv6-related adapter information. The man pages show 
all the options.  

netstat 

In addition to IPv4 information, it is possible to display IPv6 information. Use the following 
switch: netstat -f inet6. If you changed the default inet type, netstat -p displays the ARP table for 
IPv4 and the neighbor cache for IPv6. netstat -rn displays the routing table for IPv4 and IPv6.  

route 
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Route can be used for both routes, IPv4 and IPv6. Use the option -inet6 to perform operations on 
IPv6 routes or to change the default inet type.  

ping, traceroute 

ping and traceroute used with IPv6 addresses or IPv6 DNS record entries display IPv6-related 
information.  

snoop 

Snoop is a well-known network analysis tool included with Solaris. The latest version has IPv6 
support. IPv6 traffic can be viewed by using snoop ip6.

A lot of good information about Solaris system administration is available at 
http://www.sun.com/bigadmin/.

11.2 Linux 

There are a number of different Linux distributions on the market, all based on the same kernel, identified 
by its version number. The Linux kernel has supported IPv6 since version 2.2.x.  

In my test network, I used the SuSE distribution of Linux. I liked the user-friendly installation, and the 
engineers at SuSE were very supportive in getting me started with the IPv6 issues.  

Find more information about the Linux standard and the different available 
implementations at http://www.linuxbase.org. For an IPv6-specific Linux site, 
refer to http://www.linux-ipv6.org.

11.2.1 Where to Get Linux 

Most of the common Linux distributions can be downloaded from the Internet, but they can also be 
purchased from the sales channels of their respective makers, including CDs and manuals. It is usually 
advisable to buy a distribution because the download files are rather big (100-500 MB).  

11.2.2 Installation 

I used SuSE Linux Version 7.2. If you do a standard installation of this version, it will be based on the 
Linux kernel Version 2.4, and the IPv6 protocol stack will automatically be enabled in addition to the IPv4 
stack. The current inet daemon supports IPv6 and is responsible for all networking tasks, such as FTP, 
telnet, or finger. The configuration file /etc/inetd.conf must be changed for IPv6 support. Consult the inetd 
man page for more information.  

To find the latest kernel, check with your distributor's support site.  

After going through this procedure, I had a Linux host that talks IPv4 and IPv6.  
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11.2.3 Utilities  

There are two packages that you need to download and install to get the cool utilities for Linux. One of 
them is net-tools. This package contains the source code for utilities such as ifconfig, netstat, route, and 
hostname. Another package you'll need is called iputils and can usually be found on your distribution CD. 
It contains ping6, tracepath6, and traceroute6.

For further information on how to install the utilities and compile the source code, 
go to http://www.bieringer.de/linux/IPv6/. This is a cool site where you will also 
find lots of useful information on Linux and protocols. If you need the most 
current packages for net-tools, go to http://www.freshmeat.net.

The following is a short description of some of the utilities that can be helpful when working with IPv6. 
The utilities mentioned here are the ones I have used most when working in my lab. As you probably 
know, the online help for all Linux utilities is very detailed and there are two ways you can access it:  

Man pages 

The man pages can be accessed by entering man utilityname, where utilityname is the name of the 
utility. It contains all information about available options and detailed descriptions.  

Help screens 

Help screens can be accessed by entering the utility name with the parameter --help. For instance, 
to get the information for ifconfig, enter ifconfig --help. This screen is like a short version of the 
man pages.  

The following utilities are interesting and new for IPv6: 

ifconfig 

This tool is used for general network configuration of the Linux box. If you are using SuSE 7.2, 
the installed inetd supports IPv6. Using the address flag [address family] lets you switch 
between IPv4 (inet) and IPv6 (inet6) address families. You can use ifconfig to start and stop the 
interface and to view many different kinds of statistics.  

netstat 

The netstat version on your Linux box after the installation does support IPv6. However, by 
installing net-tools, you get the most current version. The netstat tool provides a lot of useful 
options and statistics, such as port information, routing table, and interface table. For all IPv6-
related information, you need the --inet6 flag.  

route 

If you enter route without any parameters, it displays the routing table for IPv4. For viewing the 
IPv6 routing table, add the flag --inet6.

ping6, traceroute6, tracepath6, hostname 

Most of the utilities for IPv6 are similar to the utilities that we know from IPv4. Instead of using 
ping or traceroute, I now use ping6 or traceroute6. Refer to the man pages for details. Instead of 
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using traceroute6, try tracepath6. It not only displays the path, but also includes MTU 
information.  

For general Linux resources, go to http://www.linux.org and 
http://www.kernel.org .

11.3 Microsoft 

Microsoft released the first research IPv6 stack in 1998. It runs on Windows NT 4.0 and Windows 2000. It 
does not work on Windows 95/98. If you have Windows 95/98 or Windows ME or SE, you can use 
Trumpet's Winsock or consider upgrading to Windows XP, which includes an IPv6 stack. If you have the 
choice, I strongly recommend that you play with the Windows XP version. It is currently the most 
developed Microsoft stack and has many features that the research stack for Windows NT and Windows 
2000 do not have. Also, when you install Windows XP, you get a great online help with very thorough 
information about IPv6 and how to use the stack and a guide for setting up a test environment.  

11.3.1 Windows NT 4.0 and Windows 2000 

The installation is pretty simple—the stack is stable, and it can even be used as a router. This is obviously 
not its primary use, but it is a nice feature if you want to play with it.  

To find information, FAQs, and the download page for the latest versions of Microsoft's IPv6 stack, go to 
http://www.microsoft.com/ipv6/.

11.3.1.1 Installation 

To install the IPv6 stack, run setup.exe from the location to which you extracted the IPv6 files. Then go to 
the Network and Dial-Up Connection window, click on the connection where you want to add the IPv6 
protocol and click on Properties. Choose Install Protocol, click Add, and select the IPv6 Protocol.  

The Microsoft IPv6 Protocol is automatically added to all Ethernet interfaces on your computer. The setup 
program copies the protocol files from the location where you extracted the IPv6 Technology Preview files 
into the appropriate Windows NT or Windows 2000 directories. It also modifies setup information files so 
that the Microsoft IPv6 Protocol is in the list of available protocols. The IPv6 protocol driver (tcpip6.sys) is 
installed in the %systemroot%\ system32\drivers directory. The Winsock helper dynamically linked library 
for the INET6 address family (wship6.dll) and all applications and tools (ipv6.exe, ping6.exe, tracert6.exe,
ttcp.exe, etc.) are installed in the %systemroot%\ system32 directory.  

If you have a Windows 2000 host with SP1 installed, it is no problem to install the IPv6 stack. If you have 
SP2 already installed on Windows 2000, the IPv6 stack will not install without a modification. You have to 
unpack the IPv6 files and edit the hotfix.inf file so that the line NtServicePackVersion=256 reads 
NtServicePackVersion=512. Then run hotfix.exe.

11.3.1.2 Utilities 

The following is a short description of new or modified command-line utilities available for configuring 
the stack, displaying statistics, and gathering troubleshooting information.  

Net.exe 

Net.exe can be used to stop and start the IPv6 protocol. Net.exe has many subcommands, each with 
its own set of arguments and options. Only the following commands are directly relevant to IPv6:  
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net stop tcpip6 

This command stops the IPv6 protocol and unloads it from memory. The command fails if any 
application has open IPv6 sockets.  

net start tcpip6 

This command starts the IPv6 protocol if it was stopped. If a new Tcpip6.sys driver file is present 
in the %systemroot%\ System32\Drivers directory, it is loaded.  

Ipv6.exe 

All Microsoft IPv6 protocol configurations in Windows NT and Windows 2000 are done with the 
Ipv6.exe tool, which is primarily used for querying and configuring interfaces, addresses, caches, 
and routes. Ipv6.exe has many subcommands, each with its own set of arguments and options.  

You can use Ipv6.exe to display interface information, control interface attributes such as 
forwarding and advertising options, delete interfaces, display or flush cache entries, add or remove 
unicast or anycast address assignments, display the site prefix table and routing table, add or 
remove routes in the routing table, and much more. For instance, ipv6 -nc displays the neighbor 
cache, ipv6 -rc displays the route cache, and ipv6 -rt displays the routing table. For a list of 
arguments and options, use ipv6 /?.

Ping6.exe 

The Microsoft IPv6 stack installs the Ping6.exe tool, an equivalent to the Ping.exe tool supplied 
with IPv4 in Windows. To ping an IPv6 host, you need to use ping6.exe. For example, to ping 
Host A with the IPv6 address fe80::260:97ff:fe02:6ea5, use the command ping6 
fe80::260:97ff:fe02:6ea5.

When pinging a link-local or site-local address, it is recommended that you specify the scope ID 
to make the destination address unambiguous. The notation to specify the scope ID is 
address%scope-ID. For link-local addresses, the scope ID is equal to the interface number as 
displayed in the ipv6 if command. For site-local addresses, the scope ID is equal to the site number 
as displayed in the ipv6 if command. For example, to send Echo Request messages to Host A with 
scope ID 4, use the command ping6 fe80::260:97ff:fe02:6ea5%4.

tracert6.exe  

This is the IPv6 equivalent to tracert.exe used for IPv4. It sends ICMPv6 Echo Request messages 
with increasing values in the Hop Limit field to discover the path traveled by IPv6 packets 
between a source and a destination.  

Ipsec6.exe 

Configuration of IPSEC policies and security associations for the Microsoft IPv6 protocol is done 
with Ipsec6.exe. Ipsec6.exe has many subcommands, each with its own set of arguments and 
options. You can use it to display security policies and associations, create files used to configure 
security policies and associations, and add and delete security policies and associations. Check the 
online help for details.  
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6to4cfg.exe 

6to4cfg.exe automates 6to4 configuration on Windows NT and Windows 2000 by discovering 
your globally routable IPv4 address and creating a 6to4 prefix. If you don't specify a relay agent, it 
will autoconfigure to use Microsoft's relay agent. To learn how 6to4 works, refer to Chapter 10.

checkv4.exe  

This tool is used to scan source-code files to identify code that needs to be changed to support 
IPv6.This is a developer tool and is meant to be used on C/C++ source files. checkv4.exe displays 
the line number and a message recommending how the code should be changed.  

checkv4.exe is found in the \ bin folder in the location where the IPv6 Technology Preview files 
were extracted. checkv4.exe is not copied to the %systemroot%\ system32 directory.  

11.3.2 Windows XP 

The IPv6 stack that comes with Windows XP is more developed than the research stack for Windows NT 
4.0 and Windows 2000. It is prerelease code and is intended for developers and test networks. Microsoft 
encourages developers to port their applications to support IPv6. If you have a choice, use Windows XP to 
play with IPv6.  

The IPv6 protocol for Windows XP in the current version includes the following features:  

• 6to4 tunneling  
• ISATAP 
• 6over4 tunneling  
• Anonymous addresses  
• Site prefixes in router advertisements  
• DNS support  
• IPSEC support  
• Application support  
• RPC support  
• Static router support 

11.3.2.1 Installation and configuration 

To install IPv6 on Windows XP, simply open a command prompt and enter ipv6 install. It does not appear 
in the list of components in the properties of a LAN connection in Network Connections, if you work with 
the first release of Windows XP. If you want to verify that IPv6 is installed on an XP host, type ipv6 if or 
netsh int ipv6 show interface at the command line. This displays interface information. With SP1 for 
Windows XP, it will not even be necessary to use the ipv6 install command anymore. IPv6 will appear in 
the list of available protocols to be installed and, after installation, will show in the list of installed 
protocols.  

11.3.2.2 Utilities 

Most utilities described for Windows 2000 are the same with Windows XP. For instance, you can use 
ping6 and tracert6 or use ipv6 -rc to display the route cache, ipv6 -nc to display the neighbor cache, and 
ipv6 -rt to view the route table. IPv6-specific options have been added to netstat for Windows XP. Also 
new for XP is the IPv6 context in netsh, which is a command-line utility that you can use to display or 
modify the network configuration and display all sorts of statistics. It also provides a scripting feature that 
allows you to run a group of commands in batch mode. Pretty cool; have a look at it. You must start netsh 
from the command-line prompt and change to the context that contains the command you want to use. The 
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contexts that are available depend on which networking components are installed. Figure 11-1 is a 
screenshot of netsh in action.  

Figure 11-1. The netsh command 

From the command prompt, I entered netsh to start the utility. Then I started to change to the context 
where I can work with my IPv6 configuration. First, I changed to the context interface, then to the context 
ip, and finally to the context ipv6. The command show always returns a list of the commands that are 
available in the context where I use it.  

Figure 11-2 shows the output of two options that might be helpful when troubleshooting.  

Figure 11-2. Using netsh for IP and interface information 

The commands I used here are taken from the list shown in Figure 11-1. First, I used show global and 
received some default configuration parameters valid on this host. Then I used show interface and got an 
overview of my interfaces, including MTU size, connection state, and name. This host has two 
pseudointerfaces used for tunneling IPv6 over an IPv4 infrastructure.  

Note that the ipv6 command will eventually be phased out in future releases of the IPv6 stack and 
completely replaced by netsh. To get the information for ipv6 if, you have to replace the command with 
netsh int ipv6 show interface, and replace ipv6 -rt with netsh int ipv6 show routes.

11.3.2.3 6to4 

6to4cfg.exe has been replaced by netsh. If you want to configure your XP host for 6to4, do not run 
6to4cfg.exe anymore. Your command is netsh interface ipv6 6to4.
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Microsoft's 6to4 service currently supports the following functionality:  

• It automatically configures 6to4 addresses on an interface named 6to4 Tunneling Pseudointerface 
(interface ID 3) for all public IPv4 addresses that are assigned to interfaces on the computer.  

• It automatically creates a 2002::/16 route that forwards all 6to4 traffic with the 6to4 
Tunneling Pseudointerface (interface ID 3). All traffic forwarded by this host to 6to4 destinations 
is encapsulated in an IPv4 header.  

• It automatically performs a DNS query for the name 6to4.ipv6.microsoft.com to obtain the IPv4 
address of the Microsoft 6to4 relay router on the Internet. You can use the netsh interface ipv6 
6to4 set relay command to specify a different relay router.  

If your host has a public IPv4 address, this configures it as a 6to4 host. A 6to4 host can perform its own 
tunneling to reach 6to4 hosts in other sites or hosts on the 6Bone. If Internet Connection Sharing (ICS) is 
enabled on an interface that is assigned a public IPv4 address, the 6to4 service enables routing on the 
private interface and sends Router Advertisements that contain 6to4 address prefixes based on the public 
IPv4 address of the public interface. The SLA ID in the 6to4 address prefix is set to the interface ID of the 
interface on which the advertisements are sent. Now this host can act as a 6to4 router that can encapsulate 
and forward 6to4 traffic to other hosts in the Internet and forward 6Bone traffic to a relay router in the 
Internet.  

11.3.2.4 ISATAP 

A new address assignment and tunneling mechanism is currently being defined that can be used for 
communication between IPv6/IPv4 nodes on an IPv4 network. The Internet draft on this mechanism is 
titled " Intra-Site Automatic Tunnel Addressing Protocol (ISATAP)." ISATAP is described in more detail 
in Chapter 10, and the draft can be found at http://search.ietf.org/internet-drafts/draft-ietf-ngtrans-isatap-
04.txt. (The number for the draft may have increased by the time you go to get it, so you can search the 
index or just try increasing the number by one or a higher value.)  

ISATAP addresses have the form 64BitPrefix:5EFE:w.x.y.z. The 64BitPrefix is any 
64-bit prefix that is valid for IPv6 unicast addresses. 5EFE is the globally unique interface identifier that 
is formed from the combination of the OUI assigned to the IANA (00-00-5E) and the type FE, which 
indicates that an embedded IPv4 address. w.x.y.z is a unicast IPv4 address.  

The IPv6 protocol for Windows XP automatically configures the ISATAP address 
FE80::5EFE:w.x.y.z on the automatic tunneling pseudointerface for each IPv4 address that is 
assigned to the node. This link-local ISATAP address allows hosts to communicate over an IPv4 network 
by using one another's ISATAP addresses.  

The FAQ for IPv6 on Windows XP can be found at 
http://www.microsoft.com/windowsxp/pro/techinfo/administration/ipv6/default.asp.

One day a friend came to visit us at our office. He started his notebook to show us a presentation. I realized 
that the notebook was running Windows XP, one of the beta versions. I asked him if he would mind trying 
to configure it for IPv6 because I had heard that Windows XP has an IPv6 stack included. He didn't know 
that, but he was interested. So I went into the help files and immediately found the description of how to 
install the stack. Guess what: it took not even five minutes to configure this notebook for IPv6, connect it 
to our network, and ping6 other IPv6 hosts.  

 



198

11.4 Applications 

I installed a few IPv6-enabled applications, such as Apache Web Server, Bind 9, and FTP and Telnet 
servers. To find current information about IPv6 applications, look at the IPv6 Forum homepage at 
http://www.ipv6forum.org. Click on the left side button for Implementations and choose IPv6 
Applications. Another reference site for IPv6 application information is http://www.ipv6.org/v6-apps.html.
There are HTTP servers and clients, Telnet and FTP applications, chat and email software, firewalls, 
monitoring tools, and patch links. At http://www.hs247.com, you can also find a lot of useful information 
about IPv6 implementations on different operating systems, as well as IPv6-enabled applications for each 
operating system—enough to spend quite some time in your lab. And don't forget to send me some trace 
files.  

The IPv6 Technology Preview for Windows 2000 and the Windows XP IPv6 stack contain a set of sample 
applications that you can use to experiment with IPv6-based traffic beyond the use of standard connection 
diagnostic tools such as ping6 and tracert6. The following applications are provided:  

HTTP client 

The new Internet extensions dynamic link library (DLL), Wininet.dll, provides IPv6 capability so 
that Windows-based Internet browsers, such as Microsoft Internet Explorer or Netscape 
Navigator, can make connections to both IPv4 and IPv6 web servers.  

FTP client  

The new FTP client, Ftp.exe, is capable of establishing FTP sessions with IPv4 and IPv6 FTP 
servers.  

Telnet client  

The new Telnet client, Telnet.exe, is capable of establishing Telnet sessions with IPv4 and IPv6 
Telnet servers.  

Telnet server  

The new Telnet server, Tlntsvr.exe, is capable of establishing Telnet sessions with IPv4 and IPv6 
Telnet clients.  

For those of you who love trace files and work with Network Monitor, note that the current version of 
Network Monitor Version 2 supports the decode of IPv6.  

Microsoft is working on IPv6-enabled versions of Internet Information Server (IIS), file sharing, and DNS 
over IPv6 transport. They are announced for 2002. Please refer to Microsoft's IPv6 site for current 
information.  

Find FTP, Telnet, and HTTP trace files in Chapter 9.
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11.5 Cisco Router 

I had a Cisco router with the latest updates in my lab. Cisco provided the router to support this book, so I 
will describe the configuration on a Cisco router. Configuration of other routers might be fairly similar. If 
you are familiar with your routing hardware, you will figure out how to do it or your vendor can provide 
the necessary information.  

Cisco's IPv6 support begins with the Cisco IOS 12.2(2) Technology release. Make sure you are using the 
latest release because new features will be supported with every update. There is detailed documentation 
for IPv6 on Cisco's web site, where you can find an overview, configuration descriptions, and commands. 
For a detailed explanation of configuring your Cisco router for IPv6, refer to the following page: 
http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122newft/122t/122t2/ipv6/ftipv6c.htm.
This link relates to the current IOS. If you are using a later release, you might have to find a different link 
on the Cisco web site.  

Figure 11-3 shows the interface configuration in my lab.  

Figure 11-3. Interface configuration on our Cisco router 

First, I needed to enable IPv6 packet forwarding. This is not enabled by default (different from IPv4). It is 
done with the global command ipv6 unicast-routing (not shown on the screenshot). Next, I configured the 
interface Ethernet 0/0. By typing IPv6 ?, I received a list of available commands. From this screen, the 
IPv6 address can be configured, as well as options for linking MTU, neighbor discovery, routing, and 
filters. The command IPv6 nd ? displays the options available for the configuration of neighbor discovery. 
From this screen, you can configure flags to specify whether hosts on this link should use DHCP for 
address-related or non-address-related information and different intervals, such as the router advertisement 
interval. The subnet prefix and the lifetime advertised in Router Advertisement messages are also 
configured here. I made the first configuration steps and set this router up as a 6to4 tunnel with the 
Microsoft 6to4 relay router as tunnel destination.  

Here are some interesting ND commands that you can use on your Cisco router. This is not a complete list, 
but it should help you get started and give an idea of how you can configure your routers.  
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ipv6 nd dad attempts <number> 

Configures the number of Duplicate Address Detection (DAD) and Neighbor Solicitation 
messages to send before considering an address unique. DAD can be disabled by specifying ipv6 
nd dad attempts 0.

ipv6 nd ra-interval <seconds> 

Configures the interval between IPv6 Router Advertisement transmissions from this interface. The 
value for this should be less than or equal to the IPv6 Router Lifetime if this is a default router. 
The default is 200 seconds. To prevent synchronization with other IPv6 nodes, the actual value 
used should be randomly adjusted to within plus or minus 20 percent of the specified value.  

ipv6 nd ra-lifetime <seconds> 

Configures the lifetime of a Router Advertisement. This value is included in all IPv6 Router 
Advertisements sent out this interface. If the router is not a default router, this will have a value of 
zero. If the router is a default router, this value will be non-zero and should not be less than the 
minimum Router Advertisement interval. The default value is 1,800 seconds.  

[no] ipv6 nd suppress-ra 

Controls transmission of IPv6 Router Advertisements on the interface. The default is to send 
Router Advertisments (RAs) on Ethernet, FDDI, or Token Ring interfaces if IPv6 unicast routing 
is enabled. Use the command ipv6 nd supress-ra to turn off RAs on LAN interfaces. On other 
types of interfaces, the default is never to send an RA. Use the command no ipv6 nd suppress-ra 
to send RAs on interfaces such as serial or tunnel interfaces  

[no] ipv6 nd prefix <prefix> | default, [ [<valid-lifetime> <preferred-lifetime>] | [at <valid-date> 
<preferred-date>] [off-link] [no-autoconfig] ] 

By default, all prefixes configured as addresses on the interface are advertised in Router 
Advertisements. This command allows control over the individual parameters per prefix, 
including whether the prefix should be advertised. The default keyword can be used to set default 
parameters for all prefixes. A date can be set for prefix expiration. The valid and preferred 
lifetimes are counted down in real time. When the expiration date is reached, the prefix is no 
longer advertised.  

[no] ipv6 nd managed-config-flag 

Defaults to OFF. When OFF, Router Advertisements sent from this interface have the Managed 
Address Configuration Flag turned off. Hosts are thus permitted to use IPv6 stateless 
autoconfiguration to create global unicast addresses for themselves.  

For a complete list of router configuration commands, refer to your Cisco documentation. For a discussion 
of routing protocols, refer to Chapter 8.

The next step I performed was to verify my interface configuration. Figure 11-4 shows the output.  
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Figure 11-4. Verifying the interface configuration 

The output shows that I have a link-local address with the prefix FE80 and a global unicast address with 
the prefix 2002. The multicast group addresses joined are FF02::1 (all nodes), FF02::2 (all 
routers), and FF02::1:FF0B:75A0 (solicited-node multicast address). A list with all the 
configuration options follows, stating timers, intervals and address configuration options. Other tools that 
can be used on Cisco's current IOS are ping, traceroute, and a DNS client, all operational in IPv6.  

Figure 11-5 shows the Router Advertisement in the trace file.  

Figure 11-5. Router Advertisement in the trace file 

The router sends the advertisement to the all-nodes multicast address ff02::1, so all nodes on the link 
receive it. Looking at this packet in the detail window, we can see how the router is configured. The hop 
limit is set to 32. DHCP (administered protocol) is not used for address information, but is used by the 
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hosts to get non-address-related information through DHCP. The lifetime is configured for 1,800 seconds. 
The Type field is set to 3 for prefix information. The prefix length is 64 bits and the lifetime is set to 
infinite. The prefix advertised in this case is caff:ca01:0:56::/64. This is what I had configured 
on the router prior to taking this trace file. All hosts that boot on this link send out a Router Solicitation 
message and receive this Router Advertisement. They learn all the parameters, including the prefix 
information from the router, and autoconfigure for an IPv6 address.  

11.6 Description of the Tests 

You will all go through these steps sooner or later, but I thought I'd share my first tries with you.  

I started out with two hosts. One host is a Windows 2000 machine running the Microsoft Research stack. I 
called this host Marvin. The second host is a SuSE Linux host, also running an IPv6 stack. That host's 
name is Ford. Communication between the two hosts has not been an issue. In the absence of a router, they 
both autoconfigured for a link-local IPv6 address, using the 48-bit MAC identifier to build the address.  

The Windows 2000 host Marvin has the following configuration:  

MAC address 00-02-B3-1E-83-29 
IPv4 address 62.2.84.115 (network range of our ISP, public IPv4 address) 
IPv6 address fe80::202:b3ff:fe1e:8329 

The Linux host Ford has the following configuration:  

MAC address 00-A0-24-C5-32-56 
IPv4 address 192.168.0.99 (local network) 
IPv6 address fe80::2a0:24ff:fec5:3256 

11.6.1 Pinging with IPv6 

The first success was the verification of IPv6 communication by pinging each host as follows.  

Open a command window on Marvin and issue the following command:  

ping6 fe80::2a0:24ff:fec5:3256 

Do you want to know what a ping with IPv6 looks like? Have a look at Figure 11-6.
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Figure 11-6. Trace file with an IPv6 ping 

Frame 1 is the Echo Request from Ford; Frame 2 is the Echo Reply from Marvin. The screenshot shows 
the two MAC addresses configured for a link-local IPv6 address (prefix fe80). Between the third and 
fourth byte of the MAC address, fffe is inserted. The Payload Length field tells us the length of the data 
carried after the header. Remember from Chapter 2 that this field calculates the length in a different way 
than we are used to from IPv4. The length of the IPv6 header is not included in the calculation. The Next 
Header field is the same field as the Protocol Type field in IPv4. (The table with all the protocol numbers 
can be found in Chapter 2.) Protocol number 58 specifies ICMPv6. The ICMPv6 header shows what type 
of ICMP message this is. (A table listing all the ICMP message types can be found in Chapter 4.) Message 
type 128 is an Echo Request, and 129 is an Echo Reply. The identifier and sequence number are used to 
match requests and replies. All these fields are important when you need to troubleshoot.  

To understand ICMPv6 and become familiar with the whole range of 
functionality, refer to Chapter 4.

11.6.2 Pinging the 6Bone over the IPv4 Infrastructure 

Pinging with IPv6 is cool, but the local ping quickly got boring. So I decided that I wanted to ping some 
hosts on the 6Bone and, even more exciting, visit some IPv6 web sites. Good thought, but how do I get out 
there? After all, my ISP still has an IPv4-only infrastructure.  

The Microsoft documentation helped me a step further with the description of how to use 6to4cfg.exe 
(replaced by netsh on Windows XP), a tool that is used to configure tunnels for IPv6 to be carried over an 
existing IPv4 infrastructure. The requirement for this host is to have a public IPv4 address. The 6to4.exe 
tool autoconfigured a public IPv6 address for my host by using the public IPv4 address and turning it into a 
public IPv6 address.  

Figure 11-7 shows the output of the 6to4cfg.exe command when autoconfiguring.  
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Figure 11-7. Using 6to4cfg.exe on a Windows 2000 host 

The screenshot shows a relay router name of 6to4.ipv6.rte.microsoft.com with an IPv4 address of 
131.107.152.32. This is a router that can be used by anyone wishing to establish tunneled IPv6 
communication to the 6Bone. It can be found in the Microsoft documentation about the IPv6 research 
stack. This host has an IPv6 address of 2002:836b:9820::836b:9820. 6to4cfg.exe uses our 
local IPv4 address as prefix for 6to4 configuration.  

Sometimes things work as expected, so I was able to capture the trace file in Figure 11-8. It shows how the 
IPv6 ICMP message is encapsulated into an IPv4 packet.  

Figure 11-8. Pinging the 6bone through an IPv4 infrastructure 

The summary line shows the Echo Request and the Echo Reply and the two beautiful IPv6 addresses. The 
IPv4 layer (highlighted in the detail window) shows a source address of 62.2.84.115, which is my 
local host's public IPv4 address used to access the Internet. The destination address of 
131.107.152.32 is the IPv4 address of Microsoft's relay router (refer back to Figure Figure 11-7). 
This router will know how to treat the ICMPv6 packet. The Protocol field in the IPv4 header, which cannot 
be seen in this screenshot, has the value 41 for IPv6.  

11.6.3 Traceroute with IPv6 

Skeptical as I am, I decided to check on traceroute next. Remember, traceroute uses Echo Request and 
Reply messages. By raising the hop limit by one for every packet, traceroute forces all routers on the path 
to a given destination to send back an ICMP Time Exceeded message. This way, the source host gets a list 
of all routers along the path. And it worked!  

Note that traceroute on a Microsoft machine with the current IPv6 research stack is done by issuing 
tracert6.exe, as can be seen in Figure 11-9.
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Figure 11-9. tracert6 to www.6bone.net 

I issued tracert6.exe for 3ffe:b00:c18:1::10, which is the IPv6 address of www.6bone.net. The 
first hop 2002:836b:9820::836b:9886 is the endpoint of the tunnel. To get there, any number 
of hops is possible. tracert6 cannot provide any information about the tunnel. Only the hops from the end 
point of the tunnel to the final destination are displayed.  

Figure 11-10 shows how this same command looked when tracing it with Sniffer.  

Figure 11-10. tracert6 to the 6Bone in the trace file  

The first frame shows the first Echo Request sent to the final destination. This packet has a hop limit of 1. 
The first router in the path, 2002:836b:9820::836b:9886, replies with a Time Exceeded 
message. Frames 2, 4, 6, 8, and 10 are the replies from the routers along the path to the destination. 
Compare the source address of these replies with the tracert6 output in Figure 11-9, and hey, do they 
match?  

11.6.4 Browsing with IPv6 

After mastering ping6 and tracert6, I wanted more. How about browsing web sites? I looked for web sites 
that are accessible over IPv6-only and tried to get there.  

On the Microsoft platform, the new Internet extensions dynamic link library, wininet.dll, allows web 
browsers to access IPv6-enabled web servers. For example, wininet.dll is used by Microsoft Internet 
Explorer to make connections with web servers and view web pages. Internet Explorer uses IPv6 to 
download web pages in the following circumstances:  

• The DNS query for the name of the web server in the URL returns an IPv6 address.  
• On Windows NT and Windows 2000 with the IPv6 Technology Preview Stack, you can also use 

an URL in the format for literal IPv6 addresses, as described in RFC 2732. A literal IPv6 address 
in a URL is the address enclosed in square brackets. For example, to reach the web server at the 
IPv6 address 2010:836B:4179::836B:4179, the URL is 
http://[2010:836B:4179::836B:4179].

For a list of IPv6-accessible web sites, see http://www.ipv6.org/v6-www.html. Accessing IPv6-only web 
sites assumes that you have connectivity to the 6Bone.  
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Your browser cannot browse IPv6 web sites if it is configured to use a proxy 
server. When the browser is configured to use a proxy server, all name-resolution 
requests for web sites are forwarded to the proxy server. Unless the proxy server 
is IPv6-enabled, proxy-based requests for local or remote IPv6 web pages will not 
work.  

From the list of IPv6-accessible web sites, we chose http://ipv6.research.microsoft.com. Figure 11-11
shows the welcome screen at this site.  

Figure 11-11. Welcome to the future 

Let's hope that the future is a little more colorful than this welcome site. But our IPv6 stack is obviously 
ready to surf the web over IPv6.  

I have done many more experiments in my lab, including FTP and Telnet. To see some of those trace files, 
refer to Chapter 9. But most importantly, play for yourself and make your own trace files. That's much 
more fun.  

11.7 Vendor Support 

A great number of vendors already support IPv6 and the list grows daily. I had to make a choice for my 
test network. There are many other vendors and operating systems that you can use to play with. The IPv6 
Forum has a list of members with links to the vendor sites. They all have IPv6 position papers published. 
To get updated information, visit your vendor's IPv6 site. Here is a list of position papers, dated October 
2001.  

Vendor Web site 
Microsoft http://www.microsoft.com/ipv6/
IBM http://www.ibm.com/software/ipv6/
Cisco http://www.cisco.com/ipv6/
Nokia http://www.nokia.com/ipv6/
Alcatel http://www.cid.alcatel.com/ipv6/index.html
SUN http://www.sun.com/solaris/ipv6/
Trumpet http://www.trumpet.com.au/ipv6/
BITS Pilani http://ipv6.bits-pilani.ac.in/case-for-v6/
6WIND http://www.6wind.com/ipv6.html
Compaq http://www.compaq.com/ipv6/
Consulintel http://www.consulintel.es/html/ipv6/ipv6.htm
Nortel Networks http://www.nortelnetworks.com/ipv6/
Hewlett Packard http://www.hp.com/products1/unixserverconnectivity/software/ipv.html
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Mentat Inc. http://www.mentat.com/tcp/tcp.html
Ericsson http://www.ipv6forum.com/navbar/position/Ericsson-IPv6-statement.pdf
Hitachi http://www.v6.hitachi.co.jp
RIPE/NCC http://www.ripe.net/annual-report/
NTT  http://www.v6.ntt.net/globe/index-e.html
ETRI Korea http://www.krv6.net
Ipinfusion http://www.ipinfusion.com/ipv6_network-processing_white_paper0727.pdf

For a current list of available implementations, refer to http://playground.sun.com/pub/ipng/html/ipng-
implementations.html (sorted by vendor) and http://www.ipv6.org/v6-apps.html (sorted by application).  
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Appendix A. RFCs 
If you want to learn more about IPv6, you need to read RFCs. This appendix provides an overview of the 
standards and the RFC process.  

A.1 Standards 

This part of the appendix provides an overview of the important things to know about RFCs and the RFC 
process. It also includes a list of IPv6-relevant RFCs.  

A.1.1 General RFC Information 

If you want to understand the role of the IETF and the standardization process, if you need a list of all the 
organizations involved in the process and a description of what they do, or if you wish to attend an IETF 
meeting, there is an interesting and humorous RFC that describes the background, processes, and rules: 
RFC 3160, titled "The Tao of IETF—A Novice's Guide to the Internet Engineering Task Force."  

Requests for Comments (RFCs) are written reports describing most of the information regarding TCP/IP 
and the architecture, protocols, and history of the Internet. There are many sites on the Internet where 
RFCs are electronically accessible. The sites are very different, but most of them support some form of 
search mechanism. Find the site that best suits your preferences.  

A good starting point is http://www.rfc-editor.org. There is a tribute to Jon Postel, father of the Internet, 
who died in October, 1998. He was the RFC editor. Besides this information, there is also an overview of 
the RFC series and process.  

On the search and retrieve page of this site, there are many ways to access the wealth of information. RFCs 
can be viewed by number or in an index, they can be in forward or reverse chronological order, and they 
can be searched by author, title, number, or keyword. Of course, there is also a link to alternative RFC 
repositories.  

RFC 2555 is an interesting overview of 30 years of RFC history and a good 
description of the contribution of Jon Postel's services to the Internet community. 
There is even more information about Jon Postel at 
http://www.postel.org/remembrances/.

The first RFC, RFC 0001, was published by Steve Crocker on April 7, 1969. Today the number of RFCs 
continues to rise quickly and has exceeded 3000. RFCs can have different statuses, such as standard, 
informational, experimental, and historic. A good overview of the different statuses and current level of 
standardization can be found at http://www.rfc-editor.org. Here's a short list of some important basic RFCs 
that you should be aware of:  

RFC 3000, "Official Protocol Standard" 

Known as the Internet Official Protocol Standard, this RFC lists only official RFC protocol 
standards and is therefore not a complete index. It contains the state of standardization as of 
October, 2001.  

RFC 1700, "Assigned Numbers Document" 

This RFC is now outdated. For many years, it has been a reference point, containing a summary of 
the assignment of protocol parameters for the Internet Protocol Suite. IANA is the central 
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coordinator for the assignment of these parameters. RFC 1700 has been replaced by an updated 
list at http://www.iana.org/numbers.html.

RFCs 1122 and 1123, Host Requirements Documents 

These two RFCs are known as Host Requirements Documents and cover the requirements for 
Internet host software. RFC 1122 covers the communications protocol layers such as link layer, IP 
layer, and transport layer. RFC 1123 covers the application and support protocols. Many terms 
widely used throughout all RFCs are defined in these two documents.  

RFC 1812, "Requirements for IPv4 Routers" 

This RFC is self-explanatory. At the time of this writing, I have not yet found an RFC including 
requirements for IPv6 routers.  

The RFCs ending on xx99 are usually a summary of a range of previous RFCs and their status. For 
instance, if you need a summary for the RFCs from 3000 to 3099, refer to RFC 3099.  

A.1.2 RFC Index for IPv6 

This is a list of all relevant IPv6 RFCs and RFCs regarding related technologies. It is sorted by RFC 
number.  

A.1.2.1 General IPv6 RFCs 

• RFC 1981, "Path MTU Discovery for IP version 6" (August, 1996)  
• RFC 2003, "IP Encapsulation within IP" (October, 1996)  
• RFC 2080, "RIPng for IPv6" (January, 1997)  
• RFC 2185, "Routing Aspects of IPv6 Transition" (September, 1997)  
• RFC 2205, "Resource ReSerVation Protocol (RSVP) Version 1 Functional Specification" 

(September, 1997)  
• RFC 2207, "RSVP Extensions for IPSEC Data Flows" (September, 1997)  
• RFC 2210, "The Use of RSVP with IETF Integrated Services" (September, 1997)  
• RFC 2292, "Advanced Sockets API for IPv6" (February, 1998)  
• RFC 2324, "Hyper Text Coffee Pot Control Protocol (HTCPCP/1.0)" (April, 1998) One of my 

favorites.  
• RFC 2373, "IP Version 6 Addressing Architecture" (July, 1998)  
• RFC 2374, "An IPv6 Aggregatable Global Unicast Address Format" (July, 1998)  
• RFC 2375, "IPv6 Multicast Address Assignments" (July, 1998)  
• RFC 2401, "Security Architecture for the Internet Protocol" (November, 1998)  
• RFC 2402, "IP Authentication Header" (November, 1998)  
• RFC 2406, "IP Encapsulating Security Payload (ESP)" (November, 1998)  
• RFC 2407, "The Internet IP Security Domain of Interpretation (DOI) for ISAKMP" (November, 

1998)  
• RFC 2408, "Internet Security and Key Management Protocol (ISAKMP)" (November, 1998)  
• RFC 2409, "The Internet Key Exchange (IKE)" (November, 1998)  
• RFC 2411, "IP Security Document Roadmap" (November, 1998)  
• RFC 2412, "The OAKLEY Key Determination Protocol" (November, 1998)  
• RFC 2428, "FTP Extensions for IPv6 and NATs" (September, 1998)  
• RFC 2450, "Proposed TLA and NLA Assignment Rules" (December, 1998)  
• RFC 2452, "IP Version 6 Management Information Base for the Transmission Control Protocol"  
• RFC 2454, "IP Version 6 Management Information Base for the User Datagram Protocol" 

(December, 1998)  
• RFC 2460, "Internet Protocol, Version 6 (IPv6) Specification" (December, 1998) Obsoletes RFC 

1883.  
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• RFC 2461, "Neighbor Discovery for IP Version 6 (IPv6)" (December, 1998) Obsoletes RFC 1970.  
• RFC 2462, "IPv6 Stateless Address Autoconfiguration" (December, 1998)  
• RFC 2463, "Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 

(IPv6) Specification" (December, 1998)  
• RFC 2465, "Management Information Base for IP Version 6: Textual Conventions and General 

Group" (December, 1998)  
• RFC 2466, "Management Information Base for IP Version 6: ICMPv6 Group" (December, 1998)  
• RFC 2471, "IPv6 Testing Address Allocation" (December, 1998)  
• RFC 2473, "Generic Packet Tunneling in IPv6 Specification" (December, 1998)  
• RFC 2474, "Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 

Headers" (December, 1998)  
• RFC 2475, "An Architecture for Differentiated Services" (December, 1998)  
• RFC 2507, "IP Header Compression" (February, 1999)  
• RFC 2526, "Reserved IPv6 Subnet Anycast Addresses" (March, 1999)  
• RFC 2529, "Transmission of IPv6 over IPv4 Domains without Explicit Tunnels" (March, 1999)  
• RFC 2545, "Use of BGP-4 Multiprotocol Extensions for IPv6 Inter-Domain Routing" (March, 

1999)  
• RFC 2553, "Basic Socket Interface Extensions for IPv6" (March, 1999)  
• RFC 2675, "IPv6 Jumbograms" (August, 1999)  
• RFC 2710, "Multicast Listener Discovery (MLD) for IPv6" (October, 1999)  
• RFC 2711, "IPv6 Router Alert Option" (October, 1999)  
• RFC 2732, "Format for Literal IPv6 Addresses in URLs" (December, 1999)  
• RFC 2740, "OSPF for IPv6" (December, 1999)  
• RFC 2765, "Stateless IP/ICMP Translation Algorithm (SIIT)" (February, 2000)  
• RFC 2766, "Network Address Translation-Protocol Translation (NAT-PT)" (February, 2000)  
• RFC 2772, "6Bone Backbone Routing Guidelines" (February, 2000)  
• RFC 2874, "DNS Extensions to Support IPv6 Address Aggregation and Renumbering" (July, 

2000)  
• RFC 2893, "Transition Mechanisms for IPv6 Hosts and Routers" (August, 2000) Obsoletes RFC 

1933.  
• RFC 2894, "Router Renumbering for IPv6" (August, 2000)  
• RFC 2921, "6BONE pTLA and pNLA Formats (pTLA)" (September, 2000)  
• RFC 2925, "Definitions of Managed Objects for Remote Ping, Traceroute, and Lookup 

Operations" (September, 2000)  
• RFC 2928, "Initial IPv6 Sub-TLA ID Assignments" (September, 2000)  
• RFC 3019, "IP Version 6 Management Information Base for The Multicast Listener Discovery 

Protocol" (January, 2001)  
• RFC 3041, "Privacy Extensions for Stateless Address Autoconfiguration in IPv6" (January, 2001)  
• RFC 3053, "IPv6 Tunnel Broker" (January, 2001)  
• RFC 3056, "Connection of IPv6 Domains via IPv4 Clouds" (February, 2001)  
• RFC 3068, "An Anycast Prefix for 6to4 Relay Routers" (June, 2001)  
• RFC 3111, "Service Location Protocol Modifications for IPv6" (May, 2001)  
• RFC 3122, "Extensions to IPv6 Neighbor Discovery for Inverse Discovery Specification" (June, 

2001)  
• RFC 3142, "An IPv6-to-IPv4 Transport Relay Translator" (June, 2001)  
• RFC 3162, "RADIUS and IPv6" (August, 2001)  
• RFC 3177, "IAB/IESG Recommendations on IPv6 Address" (September, 2001)  
• RFC 3178, "IPv6 Multihoming Support at Site Exit Routers" (October, 2001)  
• RFC 3175, "Aggregation of RSVP for IPv4 and IPv6 Reservations" (September, 2001)  
• RFC 3209, "RSVP-TE: Extensions to RSVP for LSP Tunnels" (December, 2001)  
• RFC 3226, "DNSSEC and IPv6 A6 aware server/resolver message size requirements" (December, 

2001)  
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A.1.2.2 RFCs referring to topologies 

• RFC 2464, "Transmission of IPv6 Packets over Ethernet Networks" (December, 1998)  
• RFC 2467, "Transmission of IPv6 Packets over FDDI Networks" (December, 1998)  
• RFC 2470, "Transmission of IPv6 Packets over Token Ring Networks" (December, 1998)  
• RFC 2472, "IP Version 6 over PPP" (December, 1998)  
• RFC 2491, "IPv6 over Non-Broadcast Multiple Access (NBMA) networks" (January, 1999)  
• RFC 2492, "IPv6 over ATM Networks" (January, 1999)  
• RFC 2497, "Transmission of IPv6 Packets over ARCnet Networks" (January, 1999)  
• RFC 2590, "Transmission of IPv6 Packets over Frame Relay Networks Specification" (May, 

1999)  
• RFC 3146, "Transmission of IPv6 Packets over IEEE 1394 Networks" ( October, 2001)  
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Appendix B. IPv6 Resources 
This appendix contains all the resources mentioned in the book, for easy reference.  

B.1 Ethertype Field 

Table B-1 lists possible values for the Ethertype number. The complete list can be found at 
http://www.iana.org/assignments/ethernet-numbers. Transmission of IP datagrams over Ethernet is defined 
in RFC 894 and RFC 895. The Ethertype for IPv6 is, as the table shows, 86DD.

Table B-1. Ethertype numbers  
Ethertype (hex) Description 
0000-05DC IEEE802.3 Length field 
0000-05DC IEEE802.3 Length field 
0101-01FF Experimental 
0200 XEROX PUP (see 0A00) 
0201 PUP Addr Trans (see 0A01) 
0400 Nixdorf 
0600 XEROX NS IDP 
0660 DLOG 
0661 DLOG 
0800 Internet IP (IPv4) 
0801 X.75 Internet 
0802 NBS Internet 
0803 ECMA Internet 
0804 Chaosnet 
0805 X.25 Level 3 
0806 ARP 
0807 XNS Compatability 
0808 Frame Relay ARP 
081C Symbolics Private 
0888-088A Xyplex 
0900 Ungermann-Bass net debugr 
0A00 Xerox IEEE802.3 PUP 
0A01 PUP Addr Trans 
0BAD Banyan VINES 
0BAE VINES Loopback 
0BAF VINES Echo 
1000 Berkeley Trailer nego 
1001-100F Berkeley Trailer encap/IP 
1600 Valid Systems 
4242 PCS Basic Block Protocol 
5208 BBN Simnet 
6000 DEC Unassigned (Exp.) 
6001 DEC MOP Dump/Load 
6002 DEC MOP Remote Console 
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6003 DEC DECNET Phase IV Route 
6004 DEC LAT 
6005 DEC Diagnostic Protocol 
6006 DEC Customer Protocol 
6007 DEC LAVC, SCA 
6008-6009 DEC Unassigned 
6010-6014 3Com Corporation 
6558 Trans Ether Bridging 
6559 Raw Frame Relay 
7000 Ungermann-Bass download 
7002 Ungermann-Bass dia/loop  
7020-7029 LRT 
7030 Proteon 
7034 Cabletron 
8003 Cronus VLN 
8004 Cronus Direct 
8005 HP Probe 
8006 Nestar 
8008 AT&T 
8010 Excelan 
8013 SGI diagnostics 
8014 SGI network games 
8015 SGI reserved 
8016 SGI bounce server 
8019 Apollo Domain 
802E Tymshare 
802F Tigan, Inc. 
8035 Reverse ARP 
8036 Aeonic Systems 
8038 DEC LANBridge 
8039-803C DEC Unassigned 
803D DEC Ethernet Encryption 
803E DEC Unassigned 
803F DEC LAN Traffic Monitor 
8040-8042 DEC Unassigned 
8044 Planning Research Corp. 
8046 AT&T 
8047 AT&T 
8049 ExperData  
805B Stanford V Kernel exp. 
805C Stanford V Kernel prod. 
805D Evans & Sutherland 
8060 Little Machines 
8062 Counterpoint Computers 
8065 Univ. of Mass, Amherst 
8066 Univ. of Mass., Amherst 
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8067 Veeco Integrated Auto. 
8068 General Dynamics 
8069 AT&T 
806A Autophon 
806C ComDesign 
806D Computgraphic Corp. 
806E-8077 Landmark Graphics Corp. 
807A Matra 
807B Dansk Data Elektronik 
807C Merit Internodal 
807D-807F Vitalink Communications 
8080 Vitalink TransLAN III 
8081-8083 Counterpoint Computers 
809B Appletalk 
809C-809E Datability 
809F Spider Systems Ltd. 
80A3 Nixdorf Computers 
80A4-80B3 Siemens Gammasonics Inc. 
80C0-80C3 DCA Data Exchange Cluster 
80C4 Banyan Systems 
80C5 Banyan Systems 
80C6 Pacer Software 
80C7 Applitek Corporation 
80C8-80CC Intergraph Corporation 
80CD-80CE Harris Corporation 
80CF-80D2 Taylor Instrument 
80D3-80D4 Rosemount Corporation 
80D5 IBM SNA Service on Ether 
80DD Varian Associates 
80DE-80DF Integrated Solutions TRFS 
80E0-80E3 Allen-Bradley 
80E4-80F0 Datability 
80F2 Retix 
80F3 AppleTalk AARP (Kinetics) 
80F4-80F5 Kinetics 
80F7 Apollo Computer 
80FF-8103 Wellfleet Communications 
8107-8109 Symbolics Private 
8130 Hayes Microcomputers 
8131 VG Laboratory Systems 
8132-8136 Bridge Communications 
8137-8138 Novell, Inc. 
8139-813D KTI 
8148 Logicraft 
8149 Network Computing Devices 
814A Alpha Micro 
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814C SNMP 
814D BIIN 
814E BIIN 
814F Technically Elite Concept 
8150 Rational Corp 
8151-8153 Qualcomm 
815C-815E Computer Protocol Pty Ltd 
8164-8166 Charles River Data Systems 
817D XTP 
817E SGI/Time Warner prop. 
8180 HIPPI-FP encapsulation 
8181 STP, HIPPI-ST 
8182 Reserved for HIPPI-6400 
8183 Reserved for HIPPI-6400 
8184-818C Silicon Graphics prop. 
818D Motorola Computer 
819A-81A3 Qualcomm 
81A4 ARAI Bunkichi 
81A5-81AE RAD Network Devices 
81B7-81B9 Xyplex 
81CC-81D5 Apricot Computers 
81D6-81DD Artisoft 
81E6-81EF Polygon 
81F0-81F2 Comsat Labs 
81F3-81F5 SAIC 
81F6-81F8 VG Analytical 
8203-8205 Quantum Software 
8221-8222 Ascom Banking Systems 
823E-8240 Advanced Encryption Systems 
827F-8282 Athena Programming 
8263-826A Charles River Data Systems 
829A-829B Inst Ind Info Tech 
829C-82AB Taurus Controls 
82AC-8693 Walker Richer & Quinn 
8694-869D Idea Courier 
869E-86A1 Computer Network Tech 
86A3-86AC Gateway Communications 
86DB SECTRA 
86DE Delta Controls 
86DD IPv6 
86DF ATOMIC 
86E0-86EF Landis & Gyr Powers 
8700-8710 Motorola 
876B TCP/IP Compression 
876C IP Autonomous Systems 
876D Secure Data 
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880B PPP  
8847 MPLS Unicast 
8848 MPLS Multicast 
8A96-8A97 Invisible Software 
9000 Loopback 
9001 3Com(Bridge) XNS Sys Mgmt 
9002 3Com(Bridge) TCP-IP Sys 
9003 3Com(Bridge) loop detect 
FF00 BBN VITAL-LanBridge cache  
FF00-FF0F ISC Bunker Ramo 
FFFF Reserved 

B.2 Next Header Field Values (Chapter 2)

Table B-2 lists the possible values for the Next Header field in the IPv6 Header, as explained in Chapter 2.
The complete list can also be found at http://www.iana.org/assignments/protocol-numbers.

Table B-2. Next Header field values  
Decimal Protocol Reference 
0 IPv6 Hop-by-Hop Option RFC 1883 
1 Internet Control Message RFC 792 
2 Internet Group Management RFC 1112 
3 Gateway-to-Gateway RFC 823 
4 IP in IP (encapsulation) RFC 2003 
5 Stream RFC 1190 
6 Transmission Control RFC 793 
7 CBT Ballardie 
8 Exterior Gateway Protocol RFC 888 
9 Any private interior gateway (used by Cisco for their IGRP) IANA 
10 BBN RCC Monitoring SGC 
11 Network Voice Protocol RFC 741 
12 PUP PUP, Xerox 
13 ARGUS RWS4 
14 EMCON BN7 
15 XNET, Cross Net Debugger IEN158,JFH2 
16 CHAOS NC3 
17 UDP RFC 768 
18 Multiplexing (MUX) IEN90,JBP 
19 DCN Measurement Subsystems DLM1 
20 Host Monitoring (HMP) RFC 869 
21 Packet Radio Measurement (PRM) ZSU 
22 XEROX NS IDP ETHERNET,XEROX 
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23 Trunk-1 BWB6 
24 Trunk-2 BWB6 
25 Leaf-1 BWB6 
26 Leaf-2 BWB6 
27 Reliable Data Protocol (RDP) RFC 908 
28 Internet Reliable Transaction (IRTP) RFC 938 
29 ISO Transport Protocol Class 4 RFC 905 
30 Bulk Data Transfer Protocol RFC 969 
31 MFE Network Services Protocol MFENET,BCH2 
32 MERIT Internodal Protocol HWB 
33 Sequential Exchange Protocol (SEP) JC120 
34 Third Party Connect Protocol SAF3 
35 Inter-Domain Policy Routing Protocol MXS1  
36 XTP GXC 
37 Datagram Delivery Protocol (DDP) WXC 
38 IDPR Control Message Transport Protocol MXS1 
39 TP++ Transport Protocol DXF 
40 IL Transport Protocol Presotto 
41 IPv6 Deering  
42 Source Demand Routing Protocol (SDRP) DXE1 
43 Routing Header for IPv6 Deering 
44 Fragment Header for IPv6 Deering 
45 Inter-Domain Routing Protocol (IDRP) Sue Hares 
46 Reservation Protocol (RSVP) Bob Braden 
47 General Routing Encapsulation (GRE) Tony Li 
48 Mobile Host Routing Protocol (MHRP) David Johnson 
49 BNA Gary Salamon 
50 Encapsulated Security Payload for IPv6 RFC 1827 
51 Authentication Header for IPv6 RFC 1826 
52 Integrated Net Layer Security TUBA GLENN 
53 IP with Encryption (SWIPE) JI6 
54 NBMA Address Resolution Protocol (NARP) RFC 1735 
55 IP Mobility Perkins 
56 Transport Layer Security Protocol (TLSP) Oberg 
57 SKIP Markson 
58 ICMP for IPv6 (IPv6-ICMP) RFC 1883 
59 No Next Header for IPv6 (IPv6-NoNxt) RFC 1883 
60 Destination Options for IPv6 (IPv6-Opts) RFC 1883 
61 Any host internal protocol IANA 
62 CFTP CFTP CFTP,HCF2 
63 Any local network IANA 
64 SATNET and Backroom EXPAK SHB 
65 Kryptolan PXL1 
66 Remote Virtual Disk Protocol (RVD) MBG 
67 Internet Pluribus Packet Core (IPPC) SHB 
68 Any distributed file system IANA 
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69 SATNET Monitoring SHB 
70 VISA Protocol GXT1 
71 Internet Packet Core Utility (IPCU) SHB 
72 Computer Protocol Network Executive (CPNX) DXM2 
73 Computer Protocol Heart Beat (CPHB) DXM2 
74 Wang Span Network (WSN) VXD 
75 Packet Video Protocol (PVP) SC3 
76 Backroom SATNET Monitoring SHB 
77 SUN ND PROTOCOL-Temporary WM3 
78 WIDEBAND Monitoring SHB 
79 WIDEBAND EXPAK SHB 
80 ISO Internet Protocol MTR 
81 VMTP DRC3 
82 SECURE-VMTP DRC3 
83 VINES BXH 
84 TTP JXS 
85 NSFNET-IGP HWB 
86 Dissimilar Gateway Protocol (DGP) DGP,ML109 
87 TCF GAL5 
88 EIGRP CISCO,GXS 
89 OSPFIGP RFC 1583 
90 Sprite RPC Protocol SPRITE,BXW  
91 Locus Address Resolution Protocol (LARP) BXH 
92 Multicast Transport Protocol (MTP) SXA 
93 AX.25 Frames BK29  
94 IP-within-IP Encapsulation Protocol JI6 
95 Mobile Internetworking Control Protocol (MICP) JI6 
96 Semaphore Communications Sec. Protocol HXH  
97 Ethernet-within-IP Encapsulation RDH1 
98 Encapsulation Header RFC 1241 
99 Any private encryption scheme IANA 
100 GMTP RXB5 
101 Ipsilon Flow Management Protocol (IFMP) Hinden 
102 PNNI over IP Callon 
103 Protocol Independent Multicast (PIM) Farinacci 
104 ARIS Feldman 
105 SCPS Durst 
106 QNX Hunter 
107 Active Networks Braden 
108 IP Payload Compression Protocol RFC 2393 
109 Sitara Networks Protocol (SNP) Sridhar 
110 Compaq Peer Protocol Volpe 
111 IPX in IP Lee 
112 Virtual Router Redundancy Protocol (VRRP) Hinden 
113 Reliable Transport Protocol (PGM) Speakman 
114 Any zero-hop protocol IANA 
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115 Layer Two Tunneling Protocol Aboba 
116 Data Exchange (DDX) Worley  
117 Interactive Agent Transfer Protocol (IATP) Murphy 
118 Schedule Transfer Protocol (STP) JMP 
119 SpectraLink Radio Protocol (SRP) Hamilton  
120 UTI Lothberg  
121 Simple Message Protocol (SMP) Ekblad 
122 SM Crowcroft 
123 Performance Transparency Protocol (PTP) Welzl 
124 ISIS over IPv4 Przygienda 
125 FIRE Partridge 
126 Combat Radio Transport Protocol (CRTP) Sautter 
127 Combat Radio User Datagram (CRUDP) Sautter 
128 SSCOPMCE Waber 
129 IPLT Hollbach 
130 Secure Packet Shield (SPS) McIntosh  
131 Private IP Encapsulation within IP (PIPE) Petri 
132 Stream Control Transmission Protocol (SCTP) Stewart 
133 Fibre Channel (FC) Rajagopal 
134-254 Unassigned IANA 
255 Reserved IANA  

B.3 Reserved Anycast IDs (Chapter 3,RFC 2526) 

Table B-3 lists the Anycast IDs that have been assigned so far.  

Table B-3. Reserved Anycast IDs  
Decimal Hexadecimal Description 
127 7F Reserved 
126 7E Mobile IPv6 Home-Agents anycast 
0-125 00-7D Reserved 

B.4 Values for the Multicast Scope Field (Chapter 3, RFC 2373) 

The values listed in Table B-4 have been defined in RFC 2373 for the Multicast Scope field.  

Table B-4. Values for the Multicast Scope field  
Value Description 
0 Reserved 
1 Node-local scope 
2 Link-local scope 
3, 4 Unassigned 
5 Site-local scope 
6, 7 Unassigned 
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8 Organization-local scope 
9, A, B, C, D Unassigned 
E Global scope 
F Reserved 

B.5 Well-Known Multicast Group Addresses (Chapter 3, RFC 
2375) 

RFC 2375 defines the initial assignment of IPv6 multicast addresses that are permanently assigned. Some 
assignments are made for fixed scopes; other assignments are valid in different scopes. Table B-5 lists 
them.  

Table B-5. Well-known multicast addresses with fixed scope  
Address Description 
(Interface-local) or Node-local scope 

FF01:0:0:0:0:0:0:1 

FF01:0:0:0:0:0:0:2 

All-nodes address 

All-routers address 

Link-local scope 

FF02:0:0:0:0:0:0:1 

FF02:0:0:0:0:0:0:2 

FF02:0:0:0:0:0:0:3 

FF02:0:0:0:0:0:0:4 

FF02:0:0:0:0:0:0:5 

FF02:0:0:0:0:0:0:6 

FF02:0:0:0:0:0:0:7 

FF02:0:0:0:0:0:0:8 

FF02:0:0:0:0:0:0:9 

FF02:0:0:0:0:0:0:A 

FF02:0:0:0:0:0:0:B 

FF02:0:0:0:0:0:0:D 

FF02:0:0:0:0:0:0:E 

FF02:0:0:0:0:0:1:1 

All-nodes address 

All-routers address 

Unassigned 

DVMRP routers 

OSPFIGP 

OSPFIGP Designated Routers 

ST routers 

ST hosts 

RIP routers 

EIGRP routers 

Mobile-agents 

All PIM routers 

RSVP-encapsulation 

Link name 

All DHCP agents 

Solicited-node address 
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FF02:0:0:0:0:0:1:2 

FF02:0:0:0:0:1:FFXX:XXXX 
Site-local scope 

FF05:0:0:0:0:0:0:2 

FF05:0:0:0:0:0:1:3 

FF05:0:0:0:0:0:1:4 

FF05:0:0:0:0:0:1:1000 to FF05:0:0:0:0:01:13FF 

All-routers address 

All DHCP servers 

All DHCP relays 

Service location 

Table B-6 lists the currently assigned multicast group addresses with variable scope. The addresses are 
noted beginning with FF0X, X being the placeholder for a variable scope value. An updated list can be 
found at http://www.iana.org/assignments/ipv6-multicast-addresses.

Table B-6. Assigned IPv6 multicast group addresses with variable scope  
Address  Group 
FF0X:0:0:0:0:0:0:0 Reserved multicast address 
FF0X:0:0:0:0:0:0:100 VMTP Managers Group 
FF0X:0:0:0:0:0:0:101 Network Time Protocol (NTP) 
FF0X:0:0:0:0:0:0:102 SGI-Dogfight 
FF0X:0:0:0:0:0:0:103 Rwhod 
FF0X:0:0:0:0:0:0:104 VNP 
FF0X:0:0:0:0:0:0:105 Artificial Horizons - Aviator 
FF0X:0:0:0:0:0:0:106 NSS - Name Service Server 
FF0X:0:0:0:0:0:0:107 AUDIONEWS - Audio News Multicast 
FF0X:0:0:0:0:0:0:108 SUN NIS+ Information Service 
FF0X:0:0:0:0:0:0:109 MTP Multicast Transport Protocol 
FF0X:0:0:0:0:0:0:10A IETF-1-LOW-AUDIO 
FF0X:0:0:0:0:0:0:10B IETF-1-AUDIO 
FF0X:0:0:0:0:0:0:10C IETF-1-VIDEO 
FF0X:0:0:0:0:0:0:10D IETF-2-LOW-AUDIO 
FF0X:0:0:0:0:0:0:10E IETF-2-AUDIO 
FF0X:0:0:0:0:0:0:10F IETF-2-VIDEO 
FF0X:0:0:0:0:0:0:110 MUSIC-SERVICE 
FF0X:0:0:0:0:0:0:111 SEANET-TELEMETRY 
FF0X:0:0:0:0:0:0:112 SEANET-IMAGE 
FF0X:0:0:0:0:0:0:113 MLOADD 
FF0X:0:0:0:0:0:0:114 Any private experiment 
FF0X:0:0:0:0:0:0:115 DVMRP on MOSPF 
FF0X:0:0:0:0:0:0:116 SVRLOC 
FF0X:0:0:0:0:0:0:117 XINGTV 
FF0X:0:0:0:0:0:0:118 microsoft-ds 
FF0X:0:0:0:0:0:0:119 nbc-pro 
FF0X:0:0:0:0:0:0:11A nbc-pfn 
FF0X:0:0:0:0:0:0:11B lmsc-calren-1 
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FF0X:0:0:0:0:0:0:11C lmsc-calren-2 
FF0X:0:0:0:0:0:0:11D lmsc-calren-3 
FF0X:0:0:0:0:0:0:11E lmsc-calren-4 
FF0X:0:0:0:0:0:0:11F ampr-info 
FF0X:0:0:0:0:0:0:120 mtrace 
FF0X:0:0:0:0:0:0:121 RSVP-encap-1 
FF0OX:0:0:0:0:0:0:122 RSVP-encap-2 
FF0X:0:0:0:0:0:0:123 SVRLOC-DA 
FF0X:0:0:0:0:0:0:124 rln-server 
FF0X:0:0:0:0:0:0:125 proshare-mc 
FF0X:0:0:0:0:0:0:126 dantz 
FF0X:0:0:0:0:0:0:127 cisco-rp-announce 
FF0X:0:0:0:0:0:0:128 cisco-rp-discovery 
FF0X:0:0:0:0:0:0:129 gatekeeper 
FF0X:0:0:0:0:0:0:12A iberiagames] 
FF0X:0:0:0:0:0:0:201 "rwho" Group (BSD) (unofficial) 
FF0X:0:0:0:0:0:0:202 SUN RPC PMAPPROC_CALLIT 
FF0X:0:0:0:0:0:2:0000 to FF0X:0:0:0:0:0:2:7 FFD Multimedia Conference Calls 
FF0X:0:0:0:0:0:2:7FFE SAPv1 Announcements 
FF0X:0:0:0:0:0:2:7FFF SAPv0 Announcements (deprecated) 
FF0X:0:0:0:0:0:2:8000 to FF0X:0:0:0:0:0:2:FFFF  SAP Dynamic Assignments  

B.6 ICMPv6 Message Types and Code Values (Chapter 4, RFC 
2463) 

Table B-7 lists ICMPv6 message types and their type numbers.  

Table B-7. ICMPv6 message type numbers  
Type Name Reference  Chapter 
1

2

3

4

Destination Unreachable  

Packet Too Big 

Time Exceeded 

Parameter Problem 

RFC 2463 

RFC 2463 

RFC 2463 

RFC 2463 

Chapter 4

128 

129 

Echo Request 

Echo Reply 

RFC 2463 

RFC 2463 
Chapter 4

130 

131 

132 

Multicast Listener Query 

Multicast Listener Report 

Multicast Listener Done 

MC-LIST 

MC-LIST 

MC-LIST 

 

133 Router Solicitation RFC 2461  
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134 

135 

136 

137 

Router Advertisement 

Neighbor Solicitation 

Neighbor Advertisement 

Redirect Message 

RFC 2461 

RFC 2461 

RFC 2461 

RFC 2461 
138 

139 

140 

Router Renumbering 

ICMP Node Information Query 

ICMP Node Information Response 

Crawford 

Crawford 

Crawford 

 

Table B-8 lists the code values of the Destination Unreachable Message (Type 1).  

Table B-8. Code values for the Destination Unreachable message (Type 1)  
Code Description 

0

No route to destination. 

This message is generated if a router cannot forward a packet because it does not have a route in its 
table for a destination network. This can only happen if the router does not have an entry for a 
default route.  

1

Communication with an administratively prohibited destination. 

This type of message can, for example, be sent by a firewall that cannot forward a packet to a host 
inside the firewall because of a packet filter, or if a node is configured not to accept unauthenticated 
echo requests.  

2 Not assigned; used to be defined as "not a neighbor" in RFC 1885, which is now obsolete.  

3

Address unreachable. 

This code is used if a destination address cannot be resolved into a corresponding network address or 
if there is a data-link layer problem preventing the node from reaching the destination network.  

4

Port unreachable. 

This code is used if the transport protocol (e.g., UDP) has no listener and if there is no other means 
to inform the sender. For example, if a DNS query is sent to a host and the DNS server is not 
running, this type of message will be generated.  

Table B-9 lists the code values for the Time Exceeded message (Type 3).  

Table B-9. Code values for the Time Exceeded message (Type 3)  
Code Description 

0
Hop limit exceeded in transit 

Possible causes: The initial hop limit value is too low or there are routing loops.  

1

Fragment reassembly time exceeded 

If a packet is sent fragmented by using a fragment header (refer to Chapter 2 for more details) and 
the receiving host cannot reassemble all packets within a certain time, it notifies the sender by 
issuing this ICMP message.  
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Table B-10 shows the values for the Parameter Problem message (Type 4).  

Table B-10. Code values for Parameter Problem (Type 4)  
Code Description 
0 Erroneous header field encountered 
1 Unrecognized Next Header type encountered 
2 Unrecognized IPv6 option encountered  

B.7 Multicast Group Addresses and Token Ring Functional 
Addresses (Chapter 7) 

Table B-11 shows how IPv6 multicast addresses are mapped to Token Ring functional addresses.  

Table B-11. Mapping IPv6 multicast addresses to Token Ring functional addresses  
MAC functional address (canonical) Multicast addresses 

03-00-80-00-00-00 
All-nodes (FF01::1 and FF02::1) 

Solicited-node (FF02:0:0:0:0.1:FFxx:xxxx) 
03-00-40-00-00-00 All Routers (FF0X::2) 
03-00-00-80-00-00 Any other multicast address with three least-significant bits = 000 
03-00-00-40-00-00 Any other multicast address with three least-significant bits = 001 
03-00-00-20-00-00 Any other multicast address with three least-significant bits = 010 
03-00-00-10-00-00 Any other multicast address with three least-significant bits = 011 
03-00-00-08-00-00 Any other multicast address with three least-significant bits = 100 
03-00-00-04-00-00 Any other multicast address with three least-significant bits = 101 
03-00-00-02-00-00 Any other multicast address with three least-significant bits = 110 
03-00-00-01-00-00 Any other multicast address with three least-significant bits = 111 

B.8 Multicast Addresses for SLP over IPv6 (Chapter 9) 

Table B-12 lists the multicast addresses that have been defined for SLP over IPv6.  

Table B-12. Multicast addresses for SLP over IPv6  
Multicast address Description 

FF0X:0:0:0:0:0:0:116 
Service Agent (SA) 

Used for Service Type and Attribute Request Messages. 

FF0X:0:0:0:0:0:0:123 

Directory Agent (DA) 

Used by User Agents (UAs) and SAs to discover DAs. Also used by DAs for 
sending unsolicited DA Advertisement messages.  

FF0X:0:0:0:0:0:1:1000 to 
FF0X:0:0:0:0:0:1:13FF 

Service Location 

Used by SAs to join the groups that correspond to the Service Types of the 
services they advertise. The Service Type string is used to determine the 
corresponding value in the 1000 to 13FF range, which has been assigned by 
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IANA for this purpose. For an explanation of the algorithm used to calculate 
the group ID, refer to RFC 3111.  

The X in FF0X is the placeholder for the multicast scope to be used for this group ID. For instance, 2 is 
link-local scope and 5 is site-local scope.  

B.9 Protocol Translation (Chapter 10, RFC 2765) 

Table B-13 shows how IPv4 header fields are translated to IPv6 header fields.  

Table B-13. Translated IPv6 header fields  
Header field Information 
Version 6 
Traffic Class All 8 bits from the Type of Service and Precedence Field are copied. 
Flow Label Zero 
Payload 
Length 

The Total Length from the IPv4 header field minus the size of the IPv4 header (including 
options, if present).  

Next Header Protocol Field copied from IPv4 header. 

Hop Limit 
TTL value copied from IPv4 header. Since the translator is a router, the value has to be 
decremented by one (either before or after translation) and the value checked. If zero, an 
ICMP TTL exceeded message has to be generated.  

Source 
Address 

Combination of IPv4-mapped address prefix and the IPv4 address in the 32 low-order bits, 
for example: ::ffff:0:0:192.168.0.1.

Destination 
Address 

Combination of IPv4-translatable address prefix and the IPv4 destination address, for 
example: 0::ffff:0:0:0:192.168.0.99.

IPv4 Options
If any IPv4 options are present, they are ignored. If a source route option is present, the 
packet must be discarded and an ICMPv4 "destination unreachable/source route failed" 
(Type3, Code 5) error message should be returned to the sender.  

Table B-14 shows the header fields when a translated packet needs to be fragmented.  

Table B-14. IPv6 header fields with fragmentation  
Header field Information 
Header fields 

Payload Length The Total Length from the IPv4 header field minus the size of the IPv4 header 
(including options if present) plus 8 bits for the size of the Fragment header.  

Next Header 44 (Fragment header) 
Fragment header 
fields 
Next Header Protocol field copied from IPv4 header. 
Fragment Offset Fragment Offset field copied from IPv4 header. 
M-Flag More Fragments bit copied from the IPv4 header. 

Identification The high-order 16 bits set to zero, the low-order 16 bits copied from the Identification 
field in the IPv4 header.  

Table B-15 shows how the fields in ICMPv4 Query messages types are translated to ICMPv6 message 
types.  



226

Table B-15. Translation of ICMPv4 query messages  
Message type Translation 

Echo and Echo Reply (types 8 
and 0) 

Adjust the type to 128 or 129, respectively and adjust the ICMP checksum 
to take the type change into account and include the ICMPv6 pseudo-
header.  

Information Request/Reply 
(types 15 and 16) Obsoleted in ICMPv6. Silently discard. 

Timestamp and Timestamp 
Reply (types13 and 14) Obsoleted in ICMPv6. Silently discard. 

Address Mask Request/Reply 
(types17 and 18) Obsoleted in ICMPv6. Silently discard. 

Router Advertisement (type 9) Single hop message. Silently discard. 
Router Solicitation (type 10) Single hop message. Silently discard. 
Unknown ICMPv4 types Silently discard. 

IGMP messages are single-hop messages and should not be forwarded over routers. They therefore do not 
require translation and are silently discarded.  

Table B-16 shows the translation for ICMP error messages.  

Table B-16. Translation of ICMPv4 error messages  
Message type Translation 
Destination Unreachable (Type 3) For all codes not listed here, the type is set to one. 
Code 0/1, Network/Host Unreachable Type 1, Code 0 - No Route to Destination. 

Code 2, Protocol Unreachable Type 4, Code 1 - Port Unreachable. Make the pointer point to the 
IPv6 Next Header field.  

Code 3, Port Unreachable Type 1, Code 4 - Port Unreachable. 

Code 4, Fragmentation needed but DF 
set 

Type 2, Code 0 - Packet Too Big. The MTU field needs to be 
recalculated to reflect the difference between the IPv4 and the 
IPv6 header sizes.  

Code 5, Source Route Failed Type 1, Code 0 - No Route to Destination (note that source routes 
are not translated).  

Code 6, 7, Destination Network/Host 
Unknown Type 1, Code 0 - No Route to Destination. 

Code 8, Source Route Isolated Type 1, Code 0 - No Route to Destination. 
Code 9, 10 Communication with 
Destination Administratively 
Prohibited 

Type 1, Code 1 - Communication with Destination 
Administratively Prohibited.  

Code 11, 12, Network/Host 
Unreachable for TOS Type 1, Code 0 - No Route to Destination. 

Redirect, Type 5 Single hop message. Silently discard. 
Source Quench, Type 4 Obsoleted in ICMPv6. Silently discard. 
Time Exceeded, Type 11 Type 3 - Time Exceeded. Code field unchanged. 

Parameter Problem, Type 12 
Type 4 - Parameter Problem. The pointer needs to be updated to 
point to the corresponding field in the translated and included IP 
header.  

The following tables show how IPv6 is translated to IPv4. Table B-17 shows how IPv6 header fields are 
translated to IPv4 header fields.  
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Table B-17. Translated IPv4 header  
Header field Information 
Version 4 
Internet 
Header length 5 (no options) 

TOS and 
Precedence All 8 bits from the Traffic Class are copied. 

Total length Payload Length from the IPv6 header plus length of the IPv4 header. 
Identification Zero 
Flags More Fragments Flag set to zero; Don't Fragment Flag set to one.  
Fragment 
Offset Zero 

Time to Live 
Hop Limit value copied from the IPv6 header. Since the translator is a router, the value has 
to be decremented by one (either before or after translation) and checked on the value. If 
zero, an ICMP TTL exceeded message has to be generated.  

Protocol Next Header field copied from the IPv6 header. 
Header 
Checksum Computed after generation of the IPv4 header. 

Source 
Address 

If the IPv6 address is an IPv4-translated address, the low-order 32 bits of the IPv4-
translated source address are copied to the IPv4 Source Address field. Otherwise, NAT 
will assign an IPv4 address out of the configured address pool and copy it into the IPv4 
Source Address field.  

Destination 
Address 

The low-order 32 bits of the IPv4-mapped destination address are copied to the IPv4 
Destination Address field.  

Options 

If an IPv6 Hop-by-Hop Options header, Destination Options header, or a routing header 
with the Segments Left field equal zero to are present, they are not translated. In this case, 
the Total Length field and the Protocol field have to be adjusted accordingly. If a routing 
header is present with a Segments Left field of non-zero, an ICMPv6 Parameter Problem 
message (Type 4, Code 0) has to be returned to the sender with the Pointer field pointing 
to the first byte of the Segment Left field.  

If the IPv6 packet contains a Fragment header, the respective fields are translated as shown in Table B-18.

Table B-18. Translating the Fragment header  
Header field Information 

Total Length Payload Length from the IPv6 header, minus 8 for the Fragment header, plus the size of the 
IPv4 header.  

Identification Copied from the low-order 16 bits in the Identification field in the Fragment header.  

Flags The More Fragment flag is copied from the M flag in the Fragment header. The Don't 
Fragment flag is set to zero so IPv4 routers can fragment the packet.  

Fragment 
Offset Fragment Offset field copied from IPv6 header. 

Protocol Next Header value copied from the Fragment header. 

Table B-19 shows how ICMPv6 message types are translated to ICMPv4 message types.  

Table B-19. Translation of ICMPv6 informational messages  
Message Type Translation 
Echo Request and Echo Reply (types 
128 and 129) 

Adjust the type to 8 and 0, respectively, and adjust the ICMP 
checksum to take the type change into account and to exclude the 
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ICMPv6 pseudo-header.  
MLD Multicast Listener 
Query/Report/Done (types 130, 131, 
132) 

Single-hop message. Silently discard. 

Neighbor Discover Messages (types 
133 to 137) Single-hop message. Silently discard. 

Unknown Informational Messages Silently discard. 
Address Mask Request/Reply (types 
17 and 18) Obsoleted in ICMPv6. Silently discard. 

Router Advertisement (type 9) Single hop message. Silently discard. 
Router Solicitation (type 10) Single hop message. Silently discard. 
Unknown ICMPv4 types Silently discard. 

Error messages are treated as shown in Table B-20.

Table B-20. Translation of ICMPv6 error messages  
Message Type Translation 
Destination Unreachable (type 
1) Set the Type field to 3 and the code field as follows: 

Type 1, Code 0 - No Route to 
Destination Type 3, Code 1 - Host Unreachable. 

Type 1, Code 1 -
Communication with 
Destination Administratively 
Prohibited  

Type 3, Code 10 - Communication with Destination Administratively 
Prohibited.  

Type 1, Code 2 - Beyond Scope 
of Source Address Type 3, Code 1 - Host Unreachable. 

Type 1, Code 3 - Address 
Unreachable Type 3, Code 1 - Host Unreachable. 

Type 1, Code 4 - Port 
Unreachable Type 3, Code 3 - Port Unreachable. 

Packet Too Big (type 2) 
Type 3, Code 4 - Fragmentation Needed but DF set. The MTU field 
needs to be adjusted for the difference between the IPv6 and IPv4 
headers, including a Fragment header, if present.  

Time Exceeded (type 3) Type 11, Code field unchanged. 

Parameter Problem (type 4) 

If the Code field is set to 1, translate to a Type 3, Code 2 - Protocol 
Unreachable; otherwise, to Type 12, Code 0 - Parameter Problem. The 
pointer needs to be updated to point to the corresponding field in the 
translated and included IP header.  

Unknown Error messages Silently discard. 

B.10 Current Prefix Allocations 

Table B-21 lists the prefixes initially assigned in RFC 2373.  

Table B-21. List of assigned prefixes  

Allocation Prefix 
binary 

Prefix 
hex 

Fraction of address 
space 

Reserved 0000 0000  1/256 
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Reserved for NSAP allocation 

Reserved for IPX allocation (deprecated in later 
draft) 

0000 001 

0000 010 
 

1/128 

1/128 

Aggregatable global unicast addresses 001  1/8 
Link-local unicast addresses 

Site-local unicast addresses 

1111 1110 10

1111 1110 11

FE80 

FEC0 

1/1024 

1/1024 
Multicast addresses 1111 1111 FF 1/256 

Table B-22 lists the current TLA allocations.  

Table B-22. Current TLA allocations  
Prefix Allocated to RFC 

2001::/16 

Sub-TLA Assignments 

ARIN 2001:0400::/29 

RIPE NCC 2001:0600::/29 

APNIC 2001:0200::/29 

RFC 2450 

2002::/16 6to4 RFC 3056 
3FFE::/16 6Bone Testing RFC 2471 

As of February, 2002, over 120 production networks have been allocated IPv6 address prefixes. For a 
current list, refer to http://www.dfn.de/service/ipv6/ipv6aggis.html.

B.11 Vendor Support 

A great number of vendors already support IPv6, and the list grows daily. The IPv6 Forum releases a list of 
members with links to the vendor sites. They all have published IPv6 position papers. So in order to get 
updated information, visit your vendor's IPv6 site. Here is a list of position papers, dated October, 2001.  

Vendor Web site 
Microsoft http://www.microsoft.com/ipv6/
IBM http://www.ibm.com/software/ipv6/
Cisco http://www.cisco.com/ipv6/
Nokia http://www.nokia.com/ipv6/
Alcatel http://www.cid.alcatel.com/ipv6/index.html
SUN http://www.sun.com/solaris/ipv6/
Trumpet http://www.trumpet.com.au/ipv6/
BITS Pilani http://ipv6.bits-pilani.ac.in/case-for-v6/
6WIND http://www.6wind.com/ipv6.html
Compaq http://www.compaq.com/ipv6/
Consulintel http://www.consulintel.es/html/ipv6/ipv6.htm
Nortel Networks http://www.nortelnetworks.com/ipv6/
Hewlett Packard http://www.hp.com/products1/unixserverconnectivity/software/ipv.html
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Mentat Inc http://www.mentat.com/tcp/tcp.html
Ericsson http://www.ipv6forum.com/navbar/position/Ericsson-IPv6-statement.pdf
Hitachi http://www.v6.hitachi.co.jp
RIPE/NCC http://www.ripe.net/annual-report/
NTT  http://www.v6.ntt.net/globe/index-e.html
ETRI Korea http://www.krv6.net
Ipinfusion http://www.ipinfusion.com/ipv6_network-processing_white_paper0727.pdf

For a current list of available implementations, refer to http://playground.sun.com/pub/ipng/html/ipng-
implementations.html (sorted by vendor) and http://www.ipv6.org/v6-apps.html (sorted by application).  

 

Appendix C. Recommended Reading 
This appendix provides a list of books that I recommend. 

1. DNS and BIND, by Paul Albitz and Cricket Liu (O'Reilly).  
2. Ethernet: The Definitive Guide, by Charles E. Spurgeon (O'Reilly).  
3. Guide to Service Location Protocol, by Silvia Hagen (podbooks.com).  
4. Internetworking with TCP/IP: Principles, Protocols and Architectures,by Douglas E. Comer 

(Prentice Hall).  
5. IPv6: The New Internet Protocol , by Christian Huitema (Prentice Hall).  
6. Novell's Guide to LAN/WAN Analysis, by Laura A. Chappell (John Wiley & Sons).  
7. Novell's Guide to Troubleshooting TCP/IP, by Silvia Hagen and Stephanie Lewis (John Wiley & 

Sons).  
8. Routing in the Internet, by Christian Huitema (Prentice Hall).  

 


